Sample records for xylenol orange-feiii complex

  1. Study of the absorption spectra of Fricke Xylenol Orange gel dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gambarini, Grazia; Artuso, Emanuele; Liosi, Giulia Maria

    2015-07-01

    A systematic study of the absorption spectra of Fricke Xylenol Orange gel dosimeters has been performed, in the wavelength range from 300 nm to 700 nm. The spectrum of Xylenol Orange (without ferrous sulphate solution) has been achieved, in order to subtract its contribution from the absorption spectra of the irradiated Fricke Xylenol Orange gel dosimeters. The absorbance due to ferric ions chelated by Xylenol Orange has been studied for various irradiation doses. Two absorbance peaks are visible, mainly at low doses: the first peak increases with the dose more slowly than the second one. This effect can explain themore » apparent threshold dose that was frequently evidenced. (authors)« less

  2. Fricke-gel dosimeter: overview of Xylenol Orange chemical behavior

    NASA Astrophysics Data System (ADS)

    Liosi, G. M.; Dondi, D.; Vander Griend, D. A.; Lazzaroni, S.; D'Agostino, G.; Mariani, M.

    2017-11-01

    The complexation between Xylenol Orange (XO) and Fe3+ ions plays a key role in Fricke-gel dosimeters for the determination of the absorbed dose via UV-vis analysis. In this study, the effect of XO and the acidity of the solution on the complexation mechanism was investigated. Moreover, starting from the results of complexation titration and Equilibrium Restricted Factor Analysis, four XO-Fe3+ complexes were identified to contribute to the absorption spectra. Based on the acquired knowledge, a new [Fe3+] vs dose calibration method is proposed. The preliminary results show a significant improvement of the sensitivity and dose threshold with respect to the commonly used Abs vs dose calibration method.

  3. A reduction of diffusion in PVA Fricke hydrogels

    NASA Astrophysics Data System (ADS)

    Smith, S. T.; Masters, K. S.; Hosokawa, K.; Blinco, J.; Crowe, S. B.; Kairn, T.; Trapp, J. V.

    2015-01-01

    A modification to the PVA-FX hydrogel whereby the chelating agent, xylenol orange, was partially bonded to the gelling agent, poly-vinyl alcohol, resulted in an 8% reduction in the post irradiation Fe3+ diffusion, adding approximately 1 hour to the useful timespan between irradiation and readout. This xylenol orange functionalised poly-vinyl alcohol hydrogel had an OD dose sensitivity of 0.014 Gy-1 and a diffusion rate of 0.133 mm2 h-1. As this partial bond yields only incremental improvement, it is proposed that more efficient methods of bonding xylenol orange to poly-vinyl alcohol be investigated to further reduce the diffusion in Fricke gels.

  4. Technical Note: Preliminary investigations into the use of a functionalised polymer to reduce diffusion in Fricke gel dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S. T., E-mail: s164.smith@qut.edu.au; Masters, K.-S.; Hosokawa, K.

    2015-12-15

    Purpose: A modification of the existing PVA-FX hydrogel has been made to investigate the use of a functionalised polymer in a Fricke gel dosimetry system to decrease Fe{sup 3+} diffusion. Methods: The chelating agent, xylenol orange, was chemically bonded to the gelling agent, polyvinyl alcohol (PVA) to create xylenol orange functionalised PVA (XO-PVA). A gel was created from the XO-PVA (20% w/v) with ferrous sulfate (0.4 mM) and sulfuric acid (50 mM). Results: This resulted in an optical density dose sensitivity of 0.014 Gy{sup −1}, an auto-oxidation rate of 0.0005 h{sup −1}, and a diffusion rate of 0.129 mm{sup 2}more » h{sup −1}; an 8% reduction compared to the original PVA-FX gel, which in practical terms adds approximately 1 h to the time span between irradiation and accurate read-out. Conclusions: Because this initial method of chemically bonding xylenol orange to polyvinyl alcohol has inherently low conversion, the improvement on existing gel systems is minimal when compared to the drawbacks. More efficient methods of functionalising polyvinyl alcohol with xylenol orange must be developed for this system to gain clinical relevance.« less

  5. The effect of mixed dopants on the stability of Fricke gel dosimeters

    NASA Astrophysics Data System (ADS)

    Penev, K.; Mequanint, K.

    2013-06-01

    Auto-oxidation and fast diffusion in Fricke gels are major drawbacks to wide-spread application of these gels in 3D dosimetry. Aiming to limit both processes, we used mixed dopants: the ferric-specific ligand xylenol orange with a ferrous-specific ligand (1,10-phenanthroline) and/or a bi-functional cross-linking agent (glyoxal). Markedly improved auto-oxidation stability was observed in the xylenol orange and phenanthroline doped gel at the expense of increased background absorbance and faster diffusion. Addition of glyoxal limited the diffusion rate and led to a partial bleaching of the gel. It is conceivable that these two new compositions may find useful practical application.

  6. Drop mass transfer in a microfluidic chip compared to a centrifugal contactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemer, Martin B.; Roberts, Christine C.; Hughes, Lindsey G.

    2014-06-13

    A model system was developed for enabling a multiscale understanding of centrifugal-contactor liquid–liquid extraction.The system consisted of Nd(III) + xylenol orange in the aqueous phase buffered to pH =5.5 by KHP, and dodecane + thenoyltrifluroroacetone (HTTA) + tributyphosphate (TBP) in the organic phase. Diffusion constants were measured for neodymium in both the organic and aqueous phases, and the Nd(III) partition coefficients were measured at various HTTA and TBP concentrations. A microfluidic channel was used as a high-shear model environment to observe mass-transfer on a droplet scale with xylenol orange as the aqueous-phase metal indicator; mass-transfer rates were measured quantitatively inmore » both diffusion and reaction limited regimes on the droplet scale. Lastly, the microfluidic results were comparable to observations made for the same system in a laboratory scale liquid–liquid centrifugal contactor, indicating that single drop microfluidic experiments can provide information on mass transfer in complicated flows and geometries.« less

  7. A Xylenol Orange-Based Screening Assay for the Substrate Specificity of Flavin-Dependent para-Phenol Oxidases.

    PubMed

    Ewing, Tom A; van Noord, Aster; Paul, Caroline E; van Berkel, Willem J H

    2018-01-14

    Vanillyl alcohol oxidase (VAO) and eugenol oxidase (EUGO) are flavin-dependent enzymes that catalyse the oxidation of para -substituted phenols. This makes them potentially interesting biocatalysts for the conversion of lignin-derived aromatic monomers to value-added compounds. To facilitate their biocatalytic exploitation, it is important to develop methods by which variants of the enzymes can be rapidly screened for increased activity towards substrates of interest. Here, we present the development of a screening assay for the substrate specificity of para -phenol oxidases based on the detection of hydrogen peroxide using the ferric-xylenol orange complex method. The assay was used to screen the activity of VAO and EUGO towards a set of twenty-four potential substrates. This led to the identification of 4-cyclopentylphenol as a new substrate of VAO and EUGO and 4-cyclohexylphenol as a new substrate of VAO. Screening of a small library of VAO and EUGO active-site variants for alterations in their substrate specificity led to the identification of a VAO variant (T457Q) with increased activity towards vanillyl alcohol (4-hydroxy-3-methoxybenzyl alcohol) and a EUGO variant (V436I) with increased activity towards chavicol (4-allylphenol) and 4-cyclopentylphenol. This assay provides a quick and efficient method to screen the substrate specificity of para -phenol oxidases, facilitating the enzyme engineering of known para- phenol oxidases and the evaluation of the substrate specificity of novel para -phenol oxidases.

  8. Online spectrophotometric determination of Fe(II) and Fe(III) by flow injection combined with low pressure ion chromatography

    NASA Astrophysics Data System (ADS)

    Chen, Shujuan; Li, Nan; Zhang, Xinshen; Yang, Dongjing; Jiang, Heimei

    2015-03-01

    A simple and new low pressure ion chromatography combined with flow injection spectrophotometric procedure for determining Fe(II) and Fe(III) was established. It is based on the selective adsorption of low pressure ion chromatography column to Fe(II) and Fe(III), the online reduction reaction of Fe(III) and the reaction of Fe(II) in sodium acetate with phenanthroline, resulting in an intense orange complex with a suitable absorption at 515 nm. Various chemical (such as the concentration of colour reagent, eluant and reductive agent) and instrumental parameters (reaction coil length, reductive coil length and wavelength) were studied and were optimized. Under the optimum conditions calibration graph of Fe(II)/Fe(III) was linear in the Fe(II)/Fe(III) range of 0.040-1.0 mg/L. The detection limit of Fe(III) and Fe(II) was respectively 3.09 and 1.55 μg/L, the relative standard deviation (n = 10) of Fe(II) and Fe(III) 1.89% and 1.90% for 0.5 mg/L of Fe(II) and Fe(III) respectively. About 2.5 samples in 1 h can be analyzed. The interfering effects of various chemical species were studied. The method was successfully applied in the determination of water samples.

  9. Enhanced reduction of Fe(III) oxides and methyl orange by Klebsiella oxytoca in presence of anthraquinone-2-disulfonate.

    PubMed

    Yu, Lei; Wang, Shi; Tang, Qing-Wen; Cao, Ming-Yue; Li, Jia; Yuan, Kun; Wang, Ping; Li, Wen-Wei

    2016-05-01

    Klebsiella oxytoca GS-4-08 is capable of azo dye reduction, but its quinone respiration and Fe(III) reduction abilities have not been reported so far. In this study, the abilities of this strain were reported in detail for the first time. As the biotic reduction of Fe(III) plays an important role in the biogeochemical cycles, two amorphous Fe(III) oxides were tested as the sole electron acceptor during the anaerobic respiration of strain GS-4-08. For the reduction of goethite and hematite, the biogenic Fe(II) concentrations reached 0.06 and 0.15 mM, respectively. Humic acid analog anthraquinone-2-disulfonate (AQS) was found to serve as an electron shuttle to increase the reduction of both methyl orange (MO) and amorphous Fe(III) oxides, and improve the dye tolerance of the strain. However, the formation of Fe(II) was not accelerated by biologically reduced AQS (B-AH2QS) because of the high bioavailability of soluble Fe(III). For the K. oxytoca strain, high soluble Fe(III) concentrations (above 1 mM) limit its growth and decolorization ability, while lower soluble Fe(III) concentrations produce an electron competition with MO initially, and then stimulate the decolorization after the electron couples of Fe(III)/Fe(II) are formed. With the ability to respire both soluble Fe(III) and insoluble Fe(III) oxides, this formerly known azo-reducer may be used as a promising model organism for the study of the interaction of these potentially competing processes in contaminated environments.

  10. On-line separation and preconcentration of lead(II) by solid-phase extraction using activated carbon loaded with xylenol orange and its determination by flame atomic absorption spectrometry.

    PubMed

    Ensafi, Ali A; Shiraz, A Zendegi

    2008-02-11

    Activated carbon loaded with xylenol orange in a mini-column was used for the highly selective separation and preconcentration of Pb(II) ions. An on-line system for enrichment and the determination of Pb(II) was carried out on flame atomic absorption spectrometry. The conditions of preconcentration and quantitative recovery of Pb(II) from diluted solution, such as pH of aqueous phase, amount of the sorbent, volume of the solutions and flow variables were studied as well as effect of potential interfering ions. Under the optimum conditions, Pb(II) in an aqueous sample was concentrated about 200-fold and the detection limit was 0.4 ng mL(-1) Pb(II). The adsorption capacity of the solid phase was 0.20mg of lead per one gram of the modified activated carbon. The modified activated carbon is stable for several treatments of sample solutions without the need for using any chemical reagent. The recovery of lead(II) from river water, waste water, tap water, and in the following reference materials: SRM 2711 Montana soil and GBW-07605 tea were obtained in the range of 97-104% by the proposed method.

  11. Glycol stabilized magnetic nanoparticles for photocatalytic degradation of xylenol orange

    NASA Astrophysics Data System (ADS)

    Ullah, Ikram; Ali, Farman; Ali, Zarshad; Humayun, Muhammad; wahab, Zain Ul

    2018-05-01

    In this work, we have successfully prepared ZnFe2O4 magnetic nanoparticles as photocatalysts via co-precipitation method using triethylene glycol as a stabilizing agent. The resultant nanoparticles were annealed at 400 °C and then acid etched and surface functionalized with 3-(triethoxysilyl) propyl amine (APTES). Fourier transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) analysis were used to characterize these magnetic photocatalysts. XRD patterns revealed that the size of annealed and functionalized ZnFe2O4 nanoparticles falls in the range of 23.3 and 13.9 nm, respectively. The optical band gaps of the magnetic photocatalysts were calculated from UV–Visible absorption spectra using Tauc plots. The band gap of the ZnFe2O4 photocatalyst in acidic and basic medium was 2.47 and 2.7 eV, respectively. The performance of the magnetic photocatalysts was evaluated for xylenol orange (XO) degradation. The degradation rates of XO dye for the blank, annealed and functionalized photocatalysts at pH = 4 were 76%, 85%, and 90%, respectively. In addition, the influence of important parameters such as contact time, pH, catalyst, and dye dose were also investigated for all the three photocatalysts. The applied kinetics models demonstrated that the degradation followed pseudo 1st order.

  12. Development of a C3-symmetric benzohydroxamate tripod: Trimetallic complexation with Fe(III), Cr(III) and Al(III)

    NASA Astrophysics Data System (ADS)

    Baral, Minati; Gupta, Amit; Kanungo, B. K.

    2016-06-01

    The design, synthesis and physicochemical characterization of a C3-symmetry Benzene-1,3,5-tricarbonylhydroxamate tripod, noted here as BTHA, are described. The chelator was built from a benzene as an anchor, symmetrically extended by three hydroxamate as ligating moieties, each bearing O, O donor sites. A combination of absorption spectrophotometry, potentiometry and theoretical investigations are used to explore the complexation behavior of the ligand with some trivalent metal ions: Fe(III), Cr(III), and Al(III). Three protonation constants were calculated for the ligand in a pH range of 2-11 in a highly aqueous medium (9:1 H2O: DMSO). A high rigidity in the molecular structure restricts the formation of 1:1 (M/L) metal encapsulation but shows a high binding efficiency for a 3:1 metal ligand stoichiometry giving formation constant (in β unit) 28.73, 26.13 and 19.69 for [M3L]; Mdbnd Fe(III), Al(III) and Cr(III) respectively, and may be considered as an efficient Fe-carrier. The spectrophotometric study reveals of interesting electronic transitions occurred during the complexation. BTHA exhibits a peak at 238 nm in acidic pH and with the increase of pH, a new peak appeared at 270 nm. A substantial shifting in both of the peaks in presence of the metal ions implicates a s coordination between ligand and metal ions. Moreover, complexation of BTHA with iron shows three distinct colors, violet, reddish orange and yellow in different pH, enables the ligand to be considered for the use as colorimetric sensor.

  13. Study of Fricke-gel dosimeter calibration for attaining precise measurements of the absorbed dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liosi, Giulia Maria; Benedini, Sara; Giacobbo, Francesca

    2015-07-01

    A method has been studied for attaining, with good precision, absolute measurements of the spatial distribution of the absorbed dose by means of the Fricke gelatin Xylenol Orange dosimetric system. With this aim, the dose response to subsequent irradiations was analyzed. In fact, the proposed modality is based on a pre-irradiation of each single dosimeter in a uniform field with a known dose, in order to extrapolate a calibration image for a subsequent non-uniform irradiation with an un-known dose to be measured. (authors)

  14. Removal of xylenol orange from its aqueous solution using SDS self-microemulsifying systems: optimization by Box-Behnken statistical design.

    PubMed

    Shakeel, Faiyaz; Haq, Nazrul; Alanazi, Fars K; Alsarra, Ibrahim A

    2014-04-01

    The aim of present study was to develop and evaluate sodium dodecyl sulfate (SDS) self-microemulsifying systems (SMES) for the removal of an anionic dye xylenol orange (XO) from its bulk aqueous media via liquid-liquid adsorption. The composition of SDS SMES was optimized by Box-Behnken statistical design for the maximum removal of XO from its aqueous solution. Various SDS formulations were prepared by spontaneous emulsification method and characterized for thermodynamic stability, self-microemulsification efficiency, droplet size, and viscosity. Adsorption studies were conducted at 8, 16, and 24 h by mixing small amounts of SDS formulations with relatively large amounts of bulk aqueous solution of XO. Droplet size and viscosity of SDS formulations were significantly influenced by oil phase concentration (triacetin), while surfactant concentration had little impact on droplet size and viscosity. However, the percentage of removal of XO was influenced by triacetin concentration, surfactant concentration, and adsorption time. Based on lowest droplet size (35.97 nm), lowest viscosity (29.62 cp), and highest percentage of removal efficiency (89.77 %), formulation F14, containing 2 % w/w of triacetin and 40 % w/w of surfactant mixture (20 % w/w of SDS and 20 % w/w of polyethylene glycol 400), was selected as an optimized formulation for the removal of XO from its bulk aqueous media after 16 h. These results indicated that SDS SMES could be suitable alternates of solid-liquid adsorption for the removal of toxic dyes such as XO from its aqueous solution through liquid-liquid adsorption.

  15. On the use of a novel Ferrous Xylenol-orange gelatin dosimeter for HDR brachytherapy commissioning and quality assurance testing.

    PubMed

    Pappas, Eleftherios P; Peppa, Vasiliki; Hourdakis, Costas J; Karaiskos, Pantelis; Papagiannis, Panagiotis

    2018-01-01

    To evaluate a commercially available Ferrous-Xylenol Orange-Gel (FXG) dosimeter (TrueView™) coupled with Optical-Computed Tomography (OCT) read out, for 3D dose verification in an Ir-192 superficial brachytherapy application. Two identical polyethylene containers filled with gel from the same batch were used. One was irradiated with an 18 MeV electron field to examine the dose-response linearity and obtain a calibration curve. A flap surface applicator was attached to the other to simulate treatment of a skin lesion. The dose distribution in the experimental set up was calculated with the TG-43 and the model based dose calculation (MBCA) algorithms of a commercial treatment planning system (TPS), as well as Monte Carlo (MC) simulation using the MCNP code. Measured and calculated dose distributions were spatially registered and compared. Apart from a region close to the container's neck, where gel measurements exhibited an over-response relative to MC calculations (probably due to stray light perturbation), an excellent agreement was observed between measurements and simulations. More than 97% of points within the 10% isodose line (80 cGy) met the gamma index criteria established from uncertainty analysis (5%/2 mm). The corresponding passing rates for the comparison of experiment to calculations using the TG-43 and MBDCA options of the TPS were 57% and 92%, respectively. TrueView™ is suitable for the quality assurance of demanding radiotherapy applications. Experimental results of this work confirm the advantage of the studied MBDCA over TG-43, expected from the improved account of scatter radiation in the treatment geometry. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Dosimetric impact of a change in breathing period on VMAT stereotactic ablative body radiotherapy

    NASA Astrophysics Data System (ADS)

    Olding, T.; Alexander, KM

    2017-05-01

    The dosimetric impact of a change in breathing period during treatment was assessed for a volumetric modulated arc therapy (VMAT) stereotactic ablative radiotherapy (SABR) lung plan optimized according to our centre’s planning protocol. Plan delivery was evaluated at three breathing rates ranging from 7 to 23 breaths-per-minute (BPM) against the planning anatomy (15 BPM) calculated dose. Dynamic ion chamber, EBT3 film and Fricke-xylenol orange-gelatin (FXG) gel measurements were acquired using a motion phantom with appropriate inserts for each dosimeter. The results show good agreement between measured and calculated plan dose within the internal gross tumour volume (IGTV) target.

  17. Synthesis and Photoluminescence of Single-Crystalline Fe(III)-Doped CdS Nanobelts.

    PubMed

    Kamran, Muhammad Arshad; Zou, Bingsuo; Majid, A; Alharbil, Thamer; Saeed, M A; Abdullah, Ali; Javed, Qurat-ul-ain

    2016-04-01

    In this paper, we report the synthesis and optical properties of Fe(III) doped CdS nanobelts (NBs) via simple Chemical Vapor Deposition (CVD) technique to explore their potential in nano-optics. The energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analysis manifested the presence of Fe(III) ions in the NBs subsequently confirmed by the peak shifting to lower phonon energies as recorded by Raman spectra and shorter lifetime in ns. Photoluminescence (PL) spectrum investigations of the single Fe(III)-doped CdS NBs depicted an additional PL peak centered at 573 nm (orange emission) in addition to the bandedge(BE) emission. The redshift and decrease in the BE intensity of the PL peaks, as compared to the bulk CdS, confirmed the quenching of spectra upon Fe doping. The synthesis and orange emission for Fe-doped CdS NBs have been observed for the first time and point out their potential in nanoscale devices.

  18. Photo-Fenton Degradation of Organic Dyes Based on a Fe₃O₄ Nanospheres/Biomass Composite Loaded Column.

    PubMed

    Zheng, Kai; Zhang, Jubo; Wang, Yan; Gao, Longxue; Di, Mingyu; Yuan, Fang; Bao, Wenhui; Yang, Tao; Liang, Daxin

    2018-06-01

    In order to deal with pollution of organic dyes, magnetic Fe3O4 nanospheres (NPs) with an average diameter of 202 ± 0.5 nm were synthesized by a solvothermal method at 200 °C, and they can efficiently degrade organic dyes (methylene blue (MB), rhodamine B (RhB) and xylenol orange (XO)) aqueous solutions (20 mg/L) within 1 min. Based on this Fenton reagent, Fe3O4 NPs/biomass composite degradation column was made using sawdust as substrate, and it can efficiently degrade organic dyes continually. More importantly, the composite can be regenerated just by an ultrasonic treatment, and its degradation performance almost remains the same.

  19. Effect of deacetylation on property of electrospun chitosan/PVA nanofibrous membrane and removal of methyl orange, Fe(III) and Cr(VI) ions.

    PubMed

    Habiba, Umma; Siddique, Tawsif A; Talebian, Sepehr; Lee, Jacky Jia Li; Salleh, Areisman; Ang, Bee Chin; Afifi, Amalina M

    2017-12-01

    In this study, effect of degree of deacetylation on property and adsorption capacity of chitosan/polyvinyl Alcohol electrospun membrane has been investigated. Resulting nanofibers were characterized by FESEM, FTIR, XRD, TGA, tensile testing, weight loss test and adsorption test. FESEM result shows, finer nanofiber was fabricated from 42h hydrolyzed chitosan and PVA blend solution. FTIR and XRD result showed a strong interaction between chitosan and polyvinyl alcohol. Higher tensile strength was observed for the nanofiber having 42h hydrolyzed chitosan. Blend solution of chitosan/PVA having low DD chitosan had higher viscosity. The nanofibrous membrane was stable in distilled water, acidic and basic medium. The isotherm study shows that the adsorption capacity (q m ) of nanofiber containing higher DD chitosan was higher for Cr(VI). In contrary, the membrane containing chitosan with lower DD showed the higher adsorption capacity for Fe(III) and methyl orange. Moreover, the effect of DD on removal percentage of adsorbate was dependent on the initial concentration of the adsorbate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Identification of oxidative coupling products of xylenols arising from laboratory-scale phytoremediation.

    PubMed

    Poerschmann, J; Schultze-Nobre, L; Ebert, R U; Górecki, T

    2015-01-01

    Oxidative coupling reactions take place during the passage of xylenols through a laboratory-scale helophyte-based constructed wetland system. Typical coupling product groups including tetramethyl-[1,1'-biphenyl] diols and tetramethyl diphenylether monools as stable organic intermediates could be identified by a combination of pre-chromatographic derivatization and GC/MS analysis. Structural assignment of individual analytes was performed by an increment system developed by Zenkevich to pre-calculate retention sequences. The most abundant analyte turned out to be 3,3',5,5'-tetramethyl-[1,1'-biphenyl]-4,4'-diol, which can be formed by a combination of radicals based on 2,6-xylenol or by an attack of a 2,6-xylenol-based radical on 2,6-xylenol. Organic intermediates originating from oxidative coupling could also be identified in anaerobic constructed wetland systems. This finding suggested the presence of (at least partly) oxic conditions in the rhizosphere. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Toxicity and kinetic parameters of the aerobic biodegradation of the phenol and alkylphenols by a mixed culture.

    PubMed

    Acuña-Argüelles, M E; Olguin-Lora, P; Razo-Flores, E

    2003-04-01

    A mixed culture aerobically metabolized phenol, cresol isomers (o-,m-,p-), 2-ethylphenol and xylenol isomers (2,5-DMP and 3,4-DMP) as the sole carbon and energy source. This culture had a high tolerance towards phenol with values of maximum degradation rate (Vmax) of 47 microM phenol mg-1 protein h-1 and inhibition substrate constant (Ki) of 10 mM. These kinetic parameters were considerably diminished and the toxicity increased with the alkylphenols. For example with 2,5-xylenol, Vmax and Ki values of 0.8 microM 2,5-xylenol mg-1 protein h-1 and 1.3 mM, respectively, were obtained. The cresols were 5-fold more toxic than phenol, whereas 2-ethylphenol and 3,4-xylenol were 11-fold more toxic, and 2,5-xylenol was 34-fold more toxic than phenol.

  2. Dissociation kinetics of Fe(III)- and Al(III)-natural organic matter complexes at pH 6.0 and 8.0 and 25 °C

    NASA Astrophysics Data System (ADS)

    Jones, Adele M.; Pham, A. Ninh; Collins, Richard N.; Waite, T. David

    2009-05-01

    The rate at which iron- and aluminium-natural organic matter (NOM) complexes dissociate plays a critical role in the transport of these elements given the readiness with which they hydrolyse and precipitate. Despite this, there have only been a few reliable studies on the dissociation kinetics of these complexes suggesting half-times of some hours for the dissociation of Fe(III) and Al(III) from a strongly binding component of NOM. First-order dissociation rate constants are re-evaluated here at pH 6.0 and 8.0 and 25 °C using both cation exchange resin and competing ligand methods for Fe(III) and a cation exchange resin method only for Al(III) complexes. Both methods provide similar results at a particular pH with a two-ligand model accounting satisfactorily for the dissociation kinetics results obtained. For Fe(III), half-times on the order of 6-7 h were obtained for dissociation of the strong component and 4-5 min for dissociation of the weak component. For aluminium, the half-times were on the order of 1.5 h and 1-2 min for the strong and weak components, respectively. Overall, Fe(III) complexes with NOM are more stable than analogous complexes with Al(III), implying Fe(III) may be transported further from its source upon dilution and dispersion.

  3. Fluorescent and colorimetric detection of Fe(III) and Cu(II) by a difunctional rhodamine-based probe

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Ye, Dandan; Li, Wenxuan; Liu, Yuanyuan; Li, Longhua; Zhang, Wenli; Ni, Liang

    2017-08-01

    A new rhodamine B hydrazone derivative (probe L) was synthesized and characterized. The probe L had sufficiently satisfactory selective response to Fe3 + and Cu2 + ions among various interferential metal ions, and high sensitivity with the detection limit of 4.63 × 10- 9 M and 5.264 × 10- 7 M for Fe3 + and Cu2 + ions, respectively. In the presence of Fe3 +, the probe L exhibited turn-on orange fluorescence accompanied by color change from colorless to pink. Toward Cu2 +, the probe L showed significant color change from colorless to red purple. These remarkable orange fluorescence and color change made probe L suitable naked-eye identify for Fe3 + and Cu2 + ions. By means of Job's plot, Benesi-Hildebrand studies and FTIR spectra, both 1:1 binding modes (L-Fe3 + and L-Cu2 +) were confirmed. The coordination mechanism and turn on/off fluorescence for L-Fe3 + and L-Cu2 + complexes were well explained by theoretical calculations. Moreover, probe L could be used as a quick, simple, visual test strip for Fe3 + and Cu2 + detection.

  4. Investigation of complexes tannic acid and myricetin with Fe(III)

    NASA Astrophysics Data System (ADS)

    Sungur, Şana; Uzar, Atike

    2008-01-01

    The pH dependence of the complexes was determined by both potentiometric and spectrophotometric studies. Stability constants and stoichiometries of the formed complexes were determined using slope ratio method. Fe(III) was formed complexes with tannic acid of various stoichiometries, which in the 1:1 molar ratio at pH < 3, in the 2:1 molar ratio at pH 3-7 and in the 4:1 molar ratio at pH > 7. Fe(III) was formed complexes with myricetin in the 1:2 molar ratio at pH 4 and 5 and in the 1:1 molar ratio at pH 6. Stability constant values were found to be 10 5 to 10 17 and 10 5 to 10 9 for Fe(III)-tannic acid complexes and Fe(III)-myricetin complexes. Both tannic acid and myricetin were possessed minimum affinities to Cu(II) and Zn(II). They had less affinity for Al(III) than for Fe(III).

  5. New method for the direct determination of dissolved Fe(III) concentration in acid mine waters

    USGS Publications Warehouse

    To, T.B.; Nordstrom, D. Kirk; Cunningham, K.M.; Ball, J.W.; McCleskey, R. Blaine

    1999-01-01

    A new method for direct determination of dissolved Fe(III) in acid mine water has been developed. In most present methods, Fe(III) is determined by computing the difference between total dissolved Fe and dissolved Fe(II). For acid mine waters, frequently Fe(II) >> Fe(III); thus, accuracy and precision are considerably improved by determining Fe(III) concentration directly. The new method utilizes two selective ligands to stabilize Fe(III) and Fe(II), thereby preventing changes in Fe reduction-oxidation distribution. Complexed Fe(II) is cleanly removed using a silica-based, reversed-phase adsorbent, yielding excellent isolation of the Fe(III) complex. Iron(III) concentration is measured colorimetrically or by graphite furnace atomic absorption spectrometry (GFAAS). The method requires inexpensive commercial reagents and simple procedures that can be used in the field. Calcium(II), Ni(II), Pb(II), AI(III), Zn(II), and Cd(II) cause insignificant colorimetric interferences for most acid mine waters. Waters containing >20 mg of Cu/L could cause a colorimetric interference and should be measured by GFAAS. Cobalt(II) and Cr(III) interfere if their molar ratios to Fe(III) exceed 24 and 5, respectively. Iron(II) interferes when its concentration exceeds the capacity of the complexing ligand (14 mg/L). Because of the GFAAS elemental specificity, only Fe(II) is a potential interferent in the GFAAS technique. The method detection limit is 2 ??g/L (40 nM) using GFAAS and 20 ??g/L (0.4 ??M) by colorimetry.A new method for direct determination of dissolved Fe(III) in acid mine water has been developed. In most present methods, Fe(III) is determined by computing the difference between total dissolved Fe and dissolved Fe(II). For acid mine waters, frequently Fe(II)???Fe(III); thus, accuracy and precision are considerably improved by determining Fe(III) concentration directly. The new method utilizes two selective ligands to stabilize Fe(III) and Fe(II), thereby preventing changes in Fe reduction-oxidation distribution. Complexed Fe(II) is cleanly removed using a silica-based, reversed-phase adsorbent, yielding excellent isolation of the Fe(III) complex. Iron(III) concentration is measured colorimetrically or by graphite furnace atomic absorption spectrometry (GFAAS). The method requires inexpensive commercial reagents and simple procedures that can be used in the field. Calcium(II), Ni(II), Pb(II), Al(III), Zn(II), and Cd(II) cause insignificant colorimetric interferences for most acid mine waters. Waters containing >20 mg of Cu/L could cause a colorimetric interference and should be measured by GFAAS. Cobalt(II) and Cr(III) interfere if their molar ratios to Fe(III) exceed 24 and 5, respectively. Iron(II) interferes when its concentration exceeds the capacity of the complexing ligand (14 mg/L). Because of the GFAAS elemental specificity, only Fe(II) is a potential interferent in the GFAAS technique. The method detection limit is 2/??g/L (40 nM) using GFAAS and 20 ??g/L (0.4 ??M) by colorimetry.

  6. Structural, spectroscopic and thermal characterization of 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester and its Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes.

    PubMed

    Mohamed, Gehad G; El-Gamel, Nadia E A

    2005-04-01

    Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes with the ligand 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester (HL(2)) have been prepared and characterized by elemental analyses, molar conductance, magnetic moment, thermal analysis and spectral data. 1:1 M:HL(2) complexes, with the general formula [M(HL(2))X(2)].nH(2)O (where M = Co(II) (X = Cl, n = 0), Ni(II) (X = Cl, n = 3), Cu(II) (grey colour, X = AcO, n = 1), Cu(II) (yellow colour, X = Cl, n = 0) and Zn(II) (X = Br, n = 0). In addition, the Fe(III) and UO(2)(II) complexes of the type 1:2 M:HL(2) and with the formulae [Fe(L(2))(2)]Cl and [UO(2)(HL(2))(2)](NO(3))(2) are prepared. From the IR data, it is seen that HL(2) ligand behaves as a terdentate ligand coordinated to the metal ions via the pyridyl N, carboxylate O and protonated NH group; except the Fe(III) complex, it coordinates via the deprotonated NH group. This is supported by the molar conductance data, which show that all the complexes are non-electrolytes, while the Fe(III) and UO(2)(II) complexes are 1:1 electrolytes. IR and H1-NMR spectral studies suggest a similar behaviour of the Zn(II) complex in solid and solution states. From the solid reflectance spectral data and magnetic moment measurements, the complexes have a trigonal bipyramidal (Co(II), Ni(II), Cu(II) and Zn(II) complexes) and octahedral (Fe(III), UO(2)(II) complexes) geometrical structures. The thermal behaviour of the complexes is studied and the different dynamic parameters are calculated applying Coats-Redfern equation.

  7. The binding of aluminum to mugineic acid and related compounds as studied by potentiometric titration.

    PubMed

    Yoshimura, Etsuro; Kohdr, Hicham; Mori, Satoshi; Hider, Robert C

    2011-08-01

    The phytosiderophores, mugineic acid (MA) and epi-hydroxymugineic acid (HMA), together with a related compound, nicotianamine (NA), were investigated for their ability to bind Al(III). Potentiometric titration analysis demonstrated that MA and HMA bind Al(III), in contrast to NA which does not under normal physiological conditions. With MA and HMA, in addition to the Al complex (AlL), the protonated (AlLH) and deprotonated (AlLH(-1)) complexes were identified from an analysis of titration curves, where L denotes the phytosiderophore form in which all the carboxylate functions are ionized. The equilibrium formation constants of the Al(III) phytosiderophore complexes are much smaller than those of the corresponding Fe(III) complexes. The higher selectivity of phytosiderophores for Fe(III) over Al(III) facilitates Fe(III) acquisition in alkaline conditions where free Al(III) levels are higher than free Fe(III) levels.

  8. FBX aqueous chemical dosimeter for measurement of virtual wedge profiles.

    PubMed

    Semwal, Manoj K; Bansal, Anil K; Thakur, Pradeep K; Vidyasagar, Pandit B

    2008-10-24

    We investigated the ferrous sulfate-benzoic acid-xylenol orange (FBX) aqueous chemical dosimeter for measurement of virtual (dynamic) wedge profiles on a linear accelerator. The layout for irradiation of the FBX-filled tubes mimicked a conventional linear detector array geometry. A comparison of the resulting measurements with film-measured profiles showed that, in the main beam region, the difference between the FBX system and the film system was within +/-2% and that, in the penumbra region, the difference varied from +/-1 mm to +/-2.5 mm in terms of positional equivalence, depending on the size of the dosimeter tubes. We thus believe that the energy-independent FBX dosimetry system can measure virtual wedge profiles with reasonable accuracy at reasonable cost. However, efficiency improvement is required before this dosimetry system can be accepted into routine practice.

  9. Ferrihydrite-associated organic matter (OM) stimulates reduction by Shewanella oneidensis MR-1 and a complex microbial consortia

    NASA Astrophysics Data System (ADS)

    Cooper, Rebecca Elizabeth; Eusterhues, Karin; Wegner, Carl-Eric; Totsche, Kai Uwe; Küsel, Kirsten

    2017-11-01

    The formation of Fe(III) oxides in natural environments occurs in the presence of natural organic matter (OM), resulting in the formation of OM-mineral complexes that form through adsorption or coprecipitation processes. Thus, microbial Fe(III) reduction in natural environments most often occurs in the presence of OM-mineral complexes rather than pure Fe(III) minerals. This study investigated to what extent does the content of adsorbed or coprecipitated OM on ferrihydrite influence the rate of Fe(III) reduction by Shewanella oneidensis MR-1, a model Fe(III)-reducing microorganism, in comparison to a microbial consortium extracted from the acidic, Fe-rich Schlöppnerbrunnen fen. We found that increased OM content led to increased rates of microbial Fe(III) reduction by S. oneidensis MR-1 in contrast to earlier findings with the model organism Geobacter bremensis. Ferrihydrite-OM coprecipitates were reduced slightly faster than ferrihydrites with adsorbed OM. Surprisingly, the complex microbial consortia stimulated by a mixture of electrons donors (lactate, acetate, and glucose) mimics S. oneidensis under the same experimental Fe(III)-reducing conditions suggesting similar mechanisms of electron transfer whether or not the OM is adsorbed or coprecipitated to the mineral surfaces. We also followed potential shifts of the microbial community during the incubation via 16S rRNA gene sequence analyses to determine variations due to the presence of adsorbed or coprecipitated OM-ferrihydrite complexes in contrast to pure ferrihydrite. Community profile analyses showed no enrichment of typical model Fe(III)-reducing bacteria, such as Shewanella or Geobacter sp., but an enrichment of fermenters (e.g., Enterobacteria) during pure ferrihydrite incubations which are known to use Fe(III) as an electron sink. Instead, OM-mineral complexes favored the enrichment of microbes including Desulfobacteria and Pelosinus sp., both of which can utilize lactate and acetate as an electron donor under Fe(III)-reducing conditions. In summary, this study shows that increasing concentrations of OM in OM-mineral complexes determines microbial Fe(III) reduction rates and shapes the microbial community structure involved in the reductive dissolution of ferrihydrite. Similarities observed between the complex Fe(III)-reducing microbial consortia and the model Fe(III)-reducer S. oneidensis MR-1 suggest electron-shuttling mechanisms dominate in OM-rich environments, including soils, sediments, and fens, where natural OM interacts with Fe(III) oxides during mineral formation.

  10. A field, laboratory and modeling study of reactive transport of groundwater arsenic in a coastal aquifer

    PubMed Central

    Jung, Hun Bok; Charette, Matthew A.; Zheng, Yan

    2009-01-01

    A field, laboratory, and modeling study of As in groundwater discharging to Waquoit Bay, MA, shed light on coupled control of chemistry and hydrology on reactive transport of As in a coastal aquifer. Dissolved Fe(II) and As(III) in a reducing groundwater plume bracketed by an upper and a lower redox interface are oxidized as water flows towards the bay. This results in precipitation of Fe(III) oxides, along with oxidation and adsorption of As to sediment at the redox interfaces where concentrations of sedimentary HCl-leachable Fe (80~90% Fe(III)) are 734±232 mg kg-1, sedimentary phosphate extractable As (90~100% As(V)) are 316±111 μg kg-1, and are linearly correlated. Batch adsorption of As(III) onto orange, brown and gray sediments follows Langmuir isotherms, and can be fitted by a surface complexation model (SCM) assuming a diffuse layer for ferrihydrite. The sorption capacity and distribution coefficient for As increase with decreasing sediment Fe(II)/Fe. To allow accumulation of the amount of sediment As, similar hydrogeochemical conditions would have been operating for thousands of years at Waquoit Bay. The SCM simulated the observed dissolved As concentration better than a parametric approach based on Kd. Site specific isotherms should be established for Kd or SCM based models. PMID:19708362

  11. Oxidative mutagenesis of doxorubicin-Fe(III) complex.

    PubMed

    Kostoryz, E L; Yourtee, D M

    2001-02-20

    Doxorubicin has a high affinity for inorganic iron, Fe(III), and has potential to form doxorubicin-Fe(III) complexes in biological systems. Indirect involvement of iron has been substantiated in the oxidative mutagenicity of doxorubicin. In this study, however, direct involvement of Fe(III) was evaluated in mutagenicity studies with the doxorubicin-Fe(III) complex. The Salmonella mutagenicity assay with strain TA102 was used with a pre-incubation step. The highest mutagenicity of doxorubicin-Fe(III) complex was observed at the dose of 2.5nmol/plate of the complex. The S9-mix decreased this highest mutagenicity but increased the number of revertants at a higher dose of 10nmol/plate of the complex. On the other hand, the mutagenicity of the doxorubicin-Fe(III) complex at the doses of 0.25, 0.5, 1 and 2nmol/plate was enhanced about twice by the addition of glutathione plus H(2)O(2). This enhanced mutagenicity as well as of the complex itself, the complex plus glutathione, and the complex plus H(2)O(2) were reduced by the addition of ADR-529, an Fe(III) chelator, and potassium iodide, a hydroxyl radical scavenger. These results indicate that doxorubicin-Fe(III) complex exert the mutagenicity through oxidative DNA damage and that Fe(III) is a required element in the mutagenesis of doxorubicin.

  12. Oxidation of tetracycline antibiotics induced by Fe(III) ions without light irradiation.

    PubMed

    Wang, Hui; Yao, Hong; Sun, Peizhe; Pei, Jin; Li, Desheng; Huang, Ching-Hua

    2015-01-01

    The presence of Fe(III) ions was found to induce degradation of three tetracycline antibiotics (TCs), tetracycline (TTC), oxytetracycline (OTC) and chlorotetracycline (CTC), in aqueous solutions without light. The presence of Fe(III) promoted the degradation of TCs in most experimental pH (5.0, 7.0 and 9.0) except at pH 9.0 for CTC. Degradation rate constants of TTC, OTC and CTC reached maximum ((6.2±0.5)×10(-3) h(-1), (10.6±0.1)×10(-3) h(-1) and (15.9±0.5)×10(-3) h(-1) at pH 7.0, 20 °C) when Fe(III):TC molar ratio was 1:1, 1:1 and 2:1, respectively. Such metal-to-ligand ratios agreed well with the most favorable complexation between Fe(III) and each TC. Compared to without metals, Fe(III) enhanced the degradation rate of TTC, OTC and CTC by up to 20.67, 7.07 and 2.30 times, respectively, in clean water matrix, and also promoted degradation of TCs in real surface water and wastewater matrices. The promoted degradation likely occurred via complexation of TCs and subsequent oxidation by Fe(III). Degradation results of CTC versus 4-epi-CTC suggested Fe(III) likely binds to TCs' C4 dimethylamino group. Toxicity of the complexes evaluated using Photobacterium phosphoreum T3 was increased after several hours of reaction, suggesting the transformation products may exert a stronger toxicity than parent TCs. This study identifies new oxidative transformation of TCs induced by Fe(III) ions without light irradiation, further supporting the important role of iron species in the environmental fate of TCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Impact of Fe(III)-OM complexes and Fe(III) polymerization on SOM pools reactivity under different land uses

    NASA Astrophysics Data System (ADS)

    Giannetta, B.; Plaza, C.; Zaccone, C.; Siebecker, M. G.; Rovira, P.; Vischetti, C.; Sparks, D. L.

    2017-12-01

    Soil organic matter (SOM) protection and long-term accumulation are controlled by adsorption to mineral surfaces in different ways, depending on its molecular structure and pedo-climatic conditions. Iron (Fe) oxides are known to be key regulators of the soil carbon (C) cycle, and Fe speciation in soils is highly dependent on environmental conditions and chemical interactions with SOM. However, the molecular structure and hydrolysis of Fe species formed in association with SOM is still poorly described. We hypothesize the existence of two pools of Fe which interact with SOM: mononuclear Fe(III)-SOM complexes and precipitated Fe(III) hydroxides. To verify our hypothesis, we investigated the interactions between Fe(III) and physically isolated soil fractions by means of batch experiments at pH 7. Specifically, we examined the fine silt plus clay (FSi+C) fraction, obtained by ultrasonic dispersion and wet sieving. The soil samples spanned several land uses, including coniferous forest (CFS), grassland (GS), technosols (TS) and agricultural (AS) soils. Solid phase products and supernatants were analyzed for C and Fe content. X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis were also performed. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used to assess the main C functional groups involved in C complexation and desorption experiments. Preliminary linear combination fitting (LCF) of Fe K-edge extended X-ray absorption fine structure (EXAFS) spectra suggested the formation of ferrihydrite-like polymeric Fe(III) oxides in reacted CFS and GS samples, with higher C and Fe concentration. Conversely, mononuclear Fe(III) OM complexes dominated the speciation for TS and AS samples, characterized by lower C and Fe concentration, inhibiting the hydrolysis and polymerization of Fe (III). This approach will help revealing the mechanisms by which SOM pools can control Fe(III) speciation, and will elucidate how both Fe(III)-OM complexes and Fe(III) polymerization can affect SOM reactivity and, consequently, its mean residence time in different ecosystems.

  14. Synthesis and photocatalytic activity of p–n junction CeO2/Co3O4 photocatalyst for the removal of various dyes from wastewater

    NASA Astrophysics Data System (ADS)

    Tang, Yuanzheng; Zhang, Meng; Wu, Zhengying; Chen, Zhigang; Liu, Chengbao; Lin, Yun; Chen, Feng

    2018-04-01

    CeO2, Co3O4, and Co3O4/CeO2 composites are successfully synthesized by a simple coprecipitation method. X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) results indicate that the CeO2, Co3O4, and Co3O4/CeO2 precursors sintered at 500 °C has good crystallization. The cerium nitrate introduced into cobalt nitrate precursor solution improved the surface morphology and photocatalytic activity of Co3O4 significantly. The photo-degradation of methylene blue (MB), xylenol orange (XO), methyl orange (MO), and methyl red (MR) catalyzed by prepared nanocomposites were studied under visible light irradiation. Photocatalytic experiment results indicate that the photocatalytic activity of Co3O4/CeO2 composites for degradation of various dyes highly depend on pH value. The optimum conditions for the photocatalytic experiments of Co3O4/CeO2 composites were determined to be as follows: dye concentration, 50 mg L‑1, and catalyst concentration, 50 mg L‑1. The excellent photocatalytic activity of the p–n junction Co3O4/CeO2 composites can be ascribed to the ·O2‑ radicals and h+.

  15. CHRIS: Hazardous Chemical Data

    DTIC Science & Technology

    1978-10-01

    CPLORD-O-TOLUICIfE FAST RED Z& BASE = ’-1-ITRCAMILINE FERMENTAITION ALCOH!OL - ETHYL ALCOHOL FERMENTATION AMYL ALCOHCL -ISCANYL ALCOJIGI FERMENTATION BUTYL...ACID ETHYLENEDIAMINE IETRACETIC ACID VIC-H-XYLENOL XYLENOL VIENNA GREEN COPPER ACETOARSE1ITE VILRATHANE 4300 -CIPHENYLETHAME01ISOCYANATE (MDIl VINEGAR

  16. Synthesis, magnetic, spectral, and antimicrobial studies of Cu(II), Ni(II) Co(II), Fe(III), and UO 2(II) complexes of a new Schiff base hydrazone derived from 7-chloro-4-hydrazinoquinoline

    NASA Astrophysics Data System (ADS)

    El-Behery, Mostafa; El-Twigry, Haifaa

    2007-01-01

    A new hydrazone ligand, HL, was prepared by the reaction of 7-chloro-4-hydrazinoquinoline with o-hydroxybenzaldehyde. The ligand behaves as monoprotic bidentate. This was accounted for as the ligand contains a phenolic group and its hydrogen atom is reluctant to be replaced by a metal ion. The ligand reacted with Cu(II), Ni(II), Co(II), Fe(III), and UO 2(II) ions to yield mononuclear complexes. In the case of Fe(III) ion two complexes, mono- and binuclear complexes, were obtained in the absence and presence of LiOH, respectively. Also, mixed ligand complexes were obtained from the reaction of the metal cations Cu(II), Ni(II) and Fe(III) with the ligand (HL) and 8-hydroxyquinoline (8-OHqu) in the presence of LiOH, in the molar ratio 1:1:1:1. It is clear that 8-OHqu behaves as monoprotic bidentate ligand in such mixed ligand complexes. The ligand, HL, and its metal complexes were characterized by elemental analyses, IR, UV-vis, mass, and 1H NMR spectra, as well as magnetic moment, conductance measurements, and thermal analyses. All complexes have octahedral configurations except Cu(II) complex which has an extra square-planar geometry, while Ni(II) mixed complex has also formed a tetrahedral configuration and UO 2(II) complex which formed a favorable pentagonal biprymidial geometry. Magnetic moment of the binuclear Fe(III) complex is quite low compared to calculated value for two iron ions complex and thus shows antiferromagnetic interactions between the two adjacent ferric ions. The HL and metal complexes were tested against one stain Gram positive bacteria ( Staphylococcus aureus), Gram negative bacteria ( Escherichia coli), and fungi ( Candida albicans). The tested compounds exhibited higher antibacterial acivities.

  17. Effects of molecular composition of natural organic matter on ferric iron complexation at circumneutral pH.

    PubMed

    Fujii, Manabu; Imaoka, Akira; Yoshimura, Chihiro; Waite, T D

    2014-04-15

    Thermodynamic and kinetic parameters for ferric iron (Fe[III]) complexation by well-characterized humic substances (HS) from various origins were determined by a competitive ligand method with 5-sulfosalicylic acid at circumneutral pH (6.0-8.0) and an ionic strength of ∼0.06 M. The measured Fe binding properties including conditional stability constants and complexation capacities ranged over more than 2 orders of magnitude, depending on the origin and the particular operationally defined fraction of HS examined. Statistical comparison of the complexation parameters to a range of chemical properties of the HS indicated a strong positive correlation between Fe(III) complexation capacity and aromatic carbon content in the HS at all pHs examined. In contrast, the complexation capacity was determined to be up to a few orders of magnitude smaller than the concentration of carboxylic and phenolic groups present. Therefore, specific functional groups including those resident in the proximity of aromatic structures within the HS are likely preferable for Fe(III) coordination under the conditions examined. Overall, our results suggest that the concentration of dissolved Fe(III) complexes in natural waters is substantially influenced by variation in HS characteristics in addition to other well-known factors such as HS concentration and nature and concentration of competing cations present.

  18. An isoelectronic NO dioxygenase reaction using a nonheme iron(III)-peroxo complex and nitrosonium ion.

    PubMed

    Yokoyama, Atsutoshi; Han, Jung Eun; Karlin, Kenneth D; Nam, Wonwoo

    2014-02-18

    Reaction of a nonheme iron(III)-peroxo complex, [Fe(III)(14-TMC)(O2)](+), with NO(+), a transformation which is essentially isoelectronic with that for nitric oxide dioxygenases [Fe(III)(O2˙(-)) + NO], affords an iron(IV)-oxo complex, [Fe(IV)(14-TMC)(O)](2+), and nitrogen dioxide (NO2), followed by conversion to an iron(III)-nitrato complex, [Fe(III)(14-TMC)(NO3)(F)](+).

  19. An isoelectronic NO dioxygenase reaction using a nonheme iron(III)-peroxo complex and nitrosonium ion†

    PubMed Central

    Yokoyama, Atsutoshi; Han, Jung Eun; Karlin, Kenneth D.; Nam, Wonwoo

    2014-01-01

    Reaction of a nonheme iron(III)-peroxo complex, [FeIII(14-TMC)(O2)]+, with NO+, a transformation which is essentially isoelectronic with that for nitric oxide dioxygenases [Fe(III)(O2•−) + NO], affords an iron(IV)-oxo complex, [FeIV(14-TMC)(O)]2+, and nitrogen dioxide (NO2), followed by conversion to an iron(III)-nitrato complex, [FeIII(14-TMC)(NO3)(F)]+. PMID:24394960

  20. Environmentally-relevant concentrations of Al(III) and Fe(III) cations induce aggregation of free DNA by complexation with phosphate group.

    PubMed

    Qin, Chao; Kang, Fuxing; Zhang, Wei; Shou, Weijun; Hu, Xiaojie; Gao, Yanzheng

    2017-10-15

    Environmental persistence of free DNA is influenced by its complexation with other chemical species and its aggregation mechanisms. However, it is not well-known how naturally-abundant metal ions, e.g., Al(III) and Fe(III), influence DNA aggregation. This study investigated aggregation behaviors of model DNA from salmon testes as influenced by metal cations, and elucidated the predominant mechanism responsible for DNA aggregation. Compared to monovalent (K + and Na + ) and divalent (Ca 2+ and Mg 2+ ) cations, Al(III) and Fe(III) species in aqueous solution caused rapid DNA aggregations. The maximal DNA aggregation occurred at 0.05 mmol/L Al(III) or 0.075 mmol/L Fe(III), respectively. A combination of atomic force microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy revealed that Al(III) and Fe(III) complexed with negatively charged phosphate groups to neutralize DNA charges, resulting in decreased electrostatic repulsion and subsequent DNA aggregation. Zeta potential measurements and molecular computation further support this mechanism. Furthermore, DNA aggregation was enhanced at higher temperature and near neutral pH. Therefore, DNA aggregation is collectively determined by many environmental factors such as ion species, temperature, and solution pH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Molecular structure and biological studies on Cr(III), Mn(II) and Fe(III) complexes of heterocyclic carbohydrazone ligand.

    PubMed

    Abu El-Reash, G M; El-Gammal, O A; Radwan, A H

    2014-01-01

    The chelating behavior of the ligand (H2APC) based on carbohydrazone core modified with pyridine end towards Cr(III), Mn(II) and Fe(III) ions have been examined. The (1)H NMR and IR data for H2APC revealed the presence of two stereoisomers syn and anti in both solid state and in solution in addition to the tautomeric versatility based on the flexible nature of the hydrazone linkage leading to varied coordination modes. The spectroscopic data confirmed that the ligand behaves as a monobasic tridentate in Cr(III) and Fe(III) complexes and as neutral tetradentate in Mn(II) complex. The electronic spectra as well as the magnetic measurements confirmed the octahedral geometry for all complexes. The bond length and angles were evaluated by DFT method using material studio program for all complexes. The thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. The antioxidant (DDPH and ABTS methods), anti-hemolytic and cytotoxic activities of the compounds have been screened. Cr(III) complex and H2APC showed the highest antioxidant activity using ABTS and DPPH methods. With respect to in vitro Ehrlich ascites assay, H2APC exhibited the potent activity followed by Fe(III) and Cr(III)complexes. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Metal complexes of diisopropylthiourea: synthesis, characterization and antibacterial studies.

    PubMed

    Ajibade, Peter A; Zulu, Nonkululeko H

    2011-01-01

    Co(II), Cu(II), Zn(II) and Fe(III) complexes of diisopropylthiourea have been synthesized and characterized by elemental analyses, molar conductivity, magnetic susceptibility, FTIR and electronic spectroscopy. The compounds are non-electrolytes in solution and spectroscopic data of the complexes are consistent with 4-coordinate geometry for the metal(II) complexes and six coordinate octahedral for Fe(III) complex. The complexes were screened for their antibacterial activities against six bacteria: Escherichia coli, Pseudomonas auriginosa, Klebsiella pneumoniae, Bacillus cereus, Staphylococcus aureus and Bacillus pumilus. The complexes showed varied antibacterial activities and their minimum inhibitory concentrations (MICs) were determined.

  3. Effect of iron ion on doxycycline photocatalytic and Fenton-based autocatatalytic decomposition.

    PubMed

    Bolobajev, Juri; Trapido, Marina; Goi, Anna

    2016-06-01

    Doxycycline plays a key role in Fe(III)-to-Fe(II) redox cycling and therefore in controlling the overall reaction rate of the Fenton-based process (H2O2/Fe(III)). This highlights the autocatalytic profile of doxycycline degradation. Ferric iron reduction in the presence of doxycycline relied on doxycycline-to-Fe(III) complex formation with an ensuing reductive release of Fe(II). The lower ratio of OH-to-contaminant in an initial H2O2/Fe(III) oxidation step than in that of classical Fenton (H2O2/Fe(II)) decreased the doxycycline degradation rate. The quantum yield of doxycycline in direct UV-C photolysis was 3.1 × 10(-3) M E(-1). In spite of doxycycline-Fe(III) complexes could produce the adverse effect on the doxycycline degradation in the UV/Fe(III) system some acceleration of the rate was observed upon irradiation of the Fe(III)-hydroxy complex. Acidic reaction media (pH 3.0) and the molar ratio of DC/Fe(III) = 2/1 favored the complex formation. Doxycycline close degradation rates and complete mineralization achieved for 120 min (Table 1) with both UV/H2O2 and UV/H2O2/Fe(III) indicated the unsubstantial role of the reduction of Fe(III) to Fe(II) in UV/H2O2/Fe(III) system efficacy. Thus, factors such as doxycycline's ability to form complexes with ferric iron and the ability of complexes to participate in a reductive pathway should be considered at a technological level in process optimization, with chemistry based on iron ion catalysis to enhance the doxycycline oxidative pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Synthesis, spectroscopic characterization, biological studies and DFT calculations on some transition metal complexes of NO donor ligand

    NASA Astrophysics Data System (ADS)

    Zordok, W. A.; Sadeek, S. A.

    2018-04-01

    Seven new complexes of2-oxo-4,6-diphenyl-1,2-dihyropyridine-3-carbonitrile (L) with Fe(III), Co(II), Cu(II), Zn(II), Y(III), Zr(IV) and La(III) were synthesized. The isolated solid compounds were elucidated from micro analytical, IR, electronic, mass, 1H NMR, magnetic susceptibility measurements and TG/DTG, DTA analyses. The intensity of ν(Ctbnd N) was changed to strong and shifted to around 2200 cm-1. Also, the ν(Cdbnd O) was shifted to higher frequency value (1644 cm-1). The spectra of the complexes indicate that the free ligand is coordinated to the metal ions via nitrogen of carbonitrile group and oxygen of keto group. From DFT calculations the Cu(II) and Fe(III) complexes behave as regular octahedral, while other complexes are distorted octahedral. The value of energy gap of the free ligand (ΔE = 0.3343 eV) is greater than all new complexes, so they are more reactive than free ligand, also the Fe(III) complex (ΔE = 0.0985 eV) is the most reactive complex, while Cu(II) complex (ΔE = 0.3219 eV) is the least reactive complex. The LMCT in case of Zr(IV) complex was resulted from transitions from HOMO-2 (62%), HOMO-1 (16%)and HOMO (25%), while the d-d transition in Fe(III) complex was resulted from HOMO-1(30%), HOMO-2(62%) and HOMO(30%). Also, the metal complexes exhibit antibacterial activity for Gram-positive and Gram-negative and antifungal activity. The Y(III) and Cu(II) complexes are highly significant for Escherichia coli and salmonella typhimurium.

  5. Reactive transport modeling of processes controlling the distribution and natural attenuation of phenolic compounds in a deep sandstone aquifer

    NASA Astrophysics Data System (ADS)

    Mayer, K. U.; Benner, S. G.; Frind, E. O.; Thornton, S. F.; Lerner, D. N.

    2001-12-01

    Reactive solute transport modeling was utilized to evaluate the potential for natural attenuation of a contaminant plume containing phenolic compounds at a chemical producer in the West Midlands, UK. The reactive transport simulations consider microbially mediated biodegradation of the phenolic compounds (phenols, cresols, and xylenols) by multiple electron acceptors. Inorganic reactions including hydrolysis, aqueous complexation, dissolution of primary minerals, formation of secondary mineral phases, and ion exchange are considered. One-dimensional (1D) and three-dimensional (3D) simulations were conducted. Mass balance calculations indicate that biodegradation in the saturated zone has degraded approximately 1-5% of the organic contaminant plume over a time period of 47 years. Simulations indicate that denitrification is the most significant degradation process, accounting for approximately 50% of the organic contaminant removal, followed by sulfate reduction and fermentation reactions, each contributing 15-20%. Aerobic respiration accounts for less than 10% of the observed contaminant removal in the saturated zone. Although concentrations of Fe(III) and Mn(IV) mineral phases are high in the aquifer sediment, reductive dissolution is limited, producing only 5% of the observed mass loss. Mass balance calculations suggest that no more than 20-25% of the observed total inorganic carbon (TIC) was generated from biodegradation reactions in the saturated zone. Simulations indicate that aerobic biodegradation in the unsaturated zone, before the contaminant entered the aquifer, may have produced the majority of the TIC observed in the plume. Because long-term degradation is limited to processes within the saturated zone, use of observed TIC concentrations to predict the future natural attenuation may overestimate contaminant degradation by a factor of 4-5.

  6. Synthesis and iron sequestration equilibria of novel exocyclic 3-hydroxy-2-pyridinone donor group siderophore mimics.

    PubMed

    Harrington, James M; Chittamuru, Sumathi; Dhungana, Suraj; Jacobs, Hollie K; Gopalan, Aravamudan S; Crumbliss, Alvin L

    2010-09-20

    The synthesis of a novel class of exocyclic bis- and tris-3,2-hydroxypyridinone (HOPO) chelators built on N(2) and N(3) aza-macrocyclic scaffolds and the thermodynamic solution characterization of their complexes with Fe(III) are described. The chelators for this study were prepared by reaction of either piperazine or N,N',N''-1,4,7-triazacyclononane with a novel electrophilic HOPO iminium salt in good yields. Subsequent removal of the benzyl protecting groups using HBr/acetic acid gave bis-HOPO chelators N(2)(etLH)(2) and N(2)(prLH)(2), and tris-HOPO chelator N(3)(etLH)(3) in excellent yields. Solution thermodynamic characterization of their complexes with Fe(III) was accomplished using spectrophotometric, potentiometric, and electrospray ionization-mass spectrometry (ESI-MS) methods. The pK(a)'s of N(2)(etLH)(2), N(2)(prLH)(2), and N(3)(etLH)(3), were determined spectrophotometrically and potentiometrically. The Fe(III) complex stability constants for the tetradentate N(2)(etLH)(2) and N(2)(prLH)(2), and hexadentate N(3)(etLH)(3), were measured by spectrophotometric and potentiometric titration, and by competition with ethylenediaminetetraacetic acid (EDTA). N(3)(etLH)(3) forms a 1:1 complex with Fe(III) with log β(110) = 27.34 ± 0.04. N(2)(prLH)(2) forms a 3:2 L:Fe complex with Fe(III) where log β(230) = 60.46 ± 0.04 and log β(110) = 20.39 ± 0.02. While N(2)(etLH)(2) also forms a 3:2 L:Fe complex with Fe(III), solubility problems precluded determining log β(230); log β(110) was found to be 20.45 ± 0.04. The pFe values of 26.5 for N(3)(etLH)(3) and 24.78 for N(2)(prLH)(2) are comparable to other siderophore molecules used in the treatment of iron overload, suggesting that these hydroxypyridinone ligands may be useful in the development of new chelation therapy agents.

  7. Diels-Alder Trapping of Photochemically Generated o-Xylenols: Application in the Synthesis of Novel Organic Molecules and Polymers

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2003-01-01

    Bis(o-xylenol) equivalents are useful synthetic intermediates in the construction of polymers and hydroxyl substituted organic molecules which can organize by hydrogen bonded self-assembly into unique supramolecular structures. These polymers and supramolecular materials have potential use as coatings and thin films in aerospace, electronic and biomedical applications.

  8. Expanding the Therapeutic Potential of the Iron Chelator Deferasirox in the Development of Aqueous Stable Ti(IV) Anticancer Complexes.

    PubMed

    Loza-Rosas, Sergio A; Vázquez-Salgado, Alexandra M; Rivero, Kennett I; Negrón, Lenny J; Delgado, Yamixa; Benjamín-Rivera, Josué A; Vázquez-Maldonado, Angel L; Parks, Timothy B; Munet-Colón, Charlene; Tinoco, Arthur D

    2017-07-17

    The recent X-ray structure of titanium(IV)-bound human serum transferrin (STf) exhibiting citrate as a synergistic anion reveals a difference in Ti(IV) coordination versus iron(III), the metal endogenously delivered by the protein to cells. This finding enriches our bioinspired drug design strategy for Ti(IV)-based anticancer therapeutics, which applies a family of Fe(III) chelators termed chemical transferrin mimetic (cTfm) ligands to inhibit Fe bioavailability in cancer cells. Deferasirox, a drug used for iron overload disease, is a cTfm ligand that models STf coordination to Fe(III), favoring Fe(III) binding versus Ti(IV). This metal affinity preference drives deferasirox to facilitate the release of cytotoxic Ti(IV) intracellularly in exchange for Fe(III). An aqueous speciation study performed by potentiometric titration from pH 4 to 8 with micromolar levels of Ti(IV) deferasirox at a 1:2 ratio reveals exclusively Ti(deferasirox) 2 in solution. The predominant complex at pH 7.4, [Ti(deferasirox) 2 ] 2- , exhibits the one of the highest aqueous stabilities observed for a potent cytotoxic Ti(IV) species, demonstrating little dissociation even after 1 month in cell culture media. UV-vis and 1 H NMR studies show that the stability is unaffected by the presence of biomolecular Ti(IV) binders such as citrate, STf, and albumin, which have been shown to induce dissociation or regulate cellular uptake and can alter the activity of other antiproliferative Ti(IV) complexes. Kinetic studies on [Ti(deferasirox) 2 ] 2- transmetalation with Fe(III) show that a labile Fe(III) source is required to induce this process. The initial step of this process occurs on the time scale of minutes, and equilibrium for the complete transmetalation is reached on a time scale of hours to a day. This work reveals a mechanism to deliver Ti(IV) compounds into cells and trigger Ti(IV) release by a labile Fe(III) species. Cellular studies including other cTfm ligands confirm the Fe(III) depletion mechanism of these compounds and show their ability to induce early and late apoptosis.

  9. Low molecular weight carboxylic acids in oxidizing porphyry copper tailings.

    PubMed

    Dold, Bernhard; Blowes, David W; Dickhout, Ralph; Spangenberg, Jorge E; Pfeifer, Hans-Rudolf

    2005-04-15

    The distribution of low molecular weight carboxylic acids (LMWCA) was investigated in pore water profiles from two porphyry copper tailings impoundments in Chile (Piuquenes at La Andina and Cauquenes at El Teniente mine). The objectives of this study were (1) to determine the distribution of LMWCA, which are interpreted to be the metabolic byproducts of the autotroph microbial community in this low organic carbon system, and (2) to infer the potential role of these acids in cycling of Fe and other elements in the tailings impoundments. The speciation and mobility of iron, and potential for the release of H+ via hydrolysis of the ferric iron, are key factors in the formation of acid mine drainage in sulfidic mine wastes. In the low-pH oxidation zone of the Piuquenes tailings, Fe(III) is the dominant iron species and shows high mobility. LMWCA, which occur mainly between the oxidation front down to 300 cm below the tailings surface at both locations (e.g., max concentrations of 0.12 mmol/L formate, 0.17 mmol/L acetate, and 0.01 mmol/L pyruvate at Piuquenes and 0.14 mmol/L formate, 0.14 mmol/L acetate, and 0.006 mmol/L pyruvate at Cauquenes), are observed at the same location as high Fe concentrations (up to 71.2 mmol/L Fe(II) and 16.1 mmol/L Fe(III), respectively). In this zone, secondary Fe(III) hydroxides are depleted. Our data suggest that LMWCA may influence the mobility of iron in two ways. First, complexation of Fe(III), through formation of bidentate Fe(III)-LMWCA complexes (e.g., pyruvate, oxalate), may enhance the dissolution of Fe(III) (oxy)hydroxides or may prevent precipitation of Fe(III) (oxy)hydroxides. Soluble Fe(III) chelate complexes which may be mobilized downward and convert to Fe(II) by Fe(III) reducing bacteria. Second, monodentate LMWCA (e.g., acetate and formate) can be used by iron-reducing bacteria as electron donors (e.g., Acidophilum spp.), with ferric iron as the electron acceptor. These processes may, in part, explain the low abundances of secondary Fe(III) hydroxide precipitates below the oxidation front and the high concentrations of Fe(II) observed in the pore waters of some low-sulfide systems. The reduction of Fe(III) and the subsequent increase of iron mobility and potential acidity transfer (Fe(II) oxidation can result in the release of H+ in an oxic environment) should be taken in account in mine waste management strategies.

  10. Separation and Determination of Fe(III) and Fe(II) in Natural and Waste Waters Using Silica Gel Sequentially Modified with Polyhexamethylene Guanidine and Tiron

    PubMed Central

    Maksimov, Nikolay; Trofimchuk, Anatoly; Zaporogets, Olga

    2017-01-01

    Silica gel, sequentially modified with polyhexamethylene guanidine and pyrocatechin-3,5-disulfonic acid (Tiron), was suggested for sorption separation and determination of Fe(III) and Fe(II). It was found that quantitative extraction of Fe(III) and its separation from Fe(II) were attained at pH 2.5–4.0, while quantitative extraction of Fe(II) was observed at pH 6.0–7.5. An intensive signal with g = 4.27, which is characteristic for Fe(III), appeared in EPR spectra of the sorbents after Fe(II) and Fe(III) sorption. During interaction between Fe(II) and Tiron, fixed on the sorbent surface, its oxidation up to Fe(III) occurred. Red-lilac complexes of the composition FeL3 were formed on the sorbent surface during sorption regardless of initial oxidation level of iron. Diffuse reflectance spectrum of surface complexes exhibited wide band with slightly expressed maxima at 480 and 510 nm. Procedures for separation and photometric determination of Fe(III) and Fe(II) at the joint presence and total Fe content determination as Fe(II) in waste and natural waters was developed. The limit of detection for iron was 0.05 μg per 0.100 g of the sorbent. The calibration graph was linear up to 20.0 μg of Fe per 0.100 g of the sorbent. The RSD in the determination of more than 0.2 μg of Fe was less than 0.06. PMID:29214095

  11. Hypothesis testing for the validation of the kinetic spectrophotometric methods for the determination of lansoprazole in bulk and drug formulations via Fe(III) and Zn(II) chelates.

    PubMed

    Rahman, Nafisur; Kashif, Mohammad

    2010-03-01

    Point and interval hypothesis tests performed to validate two simple and economical, kinetic spectrophotometric methods for the assay of lansoprazole are described. The methods are based on the formation of chelate complex of the drug with Fe(III) and Zn(II). The reaction is followed spectrophotometrically by measuring the rate of change of absorbance of coloured chelates of the drug with Fe(III) and Zn(II) at 445 and 510 nm, respectively. The stoichiometric ratio of lansoprazole to Fe(III) and Zn(II) complexes were found to be 1:1 and 2:1, respectively. The initial-rate and fixed-time methods are adopted for determination of drug concentrations. The calibration graphs are linear in the range 50-200 µg ml⁻¹ (initial-rate method), 20-180 µg ml⁻¹ (fixed-time method) for lansoprazole-Fe(III) complex and 120-300 (initial-rate method), and 90-210 µg ml⁻¹ (fixed-time method) for lansoprazole-Zn(II) complex. The inter-day and intra-day precision data showed good accuracy and precision of the proposed procedure for analysis of lansoprazole. The point and interval hypothesis tests indicate that the proposed procedures are not biased. Copyright © 2010 John Wiley & Sons, Ltd.

  12. Integration of Fricke gel dosimetry with Ag nanoparticles for experimental dose enhancement determination in theranostics.

    PubMed

    Vedelago, J; Mattea, F; Valente, M

    2018-03-01

    The use and implementation of nanoparticles in medicine has grown exponentially in the last twenty years. Their main applications include drug delivery, theranostics, tissue engineering and magneto function. Dosimetry techniques can take advantage of inorganic nanoparticles properties and their combination with gel dosimetry techniques could be used as a first step for their later inclusion in radio-diagnostics or radiotherapy treatments. The present study presents preliminary results of properly synthesized and purified silver nanoparticles integration with Fricke gel dosimeters. Used nanoparticles presented mean sizes ranging from 2 to 20 nm, with a lognormal distribution. Xylenol orange concentration in Fricke gel dosimeter was adjust in order to allow sample's optical readout, accounting nanoparticles plasmon. Dose enhancement was assessed irradiating dosimeters setting X-ray beams energies below and above silver K-edge. Monte Carlo simulations were used to estimate the dose enhancement in the experiments and compare with the trend obtained in the experimental results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Fricke-gel dosimetry in epithermal or thermal neutron beams of a research reactor

    NASA Astrophysics Data System (ADS)

    Gambarini, G.; Artuso, E.; Giove, D.; Volpe, L.; Agosteo, S.; Barcaglioni, L.; Campi, F.; Garlati, L.; Pola, A.; Durisi, E.; Borroni, M.; Carrara, M.; Klupak, V.; Marek, M.; Viererbl, L.; Vins, M.; d'Errico, F.

    2015-11-01

    Fricke-xylenol-orange gel has shown noticeable potentiality for in-phantom dosimetry in epithermal or thermal neutron fields with very high fluence rate, as those characteristic of nuclear research reactors. Fricke gels in form of layers give the possibility of achieving spatial distribution of gamma dose, fast neutron dose and dose due to charged particles generated by thermal neutron reactions. The thermal neutron fluence has been deduced from the dose coming from the charge particles emitted by neutron reactions with the isotope 10B. Some measurements have been performed for improving the information on the relative sensitivity of Fricke gel dosimeters to the particles produced by 10B reactions, because at present the precision of dose evaluations is limited by the scanty knowledge about the dependence of the dosimeter sensitivity on the radiation LET. For in-air measurements, the dosimeter material can produce an enhancement of thermal neutron fluence. Measurements and Monte Carlo calculations have been developed to investigate the importance of this effect.

  14. Simultaneous spectrophotometric determination of four metals by two kinds of partial least squares methods

    NASA Astrophysics Data System (ADS)

    Gao, Ling; Ren, Shouxin

    2005-10-01

    Simultaneous determination of Ni(II), Cd(II), Cu(II) and Zn(II) was studied by two methods, kernel partial least squares (KPLS) and wavelet packet transform partial least squares (WPTPLS), with xylenol orange and cetyltrimethyl ammonium bromide as reagents in the medium pH = 9.22 borax-hydrochloric acid buffer solution. Two programs, PKPLS and PWPTPLS, were designed to perform the calculations. Data reduction was performed using kernel matrices and wavelet packet transform, respectively. In the KPLS method, the size of the kernel matrix is only dependent on the number of samples, thus the method was suitable for the data matrix with many wavelengths and fewer samples. Wavelet packet representations of signals provide a local time-frequency description, thus in the wavelet packet domain, the quality of the noise removal can be improved. In the WPTPLS by optimization, wavelet function and decomposition level were selected as Daubeches 12 and 5, respectively. Experimental results showed both methods to be successful even where there was severe overlap of spectra.

  15. A method for depth-dose distribution measurements in tissue irradiated by a proton beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gambarini, G.; Birattari, C.; Bartolo, D. de

    1994-12-31

    The use of protons and heavy ions for the treatment of malignant and non-malignant disease has aroused a growing interest in the last decade. The notable advantage of heavy charged particles over photons in external beam radiotherapy lies in the possibility of irradiating a small localized region within the body, keeping a low value for the entrance dose. Owing to this high disuniformity of energy deposition, an essential requirement for treatment planning is a precise evaluation of the spatial distribution of absorbed dose. The proposed method for depth-dose distribution measurements utilizes a chemical dosimeter (ferrous sulphate solution plus sulfuric acidmore » and eventually xylenol orange) incorporated in a gelatine, whose role is the maintenance of spatial information. Ionizing radiation causes a variation in some parameters of the system such as the proton relaxation rates in the solution (measurable by NMR analysis) or the optical absorption of the gel in the visible spectrum (measurable by spectrophotometry).« less

  16. High-throughput analysis of lipid hydroperoxides in edible oils and fats using the fluorescent reagent diphenyl-1-pyrenylphosphine.

    PubMed

    Santas, Jonathan; Guzmán, Yeimmy J; Guardiola, Francesc; Rafecas, Magdalena; Bou, Ricard

    2014-11-01

    A fluorometric method for the determination of hydroperoxides (HP) in edible oils and fats using the reagent diphenyl-1-pyrenylphosphine (DPPP) was developed and validated. Two solvent media containing 100% butanol or a mixture of chloroform/methanol (2:1, v/v) can be used to solubilise lipid samples. Regardless of the solvent used to solubilise the sample, the DPPP method was precise, accurate, sensitive and easy to perform. The HP content of 43 oil and fat samples was determined and the results were compared with those obtained by means of the AOCS Official Method for the determination of peroxide value (PV) and the ferrous oxidation-xylenol orange (FOX) method. The proposed method not only correlates well with the PV and FOX methods, but also presents some advantages such as requiring low sample and solvent amounts and being suitable for high-throughput sample analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Surface-enhanced Raman scattering and DFT investigation of Eriochrome Black T metal chelating compound

    NASA Astrophysics Data System (ADS)

    Szabó, László; Herman, Krisztian; Leopold, Nicolae; Buzumurgă, Claudia; Chiş, Vasile

    2011-06-01

    The surface-enhanced Raman scattering (SERS) spectra of Eriochrome Black T (EBT) and its Cu(II), Fe(III), Mn(II) and Pb(II) complexes were recorded using a hydroxylamine reduced silver colloid. Molecular geometry optimization, molecular electrostatic potential (MEP) distribution and vibrational frequencies calculation were performed at B3LYP/6-31G(d) level of theory for the EBT molecule and its Cu(EBT), Fe(EBT) and Mn(EBT) metal complexes. Differentiation between EBT complexes of Cu(II), Fe(III), Mn(II) and Pb(II) is shown by the SERS spectral features of each complex.

  18. Polarized Neutron Diffraction to Probe Local Magnetic Anisotropy of a Low-Spin Fe(III) Complex.

    PubMed

    Ridier, Karl; Mondal, Abhishake; Boilleau, Corentin; Cador, Olivier; Gillon, Béatrice; Chaboussant, Grégory; Le Guennic, Boris; Costuas, Karine; Lescouëzec, Rodrigue

    2016-03-14

    We have determined by polarized neutron diffraction (PND) the low-temperature molecular magnetic susceptibility tensor of the anisotropic low-spin complex PPh4 [Fe(III) (Tp)(CN)3]⋅H2O. We found the existence of a pronounced molecular easy magnetization axis, almost parallel to the C3 pseudo-axis of the molecule, which also corresponds to a trigonal elongation direction of the octahedral coordination sphere of the Fe(III) ion. The PND results are coherent with electron paramagnetic resonance (EPR) spectroscopy, magnetometry, and ab initio investigations. Through this particular example, we demonstrate the capabilities of PND to provide a unique, direct, and straightforward picture of the magnetic anisotropy and susceptibility tensors, offering a clear-cut way to establish magneto-structural correlations in paramagnetic molecular complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Coexistence of spin crossover and magnetic ordering in a dendrimeric Fe(III) complex

    NASA Astrophysics Data System (ADS)

    Vorobeva, V. E.; Domracheva, N. E.; Pyataev, A. V.; Gruzdev, M. S.; Chervonova, U. V.

    2015-01-01

    The magnetic properties of a new dendrimeric spin crossover Fe(III) complex, [Fe(L)2]+PF6-, where L = 3,5-di[3,4,5-tris(tetradecyloxy) benzoyloxy]benzoyl-4-salicylidene-N-ethyl-N-ethylene-diamine, are reported for the first time. EPR studies show that this compound undergoes a gradual spin transition in the temperature range 70-300 K and has antiferromagnetic ordering below 10 K. Mössbauer spectroscopy at 5 K confirms the presence of magnetic ordering in the dendrimeric iron complex.

  20. Investigation of the spectral properties of a squarylium near-infrared dye and its complexation with Fe(III) and Co(II) ions

    NASA Astrophysics Data System (ADS)

    Tarazi, Leila; Narayanan, Nara; Sowell, John; Patonay, Gabor; Strekowski, Lucjan

    2002-01-01

    The spectral features of the squarylium dye NN525 in different solutions and its complexation with several metal ions were investigated. The absorbance maximum of the dye is at 669 nm in tetrahydrofuran. This value matches the output of a commercially available laser diode (650 nm), thus making use of such a source practical for excitation. The emission maximum of the dye in tetrahydrofuran is at 676 nm. The addition of either Fe(III) ion or Co(II) ion resulted in fluorescence quenching of the dye. The detection limit is 6.24×10 -8 M for Fe(III) ion and 1.55×10 -8 M for Co(II) ion. The molar ratio of the metal to the dye was established to be 1:1 for both metal ions. The stability constant KS of the metal-dye complex was calculated to be 3.14×10 6 M -1 for the Fe-dye complex and 2.64×10 5 M -1 for the Co-dye complex.

  1. Investigation of the spectral properties of a squarylium near-infrared dye and its complexation with Fe(III) and Co(II) ions.

    PubMed

    Tarazi, Leila; Narayanan, Nara; Sowell, John; Patonay, Gabor; Strekowski, Lucjan

    2002-01-15

    The spectral features of the squarylium dye NN525 in different solutions and its complexation with several metal ions were investigated. The absorbance maximum of the dye is at 669 nm in tetrahydrofuran. This value matches the output of a commercially available laser diode (650 nm), thus making use of such a source practical for excitation. The emission maximum of the dye in tetrahydrofuran is at 676 nm. The addition of either Fe(III) ion or Co(II) ion resulted in fluorescence quenching of the dye. The detection limit is 6.24 x 10(-8) M for Fe(III) ion and 1.55 x 10(-8) M for Co(II) ion. The molar ratio of the metal to the dye was established to be 1:1 for both metal ions. The stability constant Ks of the metal-dye complex was calculated to be 3.14 x 10(6) M(-1) for the Fe-dye complex and 2.64 x 10(5) M(-1) for the Co-dye complex.

  2. Synthesis, spectroscopic, thermal and anticancer studies of metal-antibiotic chelations: Ca(II), Fe(III), Pd(II) and Au(III) chloramphenicol complexes

    NASA Astrophysics Data System (ADS)

    Al-Khodir, Fatima A. I.; Refat, Moamen S.

    2016-09-01

    Four Ca(II), Fe(III), Pd(II) and Au(III) complexes of chloramphenicol drug have been synthesized and well characterized using elemental analyses, (infrared, electronic, and 1H-NMR) spectra, magnetic susceptibility measurement, and thermal analyses. Infrared spectral data show that the chloramphenicol drug coordinated to Ca(II), Pd(II) and Au(III) metal ions through two hydroxyl groups with 1:1 or 1:2 M ratios, but Fe(III) ions chelated towards chloramphenicol drug via the oxygen and nitrogen atoms of amide group with 1:2 ratio based on presence of keto↔enol form. The X-ray powder diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques were used to identify the nano-size particles of both iron(III) and gold(III) chloramphenicol complexes. The antimicrobial assessments of the chloramphenicol complexes were scanned and collected the results against of some kind of bacteria and fungi. The cytotoxic activity of the gold(III) complex was tested against the human colon carcinoma (HCT-116) and human hepatocellular carcinoma (HepG-2) tumor cell lines.

  3. Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans

    USGS Publications Warehouse

    Roden, E.E.; Lovley, D.R.

    1993-01-01

    The ability of the marine microorganism Desulfuromonas acetoxidans to reduce Fe(III) was investigated because of its close phylogenetic relationship with the freshwater dissimilatory Fe(III) reducer Geobacter metallireducens. Washed cell suspensions of the type strain of D. acetoxidans reduced soluble Fe(III)-citrate and Fe(III) complexed with nitriloacetic acid. The c-type cytochrome(s) of D. acetoxidans was oxidized by Fe(III)- citrate and Mn(IV)-oxalate, as well as by two electron acceptors known to support growth, colloidal sulfur and malate. D. acetoxidans grew in defined anoxic, bicarbonate-buffered medium with acetate as the sole electron donor and poorly crystalline Fe(III) or Mn(IV) as the sole electron acceptor. Magnetite (Fe3O4) and siderite (FeCO3) were the major end products of Fe(III) reduction, whereas rhodochrosite (MnCO3) was the end product of Mn(IV) reduction. Ethanol, propanol, pyruvate, and butanol also served as electron donors for Fe(III) reduction. In contrast to D. acetoxidans, G. metallireducens could only grow in freshwater medium and it did not conserve energy to support growth from colloidal S0 reduction. D. acetoxidans is the first marine microorganism shown to conserve energy to support growth by coupling the complete oxidation of organic compounds to the reduction of Fe(III) or Mn(IV). Thus, D. acetoxidans provides a model enzymatic mechanism for Fe(III) or Mn(IV) oxidation of organic compounds in marine and estuarine sediments. These findings demonstrate that 16S rRNA phylogenetic analyses can suggest previously unrecognized metabolic capabilities of microorganisms.

  4. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals

    PubMed Central

    White, Gaye F.; Shi, Zhi; Shi, Liang; Wang, Zheming; Dohnalkova, Alice C.; Marshall, Matthew J.; Fredrickson, James K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.; Clarke, Thomas A.

    2013-01-01

    The mineral-respiring bacterium Shewanella oneidensis uses a protein complex, MtrCAB, composed of two decaheme cytochromes, MtrC and MtrA, brought together inside a transmembrane porin, MtrB, to transport electrons across the outer membrane to a variety of mineral-based electron acceptors. A proteoliposome system containing a pool of internalized electron carriers was used to investigate how the topology of the MtrCAB complex relates to its ability to transport electrons across a lipid bilayer to externally located Fe(III) oxides. With MtrA facing the interior and MtrC exposed on the outer surface of the phospholipid bilayer, the established in vivo orientation, electron transfer from the interior electron carrier pool through MtrCAB to solid-phase Fe(III) oxides was demonstrated. The rates were 103 times higher than those reported for reduction of goethite, hematite, and lepidocrocite by S. oneidensis, and the order of the reaction rates was consistent with those observed in S. oneidensis cultures. In contrast, established rates for single turnover reactions between purified MtrC and Fe(III) oxides were 103 times lower. By providing a continuous flow of electrons, the proteoliposome experiments demonstrate that conduction through MtrCAB directly to Fe(III) oxides is sufficient to support in vivo, anaerobic, solid-phase iron respiration. PMID:23538304

  5. Synthesis, spectroscopy, and binding constants of ketocatechol-containing iminodiacetic acid and its Fe(III), Cu(II), and Zn(II) complexes and reaction of Cu(II) complex with H₂O₂ in aqueous solution.

    PubMed

    Gao, Jiaojiao; Xing, Feifei; Bai, Yueling; Zhu, Shourong

    2014-06-07

    A new neuromelanin-like ketocatechol-containing iminodiacetic acid ligand, (N-(3,4-dihydroxyl)phenacylimino)diacetic acid (H4L), which is also quite similar to compounds found in insect cuticle, has been synthesized and characterized. The X-ray crystal structure of H4L has been successfully determined. Proton binding and coordination with Fe(III), Cu(II), and Zn(II) have been studied by potentiometric titrations and UV-vis spectrophotometry in aqueous solution. UV spectra of H4L in the absence and presence of different metal ions indicate complexes formed with the catechol moiety of H4L in aqueous solution. Visible spectra and NMR reveal that H4L with Fe(III), Cu(II), and Zn(II) can all give stable mono-(ML) and dinuclear complexes [M(ML)]. Fe(III) can also form {Fe(FeL)2} and {Fe(FeL)3} species with sufficient base. The process is accompanied by a drastic color change from light blue to deep-blue to wine-red. The Fe(III)-Cu(II) heteronuclear complex also exists in aqueous solution whose spectra are similar to the homonuclear Fe(III) complex. However, the spectra of {Fe(CuL)} shifted to a longer wavelength and {Fe(CuL)2} and {Fe(CuL)3} shifted to a shorter wavelength. Keto-enol tautomerism was observed in weak basic aqueous solution as indicated by (1)H NMR spectra. The reaction products of Cu(II) complex with H2O2 depend on the H2O2 concentration and pH value. Low concentrations of H2O2 oxidize H4L to a series of semiquinone and quinone compounds with absorption maxima at 314-400 nm, while a high concentration of H2O2 oxidizes H4L to colorless muconic acid derivatives. NaIO4 gives different oxidase products, but no 2,4,5-trihydroxyphenylalanine quinone (TPQ)-like hydroxyquinone can be found.

  6. IR, UV-Vis, magnetic and thermal characterization of chelates of some catecholamines and 4-aminoantipyrine with Fe(III) and Cu(II)

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Zayed, M. A.; El-Dien, F. A. Nour; El-Nahas, Reham G.

    2004-07-01

    The dopamine derivatives participate in the regulation of wide variety of physiological functions in the human body and in medication life. Increase and/or decrease in the concentration of dopamine in human body reflect an indication for diseases such as Schizophrenia and/or Parkinson diseases. α-Methyldopa (α-MD) in tablets is used in medication of hypertension. The Fe(III) and Cu(II) chelates with coupled products of adrenaline hydrogen tartarate (AHT), levodopa (LD), α-MD and carbidopa (CD) with 4-aminoantipyrine (4-AAP) are prepared and characterized. Different physico-chemical methods like IR, magnetic and UV-Vis spectra are used to investigate the structure of these chelates. Fe(III) form 1:2 (M:catecholamines) chelates while Cu(II) form 1:1 chelates. Catecholamines behave as a bidentate mono- or dibasic ligands in binding to the metal ions. IR spectra show that the catecholamines are coordinated to the metal ions in a bidentate manner with O,O donor sites of the phenolic - OH. Magnetic moment measurements reveal the presence of Fe(III) chelates in octahedral geometry while the Cu(II) chelates are square planar. The thermal decomposition of Fe(III) and Cu(II) complexes is studied using thermogravimetric (TGA) and differential thermal analysis (DTA) techniques. The water molecules are removed in the first step followed immediately by decomposition of the ligand molecules. The activation thermodynamic parameters, such as, energy of activation, enthalpy, entropy and free energy change of the complexes are evaluated and the relative thermal stability of the complexes are discussed.

  7. Mechanistic investigation of Fe(III) oxide reduction by low molecular weight organic sulfur species

    NASA Astrophysics Data System (ADS)

    Eitel, Eryn M.; Taillefert, Martial

    2017-10-01

    Low molecular weight organic sulfur species, often referred to as thiols, are known to be ubiquitous in aquatic environments and represent important chemical reductants of Fe(III) oxides. Thiols are excellent electron shuttles used during dissimilatory iron reduction, and in this capacity could indirectly affect the redox state of sediments, release adsorbed contaminants via reductive dissolution, and influence the carbon cycle through alteration of bacterial respiration processes. Interestingly, the reduction of Fe(III) oxides by thiols has not been previously investigated in environmentally relevant conditions, likely due to analytical limitations associated with the detection of thiols and their oxidized products. In this study, a novel electrochemical method was developed to simultaneously determine thiol/disulfide pair concentrations in situ during the reduction of ferrihydrite in batch reactors. First order rate laws with respect to initial thiol concentration were confirmed for Fe(III) oxyhydroxide reduction by four common thiols: cysteine, homocysteine, cysteamine, and glutathione. Zero order was determined for both Fe(III) oxyhydroxide and proton concentration at circumneutral pH. A kinetic model detailing the molecular mechanism of the reaction was optimized with proposed intermediate surface structures. Although metal oxide overall reduction rate constants were inversely proportional to the complexity of the thiol structure, the extent of metal reduction increased with structure complexity, indicating that surface complexes play a significant role in the ability of these thiols to reduce iron. Taken together, these results demonstrate the importance of considering the molecular reaction mechanism at the iron oxide surface when investigating the potential for thiols to act as electron shuttles during dissimilatory iron reduction in natural environments.

  8. Dissimilatory Fe(III) and Mn(IV) reduction.

    PubMed Central

    Lovley, D R

    1991-01-01

    The oxidation of organic matter coupled to the reduction of Fe(III) or Mn(IV) is one of the most important biogeochemical reactions in aquatic sediments, soils, and groundwater. This process, which may have been the first globally significant mechanism for the oxidation of organic matter to carbon dioxide, plays an important role in the oxidation of natural and contaminant organic compounds in a variety of environments and contributes to other phenomena of widespread significance such as the release of metals and nutrients into water supplies, the magnetization of sediments, and the corrosion of metal. Until recently, much of the Fe(III) and Mn(IV) reduction in sedimentary environments was considered to be the result of nonenzymatic processes. However, microorganisms which can effectively couple the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV) have recently been discovered. With Fe(III) or Mn(IV) as the sole electron acceptor, these organisms can completely oxidize fatty acids, hydrogen, or a variety of monoaromatic compounds. This metabolism provides energy to support growth. Sugars and amino acids can be completely oxidized by the cooperative activity of fermentative microorganisms and hydrogen- and fatty-acid-oxidizing Fe(III) and Mn(IV) reducers. This provides a microbial mechanism for the oxidation of the complex assemblage of sedimentary organic matter in Fe(III)- or Mn(IV)-reducing environments. The available evidence indicates that this enzymatic reduction of Fe(III) or Mn(IV) accounts for most of the oxidation of organic matter coupled to reduction of Fe(III) and Mn(IV) in sedimentary environments. Little is known about the diversity and ecology of the microorganisms responsible for Fe(III) and Mn(IV) reduction, and only preliminary studies have been conducted on the physiology and biochemistry of this process. PMID:1886521

  9. Promoted reduction of tellurite and formation of extracellular tellurium nanorods by concerted reaction between iron and Shewanella oneidensis MR-1.

    PubMed

    Kim, Dong-Hun; Kim, Min-Gyu; Jiang, Shenghua; Lee, Ji-Hoon; Hur, Hor-Gil

    2013-08-06

    The reduction of tellurite (Te(IV)) by dissimilatory metal reducing bacterium, Shewanella oneidensis MR-1, was promoted in the presence of Fe(III) in comparison with Te(IV) bioreduction in the absence of Fe(III). Electron microscopic analyses revealed that iron promoted Te(IV) reduction led to form exclusively extracellular crystalline Te(0) nanorods, as compared to the mostly intracellular formation of Te(0) nanorods in the absence of Fe(III). The Te K-edge X-ray absorption spectrometric analyses demonstrated that S. oneidensis MR-1 in the presence of Fe(III) reduced Te(IV) to less harmful metallic Te(0) nanorods through the precipitation of tellurite (Te(IV)Ox) complex by the bacterial respiration of Fe(III) to Fe(II) under anaerobic conditions. However, Fe(II) ion itself was only able to precipitate the solid tellurite (Te(IV)Ox) complex from the Te(IV) solution, which was not further reduced to Te(0). The results clearly indicated that bacterial S. oneidensis MR-1 plays important roles in the reduction and crystallization of Te(0) nanorods by as yet undetermined biochemical mechanisms. As compared to the slow bacterial Te(IV) reduction in the absence of Fe(III), the rapid reduction of Te(IV) to Te(0) by the concerted biogeochemical reaction between Fe(II) and S. oneidensis MR-1 could be applied for the sequestration and detoxification of Te(IV) in the environments as well as for the preparation of extracellular Te(0) nanorod structures.

