Sample records for xylitol dehydrogenase xdh

  1. Enhanced xylitol production: Expression of xylitol dehydrogenase from Gluconobacter oxydans and mixed culture of resting cell.

    PubMed

    Qi, Xiang-Hui; Zhu, Jing-Fei; Yun, Jun-Hua; Lin, Jing; Qi, Yi-Lin; Guo, Qi; Xu, Hong

    2016-09-01

    Xylitol has numerous applications in food and pharmaceutical industry, and it can be biosynthesized by microorganisms. In the present study, xdh gene, encoding xylitol dehydrogenase (XDH), was cloned from the genome of Gluconobacter oxydans CGMCC 1.49 and overexpressed in Escherichia coli BL21. Sequence analysis revealed that XDH has a TGXXGXXG NAD(H)-binding motif and a YXXXK active site motif, and belongs to the short-chain dehydrogenase/reductase family. And then, the enzymatic properties and kinetic parameter of purified recombinant XDH were investigated. Subsequently, transformations of xylitol from d-xylulose and d-arabitol, respectively, were studied through mixed culture of resting cells of G. oxydans wild-type strain and recombinant strain BL21-xdh. We obtained 28.80 g/L xylitol by mixed culture from 30 g/L d-xylulose in 28 h. The production was increased by more than three times as compared with that of wild-type strain. Furthermore, 25.10 g/L xylitol was produced by the mixed culture from 30 g/L d-arabitol in 30 h with a yield of 0.837 g/g, and the max volumetric productivity of 0.990 g/L h was obtained at 22 h. These contrast to the fact that wild-type strain G. oxydans only produced 8.10 g/L xylitol in 30 h with a yield of 0.270 g/g. To our knowledge, these values are the highest among the reported yields and productivity efficiencies of xylitol from d-arabitol with engineering strains. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Purification and characterization of xylitol dehydrogenase with l-arabitol dehydrogenase activity from the newly isolated pentose-fermenting yeast Meyerozyma caribbica 5XY2.

    PubMed

    Sukpipat, Wiphat; Komeda, Hidenobu; Prasertsan, Poonsuk; Asano, Yasuhisa

    2017-01-01

    Meyerozyma caribbica strain 5XY2, which was isolated from an alcohol fermentation starter in Thailand, was found to catabolize l-arabinose as well as d-glucose and d-xylose. The highest production amounts of ethanol from d-glucose, xylitol from d-xylose, and l-arabitol from l-arabinose were 0.45 g/g d-glucose, 0.60 g/g d-xylose, and 0.61 g/g l-arabinose with 21.7 g/L ethanol, 20.2 g/L xylitol, and 30.3 g/l l-arabitol, respectively. The enzyme with l-arabitol dehydrogenase (LAD) activity was purified from the strain and found to exhibit broad specificity to polyols, such as xylitol, d-sorbitol, ribitol, and l-arabitol. Xylitol was the preferred substrate with K m =16.1 mM and k cat /K m =67.0 min -1 mM -1 , while l-arabitol was also a substrate for the enzyme with K m =31.1 mM and k cat /K m =6.5 min -1  mM -1 . Therefore, this enzyme from M. caribbica was named xylitol dehydrogenase (McXDH). McXDH had an optimum temperature and pH at 40°C and 9.5, respectively. The McXDH gene included a coding sequence of 1086 bp encoding a putative 362 amino acid protein of 39 kDa with an apparent homopentamer structure. Native McXDH and recombinant McXDH exhibited relative activities toward l-arabitol of approximately 20% that toward xylitol, suggesting the applicability of this enzyme with the functions of XDH and LAD to the development of pentose-fermenting Saccharomyces cerevisiae. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae

    Treesearch

    Yong-Su Jin; Thomas W. Jeffries

    2003-01-01

    We changed the fluxes of xylose metabolites in recombinant Saccharomyces cerevisiae by manipulating expression of Pichia stipitis genes(XYL1 and XYL2) coding for xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively. XYL1 copy number was kept constant by integrating it into the chromosome. Copy numbers of XYL2 were varied either by integrating XYL2 into...