  10. Assessing bioavailability levels of metals in effluent-affected rivers: effect of Fe(III) and chelating agents on the distribution of metal speciation.

    PubMed

    Han, Shuping; Naito, Wataru; Masunaga, Shigeki

    To assess the effects of Fe(III) and anthropogenic ligands on the bioavailability of Ni, Cu, Zn, and Pb, concentrations of bioavailable metals were measured by the DGT (diffusive gradients in thin films) method in some urban rivers, and were compared with concentrations calculated by a chemical equilibrium model (WHAM 7.0). Assuming that dissolved Fe(III) (<0.45 μm membrane filtered) was in equilibrium with colloidal iron oxide, the WHAM 7.0 model estimated that bioavailable concentrations of Ni, Cu, and Zn were slightly higher than the corresponding values estimated assuming that dissolved Fe(III) was absent. In contrast, lower levels of free Pb were predicted by the WHAM 7.0 model when dissolved Fe(III) was included. Estimates showed that most of the dissolved Pb was present as colloidal iron-Pb complex. Ethylene-diamine-tetra-acetic acid (EDTA) concentrations at sampling sites were predicted from the relationship between EDTA and the calculated bioavailable concentration of Zn. When both colloidal iron and predicted EDTA concentrations were included in the WHAM 7.0 calculations, dissolved metals showed a strong tendency to form EDTA complexes, in the order Ni > Cu > Zn > Pb. With the inclusion of EDTA, bioavailable concentrations of Ni, Cu, and Zn predicted by WHAM 7.0 were different from those predicted considering only humic substances and colloidal iron.

  11. Synthesis, characterization and physicochemical studies of new chelating resin 1, 8-(3, 6-dithiaoctyl)-4-polyvinylbenzenesulphonate (dpvbs) and its metallopolymer Cu(II), Ni(II), Co(II) and Fe(III) complexes

    NASA Astrophysics Data System (ADS)

    Khalil, Tarek E.; Elbadawy, Hemmat A.; El-Dissouky, Ali

    2018-02-01

    A new chelating resin, 1,8-(3,6-dithiaoctyl)-4-polyvinylbenzenesulphonate (dpvbs) has been synthesized by coupling Amberlite XAD-16 with (2,2‧-ethylenedithio) diethanol using pyridine/CH2Cl2 mixture as a solvent. The chelating resin and its metallopolymer Cu(II), Ni(II), Co(II) and Fe(III) complexes have been synthesized and characterized by EDS, SEM, XPS, elemental analysis, spectral (IR, UV/Vis, EPR). The thermal analysis of the resin and its metallopolymer complexes indicated an endothermic spontaneous sorption mechanism with the liberation of water of hydration of the metal ions and that adsorbed by the free resin. At the solid liquid interface, the degrees of freedom increased during the sorption of the metal ions onto the resin. The surface area of polymer support and its metallopolymer complexes are estimated by (BJH) method. The batch equilibrium method was used for studying the metal sorption and selectivity at different pH values and different contact times at room temperature. ICP-AES was used to estimate the metal capacity of the resin for sorption of Cu(II), Ni(II), Co(II) and Fe(III) from aqueous solutions utilizing the batch equilibrium method. The sorption tendency of the metal ions by the resin was found to be: Cu(II) > Fe(III) > Co(II) > Ni(II). Adsorption kinetics was found to be fit the pseudo-second order model.

  12. High-Spin Ferric Ions in Saccharomyces cerevisiae Vacuoles Are Reduced to the Ferrous State during Adenine-Precursor Detoxification

    PubMed Central

    2015-01-01

    The majority of Fe in Fe-replete yeast cells is located in vacuoles. These acidic organelles store Fe for use under Fe-deficient conditions and they sequester it from other parts of the cell to avoid Fe-associated toxicity. Vacuolar Fe is predominantly in the form of one or more magnetically isolated nonheme high-spin (NHHS) FeIII complexes with polyphosphate-related ligands. Some FeIII oxyhydroxide nanoparticles may also be present in these organelles, perhaps in equilibrium with the NHHS FeIII. Little is known regarding the chemical properties of vacuolar Fe. When grown on adenine-deficient medium (A↓), ADE2Δ strains of yeast such as W303 produce a toxic intermediate in the adenine biosynthetic pathway. This intermediate is conjugated with glutathione and shuttled into the vacuole for detoxification. The iron content of A↓ W303 cells was determined by Mössbauer and EPR spectroscopies. As they transitioned from exponential growth to stationary state, A↓ cells (supplemented with 40 μM FeIII citrate) accumulated two major NHHS FeII species as the vacuolar NHHS FeIII species declined. This is evidence that vacuoles in A↓ cells are more reducing than those in adenine-sufficient cells. A↓ cells suffered less oxidative stress despite the abundance of NHHS FeII complexes; such species typically promote Fenton chemistry. Most Fe in cells grown for 5 days with extra yeast-nitrogen-base, amino acids and bases in minimal medium was HS FeIII with insignificant amounts of nanoparticles. The vacuoles of these cells might be more acidic than normal and can accommodate high concentrations of HS FeIII species. Glucose levels and rapamycin (affecting the TOR system) affected cellular Fe content. This study illustrates the sensitivity of cellular Fe to changes in metabolism, redox state and pH. Such effects broaden our understanding of how Fe and overall cellular metabolism are integrated. PMID:24919141

  13. Organic Exudates Enhance Iron Bioavailability to Trichodesmium (IMS101) by Modifying Fe Speciation

    NASA Astrophysics Data System (ADS)

    Tohidi Farid, H.; Rose, A.; Schulz, K.

    2016-02-01

    Although ferrous iron (Fe (II)) is believed to be the most readily absorbed form of Fe by cells, under alkaline and oxygenated conditions typical of marine environments, the thermodynamically stable Fe(III) state dominates. In marine environments, this Fe(III) is primarily presents as organic Fe(III)L complexes whose bioavailability is highly variable. However, it has been demonstrated that some eukaryotic marine algae are able to release organic ligands into their surrounding environments that change Fe bioavailability through complexation and/or redox reactions. Nevertheless, it is unclear how Fe(II) oxidation and Fe(III) reduction rates might be modified by these exudates and how this might increase or decrease iron bioavailability to microorganisms. Here, the role of natural organic ligands excreted by the cyanobacterium Trichodesmium erythraeum on the oxidation kinetics of Fe(II) was studied using the luminol chemiluminescence technique. The oxidation kinetics of Fe(II) were examined at nanomolar Fe concentrations in presence of different concentrations of EDTA and dissolved organic carbon exuded by Trichodesmium cells. The results indicated that an increase in the concentration of exuded organic matter, and consequently L:Fe(II) ratio, resulted in decreasing rates of Fe(II) oxidation by oxygen, primarily due to formation of Fe(II) complexes. Moreover, the results demonstrated that the exudates from Trichodesmium may be able to reduce Fe(III) to the more bioavailable Fe(II) state under some circumstances. This study therefore supports the ability of microorganisms to manipulate Fe bioavailability by releasing organic compounds into the extracellular environment that retard Fe(II) oxidation rates or reducing Fe(III) species to Fe(II). It also provides new insight into the potential mechanism(s) by which Trichdesmium may acquire Fe under conditions where Fe bioavailability is otherwise limited.

  14. Serum biomarkers of oxidative stress in dogs with idiopathic inflammatory bowel disease.

    PubMed

    Rubio, C P; Martínez-Subiela, S; Hernández-Ruiz, J; Tvarijonaviciute, A; Cerón, J J; Allenspach, K

    2017-03-01

    The objective of this work was to study and compare a panel of various serum biomarkers evaluating both the antioxidant response and oxidative damage in dogs with idiopathic inflammatory bowel disease (IBD). Eighteen dogs with IBD and 20 healthy dogs were enrolled in the study. Trolox equivalent antioxidant capacity (TEAC), cupric reducing antioxidant capacity (CUPRAC), ferric reducing ability of the plasma (FRAP), total thiol concentrations, and paraoxonase 1 (PON1) activity were evaluated in serum to determine antioxidant response. To evaluate oxidative status, ferrous oxidation-xylenol orange (FOX), thiobarbituric acid reactive substances (TBARS) and reactive oxygen species production (ROS) concentrations in serum were determined. Mean concentrations of all antioxidant biomarkers analyzed, with exception of FRAP, were significantly lower (P < 0.0001) in the sera of dogs with IBD than in healthy dogs. The oxidant markers studied were significantly higher (P < 0.0001) in sera of dogs with IBD than in healthy dogs. These findings support the hypothesis that oxidative stress could play an important role in the pathogenesis of canine IBD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Formation of oligomeric alkenylperoxides during the oxidation of unsaturated fatty acids: an electrospray ionization tandem mass spectrometry study.

    PubMed

    Villaverde, Juan José; Santos, Sónia A O; Maciel, Elisabete; Simões, Mário M Q; Pascoal Neto, Carlos; Domingues, M Rosário M; Silvestre, Armando J D

    2012-02-01

    This study reports the identification of oligomeric alkenylperoxides by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS(2)), during the oxidation of oleic, linoleic and linolenic acids with Fenton's (Fe(2+)/H(2)O(2)) and Fe(2+)/O(2) systems. The reactions were followed by ferrous oxidation-xylenol orange method together with GC-MS and GC-FID, allowing to observe that both oxidation systems are different in terms of hydroperoxide evolution, probably due to the presence of different intermediate reactive species: perferryl ion and OH(·) radical responsible for the decomposition of lipid hydroperoxides and formation of new compounds. The analysis of ESI-MS in the negative mode, obtained after oxidation of each fatty acid, confirmed the presence of the monomeric oxidation products together with other compounds at high mass region above m/z 550. These new ions were attributed to oligomeric structures, identified by the fragmentation pathways observed in the tandem mass spectra. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Stability of bacterial carotenoids in the presence of iron in a model of the gastric compartment - comparison with dietary reference carotenoids.

    PubMed

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-04-15

    Recently isolated spore-forming pigmented marine bacteria, Bacillus indicus HU36 and Bacillus firmus GB1 are sources of carotenoids (∼fifteen distinct yellow and orange pigments and ∼thirteen distinct pink pigments, respectively). They are glycosides of oxygenated lycopene derivatives (apo-lycopenoids) and are assumed to be more heat- and gastric-stable than common carotenoids. In this study, the oxidation by O2 of the bacterial carotenoids was initiated by free iron (Fe(II) and Fe(III)) or by heme iron (metmyoglobin) in a mildly acidic aqueous solution mimicking the gastro-intestinal compartment and compared to the oxidation of the common dietary carotenoids β-carotene, lycopene and astaxanthin. Under these conditions, all bacterial carotenoids appear more stable in the presence of heme iron vs. free iron. Carotenoid autoxidation initiated by Fe(II) is relatively fast and likely involves reactive oxygen-iron species derived from Fe(II) and O2. By contrast, the corresponding reaction with Fe(III) is kinetically blocked by the slow preliminary reduction of Fe(III) into Fe(II) by the carotenoids. The stability of carotenoids toward autoxidation increases as follows: β-carotene

  17. [Determination of iron(III) in Chinese herbal medicine and tea based on fluorescence quenching of 2,4-dichro-phenylfluorone].

    PubMed

    Dai, Gang; Aodeng, Gao-wa

    2004-07-01

    A new spectrofluorimetric method for the determination of trace amount of Fe(III) has been developed. This method is based on the fluorescence quenching of 2,4-dichro-phenylfluorone due to the formation of complex Fe(III)-DCIPF. In pH 5.2-5.9 buffer solution, Fe (III) and DCIPF react on each other to form a red complex. Its composition was established by method of continuous variations and molar-ratio as Fe(III): DCIPF = 1:4, the excitation and emission wavelengths were found to be 282 and 560 nm, respectively. There is a linear relationship in the range 4-24 ng x mL(-1) for Fe(III). This method is simple and rapid, and has been applied to the determination of trace iron in Chinese herbal medicine and tea samples with satisfactory results.

  18. Sorption of Ferric Iron from Ferrioxamine B to Synthetic and Biogenic Layer Type Manganese Oxides

    NASA Astrophysics Data System (ADS)

    Duckworth, O.; John, B.; Sposito, G.

    2006-12-01

    Siderophores are biogenic chelating agents produced in terrestrial and marine environments to increase the bioavailablity of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but no information appears to be available about the effect of solid-phase Mn(IV). To probe the effects of predominantly Mn(IV) oxides, we studied the sorption reaction of ferrioxamine B [Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] with two synthetic birnessites [layer type Mn(III, IV) oxides] and a biogenic birnessite produced by Pseudomonas putida MnB1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ over at pH 8. After 72 hours equilibration time, the sorption behavior for the synthetic birnessites could be accurately described by a Langmuir isotherm; for the biogenic oxide, a Freundlich isotherm was best utilized to model the sorption data. To study the molecular nature of the interaction between the Fe(III)HDFOB+ complex and the oxide surface, Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy was employed. Analysis of the EXAFS spectra indicated that Fe(III) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(III) is specifically adsorbed to into the mineral structure at multiple sites with no evidence of DFOB complexation, thus indicating that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that manganese oxides, including biominerals, may strongly sequester iron from soluble ferric complexes and thus may play a significant role in the biogeochemical cycling of iron in marine and terrestrial environments.

  19. Section 9.1 new dosimeters. New dosimetry systems

    NASA Astrophysics Data System (ADS)

    McLaughlin, William L.

    During the past two years there have been significant advances in several forms of radiation measurement systems for radiation processing, covering dose ranges of 1-10 6 Gy. Calorimeters as reference standards for both ionizing photon and electron fields have become well-established. In addition to the older ceric-cerous dosimetry solution analyzed potentiometrically, new liquid-phase dosimeters include those analyzed by spectrophotometry, e.g., improved forms of acidic aqueous solutions of K-Ag dichromate and organic radiochromic dye solutions. It has recently been demonstrated that by using certain refined sugars, e.g., D-(-) ribose, optical rotation response in aqueous solutions can be enhanced for dosimetry at doses > 10 4 Gy. There has been expanded development, use, and formulation (rods, tablets, and thin films) of the amino acid, alanine, as a solid-phase dosimeter analyzed by either ESR spectrometry or by glutamine or alanine spectrophotometry of complexes with ferric ion in the presence of a sulfonphthalein dye (xylenol orange). New commercial types of radiochromic plastic dosimeters, e.g., GafChromic TM, Riso B3 TM, GAMMACHROME YR TM, Radix TM, and Gammex TM, have been introduced and applied in practice. Improvements and broader use of optical waveguide dosimeters, e.g., Opti-Chromic TM, have also been reported, especially in food irradiation applications. Several novel dyed plastic dosimeters are available in large quantities and they lose color due to irradiation. An example is a dyed cellulosic thin film (ATC type DY-42 TM) which can be measured spectrophotometrically or densitometrically up to doses as high as 10 6 Gy.

  20. Paradoxical effects of vitamin C in Chagas disease.

    PubMed

    Castanheira, J R P T; Castanho, R E P; Rocha, H; Pagliari, C; Duarte, M I S; Therezo, A L S; Chagas, E F B; Martins, L P A

    2018-05-05

    Trypanosoma cruzi infection stimulates inflammatory mediators which cause oxidative stress, and the use of antioxidants can minimize the sequelae of Chagas disease. In order to evaluate the efficacy of vitamin C in minimizing oxidative damage in Chagas disease, we orally administered ascorbic acid to Swiss mice infected with 5.0 × 10 4 trypomastigote forms of T. cruzi QM2 strain. These animals were treated for 60 days to investigate the acute phase and 180 days for the chronic phase. During the acute phase, the animals in the infected and treated groups demonstrated lower parasitemia and inflammatory processes were seen in more mice in these groups, probably due to the higher concentration of nitric oxide, which led to the formation of peroxynitrite. The decrease in reduced glutathione concentration in this group showed a circulating oxidant state, and this antioxidant was used to regenerate vitamin C. During the chronic phase, the animals in the infected and treated group showed a decrease in ferric reducing ability of plasma and uric acid concentrations as well as mobilization of bilirubin (which had higher plasma concentration), demonstrating cooperation between endogenous non-enzymatic antioxidants to combat increased oxidative stress. However, lower ferrous oxidation in xylenol orange concentrations was found in the infected and treated group, suggesting that vitamin C provided biological protection by clearing the peroxynitrite, attenuating the chronic inflammatory process in the tissues and favoring greater survival in these animals. Complex interactions were observed between the antioxidant systems of the host and parasite, with paradoxical actions of vitamin C. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Surface-enhanced Raman scattering and DFT investigation of 1,5-diphenylcarbazide and its metal complexes with Ca(II), Mn(II), Fe(III) and Cu(II)

    NASA Astrophysics Data System (ADS)

    Szabó, László; Herman, Krisztian; Mircescu, Nicoleta Elena; Tódor, István Szabolcs; Simon, Botond Lorand; Boitor, Radu Alex; Leopold, Nicolae; Chiş, Vasile

    2014-09-01

    In recent years, surface-enhanced Raman scattering (SERS) has become an increasingly viable method for the detection of metal ions, evidenced by the existing studies on metal complexes. In this study, 1,5-diphenylcarbazide (DPC) and its Ca(II), Mn(II), Fe(III) and Cu(II) complexes were investigated by FTIR/ATR, FT-Raman and surface-enhanced Raman spectroscopies. The hybrid B3LYP exchange-correlation functional was used for the molecular geometry optimizations, molecular electrostatic potential (MEP) distribution and vibrational frequencies calculations of the DPC molecule and its complexes. Based on experimental and theoretical data, we were able to accurately identify unique and representative features for each DPC-metal complex, features that enable the detection of said metal complexes in millimolar concentrations.

  2. The correction of time and temperature effects in MR-based 3D Fricke xylenol orange dosimetry.

    PubMed

    Welch, Mattea L; Jaffray, David A

    2017-04-21

    Previously developed MR-based three-dimensional (3D) Fricke-xylenol orange (FXG) dosimeters can provide end-to-end quality assurance and validation protocols for pre-clinical radiation platforms. FXG dosimeters quantify ionizing irradiation induced oxidation of Fe 2+ ions using pre- and post-irradiation MR imaging methods that detect changes in spin-lattice relaxation rates (R 1   =  [Formula: see text]) caused by irradiation induced oxidation of Fe 2+ . Chemical changes in MR-based FXG dosimeters that occur over time and with changes in temperature can decrease dosimetric accuracy if they are not properly characterized and corrected. This paper describes the characterization, development and utilization of an empirical model-based correction algorithm for time and temperature effects in the context of a pre-clinical irradiator and a 7 T pre-clinical MR imaging system. Time and temperature dependent changes of R 1 values were characterized using variable TR spin-echo imaging. R 1 -time and R 1 -temperature dependencies were fit using non-linear least squares fitting methods. Models were validated using leave-one-out cross-validation and resampling. Subsequently, a correction algorithm was developed that employed the previously fit empirical models to predict and reduce baseline R 1 shifts that occurred in the presence of time and temperature changes. The correction algorithm was tested on R 1 -dose response curves and 3D dose distributions delivered using a small animal irradiator at 225 kVp. The correction algorithm reduced baseline R 1 shifts from  -2.8  ×  10 -2 s -1 to 1.5  ×  10 -3 s -1 . In terms of absolute dosimetric performance as assessed with traceable standards, the correction algorithm reduced dose discrepancies from approximately 3% to approximately 0.5% (2.90  ±  2.08% to 0.20  ±  0.07%, and 2.68  ±  1.84% to 0.46  ±  0.37% for the 10  ×  10 and 8  ×  12 mm 2 fields, respectively). Chemical changes in MR-based FXG dosimeters produce time and temperature dependent R 1 values for the time intervals and temperature changes found in a typical small animal imaging and irradiation laboratory setting. These changes cause baseline R 1 shifts that negatively affect dosimeter accuracy. Characterization, modeling and correction of these effects improved in-field reported dose accuracy to less than 1% when compared to standardized ion chamber measurements.

  3. Pore-scale characterization of biogeochemical controls on iron and uranium speciation under flow conditions.

    PubMed

    Pearce, Carolyn I; Wilkins, Michael J; Zhang, Changyong; Heald, Steve M; Fredrickson, Jim K; Zachara, John M

    2012-08-07

    Etched silicon microfluidic pore network models (micromodels) with controlled chemical and redox gradients, mineralogy, and microbiology under continuous flow conditions are used for the incremental development of complex microenvironments that simulate subsurface conditions. We demonstrate the colonization of micromodel pore spaces by an anaerobic Fe(III)-reducing bacterial species (Geobacter sulfurreducens) and the enzymatic reduction of a bioavailable Fe(III) phase within this environment. Using both X-ray microprobe and X-ray absorption spectroscopy, we investigate the combined effects of the precipitated Fe(III) phases and the microbial population on uranium biogeochemistry under flow conditions. Precipitated Fe(III) phases within the micromodel were most effectively reduced in the presence of an electron shuttle (AQDS), and Fe(II) ions adsorbed onto the precipitated mineral surface without inducing any structural change. In the absence of Fe(III), U(VI) was effectively reduced by the microbial population to insoluble U(IV), which was precipitated in discrete regions associated with biomass. In the presence of Fe(III) phases, however, both U(IV) and U(VI) could be detected associated with biomass, suggesting reoxidation of U(IV) by localized Fe(III) phases. These results demonstrate the importance of the spatial localization of biomass and redox active metals, and illustrate the key effects of pore-scale processes on contaminant fate and reactive transport.

  4. Synthesis and spectroscopic studies of biologically active compounds derived from oxalyldihydrazide and benzil, and their Cr(III), Fe(III) and Mn(III) complexes.

    PubMed

    Singh, D P; Kumar, Ramesh; Singh, Jitender

    2009-04-01

    A new series of complexes have been synthesized by template condensation of oxalyldihydrazide and benzil in methanolic medium in the presence of trivalent chromium, manganese and iron salts forming complexes of the type [M(C(32)H(24)N(8)O(4))X]X(2) where M = Cr(III), Mn(III), Fe(III) and X = Cl(-1), NO(3)(-1), CH(3)COO(-1). The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic susceptibility measurements, electronic, NMR, infrared and far infrared spectral studies. On the basis of these studies, a five coordinate square pyramidal geometry has been proposed for all these complexes. The biological activities of the metal complexes have been tested in vitro against a number of pathogenic bacteria to assess their inhibiting potential. Some of these complexes have been found to exhibit remarkable antibacterial activities.

  5. Ellagic acid inhibits iron-mediated free radical formation

    NASA Astrophysics Data System (ADS)

    Dalvi, Luana T.; Moreira, Daniel C.; Andrade, Roberto; Ginani, Janini; Alonso, Antonio; Hermes-Lima, Marcelo

    2017-02-01

    Polyphenols are reported to have some health benefits, which are link to their antioxidant properties. In the case of ellagic acid (EA), there is evidence that it has free radical scavenger properties and that it is able to form complexes with metal ions. However, information on a possible link between the formation of iron-EA complexes and their interference in Haber-Weiss/Fenton reactions was not yet determined. Thus, the present study investigated the in vitro antioxidant mechanism of EA in a system containing ascorbate, Fe(III) and different iron ligands (EDTA, citrate and NTA). Iron-mediated oxidative degradation of 2-deoxyribose was poorly inhibited (by 12%) in the presence of EA (50 μM) and EDTA. When citrate or NTA - which form weak iron complexes - were used, the 2-deoxyribose protection increased to 89-97% and 45%, respectively. EA also presented equivalent inhibitory effects on iron-mediated oxygen uptake and ascorbyl radical formation. Spectral analyses of iron-EA complexes show that EA removes Fe(III) from EDTA within hours, and from citrate within 1 min. This difference in the rate of iron-EA complex formation may explain the antioxidant effects of EA. Furthermore, the EA antioxidant effectiveness was inversely proportional to the Fe(III) concentration, suggesting a competition with EDTA. In conclusion, the results indicate that EA may prevent in vitro free radical formation when it forms a complex with iron ions.

  6. Biogeochemical transformation of Fe minerals in a petroleum-contaminated aquifer

    USGS Publications Warehouse

    Zachara, John M.; Kukkadapu, Ravi K.; Glassman, Paul L.; Dohnalkova, Alice; Fredrickson, Jim K.; Anderson, Todd

    2004-01-01

    The Bemidji aquifer in Minnesota, USA is a well-studied site of subsurface petroleum contamination. The site contains an anoxic groundwater plume where soluble petroleum constituents serve as an energy source for a region of methanogenesis near the source and bacterial Fe(III) reduction further down gradient. Methanogenesis apparently begins when bioavailable Fe(III) is exhausted within the sediment. Past studies indicate that Geobacter species and Geothrix fermentens-like organisms are the primary dissimilatory Fe-reducing bacteria at this site. The Fe mineralogy of the pristine aquifer sediments and samples from the methanogenic (source) and Fe(III) reducing zones were characterized in this study to identify microbiologic changes to Fe valence and mineral distribution, and to identify whether new biogenic mineral phases had formed. Methods applied included X-ray diffraction; X-ray fluorescence (XRF); and chemical extraction; optical, transmission, and scanning electron microscopy; and Mössbauer spectroscopy.All of the sediments were low in total Fe content (≈ 1%) and exhibited complex Fe-mineralogy. The bulk pristine sediment and its sand, silt, and clay-sized fractions were studied in detail. The pristine sediments contained Fe(II) and Fe(III) mineral phases. Ferrous iron represented approximately 50% of FeTOT. The relative Fe(II) concentration increased in the sand fraction, and its primary mineralogic residence was clinochlore with minor concentrations found as a ferroan calcite grain cement in carbonate lithic fragments. Fe(III) existed in silicates (epidote, clinochlore, muscovite) and Fe(III) oxides of detrital and authigenic origin. The detrital Fe(III) oxides included hematite and goethite in the form of mm-sized nodular concretions and smaller-sized dispersed crystallites, and euhedral magnetite grains. Authigenic Fe(III) oxides increased in concentration with decreasing particle size through the silt and clay fraction. Chemical extraction and Mössbauer analysis indicated that this was a ferrihydrite like-phase. Quantitative mineralogic and Fe(II/III) ratio comparisons between the pristine and contaminated sediments were not possible because of textural differences. However, comparisons between the texturally-similar source (where bioavailable Fe(III) had been exhausted) and Fe(III) reducing zone sediments (where bioavailable Fe(III) remained) indicated that dispersed detrital, crystalline Fe(III) oxides and a portion of the authigenic, poorly crystalline Fe(III) oxide fraction had been depleted from the source zone sediment by microbiologic activity. Little or no effect of microbiologic activity was observed on silicate Fe(III). The presence of residual “ferrihydrite” in the most bioreduced, anoxic plume sediment (source) implied that a portion of the authigenic Fe(III) oxides were biologically inaccessible in weathered, lithic fragment interiors. Little evidence was found for the modern biogenesis of authigenic ferrous-containing mineral phases, perhaps with the exception of thin siderite or ferroan calcite surface precipitates on carbonate lithic fragments within source zone sediments.

  7. Fe(II) sorption on pyrophyllite: Effect of structural Fe(III) (impurity) in pyrophyllite on nature of layered double hydroxide (LDH) secondary mineral formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starcher, Autumn N.; Li, Wei; Kukkadapu, Ravi K.

    Fe(II)-Al(III)-LDH (layered double hydroxide) phases have been shown to form from reactions of aqueous Fe(II) with Fe-free Al-bearing minerals (phyllosilicate/clays and Al-oxides). To our knowledge, the effect of small amounts of structural Fe(III) impurities in “neutral” clays on such reactions, however, were not studied. In this study to understand the role of structural Fe(III) impurity in clays, laboratory batch studies with pyrophyllite (10 g/L), an Al-bearing phyllosilicate, containing small amounts of structural Fe(III) impurities and 0.8 mM and 3 mM Fe(II) (both natural and enriched in 57Fe) were carried out at pH 7.5 under anaerobic conditions (4% H2 – 96%more » N2 atmosphere). Samples were taken up to 4 weeks for analysis by Fe-X-ray absorption spectroscopy and 57Fe Mössbauer spectroscopy. In addition to the precipitation of Fe(II)-Al(III)-LDH phases as observed in earlier studies with pure minerals (no Fe(III) impurities in the minerals), the analyses indicated formation of small amounts of Fe(III) containing solid(s), most probably hybrid a Fe(II)-Al(III)/Fe(III)-LDH phase. The mechanism of Fe(II) oxidation was not apparent but most likely was due to interfacial electron transfer from the sorbed Fe(II) to the structural Fe(III) and/or surface-sorption-induced electron-transfer from the sorbed Fe(II) to the clay lattice. Increase in the Fe(II)/Al ratio of the LDH with reaction time further indicated the complex nature of the samples. This research provides evidence for the formation of both Fe(II)-Al(III)-LDH and Fe(II)-Fe(III)/Al(III)-LDH-like phases during reactions of Fe(II) in systems that mimic the natural environments. Better understanding Fe phase formation in complex laboratory studies will improve models of natural redox systems.« less

  8. Biosorbents for Removing Hazardous Metals and Metalloids †

    PubMed Central

    Inoue, Katsutoshi; Parajuli, Durga; Ghimire, Kedar Nath; Biswas, Biplob Kumar; Kawakita, Hidetaka; Oshima, Tatsuya; Ohto, Keisuke

    2017-01-01

    Biosorbents for remediating aquatic environmental media polluted with hazardous heavy metals and metalloids such as Pb(II), Cr(VI), Sb(III and V), and As(III and V) were prepared from lignin waste, orange and apple juice residues, seaweed and persimmon and grape wastes using simple and cheap methods. A lignophenol gel such as lignocatechol gel was prepared by immobilizing the catechol functional groups onto lignin from sawdust, while lignosulfonate gel was prepared directly from waste liquor generated during pulp production. These gels effectively removed Pb(II). Orange and apple juice residues, which are rich in pectic acid, were easily converted using alkali (e.g., calcium hydroxide) into biosorbents that effectively removed Pb(II). These materials also effectively removed Sb(III and V) and As(III and V) when these were preloaded with multi-valent metal ions such as Zr(IV) and Fe(III). Similar biosorbents were prepared from seaweed waste, which is rich in alginic acid. Other biosorbents, which effectively removed Cr(VI), were prepared by simply treating persimmon and grape wastes with concentrated sulfuric acid. PMID:28773217

  9. Reactivity of catecholamine-driven Fenton reaction and its relationships with iron(III) speciation.

    PubMed

    Melin, Victoria; Henríquez, Adolfo; Freer, Juanita; Contreras, David

    2015-03-01

    Fenton reaction is the main source of free radicals in biological systems. The reactivity of this reaction can be modified by several factors, among these iron ligands are important. Catecholamine (dopamine, epinephrine, and norepinephrine) are able to form Fe(III) complexes whose extension in the coordination number depends upon the pH. Fe(III)-catecholamine complexes have been related with the development of several pathologies. In this work, the ability of catecholamines to enhance the oxidative degradation of an organic substrate (veratryl alcohol, VA) through Fenton and Fenton-like reactions was studied. The initial VA degradation rate at different pH values and its relationship to the different iron species present in solution were determined. Furthermore, the oxidative degradation of VA after 24 hours of reaction and its main oxidation products were also determined. The catecholamine-driven Fenton and Fenton-like systems showed higher VA degradation compared to unmodified Fenton or Fenton-like systems, which also showed an increase in the oxidation state of the VA degradation product. All of this oxidative degradation takes place at pH values lower than 5.50, where the primarily responsible species would be the Fe(III) mono-complex. The presence of Fe(III) mono-complex is essential in the ability of catecholamines to increase the oxidative capacity of Fenton systems.

  10. Iron in non-hydroxyl radical mediated photochemical processes for dye degradation: Catalyst or inhibitor?

    PubMed

    Wu, Bingdang; Zhang, Shujuan; Li, Xuchun; Liu, Xitong; Pan, Bingcai

    2015-07-01

    The acetylacetone (AA) mediated photochemical process has been proven as an efficient approach for decoloration. For azo dyes, the UV/AA process was several to more than ten times more efficient than the UV/H2O2 process. Iron is one of the most common elements on the earth. It is well known that iron can improve the UV/H2O2 process through thermal Fenton and photo-Fenton reactions. What will be the role of iron in the UV/AA process? Could iron-AA complexes act as photocatalysts in environmental remediation? To answer these questions, the photo-degradation of an azo dye, Acid Orange 7 (AO7), was conducted under the variant combinations of AA with iron species in both ionic (Fe2+, Fe3+) and complex (Fe(AA)3) forms. The pseudo-first-order decoloration rate constants of AO7 in these photochemical processes followed such an order: UV/Fe(II)/AA

  11. Biological activity of Fe(III) aquo-complexes towards ferric chelate reductase (FCR).

    PubMed

    Escudero, Rosa; Gómez-Gallego, Mar; Romano, Santiago; Fernández, Israel; Gutiérrez-Alonso, Ángel; Sierra, Miguel A; López-Rayo, Sandra; Nadal, Paloma; Lucena, Juan J

    2012-03-21

    In this study we have obtained experimental evidence that confirms the high activity of aquo complexes III and IV towards the enzyme FCR, responsible for the reduction of Fe(III) to Fe(II) in the process of iron acquisition by plants. The in vivo FCR assays in roots of stressed cucumber plants have shown a higher efficiency of the family of complexes III and a striking structure-activity relationship with the nature of the substituent placed in a phenyl group far away from the metal center. The results obtained in this work demonstrate that all the aquo compounds tested interact efficiently with the enzyme FCR and hence constitute a new concept of iron chelates that could be of great use in agronomy.

  12. Pore-Scale Characterization of Biogeochemical Controls on Iron and Uranium Speciation under Flow Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearce, Carolyn I.; Wilkins, Michael J.; Zhang, Changyong

    2012-09-17

    Etched silicon microfluidic pore network models (micromodels) with controlled chemical and redox gradients, mineralogy, and microbiology under continuous flow conditions are used for the incremental development of complex microenvironments that simulate subsurface conditions. We demonstrate the colonization of micromodel pore spaces by an anaerobic Fe(III)-reducing bacterial species (Geobacter sulfurreducens) and the enzymatic reduction of a bioavailable Fe(III) phase within this environment. Using both X-ray Microprobe and X-ray Absorption Spectroscopy, we investigate the combined effects of the precipitated Fe(III) phases and the microbial population on uranium biogeochemistry under flow conditions. Precipitated Fe(III) phases within the micromodel were most effectively reduced inmore » the presence of an electron shuttle (AQDS), and Fe(II) ions adsorbed onto the precipitated mineral surface without inducing any structural change. In the absence of Fe(III), U(VI) was effectively reduced by the microbial population to insoluble U(IV), which was precipitated in discrete regions associated with biomass. In the presence of Fe(III) phases, however, both U(IV) and U(VI) could be detected associated with biomass, suggesting re-oxidation of U(IV) by localized Fe(III) phases. These results demonstrate the importance of the spatial localization of biomass and redox active metals, and illustrate the key effects of pore-scale processes on contaminant fate and reactive transport.« less

  13. Uranium(VI) reduction by nanoscale zero-valent iron in anoxic batch systems: the role of Fe(II) and Fe(III).

    PubMed

    Yan, Sen; Chen, Yongheng; Xiang, Wu; Bao, Zhengyu; Liu, Chongxuan; Deng, Baolin

    2014-12-01

    The role of Fe(II) and Fe(III) in U(VI) reduction by nanoscale zerovalent iron (nanoFe0) was investigated using two iron chelators 1,10-phenanthroline and triethanolamine (TEA) under a CO2-free anoxic condition. The results showed that U(VI) reduction was strongly inhibited by 1,10-phenanthroline and TEA in a pH range from 6.9 to 9.0. For instance, at pH 6.9 the observed U(VI) reduction rates decreased by 81% and 82% in the presence of 1,10-phenanthroline and TEA, respectively. The inhibition was attributed to the formation of stable complexes between 1,10-phenanthroline and Fe(II) or TEA and Fe(III). In the absence of iron chelators, U(VI) reduction can be enhanced by surface-bound Fe(II) on nanoFe0. Our results suggested that Fe(III) and Fe(II) possibly acted as an electron shuttle to ferry the electrons from nanoFe0 to U(VI), therefore a combined system with Fe(II), Fe(III) and nanoFe0 could facilitate U(VI) reductive immobilization in the contaminated groundwater.

  14. Uranium(VI) reduction by nanoscale zero-valent iron in anoxic batch systems: The role of Fe(II) and Fe(III)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Sen; Chen, Yongheng; Xiang, Wu

    2014-12-01

    The role of Fe(II) and Fe(III) on U(VI) reduction by nanoscale zerovalent iron (nanoFe0) was investigated using two iron chelators 1,10-phenanthroline and triethanolamine (TEA) under a CO2-free anoxic condition. The results showed U(VI) reduction was strongly inhibited by 1,10-phenanthroline and TEA in a pH range from 6.92 to 9.03. For instance, at pH 6.92 the observed U(VI) reduction rates decreased by 80.7% and 82.3% in the presence of 1,10-phenanthroline and TEA, respectively. The inhibition was attributed to the formation of stable complexes between 1,10-phenanthroline and Fe(II) or TEA and Fe(III). In the absence of iron chelators, U(VI) reduction can bemore » enhanced by surface-bound Fe(II) on nanoFe0. Our results suggested that Fe(III) and Fe(II) probably acted as an electron shuttle to mediate the transfer of electrons from nanoFe0 to U(VI), therefore a combined system with Fe(II), Fe(III) and nanoFe0 can facilitate the U(VI) reductive immobilization in the contaminated groundwater.« less

  15. A role for the deep orange and carnation eye color genes in lysosomal delivery in Drosophila.

    PubMed

    Sevrioukov, E A; He, J P; Moghrabi, N; Sunio, A; Krämer, H

    1999-10-01

    Deep orange and carnation are two of the classic eye color genes in Drosophila. Here, we demonstrate that Deep orange is part of a protein complex that localizes to endosomal compartments. A second component of this complex is Carnation, a homolog of Sec1p-like regulators of membrane fusion. Because complete loss of deep orange function is lethal, the role of this complex in intracellular trafficking was analyzed in deep orange mutant clones. Retinal cells devoid of deep orange function completely lacked pigmentation and exhibited exaggerated multivesicular structures. Furthermore, a defect in endocytic trafficking was visualized in developing photoreceptor cells. These results provide direct evidence that eye color mutations of the granule group also disrupt vesicular trafficking to lysosomes.

  16. Dissolution of Fe(III) (hydr) oxides by metal-EDTA complexes

    NASA Astrophysics Data System (ADS)

    Ngwack, Bernd; Sigg, Laura

    1997-03-01

    The dissolution of Fe(III)(hydr)oxides (goethite and hydrous ferric oxide) by metal-EDTA complexes occurs by ligand-promoted dissolution. The process is initiated by the adsorption of metal-EDTA complexes to the surface and is followed by the dissociation of the complex at the surface and the release of Fe(III)EDTA into solution. The dissolution rate is decreased to a great extent if EDTA is complexed by metals in comparison to the uncomplexed EDTA. The rate decreases in the order EDTA CaEDTA ≫ PbEDTA > ZnEDTA > CuEDTA > Co(II)EDTA > NiEDTA. Two different rate-limiting steps determine the dissolution process: (1) detachment of Fe(III) from the oxide-structure and (2) dissociation of the metal-EDTA complexes. In the case of goethite, step 1 is slower than step 2 and the dissolution rates by various metals are similar. In the case of hydrous ferric oxide, step 2 is rate-limiting and the effect of the complexed metal is very pronounced.

  17. Measurement of Absorbed Dose from Radionuclide Solutions Mixed Intimately with the Fbx Dosimeter.

    NASA Astrophysics Data System (ADS)

    Benedetto, Anthony Richard

    Chemical dosimeters are used widely for accurate measurement of large radiation doses due to external beam irradiation from radioisotope sources and from particle accelerators. Their use for measurement of absorbed doses from radioactive solutions mixed in the dosimeter solution was reported as early as 1952, but the large activities needed to produce suitable absorbance values in the relatively insensitive dosimeters of that time discouraged further work. This manuscript reports the results of an investigation into the suitability of the ferrous sulfate-benzoic acid -xylenol orange (FBX) dosimeter for measurement of small absorbed doses caused by radionuclide solutions dissolved in the dosimeter solution. The FBX dosimeter exhibited a linear dose response as a function of activity for two common radiopharmaceuticals, technetium-99m sodium pertechnetate and iodine-131 sodium iodide. Conditions under which the FBX dosimeter may be used with radionuclide solutions were studied and were found to be amenable to routine use by laboratories possessing relatively unsophisticated instrumentation. It appears likely that any radionuclide could be studied using this dosimeter. Finally, potential applications and future research work are suggested, including measurement of absorbed dose from radiopharmaceuticals using realistic human-like phantoms to assess the risk from clinical nuclear medicine studies.

  18. Can a commercial gel dosimetry system be used to verify stereotactic spinal radiotherapy treatment dose distributions?

    NASA Astrophysics Data System (ADS)

    Kairn, T.; Asena, A.; Crowe, S. B.; Livingstone, A.; Papworth, D.; Smith, S.; Sutherland, B.; Sylvander, S.; Franich, R. D.; Trapp, J. V.

    2017-05-01

    This study investigated the use of the TruView xylenol-orange-based gel and VISTA optical CT scanner (both by Modus Medical Inc, London, Canada), for use in verifying the accuracy of planned dose distributions for hypo-fractionated (stereotactic) vertebral treatments. Gel measurements were carried out using three stereotactic vertebral treatments and compared with planned doses calculated using the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, USA) as well as with film measurements made using Gafchromic EBT3 film (Ashland Inc, Covington, USA), to investigate the accuracy of the gel system. The gel was calibrated with reference to a moderate-dose gradient region in one of the gel samples. Generally, the gel measurements were able to approximate the close agreement between the doses calculated by the treatment planning system and the doses measured using film (which agreed with each other within 2%), despite lower resolution and bit depth. Poorer agreement was observed when the dose delivered to the gel exceeded the range of doses delivered in the calibration region. This commercial gel dosimetry system may be used to verify hypo-fractionated treatments of vertebral targets, although separate gel calibration measurements are recommended.

  19. Cerium nanoparticle effect on sensitivity of Fricke gel dosimeter: Initial investigation

    NASA Astrophysics Data System (ADS)

    Ebenezer Suman Babu, S.; Peace Balasingh, S. Timothy; Benedicta Pearlin, R.; Rabi Raja Singh, I.; Ravindran, B. Paul

    2017-05-01

    Fricke gel dosimeters (FXGs) have been the preferred dosimeters because of its ease in preparation and water and tissue equivalency. Visible changes happen three dimensionally in the dosimeter as the ferrous (Fe2+) ions change into ferric (Fe3+) ions upon irradiation and the measure of this change can be correlated to the dose absorbed. Nanoparticles are promising entities that can improve the sensitivity of the gel dosimeter. Cerium Oxide nanoparticle was investigated for possible enhancement of absorbed dose in the FXG. Various concentrations of the nanoparticle based gel dosimeters were prepared and irradiated for a clinical dose range of 0-3 Gy in a telegamma unit. The optimal concentration of 0.1 mM nanoparticle incorporated in the FXG enhances the radiation sensitivity of the unmodified FXG taken as reference without modifying the background absorbance prior to irradiation. The gel recipe consisted of 5% (wt) gelatin, 50 mM Sulphuric acid, 0.05 mM Xylenol Orange, 0.5 mM Ferrous Ammonium Sulphate and 0.1 mM Cerium (IV) Oxide nanoparticle (< 25 nm particle size) and triple distilled water. The FXGs with nanoparticle showed linear dose response in the dose range tested.

  20. Effect of feed-gas humidity on nitrogen atmospheric-pressure plasma jet for biological applications.

    PubMed

    Stephan, Karl D; McLean, Robert J C; DeLeon, Gian; Melnikov, Vadim

    2016-11-14

    We investigate the effect of feed-gas humidity on the oxidative properties of an atmospheric-pressure plasma jet using nitrogen gas. Plasma jets operating at atmospheric pressure are finding uses in medical and biological settings for sterilization and other applications involving oxidative stress applied to organisms. Most jets use noble gases, but some researchers use less expensive nitrogen gas. The feed-gas water content (humidity) has been found to influence the performance of noble-gas plasma jets, but has not yet been systematically investigated for jets using nitrogen gas. Low-humidity and high-humidity feed gases were used in a nitrogen plasma jet, and the oxidation effect of the jet was measured quantitatively using a chemical dosimeter known as FBX (ferrous sulfate-benzoic acid-xylenol orange). The plasma jet using high humidity was found to have about ten times the oxidation effect of the low-humidity jet, as measured by comparison with the addition of measured amounts of hydrogen peroxide to the FBX dosimeter. Atmospheric-pressure plasma jets using nitrogen as a feed gas have a greater oxidizing effect with a high level of humidity added to the feed gas.

  1. Single peak parameters technique for simultaneous measurements: Spectrophotometric sequential injection determination of Fe(II) and Fe(III).

    PubMed

    Kozak, J; Paluch, J; Węgrzecka, A; Kozak, M; Wieczorek, M; Kochana, J; Kościelniak, P

    2016-02-01

    Spectrophotometric sequential injection system (SI) is proposed to automate the method of simultaneous determination of Fe(II) and Fe(III) on the basis of parameters of a single peak. In the developed SI system, sample and mixture of reagents (1,10-phenanthroline and sulfosalicylic acid) are introduced into a vessel, where in an acid environment (pH≅3) appropriate compounds of Fe(II) and Fe(III) with 1,10-phenanthroline and sulfosalicylic acid are formed, respectively. Then, in turn, air, sample, EDTA and sample again, are introduced into a holding coil. After the flow reversal, a segment of air is removed from the system by an additional valve and as EDTA replaces sulfosalicylic acid forming a more stable colorless compound with Fe(III), a complex signal is registered. Measurements are performed at wavelength 530 nm. The absorbance measured at minimum of the negative peak and the area or the absorbance measured at maximum of the signal can be used as measures corresponding to Fe(II) and Fe(III) concentrations, respectively. The time of the peak registration is about 2 min. Two-component calibration has been applied to analysis. Fe(II) and Fe(III) can be determined within the concentration ranges of 0.04-4.00 and 0.1-5.00 mg L(-1), with precision less than 2.8% and 1.7% (RSD), respectively and accuracy better than 7% (RE). The detection limit is 0.04 and 0.09 mg L(-1) for Fe(II) and Fe(III), respectively. The method was applied to analysis of artesian water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Rapid photooxidation of Sb(III) in the presence of different Fe(III) species

    NASA Astrophysics Data System (ADS)

    Kong, Linghao; He, Mengchang; Hu, Xingyun

    2016-05-01

    The toxicity and mobility of antimony (Sb) are strongly influenced by the redox processes associated with Sb. Dissolved iron (Fe) is widely distributed in the environment as different species and plays a significant role in Sb speciation. However, the mechanisms of Sb(III) oxidation in the presence of Fe have remained unclear because of the complexity of Fe and Sb speciation. In this study, the mechanisms of Sb(III) photooxidation in the presence of different Fe species were investigated systematically. The photooxidation of Sb(III) occurred over a wide pH range, from 1 to 10. Oxygen was not a predominant or crucial factor in the Sb(III) oxidation process. The mechanism of Sb(III) photooxidation varied depending on the Fe(III) species. In acidic solution (pH 1-3), dichloro radicals (radCl2-) and hydroxyl radicals (radOH) generated by the photocatalysis of FeCl2+ and FeOH2+ were the main oxidants for Sb(III) oxidation. Fe(III) gradually transformed into the colloid ferric hydroxide (CFH) and ferrihydrite in circumneutral and alkaline solutions (pH 4-10). Photooxidation of Sb(III) occurred through electron transfer from Sb(III) to Fe(III) along with the reduction of Fe(III) to Fe(II) through a ligand-to-metal charge-transfer (LMCT) process. The photocatalysis of different Fe(III) species may play an important role in the geochemical cycle of Sb(III) in surface soil and aquatic environments.

  3. Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 2: Iron- and Copper-Catalyzed Oxidation.

    PubMed

    Kreitman, Gal Y; Danilewicz, John C; Jeffery, David W; Elias, Ryan J

    2016-05-25

    Sulfidic off-odors arising during wine production are frequently removed by Cu(II) fining. In part 1 of this study ( 10.1021/acs.jafc.6b00641 ), the reaction of H2S and thiols with Cu(II) was examined; however, the interaction of iron and copper is also known to play an important synergistic role in mediating non-enzymatic wine oxidation. The interaction of these two metals in the oxidation of H2S and thiols (cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol) was therefore examined under wine-like conditions. H2S and thiols (300 μM) were reacted with Fe(III) (100 or 200 μM) alone and in combination with Cu(II) (25 or 50 μM), and concentrations of H2S and thiols, oxygen, and acetaldehyde were monitored over time. H2S and thiols were shown to be slowly oxidized in the presence of Fe(III) alone and were not bound to Fe(III) under model wine conditions. However, Cu(II) added to model wine containing Fe(III) was quickly reduced by H2S and thiols to form Cu(I) complexes, which then rapidly reduced Fe(III) to Fe(II). Oxidation of Fe(II) in the presence of oxygen regenerated Fe(III) and completed the iron redox cycle. In addition, sulfur-derived oxidation products were observed, and the formation of organic polysulfanes was demonstrated.

  4. A novel UV-photolysis approach with acetone and isopropyl alcohol for the rapid determination of fluoride in organofluorine-containing drugs by spectrophotometry.

    PubMed

    Mullapudi, Venkata Balarama Krishna; Dheram, Karunasagar

    2018-01-01

    A UV photolysis decomposition (UVPD) method for the determination of fluoride in fluorine containing pharmaceuticals by spectrophotometry is reported. It is based on the use of high intensity UV-irradiation in the presence of a digesting solution comprising a mixture of acetone and isopropanol. For the optimization of the UVPD procedure, three bulk drugs (levofloxacin, nebivolol and efavirenz) were chosen as representatives of three diverse compounds containing a single fluorine atom, two fluorine atoms, and trifluoromethyl groups respectively. Operational conditions of the UVPD method, such as concentration and volume of reagents (acetone and isopropyl alcohol), and UV irradiation time (1-6 minutes) were optimized. The efficiency of digestion was evaluated by the determination of fluoride in sample digests. Using the developed method, it was possible for complete conversion of the organofluoride to free fluoride ion for its subsequent determination by spectrophotometry based on bleaching of Zr-xylenol orange-color complex. Quantitative recovery (>98%) of the fluorine in the drug samples could be achieved using a mixture of 2% acetone + 2% isopropyl alcohol + 0.003% Na 2 CO 3 in just 5 minutes of UV irradiation, which can be considered an important aspect considering the difficulties involved in the cleavage of the CF bond. Accuracy was evaluated by comparison of results obtained by the UVPD method with the values estimated using formula weight of the compound and no statistical difference was observed between the results. Therefore, the proposed method is suitable for application in routine analysis of fluoride in organofluorine-containing drugs. Copyright © 2016. Published by Elsevier B.V.

  5. Iron deficiency enhances bioactive phenolics in lemon juice.

    PubMed

    Mellisho, Carmen D; González-Barrio, Rocío; Ferreres, Federico; Ortuño, María F; Conejero, Wenceslao; Torrecillas, Arturo; García-Mina, José M; Medina, Sonia; Gil-Izquierdo, Angel

    2011-09-01

    This study was designed to describe the phenolic status of lemon juice obtained from fruits of lemon trees differing in iron (Fe) nutritional status. Three types of Fe(III) compound were used in the experiment, namely a synthetic chelate and two complexes derived from natural polymers of humic and lignine nature. All three Fe(III) compounds were able to improve the Fe nutritional status of lemon trees, though to different degrees. This Fe(III) compound effect led to changes in the polyphenol content of lemon juice. Total phenolics were decreased (∼33% average decrease) and, in particular, flavanones, flavones and flavonols were affected similarly. Iron-deficient trees showed higher phenolic contents than Fe(III) compound-treated trees, though Fe deficiency had negative effects on the yield and visual quality of fruits. However, from a human nutritional point of view and owing to the health-beneficial properties of their bioavailable phenolic compounds, the nutritional quality of fruits of Fe-deficient lemon trees in terms of phenolics was higher than that of fruits of Fe(III) compound-treated lemon trees. Moreover, diosmetin-6,8-di-C-glucoside in lemon juice can be used as a marker for correction of Fe deficiency in lemon trees. Copyright © 2011 Society of Chemical Industry.

  6. Synthesis, characterization and molecular modeling of some transition metal complexes of Schiff base derived from 5-aminouracil and 2-benzoyl pyridine

    NASA Astrophysics Data System (ADS)

    Abdel-Monem, Yasser K.; Abouel-Enein, Saeyda A.; El-Seady, Safa M.

    2018-01-01

    Multidentate Schiff base (H2L) ligand results from condensation of 5-aminouracil and 2-benzoyl pyridine and its metal chloride (Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Fe(III), Cr(III), Ru(III), Zr(IV) and Hf(IV)) complexes were prepared. The structural features of the ligand and its metal complexes were confirmed by elemental analyses, spectroscopic methods (IR, UV-Vis, 1H NMR, mass), magnetic moment measurements and thermal studies. The data refer to the ligand coordinates with metal ions in a neutral form and shows different modes of chelation toward the metal atom. All complexes have octahedral skeleton structure, tetrahedrally Mn(II), Ni(II), trigonalbipyramidal Co(II) and square planner Pd(II). Thermal decomposition of complexes as well as the interaction of different types of solvent of crystallization are assigned by thermogravimetric analysis. Molecular modeling of prepared complexes were investigated to study the expected anticancer activities of the prepared complexes. All metal complexes have no interaction except the complexes of Pd(II), Fe(III) and Mn(II).

  7. Mechanism of selenite removal by a mixed adsorbent based on Fe-Mn hydrous oxides studied using X-ray absorption spectroscopy.

    PubMed

    Chubar, Natalia; Gerda, Vasyl; Szlachta, Małgorzata

    2014-11-18

    Selenium cycling in the environment is greatly controlled by various minerals, including Mn and Fe hydrous oxides. At the same time, such hydrous oxides are the main inorganic ion exchangers suitable (on the basis of their chemical nature) to sorb (toxic) anions, separating them from water solutions. The mechanism of selenite adsorption by the new mixed adsorbent composed of a few (amorphous and crystalline) phases [maghemite, MnCO3, and X-ray amorphous Fe(III) and Mn(III) hydrous oxides] was studied by extended X-ray absorption fine structure (EXAFS) spectroscopy [supported by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) data]. The complexity of the porous adsorbent, especially the presence of the amorphous phases of Fe(III) and Mn(III) hydrous oxides, is the main reason for its high selenite removal performance demonstrated by batch and column adsorption studies shown in the previous work. Selenite was bound to the material via inner-sphere complexation (via oxygen) to the adsorption sites of the amorphous Fe(III) and Mn(III) oxides. This anion was attracted via bidentate binuclear corner-sharing coordination between SeO3(2-) trigonal pyramids and both FeO6 and MnO6 octahedra; however, the adsorption sites of Fe(III) hydrous oxides played a leading role in selenite removal. The contribution of the adsorption sites of Mn(III) oxide increased as the pH decreased from 8 to 6. Because most minerals have a complex structure (they are seldom based on individual substances) of various crystallinity, this work is equally relevant to environmental science and environmental technology because it shows how various solid phases control cycling of chemical elements in the environment.

  8. Complexometric determination of some toxic mixtures of ions using bromo-cresol orange with visual endpoint indication.

    PubMed

    Hafez, M A; Khalifa, M E

    1997-05-01

    A rapid and simple general complexometric method was presented for the determination of lead, cadmium and thallium or mercury or arsenic(V) in laboratory synthesized mixtures similar to those of some ores, minerals and alloys of such metals. The precision and accuracy attainable in successive titrations of Pb(2+), Cd(2+) and Tl(3+) or Hg(2+) or AsO(3-)(4) (As(5+)) with 0.05 and/or 0.01 mol 1(-1) solutions of disodium ethylenediaminetetraacetate (Na(2)EDTA) and standard Pb(NO(3))(2) of the same concentration using Bromo-Cresol Orange (BCO) as a new metallochromic indicator with visual endpoint indication were studied. For the analysis of a three component mixtures of the aforementioned ions, Tl(3+) was at first directly titrated with Na(2)EDTA at pH 0.5-1 (HNO(3)) using BCO as indicator. At the thallium endpoint an excess of Na(2)EDTA was added and the pH was adjusted at pH approximately 4.8 using hexamine-HNO(3) buffer (solution A). The excess EDTA was back-titrated with standard solution of Pb(NO(3))(2). 1,10-Phenanthroline (1,10-phen) was added to release the EDTA combined with Cd(2+), while thiosemicarbazide (TSC) was used to liberate the EDTA from the mercury-EDTA chelate. To determine AsO(3-)(4) ion in such type of mixtures the pH of (solution A) was raised to a value of 10 using ammonia buffer. Excess standard Mg(2+) solution was added and the formed precipitate of MgNH(4)AsO(4) was separated, dissolved and its magnesium content equivalent to AsO(3-)(4) was determined complexometrically using Eriochrome Black-T (EBT) indicator. The interference caused by different anions, cations and organic acids was investigated. A comparison of the indicators BCO and Xylenol Orange (XO) for successive titration of the studied metal ions was carried out. The proposed successive titration method was applied successfully to some real samples of ores, minerals and alloys of the studied metal ions and the results were satisfactory and agreed with those obtained by AAS.

  9. Antimicrobial, spectral, magnetic and thermal studies of Cu(II), Ni(II), Co(II), UO(2)(VI) and Fe(III) complexes of the Schiff base derived from oxalylhydrazide.

    PubMed

    Melha, Khlood Abou

    2008-04-01

    The Schiff base ligand, oxalyl [( 2 - hydroxybenzylidene) hydrazone] [corrected].H(2)L, and its Cu(II), Ni(II), Co(II), UO(2)(VI) and Fe(III) complexes were prepared and tested as antibacterial agents. The Schiff base acts as a dibasic tetra- or hexadentate ligand with metal cations in molar ratio 1:1 or 2:1 (M:L) to yield either mono- or binuclear complexes, respectively. The ligand and its metal complexes were characterized by elemental analyses, IR, (1)H NMR, Mass, and UV-Visible spectra and the magnetic moments and electrical conductance of the complexes were also determined. For binuclear complexes, the magnetic moments are quite low compared to the calculated value for two metal ions complexes and this shows antiferromagnetic interactions between the two adjacent metal ions. The ligand and its metal complexes were tested against a Gram + ve bacteria (Staphylococcus aureus), a Gram -ve bacteria (Escherichia coli), and a fungi (Candida albicans). The tested compounds exhibited high antibacterial activities.

  10. Seasonal and spatial variation in soil chemistry and anaerobic processes in an Arctic ecosystem

    NASA Astrophysics Data System (ADS)

    Lipson, D.; Mauritz, M.; Bozzolo, F.; Raab, T. K.; Santos, M. J.; Friedman, E. F.; Rosenbaum, M.; Angenent, L.

    2009-12-01

    Drained thaw lake basins (DTLB) are the dominant landform in the Arctic coastal plain near Barrow, Alaska. Our previous work in a DTLB showed that Fe(III) and humic substances are important electron acceptors in anaerobic respiration, and play a significant role in the C cycle of these organic-rich soils. In the current study, we investigated seasonal and spatial patterns of availability of electron acceptors and labile substrate, redox conditions and microbial activity. Landscapes within DTLB contain complex, fine-scale topography arising from ice wedge polygons, which produce raised and lowered areas. One goal of our study was to determine the effects of microtopographic variation on the potential for Fe(III) reduction and other anaerobic processes. Additionally, the soil in the study site has a complex vertical structure, with an organic peat layer overlying a mineral layer, overlying permafrost. We described variations in soil chemistry across depth profiles into the permafrost. Finally, we installed an integrated electrode/potentiostat system to electrochemically monitor microbial activity in the soil. Topographically low areas differed from high areas in most of the measured variables: low areas had lower oxidation-reduction potential, higher pH and electrical conductivity. Soil pore water from low areas had higher concentrations of Fe(III), Fe(II), dissolved organic C (DOC), and aromaticity (UV absorbance at 260nm, “A260”). Low areas also had higher concentrations of dissolve CO2 and CH4 in soil pore water. Laboratory incubations of soil showed a trend toward higher potentials for Fe(III) reduction in topographically low areas. Clearly, ice wedge-induced microtopography exerts a strong control on microbial processes in this DTLB landscape, with increased anaerobic activity occurring in the wetter, depressed areas. Soil water extracted from 5-15 cm depth had higher concentrations of Fe(III), Fe(II), A260, and DOC compared to soil water sampled from 0-5cm. The soil depth profile showed highest concentrations of acid-extractable Fe in the mineral layer and permafrost, though Fe(III) was highest in the surface layer. Total and soluble C increased with depth, as did the potential for CO2 and CH4 production in anaerobic incubations. Thus, the mineral layer may be a significant source of Fe for oxidation-reduction reactions that occur at shallower depths, though methanogenesis dominates in the mineral layer, while Fe(III) reduction dominates in the organic layer. Most of the ions measured in the soil pore water (Fe(III), DOC, A260) showed the same general seasonal pattern: high concentrations soon after soils thawed, declining over time until mid-August. Concentrations of Fe(II) in soil pore water were fairly stable over time. There was a significant positive relationship between A260 and Fe(III) concentrations, possibly indicating the presence of microbially-produced aromatic chelating molecules. Potentiostat measurements confirmed the presence of an electrochemically active microbial community in the soil.

  11. A voltammetric method for Fe(iii) in blood serum using a screen-printed electrode modified with a Schiff base ionophore.

    PubMed

    Mittal, Susheel K; Rana, Sonia; Kaur, Navneet; Banks, Craig E

    2018-05-23

    Herein, a potent electrochemical ionophore (SMS-2) based on a Schiff base has been used for the modification of a screen-printed electrode (SPE). The modified disposable electrode can selectively detect ferric ions in an aqueous medium. Redox behavior of the proposed strip was characterized using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Incorporation of the ligand in the ink of the SPE enhanced the analytical performance of the electrode, and its surface modification was confirmed by SEM and EDX analysis. Shifting/quenching of the cathodic peak potential of the ionophore after binding with Fe(iii) ions was used to detect and measure the ferric ion concentration. This sensor can identify Fe(iii) in the detection range from 0.625 μM to 7.5 μM. The modified SPE can selectively detect ferric ions in the presence of many other interfering ions and has been successfully used to determine the Fe(iii) content in blood serum samples. The metal-ionophore complex structure was optimized using DFT calculations to study the energetics of the metal-ionophore interactions.

  12. Mixed-valent [FeIV(mu-O)(mu-carboxylato)2FeIII]3+ core.

    PubMed

    Slep, Leonardo D; Mijovilovich, Ana; Meyer-Klaucke, Wolfram; Weyhermüller, Thomas; Bill, Eckhard; Bothe, Eberhard; Neese, Frank; Wieghardt, Karl

    2003-12-17

    The symmetrically ligated complexes 1, 2, and 3 with a (mu-oxo)bis(mu-acetato)diferric core can be one-electron oxidized electrochemically or chemically with aminyl radical cations [*NR3][SbCl6] in acetonitrile yielding complexes which contain the mixed-valent [(mu-oxo)bis(mu-acetato)iron(IV)iron(III)]3+ core: [([9]aneN3)(2FeIII2)(mu-O)(mu-CH3CO2)2](ClO4)2 (1(ClO4)2), [(Me3[9]aneN3)(2FeIII2)(mu-O)(mu-CH3CO2)2](PF6)2 (2(PF6)(2)), and [(tpb)(2FeIII2)(mu-O)(mu-CH3CO2)2] (3) where ([9]aneN3) is the neutral triamine 1,4,7-triazacyclononane and (Me3[9]aneN3) is its tris-N-methylated derivative, and (tpb)(-) is the monoanion trispyrazolylborate. The asymmetrically ligated complex [(Me3[9]aneN3)FeIII(mu-O)(mu-CH3CO2)2FeIII(tpb)](PF6) (4(PF6)) and its one-electron oxidized form [4ox]2+ have also been prepared. Finally, the known heterodinuclear species [(Me3[9]aneN3)CrIII(mu-O)(mu-CH3CO2)2Fe([9]aneN3)](PF6)2 (5(PF6)(2)) can also be one-electron oxidized yielding [5ox]3+ containing an iron(IV) ion. The structure of 4(PF6).0.5CH3CN.0.25(C2H5)2O has been determined by X-ray crystallography and that of [5ox]2+ by Fe K-edge EXAFS-spectroscopy (Fe(IV)-O(oxo): 1.69(1) A; Fe(IV)-O(carboxylato) 1.93(3) A, Fe(IV)-N 2.00(2) A) contrasting the data for 5 (Fe(III)-O(oxo) 1.80 A; Fe(III)-O(carboxylato) 2.05 A, Fe-N 2.20 A). [5ox]2+ has an St = 1/2 ground state whereas all complexes containing the mixed-valent [FeIV(mu-O)(mu-CH3CO2)2FeIII]3+ core have an St = 3/2 ground state. Mössbauer spectra of the oxidized forms of complexes clearly show the presence of low spin FeIV ions (isomer shift approximately 0.02 mm s(-1), quadrupole splitting approximately 1.4 mm s(-1) at 80 K), whereas the high spin FeIII ion exhibits delta approximately 0.46 mm s(-1) and DeltaE(Q) approximately 0.5 mm s(-1). Mössbauer, EPR spectral and structural parameters have been calculated by density functional theoretical methods at the BP86 and B3LYP levels. The exchange coupling constant, J, for diiron complexes with the mixed-valent FeIV-FeIII core (H = -2J S1.S2; S(1) = 5/2; S2 = 1) has been calculated to be -88 cm(-1) (intramolecular antiferromagnetic coupling) and for the reduced diferric form of -75 cm(-1) in reasonable agreement with experiment (J = -120 cm(-1)).

  13. Effects of exogenous pyoverdines on Fe availability and their impacts on Mn(II) oxidation by Pseudomonas putida GB-1

    PubMed Central

    Lee, Sung-Woo; Parker, Dorothy L.; Geszvain, Kati; Tebo, Bradley M.

    2014-01-01

    Pseudomonas putida GB-1 is a Mn(II)-oxidizing bacterium that produces pyoverdine-type siderophores (PVDs), which facilitate the uptake of Fe(III) but also influence MnO2 formation. Recently, a non-ribosomal peptide synthetase mutant that does not synthesize PVD was described. Here we identified a gene encoding the PVDGB-1 (PVD produced by strain GB-1) uptake receptor (PputGB1_4082) of strain GB-1 and confirmed its function by in-frame mutagenesis. Growth and other physiological responses of these two mutants and of wild type were compared during cultivation in the presence of three chemically distinct sets of PVDs (siderotypes n°1, n°2, and n°4) derived from various pseudomonads. Under iron-limiting conditions, Fe(III) complexes of various siderotype n°1 PVDs (including PVDGB-1) allowed growth of wild type and the synthetase mutant, but not the receptor mutant, confirming that iron uptake with any tested siderotype n°1 PVD depended on PputGB1_4082. Fe(III) complexes of a siderotype n°2 PVD were not utilized by any strain and strongly induced PVD synthesis. In contrast, Fe(III) complexes of siderotype n°4 PVDs promoted the growth of all three strains and did not induce PVD synthesis by the wild type, implying these complexes were utilized for iron uptake independent of PputGB1_4082. These differing properties of the three PVD types provided a way to differentiate between effects on MnO2 formation that resulted from iron limitation and others that required participation of the PVDGB-1 receptor. Specifically, MnO2 production was inhibited by siderotype n°1 but not n°4 PVDs indicating PVD synthesis or PputGB1_4082 involvement rather than iron-limitation caused the inhibition. In contrast, iron limitation was sufficient to explain the inhibition of Mn(II) oxidation by siderotype n°2 PVDs. Collectively, our results provide insight into how competition for iron via siderophores influences growth, iron nutrition and MnO2 formation in more complex environmental systems. PMID:25009534

  14. Fe Isotope Fractionation During Fe(III) Reduction to Fe(II)

    NASA Astrophysics Data System (ADS)

    Baker, E. A.; Greene, S.; Hardin, E. E.; Hodierne, C. E.; Rosenberg, A.; John, S.

    2014-12-01

    The redox chemistry of Fe(III) and Fe(II) is tied to a variety of earth processes, including biological, chemical, or photochemical reduction of Fe(III) to Fe(II). Each process may fractionate Fe isotopes, but the magnitudes of the kinetic isotope effects have not been greatly explored in laboratory conditions. Here, we present the isotopic fractionation of Fe during reduction experiments under a variety of experimental conditions including photochemical reduction of Fe(III) bound to EDTA or glucaric acid, and chemical reduction of Fe-EDTA by sodium dithionite, hydroxylamine hydrochloride, Mn(II), and ascorbic acid. A variety of temperatures and pHs were tested. In all experiments, Fe(III) bound to an organic ligand was reduced in the presence of ferrozine. Ferrozine binds with Fe(II), forming a purple complex which allows us to measure the extent of reaction. The absorbance of the experimental solutions was measured over time to determine the Fe(II)-ferrozine concentration and thus the reduction rate. After about 5% of the Fe(III) was reduced, Fe(III)-EDTA and Fe(II)-ferrozine were separated using a C-18 column to which Fe(II)-ferrozine binds. The Fe(II) was eluted and purified through anion exchange chromatography for analysis of δ56Fe by MC-ICPMS. Preliminary results show that temperature and pH both affect reduction rate. All chemical reductants tested reduce Fe(III) at a greater rate as temperature increases. The photochemical reductant EDTA reduces Fe(III) at a greater rate under more acidic conditions. Comparison of the two photochemical reductants shows that glucaric acid reduces Fe(III) significantly faster than EDTA. For chemical reduction, the magnitude of isotopic fractionation depends on the reductant used. Temperature and pH also affect the isotopic fractionation of Fe. Experiments using chemical reductants show that an increase in temperature at low temperatures produces lighter 56Fe ratios, while at high temperatures some reductants produce heavier 56Fe ratios. The magnitude of isotope fractionation is not related to the reduction rate generalized over all reductants. The measured isotopic fractionations produce δ56Fe from -3.82 to +3.05 across all of the reductants tested, highlighting the large impact that redox chemistry may have on fractionating Fe isotopes in the environment.

  15. Synthesis, physicochemical characterization, DFT calculation and biological activities of Fe(III) and Co(II)-omeprazole complexes. Potential application in the Helicobacter pylori eradication

    NASA Astrophysics Data System (ADS)

    Russo, Marcos G.; Vega Hissi, Esteban G.; Rizzi, Alberto C.; Brondino, Carlos D.; Salinas Ibañez, Ángel G.; Vega, Alba E.; Silva, Humberto J.; Mercader, Roberto; Narda, Griselda E.

    2014-03-01

    The reaction between the antiulcer agent omeprazole (OMZ) with Fe(III) and Co(II) ions was studied, observing a high ability to form metal complexes. The isolated microcrystalline solid complexes were characterized by elemental analysis, X-ray powder diffraction (XRPD), Scanning Electron Microscopy (SEM), magnetic measurements, thermal study, FTIR, UV-Visible, Mössbauer, electronic paramagnetic resonance (EPR), and DFT calculations. The metal-ligand ratio for both complexes was 1:2 determined by elemental and thermal analysis. FTIR spectroscopy showed that OMZ acts as a neutral bidentate ligand through the pyridinic nitrogen of the benzimidazole ring and the oxygen atom of the sulfoxide group, forming a five-membered ring chelate. Electronic, Mössbauer, and EPR spectra together with magnetic measurements indicate a distorted octahedral geometry around the metal ions, where the coordination sphere is completed by two water molecules. SEM and XRPD were used to characterize the morphology and the crystal nature of the complexes. The most favorable conformation for the Fe(III)-OMZ and Co(II)-OMZ complexes was obtained by DFT calculations by using B3LYP/6-31G(d)&LanL2DZ//B3LYP/3-21G(d)&LanL2DZ basis set. Studies of solubility along with the antibacterial activity against Helicobacter pylori for OMZ and its Co(II) and Fe(III) complexes are also reported. Free OMZ and both metal complexes showed antibacterial activity against H. pylori. Co(II)-OMZ presented a minimal inhibitory concentration ˜32 times lower than that of OMZ and ˜65 lower than Fe(III)-OMZ, revealing its promising potential use for the treatment of gastric pathologies associated with the Gram negative bacteria. The morphological changes observed in the cell membrane of the bacteria after the incubation with the metal-complexes were also analyzed by SEM microscopy. The antimicrobial activity of the complexes was proved by the viability test.

  16. Ligational behavior of clioquinol antifungal drug towards Ag(I), Hg(II), Cr(III) and Fe(III) metal ions: Synthesis, spectroscopic, thermal, morphological and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    El-Megharbel, Samy M.; Refat, Moamen S.

    2015-04-01

    This article presents a synthesis, characterization, theoretical and biological (anti-bacterial, and anti-fugal) evaluation studies of Ag(I), Hg(II), Cr(III) and Fe(III) complexes of clioquinol (CQ) drug ligand. Structures of the titled complexes cited herein were discussed using elemental analyses and spectral measurements e.g., IR, 1H NMR, and electronic studies. The results confirmed the formation of the clioquinol complexes by three molar ratios (1:1) for Ag(I), (1:2) for Hg(II) and (1:3) for both Cr(III) and Fe(III) metal ions. The clioquinol reacts as a bidentate chelate bound to all respected metal ions through the oxygen and nitrogen of quinoline-8-ol. The metal(II) ions coordinated to clioquinol ligand through deprotonation of sbnd OH terminal group. Infrared and 1H NMR spectral data confirm that coordination is via the oxygen of phenolic group and nitrogen atom of quinoline moiety. The molar conductance measurements of the CQ complexes in DMSO correspond to be non-electrolyte nature. Thus, these complexes may be formulated as [Ag(CQ)(H2O)2] H2O, [Hg(CQ)2]ṡ2H2O, [Cr(CQ)3] and [Fe(CQ)3]H2O. The Coats-Redfern method, the kinetic thermodynamic parameters like activation energies (E∗), entropies (ΔS∗), enthalpies (ΔH∗), and Gibbs free energies (ΔG∗) of the thermal decomposition reactions have been deduced from thermogravimetric curves (TG) with helpful of differential thermo gravimetric (DTG) curves. The narrow size distribution in nano-scale range for the clioquinol complexes have been discussed using X-ray powder diffraction (XRD), scanning electron microscope (SEM), and X-ray energy dispersive spectrometer (EDX) analyzer.

  17. Mössbauer and electronic spectral characterization of homo-bimetallic Fe(III) complexes of unsymmetrical [N10] and [N12] macrocyclic ligands.

    PubMed

    Siddiqi, Zafar Ahmad; Arif, Razia; Kumar, Sarvendra; Khalid, Mohd

    2008-10-01

    The homo-bimetallic complexes of stoichiometry Fe2(L)ClO4(ClO4)2 where L are novel unsymmetrical [N10] (L1.2HClO4) and [N12] (L2.2HClO4) macrocyclic ligands, have been prepared. The ligands were obtained from an in situ capping reaction of the reactive substrate, N,N'-bis(N-ethylaniline)hydrazine-1,2-diimine with a mixture of aniline or 1,3-diaminopropane and HCHO in presence of HClO4. The compounds have been characterized by elemental analyses, conductometric, IR, FAB-mass and electronic spectral studies. IR data of complexes suggest coordination from unsymmetrical aza sites as a tridentate (N,N,N) or tetradentate (N,N,N,N) ligand. mu(eff) values of the complexes suggest presence of antiferromagnetically coupled (Fe3+-Fe3+=S5/2-S5/2) spin exchange. Mössbauer parameters of the complexes support (+/-3/2)-->(+/-1/2) nuclear transition in high-spin configurations of Fe(III) nuclei of the homo-bimetallic complexes with the presence of Kramer's double degeneracy.

  18. Synthesis, spectroscopic, and antibacterial activity of tetraazamacrocyclic complexes of trivalent chromium, manganese, and iron.

    PubMed

    Singh, D P; Malik, Vandna; Kumar, Ramesh; Singh, Jitender

    2009-10-01

    A new series of macrocyclic complexes of type [M(TML)X]X(2), where M = Cr(III), Mn(III), or Fe(III), TML is tetradentate macrocyclic ligand, and X = Cl(-), NO(3)(-), CH(3)COO(-) for Cr(III), Fe(III) and X = CH(3)COO(-) for Mn (III), has been synthesized by condensation of benzil and succinyldihydrazide in the presence of metal salt. The complexes have been so formulated due to the 1:2 electrolytic nature of these complexes as shown by conductivity measurements. The complexes have been characterized with the help of various physicochemical techniques such as elemental analysis, molar conductance, electronic and infrared spectral studies, and magnetic susceptibility. On the basis of these studies, a five-coordinate distorted square pyramidal geometry, in which two nitrogens and two carbonyl oxygen atoms are suitably placed for coordination toward the metal ion, has been proposed for all the complexes. The complexes have been tested for their in vitro antibacterial activity. Some of the complexes show remarkable antibacterial activities against some selected bacterial strains. The minimum inhibitory concentrations shown by these complexes have been compared with those shown by some standard antibiotics such as linezolid and cefaclor.

  19. THE EFFECT OF PRESSURE ON THE OXIDATION STATE OF IRON, IV. THIOCYANATE AND ISOTHIOCYANATE LIGANDS*

    PubMed Central

    Fung, S. C.; Drickamer, H. G.

    1969-01-01

    The effect of pressure on the Mössbauer resonance spectra of Fe(III) with thiocyanate (M-SCN) and isothiocyanate (M-NCS) ligands has been studied. Fe(NCS)3·6H2O, which has the isothiocyanate structure, reduces with increasing pressure, reversibly, and with a pressure dependence for the conversion very similar to that shown by a wide variety of ionic ferric compounds. K3Fe(SCN)6 has the thiocyanate structure. At low pressures, it exhibits a significantly larger reduction than the Fe(NCS)3. With increasing pressure the thiocyanate complexes isomerize, each complex apparently exhibiting about the same degree of conversion at a given pressure. At 150 kb the isomerization is essentially complete. The reduction of the Fe(III) to Fe(II) is reversible but the isomerization is not, and the sample, when powdered and reloaded in the high-pressure cell, exhibits the isomer shift, quadrupole splitting, and Fe(III) to Fe(II) conversion characteristic of an isothiocyanate. Heating the thiocyanate to 110°C at 5 kb yields a mixture of thiocyanate and isothiocyanate that converts with pressure completely to the isothiocyanate. PMID:16591728

  20. A novel detection approach based on chromophore-decolorizing with free radical and application to photometric determination of copper with acid chrome dark blue.

    PubMed

    Gao, Hong-Wen; Chen, Fang-Fang; Chen, Ling; Zeng, Teng; Pan, Lu-Ting; Li, Jian-Hua; Luo, Hua-Fei

    2007-03-21

    A novel detection approach named chromophore-decolorizing with free radicals is developed for determination of trace heavy metal. The hydroxyl radicals (HO) generated from Fe(III) and hydrogen peroxide will oxidize the free chromophore into almost colorless products. The copper-acid chrome dark blue (ACDB) complexation was investigated at pH 5.07. In the presence of Fe(III) and hydrogen peroxide, the excess ACDB was decolorized in the Cu-ACDB reaction solution, and the final solution contained only one color compound, the Cu-ACDB complex. After oxidation of free hydroxyl radicals, the complexation becomes sensitive and selective and it has been used for the quantitation of trace amounts of Cu(II) dissolved in natural water. Beer's law is obeyed in the range from 0 to 0.500 microg mL(-1) Cu(II) and the limit of detection is only 6 microg L(-1) Cu(II). Besides, the Cu-ACDB complex formed was characterized.

  1. Sorption of arsenic to biogenic iron (oxyhydr)oxides produced in circumneutral environments

    NASA Astrophysics Data System (ADS)

    Sowers, Tyler D.; Harrington, James M.; Polizzotto, Matthew L.; Duckworth, Owen W.

    2017-02-01

    Arsenic (As) is a widespread and problematic pollutant that can be derived from natural or anthropogenic sources. Iron (oxyhydr)oxides readily sorb As and thus play critical roles in As cycling in terrestrial environments; however, little is known about the affinity and mechanism of As sorption by biogenic iron (oxyhydr)oxides formed in circumneutral environments. To investigate this, we conducted sorption isotherm and kinetics experiments to compare As(V) and As(III) sorption to synthetic 2-line ferrihydrite and iron biominerals harvested from the hyporheic zone of an uncontaminated creek. Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify both As(V) and As(III), and X-ray absorption spectroscopy (XAS) was utilized to obtain As and Fe K-edge spectra for As(V) and As(III) sorbed to environmentally collected and laboratory produced Fe(III) minerals. All environmental Fe(III) biominerals were determined to be structurally similar to 2-line ferrihydrite. However, environmental Fe(III) biominerals have a surface area normalized affinity for As(V) and for As(III) that is greater than or equivalent to synthetic 2-line ferrihydrite. Whereas the extent of sorption was similar for As(III) on all minerals, As(V) sorption to environmental Fe(III) biominerals was approximately three times higher than what was observed for synthetic 2-line ferrihydrite. Structural modeling of EXAFS spectra revealed that the same surface complexation structure was formed by As(V) and by As(III) on environmental Fe(III) biominerals and ferrihydrite. These results suggest that, despite similarities in binding mechanisms, Fe(III) biominerals may be more reactive sorbents that synthetic surrogates often used to model environmental reactivity.

  2. The Complex Conductivity Signature of Geobacter Species in Geological Media

    NASA Astrophysics Data System (ADS)

    Brown, I.; Atekwana, E. A.; Sarkisova, S.; Achang, M.

    2013-12-01

    The Complex Conductivity (CC) technique is a promising biogeophysical approach for sensing microbially-induced changes in geological media because of its low-invasive character and sufficient sensitivity to enhanced microbial activity in the near subsurface. Geobacter species have been shown to play important roles in the bioremediation of groundwater contaminated with petroleum and landfill leachate. This capability is based on the ability of Geobacter species to reduce Fe(III) by transferring of electrons from the reduced equivalents to Fe(III) rich minerals through respiration chain and special metallic-like conductors - pili. Only the cultivation of Geobacter species on Fe(III) oxides specifically express pili biosynthesis. Moreover, mutants that cannot produce pili are unable to reduce Fe(III) oxides. However, little is known about the contribution of these molecular conductors (nanowires) to the generation of complex conductivity signatures in geological media. Here, we present the results about the modulation of CC signatures in geological media by Geobacter sulfurreducens (G.s.). Cultures of wild strain G.s. and its pilA(-) mutant were anaerobically cultivated in the presence of the pair of such donors and acceptors of electrons: acetate - fumarate, and acetate - magnetite under anaerobic conditions. Each culture was injected in CC sample holders filled either with N2-CO2 mix (planktonic variant) or with this gases mix and glass beads, d=1 mm, (porous medium variant). Both strains of G.s. proliferated well in a medium supplemented with acetate-fumarate. However, pilA(-) mutant did not multiply in a medium supplemented with ox-red pair yeast extract - magnetite. This observation confirmed that only wild pilA(+) strain is capable of the dissimilatory reduction of Fe(III) within magnetite molecule. The measurement of CC responses from planktonic culture of G.s. wild strain grown with acetate-fumarate did not show linear correlation with their magnitudes but were substantially different from CC responses in sterile medium and pilA(-) mutant planktonic culture. Complex conductivity responses in planktonic cultures of both pilA(+) and pilA(-) strains grown with acetate-fumarate pair were significantly different from magnitudes of φ and σ' in a sterile medium. No notable difference between CC signatures from planktonic cultures of both pilA(+) and pilA(-) strains grown with acetate-fumarate was found. This result has been anticipated because the cultivation of G.s. with ox-red pair acetate-fumarate does not induce the pili biosynthesis. In contrast, the presence of the cells of G.s. pilA(+) strain grown with magnetite in both planktonic and porous media notable shifted to the right of the relaxation peaks of both φ and σ'. Our results taking together suggest that only Geobacter cells administrating Fe(III) dissimilatory reduction and possessing pili can modulate CC responses from subsurface porous media. More experiments and techniques, including different types of microscopy, will be conducted to confirm these observations.

  3. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal potomac river.

    PubMed

    Lovley, D R; Phillips, E J

    1986-10-01

    The distribution of Fe(III), its availability for microbial reduction, and factors controlling Fe(III) availability were investigated in sediments from a freshwater site in the Potomac River Estuary. Fe(III) reduction in sediments incubated under anaerobic conditions and depth profiles of oxalate-extractable Fe(III) indicated that Fe(III) reduction was limited to depths of 4 cm or less, with the most intense Fe(III) reduction in the top 1 cm. In incubations of the upper 4 cm of the sediments, Fe(III) reduction was as important as methane production as a pathway for anaerobic electron flow because of the high rates of Fe(III) reduction in the 0- to 0.5-cm interval. Most of the oxalate-extractable Fe(III) in the sediments was not reduced and persisted to a depth of at least 20 cm. The incomplete reduction was not the result of a lack of suitable electron donors. The oxalate-extractable Fe(III) that was preserved in the sediments was considered to be in a form other than amorphous Fe(III) oxyhydroxide, since synthetic amorphous Fe(III) oxyhydroxide, amorphous Fe(III) oxyhydroxide adsorbed onto clay, and amorphous Fe(III) oxyhydroxide saturated with adsorbed phosphate or fulvic acids were all readily reduced. Fe(3)O(4) and the mixed Fe(III)-Fe(II) compound(s) that were produced during the reduction of amorphous Fe(III) oxyhydroxide in an enrichment culture were oxalate extractable but were not reduced, suggesting that mixed Fe(III)-Fe(II) compounds might account for the persistence of oxalate-extractable Fe(III) in the sediments. The availability of microbially reducible Fe(III) in surficial sediments demonstrates that microbial Fe(III) reduction can be important to organic matter decomposition and iron geochemistry. However, the overall extent of microbial Fe(III) reduction is governed by the inability of microorganisms to reduce most of the Fe(III) in the sediment.

  4. Measurement of the ferric diffusion coefficient in agarose and gelatine gels by utilization of the evolution of a radiation induced edge as reflected in relaxation rate images.

    PubMed

    Pedersen, T V; Olsen, D R; Skretting, A

    1997-08-01

    A method has been developed to determine the diffusion coefficients of ferric ions in ferrous sulphate doped gels. A radiation induced edge was created in the gel, and two spin-echo sequences were used to acquire a pair of images of the gel at different points of time. For each of these image pairs, a longitudinal relaxation rate image was derived. From profiles through these images, the standard deviations of the Gaussian functions that characterize diffusion were determined. These data provided the basis for the determination of the ferric diffusion coefficients by two different methods. Simulations indicate that the use of single spin-echo images in this procedure may in some cases lead to a significant underestimation of the diffusion coefficient. The technique was applied to different agarose and gelatine gels that were prepared, irradiated and imaged simultaneously. The results indicate that the diffusion coefficient is lower in a gelatine gel than in an agarose gel. Addition of xylenol orange to a gelatine gel lowers the diffusion coefficient from 1.45 to 0.81 mm2 h-1, at the cost of significantly lower Rl sensitivity. The addition of benzoic acid to the latter gel did not increase the Rl sensitivity.

  5. Effects of multilayered bags vs ethylvinyl-acetate bags on oxidation of parenteral nutrition.

    PubMed

    Balet, Antònia; Cardona, Daniel; Jané, Salvador; Molins-Pujol, Antoni M; Sánchez Quesada, José Luís; Gich, Ignasi; Mangues, Ma Antònia

    2004-01-01

    We evaluate the effects of multilayered bags vs ethylvinyl-acetate bags on peroxidate formation of various emulsions for all-in-one total parenteral nutrition solutions (TPN) during storage. Twenty-four parenteral nutritions were prepared with 4 commercial i.v. lipid emulsions (Soyacal 20%, Grifols; Intralipid 20%, Fresenius-Kabi; Lipofundina 20%, Braun; and Clinoleic 20%, Clintex) and 2 different bags (multilayered [ML] bag, Miramed; and 1 ethylvinyl-acetate [EVA] bag, Miramed). Each kind of TPN was prepared in triplicate. Samples were taken at 3 different times: immediately after preparation (time 0), after 6 days at 4 degrees C and 48 hours at 37 degrees C (time 1), and finally after a total of 14 days at 37 degrees C (time 2). Oxidation of TPN was evaluated by analysis of hydroperoxides by ferrous oxidation-xylenol orange (FOX) reactive, lipoperoxides by thiobarbituric acid reactive species (TBARS), alpha-tocopherol by high-performance liquid chromatography (HPLC), and ascorbic acid and dehydroascorbic acid by HPLC. TPN admixtures in ML bag showed less oxidation evaluated by peroxide determination using FOX than EVA bag. Lipoperoxides by TBARS did not show significant differences between 2 bags. Ascorbic acid and dehydroascorbic acid disappeared in EVA bags at time 1. No important differences were found in alpha-tocopherol content. Multilayered bags minimize oxidation.

  6. Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials

    NASA Astrophysics Data System (ADS)

    Bero, M. A.; Abukassem, I.

    2009-05-01

    Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.

  7. The importance of ligand speciation in environmental research: a case study.

    PubMed

    Sillanpää, M; Orama, M; Rämö, J; Oikari, A

    2001-02-21

    The speciations of EDTA and DTPA in process, waste and river waters are modelled and simulated, specifically to the mode of occurrence in the pulp and paper mill effluents and subsequently in receiving waters. Due to relatively short residence times in bleaching process and waste water treatment and slow exchange kinetics, it is expected that the thermodynamic equilibrium is not necessarily reached. Therefore, the initial speciation plays a key role. As such, the simulations have been extended to the process waters of the pulp and paper industry taking into account estimated average conditions. The results reveal that the main species are; Mn and Ca complexes of EDTA and DTPA in pulp mill process waters; Fe(III) and Mn complexes of EDTA and DTPA in waste waters; Fe(III) and Zn complexes of EDTA and DTPA in receiving waters. It is also shown how the increasing concentration of complexing agents effects the speciation. Alkaline earth metal chelation plays a significant role in the speciation of EDTA and DTPA when there is a noticeable molar excess of complexing agents compared with transition metals.

  8. Kinetic studies on the oxidation of oxyhemoglobin by biologically active iron thiosemicarbazone complexes: relevance to iron-chelator-induced methemoglobinemia.

    PubMed

    Basha, Maram T; Rodríguez, Carlos; Richardson, Des R; Martínez, Manuel; Bernhardt, Paul V

    2014-03-01

    The oxidation of oxyhemoglobin to methemoglobin has been found to be facilitated by low molecular weight iron(III) thiosemicarbazone complexes. This deleterious reaction, which produces hemoglobin protein units unable to bind dioxygen and occurs during the administration of iron chelators such as the well-known 3-aminopyridine-2-pyridinecarbaldehyde thiosemicarbazone (3-AP; Triapine), has been observed in the reaction with Fe(III) complexes of some members of the 3-AP structurally-related thiosemicarbazone ligands derived from di-2-pyridyl ketone (HDpxxT series). We have studied the kinetics of this oxidation reaction in vitro using human hemoglobin and found that the reaction proceeds with two distinct time-resolved steps. These have been associated with sequential oxidation of the two different oxyheme cofactors in the α and β protein chains. Unexpected steric and hydrogen-bonding effects on the Fe(III) complexes appear to be the responsible for the observed differences in the reaction rate across the series of HDpxxT ligand complexes used in this study.

  9. Tris[4-(dimethyl­amino)­pyridinium] hexa­kis­(thio­cyanato-κN)ferrate(III) monohydrate

    PubMed Central

    Wöhlert, Susanne; Jess, Inke; Näther, Christian

    2013-01-01

    In the title compound, (C7H11N2)3[Fe(NCS)6]·H2O, the FeIII cation is coordinated by six terminal N-bonded thio­cyanate anions into a discrete threefold negatively charged complex. Charge balance is achieved by three protonated 4-(dimethyl­amino)­pyridine cations. The asymmetric unit consists of one FeIII cation, six thio­cyanate anions, three 4-(dimethyl­amino)­pyridinium cations and one water mol­ecule, all of them located in general positions. PMID:23476331

  10. Amphorous hydrated Fe(III) sulfate: metastable product and bio-geochemical marker of iron oxidizing thiobacilli

    NASA Astrophysics Data System (ADS)

    Lazaroff, Norman; Jollie, John; Dugan, Patrick R.

    1998-07-01

    Chemolithotrophic iron oxidation by Thiobacillus ferrooxidans and other iron oxidizing thiobacilli produce an Fe(III) sulfato complex that polymerizes as x-ray amorphous filaments approximately 40 nm in diameter. The precursor complex in solutionis seen by ATR-FTIR spectroscopy to have a sulfate spectrum resembling the v(subscript 3) and v(subscript 1) vibrational modes of the precipitated polymer. Chemically similar precipitates prepared by oxidation of acid ferrous sulfate with hydrogen peroxide have a different micromorphology, higher iron/sulfur ratio and acid solubility than the bacterial product. They possess coalescing globular microstructures composed of compacted micro-fibrils. Scanning electron microscopy and diffuse reflectance FTIR show the formation of iron polymer on the surface of immobilized cells of T. ferrooxidans, oxidizing iron during the corrosion of steel. Although spatially separated form the steel coupons by a membrane filter, the cell walls become covered with tufts of amorphous hydrated Fe(III) sulfate. The metastable polymer is converted to crystalline goethite, lepidocrocite, and magnetite in that order, as the pH rises due to proton reduction at cathodic sites on the steel. The instability of the iron polymer to changes in pH is also evidenced by the loss of sulfate when washed with lithium hydroxide solution at pH 8. Under those conditions there is little change in micromorphology, but restoration of sulfate with sulfuric acid at pH 2.5, fails to re-establish the original chemical structure. Adding sulfate salts of appropriate cations to solutions of the Fe(III) sulfato complex or suspensions of its precipitated polymer in dilute sulfuric acid, result in dissociation of the metastable complex followed by crystallization of ferric ions and sulfate in jarosites. Jarosites and other derivatives of iron precipitation by iron oxidizing thiobacilli, form conspicuous deposits in areas of natural pyrite leaching. The role of iron oxidizing thiobacilli in pyrite leaching, biohydrometallurgy, acid mine drainage, and the cycle of iron and sulfur in nature, has been studied for nearly 50 years. The manifestation of those activities, so widespread on Earth, can be a clue for seeking evidence of life elsewhere.

  11. Formation, reactivity and aging of amorphous ferric oxides in the presence of model and membrane bioreactor derived organics.

    PubMed

    Bligh, Mark W; Maheshwari, Pradeep; David Waite, T

    2017-11-01

    Iron salts are routinely dosed in wastewater treatment as a means of achieving effluent phosphorous concentration goals. The iron oxides that result from addition of iron salts partake in various reactions, including reductive dissolution and phosphate adsorption. The reactivity of these oxides is controlled by the conditions of formation and the processes, such as aggregation, that lead to a reduction in accessible surface sites following formation. The presence of organic compounds is expected to significantly impact these processes in a number of ways. In this study, amorphous ferric oxide (AFO) reactivity and aging was investigated following the addition of ferric iron (Fe(III)) to three solution systems: two synthetic buffered systems, either containing no organic or containing alginate, and a supernatant system containing soluble microbial products (SMPs) sourced from a membrane bioreactor (MBR). Reactivity of the Fe(III) phases in these systems at various times (1-60 min) following Fe(III) addition was quantified by determining the rate constants for ascorbate-mediated reductive dissolution over short (5 min) and long (60 min) dissolution periods and for a range (0.5-10 mM) of ascorbate concentrations. AFO particle size was monitored using dynamic light scattering during the aging and dissolution periods. In the presence of alginate, AFO particles appeared to be stabilized against aggregation. However, aging in the alginate system was remarkably similar to the inorganic system where aging is associated with aggregation. An aging mechanism involving restructuring within the alginate-AFO assemblage was proposed. In the presence of SMPs, a greater diversity of Fe(III) phases was evident with both a small labile pool of organically complexed Fe(III) and a polydisperse population of stabilized AFO particles present. The prevalence of low molecular weight organic molecules facilitated stabilization of the Fe(III) oxyhydroxides formed but subsequent aging observed in the alginate system did not occur. The reactivity of the Fe(III) in the supernatant system was maintained with little loss in reactivity over at least 24 h. The capacity of SMPs to maintain high reactivity of AFO has important implications in a reactor where Fe(III) phases encounter alternating redox conditions due to sludge recirculation, creating a cycle of reductive dissolution, oxidation and precipitation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Fractionation of Fe isotopes during Fe(II) oxidation by a marine photoferrotroph is controlled by the formation of organic Fe-complexes and colloidal Fe fractions

    NASA Astrophysics Data System (ADS)

    Swanner, Elizabeth D.; Wu, Wenfang; Schoenberg, Ronny; Byrne, James; Michel, F. Marc; Pan, Yongxin; Kappler, Andreas

    2015-09-01

    Much interest exists in finding mineralogical, organic, morphological, or isotopic biosignatures for Fe(II)-oxidizing bacteria (FeOB) that are retained in Fe-rich sediments, which could indicate the activity of these organisms in Fe-rich seawater, more common in the Precambrian Era. To date, the effort to establish a clear Fe isotopic signature in Fe minerals produced by Fe(II)-oxidizing metabolisms has been thwarted by the large kinetic fractionation incurred as freshly oxidized aqueous Fe(III) rapidly precipitates as Fe(III) (oxyhydr)oxide minerals at near neutral pH. The Fe(III) (oxyhydr)oxide minerals resulting from abiotic Fe(II) oxidation are isotopically heavy compared to the Fe(II) precursor and are not clearly distinguishable from minerals formed by FeOB isotopically. However, in marine hydrothermal systems and Fe(II)-rich springs the minerals formed are often isotopically lighter than expected considering the fraction of Fe(II) that has been oxidized and experimentally-determined fractionation factors. We measured the Fe isotopic composition of aqueous Fe (Feaq) and the final Fe mineral (Feppt) produced in batch experiment using the marine Fe(II)-oxidizing phototroph Rhodovulum iodosum. The δ56Feaq data are best described by a kinetic fractionation model, while the evolution of δ56Feppt appears to be controlled by a separate fractionation process. We propose that soluble Fe(III), and Fe(II) and Fe(III) extracted from the Feppt may act as intermediates between Fe(II) oxidation and Fe(III) precipitation. Based on 57Fe Mössbauer spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and X-ray total scattering, we suggests these Fe phases, collectively Fe(II/III)interm, may consist of organic-ligand bound, sorbed, and/or colloidal Fe(II) and Fe(III) mineral phases that are isotopically lighter than the final Fe(III) mineral product. Similar intermediate phases, formed in response to organic carbon produced by FeOB and inorganic ligands (e.g., SiO44- or PO43-), may form in many natural Fe(II)-oxidizing environments. We propose that the formation of these intermediates is likely to occur in organic-rich systems, and thus may have controlled the ultimate isotopic composition of Fe minerals in systems where Fe(II) was being oxidized by or in the presence of microbes in Earth's past.

  13. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovley, D.R.; Phillips, E.J.P.

    1986-10-01

    The distribution of Fe(III), its availability for microbial reduction, and factors controlling Fe(III) availability were investigated in sediments from a freshwater site in the Potomac River Estuary. Fe(III) reduction in sediments incubated under anaerobic conditions and depth profiles of oxalate-extractable Fe(III) indicated that Fe(III) reduction was limited to depths of 4 cm or less, with the most intense Fe(III) reduction in the top 1 cm. In incubations of the upper 4 cm of the sediments, Fe(III) reduction was as important as methane production as a pathway for anaerobic electron flow because of the high rates of Fe(III) reduction in themore » 0- 0.5-cm interval. Most of the oxalate-extractable Fe(III) in the sediments was not reduced and persisted to a depth of at least 20 cm. The incomplete reduction was not the result of a lack of suitable electron donors. The oxalate-extractable Fe(III) that was preserved in the sediments was considered to be in a form other than amorphous Fe(III) oxyhydroxide, since synthetic amorphous Fe(III) oxyhydroxide, amorphous Fe(III) oxyhydroxide adsorbed onto clay, and amorphous Fe(III) oxyhydroxide saturated with adsorbed phosphate or fulvic acids were all readily reduced. Fe/sub 3/O/sub 4/ and the mixed Fe(III)-Fe(II) compound(s) that were produced during the reduction of amorphous Fe(III) oxyhydroxide in an enrichment culture were oxalate extractable but were not reduced, suggesting that mixed Fe(III)-Fe(II) compounds might account for the persistence of oxalate-extractable Fe(III) in the sediments.« less

  14. Electron Spin Relaxation Rates for High-Spin Fe(III) in Iron Transferrin Carbonate and Iron Transferrin Oxalate

    PubMed Central

    Gaffney, Betty Jean; Eaton, Gareth R.; Eaton*, Sandra S.

    2005-01-01

    To optimize simulations of CW EPR spectra for high-spin Fe(III) with zero-field splitting comparable to the EPR quantum, information is needed on the factors that contribute to the line shapes and line widths. Continuous wave electron paramagnetic resonance (EPR) spectra obtained for iron transferrin carbonate from 4 to 150 K and for iron transferrin oxalate from 4 to 100 K did not exhibit significant temperature dependence of the line shape, which suggested that the line shapes were not relaxation determined. To obtain direct information concerning the electron spin relaxation rates, electron spin echo and inversion recovery EPR were used to measure T1 and Tm for the high-spin Fe(III) in iron transferrin carbonate and iron transferrin oxalate between 5 and 20–30 K. For comparison with the data for the transferrin complexes, relaxation times were obtained for tris(oxalato)ferrate(III). The relaxation rates are similar for the three complexes and do not exhibit a strong dependence on position in the spectrum. Extrapolation of the observed temperature dependence of the relaxation rates to higher temperatures gives values consistent with the conclusion that the CW line shapes are not relaxation determined up to 150 K. PMID:16429607

  15. The long term tsunami impact: Evolution of iron speciation and major elements concentration in tsunami deposits from Thailand.

    PubMed

    Kozak, Lidia; Niedzielski, Przemyslaw

    2017-08-01

    The article describes the unique studies of the chemical composition changes of new geological object (tsunami deposits in south Thailand - Andaman Sea Coast) during four years (2005-2008) from the beginning of formation of it (deposition of tsunami transported material, 26 December 2004). The chemical composition of the acid leachable fraction of the tsunami deposits has been studied in the scope of concentration macrocompounds - concentration of calcium, magnesium, iron, manganese and iron speciation - the occurrence of Fe(II), Fe(III) and non-ionic iron species described as complexed iron (Fe complex). The changes of chemical composition and iron speciation in the acid leachable fraction of tsunami deposits have been observed with not clear tendencies of changes direction. For iron speciation changes the transformation of the Fe complex to Fe(III) has been recorded with no significant changes of the level of Fe(II). Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Magnetic interactions and magnetic anisotropy in exchange coupled 4f-3d systems: a case study of a heterodinuclear Ce3+-Fe3+ cyanide-bridged complex.

    PubMed

    Sorace, Lorenzo; Sangregorio, Claudio; Figuerola, Albert; Benelli, Cristiano; Gatteschi, Dante

    2009-01-01

    We report here a detailed single-crystal EPR and magnetic study of a homologous series of complexes of the type Ln-M (Ln = La(III), Ce(III); M = Fe(III), Co(III)). We were able to obtain a detailed picture of the low-lying levels of Ce(III) and Fe(III) centres through the combined use of single-crystal EPR and magnetic susceptibility data. We show that classical ligand field theory can be of great help in rationalising the energies of the low-lying levels of both the transition-metal and rare-earth ions. The combined analysis of single-crystal EPR and magnetic data of the coupled system Ce-Fe confirmed the great complexity of the interactions involving rare-earth elements. With little uncertainty, it turned out clearly that the description of the interaction involving the lowest lying spin levels requires the introduction of the isotropic, anisotropic and antisymmetric terms.

  17. Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats.

    PubMed

    Jay, Zackary J; Beam, Jacob P; Dlakić, Mensur; Rusch, Douglas B; Kozubal, Mark A; Inskeep, William P

    2018-05-14

    The discovery of archaeal lineages is critical to our understanding of the universal tree of life and evolutionary history of the Earth. Geochemically diverse thermal environments in Yellowstone National Park provide unprecedented opportunities for studying archaea in habitats that may represent analogues of early Earth. Here, we report the discovery and characterization of a phylum-level archaeal lineage proposed and herein referred to as the 'Marsarchaeota', after the red planet. The Marsarchaeota contains at least two major subgroups prevalent in acidic, microaerobic geothermal Fe(III) oxide microbial mats across a temperature range from ~50-80 °C. Metagenomics, single-cell sequencing, enrichment culturing and in situ transcriptional analyses reveal their biogeochemical role as facultative aerobic chemoorganotrophs that may also mediate the reduction of Fe(III). Phylogenomic analyses of replicate assemblies corresponding to two groups of Marsarchaeota indicate that they branch between the Crenarchaeota and all other major archaeal lineages. Transcriptomic analyses of several Fe(III) oxide mat communities reveal that these organisms were actively transcribing two different terminal oxidase complexes in situ and genes comprising an F 420 -dependent butanal catabolism. The broad distribution of Marsarchaeota in geothermal, microaerobic Fe(III) oxide mats suggests that similar habitat types probably played an important role in the evolution of archaea.

  18. A Simple Small Size and Low Cost Sensor Based on Surface Plasmon Resonance for Selective Detection of Fe(III)

    PubMed Central

    Cennamo, Nunzio; Alberti, Giancarla; Pesavento, Maria; D'Agostino, Girolamo; Quattrini, Federico; Biesuz, Raffaela; Zeni, Luigi

    2014-01-01

    A simple, small size, and low cost sensor based on a Deferoxamine Self Assembled Monolayer (DFO-SAM) and Surface Plasmon Resonance (SPR) transduction, in connection with a Plastic Optical Fiber (POF), has been developed for the selective detection of Fe(III). DFO-SAM sensors based on appropriate electrochemical techniques can be frequently found in the scientific literature. In this work, we present the first example of a DFO-SAM sensor based on SPR in an optical fiber. The SPR sensing platform was realized by removing the cladding of a plastic optical fiber along half the circumference, spin coating a buffer of Microposit S1813 photoresist on the exposed core, and finally sputtering a thin gold film. The hydroxamate siderophore deferoxamine (DFO), having high binding affinity for Fe(III), is then used in its immobilized form, as self-assembled monolayer on the gold layer surface of the POF sensor. The results showed that the DFO-SAM-POF-sensor was able to sense the formation of the Fe(III)/DFO complex in the range of concentrations between 1 μm and 50 μm with a linearity range from 0 to 30 μm of Fe(III). The selectivity of the sensor was also proved by interference tests. PMID:24608007

  19. A simple small size and low cost sensor based on surface plasmon resonance for selective detection of Fe(III).

    PubMed

    Cennamo, Nunzio; Alberti, Giancarla; Pesavento, Maria; D'Agostino, Girolamo; Quattrini, Federico; Biesuz, Raffaela; Zeni, Luigi

    2014-03-07

    A simple, small size, and low cost sensor based on a Deferoxamine Self Assembled Monolayer (DFO-SAM) and Surface Plasmon Resonance (SPR) transduction, in connection with a Plastic Optical Fiber (POF), has been developed for the selective detection of Fe(III). DFO-SAM sensors based on appropriate electrochemical techniques can be frequently found in the scientific literature. In this work, we present the first example of a DFO-SAM sensor based on SPR in an optical fiber. The SPR sensing platform was realized by removing the cladding of a plastic optical fiber along half the circumference, spin coating a buffer of Microposit S1813 photoresist on the exposed core, and finally sputtering a thin gold film. The hydroxamate siderophore deferoxamine (DFO), having high binding affinity for Fe(III), is then used in its immobilized form, as self-assembled monolayer on the gold layer surface of the POF sensor. The results showed that the DFO-SAM-POF-sensor was able to sense the formation of the Fe(III)/DFO complex in the range of concentrations between 1 μm and 50 μm with a linearity range from 0 to 30 μm of Fe(III). The selectivity of the sensor was also proved by interference tests.

  20. Mechanisms for Fe(III) oxide reduction in sedimentary environments

    USGS Publications Warehouse

    Nevin, Kelly P.; Lovely, Derek R.

    2002-01-01

    Although it was previously considered that Fe(III)-reducing microorganisms must come into direct contact with Fe(III) oxides in order to reduce them, recent studies have suggested that electron-shuttling compounds and/or Fe(III) chelators, either naturally present or produced by the Fe(III)-reducing microorganisms themselves, may alleviate the need for the Fe(III) reducers to establish direct contact with Fe(III) oxides. Studies with Shewanella alga strain BrY and Fe(III) oxides sequestered within microporous beads demonstrated for the first time that this organism releases a compound(s) that permits electron transfer to Fe(III) oxides which the organism cannot directly contact. Furthermore, as much as 450 w M dissolved Fe(III) was detected in cultures of S. alga growing in Fe(III) oxide medium, suggesting that this organism releases compounds that can solublize Fe(III) from Fe(III) oxide. These results contrast with previous studies, which demonstrated that Geobacter metallireducens does not produce electron-shuttles or Fe(III) chelators. Some freshwater aquatic sediments and groundwaters contained compounds, which could act as electron shuttles by accepting electrons from G. metallireducens and then transferring the electrons to Fe(III). However, other samples lacked significant electron-shuttling capacity. Spectroscopic studies indicated that the electron-shuttling capacity of the waters was not only associated with the presence of humic substances, but water extracts of walnut, oak, and maple leaves contained electron-shuttling compounds did not appear to be humic substances. Porewater from a freshwater aquatic sediment and groundwater from a petroleum-contaminated aquifer contained dissolved Fe(III) (4-16 w M), suggesting that soluble Fe(III) may be available as an electron acceptor in some sedimentary environments. These results demonstrate that in order to accurately model the mechanisms for Fe(III) reduction in sedimentary environments it will be necessary to have information on the concentrations of electron-shuttling compounds and possibly Fe(III) ligands. Furthermore, as it is now apparent that different genera of Fe(III)-reducing microorganisms may reduce Fe(III) via different mechanisms, knowledge of which Fe(III)-reducing microorganisms predominate in the environment of interest is essential in order to model this process appropriately.

  1. Properties of Orange-Pupa-Inducing Factor (OPIF) in the swallowtail butterfly, Papilio xuthus L.

    PubMed

    Yamanaka, Akira; Adachi, Miwa; Imai, Hiroshi; Uchiyama, Terumasa; Inoue, Moeko; Islam, A T M Fayezul; Kitazawa, Chisato; Endo, Katsuhiko

    2006-03-01

    Diapause pupae of the swallowtail butterfly Papilio xuthus L. exhibit diapause-green, orange and brownish-orange color polymorphism. Development of orange pupae involves a neuroendocrine factor inducing orange pupa (Orange-Pupa-Inducing Factor, OPIF), which is secreted from the head-thoracic region during late pharate pupal stages, in particular from the ganglia of short-day animals located posteriorly from the second thoracic ganglion2 (TG2). This report describes certain properties of OPIF using bioassays involving ligated abdomens of short-day pharate pupae. Localization of OPIF in the central nervous system of short-day larvae indicated that it was present predominantly in TG2, thoracic ganglion3 (TG3) and abdominal ganglion1 (AG1) complexes. OPIF activity in TG(2,3)-AG1 complexes was over two times higher than in the more posteriorely located ganglia. The developmental profile of OPIF in last instar short-day larvae revealed that OPIF activity in larval ganglia posterior to TG2 became gradually higher as larval growth proceeded, suggesting that OPIF might be accumulated in TG(2,3)-AG(1-7) complexes as larvae prepare for pupal molting. Furthermore, ligated abdomens of short-day larvae developed into pupae of an orange type when a 2% NaCl extract containing OPIF prepared from TG(2,3)-AG(1-7) complexes of long-day larvae was injected into ligated abdomens of short-day pharate pupae, indicating that OPIF is also present in long-day larvae. Additionally, a biochemical investigation using gel filtration chromatography showed that the molecular weight of OPIF was about 10 kDa.

  2. Enzymatic iron and uranium reduction by sulfate-reducing bacteria

    USGS Publications Warehouse

    Lovley, D.R.; Roden, E.E.; Phillips, E.J.P.; Woodward, J.C.

    1993-01-01

    The potential for sulfate-reducing bacteria (SRB) to enzymatically reduce Fe(III) and U(VI) was investigated. Five species of Desulfovibrio as well as Desulfobacterium autotrophicum and Desulfobulbus propionicus reduced Fe(III) chelated with nitrilotriacetic acid as well as insoluble Fe(III) oxide. Fe(III) oxide reduction resulted in the accumulation of magnetite and siderite. Desulfobacter postgatei reduced the chelated Fe(III) but not Fe(III) oxide. Desulfobacter curvatus, Desulfomonile tiedjei, and Desulfotomaculum acetoxidans did not reduce Fe(III). Only Desulfovibrio species reduced U(VI). U(VI) reduction resulted in the precipitation of uraninite. None of the SRB that reduced Fe(III) or U(VI) appeared to conserve enough energy to support growth from this reaction. However, Desulfovibrio desulfuricans metabolized H2 down to lower concentrations with Fe(III) or U(VI) as the electron acceptor than with sulfate, suggesting that these metals may be preferred electron acceptors at the low H2 concentrations present in most marine sediments. Molybdate did not inhibit Fe(III) reduction by D. desulfuricans. This indicates that the inability of molybdate to inhibit Fe(III) reduction in marine sediments does not rule out the possibility that SRB are important catalysts for Fe(III) reduction. The results demonstrate that although SRB were previously considered to reduce Fe(III) and U(VI) indirectly through the production of sulfide, they may also directly reduce Fe(III) and U(VI) through enzymatic mechanisms. These findings, as well as our recent discovery that the So-reducing microorganism Desulfuromonas acetoxidans can reduce Fe(III), demonstrate that there are close links between the microbial sulfur, iron, and uranium cycles in anaerobic marine sediments. ?? 1993.

  3. Octa- and hexametallic iron(III)-potassium phosphonate cages.

    PubMed

    Gopal, Kandasamy; Tuna, Floriana; Winpenny, Richard E P

    2011-12-07

    Two new iron(III)-potassium phosphonate cage complexes with {K(2)Fe(6)} and {K(2)Fe(4)} cores are reported. Magnetic studies reveal antiferromagnetic interactions between the Fe(III) centres occur in these cages.

  4. Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.; Lonergan, D.J.

    1991-01-01

    The potential for nonenzymatic reduction of Fe(III) either by organic compounds or by the development of a low redox potential during microbial metabolism was compared with direct, enzymatic Fe(III) reduction by Fe(III)-reducing microorganisms. At circumneutral pH, very few organic compounds nonenzymatically reduced Fe(III). In contrast, in the presence of the appropriate Fe(IH)-reducing microorganisms, most of the organic compounds examined could be completely oxidized to carbon dioxide with the reduction of Fe(III). Even for those organic compounds that could nonenzymatically reduce Fe(III), microbial Fe(III) reduction was much more extensive. The development of a low redox potential during microbial fermentation did not result in nonenzymatic Fe(III) reduction. Model organic compounds were readily oxidized in Fe(III)-reducing aquifer sediments, but not in sterilized sediments. These results suggest that microorganisms enzymatically catalyze most of the Fe(III) reduction in the Fe(III) reduction zone of aquatic sediments and aquifers.

  5. Sorption of Ferrioxime B to Synthetic and Biogenic layer type Mn Oxides

    NASA Astrophysics Data System (ADS)

    Duckworth, O. W.; Bargar, J. R.; Sposito, G.

    2005-12-01

    Siderophores are biogenic chelating agents produced in terrestrial and marine environments to increase the bioavailablity of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but no information appears to be available about the effect of solid-phase Mn(IV). To probe the effect of solid-phase Mn(IV), we studied the sorption reaction of ferrioxamine B [principally the species, Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore, desferrioxamine B (DFOB)] with two synthetic birnessites [layer type Mn(IV) oxides] and a biogenic birnessite produced by Pseudomonas putida MnB1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ over the pH range between 5 and 9. After 72 h equilibration time at pH 8, the sorption behavior for the synthetic birnessites could be accurately described by a Langmuir isotherm; for the biogenic oxide, a Freundlich isotherm was best utilized to model the sorption data. To study the molecular nature of the interaction between the Fe(III)HDFOB+ complex and the oxide surface, Fe K-edge extended X-Ray absorption fine structure (EXAFS) spectroscopy was employed. Analysis of the X-ray absorption spectra indicated that Fe(III) associated with the Mn(IV) oxides is not complexed with DFOB, but instead is incorporated into the mineral structure, thus implying that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that manganese oxides, including biominerals, may strongly sequester iron from soluble ferric complexes and thus may play a significant role in the biogeochemical cycling of iron.

  6. Distribution and potential ecological risk of 50 phenolic compounds in three rivers in Tianjin, China.

    PubMed

    Zhong, Wenjue; Wang, Donghong; Wang, Zijian

    2018-04-01

    Phenolic compounds widely exist in the surface water of many countries; however, few studies have simultaneously analyzed and evaluated broad-spectrum phenolic compounds in various components of the water environment. Therefore this study analyzed the distribution and potential ecological risk of 50 phenolic compounds in the surface water, sediment and suspended particulate matter of three important rivers in Tianjin, the main heavy industry city with high pollution in China. The qualitative results show that phenolic pollution existed extensively in the three rivers and the kinds of phenolic compounds in the water were relatively higher than in both sediment and suspended particulate matter. The quantitative results show that the phenolic pollution in the wet-season samples was serious than dry-season samples. Meanwhile, total concentrations of phenolic compounds in three components from the Dagu Drainage River (DDR) were all much higher than those in the Beitang Drainage River (BDR) and Yongdingxin River (YDXR). The highest total concentrations of phenolic compounds in three components all appeared in wet-season samples in DDR, and the highest total concentration was 1354 μg/L in surface water, 719 μg/kg dw in suspended particulate matter and 2937 μg/kg dw in sediment, respectively. The ecological risk of phenolic compounds in surface water was evaluated using the quotient method, and phenolic compounds with risk quotient (RQ) > 1 (RQ > 0.3 for YDXR) were identified as priority pollutants. Five kinds of phenolic compounds were identified as priority phenolic compounds in BDR, and the order of risk was 2-cresol > 2,4-xylenol > 2-sec-butylphenol > 2-naphthol > 3-cresol. Six kinds of phenolic compounds were identified as priority phenolic compounds in DDR, and the order of risk was 2-naphthol > p-chloro-m-xylenol > 4-cresol > 3-cresol > 2,4-xylenol > 2,3,6-Trimethylphenol. In YDXR, only phenol, 2-naphthol and 2,4-xylenol were identified as priority phenolic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenjie; Zhang, Honghu; Feng, Shuren

    Surface-sensitive X-ray scattering and spectroscopy techniques reveal significant adsorption of iron ions and iron-hydroxide (Fe(III)) complexes to a charge-neutral zwitterionic template of phosphatidylcholine (PC). The PC template is formed by a Langmuir monolayer of dipalmitoyl-PC (DPPC) that is spread on the surface of 2 to 40 μM FeCl 3 solutions at physiological levels of KCl (100 mM). At 40 μM of Fe(III) as many as ~3 iron atoms are associated with each PC group. Grazing incidence X-ray diffraction measurements indicate a significant disruption in the in-plane ordering of DPPC molecules upon iron adsorption. The binding of iron-hydroxide complexes to amore » neutral PC surface is yet another example of nonelectrostatic, presumably covalent bonding to a charge-neutral organic template. Furthermore, the strong binding and the disruption of in-plane lipid structure has biological implications on the integrity of PC-derived lipid membranes, including those based on sphingomyelin.« less

  8. Fe(III) and S0 reduction by Pelobacter carbinolicus

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.; Lonergan, D.J.; Widma, P.K.

    1995-01-01

    There is a close phylogenetic relationship between Pelobacter species and members of the genera Desulfuromonas and Geobacter, and yet there has been a perplexing lack of physiological similarities. Pelobacter species have been considered to have a fermentative metabolism. In contrast, Desulfuromonas and Geobacter species have a respiratory metabolism with Fe(III) serving as the common terminal electron acceptor in all species. However, the ability of Pelobacter species to reduce Fe(III) had not been previously evaluated. When a culture of Pelobacter carbinolicus that had grown by fermentation of 2,3- butanediol was inoculated into the same medium supplemented with Fe(III), the Fe(III) was reduced. There was less accumulation of ethanol and more production of acetate in the presence of Fe(III). P. carbinolicus grew with ethanol as the sole electron donor and Fe(III) as the sole electron acceptor. Ethanol was metabolized to acetate. Growth was also possible on Fe(III) with the oxidation of propanol to propionate or butanol to butyrate if acetate was provided as a carbon source. P. carbinolicus appears capable of conserving energy to support growth from Fe(III) respiration as it also grew with H2 or formate as the electron donor and Fe(III) as the electron acceptor. Once adapted to Fe(III) reduction, P. carbinolicus could also grow on ethanol or H2 with S0 as the electron acceptor. P. carbinolicus did not contain detectable concentrations of the c-type cytochromes that previous studies have suggested are involved in electron transport to Fe(III) in other organisms that conserve energy to support growth from Fe(III) reduction. These results demonstrate that P. carbinolicus may survive in some sediments as an Fe(III) or S0 reducer rather than growing fermentatively on rare substrates or syntrophically as an ethanol-oxidizing acetogen. These studies also suggest that the ability to use Fe(III) as a terminal electron acceptor may be an important unifying feature of the Geobacter-Desulfuromonas- Pelobacter branch of the delta Proteobacteria.

  9. High-density PhyloChip profiling of stimulated aquifer microbial communities reveals a complex response to acetate amendment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handley, Kim M.; Wrighton, Kelly C.; Piceno, Yvette M.

    2012-04-13

    There is increasing interest in harnessing the functional capacities of indigenous microbial communities to transform and remediate a wide range of environmental contaminants. Information about which community members respond to stimulation can guide the interpretation and development of remediation approaches. To comprehensively determine community membership and abundance patterns among a suite of samples associated with uranium bioremediation experiments we employed a high-density microarray (PhyloChip). Samples were unstimulated, naturally reducing, or collected during Fe(III) (early) and sulfate reduction (late biostimulation) from an acetate re-amended/amended aquifer in Rifle, Colorado, and from laboratory experiments using field-collected materials. Deep community sampling with PhyloChip identifiedmore » hundreds-to-thousands of operational taxonomic units (OTUs) present during amendment, and revealed close similarity among highly enriched taxa from drill-core and groundwater well-deployed column sediment. Overall, phylogenetic data suggested stimulated community membership was most affected by a carryover effect between annual stimulation events. Nevertheless, OTUs within the Fe(III)- and sulfate-reducing lineages, Desulfuromonadales and Desulfobacterales, were repeatedly stimulated. Less consistent, co-enriched taxa represented additional lineages associated with Fe(III) and sulfate reduction (for example, Desulfovibrionales; Syntrophobacterales; Peptococcaceae) and autotrophic sulfur oxidation (Sulfurovum; Campylobacterales). These data imply complex membership among highly stimulated taxa, and by inference biogeochemical responses to acetate, a non-fermentable substrate.« less

  10. Cation-induced coagulation of aquatic plant-derived dissolved organic matter: Investigation by EEM-PARAFAC and FT-IR spectroscopy.

    PubMed

    Liu, Shasha; Zhu, Yuanrong; Liu, Leizhen; He, Zhongqi; Giesy, John P; Bai, Yingchen; Sun, Fuhong; Wu, Fengchang

    2018-03-01

    Complexation and coagulation of plant-derived dissolved organic matter (DOM) by metal cations are important biogeochemical processes of organic matter in aquatic systems. Thus, coagulation and fractionation of DOM derived from aquatic plants by Ca(II), Al(III), and Fe(III) ions were investigated. Metal ion-induced removal of DOM was determined by analyzing dissolved organic carbon in supernatants after addition of these metal cations individually. After additions of metal ions, both dissolved and coagulated organic fractions were characterized by use of fluorescence excitation emission matrix-parallel factor (EEM-PARAFAC) analysis and Fourier transform infrared (FT-IR) spectroscopy. Addition of Ca(II), Fe(III) or Al(III) resulted in net removal of aquatic plant-derived DOM. Efficiencies of removal of DOM by Fe(III) or Al(III) were greater than that by Ca(II). However, capacities to remove plant-derived DOM by the three metals were less than which had been previously reported for humic materials. Molecular and structural features of plant-derived DOM fractions in associations with metal cations were characterized by changes in fluorescent components and infrared absorption peaks. Both aromatic and carboxylic-like organic matters could be removed by Ca(II), Al(III) or Fe(III) ions. Whereas organic matters containing amides were preferentially removed by Ca(II), and phenolic materials were selectively removed by Fe(III) or Al(III). These observations indicated that plant-derived DOM might have a long-lasting effect on water quality and organisms due to its poor coagulation with metal cations in aquatic ecosystems. Plant-derived DOM is of different character than natural organic matter and it is not advisable to attempt removal through addition of metal salts during treatment of sewage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Mechanisms for chelator stimulation of microbial Fe(III) -oxide reduction

    USGS Publications Warehouse

    Lovley, D.R.; Woodward, J.C.

    1996-01-01

    The mechanisms by which nitrilotriacetic acid (NTA) stimulated Fe(III) reduction in sediments from a petroleum-contaminated aquifer were investigated in order to gain insight into how added Fe(III) chelators stimulate the activity of hydrocarbon-degrading, Fe(III)-reducing microorganisms in these sediments, and how naturally occurring Fe(III) chelators might promote Fe(III) reduction in aquatic sediments. NTA solubilized Fe(III) from the aquifer sediments. NTA stimulation of microbial Fe(III) reduction did not appear to be the result of making calcium, magnesium, potassium, or trace metals more available to the microorganisms. Stimulation of Fe(III) reduction could not be attributed to NTA serving as a source of carbon or fixed nitrogen for Fe(III)-reducing bacteria as NTA was not degraded in the sediments. Studies with the Fe(III)-reducing microorganism, Geobacter metallireducens, and pure Fe(III)-oxide forms, demonstrated that NTA stimulated the reduction of a variety of Fe(III) forms, including highly crystalline Fe(III)-oxides such as goethite and hematite. The results suggest that NTA solubilization of insoluble Fe(III)-oxide is an important mechanism for the stimulation of Fe(III) reduction by NTA in aquifer sediments.

  12. Microbial reduction of U(VI) under alkaline conditions: implications for radioactive waste geodisposal.

    PubMed

    Williamson, Adam J; Morris, Katherine; Law, Gareth T W; Rizoulis, Athanasios; Charnock, John M; Lloyd, Jonathan R

    2014-11-18

    Although there is consensus that microorganisms significantly influence uranium speciation and mobility in the subsurface under circumneutral conditions, microbiologically mediated U(VI) redox cycling under alkaline conditions relevant to the geological disposal of cementitious intermediate level radioactive waste, remains unexplored. Here, we describe microcosm experiments that investigate the biogeochemical fate of U(VI) at pH 10-10.5, using sediments from a legacy lime working site, stimulated with an added electron donor, and incubated in the presence and absence of added Fe(III) as ferrihydrite. In systems without added Fe(III), partial U(VI) reduction occurred, forming a U(IV)-bearing non-uraninite phase which underwent reoxidation in the presence of air (O2) and to some extent nitrate. By contrast, in the presence of added Fe(III), U(VI) was first removed from solution by sorption to the Fe(III) mineral, followed by bioreduction and (bio)magnetite formation coupled to formation of a complex U(IV)-bearing phase with uraninite present, which also underwent air (O2) and partial nitrate reoxidation. 16S rRNA gene pyrosequencing showed that Gram-positive bacteria affiliated with the Firmicutes and Bacteroidetes dominated in the post-reduction sediments. These data provide the first insights into uranium biogeochemistry at high pH and have significant implications for the long-term fate of uranium in geological disposal in both engineered barrier systems and the alkaline, chemically disturbed geosphere.

  13. Preservation of water samples for arsenic(III/V) determinations: An evaluation of the literature and new analytical results

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Maest, A.S.

    2004-01-01

    Published literature on preservation procedures for stabilizing aqueous inorganic As(III/V) redox species contains discrepancies. This study critically evaluates published reports on As redox preservation and explains discrepancies in the literature. Synthetic laboratory preservation experiments and time stability experiments were conducted for natural water samples from several field sites. Any field collection procedure that filters out microorganisms, adds a reagent that prevents dissolved Fe and Mn oxidation and precipitation, and isolates the sample from solar radiation will preserve the As(III/V) ratio. Reagents that prevent Fe and Mn oxidation and precipitation include HCl, H 2SO4, and EDTA, although extremely high concentrations of EDTA are necessary for some water samples high in Fe. Photo-catalyzed Fe(III) reduction causes As(III) oxidation; however, storing the sample in the dark prevents photochemical reactions. Furthermore, the presence of Fe(II) or SO 4 inhibits the oxidation of As(III) by Fe(III) because of complexation reactions and competing reactions with free radicals. Consequently, fast abiotic As(III) oxidation reactions observed in the laboratory are not observed in natural water samples for one or more of the following reasons: (1) the As redox species have already stabilized, (2) most natural waters contain very low dissolved Fe(III) concentrations, (3) the As(III) oxidation caused by Fe(III) photoreduction is inhibited by Fe(II) or SO4.

  14. Role of Fe(III)-carboxylates in AMZ photodegradation: A response surface study based on a Doehlert experimental design.

    PubMed

    Graça, Cátia A L; Correia de Velosa, Adriana; Teixeira, Antonio Carlos S C

    2017-10-01

    Photochemical redox reactions of Fe(III) complexes in surface waters are important sources of radical species, therefore contributing to the sunlight-driven elimination of waterborne recalcitrant contaminants. In this study, the effects of three Fe(III)-carboxylates (i.e., oxalate, citrate, and tartrate) on the UVA photoinduced oxidation of the herbicide amicarbazone (AMZ) were investigated. A Doehlert experimental design was applied to find the Fe(III):ligand ratios and pH that achieved the fastest AMZ degradation rate. The results indicated optimal ratios of 1:10 (Fe(III):oxalate), 1:4 (Fe(III):citrate), and 1:1 (Fe(III):tartrate), with the [Fe(III)] 0 set at 0.1 mmol L -1 and the best pH found to be 3.5 for all the complexes. In addition, a statistical model that predicts the observed degradation rate constant (k obs ) as a function of pH and Fe(III):carboxylate ratio was obtained for each complex, enabling AMZ-photodegradation predictions based on these two variables. To the best of our knowledge, this is the first time that such models are proposed. Not only the pH-dependent speciation of Fe(III) in solution but also the time profiles of photogenerated OH, Fe(II), and H 2 O 2 gave appropriate support to the experimental results. Additional experiments using a sampled sewage treatment plant effluent suggest that the addition of aqua and/or Fe(III)-oxalate complexes to the matrix may also be effective for AMZ removal from natural waters in case their natural occurrence is not high enough to promote pollutant degradation. Therefore, the inclusion of Fe(III)-complexes in investigations dealing with the environmental fate of emerging pollutants in natural waterbodies is strongly recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Importance of clay size minerals for Fe(III) respiration in a petroleum-contaminated aquifer

    USGS Publications Warehouse

    Shelobolina, Evgenya S.; Anderson, Robert T.; Vodyanitskii, Yury N.; Sivtsov, Anatolii V.; Yuretich, Richard; Lovely, Derek R.

    2004-01-01

    The availability of Fe(III)-bearing minerals for dissimilatory Fe(III) reduction was evaluated in sediments from a petroleum-contaminated sandy aquifer near Bemidji, Minnesota (USA). First, the sediments from a contaminated area of the aquifer, in which Fe(III) reduction was the predominant terminal electron accepting process, were compared with sediments from a nearby, uncontaminated site. Data from 0.5 m HCl extraction of different size fractions of the sediments revealed that the clay size fraction contributed a significant portion of the ‘bio-available’ Fe(III) in the background sediment and was the most depleted in ‘bio-available’ Fe(III) in the iron-reducing sediment. Analytical transmission electron microscopy (TEM) revealed the disappearance of thermodynamically unstable Fe(III) and Mn(IV) hydroxides (ferrihydrite and Fe vernadite), as well as a decrease in the abundance of goethite and lepidocrocite in the clay size fraction from the contaminated sediment. TEM observations and X-ray diffraction examination did not provide strong evidence of Fe(III)-reduction-related changes within another potential source of ‘bio-available’ Fe(III) in the clay size fraction – ferruginous phyllosilicates. However, further testing in the laboratory with sediments from the methanogenic portion of the aquifer that were depleted in microbially reducible Fe(III) revealed the potential for microbial reduction of Fe(III) associated with phyllosilicates. Addition of a clay size fraction from the uncontaminated sediment, as well as Fe(III)-coated kaolin and ferruginous nontronite SWa-1, as sources of poorly crystalline Fe(III) hydroxides and structural iron of phyllosilicates respectively, lowered steady-state hydrogen concentrations consistent with a stimulation of Fe(III) reduction in laboratory incubations of methanogenic sediments. There was no change in hydrogen concentration when non-ferruginous clays or no minerals were added. This demonstrated that Fe(III)-bearing clay size minerals were essential for microbial Fe(III) reduction and suggested that both potential sources of ‘bio-available’ Fe(III) in the clay size fraction, poorly crystalline Fe(III) hydroxides and structural Fe(III) of phyllosilicates, were important sources of electron acceptor for indigenous iron-reducing microorganisms in this aquifer.

  16. Preparation of manganese(II), chromium(III) and ferric(III) oxides nanoparticles in situ metal citraconate complexes frameworks

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.

    2014-12-01

    The new reactions of some divalent and trivalent transition metal ions (Mn(II), Cr(III), and Fe(III)) with citraconic acid has been studied. The obtained results indicate the formation of citraconic acid compounds with molar ratio of metal to citraconic acid of 2:2 or 2:3 with general formulas Mn2(C5H4O4)2 or M2(C5H4O4)3ṡnH2O where n = 6 for Cr, and Fe(III). The thermal decomposition of the crystalline solid complexes was investigated. The IR spectra of citraconate suggested that the carboxylic groups are bidentatically bridging and chelating. In the course of decomposition the complexes are dehydrated and then decompose either directly to oxides in only one step or with intermediate formation of oxocarbonates. This proposal dealing the preparation of MnO2, Fe2O3 and Cr2O3 nanoparticles. The crystalline structure of oxide products were checked by X-ray powder diffraction (XRD), and the morphology of particles by scanning electron microscopy (SEM).

  17. Binding of heavy metal ions in aggregates of microbial cells, EPS and biogenic iron minerals measured in-situ using metal- and glycoconjugates-specific fluorophores

    NASA Astrophysics Data System (ADS)

    Hao, Likai; Guo, Yuan; Byrne, James M.; Zeitvogel, Fabian; Schmid, Gregor; Ingino, Pablo; Li, Jianli; Neu, Thomas R.; Swanner, Elizabeth D.; Kappler, Andreas; Obst, Martin

    2016-05-01

    Aggregates consisting of bacterial cells, extracellular polymeric substances (EPS) and Fe(III) minerals formed by Fe(II)-oxidizing bacteria are common at bulk or microscale chemical interfaces where Fe cycling occurs. The high sorption capacity and binding capacity of cells, EPS, and minerals controls the mobility and fate of heavy metals. However, it remains unclear to which of these component(s) the metals will bind in complex aggregates. To clarify this question, the present study focuses on 3D mapping of heavy metals sorbed to cells, glycoconjugates that comprise the majority of EPS constituents, and Fe(III) mineral aggregates formed by the phototrophic Fe(II)-oxidizing bacteria Rhodobacter ferrooxidans SW2 using confocal laser scanning microscopy (CLSM) in combination with metal- and glycoconjugates-specific fluorophores. The present study evaluated the influence of glycoconjugates, microbial cell surfaces, and (biogenic) Fe(III) minerals, and the availability of ferrous and ferric iron on heavy metal sorption. Analyses in this study provide detailed knowledge on the spatial distribution of metal ions in the aggregates at the sub-μm scale, which is essential to understand the underlying mechanisms of microbe-mineral-metal interactions. The heavy metals (Au3+, Cd2+, Cr3+, CrO42-, Cu2+, Hg2+, Ni2+, Pd2+, tributyltin (TBT) and Zn2+) were found mainly sorbed to cell surfaces, present within the glycoconjugates matrix, and bound to the mineral surfaces, but not incorporated into the biogenic Fe(III) minerals. Statistical analysis revealed that all ten heavy metals tested showed relatively similar sorption behavior that was affected by the presence of sorbed ferrous and ferric iron. Results in this study showed that in addition to the mineral surfaces, both bacterial cell surfaces and the glycoconjugates provided most of sorption sites for heavy metals. Simultaneously, ferrous and ferric iron ions competed with the heavy metals for sorption sites on the organic compounds. In summary, the information obtained by the present approach using a microbial model system provides important information to better understand the interactions between heavy metals and biofilms, and microbially formed Fe(III) minerals and heavy metals in complex natural environments.

  18. Spectroscopic and Computational Investigation of Iron(III) Cysteine Dioxygenase: Implications for the Nature of the Putative Superoxo-Fe(III) Intermediate

    PubMed Central

    2015-01-01

    Cysteine dioxygenase (CDO) is a mononuclear, non-heme iron-dependent enzyme that converts exogenous cysteine (Cys) to cysteine sulfinic acid using molecular oxygen. Although the complete catalytic mechanism is not yet known, several recent reports presented evidence for an Fe(III)-superoxo reaction intermediate. In this work, we have utilized spectroscopic and computational methods to investigate the as-isolated forms of CDO, as well as Cys-bound Fe(III)CDO, both in the absence and presence of azide (a mimic of superoxide). An analysis of our electronic absorption, magnetic circular dichroism, and electron paramagnetic resonance data of the azide-treated as-isolated forms of CDO within the framework of density functional theory (DFT) computations reveals that azide coordinates directly to the Fe(III), but not the Fe(II) center. An analogous analysis carried out for Cys-Fe(III)CDO provides compelling evidence that at physiological pH, the iron center is six coordinate, with hydroxide occupying the sixth coordination site. Upon incubation of this species with azide, the majority of the active sites retain hydroxide at the iron center. Nonetheless, a modest perturbation of the electronic structure of the Fe(III) center is observed, indicating that azide ions bind near the active site. Additionally, for a small fraction of active sites, azide displaces hydroxide and coordinates directly to the Cys-bound Fe(III) center to generate a low-spin (S = 1/2) Fe(III) complex. In the DFT-optimized structure of this complex, the central nitrogen atom of the azide moiety lies within 3.12 Å of the cysteine sulfur. A similar orientation of the superoxide ligand in the putative Fe(III)-superoxo reaction intermediate would promote the attack of the distal oxygen atom on the sulfur of substrate Cys. PMID:25093959

  19. Population Genomic Analysis Reveals a Rich Speciation and Demographic History of Orang-utans (Pongo pygmaeus and Pongo abelii)

    PubMed Central

    Ma, Xin; Kelley, Joanna L.; Eilertson, Kirsten; Musharoff, Shaila; Degenhardt, Jeremiah D.; Martins, André L.; Vinar, Tomas; Kosiol, Carolin; Siepel, Adam; Gutenkunst, Ryan N.; Bustamante, Carlos D.

    2013-01-01

    To gain insights into evolutionary forces that have shaped the history of Bornean and Sumatran populations of orang-utans, we compare patterns of variation across more than 11 million single nucleotide polymorphisms found by previous mitochondrial and autosomal genome sequencing of 10 wild-caught orang-utans. Our analysis of the mitochondrial data yields a far more ancient split time between the two populations (∼3.4 million years ago) than estimates based on autosomal data (0.4 million years ago), suggesting a complex speciation process with moderate levels of primarily male migration. We find that the distribution of selection coefficients consistent with the observed frequency spectrum of autosomal non-synonymous polymorphisms in orang-utans is similar to the distribution in humans. Our analysis indicates that 35% of genes have evolved under detectable negative selection. Overall, our findings suggest that purifying natural selection, genetic drift, and a complex demographic history are the dominant drivers of genome evolution for the two orang-utan populations. PMID:24194868

  20. Population genomic analysis reveals a rich speciation and demographic history of orang-utans (Pongo pygmaeus and Pongo abelii).

    PubMed

    Ma, Xin; Kelley, Joanna L; Eilertson, Kirsten; Musharoff, Shaila; Degenhardt, Jeremiah D; Martins, André L; Vinar, Tomas; Kosiol, Carolin; Siepel, Adam; Gutenkunst, Ryan N; Bustamante, Carlos D

    2013-01-01

    To gain insights into evolutionary forces that have shaped the history of Bornean and Sumatran populations of orang-utans, we compare patterns of variation across more than 11 million single nucleotide polymorphisms found by previous mitochondrial and autosomal genome sequencing of 10 wild-caught orang-utans. Our analysis of the mitochondrial data yields a far more ancient split time between the two populations (~3.4 million years ago) than estimates based on autosomal data (0.4 million years ago), suggesting a complex speciation process with moderate levels of primarily male migration. We find that the distribution of selection coefficients consistent with the observed frequency spectrum of autosomal non-synonymous polymorphisms in orang-utans is similar to the distribution in humans. Our analysis indicates that 35% of genes have evolved under detectable negative selection. Overall, our findings suggest that purifying natural selection, genetic drift, and a complex demographic history are the dominant drivers of genome evolution for the two orang-utan populations.

  1. Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA

    DOE PAGES

    Liu, Yimo; Fredrickson, Jim K.; Zachara, John M.; ...

    2015-10-01

    The tandem gene clusters orfR-ombB-omaB-omcB and orfS-ombC-omaC-omcC of the metal-reducing bacterium Geobacter sulfurreducens PCA are responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III)-citrate and ferrihydrite [a poorly crystalline Fe(III) oxide]. Each gene cluster encodes a putative transcriptional factor (OrfR/OrfS), a porin-like outer-membrane protein (OmbB/OmbC), a periplasmic c-type cytochrome (c-Cyt, OmaB/OmaC) and an outer-membrane c-Cyt (OmcB/OmcC). The individual roles of OmbB, OmaB and OmcB in extracellular reduction of Fe(III), however, have remained either uninvestigated or controversial. Here, we showed that replacements of ombB, omaB, omcB and ombB-omaB with an antibiotic gene in the presence of ombC-omaC-omcC had nomore » impact on reduction of Fe(III)-citrate by G. sulfurreducens PCA. Disruption of ombB, omaB, omcB and ombB-omaB in the absence of ombC-omaC-omcC, however, severely impaired the bacterial ability to reduce Fe(III)-citrate as well as ferrihydrite. These results unequivocally demonstrate an overlapping role of ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III) reduction by G. sulfurreducens PCA. Involvement of both ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III) reduction reflects the importance of these trans-outer membrane protein complexes in the physiology of this bacterium. Moreover, the kinetics of Fe(III)-citrate and ferrihydrite reduction by these mutants in the absence of ombC-omaC-omcC were nearly identical, which clearly show that OmbB, OmaB and OmcB contribute equally to extracellular Fe(III) reduction. Finally, orfS was found to have a negative impact on the extracellular reduction of Fe(III)-citrate and ferrihydrite in G. sulfurreducens PCA probably by serving as a transcriptional repressor.« less

  2. Removal of copper and iron by polyurethane foam column in FIA system for the determination of nickel in pierced ring.

    PubMed

    Vongboot, Monnapat; Suesoonthon, Monrudee

    2015-01-01

    Polyurethane foam (PUF) mini-column was used to eliminate copper and iron for the determination of nickel in pierced rings. The PUF mini-column was connected to FIA system for on-line sorption of copper and iron in complexes form of CuSCN(+) and FeSCN(2+). For this season, the acid solution containing a mixture of Ni(II), Fe(III), Cu(II) and SCN(-) ions was firstly flew into the PUF column. Then, the percolated solution which Fe(III) and Cu(II) ions is separated from analysis was injected into FIA system to react with 4-(2-pyridylazo) resorcinol (PAR) reagent in basic condition which this method is called pH gradient technique. The Ni-PAR complexes obtained were measured theirs absorbance at 500 nm by UV visible spectrophotometer. In this study, it was found that Cu(II) and Fe(III) were completely to form complexes with 400 mmol/L KSCN and entirely to eliminate in acidic condition at pH 3.0. In the optimum condition of these experiments, the method provided the linear relationship between absorbance and the concentration of Ni(II) in the range from 5.00 to 30.00 mg/L. Linear equation is y=0.0134x+0.0033 (R(2)=0.9948). Precision, assessed in the term of the relative standard deviation, RSD, and accuracy for multiple determinations obtained in values of 0.77-1.73% and 97.4%, respectively. The level of an average amount of Ni(II) in six piercing rings was evaluated to be 14.78 mg/g. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Reduction of Fe(III) colloids by Shewanella putrefaciens: A kinetic model

    NASA Astrophysics Data System (ADS)

    Bonneville, Steeve; Behrends, Thilo; van Cappellen, Philippe; Hyacinthe, Christelle; Röling, Wilfred F. M.

    2006-12-01

    A kinetic model for the microbial reduction of Fe(III) oxyhydroxide colloids in the presence of excess electron donor is presented. The model assumes a two-step mechanism: (1) attachment of Fe(III) colloids to the cell surface and (2) reduction of Fe(III) centers at the surface of attached colloids. The validity of the model is tested using Shewanella putrefaciens and nanohematite as model dissimilatory iron reducing bacteria and Fe(III) colloidal particles, respectively. Attachment of nanohematite to the bacteria is formally described by a Langmuir isotherm. Initial iron reduction rates are shown to correlate linearly with the relative coverage of the cell surface by nanohematite particles, hence supporting a direct electron transfer from membrane-bound reductases to mineral particles attached to the cells. Using internally consistent parameter values for the maximum attachment capacity of Fe(III) colloids to the cells, Mmax, the attachment constant, KP, and the first-order Fe(III) reduction rate constant, k, the model reproduces the initial reduction rates of a variety of fine-grained Fe(III) oxyhydroxides by S. putrefaciens. The model explains the observed dependency of the apparent Fe(III) half-saturation constant, Km∗, on the solid to cell ratio, and it predicts that initial iron reduction rates exhibit saturation with respect to both the cell density and the abundance of the Fe(III) oxyhydroxide substrate.

  4. Humic substances as a mediator for microbially catalyzed metal reduction

    USGS Publications Warehouse

    Lovley, D.R.; Fraga, J.L.; Blunt-Harris, E. L.; Hayes, L.A.; Phillips, E.J.P.; Coates, J.D.

    1998-01-01

    The potential for humic substances to serve as a terminal electron acceptor in microbial respiration and to function as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides was investigated. The Fe(III)-reducing microorganism Geobacter metallireducens conserved energy to support growth from electron transport to humics as evidenced by continued oxidation of acetate to carbon dioxide after as many as nine transfers in a medium with acetate as the electron donor and soil humic acids as the electron acceptor. Growth of G. metallireducens with poorly crystalline Fe(III) oxide as the electron acceptor was greatly stimulated by the addition of as little as 100 ??M of the humics analog, anthraquinone-2,6-disulfonate. Other quinones investigated, including lawsone, menadione, and anthraquinone-2-sulfonate, also stimulated Fe(III) oxide reduction. A wide phylogenetic diversity of microorganisms capable of Fe(III) reduction were also able to transfer electrons to humics. Microorganisms which can not reduce Fe(III) could not reduce humics. Humics stimulated the reduction of structural Fe(III) in clay and the crystalline Fe(III) forms, goethite and hematite. These results demonstrate that electron shuttling between Fe(III)-reducing microorganisms and Fe(III) via humics not only accelerates the microbial reduction of poorly crystalline Fe(III) oxide, but also can facilitate the reduction of Fe(III) forms that are not typically reduced by microorganisms in the absence of humics. Addition of humic substances to enhance electron shuttling between Fe(III)-reducing microorganisms and Fe(III) oxides may be a useful strategy to stimulate the remediation of soils and sediments contaminated with organic or metal pollutants.

  5. Relationship between serologic markers of periodontal bacteria and metabolic syndrome and its components.

    PubMed

    Shrestha, Deepika; Choi, Youn-Hee; Zhang, Jiajia; Hazlett, Linda J; Merchant, Anwar T

    2015-03-01

    Periodontitis is a result of a complex biologic alteration of the periodontal microenvironment and a distributional shift of key periodontal pathogens. Metabolic syndrome (MetS), a complex cluster of cardiovascular risk factors, has been linked to periodontal diseases; however, the contribution of periodontal bacteria to systemic conditions remains unclear. The study population comprised 7,848 United States adults who participated in an interview, underwent a clinical oral-health examination, and had serum immunoglobulin G titers measured against 19 periodontal bacteria as part of the third National Health and Nutritional Examination Survey. The z-score antibody titers were clustered into four mutually exclusive groups and named after Socransky's classification of periodontal bacteria (Orange-Red, Red-Green, Yellow-Orange, and Orange-Blue). Survey logistic regression was used to investigate the independent associations between the cluster scores, and MetS and each component, including hypertension, hypertriglyceridemia, low high-density lipoprotein cholesterol, central obesity, and elevated fasting glucose. The Orange-Red cluster score (that included Porphyromonas gingivalis and Prevotella spp.) was positively associated (odds ratio [OR] = 1.067, 95% confidence interval [CI] = 1.02 to 1.12) and the Orange-Blue cluster score (which included Actinomyces naeslundii and Eubacterium nodatum) was inversely associated (OR = 0.93, 95% CI = 0.88 to 0.97) with elevated fasting glucose (≥ 110 mg/dL) after adjustment for clusters and potential confounders. Neither MetS nor its other remaining MetS components were associated with a particular cluster score. The associations between specific antibody clusters (Orange-Red and Orange-Blue) against periodontal bacteria and elevated plasma glucose were in qualitatively opposite directions after multivariable adjustment in a large, adult population. The periodontal bacterial profile was not found to be associated with metabolic control other than a very moderate association with elevated plasma glucose.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toczydlowska, Diana; Kedra-Krolik, Karolina; Nejbert, Krzysztof

    The role of surface electrostatics on the reductive dissolution of iron (III) oxides is poorly understood, despite its importance in controlling the amount of mobilized iron. We report the potentiometric titration of the a; y -Fe2O3 oxides exposed to reductants and complexing ligands (Fe(II), ascorbate, oxalate, malonate). We monitored in situ surface and potentials, the ratio of mobilized ferric to ferrous ions, and periodically analyzed nanoparticle crystal structure using X-ray diffraction. We found that addition of Fe2+ ions produces a response consistent with the iron solubilityactivity curve, whereas the presence of ascorbate significantly decreases the amount of mobilized Fe(III) duemore » to reduction to Fe(II). In addition, XRD analysis proved that y-Fe2O3 particles remain structurally unchanged along the titration pathway despite iron cycling between aqueous and solid reservoirs. Our studies, suggest that the surface redoxactivity of iron oxides is primarily governed by the balance between Fe(III) and Fe(II) ions in aqueous phase, which may be easily altered by complexing and reducing agents.« less

  7. Mössbauer study of the effect of pH on Fe valence in iron-polygalacturonate as a medicine for human anaemia

    NASA Astrophysics Data System (ADS)

    Kuzmann, E.; Garg, V. K.; de Oliveira, A. C.; Klencsár, Z.; Szentmihályi, K.; Fodor, J.; May, Z.; Homonnay, Z.

    2015-02-01

    Iron-polygalacturonate complexes have been synthesized from polygalacturonic acid by applying a novel preparation method in order to develop medicine suitable for the effective iron supplementation of the human body in the case of anemia. Since the iron uptake depends on the oxidation state of iron, 57Fe Mössbauer spectroscopy was used to study the occurrence of different valence states in the iron-polygalacturonate complexes prepared under different circumstances. The Mössbauer-spectra indicated the presence of iron both in FeII and FeIII states in the investigated iron-polygalacturonate compounds, the occurrence of which varied with the preparation parameters. A correlation of the relative occurrence of iron valence states with the pH has been found. The relative occurrence of FeIII was found to increase with increasing pH. The knowledge of this correlation can help find optimum preparation conditions of iron-polygalacturonates to cure human anemia.

  8. Iron ion and iron hydroxide adsorption to charge-neutral phosphatidylcholine templates

    DOE PAGES

    Wang, Wenjie; Zhang, Honghu; Feng, Shuren; ...

    2016-07-13

    Surface-sensitive X-ray scattering and spectroscopy techniques reveal significant adsorption of iron ions and iron-hydroxide (Fe(III)) complexes to a charge-neutral zwitterionic template of phosphatidylcholine (PC). The PC template is formed by a Langmuir monolayer of dipalmitoyl-PC (DPPC) that is spread on the surface of 2 to 40 μM FeCl 3 solutions at physiological levels of KCl (100 mM). At 40 μM of Fe(III) as many as ~3 iron atoms are associated with each PC group. Grazing incidence X-ray diffraction measurements indicate a significant disruption in the in-plane ordering of DPPC molecules upon iron adsorption. The binding of iron-hydroxide complexes to amore » neutral PC surface is yet another example of nonelectrostatic, presumably covalent bonding to a charge-neutral organic template. Furthermore, the strong binding and the disruption of in-plane lipid structure has biological implications on the integrity of PC-derived lipid membranes, including those based on sphingomyelin.« less

  9. Microbial reduction of Fe(III)-bearing clay minerals in the presence of humic acids

    NASA Astrophysics Data System (ADS)

    Liu, Guangfei; Qiu, Shuang; Liu, Baiqing; Pu, Yiying; Gao, Zhanming; Wang, Jing; Jin, Ruofei; Zhou, Jiti

    2017-03-01

    Both Fe(III)-bearing clay minerals and humic acids (HAs) are abundant in the soils and sediments. Previous studies have shown that bioreduction of structural Fe(III) in clay minerals could be accelerated by adding anthraquinone compound as a redox-active surrogate of HAs. However, a quinoid analogue could not reflect the adsorption and complexation properties of HA, and little is known about the effects of real HAs at environmental concentration on bioreduction of clay minerals. Here, it was shown that 10-200 mg l-1 of natural or artificially synthesized HAs could effectively stimulate the bioreduction rate and extent of Fe(III) in both iron-rich nontronite NAu-2 and iron-deficient montmorillonite SWy-2. After adsorption to NAu-2, electron-transfer activities of different HA fractions were compared. Additionally, Fe(II) complexation by HAs also contributed to improvement of clay-Fe(III) bioreduction. Spectrosopic and morphological analyses suggested that HA addition accelerated the transformation of NAu-2 to illite, silica and siderite after reductive dissolution.

  10. Synthesis, iron(III) complexation properties, molecular dynamics simulations and P. aeruginosa siderophore-like activity of two pyoverdine analogs.

    PubMed

    Antonietti, Viviane; Boudesocque, Stéphanie; Dupont, Laurent; Farvacques, Natacha; Cézard, Christine; Da Nascimento, Sophie; Raimbert, Jean-François; Socrier, Larissa; Robin, Thierry-Johann; Morandat, Sandrine; El Kirat, Karim; Mullié, Catherine; Sonnet, Pascal

    2017-09-08

    P. aeruginosa ranks among the top five organisms causing nosocomial infections. Among the many novel strategies for developing new therapeutics against infection, targeting iron uptake mechanism seems promising as P. aeruginosa needs iron for its growth and survival. To scavenge iron, the bacterium produces siderophores possessing a very high affinity towards Fe(III) ions such as pyoverdines. In this work, we decided to study two pyoverdine analogs, aPvd2 and aPvd3, structurally close to the endogen pyoverdine. The pFe constants calculated with the values of formation showed a high affinity of aPvd3 towards Fe(III). Molecular dynamics calculations demonstrated that aPvd3-Fe forms with Fe(III) stable 1:1 complexes in water, whereas aPvd2 does not. Only aPvd3 is able to increase the bacterial growth and represents thus an alternative to pyoverdine for iron acquisition by the bacterium. The aPvd2-3 interaction studies with a lipid membrane indicated that they were unable to interact and to cross the plasma membrane of bacteria by passive diffusion. Consequently, the penetration of aPvd3 is ruled by a transport membrane protein. These results showed that aPvd3 may be used to inhibit pyoverdine uptake or to promote the accumulation and release of antibiotics into the cell following a Trojan horse strategy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. A carbon dot-based "off-on" fluorescent probe for highly selective and sensitive detection of phytic acid.

    PubMed

    Gao, Zhao; Wang, Libing; Su, Rongxin; Huang, Renliang; Qi, Wei; He, Zhimin

    2015-08-15

    We herein report a facile, one-step pyrolysis synthesis of photoluminescent carbon dots (CDs) using citric acid as the carbon source and lysine as the surface passivation reagent. The as-prepared CDs show narrow size distribution, excellent blue fluorescence and good photo-stability and water dispersivity. The fluorescence of the CDs was found to be effectively quenched by ferric (Fe(III)) ions with high selectivity via a photo-induced electron transfer (PET) process. Upon addition of phytic acid (PA) to the CDs/Fe(III) complex dispersion, the fluorescence of the CDs was significantly recovered, arising from the release of Fe(III) ions from the CDs/Fe(III) complex because PA has a higher affinity for Fe(III) ions compared to CDs. Furthermore, we developed an "off-on" fluorescence assay method for the detection of phytic acid using CDs/Fe(III) as a fluorescent probe. This probe enables the selective detection of PA with a linear range of 0.68-18.69 μM and a limit of detection (signal-to-noise ratio is 3) of 0.36 μM. The assay method demonstrates high selectivity, repeatability, stability and recovery ratio in the detection of the standard and real PA samples. We believe that the facile operation, low-cost, high sensitivity and selectivity render this CD-based "off-on" fluorescent probe an ideal sensing platform for the detection of PA. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Electrochemical studies of DNA interaction and antimicrobial activities of MnII, FeIII, CoII and NiII Schiff base tetraazamacrocyclic complexes

    NASA Astrophysics Data System (ADS)

    Kumar, Anuj; Vashistha, Vinod Kumar; Tevatia, Prashant; Singh, Randhir

    2017-04-01

    Tetraazamacrocyclic complexes of MnII, FeIII, CoII and NiII have been synthesized by template method. These tetraazamacrocycles have been analyzed with various techniques like molar conductance, IR, UV-vis, mass spectral and cyclic voltammetric studies. On the basis of all these studies, octahedral geometry has been assigned to these tetraazamacrocyclic complexes. The DNA binding properties of these macrocyclic complexes have been investigated by electronic absorption spectra, fluorescence spectra, cyclic voltammetric and differential pulse voltammetric studies. The cyclic voltammetric data showed that ipc and ipa were effectively decreased in the presence of calf thymus DNA, which is a strong evidence for the interaction of these macrocyclic complexes with the calf thymus DNA (ct-DNA). The heterogeneous electron transfer rate constant found in the order: KCoII > KNiII > KMnII which indicates that CoII macrocyclic complex has formed a strong intercalated intermediate. The Stern-Volmer quenching constant (KSV) and voltammetric binding constant were found in the order KSV(CoII) > KSV(NiII) > KSV(MnII) and K+(CoII) > K+(NiII) > K+(MnII) which shows that CoII macrocyclic complex exhibits the high interaction affinity towards ct-DNA by the intercalation binding. Biological studies of the macrocyclic complexes compared with the standard drug like Gentamycin, have shown antibacterial activities against E. coli, P. aeruginosa, B. cereus, S. aureus and antifungal activity against C. albicans.

  13. Reductive reactivity of iron(III) oxides in the east china sea sediments: characterization by selective extraction and kinetic dissolution.

    PubMed

    Chen, Liang-Jin; Zhu, Mao-Xu; Yang, Gui-Peng; Huang, Xiang-Li

    2013-01-01

    Reactive Fe(III) oxides in gravity-core sediments collected from the East China Sea inner shelf were quantified by using three selective extractions (acidic hydroxylamine, acidic oxalate, bicarbonate-citrate buffered sodium dithionite). Also the reactivity of Fe(III) oxides in the sediments was characterized by kinetic dissolution using ascorbic acid as reductant at pH 3.0 and 7.5 in combination with the reactive continuum model. Three parameters derived from the kinetic method: m 0 (theoretical initial amount of ascorbate-reducible Fe(III) oxides), k' (rate constant) and γ (heterogeneity of reactivity), enable a quantitative characterization of Fe(III) oxide reactivity in a standardized way. Amorphous Fe(III) oxides quantified by acidic hydroxylamine extraction were quickly consumed in the uppermost layer during early diagenesis but were not depleted over the upper 100 cm depth. The total amounts of amorphous and poorly crystalline Fe(III) oxides are highly available for efficient buffering of dissolved sulfide. As indicated by the m 0, k' and γ, the surface sediments always have the maximum content, reactivity and heterogeneity of reactive Fe(III) oxides, while the three parameters simultaneously downcore decrease, much more quickly in the upper layer than at depth. Albeit being within a small range (within one order of magnitude) of the initial rates among sediments at different depths, incongruent dissolution could result in huge discrepancies of the later dissolution rates due to differentiating heterogeneity, which cannot be revealed by selective extraction. A strong linear correlation of the m 0 at pH 3.0 with the dithionite-extractable Fe(III) suggests that the m 0 may represent Fe(III) oxide assemblages spanning amorphous and crystalline Fe(III) oxides. Maximum microbially available Fe(III) predicted by the m 0 at pH 7.5 may include both amorphous and a fraction of other less reactive Fe(III) phases.

  14. Reductive Reactivity of Iron(III) Oxides in the East China Sea Sediments: Characterization by Selective Extraction and Kinetic Dissolution

    PubMed Central

    Chen, Liang-Jin; Zhu, Mao-Xu; Yang, Gui-Peng; Huang, Xiang-Li

    2013-01-01

    Reactive Fe(III) oxides in gravity-core sediments collected from the East China Sea inner shelf were quantified by using three selective extractions (acidic hydroxylamine, acidic oxalate, bicarbonate-citrate buffered sodium dithionite). Also the reactivity of Fe(III) oxides in the sediments was characterized by kinetic dissolution using ascorbic acid as reductant at pH 3.0 and 7.5 in combination with the reactive continuum model. Three parameters derived from the kinetic method: m 0 (theoretical initial amount of ascorbate-reducible Fe(III) oxides), k′ (rate constant) and γ (heterogeneity of reactivity), enable a quantitative characterization of Fe(III) oxide reactivity in a standardized way. Amorphous Fe(III) oxides quantified by acidic hydroxylamine extraction were quickly consumed in the uppermost layer during early diagenesis but were not depleted over the upper 100 cm depth. The total amounts of amorphous and poorly crystalline Fe(III) oxides are highly available for efficient buffering of dissolved sulfide. As indicated by the m 0, k′ and γ, the surface sediments always have the maximum content, reactivity and heterogeneity of reactive Fe(III) oxides, while the three parameters simultaneously downcore decrease, much more quickly in the upper layer than at depth. Albeit being within a small range (within one order of magnitude) of the initial rates among sediments at different depths, incongruent dissolution could result in huge discrepancies of the later dissolution rates due to differentiating heterogeneity, which cannot be revealed by selective extraction. A strong linear correlation of the m 0 at pH 3.0 with the dithionite-extractable Fe(III) suggests that the m 0 may represent Fe(III) oxide assemblages spanning amorphous and crystalline Fe(III) oxides. Maximum microbially available Fe(III) predicted by the m 0 at pH 7.5 may include both amorphous and a fraction of other less reactive Fe(III) phases. PMID:24260377

  15. Ferric iron amendment increases Fe(III)-reducing microbial diversity and carbon oxidation in on-site wastewater systems.

    PubMed

    Azam, Hossain M; Finneran, Kevin T

    2013-01-01

    Onsite wastewater systems, or septic tanks, serve approximately 25% of the United States population; they are therefore a critical component of the total carbon balance for natural water bodies. Septic tanks operate under strictly anaerobic conditions, and fermentation is the dominant process driving carbon transformation. Nitrate, Fe(III), and sulfate reduction may be operating to a limited extent in any given septic tank. Electron acceptor amendments will increase carbon oxidation, but nitrate is toxic and sulfate generates corrosive sulfides, which may damage septic system infrastructure. Fe(III) reducing microorganisms transform all major classes of organic carbon that are dominant in septic wastewater: low molecular weight organic acids, carbohydrate monomers and polymers, and lipids. Fe(III) is not toxic, and the reduction product Fe(II) is minimally disruptive if the starting Fe(III) is added at 50-150 mg L(-1). We used (14)C radiolabeled acetate, lactate, propionate, butyrate, glucose, starch, and oleic acid to demonstrate that short and long-term carbon oxidation is increased when different forms of Fe(III) are amended to septic wastewater. The rates of carbon mineralization to (14)CO(2) increased 2-5 times (relative to unamended systems) in the presence of Fe(III). The extent of mineralization reached 90% for some carbon compounds when Fe(III) was present, compared to levels of 50-60% in the absence of Fe(III). (14)CH(4) was not generated when Fe(III) was added, demonstrating that this strategy can limit methane emissions from septic systems. Amplified 16S rDNA restriction analysis indicated that unique Fe(III)-reducing microbial communities increased significantly in Fe(III)-amended incubations, with Fe(III)-reducers becoming the dominant microbial community in several incubations. The form of Fe(III) added had a significant impact on the rate and extent of mineralization; ferrihydrite and lepidocrocite were favored as solid phase Fe(III) and chelated Fe(III) (with nitrilotriacetic acid or EDTA) as soluble Fe(III) forms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Growth of thermophilic and hyperthermophilic Fe(III)-reducing microorganisms on a ferruginous smectite as the sole electron acceptor.

    PubMed

    Kashefi, Kazem; Shelobolina, Evgenya S; Elliott, W Crawford; Lovley, Derek R

    2008-01-01

    Recent studies have suggested that the structural Fe(III) within phyllosilicate minerals, including smectite and illite, is an important electron acceptor for Fe(III)-reducing microorganisms in sedimentary environments at moderate temperatures. The reduction of structural Fe(III) by thermophiles, however, has not previously been described. A wide range of thermophilic and hyperthermophilic Archaea and Bacteria from marine and freshwater environments that are known to reduce poorly crystalline Fe(III) oxides were tested for their ability to reduce structural (octahedrally coordinated) Fe(III) in smectite (SWa-1) as the sole electron acceptor. Two out of the 10 organisms tested, Geoglobus ahangari and Geothermobacterium ferrireducens, were not able to conserve energy to support growth by reduction of Fe(III) in SWa-1 despite the fact that both organisms were originally isolated with solid-phase Fe(III) as the electron acceptor. The other organisms tested were able to grow on SWa-1 and reduced 6.3 to 15.1% of the Fe(III). This is 20 to 50% less than the reported amounts of Fe(III) reduced in the same smectite (SWa-1) by mesophilic Fe(III) reducers. Two organisms, Geothermobacter ehrlichii and archaeal strain 140, produced copious amounts of an exopolysaccharide material, which may have played an active role in the dissolution of the structural iron in SWa-1 smectite. The reduction of structural Fe(III) in SWa-1 by archaeal strain 140 was studied in detail. Microbial Fe(III) reduction was accompanied by an increase in interlayer and octahedral charges and some incorporation of potassium and magnesium into the smectite structure. However, these changes in the major element chemistry of SWa-1 smectite did not result in the formation of an illite-like structure, as reported for a mesophilic Fe(III) reducer. These results suggest that thermophilic Fe(III)-reducing organisms differ in their ability to reduce and solubilize structural Fe(III) in SWa-1 smectite and that SWa-1 is not easily transformed to illite by these organisms.

  17. Growth of Thermophilic and Hyperthermophilic Fe(III)-Reducing Microorganisms on a Ferruginous Smectite as the Sole Electron Acceptor▿

    PubMed Central

    Kashefi, Kazem; Shelobolina, Evgenya S.; Elliott, W. Crawford; Lovley, Derek R.

    2008-01-01

    Recent studies have suggested that the structural Fe(III) within phyllosilicate minerals, including smectite and illite, is an important electron acceptor for Fe(III)-reducing microorganisms in sedimentary environments at moderate temperatures. The reduction of structural Fe(III) by thermophiles, however, has not previously been described. A wide range of thermophilic and hyperthermophilic Archaea and Bacteria from marine and freshwater environments that are known to reduce poorly crystalline Fe(III) oxides were tested for their ability to reduce structural (octahedrally coordinated) Fe(III) in smectite (SWa-1) as the sole electron acceptor. Two out of the 10 organisms tested, Geoglobus ahangari and Geothermobacterium ferrireducens, were not able to conserve energy to support growth by reduction of Fe(III) in SWa-1 despite the fact that both organisms were originally isolated with solid-phase Fe(III) as the electron acceptor. The other organisms tested were able to grow on SWa-1 and reduced 6.3 to 15.1% of the Fe(III). This is 20 to 50% less than the reported amounts of Fe(III) reduced in the same smectite (SWa-1) by mesophilic Fe(III) reducers. Two organisms, Geothermobacter ehrlichii and archaeal strain 140, produced copious amounts of an exopolysaccharide material, which may have played an active role in the dissolution of the structural iron in SWa-1 smectite. The reduction of structural Fe(III) in SWa-1 by archaeal strain 140 was studied in detail. Microbial Fe(III) reduction was accompanied by an increase in interlayer and octahedral charges and some incorporation of potassium and magnesium into the smectite structure. However, these changes in the major element chemistry of SWa-1 smectite did not result in the formation of an illite-like structure, as reported for a mesophilic Fe(III) reducer. These results suggest that thermophilic Fe(III)-reducing organisms differ in their ability to reduce and solubilize structural Fe(III) in SWa-1 smectite and that SWa-1 is not easily transformed to illite by these organisms. PMID:17981937

  18. Spectroscopic and Computational Studies of (µ-Oxo)(µ-1,2-peroxo)diiron(III) Complexes of Relevance to Nonheme Diiron Oxygenase Intermediates

    PubMed Central

    Fiedler, Adam T.; Shan, Xiaopeng; Mehn, Mark P.; Kaizer, József; Torelli, Stéphane; Frisch, Jonathan R.; Kodera, Masahito; Que, Lawrence

    2009-01-01

    With the goal of gaining insight into the structures of peroxo intermediates observed for oxygen activating nonheme diiron enzymes, a series of metastable synthetic diiron(III)-peroxo complexes with [FeIII2(µ-O)(µ-1,2-O2)] cores has been characterized by X-ray absorption and resonance Raman spectroscopy. EXAFS analysis shows that this basic core structure gives rise to an Fe-Fe distance of ~3.15 Å; the distance is decreased by 0.1 Å upon introduction of an additional carboxylate bridge. In corresponding resonance Raman studies, vibrations arising from both the Fe-O-Fe and the Fe-O-O-Fe units can be observed. A change in the Fe-Fe distance affects the ν(O-O) mode, as well as the νsym(Fe-O-Fe) and the νasym(Fe-O-Fe) modes. Indeed a linear correlation can be discerned between the ν(O-O) frequency of a complex and its Fe-Fe distance among the subset of complexes with [FeIII2(µ-OR)(µ-1,2-O2)] cores (R = H, alkyl, aryl, or no substituent). These experimental studies are complemented by a normal coordinate analysis and DFT calculations. PMID:18811130

  19. Iron dynamics: Transformation of Fe(II)/Fe(III) during injection of natural organic matter in a sandy aquifer

    NASA Astrophysics Data System (ADS)

    Liang, Liyuan; McCarthy, John F.; Jolley, Louwanda W.; McNabb, J. Andrew; Mehlhorn, Tonia L.

    1993-05-01

    The dynamics of dissolved, colloidal, and deposited iron phases were examined during a forced-gradient field experiment. The experiment involved the injection of oxygenated water containing high levels of natural organic matter (NOM) into a sandy aquifer. The initial redox potential of the aquifer favored Fe(II) in the groundwater. The changes in the concentrations of Fe(II) and Fe(III) were observed in sampling wells. Under the increased dissolved oxygen (DO) conditions, Fe(II) oxygenation was rapid, resulting in the formation of Fe(III) (hydr) oxide colloids. The oxidation follows the rate law as given in STUMM and MORGAN (1981): d[ Fe(II)] /dt = - k obs[ O2( aq)] /[ H+] 2[ Fe(II)] , with a rate constant, kobs to be 1.9 × 10 -12 M min -1. For an averaged pH and DO of the groundwater, the half time of Fe(II) oxidation is 49 h. The NOM was postulated to stabilize the newly formed colloids, thereby increasing the turbidity in the groundwater. The additional increase in the colloidal fraction of Fe(III) oxide suggested that transport of the colloidal particles was occurring. At those locations where DO remained constantly low, the turbidity increase was moderate, and up to 80% of Fe(III) was in the dissolved phase (< 3000 mol. wt). The latter observation was attributed to the presence of NOM, forming Fe(III)-organic complexes. In addition, NOM may play a role in the oxygen consumption through a Fe(II)/Fe(III) catalyzed oxidation of organic matter as outlined by STUMM and MORGAN (1981, p. 469). In this mechanism, Fe(II) oxidation is slow, maintaining a near constant Fe(II) concentration, in agreement with field data. The overall increase in Fe(III) under low DO conditions was postulated to be a combination of (1) slow oxidation, (2) ligand-promoted and catalytic dissolution of deposited iron phases, and (3) the transport of newly formed iron oxide colloids along flow paths.

  20. Beam-induced redox transformation of arsenic during As K-edge XAS measurements: availability of reducing or oxidizing agents and As speciation.

    PubMed

    Han, Young Soo; Jeong, Hoon Young; Hyun, Sung Pil; Hayes, Kim F; Chon, Chul Min

    2018-05-01

    During X-ray absorption spectroscopy (XAS) measurements of arsenic (As), beam-induced redox transformation is often observed. In this study, the As species immobilized by poorly crystallized mackinawite (FeS) was assessed for the susceptibility to beam-induced redox reactions as a function of sample properties including the redox state of FeS and the solid-phase As speciation. The beam-induced oxidation of reduced As species was found to be mediated by the atmospheric O 2 and the oxidation products of FeS [e.g. Fe(III) (oxyhydr)oxides and intermediate sulfurs]. Regardless of the redox state of FeS, both arsenic sulfide and surface-complexed As(III) readily underwent the photo-oxidation upon exposure to the atmospheric O 2 during XAS measurements. With strict O 2 exclusion, however, both As(0) and arsenic sulfide were less prone to the photo-oxidation by Fe(III) (oxyhydr)oxides than NaAsO 2 and/or surface-complexed As(III). In case of unaerated As(V)-reacted FeS samples, surface-complexed As(V) was photocatalytically reduced during XAS measurements, but arsenic sulfide did not undergo the photo-reduction.

  1. Exploration of pro-oxidant and antioxidant activities of the flavonoid myricetin.

    PubMed

    Chobot, Vladimir; Hadacek, Franz

    2011-01-01

    Flavonoids are ubiquitous phenolic plant metabolites. Many of them are well known for their pro- and antioxidant properties. Myricetin has been reported to be either a potent antioxidant or a pro-oxidant depending on the conditions. The reaction conditions for the pro- and antioxidant activities were therefore investigated using variations of the deoxyribose degradation assay systems. The deoxyribose degradation assay systems were conducted as follows; H(2)O(2)/Fe(III)/ascorbic acid, H(2)O(2)/Fe(III), Fe(III)/ascorbic acid, and Fe(III). Each system was carried out in two variants, FeCl(3) (iron ions added as FeCl(3)) and FeEDTA (iron added in complex with ethylenediaminetetraacetic acid). When ascorbic acid was present, myricetin showed antioxidant properties, especially when it occurred in complex with iron. In ascorbic acid-free systems, pro-oxidant activities prevailed, which where enhanced if iron was in complex with EDTA. Myricetin's antioxidant activity depends on both the reactive oxygen species (ROS) scavenging and iron ions chelation properties. The pro-oxidative properties are caused by reduction of molecular oxygen to ROS and iron(III) to iron(II). Myricetin is able to substitute for ascorbic acid albeit less efficiently.

  2. SU-E-T-606: Performance of MR-Based 3D FXG Dosimetry for Preclinical Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, M; Jaffray, D; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON

    Purpose: Technological advances have revolutionized preclinical radiation research to enable precise radiation delivery in preclinical models. Kilovoltage x-rays and complex geometries in preclinical radiation studies challenge conventional dosimetry methods. Previously developed gel-based dosimetry provides a viable means of accommodating complex geometries and accurately reporting dose at kV energies. This paper will describe the development and evaluation of gel-based ferrous xylenol-orange (FXG) dosimetry using a 7T preclinical imaging system. Methods: To confirm water equivalence, Zeff values were calculated for the FXG material, water and ICRU defined soft tissue. Proton T1 relaxivity response in FXG was measured using a preclinical 7T MRmore » and a small animal irradiator for a dose range of 1–22 Gy. FXG was contained in 50 ml centrifuge tubes and irradiated with a 225 kVp x-ray beam at a nominal dose rate of 2.3 Gy/min. Pre and post irradiation maps of the T1 relaxivity were collected using variable TR spin-echo imaging (TE 6.65 ms; TR 500, 750, 1000, 1500, 2000, 3000 and 5000 ms) with 2 mm thick slices, 0.325 mm/pixel, 3 averages and an acquisition time of 26 minutes. A linear fit to the change in relaxation rate (1/T1) for the delivered doses reported the gel sensitivity in units of ms{sup -1}Gy{sup -1}. Irradiation and imaging studies were repeated using three batches of gel over 72 hrs. Results: FXG has a Zeff of 3.8 for the 225 kVp spectrum used; differing from water and ICRU defined soft tissue by 0.5% and 2.5%, respectively. The average sensitivity for the FXG dosimeter was 31.5 ± 0.7 ms{sup -1}Gy{sup -1} (R{sup 2} = 0.9957) with a y-intercept of −29.4 ± 9.0 ms{sup -1}. Conclusion: Preliminary results for the FXG dosimeter properties, sensitivity, and dose linearity at preclinical energies is promising. Future work will explore anatomically relevant tissue inclusions to test MR performance. Student funding provided by The Terry Fox Foundation Strategic Initiative for Excellence in Radiation Research for the 21st Century at CIHR and the Gifford Ontario Student Opportunity Trust Fund.« less

  3. Role of Humic-Bound Iron as an Electron Transfer Agent in Dissimilatory Fe(III) Reduction

    PubMed Central

    Lovley, Derek R.; Blunt-Harris, Elizabeth L.

    1999-01-01

    The dissimilatory Fe(III) reducer Geobacter metallireducens reduced Fe(III) bound in humic substances, but the concentrations of Fe(III) in a wide range of highly purified humic substances were too low to account for a significant portion of the electron-accepting capacities of the humic substances. Furthermore, once reduced, the iron in humic substances could not transfer electrons to Fe(III) oxide. These results suggest that other electron-accepting moieties in humic substances, such as quinones, are the important electron-accepting and shuttling agents under Fe(III)-reducing conditions. PMID:10473447

  4. Microbes Enhance Mobility of Arsenic in Pleistocene Aquifer Sand from Bangladesh

    PubMed Central

    Dhar, Ratan K.; Zheng, Yan; Saltikov, Chad W.; Radloff, Kathleen A.; Mailloux, Brian; Ahmed, Kazi. M.; van Geen, Alexander

    2018-01-01

    Dissimilatory metal-reducing bacteria can mobilize As, but few studies have studied such processes in deeper orange-colored Pleistocene sands containing 1–2 mg kg−1 As that are associated with low-As groundwater in Bangladesh. To address this gap, anaerobic incubations were conducted in replicate over 90 days using natural orange sands initially containing 0.14 mg kg−1 of 1 M phosphate-extractable As (24 hr), >99% as As(V), and 0.8 g kg−1 of 1.2 M HCl-leachable Fe (1 hr at 80°C), 95% as Fe(III). The sediment was resuspended in artificial groundwater, with or without lactate as a labile carbon source, and inoculated with metal-reducing Shewanella sp. ANA-3. Within 23 days, dissolved As concentrations increased to 17 μg L−1 with lactate, 97% as As(III), and 2 μg L−1 without lactate. Phosphate-extractable As concentrations increased 4-fold to 0.6 mg kg−1 in the same incubations, even without the addition of lactate. Dissolved As levels in controls without Shewanella, both with and without lactate, instead remained <1 μg L−1. These observations indicate that metal-reducers such as Shewanella can trigger As release to groundwater by converting sedimentary As to a more mobilizable form without the addition of high levels of labile carbon. Such interactions need to be better understood to determine the vulnerability of low-As aquifers from which drinking water is increasingly drawn in Bangladesh. PMID:21405115

  5. Synthesis and electrophosphorescence of iridium complexes containing benzothiazole-based ligands.

    PubMed

    Liu, Di; Ren, Huicai; Deng, Lijun; Zhang, Ting

    2013-06-12

    Four heteroleptic bis-cyclometalated iridium(III) complexes containing 2-aryl-benzothiazole ligands, in which the aryl is dibenzofuran-2-yl [Ir(O-bt)2(acac)], dibenzothiophene-2-yl [Ir(S-bt)2(acac)], dibenzothiophene-S,S-dioxide-2-yl [Ir(SO2-bt)2(acac)] and 4-(diphenylphosphoryl)phenyl [Ir(PO-bt)2(acac)], have been synthesized and characterized for use in organic light-emitting diodes (OLEDs). These complexes emit bright yellow (551 nm) to orange-red (598 nm) phosphorescence at room temperature, the peak wavelengths of which can be finely tuned depending upon the electronic properties of the aryl group in the 2-position of benzothiazole. The strong electron-withdrawing aryls such as dibenzothiophene-S,S-dioxide2-yl and 4-(diphenylphosphoryl)phenyl caused bathochromatic shift of the iridium complex phosphorescence. These iridium complexes were used as doped emitters to fabricate yellow to orange-red OLEDs and good performance was obtained. In particular, a maximum luminance efficiency of 58.4 cd A(-1) (corresponding to 30.6 lm W(-1) and 19%) with CIE coordinates of (0.45, 0.52) was achieved for Ir(O-bt)2(acac)-based yellow device. Furthermore, the yellow emitting Ir(S-bt)2(acac) was used to fabricate two-element white OLED that exhibited a high efficiency of 32.4 cd A(-1) with CIE coordinates of (0.28, 0.44).

  6. Electronic structure and reactivity of high-spin iron--alkyl- and--pterinperoxo complexes.

    PubMed

    Lehnert, Nicolai; Fujisawa, Kiyoshi; Solomon, Edward I

    2003-01-27

    The spectroscopic properties and electronic structure of the four-coordinate high-spin [FeIII(L3)(OOtBu)]+ complex (1; L3 = hydrotris(3-tert-butyl-5-isopropyl-1-pyrazolyl)borate; tBu = tert-butyl) are investigated and compared to the six-coordinated high-spin [Fe(6-Me3TPA)(OHx)(OOtBu)]x+ system (TPA = tris(2-pyridylmethyl)amine, x = 1 or 2) studied earlier [Lehnert, N.; Ho, R. Y. N.; Que, L., Jr.; Solomon, E. I. J. Am. Chem. Soc. 2001, 123, 12802-12816]. Complex 1 is characterized by Raman features at 889 and 830 cm-1 which are assigned to the O-O stretch (mixed with the symmetric C-C stretch) and a band at 625 cm-1 that corresponds to nu(Fe-O). The UV-vis spectrum shows a charge-transfer (CT) transition at 510 nm from the alkylperoxo pi v* (v = vertical to C-O-O plane) to a d orbital of Fe(III). A second CT is identified from MCD at 370 nm that is assigned to a transition from pi h* (h = horizontal to C-O-O plane) to an Fe(III) d orbital. For the TPA complex the pi v* CT is at 560 nm while the pi h* CT is to higher energy than 250 nm. These spectroscopic differences between four- and six-coordinate Fe(III)-OOR complexes are interpreted on the basis of their different ligand fields. In addition, the electronic structure of Fe-OOPtn complexes with the biologically relevant pterinperoxo ligand are investigated. Substitution of the tert-butyl group in 1 by pterin leads to the corresponding Fe(III)-OOPtn species (2), which shows a stronger electron donation from the peroxide to Fe(III) than 1. This is related to the lower ionization potential of pterin. Reduction of 2 by one electron leads to the Fe(II)-OOPtn complex (3), which is relevant as a model for potential intermediates in pterin-dependent hydroxylases. However, in the four-coordinate ligand field of 3, the additional electron is located in a nonbonding d orbital of iron. Hence, the pterinperoxo ligand is not activated for heterolytic cleavage of the O-O bond in this system. This is also evident from the calculated reaction energies that are endothermic by at least 20 kcal/mol.

  7. Role of Heme Oxygenase-1 in Polymyxin B-Induced Nephrotoxicity in Rats

    PubMed Central

    Watanabe, Mirian

    2012-01-01

    Polymyxin B (PMB) is a cationic polypeptide antibiotic with activity against multidrug-resistant Gram-negative bacteria. PMB-induced nephrotoxicity consists of direct toxicity to the renal tubules and the release of reactive oxygen species (ROS) with oxidative damage. This study evaluated the nephroprotective effect of heme oxygenase-1 (HO-1) against PMB-induced nephrotoxicity in rats. Adult male Wistar rats, weighing 286 ± 12 g, were treated intraperitoneally once a day for 5 days with saline, hemin (HO-1 inducer; 10 mg/kg), zinc protoporphyrin (ZnPP) (HO-1 inhibitor; 50 μmol/kg, administered before PMB on day 5), PMB (4 mg/kg), PMB plus hemin, and PMB plus ZnPP. Renal function (creatinine clearance, Jaffe method), urinary peroxides (ferrous oxidation of xylenol orange version 2 [FOX-2]), urinary thiobarbituric acid-reactive substances (TBARS), renal tissue thiols, catalase activity, and renal tissue histology were analyzed. The results showed that PMB reduced creatinine clearance (P < 0.05), with an increase in urinary peroxides and TBARS. The PMB toxicity caused a reduction in catalase activity and thiols (P < 0.05). Hemin attenuated PMB nephrotoxicity by increasing the catalase antioxidant activity (P < 0.05). The combination of PMB and ZnPP incremented the fractional interstitial area of renal tissue (P < 0.05), and acute tubular necrosis in the cortex area was also observed. This is the first study demonstrating the protective effect of HO-1 against PMB-induced nephrotoxicity. PMID:22802257

  8. Effect of the Aqueous Extract of Lantana grisebachii Stuck Against Bioaccumulated Arsenic-Induced Oxidative and Lipid Dysfunction in Rat Splenocytes.