  4. The yeast Scheffersomyces amazonensis is an efficient xylitol producer.

    PubMed

    Cadete, Raquel M; Melo-Cheab, Monaliza A; Viana, Adriana L; Oliveira, Evelyn S; Fonseca, César; Rosa, Carlos A

    2016-12-01

    This study assessed the efficiency of Scheffersomyces amazonensis UFMG-CM-Y493 T , cultured in xylose-supplemented medium (YPX) and rice hull hydrolysate (RHH), to convert xylose to xylitol under moderate and severe oxygen limitation. The highest xylitol yields of 0.75 and 1.04 g g -1 in YPX and RHH, respectively, were obtained under severe oxygen limitation. However, volumetric productivity in RHH was ninefold decrease than that in YPX medium. The xylose reductase (XR) and xylitol dehydrogenase (XDH) activities in the YPX cultures were strictly dependent on NADPH and NAD + respectively, and were approximately 10% higher under severe oxygen limitation than under moderate oxygen limitation. This higher xylitol production observed under severe oxygen limitation can be attributed to the higher XR activity and shortage of the NAD + needed by XDH. These results suggest that Sc. amazonensis UFMG-CM-Y493 T is one of the greatest xylitol producers described to date and reveal its potential use in the biotechnological production of xylitol.

  5. Response surface methodology as an approach to determine the optimal activities of xylose reductase and xylitol dehydrogenase enzymes from Candida Mogii.

    PubMed

    Mayerhoff, Zea D V L; Roberto, Inês C; Franco, Telma T

    2006-05-01

    A central composite experimental design leading to a set of 16 experiments with different combinations of pH and temperature was performed to attain the optimal activities of xylose reductase (XR) and xylitol dehydrogenase (XDH) enzymes from Candida mogii cell extract. Under optimized conditions (pH 6.5 and 38 degrees C), the XR and XDH activities were found to be 0.48 U/ml and 0.22 U/ml, respectively, resulting in an XR to XDH ratio of 2.2. Stability, cofactor specificity and kinetic parameters of the enzyme XR were also evaluated. XR activity remained stable for 3 h under 4 and 38 degrees C and for 4 months of storage at -18 degrees C. Studies on cofactor specificity showed that only NADPH-dependent XR was obtained under the cultivation conditions employed. The XR present in C. mogii extracts showed a superior Km value for xylose when compared with other yeast strains. Besides, this parameter was not modified after enzyme extraction by aqueous two-phase system.

  6. A single amino acid change (Y318F) in the L-arabitol dehydrogenase (LadA) from Aspergillus niger results in a significant increase in affinity for D-sorbitol

    PubMed Central

    2009-01-01

    Background L-arabitol dehydrogenase (LAD) and xylitol dehydrogenase (XDH) are involved in the degradation of L-arabinose and D-xylose, which are among the most abundant monosaccharides on earth. Previous data demonstrated that LAD and XDH not only differ in the activity on their biological substrate, but also that only XDH has significant activity on D-sorbitol and may therefore be more closely related to D-sorbitol dehydrogenases (SDH). In this study we aimed to identify residues involved in the difference in substrate specificity. Results Phylogenetic analysis demonstrated that LAD, XDH and SDH form 3 distinct groups of the family of dehydrogenases containing an Alcohol dehydrogenase GroES-like domain (pfam08240) and likely have evolved from a common ancestor. Modelling of LadA and XdhA of the saprobic fungus Aspergillus niger on human SDH identified two residues in LadA (M70 and Y318), that may explain the absence of activity on D-sorbitol. While introduction of the mutation M70F in LadA of A. niger resulted in a nearly complete enzyme inactivation, the Y318F resulted in increased activity for L-arabitol and xylitol. Moreover, the affinity for D-sorbitol was increased in this mutant. Conclusion These data demonstrates that Y318 of LadA contributes significantly to the substrate specificity difference between LAD and XDH/SDH. PMID:19674460

  7. Heterologous expression of Spathaspora passalidarum xylose reductase and xylitol dehydrogenase genes improved xylose fermentation ability of Aureobasidium pullulans.