    PubMed

    Ramos Elizagaray, Sabina I; Quiroga, Patricia L; Pérez, Roberto D; Sosa, Carlos; Pérez, Carlos A; Bongiovanni, Guillermina A; Soria, Elio A

    2018-06-29

    Arsenic (As) is a worldwide immunotoxic agent that is in contaminated waters and consumed by mammals. Phytotherapy may counteract its harmful effects. Lantana grisebachii Stuck (LG, Verbenaceae) and its extract are proposed as protective, given vvits in vitro bioactivity. The aim was to determine the protective capacity of the aqueous LG extract on splenocytes exposed in vivo to arsenic. Splenocytes were obtained from an arsenicosis model (Wistar rats consuming orally 0 [control; C] or 5 mg/Kg/d of As) that received 0-100 mg/Kg/d of LG extract for 30 days. As content (total reflection X-ray fluorescence), fatty acid profile (gas chromatography), γ-glutamyl transpeptidase activity (Szasz method), peroxides (xylenol orange-based assay), and nitrites (Griess reaction) were then assayed in viable splenocytes. Data were analyzed with ANOVA and the Tukey's test (p < .05). It was observed that the splenocytes contained 2.2 mg/Kg of this elemental arsenic. With γ-glutamyl transpeptidase inhibition and consequent triggering of hydroperoxides (p < .05), it was observed to increase saturated fatty acids and alter lipid profiles. LG treatment avoided damaging effects with values similar to unexposed C (p < .05), and cellular arsenic concentration (p < .0001). In conclusion, the aqueous extract of L. grisebachii counteracted arsenic toxicity in rat splenocytes by preventing its cellular accumulation and induction of lipid and redox disturbances, which may impair immune function.

  9. Human Vitronectin-Derived Peptide Covalently Grafted onto Titanium Surface Improves Osteogenic Activity: A Pilot In Vivo Study on Rabbits.

    PubMed

    Cacchioli, Antonio; Ravanetti, Francesca; Bagno, Andrea; Dettin, Monica; Gabbi, Carlo

    2009-10-01

    Peptide and protein exploitation for the biochemical functionalization of biomaterial surfaces allowed fabricating biomimetic devices able to evoke and promote specific and advantageous cell functions in vitro and in vivo. In particular, cell adhesion improvement to support the osseointegration of implantable devices has been thoroughly investigated. This study was aimed at checking the biological activity of the (351-359) human vitronectin precursor (HVP) sequence, mapped on the human vitronectin protein; the peptide was covalently linked to the surface of titanium cylinders, surgically inserted in the femurs of New Zealand white rabbits and analyzed at short experimental time points (4, 9, and 16 days after surgery). To assess the osteogenic activity of the peptide, three vital fluorochromic bone markers were used (calcein green, xylenol orange, and calcein blue) to stain the areas of newly grown bone. Static and dynamic histomorphometric parameters were measured at the bone-implant interface and at different distances from the surface. The biological role of the (351-359)HVP sequence was checked by comparing peptide-grafted samples and controls, analyzing how and how much its effects change with time across the bone regions surrounding the implant surface. The results obtained reveal a major activity of the investigated peptide 4 days after surgery, within the bone region closest to the implant surface, and larger bone to implant contact 9 and 16 days after surgery. Thus, improved primary fixation of endosseous devices can be foreseen, resulting in an increased osteointegration.

  10. A phantom study on bladder and rectum dose measurements in brachytherapy of cervix cancer using FBX aqueous chemical dosimeter.

    PubMed

    Bansal, Anil K; Semwal, Manoj K; Arora, Deepak; Sharma, D N; Julka, P K; Rath, G K

    2013-06-01

    The ferrous sulphate-benzoic acid-xylenol orange (FBX) chemical dosimeter, due to its aqueous form can measure average volume doses and hence may overcome the limitations of point dosimetry. The present study was undertaken to validate the use of FBX dosimeter for rectum and bladder dose measurement during intracavitary brachytherapy (ICBT) and transperineal interstitial brachytherapy (TIB). We filled cylindrical polypropylene tubes (PT) and Foley balloons (FB) with FBX solution and used them as substitutes for rectum and bladder dose measurements respectively. A water phantom was fabricated with provision to place the Fletcher-type ICBT and MUPIT template applicators, and FBX filled PT and FB within the phantom. The phantom was then CT scanned for treatment planning and subsequent irradiation. Our results show that the average difference between DVH derived dose value and FBX measured dose is 3.5% (PT) and 13.7% (FB) for ICBT, and 9% (PT) and 9.9% (FB) for TIB. We believe that the FBX system should be able to provide accuracy and precision sufficient for routine quality assurance purposes. The advantage of the FBX system is its water equivalent composition, average volume dose measuring capability, and energy and temperature independent response as compared to TLD or semiconductor dosimeters. However, detailed studies will be needed with regards to its safety before actual in-vivo dose measurements are possible with the FBX dosimeter. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Anti-inflammatory and anticholinesterase activity of six flavonoids isolated from Polygonum and Dorstenia species.

    PubMed

    Dzoyem, Jean Paul; Nkuete, Antoine H L; Ngameni, Barthelemy; Eloff, Jacobus N

    2017-10-01

    This study was aimed at investigating the anti-inflammatory and anticholinesterase activity of six naturally occurring flavonoids: (-) pinostrobin (1), 2',4'-dihydroxy-3',6'-dimethoxychalcone (2), 6-8-diprenyleriodictyol (3), isobavachalcone (4), 4-hydroxylonchocarpin (5) and 6-prenylapigenin (6). These compounds were isolated from Dorstenia and Polygonum species used traditionally to treat pain. The anti-inflammatory activity was determined by using the Griess assay and the 15-lipoxygenase inhibitory activity was determined with the ferrous oxidation-xylenol orange assay. Acetylcholinesterase inhibition was determined by the Ellman's method. At the lowest concentration tested (3.12 µg/ml), compounds 2, 3 and 4 had significant NO inhibitory activity with 90.71, 84.65 and 79.57 % inhibition respectively compared to the positive control quercetin (67.93 %). At this concentration there was no significant cytotoxicity against macrophages with 91.67, 72.86 and 70.86 % cell viability respectively, compared to 73.1 % for quercetin. Compound 4 had the most potent lipoxygenase inhibitory activity (IC 50 of 25.92 µg/ml). With the exception of (-) pinostrobin (1), all the flavonoids had selective anticholinesterase activity with IC 50 values ranging between 5.93 and 8.76 µg/ml compared to the IC 50 4.94 µg/ml of eserine the positive control. These results indicate that the studied flavonoids especially isobavachalcone are potential anti-inflammatory natural products that may have the potential to be developed as therapeutic agents against inflammatory conditions and even Alzheimer's disease.

  12. Selected serum oxidative stress biomarkers in dogs with non-food-induced and food-induced atopic dermatitis.

    PubMed

    Almela, Ramón M; Rubio, Camila P; Cerón, José J; Ansón, Agustina; Tichy, Alexander; Mayer, Ursula

    2018-06-01

    Oxidative stress (OS) has been shown to be involved in the pathogenesis of human and canine atopic dermatitis (AD) through several distinct mechanisms. Selected serum biomarkers of OS (sbOS) have been validated in normal dogs and studied in several canine diseases. To the best of the authors' knowledge, the sbOS evaluated in this study have not previously been described in canine AD. The aims of the study were to evaluate a panel of sbOS in dogs with food-induced (FIAD) and non-food-induced (NFIAD) AD: cupric reducing antioxidant capacity (CUPRAC), ferrous oxidation-xylenol orange (FOX), ferric reducing ability of the plasma (FRAP), paraoxonase-1 (PON1), trolox equivalent antioxidant capacity (TEAC) and serum total thiol (THIOL). The aim was to compare these metabolites with those in healthy control dogs, and to correlate sbOS with validated pruritus and CADESI-04 severity scales in dogs with AD. Forty six healthy, nine NFIAD and three FIAD client-owned dogs were included. The study was designed as a cohort study. There were significant differences in atopic dogs when compared to healthy dogs for all of the sbOS analysed. These findings suggest that OS could play a role in the pathogenesis of canine NFIAD and FIAD. In addition, the evaluation of sbOS could be useful for precision medicine to help to detect atopic dogs that might benefit from antioxidant-targeted therapies. © 2018 ESVD and ACVD.

  13. Ovariectomy-induced changes in aged beagles: Histomorphometry and mineral content of the rib

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, A.K.; Bhattacharyya, M.H.; Hurst, D.

    1997-08-01

    The effects of ovariectomy on the aged beagle skeleton were studied by histomorphometric analysis of the cortical bone in sequential rib biopsies. Biopsies were taken from each ovariectomized (OV) or sham-operated (SO) dog at the time of surgery and at 1, 4, and 8.5 months after surgery. Tetracycline, calcein, and xylenol orange, respectively, were administered by a fluorochrome labeling procedure (2d-10d-2d) just prior to each postoperative biopsy to provide markers of bone formation. Analysis of sequential biopsies provided a means to follow the response to ovariectomy over time and compare each animal against its own baseline. Examination of sequential biopsiesmore » indicated that cortical porosity increased by the fourth month after ovariectomy and remained high at 8.5 months. Ovariectomy did not influence histomorphometric indices at one month after surgery, but substantial differences were observed at later times. Ovariectomy stimulated a transient increase in bone formation and was increased six-fold over that of SO dogs at four months. Ribs were also analyzed for mineral content at necropsy. The rib was heterogeneous along its length for calcium content and concentration. In the midrib where biopsies for histomorphometric analysis were taken, ovariectomy induced a decrease in mass and mineral content; total calcium was decreased by approximately 31%. These data demonstrate that the rib cortical bone is a responsive site for the effects of ovariectomy in female dogs.« less

  14. 40 CFR Appendix - Tables to Part 132

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-Bromophenyl phenyl ether Butyl benzyl phthalate Cadmium Carbon tetrachloride; tetrachloromethane Chlorobenzene...) phthalate Diazinon 1,2:5,6-Dibenzanthracene; dibenz[a,h]anthracene Dibutyl phthalate; di-n-butyl phthalate 1...-dichloropropylene Diethyl phthalate 2,4-Dimethylphenol; 2,4-xylenol Dimethyl phthalate 4,6-Dinitro-o-cresol; 2...

  15. Rapid screening of phytoremediation effluents by off-line tetramethylammonium hydroxide assisted thermochemolysis.

    PubMed

    Poerschmann, Juergen; Schultze-Nobre, Luciana

    2015-06-15

    Tetramethylammonium hydroxide-assisted thermochemolysis performed in an off-line mode proved a useful tool in determining organic compounds in the effluent from laboratory-scale phytoremediation systems. Studies were performed with artificial wastewaters contaminated with xylenols and densely rooted Juncus effuses plants. Analytes in these molecular-level based studies included xylenol substrates, an array of stable intermediates such as low molecular weight carboxylic acids and oxidative coupling products (tetramethyl biphenyldiols, tetramethyl diphenylether monools), diagnostic fatty acid biomarkers, as well as lignin-, carbohydrate-, and protein-based phenols and carboxylic acids. Lignin-based breakdown products belonged to p-hydroxyphenyl- and guaiacyl-units, with lower abundance of syringyl units and the dominance of acids over phenols. Monomeric lignin-, protein- and carbohydrate-based breakdown products could not be detected in the non-treated lyophilized effluent. The formation of diketopiperazines pointed to soluble peptides and proteins. The procedure described herein can easily be applied in every modern laboratory to characterize underlying processes in phytoremediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. [Effects of iron on azoreduction by Shewanella decolorationis S12].

    PubMed

    Chen, Xing-Juan; Xu, Mei-Ying; Sun, Guo-Ping

    2010-01-01

    The effects of soluble and insoluble Fe(III) on anaerobic azoreduction by Shewanella decolorationis S12 were examined in a series of experiments. Results showed that the effects of iron on anaerobic azoreduction depended on the solubility and concentration of the compounds. Azoreduction was inhibited by insoluble Fe(III) and 0.05-2 mmol/L Fe2 O3 all decelerated the azoreduction activity of 0.2 mmol/L amaranth, but the increase in the concentrations of Fe2O3 did not cause an increasing inhibition. Soluble Fe(III) of which concentration less than 0.4 mmol/L enhanced azoreduction activity of 0.2 mmol/L amaranth but there was no linear relationship between the concentration of soluble Fe(III) and azoreduction activity. Soluble Fe(III) of which concentration more than 1 mmol/L inhibited azoreduction activity of 0.2 mmol/L amaranth and an increasing concentration resulted in an increased inhibition. The inhibition was strengthened under the conditions of limited electron donor. On the other hand, soluble Fe(III) and Fe(II) could relieve the inhibition of azoreduction by dicumarol which blocked quinone cycle. It suggests that in addition to quinone cycle, there is a Fe(III) <--> Fe(II) cycle shuttling electrons in cytoplasmic and periplasmic environment. That is the reason why low concentration of soluble Fe(III) or Fe (II) can enhance azoreduction of S. decolorationis S12. It also indicates that insoluble Fe(III) and high concentration of soluble Fe(III) do compete with azo dye for electrons once it acts as electron acceptor. Thus, when iron and azo dye coexisted, iron could serve as an electron transfer agent or electron competitive inhibitor for anaerobic azoreduction under different conditions. High efficiency of azoreduction can be achieved through controlling the solubility and concentration of irons.

  17. Iron-Mediated Oxidation of Methoxyhydroquinone under Dark Conditions: Kinetic and Mechanistic Insights.

    PubMed

    Yuan, Xiu; Davis, James A; Nico, Peter S

    2016-02-16

    Despite the biogeochemical significance of the interactions between natural organic matter (NOM) and iron species, considerable uncertainty still remains as to the exact processes contributing to the rates and extents of complexation and redox reactions between these important and complex environmental components. Investigations on the reactivity of low-molecular-weight quinones, which are believed to be key redox active compounds within NOM, toward iron species, could provide considerable insight into the kinetics and mechanisms of reactions involving NOM and iron. In this study, the oxidation of 2-methoxyhydroquinone (MH2Q) by ferric iron (Fe(III)) under dark conditions in the absence and presence of oxygen was investigated within a pH range of 4-6. Although Fe(III) was capable of stoichiometrically oxidizing MH2Q under anaerobic conditions, catalytic oxidation of MH2Q was observed in the presence of O2 due to further cycling between oxygen, semiquinone radicals, and iron species. A detailed kinetic model was developed to describe the predominant mechanisms, which indicated that both the undissociated and monodissociated anions of MH2Q were kinetically active species toward Fe(III) reduction, with the monodissociated anion being the key species accounting for the pH dependence of the oxidation. The generated radical intermediates, namely semiquinone and superoxide, are of great importance in reaction-chain propagation. The kinetic model may provide critical insight into the underlying mechanisms of the thermodynamic and kinetic characteristics of metal-organic interactions and assist in understanding and predicting the factors controlling iron and organic matter transformation and bioavailability in aquatic systems.

  18. Crystal structure of octa­kis­(4-meth­oxy­pyridinium) bis­(4-meth­oxy­pyridine-κN)tetra­kis­(thio­cyanato-κN)ferrate(III) bis­[(4-meth­oxypyri­dine-κN)pentakis­(thio­cyanato-κN)ferrate(III)] hexa­kis­(thio­cyanato-κN)ferrate(III) with iron in three different octa­hedral coordination environments

    PubMed Central

    Jochim, Aleksej; Jess, Inke; Näther, Christian

    2018-01-01

    The crystal structure of the title salt, (C6H8NO)8[Fe(NCS)4(C6H7NO)2][Fe(NCS)5(C6H7NO)]2[Fe(NCS)6], comprises three negatively charged octa­hedral FeIII complexes with different coordination environments in which the FeIII atoms are coordinated by a different number of thio­cyanate anions and 4-meth­oxy­pyridine ligands. Charge balance is achieved by 4-meth­oxy­pyridinium cations. The asymmetric unit consists of three FeIII cations, one of which is located on a centre of inversion, one on a twofold rotation axis and one in a general position, and ten thio­cyanate anions, two 4-meth­oxy­pyridine ligands and 4-meth­oxy­pyridinium cations (one of which is disordered over two sets of sites). Beside to Coulombic inter­actions between organic cations and the ferrate(III) anions, weak N—H⋯S hydrogen-bonding inter­actions involving the pyridinium N—H groups of the cations and the thio­cyanate S atoms of the complex anions are mainly responsible for the cohesion of the crystal structure. PMID:29765708

  19. Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms

    USGS Publications Warehouse

    Lovley, D.R.; Woodward, J.C.; Chapelle, F.H.

    1996-01-01

    Fe(III) chelated to such compounds as EDTA, N-methyliminodiacetie acid, ethanol diglycine, humic acids, and phosphates stimulated benzene oxidation coupled to Fe(III) reduction in anaerobic sediments from a petroleum- contaminated aquifer as effectively as or more effectively than nitrilotriacetic acid did in a previously demonstrated stimulation experiment. These results indicate that many forms of chelated Fe(III) might be applicable to aquifer remediation.

  20. Spectrophotometric Determination of 6-Propyl-2-Thiouracil in Pharmaceutical Formulations Based on Prussian Blue Complex Formation: An Undergraduate Instrumental Analysis Laboratory Experiment

    ERIC Educational Resources Information Center

    Zakrzewski, Robert; Skowron, Monika; Ciesielski, Witold; Rembisz, Zaneta

    2016-01-01

    The laboratory experiment challenges students to determine 6-propyl-2-thiouracil (PTU) based on Prussian blue complex formation. Prussian blue is formed by ferricyanide and Fe(II) ions which are generated in situ from Fe(III) ions reduced by PTU. The absorbance of this product was measured at a wavelength of 840 nm, after a reaction time of 30…

  1. Isolation of Geobacter species from diverse sedimentary environments

    USGS Publications Warehouse

    Coaxes, J.D.; Phillips, E.J.P.; Lonergan, D.J.; Jenter, H.; Lovley, D.R.

    1996-01-01

    In an attempt to better understand the microorganisms responsible for Fe(III) reduction in sedimentary environments, Fe(III)-reducing microorganisms were enriched for and isolated from freshwater aquatic sediments, a pristine deep aquifer, and a petroleum-contaminated shallow aquifer. Enrichments were initiated with acetate or toluene as the electron donor and Fe(III) as the electron acceptor. Isolations were made with acetate or benzoate. Five new strains which could obtain energy for growth by dissimilatory Fe(III) reduction were isolated. All five isolates are gram- negative strict anaerobes which grow with acetate as the electron donor and Fe(III) as the electron acceptor. Analysis of the 16S rRNA sequence of the isolated organisms demonstrated that they all belonged to the genus Geobacter in the delta subdivision of the Proteobacteria. Unlike the type strain, Geobacter metallireducens, three of the five isolates could use H2 as an electron donor fur Fe(III) reduction. The deep subsurface isolate is the first Fe(III) reducer shown to completely oxidize lactate to carbon dioxide, while one of the freshwater sediment isolates is only the second Fe(III) reducer known that can oxidize toluene. The isolation of these organisms demonstrates that Geobacter species are widely distributed in a diversity of sedimentary environments in which Fe(III) reduction is an important process.

  2. Influence of the protonation state on the binding mode of methyl orange with cucurbiturils

    NASA Astrophysics Data System (ADS)

    He, Suhang; Sun, Xuzhuo; Zhang, Haibo

    2016-03-01

    Binding modes of methyl orange (MO) with cucurbiturils (CBs) have been investigated by Single Crystal X-ray Diffraction and NMR Spectroscopy. Detailed study of intermolecular interactions was supported by the Hirshfeld surface analysis. Protonation state of the anionic part of methyl orange has greatly influenced the binding mode of the complex. Stabilized by hydrogen bonding at the portal, hydrophobic and dispersion interactions in the cavity, the protonated methyl orange was deeply inserted into the cavity. On the contrary, the anionic methyl orange has been pushed towards the outside of the cavity by the electrostatic repulsion between the azo group and the portal oxygen. A ;water bridge; was found in MO@CB8 linking both host and guest via hydrogen bonds.

  3. Influence of uranyl speciation and iron oxides on uranium biogeochemical redox reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, B.D.; Amos, R.T.; Nico, P.S.

    2010-03-15

    Uranium is a pollutant of concern to both human and ecosystem health. Uranium's redox state often dictates its partitioning between the aqueous- and solid-phases, and thus controls its dissolved concentration and, coupled with groundwater flow, its migration within the environment. In anaerobic environments, the more oxidized and mobile form of uranium (UO{sub 2}{sup 2+} and associated species) may be reduced, directly or indirectly, by microorganisms to U(IV) with subsequent precipitation of UO{sub 2}. However, various factors within soils and sediments may limit biological reduction of U(VI), inclusive of alterations in U(VI) speciation and competitive electron acceptors. Here we elucidate themore » impact of U(VI) speciation on the extent and rate of reduction with specific emphasis on speciation changes induced by dissolved Ca, and we examine the impact of Fe(III) (hydr)oxides (ferrihydrite, goethite and hematite) varying in free energies of formation on U reduction. The amount of uranium removed from solution during 100 h of incubation with S. putrefaciens was 77% with no Ca or ferrihydrite present but only 24% (with ferrihydrite) and 14% (no ferrihydrite) were removed for systems with 0.8 mM Ca. Imparting an important criterion on uranium reduction, goethite and hematite decrease the dissolved concentration of calcium through adsorption and thus tend to diminish the effect of calcium on uranium reduction. Dissimilatory reduction of Fe(III) and U(VI) can proceed through different enzyme pathways, even within a single organism, thus providing a potential second means by which Fe(III) bearing minerals may impact U(VI) reduction. We quantify rate coefficients for simultaneous dissimilatory reduction of Fe(III) and U(VI) in systems varying in Ca concentration (0 to 0.8 mM), and using a mathematical construct implemented with the reactive transport code MIN3P, we reveal the predominant influence of uranyl speciation, specifically the formation of uranyl-calcium-carbonato complexes, and ferrihydrite on the rate and extent of uranium reduction in complex geochemical systems.« less

  4. Exchange Interactions on the Highest-Spin Reported Molecule: the Mixed-Valence Fe42 Complex

    NASA Astrophysics Data System (ADS)

    Aravena, Daniel; Venegas-Yazigi, Diego; Ruiz, Eliseo

    2016-04-01

    The finding of high-spin molecules that could behave as conventional magnets has been one of the main challenges in Molecular Magnetism. Here, the exchange interactions, present in the highest-spin molecule published in the literature, Fe42, have been analysed using theoretical methods based on Density Functional Theory. The system with a total spin value S = 45 is formed by 42 iron centres containing 18 high-spin FeIII ferromagnetically coupled and 24 diamagnetic low-spin FeII ions. The bridging ligands between the two paramagnetic centres are two cyanide ligands coordinated to the diamagnetic FeII cations. Calculations were performed using either small Fe4 or Fe3 models or the whole Fe42 complex, showing the presence of two different ferromagnetic couplings between the paramagnetic FeIII centres. Finally, Quantum Monte Carlo simulations for the whole system were carried out in order to compare the experimental and simulated magnetic susceptibility curves from the calculated exchange coupling constants with the experimental one. This comparison allows for the evaluation of the accuracy of different exchange-correlation functionals to reproduce such magnetic properties.

  5. Reactivity of food phenols with iron and copper ions: binding, dioxygen activation and oxidation mechanisms.

    PubMed

    Nkhili, Ezzohra; Loonis, Michèle; Mihai, Simona; El Hajji, Hakima; Dangles, Olivier

    2014-06-01

    In this work, the affinity of common dietary phenols (gallic acid, caffeic acid, catechin, and rutin) for iron and copper ions was quantitatively investigated in neutral phosphate buffer as well as the reactivity of the complexes toward dioxygen. Contrasting behaviors were observed: because of the competing phosphate ions, Fe(III) binding is much slower than Fe(II) binding, which is rapidly followed by autoxidation of Fe(II) into Fe(III). With both ions, O2 consumption and H2O2 production are modest and the phenolic ligands are only slowly oxidized. By contrast, metal-phenol binding is fast with both Cu(I) and Cu(II). With Cu(I), O2 consumption and H2O2 production are very significant and the phenolic ligands are rapidly oxidized into a complex mixture of oligomers. The corresponding mechanism with Cu(II) is hampered by the preliminary rate-determining step of Cu(II) reduction by the phenols. The consequences of these findings for the stability and antioxidant activity of plant phenols are discussed.

  6. Deferiprone, a non-toxic reagent for determination of iron in samples via sequential injection analysis

    NASA Astrophysics Data System (ADS)

    Pragourpun, Kraivinee; Sakee, Uthai; Fernandez, Carlos; Kruanetr, Senee

    2015-05-01

    We present for the first time the use of deferiprone as a non-toxic complexing agent for the determination of iron by sequential injection analysis in pharmaceuticals and food samples. The method was based on the reaction of Fe(III) and deferiprone in phosphate buffer at pH 7.5 to give a Fe(III)-deferiprone complex, which showed a maximum absorption at 460 nm. Under the optimum conditions, the linearity range for iron determination was found over the range of 0.05-3.0 μg mL-1 with a correlation coefficient (r2) of 0.9993. The limit of detection and limit of quantitation were 0.032 μg mL-1 and 0.055 μg mL-1, respectively. The relative standard deviation (%RSD) of the method was less than 5.0% (n = 11), and the percentage recovery was found in the range of 96.0-104.0%. The proposed method was satisfactorily applied for the determination of Fe(III) in pharmaceuticals, water and food samples with a sampling rate of 60 h-1.

  7. Release of 226Ra from uranium mill tailings by microbial Fe(III) reduction

    USGS Publications Warehouse

    Landa, E.R.; Phillips, E.J.P.; Lovley, D.R.

    1991-01-01

    Uranium mill tailings were anaerobically incubated in the presence of H2 with Alteromonas putrefaciens, a bacterium known to couple the oxidation of H2 and organic compounds to the reduction of Fe(III) oxides. There was a direct correlation between the extent of Fe(III) reduction and the accumulation of dissolved 226Ra. In sterile tailings in which Fe(III) was not reduced, there was negligible leaching of 226Ra. The behavior of Ba was similar to that of Ra in inoculated and sterile systems. These results demonstrate that under anaerobic conditions, microbial reduction of Fe(III) may result in the release of dissolved 226Ra from uranium mill tailings. ?? 1991.

  8. Secondary mineral formation associated with respiration of nontronite, NAu-1 by iron reducing bacteria

    PubMed Central

    O'Reilly, S Erin; Watkins, Janet; Furukawa, Yoko

    2005-01-01

    Experimental batch and miscible-flow cultures were studied in order to determine the mechanistic pathways of microbial Fe(III) respiration in ferruginous smectite clay, NAu-1. The primary purpose was to resolve if alteration of smectite and release of Fe precedes microbial respiration. Alteration of NAu-1, represented by the morphological and mineralogical changes, occurred regardless of the extent of microbial Fe(III) reduction in all of our experimental systems, including those that contained heat-killed bacteria and those in which O2, rather than Fe(III), was the primary terminal electron acceptor. The solid alteration products observed under transmission electron microscopy included poorly crystalline smectite with diffuse electron diffraction signals, discrete grains of Fe-free amorphous aluminosilicate with increased Al/Si ratio, Fe-rich grains, and amorphous Si globules in the immediate vicinity of bacterial cells and extracellular polymeric substances. In reducing systems, Fe was also found as siderite. The small amount of Fe partitioned to the aqueous phase was primarily in the form of dissolved Fe(III) species even in the systems in which Fe(III) was the primary terminal electron acceptor for microbial respiration. From these observations, we conclude that microbial respiration of Fe(III) in our laboratory systems proceeded through the following: (1) alteration of NAu-1 and concurrent release of Fe(III) from the octahedral sheets of NAu-1; and (2) subsequent microbial respiration of Fe(III).

  9. 40 CFR Appendix D to Part 122 - NPDES Permit Application Testing Requirements (§ 122.21)

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Coliform Fluoride Nitrate-Nitrite Nitrogen, Total Organic Oil and Grease Phosphorus, Total Radioactivity... dodecylbenzenesulfonate Triethylamine Trimethylamine Uranium Vanadium Vinyl acetate Xylene Xylenol Zirconium [Note 1: The.... Testing and reporting for the pesticide fraction in the Tall Oil Rosin Subcategory (subpart D) and Rosin...

  10. 40 CFR Appendix D to Part 122 - NPDES Permit Application Testing Requirements (§ 122.21)

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Coliform Fluoride Nitrate-Nitrite Nitrogen, Total Organic Oil and Grease Phosphorus, Total Radioactivity... dodecylbenzenesulfonate Triethylamine Trimethylamine Uranium Vanadium Vinyl acetate Xylene Xylenol Zirconium [Note 1: The.... Testing and reporting for the pesticide fraction in the Tall Oil Rosin Subcategory (subpart D) and Rosin...

  11. 40 CFR Appendix D to Part 122 - NPDES Permit Application Testing Requirements (§ 122.21)

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Coliform Fluoride Nitrate-Nitrite Nitrogen, Total Organic Oil and Grease Phosphorus, Total Radioactivity... dodecylbenzenesulfonate Triethylamine Trimethylamine Uranium Vanadium Vinyl acetate Xylene Xylenol Zirconium [Note 1: The.... Testing and reporting for the pesticide fraction in the Tall Oil Rosin Subcategory (subpart D) and Rosin...

  12. 40 CFR Appendix D to Part 122 - NPDES Permit Application Testing Requirements (§ 122.21)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Coliform Fluoride Nitrate-Nitrite Nitrogen, Total Organic Oil and Grease Phosphorus, Total Radioactivity... dodecylbenzenesulfonate Triethylamine Trimethylamine Uranium Vanadium Vinyl acetate Xylene Xylenol Zirconium [Note 1: The.... Testing and reporting for the pesticide fraction in the Tall Oil Rosin Subcategory (subpart D) and Rosin...

  13. 40 CFR Appendix D to Part 122 - NPDES Permit Application Testing Requirements (§ 122.21)

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Coliform Fluoride Nitrate-Nitrite Nitrogen, Total Organic Oil and Grease Phosphorus, Total Radioactivity... dodecylbenzenesulfonate Triethylamine Trimethylamine Uranium Vanadium Vinyl acetate Xylene Xylenol Zirconium [Note 1: The.... Testing and reporting for the pesticide fraction in the Tall Oil Rosin Subcategory (subpart D) and Rosin...

  14. [Fe(III)(dmbpy)(CN)4]-: a new building block for designing single-chain magnets.

    PubMed

    Toma, Luminita Marilena; Pasán, Jorge; Ruiz-Pérez, Catalina; Lloret, Francesc; Julve, Miguel

    2012-11-28

    We herein present the synthesis and magneto-structural study of a new family of heterobimetallic chains of general formula {[Fe(III)(dmbpy)(CN)(4)](2)M(II)(H(2)O)(2)}(n)·pnH(2)O [dmbpy = 4,4'-dimethyl-2,2'-bipyridine; M = Mn (2), Cu (3), Ni (4) and Co (5) with p = 4 (2), 3 (3), 9 (4) and 3.5 (5)] which were prepared by using the mononuclear PPh(4)[Fe(III)(dmbpy)(CN)(4)]·3H(2)O (1) building block (PPh(4)(+) = tetraphenylphosphonium) as a ligand toward fully solvated M(II) ions. The structure of 1 consists of discrete [Fe(III)(dmbpy)(CN)(4)](-) anions, tetraphenylphosphonium cations and noncoordinated water molecules. Complexes 2-5 are isostructural compounds whose structure consists of neutral 4,2-wave like heterobimetallic chains of formula {[Fe(III)(dmbpy)(CN)(4)](2)M(II)(H(2)O)(2)}(n) where the [Fe(III)(dmbpy)(CN)(4)](-) entity adopts a bis-monodentate coordination mode toward trans-[M(II)(H(2)O)(2)] units through two of its four cyanide groups in cis positions. 1 exhibits the magnetic behaviour of magnetically isolated six-coordinate low-spin Fe(III) complexes with an important orbital contribution. 2 behaves as ferrimagnetic Fe(III)(2)Mn(II) chains, whereas 3-5 exhibit intrachain ferromagnetic couplings between the low-spin Fe(III) and either Cu(II) (3), Ni (4) or Co(II) (5) as well as frequency-dependence of the out-of-phase ac susceptibility signals below 3.0 (3), 5.5 (4) and 5.0 K (5). The relaxation time and the energy to reverse the magnetization of 3-5 are related to the anisotropy of the M(II) center and to the intra- and interchain magnetic interactions. Unprecedentedly in the world of cyanide-bearing complexes, 5 exhibits a double slow relaxation of the magnetization.

  15. Control of Fe(III) site occupancy on the rate and extent of microbial reduction of Fe(III) in nontronite

    USGS Publications Warehouse

    Jaisi, Deb P.; Kukkadapu, R.K.; Eberl, D.D.; Dong, H.

    2005-01-01

    A quantitative study was performed to understand how Fe(III) site occupancy controls Fe(III) bioreduction in nontronite by Shewanella putrefaciens CN32. NAu-1 and NAu-2 were nontronites and contained Fe(III) in different structural sites with 16 and 23% total iron (w/w), respectively, with almost all iron as Fe(III). Mo??ssbauer spectroscopy showed that Fe(III) was present in the octahedral site in NAu-1 (with a small amount of goethite), but in both the tetrahedral and the octahedral sites in NAu-2. Mo??ssbauer data further showed that the octahedral Fe(III) in NAu-2 existed in at least two environments- trans (M1) and cis (M2) sites. The microbial Fe(III) reduction in NAu-1 and NAu-2 was studied in batch cultures at a nontronite concentration of 5 mg/mL in bicarbonate buffer with lactate as the electron donor. The unreduced and bioreduced nontronites were characterized by X-ray diffraction (XRD), Mo??ssbauer spectroscopy, and transmission electron microscopy (TEM). In the presence of an electron shuttle, anthraquinone-2,6-disulfonate (AQDS), the extent of bioreduction was 11%-16% for NAu-1 but 28%-32% for NAu-2. The extent of reduction in the absence of AQDS was only 5%-7% for NAu-1 but 14%-18% for NAu-2. The control experiments with heat killed cells and without cells did not show any appreciable reduction (<2%). The extent of reduction in experiments performed with a dialysis membrane to separate cells from clays (without AQDS) was 2%-3% for NAu-1 but 5%-7% for NAu-2, suggesting that cells probably released an electron shuttling compound and/or Fe(III) chelator. The reduction rate was also faster in NAu-2 than that in NAu-1. Mo??ssbauer data of the bioreduced nontronite materials indicated that the Fe(III) reduction in NAu-1 was mostly from the presence of goethite, whereas the reduction in NAu-2 was due to the presence of the tetrahedral and trans-octahedral Fe(III) in the structure. The measured aqueous Fe(II) was negligible. As a result of bioreduction, the average nontronite particle thickness remained nearly the same (from 2.1 to 2.5 nm) for NAu-1, but decreased significantly from 6 to 3.5 nm for NAu-2 with a concomitant change in crystal size distribution. The decrease in crystal size suggests reductive dissolution of nontronite NAu-2, which was supported by aqueous solution chemistry (i.e., aqueous Si). These data suggest that the more extensive Fe(III) bioreduction in NAu-2 was due to the presence of the tetrahedral and the trans-octahedral Fe(III), which was presumed to be more reducible. The biogenic Fe(II) was not associated with biogenic solids or in the aqueous solution. We infer that it may be either adsorbed onto surfaces of nontronite particles/bacteria or in the structure of nontronite. Furthermore, we have demonstrated that natural nontronite clays were capable of supporting cell growth even in medium without added nutrients, possibly due to presence of naturally existing nutrients in the nontronite clays. These results suggest that crystal chemical environment of Fe(III) is an important determinant in controlling the rate and extent of microbial reduction of Fe(III) in nontronite. Copyright ?? 2005 Elsevier Ltd.

  16. Phosphate inhibits in vitro Fe3+ loading into transferrin by forming a soluble Fe(III)-phosphate complex: a potential non-transferrin bound iron species.

    PubMed

    Hilton, Robert J; Seare, Matthew C; Andros, N David; Kenealey, Zachary; Orozco, Catalina Matias; Webb, Michael; Watt, Richard K

    2012-05-01

    In chronic kidney diseases, NTBI can occur even when total iron levels in serum are low and transferrin is not saturated. We postulated that elevated serum phosphate concentrations, present in CKD patients, might disrupt Fe(3+) loading into apo-transferrin by forming Fe(III)-phosphate species. We report that phosphate competes with apo-transferrin for Fe(3+) by forming a soluble Fe(III)-phosphate complex. Once formed, the Fe(III)-phosphate complex is not a substrate for donating Fe(3+) to apo-transferrin. Phosphate (1-10mM) does not chelate Fe(III) from diferric transferrin under the conditions examined. Complexed forms of Fe(3+), such as iron nitrilotriacetic acid (Fe(3+)-NTA), and Fe(III)-citrate are not susceptible to this phosphate complexation reaction and efficiently deliver Fe(3+) to apo-transferrin in the presence of phosphate. This reaction suggests that citrate might play an important role in protecting against Fe(III), phosphate interactions in vivo. In contrast to the reactions of Fe(3+) and phosphate, the addition of Fe(2+) to a solution of apo-transferrin and phosphate lead to rapid oxidation and deposition of Fe(3+) into apo-transferrin. These in vitro data suggest that, in principle, elevated phosphate concentrations can influence the ability of apo-transferrin to bind iron, depending on the oxidation state of the iron. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Cr(III), Fe(III) and Co(III) complexes of tetradentate (ONNO) Schiff base ligands: Synthesis, characterization, properties and biological activity

    NASA Astrophysics Data System (ADS)

    Keskioğlu, Eren; Gündüzalp, Ayla Balaban; Çete, Servet; Hamurcu, Fatma; Erk, Birgül

    2008-08-01

    A series of metal complexes were synthesized from equimolar amounts of Schiff bases: 1,4-bis[3-(2-hydroxy-1-naphthaldimine)propyl]piperazine (bappnaf) and 1,8-bis[3-(2-hydroxy-1-naphthaldimine)- p-menthane (damnaf) with metal chlorides. All of synthesized compounds were characterized by elemental analyses, spectral (UV-vis, IR, 1H- 13C NMR, LC-MS) and thermal (TGA-DTA) methods, magnetic and conductance measurements. Schiff base complexes supposed in tetragonal geometry have the general formula [M(bappnaf or damnaf)]Cl· nH 2O, where M = Cr(III), Co(III) and n = 2, 3. But also Fe(III) complexes have octahedral geometry by the coordination of two water molecules and the formula is [Fe(bappnaf or damnaf)(H 2O) 2]Cl. The changes in the selected vibration bands in FT-IR indicate that Schiff bases behave as (ONNO) tetradentate ligands and coordinate to metal ions from two phenolic oxygen atoms and two azomethine nitrogen atoms. Conductance measurements suggest 1:1 electrolytic nature of the metal complexes. The synthesized compounds except bappnaf ligand have the antimicrobial activity against the bacteria: Escherichia coli (ATCC 11230), Yersinia enterocolitica (ATCC 1501), Bacillus magaterium (RSKK 5117), Bacillus subtilis (RSKK 244), Bacillus cereus (RSKK 863) and the fungi: Candida albicans (ATCC 10239). These results have been considerably interest in piperazine derivatives due to their significant applications in antimicrobial studies.

  18. Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments

    USGS Publications Warehouse

    Snoeyenbos-West, O.L.; Nevin, K.P.; Anderson, R.T.; Lovely, D.R.

    2000-01-01

    Engineered stimulation of Fe(III) has been proposed as a strategy to enhance the immobilization of radioactive and toxic metals in metal-contaminated subsurface environments. Therefore, laboratory and field studies were conducted to determine which microbial populations would respond to stimulation of Fe(III) reduction in the sediments of sandy aquifers. In laboratory studies, the addition of either various organic electron donors or electron shuttle compounds stimulated Fe(III) reduction and resulted in Geobacter sequences becoming important constituents of the Bacterial 16S rDNA sequences that could be detected with PCR amplification and denaturing gradient gel electrophoresis (DGGE). Quantification of Geobacteraceae sequences with a PCR most-probable-number technique indicated that the extent to which numbers of Geobacter increased was related to the degree of stimulation of Fe(III) reduction. Geothrix species were also enriched in some instances, but were orders of magnitude less numerous than Geobacter species. Shewanella species were not detected, even when organic compounds known to be electron donors for Shewanella species were used to stimulate Fe(III) reduction in the sediments. Geobacter species were also enriched in two field experiments in which Fe(III) reduction was stimulated with the addition of benzoate or aromatic hydrocarbons. The apparent growth of Geobacter species concurrent with increased Fe(III) reduction suggests that Geobacter species were responsible for much of the Fe(III) reduction in all of the stimulation approaches evaluated in three geographically distinct aquifers. Therefore, strategies for subsurface remediation that involve enhancing the activity of indigenous Fe(III)-reducing populations in aquifers should consider the physiological properties of Geobacter species in their treatment design.

  19. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.; Lonergan, D.J.

    1989-01-01

    The ability of Alteromonas putrefaciens to obtain energy for growth by coupling the oxidation of various electron donors to dissimilatory Fe(III) or Mn(IV) reduction was investigated. A. putrefaciens grew with hydrogen, formate, lactate, or pyruvate as the sole electron donor and Fe(III) as the sole electron acceptor. Lactate and pyruvate were oxidized to acetate, which was not metabolized further. With Fe(III) as the electron acceptor, A. putrefaciens had a high affinity for hydrogen and formate and metabolized hydrogen at partial pressures that were 25-fold lower than those of hydrogen that can be metabolized by pure cultures of sulfate reducers or methanogens. The electron donors for Fe(III) reduction also supported Mn(IV) reduction. The electron donors for Fe(III) and Mn(IV) reduction and the inability of A. putrefaciens to completely oxidize multicarbon substrates to carbon dioxide distinguish A. putrefaciens from GS-15, the only other organism that is known to obtain energy for growth by coupling the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV). The ability of A. putrefaciens to reduce large quantities of Fe(III) and to grow in a defined medium distinguishes it from a Pseudomonas sp., which is the only other known hydrogen-oxidizing, Fe(III)-reducing microorganism. Furthermore, A. putrefaciens is the first organism that is known to grow with hydrogen as the electron donor and Mn(IV) as the electron acceptor and is the first organism that is known to couple the oxidation of formate to the reduction of Fe(III) or Mn(IV). Thus, A. putrefaciens provides a much needed microbial model for key reactions in the oxidation of sediment organic matter coupled to Fe(III) and Mn(IV) reduction.

  20. Tellurium Distribution and Speciation in Contaminated Soils from Abandoned Mine Tailings: Comparison with Selenium.

    PubMed

    Qin, Hai-Bo; Takeichi, Yasuo; Nitani, Hiroaki; Terada, Yasuko; Takahashi, Yoshio

    2017-06-06

    The distribution and chemical species of tellurium (Te) in contaminated soil were determined by a combination of microfocused X-ray fluorescence (μ-XRF), X-ray diffraction (μ-XRD), and X-ray absorption fine structure (μ-XAFS) techniques. Results showed that Te was present as a mixture of Te(VI) and Te(IV) species, while selenium (Se) was predominantly present in the form of Se(IV) in the soil contaminated by abandoned mine tailings. In the contaminated soil, Fe(III) hydroxides were the host phases for Se(IV), Te(IV), and Te(VI), but Te(IV) could be also retained by illite. The difference in speciation and solubility of Se and Te in soil can result from different structures of surface complexes for Se and Te onto Fe(III) hydroxides. Furthermore, our results suggest that the retention of Te(IV) in soil could be relatively weaker than that of Te(VI) due to structural incorporation of Te(VI) into Fe(III) hydroxides. These findings are of geochemical and environmental significance for better understanding the solubility, mobility, and bioavailability of Te in the surface environment. To the best of our knowledge, this is the first study reporting the speciation and host phases of Te in field soil by the μ-XRF-XRD-XAFS techniques.

  1. One-step synthesis of fluorescein modified nano-carbon for Pd(II) detection via fluorescence quenching.

    PubMed

    Panchompoo, Janjira; Aldous, Leigh; Baker, Matthew; Wallace, Mark I; Compton, Richard G

    2012-05-07

    Carbon black (CB) nanoparticles modified with fluorescein, a highly fluorescent molecule, were prepared using a facile and efficient methodology. Simply stirring CB in aqueous solution containing fluorescein resulted in the strong physisorption of fluorescein onto the CB surface. The resulting Fluorescein/CB was then characterised by means of X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), fluorescence microscopy and fluorescence spectroscopy. The optimum experimental conditions for fluorescence of Fluorescein/CB viz. fluorescence excitation and emission wavelengths, O(2) removal and the amount of Fluorescein/CB used, were investigated. The Fluorescein/CB was used as a fluorescent probe for the sensitive detection of Pd(II) in water, based on fluorescence quenching. The results demonstrated that the fluorescence intensity of Fluorescein/CB decreased with increasing Pd(II) concentration, and the fluorescence quenching process could be described by the Stern-Volmer equation. The limit of detection (LOD) for the fluorescence quenching of Fluorescein/CB by Pd(II) in aqueous solution was found to be 1.07 μM (based on 3σ). Last, approaches were studied for the removal of Fe(III) which interferes with the fluorescence quenching of Fluorescein/CB. Complexation of Fe(III) with salicylic acid was used to enhance and control the selectivity of Fluorescein/CB sensor towards Pd(II) in the presence of Fe(III).

  2. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    DOEpatents

    Smith, R.E.; Dolbeare, F.A.

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes. No Drawings

  3. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    DOEpatents

    Smith, Robert E. [557 Escondido Cir., Livermore, CA 94550; Dolbeare, Frank A. [5178 Diane La., Livermore, CA 94550

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.

  4. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    DOEpatents

    Smith, Robert E.; Dolbeare, Frank A.

    1979-01-01

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 5-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.

  5. Carbohydrate oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism

    USGS Publications Warehouse

    Coates, J.D.; Councell, T.; Ellis, D.J.; Lovley, D.R.

    1998-01-01

    An isolate, designated GC-29, that could incompletely oxidize glucose to acetate and carbon dioxide with Fe(III) serving as the electron acceptor was recovered from freshwater sediments of the Potomac River, Maryland. This metabolism yielded energy to support cell growth. Strain GC-29 is a facultatively anaerobic, Gram-negative motile rod which, in addition to glucose, also used sucrose, lactate, pyruvate, yeast extract, casamino acids or H2 as alternative electron donors for Fe(III) reduction. Stain GC-29 could reduce NO-3, Mn(IV), U(VI), fumarate, malate, S2O32-, and colloidal S0 as well as the humics analog, 2,6-anthraquinone disulfonate. Analysis of the almost complete 16S rRNA sequence indicated that strain GC-29 belongs in the Shewanella genus in the epsilon subdivision of the Proteobacteria. The name Shewanella saccharophilia is proposed. Shewanella saccharophilia differs from previously described fermentative microorganisms that metabolize glucose with the reduction of Fe(III) because it transfers significantly more electron equivalents to Fe(III); acetate and carbon dioxide are the only products of glucose metabolism; energy is conserved from Fe(III) reduction; and glucose is not metabolized in the absence of Fe(III). The metabolism of organisms like S. saccharophilia may account for the fact that glucose is metabolized primarily to acetate and carbon dioxide in a variety of sediments in which Fe(III) reduction is the terminal electron accepting process.

  6. Impact of Fe(III) as an effective electron-shuttle mediator for enhanced Cr(VI) reduction in microbial fuel cells: Reduction of diffusional resistances and cathode overpotentials.

    PubMed

    Wang, Qiang; Huang, Liping; Pan, Yuzhen; Quan, Xie; Li Puma, Gianluca

    2017-01-05

    The role of Fe(III) was investigated as an electron-shuttle mediator to enhance the reduction rate of the toxic heavy metal hexavalent chromium (Cr(VI)) in wastewaters, using microbial fuel cells (MFCs). The direct reduction of chromate (CrO 4 - ) and dichromate (Cr 2 O 7 2- ) anions in MFCs was hampered by the electrical repulsion between the negatively charged cathode and Cr(VI) functional groups. In contrast, in the presence of Fe(III), the conversion of Cr(VI) and the cathodic coulombic efficiency in the MFCs were 65.6% and 81.7%, respectively, 1.6 times and 1.4 folds as those recorded in the absence of Fe(III). Multiple analytical approaches, including linear sweep voltammetry, Tafel plot, cyclic voltammetry, electrochemical impedance spectroscopy and kinetic calculations demonstrated that the complete reduction of Cr(VI) occurred through an indirect mechanism mediated by Fe(III). The direct reduction of Cr(VI) with cathode electrons in the presence of Fe(III) was insignificant. Fe(III) played a critical role in decreasing both the diffusional resistance of Cr(VI) species and the overpotential for Cr(VI) reduction. This study demonstrated that the reduction of Cr(VI) in MFCs was effective in the presence of Fe(III), providing an alternative and environmentally benign approach for efficient remediation of Cr(VI) contaminated sites with simultaneous production of renewable energy. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Magnetite solubility and phase stability in alkaline media at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziemniak, S.E.; Jones, M.E.; Combs, K.E.S.

    Magnetite, Fe{sub 3}O{sub 4}, is the dominant oxide constituent of the indigenous corrosion layers that form on iron base alloys in high purity, high temperature water. The apparent simultaneous stability of two distinct oxidation states of iron in this metal oxide is responsible for its unique solubility behavior. The present work was undertaken to extend the experimental and theoretical bases for estimating solubilities of an iron corrosion product (Fe{sub 3}O{sub 4}/Fe(OH){sub 2}) over a broader temperature range and in the presence of complexing, pH-controlling reagents. These results indicate that a surface layer of ferrous hydroxide controls magnetite solubility behavior atmore » low temperatures in much the same manner as a surface layer of nickel(II) hydroxide was previously reported to control the low temperature solubility behavior of NiO. The importance of Fe(III) ion complexes implies not only that most previously-derived thermodynamic properties of the Fe(OH){sub 3}{sup {minus}} ion are incorrect, but that magnetite phase stability probably shifts to favor a sodium ferric hydroxyphosphate compound in alkaline sodium phosphate solutions at elevated temperatures. The test methodology involved pumping alkaline solutions of known composition through a bed of Fe{sub 3}O{sub 4} granules and analyzing the emerging solution for Fe. Two pH-controlling reagents were tested: sodium phosphate and ammonia. Equilibria for the following reactions were described in thermodynamic terms: (a) Fe(OH){sub 2}/Fe{sub 3}O{sub 4} dissolution and transformation, (b) Fe(II) and Fe(III) ion hydroxocomplex formation (hydrolysis), (c) Fe(II) ion amminocomplex formation, and (d) Fe(II) and Fe(III) ion phosphatocomplex formation. 36 refs.« less

  8. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication

    USDA-ARS?s Scientific Manuscript database

    Cultivated citrus are selections from, or hybrids of, wild progenitor species whose identities and contributions to citrus domestication remain controversial. Here we sequence and compare citrus genomes—a high-quality reference haploid clementine genome and mandarin, pummelo, sweet-orange and sour-o...

  9. Cyanide binding to ferrous and ferric microperoxidase-11.

    PubMed

    Ascenzi, Paolo; Sbardella, Diego; Santucci, Roberto; Coletta, Massimo

    2016-07-01

    Microperoxidase-11 (MP11) is an undecapeptide derived from horse heart cytochrome c (cytc). MP11 is characterized by a covalently linked solvent-exposed heme group, the heme-Fe atom being axially coordinated by a histidyl residue. Here, the reactions of ferrous and ferric MP11 (MP11-Fe(II) and MP11-Fe(III), respectively) with cyanide have been investigated from the kinetic and thermodynamic viewpoints, at pH 7.0 and 20.0 °C. Values of the second-order rate constant for cyanide binding to MP11-Fe(II) and MP11-Fe(III) are 4.5 M(-1) s(-1) and 8.9 × 10(3) M(-1) s(-1), respectively. Values of the first-order rate constant for cyanide dissociation from ligated MP11-Fe(II) and MP11-Fe(III) are 1.8 × 10(-1) s(-1) and 1.5 × 10(-3) s(-1), respectively. Values of the dissociation equilibrium constant for cyanide binding to MP11-Fe(II) and MP11-Fe(III) are 3.7 × 10(-2) and 1.7 × 10(-7) M, respectively, matching very well with those calculated from kinetic parameters so that no intermediate species seem to be involved in the ligand-binding process. The pH-dependence of cyanide binding to MP11-Fe(III) indicates that CN(-) is the only binding species. Present results have been analyzed in parallel with those of several heme-proteins, suggesting that (1) the ligand accessibility to the metal center and cyanide ionization may modulate the formation of heme-Fe-cyanide complexes, and (2) the general polarity of the heme pocket and/or hydrogen bonding of the heme-bound ligand may affect cyanide exit from the protein matrix. Microperoxidase-11 (MP11) is an undecapeptide derived from horse heart cytochrome c. Penta-coordinated MP11 displays a very high reactivity towards cyanide, whereas the reactivity of hexa-coordinated horse heart cytochrome c is very low.

  10. Effect of the oxidation rate and Fe(II) state on microbial nitrate-dependent Fe(III) mineral formation

    USGS Publications Warehouse

    Senko, John M.; Dewers , Thomas A.; Krumholz, Lee R.

    2005-01-01

    A nitrate-dependent Fe(II)-oxidizing bacterium was isolated and used to evaluate whether Fe(II) chemical form or oxidation rate had an effect on the mineralogy of biogenic Fe(III) (hydr)oxides resulting from nitrate-dependent Fe(II) oxidation. The isolate (designated FW33AN) had 99% 16S rRNA sequence similarity to Klebsiella oxytoca. FW33AN produced Fe(III) (hydr)oxides by oxidation of soluble Fe(II) [Fe(II)sol] or FeS under nitrate-reducing conditions. Based on X-ray diffraction (XRD) analysis, Fe(III) (hydr)oxide produced by oxidation of FeS was shown to be amorphous, while oxidation of Fe(II)sol yielded goethite. The rate of Fe(II) oxidation was then manipulated by incubating various cell concentrations of FW33AN with Fe(II)sol and nitrate. Characterization of products revealed that as Fe(II) oxidation rates slowed, a stronger goethite signal was observed by XRD and a larger proportion of Fe(III) was in the crystalline fraction. Since the mineralogy of Fe(III) (hydr)oxides may control the extent of subsequent Fe(III) reduction, the variables we identify here may have an effect on the biogeochemical cycling of Fe in anoxic ecosystems.

  11. Contaminant Organic Complexes: Their Structure and Energetics in Surface Decontamination Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satish C. B. Myneni

    2005-12-13

    Siderophores are biological macromolecules (400-2000 Da) released by bacteria in iron limiting situations to sequester Fe from iron oxyhydroxides and silicates in the natural environment. These molecules contain hydroxamate and phenolate functional groups, and exhibit very high affinity for Fe{sup 3+}. While several studies were conducted to understand the behavior of siderophores and their application to the metal sequestration and mineral dissolution, only a few of them have examined the molecular structure of siderophores and their interactions with metals and mineral surfaces in aqueous solutions. Improved understanding of the chemical state of different functional moieties in siderophores can assist inmore » the application of these biological molecules in actinide separation, sequestration and decontamination processes. The focus of our research group is to evaluate the (a) functional group chemistry of selected siderophores and their metal complexes in aqueous solutions, and (b) the nature of siderophore interactions at the mineral-water interfaces. We selected desferrioxamine B (desB), a hydroxamate siderophore, and its small structural analogue, acetohydroxamic acid (aHa), for this investigation. We examined the functional group chemistry of these molecules as a function of pH, and their complexation with aqueous and solid phase Fe(III). For solid phase Fe, we synthesized all naturally occurring Fe(III)-oxyhydroxides (goethite, lepidocrocite, akaganeite, feroxyhite) and hematite. We also synthesized Fe-oxides (goethite and hematite) of different sizes to evaluate the influence of particle size on mineral dissolution kinetics. We used a series of molecular techniques to explore the functional group chemistry of these molecules and their complexes. Infrared spectroscopy is used to specifically identify the variations in oxime group as a function of pH and Fe(III) complexation. Resonance Raman spectroscopy was used to evaluate the nature of hydroxamate binding in the case of Fe(III)-siderophore complexes and model ligands. Soft and hard X-ray spectroscopy techniques were used to examine the electronic structure of binding groups, and their local structural environment. The synchrotron X-ray studies were conducted at the Stanford Synchrotron Radiation Laboratory and at the Advanced Light Source (Lawrence Berkeley National Laboratory). These experimental vibrational and X-ray spectroscopy studies were complemented with density functional theory calculations. The highlight of this study is the evaluation of the fundamental electronic state information of the hydroxamate moiety in siderophores during deprotonation and Fe(III) complexation. The applications of soft X-ray studies are also new, and were applied, for the first time, to examine the chemistry of organic macromolecules in aqueous solutions.« less

  12. Analysis of long-term bacterial vs. chemical Fe(III) oxide reduction kinetics

    NASA Astrophysics Data System (ADS)

    Roden, Eric E.

    2004-08-01

    Data from studies of dissimilatory bacterial (10 8 cells mL -1 of Shewanella putrefaciens strain CN32, pH 6.8) and ascorbate (10 mM, pH 3.0) reduction of two synthetic Fe(III) oxide coated sands and three natural Fe(III) oxide-bearing subsurface materials (all at ca. 10 mmol Fe(III) L -1) were analyzed in relation to a generalized rate law for mineral dissolution (J t/m 0 = k'(m/m 0) γ, where J t is the rate of dissolution and/or reduction at time t, m 0 is the initial mass of oxide, and m/m 0 is the unreduced or undissolved mineral fraction) in order to evaluate changes in the apparent reactivity of Fe(III) oxides during long-term biological vs. chemical reduction. The natural Fe(III) oxide assemblages demonstrated larger changes in reactivity (higher γ values in the generalized rate law) compared to the synthetic oxides during long-term abiotic reductive dissolution. No such relationship was evident in the bacterial reduction experiments, in which temporal changes in the apparent reactivity of the natural and synthetic oxides were far greater (5-10 fold higher γ values) than in the abiotic reduction experiments. Kinetic and thermodynamic considerations indicated that neither the abundance of electron donor (lactate) nor the accumulation of aqueous end-products of oxide reduction (Fe(II), acetate, dissolved inorganic carbon) are likely to have posed significant limitations on the long-term kinetics of oxide reduction. Rather, accumulation of biogenic Fe(II) on residual oxide surfaces appeared to play a dominant role in governing the long-term kinetics of bacterial crystalline Fe(III) oxide reduction. The experimental findings together with numerical simulations support a conceptual model of bacterial Fe(III) oxide reduction kinetics that differs fundamentally from established models of abiotic Fe(III) oxide reductive dissolution, and indicate that information on Fe(III) oxide reactivity gained through abiotic reductive dissolution techniques cannot be used to predict long-term patterns of reactivity toward enzymatic reduction at circumneutral pH.

  13. Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15

    USGS Publications Warehouse

    Lovley, D.R.; Lonergan, D.J.

    1990-01-01

    The dissimilatory Fe(III) reducer, GS-15, is the first microorganism known to couple the oxidation of aromatic compounds to the reduction of Fe(III) and the first example of a pure culture of any kind known to anaerobically oxidize an aromatic hydrocarbon, toluene. In this study, the metabolism of toluene, phenol, and p-cresol by GS-15 was investigated in more detail. GS-15 grew in an anaerobic medium with toluene as the sole electron donor and Fe(III) oxide as the electron acceptor. Growth coincided with Fe(III) reduction. [ring-14C]toluene was oxidized to 14CO2, and the stoichiometry of 14CO2 production and Fe(III) reduction indicated that GS-15 completely oxidized toluene to carbon dioxide with Fe(III) as the electron acceptor. Magnetite was the primary iron end product during toluene oxidation. Phenol and p-cresol were also completely oxidized to carbon dioxide with Fe(III) as the sole electron acceptor, and GS-15 could obtain energy to support growth by oxidizing either of these compounds as the sole electron donor. p-Hydroxybenzoate was a transitory extracellular intermediate of phenol and p-cresol metabolism but not of toluene metabolism. GS-15 oxidized potential aromatic intermediates in the oxidation of toluene (benzylalcohol and benzaldehyde) and p-cresol (p-hydroxybenzylalcohol and p-hydroxybenzaldehyde). The metabolism described here provides a model for how aromatic hydrocarbons and phenols may be oxidized with the reduction of Fe(III) in contaminated aquifers and petroleum-containing sediments.

  14. Ternary metal complexes of guaifenesin drug: Synthesis, spectroscopic characterization and in vitro anticancer activity of the metal complexes.

    PubMed

    Mahmoud, W H; Mahmoud, N F; Mohamed, G G; El-Sonbati, A Z; El-Bindary, A A

    2015-01-01

    The coordination behavior of a series of transition metal ions named Cr(III), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with a mono negative tridentate guaifenesin ligand (GFS) (OOO donation sites) and 1,10-phenanthroline (Phen) is reported. The metal complexes are characterized based on elemental analyses, IR, (1)H NMR, solid reflectance, magnetic moment, molar conductance, UV-vis spectral studies, mass spectroscopy, ESR, XRD and thermal analysis (TG and DTG). The ternary metal complexes were found to have the formulae of [M(GFS)(Phen)Cl]Cl·nH2O (M=Cr(III) (n=1) and Fe(III) (n=0)), [M(GFS)(Phen)Cl]·nH2O (M=Mn(II) (n=0), Zn(II) (n=0) and Cu(II) (n=3)) and [M(GFS)(Phen)(H2O)]Cl·nH2O (M=Co(II) (n=0), Ni(II) (n=0) and Cd(II) (n=4)). All the chelates are found to have octahedral geometrical structures. The ligand and its ternary chelates are subjected to thermal analyses (TG and DTG). The GFS ligand, in comparison to its ternary metal complexes also was screened for their antibacterial activity on gram positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram negative bacteria (Escherichia coli and Neisseria gonorrhoeae) and for in vitro antifungal activity against (Candida albicans). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent GFS ligand. The complexes were also screened for its in vitro anticancer activity against the Breast cell line (MFC7) and the results obtained show that they exhibit a considerable anticancer activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Synthesis, spectroscopic properties, molecular docking, anti-colon cancer and anti-microbial studies of some novel metal complexes for 2-amino-4-phenylthiazole derivative

    NASA Astrophysics Data System (ADS)

    Al-Harbi, Sami A.; Bashandy, Mahmoud S.; Al-Saidi, Hammed M.; Emara, Adel A. A.; Mousa, Tarek A. A.

    2015-06-01

    This article describes the synthesis of novel bidentate Schiff base (H2L) from condensation of 2-amino-4-phenylthiazole (APT) with 4,6-diacetylresorcinol (DAR) in the molar ratio 2:1. We studied interaction of ligand (H2L) with transition metal ions such as Cr(III), Fe(III), Cu(II), Zn(II) and Cd(II). The ligand (H2L) has two bidentate sets of (N-O) units which can coordinate with two metal ions to afford novel binuclear metal complexes. The directions of coordinate bonds are from nitrogen atoms of azomethine groups and oxygen atoms of the phenolic groups. Structures of the newly synthesized complexes were confirmed by elemental analysis, IR, UV, 1H NMR, ESR, TGA and mass spectral data. All of the newly synthesized complexes were evaluated for their antibacterial and anti-fungal activities. They were also evaluated for their in vitro anticancer activity against human colon carcinoma cells (HCT-116) and mammalian cells of African green monkey kidney (VERO). The Cu(II) complex with selectivity index (S.I.) = 21.26 exhibited better activity than methotrexate (MTX) as a reference drug with S.I. value = 13.30, while Zn(II) complex with S.I. value = 10.24 was found to be nearly as active as MTX. Molecular docking studies further helped in understanding the mode of action of the compounds through their various interactions with active sites of dihydrofolate reductase (DHFR) enzyme. The observed activity of Fe(III) and Cu(II) complexes gave rise to the conclusion that they might exert their action through inhibition of the DHFR enzyme.

  16. Synthesis, spectroscopic properties, molecular docking, anti-colon cancer and anti-microbial studies of some novel metal complexes for 2-amino-4-phenylthiazole derivative.

    PubMed

    Al-Harbi, Sami A; Bashandy, Mahmoud S; Al-Saidi, Hammed M; Emara, Adel A A; Mousa, Tarek A A

    2015-06-15

    This article describes the synthesis of novel bidentate Schiff base (H2L) from condensation of 2-amino-4-phenylthiazole (APT) with 4,6-diacetylresorcinol (DAR) in the molar ratio 2:1. We studied interaction of ligand (H2L) with transition metal ions such as Cr(III), Fe(III), Cu(II), Zn(II) and Cd(II). The ligand (H2L) has two bidentate sets of (N-O) units which can coordinate with two metal ions to afford novel binuclear metal complexes. The directions of coordinate bonds are from nitrogen atoms of azomethine groups and oxygen atoms of the phenolic groups. Structures of the newly synthesized complexes were confirmed by elemental analysis, IR, UV, (1)H NMR, ESR, TGA and mass spectral data. All of the newly synthesized complexes were evaluated for their antibacterial and anti-fungal activities. They were also evaluated for their in vitro anticancer activity against human colon carcinoma cells (HCT-116) and mammalian cells of African green monkey kidney (VERO). The Cu(II) complex with selectivity index (S.I.)=21.26 exhibited better activity than methotrexate (MTX) as a reference drug with S.I. value=13.30, while Zn(II) complex with S.I. value=10.24 was found to be nearly as active as MTX. Molecular docking studies further helped in understanding the mode of action of the compounds through their various interactions with active sites of dihydrofolate reductase (DHFR) enzyme. The observed activity of Fe(III) and Cu(II) complexes gave rise to the conclusion that they might exert their action through inhibition of the DHFR enzyme. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. 155Gd Mössbauer Spectroscopic Study of GdM(CN)6 · 4H2O (M = CrIII, FeIII and CoIII) and KGdM(CN)6 · 3H2O (M = FeII and RuII)

    NASA Astrophysics Data System (ADS)

    Wang, Junhu; Abe, Junko; Kitazawa, Takafumi; Takahashi, Masashi; Takeda, Masuo

    2002-07-01

    155Gd Mössbauer spectroscopic studies of the title complexes have been performed. Although the 155Gd isomer shifts (d) varied scarcely, the quadrupole coupling constants (e2qQ) changed in the range 4.07-4.81 mm s-1. The e2qQ values of KGdM(CN)6 · 3H2O (M = FeII and RuII) are larger than those of GdM(CN)6 · 4H2O (M = CrIII, FeIII, and CoIII), these values increasing with increasing orthorhombic distortion of the crystal structures. A relationship between the e2qQ values and the ionic radii of the transition metal ions has also been recognized

  18. Synthesis of first row transition metal selenomaltol complexes.

    PubMed

    Spiegel, Michael T; Hoogerbrugge, Amanda; Truksa, Shamus; Smith, Andrew G; Shuford, Kevin L; Klausmeyer, Kevin K; Farmer, Patrick J

    2018-06-21

    We report an efficient, one-step synthesis of the chelator 3-hydroxy-2-methyl-4-selenopyrone (selenomaltol). Complexes of selenomaltol with Fe(iii), Ni(ii), Cu(ii) and Zn(ii) have been prepared and studied by NMR, X-ray crystallography, cyclic voltammetry, EPR and electronic absorption. The Ni(ii) and Cu(ii) complexes show chemically reversible oxidations which are suggested to be ligand-based. Nuclear independent chemical shifts (NICS) analysis is used to compare aromaticity of the heterocyclic rings of selenomaltol and its chelates. The compounds described here should significantly expand the scope and utility of unusual O,Se-donor chelates.

  19. Biological regeneration of manganese (IV) and iron (III) for anaerobic metal oxide-mediated removal of pharmaceuticals from water.

    PubMed

    Liu, Wenbo; Langenhoff, Alette A M; Sutton, Nora B; Rijnaarts, Huub H M

    2018-05-18

    Applying manganese(IV)- or iron(III)-(hydr)oxides to remove pharmaceuticals from water could be attractive, due to the capacity of these metal oxides to remove pharmaceuticals and be regenerated. As pharmaceutical removal under anaerobic conditions is foreseen, Mn(IV) or Fe(III) regeneration under anaerobic conditions, or with minimum oxygen dosage, is preferred. In this study, batch experiments are performed to investigate (1) Mn(IV) and Fe(III) regeneration from Mn(II) and Fe(II); (2) the pharmaceutical removal during biological Mn(IV) and Fe(III) regeneration; and (3) anaerobic abiotic pharmaceutical removal with different Mn(IV) or Fe(III) species. Results show that biological re-oxidation of reduced Mn(II) to Mn(IV) occurs under oxygen-limiting conditions. Biological re-oxidation of Fe(II) to Fe(III) is obtained with nitrate under anaerobic conditions. Both bio-regenerated Mn(IV)-oxides and Fe(III)-hydroxides are amorphous. The pharmaceutical removal is insignificant by Mn(II)- or Fe(II)-oxidizing bacteria during regeneration. Finally, pharmaceutical removal is investigated with various Mn(IV) and Fe(III) sources. Anaerobic abiotic removal using Mn(IV) produced from drinking water treatment plants results in 23% metoprolol and 44% propranolol removal, similar to chemically synthesized Mn(IV). In contrast, Fe(III) from drinking water treatment plants outperformed chemically or biologically synthesized Fe(III); Fe (III) from drinking water treatment can remove 31-43% of propranolol via anaerobic abiotic process. In addition, one of the Fe(III)-based sorbents tested, FerroSorp ® RW, can also remove propranolol (20-25%). Biological regeneration of Mn(IV) and Fe(III) from the reduced species Mn(II) and Fe(II) could be more effective in terms of cost and treatment efficiency. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Isolation and Characterization of a Soluble NADPH-Dependent Fe(III) Reductase from Geobacter sulfurreducens

    PubMed Central

    Kaufmann, Franz; Lovley, Derek R.

    2001-01-01

    NADPH is an intermediate in the oxidation of organic compounds coupled to Fe(III) reduction in Geobacter species, but Fe(III) reduction with NADPH as the electron donor has not been studied in these organisms. Crude extracts of Geobacter sulfurreducens catalyzed the NADPH-dependent reduction of Fe(III)-nitrilotriacetic acid (NTA). The responsible enzyme, which was recovered in the soluble protein fraction, was purified to apparent homogeneity in a four-step procedure. Its specific activity for Fe(III) reduction was 65 μmol · min−1 · mg−1. The soluble Fe(III) reductase was specific for NADPH and did not utilize NADH as an electron donor. Although the enzyme reduced several forms of Fe(III), Fe(III)-NTA was the preferred electron acceptor. The protein possessed methyl viologen:NADP+ oxidoreductase activity and catalyzed the reduction of NADP+ with reduced methyl viologen as electron donor at a rate of 385 U/mg. The enzyme consisted of two subunits with molecular masses of 87 and 78 kDa and had a native molecular mass of 320 kDa, as determined by gel filtration. The purified enzyme contained 28.9 mol of Fe, 17.4 mol of acid-labile sulfur, and 0.7 mol of flavin adenine dinucleotide per mol of protein. The genes encoding the two subunits were identified in the complete sequence of the G. sulfurreducens genome from the N-terminal amino acid sequences derived from the subunits of the purified protein. The sequences of the two subunits had about 30% amino acid identity to the respective subunits of the formate dehydrogenase from Moorella thermoacetica, but the soluble Fe(III) reductase did not possess formate dehydrogenase activity. This soluble Fe(III) reductase differs significantly from previously characterized dissimilatory and assimilatory Fe(III) reductases in its molecular composition and cofactor content. PMID:11443080

  1. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon.

    PubMed

    Veronesi, Francesca; Giavaresi, Gianluca; Fini, Milena; Longo, Giovanni; Ioannidu, Caterina Alexandra; Scotto d'Abusco, Anna; Superti, Fabiana; Panzini, Gianluca; Misiano, Carlo; Palattella, Alberto; Selleri, Paolo; Di Girolamo, Nicola; Garbarino, Viola; Politi, Laura; Scandurra, Roberto

    2017-01-01

    Titanium implants coated with a 500nm nanostructured layer, deposited by the Ion Plating Plasma Assisted (IPPA) technology, composed of 60% graphitic carbon, 25% titanium oxides and 15% titanium carbide were implanted into rabbit femurs whilst into the controlateral femurs uncoated titanium implants were inserted as control. At four time points the animals were injected with calcein green, xylenol orange, oxytetracycline and alizarin. After 2, 4 and 8weeks femurs were removed and processed for histology and static and dynamic histomorphometry for undecalcified bone processing into methylmethacrylate, sectioned, thinned, polished and stained with Toluidine blue and Fast green. The overall bone-implant contacts rate (percentage of bone-implant contacts/weeks) of the TiC coated implant was 1.6 fold than that of the uncoated titanium implant. The histomorphometric analyses confirmed the histological evaluations. More precisely, higher Mineral Apposition Rate (MAR, μm/day) (p<0.005) and Bone Formation Rate (BFR, μm 2 /μm/day) (p<0.0005) as well as Bone Implant Contact (Bic) and Bone Ingrowth values (p<0.0005) were observed for the TiC coated implants compared to uncoated implants. In conclusion the hard nanostructured TiC layer protects the bulk titanium implant against the harsh conditions of biological tissues and in the same time, stimulating adhesion, proliferation and activity of osteoblasts, induces a better bone-implant contacts of the implant compared to the uncoated titanium implant. Copyright © 2016. Published by Elsevier B.V.

  2. Detecting microdamage in bone.

    PubMed

    Lee, T C; Mohsin, S; Taylor, D; Parkesh, R; Gunnlaugsson, T; O'Brien, F J; Giehl, M; Gowin, W

    2003-08-01

    Fatigue-induced microdamage in bone contributes to stress and fragility fractures and acts as a stimulus for bone remodelling. Detecting such microdamage is difficult as pre-existing microdamage sustained in vivo must be differentiated from artefactual damage incurred during specimen preparation. This was addressed by bulk staining specimens in alcohol-soluble basic fuchsin dye, but cutting and grinding them in an aqueous medium. Nonetheless, some artefactual cracks are partially stained and careful observation under transmitted light, or epifluorescence microscopy, is required. Fuchsin lodges in cracks, but is not site-specific. Cracks are discontinuities in the calcium-rich bone matrix and chelating agents, which bind calcium, can selectively label them. Oxytetracycline, alizarin complexone, calcein, calcein blue and xylenol orange all selectively bind microcracks and, as they fluoresce at different wavelengths and colours, can be used in sequence to label microcrack growth. New agents that only fluoresce when involved in a chelate are currently being developed--fluorescent photoinduced electron transfer (PET) sensors. Such agents enable microdamage to be quantified and crack growth to be measured and are useful histological tools in providing data for modelling the material behaviour of bone. However, a non-invasive method is needed to measure microdamage in patients. Micro-CT is being studied and initial work with iodine dyes linked to a chelating group has shown some promise. In the long term, it is hoped that repeated measurements can be made at critical sites and microdamage accumulation monitored. Quantification of microdamage, together with bone mass measurements, will help in predicting and preventing bone fracture failure in patients with osteoporosis.

  3. Detecting microdamage in bone

    PubMed Central

    Lee, TC; Mohsin, S; Taylor, D; Parkesh, R; Gunnlaugsson, T; O'Brien, FJ; Giehl, M; Gowin, W

    2003-01-01

    Fatigue-induced microdamage in bone contributes to stress and fragility fractures and acts as a stimulus for bone remodelling. Detecting such microdamage is difficult as pre-existing microdamage sustained in vivo must be differentiated from artefactual damage incurred during specimen preparation. This was addressed by bulk staining specimens in alcohol-soluble basic fuchsin dye, but cutting and grinding them in an aqueous medium. Nonetheless, some artefactual cracks are partially stained and careful observation under transmitted light, or epifluorescence microscopy, is required. Fuchsin lodges in cracks, but is not site-specific. Cracks are discontinuities in the calcium-rich bone matrix and chelating agents, which bind calcium, can selectively label them. Oxytetracycline, alizarin complexone, calcein, calcein blue and xylenol orange all selectively bind microcracks and, as they fluoresce at different wavelengths and colours, can be used in sequence to label microcrack growth. New agents that only fluoresce when involved in a chelate are currently being developed – fluorescent photoinduced electron transfer (PET) sensors. Such agents enable microdamage to be quantified and crack growth to be measured and are useful histological tools in providing data for modelling the material behaviour of bone. However, a non-invasive method is needed to measure microdamage in patients. Micro-CT is being studied and initial work with iodine dyes linked to a chelating group has shown some promise. In the long term, it is hoped that repeated measurements can be made at critical sites and microdamage accumulation monitored. Quantification of microdamage, together with bone mass measurements, will help in predicting and preventing bone fracture failure in patients with osteoporosis. PMID:12924817

  4. A new automated colorimetric method for measuring total oxidant status.

    PubMed

    Erel, Ozcan

    2005-12-01

    To develop a new, colorimetric and automated method for measuring total oxidation status (TOS). The assay is based on the oxidation of ferrous ion to ferric ion in the presence of various oxidant species in acidic medium and the measurement of the ferric ion by xylenol orange. The oxidation reaction of the assay was enhanced and precipitation of proteins was prevented. In addition, autoxidation of ferrous ion present in the reagent was prevented during storage. The method was applied to an automated analyzer, which was calibrated with hydrogen peroxide and the analytical performance characteristics of the assay were determined. There were important correlations with hydrogen peroxide, tert-butyl hydroperoxide and cumene hydroperoxide solutions (r=0.99, P<0.001 for all). In addition, the new assay presented a typical sigmoidal reaction pattern in copper-induced lipoprotein autoxidation. The novel assay is linear up to 200 micromol H2O2 Equiv./L and its precision value is lower than 3%. The lower detection limit is 1.13 micromol H2O2 Equiv./L. The reagents are stable for at least 6 months on the automated analyzer. Serum TOS level was significantly higher in patients with osteoarthritis (21.23+/-3.11 micromol H2O2 Equiv./L) than in healthy subjects (14.19+/-3.16 micromol H2O2 Equiv./L, P<0.001) and the results showed a significant negative correlation with total antioxidant capacity (TAC) (r=-0.66 P<0.01). This easy, stable, reliable, sensitive, inexpensive and fully automated method that is described can be used to measure total oxidant status.

  5. Flow injection spectrophotometric determination of V(V) involving on-line separation using a poly(vinylidene fluoride-co-hexafluoropropylene)-based polymer inclusion membrane.

    PubMed

    Yaftian, Mohammad Reza; Almeida, M Inês G S; Cattrall, Robert W; Kolev, Spas D

    2018-05-01

    A poly(vinylidene fluoride-co-hexafluoropropylene)-based polymer inclusion membrane (PIM) using Cyphos® IL 101 (i.e. trihexyl(tetradecyl)phosphonium chloride) as the carrier and 2-nitrophenyl octyl ether as a plasticizer in a mass ratio of 55/35/10 was employed for the on-line extractive separation of V(V) prior to its spectrophotometric determination in a flow injection analysis (FIA) system using xylenol orange as the colorimetric reagent. The selectivity of the membrane allowed the determination of V(V) in sulfate solutions in the presence of a variety of cations and anions. The interference of molybdenum(VI) was eliminated by off-line extraction using the same PIM. A univariate sequential optimization of the newly developed FIA system was conducted and under optimal conditions the system is characterized by a linear concentration range of 0.5-8.0mgL -1 , detection limit of 0.08mgL -1 and sample throughput of 4h -1 . The relative standard deviation at the 3mgL -1 level of V(V) was 2.9% based on 8 replicate determinations. The membrane was stable, which was reflected by the standard deviation value for determinations over three consecutive days (24 determinations of 3mgL -1 V(V)) of 3.6%. The newly developed FIA system was applied to the determination of V(V) in water and dietary supplements samples and a good agreement with inductively coupled plasma optical emission spectrometry was observed. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay estuary, New Hampshire

    USGS Publications Warehouse

    Caccavo, F.; Blakemore, R.P.; Lovley, D.R.

    1992-01-01

    A dissimilatory Fe(III)- and Mn(IV)-reducing bacterium was isolated from bottom sediments of the Great Bay estuary, New Hampshire. The isolate was a facultatively anaerobic gram-negative rod which did not appear to fit into any previously described genus. It was temporarily designated strain BrY. BrY grew anaerobically in a defined medium with hydrogen or lactate as the electron donor and Fe(III) as the electron acceptor. BrY required citrate, fumarate, or malate as a carbon source for growth on H2 and Fe(III). With Fe(III) as the sole electron acceptor, BrY metabolized hydrogen to a minimum threshold at least 60-fold lower than the threshold reported for pure cultures of sulfate reducers. This finding supports the hypothesis that when Fe(III) is available, Fe(III) reducers can outcompete sulfate reducers for electron donors. Lactate was incompletely oxidized to acetate and carbon dioxide with Fe(III) as the electron acceptor. Lactate oxidation was also coupled to the reduction of Mn(IV), U(VI), fumarate, thiosulfate, or trimethylamine n-oxide under anaerobic conditions. BrY provides a model for how enzymatic metal reduction by respiratory metal-reducing microorganisms has the potential to contribute to the mobilization of iron and trace metals and to the immobilization of uranium in sediments of Great Bay Estuary.

  7. Fate of Cd during microbial Fe(III) mineral reduction by a novel and Cd-tolerant Geobacter species.

    PubMed

    Muehe, E Marie; Obst, Martin; Hitchcock, Adam; Tyliszczak, Tolek; Behrens, Sebastian; Schröder, Christian; Byrne, James M; Michel, F Marc; Krämer, Ute; Kappler, Andreas

    2013-12-17

    Fe(III) (oxyhydr)oxides affect the mobility of contaminants in the environment by providing reactive surfaces for sorption. This includes the toxic metal cadmium (Cd), which prevails in agricultural soils and is taken up by crops. Fe(III)-reducing bacteria can mobilize such contaminants by Fe(III) mineral dissolution or immobilize them by sorption to or coprecipitation with secondary Fe minerals. To date, not much is known about the fate of Fe(III) mineral-associated Cd during microbial Fe(III) reduction. Here, we describe the isolation of a new Geobacter sp. strain Cd1 from a Cd-contaminated field site, where the strain accounts for 10(4) cells g(-1) dry soil. Strain Cd1 reduces the poorly crystalline Fe(III) oxyhydroxide ferrihydrite in the presence of at least up to 112 mg Cd L(-1). During initial microbial reduction of Cd-loaded ferrihydrite, sorbed Cd was mobilized. However, during continuous microbial Fe(III) reduction, Cd was immobilized by sorption to and/or coprecipitation within newly formed secondary minerals that contained Ca, Fe, and carbonate, implying the formation of an otavite-siderite-calcite (CdCO3-FeCO3-CaCO3) mixed mineral phase. Our data shows that microbially mediated turnover of Fe minerals affects the mobility of Cd in soils, potentially altering the dynamics of Cd uptake into food or phyto-remediating plants.

  8. Tetra­ethyl­ammonium dicyanido(5,10,15,20-tetra­phenyl­porphyrinato)ferrate(III) di­chloro­methane monosolvate

    PubMed Central

    Kassenova, Nazira; Hietsoi, Oleksandr; Yerkassov, Rakhmetulla; Shatruk, Michael

    2013-01-01

    The title compound, (C8H20N)[Fe(C44H28N4)(CN)2]·CH2Cl2 or (Et4N)[Fe(TPP)(CN)2], was recrystallized from di­chloro­methane–diethyl ether. The compound crystallizes with the two unique halves of the FeIII porphyrinato complex, one tetra­ethyl­ammonium cation and one inter­stitial di­chloro­methane mol­ecule within the asymmetric unit. Both anionic FeIII complexes exhibit inversion symmetry. Both the cation and the solvent mol­ecules show positional disorder. The cation is disordered over two sets of sites with an occupancy ratio of 0.710 (3):0.290 (3); the solvent mol­ecule is disordered over three positions with a 0.584 (6):0.208 (3):0.202 (5) ratio. The crystal packing features columns of [Fe(TPP)(CN)2]− anions that propagate along [001]. The columns further pack into layers that are parallel to (011) and also include the Et4N+ cations. The inter­stitial CH2Cl2 mol­ecules appear in the inter­layer space. This complex may serve as a useful precursor for the assembly of multinuclear and extended CN-bridged complexes for the design of single-mol­ecule and single-chain magnets, respectively. PMID:24109282

  9. Solid-contact potentiometric sensors and multisensors based on polyaniline and thiacalixarene receptors for the analysis of some beverages and alcoholic drinks

    NASA Astrophysics Data System (ADS)

    Sorvin, Michail; Belyakova, Svetlana; Stoikov, Ivan; Shamagsumova, Rezeda; Evtugyn, Gennady

    2018-04-01

    Electronic tongue is a sensor array that aims to discriminate and analyze complex media like food and beverages on the base of chemometrics approaches for data mining and pattern recognition. In this review, the concept of electronic tongue comprising of solid-contact potentiometric sensors with polyaniline and thacalix[4]arene derivatives is described. The electrochemical reactions of polyaniline as a background of solid-contact sensors and the characteristics of thiacalixarenes and pillararenes as neutral ionophores are briefly considered. The electronic tongue systems described were successfully applied for assessment of fruit juices, green tea, beer and alcoholic drinks They were classified in accordance with the origination, brands and styles. Variation of the sensor response resulted from the reactions between Fe(III) ions added and sample components, i.e., antioxidants and complexing agents. The use of principal component analysis and discriminant analysis is shown for multisensor signal treatment and visualization. The discrimination conditions can be optimized by variation of the ionophores, Fe(III) concentration and sample dilution. The results obtained were compared with other electronic tongue systems reported for the same subjects.

  10. Exchange Interactions on the Highest-Spin Reported Molecule: the Mixed-Valence Fe42 Complex

    PubMed Central

    Aravena, Daniel; Venegas-Yazigi, Diego; Ruiz, Eliseo

    2016-01-01

    The finding of high-spin molecules that could behave as conventional magnets has been one of the main challenges in Molecular Magnetism. Here, the exchange interactions, present in the highest-spin molecule published in the literature, Fe42, have been analysed using theoretical methods based on Density Functional Theory. The system with a total spin value S = 45 is formed by 42 iron centres containing 18 high-spin FeIII ferromagnetically coupled and 24 diamagnetic low-spin FeII ions. The bridging ligands between the two paramagnetic centres are two cyanide ligands coordinated to the diamagnetic FeII cations. Calculations were performed using either small Fe4 or Fe3 models or the whole Fe42 complex, showing the presence of two different ferromagnetic couplings between the paramagnetic FeIII centres. Finally, Quantum Monte Carlo simulations for the whole system were carried out in order to compare the experimental and simulated magnetic susceptibility curves from the calculated exchange coupling constants with the experimental one. This comparison allows for the evaluation of the accuracy of different exchange-correlation functionals to reproduce such magnetic properties. PMID:27033418

  11. Selecting the spin crossover profile with controlled crystallization of mononuclear Fe(iii) polymorphs.

    PubMed

    Vicente, Ana I; Ferreira, Liliana P; Carvalho, Maria de Deus; Rodrigues, Vítor H N; Dîrtu, Marinela M; Garcia, Yann; Calhorda, Maria José; Martinho, Paulo N

    2018-05-08

    Two polymorphic species of the [Fe(5-Br-salEen)2]ClO4 compound were obtained, each of them being selectively recovered after evaporation of the solvent at a controlled rate. While polymorph 1a is formed during slow evaporation, fast evaporation favors polymorph 1b. The importance of the evaporation rate was recognized after detailed studies of the reaction temperature, solvent evaporation rate and crystallization temperature effects. The complex in the new polymorphic form 1a showed an abrupt spin crossover at 172 K with a small 1 K hysteresis window and over a narrow 10 K range. 57Fe Mössbauer spectroscopy and differential scanning calorimetry, complemented by X-ray studies for both the high-spin and low-spin forms, were used to further characterize the new polymorphic phase 1a. Both polymorphs are based on the same Fe(iii) complex cation hydrogen bonded to the perchlorate anion. These units are loosely bound in the crystals via weak interactions. In the new polymorph 1a, the hydrogen bonds are stronger, while the weak hydrogen and halogen bonds, as well as π-π stacking, create a cooperative network, not present in 1b, responsible for the spin transition profile.

  12. cis-2,2'-Bipyrimidine-bridged polynuclear complex: a stairway-like mixed-valent {Fe(4)} cluster.

    PubMed

    Alborés, Pablo; Rentschler, Eva

    2010-10-04

    We report the first example of a polynuclear discrete coordination compound exhibiting only bpym bridges and containing a first-row d transition metal. A smooth self-assembly one-pot synthetic route, starting from simply FeCl(2) and FeCl(3) hydrates, allowed us to prepare a tetranuclear Fe(4) cluster with a stairway-like structure and the formula cis-{[(H(2)O)Cl(3)Fe(III)-μ(bpym)Fe(II)Cl(2)]}(2)-μ(bpym) (1) . All spectroscopic data suggest that complex 1 is a valence-localized mixed-valent Fe(II)-Fe(III) cluster with typical Mössbauer lines for both sites, which do not change with temperature. Reflectance spectroscopy did not allow one to distinguish an intervalence charge-transfer band. However, time-dependent density functional theory (DFT) calculations predict a weak high-energy Fe(II) → Fe(III) transition. Regarding the magnetic properties, the high-spin Fe(II) and Fe(III) ions interact in a weakly antiferromagnetic way with isotropic J constants of only a few wavenumbers as derived from direct-current susceptibility and magnetization data. Broken-symmetry DFT calculations support these observations.

  13. Solid-Contact Potentiometric Sensors and Multisensors Based on Polyaniline and Thiacalixarene Receptors for the Analysis of Some Beverages and Alcoholic Drinks.

    PubMed

    Sorvin, Michail; Belyakova, Svetlana; Stoikov, Ivan; Shamagsumova, Rezeda; Evtugyn, Gennady

    2018-01-01

    Electronic tongue is a sensor array that aims to discriminate and analyze complex media like food and beverages on the base of chemometrics approaches for data mining and pattern recognition. In this review, the concept of electronic tongue comprising of solid-contact potentiometric sensors with polyaniline and thacalix[4]arene derivatives is described. The electrochemical reactions of polyaniline as a background of solid-contact sensors and the characteristics of thiacalixarenes and pillararenes as neutral ionophores are briefly considered. The electronic tongue systems described were successfully applied for assessment of fruit juices, green tea, beer, and alcoholic drinks They were classified in accordance with the origination, brands and styles. Variation of the sensor response resulted from the reactions between Fe(III) ions added and sample components, i.e., antioxidants and complexing agents. The use of principal component analysis and discriminant analysis is shown for multisensor signal treatment and visualization. The discrimination conditions can be optimized by variation of the ionophores, Fe(III) concentration, and sample dilution. The results obtained were compared with other electronic tongue systems reported for the same subjects.

  14. Solid-Contact Potentiometric Sensors and Multisensors Based on Polyaniline and Thiacalixarene Receptors for the Analysis of Some Beverages and Alcoholic Drinks

    PubMed Central

    Sorvin, Michail; Belyakova, Svetlana; Stoikov, Ivan; Shamagsumova, Rezeda; Evtugyn, Gennady

    2018-01-01

    Electronic tongue is a sensor array that aims to discriminate and analyze complex media like food and beverages on the base of chemometrics approaches for data mining and pattern recognition. In this review, the concept of electronic tongue comprising of solid-contact potentiometric sensors with polyaniline and thacalix[4]arene derivatives is described. The electrochemical reactions of polyaniline as a background of solid-contact sensors and the characteristics of thiacalixarenes and pillararenes as neutral ionophores are briefly considered. The electronic tongue systems described were successfully applied for assessment of fruit juices, green tea, beer, and alcoholic drinks They were classified in accordance with the origination, brands and styles. Variation of the sensor response resulted from the reactions between Fe(III) ions added and sample components, i.e., antioxidants and complexing agents. The use of principal component analysis and discriminant analysis is shown for multisensor signal treatment and visualization. The discrimination conditions can be optimized by variation of the ionophores, Fe(III) concentration, and sample dilution. The results obtained were compared with other electronic tongue systems reported for the same subjects. PMID:29740577

  15. Coordination behavior of new bis Schiff base ligand derived from 2-furan carboxaldehyde and propane-1,3-diamine. Spectroscopic, thermal, anticancer and antibacterial activity studies

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Zayed, Ehab M.; Hindy, Ahmed M. M.

    2015-06-01

    Novel bis Schiff base ligand, [N1,N3-bis(furan-2-ylmethylene)propane-1,3-diamine], was prepared by the condensation of furan-2-carboxaldehyde with propane-1,3-diamine. Its conformational changes on complexation with transition metal ions [Co(II), Ni(II), Cu(II), Mn(II), Cd(II), Zn(II) and Fe(III)] have been studied on the basis of elemental analysis, conductivity measurements, spectral (infrared, 1H NMR, electronic), magnetic and thermogravimetric studies. The conductance data of the complexes revealed their electrolytic nature suggesting them as 1:2 (for bivalent metal ions) and 1:3 (for Fe(III) ion) electrolytes. The complexes were found to have octahedral geometry based on magnetic moment and solid reflectance measurements. Thermal analysis data revealed the decomposition of the complexes in successive steps with the removal of anions, coordinated water and bis Schiff base ligand. The thermodynamic parameters were calculated using Coats-Redfern equation. The Anticancer screening studies were performed on human colorectal cancer (HCT), hepatic cancer (HepG2) and breast cancer (MCF-7) cell lines. The antimicrobial activity of all the compounds was studied against Gram negative (Escherichia coli and Proteus vulgaris) and Gram positive (Bacillus vulgaris and Staphylococcus pyogones) bacteria. It was observed that the coordination of metal ion has a pronounced effect on the microbial activities of the bis Schiff base ligand. All the metal complexes have shown higher antimicrobial effect than the free bis Schiff base ligand.

  16. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan

    NASA Astrophysics Data System (ADS)

    Huang, Guan; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu

    2017-04-01

    This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O2. Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  17. Anaerobic biodegradation of BTEX using Mn(IV) and Fe(III) as alternative electron acceptors.

    PubMed

    Villatoro-Monzón, W R; Mesta-Howard, A M; Razo-Flores, E

    2003-01-01

    Anaerobic BTEX biodegradation was tested in batch experiments using an anaerobic sediment as inoculum under Fe(III) and Mn(IV) reducing conditions. All BTEX were degraded under the conditions tested, specially under Mn(IV) reducing conditions, where benzene was degraded at a rate of 0.8 micromol l(-1) d(-1), significantly much faster than Fe(III) reducing conditions. Under Fe(III) reducing conditions, ethylbenzene was the compound that degraded at the faster rate of 0.19 micromol l(-1) d(-1). Mn(IV) reducing conditions are energetically more favourable than Fe(III), therefore, BTEX were more rapidly degraded under Mn(IV) reducing conditions. These results represent the first report of the degradation of benzene with Mn(IV) as the final electron acceptor. Amorphous manganese oxide is a natural widely distributed metal in groundwater, where it can be microbiologically reduced, leading to the degradation of monoaromatic compounds.

  18. Intercalation of Coordinatively Unsaturated Fe(III) Ion within Interpenetrated Metal-Organic Framework MOF-5.

    PubMed

    Holmberg, Rebecca J; Burns, Thomas; Greer, Samuel M; Kobera, Libor; Stoian, Sebastian A; Korobkov, Ilia; Hill, Stephen; Bryce, David L; Woo, Tom K; Murugesu, Muralee

    2016-06-01

    Coordinatively unsaturated Fe(III) metal sites were successfully incorporated into the iconic MOF-5 framework. This new structure, Fe(III) -iMOF-5, is the first example of an interpenetrated MOF linked through intercalated metal ions. Structural characterization was performed with single-crystal and powder XRD, followed by extensive analysis by spectroscopic methods and solid-state NMR, which reveals the paramagnetic ion through its interaction with the framework. EPR and Mössbauer spectroscopy confirmed that the intercalated ions were indeed Fe(III) , whereas DFT calculations were employed to ascertain the unique pentacoordinate architecture around the Fe(III) ion. Interestingly, this is also the first crystallographic evidence of pentacoordinate Zn(II) within the MOF-5 SBU. This new MOF structure displays the potential for metal-site addition as a framework connector, thus creating further opportunity for the innovative development of new MOF materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis, spectroscopic, biological activity and thermal characterization of ceftazidime with transition metals

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; Ali, Alaa E.; Elasala, Gehan S.; Kolkaila, Sherif A.

    2018-03-01

    Synthesis, physicochemical characterization and thermal analysis of ceftazidime complexes with transition metals (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)) were discussed. It's obtained that ceftazidime act as bidentate ligand. From magnetic measurement and spectral data, octahedral structures were proposed for all complexes except for cobalt, nickel and mercury had tetrahedral structural. Hyper chemistry program confirmed binding sites of ceftazidime. Ceftazidime complexes show higher activity than ceftazidime for some strains. From TG and DTA curves the thermal decomposition mechanisms of ceftazidime and their metal complexes were suggested. The thermal decomposition of the complexes ended with the formation of metal oxides as a final product except in case of Hg complex.

  20. Fe(III) reduction and U(VI) immobilization by Paenibacillus sp. strain 300A, isolated from Hanford 300A subsurface sediments.

    PubMed

    Ahmed, Bulbul; Cao, Bin; McLean, Jeffrey S; Ica, Tuba; Dohnalkova, Alice; Istanbullu, Ozlem; Paksoy, Akin; Fredrickson, Jim K; Beyenal, Haluk

    2012-11-01

    A facultative iron-reducing [Fe(III)-reducing] Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes [Fe(III)-nitrilotriacetic acid and Fe(III)-citrate] but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 μM) of either of the electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 μM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We also found that Paenibacillus sp. 300A could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ∼7:3 in PIPES [piperazine-N,N'-bis(2-ethanesulfonic acid)] and ∼1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments.

  1. Fe(III) Reduction and U(VI) Immobilization by Paenibacillus sp. Strain 300A, Isolated from Hanford 300A Subsurface Sediments

    PubMed Central

    Ahmed, Bulbul; Cao, Bin; McLean, Jeffrey S.; Ica, Tuba; Dohnalkova, Alice; Istanbullu, Ozlem; Paksoy, Akin; Fredrickson, Jim K.

    2012-01-01

    A facultative iron-reducing [Fe(III)-reducing] Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes [Fe(III)-nitrilotriacetic acid and Fe(III)-citrate] but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 μM) of either of the electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 μM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We also found that Paenibacillus sp. 300A could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ∼7:3 in PIPES [piperazine-N,N′-bis(2-ethanesulfonic acid)] and ∼1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments. PMID:22961903

  2. Uranium(VI) Reduction by Anaeromyxobacter dehalogenans Strain 2CP-C

    PubMed Central

    Wu, Qingzhong; Sanford, Robert A.; Löffler, Frank E.

    2006-01-01

    Previous studies demonstrated growth of Anaeromyxobacter dehalogenans strain 2CP-C with acetate or hydrogen as the electron donor and Fe(III), nitrate, nitrite, fumarate, oxygen, or ortho-substituted halophenols as electron acceptors. In this study, we explored and characterized U(VI) reduction by strain 2CP-C. Cell suspensions of fumarate-grown 2CP-C cells reduced U(VI) to U(IV). More-detailed growth studies demonstrated that hydrogen was the required electron donor for U(VI) reduction and could not be replaced by acetate. The addition of nitrate to U(VI)-reducing cultures resulted in a transitory increase in U(VI) concentration, apparently caused by the reoxidation of reduced U(IV), but U(VI) reduction resumed following the consumption of N-oxyanions. Inhibition of U(VI) reduction occurred in cultures amended with Fe(III) citrate, or citrate. In the presence of amorphous Fe(III) oxide, U(VI) reduction proceeded to completion but the U(VI) reduction rates decreased threefold compared to control cultures. Fumarate and 2-chlorophenol had no inhibitory effects on U(VI) reduction, and both electron acceptors were consumed concomitantly with U(VI). Since cocontaminants (e.g., nitrate, halogenated compounds) and bioavailable ferric iron are often encountered at uranium-impacted sites, the metabolic versatility makes Anaeromyxobacter dehalogenans a promising model organism for studying the complex interaction of multiple electron acceptors in U(VI) reduction and immobilization. PMID:16672509

  3. Fe(III) Reduction and U(VI) Immobilization by Paenibacillus sp. Strain 300A, Isolated from Hanford 300A Subsurface Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, B.; Cao, B.; McLean, Jeffrey S.

    2012-11-07

    A facultative iron-reducing (Fe(III)-reducing) Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes (Fe(III)-NTA and Fe(III)-citrate) but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 µM) of either of electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 µM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We found that Paenibacillus sp. 300A alsomore » could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ~7:3 in PIPES and ~1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments.« less

  4. Impurity effect of iron(III) on the growth of potassium sulfate crystal in aqueous solution

    NASA Astrophysics Data System (ADS)

    Kubota, Noriaki; Katagiri, Ken-ichi; Yokota, Masaaki; Sato, Akira; Yashiro, Hitoshi; Itai, Kazuyoshi

    1999-01-01

    Growth rates of the {1 1 0} faces of a potassium sulfate crystal were measured in a flow cell in the presence of traces of impurity Fe(III) (up to 2 ppm) over the range of pH=2.5-6.0. The growth rate was significantly suppressed by the impurity. The effect became stronger as the impurity concentration was increased and at pH<5. It became weaker with increasing supersaturation. It also became weaker as the pH was increased and at pH>5 it finally disappeared completely. The concentration and supersaturation effects on the impurity action were reasonably explained with a model proposed by Kubota and Mullin [J. Crystal Growth, 152 (1995) 203]. The surface coverage of the active sites by Fe(III) is estimated to increase linearly on increasing its concentration in solution in the range examined by growth experiments. The impurity effectiveness factor is confirmed to increase inversely proportional to the supersaturation as predicted by the model. Apart from the discussion based on the model, the pH effect on the impurity action is qualitatively explained by assuming that the first hydrolysis product of aqua Fe(III) complex compound, [Fe(H 2O) 5(OH)] 2+, is both growth suppression and adsorption active, but the second hydrolysis product, [Fe(H 2O) 4(OH) 2] +, is only adsorption active.

  5. Synthesis and structure of a ferric complex of 2,6-di(1H-pyrazol-3-yl)pyridine and its excellent performance in the redox-controlled living ring-opening polymerization of ε-caprolactone.

    PubMed

    Fang, Yang-Yang; Gong, Wei-Jie; Shang, Xiu-Juan; Li, Hong-Xi; Gao, Jun; Lang, Jian-Ping

    2014-06-14

    The reaction of FeCl3 with a pincer ligand, 2,6-di(1H-pyrazol-3-yl)pyridine (bppyH2), produced a mononuclear Fe(III) complex [Fe(bppyH2)Cl3] (1), which could be reduced to the corresponding Fe(II) dichloride complex [Fe(bppyH2)Cl2] (2) by suitable reducing agents such as Cp2Co or Fe powder. 1 and 2 exhibited a reversible transformation from each other with appropriate redox reagents. 1 could be utilized as a pre-catalyst to initiate the ring-opening polymerization of ε-caprolactone in the presence of alcohol but did not work. The 1/alcohol system displayed characteristics of a well-controlled polymerization with the resulting poly(ε-caprolactone) having low molecular weight distributions, a linear tendency of molecular weight evolution with conversion, and polymer growth observed for the sequential additions of ε-caprolactone monomer to the polymerization reaction. The polymerization was completely turned off by the in situ reduction of the catalytic Fe center via Cp2Co and then turned back upon the addition of [Cp2Fe]PF6. The rate of polymerization was modified by switching in situ between the Fe(III) and Fe(II) species.

  6. First Report of Orange Rust of Sugarcane caused by Puccinia kuehnii in Ecuador

    USDA-ARS?s Scientific Manuscript database

    Orange rust, Puccinia kuehnii (W. Krüger) E.J. Butler, is an important disease of sugarcane (complex hybrid of Saccharum L. species) that causes yield losses, and impacts breeding programs. Initially confined to the Asia-Oceania region (5), P. kuehnii was reported in Florida in June 2007 (2) and lat...

  7. Clay-mediated reactions of HCN oligomers - The effect of the oxidation state of the clay

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Alwis, K. W.; Edelson, E. H.; Mount, N.; Hagan, W. J., Jr.

    1981-01-01

    Montmorillonite clays which contain Fe(III) inhibit the oligomerization of aqueous solutions of HCN. The inhibitory effect is due to the rapid oxidation of diaminomaleonitrile, a key intermediate in HCN oligomerization, by the Fe(III) incorporated into the aluminosilicate lattice of the clay. The Fe(III) oxidizes diaminomaleonitrile to diiminosuccinonitrile, a compound which is rapidly hydrolyzed to HCN and oxalic acid derivatives. Diaminomaleonitrile is not oxidized when Fe(III) in the montmorillonite is reduced with hydrazine. The oxidation state of the clay is an important variable in experiments designed to simulate clay catalysis on the primitive earth.

  8. Anaerobic hydrocarbon degradation in petroleum-contaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions

    USGS Publications Warehouse

    Coates, J.D.; Anderson, R.T.; Woodward, J.C.; Phillips, E.J.P.; Lovley, D.R.

    1996-01-01

    The potential use of iron(III) oxide to stimulate in-situ hydrocarbon degradation in anaerobic petroleum-contaminated harbor sediments was investigated. Previous studies have indicated that Fe(III)-reducing bacteria (FeRB) can oxidize some electron donors more effectively than sulfate- reducing bacteria (SRB). In contrast to previous results in freshwater sediments, the addition of Fe(III) to marine sediments from San Diego Bay, CA did not switch the terminal electron-accepting process (TEAP) from sulfate reduction to Fe-(III) reduction. Addition of Fe(III) also did not stimulate anaerobic hydrocarbon oxidation. Exposure of the sediment to air [to reoxidize Fe(II) to Fe(III)] followed by anaerobic incubation of the sediments, resulted in Fe-(III) reduction as the TEAP, but contaminant degradation was not stimulated and in some instances was inhibited. The difference in the ability of FeRB to compete with the SRB in the different sediment treatments was related to relative population sizes. Although the addition of Fe(III) did not stimulate hydrocarbon degradation, the results presented here as well as other recent studies demonstrate that there may be significant anaerobic hydrocarbon degradation under sulfate-reducing conditions in harbor sediments.

  9. Impact of two iron(III) chelators on the iron, cadmium, lead and nickel accumulation in poplar grown under heavy metal stress in hydroponics.

    PubMed

    Mihucz, Victor G; Csog, Árpád; Fodor, Ferenc; Tatár, Enikő; Szoboszlai, Norbert; Silaghi-Dumitrescu, Luminiţa; Záray, Gyula

    2012-04-15

    Poplar (Populus jacquemontiana var. glauca cv. Kopeczkii) was grown in hydroponics containing 10 μM Cd(II), Ni(II) or Pb(II), and Fe as Fe(III) EDTA or Fe(III) citrate in identical concentrations. The present study was designed to compare the accumulation and distribution of Fe, Cd, Ni and Pb within the different plant compartments. Generally, Fe and heavy-metal accumulation were higher by factor 2-7 and 1.6-3.3, respectively, when Fe(III) citrate was used. Iron transport towards the shoot depended on the Fe(III) chelate and, generally, on the heavy metal used. Lead was accumulated only in the root. The amounts of Fe and heavy metals accumulated by poplar were very similar to those of cucumber grown in an identical way, indicating strong Fe uptake regulation of these two Strategy I plants: a cultivar and a woody plant. The Strategy I Fe uptake mechanism (i.e. reducing Fe(III) followed by Fe(II) uptake), together with the Fe(III) chelate form in the nutrient solution had significant effects on Fe and heavy metal uptake. Poplar appears to show phytoremediation potential for Cd and Ni, as their transport towards the shoot was characterized by 51-54% and 26-48% depending on the Fe(III) supply in the nutrient solution. Copyright © 2012 Elsevier GmbH. All rights reserved.

  10. Isolation and identification of ferric reducing bacteria and evaluation of their roles in iron availability in two calcareous soils

    NASA Astrophysics Data System (ADS)

    Ghorbanzadeh, N.; Lakzian, A.; Haghnia, G. H.; Karimi, A. R.

    2014-12-01

    Iron is an essential element for all organisms which plays a crucial role in important biochemical processes such as respiration and photosynthesis. Iron deficiency seems to be an important problem in many calcareous soils. Biological dissimilatory Fe(III) reduction increases iron availability through reduction of Fe(III) to Fe(II). The aim of this study was to isolate, identify and evaluate some bacterial isolates for their abilities to reduce Fe(III) in two calcareous soils. Three bacterial isolates were selected and identified from paddy soils by using 16S rRNA amplification and then inoculated to sterilized and non-sterilized calcareous soils in the presence and absence of glucose. The results showed that all isolates belonged to Bacillus genus and were capable of reducing Fe(III) to Fe(II) in vitro condition. The amount of Fe(III) reduction in sterilized calcareous soils was significantly higher when inoculated with PS23 isolate and Shewanella putrefaciens ( S. putrefaciens) (as positive control) compared to PS16 and PS11 isolates. No significant difference was observed between PS11 and PS16 isolates in the presence of indigenous microbial community. The results also revealed that glucose had a significant effect on Fe(III) reduction in the examined calcareous soil samples. The amount of Fe(III) reduction increased two-fold when soil samples were treated with glucose and inoculated by S. putrefaciens and PS23 in non-sterilized soils.

  11. Reversible mechanochromic luminescence at room temperature in cationic platinum(II) terpyridyl complexes.

    PubMed

    Han, Ali; Du, Pingwu; Sun, Zijun; Wu, Haotian; Jia, Hongxing; Zhang, Rui; Liang, Zhenning; Cao, Rui; Eisenberg, Richard

    2014-04-07

    Reversible mechanochromic luminescence in cationic platinum(II) terpyridyl complexes is described. The complexes [Pt(Nttpy)Cl]X2 (Nttpy = 4'-(p-nicotinamide-N-methylphenyl)-2,2':6',2″-terpyridine, X = PF6 (1), SbF6 (2), Cl (3), ClO4 (4), OTf (5), BF4 (6)) exhibit different colors under ambient light in the solid state, going from red to orange to yellow. All of these complexes are brightly luminescent at both room temperature and 77 K. Upon gentle grinding, the yellow complexes (4-6) turn orange and exhibit bright red luminescence. The red luminescence can be changed back to yellow by the addition of a few drops of acetonitrile to the sample. Crystallographic studies of the yellow and red forms of complex 5 suggest that the mechanochromic response is likely the result of a change in intermolecular Pt···Pt distances upon grinding.

  12. Kinetics of abiotic nitrous oxide production via oxidation of hydroxylamine by particulate metals in seawater

    NASA Astrophysics Data System (ADS)

    Cavazos, A. R.; Taillefert, M.; Glass, J. B.

    2016-12-01

    The oceans are a significant of nitrous oxide (N2O) to the atmosphere. Current models of global oceanic N2­O flux focus on microbial N2O cycling and often ignore abiotic reactions, such as the thermodynamically favorable oxidation of the nitrification intermediate hydroxylamine (NH2OH) by Mn(IV) or Fe(III). At circumneutral pH, NH2OH oxidation is more thermodynamically favorable via Mn(IV) than Fe(III) reduction. We characterized the kinetics of NH2OH oxidation in synthetic ocean water at pH 5.1-8.8 using microsensor electrodes to measure real-time N2O production. N2O production rates and yield were greater when NH2OH was oxidized by Mn(IV) than Fe(III). Accordingly, the reduction of Mn(IV) was first order with respect to NH2OH whereas the reduction of Fe(III) was zero order with respect to NH2OH. Interestingly, the order of the reaction with respect to Mn(IV) appears to be negative whereas the reaction is second order with respect to Fe(III). The inverse order with respect to Mn(IV) may be due to the aggregation of particles in seawater, which decreases their surface area and changes their reactivity. Finally, the reaction is first order with respect to protons with Fe(III) as the oxidant but zero order with Mn(IV). The stronger effect of the pH on the reaction with Fe(III) as the oxidant compared to Mn(IV) reflects the stoichiometry of these two reactions, as each mole of N2O produced by Fe(III) reduction consumes eight protons while each mole of N2O produced with Mn(IV) as the oxidant requires only four protons. Our data show that abiotic NH2OH oxidation by Mn(IV) or Fe(III) particles may represent a significant source of N2O in seawater. These findings suggest that abiotic N2O production in marine waters may be significant in areas of the oceans where particulate metals originating from aerosols, dust, or rivers may react with NH2OH released from ammonia-oxidizing microorganisms.

  13. Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose.

    PubMed

    Küsel, K; Dorsch, T; Acker, G; Stackebrandt, E

    1999-08-01

    To evaluate the microbial populations involved in the reduction of Fe(III) in an acidic, iron-rich sediment, the anaerobic flow of supplemental carbon and reductant was evaluated in sediment microcosms at the in situ temperature of 12 degrees C. Supplemental glucose and cellobiose stimulated the formation of Fe(II); 42 and 21% of the reducing equivalents that were theoretically obtained from glucose and cellobiose, respectively, were recovered in Fe(II). Likewise, supplemental H(2) was consumed by acidic sediments and yielded additional amounts of Fe(II) in a ratio of approximately 1:2. In contrast, supplemental lactate did not stimulate the formation of Fe(II). Supplemental acetate was not consumed and inhibited the formation of Fe(II). Most-probable-number estimates demonstrated that glucose-utilizing acidophilic Fe(III)-reducing bacteria approximated to 1% of the total direct counts of 4', 6-diamidino-2-phenylindole-stained bacteria. From the highest growth-positive dilution of the most-probable-number series at pH 2. 3 supplemented with glucose, an isolate, JF-5, that could dissimilate Fe(III) was obtained. JF-5 was an acidophilic, gram-negative, facultative anaerobe that completely oxidized the following substrates via the dissimilation of Fe(III): glucose, fructose, xylose, ethanol, glycerol, malate, glutamate, fumarate, citrate, succinate, and H(2). Growth and the reduction of Fe(III) did not occur in the presence of acetate. Cells of JF-5 grown under Fe(III)-reducing conditions formed blebs, i.e., protrusions that were still in contact with the cytoplasmic membrane. Analysis of the 16S rRNA gene sequence of JF-5 demonstrated that it was closely related to an Australian isolate of Acidiphilium cryptum (99.6% sequence similarity), an organism not previously shown to couple the complete oxidation of sugars to the reduction of Fe(III). These collective results indicate that the in situ reduction of Fe(III) in acidic sediments can be mediated by heterotrophic Acidiphilium species that are capable of coupling the reduction of Fe(III) to the complete oxidation of a large variety of substrates including glucose and H(2).

  14. A low-spin Fe(III) complex with 100-ps ligand-to-metal charge transfer photoluminescence

    NASA Astrophysics Data System (ADS)

    Chábera, Pavel; Liu, Yizhu; Prakash, Om; Thyrhaug, Erling; Nahhas, Amal El; Honarfar, Alireza; Essén, Sofia; Fredin, Lisa A.; Harlang, Tobias C. B.; Kjær, Kasper S.; Handrup, Karsten; Ericson, Fredric; Tatsuno, Hideyuki; Morgan, Kelsey; Schnadt, Joachim; Häggström, Lennart; Ericsson, Tore; Sobkowiak, Adam; Lidin, Sven; Huang, Ping; Styring, Stenbjörn; Uhlig, Jens; Bendix, Jesper; Lomoth, Reiner; Sundström, Villy; Persson, Petter; Wärnmark, Kenneth

    2017-03-01

    Transition-metal complexes are used as photosensitizers, in light-emitting diodes, for biosensing and in photocatalysis. A key feature in these applications is excitation from the ground state to a charge-transfer state; the long charge-transfer-state lifetimes typical for complexes of ruthenium and other precious metals are often essential to ensure high performance. There is much interest in replacing these scarce elements with Earth-abundant metals, with iron and copper being particularly attractive owing to their low cost and non-toxicity. But despite the exploration of innovative molecular designs, it remains a formidable scientific challenge to access Earth-abundant transition-metal complexes with long-lived charge-transfer excited states. No known iron complexes are considered photoluminescent at room temperature, and their rapid excited-state deactivation precludes their use as photosensitizers. Here we present the iron complex [Fe(btz)3]3+ (where btz is 3,3‧-dimethyl-1,1‧-bis(p-tolyl)-4,4‧-bis(1,2,3-triazol-5-ylidene)), and show that the superior σ-donor and π-acceptor electron properties of the ligand stabilize the excited state sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(III) d5 complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer (2LMCT) state that is rarely seen for transition-metal complexes. The absence of intersystem crossing, which often gives rise to large excited-state energy losses in transition-metal complexes, enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions on surfaces. These findings suggest that appropriate design strategies can deliver new iron-based materials for use as light emitters and photosensitizers.

  15. Nitric oxide activation by distal redox modulation in tetranuclear iron nitrosyl complexes.

    PubMed

    de Ruiter, Graham; Thompson, Niklas B; Lionetti, Davide; Agapie, Theodor

    2015-11-11

    A series of tetranuclear iron complexes displaying a site-differentiated metal center was synthesized. Three of the metal centers are coordinated to our previously reported ligand, based on a 1,3,5-triarylbenzene motif with nitrogen and oxygen donors. The fourth (apical) iron center is coordinatively unsaturated and appended to the trinuclear core through three bridging pyrazolates and an interstitial μ4-oxide moiety. Electrochemical studies of complex [LFe3(PhPz)3OFe][OTf]2 revealed three reversible redox events assigned to the Fe(II)4/Fe(II)3Fe(III) (-1.733 V), Fe(II)3Fe(III)/Fe(II)2Fe(III)2 (-0.727 V), and Fe(II)2Fe(III)2/Fe(II)Fe(III)3 (0.018 V) redox couples. Combined Mössbauer and crystallographic studies indicate that the change in oxidation state is exclusively localized at the triiron core, without changing the oxidation state of the apical metal center. This phenomenon is assigned to differences in the coordination environment of the two metal sites and provides a strategy for storing electron and hole equivalents without affecting the oxidation state of the coordinatively unsaturated metal. The presence of a ligand-binding site allowed the effect of redox modulation on nitric oxide activation by an Fe(II) metal center to be studied. Treatment of the clusters with nitric oxide resulted in binding of NO to the apical iron center, generating a {FeNO}(7) moiety. As with the NO-free precursors, the three reversible redox events are localized at the iron centers distal from the NO ligand. Altering the redox state of the triiron core resulted in significant change in the NO stretching frequency, by as much as 100 cm(-1). The increased activation of NO is attributed to structural changes within the clusters, in particular, those related to the interaction of the metal centers with the interstitial atom. The differences in NO activation were further shown to lead to differential reactivity, with NO disproportionation and N2O formation performed by the more electron-rich cluster.

  16. Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes

    NASA Astrophysics Data System (ADS)

    Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M. Arif

    2016-05-01

    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica.

  17. Bacterially-mediated precipitation of ferric iron during the leaching of basaltic rocks

    NASA Astrophysics Data System (ADS)

    Schnittker, K.; Navarrete, J. U.; Cappelle, I. J.; Borrok, D. M.

    2011-12-01

    The bacterially-mediated oxidation of ferrous [Fe(II)] iron in environments where its oxidation is otherwise unfavorable (i.e., acidic and/or anaerobic conditions) results in the formation of ferric iron [Fe(III)] precipitates. The mineralogy and morphologies of these precipitates are dictated by solution biochemistry. In this study, we evaluated Fe(III) precipitates that formed during aerobic bioleaching experiments with Acidithiobacillus ferrooxidans and ilmenite (FeTiO3) and Lunar or Martian basaltic stimulant rocks. Growth media was supplied to support the bacteria; however, all the Fe(II) for chemical energy was supplied by the mineral or rock. During the experiments, the bacteria actively oxidized Fe(II) to Fe(III), resulting in the formation of white and yellow-colored precipitates. In our initial experiments with both ilmentite and basalt, High-Resolution Scanning Electron Microscopic (HRSEM) analysis indicated that the precipitates where small (diameters were less than 5μm and mostly nanometer-scaled), white, and exhibited a platy texture. Networks of mineralized bacterial biofilm were also abundant. In these cases the white precipitates coated the bacteria, forming rod-shaped minerals 5-10μm long by about 1μm in diameter. Many of the rod-shaped minerals formed elongated chains. Energy Dispersive Spectra (EDS) analysis showed that the precipitates were largely composed of Fe and phosphorous (P) with an atomic Fe:P ratio of ˜1. Limited sulfur (S) was also identified as part of the agglomerated precipitates with an atomic Fe:S ratio that ranged from 5 to 10. Phosphorous and S were introduced into the system in considerable amounts as part of the growth media. Additional experiments were performed where we altered the growth media to lower the amount of available P by an order of magnitude. In this case, the experimental behavior remained the same, but the precipitates were more yellow or orange in color relative to those in the experiments using the original growth media. HRSEM/EDS analysis confirmed the presence of minerals with much higher Fe:P ratios (˜2) and much smaller Fe:S ratios (˜0.15). This suggests that the change in growth media chemistry was reflected in precipitates that were rich in S and poorer in P. X-ray diffraction analysis of these precipitates is currently underway. Our results have implications for the interpretation of solution chemistries and precipitation mechanisms associated with biologically-mediated Fe(III)-minerals on Earth, but might also provide insights into possible biosignatures in extraterrestrial systems.

  18. Suppressor Mutation Analysis of the Sensory Rhodopsin I-Transducer Complex: Insights into the Color-Sensing Mechanism

    PubMed Central

    Jung, Kwang-Hwan; Spudich, John L.

    1998-01-01

    The molecular complex containing the phototaxis receptor sensory rhodopsin I (SRI) and transducer protein HtrI (halobacterial transducer for SRI) mediates color-sensitive phototaxis responses in the archaeon Halobacterium salinarum. One-photon excitation of the complex by orange light elicits attractant responses, while two-photon excitation (orange followed by near-UV light) elicits repellent responses in swimming cells. Several mutations in SRI and HtrI cause an unusual mutant phenotype, called orange-light-inverted signaling, in which the cell produces a repellent response to normally attractant light. We applied a selection procedure for intragenic and extragenic suppressors of orange-light-inverted mutants and identified 15 distinct second-site mutations that restore the attractant response. Two of the 3 suppressor mutations in SRI are positioned at the cytoplasmic ends of helices F and G, and 12 suppressor mutations in HtrI cluster at the cytoplasmic end of the second HtrI transmembrane helix (TM2). Nearly all suppressors invert the normally repellent response to two-photon stimulation to an attractant response when they are expressed with their suppressible mutant alleles or in an otherwise wild-type strain. The results lead to a model for control of flagellar reversal by the SRI-HtrI complex. The model invokes an equilibrium between the A (reversal-inhibiting) and R (reversal-stimulating) conformers of the signaling complex. Attractant light and repellent light shift the equilibrium toward the A and R conformers, respectively, and mutations are proposed to cause intrinsic shifts in the equilibrium in the dark form of the complex. Differences in the strength of the two-photon signal inversion and in the allele specificity of suppression are correlated, and this correlation can be explained in terms of different values of the equilibrium constant (Keq) for the conformational transition in different mutants and mutant-suppressor pairs. PMID:9555883

  19. Correlating Oxygen Evolution Catalysts Activity and Electronic Structure by a High-Throughput Investigation of Ni1-y-zFeyCrzOx

    PubMed Central

    Schwanke, Christoph; Stein, Helge Sören; Xi, Lifei; Sliozberg, Kirill; Schuhmann, Wolfgang; Ludwig, Alfred; Lange, Kathrin M.

    2017-01-01

    High-throughput characterization by soft X-ray absorption spectroscopy (XAS) and electrochemical characterization is used to establish a correlation between electronic structure and catalytic activity of oxygen evolution reaction (OER) catalysts. As a model system a quasi-ternary materials library of Ni1-y-zFeyCrzOx was synthesized by combinatorial reactive magnetron sputtering, characterized by XAS, and an automated scanning droplet cell. The presence of Cr was found to increase the OER activity in the investigated compositional range. The electronic structure of NiII and CrIII remains unchanged over the investigated composition spread. At the Fe L-edge a linear combination of two spectra was observed. These spectra were assigned to FeIII in Oh symmetry and FeIII in Td symmetry. The ratio of FeIII Oh to FeIII Td increases with the amount of Cr and a correlation between the presence of the FeIII Oh and a high OER activity is found. PMID:28287134

  20. Correlating Oxygen Evolution Catalysts Activity and Electronic Structure by a High-Throughput Investigation of Ni1-y-zFeyCrzOx

    NASA Astrophysics Data System (ADS)

    Schwanke, Christoph; Stein, Helge Sören; Xi, Lifei; Sliozberg, Kirill; Schuhmann, Wolfgang; Ludwig, Alfred; Lange, Kathrin M.

    2017-03-01

    High-throughput characterization by soft X-ray absorption spectroscopy (XAS) and electrochemical characterization is used to establish a correlation between electronic structure and catalytic activity of oxygen evolution reaction (OER) catalysts. As a model system a quasi-ternary materials library of Ni1-y-zFeyCrzOx was synthesized by combinatorial reactive magnetron sputtering, characterized by XAS, and an automated scanning droplet cell. The presence of Cr was found to increase the OER activity in the investigated compositional range. The electronic structure of NiII and CrIII remains unchanged over the investigated composition spread. At the Fe L-edge a linear combination of two spectra was observed. These spectra were assigned to FeIII in Oh symmetry and FeIII in Td symmetry. The ratio of FeIII Oh to FeIII Td increases with the amount of Cr and a correlation between the presence of the FeIII Oh and a high OER activity is found.

  1. Organic acids influence iron uptake in the human epithelial cell line Caco-2.

    PubMed

    Salovaara, Susan; Sandberg, Ann-Sofie; Andlid, Thomas

    2002-10-09

    It has previously been suggested that organic acids enhance iron absorption. We have studied the effect of nine organic acids on the absorption of Fe(II) and Fe(III) in the human epithelial cell line Caco-2. The effect obtained was dose-dependent, and the greatest increase (43-fold) was observed for tartaric acid (4 mmol/L) on Fe(III) (10 micromol/L). Tartaric, malic, succinic, and fumaric acids enhanced Fe(II) and Fe(III) uptake. Citric and oxalic acid, on the other hand, inhibited Fe(II) uptake but enhanced Fe(III) uptake. Propionic and acetic acid increased the Fe(II) uptake, but had no effect on Fe(III) uptake. Our results show a correlation between absorption pattern and chemical structure; e.g. hydroxyl groups, in addition to carboxyls, were connected with a positive influence. The results may be important for elucidating factors affecting iron bioavailability in the small intestine and for the development of foods with improved iron bioavailability.

  2. Isolation and Characterization of a Dihydroxo-Bridged Iron(III,III)(μ-OH)2 Diamond Core Derived from Dioxygen

    PubMed Central

    Coggins, Michael K.; Toledo, Santiago; Kovacs, Julie A.

    2013-01-01

    Dioxygen addition to coordinatively unsaturated [Fe(II)(OMe2N4(6-Me-DPEN))](PF6) (1) is shown to afford a complex containing a dihydroxo-bridged Fe(III)2(μ-OH)2 diamond core, [FeIII(OMe2N4(6-Me-DPEN))]2(μ-OH)2(PF6)2•(CH3CH2CN)2 (2). The diamond core of 2 resembles the oxidized methane monooxygenase (MMOox) resting state, as well as the active site product formed following H-atom abstraction from Tyr-OH by ribonucleotide reductase (RNR). The Fe-OH bond lengths of 2 are comparable with those of the MMOHox suggesting that MMOHox contains a Fe(III)2(μ-OH)2 as opposed to Fe(III)2(μ-OH)(μ-OH2) diamond core as had been suggested. Isotopic labeling experiments with 18O2 and CD3CN indicate that the oxygen and proton of the μ-OH bridges of 2 are derived from dioxygen and acetonitrile. Deuterium incorporation (from CD3CN) suggests that an unobserved intermediate capable of abstracting a H-atom from CH3CN forms en route to 2. Given the high C–H bond dissociation energy (BDE= 97 kcal/mol) of acetonitrile, this indicates that this intermediate is a potent oxidant, possibly a high-valent iron oxo. Consistent with this, iodosylbenzene (PhIO) also reacts with 1 in CD3CN to afford the deuterated Fe(III)2(μ-OD)2 derivative of 2. Intermediates are not spectroscopically observed in either reaction (O2 and PhIO) even at low-temperatures (−80 °C), indicating that this intermediate has a very short life-time, likely due to its highly reactive nature. Hydroxo-bridged 2 was found to stoichiometrically abstract hydrogen atoms from 9,10-dihydroanthracene (C-H BDE= 76 kcal/mol) at ambient temperatures. PMID:24229319

  3. Synthesis and Mossbauer spectroscopic studies of chemically oxidized ferrocenyl(phenyl)phosphines.

    PubMed

    Durfey, D A; Kirss, R U; Frommen, C; Feighery, W

    The electrochemical potentials of Fc3-xPPhx, (1-3, x = 0-2) and (FcPPh)n (4) indicate that iodine should oxidize ferrocenyl(phenyl)phosphines. The molar conductivity of solutions of 1-3 increases sharply when the solutions are titrated with iodine, leveling off after the addition of > 2 equiv of oxidant, consistent with formation of 1:1 electrolytes. Diamagnetic salts 6-9 are observed upon addition of a benzene solution of iodine to a benzene solution of 1-4 at ambient temperature in ratios of I2/metallocene ranging from 1:1 to 2:1. Well-resolved 1H and 31P NMR spectra are obtained for 6-8. Absorptions assigned to the I3- anion dominate the UV-vis spectrum of 6-8, whereas characteristic absorptions for [Fc][I3] are absent. Mossbauer spectra of 7-9 reveal isomer shifts consistent with low-spin iron(II) in ferrocene derivatives rather than those in ferricenium ions. Small amounts of low-spin FeIII appear to be present in 6. Taken together, the results suggest that 6-9 are iodophosphonium salts and not ferricenium salts. Diferrocenyl(phenyl)phosphine oxide (5) reacts with iodine to produce a diamagnetic, dark solid 10. Low-spin FeII is observed at 77 and 293 K in the Mossbauer spectra of 10 with no evidence for oxidation of FeII to FeIII. Compound 10 is proposed to be a neutral complex between 5 and I2. Reactions between 5 and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) yield [Fc2P(=O)][DDQ]2 (11). Mossbauer spectroscopy of 11 indicates the presence of a mixture of low-spin FeII and low-spin FeIII at 77 K, suggesting that some electron transfer occurs from 5 to DDQ. The fraction of low-spin FeIII increases at room temperature.

  4. Oxidation of Cr(III)-Fe(III) Mixed-phase Hydroxides by Chlorine: Implications on the Control of Hexavalent Chromium in Drinking Water.

    PubMed

    Chebeir, Michelle; Liu, Haizhou

    2018-05-17

    The occurrence of chromium (Cr) as an inorganic contaminant in drinking water is widely reported. One source of Cr is its accumulation in iron-containing corrosion scales of drinking water distribution systems as Cr(III)-Fe(III) hydroxide, i.e., FexCr(1-x)(OH)3(s), where x represents the Fe(III) molar content and typically varies between 0.25 and 0.75. This study investigated the kinetics of inadvertent hexavalent chromium Cr(VI) formation via the oxidation of FexCr(1-x)(OH)3(s) by chlorine as a residual disinfectant in drinking water, and examined the impacts of Fe(III) content and drinking water chemical parameters including pH, bromide and bicarbonate on the rate of Cr(VI) formation. Data showed that an increase in Fe(III) molar content resulted in a significant decrease in the stoichiometric Cr(VI) yield and the rate of Cr(VI) formation, mainly due to chlorine decay induced by Fe(III) surface sites. An increase in bicarbonate enhanced the rate of Cr(VI) formation, likely due to the formation of Fe(III)-carbonato surface complexes that slowed down the scavenging reaction with chlorine. The presence of bromide significantly accelerated the oxidation of FexCr(1-x)(OH)3(s) by chlorine, resulting from the catalytic effect of bromide acting as an electron shuttle. A higher solution pH between 6 and 8.5 slowed down the oxidation of Cr(III) by chlorine. These findings suggested that the oxidative conversion of chromium-containing iron corrosion products in drinking water distribution systems can lead to the occurrence of Cr(VI) at the tap, and the abundance of iron, and a careful control of pH, bicarbonate and bromide levels can assist the control of Cr(VI) formation.

  5. Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24-2.

    PubMed Central

    Lenke, H; Knackmuss, H J

    1992-01-01

    Rhodococcus erythropolis HL 24-2, which was originally isolated as a 2,4-dinitrophenol-degrading bacterium, could also utilize picric acid as a nitrogen source after spontaneous mutation. During growth, the mutant HL PM-1 transiently accumulated an orange-red metabolite, which was identified as a hydride-Meisenheimer complex of picric acid. This complex was formed as the initial metabolite and further converted with concomitant liberation of nitrite. 2,4,6-Trinitrocyclohexanone was identified as a dead-end metabolite of the degradation of picric acid, indicating the addition of two hydride ions to picric acid. PMID:1444408

  6. Identification of the lipopolysaccharide modifications controlled by the Salmonella PmrA/PmrB system mediating resistance to Fe(III) and Al(III)

    PubMed Central

    Nishino, Kunihiko; Hsu, Fong-Fu; Turk, John; Cromie, Michael J; Wösten, Marc M S M; Groisman, Eduardo A

    2006-01-01

    Iron is an essential metal but can be toxic in excess. While several homeostatic mechanisms prevent oxygen-dependent killing promoted by Fe(II), little is known about how cells cope with Fe(III), which kills by oxygen-independent means. Several Gram-negative bacterial species harbour a regulatory system – termed PmrA/PmrB – that is activated by and required for resistance to Fe(III). We now report the identification of the PmrA-regulated determinants mediating resistance to Fe(III) and Al(III) in Salmonella enterica serovar Typhimurium. We establish that these determinants remodel two regions of the lipopolysaccharide, decreasing the negative charge of this major constituent of the outer membrane. Remodelling entails the covalent modification of the two phosphates in the lipid A region with phosphoethanolamine and 4-aminoarabinose, which has been previously implicated in resistance to polymyxin B, as well as dephosphorylation of the Hep(II) phosphate in the core region by the PmrG protein. A mutant lacking the PmrA-regulated Fe(III) resistance genes bound more Fe(III) than the wild-type strain and was defective for survival in soil, suggesting that these PmrA-regulated lipopolysaccharide modifications aid Salmonella's survival and spread in non-host environments. PMID:16803591

  7. Humic substance-mediated Fe(III) reduction by a fermenting Bacillus strain from the alkaline gut of a humus-feeding scarab beetle larva.

    PubMed

    Hobbie, Sven N; Li, Xiangzhen; Basen, Mirko; Stingl, Ulrich; Brune, Andreas

    2012-06-01

    Humus-feeding macroinvertebrates play an important role in the transformation of soil organic matter. Their diet contains significant amounts of redox-active components such as iron minerals and humic substances. In soil-feeding termites, acid-soluble Fe(III) and humic acids are almost completely reduced during gut passage. Here, we show that the reduction of Fe(III) and humic acids takes place also in the alkaline guts of scarab beetle larvae. Sterilized gut homogenates of Pachnoda ephippiata no longer converted Fe(III) to Fe(II), indicating an essential role of the gut microbiota in the process. From Fe(III)-reducing enrichment cultures inoculated with highly diluted gut homogenates, we isolated several facultatively anaerobic, alkali-tolerant bacteria that were closely related to metal-reducing isolates in the Bacillus thioparans group. Strain PeC11 showed a remarkable capacity for dissimilatory Fe(III) reduction, both at pH 7 and 10. Rates were strongly stimulated by the addition of the redox mediator 2,6-antraquinone disulfonate and by redox-active components in the fulvic-acid fraction of humus. Although the contribution of strain PeC11 to intestinal Fe(III) reduction in P. ephippiata remains to be further elucidated, our results corroborate the hypothesis that the lack of oxygen and the solubilization of humic substances in the extremely alkaline guts of humivorous soil fauna provide favorable conditions for the efficient reduction of Fe(III) and humic substances by a primarily fermentative microbiota. Copyright © 2012 Elsevier GmbH. All rights reserved.

  8. Decoding the Nonvolatile Sensometabolome of Orange Juice ( Citrus sinensis).

    PubMed

    Glabasnia, Anneke; Dunkel, Andreas; Frank, Oliver; Hofmann, Thomas

    2018-03-14

    Activity-guided fractionation in combination with the taste dilution analysis, followed by liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance experiments, led to the identification of 10 polymethoxylated flavones (PMFs), 6 limonoid glucosides, and 2 limonoid aglycones as the key bitterns of orange juice. Quantitative studies and calculation of dose-over-threshold factors, followed by taste re-engineering, demonstrated for the first time 25 sensometabolites to be sufficient to reconstruct the typical taste profile of orange juices and indicated that not a single compound can be considered a suitable marker for juice bitterness. Intriguingly, the taste percept of orange juice seems to be created by a rather complex interplay of limonin, limonoid glucosides, PMFs, organic acids, and sugars. For the first time, sub-threshold concentrations of PMFs were shown to enhance the perceived bitterness of limonoids. Moreover, the influence of sugars on the perceived bitterness of limonoids and PMFs in orange juice relevant concentration ranges was quantitatively elucidated.

  9. Geochemical control of microbial Fe(III) reduction potential in wetlands: Comparison of the rhizosphere to non-rhizosphere soil

    USGS Publications Warehouse

    Weiss, J.V.; Emerson, D.; Megonigal, J.P.

    2004-01-01

    We compared the reactivity and microbial reduction potential of Fe(III) minerals in the rhizosphere and non-rhizosphere soil to test the hypothesis that rapid Fe(III) reduction rates in wetland soils are explained by rhizosphere processes. The rhizosphere was defined as the area immediately adjacent to a root encrusted with Fe(III)-oxides or Fe plaque, and non-rhizosphere soil was 0.5 cm from the root surface. The rhizosphere had a significantly higher percentage of poorly crystalline Fe (66??7%) than non-rhizosphere soil (23??7%); conversely, non-rhizosphere soil had a significantly higher proportion of crystalline Fe (50??7%) than the rhizosphere (18??7%, P<0.05 in all cases). The percentage of poorly crystalline Fe(III) was significantly correlated with the percentage of FeRB (r=0.76), reflecting the fact that poorly crystalline Fe(III) minerals are labile with respect to microbial reduction. Abiotic reductive dissolution consumed about 75% of the rhizosphere Fe(III)-oxide pool in 4 h compared to 23% of the soil Fe(III)-oxide pool. Similarly, microbial reduction consumed 75-80% of the rhizosphere pool in 10 days compared to 30-40% of the non-rhizosphere soil pool. Differences between the two pools persisted when samples were amended with an electron-shuttling compound (AQDS), an Fe(III)-reducing bacterium (Geobacter metallireducens), and organic carbon. Thus, Fe(III)-oxide mineralogy contributed strongly to differences in the Fe(III) reduction potential of the two pools. Higher amounts of poorly crystalline Fe(III) and possibly humic substances, and a higher Fe(III) reduction potential in the rhizosphere compared to the non-rhizosphere soil, suggested the rhizosphere is a site of unusually active microbial Fe cycling. The results were consistent with previous speculation that rapid Fe cycling in wetlands is due to the activity of wetland plant roots. ?? 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

  10. Selective transport of Fe(III) using ionic imprinted polymer (IIP) membrane particle

    NASA Astrophysics Data System (ADS)

    Djunaidi, Muhammad Cholid; Jumina, Siswanta, Dwi; Ulbricht, Mathias

    2015-12-01

    The membrane particles was prepared from polyvinyl alcohol (PVA) and polymer IIP with weight ratios of 1: 2 and 1: 1 using different adsorbent templates and casting thickness. The permeability of membrane towards Fe(III) and also mecanism of transport were studied. The selectivity of the membrane for Fe(III) was studied by performing adsorption experiments also with Cr(III) separately. In this study, the preparation of Ionic Imprinted Polymer (IIP) membrane particles for selective transport of Fe (III) had been done using polyeugenol as functional polymer. Polyeugenol was then imprinted with Fe (III) and then crosslinked with PEGDE under alkaline condition to produce polyeugenol-Fe-PEGDE polymer aggregates. The agrregates was then crushed and sieved using mesh size of 80 and the powder was then used to prepare the membrane particles by mixing it with PVA (Mr 125,000) solution in 1-Methyl-2-pyrrolidone (NMP) solvent. The membrane was obtained after casting at a speed of 25 m/s and soaking in NaOH solution overnight. The membrane sheet was then cut and Fe(III) was removed by acid to produce IIP membrane particles. Analysis of the membrane and its constituent was done by XRD, SEM and size selectivity test. Experimental results showed the transport of Fe(III) was faster with the decrease of membrane thickness, while the higher concentration of template ion correlates with higher Fe(III) being transported. However, the transport of Fe(III) was slower for higher concentration of PVA in the membrane. IImparticles works through retarded permeation mechanism, where Fe(III) was bind to the active side of IIP. The active side of IIP membrane was dominated by the -OH groups. The selectivity of all IIP membranes was confirmed as they were all unable to transport Cr (III), while NIP (Non-imprinted Polymer) membrane was able transport Cr (III).

  11. Ascorbate Efflux as a New Strategy for Iron Reduction and Transport in Plants*

    PubMed Central

    Grillet, Louis; Ouerdane, Laurent; Flis, Paulina; Hoang, Minh Thi Thanh; Isaure, Marie-Pierre; Lobinski, Ryszard; Curie, Catherine; Mari, Stéphane

    2014-01-01

    Iron (Fe) is essential for virtually all living organisms. The identification of the chemical forms of iron (the speciation) circulating in and between cells is crucial to further understand the mechanisms of iron delivery to its final targets. Here we analyzed how iron is transported to the seeds by the chemical identification of iron complexes that are delivered to embryos, followed by the biochemical characterization of the transport of these complexes by the embryo, using the pea (Pisum sativum) as a model species. We have found that iron circulates as ferric complexes with citrate and malate (Fe(III)3Cit2Mal2, Fe(III)3Cit3Mal1, Fe(III)Cit2). Because dicotyledonous plants only transport ferrous iron, we checked whether embryos were capable of reducing iron of these complexes. Indeed, embryos did express a constitutively high ferric reduction activity. Surprisingly, iron(III) reduction is not catalyzed by the expected membrane-bound ferric reductase. Instead, embryos efflux high amounts of ascorbate that chemically reduce iron(III) from citrate-malate complexes. In vitro transport experiments on isolated embryos using radiolabeled 55Fe demonstrated that this ascorbate-mediated reduction is an obligatory step for the uptake of iron(II). Moreover, the ascorbate efflux activity was also measured in Arabidopsis embryos, suggesting that this new iron transport system may be generic to dicotyledonous plants. Finally, in embryos of the ascorbate-deficient mutants vtc2-4, vtc5-1, and vtc5-2, the reducing activity and the iron concentration were reduced significantly. Taken together, our results identified a new iron transport mechanism in plants that could play a major role to control iron loading in seeds. PMID:24347170

  12. Ascorbate efflux as a new strategy for iron reduction and transport in plants.

    PubMed

    Grillet, Louis; Ouerdane, Laurent; Flis, Paulina; Hoang, Minh Thi Thanh; Isaure, Marie-Pierre; Lobinski, Ryszard; Curie, Catherine; Mari, Stéphane

    2014-01-31

    Iron (Fe) is essential for virtually all living organisms. The identification of the chemical forms of iron (the speciation) circulating in and between cells is crucial to further understand the mechanisms of iron delivery to its final targets. Here we analyzed how iron is transported to the seeds by the chemical identification of iron complexes that are delivered to embryos, followed by the biochemical characterization of the transport of these complexes by the embryo, using the pea (Pisum sativum) as a model species. We have found that iron circulates as ferric complexes with citrate and malate (Fe(III)3Cit2Mal2, Fe(III)3Cit3Mal1, Fe(III)Cit2). Because dicotyledonous plants only transport ferrous iron, we checked whether embryos were capable of reducing iron of these complexes. Indeed, embryos did express a constitutively high ferric reduction activity. Surprisingly, iron(III) reduction is not catalyzed by the expected membrane-bound ferric reductase. Instead, embryos efflux high amounts of ascorbate that chemically reduce iron(III) from citrate-malate complexes. In vitro transport experiments on isolated embryos using radiolabeled (55)Fe demonstrated that this ascorbate-mediated reduction is an obligatory step for the uptake of iron(II). Moreover, the ascorbate efflux activity was also measured in Arabidopsis embryos, suggesting that this new iron transport system may be generic to dicotyledonous plants. Finally, in embryos of the ascorbate-deficient mutants vtc2-4, vtc5-1, and vtc5-2, the reducing activity and the iron concentration were reduced significantly. Taken together, our results identified a new iron transport mechanism in plants that could play a major role to control iron loading in seeds.

  13. A Nanoparticulate Ferritin-Core Mimetic Is Well Taken Up by HuTu 80 Duodenal Cells and Its Absorption in Mice Is Regulated by Body Iron12

    PubMed Central

    Latunde-Dada, Gladys O; Pereira, Dora IA; Tempest, Bethan; Ilyas, Hibah; Flynn, Angela C; Aslam, Mohamad F; Simpson, Robert J; Powell, Jonathan J

    2014-01-01

    Background: Iron (Fe) deficiency anemia remains the largest nutritional deficiency disorder worldwide. How the gut acquires iron from nano Fe(III), especially at the apical surface, is incompletely understood. Objective: We developed a novel Fe supplement consisting of nanoparticulate tartrate-modified Fe(III) poly oxo-hydroxide [here termed nano Fe(III)], which mimics the Fe oxide core of ferritin and effectively treats iron deficiency anemia in rats. Methods: We determined transfer to the systemic circulation of nano Fe(III) in iron-deficient and iron-sufficient outbread Swiss mouse strain (CD1) mice with use of 59Fe-labeled material. Iron deficiency was induced before starting the Fe-supplementation period through reduction of Fe concentrations in the rodent diet. A control group of iron-sufficient mice were fed a diet with adequate Fe concentrations throughout the study. Furthermore, we conducted a hemoglobin repletion study in which iron-deficient CD1 mice were fed for 7 d a diet supplemented with ferrous sulfate (FeSO4) or nano Fe(III). Finally, we further probed the mechanism of cellular acquisition of nano Fe(III) by assessing ferritin formation, as a measure of Fe uptake and utilization, in HuTu 80 duodenal cancer cells with targeted inhibition of divalent metal transporter 1 (DMT1) and duodenal cytochrome b (DCYTB) before exposure to the supplemented iron sources. Differences in gene expression were assessed by quantitative polymerase chain reaction. Results: Absorption (means ± SEMs) of nano Fe(III) was significantly increased in iron-deficient mice (58 ± 19%) compared to iron-sufficient mice (18 ± 17%) (P = 0.0001). Supplementation of the diet with nano Fe(III) or FeSO4 significantly increased hemoglobin concentrations in iron-deficient mice (170 ± 20 g/L, P = 0.01 and 180 ± 20 g/L, P = 0.002, respectively). Hepatic hepcidin mRNA expression reflected the nonheme-iron concentrations of the liver and was also comparable for both nano Fe(III)– and FeSO4-supplemented groups, as were iron concentrations in the spleen and duodenum. Silencing of the solute carrier family 11 (proton-coupled divalent metal ion transporter), member 2 (Slc11a2) gene (DMT1) significantly inhibited ferritin formation from FeSO4 (P = 0.005) but had no effect on uptake and utilization of nano Fe(III). Inhibiting DCYTB with an antibody also had no effect on uptake and utilization of nano Fe(III) but significantly inhibited ferritin formation from ferric nitrilotriacetate chelate (Fe-NTA) (P = 0.04). Similarly, cellular ferritin formation from nano Fe(III) was unaffected by the Fe(II) chelator ferrozine, which significantly inhibited uptake and utilization from FeSO4 (P = 0.009) and Fe-NTA (P = 0.005). Conclusions: Our data strongly support direct nano Fe(III) uptake by enterocytes as an efficient mechanism of dietary iron acquisition, which may complement the known Fe(II)/DMT1 uptake pathway. PMID:25342699

  14. Colorimetric and luminescent bifunctional iridium(III) complexes for the sensitive recognition of cyanide ions

    NASA Astrophysics Data System (ADS)

    Chen, Xiudan; Wang, Huili; Li, Jing; Hu, Wenqin; Li, Mei-Jin

    2017-02-01

    Two new cyclometalated iridium(III) complexes [(ppy)2Irppz]Cl (1) and [(ppy)2Irbppz]Cl (2) (where ppy = 2-phenylpyridine, ppz = 4,7-phenanthrolino-5,6:5,6-pyrazine, bppz = 2.3-di-2-pyridylpyrazine), were designed and synthesized. The structure of [(ppy)2Irppz]Cl was determined by single crystal X-ray diffraction. Their photophysical properties were also studied. This kind of complexes could coordinate with Cu2 +, the photoluminescence (PL) of the complex was quenched, and the color changed from orange-red to green. The forming M-Cu (M: complexes 1 and 2) ensemble could be further utilized as a colorimetric and emission ;turn-on; bifunctional detection for CN-, especially for complex 1-Cu2 + showed a high sensitivity toward CN- with a limit of diction is 97 nM. Importantly, this kind of iridium(III) complexes shows a unique recognition of cyanide ions over other anions which makes it an eligible sensing probe for cyanide ions.

  15. Genomic analyses of bacterial porin-cytochrome gene clusters

    DOE PAGES

    Shi, Liang; Fredrickson, James K.; Zachara, John M.

    2014-11-26

    In this study, the porin-cytochrome (Pcc) protein complex is responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III) by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens PCA. The identified and characterized Pcc complex of G. sulfurreducens PCA consists of a porin-like outer-membrane protein, a periplasmic 8-heme c type cytochrome (c-Cyt) and an outer-membrane 12-heme c-Cyt, and the genes encoding the Pcc proteins are clustered in the same regions of genome (i.e., the pcc gene clusters) of G. sulfurreducens PCA. A survey of additionally microbial genomes has identified the pcc gene clusters in all sequenced Geobacter spp. and other bacteriamore » from six different phyla, including Anaeromyxobacter dehalogenans 2CP-1, A. dehalogenans 2CP-C, Anaeromyxobacter sp. K, Candidatus Kuenenia stuttgartiensis, Denitrovibrio acetiphilus DSM 12809, Desulfurispirillum indicum S5, Desulfurivibrio alkaliphilus AHT2, Desulfurobacterium thermolithotrophum DSM 11699, Desulfuromonas acetoxidans DSM 684, Ignavibacterium album JCM 16511, and Thermovibrio ammonificans HB-1. The numbers of genes in the pcc gene clusters vary, ranging from two to nine. Similar to the metal-reducing (Mtr) gene clusters of other Fe(III)-reducing bacteria, such as Shewanella spp., additional genes that encode putative c-Cyts with predicted cellular localizations at the cytoplasmic membrane, periplasm and outer membrane often associate with the pcc gene clusters. This suggests that the Pcc-associated c-Cyts may be part of the pathways for extracellular electron transfer reactions. The presence of pcc gene clusters in the microorganisms that do not reduce solid-phase Fe(III) and Mn(IV) oxides, such as D. alkaliphilus AHT2 and I. album JCM 16511, also suggests that some of the pcc gene clusters may be involved in extracellular electron transfer reactions with the substrates other than Fe(III) and Mn(IV) oxides.« less

  16. Supramolecular assembly of group 11 phosphorescent metal complexes for chemosensors of alcohol derivatives

    NASA Astrophysics Data System (ADS)

    Lintang, H. O.; Ghazalli, N. F.; Yuliati, L.

    2018-04-01

    We report on systematic study on vapochromic sensing of ethanol by using phosphorescent trinuclear metal pyrazolate complexes with supramolecular assembly of weak intermolecular metal-metal interactions using 4-(3,5-dimethoxybenzyl)-3,5-dimethyl pyrazole ligand (1) and group 11 metal ions (Cu(I), Ag(I), Au(I)). Upon excitation at 284, the resulting complexes showed emission bands with a peak centered at 616, 473 and 612 nm for 2(Cu), 2(Ag) and 2(Au), respectively. Chemosensor 2(Cu) showed positive response to ethanol vapors in 5 mins by blue-shifting its emission band from 616 to 555 nm and emitting bright orange to green. Otherwise 2(Au) gave shifting from its emission band centered at 612 to 587 nm with Δλ of 25 nm (41%) and color changes from red-orange to light green-orange while 2(Ag) showed quenching in its original emission intensity at 473 nm in 40% with color changes from dark green to less emissive. These results demonstrate that sensing capability of chemosensor 2(Cu) with suitable molecular design of ligand and metal ion in the complex is due to the formation of a weak intermolecular hydrogen bonding interaction of O atom at the methoxy of the benzyl ring with the OH of the vapors at the outside of the molecules.

  17. Compressive Optical Imaging Systems - Theory, Devices and Implementation

    DTIC Science & Technology

    2009-04-01

    Radon projections of the object distribution. However, more complex coding strategies have long been applied in imaging [5] and spectroscopy [6, 7...the bottom right is yellow-green, and the bottom left is yellow- orange . Note the the broad spectral ranges have made the spectral patterns very...Mr - Measured spectra Jf **v\\* f \\gt yellow orange +f •) *\\ - measured spectra*^* 1 S__ ,*3r if ^Sfc

  18. Thiophene-based rhodamine as selectivef luorescence probe for Fe(III) and Al(III) in living cells.

    PubMed

    Wang, Kun-Peng; Chen, Ju-Peng; Zhang, Si-Jie; Lei, Yang; Zhong, Hua; Chen, Shaojin; Zhou, Xin-Hong; Hu, Zhi-Qiang

    2017-09-01

    The thiophene-modified rhodamine 6G (GYJ) has been synthesized as a novel chemosensor. The sensor has sufficiently high selectivity and sensitivity for the detection of Fe 3+ and Al 3+ ions (M 3+ ) by fluorescence and ultraviolet spectroscopy with a strong ability for anti-interference performance. The binding ratio of M 3+ -GYJ complex was determined to be 2:1 according to the Job's plot. The binding constants for Fe 3+ and Al 3+ were calculated to be 3.91 × 10 8 and 5.26 × 10 8  M -2 , respectively. All these unique features made it particularly favorable for cellular imaging applications. The obvious fluorescence microscopy experiments demonstrated that the probes could contribute to the detection of Fe 3+ and Al 3+ in related cells and biological organs with satisfying resolution. Graphical abstract GYJ has high selectivity and sensitivity for the detection of Fe(III) and Al(III) with the binding ratio of 2:1.

  19. Spectrophotometric Determination of the Hole Concentration in the Superconductor YBa2Cu3O(sub 7-x)

    ERIC Educational Resources Information Center

    Hoppe, Jack I.; Malati, Mounir A.

    2005-01-01

    An experimental study of ceramic superconductors namely YBa2Cu3O(sub 7-x), which illustrates the use of spectrophotometry, based on the electronic spectra of complexes of Fe(II), Fe(III) and Cu(II) to better understand the stoichiometry of YBCO is described. The results from this experiment are in good agreement with those obtained by the…

  20. Spectrophotometric Determination of Iron(III)-Glycine Formation Constant in Aqueous Medium Using Competitive Ligand Binding

    ERIC Educational Resources Information Center

    Prasad, Rajendra; Prasad, Surendra

    2009-01-01

    The formation constant of iron(III) complex with glycine (Gly) ligand in aqueous acidic medium (0.2 M HNO[subscript 3], I = 0.2 M at 28 plus or minus 1 degree C) was determined spectrophotometrically in which a competing color reaction between Fe(III) and SCN[superscript -] was used as an indicator reaction. Under the specified conditions Fe(III)…

  1. beta-Citryl-L-glutamate is an endogenous iron chelator that occurs naturally in the developing brain.

    PubMed

    Hamada-Kanazawa, Michiko; Kouda, Makiko; Odani, Akira; Matsuyama, Kaori; Kanazawa, Kiyoka; Hasegawa, Tatsuya; Narahara, Masanori; Miyake, Masaharu

    2010-01-01

    The compound beta-citryl-L-glutamate (beta-CG) was initially isolated from developing brains, while it has also been found in high concentrations in testes and eyes. However, its functional roles are unclear. To evaluate its coordination with metal ions, we performed pH titration experiments. The stability constant, logbeta(pqr) for M(p)(beta-CG)(q)H(r) was calculated from pH titration data, which showed that beta-CG forms relatively strong complexes with Fe(III), Cu(II), Fe(II) and Zn(II). beta-CG was also found able to solubilize Fe more effectively from Fe(OH)(2) than from Fe(OH)(3). Therefore, we examined the effects of beta-CG on Fe-dependent reactive oxygen species (ROS)-generating systems, as well as the potential ROS-scavenging activities of beta-CG and metal ion-(beta-CG) complexes. beta-CG inhibited the Fe-dependent degradation of deoxyribose and Fe-dependent damage to DNA or plasmid DNA in a dose-dependent manner, whereas it had no effect on Cu-mediated DNA damage. In addition, thermodynamic data showed that beta-CG in a physiological pH solution is an Fe(II) chelator rather than an Fe(III) chelator. Taken together, these findings suggest that beta-CG is an endogenous low molecular weight Fe chelator.

  2. Potentiometric and spectroscopic study of the interaction of 3d transition metal ions with inositol hexakisphosphate

    NASA Astrophysics Data System (ADS)

    Veiga, Nicolás; Macho, Israel; Gómez, Kerman; González, Gabriel; Kremer, Carlos; Torres, Julia

    2015-10-01

    Among myo-inositol phosphates, the most abundant in nature is the myo-inositol hexakisphosphate, InsP6. Although it is known to be vital to cell functioning, the biochemical research into its metabolism needs chemical and structural analysis of all the protonation, complexation and precipitation processes that it undergoes in the biological media. In view of its high negative charge at physiological level, our group has been leading a thorough research into the InsP6 chemical and structural behavior in the presence of the alkali and alkaline earth metal ions essential for life. The aim of this article is to extend these studies, dealing with the chemical and structural features of the InsP6 interaction with biologically relevant 3d transition metal ions (Fe(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)), in a non-interacting medium and under simulated physiological conditions. The metal-complex stability constants were determined by potentiometry, showing under ligand-excess conditions the formation of mononuclear species in different protonation states. Under metal ion excess, polymetallic species were detected for Fe(II), Fe(III), Zn(II) and Cu(II). Additionally, the 31P NMR and UV-vis spectroscopic studies provided interesting structural aspects of the strong metal ion-InsP6 interaction.

  3. Microbial Reduction of Fe(III) and U(VI) in Aquifers: Simulations Exploring Coupled Effects of Heterogeneity and Fe(II) Sorption

    NASA Astrophysics Data System (ADS)

    Scheibe, T. D.; Fang, Y.; Roden, E. E.; Brooks, S. C.; Chien, Y.; Murray, C. J.

    2004-05-01

    Uranium is a significant groundwater contaminant at many former mining and processing sites. In its oxidized state, U(VI) is soluble and mobile, although strongly retarded by sorption to natural iron oxide surfaces. It has been demonstrated that commonly occurring subsurface microorganisms can reduce uranium and other metals when provided sufficient carbon as an electron donor. Reduced U(IV) precipitates as a solid phase; therefore biostimulation provides a potential strategy for in situ removal from contaminated groundwater. However, these biogeochemical reactions occur in the context of a complex heterogeneous environment in which flow and transport dynamics and abiotic reactions can have significant impacts. We have constructed a high-resolution numerical model of groundwater flow and multicomponent reactive transport that incorporates heterogeneity in hydraulic conductivity and initial Fe(III) distribution, microbial growth and transport dynamics, and effects of sorption or precipitation of biogenic Fe(II) on availability of Fe(III) as an electron acceptor. The biogeochemical reaction models and their parameters are based on laboratory experiments; the heterogeneous field-scale property distributions are based on interpretations of geophysical and other observations at a highly characterized field site. The model is being run in Monte Carlo mode to examine the controls that these factors exert on 1) the initial distribution of sorbed uranium in an oxic environment and 2) the reduction and immobilization of uranium upon introduction of a soluble electron donor.

  4. Fresh squeezed orange juice odor: a review.

    PubMed

    Perez-Cacho, Pilar Ruiz; Rouseff, Russell L

    2008-08-01

    Fresh orange juice is a highly desirable but unstable product. This review examines analytical findings, odor activity, and variations due to cultivar, sampling methods, manner of juicing, plus possible enzymatic and microbial artifacts. Initial attempts to characterize orange juice odor were based on volatile quantitation and overemphasized the importance of high concentration volatiles. Although over 300 volatiles have been reported from GC-MS analytical studies, this review presents 36 consensus aroma active components from GC-olfactometry studies consisting of 14 aldehydes, 7 esters, 5 terpenes, 6 alcohols, and 4 ketones. Most are trace (microg/L) components. (+)-Limonene is an essential component in orange juice odor although its exact function is still uncertain. Total amounts of volatiles in mechanically squeezed juices are three to 10 times greater than hand-squeezed juices because of elevated peel oil levels. Elevated peel oil changes the relative proportion of several key odorants. Odor active components from solvent extraction studies differ from those collected using headspace techniques as they include volatiles with low vapor pressure such as vanillin. Some reported odorants such as 2,3-butanedione are microbial contamination artifacts. Orange juice odor models confirm that fresh orange aroma is complex as the most successful models contain 23 odorants.

  5. Antibacterial activity and spectral studies of trivalent chromium, manganese, iron macrocyclic complexes derived from oxalyldihydrazide and glyoxal.

    PubMed

    Singh, D P; Kumar, Ramesh; Singh, Jitender

    2009-06-01

    A new series of complexes is synthesized by template condensation of oxalyldihydrazide and glyoxal in methanolic medium in the presence of trivalent chromium, manganese and iron salts forming complexes of the type: [M(C(8)H(8)N(8)O(4))X]X(2) where M = Cr(III), Mn(III), Fe(III) and X = Cl(-1), NO(-1)(3), CH(3)COO(-1). The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic susceptibility measurements, electronic, NMR, infrared and far infrared spectral studies. On the basis of these studies, a five coordinate square pyramidal geometry for these complexes has been proposed. The biological activities of the metal complexes were tested in vitro against a number of pathogenic bacteria and some of the complexes exhibited remarkable antibacterial activities.

  6. Microbial reduction of Fe(III) in the Fifthian and Muloorina illites: Contrasting extents and rates of bioreduction

    USGS Publications Warehouse

    Seabaugh, Jennifer L.; Dong, Hailiang; Kukkadapu, Ravi K.; Eberl, Dennis D.; Morton, John P.; Kim, J.

    2006-01-01

    Shewanella putrefaciens CN32 reduces Fe(III) within two illites which have different properties: the Fithian bulk fraction and the <0.2 m fraction of Muloorina. The Fithian illite contained 4.6% (w/w) total Fe, 81% of which was Fe(III). It was dominated by illite with some jarosite (∼32% of the total Fe(III)) and goethite (11% of the total Fe(III)). The Muloorina illite was pure and contained 9.2% Fe, 93% of which was Fe(III). Illite suspensions were buffered at pH 7 and were inoculated with CN32 cells with lactate as the electron donor. Select treatments included anthraquinone-2,6-disulfonate (AQDS) as an electron shuttle. Bioproduction of Fe(II) was determined by ferrozine analysis. The unreduced and bioreduced solids were characterized by Mössbauer spectroscopy, X-ray diffraction and transmission electron microscopy. The extent of Fe(III) reduction in the bulk Fithian illite was enhanced by the presence of AQDS (73%) with complete reduction of jarosite and goethite and partial reduction of illite. Mössbauer spectroscopy and chemical extraction determined that 21–25% of illite-associated Fe(III) was bioreduced. The extent of bioreduction was less in the absence of AQDS (63%) and only jarosite was completely reduced with partial reduction of goethite and illite. The XRD and TEM data revealed no significant illite dissolution or biogenic minerals, suggesting that illite was reduced in the solid state and biogenic Fe(II) from jarosite and goethite was either released to aqueous solution or adsorbed onto residual solid surfaces. In contrast, only 1% of the structural Fe(III) in Muloorina illite was bioreduced. The difference in the extent and rate of bioreduction between the two illites was probably due to the difference in layer charge and the total structural Fe content between the Fithian illite (0.56 per formula) and Muloorina illite (0.87). There may be other factors contributing to the observed differences, such as expandability, surface area and the arrangements of Fe in the octahedral sheets. The results of this study have important implications for predicting microbe-induced physical and chemical changes of clay minerals in soils and sediments.

  7. Preservation of organic matter in marine sediments by inner-sphere interactions with reactive iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, Andrew; Brandes, Jay; Leri, Alessandra

    Interactions between organic matter and mineral matrices are critical to the preservation of soil and sediment organic matter. In addition to clay minerals, Fe(III) oxides particles have recently been shown to be responsible for the protection and burial of a large fraction of sedimentary organic carbon (OC). Through a combination of synchrotron X-ray techniques and high-resolution images of intact sediment particles, we assessed the mechanism of interaction between OC and iron, as well as the composition of organic matter co-localized with ferric iron. We present scanning transmission x-ray microscopy images at the Fe L 3 and C K1 edges showingmore » that the organic matter co-localized with Fe(III) consists primarily of C=C, C=O and C-OH functional groups. Coupling the co-localization results to iron K-edge X-ray absorption spectroscopy fitting results allowed to quantify the relative contribution of OC-complexed Fe to the total sediment iron and reactive iron pools, showing that 25–62% of total reactive iron is directly associated to OC through inner-sphere complexation in coastal sediments, as much as four times more than in low OC deep sea sediments. Direct inner-sphere complexation between OC and iron oxides (Fe-O-C) is responsible for transferring a large quantity of reduced OC to the sedimentary sink, which could otherwise be oxidized back to CO 2.« less

  8. Pattern recognition and genetic algorithms for discrimination of orange juices and reduction of significant components from headspace solid-phase microextraction.

    PubMed

    Rinaldi, Maurizio; Gindro, Roberto; Barbeni, Massimo; Allegrone, Gianna

    2009-01-01

    Orange (Citrus sinensis L.) juice comprises a complex mixture of volatile components that are difficult to identify and quantify. Classification and discrimination of the varieties on the basis of the volatile composition could help to guarantee the quality of a juice and to detect possible adulteration of the product. To provide information on the amounts of volatile constituents in fresh-squeezed juices from four orange cultivars and to establish suitable discrimination rules to differentiate orange juices using new chemometric approaches. Fresh juices of four orange cultivars were analysed by headspace solid-phase microextraction (HS-SPME) coupled with GC-MS. Principal component analysis, linear discriminant analysis and heuristic methods, such as neural networks, allowed clustering of the data from HS-SPME analysis while genetic algorithms addressed the problem of data reduction. To check the quality of the results the chemometric techniques were also evaluated on a sample. Thirty volatile compounds were identified by HS-SPME and GC-MS analyses and their relative amounts calculated. Differences in composition of orange juice volatile components were observed. The chosen orange cultivars could be discriminated using neural networks, genetic relocation algorithms and linear discriminant analysis. Genetic algorithms applied to the data were also able to detect the most significant compounds. SPME is a useful technique to investigate orange juice volatile composition and a flexible chemometric approach is able to correctly separate the juices.

  9. Mössbauer study of novel iron(II) complexes synthesized with Schiff bases

    NASA Astrophysics Data System (ADS)

    Várhelyi, Cs.; Lengyel, A.; Homonnay, Z.; Szalay, R.; Pokol, Gy.; Szilágyi, I.-M.; Huszthy, P.; Papp, J.; Goga, F.; Golban, L.-M.; Várhelyi, M.; Tomoaia-Cotisel, M.; Szőke, Á.; Kuzmann, E.

    2017-11-01

    Novel [Fe(4-benzyl-2-hydroxyphenyl-propylidene)2ethylene-diamine], and [Fe (2,4,6-trihydroxy-benzyl-4-metoxiphenyl-methylidene)2ethylene-diamine] complexes were synthesized by reacting FeII salt with the indicated Schiff-base ligands. The compounds were characterized by57Fe Mössbauer spectroscopy, FTIR, UV-VIS, TG-DTA-DTG, MS, AFM, XRD, cyclic voltammetry and biological activity measurements. 295 K and 78 K Mössbauer spectra revealed that iron is dominantly in high spin FeII state in both complexes while simultaneously a minor low spin FeII was also present in both complexes, furthermore a minor high spin FeIII was observed in [Fe(2,4,6-trihydroxy-benzyl-4-metoxiphenyl- methylidene) 2ethylene-diamine], too.

  10. Fe(III) and Fe(II) induced photodegradation of nonylphenol polyethoxylate (NPEO) oligomer in aqueous solution and toxicity evaluation of the irradiated solution.

    PubMed

    Wang, Lei; Zhang, Junjie; Duan, Zhenghua; Sun, Hongwen

    2017-06-01

    Photodegradation of nonylphenol tri-ethoxylate (NPEO 3 ) in aqueous solution, and the effects of Fe(III) or Fe(II) were studied. The increasing degradation kinetics of NPEO 3 were observed when 500µM Fe(III) or Fe(II) was present in the solutions. Altered formation of NPEO oligomers with shorter EO chains, including nonyphenol (NP), NPEO 1 and NPEO 2 , was observed in water and in solutions containing Fe(III) or Fe(II). The molar percentage yields of NP and NPEO 1,2 production from NPEO 3 photodegradation were approximately 20% in NPEO 3 solution, while NPEO 3 solution with Fe(III), this percentage increased to approximately 50%. In solution with Fe(II), the molar balance between the photodegradation of NPEO 3 and the production of NP and NPEO 1,2 was observed. A luminescent bacterium, Vibrio fischeri, was used to identify changes in the toxicity of NPEO 3 solutions during the photodegradation process under different conditions, while dose addition (DA) model was used to estimate the toxicity of products. Toxicity of NPEO 3 /water solution increased significantly following the irradiation of UVA/UVB mixture. In contrast, obviously decreasing toxicity was observed when NPEO 3 underwent photodegradation in the presence of Fe(III). Copyright © 2017. Published by Elsevier Inc.

  11. Acute, food-induced moderate elevation of plasma uric acid protects against hyperoxia-induced oxidative stress and increase in arterial stiffness in healthy humans.

    PubMed

    Vukovic, Jonatan; Modun, Darko; Budimir, Danijela; Sutlovic, Davorka; Salamunic, Ilza; Zaja, Ivan; Boban, Mladen

    2009-11-01

    We examined the effects of acute, food-induced moderate increase of plasma uric acid (UA) on arterial stiffness and markers of oxidative damage in plasma in healthy males exposed to 100% normobaric oxygen. Acute elevation of plasma UA was induced by consumption of red wine, combination of ethanol and glycerol, or fructose. By using these beverages we were able to separate the effects of UA, wine polyphenols and ethanol. Water was used as a control beverage. Ten males randomly consumed test beverages in a cross-over design over the period of 4 weeks, one beverage per week. They breathed 100% O(2) between 60(th) and 90(th)min of the 4-h study protocol. Pulse wave augmentation index (AIx) at brachial and radial arteries, plasma antioxidant capacity (AOC), thiobarbituric acid-reactive substances (TBARS), lipid hydroperoxides (LOOH) assessed by xylenol orange method, UA and blood ethanol concentrations were determined before and 60, 90, 120, 150 and 240 min after beverage consumption. Consumption of the beverages did not affect the AIx, TBARS or LOOH values during 60 min before exposure to hyperoxia, while AOC and plasma UA increased except in the water group. Significant increase of AIx, plasma TBARS and LOOH, which occurred during 30 min of hyperoxia in the water group, was largely prevented in the groups that consumed red wine, glycerol+ethanol or fructose. In contrast to chronic hyperuricemia, generally considered as a risk factor for cardiovascular diseases and metabolic syndrome, acute increase of UA acts protectively against hyperoxia-induced oxidative stress and related increase of arterial stiffness in large peripheral arteries.

  12. Timing considerations for preclinical MRgRT: effects of ion diffusion, SNR and imaging times on FXG gel calibration

    NASA Astrophysics Data System (ADS)

    Welch, M.; Foltz, W. D.; Jaffray, D. A.

    2015-01-01

    Sub-millimeter resolution images are required for gel dosimeters to be used in preclinical research, which is challenging for MR probed ferrous xylenol-orange (FXG) dosimeters due to ion diffusion and inadequate SNR. A preclinical 7 T MR, small animal irradiator and FXG dosimeters were used in all experiments. Ion diffusion was analyzed using high resolution (0.2 mm/pixel) T1 MR images collected every 5 minutes, post-irradiation, for an hour. Using Fick's second law, ion diffusion was approximated for the first hour post-irradiation. SNR, T1 map precision and calibration fit were determined for two MR protocols: (1) 10 minute acquisition, 0.35mm/pixel and 3mm slices, (2) 45 minute acquisition, 0. 25 mm/pixel and 2 mm slices. SNR and T1 map precision were calculated using a Monte Carlo simulation. Calibration curves were determined by plotting R1 relaxation rates versus depth dose data, and fitting a linear trend line. Ion diffusion was estimated as 0.003mm2 in the first hour post-irradiation. For protocols (1) and (2) respectively, Monte Carlo simulation predicted T1 precisions of 3% and 5% within individual voxels using experimental SNRs; the corresponding measured T1 precisions were 8% and 12%. The linear trend lines reported slopes of 27 ± 3 Gy*s (R2: 0.80 ± 0.04) and 27 ± 4 Gy*s (R2: 0.90 ± 0.04). Ion diffusion is negligible within the first hour post-irradiation, and an accurate and reproducible calibration can be achieved in a preclinical setting with sub-millimeter resolution.

  13. Analysis of the response of PVA-GTA Fricke-gel dosimeters with clinical magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Collura, Giorgio; Gallo, Salvatore; Tranchina, Luigi; Abbate, Boris Federico; Bartolotta, Antonio; d'Errico, Francesco; Marrale, Maurizio

    2018-01-01

    Fricke gel dosimeters produced with a matrix of Poly-vinyl alcohol (PVA) cross-linked with glutaraldehyde (GTA) were analyzed with magnetic resonance imaging (MRI). Previous studies based on spectrophotometry showed valuable dosimetric features of these gels in terms of X-ray sensitivity and diffusion of the ferric ions produced after irradiation. In this study, MRI was performed on the gels at 1.5 T with a clinical scanner in order to optimize the acquisition parameters and obtain high contrast between irradiated and non-irradiated samples. The PVA gels were found to offer good linearity in the range of 0-10 Gy and a stable signal for several hours after irradiation. The sensitivity was about 40% higher compared to gels produced with agarose as gelling agent. The effect of xylenol orange (XO) on the MRI signal was also investigated: gel dosimeters made without XO show higher sensitivity to x-rays than those made with XO. The dosimetric accuracy of the 3D gels was investigated by comparing their MRI response to percentage depth dose and transversal dose profile measurements made with an ionization chamber in a water phantom. The comparison of PVA-GTA gels with and without XO showed that the chelating agent reduces the MRI sensitivity of the gels. Depth-dose and transversal dose profiles acquired by PVA-GTA gels without XO are more accurate and consistent with the ionization chamber data. However, diffusion effects hinder accurate measurements in the steep dose gradient regions and they should be further reduced by modifying the gel matrix and/or by minimizing the delay between irradiation and imaging.

  14. [Changes of serum TOS and TAS levels and their association with apolipoprotein(a) in patients with polycystic ovary syndrome and infertility].

    PubMed

    Tu, An-Su; Zhong, Ying; Mao, Xi-Guang

    2016-03-01

    To investigate changes of serum total oxidation status (TOS) and total antioxidant status (TAS) and their association with apolipoprotein (a) [Apo(a)] in patients with polycystic ovary syndrome (PCOS) combined with infertility. Ninety patients with PCOS and infertility were selected as the study group, including 45 patients treated with antioxidants combined with Diane-35(group A) and 45 with Diane-35 therapy only (group B), with 45 healthy volunteers with normal menstruation and normal dual phase basic body temperatures as the control group. Serum TOS of the participants was determined by dual xylenol orange method, and serum TAS was determined with ABTS method; plasma Apo(a) level was determined by dual wavelength immune transmission turbidity method. Before treatment, serum TOS, OSI, and Apo(a) levels were significantly higher and TAS level was significantly lower in the study group than in the control group (P<0.05). Serum TOS, OSI, and Apo (a) were significantly lowered and TAS was significantly increased in group A after the therapy as compared with the levels before therapy and the levels in group B. The rate of natural recovery of menstruation was significantly higher and the incidence of cardiovascular disease was significantly lower in group A than in group B (P<0.05). Pearson correlation analysis showed that serum TOS and OSI were positively correlated with plasma Apo(a) (r=0.524 and 0.531, P<0.05), and serum TAS was negatively correlated with plasma Apo(a) (r=-0.519, P<0.05). Antioxidant therapy can lower TOS, OSI and Apo(a) levels and increase TAS level to lessen oxidative stress, improve the prognosis, and reduce the risks of cardiovascular disease in patients with PCOS and infertility.

  15. Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes.

    PubMed

    Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M Arif

    2016-05-15

    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Biodegradation of organic matter and anodic microbial communities analysis in sediment microbial fuel cells with/without Fe(III) oxide addition.

    PubMed

    Xu, Xun; Zhao, Qingliang; Wu, Mingsong; Ding, Jing; Zhang, Weixian

    2017-02-01

    To enhance the biodegradation of organic matter in sediment microbial fuel cell (SMFC), Fe(III) oxide, as an alternative electron acceptor, was added into the sediment. Results showed that the SMFC with Fe(III) oxide addition obtained higher removal efficiencies for organics than the SMFC without Fe(III) oxide addition and open circuit bioreactor, and produced a maximum power density (P max ) of 87.85mW/m 2 with a corresponding maximum voltage (V max ) of 0.664V. The alteration of UV-254 and specific ultraviolet absorbance (SUVA) also demonstrated the organic matter in sediments can be effectively removed. High-throughput sequencing of anodic microbial communities indicated that bacteria from the genus Geobacter were predominantly detected (21.23%) in the biofilm formed on the anode of SMFCs, while Pseudomonas was the most predominant genus (18.12%) in the presence of Fe(III) oxide. Additionally, compared with the open circuit bioreactor, more electrogenic bacteria attached to the biofilm of anode in SMFCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Particle Aggregation During Fe(III) Bioreduction in Nontronite

    NASA Astrophysics Data System (ADS)

    Jaisi, D. P.; Dong, H.; Hi, Z.; Kim, J.

    2005-12-01

    This study was performed to evaluate the rate and mechanism of particle aggregation during bacterial Fe (III) reduction in different size fractions of nontronite and to investigate the role of different factors contributing to particle aggregation. To achieve this goal, microbial Fe(III) reduction experiments were performed with lactate as an electron donor, Fe(III) in nontronite as an electron acceptor, and AQDS as an electron shuttle in bicarbonate buffer using Shewanella putrefaceins CN32. These experiments were performed with and without Na- pyrophosphate as a dispersant in four size fractions of nontronite (0.12-0.22, 0.41-0.69, 0.73-0.96 and 1.42-1.8 mm). The rate of nontronite aggregation during the Fe(III) bioreduction was measured by analyzing particle size distribution using photon correlation spectroscopy (PCS) and SEM images analysis. Similarly, the changes in particle morphology during particle aggregation were determined by analyses of SEM images. Changes in particle surface charge were measured with electrophoretic mobility analyzer. The protein and carbohydrate fraction of EPS produced by cells during Fe(III) bioreduction was measured using Bradford and phenol-sulfuric acid extraction method, respectively. In the presence of the dispersant, the extent of Fe(III) bioreduction was 11.5-12.2% within the first 56 hours of the experiment. There was no measurable particle aggregation in control experiments. The PCS measurements showed that the increase in the effective diameter (95% percentile) was by a factor of 3.1 and 1.9 for particle size of 0.12-0.22 mm and 1.42-1.80 mm, respectively. The SEM image analyses also gave the similar magnitude of increase in particle size. In the absence of the dispersant, the extent of Fe(III) bioreduction was 13.4-14.5% in 56 hours of the experiment. The rate of aggregation was higher than that in the presence of the dispersant. The increase in the effective diameter (95% percentile) was by a factor of 13.6 and 4.1 for the particles size of 0.12-0.22 and 1.42-1.8 mm, respectively. The particle aggregation was limited in control experiment to the factor of 2.8 and 2.1 for these two size fractions, respectively. The measured electrophoretic mobility decreased with increase in the extent of bioreduction and aggregation, but the rate of decrease was greatest in the finest size fraction. The EPS measurements showed the increase in the carbohydrate and protein fractions as a result of bioreduction. Separate experiments were performed to understand the relative contribution of Fe(III) reduction and EPS production in controlling nontronite particle aggregation The rate of particle aggregation was measured for nontronite that was chemically pre-reduced by dithionite to various extents, both with and without addition of dextran, a neutral and pure EPS. The aggregation rate was greater in the nontronite that were pre-reduced to a higher extent than those with a lower extent of reduction. The relative contribution to particle aggregation due to Fe(III) reduction and polysaccharide bridging was about 4:1. However, in the real system where bacterial cells are involved, and amount of EPS production and extent of Fe(III) bioreduction increase with time, the relative contribution may be different than in this simple system. In summary, we conclude that both Fe(III) reduction and microbial production of EPS contribute to the observed nontronite particle aggregation with Fe(III) reduction playing more dominant role.

  18. Molecular modelling, spectroscopic characterization and biological studies of tetraazamacrocyclic metal complexes

    NASA Astrophysics Data System (ADS)

    Rathi, Parveen; Sharma, Kavita; Singh, Dharam Pal

    2014-09-01

    Macrocyclic complexes of the type [MLX]X2; where L is (C30H28N4), a macrocyclic ligand, M = Cr(III) and Fe(III) and X = Cl-, CH3COO- or NO3-, have been synthesized by template condensation reaction of 1,8-diaminonaphthalene and acetylacetone in the presence of trivalent metal salts in a methanolic medium. The complexes have been formulated as [MLX]X2 due to 1:2 electrolytic nature of these complexes. The complexes have been characterized with the help of elemental analyses, molar conductance measurements, magnetic susceptibility measurements, electronic, infrared, far infrared, Mass spectral studies and molecular modelling. Molecular weight of these complexes indicates their monomeric nature. On the basis of all these studies, a five coordinated square pyramidal geometry has been proposed for all these complexes. These metal complexes have also been screened for their in vitro antimicrobial activities.

  19. Effects of air pollutants on Los Angeles Basin citrus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, C.R.; Taylor, O.C.; Richards, B.L.

    1970-03-01

    Commercially producing lemon and navel orange trees were enclosed in plastic covered greenhouses and were given various fractions of the air pollutants occurring in the Los Angeles Basin. In some treatments nitric oxide was supplied to the trees to react with ozone but this formed nitrogen dioxide, another phytotoxicant. The study showed that the photochemical smog complex reduced the rate of water, apparent photosynthesis and yield of both lemons and navel oranges. Fluoride levels in the atmosphere were too low to cause detectable effects. Leaf drop was significantly less in lemons receiving carbon filtered air than those receiving ''ambient air''.more » A similar trend occurred in navel oranges. Fruit drop is a serious problem in navel oranges. This loss was significantly less in carbon filtered air than ambient. Yield of mature fruit is reduced in some cases by as much as 50 percent.« less

  20. Visualization of drug-nucleic acid interactions at atomic resolution v. structure of two aminoacridine/dinucleoside monophosphate crystalline complexes, proflavine: 5-iodocytidylyl(3'-5') guanosine and acridine orange: 5-iodocytidylyl(3'-5') guanosine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, B.S.; Seshadri, T.P.; Sakore, T.D.

    1979-01-01

    Acridine orange and proflavine form complexes with the dinucleoside monophosphate, 5-iodocytidylyl(3'-5') guanosine (iodoCpG). The acridine orange-iodoCpG crystals are monoclinic, space group P2/sub 1/, with unit cell dimensions a = 14.36 A, b = 19.64 A, c = 20.67 A, ..beta.. = 102.5. The proflavine-iodoCpG crystals are monoclinic, space group C2, with unit cell dimensions a = 32.14 A, b = 22.23 A, c = 18.42 A, ..beta.. = 123.3. Both structures have been solved to atomic resolution by Patterson and Fourier methods, and refined by full matrix least squares. Acridine orange forms an intercalative structure with iodoCpG but the acridinemore » nucleus lies asymmetrically in the intercalation site. This asymmetric intercalation is accompanied by a sliding of base-pairs upon the acridine nucleus. Base-pairs above and below the drug are separated by about 6.8 A and are twisted about 10/sup 0/. Proflavine demonstrates symmetric intercalation with iodoCpG. Hydrogen bonds connect amino- groups on proflavine with phosphate oxygen atoms on the dinucleotide. Base-pairs above and below the intercalative proflavine molecule are twisted about 36/sup 0/. The altered magnitude of this angular twist reflects the sugar puckering pattern that is observed. We propose a proflavine-DNA and an acridine orange-DNA binding model. We will describe these models in detail in this paper.« less

  1. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium

    USGS Publications Warehouse

    Liu, D.; Dong, H.; Bishop, M.E.; Zhang, Jiahua; Wang, Hongfang; Xie, S.; Wang, Shaoming; Huang, L.; Eberl, D.D.

    2012-01-01

    Clay minerals are ubiquitous in soils, sediments, and sedimentary rocks and could coexist with sulfate-reducing bacteria (SRB) in anoxic environments, however, the interactions of clay minerals and SRB are not well understood. The objective of this study was to understand the reduction rate and capacity of structural Fe(III) in dioctahedral clay minerals by a mesophilic SRB, Desulfovibrio vulgaris and the potential role in catalyzing smectite illitization. Bioreduction experiments were performed in batch systems, where four different clay minerals (nontronite NAu-2, mixed-layer illite-smectite RAr-1 and ISCz-1, and illite IMt-1) were exposed to D. vulgaris in a non-growth medium with and without anthraquinone-2,6-disulfonate (AQDS) and sulfate. Our results demonstrated that D. vulgaris was able to reduce structural Fe(III) in these clay minerals, and AQDS enhanced the reduction rate and extent. In the presence of AQDS, sulfate had little effect on Fe(III) bioreduction. In the absence of AQDS, sulfate increased the reduction rate and capacity, suggesting that sulfide produced during sulfate reduction reacted with the phyllosilicate Fe(III). The extent of bioreduction of structural Fe(III) in the clay minerals was positively correlated with the percentage of smectite and mineral surface area of these minerals. X-ray diffraction, and scanning and transmission electron microscopy results confirmed formation of illite after bioreduction. These data collectively showed that D. vulgaris could promote smectite illitization through reduction of structural Fe(III) in clay minerals. ?? 2011 Blackwell Publishing Ltd.

  2. Iron species determination by task-specific ionic liquid-based in situ solvent formation dispersive liquid-liquid microextraction combined with flame atomic absorption spectrometry.

    PubMed

    Sadeghi, Susan; Ashoori, Vahid

    2017-10-01

    The task-specific ionic liquid (TSIL) of 1-ethyl-3-methylimidazolium bromide functionalized with 8-hydroxyquinoline was used as a chelating agent and extracting solvent for dispersive liquid-liquid microextraction and subsequent determination of Fe(III) by flame atomic absorption spectrometry. The in situ solvent formation of TSIL using KPF 6 provided the desired water-immiscible ionic liquid. The total Fe concentration could be determined after pre-oxidation of Fe(II) to Fe(III). Various factors affecting the proposed extraction procedure were optimized. The proposed analytical conditions were: sample pH 5, TSIL amount 0.3% (w/v), KPF 6 amount 0.15% (w/v), anti-sticking 0.1% (w/v) and salt concentration 5% (w/v). Under optimal conditions, the linear dynamic ranges for Fe(III) and total Fe were 20-80 and 20-110 ng mL -1 , respectively, with a detection limit of 6.9 ng mL -1 for Fe(III) and relative standard deviation of 2.2%. The proposed method was successfully applied to the determination of trace Fe(III) in water (underground, tap, refined water and artificial sea water) and beverage (apple, tomato, and tea) samples. The developed method offers advantages such as simplicity, ease of operation, and extraction of Fe(III) from aqueous solutions without the use of organic solvent. It was successfully applied for iron speciation in different real samples. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Amino group in Leptothrix sheath skeleton is responsible for direct deposition of Fe(III) minerals onto the sheaths.