    PubMed

    Guo, Jian; Huang, Siyao; Chen, Yefu; Guo, Xuewu; Xiao, Dongguang

    2018-04-30

    Aureobasidium pullulans is a yeast-like fungus that can ferment xylose to generate high-value-added products, such as pullulan, heavy oil, and melanin. The combinatorial expression of two xylose reductase (XR) genes and two xylitol dehydrogenase (XDH) genes from Spathaspora passalidarum and the heterologous expression of the Piromyces sp. xylose isomerase (XI) gene were induced in A. pullulans to increase the consumption capability of A. pullulans on xylose. The overexpression of XYL1.2 (encoding XR) and XYL2.2 (encoding XDH) was the most beneficial for xylose utilization, resulting in a 17.76% increase in consumed xylose compared with the parent strain, whereas the introduction of the Piromyces sp. XI pathway failed to enhance xylose utilization efficiency. Mutants with superior xylose fermentation performance exhibited increased intracellular reducing equivalents. The fermentation performance of all recombinant strains was not affected when glucose or sucrose was utilized as the carbon source. The strain with overexpression of XYL1.2 and XYL2.2 exhibited excellent fermentation performance with mimicked hydrolysate, and pullulan production increased by 97.72% compared with that of the parent strain. The present work indicates that the P4 mutant (using the XR/XDH pathway) with overexpressed XYL1.2 and XYL2.2 exhibited the best xylose fermentation performance. The P4 strain showed the highest intracellular reducing equivalents and XR and XDH activity, with consequently improved pullulan productivity and reduced melanin production. This valuable development in aerobic fermentation by the P4 strain may provide guidance for the biotransformation of xylose to high-value products by A. pullulans through genetic approach.

  8. Utilization of xylitol dehydrogenase in a combined microbial/enzymatic process for production of xylitol from D-glucose.

    PubMed

    Mayer, Gerhard; Kulbe, Klaus D; Nidetzky, Bernd

    2002-01-01

    The production of xylitol from D-glucose occurs through a three-step process in which D-arabitol and D-xylulose are formed as the first and second intermediate product, respectively, and both are obtained via microbial bioconversion reactions. Catalytic hydrogenation of D-xylulose yields xylitol; however, it is contaminated with D-arabitol. The aim of this study was to increase the stereoselectivity of the D-xylulose reduction step by using enzymatic catalysis. Recombinant xylitol dehydrogenase from the yeast Galactocandida mastotermitis was employed to catalyze xylitol formation from D-xylulose in an NADH-dependent reaction, and coenzyme regeneration was achieved by means of formate dehydrogenase-catalyzed oxidation of formate into carbon dioxide. The xylitol yield from D-xylulose was close to 100%. Optimal productivity was found for initial coenzyme concentrations of between 0.5 and 0.75 mM. In the presence of 0.30 M (45 g/L) D-xylulose and 2000 U/L of both dehydrogenases, exhaustive substrate turnover was achieved typically in a 4-h reaction time. The enzymes were recovered after the reaction in yields of approx 90% by means of ultrafiltration and could be reused for up to six cycles of D-xylulose reduction. The advantages of incorporating the enzyme-catalyzed step in a process for producing xylitol from D-glucose are discussed, and strategies for downstream processing are proposed by which the observed coenzyme turnover number of approx 600 could be increased significantly.

  9. Overexpression of D-Xylose Reductase (xyl1) Gene and Antisense Inhibition of D-Xylulokinase (xyiH) Gene Increase Xylitol Production in Trichoderma reesei

    PubMed Central

    Hong, Yuanyuan; Dashtban, Mehdi; Kepka, Greg; Chen, Sanfeng; Qin, Wensheng

    2014-01-01

    T. reesei is an efficient cellulase producer and biomass degrader. To improve xylitol production in Trichoderma reesei strains by genetic engineering, two approaches were used in this study. First, the presumptive D-xylulokinase gene in T. reesei (xyiH), which has high homology to known fungi D-xylulokinase genes, was silenced by transformation of T. reesei QM9414 strain with an antisense construct to create strain S6-2-2. The expression of the xyiH gene in the transformed strain S6-2-2 decreased at the mRNA level, and D-xylulokinase activity decreased after 48 h of incubation. This led to an increase in xylitol production from undetectable levels in wild-type T. reesei QM9414 to 8.6 mM in S6-2-2. The T. reesei Δxdh is a xylose dehydrogenase knockout strain with increased xylitol production compared to the wild-type T. reesei QM9414 (22.8 mM versus undetectable). The copy number of the xylose reductase gene (xyl1) in T. reesei Δxdh strain was increased by genetic engineering to create a new strain Δ9-5-1. The Δ9-5-1 strain showed a higher xyl1 expression and a higher yield of xylose reductase, and xylitol production was increased from 22.8 mM to 24.8 mM. Two novel strains S6-2-2 and Δ9-5-1 are capable of producing higher yields of xylitol. T. reesei has great potential in the industrial production of xylitol. PMID:25013760