    PubMed

    Kunoh, Tatsuki; Matsumoto, Syuji; Nagaoka, Noriyuki; Kanashima, Shoko; Hino, Katsuhiko; Uchida, Tetsuya; Tamura, Katsunori; Kunoh, Hitoshi; Takada, Jun

    2017-07-26

    Leptothrix species produce microtubular organic-inorganic materials that encase the bacterial cells. The skeleton of an immature sheath, consisting of organic exopolymer fibrils of bacterial origin, is formed first, then the sheath becomes encrusted with inorganic material. Functional carboxyl groups of polysaccharides in these fibrils are considered to attract and bind metal cations, including Fe(III) and Fe(III)-mineral phases onto the fibrils, but the detailed mechanism remains elusive. Here we show that NH 2 of the amino-sugar-enriched exopolymer fibrils is involved in interactions with abiotically generated Fe(III) minerals. NH 2 -specific staining of L. cholodnii OUMS1 detected a terminal NH 2 on its sheath skeleton. Masking NH 2 with specific reagents abrogated deposition of Fe(III) minerals onto fibrils. Fe(III) minerals were adsorbed on chitosan and NH 2 -coated polystyrene beads but not on cellulose and beads coated with an acetamide group. X-ray photoelectron spectroscopy at the N1s edge revealed that the terminal NH 2 of OUMS1 sheaths, chitosan and NH 2 -coated beads binds to Fe(III)-mineral phases, indicating interaction between the Fe(III) minerals and terminal NH 2 . Thus, the terminal NH 2 in the exopolymer fibrils seems critical for Fe encrustation of Leptothrix sheaths. These insights should inform artificial synthesis of highly reactive NH 2 -rich polymers for use as absorbents, catalysts and so on.

  4. Anaerobic Benzene Oxidation by Geobacter Species

    PubMed Central

    Bain, Timothy S.; Nevin, Kelly P.; Barlett, Melissa A.; Lovley, Derek R.

    2012-01-01

    The abundance of Geobacter species in contaminated aquifers in which benzene is anaerobically degraded has led to the suggestion that some Geobacter species might be capable of anaerobic benzene degradation, but this has never been documented. A strain of Geobacter, designated strain Ben, was isolated from sediments from the Fe(III)-reducing zone of a petroleum-contaminated aquifer in which there was significant capacity for anaerobic benzene oxidation. Strain Ben grew in a medium with benzene as the sole electron donor and Fe(III) oxide as the sole electron acceptor. Furthermore, additional evaluation of Geobacter metallireducens demonstrated that it could also grow in benzene-Fe(III) medium. In both strain Ben and G. metallireducens the stoichiometry of benzene metabolism and Fe(III) reduction was consistent with the oxidation of benzene to carbon dioxide with Fe(III) serving as the sole electron acceptor. With benzene as the electron donor, and Fe(III) oxide (strain Ben) or Fe(III) citrate (G. metallireducens) as the electron acceptor, the cell yields of strain Ben and G. metallireducens were 3.2 × 109 and 8.4 × 109 cells/mmol of Fe(III) reduced, respectively. Strain Ben also oxidized benzene with anthraquinone-2,6-disulfonate (AQDS) as the sole electron acceptor with cell yields of 5.9 × 109 cells/mmol of AQDS reduced. Strain Ben serves as model organism for the study of anaerobic benzene metabolism in petroleum-contaminated aquifers, and G. metallireducens is the first anaerobic benzene-degrading organism that can be genetically manipulated. PMID:23001648

  5. Identifying and Quantifying Chemical Forms of Sediment-Bound Ferrous Iron.

    NASA Astrophysics Data System (ADS)

    Kohler, M.; Kent, D. B.; Bekins, B. A.; Cozzarelli, I.; Ng, G. H. C.

    2015-12-01

    Aqueous Fe(II) produced by dissimilatory iron reduction comprises only a small fraction of total biogenic Fe(II) within an aquifer. Most biogenic Fe(II) is bound to sediments on ion exchange sites; as surface complexes and, possibly, surface precipitates; or incorporated into solid phases (e.g., siderite, magnetite). Different chemical forms of sediment-bound Fe(II) have different reactivities (e.g., with dissolved oxygen) and their formation or destruction by sorption/desorption and precipitation/dissolution is coupled to different solutes (e.g., major cations, H+, carbonate). We are quantifying chemical forms of sediment-bound Fe(II) using previously published extractions, novel extractions, and experimental studies (e.g., Fe isotopic exchange). Sediments are from Bemidji, Minnesota, where biodegradation of hydrocarbons from a burst oil pipeline has driven extensive dissimilatory Fe(III) reduction, and sites potentially impacted by unconventional oil and gas development. Generally, minimal Fe(II) was mobilized from ion exchange sites (batch desorption with MgCl2 and repeated desorption with NH4Cl). A < 2mm sediment fraction from the iron-reducing zone at Bemidji had 1.8umol/g Fe(II) as surface complexes or carbonate phases (sodium acetate at pH 5) of which ca. 13% was present as surface complexes (FerroZine extractions). Total bioavailable Fe(III) and biogenic Fe(II) (HCl extractions) was 40-50 umole/g on both background and iron-reducing zone sediments . Approximately half of the HCl-extractable Fe from Fe-reducing zone sediments was Fe(II) whereas 12 - 15% of Fe extracted from background sediments was present as Fe(II). One-third to one-half of the total biogenic Fe(II) extracted from sediments collected from a Montana prairie pothole located downgradient from a produced-water disposal pit was present as surface-complexed Fe(II).

  6. Electron transfer reactions of excited dyes with metal complexes. Progress report, May 1, 1976--January 31, 1977. [Fe(III)--thionine reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtin, N.N.

    1977-02-01

    A study was initiated of the factors which determine quantum efficiency of transfer of reducing equivalents between excited dye molecules and metal complexes in their ground state and composition and dynamics of formation and decay of related photostationary states. A ruby laser capable of delivering a 3.6 J, 19 nsec flash was acquired and assembly of an apparatus for laser flash photolysis begun. At the same time, conventional flash photolysis was used to pursue investigation of the dependence upon solvent, anions, pH, and ionic strength of the kinetics of the spontaneous dark reaction of Fe(H/sub 2/O)/sup 3 +//sub 6/ withmore » leucothionine and with semithionine, reactions which contribute to the composition and dynamics of formation and decay of the photostationary state of the iron-thionine photoredox reaction. Results are consistent with formation of an intermediate complex between leucothionine and Fe(III), K/sub A/ = 380 M/sup -1/ and k(elec. transfer) = 0.88 s/sup -1/ at approximately 22/sup 0/ in water solution at pH2, with sulfate as anion and ..mu.. = .05 - .1 M. Under similar conditions in 50 v/v percent aqueous CH/sub 3/CN, K/sub A/ = 780 M/sup -1/, k(elec. transfer) = 0.55 s/sup -1/. In both solvents, sulfate produces a large positive salt effect. Intermediacy of a complex was not established for the faster reaction of Fe(III) with semithionine under similar conditions: K/sub A/ . k(elec. transfer) approximately 3.5 x 10/sup 5/ M/sup -1/s/sup -1/ in H/sub 2/O, approximately 1.0 x 10/sup 4/ in 50 v/v percent aqueous CH/sub 3/CN.« less

  7. Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov.

    PubMed

    Kashefi, Kazem; Holmes, Dawn E; Reysenbach, Anna-Louise; Lovley, Derek R

    2002-04-01

    It has recently been recognized that the ability to use Fe(III) as a terminal electron acceptor is a highly conserved characteristic in hyperthermophilic microorganisms. This suggests that it may be possible to recover as-yet-uncultured hyperthermophiles in pure culture if Fe(III) is used as an electron acceptor. As part of a study of the microbial diversity of the Obsidian Pool area in Yellowstone National Park, Wyo., hot sediment samples were used as the inoculum for enrichment cultures in media containing hydrogen as the sole electron donor and poorly crystalline Fe(III) oxide as the electron acceptor. A pure culture was recovered on solidified, Fe(III) oxide medium. The isolate, designated FW-1a, is a hyperthermophilic anaerobe that grows exclusively by coupling hydrogen oxidation to the reduction of poorly crystalline Fe(III) oxide. Organic carbon is not required for growth. Magnetite is the end product of Fe(III) oxide reduction under the culture conditions evaluated. The cells are rod shaped, about 0.5 microm by 1.0 to 1.2 microm, and motile and have a single flagellum. Strain FW-1a grows at circumneutral pH, at freshwater salinities, and at temperatures of between 65 and 100 degrees C with an optimum of 85 to 90 degrees C. To our knowledge this is the highest temperature optimum of any organism in the Bacteria. Analysis of the 16S ribosomal DNA (rDNA) sequence of strain FW-1a places it within the Bacteria, most closely related to abundant but uncultured microorganisms whose 16S rDNA sequences have been previously recovered from Obsidian Pool and a terrestrial hot spring in Iceland. While previous studies inferred that the uncultured microorganisms with these 16S rDNA sequences were sulfate-reducing organisms, the physiology of the strain FW-1a, which does not reduce sulfate, indicates that these organisms are just as likely to be Fe(III) reducers. These results further demonstrate that Fe(III) may be helpful for recovering as-yet-uncultured microorganisms from hydrothermal environments and illustrate that caution must be used in inferring the physiological characteristics of at least some thermophilic microorganisms solely from 16S rDNA sequences. Based on both its 16S rDNA sequence and physiological characteristics, strain FW-1a represents a new genus among the Bacteria. The name Geothermobacterium ferrireducens gen. nov., sp. nov., is proposed (ATCC BAA-426).

  8. Speciation, photosensitivity, and reactions of transition metal ions in atmospheric droplets

    NASA Astrophysics Data System (ADS)

    Weschler, C. J.; Mandich, M. L.; Graedel, T. E.

    1986-04-01

    Dissolved transition metal ions (TMI) are common constituents of atmospheric droplets. They are known to catalyze sulfur oxidation in droplets and are suspected of being involved in other chemical processes as well. We have reviewed the relevant equilibrium constants and chemical reactions of the major TMI (iron, manganese, copper, and nickel), their ability to form complexes in aqueous solution, and their potential involvement in photochemical processes in atmospheric droplets. Among the results are the following: (1) The major Fe(III) species in atmospheric water droplets are [Fe(OH)(H2O)5]2+, [Fe(OH)2(H2O)4]+, and [Fe(SO3)(H2O)5]+; the partitioning among these complexes is a function of pH. In contrast, Cu(II), Mn(II), and Ni(II) exist almost entirely in the droplets as hexaquo complexes. (2) Within the tropospheric solar spectrum, some of the complexes of Fe(III) have large absorption cross-sections. In this work we report cross-section data for several of the complexes. Absorption of solar photons by such complexes is generally followed by cleavage, which in the same process reduces the iron (III) atom and produces a reactive free radical. This mechanism has the potential to be a significant and heretofore unappreciated source of free radicals in atmospheric droplets. (3) TMI participate in redox reactions with H2O2 and its associated species HO2· and O2-. These reactions furnish the potential for catalytic cycles involving TMI in atmospheric droplets under a variety of illumination and acidity conditions. (4) A number of organic processes in atmospheric droplets may involve TMI. Among these processes are the production and destruction of alkylhydroperoxides, the chemical chains linking RO2· radicals to stable alcohols and acids, and the oxidation of aliphatic aldehydes to organic acids.

  9. Mineral transformations associated with goethite reduction by Methanosarcina barkeri

    USGS Publications Warehouse

    Liu, D.; Wang, Hongfang; Dong, H.; Qiu, X.; Dong, X.; Cravotta, C.A.

    2011-01-01

    To investigate the interaction between methanogens and iron-containing minerals in anoxic environments, we conducted batch culture experiments with Methanosarcina barkeri in a phosphate-buffered basal medium (PBBM) to bioreduce structural Fe(III) in goethite with hydrogen as the sole substrate. Fe(II) and methane concentrations were monitored over the course of the bioreduction experiments with wet chemistry and gas chromatography, respectively. Subsequent mineralogical changes were characterized with X-ray diffraction (XRD) and scanning electron microscopy (SEM). In the presence of an electron shuttle anthraquinone-2,6-disulfonate (AQDS), 30% Fe(III) in goethite (weight basis) was reduced to Fe(II). In contrast, only 2% Fe(III) (weight basis) was bioreduced in the absence of AQDS. Most of the bioproduced Fe(II) was incorporated into secondary minerals including dufr??nite and vivianite. Our data implied a dufr??nite-vivianite transformation mechanism where a metastable dufr??nite transformed to a more stable vivianite over extended time in anaerobic conditions. Methanogenesis was greatly inhibited by bioreduction of goethite Fe(III). These results have important implications for the methane flux associated with Fe(III) bioreduction and ferrous iron mineral precipitation in anaerobic soils and sediments. ?? 2011 Elsevier B.V.

  10. Spectroscopic, Elemental and Thermal Analysis, and Positron Annihilation Studies on Ca(II), Sr(II), Ba(II), Pb(II), and Fe(III) Penicillin G Potassium Complexes

    NASA Astrophysics Data System (ADS)

    Refat, M. S.; Sharshara, T.

    2015-11-01

    The [Pb(Pin)2] · 3H2O, [M(Pin)(H2O)2(Cl)] · nH2O (M = SrII, CaII or BaII; n = 0-1), and [Fe(Pin)2(Cl)(H2O)] · H2O penicillin G potassium (Pin) complexes were synthesized and characterized using elemental analyses, molar conductivity, thermal analysis and electronic spectroscopy techniques. The positron annihilation lifetime (PAL) and Doppler broadening (DB) techniques have been employed to probe the defects and structural changes of Pin ligand and its complexes. The PAL and DB line-shape parameters were discussed in terms of the structure, molecular weight, ligand-metal molar ratio, and other properties of the Pin complexes.

  11. Spectroscopic studies on two mono nuclear iron (III) complexes derived from a schiff base and an azodye

    NASA Astrophysics Data System (ADS)

    Mini, S.; Sadasivan, V.; Meena, S. S.; Bhatt, Pramod

    2014-10-01

    Two new mono nuclear Fe(III) complexes of an azodye (ANSN) and a Schiff base (FAHP) are reported. The azodye is prepared by coupling diazotized 1-amino-2-naphthol-4-sulphonicacid with 2-naphthol and the Schiff base is prepared by condensing 2-amino-3-hydroxy pyridine with furfural. The complexes were synthesized by the reaction of FeCl3˙2H2O with respective ligands. They were characterized on the basis of elemental analysis and spectral studies like IR, NMR, Electronic and M.ssbauer. Magnetic susceptibility and Molar conductance of complexes at room temperature were studied. Based on the spectroscopic evidences and other analytical data the complexes are formulated as[Fe(ANSN)Cl(H2O)2] and [Fe(FAHP)Cl2(H2O)2].

  12. Effect of uranium(VI) speciation on simultaneous microbial reduction of uranium(VI) and iron(III).

    PubMed

    Stewart, Brandy D; Amos, Richard T; Fendorf, Scott

    2011-01-01

    Uranium is a pollutant of concern to both human and ecosystem health. Uranium's redox state often dictates whether it will reside in the aqueous or solid phase and thus plays an integral role in the mobility of uranium within the environment. In anaerobic environments, the more oxidized and mobile form of uranium (UO2(2+) and associated species) may be reduced, directly or indirectly, by microorganisms to U(IV) with subsequent precipitation of UO. However, various factors within soils and sediments, such as U(VI) speciation and the presence of competitive electron acceptors, may limit biological reduction of U(VI). Here we examine simultaneous dissimilatory reduction of Fe(III) and U(VI) in batch systems containing dissolved uranyl acetate and ferrihydrite-coated sand. Varying amounts of calcium were added to induce changes in aqueous U(VI) speciation. The amount of uranium removed from solution during 100 h of incubation with S. putrefaciens was 77% in absence of Ca or ferrihydrite, but only 24% (with ferrihydrite) and 14% (without ferrihydrite) were removed for systems with 0.8 mM Ca. Dissimilatory reduction of Fe(III) and U(VI) proceed through different enzyme pathways within one type of organism. We quantified the rate coefficients for simultaneous dissimilatory reduction of Fe(III) and U(VI) in systems varying in Ca concecentration (0-0.8 mM). The mathematical construct, implemented with the reactive transport code MIN3P, reveals predominant factors controlling rates and extent of uranium reduction in complex geochemical systems.

  13. Comparative proteomic analysis of Desulfotomaculum reducens MI-1: Insights into the metabolic versatility of a gram-positive sulfate- and metal-reducing bacterium

    DOE PAGES

    Otwell, Anne E.; Callister, Stephen J.; Zink, Erika M.; ...

    2016-02-19

    In this study, the proteomes of the metabolically versatile and poorly characterized Gram-positive bacterium Desulfotomaculum reducens MI-1 were compared across four cultivation conditions including sulfate reduction, soluble Fe(III) reduction, insoluble Fe(III) reduction, and pyruvate fermentation. Collectively across conditions, we observed at high confidence ~38% of genome-encoded proteins. Here, we focus on proteins that display significant differential abundance on conditions tested. To the best of our knowledge, this is the first full-proteome study focused on a Gram-positive organism cultivated either on sulfate or metal-reducing conditions. Several proteins with uncharacterized function encoded within heterodisulfide reductase ( hdr)-containing loci were upregulated on eithermore » sulfate (Dred_0633-4, Dred_0689-90, and Dred_1325-30) or Fe(III)-citrate-reducing conditions (Dred_0432-3 and Dred_1778-84). Two of these hdr-containing loci display homology to recently described flavin-based electron bifurcation (FBEB) pathways (Dred_1325-30 and Dred_1778-84). Additionally, we propose that a cluster of proteins, which is homologous to a described FBEB lactate dehydrogenase (LDH) complex, is performing lactate oxidation in D. reducens (Dred_0367-9). Analysis of the putative sulfate reduction machinery in D. reducens revealed that most of these proteins are constitutively expressed across cultivation conditions tested. In addition, peptides from the single multiheme c-type cytochrome (MHC) in the genome were exclusively observed on the insoluble Fe(III) condition, suggesting that this MHC may play a role in reduction of insoluble metals.« less

  14. Comment on “Isotopic fractionation between Fe(III) and Fe(II) in aqueous solutions” by Clark Johnson et al., [Earth Planet. Sci. Lett. 195 (2002) 141–153

    USGS Publications Warehouse

    Bullen, Thomas D.; White, Arthur F.; Childs, Cyril W.

    2003-01-01

    In a recent contribution [1], Johnson et al. reported the equilibrium isotope fractionation factor between dissolved Fe(II) and Fe(III) in aqueous solutions at pH=2.5 and 5.5. They suggest that because the iron isotope fractionation observed in their experiments spans virtually the entire range observed in sedimentary rocks, Fe(II)–Fe(III) aqueous speciation may play a major role in determining iron isotope variations in nature where Fe(II) and Fe(III) can become physically separated. They discounted earlier conclusions by us and others [2] ;  [3] that significant equilibrium fractionation between specific coexisting Fe(II)- or Fe(III)-aqueous complexes (e.g., between aqueous Fe(II)(OH)x(aq)and Fe(II)(aq) ion) is capable of producing iron isotope contrasts that can be preserved in nature. This is an important contribution not only because the authors recognize the importance of abiotic equilibrium iron isotope fractionation in nature in contrast to previous assertions [4], but also because it will help to focus discussion on the development and evaluation of experimental approaches that can reveal abiotic fractionation mechanisms. However, in this Comment we propose that the experiments presented in this paper cannot be interpreted as straightforwardly as Johnson et al. contend. In particular, we show that in one of their critical experiments attainment of either isotope mass balance or equilibrium was not demonstrated, and thus the results of that experiment cannot be used to calculate an Fe(II)–Fe(III) equilibrium fractionation factor.

  15. Mineralogical transformations controlling acid mine drainage chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peretyazhko, Tetyana; Zachara, John M.; Boily, Jean F.

    2009-05-30

    The role of Fe(III) minerals in controlling acid mine drainage (AMD) chemistry was studied using samples from two AMD sites [Gum Boot (GB) and Fridays-2 (FR)] located in northern Pennsylvania. Chemical extractions, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) were used to identify and characterize Fe(III) phases. The mineralogical analysis revealed that schwertmannite and goethite were the principal Fe(III) phases in the sediments. Schwertmannite transformation occurred at the GB site where poorly-crystallized goethite rich in surface-bound sulfate was initially formed. In contrast, no schwertmannite transformation occurred at the FR site. The goethite in GBmore » sediments had spherical morphology due to preservation of schwertmannite structure by adsorbed sulfate. Results of chemical extractions showed that poorly-crystallized goethite was subject to further crystallization accompanied by sulfate desorption. Changes in sulfate speciation preceded its desorption, with a conversion of bidentate- to monodentate-bound sulfate surface complexes. Laboratory sediment incubation experiments were conducted to evaluate the effect of mineral transformation on water chemistry. Incubation experiments were carried out with schwertmannite-containing sediments and AMD waters with different pH and chemical composition. The pH decreased to 1.9-2.2 in all suspensions and the concentrations of dissolved Fe and S increased significantly. Regardless of differences in the initial water composition, pH, Fe and S were similar in suspensions of the same sediment. XRD measurements revealed that schwertmannite transformed into goethite in GB and FR sediments during laboratory incubation. The incubation experiment demonstrated that schwertmannite transformation controlled AMD water chemistry during “closed system” laboratory contact.« less

  16. Comparative proteomic analysis of Desulfotomaculum reducens MI-1: Insights into the metabolic versatility of a gram-positive sulfate- and metal-reducing bacterium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otwell, Anne E.; Callister, Stephen J.; Zink, Erika M.

    In this study, the proteomes of the metabolically versatile and poorly characterized Gram-positive bacterium Desulfotomaculum reducens MI-1 were compared across four cultivation conditions including sulfate reduction, soluble Fe(III) reduction, insoluble Fe(III) reduction, and pyruvate fermentation. Collectively across conditions, we observed at high confidence ~38% of genome-encoded proteins. Here, we focus on proteins that display significant differential abundance on conditions tested. To the best of our knowledge, this is the first full-proteome study focused on a Gram-positive organism cultivated either on sulfate or metal-reducing conditions. Several proteins with uncharacterized function encoded within heterodisulfide reductase ( hdr)-containing loci were upregulated on eithermore » sulfate (Dred_0633-4, Dred_0689-90, and Dred_1325-30) or Fe(III)-citrate-reducing conditions (Dred_0432-3 and Dred_1778-84). Two of these hdr-containing loci display homology to recently described flavin-based electron bifurcation (FBEB) pathways (Dred_1325-30 and Dred_1778-84). Additionally, we propose that a cluster of proteins, which is homologous to a described FBEB lactate dehydrogenase (LDH) complex, is performing lactate oxidation in D. reducens (Dred_0367-9). Analysis of the putative sulfate reduction machinery in D. reducens revealed that most of these proteins are constitutively expressed across cultivation conditions tested. In addition, peptides from the single multiheme c-type cytochrome (MHC) in the genome were exclusively observed on the insoluble Fe(III) condition, suggesting that this MHC may play a role in reduction of insoluble metals.« less

  17. Efficient Formation of Light-Absorbing Polymeric Nanoparticles from the Reaction of Soluble Fe(III) with C4 and C6 Dicarboxylic Acids.

    PubMed

    Tran, Ashley; Williams, Geoffrey; Younus, Shagufta; Ali, Nujhat N; Blair, Sandra L; Nizkorodov, Sergey A; Al-Abadleh, Hind A

    2017-09-05

    The role of transition metals in the formation and aging of secondary organic aerosol (SOA) from aliphatic and aromatic precursors in heterogeneous/multiphase reactions is not well understood. The reactivity of soluble Fe(III) toward known benzene photooxidation products that include fumaric (trans-butenedioic) and muconic (trans,trans-2,4-hexadienedioic) acids was investigated. Efficient formation of brightly colored nanoparticles was observed that are mostly rod- or irregular-shaped depending on the structure of the organic precursor. The particles were characterized for their optical properties, growth rate, elemental composition, iron content, and oxidation state. Results indicate that these particles have mass absorption coefficients on the same order as black carbon and larger than that of biomass burning aerosols. The particles are also amorphous in nature and consist of polymeric chains of Fe centers complexed to carboxylate groups. The oxidation state of Fe was found to be in between Fe(III) and Fe(II) in standard compounds. The organic reactant to iron molar ratio and pH were found to affect the particle growth rate. Control experiments using maleic acid (cis-butenedioic acid) and succinic acid (butanedioic acid) produced no particles. The formation of particles reported herein could account for new pathways that lead to SOA and brown carbon formation mediated by transition metals. In addition, the multiple chemically active components in these particles (iron, organics, and acidic groups) may have an effect on their chemical reactivity (enhanced uptake of trace gases, catalysis, and production of reactive oxygen species) and their likely poor cloud/ice nucleation properties.

  18. Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium

    NASA Astrophysics Data System (ADS)

    Gunnars, Anneli; Blomqvist, Sven; Johansson, Peter; Andersson, Christian

    2002-03-01

    The formation of Fe(III) oxyhydroxide colloids by oxidation of Fe(II) and their subsequent aggregation to larger particles were studied in laboratory experiments with natural water from a freshwater lake and a brackish coastal sea. Phosphate was incorporated in the solid phase during the course of hydrolysis of iron. The resulting precipitated amorphous Fe(III) oxyhydroxide phases were of varying composition, depending primarily on the initial dissolved Fe/P molar ratio, but with little influence by salinity or concentration of calcium ions. The lower limiting Fe/P ratio found for the solid phase suggests the formation of a basic Fe(III) phosphate compound with a stoichiometric Fe/P ratio of close to two. This implies that an Fe/P stoichiometry of ≈2 ultimately limits the capacity of precipitating Fe(III) to fix dissolved phosphate at oxic/anoxic boundaries in natural waters. In contrast to phosphorus, the uptake of calcium seemed to be controlled by sorption processes at the surface of the iron-rich particles formed. This uptake was more efficient in freshwater than in brackish water, suggesting that salinity restrains the uptake of calcium by newly formed Fe(III) oxyhydroxides in natural waters. Moreover, salinity enhanced the aggregation rate of the colloids formed. The suspensions were stabilised by the presence of organic matter, although this effect was less pronounced in seawater than in freshwater. Thus, in seawater of 6 to 33 ‰S, the removal of particles was fast (removal half time < 200 h), whereas the colloidal suspensions formed in freshwater were stable (removal half time > 900 h). Overall, oxidation of Fe(II) and removal of Fe(III) oxyhydroxide particles were much faster in seawater than in freshwater. This more rapid turnover results in lower iron availability in coastal seawater than in freshwater, making iron more likely to become a limiting element for chemical scavenging and biologic production.

  19. Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III) Adsorption from Aqueous Solution

    PubMed Central

    Mopoung, Sumrit; Moonsri, Phansiri; Palas, Wanwimon; Khumpai, Sataporn

    2015-01-01

    This research studies the characterization of activated carbon from tamarind seed with KOH activation. The effects of 0.5 : 1–1.5 : 1 KOH : tamarind seed charcoal ratios and 500–700°C activation temperatures were studied. FTIR, SEM-EDS, XRD, and BET were used to characterize tamarind seed and the activated carbon prepared from them. Proximate analysis, percent yield, iodine number, methylene blue number, and preliminary test of Fe(III) adsorption were also studied. Fe(III) adsorption was carried out by 30 mL column with 5–20 ppm Fe(III) initial concentrations. The percent yield of activated carbon prepared from tamarind seed with KOH activation decreased with increasing activation temperature and impregnation ratios, which were in the range from 54.09 to 82.03 wt%. The surface functional groups of activated carbon are O–H, C=O, C–O, –CO3, C–H, and Si–H. The XRD result showed high crystallinity coming from a potassium compound in the activated carbon. The main elements found in the activated carbon by EDS are C, O, Si, and K. The results of iodine and methylene blue adsorption indicate that the pore size of the activated carbon is mostly in the range of mesopore and macropore. The average BET pore size and BET surface area of activated carbon are 67.9764 Å and 2.7167 m2/g, respectively. Finally, the tamarind seed based activated carbon produced with 500°C activation temperature and 1.0 : 1 KOH : tamarind seed charcoal ratio was used for Fe(III) adsorption test. It was shown that Fe(III) was adsorbed in alkaline conditions and adsorption increased with increasing Fe(III) initial concentration from 5 to 20 ppm with capacity adsorption of 0.0069–0.019 mg/g. PMID:26689357

  20. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands

    USGS Publications Warehouse

    Lovley, D.R.; Woodward, J.C.; Chapelle, F.H.

    1994-01-01

    Contamination of ground waters with water-soluble aromatic hydrocarbons, common components of petroleum pollution, often produces anoxic conditions under which microbial degradation of the aromatics is slow. Oxygen is often added to contaminated ground water to stimulate biodegradation, but this can be technically difficult and expensive. Insoluble Fe(III) oxides, which are generally abundant in shallow aquifers, are alternative potential oxidants, but are difficult for microorganisms to access. Here we report that adding organic ligands that bind to Fe(III) dramatically increases its bioavailability, and that in the presence of these ligands, rates of degradation of aromatic hydrocarbons in anoxic aquifer sediments are comparable to those in oxic sediments. We find that even benzene, which is notoriously refractory in the absence of oxygen, can be rapidly degraded. Our results suggest that increasing the bioavailability of Fe(III) by adding suitable ligands provides a potential alternative to oxygen addition for the bioremediation of petroleum-contaminated aquifers.Contamination of ground waters with water-soluble aromatic hydrocarbons, common components of petroleum pollution, often produces anoxic conditions under which microbial degradation of the aromatics is slow. Oxygen is often added to contaminated ground water to stimulate biodegradation, but this can be technically difficult and expensive. Insoluble Fe(III) oxides, which are generally abundant in shallow aquifers, are alternative potential oxidants, but are difficult for microorganisms to access. Here we report that adding organic ligands that bind to Fe(III) dramatically increases its bioavailability, and that in the presence of these ligands, rates of degradation of aromatic hydrocarbons in anoxic aquifer sediments are comparable to those in oxic sediments. We find that even benzene, which is notoriously refractory in the absence of oxygen, can be rapidly degraded. Our results suggest that increasing the bioavailability of Fe(III) by adding suitable ligands provides a potential alternative to oxygen addition for the bioremediation of petroleum-contamined aquifers.

  1. New tris(dopamine) derivative as an iron chelator. Synthesis, solution thermodynamic stability, and antioxidant research.

    PubMed

    Zhang, Qingchun; Jin, Bo; Shi, Zhaotao; Wang, Xiaofang; Lei, Shan; Tang, Xingyan; Liang, Hua; Liu, Qiangqiang; Gong, Mei; Peng, Rufang

    2017-06-01

    A new tris(dopamine) derivative, containing three dopamine chelate moieties which were attached to a trimesic acid molecular scaffold, has been prepared and fully characterized by NMR, FTIR and HRMS. The solution thermodynamic stability of the chelator with Fe(III), Mg(II), Zn(II) and Fe(II) ions was investigated. Results demonstrated that the chelator exhibited effective binding ability and improved selectivity to Fe(III) ion. The chelator possessed affinity similar to that of diethylenetriaminepentaacetic acid chelator for Fe(III) ion. The high affinity could be attributed to the favorable geometric arrangement between the chelator and Fe(III) ion coordination preference. The chelator also exhibited high antioxidant activity and nontoxicity to neuron-like rat pheochromocytoma cells. Hence, the chelator could be used as chelating agent for iron overload situations without depleting essential metal ions, such as Mg(II) and Zn(II) ions. Copyright © 2017. Published by Elsevier Inc.

  2. Structural, spectral analysis and DNA studies of heterocyclic thiosemicarbazone ligand and its Cr(III), Fe(III), Co(II) Hg(II), and U(VI) complexes

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Abu El-Reash, G. M.; El Morshedy, R. M.

    2013-08-01

    The paper presents a combined experimental and computational study of novel Cr(III), Fe(III), Co(II), Hg(II) and U(VI) complexes of (E)-2-((3-hydroxynaphthalen-2-yl)methylene)-N-(pyridin-2-yl)hydrazinecarbothioamide (H2L). The ligand and its complexes have been characterized by elemental analyses, spectral (IR, UV-vis, 1H NMR and 13C NMR), magnetic and thermal studies. IR spectra show that H2L is coordinated to the metal ions in a mononegative bi or tri manner. The structures are suggested to be octahedral for all complexes except Hg(II) complex is tetrahedral. Theoretical calculations have been performed to obtain IR spectra of ligand and its complexes using AM1, MM, Zindo/1, MM+ and PM3, methods. Satisfactory theoretical-experimental agreements were achieved by MM method for the ligand and PM3 for its complexes. DOS calculations carried out by MM (ADF) method for ligand Hg complex from which we concluded that the thiol form of the ligand is more active than thione form and this explains that the most complexation take place in that form. The calculated IR vibrations of the metal complexes, using the PM3 method was the nearest method for the experimental data, and it could be used for all complexes. Also, valuable information are obtained from calculation of molecular parameters for all compounds carried out by the previous methods of calculation (electronegativity of the coordination sites, net dipole moment of the metal complexes, values of heat of formation and binding energy) which approved that the complexes are more stable than ligand. The low value of ΔE could be expected to indicate H2L molecule has high inclination to bind with the metal ions. Furthermore, the kinetic and thermodynamic parameters for the different decomposition steps were calculated using the Coats-Redfern and Horowitz-Metzger methods. Finally, the biochemical studies showed that, complex 2, 4 have powerful and complete degradation effect on DNA. For the foremost majority of cases the activity of the ligand is greatly enhanced by the presence of a metal ion. Thus presented results may be useful in design new more active or specific structures.

  3. Kinetic studies of the impact of thiocyanate moiety on the catalytic properties of Cu(II) and Fe(III) complexes of a new Mannich base

    NASA Astrophysics Data System (ADS)

    Ayeni, Ayowole O.; Watkins, Gareth M.

    2018-04-01

    Four new metal complexes of a novel Mannich base 5-methyl-2-((4-(pyridin-2-yl)piperazin-1-yl)methyl)phenol (HL) have been prepared. The compounds were characterized by an array of analytical and spectroscopic methods including Nuclear Magnetic Resonance, Infra-red and UV-Visible spectroscopy. Compounds 1-4 behaved as effective catalysts towards the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to its corresponding quinone in the presence of molecular oxygen in DMF solution while compound 4 proved to be the best catalyst with a turnover rate of 17.93 ± 1.10 h-1 as other complexes showed lower rates of oxidation. Also with the exception of dinuclear iron complex (4); thiocyanate containing Cu(II) complex exhibited lower catecholase activity compared to the Cu(II) complex without it.

  4. Vapour-induced solid-state C-H bond activation for the clean synthesis of an organopalladium biothiol sensor.

    PubMed

    Monas, Andrea; Užarević, Krunoslav; Halasz, Ivan; Kulcsár, Marina Juribašić; Ćurić, Manda

    2016-10-27

    Room-temperature accelerated aging in the solid state has been applied for atom- and energy-efficient activation of either one or two C-H bonds of azobenzene and methyl orange by palladium(ii) acetate. Organopalladium complexes are prepared in quantitative reactions without potentially harmful side products. Dicyclopalladated methyl orange is water-soluble and is a selective chromogenic biothiol sensor at physiologically-relevant micromolar concentrations in buffered aqueous media.

  5. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium.

    PubMed

    Liu, D; Dong, H; Bishop, M E; Zhang, J; Wang, H; Xie, S; Wang, S; Huang, L; Eberl, D D

    2012-03-01

    Clay minerals are ubiquitous in soils, sediments, and sedimentary rocks and could coexist with sulfate-reducing bacteria (SRB) in anoxic environments, however, the interactions of clay minerals and SRB are not well understood. The objective of this study was to understand the reduction rate and capacity of structural Fe(III) in dioctahedral clay minerals by a mesophilic SRB, Desulfovibrio vulgaris and the potential role in catalyzing smectite illitization. Bioreduction experiments were performed in batch systems, where four different clay minerals (nontronite NAu-2, mixed-layer illite-smectite RAr-1 and ISCz-1, and illite IMt-1) were exposed to D. vulgaris in a non-growth medium with and without anthraquinone-2,6-disulfonate (AQDS) and sulfate. Our results demonstrated that D. vulgaris was able to reduce structural Fe(III) in these clay minerals, and AQDS enhanced the reduction rate and extent. In the presence of AQDS, sulfate had little effect on Fe(III) bioreduction. In the absence of AQDS, sulfate increased the reduction rate and capacity, suggesting that sulfide produced during sulfate reduction reacted with the phyllosilicate Fe(III). The extent of bioreduction of structural Fe(III) in the clay minerals was positively correlated with the percentage of smectite and mineral surface area of these minerals. X-ray diffraction, and scanning and transmission electron microscopy results confirmed formation of illite after bioreduction. These data collectively showed that D. vulgaris could promote smectite illitization through reduction of structural Fe(III) in clay minerals. © 2011 Blackwell Publishing Ltd.

  6. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria

    USGS Publications Warehouse

    Lonergan, D.J.; Jenter, H.L.; Coates, J.D.; Phillips, E.J.P.; Schmidt, T.M.; Lovley, D.R.

    1996-01-01

    Evolutionary relationships among strictly anaerobic dissimilatory Fe(III)- reducing bacteria obtained from a diversity of sedimentary environments were examined by phylogenetic analysis of 16S rRNA gene sequences. Members of the genera Geobacter, Desulfuromonas, Pelobacter, and Desulfuromusa formed a monophyletic group within the delta subdivision of the class Proteobacteria. On the basis of their common ancestry and the shared ability to reduce Fe(III) and/or S0, we propose that this group be considered a single family, Geobacteraceae. Bootstrap analysis, characteristic nucleotides, and higher- order secondary structures support the division of Geobacteraceae into two subgroups, designated the Geobacter and Desulfuromonas clusters. The genus Desulfuromusa and Pelobacter acidigallici make up a distinct branch with the Desulfuromonas cluster. Several members of the family Geobacteraceae, none of which reduce sulfate, were found to contain the target sequences of probes that have been previously used to define the distribution of sulfate-reducing bacteria and sulfate-reducing bacterium-like microorganisms. The recent isolations of Fe(III)-reducing microorganisms distributed throughout the domain Bacteria suggest that development of 16S rRNA probes that would specifically target all Fe(III) reducers may not be feasible. However, all of the evidence suggests that if a 16S rRNA sequence falls within the family Geobacteraceae, then the organism has the capacity for Fe(III) reduction. The suggestion, based on geological evidence, that Fe(III) reduction was the first globally significant process for oxidizing organic matter back to carbon dioxide is consistent with the finding that acetate-oxidizing Fe(III) reducers are phylogenetically diverse.

  7. Phenazine-1-Carboxylic Acid Promotes Bacterial Biofilm Development via Ferrous Iron Acquisition▿†

    PubMed Central

    Wang, Yun; Wilks, Jessica C.; Danhorn, Thomas; Ramos, Itzel; Croal, Laura; Newman, Dianne K.

    2011-01-01

    The opportunistic pathogen Pseudomonas aeruginosa forms biofilms, which render it more resistant to antimicrobial agents. Levels of iron in excess of what is required for planktonic growth have been shown to promote biofilm formation, and therapies that interfere with ferric iron [Fe(III)] uptake combined with antibiotics may help treat P. aeruginosa infections. However, use of these therapies presumes that iron is in the Fe(III) state in the context of infection. Here we report the ability of phenazine-1-carboxylic acid (PCA), a common phenazine made by all phenazine-producing pseudomonads, to help P. aeruginosa alleviate Fe(III) limitation by reducing Fe(III) to ferrous iron [Fe(II)]. In the presence of PCA, a P. aeruginosa mutant lacking the ability to produce the siderophores pyoverdine and pyochelin can still develop into a biofilm. As has been previously reported (P. K. Singh, M. R. Parsek, E. P. Greenberg, and M. J. Welsh, Nature 417:552-555, 2002), biofilm formation by the wild type is blocked by subinhibitory concentrations of the Fe(III)-binding innate-immunity protein conalbumin, but here we show that this blockage can be rescued by PCA. FeoB, an Fe(II) uptake protein, is required for PCA to enable this rescue. Unlike PCA, the phenazine pyocyanin (PYO) can facilitate biofilm formation via an iron-independent pathway. While siderophore-mediated Fe(III) uptake is undoubtedly important at early stages of infection, these results suggest that at later stages of infection, PCA present in infected tissues may shift the redox equilibrium between Fe(III) and Fe(II), thereby making iron more bioavailable. PMID:21602354

  8. Study of production and pyrolysis characteristics of sweet orange flavor-β-cyclodextrin inclusion complex.

    PubMed

    Zhu, Guangyong; Xiao, Zuobing; Zhou, Rujun; Zhu, Yalun

    2014-05-25

    Flavor plays an important role and has been widely used in foods. Encapsulation can prevent the loss of volatile aromatic ingredients, provide protection and enhance the stability of the flavor. Kinetic and thermodynamic parameters are helpful in understanding the mechanism of molecular recognition between hosts and guests. This work focused on the study of production of a sweet orange flavor-β-cyclodextrin (CD) inclusion complex, and investigated the combination of flavor and β-CD by thermogravimetric analysis. Pyrolysis characteristics, kinetic and thermodynamic parameters of the flavor-β-CD inclusion complex were determined. The results showed that the flavor-β-CD inclusion complexes can form large aggregates in water. During thermal degradation of blank β-CD and flavor-β-CD inclusion complex, three main stages can be distinguished. The thermogravimetric (TG) curve of blank β-CD shows a leveling-off from room temperature to 250°C, while the TG curve of flavor-β-CD inclusion complex is downward sloping in this temperature range. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Growth of Iron(III)-Reducing Bacteria on Clay Minerals as the Sole Electron Acceptor and Comparison of Growth Yields on a Variety of Oxidized Iron Forms†

    PubMed Central

    Kostka, Joel E.; Dalton, Dava D.; Skelton, Hayley; Dollhopf, Sherry; Stucki, Joseph W.

    2002-01-01

    Smectite clay minerals are abundant in soils and sediments worldwide and are typically rich in Fe. While recent investigations have shown that the structural Fe(III) bound in clay minerals is reduced by microorganisms, previous studies have not tested growth with clay minerals as the sole electron acceptor. Here we have demonstrated that a pure culture of Shewanella oneidensis strain MR-1 as well as enrichment cultures of Fe(III)-reducing bacteria from rice paddy soil and subsurface sediments are capable of conserving energy for growth with the structural Fe(III) bound in smectite clay as the sole electron acceptor. Pure cultures of S. oneidensis were used for more detailed growth rate and yield experiments on various solid- and soluble-phase electron acceptors [smectite, Fe(III) oxyhydroxide FeOOH, Fe(III) citrate, and oxygen] in the same minimal medium. Growth was assessed as direct cell counts or as an increase in cell carbon (measured as particulate organic carbon). Cell counts showed that similar growth of S. oneidensis (108 cells ml−1) occurred with smectitic Fe(III) and on other Fe forms [amorphous Fe(III) oxyhydroxide, and Fe citrate] or oxygen as the electron acceptor. In contrast, cell yields of S. oneidensis measured as the increase in cell carbon were similar on all Fe forms tested while yields on oxygen were five times higher, in agreement with thermodynamic predictions. Over a range of particle loadings (0.5 to 4 g liter−1), the increase in cell number was highly correlated to the amount of structural Fe in smectite reduced. From phylogenetic analysis of the complete 16S rRNA gene sequences, a predominance of clones retrieved from the clay mineral-reducing enrichment cultures were most closely related to the low-G+C gram-positive members of the Bacteria (Clostridium and Desulfitobacterium) and the δ-Proteobacteria (members of the Geobacteraceae). Results indicate that growth with smectitic Fe(III) is similar in magnitude to that with Fe(III) oxide minerals and is dependent upon the mineral surface area available. Iron(III) bound in clay minerals should be considered an important electron acceptor supporting the growth of bacteria in soils or sedimentary environments. PMID:12450850

  10. Ligational behaviour of lomefloxacin drug towards Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO(2)(VI) ions: synthesis, structural characterization and biological activity studies.

    PubMed

    Abd el-Halim, Hanan F; Mohamed, Gehad G; el-Dessouky, Maher M I; Mahmoud, Walaa H

    2011-11-01

    Nine new mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO(2)(VI) complexes of lomefloxacin drug were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, XRD, UV-vis, (1)H NMR as well as conductivity and magnetic susceptibility measurements and thermal analyses. The dissociation constants of lomefloxacin and stability constants of its binary complexes have been determined spectrophotometrically in aqueous solution at 25±1°C and at 0.1 M KNO(3) ionic strength. The discussion of the outcome data of the prepared complexes indicate that the lomefloxacin ligand behaves as a neutral bidentate ligand through OO coordination sites and coordinated to the metal ions via the carbonyl oxygen and protonated carboxylic oxygen with 1:1 (metal:ligand) stoichiometry for all complexes. The molar conductance measurements proved that the complexes are electrolytes. The powder XRD study reflects the crystalline nature for the investigated ligand and its complexes except Mn(II), Zn(II) and UO(2)(II). The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first steps followed by decomposition of the anions, coordinated water and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. A comparative study of the inhibition zones of the ligand and its metal complexes indicates that metal complexes exhibit higher antibacterial effect against one or more bacterial species than the free LFX ligand. The antifungal and anticancer activities were also tested. The antifungal effect of almost metal complexes is higher than the free ligand. LFX, [Co(LFX)(H(2)O)(4)]·Cl(2) and [Zn(LFX)(H(2)O)(4)]·Cl(2) were found to be very active with IC50 values 14, 11.2 and 43.1, respectively. While, other complexes had been found to be inactive at lower concentration than 100 μg/ml. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Influence of central metalloligand geometry on electronic communication between metals: syntheses, crystal structures, MMCT properties of isomeric cyanido-bridged Fe2Ru complexes, and TDDFT calculations.

    PubMed

    Ma, Xiao; Lin, Chen-Sheng; Hu, Sheng-Min; Tan, Chun-Hong; Wen, Yue-Hong; Sheng, Tian-Lu; Wu, Xin-Tao

    2014-06-02

    To investigate how the central metalloligand geometry influences distant or vicinal metal-to-metal charge-transfer (MMCT) properties of polynuclear complexes, cis- and trans-isomeric heterotrimetallic complexes, and their one- and two-electron oxidation products, cis/trans-[Cp(dppe)Fe(II)NCRu(II)(phen)2CN-Fe(II)(dppe)Cp][PF6]2 (cis/trans-1[PF6]2), cis/trans-[Cp(dppe)Fe(II)NCRu(II)(phen)2CNFe(III)-(dppe)Cp][PF6]3 (cis/trans-1[PF6]3) and cis/trans-[Cp(dppe)Fe(III)NCRu(II)(phen)2CN-Fe(III)(dppe)Cp][PF6]4 (cis/trans-1[PF6]4) have been synthesized and characterized. Electrochemical measurements show the presence of electronic interactions between the two external Fe(II) atoms of the cis- and trans-isomeric complexes cis/trans-1[PF6]2. The electronic properties of all these complexes were studied and compared by spectroscopic techniques and TDDFT//DFT calculations. As expected, both mixed valence complexes cis/trans-1[PF6]3 exhibited different strong absorption signals in the NIR region, which should mainly be attributed to a transition from an MO that is delocalized over the Ru(II)-CN-Fe(II) subunit to a Fe(III) d orbital with some contributions from the co-ligands. Moreover, the NIR transition energy in trans-1[PF6]3 is lower than that in cis-1[PF6]3, which is related to the symmetry of their molecular orbitals on the basis of the molecular orbital analysis. Also, the electronic spectra of the two-electron oxidized complexes show that trans-1[PF6]4 possesses lower vicinal Ru(II) → Fe(III) MMCT transition energy than cis-1[PF6]4. Moreover, the assignment of MMCT transition of the oxidized products and the differences of the electronic properties between the cis and trans complexes can be well rationalized using TDDFT//DFT calculations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of adsorbed metals ions on the transport of Zn- and Ni-EDTA complexes in a sand and gravel aquifer

    USGS Publications Warehouse

    Kent, D.B.; Davis, J.A.; Anderson, L.C.D.; Rea, B.A.; Coston, J.A.

    2002-01-01

    Adsorption, complexation, and dissolution reactions strongly influenced the transport of metal ions complexed with ethylenediaminetetraacetic acid (EDTA) in a predominantly quartz-sand aquifer during two tracer tests conducted under mildly reducing conditions at pH 5.8 to 6.1. In tracer test M89, EDTA complexes of zinc (Zn) and nickel (Ni), along with excess free EDTA, were injected such that the lower portion of the tracer cloud traveled through a region with adsorbed manganese (Mn) and the upper portion of the tracer cloud traveled through a region with adsorbed Zn. In tracer test S89, Ni- and Zn-EDTA complexes, along with excess EDTA complexed with calcium (Ca), were injected into a region with adsorbed Mn. The only discernable chemical reaction between Ni-EDTA and the sediments was a small degree of reversible adsorption leading to minor retardation. In the absence of adsorbed Zn, the injected Zn was displaced from EDTA complexes by iron(III) [Fe(III)] dissolved from the sediments. Displacement of Zn by Fe(III) on EDTA became increasingly thermodynamically favorable with decreasing total EDTA concentration. The reaction was slow compared to the time-scale of transport. Free EDTA rapidly dissolved aluminum (Al) from the sediments, which was subsequently displaced slowly by Fe. In the portion of tracer cloud M89 that traveled through the region contaminated with adsorbed Zn, little displacement of Zn complexed with EDTA was observed, and Al was rapidly displaced from EDTA by Zn desorbed from the sediments, in agreement with equilibrium calculations. In tracer test S89, desorption of Mn dominated over the more thermodynamically favorable dissolution of Al oxyhydroxides. Comparison with results from M89 suggests that dissolution of Al oxyhydroxides in coatings on these sediment grains by Ca-EDTA was rate-limited whereas that by free EDTA reached equilibrium on the time-scale of transport. Rates of desorption are much faster than rates of dissolution of Fe oxyhydroxides from sediment-grain surfaces and, therefore, adsorbed metal ions can strongly influence the speciation of ligands like EDTA in soils and sediments, especially over small temporal and spatial scales. Copyright ?? 2002 Elsevier Science Ltd.

  13. Equilibrium Thermodynamics, Formation, and Dissociation Kinetics of Trivalent Iron and Gallium Complexes of Triazacyclononane-Triphosphinate (TRAP) Chelators: Unraveling the Foundations of Highly Selective Ga-68 Labeling

    PubMed Central

    Vágner, Adrienn; Forgács, Attila; Brücher, Ernő; Tóth, Imre; Maiocchi, Alessandro; Wurzer, Alexander; Wester, Hans-Jürgen; Notni, Johannes; Baranyai, Zsolt

    2018-01-01

    In order to rationalize the influence of FeIII contamination on labeling with the 68Ga eluted from 68Ge/68Ga-generator, a detailed investigation was carried out on the equilibrium properties, formation and dissociation kinetics of GaIII- and FeIII-complexes of 1,4,7-triazacyclononane-1,4,7-tris(methylene[2-carboxyethylphosphinic acid]) (H6TRAP). The stability and protonation constants of the [Fe(TRAP)]3− complex were determined by pH-potentiometry and spectrophotometry by following the competition reaction between the TRAP ligand and benzhydroxamic acid (0.15 M NaNO3, 25°C). The formation rates of [Fe(TRAP)] and [Ga(TRAP)] complexes were determined by spectrophotometry and 31P-NMR spectroscopy in the pH range 4.5–6.5 in the presence of 5–40 fold HxTRAP(x−6) excess (x = 1 and 2, 0.15 M NaNO3, 25°C). The kinetic inertness of [Fe(TRAP)]3− and [Ga(TRAP)]3− was examined by the trans-chelation reactions with 10 to 20-fold excess of HxHBED(x−4) ligand by spectrophotometry at 25°C in 0.15 M NaCl (x = 0,1 and 2). The stability constant of [Fe(TRAP)]3− (logKFeL = 26.7) is very similar to that of [Ga(TRAP)]3− (logKGaL = 26.2). The rates of ligand exchange reaction of [Fe(TRAP)]3− and [Ga(TRAP)]3− with HxHBED(x−4) are similar. The reactions take place quite slowly via spontaneous dissociation of [M(TRAP)]3−, [M(TRAP)OH]4− and [M(TRAP)(OH)2]5− species. Dissociation half-lives (t1/2) of [Fe(TRAP)]3− and [Ga(TRAP)]3− complexes are 1.1 × 105 and 1.4 × 105 h at pH = 7.4 and 25°C. The formation reactions of [Fe(TRAP)]3− and [Ga(TRAP)]3− are also slow due to the formation of the unusually stable monoprotonated [*M(HTRAP)]2− intermediates [*logKGa(HL) = 10.4 and *logKFe(HL) = 9.9], which are much more stable than the [*Ga(HNOTA)]+ intermediate [*logKGa(HL) = 4.2]. Deprotonation and transformation of the monoprotonated [*M(HTRAP)]2− intermediates into the final complex occur via OH−-assisted reactions. Rate constants (kOH) characterizing the OH−-driven deprotonation and transformation of [* Ga(HTRAP)]2− and [*Fe(HTRAP)]2− intermediates are 1.4 × 105 M−1s−1 and 3.4 × 104 M−1s−1, respectively. In conclusion, the equilibrium and kinetic properties of [Fe(TRAP)] and [Ga(TRAP)] complexes are remarkably similar due to the close physico-chemical properties of FeIII and GaIII-ions. However, a slightly faster formation of [Ga(TRAP)] over [Fe(TRAP)] provides a rationale for a previously observed, selective complexation of 68GaIII in presence of excess FeIII. PMID:29876344

  14. Accumulation and distribution of iron, cadmium, lead and nickel in cucumber plants grown in hydroponics containing two different chelated iron supplies.

    PubMed

    Csog, Árpád; Mihucz, Victor G; Tatár, Eniko; Fodor, Ferenc; Virág, István; Majdik, Cornelia; Záray, Gyula

    2011-07-01

    Cucumber plants grown in hydroponics containing 10 μM Cd(II), Ni(II) and Pb(II), and iron supplied as Fe(III) EDTA or Fe(III) citrate in identical concentrations, were investigated by total-reflection X-ray fluorescence spectrometry with special emphasis on the determination of iron accumulation and distribution within the different plant compartments (root, stem, cotyledon and leaves). The extent of Cd, Ni and Pb accumulation and distribution were also determined. Generally, iron and heavy-metal contaminant accumulation was higher when Fe(III) citrate was used. The accumulation of nickel and lead was higher by about 20% and 100%, respectively, if the iron supply was Fe(III) citrate. The accumulation of Cd was similar. In the case of Fe(III) citrate, the total amounts of Fe taken up were similar in the control and heavy-metal-treated plants (27-31 μmol/plant). Further, the amounts of iron transported from the root towards the shoot of the control, lead- and nickel-contaminated plants were independent of the iron(III) form. Although Fe mobility could be characterized as being low, its distribution within the shoot was not significantly affected by the heavy metals investigated. Copyright © 2011 Elsevier GmbH. All rights reserved.

  15. Hydroxyl Radical Formation in Solutions of Fe(III) and Hydrogen Peroxide - Impact of Freezing and Thawing Process

    NASA Astrophysics Data System (ADS)

    Arakaki, T.; Kinjo, M.; Shiroma, K.; Shibata, M.; Miyake, T.; Hirakawa, T.; Sakugawa, H.

    2003-12-01

    Hydroxyl radical formation was studied by detecting concentration of formate in solutions of hydrated formaldehyde, HOOH, and Fe(III) or Cu(II). Oxidation of hydrated formaldehyde by OH radical is known to form formate. Formate formation increased by about 4 times when the solution underwent freezing and thawing. Although the reaction mechanisms are not clearly understood, we believe that the concentration effect of freezing enhanced the catalytic reactions between HOOH and Fe(III) or Cu(II) and the reduction of transition metals, i.e., Fe(III) to Fe(II) and Cu(II) to Cu(I). The concentration effect also enhanced reactions between Fe(II) and HOOH or Cu(I) and HOOH, which generated OH radical (freeze-Fenton reaction). Study of the effects of pH showed that formate formation was the highest at pH = 4.0, indicating that the speciation of Fe(III) affected the formation of formate. Concentration-dependent experiments demonstrated that Fe is probably the limiting agent under typical atmospheric conditions. Our results suggested that the freezing process could be an important source of hydroxyl radical in high cloud, winter fog, rime ice and freezing acidic rain, and more importantly, a potentially additional oxidation mechanism in the atmosphere.

  16. White polymer light-emitting diodes based on star-shaped polymers with an orange dendritic phosphorescent core.

    PubMed

    Zhu, Minrong; Li, Yanhu; Cao, Xiaosong; Jiang, Bei; Wu, Hongbin; Qin, Jingui; Cao, Yong; Yang, Chuluo

    2014-12-01

    A series of new star-shaped polymers with a triphenylamine-based iridium(III) dendritic complex as the orange-emitting core and poly(9,9-dihexylfluorene) (PFH) chains as the blue-emitting arms is developed towards white polymer light-emitting diodes (WPLEDs). By fine-tuning the content of the orange phosphor, partial energy transfer and charge trapping from the blue backbone to the orange core is realized to achieve white light emission. Single-layer WPLEDs with the configuration of ITO (indium-tin oxide)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/polymer/CsF/Al exhibit a maximum current efficiency of 1.69 cd A(-1) and CIE coordinates of (0.35, 0.33), which is very close to the pure white-light point of (0.33, 0.33). To the best of our knowledge, this is the first report on star-shaped white-emitting single polymers that simultaneously consist of fluorescent and phosphorescent species. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Time-resolved polarization imaging by pump-probe (stimulated emission) fluorescence microscopy.

    PubMed Central

    Buehler, C; Dong, C Y; So, P T; French, T; Gratton, E

    2000-01-01

    We report the application of pump-probe fluorescence microscopy in time-resolved polarization imaging. We derived the equations governing the pump-probe stimulated emission process and characterized the pump and probe laser power levels for signal saturation. Our emphasis is to use this novel methodology to image polarization properties of fluorophores across entire cells. As a feasibility study, we imaged a 15-microm orange latex sphere and found that there is depolarization that is possibly due to energy transfer among fluorescent molecules inside the sphere. We also imaged a mouse fibroblast labeled with CellTracker Orange CMTMR (5-(and-6)-(((4-chloromethyl)benzoyl)amino)tetramethyl-rhodamine). We observed that Orange CMTMR complexed with gluthathione rotates fast, indicating the relatively low fluid-phase viscosity of the cytoplasmic microenvironment as seen by Orange CMTMR. The measured rotational correlation time ranged from approximately 30 to approximately 150 ps. This work demonstrates the effectiveness of stimulated emission measurements in acquiring high-resolution, time-resolved polarization information across the entire cell. PMID:10866979

  18. Physical properties of inulin and inulin-orange juice: physical characterization and technological application.

    PubMed

    Saavedra-Leos, M Z; Leyva-Porras, C; Martínez-Guerra, E; Pérez-García, S A; Aguilar-Martínez, J A; Álvarez-Salas, C

    2014-05-25

    In this work two systems based on a carbohydrate polymer were studied: inulin as model system and inulin-orange juice as complex system. Both system were stored at different water activity conditions and subsequently characterized. Water adsorption isotherms type II were fitted by the GAB model and the water monolayer content was determined for each system. From thermal analyzes it was found that at low water activities (aw) systems were fully amorphous. As aw increased, crystallinity was developed. This behavior was corroborated by X-ray diffraction. In the inulin-orange juice system, crystallization appears at lower water activity caused by the intensification of the chemical interaction of the low molecular weight species contained in orange juice. Glass transition temperature (Tg), determined by modulated differential scanning calorimeter, decreased with aw. As water is adsorbed, the physical appearance of samples changed which could be observed by optical microscopy and effectively related with the microstructure found by scanning electron microscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Iron speciation in peats: Chemical and spectroscopic evidence for the co-occurrence of ferric and ferrous iron in organic complexes and mineral precipitates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, Amrita; Schmidt, Michael P.; Stavitski, Eli

    The speciation of iron (Fe) in organic matter (OM)-rich environments under in situ variable redox conditions is largely unresolved. Peatlands provide a natural setting to study Fe–OM interactions. Utilizing chemical, spectroscopic and theoretical modeling approaches, we report the chemical forms, oxidation states and local coordination environment of naturally occurring Fe in the vertically redox-stratified Manning peatlands of western New York. In addition, we report dominant carbon, sulfur and nitrogen species that can potentially stabilize the various Fe species present in these peatlands. Our results provide clear direct and indirect evidence for the co-occurrence of ferrous (Fe 2+) and ferric (Femore » 3+) iron species in peats under both oxic and anoxic conditions. Iron is mostly present within the operationally defined organic and amorphous (i.e., short range ordered, SRO) fractions; ferric iron primarily as magnetically isolated paramagnetic Fe 3+ in Fe(III)-organic complexes, but also in mineral forms such as ferrihydrite; ferrous iron in tetrahedral coordination in Fe(II)-organic complexes with minor contribution from pyrite. All of the Fe species identified stabilize Fe(III) and/or Fe(II) in anoxic and oxic peats. Fundamental differences are also observed in the relative proportion of C, S and N functionalities of OM in oxic and anoxic peats. Aromatic C=C, ester, phenol and anomeric C (R-O-C-O-R), as well as thiol, sulfide and heterocyclic N functionalities are more prevalent in anoxic peats. Collectively, our experimental evidence suggests iron forms coordination complexes with O-, S- and N-containing functional groups of OM. We posit the co-occurrence of organic and mineral forms of Fe(II) and Fe(III) in both oxic and anoxic peat layers results from dynamic complexation and hydrolysis-precipitation reactions that occur under variable redox conditions. In conclusion, our findings aid in understanding the crucial role OM plays in determining Fe species in soils and sediments.« less

  20. Iron speciation in peats: Chemical and spectroscopic evidence for the co-occurrence of ferric and ferrous iron in organic complexes and mineral precipitates

    DOE PAGES

    Bhattacharyya, Amrita; Schmidt, Michael P.; Stavitski, Eli; ...

    2017-10-31

    The speciation of iron (Fe) in organic matter (OM)-rich environments under in situ variable redox conditions is largely unresolved. Peatlands provide a natural setting to study Fe–OM interactions. Utilizing chemical, spectroscopic and theoretical modeling approaches, we report the chemical forms, oxidation states and local coordination environment of naturally occurring Fe in the vertically redox-stratified Manning peatlands of western New York. In addition, we report dominant carbon, sulfur and nitrogen species that can potentially stabilize the various Fe species present in these peatlands. Our results provide clear direct and indirect evidence for the co-occurrence of ferrous (Fe 2+) and ferric (Femore » 3+) iron species in peats under both oxic and anoxic conditions. Iron is mostly present within the operationally defined organic and amorphous (i.e., short range ordered, SRO) fractions; ferric iron primarily as magnetically isolated paramagnetic Fe 3+ in Fe(III)-organic complexes, but also in mineral forms such as ferrihydrite; ferrous iron in tetrahedral coordination in Fe(II)-organic complexes with minor contribution from pyrite. All of the Fe species identified stabilize Fe(III) and/or Fe(II) in anoxic and oxic peats. Fundamental differences are also observed in the relative proportion of C, S and N functionalities of OM in oxic and anoxic peats. Aromatic C=C, ester, phenol and anomeric C (R-O-C-O-R), as well as thiol, sulfide and heterocyclic N functionalities are more prevalent in anoxic peats. Collectively, our experimental evidence suggests iron forms coordination complexes with O-, S- and N-containing functional groups of OM. We posit the co-occurrence of organic and mineral forms of Fe(II) and Fe(III) in both oxic and anoxic peat layers results from dynamic complexation and hydrolysis-precipitation reactions that occur under variable redox conditions. In conclusion, our findings aid in understanding the crucial role OM plays in determining Fe species in soils and sediments.« less

  1. Aquatic photolysis: photolytic redox reactions between goethite and adsorbed organic acids in aqueous solutions

    USGS Publications Warehouse

    Goldberg, M.C.; Cunningham, K.M.; Weiner, Eugene R.

    1993-01-01

    Photolysis of mono and di-carboxylic acids that are adsorbed onto the surface of the iron oxyhydroxide (goethite) results in an oxidation of the organic material and a reduction from Fe(III) to Fe(II) in the iron complex. There is a subsequent release of Fe2+ ions into solution. At constant light flux and constant solution light absorption, the factors responsible for the degree of photolytic reaction include: the number of lattice sites that are bonded by the organic acid; the rate of acid readsorption to the surface during photolysis; the conformation and structure of the organic acid; the degree of oxidation of the organic acid; the presence or absence of an ??-hydroxy group on the acid, the number of carbons in the di-acid chain and the conformation of the di-acid. The ability to liberate Fe(III) at pH 6.5 from the geothite lattice is described by the lyotropic series: tartrate>citrate> oxalate > glycolate > maleate > succinate > formate > fumarate > malonate > glutarate > benzoate = butanoate = control. Although a larger amount of iron is liberated, the series is almost the same at pH 5.5 except that oxalate > citrate and succinate > maleate. A set of rate equations are given that describe the release of iron from the goethite lattice. It was observed that the pH of the solution increases during photolysis if the solutions are not buffered. There is evidence to suggest the primary mechanism for all these reactions is an electron transfer from the organic ligand to the Fe(III) in the complex. Of all the iron-oxyhydroxide materials, crystalline goethite is the least soluble in water; yet, this study indicates that in an aqueous suspension, iron can be liberated from the goethite lattice. Further, it has been shown that photolysis can occur in a multiphase system at the sediment- water interface which results in an oxidation of the organic species and release of Fe2+ to solution where it becomes available for further reaction. ?? 1993.

  2. Complexation equilibria and spectrophotometric determination of iron(III) with 1-amino-4-hydroxyanthraquinone.

    PubMed

    Abu-Bakr, M S; Sedaira, H; Hashem, E Y

    1994-10-01

    The complex equilibria of iron(III) with 1-amino-4-hydroxyanthraquinone (AMHA) were studied spectrophotometrically in 40% (v/v) ethanol and an ionic strength of 0.1M (NaClO(4)). The complexation reactions were demonstrated and characterized using graphical logarithmic analysis of the absorbance-pH graphs. A simple, rapid, selective and sensitive method for the spectrophotometric determination of trace amounts of Fe(III) is developed based on the formation of Fe(AMHA) complex at pH 2.5 (lambda(max) = 640 nm, epsilon approximately = 2.1 x 10(4) L. mol(-1) . cm(-1)) in the presence of a large number of foreign ions. Interferences caused by palladium(II) was masked by the addition of cyanide ions. The method has been applied to the determination of iron in some synthetic samples and polymetallic iron ores.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanner, E. D.; Bayer, T.; Wu, W.

    In this study, we couple iron isotope analysis to microscopic and mineralogical investigation of iron speciation during circumneutral Fe(II) oxidation and Fe(III) precipitation with photosynthetically produced oxygen. In the presence of the cyanobacterium Synechococcus PCC 7002, aqueous Fe(II) (Fe(II) aq) is oxidized and precipitated as amorphous Fe(III) oxyhydroxide minerals (iron precipitates, Fe ppt), with distinct isotopic fractionation (ε 56Fe) values determined from fitting the δ 56Fe(II) aq (1.79‰ and 2.15‰) and the δ 56Fe ppt (2.44‰ and 2.98‰) data trends from two replicate experiments. Additional Fe(II) and Fe(III) phases were detected using microscopy and chemical extractions and likely represent Fe(II)more » and Fe(III) sorbed to minerals and cells. The iron desorbed with sodium acetate (FeNaAc) yielded heavier δ 56Fe compositions than Fe(II) aq. Modeling of the fractionation during Fe(III) sorption to cells and Fe(II) sorption to Feppt, combined with equilibration of sorbed iron and with Fe(II) aq using published fractionation factors, is consistent with our resulting δ 56FeNaAc. The δ 56Fe ppt data trend is inconsistent with complete equilibrium exchange with Fe(II)aq. Because of this and our detection of microbially excreted organics (e.g., exopolysaccharides) coating Feppt in our microscopic analysis, we suggest that electron and atom exchange is partially suppressed in this system by biologically produced organics. These results indicate that cyanobacteria influence the fate and composition of iron in sunlit environments via their role in Fe(II) oxidation through O 2 production, the capacity of their cell surfaces to sorb iron, and the interaction of secreted organics with Fe(III) minerals.« less

  4. Aluminum affects heterogeneous Fe(III) (Hydr)oxide nucleation, growth, and ostwald ripening.

    PubMed

    Hu, Yandi; Li, Qingyun; Lee, Byeongdu; Jun, Young-Shin

    2014-01-01

    Heterogeneous coprecipitation of iron and aluminum oxides is an important process for pollutant immobilization and removal in natural and engineered aqueous environments. Here, using a synchrotron-based small-angle X-ray scattering technique, we studied heterogeneous nucleation and growth of Fe(III) (hydr)oxide on quartz under conditions found in acid mine drainage (at pH = 3.7 ± 0.2, [Fe(3+)] = 10(-4) M) with different initial aqueous Al/Fe ratios (0:1, 1:1, and 5:1). Interestingly, although the atomic ratios of Al/Fe in the newly formed Fe(III) (hydr)oxide precipitates were less than 1%, the in situ particle size and volume evolutions of the precipitates on quartz were significantly influenced by aqueous Al/Fe ratios. At the end of the 3 h experiments, with aqueous Al/Fe ratios of 0:1, 1:1, and 5:1, the average radii of gyration of particles on quartz were 5.7 ± 0.3, 4.6 ± 0.1, and 3.7 ± 0.3 nm, respectively, and the ratio of total particle volumes on quartz was 1.7:3.4:1.0. The Fe(III) (hydr)oxide precipitates were poorly crystallized, and were positively charged in all solutions. In the presence of Al(3+), Al(3+) adsorption onto quartz changed the surface charge of quartz from negative to positive, which caused the slower heterogeneous growth of Fe(III) (hydr)oxide on quartz. Furthermore, Al affected the amount of water included in the Fe(III) (hydr)oxides, which can influence their adsorption capacity. This study yielded important information usable for pollutant removal not only in natural environments, but also in engineered water treatment processes.

  5. Synthesis, characterization and biological activity of some transition metals with Schiff base derived from 2-thiophene carboxaldehyde and aminobenzoic acid

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Omar, M. M.; Hindy, Ahmed M. M.

    2005-12-01

    Metal complexes of Schiff base derived from 2-thiophene carboxaldehyde and 2-aminobenzoic acid (HL) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The ligand dissociation as well as the metal-ligand stability constants were calculated pH metrically at 25 °C and ionic strength μ = 0.1 (1 M NaCl). The complexes are found to have the formulae [M(HL) 2](X) n· yH 2O (where M = Fe(III) (X = Cl, n = 3, y = 3), Co(II) (X = Cl, n = 2, y = 1.5), Ni(II) (X = Cl, n = 2, y = 1) and UO 2(II) (X = NO 3, n = 2, y = 0)) and [M(L) 2] (where M = Cu(II) (X = Cl) and Zn(II) (X = AcO)). The molar conductance data reveal that Fe(III) and Co(II), Ni(II) and UO 2(II) chelates are ionic in nature and are of the type 3:1 and 2:1 electrolytes, respectively, while Cu(II) and Zn(II) complexes are non-electrolytes. IR spectra show that HL is coordinated to the metal ions in a terdentate manner with ONS donor sites of the carboxylate O, azomethine N and thiophene S. From the magnetic and solid reflectance spectra, it is found that the geometrical structure of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, Δ H*, Δ S* and Δ G* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.

  6. Coastal eutrophication thresholds: a matter of sediment microbial processes.

    PubMed

    Lehtoranta, Jouni; Ekholm, Petri; Pitkänen, Heikki

    2009-09-01

    In marine sediments, the major anaerobic mineralization processes are Fe(III) oxide reduction and sulfate reduction. In this article, we propose that the two alternative microbial mineralization pathways in sediments exert decisively different impacts on aquatic ecosystems. In systems where iron reduction dominates in the recently deposited sediment layers, the fraction of Fe(III) oxides that is dissolved to Fe(II) upon reduction will ultimately be transported to the oxic layer, where it will be reoxidized. Phosphorus, which is released from Fe(III) oxides and decomposing organic matter from the sediment, will be largely trapped by this newly formed Fe(III) oxide layer. Consequently, there are low concentrations of phosphorus in near-bottom and productive water layers and primary production tends to be limited by phosphorus (State 1). By contrast, in systems where sulfate reduction dominates, Fe(III) oxides are reduced by sulfides. This chemical reduction leads to the formation and permanent burial of iron as solid iron sulfides that are unable to capture phosphorus. In addition, the cycling of iron is blocked, and phosphorus is released to overlying water. Owing to the enrichment of phosphorus in water, the nitrogen : phosphorus ratio is lowered and nitrogen tends to limit algal growth, giving an advantage to nitrogen-fixing blue-green algae (State 2). A major factor causing a shift from State 1 to State 2 is an increase in the flux of labile organic carbon to the bottom sediments; upon accelerating eutrophication a critical point will be reached when the availability of Fe(III) oxides in sediments will be exhausted and sulfate reduction will become dominant. Because the reserves of Fe(III) oxides are replenished only slowly, reversal to State 1 may markedly exceed the time needed to reduce the flux of organic carbon to the sediment. A key factor affecting the sensitivity of a coastal system to such a regime shift is formed by the hydrodynamic alterations that decrease the transport of O2 to the near-bottom water, e.g., due to variations in salinity and temperature stratification.

  7. Biogenic uraninite precipitation and its reoxidation by iron(III) (hydr)oxides: A reaction modeling approach

    NASA Astrophysics Data System (ADS)

    Spycher, Nicolas F.; Issarangkun, Montarat; Stewart, Brandy D.; Sevinç Şengör, S.; Belding, Eileen; Ginn, Tim R.; Peyton, Brent M.; Sani, Rajesh K.

    2011-08-01

    One option for immobilizing uranium present in subsurface contaminated groundwater is in situ bioremediation, whereby dissimilatory metal-reducing bacteria and/or sulfate-reducing bacteria are stimulated to catalyze the reduction of soluble U(VI) and precipitate it as uraninite (UO 2). This is typically accomplished by amending groundwater with an organic electron donor. It has been shown, however, that once the electron donor is entirely consumed, Fe(III) (hydr)oxides can reoxidize biogenically produced UO 2, thus potentially impeding cleanup efforts. On the basis of published experiments showing that such reoxidation takes place even under highly reducing conditions (e.g., sulfate-reducing conditions), thermodynamic and kinetic constraints affecting this reoxidation are examined using multicomponent biogeochemical simulations, with particular focus on the role of sulfide and Fe(II) in solution. The solubility of UO 2 and Fe(III) (hydr)oxides are presented, and the effect of nanoscale particle size on stability is discussed. Thermodynamically, sulfide is preferentially oxidized by Fe(III) (hydr)oxides, compared to biogenic UO 2, and for this reason the relative rates of sulfide and UO 2 oxidation play a key role on whether or not UO 2 reoxidizes. The amount of Fe(II) in solution is another important factor, with the precipitation of Fe(II) minerals lowering the Fe +2 activity in solution and increasing the potential for both sulfide and UO 2 reoxidation. The greater (and unintuitive) UO 2 reoxidation by hematite compared to ferrihydrite previously reported in some experiments can be explained by the exhaustion of this mineral from reaction with sulfide. Simulations also confirm previous studies suggesting that carbonate produced by the degradation of organic electron donors used for bioreduction may significantly increase the potential for UO 2 reoxidation through formation of uranyl carbonate aqueous complexes.

  8. Identification of Genes Involved in Biofilm Formation and Respiration via Mini-Himar Transposon Mutagenesis of Geobacter sulfurreducens▿ †

    PubMed Central

    Rollefson, Janet B.; Levar, Caleb E.; Bond, Daniel R.

    2009-01-01

    Electron transfer from cells to metals and electrodes by the Fe(III)-reducing anaerobe Geobacter sulfurreducens requires proper expression of redox proteins and attachment mechanisms to interface bacteria with surfaces and neighboring cells. We hypothesized that transposon mutagenesis would complement targeted knockout studies in Geobacter spp. and identify novel genes involved in this process. Escherichia coli mating strains and plasmids were used to develop a conjugation protocol and deliver mini-Himar transposons, creating a library of over 8,000 mutants that was anaerobically arrayed and screened for a range of phenotypes, including auxotrophy for amino acids, inability to reduce Fe(III) citrate, and attachment to surfaces. Following protocol validation, mutants with strong phenotypes were further characterized in a three-electrode system to simultaneously quantify attachment, biofilm development, and respiratory parameters, revealing mutants defective in Fe(III) reduction but unaffected in electron transfer to electrodes (such as an insertion in GSU1330, a putative metal export protein) or defective in electrode reduction but demonstrating wild-type biofilm formation (due to an insertion upstream of the NHL domain protein GSU2505). An insertion in a putative ATP-dependent transporter (GSU1501) eliminated electrode colonization but not Fe(III) citrate reduction. A more complex phenotype was demonstrated by a mutant containing an insertion in a transglutaminase domain protein (GSU3361), which suddenly ceased to respire when biofilms reached approximately 50% of the wild-type levels. As most insertions were not in cytochromes but rather in transporters, two-component signaling proteins, and proteins of unknown function, this collection illustrates how biofilm formation and electron transfer are separate but complementary phenotypes, controlled by multiple loci not commonly studied in Geobacter spp. PMID:19395486

  9. Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer.

    PubMed

    Karasawa, Satoshi; Araki, Toshio; Nagai, Takeharu; Mizuno, Hideaki; Miyawaki, Atsushi

    2004-07-01

    GFP (green fluorescent protein)-based FRET (fluorescence resonance energy transfer) technology has facilitated the exploration of the spatio-temporal patterns of cellular signalling. While most studies have used cyan- and yellow-emitting FPs (fluorescent proteins) as FRET donors and acceptors respectively, this pair of proteins suffers from problems of pH-sensitivity and bleeding between channels. In the present paper, we demonstrate the use of an alternative additional donor/acceptor pair. We have cloned two genes encoding FPs from stony corals. We isolated a cyan-emitting FP from Acropara sp., whose tentacles exhibit cyan coloration. Similar to GFP from Renilla reniformis, the cyan FP forms a tight dimeric complex. We also discovered an orange-emitting FP from Fungia concinna. As the orange FP exists in a complex oligomeric structure, we converted this protein into a monomeric form through the introduction of three amino acid substitutions, recently reported to be effective for converting DsRed into a monomer (Clontech). We used the cyan FP and monomeric orange FP as a donor/acceptor pair to monitor the activity of caspase 3 during apoptosis. Due to the close spectral overlap of the donor emission and acceptor absorption (a large Förster distance), substantial pH-resistance of the donor fluorescence quantum yield and the acceptor absorbance, as well as good separation of the donor and acceptor signals, the new pair can be used for more effective quantitative FRET imaging.

  10. Influence of humic acid imposed changes of ferrihydrite aggregation on microbial Fe(III) reduction

    NASA Astrophysics Data System (ADS)

    Amstaetter, Katja; Borch, Thomas; Kappler, Andreas

    2012-05-01

    Microbial reduction of Fe(III) minerals at neutral pH is faced by the problem of electron transfer from the cells to the solid-phase electron acceptor and is thought to require either direct cell-mineral contact, the presence of Fe(III)-chelators or the presence of electron shuttles, e.g. dissolved or solid-phase humic substances (HS). In this study we investigated to which extent the ratio of Pahokee Peat Humic Acids (HA) to ferrihydrite in the presence and absence of phosphate influences rates of Fe(III) reduction by Shewanella oneidensis MR-1 and the identity of the minerals formed. We found that phosphate generally decreased reduction rates by sorption to the ferrihydrite and surface site blocking. In the presence of low ferrihydrite concentrations (5 mM), the addition of HA helped to overcome this inhibiting effect by functioning as electron shuttle between cells and the ferrihydrite. In contrast, at high ferrihydrite concentrations (30 mM), the addition of HA did not lead to an increase but rather to a decrease in reduction rates. Confocal laser scanning microscopy images and ferrihydrite sedimentation behaviour suggest that the extent of ferrihydrite surface coating by HA influences the aggregation of the ferrihydrite particles and thereby their accessibility for Fe(III)-reducing bacteria. We further conclude that in presence of dissolved HA, iron reduction is stimulated through electron shuttling while in the presence of only sorbed HA, no stimulation by electron shuttling takes place. In presence of phosphate the stimulation effect did not occur until a minimum concentration of 10 mg/l of dissolved HA was reached followed by increasing Fe(III) reduction rates up to dissolved HA concentrations of approximately 240 mg/l above which the electron shuttling effect ceased. Not only Fe(III) reduction rates but also the mineral products changed in the presence of HA. Sequential extraction, XRD and 57Fe-Mössbauer spectroscopy showed that crystallinity and grain size of the magnetite produced by Fe(III) reduction in the presence of HA is lower than the magnetite produced in the absence of HA. In summary, this study shows that both the concentration of HA and Fe(III) minerals strongly influence microbial Fe(III) reduction rates and the mineralogy of the reduction products. Thus, deviations in iron (hydr)oxide reactivity with changes in aggregation state, such as HA induced ferrihydrite aggregation, need to be considered within natural environments.

  11. Adrenaline and triiodothyronine modify the iron handling in the freshwater air-breathing fish Anabas testudineus Bloch: role of ferric reductase in iron acquisition.

    PubMed

    Rejitha, V; Peter, M C Subhash

    2013-01-15

    The effects of in vivo adrenaline and triiodothyronine (T(3)) on ferric reductase (FR) activity, a membrane-bound enzyme that reduces Fe(III) to Fe(II) iron, were studied in the organs of climbing perch (Anabas testudineus Bloch). Adrenaline injection (10 ng g(-1)) for 30 min produced significant inhibition of FR activity in the liver and kidney and that suggests a role for this stress hormone in iron acquisition in this fish. Short-term T(3) injection (40 ng g(-1)) reduced FR activity in the gills of fed fish but not in the unfed fish. Similar reduction of FR activity was also obtained in the intestine and kidney of fed fish after T(3) injection. Feeding produced pronounced decline in FR activity in the spleen but T(3) challenge in fed and unfed fish increased its activity in this iron storing organ and that point to the sensitivity of FR system to feeding activity. The in vitro effects of Fe on FR activity in the gill explants of freshwater fish showed correlations of FR with Na(+), K(+)-ATPase and H(+)-ATPase activities. Substantial increase in the FR activity was found in the gill explants incubated with all the tested doses of Fe(II) iron (1.80, 3.59 and 7.18 μM) and Fe(III) iron (1.25, 2.51 and 5.02 μM) and this indicate that FR and Na pump activity are positively correlated. On the contrary, substantial reduction of gill H(+)-ATPase activity was found in the gill explants incubated with Fe(II) iron and Fe(III) iron indicating that perch gills may not require a high acidic microenvironment for the reduction of Fe(III) iron. Accumulation of iron in the gill explants after Fe(III) iron incubation implies a direct relationship between Fe acquisition and FR activity in this tissue. The inverse correlation between FR activity and H(+)-ATPase activity in Fe(II) or Fe(III) loaded gills and the significant positive correlations of FR activity with total [Fe] content in the Fe(III) loaded gills substantiate that FR which shows sensitivity to sodium and proton pumps, has a vital role in Fe(II) and Fe(III) iron handling in this fish. Our data also provide evidence that adrenaline, T(3) and the feeding status are the vital factors that can regulate the storage and handling of iron in fish. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Synthesis, characterization, and reactivity studies of heterodinuclear complexes modeling active sites in purple acid phospatases.

    PubMed

    Jarenmark, Martin; Haukka, Matti; Demeshko, Serhiy; Tuczek, Felix; Zuppiroli, Luca; Meyer, Franc; Nordlander, Ebbe

    2011-05-02

    To model the heterodinuclear active sites in plant purple acid phosphatases, a mononuclear synthon, [Fe(III)(H(2)IPCPMP)(Cl(2))][PF(6)] (1), has been generated in situ from the ligand 2-(N-isopropyl-N-((2-pyridyl)methyl)aminomethyl)-6-(N-(carboxylmethyl)-N-((2-pyridyl)methyl)amino methyl)-4-methylphenol (IPCPMP) and used to synthesize heterodinuclear complexes of the formulas [Fe(III)M(II)(IPCPMP)(OAc)(2)(CH(3)OH)][PF(6)] (M = Zn (2), Co (3), Ni (4), Mn (5)), [Fe(III)Zn(II)(IPCPMP)(mpdp)][PF(6)] (6) (mpdp = meta-phenylene-dipropionate), and [Fe(III)Cu(II)(IPCPMP) (OAc)}(2)(μ-O)][PF(6)] (7). Complexes 2-4, 6, and 7 have been crystallographically characterized. The structure of 6 is a solid state coordination polymer with heterodinuclear monomeric units, and 7 is a tetranuclear complex consisting of two heterodinuclear phenolate-bridged Fe(III)Cu(II) units bridged through a μ-oxido group between the two Fe(III) ions. Mössbauer spectra confirm the presence of high spin Fe(III) in an octahedral environment for 1, 3, and 5 while 2 and 4 display relaxation effects. Magnetic susceptibility measurements indicate weak antiferromagnetic coupling for 3, 4, and 5 and confirm the assignment of the metal centers in 2-5 as high spin Fe(III)-M(II) (M = Zn, Co (high spin), Ni (high spin), Mn (high spin)). Complexes 2-5 are intact in acetonitrile solution as indicated by IR spectroscopy (for 2-4) and electrospray ionization mass spectrometry (ESI-MS) but partly dissociate to hydroxide species and a mononuclear complex in water/acetonitrile solutions. UV-vis spectroscopy reveal pH-dependent behavior, and species that form upon increasing the pH have been assigned to μ-hydroxido-bridged Fe(III)M(II) complexes for 2-5 although 2 and 3 is further transformed into what is propsed to be a μ-oxido-bridged tetranuclear complex similar to 7. Complexes 2-5 enhance phosphodiester cleavage of 2-hydroxy-propyl-p-nitrophenyl phosphate (HPNP) and bis(2,4-dinitrophenyl)phosphate (BDNPP), but the reactivities are different for different complexes and generally show strong pH dependence. © 2011 American Chemical Society

  13. A simple method for calculating growth rates of petroleum hydrocarbon plumes

    USGS Publications Warehouse

    Bekins, B.A.; Cozzarelli, I.M.; Curtis, G.P.

    2005-01-01

    Consumption of aquifer Fe(III) during biodegradation of ground water contaminants may result in expansion of a contaminant plume, changing the outlook for monitored natural attenuation. Data from two research sites contaminated with petroleum hydrocarbons show that toluene and xylenes degrade under methanogenic conditions, but the benzene and ethylbenzene plumes grow as aquifer Fe(III) supplies are depleted. By considering a one-dimensional reaction front in a constant unidirectional flow field, it is possible to derive a simple expression for the growth rate of a benzene plume. The method balances the mass flux of benzene with the Fe(III) content of the aquifer, assuming that the biodegradation reaction is instantaneous. The resulting expression shows that the benzene front migration is retarded relative to the ground water velocity by a factor that depends on the concentrations of hydrocarbon and bioavailable Fe(III). The method provides good agreement with benzene plumes at a crude oil study site in Minnesota and a gasoline site in South Carolina. Compared to the South Carolina site, the Minnesota site has 25% higher benzene flux but eight times the Fe(III), leading to about one-sixth the expansion rate. Although it was developed for benzene, toluene, ethylbenzene, and xylenes, the growth-rate estimation method may have applications to contaminant plumes from other persistent contaminant sources. Copyright ?? 2005 National Ground Water Association.

  14. The Impact of Gamma Radiation on Sediment Microbial Processes

    PubMed Central

    Brown, Ashley R.; Boothman, Christopher; Pimblott, Simon M.

    2015-01-01

    Microbial communities have the potential to control the biogeochemical fate of some radionuclides in contaminated land scenarios or in the vicinity of a geological repository for radioactive waste. However, there have been few studies of ionizing radiation effects on microbial communities in sediment systems. Here, acetate and lactate amended sediment microcosms irradiated with gamma radiation at 0.5 or 30 Gy h−1 for 8 weeks all displayed NO3− and Fe(III) reduction, although the rate of Fe(III) reduction was decreased in 30-Gy h−1 treatments. These systems were dominated by fermentation processes. Pyrosequencing indicated that the 30-Gy h−1 treatment resulted in a community dominated by two Clostridial species. In systems containing no added electron donor, irradiation at either dose rate did not restrict NO3−, Fe(III), or SO42− reduction. Rather, Fe(III) reduction was stimulated in the 0.5-Gy h−1-treated systems. In irradiated systems, there was a relative increase in the proportion of bacteria capable of Fe(III) reduction, with Geothrix fermentans and Geobacter sp. identified in the 0.5-Gy h−1 and 30-Gy h−1 treatments, respectively. These results indicate that biogeochemical processes will likely not be restricted by dose rates in such environments, and electron accepting processes may even be stimulated by radiation. PMID:25841009

  15. Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri

    USGS Publications Warehouse

    Liu, D.; Dong, Hailiang H.; Bishop, M.E.; Wang, Hongfang; Agrawal, A.; Tritschler, S.; Eberl, D.D.; Xie, S.

    2011-01-01

    Clay minerals and methanogens are ubiquitous and co-exist in anoxic environments, yet it is unclear whether methanogens are able to reduce structural Fe(III) in clay minerals. In this study, the ability of methanogen Methanosarcina barkeri to reduce structural Fe(III) in iron-rich smectite (nontronite NAu-2) and the relationship between iron reduction and methanogenesis were investigated. Bioreduction experiments were conducted in growth medium using three types of substrate: H2/CO2, methanol, and acetate. Time course methane production and hydrogen consumption were measured by gas chromatography. M. barkeri was able to reduce structural Fe(III) in NAu-2 with H2/CO2 and methanol as substrate, but not with acetate. The extent of bioreduction, as measured by the 1,10-phenanthroline method, was 7-13% with H2/CO2 as substrate, depending on nontronite concentration (5-10g/L). The extent was higher when methanol was used as a substrate, reaching 25-33%. Methanogenesis was inhibited by Fe(III) reduction in the H2/CO2 culture, but enhanced when methanol was used. High charge smectite and biogenic silica formed as a result of bioreduction. Our results suggest that methanogens may play an important role in biogeochemical cycling of iron in clay minerals and may have important implications for the global methane budget. ?? 2010 Elsevier Ltd.

  16. Selective sensing of submicromolar iron(III) with 3,3‧,5,5‧-tetramethylbenzidine as a chromogenic probe

    NASA Astrophysics Data System (ADS)

    Zhang, Lufeng; Du, Jianxiu

    2016-04-01

    The development of highly selective and sensitive method for iron(III) detection is of great importance both from human health as well as environmental point of view. We herein reported a simple, selective and sensitive colorimetric method for the detection of Fe(III) at submicromolar level with 3,3,‧5,5‧-tetramethylbenzidine (TMB) as a chromogenic probe. It was observed that Fe(III) could directly oxidize TMB to form a blue solution without adding any extra oxidants. The reaction has a stoichiometric ratio of 1:1 (Fe(III)/TMB) as determined by a molar ratio method. The resultant color change can be perceived by the naked eye or monitored the absorbance change at 652 nm. The method allowed the measurement of Fe(III) in the range 1.0 × 10- 7-1.5 × 10- 4 mol L- 1 with a detection limit of 5.5 × 10- 8 mol L- 1. The relative standard deviation was 0.9% for eleven replicate measurements of 2.5 × 10- 5 mol L- 1 Fe(III) solution. The chemistry showed high selectivity for Fe(III) in contrast to other common cation ions. The practically of the method was evaluated by the determination of Fe in milk samples; good consistency was obtained between the results of this method and atomic absorption spectrophotometry as indicated by statistical analysis.

  17. Formation, aggregation and reactivity of amorphous ferric oxyhydroxides on dissociation of Fe(III)-organic complexes in dilute aqueous suspensions

    NASA Astrophysics Data System (ADS)

    Bligh, Mark W.; Waite, T. David

    2010-10-01

    While chemical reactions that take place at the surface of amorphous ferric oxides (AFO) are known to be important in aquatic systems, incorporation of these reactions into kinetic models is hindered by a lack of ability to reliably quantify the reactivity of the surface and the changes in reactivity that occur over time. Long term decreases in the reactivity of iron oxides may be considered to result from changes in the molecular structure of the solid, however, over shorter time scales where substantial aggregation may occur, the mechanisms of reactivity loss are less clear. Precipitation of AFO may be described as a combination of homogeneous and heterogeneous reactions, however, despite its potentially significant role, the latter reaction is usually neglected in kinetic models of aquatic processes. Here, we investigate the role of AFO in scavenging dissolved inorganic ferric (Fe(III)) species (Fe') via the heterogeneous precipitation reaction during the net dissociation of organically complexed Fe(III) in seawater. Using sulfosalicylic acid (SSA) as a model ligand, AFO was shown to play a significant role in inducing the net dissociation of the Fe-SSA complexes with equations describing both the heterogeneous precipitation reaction and the aging of AFO being required to adequately describe the experimental data. An aggregation based mechanism provided a good description of AFO aging over the short time scale of the experiments. The behaviour of AFO described here has implications for the bioavailability of iron in natural systems as a result of reactions involving AFO which are recognised to occur over time scales of minutes, including adsorption of Fe' and AFO dissolution, precipitation and ageing.

  18. Periodontal Pathogens and Risk of Incident Cancer in Postmenopausal Females: The Buffalo OsteoPerio Study

    PubMed Central

    Mai, Xiaodan; Genco, Robert J.; LaMonte, Michael J.; Hovey, Kathleen M.; Freudenheim, Jo L.; Andrews, Christopher A.; Wactawski-Wende, Jean

    2016-01-01

    Background Extraoral translocation of oral bacteria may contribute to associations between periodontal disease and cancer. The associations among the presence of three orange-complex periodontal pathogens (Fusobacterium nucleatum, Prevotella intermedia, and Campylobacter rectus), two red-complex periodontal pathogens (Porphyromonas gingivalis and Tannerella forsythia), and cancer risk were investigated. Methods A total of 1,252 postmenopausal females enrolled in the Buffalo Osteoporosis and Periodontal Disease Study were followed prospectively. Baseline subgingival plaque samples were assessed for the presence of periodontal pathogens using indirect immunofluorescence. Incident cancer cases were adjudicated by staff physicians via review of medical records. Cox proportional hazards regression was used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for the associations of periodontal pathogens with total cancer and site-specific cancer risk in unadjusted and multivariable-adjusted models. Results Neither the presence of individual pathogens nor the presence of any red-complex pathogens was associated with total cancer or site-specific cancers. Borderline associations were seen among the presence of any orange-complex pathogens (F. nucleatum, P. intermedia, and C. rectus), total cancer risk (HR = 1.35, 95% CI = 1.00 to 1.84), and lung cancer risk (HR = 3.02, 95% CI = 0.98 to 9.29). Conclusions No associations were found between the presence of individual subgingival pathogens and cancer risk. However, there were suggestions of borderline positive associations of the presence of any orange-complex pathogens with total cancer and lung cancer risk. The study is limited by the small number of cancer cases and the assessment of only five oral bacteria. Additional research is needed to understand the possi ble role of periodontal disease in carcinogenesis. PMID:26513268

  19. SOLVENT-FREE REDUCTION OF AROMATIC NITRO COMPOUNDS WITH ALUMINA-SUPPORTED HYDRAZINE UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    In a solvent-free microwave-expedited process, aromatic nitro compounds are readily reduced to the corresponding amino compounds in good yield with hydrazine hydrate supported on alumina in presence of FeCl3, 6H2), Fe(III) oxide hydroxide or Fe(III) oxides.

  20. VizieR Online Data Catalog: Formation of MW halo and its dwarf satellites (Mashonkina+, 2017)

    NASA Astrophysics Data System (ADS)

    Mashonkina, L.; Jablonka, P.; Pakhomov, Yu; Sitnova, T.; North, P.

    2017-04-01

    Tables A.1 and A.2 from the article are presented. The first table contains atomic parameters of FeI/II and TiI/II lines. The second atmospheric parameters and FeI/II, TiI/II nLTE abundances. (2 data files).

  1. Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules.

    PubMed

    Pulipparacharuvil, Suprabha; Akbar, Mohammed Ali; Ray, Sanchali; Sevrioukov, Evgueny A; Haberman, Adam S; Rohrer, Jack; Krämer, Helmut

    2005-08-15

    Mutations that disrupt trafficking to lysosomes and lysosome-related organelles cause multiple diseases, including Hermansky-Pudlak syndrome. The Drosophila eye is a model system for analyzing such mutations. The eye-color genes carnation and deep orange encode two subunits of the Vps-C protein complex required for endosomal trafficking and pigment-granule biogenesis. Here we demonstrate that dVps16A (CG8454) encodes another Vps-C subunit. Biochemical experiments revealed a specific interaction between the dVps16A C-terminus and the Sec1/Munc18 homolog Carnation but not its closest homolog, dVps33B. Instead, dVps33B interacted with a related protein, dVps16B (CG18112). Deep orange bound both Vps16 homologs. Like a deep orange null mutation, eye-specific RNAi-induced knockdown of dVps16A inhibited lysosomal delivery of internalized ligands and interfered with biogenesis of pigment granules. Ubiquitous knockdown of dVps16A was lethal. Together, these findings demonstrate that Drosophila Vps16A is essential for lysosomal trafficking. Furthermore, metazoans have two types of Vps-C complexes with non-redundant functions.

  2. Deciphering functional diversification within the lichen microbiota by meta-omics.

    PubMed

    Cernava, Tomislav; Erlacher, Armin; Aschenbrenner, Ines Aline; Krug, Lisa; Lassek, Christian; Riedel, Katharina; Grube, Martin; Berg, Gabriele

    2017-07-19

    Recent evidence of specific bacterial communities extended the traditional concept of fungal-algal lichen symbioses by a further organismal kingdom. Although functional roles were already assigned to dominant members of the highly diversified microbiota, a substantial fraction of the ubiquitous colonizers remained unexplored. We employed a multi-omics approach to further characterize functional guilds in an unconventional model system. The general community structure of the lichen-associated microbiota was shown to be highly similar irrespective of the employed omics approach. Five highly abundant bacterial orders-Sphingomonadales, Rhodospirillales, Myxococcales, Chthoniobacterales, and Sphingobacteriales-harbor functions that are of substantial importance for the holobiome. Identified functions range from the provision of vitamins and cofactors to the degradation of phenolic compounds like phenylpropanoid, xylenols, and cresols. Functions that facilitate the persistence of Lobaria pulmonaria under unfavorable conditions were present in previously overlooked fractions of the microbiota. So far, unrecognized groups like Chthoniobacterales (Verrucomicrobia) emerged as functional protectors in the lichen microbiome. By combining multi-omics and imaging techniques, we highlight previously overlooked participants in the complex microenvironment of the lichens.

  3. Fe(II) formation after interaction of the amyloid β-peptide with iron-storage protein ferritin.

    PubMed

    Balejcikova, Lucia; Siposova, Katarina; Kopcansky, Peter; Safarik, Ivo

    2018-05-09

    The interaction of amyloid β-peptide (Aβ) with the iron-storage protein ferritin was studied in vitro. We have shown that Aβ during fibril formation process is able to reduce Fe(III) from the ferritin core (ferrihydrite) to Fe(II). The Aβ-mediated Fe(III) reduction yielded a two-times-higher concentration of free Fe(II) than the spontaneous formation of Fe(II) by the ferritin itself. We suggest that Aβ can also act as a ferritin-specific metallochaperone-like molecule capturing Fe(III) from the ferritin ferrihydrite core. Our observation may partially explain the formation of Fe(II)-containing minerals in human brains suffering by neurodegenerative diseases.

  4. Hexanuclear Fe(III) wheels functionalized by amino-acetonitrile derivatives

    NASA Astrophysics Data System (ADS)

    Kravtsov, Victor Ch.; Malaestean, Iurie; Stingach, Eugenia P.; Duca, Gheorghe G.; Macaev, Fliur Z.; van Leusen, Jan; Kögerler, Paul; Hauser, Jürg; Krämer, Karl; Decurtins, Silvio; Liu, Shi-Xia; Ghosh, Ashta C.; Garcia, Yann; Baca, Svetlana G.

    2018-04-01

    Three new hexanuclear Fe(III) coordination wheels [Fe6Cl6(L1)6]·5(MeCN) (1), [Na0.5Fe6Cl6(L1)6](N3)0.5·4.5(MeCN) (2), and [Fe6Cl6(L2)6]·2(MeCN) (3) have been synthesized with new prepared amino-acetonitrile derivatives 2-[bis(2-hydroxyethyl)amino]acetonitrile hydrochloride (H2L1) and 3-[bis(2-hydroxyethyl)amino]propanenitrile hydrochloride (H2L2). They were structurally characterized by single-crystal X-ray diffraction. Mößbauer spectroscopy and magnetic susceptibility measurements indicate dominant antiferromagnetic behavior between the Fe(III) centers.

  5. Oxidation of aromatic contaminants coupled to microbial iron reduction

    USGS Publications Warehouse

    Lovley, D.R.; Baedecker, M.J.; Lonergan, D.J.; Cozzarelli, I.M.; Phillips, E.J.P.; Siegel, D.I.

    1989-01-01

    THE contamination of sub-surface water supplies with aromatic compounds is a significant environmental concern1,2. As these contaminated sub-surface environments are generally anaerobic, the microbial oxidation of aromatic compounds coupled to nitrate reduction, sulphate reduction and methane production has been studied intensively1-7. In addition, geochemical evidence suggests that Fe(III) can be an important electron acceptor for the oxidation of aromatic compounds in anaerobic groundwater. Until now, only abiological mechanisms for the oxidation of aromatic compounds with Fe(III) have been reported8-12. Here we show that in aquatic sediments, microbial activity is necessary for the oxidation of model aromatic compounds coupled to Fe(III) reduction. Furthermore, a pure culture of the Fe(III)-reducing bacterium GS-15 can obtain energy for growth by oxidizing benzoate, toluene, phenol or p-cresol with Fe(III) as the sole electron acceptor. These results extend the known physiological capabilities of Fe(III)-reducing organisms and provide the first example of an organism of any type which can oxidize an aromatic hydrocarbon anaerobically. ?? 1989 Nature Publishing Group.

  6. Photochemical degradation of triazine herbicides - comparison of homogeneous and heterogeneous photocatalysis.

    PubMed

    Klementova, Sarka; Zlamal, Martin

    2013-04-01

    Photochemical degradation of atrazine under different conditions was studied and compared, namely degradation via photocatalysis on TiO2, UV C photolysis, and homogeneous photocatalysis in the presence of added ferric ions. The reaction rate constants in heterogeneous photocatalytic reactions on TiO2 and of photolytic degradation by means of UV C light are similar, 0.018 min(-1) and 0.020 min(-1), respectively. The reaction rate constants in homogeneous photocatalytic reactions with Fe(III) added depend strongly on the Fe(III) concentration, 0.0017 min(-1) for 1.6 × 10(-6) mol l(-1) Fe(III) to 0.105 min(-1) for 3.3 × 10(-4) mol l(-1) Fe(III). In all types of reactions, dechlorination was observed; in homogeneous photocatalytic reactions and in UV C (250-300 nm) photolysis, dechlorination proceeds with a 1 : 1 stoichiometry to atrazine degradation, in photocatalytic reactions on TiO2, dechlorination measured as chloride ion release reaches only 1/5 of the substrate degradation. In photocatalytic reactions on TiO2, mineralisation of 40% carbon was observed.

  7. Energetic Limitations on Microbial Respiration of Organic Compounds using Aqueous Fe(III) Complexes

    NASA Astrophysics Data System (ADS)

    Naughton, H.; Fendorf, S. E.

    2015-12-01

    Soil organic matter constitutes up to 75% of the terrestrial carbon stock. Microorganisms mediate the breakdown of organic compounds and the return of carbon to the atmosphere, predominantly through respiration. Microbial respiration requires an electron acceptor and an electron donor such as small fatty acids, organic acids, alcohols, sugars, and other molecules that differ in oxidation state of carbon. Carbon redox state affects how much energy is required to oxidize a molecule through respiration. Therefore, different organic compounds should offer a spectrum of energies to respiring microorganisms. However, microbial respiration has traditionally focused on the availability and reduction potential of electron acceptors, ignoring the organic electron donor. We found through incubation experiments that the organic compound serving as electron donor determined how rapidly Shewanella putrefaciens CN32 respires organic substrate and the extent of reduction of the electron acceptor. We simulated a range of energetically favorable to unfavorable electron acceptors using organic chelators bound to Fe(III) with equilibrium stability constants ranging from log(K) of 11.5 to 25.0 for the 1:1 complex, where more stable complexes are less favorable for microbial respiration. Organic substrates varied in nominal oxidation state of carbon from +2 to -2. The most energetically favorable substrate, lactate, promoted up to 30x more rapid increase in percent Fe(II) compared to less favorable substrates such as formate. This increased respiration on lactate was more substantial with less stable Fe(III)-chelate complexes. Intriguingly, this pattern contradicts respiration rate predicted by nominal oxidation state of carbon. Our results suggest that organic substrates will be consumed so long as the energetic toll corresponding to the electron donor half reaction is counterbalanced by the energy available from the electron accepting half reaction. We propose using the chemical structure of organic matter, elucidated with techniques such as FT-ICR MS, to improve microbial decomposition and carbon cycling models by incorporating energetic limitations due to carbon oxidation.

  8. Ligand-displacement-based two-photon fluorogenic probe for visualizing mercapto biomolecules in live cells, Drosophila brains and zebrafish.

    PubMed

    Zhao, Yanfei; Ni, Yun; Wang, Liulin; Xu, Chenchen; Xin, Chenqi; Zhang, Chengwu; Zhang, Gaobin; Xie, Xiaoji; Li, Lin; Huang, Wei

    2018-06-19

    Investigating the change in expression level of mercapto biomolecules (GSH/Cys/Hcy) necessitates a rapid detection method for a series of physiological and pathological processes. Herein, we present a ligand-displacement-based two-photon fluorogenic probe based on an Fe(iii) complex, TPFeS, which is a GSH/Cys/Hcy rapid detection fluorogenic probe for in vitro analysis and live cell/tissue/in vivo imaging. The "in situ" probe is non-fluorescent and was prepared from a 1 : 2 ratio of Fe(iii) and TPS, a novel two-photon (TP) fluorophore with excellent one-photon (OP) and TP properties under physiological conditions, as a fluorescent ligand. This probe shows a rapid and remarkable fluorescence restoration (OFF-ON) property due to the ligand-displacement reaction of mercapto biomolecules in a recyclable manner in vitro. A significant two-photon action cross-section, good selectivity for biothiols, low cytotoxicity, and insensitivity to pH over the biologically relevant pH range allowed the direct visualization of mercapto biomolecules at different levels between normal/drug-treated live cells, as well as in Drosophila brain tissues/zebrafish based on the use of two-photon fluorescence microscopy.

  9. Pelagic photoferrotrophy and iron cycling in a modern ferruginous basin.

    PubMed

    Llirós, Marc; García-Armisen, Tamara; Darchambeau, François; Morana, Cédric; Triadó-Margarit, Xavier; Inceoğlu, Özgül; Borrego, Carles M; Bouillon, Steven; Servais, Pierre; Borges, Alberto V; Descy, Jean-Pierre; Canfield, Don E; Crowe, Sean A

    2015-09-08

    Iron-rich (ferruginous) ocean chemistry prevailed throughout most of Earth's early history. Before the evolution and proliferation of oxygenic photosynthesis, biological production in the ferruginous oceans was likely driven by photoferrotrophic bacteria that oxidize ferrous iron {Fe(II)} to harness energy from sunlight, and fix inorganic carbon into biomass. Photoferrotrophs may thus have fuelled Earth's early biosphere providing energy to drive microbial growth and evolution over billions of years. Yet, photoferrotrophic activity has remained largely elusive on the modern Earth, leaving models for early biological production untested and imperative ecological context for the evolution of life missing. Here, we show that an active community of pelagic photoferrotrophs comprises up to 30% of the total microbial community in illuminated ferruginous waters of Kabuno Bay (KB), East Africa (DR Congo). These photoferrotrophs produce oxidized iron {Fe(III)} and biomass, and support a diverse pelagic microbial community including heterotrophic Fe(III)-reducers, sulfate reducers, fermenters and methanogens. At modest light levels, rates of photoferrotrophy in KB exceed those predicted for early Earth primary production, and are sufficient to generate Earth's largest sedimentary iron ore deposits. Fe cycling, however, is efficient, and complex microbial community interactions likely regulate Fe(III) and organic matter export from the photic zone.

  10. Influence of peat on Fenton oxidation.

    PubMed

    Huling, S G; Arnold, R G; Sierka, R A; Miller, M R

    2001-05-01

    A diagnostic probe was used to estimate the activity of Fenton-derived hydroxyl radicals (.OH), reaction kinetics, and oxidation efficiency in batch suspensions comprised of silica sand, crushed goethite (alpha-FeOOH) ore, peat, and H2O2 (0.13 mM). A simple method of kinetic analysis is presented and used to estimate the rate of .OH production (POH) and scavenging term (ks), which were used to establish the influence of organic matter (Pahokee peat) in Fenton systems. POH was greater in the peat-amended systems than in the unamended control, and ks was approximately the same. Any increase in scavenging of .OH that resulted from the addition of peat was insignificant in comparison to radical scavenging by reaction with H2O2. Also, treatment efficiency, defined as the ratio of probe conversion to H2O2 consumption over the same period was greater in the peat-amended system. Results suggest that .OH production is enhanced in the presence of peat by one or more peat-dependent mechanisms. Fe concentration and availability in the peat, reduction of Fe(III) to Fe(II) by the organic matter, and reduction of organic-complexed Fe(III) to Fe(II) are discussed in the context of the Fenton mechanism.

  11. Production, Characterization, and Stability of Orange or Eucalyptus Essential Oil/β-Cyclodextrin Inclusion Complex.

    PubMed

    Kringel, Dianini Hüttner; Antunes, Mariana Dias; Klein, Bruna; Crizel, Rosane Lopes; Wagner, Roger; de Oliveira, Roberto Pedroso; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-11-01

    The aim of this study was to produce and characterize inclusion complexes (IC) between β-cyclodextrin (β-CD) and orange essential oil (OEO) or eucalyptus essential oil (EEO), and to compare these with their pure compounds and physical mixtures. The samples were evaluated by chemical composition, morphology, thermal stability, and volatile compounds by static headspace-gas chromatography (SH-GC). Comparing the free essential oil and physical mixture with the inclusion complex, of both essential oils (OEO and EEO), it was observed differences occurred in the chemical composition, thermal stability, and morphology. These differences show that there was the formation of the inclusion complex and demonstrate the necessity of the precipitation method used to guarantee the interaction between β-CD and essential oils. The slow loss of the volatile compounds from both essential oils, when complexed with β-CD, showed a higher stability when compared with their physical mixtures and free essential oils. Therefore, the results showed that the chemical composition, molecular size, and structure of the essential oils influence the characteristics of the inclusion complexes. The application of the β-CD in the formation of inclusion complexes with essential oils can expand the potential applications in foods. © 2017 Institute of Food Technologists®.

  12. Influence of Reactive Transport on the Reduction of U(VI) in the Presence of Fe(III) and Nitrate: Implications for U(VI) Immobilization by Bioremediation / Biobarriers- Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.D. Wood

    2007-01-01

    Subsurface contamination by metals and radionuclides represent some of the most challenging remediation problems confronting the Department of Energy (DOE) complex. In situ remediation of these contaminants by dissimilatory metal reducing bacteria (DMRB) has been proposed as a potential cost effective remediation strategy. The primary focus of this research is to determine the mechanisms by which the fluxes of electron acceptors, electron donors, and other species can be controlled to maximize the transfer of reductive equivalents to the aqueous and solid phases. The proposed research is unique in the NABIR portfolio in that it focuses on (i) the role ofmore » flow and transport in the initiation of biostimulation and the successful sequestration of metals and radionuclides [specifically U(VI)], (ii) the subsequent reductive capacity and stability of the reduced sediments produced by the biostimulation process, and (iii) the potential for altering the growth of biomass in the subsurface by the addition of specific metabolic uncoupling compounds. A scientifically-based understanding of these phenomena are critical to the ability to design successful bioremediation schemes. The laboratory research will employ Shewanella putrefaciens (CN32), a facultative DMRB that can use Fe(III) oxides as a terminal electron acceptor. Sediment-packed columns will be inoculated with this organism, and the reduction of U(VI) by the DMRB will be stimulated by the addition of a carbon and energy source in the presence of Fe(III). Separate column experiments will be conducted to independently examine: (1) the importance of the abiotic reduction of U(VI) by biogenic Fe(II); (2) the influence of the transport process on Fe(III) reduction and U(VI) immobilization, with emphasis on methods for controlling the fluxes of aqueous species to maximize uranium reduction; (3) the reductive capacity of biologically-reduced sediments (with respect to re-oxidation by convective fluxes of O2 and NO3-) and the long-term stability of immobilized uranium mineral phases after bioremediation processes are complete, and (4) the ability for metabolic uncoupling compounds to maintain microbial growth while limiting biomass production. The results of the laboratory experiments will be used to develop mathematical descriptive models for the coupled transport and reduction processes.« less

  13. Reduction of aqueous transition metal species on the surfaces of Fe(II)-containing oxides

    USGS Publications Warehouse

    White, A.F.; Peterson, M.L.

    1996-01-01

    Experimental studies demonstrate that structural Fe(II) in magnetite and ilmenite heterogeneously reduce aqueous ferric, cupric, vanadate, and chromate ions at the oxide surfaces over a pH range of 1-7 at 25??C. For an aqueous transition metal m, such reactions are 3[Fe2+Fe3+2]O4(magnetite) + 2/nmz ??? 4[Fe3+2]O3(maghemite) + Fe2+ + 2/nmz-n and 3[Fe2+Ti]O3(ilmenite) + 2/nmz ??? Fe3+2Ti3O9(pseudorutile) + Fe2+ + 2/nmz-n, where z is the valance state and n is the charge transfer number. The half cell potential range for solid state oxidation [Fe(II)] ??? [Fe(III)] is -0.34 to -0.65 V, making structural Fe(II) a stronger reducing agent than aqueous Fe2+ (-0.77 V). Reduction rates for aqueous metal species are linear with time (up to 36 h), decrease with pH, and have rate constants between 0.1 and 3.3 ?? 10-10 mol m-2 s-1. Iron is released to solution both from the above reactions and from dissolution of the oxide surface. In the presence of chromate, Fe2+ is oxidized homogeneously in solution to Fe3+. X-ray photoelectron spectroscopy (XPS) denotes a Fe(III) oxide surface containing reduced Cr(III) and V(IV) species. Magnetite and ilmenite electrode potentials are insensitive to increases in divalent transition metals including Zn(II), Co(II), Mn(II), and Ni(II) and reduced V(IV) and Cr(III) but exhibit a log-linear concentration-potential response to Fe(III) and Cu(II). Complex positive electrode responses occur with increasing Cr(VI) and V(V) concentrations. Potential dynamic scans indicate that the high oxidation potential of dichromate is capable of suppressing the cathodic reductive dissolution of magnetite. Oxide electrode potentials are determined by the Fe(II)/Fe(III) composition of the oxide surface and respond to aqueous ion potentials which accelerate this oxidation process. Natural magnetite sands weathered under anoxic conditions are electrochemically reactive as demonstrated by rapid chromate reduction and the release of aqueous Fe(III) to experimental solution. In contrast, magnetite weathered under oxidizing vadose conditions show minimum reactivity toward chromate ions. The ability of Fe(II) oxides to reduce transition metals in soils and groundwaters will be strongly dependent on the redox environment.

  14. Reduction of aqueous transition metal species on the surfaces of Fe(II) -containing oxides

    NASA Astrophysics Data System (ADS)

    White, Art F.; Peterson, Maria L.

    1996-10-01

    Experimental studies demonstrate that structural Fe(II) in magnetite and ilmenite heterogeneously reduce aqueous ferric, cupric, vanadate, and chromate ions at the oxide surfaces over a pH range of 1-7 at 25°C. For an aqueous transition metal m, such reactions are 3[FeFe23+]O+2/nm→4[Fe23+]O+Fe+2/nm and 3[FeTi]O+→Fe23+TiO+Fe+2/nm, where z is the valance state and n is the charge transfer number. The half cell potential range for solid state oxidation [Fe(II)] → [Fe(III)] is -0.34 to -0.65 V, making structural Fe(II) a stronger reducing agent than aqueous Fe 2+ (-0.77 V). Reduction rates for aqueous metal species are linear with time (up to 36 h), decrease with pH, and have rate constants between 0.1 and 3.3 × 10 -10 mol m -2 s -1. Iron is released to solution both from the above reactions and from dissolution of the oxide surface. In the presence of chromate, Fe 2+ is oxidized homogeneously in solution to Fe 3+. X-ray photoelectron spectroscopy (XPS) denotes a Fe(III) oxide surface containing reduced Cr(III) and V(IV) species. Magnetite and ilmenite electrode potentials are insensitive to increases in divalent transition metals including Zn(II), Co(II), Mn(II), and Ni(II) and reduced V(IV) and Cr(III) but exhibit a log-linear concentration-potential response to Fe(III) and Cu(II). Complex positive electrode responses occur with increasing Cr(VI) and V(V) concentrations. Potential dynamic scans indicate that the high oxidation potential of dichromate is capable of suppressing the cathodic reductive dissolution of magnetite. Oxide electrode potentials are determined by the Fe(II)/Fe(III) composition of the oxide surface and respond to aqueous ion potentials which accelerate this oxidation process. Natural magnetite sands weathered under anoxic conditions are electrochemically reactive as demonstrated by rapid chromate reduction and the release of aqueous Fe(III) to experimental solution. In contrast, magnetite weathered under oxidizing vadose conditions show minimum reactivity toward chromate ions. The ability of Fe(II) oxides to reduce transition metals in soils and groundwaters will be strongly dependent on the redox environment.

  15. Effects of ferric iron reduction and regeneration on nitrous oxide and methane emissions in a rice soil.

    PubMed

    Huang, Bin; Yu, Kewei; Gambrell, Robert P

    2009-01-01

    A laboratory soil slurry experiment and an outdoor pot experiment were conducted to study effects of ferric iron (Fe(III)) reduction and regeneration on nitrous oxide (N(2)O) and methane (CH(4)) emissions in a rice (Oryza sativa L.) soil. The anoxic slurry experiment showed that enhancing microbial Fe(III) reduction by ferrihydrite amendment (40 mol Fe g(-1)) transitionally stimulated N(2)O production and lowered CH(4) production by 16% during an initial 33-day incubation. Increased regeneration of Fe(III) through a 4-day aeration period in the Fe-amended slurry compared to the control slurry reduced CH(4) emission by 30% in the subsequent 15-day anaerobic incubation. The pot experiment showed that ferrihydrite amendment (63 micromol Fe g(-1)) stimulated N(2)O fluxes in the days following flooding. The Fe amendment suppression on CH(4) emission was obscured in the early season but became significant upon reflooding in the mid- and late-seasons. As a result, seasonal CH(4) emission in Fe-amended pots was 26% lower than the control with a single 2-day drainage and 69% lower with a double 2-day drainage. The reduction in CH(4) emission upon reflooding from the Fe-amended pots was mainly attributed to the increased Fe(III) regeneration during drainage showing a mechanism of Fe(III) regeneration in mitigating CH(4) emission by short-term drainage in flooded soils.

  16. Cd Mobility in Anoxic Fe-Mineral-Rich Environments - Potential Use of Fe(III)-Reducing Bacteria in Soil Remediation

    NASA Astrophysics Data System (ADS)

    Muehe, E. M.; Adaktylou, I. J.; Obst, M.; Schröder, C.; Behrens, S.; Hitchcock, A. P.; Tylsizczak, T.; Michel, F. M.; Krämer, U.; Kappler, A.

    2014-12-01

    Agricultural soils are increasingly burdened with heavy metals such as Cd from industrial sources and impure fertilizers. Metal contaminants enter the food chain via plant uptake from soil and negatively affect human and environmental health. New remediation approaches are needed to lower soil metal contents. To apply these remediation techniques successfully, it is necessary to understand how soil microbes and minerals interact with toxic metals. Here we show that microbial Fe(III) reduction initially mobilizes Cd before its immobilization under anoxic conditions. To study how microbial Fe(III) reduction influences Cd mobility, we isolated a new Cd-tolerant, Fe(III)-reducing Geobacter sp. from a heavily Cd-contaminated soil. In lab experiments, this Geobacter strain first mobilized Cd from Cd-loaded Fe(III) hydroxides followed by precipitation of Cd-bearing mineral phases. Using Mössbauer spectroscopy and scanning electron microscopy, the original and newly formed Cd-containing Fe(II) and Fe(III) mineral phases, including Cd-Fe-carbonates, Fe-phosphates and Fe-(oxyhydr)oxides, were identified and characterized. Using energy-dispersive X-ray spectroscopy and synchrotron-based scanning transmission X-ray microscopy, Cd was mapped in the Fe(II) mineral aggregates formed during microbial Fe(III) reduction. Microbial Fe(III) reduction mobilizes Cd prior to its precipitation in Cd-bearing mineral phases. The mobilized Cd could be taken up by phytoremediating plants, resulting in a net removal of Cd from contaminated sites. Alternatively, Cd precipitation could reduce Cd bioavailability in the environment, causing less toxic effects to crops and soil microbiota. However, the stability and thus bioavailability of these newly formed Fe-Cd mineral phases needs to be assessed thoroughly. Whether phytoremediation or immobilization of Cd in a mineral with reduced Cd bioavailability are feasible mechanisms to reduce toxic effects of Cd in the environment remains to be determined.

  17. Thermodynamic Versus Surface Area Control of Microbial Fe(III) Oxide Reduction Kinetics

    NASA Astrophysics Data System (ADS)

    Roden, E. E.

    2003-12-01

    Recent experimental studies of synthetic and natural Fe(III) oxide reduction permit development of conceptual and quantitative models of enzymatic Fe(III) oxide reduction at circumneutral pH that can be compared to and contrasted with established models of abiotic mineral dissolution. The findings collectively support a model for controls on enzymatic reduction that differs fundamentally from those applied to abiotic reductive dissolution as a result of two basic phenomena: (1) the relatively minor influence of oxide mineralogical and thermodynamic properties on surface area-normalized rates of enzymatic reduction compared to abiotic reductive dissolution; and (2) the major limitation which sorption and/or surface precipitation of biogenic Fe(II) on residual oxide and Fe(III)-reducing bacterial cell surfaces poses to enzymatic electron transfer in the presence of excess electron donor. Parallel studies with two major Fe(III)-reducing bacteria genera (Shewanella and Geobacter) lead to common conclusions regarding the importance of these phenomena in regulating the rate and long-term extent of Fe(III) oxide reduction. Although the extent to which these phenomena can be traced to underlying kinetic vs. thermodynamic effects cannot be resolved with current information, models in which rates of enzymatic reduction are limited kinetically by the abundance of "available" oxide surface sites (as controlled by oxide surface area and the abundance of surface-bound Fe(II)) provide an adequate macroscopic description of controls on the initial rate and long-term extent of oxide reduction. In some instances, thermodynamic limitation posed by the accumulation of aqueous reaction end-products (i.e. Fe(II) and alkalinity) must also be invoked to explain observed long-term patterns of reduction. In addition, the abundance of Fe(III)-reducing microorganisms plays an important role in governing rates of reduction and needs to be considered in models of Fe(III) reduction in nonsteady-state systems, e.g. subsurface environments in which Fe(III) reduction is stimulated by contamination with organics or for the purposes of metal/radionuclide bioremediation.

  18. Microbial reduction of Fe(III) and turnover of acetate in Hawaiian soils.

    PubMed

    Küsel, Kirsten; Wagner, Christine; Trinkwalter, Tanja; Gössner, Anita S; Bäumler, Rupert; Drake, Harold L

    2002-04-01

    Soils contain anoxic microzones, and acetate is an intermediate during the turnover of soil organic carbon. Due to negligible methanogenic activities in well-drained soils, acetate accumulates under experimentally imposed short-term anoxic conditions. In contrast to forest, agricultural, and prairie soils, grassland soils from Hawaii rapidly consumed rather than formed acetate when incubated under anoxic conditions. Thus, alternative electron acceptors that might be linked to the anaerobic oxidation of soil organic carbon in Hawaiian soils were assessed. Under anoxic conditions, high amounts of Fe(II) were formed by Hawaiian soils as soon as soils were depleted of nitrate. Rates of Fe(II) formation for different soils ranged from 0.01 to 0.31 micromol (g dry weight soil)(-1) h(-1), but were not positively correlated to increasing amounts of poorly crystallized iron oxides. In general, sulfate-reducing and methanogenic activities were negligible. Supplemental acetate was rapidly oxidized to CO2 via the sequential reduction of nitrate and Fe(III) in grassland soil (obtained near Kaena State Park). Supplemental H2 stimulated the formation of Fe(II), but H2-utilizing acetogens appeared to also be involved in the consumption of H2. Approximately 270 micromol Fe(III) (g dry weight soil)(-1) was available for Fe(III)-reducing bacteria, and acetate became a stable end product when Fe(III) was depleted in long-term incubations. Most-probable-number estimates of H2- and acetate-utilizing Fe(III) reducers and of H2-utilizing acetogens were similar. These results indicate that (i) the microbial reduction of Fe(III) is an important electron-accepting process for the anaerobic oxidation of organic matter in Fe(III)-rich Hawaiian soils of volcanic origin, and (ii) acetate, formed by the combined activity of fermentative and acetogenic bacteria, is an important trophic link in anoxic microsites of these soils.

  19. Effect of ionic strength on the thermodynamic characteristics of complexation between Fe(III) ion and nicotinamide in water-ethanol and water-dimethyl sulfoxide mixtures

    NASA Astrophysics Data System (ADS)

    Gamov, G. A.; Grazhdan, K. V.; Gavrilova, M. A.; Dushina, S. V.; Sharnin, V. A.; Baranski, A.

    2013-06-01

    Solutions of iron(III) perchlorate in water, water-ethanol, and water-dimethyl sulfoxide solvents (x_{H_2 O} = 0.7 and 0.25 mole fractions) at ionic strength values I = 0.1, 0.25, and 0.5 are studied by IR spectroscopy. Analysis of the absorption bands of perchlorate ion shows that it does not participate in association processes. It is demonstrated that in the range of ionic strength values between 0 and 0.5 (NaClO4), it affects neither the results from potentiometric titration to determine the stability constants of the iron(III)-nicotinamide complex nor the thermal effects of complexation determined via direct calorimetry in a binary solvent containing 0.3 mole fractions (m.f.) of a non-aqueous component.

  20. An Analytical Chemistry Experiment in Simultaneous Spectrophotometric Determination of Fe(III) and Cu(II) with Hexacyanoruthenate(II) Reagent.

    ERIC Educational Resources Information Center

    Mehra, M. C.; Rioux, J.

    1982-01-01

    Experimental procedures, typical observations, and results for the simultaneous analysis of Fe(III) and Cu(II) in a solution are discussed. The method is based on selective interaction between the two ions and potassium hexacyanoruthenate(II) in acid solution involving no preliminary sample preparations. (Author/JN)

  1. Fe(III)-solar light induced degradation of diethyl phthalate (DEP) in aqueous solutions.

    PubMed

    Mailhot, G; Sarakha, M; Lavedrine, B; Cáceres, J; Malato, S

    2002-11-01

    The degradation of diethyl phthalate (DEP) photoinduced by Fe(III) in aqueous solutions has been investigated under solar irradiation in the compound parabolic collector reactor at Plataforma Solar de Almeria. Hydroxyl radicals *OH, responsible of the degradation, are formed via an intramolecular photoredox process in the excited state of Fe(III) aquacomplexes. The primary step of the reaction is mainly due to the attack of *OH radicals on the aromatic ring. For prolonged irradiations DEP and its photoproducts are completely mineralized due to the regeneration of the absorbing species and the continuous formation of *OH radicals that confers a catalytic aspect to the process. Consequently, the degradation photoinduced by Fe(III) could be an efficient method of DEP removal from water.

  2. Aerobic exercise training improves oxidative stress and ubiquitin proteasome system activity in heart of spontaneously hypertensive rats.

    PubMed

    de Andrade, Luiz Henrique Soares; de Moraes, Wilson Max Almeida Monteiro; Matsuo Junior, Eduardo Hiroshi; de Orleans Carvalho de Moura, Elizabeth; Antunes, Hanna Karen Moreira; Montemor, Jairo; Antonio, Ednei Luiz; Bocalini, Danilo Sales; Serra, Andrey Jorge; Tucci, Paulo José Ferreira; Brum, Patricia Chakur; Medeiros, Alessandra

    2015-04-01

    The activity of the ubiquitin proteasome system (UPS) and the level of oxidative stress contribute to the transition from compensated cardiac hypertrophy to heart failure in hypertension. Moreover, aerobic exercise training (AET) is an important therapy for the treatment of hypertension, but its effects on the UPS are not completely known. The aim of this study was to evaluate the effect of AET on UPS's activity and oxidative stress level in heart of spontaneously hypertensive rats (SHR). A total of 53 Wistar and SHR rats were randomly divided into sedentary and trained groups. The AET protocol was 5×/week in treadmill for 13 weeks. Exercise tolerance test, non-invasive blood pressure measurement, echocardiographic analyses, and left ventricle hemodynamics were performed during experimental period. The expression of ubiquitinated proteins, 4-hydroxynonenal (4-HNE), Akt, phospho-Akt(ser473), GSK3β, and phospho-GSK3β(ser9) were analyzed by western blotting. The evaluation of lipid hydroperoxide concentration was performed using the xylenol orange method, and the proteasomal chymotrypsin-like activity was measured by fluorimetric assay. Sedentary hypertensive group presented cardiac hypertrophy, unaltered expression of total Akt, phospho-Akt, total GSK3β and phospho-GSK3β, UPS hyperactivity, increased lipid hydroperoxidation as well as elevated expression of 4-HNE but normal cardiac function. In contrast, AET significantly increased exercise tolerance, decreased resting systolic blood pressure and heart rate in hypertensive animals. In addition, the AET increased phospho-Akt expression, decreased phospho-GSK3β, and did not alter the expression of total Akt, total GSK3β, and ubiquitinated proteins, however, significantly attenuated 4-HNE levels, lipid hydroperoxidation, and UPS's activity toward normotensive group levels. Our results provide evidence for the main effect of AET on attenuating cardiac ubiquitin proteasome hyperactivity and oxidative stress in SHR rats.

  3. Monoamine oxidases are mediators of endothelial dysfunction in the mouse aorta.

    PubMed

    Sturza, Adrian; Leisegang, Matthias S; Babelova, Andrea; Schröder, Katrin; Benkhoff, Sebastian; Loot, Annemarieke E; Fleming, Ingrid; Schulz, Rainer; Muntean, Danina M; Brandes, Ralf P

    2013-07-01

    Monoamine oxidases (MAOs) generate H(2)O(2) as a by-product of their catalytic cycle. Whether MAOs are mediators of endothelial dysfunction is unknown and was determined here in the angiotensin II and lipopolysaccharide-models of vascular dysfunction in mice. Quantitative real-time polymerase chain reaction revealed that mouse aortas contain enzymes involved in catecholamine generation and MAO-A and MAO-B mRNA. MAO-A and -B proteins could be detected by Western blot not only in mouse aortas but also in human umbilical vein endothelial cells. Ex vivo incubation of mouse aorta with recombinant MAO-A increased H(2)O(2) formation and induced endothelial dysfunction that was attenuated by polyethylene glycol-catalase and MAO inhibitors. In vivo lipopolysaccharide (8 mg/kg IP overnight) or angiotensin II (1 mg/kg per day, 2 weeks, minipump) treatment induced vascular MAO-A and -B expressions and resulted in attenuated endothelium-dependent relaxation of the aorta in response to acetylcholine. MAO inhibitors reduced the lipopolysaccharide- and angiotensin II-induced aortic reactive oxygen species formation by 50% (ferrous oxidation xylenol orange assay) and partially normalized endothelium-dependent relaxation. MAO-A and MAO-B inhibitors had an additive effect; combined application completely restored endothelium-dependent relaxation. To determine how MAO-dependent H(2)O(2) formation induces endothelial dysfunction, cyclic GMP was measured. Histamine stimulation of human umbilical vein endothelial cells to activate endothelial NO synthase resulted in an increase in cyclic GMP, which was almost abrogated by MAO-A exposure. MAO inhibition prevented this effect, suggesting that MAO-induced H(2)O(2) formation is sufficient to attenuate endothelial NO release. Thus, MAO-A and MAO-B are both expressed in the mouse aorta, induced by in vivo lipopolysaccharide and angiotensin II treatment and contribute via the generation of H(2)O(2) to endothelial dysfunction in vascular disease models.

  4. Luminescent zinc(ii) and copper(i) complexes for high-performance solution-processed monochromic and white organic light-emitting devices.

    PubMed

    Cheng, Gang; So, Gary Kwok-Ming; To, Wai-Pong; Chen, Yong; Kwok, Chi-Chung; Ma, Chensheng; Guan, Xiangguo; Chang, Xiaoyong; Kwok, Wai-Ming; Che, Chi-Ming

    2015-08-01

    The synthesis and spectroscopic properties of luminescent tetranuclear zinc(ii) complexes of substituted 7-azaindoles and a series of luminescent copper(i) complexes containing 7,8-bis(diphenylphosphino)-7,8-dicarba- nido -undecaborate ligand are described. These complexes are stable towards air and moisture. Thin film samples of the luminescent copper(i) complexes in 2,6-dicarbazolo-1,5-pyridine and zinc(ii) complexes in poly(methyl methacrylate) showed emission quantum yields of up to 0.60 (for Cu-3 ) and 0.96 (for Zn-1 ), respectively. Their photophysical properties were examined by ultrafast time-resolved emission spectroscopy, temperature dependent emission lifetime measurements and density functional theory calculations. Monochromic blue and orange solution-processed OLEDs with these Zn(ii) and Cu(i) complexes as light-emitting dopants have been fabricated, respectively. Maximum external quantum efficiency (EQE) of 5.55% and Commission Internationale de l'Eclairage (CIE) coordinates of (0.16, 0.19) were accomplished with the optimized Zn-1 -OLED while these values were, respectively 15.64% and (0.48, 0.51) for the optimized Cu-3 -OLED. Solution-processed white OLEDs having maximum EQE of 6.88%, CIE coordinates of (0.42, 0.44), and colour rendering index of 81 were fabricated by using these luminescent Zn(ii) and Cu(i) complexes as blue and orange light-emitting dopant materials, respectively.

  5. Thermal and biological evolution of Fe(III)-Sulfanilamide complexes synthesized by green strategy

    NASA Astrophysics Data System (ADS)

    Prajapat, Garima; Rathore, Uma; Gupta, Rama; Bhojak, N.

    2018-05-01

    Sulfonamides belong to a category of sulfadrugs, that are widely used as antibiotic medicines. Their metal complexes, also called Metallodrugs, are known to have diverse pharmacological applications and are significantly used as therapeutic agents for treatment of several human diseases. Fe(III) complexes of two sulfonamides, namely Sulfanilamide and Sulfadiazine have been synthesized by the method of Microwave Assisted Organic Synthesis (MAOS), using acetone as solvent medium. Presence of excellent donor atoms such as N and O, induce these drugs to exhibit a chelating behavior with the metal ion, and to act as bidentate ligands. Both the complexes were found to have four coordinated, tetrahedral geometry with one molecule of water of crystallisation. Thermal decomposition studies were carried out in an inert nitrogen atmosphere by Thermogravimetric (TGA) and Derivative Thermogravimetric (DTA) analysis. Interpretation of thermograms have been done to evaluate various kinetic and thermodynamic parameters, using integral method of Coats and Redfern. The antibacterial activity for both complexes have been screened against E.coli, S. aureus and B. subtilis.

  6. Arsenic Mobilization Influenced By Iron Reduction And Sulfidogenesis Under Dynamic Flow

    NASA Astrophysics Data System (ADS)

    Kocar, B. D.; Stewart, B. D.; Herbel, M.; Fendorf, S.

    2004-12-01

    Sulfidogenesis and iron reduction are ubiquitous processes that occur in a variety of anoxic subsurface and surface environments, which profoundly impact the cycling of arsenic. Of the iron (hydr)oxides, ferrihydrite possesses one of the highest capacities to retain arsenic, and is globally distributed within soils and sediments. Upon dissimilatory iron reduction, ferrihydrite may transform to lower surface area minerals, such as goethite and magnetite, which decreases arsenic retention, thus enhancing its transport. Here we examine how arsenic retained on ferrihydrite is mobilized under dynamic flow in the presence of Sulfurosprillum barnesii strain SES-3, a bacteria capable of reducing both As(V) and Fe(III). Ferrihydrite coated sands, loaded with 150 mg kg-1 As(V), were inoculated with S. barnesii, packed into a column and reacted with a synthetic groundwater solution. Within several days after initiation of flow, the concentration of arsenic in the column effluent increased dramatically coincident with the mineralogical transformation of ferrihydrite and As(V) reduction to As(III). Following the initial pulse of arsenic, effluent concentration then declined to less than 10 μ M. Thus, arsenic release into the aqueous phase is contingent upon the incongruent reduction of As(V) and Fe(III) as mediated by biological activity. Reaction of abiotically or biotically generated dissolved sulfide with iron (hydr)oxides may have a dramatic influence on the fate of arsenic within surface and subsurface environments. Accordingly, we examined the reaction of dissolved bisulfide and iron (hydr)oxide complexed with arsenic in both batch and column systems. Low ratios of sulfide to iron in batch reaction systems result in the formation of elemental sulfur and concomitant arsenic release from the iron (hydr)oxide surface. High sulfide to iron ratios, in contrast, appear to favor the formation of iron and arsenic sulfides. Our findings demonstrate that iron (hydr)oxides may quench reactions between sulfide and constituents sorbed to iron (hydr)oxide surfaces, forming elemental sulfur as opposed to sulfide-arsenic complexes. In addition, reductive transformation of iron (hydr)oxide by dissolved sulfide may release sorbed constituents. Hence, moderate to low concentrations of dissolved sulfide in association with iron (hydr)oxides may inhibit sequestration of important contaminants that are attenuated by Fe(III) and/or S(-II) bearing phases.

  7. 1-(2-Formamidoethyl)-3-phenylurea functionalized activated carbon for selective solid-phase extraction and preconcentration of metal ions.

    PubMed

    Tu, Zhifeng; He, Qun; Chang, Xijun; Hu, Zheng; Gao, Ru; Zhang, Lina; Li, Zhenhua

    2009-09-07

    A novel method that utilizes 1-(2-formamidoethyl)-3-phenylurea-modified activated carbon (AC-1-(2-formamidoethyl)-3-phenylurea) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of Cr(III), Cu(II), Fe(III) and Pb(II) were optimized using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4. And the adsorbed metal ions could be completely eluted by using 2.0 mL 2.0 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.8, 39.9, 77.8 and 17.3 mg g(-1) for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The detection limits of the method were found to be 0.15, 0.41, 0.27 and 0.36 ng mL(-1) for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The relative standard deviation (RSD) of the method was lower than 4.0% (n=8). The method was successfully applied for the preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) in natural and certified samples with satisfactory results.

  8. Depth-dependent geochemical and microbiological gradients in Fe(III) deposits resulting from coal mine-derived acid mine drainage

    PubMed Central

    Brantner, Justin S.; Haake, Zachary J.; Burwick, John E.; Menge, Christopher M.; Hotchkiss, Shane T.; Senko, John M.

    2014-01-01

    We evaluated the depth-dependent geochemistry and microbiology of sediments that have developed via the microbially-mediated oxidation of Fe(II) dissolved in acid mine drainage (AMD), giving rise to a 8–10 cm deep “iron mound” that is composed primarily of Fe(III) (hydr)oxide phases. Chemical analyses of iron mound sediments indicated a zone of maximal Fe(III) reducing bacterial activity at a depth of approximately 2.5 cm despite the availability of dissolved O2 at this depth. Subsequently, Fe(II) was depleted at depths within the iron mound sediments that did not contain abundant O2. Evaluations of microbial communities at 1 cm depth intervals within the iron mound sediments using “next generation” nucleic acid sequencing approaches revealed an abundance of phylotypes attributable to acidophilic Fe(II) oxidizing Betaproteobacteria and the chloroplasts of photosynthetic microeukaryotic organisms in the upper 4 cm of the iron mound sediments. While we observed a depth-dependent transition in microbial community structure within the iron mound sediments, phylotypes attributable to Gammaproteobacterial lineages capable of both Fe(II) oxidation and Fe(III) reduction were abundant in sequence libraries (comprising ≥20% of sequences) from all depths. Similarly, abundances of total cells and culturable Fe(II) oxidizing bacteria were uniform throughout the iron mound sediments. Our results indicate that O2 and Fe(III) reduction co-occur in AMD-induced iron mound sediments, but that Fe(II)-oxidizing activity may be sustained in regions of the sediments that are depleted in O2. PMID:24860562

  9. Crystal structure of K0.75[Fe(II) 3.75Fe(III) 1.25(HPO3)6]·0.5H2O, an open-framework iron phosphite with mixed-valent Fe(II)/Fe(III) ions.

    PubMed

    Larrea, Edurne S; Mesa, José Luis; Legarra, Estibaliz; Aguayo, Andrés Tomás; Arriortua, Maria Isabel

    2016-01-01

    Single crystals of the title compound, potassium hexa-phosphito-penta-ferrate(II,III) hemihydrate, K0.75[Fe(II) 3.75Fe(III) 1.25(HPO3)6]·0.5H2O, were grown under mild hydro-thermal conditions. The crystal structure is isotypic with Li1.43[Fe(II) 4.43Fe(III) 0.57(HPO3)6]·1.5H2O and (NH4)2[Fe(II) 5(HPO3)6] and exhibits a [Fe(II) 3.75Fe(III) 1.25(HPO3)6](0.75-) open framework with disordered K(+) (occupancy 3/4) as counter-cations. The anionic framework is based on (001) sheets of two [FeO6] octa-hedra (one with point group symmetry 3.. and one with point group symmetry .2.) linked along [001] through [HPO3](2-) oxoanions. Each sheet is constructed from 12-membered rings of edge-sharing [FeO6] octa-hedra, giving rise to channels with a radius of ca 3.1 Å where the K(+) cations and likewise disordered water mol-ecules (occupancy 1/4) are located. O⋯O contacts between the water mol-ecule and framework O atoms of 2.864 (5) Å indicate hydrogen-bonding inter-actions of medium strength. The infrared spectrum of the compound shows vibrational bands typical for phosphite and water groups. The Mössbauer spectrum is in accordance with the presence of Fe(II) and Fe(III) ions.

  10. Ligand binding to the Fe(III)-protoporphyrin IX complex of phosphodiesterase from Escherichia coli (Ec DOS) markedly enhances catalysis of cyclic di-GMP: roles of Met95, Arg97, and Phe113 of the putative heme distal side in catalytic regulation and ligand binding.

    PubMed

    Tanaka, Atsunari; Shimizu, Toru

    2008-12-16

    Phosphodiesterase (Ec DOS) from Escherichia coli is a gas-sensor enzyme in which binding of gas molecules, such as O(2), CO, and NO, to the Fe(II)-protoporphyrin IX complex in the sensor domain stimulates phosphodiesterase activity toward cyclic-di-GMP. In this study, we report that external axial ligands, such as cyanide or imidazole, bind to Fe(III)-protoporphyrin IX in the sensor domain and induce a 10- to 11-fold increase (from 8.1 up to 86 min(-1)) in catalysis, which is more substantial than that (6.3 to 7.2-fold) observed for other gas-stimulated Fe(II) heme-bound enzymes. Catalytic activity (50 min(-1)) of the heme-free mutant, H77A, was comparable to that of the ligand-stimulated enzymes. Accordingly, we propose that the heme at the sensor domain inhibits catalysis and that ligand binding to the heme iron complex releases this catalytic suppression. Furthermore, mutations of Met95, Arg97, and Phe113 at the putative heme distal side suppressed the ligand effects on catalysis. The rate constants (19,000 x 10(-5) microM(-1)min(-1)) for cyanide binding to the M95A and M95L mutants of the full-length enzyme were 633-fold higher than that to wild-type Ec DOS (30 x 10(-5) microM(-1)min(-1)). The absorption spectrum of the F113Y mutant suggests that the Tyr O(-) group directly coordinates to the Fe(III) complex and that the cyanide binding rate to the mutant is very slow, compared with those of the wild-type and other mutant proteins. We observed a similar trend in the binding behavior of imidazole to full-length mutant enzymes. Therefore, while Met95 and Phe113 are not direct axial ligands for the Fe(III) complex, catalytic, spectroscopic, and ligand binding evidence suggests that these residues are located in the vicinity of the heme.

  11. Whole-genome sequence of Cupriavidus sp. strain BIS7, a heavy-metal-resistant bacterium.

    PubMed

    Hong, Kar Wai; Thinagaran, Dinaiz al; Gan, Han Ming; Yin, Wai-Fong; Chan, Kok-Gan

    2012-11-01

    Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome.

  12. A nano-disperse ferritin-core mimetic that efficiently corrects anemia without luminal iron redox activity

    PubMed Central

    Powell, Jonathan J.; Bruggraber, Sylvaine F.A.; Faria, Nuno; Poots, Lynsey K.; Hondow, Nicole; Pennycook, Timothy J.; Latunde-Dada, Gladys O.; Simpson, Robert J.; Brown, Andy P.; Pereira, Dora I.A.

    2014-01-01

    The 2-5 nm Fe(III) oxo-hydroxide core of ferritin is less ordered and readily bioavailable compared to its pure synthetic analogue, ferrihydrite. We report the facile synthesis of tartrate-modified, nano-disperse ferrihydrite of small primary particle size, but with enlarged or strained lattice structure (~ 2.7 Å for the main Bragg peak versus 2.6 Å for synthetic ferrihydrite). Analysis indicated that co-precipitation conditions can be achieved for tartrate inclusion into the developing ferrihydrite particles, retarding both growth and crystallization and favoring stabilization of the cross-linked polymeric structure. In murine models, gastrointestinal uptake was independent of luminal Fe(III) reduction to Fe(II) and, yet, absorption was equivalent to that of ferrous sulphate, efficiently correcting the induced anemia. This process may model dietary Fe(III) absorption and potentially provide a side effect-free form of cheap supplemental iron. From the Clinical Editor Small size tartrate-modified, nano-disperse ferrihydrite was used for efficient gastrointestinal delivery of soluble Fe(III) without the risk for free radical generation in murine models. This method may provide a potentially side effect-free form iron supplementation. PMID:24394211

  13. Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals

    NASA Astrophysics Data System (ADS)

    Gauger, Tina; Konhauser, Kurt; Kappler, Andreas

    2016-04-01

    Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth.

  14. Selective solid-phase extraction using oxidized activated carbon modified with triethylenetetramine for preconcentration of metal ions

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Chang, Xijun; Li, Zhenhua; He, Qun

    2010-02-01

    A new selective solid-phase extractant using activated carbon as matrix which was purified, oxidized and modified by triethylenetetramine (AC-TETA) was prepared and characterized by FT-IR spectroscopy. At pH 4, quantitative extraction of trace Cr(III), Fe(III) and Pb(II) was obtained and determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Complete elution of the adsorbed metal ions from the sorbent surface was carried out using 0.5 mol L -1 HCl. The maximum static adsorption capacity of sorbent for Cr(III), Fe(III) and Pb(II) was 34.6, 36.5 and 51.9 mg g -1, respectively. The time of quantitative adsorption was less than 2 min. The detection limits of the method was found to be 0.71, 0.35 and 0.45 ng mL -1 for Cr(III), Fe(III) and Pb(II), and the relative standard deviation (RSD) was 3.7%, 2.2% and 2.5%, respectively. Moreover, the method was free from interference with common coexiting ions. The method was also successfully applied to the preconcentration of trace Cr(III), Fe(III) and Pb(II) in synthetic samples and a real sample with satisfactory results.

  15. Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals.

    PubMed

    Gauger, Tina; Konhauser, Kurt; Kappler, Andreas

    2016-04-01

    Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth.

  16. Synthesis, investigation and spectroscopic characterization of piroxicam ternary complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with glycine and DL-phenylalanine.

    PubMed

    Mohamed, Gehad G; El-Gamel, Nadia E A

    2004-11-01

    The ternary piroxicam (Pir; 4-hydroxy-2-methyl-N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA chelates were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.

  17. Synthesis, investigation and spectroscopic characterization of piroxicam ternary complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with glycine and DL-phenylalanine

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; El-Gamel, Nadia E. A.

    2004-11-01

    The ternary piroxicam (Pir; 4-hydroxy-2-methyl- N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine- N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA cheletes were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.

  18. Indirect competitive immunoassay for the detection of fungicide Thiabendazole in whole orange samples by Surface Plasmon Resonance.

    PubMed

    Estevez, M-Carmen; Belenguer, Jose; Gomez-Montes, Silvia; Miralles, Javier; Escuela, Alfonso M; Montoya, Angel; Lechuga, Laura M

    2012-12-07

    A highly sensitive and specific SPR-based competitive immunoassay for the detection of Thiabendazole (TBZ) has been developed. An indirect format where a TBZ-protein conjugate is immobilized onto gold surfaces has been selected. Under the optimal conditions, a LOD of 0.67 nM (0.13 μg L(-1)) and an IC(50) of 3.2 nM (0.64 μg L(-1)) have been achieved which are comparable to the values obtained by conventional ELISA. Analysis of real samples has been attempted by first evaluating the influence of complex matrix samples coming from whole oranges and secondly measuring samples containing TBZ previously evaluated by chromatographic methods. A methanolic extraction procedure followed by a simple dilution in assay buffer has proven to be sufficient to measure orange samples using the developed immunoassay with an excellent recovery percentage. The sensitivity and the feasibility of measuring whole orange samples demonstrate the effectiveness and robustness of the SPR biosensor, which can be useful for the determination of TBZ in food at concentrations below the Maximum Residue Levels (MRLs) established by the European legislation.

  19. Radical scavenging activities of Rio Red grapefruits and Sour orange fruit extracts in different in vitro model systems.

    PubMed

    Jayaprakasha, G K; Girennavar, Basavaraj; Patil, Bhimanagouda S

    2008-07-01

    Antioxidant fractions from two different citrus species such as Rio Red (Citrus paradise Macf.) and Sour orange (Citrus aurantium L.) were extracted with five different polar solvents using Soxhlet type extractor. The total phenolic content of the extracts was determined by Folin-Ciocalteu method. Ethyl acetate extract of Rio Red and Sour orange was found to contain maximum phenolics. The dried fractions were screened for their antioxidant activity potential using in vitro model systems such as 1,1-diphenyl-2-picryl hydrazyl (DPPH), phosphomolybdenum method and nitroblue tetrazolium (NBT) reduction at different concentrations. The methanol:water (80:20) fraction of Rio Red showed the highest radical scavenging activity 42.5%, 77.8% and 92.1% at 250, 500 and 1000 ppm, respectively, while methanol:water (80:20) fraction of Sour orange showed the lowest radical scavenging activity at all the tested concentrations. All citrus fractions showed good antioxidant capacity by the formation of phosphomolybdenum complex at 200 ppm. In addition, superoxide radical scavenging activity was assayed using non-enzymatic (NADH/phenaxine methosulfate) superoxide generating system. All the extracts showed variable superoxide radical scavenging activity. Moreover, methanol:water (80:20) extract of Rio Red and methanol extract of Sour orange exhibited marked reducing power in potassium ferricyanide reduction method. The data obtained using above in vitro models clearly establish the antioxidant potential of citrus fruit extracts. However, comprehensive studies need to be conducted to ascertain the in vivo bioavailability, safety and efficacy of such extracts in experimental animals. To the best of our knowledge, this is the first report on antioxidant activity of different polar extracts from Rio Red and Sour oranges.

  20. Synthesis, characterization, antimicrobial, DNA-cleavage and antioxidant activities of 3-((5-chloro-2-phenyl-1H-indol-3-ylimino)methyl)quinoline-2(1H)-thione and its metal complexes

    NASA Astrophysics Data System (ADS)

    Vivekanand, B.; Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M.

    2015-01-01

    Schiff base 3-((5-chloro-2-phenyl-1H-indol-3-ylimino)methyl)quinoline-2(1H)-thione and its Cu(II), Co(II), Ni(II), Zn(II) and Fe(III), complexes have been synthesized and characterized by elemental analysis, UV-Visible, IR, 1H NMR, 13C NMR and mass spectra, molar conductance, magnetic susceptibility, ESR and TGA data. The ligand and its metal complexes have been screened for their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, antifungal activity against Aspergillus niger and Aspergillus flavus in minimum inhibition concentration (MIC) by cup plate method respectively, antioxidant activity using 1,1-diphenyl-2-picryl hydrazyl (DPPH), which was compared with that of standard drugs vitamin-C and vitamin-E and DNA cleavage activity using calf-thymus DNA.

  1. Synthesis and characterization of ligational behavior of curcumin drug towards some transition metal ions: Chelation effect on their thermal stability and biological activity

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.

    2013-03-01

    Complexes of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with curcumin ligand as antitumor activity were synthesized and characterized by elemental analysis, conductometry, magnetic susceptibility, UV-Vis, IR, Raman, ESR, 1H-NMR spectroscopy, X-ray diffraction analysis of powdered samples and thermal analysis, and screened for antimicrobial activity. The IR spectral data suggested that the ligand behaves as a monobasic bidentate ligand towards the central metal ion with an oxygen's donor atoms sequence of both sbnd OH and Cdbnd O groups under keto-enol structure. From the microanalytical data, the stoichiometry of the complexes 1:2 (metal:ligand) was found. The ligand and their metal complexes were screened for antibacterial activity against Escherichia Coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa and fungicidal activity against Aspergillus flavus and Candida albicans.

  2. Long-term controls on continental-scale bedrock river terrace deposition from integrated clast and heavy mineral assemblage analysis: An example from the lower Orange River, Namibia

    NASA Astrophysics Data System (ADS)

    Nakashole, Albertina N.; Hodgson, David M.; Chapman, Robert J.; Morgan, Dan J.; Jacob, Roger J.

    2018-02-01

    Establishing relationships between the long-term landscape evolution of drainage basins and the fill of sedimentary basins benefits from analysis of bedrock river terrace deposits. These fragmented detrital archives help to constrain changes in river system character and provenance during sediment transfer from continents (source) to oceans (sink). Thick diamondiferous gravel terrace deposits along the lower Orange River, southern Namibia, provide a rare opportunity to investigate controls on the incision history of a continental-scale bedrock river. Clast assemblage and heavy mineral data from seven localities permit detailed characterisation of the lower Orange River gravel terrace deposits. Two distinct fining-upward gravel terrace deposits are recognised, primarily based on mapped stratigraphic relationships (cross-cutting relationships) and strath and terrace top elevations, and secondarily on the proportion of exotic clasts, referred to as Proto Orange River deposits and Meso Orange River deposits. The older early to middle Miocene Proto Orange River gravels are thick (up to 50 m) and characterised by a dominance of Karoo Supergroup shale and sandstone clasts, whereas the younger Plio-Pleistocene Meso Orange River gravels (6-23 m thick) are characterised by more banded iron formation clasts. Mapping of the downstepping terraces indicates that the Proto gravels were deposited by a higher sinuosity river, and are strongly discordant to the modern Orange River course, whereas the Meso deposits were deposited by a lower sinuosity river. The heavy minerals present in both units comprise magnetite, garnet, amphibole, epidote and ilmenite, with rare titanite and zircon grains. The concentration of amphibole-epidote in the heavy minerals fraction increases from the Proto to the Meso deposits. The decrease in incision depths, recorded by deposit thicknesses above strath terraces, and the differences in clast character (size and roundness) and type between the two units, are ascribed to a more powerful river system during Proto-Orange River time, rather than reworking of older deposits, changes in provenance or climatic variations. In addition, from Proto- to Meso-Orange River times there was an increase in the proportion of sediments supplied from local bedrock sources, including amphibole-epidote in the heavy mineral assemblages derived from the Namaqua Metamorphic Complex. This integrated study demonstrates that clast assemblages are not a proxy for the character of the matrix, and vice versa, because they are influenced by the interplay of different controls. Therefore, an integrated approach is needed to improve prediction of placer mineral deposits in river gravels, and their distribution in coeval deposits downstream.

  3. Whole-Genome Sequence of Cupriavidus sp. Strain BIS7, a Heavy-Metal-Resistant Bacterium

    PubMed Central

    Hong, Kar Wai; Thinagaran, Dinaiz a/l; Gan, Han Ming; Yin, Wai-Fong

    2012-01-01

    Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome. PMID:23115161

  4. Microbial Fe(III) Oxide Reduction in Chocolate Pots Hot Springs, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Fortney, N. W.; Roden, E. E.; Boyd, E. S.; Converse, B. J.

    2014-12-01

    Previous work on dissimilatory iron reduction (DIR) in Yellowstone National Park (YNP) has focused on high temperature, low pH environments where soluble Fe(III) is utilized as an electron acceptor for respiration. Much less attention has been paid to DIR in lower temperature, circumneutral pH environments, where solid phase Fe(III) oxides are the dominant forms of Fe(III). This study explored the potential for DIR in the warm (ca. 40-50°C), circumneutral pH Chocolate Pots hot springs (CP) in YNP. Most probable number (MPN) enumerations and enrichment culture studies confirmed the presence of endogenous microbial communities that reduced native CP Fe(III) oxides. Enrichment cultures demonstrated sustained DIR coupled to acetate and lactate oxidation through repeated transfers over ca. 450 days. Pyrosequencing of 16S rRNA genes indicated that the dominant organisms in the enrichments were closely affiliated with the well known Fe(III) reducer Geobacter metallireducens. Additional taxa included relatives of sulfate reducing bacterial genera Desulfohalobium and Thermodesulfovibrio; however, amendment of enrichments with molybdate, an inhibitor of sulfate reduction, suggested that sulfate reduction was not a primary metabolic pathway involved in DIR in the cultures. A metagenomic analysis of enrichment cultures is underway in anticipation of identifying genes involved in DIR in the less well-characterized dominant organisms. Current studies are aimed at interrogating the in situ microbial community at CP. Core samples were collected along the flow path (Fig. 1) and subdivided into 1 cm depth intervals for geochemical and microbiological analysis. The presence of significant quantities of Fe(II) in the solids indicated that DIR is active in situ. A parallel study investigated in vitro microbial DIR in sediments collected from three of the coring sites. DNA was extracted from samples from both studies for 16S rRNA gene and metagenomic sequencing in order to obtain a detailed understanding of the vertical and longitudinal distribution of microbial taxa throughout CP. These studies will provide insight into the operation of the microbial Fe redox cycle, demonstrating how genomic properties relate to and control geochemical conditions with depth and distance in a Fe-rich, neutral pH geothermal environment.

  5. A mass balance approach to investigate arsenic cycling in a petroleum plume.

    PubMed

    Ziegler, Brady A; Schreiber, Madeline E; Cozzarelli, Isabelle M; Crystal Ng, G-H

    2017-12-01

    Natural attenuation of organic contaminants in groundwater can give rise to a series of complex biogeochemical reactions that release secondary contaminants to groundwater. In a crude oil contaminated aquifer, biodegradation of petroleum hydrocarbons is coupled with the reduction of ferric iron (Fe(III)) hydroxides in aquifer sediments. As a result, naturally occurring arsenic (As) adsorbed to Fe(III) hydroxides in the aquifer sediment is mobilized from sediment into groundwater. However, Fe(III) in sediment of other zones of the aquifer has the capacity to attenuate dissolved As via resorption. In order to better evaluate how long-term biodegradation coupled with Fe-reduction and As mobilization can redistribute As mass in contaminated aquifer, we quantified mass partitioning of Fe and As in the aquifer based on field observation data. Results show that Fe and As are spatially correlated in both groundwater and aquifer sediments. Mass partitioning calculations demonstrate that 99.9% of Fe and 99.5% of As are associated with aquifer sediment. The sediments act as both sources and sinks for As, depending on the redox conditions in the aquifer. Calculations reveal that at least 78% of the original As in sediment near the oil has been mobilized into groundwater over the 35-year lifespan of the plume. However, the calculations also show that only a small percentage of As (∼0.5%) remains in groundwater, due to resorption onto sediment. At the leading edge of the plume, where groundwater is suboxic, sediments sequester Fe and As, causing As to accumulate to concentrations 5.6 times greater than background concentrations. Current As sinks can serve as future sources of As as the plume evolves over time. The mass balance approach used in this study can be applied to As cycling in other aquifers where groundwater As results from biodegradation of an organic carbon point source coupled with Fe reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A mass balance approach to investigate arsenic cycling in a petroleum plume

    USGS Publications Warehouse

    Ziegler, Brady A.; Schreiber, Madeline E.; Cozzarelli, Isabelle M.; Ng. G.-H. Crystal,

    2017-01-01

    Natural attenuation of organic contaminants in groundwater can give rise to a series of complex biogeochemical reactions that release secondary contaminants to groundwater. In a crude oil contaminated aquifer, biodegradation of petroleum hydrocarbons is coupled with the reduction of ferric iron (Fe(III)) hydroxides in aquifer sediments. As a result, naturally occurring arsenic (As) adsorbed to Fe(III) hydroxides in the aquifer sediment is mobilized from sediment into groundwater. However, Fe(III) in sediment of other zones of the aquifer has the capacity to attenuate dissolved As via resorption. In order to better evaluate how long-term biodegradation coupled with Fe-reduction and As mobilization can redistribute As mass in contaminated aquifer, we quantified mass partitioning of Fe and As in the aquifer based on field observation data. Results show that Fe and As are spatially correlated in both groundwater and aquifer sediments. Mass partitioning calculations demonstrate that 99.9% of Fe and 99.5% of As are associated with aquifer sediment. The sediments act as both sources and sinks for As, depending on the redox conditions in the aquifer. Calculations reveal that at least 78% of the original As in sediment near the oil has been mobilized into groundwater over the 35-year lifespan of the plume. However, the calculations also show that only a small percentage of As (∼0.5%) remains in groundwater, due to resorption onto sediment. At the leading edge of the plume, where groundwater is suboxic, sediments sequester Fe and As, causing As to accumulate to concentrations 5.6 times greater than background concentrations. Current As sinks can serve as future sources of As as the plume evolves over time. The mass balance approach used in this study can be applied to As cycling in other aquifers where groundwater As results from biodegradation of an organic carbon point source coupled with Fe reduction.

  7. Diel behavior of iron and other heavy metals in a mountain stream with acidic to neutral pH: Fisher Creek, Montana, USA

    USGS Publications Warehouse

    Gammons, C.H.; Nimick, D.A.; Parker, S.R.; Cleasby, T.E.; McCleskey, R. Blaine

    2005-01-01

    Three simultaneous 24-h samplings at three sites over a downstream pH gradient were conducted to examine diel fluctuations in heavy metal concentrations in Fisher Creek, a small mountain stream draining abandoned mine lands in Montana. Average pH values at the upstream (F1), middle (F2), and downstream (F3) monitoring stations were 3.31, 5.46, and 6.80, respectively. The downstream increase in pH resulted in precipitation of hydrous ferric oxide (HFO) and hydrous aluminum oxide (HAO) on the streambed. At F1 and F2, Fe showed strong diel cycles in dissolved concentration and Fe(II)/Fe(III) ratio; these cycles were attributed to daytime photoreduction of Fe(III) to Fe(II), reoxidation of Fe(II) to Fe(III), and temperature-dependent hydrolysis and precipitation of HFO. At the near-neutral downstream station, no evidence of Fe(III) photoreduction was observed, and suspended particles of HFO dominated the total Fe load. HFO precipitation rates between F2 and F3 were highest in the afternoon, due in part to reoxidation of a midday pulse of Fe2+ formed by photoreduction in the upper, acidic portions of the stream. Dissolved concentrations of Fe(II) and Cu decreased tenfold and 2.4-fold, respectively, during the day at F3. These changes were attributed to sorption onto fresh HFO surfaces. Results of surface complexation modeling showed good agreement between observed and predicted Cu concentrations at F3, but only when adsorption enthalpies were added to the thermodynamic database to take into account diel temperature variations. The field and modeling results illustrate that the degree to which trace metals adsorb onto actively forming HFO is strongly temperature dependent. This study is an example of how diel Fe cycles caused by redox and hydrolysis reactions can induce a diel cycle in a trace metal of toxicological importance in downstream waters. Copyright ?? 2005 Elsevier Ltd.

  8. Human calprotectin affects the redox speciation of iron.

    PubMed

    Nakashige, Toshiki G; Nolan, Elizabeth M

    2017-08-16

    We report that the metal-sequestering human host-defense protein calprotectin (CP, S100A8/S100A9 oligomer) affects the redox speciation of iron (Fe) in bacterial growth media and buffered aqueous solution. Under aerobic conditions and in the absence of an exogenous reducing agent, CP-Ser (S100A8(C42S)/S100A9(C3S) oligomer) depletes Fe from three different bacterial growth media preparations over a 48 h timeframe (T = 30 °C). The presence of the reducing agent β-mercaptoethanol accelerates this process and allows CP-Ser to deplete Fe over a ≈1 h timeframe. Fe-depletion assays performed with metal-binding-site variants of CP-Ser show that the hexahistidine (His 6 ) site, which coordinates Fe(ii) with high affinity, is required for Fe depletion. An analysis of Fe redox speciation in buffer containing Fe(iii) citrate performed under aerobic conditions demonstrates that CP-Ser causes a time-dependent increase in the [Fe(ii)]/[Fe(iii)] ratio. Taken together, these results indicate that the hexahistidine site of CP stabilizes Fe(ii) and thereby shifts the redox equilibrium of Fe to the reduced ferrous state under aerobic conditions. We also report that the presence of bacterial metabolites affects the Fe-depleting activity of CP-Ser. Supplementation of bacterial growth media with an Fe(iii)-scavenging siderophore (enterobactin, staphyloferrin B, or desferrioxamine B) attenuates the Fe-depleting activity of CP-Ser. This result indicates that formation of Fe(iii)-siderophore complexes blocks CP-mediated reduction of Fe(iii) and hence the ability of CP to coordinate Fe(ii). In contrast, the presence of pyocyanin (PYO), a redox-cycling phenazine produced by Pseudomonas aeruginosa that reduces Fe(iii) to Fe(ii), accelerates Fe depletion by CP-Ser under aerobic conditions. These findings indicate that the presence of microbial metabolites that contribute to metal homeostasis at the host/pathogen interface can affect the metal-sequestering function of CP.

  9. Harvesting visible light with MoO3 nanorods modified by Fe(iii) nanoclusters for effective photocatalytic degradation of organic pollutants.

    PubMed

    Alam, U; Kumar, S; Bahnemann, D; Koch, J; Tegenkamp, C; Muneer, M

    2018-02-07

    The photocatalytic performance of MoO 3 is limited due to its weak visible light absorption ability and quick recombination of charge carriers. In the present work, we report the facile synthesis of Fe(iii)-grafted MoO 3 nanorods using a hydrothermal method followed by an impregnation technique with the aim of enhancing the light harvesting ability and photocatalytic efficiency of MoO 3 . The prepared samples were characterized through the standard analytical techniques of XRD, SEM-EDS, TEM, XPS, UV-Vis-DRS, FT-IR, TG-DTA and PL spectrophotometry. XPS and TEM analyses reveal that Fe(iii) ions are successfully grafted onto the surface of the MoO 3 nanorod with intimate interfacial contact. The photocatalytic performances of the prepared samples were investigated by studying the degradation of methylene blue (MB), rhodamine B (RhB) and 4-nitrophenol (4-NP) under visible light irradiation. The surface-modified MoO 3 with Fe(iii) ions showed excellent photocatalytic activity towards the degradation of the above-mentioned pollutants, where Fe(iii) ions act as effective cocatalytic sites to produce hydroxyl radicals through multi-electron reduction of oxygen molecules. The improved photocatalytic activity could be ascribed to the effective separation of charge carriers and efficient production of hydroxyl radicals via the rapid capture of electrons by Fe(iii) through a well-known photoinduced interfacial charge transfer mechanism. Based on scavenger analysis study, a mechanism for the enhanced photocatalytic activity has been discussed and proposed. The concept of surface grafting onto large bandgap semiconductors with ubiquitous elements opens up a new avenue for the development of visible-light-responsive photocatalysts with excellent photocatalytic activity.

  10. Anaerobic humus and Fe(III) reduction and electron transport pathway by a novel humus-reducing bacterium, Thauera humireducens SgZ-1.

    PubMed

    Ma, Chen; Yu, Zhen; Lu, Qin; Zhuang, Li; Zhou, Shun-Gui

    2015-04-01

    In this study, an anaerobic batch experiment was conducted to investigate the humus- and Fe(III)-reducing ability of a novel humus-reducing bacterium, Thauera humireducens SgZ-1. Inhibition tests were also performed to explore the electron transport pathways with various electron acceptors. The results indicate that in anaerobic conditions, strain SgZ-1 possesses the ability to reduce a humus analog, humic acids, soluble Fe(III), and Fe(III) oxides. Acetate, propionate, lactate, and pyruvate were suitable electron donors for humus and Fe(III) reduction by strain SgZ-1, while fermentable sugars (glucose and sucrose) were not. UV-visible spectra obtained from intact cells of strain SgZ-1 showed absorption peaks at 420, 522, and 553 nm, characteristic of c-type cytochromes (cyt c). Dithionite-reduced cyt c was reoxidized by Fe-EDTA and HFO (hydrous ferric oxide), which suggests that cyt c within intact cells of strain SgZ-1 has the ability to donate electrons to extracellular Fe(III) species. Inhibition tests revealed that dehydrogenases, quinones, and cytochromes b/c (cyt b/c) were involved in reduction of AQS (9, 10-anthraquinone-2-sulfonic acid, humus analog) and oxygen. In contrast, only NADH dehydrogenase was linked to electron transport to HFO, while dehydrogenases and cyt b/c were found to participate in the reduction of Fe-EDTA. Thus, various different electron transport pathways are employed by strain SgZ-1 for different electron acceptors. The results from this study help in understanding the electron transport processes and environmental responses of the genus Thauera.

  11. Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.

    1994-01-01

    Sulfate reducers and related organisms which had previously been found to reduce Fe(III) with H2 or organic electron donors oxidized S0 to sulfate when Mn(IV) was provided as an electron acceptor. Organisms catalyzing this reaction in washed cell suspensions included Desulfovibrio desulfuricans, Desulfomicrobium baculatum. Desulfobacterium autotrophicum, Desulfuromonas acetoxidans, and Geobacter metallireducens. These organisms produced little or no sulfate from S0 with Fe(III) as a potential electron acceptor or in the absence of an electron acceptor. In detailed studies with Desulfovibrio desulfuricans, the stoichiometry of sulfate and Mn(II) production was consistent with the reaction S0 + 3 MnO2 + 4H+ ???SO42- + 3Mn(II) + 2H2O. None of the organisms evaluated could be grown with S0 as the sole electron donor and Mn(IV) as the electron acceptor. In contrast to the other sulfate reducers evaluated, Desulfobulbus propionicus produced sulfate from S0 in the absence of an electron acceptor and Fe(III) oxide stimulated sulfate production. Sulfide also accumulated in the absence of Mn(IV) or Fe(III). The stoichiometry of sulfate and sulfide production indicated that Desulfobulbus propionicus disproportionates S0 as follows: 4S0 + 4H2O???SO42- + 3HS- + 5 H+. Growth of Desulfobulbus propionicus with S0 as the electron donor and Fe(III) as a sulfide sink and/or electron acceptor was very slow. The S0 oxidation coupled to Mn(IV) reduction described here provides a potential explanation for the Mn(IV)-dependent sulfate production that previous studies have observed in anoxic marine sediments. Desulfobulbus propionicus is the first example of a pure culture known to disproportionate S0.

  12. Chemically-modified activated carbon with ethylenediamine for selective solid-phase extraction and preconcentration of metal ions.

    PubMed

    Li, Zhenhua; Chang, Xijun; Zou, Xiaojun; Zhu, Xiangbing; Nie, Rong; Hu, Zheng; Li, Ruijun

    2009-01-26

    A new method that utilizes ethylenediamine-modified activated carbon (AC-EDA) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES). The new sorbent was prepared by oxidative surface modification. Experimental conditions for effective adsorption of trace levels of Cr(III), Fe(III), Hg(II) and Pb(II) were optimized with respect to different experimental parameters using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4.0. Complete elution of absorbed metal ions from the sorbent surface was carried out using 3.0 mL of 2% (%w/w) thiourea and 0.5 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.4, 28.9, 60.5 and 49.9 mg g(-1) for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The time for 94% adsorption of target metal ions was less than 2 min. The detection limits of the method was found to be 0.28, 0.22, 0.09 and 0.17 ng mL(-1) for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The precision (R.S.D.) of the method was lower 4.0% (n=8). The prepared sorbent as solid-phase extractant was successfully applied for the preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) in natural and certified samples with satisfactory results.

  13. Measuring “Free” Iron Levels in Caenorhabditis Elegans Using Low-Temperature Fe(III) Electron Paramagnetic Resonance Spectroscopy

    PubMed Central

    Pate, Kira T.; Rangel, Natalie A.; Fraser, Brian; Clement, Matthew H. S.; Srinivasan, Chandra

    2007-01-01

    Oxidative stress, caused by free radicals within the body, has been associated with the process of aging and many human diseases. As free radicals, in particular superoxide, are difficult to measure, an alternative indirect method for measuring oxidative stress levels has been successfully used in E. coli and yeast. This method is based on a proposed connection between elevated superoxide levels and release of iron from solvent exposed [4Fe-4S] enzyme clusters, which eventually leads to an increase in hydroxyl radical production. In past studies using bacteria and yeast, a positive correlation was found between superoxide production or oxidative stress due to superoxide within the organism and EPR (electron paramagnetic resonance) detectable “free” iron levels. In the present study, we have developed a reliable and an efficient method for measuring “free” iron levels in C. elegans using low temperature Fe(III) EPR at g = 4.3. This method utilizes synchronized worm cultures grown on plates, which are homogenized and treated with desferrioxamine, an Fe(III) chelator, prior to packing the EPR tube. Homogenization was found not to alter “free” iron levels, while desferrioxamine treatment significantly raised these levels, indicating presence of both Fe(II) and Fe(III) in the “free” iron pool. The correlation between free radical levels and the observed “free” iron levels was examined by using heat stress and paraquat treatment. The intensity of the Fe(III) EPR signal and thus, the concentration of the “free” iron pool, varied with the treatments that altered radical levels without changing the total iron levels. This study provides the groundwork needed to uncover the correlation between oxidative stress, “free” iron levels, and longevity in C. elegans. PMID:17010298

  14. In situ expression of nifD in Geobacteraceae in subsurface sediments

    USGS Publications Warehouse

    Holmes, Dawn E.; Nevin, Kelly P.; Lovely, Derek R.

    2004-01-01

    In order to determine whether the metabolic state of Geobacteraceae involved in bioremediation of subsurface sediments might be inferred from levels of mRNA for key genes, in situ expression of nifD, a highly conserved gene involved in nitrogen fixation, was investigated. When Geobacter sulfurreducens was grown without a source of fixed nitrogen in chemostats with acetate provided as the limiting electron donor and Fe(III) as the electron acceptor, levels of nifD transcripts were 4 to 5 orders of magnitude higher than in chemostat cultures provided with ammonium. In contrast, the number of transcripts of recA and the 16S rRNA gene were slightly lower in the absence of ammonium. The addition of acetate to organic- and nitrogen-poor subsurface sediments stimulated the growth of Geobacteraceae and Fe(III) reduction, as well as the expression of nifD in Geobacteraceae. Levels of nifD transcripts in Geobacteraceae decreased more than 100-fold within 2 days after the addition of 100 μM ammonium, while levels of recA and total bacterial 16S rRNA in Geobacteraceae remained relatively constant. Ammonium amendments had no effect on rates of Fe(III) reduction in acetate-amended sediments or toluene degradation in petroleum-contaminated sediments, suggesting that other factors, such as the rate that Geobacteraceae could access Fe(III) oxides, limited Fe(III) reduction. These results demonstrate that it is possible to monitor one aspect of the in situ metabolic state of Geobacteraceae species in subsurface sediments via analysis of mRNA levels, which is the first step toward a more global analysis of in situ gene expression related to nutrient status and stress response during bioremediation by Geobacteraceae.

  15. Influence of dihydroxybenzenes on paracetamol and ciprofloxacin degradation and iron(III) reduction in Fenton processes.

    PubMed

    Costa E Silva, Beatriz; de Lima Perini, João Angelo; Nogueira, Raquel F Pupo

    2017-03-01

    The degradation of paracetamol (PCT) and ciprofloxacin (CIP) was compared in relation to the generation of dihydroxylated products, Fe(III) reduction and reaction rate in the presence of dihydroxybenzene (DHB) compounds, or under irradiation with free iron (Fe 3+ ) or citrate complex (Fecit) in Fenton or photo-Fenton process. The formation of hydroquinone (HQ) was observed only during PCT degradation in the dark, which increased drastically the rate of PCT degradation, since HQ formed was able to reduce Fe 3+ and contributed to PCT degradation efficiency. When HQ was initially added, PCT and CIP degradation rate in the dark was much higher in comparison to the absence of HQ, due to the higher and faster formation of Fe 2+ at the beginning of reaction. In the absence of HQ, no CIP degradation was observed; however, when HQ was added after 30 min, the degradation rate increased drastically. Ten PCT hydroxylated intermediates were identified in the absence of HQ, which could contribute for Fe(III) reduction and consequently to the degradation in a similar way as HQ. During CIP degradation, only one product of hydroxyl radical attack on benzene ring and substitution of the fluorine atom was identified when HQ was added to the reaction medium.

  16. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange

    NASA Astrophysics Data System (ADS)

    Fitzsimmons, Jessica N.; John, Seth G.; Marsay, Christopher M.; Hoffman, Colleen L.; Nicholas, Sarah L.; Toner, Brandy M.; German, Christopher R.; Sherrell, Robert M.

    2017-02-01

    Hydrothermally sourced dissolved metals have been recorded in all ocean basins. In the oceans' largest known hydrothermal plume, extending westwards across the Pacific from the Southern East Pacific Rise, dissolved iron and manganese were shown by the GEOTRACES program to be transported halfway across the Pacific. Here, we report that particulate iron and manganese in the same plume also exceed background concentrations, even 4,000 km from the vent source. Both dissolved and particulate iron deepen by more than 350 m relative to 3He--a non-reactive tracer of hydrothermal input--crossing isopycnals. Manganese shows no similar descent. Individual plume particle analyses indicate that particulate iron occurs within low-density organic matrices, consistent with its slow sinking rate of 5-10 m yr-1. Chemical speciation and isotopic composition analyses reveal that particulate iron consists of Fe(III) oxyhydroxides, whereas dissolved iron consists of nanoparticulate Fe(III) oxyhydroxides and an organically complexed iron phase. The descent of plume-dissolved iron is best explained by reversible exchange onto slowly sinking particles, probably mediated by organic compounds binding iron. We suggest that in ocean regimes with high particulate iron loadings, dissolved iron fluxes may depend on the balance between stabilization in the dissolved phase and the reversibility of exchange onto sinking particles.

  17. Solid-phase extraction of some heavy metal ions on a double-walled carbon nanotube disk and determination by flame atomic absorption spectrometry.

    PubMed

    Karatepe, Aslihan; Soylak, Mustafa; Elçi, Latif

    2011-01-01

    A new preconcentration method was developed for the determination of trace amounts of Cu(II), Fe(III), Pb(II), Ni(II), and Cd(II) on a double-walled carbon nanotube disk. 4-(2-Thiazolylazo) resorcinol was used as a complexing reagent. The effects of parameters, including pH of the solutions, amounts of complexing reagent, eluent type, sample volume, flow rates of solutions, and matrix ions were examined for quantitative recoveries of the studied analyte ions. The retained metal ions were eluted by 2 M HNO3. The LOD values for the analytes were in the range of 0.7-4.4 microg/mL. Natural water samples and standard reference materials were analyzed by the presented method.

  18. Multiconfiguration Pair-Density Functional Theory Predicts Spin-State Ordering in Iron Complexes with the Same Accuracy as Complete Active Space Second-Order Perturbation Theory at a Significantly Reduced Computational Cost.

    PubMed

    Wilbraham, Liam; Verma, Pragya; Truhlar, Donald G; Gagliardi, Laura; Ciofini, Ilaria

    2017-05-04

    The spin-state orderings in nine Fe(II) and Fe(III) complexes with ligands of diverse ligand-field strength were investigated with multiconfiguration pair-density functional theory (MC-PDFT). The performance of this method was compared to that of complete active space second-order perturbation theory (CASPT2) and Kohn-Sham density functional theory. We also investigated the dependence of CASPT2 and MC-PDFT results on the size of the active-space. MC-PDFT reproduces the CASPT2 spin-state ordering, the dependence on the ligand field strength, and the dependence on active space at a computational cost that is significantly reduced as compared to CASPT2.

  19. Synthesis of Schiff base 24-membered trivalent transition metal derivatives with their anti-inflammation and antimicrobial evaluation

    NASA Astrophysics Data System (ADS)

    Kumar, Gajendra; Devi, Shoma; Kumar, Dharmendra

    2016-03-01

    The paper presents the synthesis of macrocyclic complexes [{M(C52H36N12O4)X}X2] of Cr(III), Mn(III) and Fe(III) with Schiff base ligand (C52H36N12O4) obtained through the condensation of 1,4-dicarbonyl phenyl dihydrazide with 1,2-di(1H-indol-1-yl)ethane-1,2-dione. The newly formed Schiff base and its complexes have been characterized with the help of elemental analysis, condensation measurements, magnetic measurements and their structure configuration have been determined by various spectroscopic (electronic, IR, 1H NMR, 13C NMR, GCMS) techniques. The electronic spectra of the complexes indicate a five coordinate square pyramidal geometry of the center metal ion. These metal complexes and ligand were tested for their anti-inflammation and antimicrobial inhibiting potential and compared with standard drugs Phenyl butazone (anti-inflammation), Imipenem (antibacterial) and Miconazole (antifungal).

  20. Kinetics of the substitution of dehydroacetic acid in tris (dehydroacetato) Fe(III) complex by 8-hydroxyquinoline, di- and tetra-hydroxyquinone

    NASA Astrophysics Data System (ADS)

    Fouad, D. M.; Ismail, N. M.; El-Gahami, M. A.; Ibrahim, S. A.

    2007-06-01

    The ligand substitution reactions of dehydroacetic acid (Hdha) in [Fe(dha) 3] with second ligand such as 8-hydroxyquinoline (Hquin), 1,4-dihydroxyanthraquinone (H 2dhaq) and 1,4,5,8-tetra-hydroxyanthraquinone (H 4thaq) were investigated spectrophotometrically by in low polarity solvents like benzene, chloroform and dichloromethane. It is deduced that the substitution reaction takes place through one successive step. The reaction was performed at four different temperatures (5-25) °C, and it exhibits a first order dependence on the concentration of the starting complex. The observed rate constant depends on the concentration of both leaving and entering ligands. The evaluation of the kinetic data gives activation parameters which support an associative mechanism in the transition states and the higher rate of substitution of the dha in Fe(dha) 3 complex is due to entropy effect. The solid complexes were synthesized and characterized by elemental analysis, IR and UV-vis spectral techniques.

  1. Preliminary study on the photoproduction of hydroxyl radicals in aqueous solution with Aldrich humic acid, algae and Fe(III) under high-pressure mercury lamp irradiation.

    PubMed

    Liu, Xianli; Xu, Dong; Wu, Feng; Liao, Zhenhuan; Liu, Jiantong; Deng, Nansheng

    2004-03-01

    Under a high-pressure mercury lamp (HPML) and using an exposure time of 4 h, the photoproduction of hydroxyl radicals (*OH) could be induced in an aqueous solution containing humic acid (HA). Hydroxyl radicals were determined by high-performance liquid chromatography using benzene as a probe. The results showed that *OH photoproduction increased from 1.80 to 2.74 microM by increasing the HA concentration from 10 to 40 mg L(-1) at an exposure time of 4 h (pH 6.5). Hydroxyl radical photoproduction in aqueous solutions of HA containing algae was greater than that in the aqueous solutions of HA without algae. The photoproduction of *OH in the HA solution with Fe(III) was greater than that of the solution without Fe(III) at pH ranging from 4.0 to 8.0. The photoproduction of *OH in HA solution with algae with or without Fe(III) under a 250 W HPML was greater than that under a 125 W HPML. The photoproduction of *OH in irradiated samples was influenced by the pH. The results showed that HPML exposure for 4 h in the 4-8 pH range led to the highest *OH photoproduction at pH 4.0.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, Vijay Kumar; Department of Chemical Technology, North Maharashtra University Jalgaon-425001; Division of Polymer Science and Engineering, National Chemical Laboratory, Pune-411 008

    To achieve a high level of heavy metal adsorption, 1,1 Prime ,1 Double-Prime -(1,3,5-triazine-2,4,6-triyl)tris(3-(3-(triethoxysilyl)propyl)urea) (TTPU) was synthesized as a novel melamine precursor and incorporated on the silica surface of periodic mesoporous organosilica (PMO). The melamine modified PMOs (MPMOs) were synthesized under acidic conditions using TTPU, tetraethylorthosilicate (TEOS) and Pluronic P123 as a template and the modified PMOs were characterized using the relevant instrumental techniques. The characteristic materials were used as adsorbents for the adsorption of Fe(III) ions. Fe(III) adsorption studies revealed MPMO-7.5 to be a good absorbent with higher adsorption efficiency than other MPMOs. - Graphical Abstract: A new organosilicamore » precursor, TTPU, has been successfully synthesized and characterized to incorporate on the silica surface of periodic mesoporous organosilica (PMO). The melamine modified PMOs (MPMOs), in particular, the MPMO-7.5 was found to exhibit good adsorption efficiency for Fe(III). Highlights: Black-Right-Pointing-Pointer Synthesis of new melamine modified periodic mesoporous organosilicas (MPMOs). Black-Right-Pointing-Pointer A new organosilica precursor, TTPU, has been successfully synthesized for the MPMOs. Black-Right-Pointing-Pointer The MPMOs were characterized by the relevant instrumental techniques. Black-Right-Pointing-Pointer MPMO-7.5 exhibits higher adsorption efficiency for Fe(III) ions than other MPMOs.« less

  3. Adsorption of hydrogen gas and redox processes in clays.

    PubMed

    Didier, Mathilde; Leone, Laura; Greneche, Jean-Marc; Giffaut, Eric; Charlet, Laurent

    2012-03-20

    In order to assess the adsorption properties of hydrogen gas and reactivity of adsorbed hydrogen, we measured H(2)(g) adsorption on Na synthetic montmorillonite-type clays and Callovo-Oxfordian (COx) clayrock using gas chromatography. Synthetic montmorillonites with increasing structural Fe(III) substitution (0 wt %, 3.2 wt %, and 6.4 wt % Fe) were used. Fe in the synthetic montmorillonites is principally present as structural Fe(III) ions. We studied the concomitant reduction of structural Fe(III) in the clays using (57)Fe Mössbauer spectrometry. The COx, which mainly contains smectite/illite and calcite minerals, is also studied together with the pure clay fraction of this clayrock. Experiments were performed with dry clay samples which were reacted with hydrogen gas at 90 and 120 °C for 30 to 45 days at a hydrogen partial pressure close to 0.45 bar. Results indicate that up to 0.11 wt % of hydrogen is adsorbed on the clays at 90 °C under 0.45 bar of relative pressure. (57)Fe Mössbauer spectrometry shows that up to 6% of the total structural Fe(III) initially present in these synthetic clays is reduced upon adsorption of hydrogen gas. No reduction is observed with the COx sample in the present experimental conditions.

  4. Genome Scale Mutational Analysis of Geobacter sulfurreducens Reveals Distinct Molecular Mechanisms for Respiration and Sensing of Poised Electrodes versus Fe(III) Oxides.

    PubMed

    Chan, Chi Ho; Levar, Caleb E; Jiménez-Otero, Fernanda; Bond, Daniel R

    2017-10-01

    Geobacter sulfurreducens generates electrical current by coupling intracellular oxidation of organic acids to the reduction of proteins on the cell surface that are able to interface with electrodes. This ability is attributed to the bacterium's capacity to respire other extracellular electron acceptors that require contact, such as insoluble metal oxides. To directly investigate the genetic basis of electrode-based respiration, we constructed Geobacter sulfurreducens transposon-insertion sequencing (Tn-Seq) libraries for growth, with soluble fumarate or an electrode as the electron acceptor. Libraries with >33,000 unique insertions and an average of 9 insertions/kb allowed an assessment of each gene's fitness in a single experiment. Mutations in 1,214 different genomic features impaired growth with fumarate, and the significance of 270 genes unresolved by annotation due to the presence of one or more functional homologs was determined. Tn-Seq analysis of -0.1 V versus standard hydrogen electrode (SHE) electrode-grown cells identified mutations in a subset of genes encoding cytochromes, processing systems for proline-rich proteins, sensory networks, extracellular structures, polysaccharides, and metabolic enzymes that caused at least a 50% reduction in apparent growth rate. Scarless deletion mutants of select genes identified via Tn-Seq revealed a new putative porin-cytochrome conduit complex ( extABCD ) crucial for growth with electrodes, which was not required for Fe(III) oxide reduction. In addition, four mutants lacking components of a putative methyl-accepting chemotaxis-cyclic dinucleotide sensing network ( esnABCD ) were defective in electrode colonization but grew normally with Fe(III) oxides. These results suggest that G. sulfurreducens possesses distinct mechanisms for recognition, colonization, and reduction of electrodes compared to Fe(III) oxides. IMPORTANCE Since metal oxide electron acceptors are insoluble, one hypothesis is that cells sense and reduce metals using the same molecular mechanisms used to form biofilms on electrodes and produce electricity. However, by simultaneously comparing thousands of Geobacter sulfurreducens transposon mutants undergoing electrode-dependent respiration, we discovered new cytochromes and chemosensory proteins supporting growth with electrodes that are not required for metal respiration. This supports an emerging model where G. sulfurreducens recognizes surfaces and forms conductive biofilms using mechanisms distinct from those used for growth with metal oxides. These findings provide a possible explanation for studies that correlate electricity generation with syntrophic interspecies electron transfer by Geobacter and reveal many previously unrecognized targets for engineering this useful capability in other organisms. Copyright © 2017 Chan et al.

  5. New water soluble heterometallic complex showing unpredicted coordination modes of EDTA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudsainiyan, R.K., E-mail: mudsainiyanrk@gmail.com; Jassal, A.K.; Chawla, S.K., E-mail: sukhvinder.k.chawla@gmail.com

    2015-10-15

    A mesoporous 3D polymeric complex (I) having formula ([Zr(IV)O-μ{sup 3}-(EDTA)Fe(III)OH]·H{sub 2}O){sub n} has been crystallized and characterized by various techniques. Single-crystal X-ray diffraction analysis revealed that complex (I) crystallized in chiral monoclinic space group Cc (space group no. 9) with unexpected coordination modes of EDTA and mixture of two transition metal ions. In this complex, the coordination number of Zr(IV) ion is seven where four carboxylate oxygen atoms, two nitrogen atoms, one oxide atom are coordinating with Zr(IV). Fe(III) is four coordinated and its coordination environment is composed of three different carboxylic oxygen atoms from three different EDTA and onemore » oxygen atom of –OH group. The structure consists of 4-c and 16-c (2-nodal) net with new topology and point symbol for net is (3{sup 36}·4{sup 54}·5{sup 30})·(3{sup 6}). TGA study and XRPD pattern showed that the coordination polymer is quite stable even after losing water molecule and –OH ion. Quenching behavior in fluorescence of ligand is observed by complexation with transition metal ions is due to n–π⁎ transition. The SEM micrograph shows the morphology of complex (I) exhibits spherical shape with size ranging from 50 to 280 nm. The minimum N{sub 2} (S{sub BET}=8.7693 m{sup 2}/g) and a maximum amount of H{sub 2} (high surface area=1044.86 m{sup 2}/g (STP)) could be adsorbed at 77 K. From DLS study, zeta potential is calculated i.e. −7.94 shows the negative charges on the surface of complex. Hirshfeld surface analysis and fingerprint plots revealed influence of weak or non bonding interactions in crystal packing of complex. - Graphical abstract: The complex (I) crystallized with unexpected coordination modes of EDTA having 4-c, 16-c net with new topology and point symbol is (3{sup 36}·4{sup 54}·5{sup 30})·(3{sup 6}). TGA study and XRPD pattern proved its stability with high preference of H{sub 2} uptake by complex. - Highlights: • 3D complex having unexpected coordination modes of EDTA with Zr(IV) and Fe(III). • The structure consists of 4-c and 16-c (2-nodal) net with new topology. • Reasonable S{sub BET} (8.7693 m{sup 2}/g) but high H{sub 2} uptake (1044.86 m{sup 2}/g) due to limited pore size. • Quenching behavior due to n–π⁎ transition by complexation with transition metal ions. • From DLS study, zeta potential value is −7.94.« less

  6. Copper mercaptides as sulfur dioxide indicators

    DOEpatents

    Eller, Phillip G.; Kubas, Gregory J.

    1979-01-01

    Organophosphine copper(I) mercaptide complexes are useful as convenient and semiquantitative visual sulfur dioxide gas indicators. The air-stable complexes form 1:1 adducts in the presence of low concentrations of sulfur dioxide gas, with an associated color change from nearly colorless to yellow-orange. The mercaptides are made by mixing stoichiometric amounts of the appropriate copper(I) mercaptide and phosphine in an inert organic solvent.

  7. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication

    PubMed Central

    Wu, G. Albert; Prochnik, Simon; Jenkins, Jerry; Salse, Jerome; Hellsten, Uffe; Murat, Florent; Perrier, Xavier; Ruiz, Manuel; Scalabrin, Simone; Terol, Javier; Takita, Marco Aurélio; Labadie, Karine; Poulain, Julie; Couloux, Arnaud; Jabbari, Kamel; Cattonaro, Federica; Del Fabbro, Cristian; Pinosio, Sara; Zuccolo, Andrea; Chapman, Jarrod; Grimwood, Jane; Tadeo, Francisco R.; Estornell, Leandro H.; Muñoz-Sanz, Juan V.; Ibanez, Victoria; Herrero-Ortega, Amparo; Aleza, Pablo; Pérez-Pérez, Julián; Ramón, Daniel; Brunel, Dominique; Luro, François; Chen, Chunxian; Farmerie, William G.; Desany, Brian; Kodira, Chinnappa; Mohiuddin, Mohammed; Harkins, Tim; Fredrikson, Karin; Burns, Paul; Lomsadze, Alexandre; Borodovsky, Mark; Reforgiato, Giuseppe; Freitas-Astúa, Juliana; Quetier, Francis; Navarro, Luis; Roose, Mikeal; Wincker, Patrick; Schmutz, Jeremy; Morgante, Michele; Machado, Marcos Antonio; Talon, Manuel; Jaillon, Olivier; Ollitrault, Patrick; Gmitter, Frederick; Rokhsar, Daniel

    2014-01-01

    The domestication of citrus, is poorly understood. Cultivated types are selections from, or hybrids of, wild progenitor species, whose identities and contributions remain controversial. By comparative analysis of a collection of citrus genomes, including a high quality haploid reference, we show that cultivated types were derived from two progenitor species. Though cultivated pummelos represent selections from a single progenitor species, C. maxima, cultivated mandarins are introgressions of C. maxima into the ancestral mandarin species, C. reticulata. The most widely cultivated citrus, sweet orange, is the offspring of previously admixed individuals, but sour orange is an F1 hybrid of pure C. maxima and C. reticulata parents, implying that wild mandarins were part of the early breeding germplasm. A wild “mandarin” from China exhibited substantial divergence from C. reticulata, suggesting the possibility of other unrecognized wild citrus species. Understanding citrus phylogeny through genome analysis clarifies taxonomic relationships and enables sequence-directed genetic improvement. PMID:24908277

  8. Collective judicial management of mass toxic tort controversies: lessons and issues from the Agent Orange litigation.

    PubMed

    Novey, L B

    1988-01-01

    Viewing the Agent Orange litigation as a case study, this article explores the feasibility and desirability of strengthening the powers of the courts to manage toxic tort controversies en masse. The Agent Orange lawsuit, brought on behalf of potentially millions of Vietnam War veterans and family members, charged that herbicides used for military purposes during the war caused a wide range of health problems. This article first reviews the current national debate over how mass toxic tort controversies should be handled, including key legislative reform options, and describes how attention is increasingly focused on ways that the court system might better cope with mass toxic torts. The principal events of the Agent Orange litigation are then summarized, by which the litigation was consolidated into a massive class action, the class action was settled, and a streamlined plan for distributing the settlement fund was adopted. The article evaluates the outcome of the litigation, and discusses whether the solution there can and should be broadly applied to other mass toxic tort cases. This question depends, in part, on a series of complex legal and practical issues, but the author suggests that the question will also depend on what institutional role we expect the judiciary to play within society.

  9. Binding of 3O2 and 1O2 to dyes used in photodynamic therapy in gas phase and aqueous media

    NASA Astrophysics Data System (ADS)

    Kushwaha, P. S.; Mishra, P. C.

    Density functional theory (DFT) was employed at the B3LYP/6-31+G* level to study complexes of 1O2 and 3O2 with the dye molecules proflavine, methylene blue, and acridine orange, which are useful in photodynamic therapy. It was found that the most stable complex between 1O2 and proflavine are formed when 1O2 is located above the central ring, while the most stable complex between 1O2 and methylene blue is formed when 1O2 is located above the molecular plane, but not above any of the rings, near the sulfur atom. 1O2 can make a stable complex with acridine orange, as it is located above the outer ring of the dye. The binding energies of the complexes of 1O2 with all three dyes are enhanced considerably in going from gas phase to aqueous media. The complexes of 3O2 with the dyes will be unstable in all cases, while those of 1O2 with the same will be quite stable and will not be dissociated due to thermal fluctuations at room temperature. In the complexes of 1O2 and 3O2 with the dyes, charge transfer occurs from the dyes to the O2 moiety, the amount of charge transfer being much more to 1O2 than to 3O2 in each case.

  10. Photochemistry of iron citrates initiated by UV-VIS light

    NASA Astrophysics Data System (ADS)

    Corral Arroyo, Pablo; Dou, Jing; Alpert, Peter; Krieger, Ulrich; Ammann, Markus

    2017-04-01

    Aerosol aging refers to the multitude of physical and chemical transformation atmospheric particles undergo, which play an important role in the impact of aerosols on climate, air quality and health. Aging processes may be started by chromophores, which act as photocatalysts that induce the oxidation of non-absorbing molecules [1]. Iron (Fe(III)) carboxylate complexes absorb light below about 500 nm, which is followed by ligand to metal charge transfer (LMCT) resulting in the reduction of iron to Fe(II) and oxidation of the carboxylate ligands, a process that represents an important sink of organic acids in the troposphere [2]. Our goal is to investigate how these photochemical processes contribute to the change of chemical and physical properties of the aerosol particles. To achieve this scope, we carry out coated wall flow tube experiments, exposing films with iron citrate to UV light, which will give information about the radical and LVOC production (connecting the CWFT to a Chemiluminescent Detector or PTR-TOF-MS respectively). From extracting and analyzing the films after irradiation with UV light, we obtain a profile of low-volatility products evolving from the photochemistry of iron citrates. By Scanning Transmission X-Ray Microspectroscopy (STXM) we analyze changes in the C K-edge and Fe L-edge in particles loaded with iron citrate upon exposure to light and follow their chemical and structural evolution upon photochemical oxidation in situ to investigate the degradation kinetics under varying environmental conditions. [1] George G., Ammann M., D'Anna B., Donaldson D. J., Nizkorodov S. A., Heterogeneous photochemistry in the Atmosphere, Chem. Rev., 2015, 115 (10), pp 4218-4258 [2] Weller, C., Horn, S., and Herrmann, H.: Photolysis of Fe(III) carboxylate complexes: Fe(II) quantum yields and reaction mechanisms, Photochemistry and Photobiology A: Chemistry, 268, 24-36, 2013.

  11. Mössbauer Study and Modeling of Iron Import and Trafficking in Human Jurkat Cells

    PubMed Central

    Jhurry, Nema D.; Chakrabarti, Mrinmoy; McCormick, Sean P.; Gohil, Vishal M.; Lindahl, Paul A.

    2014-01-01

    The Fe content of Jurkat cells grown on transferrin-bound iron (TBI) and FeIII citrate (FC) was characterized using Mössbauer, EPR, and UV-vis spectroscopies, electron microscopy, and ICP-MS. Isolated mitochondria were similarly characterized. Fe-limited cells contained ∼ 100 μM of essential Fe, mainly as mitochondrial Fe and non-mitochondrial nonheme high-spin (NHHS) FeII. Fe-replete cells also contained ferritin-bound Fe and FeIII oxyhydroxide nanoparticles. Only 400 ± 100 Fe ions were loaded per ferritin complex, regardless of the growth medium Fe concentration. Ferritin regulation thus appears more complex than is commonly assumed. The magnetic/structural properties of Jurkat nanoparticles differed from those in yeast mitochondria. They were smaller and may be located in the cytosol. The extent of nanoparticle formation scaled nonlinearly with the concentration of Fe in the medium. Nanoparticle formation was not strongly correlated with ROS damage. Cells could utilize nanoparticle Fe, converting such aggregates into essential Fe forms. Cells grown on galactose rather than glucose respired faster, grew slower, exhibited more ROS damage and generally contained more nanoparticles. Cells grown with TBI rather than FC contained lower Fe concentrations, more ferritin and fewer nanoparticles. Cells in which transferrin receptor expression was increased contained more ferritin Fe. Frataxin-deficient cells contained more nanoparticles than comparable WT cells. Data were analyzed by a chemically-based mathematical model. Although simple, it captured essential features of Fe import, trafficking and regulation. TBI import was highly regulated but FC import was not. Nanoparticle formation was not regulated but the rate was third-order in cytosolic Fe. PMID:24180611

  12. Complex layering of the Orange Mountain Basalt: New Jersey, USA

    NASA Astrophysics Data System (ADS)

    Puffer, John H.; Block, Karin A.; Steiner, Jeffrey C.; Laskowich, Chris

    2018-06-01

    The Orange Mountain Basalt of New Jersey is a Mesozoic formation consisting of three units: a single lower inflated sheet lobe about 70 m thick (OMB1), a middle pillow basalt about 10 to 20 m thick (OMB2), and an upper compound pahoehoe flow about 20 to 40 m thick (OMB3). The Orange Mountain Basalt is part of the Central Atlantic Magmatic Province. Quarry and road-cut exposures of OMB1 near Paterson, New Jersey, display some unusual layering that is the focus of this study. OMB1 exposures displays the typical upper crust, core, and basal crust layers of sheet lobes but throughout the Patterson area also display distinct light gray layers of microvesicular basalt mineralized with albite directly over the basal crust and under the upper crust. The lower microvesicular layer is associated with mega-vesicular diapirs. We propose that the upper and lower microvesicular layers were composed of viscous crust that was suddenly quenched before it could devolatilize immediately before the solidification of the core. During initial cooling, the bottom of the basal layer was mineralized with high concentrations of calcite and albite during a high-temperature hydrothermal event. Subsequent albitization, as well as zeolite, prehnite, and calcite precipitation events, occurred during burial and circulation of basin brine heated by recurring Palisades magmatism below the Orange Mountain Basalt. Some of the events experienced by the Orange Mountain Basalt are unusual and place constraints on the fluid dynamics of thick flood basalt flows in general. The late penetration of vesicular diapirs through the entire thickness of the flow interior constrains its viscosity and solidification history.

  13. Influence of Humic Acid Complexation with Metal Ions on Extracellular Electron Transfer Activity.

    PubMed

    Zhou, Shungui; Chen, Shanshan; Yuan, Yong; Lu, Qin

    2015-11-23

    Humic acids (HAs) can act as electron shuttles and mediate biogeochemical cycles, thereby influencing the transformation of nutrients and environmental pollutants. HAs commonly complex with metals in the environment, but few studies have focused on how these metals affect the roles of HAs in extracellular electron transfer (EET). In this study, HA-metal (HA-M) complexes (HA-Fe, HA-Cu, and HA-Al) were prepared and characterized. The electron shuttle capacities of HA-M complexes were experimentally evaluated through microbial Fe(III) reduction, biocurrent generation, and microbial azoreduction. The results show that the electron shuttle capacities of HAs were enhanced after complexation with Fe but were weakened when using Cu or Al. Density functional theory calculations were performed to explore the structural geometry of the HA-M complexes and revealed the best binding sites of the HAs to metals and the varied charge transfer rate constants (k). The EET activity of the HA-M complexes were in the order HA-Fe > HA-Cu > HA-Al. These findings have important implications for biogeochemical redox processes given the ubiquitous nature of both HAs and various metals in the environment.

  14. The life cycle of iron Fe(III) oxide: impact of fungi and bacteria

    NASA Astrophysics Data System (ADS)

    Bonneville, Steeve

    2014-05-01

    Iron oxides are ubiquitous reactive constituents of soils, sediments and aquifers. They exhibit vast surface areas which bind a large array of trace metals, nutrients and organic molecules hence controlling their mobility/reactivity in the subsurface. In this context, understanding the "life cycle" of iron oxide in soils is paramount to many biogeochemical processes. Soils environments are notorious for their extreme heterogeneity and variability of chemical, physical conditions and biological agents at play. Here, we present studies investigating the role of two biological agents driving iron oxide dynamics in soils, root-associated fungi (mycorrhiza) and bacteria. Mycorrhiza filaments (hypha) grow preferentially around, and on the surface of nutrient-rich minerals, making mineral-fungi contact zones, hot-spots of chemical alteration in soils. However, because of the microscopic nature of hyphae (only ~ 5 µm wide for up to 1 mm long) and their tendency to strongly adhere to mineral surface, in situ observations of this interfacial micro-environment are scarce. In a microcosm, ectomycorrhiza (Paxillus involutus) was grown symbiotically with a pine tree (Pinus sylvestris) in the presence of freshly-cleaved biotite under humid, yet undersaturated, conditions typical of soils. Using spatially-resolved ion milling technique (FIB), transmission electron microscopy and spectroscopy (TEM/STEM-EDS), synchrotron based X-ray microscopy (STXM), we were able to quantify the speciation of Fe at the biotite-hypha interface. The results shows that substantial oxidation of biotite structural-Fe(II) into Fe(III) subdomains occurs at the contact zone between mycorrhiza and biotite. Once formed, iron(III) oxides can reductively dissolve under suboxic conditions via several abiotic and microbial pathways. In particular, they serve as terminal electron acceptors for the oxidation of organic matter by iron reducing bacteria. We aimed here to understand the role of Fe(III) mineral properties, in particular the influence of solubility, in the kinetics of microbial iron reduction. We used the facultative anaerobic gram-positive bacterium Shewanella putrefaciens as model iron reducing bacterium, with several ferrihydrite, hematite, goethite or lepidocrocite as electron acceptor, and lactate as electron donor. Maximum microbial Fe(III) reduction rates and solubility of Fe(III) phases were found to positively correlated in a Linear Free Energy Relationship suggesting a rate limitation by the electron transfer between iron reductases and a Fe(III) center, or by the subsequent desorption of Fe2+ from the iron oxide mineral surface.

  15. Application Of Bacterial Iron Reduction For The Removal Of Iron Impurities From Industrial Silica Sand And Kaolin

    NASA Astrophysics Data System (ADS)

    Zegeye, A.; Yahaya, S.; Fialips, C. I.; White, M.; Manning, D. A.; Gray, N.

    2008-12-01

    Biogeochemical evidence exists to support the potential importance of crystalline or amorphous Fe minerals as electron acceptor for Fe reducing bacteria in soils and subsurface sediments. This microbial metabolic activity can be exploited as alternative method in different industrial applications. For instance, the removal of ferric iron impurities from minerals for the glass and paper industries currently rely on physical and chemical treatments having substantial economical and environmental disadvantages. The ability to remove iron by other means, such as bacterial iron reduction, may reduce costs, allow lower grade material to be mined, and improve the efficiency of mineral processing. Kaolin clay and silica sand are used in a wide range of industrial applications, particularly in paper, ceramics and glass manufacturing. Depending on the geological conditions of deposition, they are often associated with iron (hydr)oxides that are either adsorbed to the mineral surfaces or admixed as separate iron bearing minerals. In this study, we have examined the Fe(III) removal efficiency from kaolin and silica sand by a series of iron- reducing bacteria from the Shewanella species (S. alga BrY, S. oneidensis MR-1, S. putrefaciens CN32 and S. putrefaciens ATCC 8071) in the presence of anthraquinone 2,6 disulfonate (AQDS). We have also investigated the effectiveness of a natural organic matter, extracted with the silica sand, as a substitute to AQDS for enhancing Fe(III) reduction kinetics. The microbial reduction of Fe(III) was achieved using batch cultures under non-growth conditions. The rate and the extent of Fe(III) reduction was monitored as a function of the initial Fe(III) content, Shewanella species and temperature. The bacterially- treated minerals were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD) to observe any textural and mineralogical transformation. The whiteness and ISO brightness of the kaolin was also measured by spectrophotometry for quality testing. All Shewanella species were able to couple the oxidation of lactate to the reduction of Fe(III) associated with the kaolins and silica sands. However, there are differences among species with respect to the rate and extent of iron leaching. S. putrefaciens ATCC 8071 is the most effective, with a 10% increase in kaolin whiteness and 4% increase in ISO brightness in less than 5 days.

  16. Establishing Dual Electrogenerated Chemiluminescence and Multi-Color Electrochromism in Functional Ionic Transition Metal Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puodziukynaite, Egle; Oberst, Justin L.; Dyer, Aubrey L.

    A combination of electrochromism and electroluminescence in functional materials could lead to single-layer dual electrochromic/electroluminescent (EC/EL) display devices, capable of simultaneous operation in emissive and reflective modes. Whereas such next generation displays could provide optimal visibility in any ambient lighting situation, materials available that exhibit such characteristics in the active layer are limited due to the required intrinsic multifunctionality (i.e., redox activity, electroluminescence, electrochromism, and ion conductivity) and to date can only be achieved via the rational design of ionic transition-metal complexes. Reported herein is the synthesis and characterization of a new family of acrylate-containing ruthenium (tris)bipyridine-based coordination complexes withmore » multifunctional characteristics. Potential use of the presented compounds in EC/EL devices is established, as they are applied as cross-linked electrochromic films and electrochemiluminescent layers in light-emitting electrochemical cell devices. Electrochromic switching of the polymeric networks between yellow, orange, green, brown and transmissive states is demonstrated, and electrochemiluminescent devices based on the complexes synthesized show red-orange to deep red emission with λ{sub max} ranging from 680 to 722 nm and luminance up to 135 cd/m{sup 2}. Additionally, a dual EC/EL device prototype is presented where light emission and multicolor electrochromism occur from the same pixel comprised of a single active layer, demonstrating a true combination of these properties in ionic transition-metal complexes.« less

  17. Establishing Dual Electrogenerated Chemiluminescence and Multicolor Electrochromism in Functional Ionic Transition-Metal Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puodziukynaite, Egle; Oberst, Justin L.; Dyer, Aubrey L.

    A combination of electrochromism and electroluminescence in functional materials could lead to single-layer dual electrochromic/electroluminescent (EC/EL) display devices, capable of simultaneous operation in emissive and reflective modes. Whereas such next generation displays could provide optimal visibility in any ambient lighting situation, materials available that exhibit such characteristics in the active layer are limited due to the required intrinsic multifunctionality (i.e., redox activity, electroluminescence, electrochromism, and ion conductivity) and to date can only be achieved via the rational design of ionic transition-metal complexes. Reported herein is the synthesis and characterization of a new family of acrylate-containing ruthenium (tris)bipyridine-based coordination complexes withmore » multifunctional characteristics. Potential use of the presented compounds in EC/EL devices is established, as they are applied as cross-linked electrochromic films and electrochemiluminescent layers in light-emitting electrochemical cell devices. Electrochromic switching of the polymeric networks between yellow, orange, green, brown and transmissive states is demonstrated, and electrochemiluminescent devices based on the complexes synthesized show red-orange to deep red emission with λmax ranging from 680 to 722 nm and luminance up to 135 cd/m². Additionally, a dual EC/EL device prototype is presented where light emission and multicolor electrochromism occur from the same pixel comprised of a single active layer, demonstrating a true combination of these properties in ionic transition-metal complexes.« less

  18. Synthesis and photoluminescence properties of europium(III) complexes sensitized with β-diketonato and N, N-donors ancillary ligands

    NASA Astrophysics Data System (ADS)

    Bala, Manju; Kumar, Satish; Devi, Rekha; Taxak, V. B.; Boora, Priti; Khatkar, S. P.

    2018-05-01

    Synthesis of three new europium(III) complexes with 1,3-[bis(4-methoxyphenyl)]propane-1,3-dionato (HBMPD) ligand and ancillary ligands such as 2,2‧-biquinoline (biq) or neocuproine (neo) has been reported in this report. The synthesized complexes were characterized by IR (infrared), 1H and 13C NMR (nuclear magnetic resonance) spectroscopy, CHN (carbon, hydrogen and nitrogen) elemental analysis, XRD (X-ray diffraction), TGA (thermogravimetric analysis) and photoluminescence (PL) spectroscopy. The emission spectra of europium(III) complexes displayed both the low intensity 5D1-3 → 7F0-3 transitions in 410-560 nm blue-green region and high intensity characteristic 5D0 → 7F0-3 transitions in 575-640 nm orange-red region correspond to the emission of ancillary ligands and europium ion respectively, which can lead to white luminescence due to integration of blue, green and red color emissions. The photoluminescence investigations indicate that the absorbed energy of the HBMPD ligand transferred to the central europium(III) ion in an efficient manner, which clearly explained by antenna effect. The excellent results of thermal behavior and photophysical properties like luminescence spectra, CIE (Commission Internationale Eclairage) chromaticity coordinates, luminescence decay curves and high quantum efficiency of the complexes make them a promising component of the white light-emitting diodes in display devices.

  19. Nanoparticulate iron(III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans

    PubMed Central

    Pereira, Dora I.A.; Bruggraber, Sylvaine F.A.; Faria, Nuno; Poots, Lynsey K.; Tagmount, Mani A.; Aslam, Mohamad F.; Frazer, David M.; Vulpe, Chris D.; Anderson, Gregory J.; Powell, Jonathan J.

    2014-01-01

    Iron deficiency is the most common nutritional disorder worldwide with substantial impact on health and economy. Current treatments predominantly rely on soluble iron which adversely affects the gastrointestinal tract. We have developed organic acid-modified Fe(III) oxo-hydroxide nanomaterials, here termed nano Fe(III), as alternative safe iron delivery agents. Nano Fe(III) absorption in humans correlated with serum iron increase (P < 0.0001) and direct in vitro cellular uptake (P = 0.001), but not with gastric solubility. The most promising preparation (iron hydroxide adipate tartrate: IHAT) showed ~80% relative bioavailability to Fe(II) sulfate in humans and, in a rodent model, IHAT was equivalent to Fe(II) sulfate at repleting haemoglobin. Furthermore, IHAT did not accumulate in the intestinal mucosa and, unlike Fe(II) sulfate, promoted a beneficial microbiota. In cellular models, IHAT was 14-fold less toxic than Fe(II) sulfate/ascorbate. Nano Fe(III) manifests minimal acute intestinal toxicity in cellular and murine models and shows efficacy at treating iron deficiency anaemia. From the Clinical Editor This paper reports the development of novel nano-Fe(III) formulations, with the goal of achieving a magnitude less intestinal toxicity and excellent bioavailability in the treatment of iron deficiency anemia. Out of the tested preparations, iron hydroxide adipate tartrate met the above criteria, and may become an important tool in addressing this common condition. PMID:24983890

  20. Naphthalene and benzene degradation under Fe(III)-reducing conditions in petroleum-contaminated aquifers

    USGS Publications Warehouse

    Anderson, Robert T.; Lovely, Derek R.

    1999-01-01

    Naphthalene was oxidized anaerobically to CO2 in sediments collected from a petroleum-contaminated aquifer in Bemidji, Minnesota in which Fe(III) reduction was the terminal electron-accepting process. Naphthalene was not oxidized in sediments from the methanogenic zone at Bemidji or in sediments from the Fe(III)-reducing zone of other petroleum-contaminated aquifers studied. In a profile across the Fe(III)-reducing zone of the Bemidji aquifer, rates of naphthalene oxidation were fastest in sediments with the highest proportion of Fe(III), which was also the zone of the most rapid degradation of benzene, toluene, and acetate. The comparative studies attempted to elucidate factors that might account for the fact that unsubstituted aromatic hydrocarbons such as benzene and naphthalene were degraded under Fe(III)-reducing conditions at Bemidji, but not at the other aquifers examined. These studies indicated that the ability of Fe(III)-reducing microorganisms to degrade benzene and naphthalene at the Bemidji site cannot be attributed to groundwater components that make Fe(III) more available for reduction or other potential factors that were evaluated. However, unlike the other aquifers evaluated, uncontaminated sediments at the Bemidji site could be adapted for anaerobic benzene degradation merely with the addition of benzene. These findings indicate that Bemidji sediments naturally contain Fe(III) reducers capable of degradation of unsubstituted aromatic hydrocarbons.

  1. One-step assembly of coordination complexes for versatile film and particle engineering.

    PubMed

    Ejima, Hirotaka; Richardson, Joseph J; Liang, Kang; Best, James P; van Koeverden, Martin P; Such, Georgina K; Cui, Jiwei; Caruso, Frank

    2013-07-12

    The development of facile and versatile strategies for thin-film and particle engineering is of immense scientific interest. However, few methods can conformally coat substrates of different composition, size, shape, and structure. We report the one-step coating of various interfaces using coordination complexes of natural polyphenols and Fe(III) ions. Film formation is initiated by the adsorption of the polyphenol and directed by pH-dependent, multivalent coordination bonding. Aqueous deposition is performed on a range of planar as well as inorganic, organic, and biological particle templates, demonstrating an extremely rapid technique for producing structurally diverse, thin films and capsules that can disassemble. The ease, low cost, and scalability of the assembly process, combined with pH responsiveness and negligible cytotoxicity, makes these films potential candidates for biomedical and environmental applications.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmieri, M.D.; Fritz, J.S.

    Metal ions are determined by adding N-methylfurohydroxamic acid to an aqueous sample and then separating the metal chelates by direct injection onto a liquid chromatographic column. Separations on a C/sub 8/ silica column and a polystyrene-divinylbenzene column are compared, with better separations seen on the polymeric column. The complexes formed at low pH values are cationic and are separated by an ion pairing mechanism. Retention times and selectivity of the metal complexes can be varied by changing the pH. Several metal ions can be separated and quantified; separation conditions, linear calibration curve ranges, and detection limits are presented for Zr(IV),more » Hf(IV), Fe(III), Nb(V), Al(III), and Sb(III). Interferences due to the presence of other ions in solution are investigated. Finally, an antiperspirant sample is analyzed for zirconium by high-performance liquid chromatography.« less

  3. Unsaturated macrocyclic dihydroxamic acid siderophores produced by Shewanella putrefaciens using precursor-directed biosynthesis.

    PubMed

    Soe, Cho Z; Codd, Rachel

    2014-04-18

    To acquire iron essential for growth, the bacterium Shewanella putrefaciens produces the macrocyclic dihydroxamic acid putrebactin (pbH2; [M + H(+)](+), m/zcalc 373.2) as its native siderophore. The assembly of pbH2 requires endogenous 1,4-diaminobutane (DB), which is produced from the ornithine decarboxylase (ODC)-catalyzed decarboxylation of l-ornithine. In this work, levels of endogenous DB were attenuated in S. putrefaciens cultures by augmenting the medium with the ODC inhibitor 1,4-diamino-2-butanone (DBO). The presence in the medium of DBO together with alternative exogenous non-native diamine substrates, (15)N2-1,4-diaminobutane ((15)N2-DB) or 1,4-diamino-2(E)-butene (E-DBE), resulted in the respective biosynthesis of (15)N-labeled pbH2 ((15)N4-pbH2; [M + H(+)](+), m/zcalc 377.2, m/zobs 377.2) or the unsaturated pbH2 variant, named here: E,E-putrebactene (E,E-pbeH2; [M + H(+)](+), m/zcalc 369.2, m/zobs 369.2). In the latter system, remaining endogenous DB resulted in the parallel biosynthesis of the monounsaturated DB-E-DBE hybrid, E-putrebactene (E-pbxH2; [M + H(+)](+), m/zcalc 371.2, m/zobs 371.2). These are the first identified unsaturated macrocyclic dihydroxamic acid siderophores. LC-MS measurements showed 1:1 complexes formed between Fe(III) and pbH2 ([Fe(pb)](+); [M](+), m/zcalc 426.1, m/zobs 426.2), (15)N4-pbH2 ([Fe((15)N4-pb)](+); [M](+), m/zcalc 430.1, m/zobs 430.1), E,E-pbeH2 ([Fe(E,E-pbe)](+); [M](+), m/zcalc 422.1, m/zobs 422.0), or E-pbxH2 ([Fe(E-pbx)](+); [M](+), m/zcalc 424.1, m/zobs 424.2). The order of the gain in siderophore-mediated Fe(III) solubility, as defined by the difference in retention time between the free ligand and the Fe(III)-loaded complex, was pbH2 (ΔtR = 8.77 min) > E-pbxH2 (ΔtR = 6.95 min) > E,E-pbeH2 (ΔtR = 6.16 min), which suggests one possible reason why nature has selected for saturated rather than unsaturated siderophores as Fe(III) solubilization agents. The potential to conduct multiple types of ex situ chemical conversions across the double bond(s) of the unsaturated macrocycles provides a new route to increased molecular diversity in this class of siderophore.

  4. Rapid Photodegradation of Methyl Orange (MO) Assisted with Cu(II) and Tartaric Acid

    PubMed Central

    Guo, Jing; Chen, Xue; Shi, Ying; Lan, Yeqing; Qin, Chao

    2015-01-01

    Cu(II) and organic carboxylic acids, existing extensively in soil and aquatic environments, can form complexes that may play an important role in the photodegradation of organic contaminants. In this paper, the catalytic role of Cu(II) in the removal of methyl orange (MO) in the presence of tartaric acid with light was investigated through batch experiments. The results demonstrate that the introduction of Cu(II) could markedly enhance the photodegradation of MO. In addition, high initial concentrations of Cu(II) and tartaric acid benefited the decomposition of MO. The most rapid removal of MO assisted by Cu(II) was achieved at pH 3. The formation of Cu(II)-tartaric acid complexes was assumed to be the key factor, generating hydroxyl radicals (•OH) and other oxidizing free radicals under irradiation through a ligand-to-metal charge-transfer pathway that was responsible for the efficient degradation of MO. Some intermediates in the reaction system were also detected to support this reaction mechanism. PMID:26241043

  5. General magnetic transition dipole moments for electron paramagnetic resonance.

    PubMed

    Nehrkorn, Joscha; Schnegg, Alexander; Holldack, Karsten; Stoll, Stefan

    2015-01-09

    We present general expressions for the magnetic transition rates in electron paramagnetic resonance (EPR) experiments of anisotropic spin systems in the solid state. The expressions apply to general spin centers and arbitrary excitation geometry (Voigt, Faraday, and intermediate). They work for linear and circular polarized as well as unpolarized excitation, and for crystals and powders. The expressions are based on the concept of the (complex) magnetic transition dipole moment vector. Using the new theory, we determine the parities of ground and excited spin states of high-spin (S=5/2) Fe(III) in hemin from the polarization dependence of experimental EPR line intensities.

  6. Arsenic removal with iron(II) and iron(III) in waters with high silicate and phosphate concentrations.

    PubMed

    Roberts, Linda C; Hug, Stephan J; Ruettimann, Thomas; Billah, Morsaline; Khan, Abdul Wahab; Rahman, Mohammad Tariqur

    2004-01-01

    Arsenic removal by passive treatment, in which naturally present Fe(II) is oxidized by aeration and the forming iron(III) (hydr)oxides precipitate with adsorbed arsenic, is the simplest conceivable water treatment option. However, competing anions and low iron concentrations often require additional iron. Application of Fe(II) instead of the usually applied Fe(III) is shown to be advantageous, as oxidation of Fe(II) by dissolved oxygen causes partial oxidation of As(III) and iron(III) (hydr)oxides formed from Fe(II) have higher sorption capacities. In simulated groundwater (8.2 mM HCO3(-), 2.5 mM Ca2+, 1.6 mM Mg2+, 30 mg/L Si, 3 mg/L P, 500 ppb As(III), or As(V), pH 7.0 +/- 0.1), addition of Fe(II) clearly leads to better As removal than Fe(III). Multiple additions of Fe(II) further improved the removal of As(II). A competitive coprecipitation model that considers As(III) oxidation explains the observed results and allows the estimation of arsenic removal under different conditions. Lowering 500 microg/L As(III) to below 50 microg/L As(tot) in filtered water required > 80 mg/L Fe(III), 50-55 mg/L Fe(II) in one single addition, and 20-25 mg/L in multiple additions. With As(V), 10-12 mg/L Fe(II) and 15-18 mg/L Fe(III) was required. In the absence of Si and P, removal efficiencies for Fe(II) and Fe(III) were similar: 30-40 mg/L was required for As(II), and 2.0-2.5 mg/L was required for As(V). In a field study with 22 tubewells in Bangladesh, passive treatment efficiently removed phosphate, but iron contents were generally too low for efficient arsenic removal.

  7. Introducing saccharic acid as an efficient iron chelate to enhance photo-Fenton degradation of organic contaminants.

    PubMed

    Subramanian, Gokulakrishnan; Madras, Giridhar

    2016-11-01

    The identification of iron chelates that can enhance photo-Fenton degradation is of great interest in the field of advanced oxidation process. Saccharic acid (SA) is a polyhydroxy carboxylic acid and completely non-toxic. Importantly, it can effectively bind Fe(III) as well as induce photoreduction of Fe(III). Despite having these interesting properties, the effect of SA on photo-Fenton degradation has not been studied. Herein, we demonstrate the first assessment of SA as an iron chelate in photo-Fenton process using methylene blue (MB) as a model organic contaminant. Our results demonstrate that SA has the ability to (i) enhance the photo-Fenton degradation of MB by about 11 times at pH 4.5 (ii) intensify photochemical reduction of Fe(III) to Fe(II) by about 17 times and (iii) accelerate the rate of consumption of H 2 O 2 in photo-Fenton process by about 5 times (iv) increase the TOC reduction by about 2 times and (v) improve the photo-Fenton degradation of MB in the presence of a variety of common inorganic ions and organic matter. The influential properties of SA on photo-Fenton degradation is attributed to the efficient photochemical reduction of Fe(III) via LMCT (ligand to metal charge transfer reaction) to Fe(II), which then activated H 2 O 2 to generate OH and accelerated photo-Fenton degradation efficiency. Moreover, the effect of operational parameters such as oxidant: contaminant (H 2 O 2 : MB) ratio, catalyst: contaminant (Fe(III)SA: MB) ratio, Fe(III): SA stoichiometry and pH on the degradation of MB by photo-Fenton in the presence of SA is demonstrated. Importantly, SA assisted photo-Fenton caused effective degradation of MB and 4-Chlorophenol under natural sunlight irradiation in natural water matrix. The findings strongly support SA as a deserving iron chelate to enhance photo-Fenton degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Electron transfer at the cell-uranium interface in Geobacter spp.

    PubMed

    Reguera, Gemma

    2012-12-01

    The in situ stimulation of Fe(III) oxide reduction in the subsurface stimulates the growth of Geobacter spp. and the precipitation of U(VI) from groundwater. As with Fe(III) oxide reduction, the reduction of uranium by Geobacter spp. requires the expression of their conductive pili. The pili bind the soluble uranium and catalyse its extracellular reductive precipitation along the pili filaments as a mononuclear U(IV) complexed by carbon-containing ligands. Although most of the uranium is immobilized by the pili, some uranium deposits are also observed in discreet regions of the outer membrane, consistent with the participation of redox-active foci, presumably c-type cytochromes, in the extracellular reduction of uranium. It is unlikely that cytochromes released from the outer membrane could associate with the pili and contribute to the catalysis, because scanning tunnelling microscopy spectroscopy did not reveal any haem-specific electronic features in the pili, but, rather, showed topographic and electronic features intrinsic to the pilus shaft. Pili not only enhance the rate and extent of uranium reduction per cell, but also prevent the uranium from traversing the outer membrane and mineralizing the cell envelope. As a result, pili expression preserves the essential respiratory activities of the cell envelope and the cell's viability. Hence the results support a model in which the conductive pili function as the primary mechanism for the reduction of uranium and cellular protection in Geobacter spp.

  9. Microscale imaging and identification of Fe speciation and distribution during fluid-mineral reactions under highly reducing conditions.

    PubMed

    Mayhew, L E; Webb, S M; Templeton, A S

    2011-05-15

    The oxidation state, speciation, and distribution of Fe are critical determinants of Fe reactivity in natural and engineered environments. However, it is challenging to follow dynamic changes in Fe speciation in environmental systems during progressive fluid-mineral interactions. Two common geological and aquifer materials-basalt and Fe(III) oxides-were incubated with saline fluids at 55 °C under highly reducing conditions maintained by the presence of Fe(0). We tracked changes in Fe speciation after 48 h (incipient water-rock reaction) and 10 months (extensive water-rock interaction) using synchrotron-radiation μXRF maps collected at multiple energies (ME) within the Fe K-edge. Immediate PCA analysis of the ME maps was used to optimize μXANES analyses; in turn, refitting the ME maps with end-member XANES spectra enabled us to detect and spatially resolve the entire variety of Fe-phases present in the system. After 48 h, we successfully identified and mapped the major Fe-bearing components of our samples (Fe(III) oxides, basalt, and rare olivine), as well as small quantities of incipient brucite associated with olivine. After 10 months, the Fe(III)-oxides remained stable in the presence of Fe(0), whereas significant alteration of basalt to minnesotaite and chlinochlore had occurred, providing new insights into heterogeneous Fe speciation in complex geological media under highly reducing conditions.

  10. Preparation of microspheric Fe(III)-ion imprinted polymer for selective solid phase extraction

    NASA Astrophysics Data System (ADS)

    Ara, Behisht; Muhammad, Mian; Salman, Muhammad; Ahmad, Raees; Islam, Noor; Zia, Tanveer ul Haq

    2018-03-01

    In this research work, an Fe(III)-IIP was prepared using methacrylic acid as monomer, divinylbenzene as cross-linker, azobisisobutyronitrile as initiator. The ion imprinted polymer was functionalized with Fe(III)8-hydroxy quinolone complex under thermal conditions by copolymerization with the monomer and the cross-linker. The prepared Fe(III)-ion imprinted polymer (IIP) and non-ion imprinted polymer (Non-IIP) were characterized with fourier transform-infrared spectroscopy, scanning electron microscopic analysis and thermal gravimetric analysis. The polymer showed a good stability to thermal analysis up to a temperature of 500 °C. The size of the polymer obtained was 1 µm, large enough to be filtered easily. At pH 2.5 more affinity was observed with ion imprinted polymer in comparison to non-ion imprinted polymer. For the kinetic study, the most linear and rhythmical relation were seen in pseudo second order. The maximum sorption capacity of Fe(III) ions on Fe(III)-IIP and non-IIP was 170 and 30.0 µmolg-1, respectively. The relative selectivity factor (αr) values of Fe(III)/Fe(II), Fe(III)/Al(III) and Fe(III)/Cr(III) were 151.0, 84.6 and 91.9, respectively. The preconcentration factor was found to be 240. The developed method was successfully applied to the determination of trace Fe in the drinking water.

  11. Iron (III) Matrix Effects on Mineralization and Immobilization of Actinides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cynthia-May S. Gong; Tyler A. Sullens; Kenneth R. Czerwinski

    2006-01-01

    Abstract - A number of models for the Yucca Mountain Project nuclear waste repository use studies of actinide sorption onto well-defined iron hydroxide materials. In the case of a waste containment leak, however, a complex interaction between dissolved waste forms and failed containment vessel components can lead to immediate precipitation of migratory iron and uranyl in the silicate rich near-field environment. Use of the Fe(III) and UO22+ complexing agent acetohydroxamic acid (AHA) as a colorimetric agent for visible spectrophotometry is well-known. Using the second derivative of these spectra a distinct shift in iron complexation in the presence of silicate ismore » seen that is not seen with uranyl or alone. Silica also decreases the ability of uranyl and ferric solutions to absorb hydroxide, hastening precipitation. These ferric silicate precipitates are highly amorphous and soluble. Precipitates formed in the presence of uranyl below ~1 mol% exhibit lower solubility than precipitates from up to 50 mol % and of uranyl silicates alone.« less

  12. Influence of variable chemical conditions on EDTA-enhanced transport of metal ions in mildly acidic groundwater

    USGS Publications Warehouse

    Kent, D.B.; Davis, J.A.; Joye, J.L.; Curtis, G.P.

    2008-01-01

    Adsorption of Ni and Pb on aquifer sediments from Cape Cod, Massachusetts, USA increased with increasing pH and metal-ion concentration. Adsorption could be described quantitatively using a semi-mechanistic surface complexation model (SCM), in which adsorption is described using chemical reactions between metal ions and adsorption sites. Equilibrium reactive transport simulations incorporating the SCMs, formation of metal-ion-EDTA complexes, and either Fe(III)-oxyhydroxide solubility or Zn desorption from sediments identified important factors responsible for trends observed during transport experiments conducted with EDTA complexes of Ni, Zn, and Pb in the Cape Cod aquifer. Dissociation of Pb-EDTA by Fe(III) is more favorable than Ni-EDTA because of differences in Ni- and Pb-adsorption to the sediments. Dissociation of Ni-EDTA becomes more favorable with decreasing Ni-EDTA concentration and decreasing pH. In contrast to Ni, Pb-EDTA can be dissociated by Zn desorbed from the aquifer sediments. Variability in adsorbed Zn concentrations has a large impact on Pb-EDTA dissociation.

  13. Investigation of iron(III) complex with crown-porphyrin

    NASA Astrophysics Data System (ADS)

    Pankratov, Denis A.; Dolzhenko, Vladimir D.; Stukan, Reonald A.; Al Ansari, Yana F.; Savinkina, Elena V.; Kiselev, Yury M.

    2013-08-01

    Iron complex of 5-(4-(((4'-hydroxy-benzo-15-crown-5)-5'-yl)diazo)phenyl)-10,15,20-triphenylporphyrin was investigated by 57Fe Mössbauer spectroscopy and EPR. Two Fe sites were identified; they give two differing signals, doublet and wide absorption in a large velocity interval. EPR spectra of solutions of the complex in chloroform at room temperature also show two signals with g = 2.064, AFe = 0.032 cm - 1; g = 2.015, AFe = 0.0034 cm - 1. The doublet asymmetry is studied vs. temperature and normal angle to the sample plane and gamma-beam. The isomer shift δ in the doublet varies from 0.25 to 0.41 mm/s in the 360-5 K temperature range, whereas quadruple splitting value is constant, Δ ˜ 0.65 mm/s. The relax absorption may be described as a wide singlet ( δ = 0.30- 0.44 mm/s and Γ = 2.83-3.38 mm/s); its relative area strongly depends on temperature. According to δ, both signals are assigned to Fe(III).

  14. Allergenicity of orange juice and orange seeds: a clinical study.

    PubMed

    Zhu, S L; Ye, S T; Yu, Y

    1989-06-01

    Oranges are considered to be common allergenic fruits in China. They may induce severe food allergy in sensitive individuals. Allergic histories were analyzed in 26 orange-sensitive patients. Intradermal tests with extracts of orange juice and seeds were performed in 16 out of the 26 patients. P-K test was performed in one patient. The allergic history analysis suggested that clinical symptoms of some orange-allergic subjects were different from other fruit allergies but similar to nut and other oil plant seed allergies. The skin test and P-K test showed that the major allergenic components of orange reside in orange seeds instead of orange juice. Systemic reactions developed in 5 patients after intradermal tests with 1:20-200 (w/v) orange seed extracts. We considered that orange seed contains high potent allergens which may induce orange sensitivity due to careless chewing of orange seeds.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratcliff, Matthew A.; Burton, Jonathan; Sindler, Petr

    Several high octane number oxygenates that could be derived from biomass were blended with gasoline and examined for performance properties and their impact on knock resistance and fine particle emissions in a single cylinder direct-injection spark-ignition engine. The oxygenates included ethanol, isobutanol, anisole, 4-methylanisole, 2-phenylethanol, 2,5-dimethyl furan, and 2,4-xylenol. These were blended into a summertime blendstock for oxygenate blending at levels ranging from 10 to 50 percent by volume. The base gasoline, its blends with p-xylene and p-cymene, and high-octane racing gasoline were tested as controls. Relevant gasoline properties including research octane number (RON), motor octane number, distillation curve, andmore » vapor pressure were measured. Detailed hydrocarbon analysis was used to estimate heat of vaporization and particulate matter index (PMI). Experiments were conducted to measure knock-limited spark advance and particulate matter (PM) emissions. The results show a range of knock resistances that correlate well with RON. Molecules with relatively low boiling point and high vapor pressure had little effect on PM emissions. In contrast, the aromatic oxygenates caused significant increases in PM emissions (factors of 2 to 5) relative to the base gasoline. Thus, any effect of their oxygen atom on increasing local air-fuel ratio was outweighed by their low vapor pressure and high double-bond equivalent values. For most fuels and oxygenate blend components, PMI was a good predictor of PM emissions. However, the high boiling point, low vapor pressure oxygenates 2-phenylethanol and 2,4-xylenol produced lower PM emissions than predicted by PMI. This was likely because they did not fully evaporate and combust, and instead were swept into the lube oil.« less

  16. Optimized nested polymerase chain reaction for antemortem detection of Mycobacteria in Amazon parrots (Amazona aestiva) and orange-winged Amazons (Amazona amazonica).

    PubMed

    Baquião, Arianne Costa; Luna, Janaina Oliveira; Medina, Aziz Orro; Sanfilippo, Luiz Francisco; de Faria, Maria Jacinta; dos Santos, Manuel Armando Azevedo

    2014-03-01

    The objectives of this study were to optimize nested polymerase chain reaction (PCR) for Mycobacterium avium complex and Mycobacterium tuberculosis complex and apply them on samples from parrots. Results were negative for the presence of these Mycobacterium in the samples, and nested PCR was specific, faster, and more sensitive than other tests, thereby justifying its use in antemortem diagnosis.

  17. Orange pectin mediated growth and stability of aqueous gold and silver nanocolloids

    NASA Astrophysics Data System (ADS)

    Nigoghossian, Karina; dos Santos, Molíria V.; Barud, Hernane S.; da Silva, Robson R.; Rocha, Lucas A.; Caiut, José M. A.; de Assunção, Rosana M. N.; Spanhel, Lubomir; Poulain, Marcel; Messaddeq, Younes; Ribeiro, Sidney J. L.

    2015-06-01

    The role of orange based pectin in the nucleation and growth of silver and gold nanoparticles is addressed. Pectin is a complex polysaccharide found in fruits such as oranges, lemons, passion fruits or apples. It displays smooth and hairy chain regions containing hydroxyl-, ester-, carboxylate- and eventually amine groups that can act as surface ligands interacting under various pH conditions more or less efficiently with growing nanometals. Here, a high methoxy pectin (>50% esterified) was used as a stabilizer/reducing agent in the preparation of gold, silver and silver-gold nanoparticles. Commercial pectin (CP) and pectin extracted from orange bagasse (OP) were used. Optionally, trisodium citrate or oxalic acid we used to reduce AgNO3 and HAuCl4 in aqueous environment. Characterization methods included UV-vis absorption spectroscopy, transmission electron microscopy, electron diffraction and energy-dispersive X-ray spectroscopy. The results show that under different pH conditions, pectin and reducing agents allow producing various nanostructures shapes (triangles, spheres, rods, octahedrons and decahedrons) often with high polydispersity and sizes ranging between 5 nm and 30 nm. In addition, depending on Ag/Au-ratio and pH, the surface plasmon bands can be continuously shifted between 410 nm and 600 nm. Finally, pectin seems to be a highly efficient stabilizer of the colloidal systems that show a remarkable stability and unchanged optical spectral response even after five years.

  18. Some metal complexes of three new potentially heptadentate (N4O3) tripodal Schiff base ligands; synthesis, characterizatin and X-ray crystal structure of a novel eight coordinate Gd(III) complex

    NASA Astrophysics Data System (ADS)

    Golbedaghi, Reza; Moradi, Somaeyh; Salehzadeh, Sadegh; Blackman, Allan G.

    2016-03-01

    The symmetrical and asymmetrical potentially heptadentate (N4O3) tripodal Schiff base ligands (H3L1-H3L3) were synthesized from the condensation reaction of three tripodal tetraamine ligands tpt (trpn), tris (3-aminopropyl) amine; ppe (abap), (2-aminoethyl)bis(3-aminopropyl)amine, and tren, tris(2-aminoethyl)amine, with 5-methoxysalicylaldehyde. Then, the reaction of Ln(III) (Ln = Gd, La and Sm), Al(III), and Fe(III) metal ions with the above ligands was investigated. The resulting compounds were characterized by IR, mass spectrometry and elemental analysis in all cases and NMR spectroscopy in the case of the Schiff base ligands. The X-ray crystal structure of the Gd complex of H3L3 ligand showed that in addition to all donor atoms of the ligand one molecule of H2O is also coordinated to the metal ion and a neutral eight-coordinate complex is formed.

  19. SOD activity and DNA binding properties of a new symmetric porphyrin Schiff base ligand and its metal complexes.

    PubMed

    Çay, Sevim; Köse, Muhammet; Tümer, Ferhan; Gölcü, Ayşegül; Tümer, Mehmet

    2015-12-05

    4-Methoxy-2,6-bis(hydroxymethyl)phenol (1) was prepared from the reaction of 4-methoxyphenol and formaldehyde. The compound (1) was then oxidized to the 4-methoxy-2,6-diformylphenol (2) compound. Molecular structure of compound (2) was determined by X-ray diffraction method. A new symmetric porphyrin Schiff base ligand 4-methoxy-2,6-bis[5-(4-iminophenyl)-10,15,20-triphenylporphyrin]phenol (L) was prepared from the reaction of the 5-(4-aminophenyl)-10,15,20-triphenylporphyrin (TTP-NH2) and the compound (2) in the toluene solution. The metal complexes (Cu(II), Fe(III), Mn(III), Pt(II) and Zn(II)) of the ligand (L) were synthesized and characterized by the spectroscopic and analytical methods. The DNA (fish sperm FSdsDNA) binding studies of the ligand and its complexes were performed using UV-vis spectroscopy. Additionally, superoxide dismutase activities of the porphyrin Schiff base metal complexes were investigated. Additionally, electrochemical, photoluminescence and thermal properties of the compounds were investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Highly Simplified Reddish Orange Phosphorescent Organic Light-Emitting Diodes Incorporating a Novel Carrier- and Exciton-Confining Spiro-Exciplex-Forming Host for Reduced Efficiency Roll-off.

    PubMed

    Xu, Ting; Zhang, Ye-Xin; Wang, Bo; Huang, Chen-Chao; Murtaza, Imran; Meng, Hong; Liao, Liang-Sheng

    2017-01-25

    A novel exciplex-forming host is applied so as to design highly simplified reddish orange light-emitting diodes (OLEDs) with low driving voltage, high efficiency, and an extraordinarily low efficiency roll-off, by combining N,N-10-triphenyl-10H-spiro [acridine-9,9'-fluoren]-3'-amine (SAFDPA) with 4,7-diphenyl-1,10-phenanthroline (Bphen) doped with trivalent iridium complex bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate)iridium(III) (Ir(MDQ) 2 (acac)). The reddish orange OLEDs achieve a strikingly high power efficiency (PE) of 31.80 lm/W with an ultralow threshold voltage of 2.24 V which is almost equal to the triplet energy level of the phosphorescent reddish orange emitting dopant. The power efficiency of the device with the exciplex-forming host is enhanced, achieving 36.2% mainly owing to the lower operating voltage by the novel exciplex forming cohost, compared with the reference device (23.54 lm/W). Moreover, the OLEDs show extraordinarily low current efficiency (CE) roll-off to 1.41% at the brightness from 500 to 5000 cd/m 2 with a maximal CE of 32.87 cd/A (EQE max = 11.01%). The devices display a good reddish orange color (CIE of (0.628, 0.372) at 500 cd/m 2 ) nearly without color shift with increasing brightness. Co-host architecture phosphorescent OLEDs show a simpler device structure, lower working voltage, and a better efficiency and stability than those of the reference devices without the cohost architecture, which helps to simplify the OLED structure, lower the cost, and popularize OLED technology.

  1. In situ immobilization on the silica gel surface and adsorption capacity of polymer-based azobenzene on toxic metal ions

    NASA Astrophysics Data System (ADS)

    Savchenko, Irina; Yanovska, Elina; Sternik, Dariusz; Kychkyruk, Olga; Ol'khovik, Lidiya; Polonska, Yana

    2018-03-01

    In situ immobilization of poly[(4-methacryloyloxy-(4'-carboxy)azobenzene] on silica gel surface has been performed by radical polymerization of monomer. The fact of polymer immobilization is confirmed by IR spectroscopy. TG and DSC-MS analysis showed that the mass of the immobilized polymer was 10.61%. The SEM-microphotograph-synthesized composite analysis showed that the immobilized polymer on the silica gel surface is placed in the form of fibers. It has been found that the synthesized composite exhibits the sorption ability in terms of microquantities of Cu(II), Cd(II), Pb(II), Mn(II) and Fe(III) ions in a neutral aqueous medium. The quantitative sorption of microquantities of Pb(II) and Fe(III) ions has been recorded. It has been found that immobilization of the silica gel surface leads to an increase in its sorption capacitance for Fe(III), Cu(II) and Pb(II) ions by half.

  2. Nanoparticulate iron(III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans.

    PubMed

    Pereira, Dora I A; Bruggraber, Sylvaine F A; Faria, Nuno; Poots, Lynsey K; Tagmount, Mani A; Aslam, Mohamad F; Frazer, David M; Vulpe, Chris D; Anderson, Gregory J; Powell, Jonathan J

    2014-11-01

    Iron deficiency is the most common nutritional disorder worldwide with substantial impact on health and economy. Current treatments predominantly rely on soluble iron which adversely affects the gastrointestinal tract. We have developed organic acid-modified Fe(III) oxo-hydroxide nanomaterials, here termed nano Fe(III), as alternative safe iron delivery agents. Nano Fe(III) absorption in humans correlated with serum iron increase (P < 0.0001) and direct in vitro cellular uptake (P = 0.001), but not with gastric solubility. The most promising preparation (iron hydroxide adipate tartrate: IHAT) showed ~80% relative bioavailability to Fe(II) sulfate in humans and, in a rodent model, IHAT was equivalent to Fe(II) sulfate at repleting haemoglobin. Furthermore, IHAT did not accumulate in the intestinal mucosa and, unlike Fe(II) sulfate, promoted a beneficial microbiota. In cellular models, IHAT was 14-fold less toxic than Fe(II) sulfate/ascorbate. Nano Fe(III) manifests minimal acute intestinal toxicity in cellular and murine models and shows efficacy at treating iron deficiency anaemia. This paper reports the development of novel nano-Fe(III) formulations, with the goal of achieving a magnitude less intestinal toxicity and excellent bioavailability in the treatment of iron deficiency anemia. Out of the tested preparations, iron hydroxide adipate tartrate met the above criteria, and may become an important tool in addressing this common condition. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  3. Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1

    PubMed Central

    Fredrickson, J. K.; Kostandarithes, H. M.; Li, S. W.; Plymale, A. E.; Daly, M. J.

    2000-01-01

    Deinococcus radiodurans is an exceptionally radiation-resistant microorganism capable of surviving acute exposures to ionizing radiation doses of 15,000 Gy and previously described as having a strictly aerobic respiratory metabolism. Under strict anaerobic conditions, D. radiodurans R1 reduced Fe(III)-nitrilotriacetic acid coupled to the oxidation of lactate to CO2 and acetate but was unable to link this process to growth. D. radiodurans reduced the humic acid analog anthraquinone-2,6-disulfonate (AQDS) to its dihydroquinone form, AH2DS, which subsequently transferred electrons to the Fe(III) oxides hydrous ferric oxide and goethite via a previously described electron shuttle mechanism. D. radiodurans reduced the solid-phase Fe(III) oxides in the presence of either 0.1 mM AQDS or leonardite humic acids (2 mg ml−1) but not in their absence. D. radiodurans also reduced U(VI) and Tc(VII) in the presence of AQDS. In contrast, Cr(VI) was directly reduced in anaerobic cultures with lactate although the rate of reduction was higher in the presence of AQDS. The results are the first evidence that D. radiodurans can reduce Fe(III) coupled to the oxidation of lactate or other organic compounds. Also, D. radiodurans, in combination with humic acids or synthetic electron shuttle agents, can reduce U and Tc and thus has potential applications for remediation of metal- and radionuclide-contaminated sites where ionizing radiation or other DNA-damaging agents may restrict the activity of more sensitive organisms. PMID:10788374

  4. Raw hematite based Fe(III) bio-reduction process for humified landfill leachate treatment.

    PubMed

    Li, Rui; Jiang, Yu; Xi, Beidou; Li, Mingxiao; Meng, Xiaoguang; Feng, Chuanping; Mao, Xuhui; Liu, Hongliang; Jiang, Yonghai

    2018-05-03

    Microorganisms from paddy soils and raw hematite are used for enhancing natural Fe(III) bio-reduction, in order to remove macromolecular organic pollutants from humified landfill leachate. Based on batch experiments, 60% of refractory organics can be adsorbed by hematite in 12 days. In the presence of Fe(III)-reducing bacteria, 489.60 ± 0.14 mg L -1 of dissolved organic matters can be degraded to 51.90 ± 3.96 mg L -1 within 50 days; twelve types of semi volatile organic compounds can be degraded; hereby, the reaction follows a first-order kinetics. Crystalline Fe(III) is transformed into the amorphous form and reduced to Fe(II), hydroquinone functional groups in the humic acid (HA) are transformed to quinone ones, and the formation of HA-hematite ligands is promoted. Comparing with most of the studies about electron shuttling of HA, the transformation of quinone in the HA to hydroquinone could not be observed in the present bio-system. Based on column evaluations, more than 93% of chemical oxygen demand (influent concentration of 658 ± 19 mg L -1 ) could be removed microbially under flow conditions, when the hydraulic retention time was 45 h. Raw hematite-based Fe(III) bio-reduction has a promising potential for the removal of humic and benzene series in humified landfill leachate. Copyright © 2018. Published by Elsevier B.V.

  5. Organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH-neutral soil.

    PubMed

    Muehe, E Marie; Adaktylou, Irini J; Obst, Martin; Zeitvogel, Fabian; Behrens, Sebastian; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2013-01-01

    Cadmium (Cd) is of environmental relevance as it enters soils via Cd-containing phosphate fertilizers and endangers human health when taken up by crops. Cd is known to associate with Fe(III) (oxyhydr)oxides in pH-neutral to slightly acidic soils, though it is not well understood how the interrelation of Fe and Cd changes under Fe(III)-reducing conditions. Therefore, we investigated how the mobility of Cd changes when a Cd-bearing soil is faced with organic carbon input and reducing conditions. Using fatty acid profiles and quantitative PCR, we found that both fermenting and Fe(III)-reducing bacteria were stimulated by organic carbon-rich conditions, leading to significant Fe(III) reduction. The reduction of Fe(III) minerals was accompanied by increasing soil pH, increasing dissolved inorganic carbon, and decreasing Cd mobility. SEM-EDX mapping of soil particles showed that a minor fraction of Cd was transferred to Ca- and S-bearing minerals, probably carbonates and sulfides. Most of the Cd, however, correlated with a secondary iron mineral phase that was formed during microbial Fe(III) mineral reduction and contained mostly Fe, suggesting an iron oxide mineral such as magnetite (Fe3O4). Our data thus provide evidence that secondary Fe(II) and Fe(II)/Fe(III) mixed minerals could be a sink for Cd in soils under reducing conditions, thus decreasing the mobility of Cd in the soil.

  6. Interactions of the periplasmic binding protein CeuE with Fe(III) n-LICAM4- siderophore analogues of varied linker length

    NASA Astrophysics Data System (ADS)

    Wilde, Ellis J.; Hughes, Adam; Blagova, Elena V.; Moroz, Olga V.; Thomas, Ross P.; Turkenburg, Johan P.; Raines, Daniel J.; Duhme-Klair, Anne-Kathrin; Wilson, Keith S.

    2017-04-01

    Bacteria use siderophores to mediate the transport of essential Fe(III) into the cell. In Campylobacter jejuni the periplasmic binding protein CeuE, an integral part of the Fe(III) transport system, has adapted to bind tetradentate siderophores using a His and a Tyr side chain to complete the Fe(III) coordination. A series of tetradentate siderophore mimics was synthesized in which the length of the linker between the two iron-binding catecholamide units was increased from four carbon atoms (4-LICAM4-) to five, six and eight (5-, 6-, 8-LICAM4-, respectively). Co-crystal structures with CeuE showed that the inter-planar angles between the iron-binding catecholamide units in the 5-, 6- and 8-LICAM4- structures are very similar (111°, 110° and 110°) and allow for an optimum fit into the binding pocket of CeuE, the inter-planar angle in the structure of 4-LICAM4- is significantly smaller (97°) due to restrictions imposed by the shorter linker. Accordingly, the protein-binding affinity was found to be slightly higher for 5- compared to 4-LICAM4- but decreases for 6- and 8-LICAM4-. The optimum linker length of five matches that present in natural siderophores such as enterobactin and azotochelin. Site-directed mutagenesis was used to investigate the relative importance of the Fe(III)-coordinating residues H227 and Y288.

  7. Identification of sensory attributes that drive consumer liking of commercial orange juice products in Korea.

    PubMed

    Kim, Mina K; Lee, Young-Jin; Kwak, Han Sub; Kang, Myung-woo

    2013-09-01

    Orange juice is a well-accepted fruit juice, and its consumption increases steadily. Many studies have been conducted to understand the sensory characteristics of orange juice throughout its varying processing steps. Sensory language and consumer likings of food can be influenced by culture. The objective of this study is to evaluate the sensory characteristics of commercially available orange juices in Korea and identify drivers of liking for orange juices in Korea. A quantitative descriptive analysis was conducted using a trained panel (n = 10) to evaluate 7 orange juice samples in triplicates, followed by consumer acceptance tests (n = 103). Univariate and multivariate statistical analyses were conducted for data analysis. The sensory characteristics of commercially available orange juice were documented and grouped: group 1 samples were characterized by high in natural citrus flavors such as orange peel, orange flesh, citrus fruit, and grape fruit, whereas group 2 samples were characterized by processed orange-like flavors such as over-ripe, cooked-orange, and yogurt. Regardless of orange flavor types, a high intensity of orange flavor in orange juice was identified as a driver of liking for orange juices in Korea. Three distinct clusters were segmented by varying sensory attributes that were evaluated by likes and dislikes. Overall, many similarities were noticed between Korean market segment and global orange juice market. By knowing the drivers of liking and understanding the distinct consumer clusters present in the Korean orange juice market, the orange juice industry could improve the strategic marketing of its products in Korea. © 2013 Institute of Food Technologists®

  8. Luminescent zinc(ii) and copper(i) complexes for high-performance solution-processed monochromic and white organic light-emitting devices† †Electronic supplementary information (ESI) available: Experimental procedures, device performances, and computational details. CCDC 1054456, 1400003 and 1400004. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4sc03161j Click here for additional data file. Click here for additional data file.

    PubMed Central

    Cheng, Gang; So, Gary Kwok-Ming; To, Wai-Pong; Chen, Yong; Kwok, Chi-Chung; Ma, Chensheng; Guan, Xiangguo; Chang, Xiaoyong; Kwok, Wai-Ming

    2015-01-01

    The synthesis and spectroscopic properties of luminescent tetranuclear zinc(ii) complexes of substituted 7-azaindoles and a series of luminescent copper(i) complexes containing 7,8-bis(diphenylphosphino)-7,8-dicarba-nido-undecaborate ligand are described. These complexes are stable towards air and moisture. Thin film samples of the luminescent copper(i) complexes in 2,6-dicarbazolo-1,5-pyridine and zinc(ii) complexes in poly(methyl methacrylate) showed emission quantum yields of up to 0.60 (for Cu-3) and 0.96 (for Zn-1), respectively. Their photophysical properties were examined by ultrafast time-resolved emission spectroscopy, temperature dependent emission lifetime measurements and density functional theory calculations. Monochromic blue and orange solution-processed OLEDs with these Zn(ii) and Cu(i) complexes as light-emitting dopants have been fabricated, respectively. Maximum external quantum efficiency (EQE) of 5.55% and Commission Internationale de l'Eclairage (CIE) coordinates of (0.16, 0.19) were accomplished with the optimized Zn-1-OLED while these values were, respectively 15.64% and (0.48, 0.51) for the optimized Cu-3-OLED. Solution-processed white OLEDs having maximum EQE of 6.88%, CIE coordinates of (0.42, 0.44), and colour rendering index of 81 were fabricated by using these luminescent Zn(ii) and Cu(i) complexes as blue and orange light-emitting dopant materials, respectively. PMID:29142704

  9. The Synthesis, Characterization and Reactivity of a Series of Ruthenium N-triphos Ph Complexes.

    PubMed

    Phanopoulos, Andreas; Long, Nicholas; Miller, Philip

    2015-04-10

    Herein we report the synthesis of a tridentate phosphine ligand N(CH2PPh2)3 (N-triphos(Ph)) (1) via a phosphorus based Mannich reaction of the hydroxylmethylene phosphine precursor with ammonia in methanol under a nitrogen atmosphere. The N-triphos(Ph) ligand precipitates from the solution after approximately 1 hr of reflux and can be isolated analytically pure via simple cannula filtration procedure under nitrogen. Reaction of the N-triphos(Ph) ligand with [Ru3(CO)12] under reflux affords a deep red solution that show evolution of CO gas on ligand complexation. Orange crystals of the complex [Ru(CO)2{N(CH2PPh2)3}-κ(3)P] (2) were isolated on cooling to RT. The (31)P{(1)H} NMR spectrum showed a characteristic single peak at lower frequency compared to the free ligand. Reaction of a toluene solution of complex 2 with oxygen resulted in the instantaneous precipitation of the carbonate complex [Ru(CO3)(CO){N(CH2PPh2)3}-κ(3)P] (3) as an air stable orange solid. Subsequent hydrogenation of 3 under 15 bar of hydrogen in a high-pressure reactor gave the dihydride complex [RuH2(CO){N(CH2PPh2)3}-κ(3)P] (4), which was fully characterized by X-ray crystallography and NMR spectroscopy. Complexes 3 and 4 are potentially useful catalyst precursors for a range of hydrogenation reactions, including biomass-derived products such as levulinic acid (LA). Complex 4 was found to cleanly react with LA in the presence of the proton source additive NH4PF6 to give [Ru(CO){N(CH2PPh2)3}-κ(3)P{CH3CO(CH2)2CO2H}-κ(2)O](PF6) (6).

  10. The Synthesis, Characterization and Reactivity of a Series of Ruthenium N-triphosPh Complexes

    PubMed Central

    Phanopoulos, Andreas; Long, Nicholas; Miller, Philip

    2015-01-01

    Herein we report the synthesis of a tridentate phosphine ligand N(CH2PPh2)3 (N-triphosPh) (1) via a phosphorus based Mannich reaction of the hydroxylmethylene phosphine precursor with ammonia in methanol under a nitrogen atmosphere. The N-triphosPh ligand precipitates from the solution after approximately 1 hr of reflux and can be isolated analytically pure via simple cannula filtration procedure under nitrogen. Reaction of the N-triphosPh ligand with [Ru3(CO)12] under reflux affords a deep red solution that show evolution of CO gas on ligand complexation. Orange crystals of the complex [Ru(CO)2{N(CH2PPh2)3}-κ3P] (2) were isolated on cooling to RT. The 31P{1H} NMR spectrum showed a characteristic single peak at lower frequency compared to the free ligand. Reaction of a toluene solution of complex 2 with oxygen resulted in the instantaneous precipitation of the carbonate complex [Ru(CO3)(CO){N(CH2PPh2)3}-κ3P] (3) as an air stable orange solid. Subsequent hydrogenation of 3 under 15 bar of hydrogen in a high-pressure reactor gave the dihydride complex [RuH2(CO){N(CH2PPh2)3}-κ3P] (4), which was fully characterized by X-ray crystallography and NMR spectroscopy. Complexes 3 and 4 are potentially useful catalyst precursors for a range of hydrogenation reactions, including biomass-derived products such as levulinic acid (LA). Complex 4 was found to cleanly react with LA in the presence of the proton source additive NH4PF6 to give [Ru(CO){N(CH2PPh2)3}-κ3P{CH3CO(CH2)2CO2H}-κ2O](PF6) (6). PMID:25938678

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Tao; Kukkadapu, Ravi K.; Griffin, Aron M.

    Fe(III)-oxides and Fe(III)-bearing phyllosilicates are the two major iron sources utilized as electron acceptors by dissimilatory iron-reducing bacteria (DIRB) in anoxic soils and sediments. Although there have been many studies of microbial Fe(III)-oxide and Fe(III)-phyllosilicate reduction with both natural and specimen materials, no controlled experimental information is available on the interaction between these two phases when both are available for microbial reduction. In this study, the model DIRB Geobacter sulfurreducens was used to examine the pathways of Fe(III) reduction in Fe(III)-oxide stripped subsurface sediment that was coated with different amounts of synthetic high surface area goethite. Cryogenic (12K) 57Fe Mössbauermore » spectroscopy was used to determine changes in the relative abundances of Fe(III)-oxide, Fe(III)-phyllosilicate, and phyllosilicate-associated Fe(II) (Fe(II)-phyllosilicate) in bioreduced samples. Analogous Mössbauer analyses were performed on samples from abiotic Fe(II) sorption experiments in which sediments were exposed to a quantity of exogenous soluble Fe(II) (FeCl22H2O) comparable to the amount of Fe(II) produced during microbial reduction. A Fe partitioning model was developed to analyze the fate of Fe(II) and assess the potential for abiotic Fe(II)-catalyzed reduction of Fe(III)-phyllosilicatesilicates. The microbial reduction experiments indicated that although reduction of Fe(III)-oxide accounted for virtually all of the observed bulk Fe(III) reduction activity, there was no significant abiotic electron transfer between oxide-derived Fe(II) and Fe(III)-phyllosilicatesilicates, with 26-87% of biogenic Fe(II) appearing as sorbed Fe(II) in the Fe(II)-phyllosilicate pool. In contrast, the abiotic Fe(II) sorption experiments showed that 41 and 24% of the added Fe(II) engaged in electron transfer to Fe(III)-phyllosilicate surfaces in synthetic goethite-coated and uncoated sediment. Differences in the rate of Fe(II) addition and system redox potential may account for the microbial and abiotic reaction systems. Our experiments provide new insight into pathways for Fe(III) reduction in mixed Fe(III)-oxide/Fe(III)-phyllosilicate assemblages, and provide key mechanistic insight for interpreting microbial reduction experiments and field data from complex natural soils and sediments.« less

  12. Hexavalent chromium removal by chitosan modified-bioreduced nontronite

    NASA Astrophysics Data System (ADS)

    Singh, Rajesh; Dong, Hailiang; Zeng, Qiang; Zhang, Li; Rengasamy, Karthikeyan

    2017-08-01

    Recent efforts have focused on structural Fe(II) in chemically or biologically reduced clay minerals to immobilize Cr(VI) from aqueous solution, but the coulombic repulsion between the negatively charged clay surface and the polyanionic form of Cr(VI), e.g., dichromate, can hinder the effectiveness of this process. The purpose of this study was to investigate the efficiency and mechanism of Cr(VI) removal by a charge-reversed nontronite (NAu-2), an Fe-rich smectite. Chitosan, a linear polysaccharide derived from chitin found in soil and groundwater, was used to reverse the charge of NAu-2. Intercalation of chitosan into NAu-2 interlayer increased the basal d-spacing of NAu-2 from 1.23 nm to 1.83 nm and zeta potential from -27.17 to +34.13 mV, with the amount of increase depending on chitosan/NAu-2 ratio. Structural Fe(III) in chitosan-exchanged NAu-2 was then biologically reduced by an iron-reducing bacterium Shewanella putrefaciens CN32 in bicarbonate buffer with lactate as the sole electron donor, with and without electron shuttle, AQDS. Without AQDS, the extent of Fe(III) reduction increased from the lowest (∼9%) for the chitosan-free NAu-2 to the highest (∼12%) for the highest chitosan loaded NAu-2 (3:1 ratio). This enhancement of Fe(III) reduction was likely due to the attachment of negatively charged bacterial cells to charge-reversed (e.g., positively charged) NAu-2 surfaces, facilitating the electron transfer between cells and structural Fe(III). With AQDS, Fe(III) reduction extent doubled relative to those without AQDS, but the enhancement effect was similar across all chitosan loadings, suggesting that AQDS was more important than chitosan in enhancing Fe(III) bioreduction. Chitosan-exchanged, biologically reduced NAu-2 was then utilized for removing Cr(VI) in batch experiments with three consecutive spikes of 50 μM Cr. With the first Cr spike, the rate of Cr(VI) removal by charged-reversed NAu-2 that was bioreduced without and with AQDS was ∼1.5 and ∼6 μmol g-1 h-1, respectively. However, the capacity of these clays to remove Cr(VI) was progressively exhausted upon addition of subsequent Cr spikes. X-ray photoelectron spectroscopy (XPS) revealed that the reduction product of Cr(VI) by chitosan-exchanged-bioreduced NAu-2 was Cr(III), possibly in the form of Cr(OH)3. In summary, our results demonstrated that the combined effects of sorption and redox reactions by charge-reversed bioreduced nontronite may offer a feasible in-situ approach for remediating Cr(VI) polluted soil and groundwater.

  13. Seasonal changes in Fe species and soluble Fe concentration in the atmosphere in the Northwest Pacific region based on the analysis of aerosols collected in Tsukuba, Japan

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Furukawa, T.; Kanai, Y.; Uematsu, M.; Zheng, G.; Marcus, M. A.

    2013-08-01

    Atmospheric iron (Fe) can be a significant source of nutrition for phytoplankton inhabiting remote oceans, which in turn has a large influence on the Earth's climate. The bioavailability of Fe in aerosols depends mainly on the fraction of soluble Fe (= [FeSol]/[FeTotal], where [FeSol] and [FeTotal] are the atmospheric concentrations of soluble and total Fe, respectively). However, the numerous factors affecting the soluble Fe fraction have not been fully understood. In this study, the Fe species, chemical composition, and soluble Fe concentrations in aerosols collected in Tsukuba, Japan were investigated over a year (nine samples from December 2002 to October 2003) to identify the factors affecting the amount of soluble Fe supplied into the ocean. The soluble Fe concentration in aerosols is correlated with those of sulfate and oxalate originated from anthropogenic sources, suggesting that soluble Fe is mainly derived from anthropogenic sources. Moreover, the soluble Fe concentration is also correlated with the enrichment factors of vanadium and nickel emitted by fossil fuel combustion. These results suggest that the degree of Fe dissolution is influenced by the magnitude of anthropogenic activity, such as fossil fuel combustion. X-ray absorption fine structure (XAFS) spectroscopy was performed in order to identify the Fe species in aerosols. Fitting of XAFS spectra coupled with micro X-ray fluorescence analysis (μ-XRF) showed the main Fe species in aerosols in Tsukuba to be illite, ferrihydrite, hornblende, and Fe(III) sulfate. Moreover, the soluble Fe fraction in each sample measured by leaching experiments is closely correlated with the Fe(III) sulfate fraction determined by the XAFS spectrum fitting, suggesting that Fe(III) sulfate is the main soluble Fe in the ocean. Another possible factor that can control the amount of soluble Fe supplied into the ocean is the total Fe(III) concentration in the atmosphere, which was high in spring due to the high mineral dust concentrations during spring in East Asia. However, this factor does not contribute to the amount of soluble Fe to a larger degree than the effect of Fe speciation, or more strictly speaking the presence of Fe(III) sulfate. Therefore, based on these results, the most significant factor influencing the amount of soluble Fe in the North Pacific region is the concentration of anthropogenic Fe species such as Fe(III) sulfate that can be emitted from megacities in Eastern Asia.

  14. Seasonal changes in Fe species and soluble Fe concentration in the atmosphere in the Northwest Pacific region based on the analysis of aerosols collected in Tsukuba, Japan

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Furukawa, T.; Kanai, Y.; Uematsu, M.; Zheng, G.; Marcus, M. A.

    2013-03-01

    Atmospheric iron (Fe) can be a significant source of nutrition for phytoplankton inhabiting remote oceans, which in turn has a large influence on the Earth's climate. The bioavailability of Fe in aerosols depends mainly on the fraction of soluble Fe (= [FeSol]/[FeTotal], where [FeSol] and [FeTotal] are the atmospheric concentrations of soluble and total Fe, respectively). However, the numerous factors affecting the soluble Fe fraction have not been fully understood. In this study, the Fe species, chemical composition, and soluble Fe concentrations in aerosols collected in Tsukuba, Japan were investigated over a year (nine samples from December 2002 to October 2003) to identify the factors affecting the amount of soluble Fe supplied into the ocean. The soluble Fe concentration in aerosols is correlated with those of sulfate and oxalate originated from anthropogenic sources, suggesting that soluble Fe is mainly derived from anthropogenic sources. Moreover, the soluble Fe concentration is also correlated with the enrichment factors of vanadium and nickel emitted by fossil fuel combustion. These results suggest that the degree of Fe dissolution is influenced by the magnitude of anthropogenic activity, such as fossil fuel combustion. X-ray absorption fine structure (XAFS) spectroscopy was performed in this study to identify the Fe species in aerosols. The fitting of XAFS spectra coupled with micro X-ray fluorescence analysis (XRF) determined the main Fe species in aerosols in Tsukuba to be illite, ferrihydrite, hornblende, and Fe(III) sulfate. Moreover, the soluble Fe fraction in each sample measured by leaching experiments is closely correlated with the Fe(III) sulfate fraction determined by the XAFS spectrum fitting, suggesting that Fe(III) sulfate is the main soluble Fe in the ocean. Another possible factor that can control the amount of soluble Fe supplied into the ocean is the total Fe(III) concentration in the atmosphere, which was high in spring due to the high mineral dust concentrations during spring in East Asia. However, this factor does not contribute to the amount of soluble Fe to a larger degree than the effect of Fe speciation, or more strictly speaking the presence of Fe(III) sulfate. Therefore, based on these results, the most significant factor influencing the amount of soluble Fe in the North Pacific region is the concentration of anthropogenic Fe species such as Fe(III) sulfate that can be emitted from megacities in Eastern Asia.

  15. Mechanisms for Electron Transfer Through Pili to Fe(III) Oxide in Geobacter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovley, Derek R.

    The purpose of these studies was to aid the Department of Energy in its goal of understanding how microorganisms involved in the bioremediation of metals and radionuclides sustain their activity in the subsurface. This information is required in order to incorporate biological processes into decision making for environmental remediation and long-term stewardship of contaminated sites. The proposed research was designed to elucidate the mechanisms for electron transfer to Fe(III) oxides in Geobacter species because Geobacter species are abundant dissimilatory metal-reducing microorganisms in a diversity of sites in which uranium is undergoing natural attenuation via the reduction of soluble U(VI) tomore » insoluble U(IV) or when this process is artificially stimulated with the addition of organic electron donors. This study investigated the novel, but highly controversial, concept that the final conduit for electron transfer to Fe(III) oxides are electrically conductive pili. The specific objectives were to: 1) further evaluate the conductivity along the pili of Geobacter sulfurreducens and related organisms; 2) determine the mechanisms for pili conductivity; and 3) investigate the role of pili in Fe(III) oxide reduction. The studies demonstrated that the pili of G. sulfurreducens are conductive along their length. Surprisingly, the pili possess a metallic-like conductivity similar to that observed in synthetic organic conducting polymers such as polyaniline. Detailed physical analysis of the pili, as well as studies in which the structure of the pili was genetically modified, demonstrated that the metallic-like conductivity of the pili could be attributed to overlapping pi-pi orbitals of aromatic amino acids. Other potential mechanisms for conductivity, such as electron hopping between cytochromes associated with the pili were definitively ruled out. Pili were also found to be essential for Fe(III) oxide reduction in G. metallireducens. Ecological studies demonstrated that electron conduction along pili is a better strategy for Fe(III) oxide reduction under conditions found in the subsurface than producing an electron shuttle. The role of pili in uranium reduction was also elucidated. Our results are the first example of metallic-like conductivity in a biological protein and represent a paradigm shift in the understanding of long-range biological electron transport. The results are of importance not only for understanding subsurface microbial processes involved in the mobility of metal contaminants and carbon cycling, but also make a basic contribution to microbiology and the emerging field of bioelectronics.« less

  16. Abrupt spin transition with thermal hysteresis of iron(III) complex [Fe(III)(Him)2(hapen)]AsF6 (Him = imidazole, H2hapen = N,N'-bis(2-hydroxyacetophenylidene)ethylenediamine).

    PubMed

    Fujinami, Takeshi; Koike, Masataka; Matsumoto, Naohide; Sunatsuki, Yukinari; Okazawa, Atsushi; Kojima, Norimichi

    2014-02-17

    The solvent-free spin crossover iron(III) complex [Fe(III)(Him)2(hapen)]AsF6 (Him = imidazole, H2hapen = N,N'-bis(2-hydroxyacetophenylidene)ethylenediamine), exhibiting thermal hysteresis, was synthesized and characterized. The Fe(III) ion has an octahedral coordination geometry, with N2O2 donor atoms of the planar tetradentate ligand (hapen) and two nitrogen atoms of two imidazoles at the axial positions. One of two imidazoles is hydrogen-bonded to the phenoxo oxygen atom of hapen of the adjacent unit to give a hydrogen-bonded one-dimensional chain, while the other imidazole group is free from hydrogen bonding. The temperature dependencies of the magnetic susceptibilities and Mössbauer spectra revealed an abrupt spin transition between the high-spin (S = 5/2) and low-spin (S = 1/2) states, with thermal hysteresis.

  17. Site-Selective Benzannulation of N-Heterocycles in Bidentate Ligands Leads to Blue-Shifted Emission from [( P^N)Cu]2(μ-X)2 Dimers.

    PubMed

    Mondal, Rajarshi; Lozada, Issiah B; Davis, Rebecca L; Williams, J A Gareth; Herbert, David E

    2018-05-07

    Benzannulated bidentate pyridine/phosphine ( P^N) ligands bearing quinoline or phenanthridine (3,4-benzoquinoline) units have been prepared, along with their halide-bridged, dimeric Cu(I) complexes of the form [( P^N)Cu] 2 (μ-X) 2 . The copper complexes are phosphorescent in the orange-red region of the spectrum in the solid-state under ambient conditions. Structural characterization in solution and the solid-state reveals a flexible conformational landscape, with both diamond-like and butterfly motifs available to the Cu 2 X 2 cores. Comparing the photophysical properties of complexes of (quinolinyl)phosphine ligands with those of π-extended (phenanthridinyl)phosphines has revealed a counterintuitive impact of site-selective benzannulation. Contrary to conventional assumptions regarding π-extension and a bathochromic shift in the lowest energy absorption maxima, a blue shift of nearly 40 nm in the emission wavelength is observed for the complexes with larger ligand π-systems, which is assigned as phosphorescence on the basis of emission energies and lifetimes. Comparison of the ground-state and triplet excited state structures optimized from DFT and TD-DFT calculations allows attribution of this effect to a greater rigidity for the benzannulated complexes resulting in a higher energy emissive triplet state, rather than significant perturbation of orbital energies. This study reveals that ligand structure can impact photophysical properties for emissive molecules by influencing their structural rigidity, in addition to their electronic structure.

  18. 16S rRNA based microarray analysis of ten periodontal bacteria in patients with different forms of periodontitis.

    PubMed

    Topcuoglu, Nursen; Kulekci, Guven

    2015-10-01

    DNA microarray analysis is a computer based technology, that a reverse capture, which targets 10 periodontal bacteria (ParoCheck) is available for rapid semi-quantitative determination. The aim of this three-year retrospective study was to display the microarray analysis results for the subgingival biofilm samples taken from patient cases diagnosed with different forms of periodontitis. A total of 84 patients with generalized aggressive periodontitis (GAP,n:29), generalized chronic periodontitis (GCP, n:25), peri-implantitis (PI,n:14), localized aggressive periodontitis (LAP,n:8) and refractory chronic periodontitis (RP,n:8) were consecutively selected from the archives of the Oral Microbiological Diagnostic Laboratory. The subgingival biofilm samples were analyzed by the microarray-based identification of 10 selected species. All the tested species were detected in the samples. The red complex bacteria were the most prevalent with very high levels in all groups. Fusobacterium nucleatum was detected in all samples at high levels. The green and blue complex bacteria were less prevalent compared with red and orange complex, except Aggregatibacter actinomycetemcomitas was detected in all LAP group. Positive correlations were found within all the red complex bacteria and between red and orange complex bacteria especially in GCP and GAP groups. Parocheck enables to monitoring of periodontal pathogens in all forms of periodontal disease and can be alternative to other guiding and reliable microbiologic tests. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Cresol Izomerization in the Presence of Acid Catalysts

    NASA Astrophysics Data System (ADS)

    Tarasov, A. L.; Dunaev, S. F.; Kustov, L. M.

    2018-02-01

    It is shown for toluene oxidation with nitrous oxide that modifying HZSM-5 zeolite with zinc oxide nanoparticles considerably improves the selectivity and yield of cresols. It is found that a 2% ZnO/HZSM-5 composite catalyst also exhibits enhanced and stable activity at high temperatures. For the o-cresol isomerization reaction, this modification of HZSM-5 zeolite greatly reduces the contribution from disproportionation and cracking reactions proceeding with formation of phenol, C6-C9 aromatic hydrocarbons, and xylenols. The regularities of their formation in the presence of the studied catalysts are determined using the results from thermodynamic calculations for the equilibrium concentrations of cresol isomers.

  20. Three-dimensional dosimetry of small megavoltage radiation fields using radiochromic gels and optical CT scanning

    NASA Astrophysics Data System (ADS)

    Babic, Steven; McNiven, Andrea; Battista, Jerry; Jordan, Kevin

    2009-04-01

    The dosimetry of small fields as used in stereotactic radiotherapy, radiosurgery and intensity-modulated radiation therapy can be challenging and inaccurate due to partial volume averaging effects and possible disruption of charged particle equilibrium. Consequently, there exists a need for an integrating, tissue equivalent dosimeter with high spatial resolution to avoid perturbing the radiation beam and artificially broadening the measured beam penumbra. In this work, radiochromic ferrous xylenol-orange (FX) and leuco crystal violet (LCV) micelle gels were used to measure relative dose factors (RDFs), percent depth dose profiles and relative lateral beam profiles of 6 MV x-ray pencil beams of diameter 28.1, 9.8 and 4.9 mm. The pencil beams were produced via stereotactic collimators mounted on a Varian 2100 EX linear accelerator. The gels were read using optical computed tomography (CT). Data sets were compared quantitatively with dosimetric measurements made with radiographic (Kodak EDR2) and radiochromic (GAFChromic® EBT) film, respectively. Using a fast cone-beam optical CT scanner (Vista™), corrections for diffusion in the FX gel data yielded RDFs that were comparable to those obtained by minimally diffusing LCV gels. Considering EBT film-measured RDF data as reference, cone-beam CT-scanned LCV gel data, corrected for scattered stray light, were found to be in agreement within 0.5% and -0.6% for the 9.8 and 4.9 mm diameter fields, respectively. The validity of the scattered stray light correction was confirmed by general agreement with RDF data obtained from the same LCV gel read out with a laser CT scanner that is less prone to the acceptance of scattered stray light. Percent depth dose profiles and lateral beam profiles were found to agree within experimental error for the FX gel (corrected for diffusion), LCV gel (corrected for scattered stray light), and EBT and EDR2 films. The results from this study reveal that a three-dimensional dosimetry method utilizing optical CT-scanned radiochromic gels allows for the acquisition of a self-consistent volumetric data set in a single exposure, with sufficient spatial resolution to accurately characterize small fields.

Top