  10. Xylitol dehydrogenase from Candida tropicalis: molecular cloning of the gene and structural analysis of the protein.

    PubMed

    Lima, Luanne Helena Augusto; Pinheiro, Cristiano Guimarães do Amaral; de Moraes, Lídia Maria Pepe; de Freitas, Sonia Maria; Torres, Fernando Araripe Gonçalves

    2006-12-01

    Yeasts can metabolize xylose by the action of two key enzymes: xylose reductase and xylitol dehydrogenase. In this work, we present data concerning the cloning of the XYL2 gene encoding xylitol dehydrogenase from the yeast Candida tropicalis. The gene is present as a single copy in the genome and is controlled at the transcriptional level by the presence of the inducer xylose. XYL2 was functionally tested by heterologous expression in Saccharomyces cerevisiae to develop a yeast strain capable of producing ethanol from xylose. Structural analysis of C. tropicalis xylitol dehydrogenase, Xyl2, suggests that it is a member of the medium-chain dehydrogenase (MDR) family. This is supported by the presence of the amino acid signature [GHE]xx[G]xxxxx[G]xx[V] in its primary sequence and a typical alcohol dehydrogenase Rossmann fold pattern composed by NAD(+) and zinc ion binding domains.

  11. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation

    USDA-ARS?s Scientific Manuscript database

    Saccharomyces strains engineered to ferment xylose using Scheffersomyces stipitis xylose reductase (XR) and xylitol dehydrogenase (XDH) genes appear to be limited by metabolic imbalances due to differing cofactor specificities of XR and XDH. The S. stipitis XR, which uses nicotinamide adenine dinucl...

  12. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains

    PubMed Central

    Bettiga, Maurizio; Hahn-Hägerdal, Bärbel; Gorwa-Grauslund, Marie F

    2008-01-01

    Background Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose. Results The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells)-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells)-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells)-1 h-1 compared with 0.01 g (g cells)-1 h-1 for the xylose reductase/xylitol

  13. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.

    PubMed

    Lee, Sung-Haeng; Kodaki, Tsutomu; Park, Yong-Cheol; Seo, Jin-Ho

    2012-04-30

    Efficient conversion of xylose to ethanol is an essential factor for commercialization of lignocellulosic ethanol. To minimize production of xylitol, a major by-product in xylose metabolism and concomitantly improve ethanol production, Saccharomyces cerevisiae D452-2 was engineered to overexpress NADH-preferable xylose reductase mutant (XR(MUT)) and NAD⁺-dependent xylitol dehydrogenase (XDH) from Pichia stipitis and endogenous xylulokinase (XK). In vitro enzyme assay confirmed the functional expression of XR(MUT), XDH and XK in recombinant S. cerevisiae strains. The change of wild type XR to XR(MUT) along with XK overexpression led to reduction of xylitol accumulation in microaerobic culture. More modulation of the xylose metabolism including overexpression of XR(MUT) and transaldolase, and disruption of the chromosomal ALD6 gene encoding aldehyde dehydrogenase (SX6(MUT)) improved the performance of ethanol production from xylose remarkably. Finally, oxygen-limited fermentation of S. cerevisiae SX6(MUT) resulted in 0.64 g l⁻¹ h⁻¹ xylose consumption rate, 0.25 g l⁻¹ h⁻¹ ethanol productivity and 39% ethanol yield based on the xylose consumed, which were 1.8, 4.2 and 2.2 times higher than the corresponding values of recombinant S. cerevisiae expressing XR(MUT), XDH and XK only. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Analysis of metabolisms and transports of xylitol using xylose- and xylitol-assimilating Saccharomyces cerevisiae.

    PubMed

    Tani, Tatsunori; Taguchi, Hisataka; Akamatsu, Takashi

    2017-05-01

    To clarify the relationship between NAD(P) + /NAD(P)H redox balances and the metabolisms of xylose or xylitol as carbon sources, we analyzed aerobic and anaerobic batch cultures of recombinant Saccharomyces cerevisiae in a complex medium containing 20 g/L xylose or 20 g/L xylitol at pH 5.0 and 30°C. The TDH3p-GAL2 or gal80Δ strain completely consumed the xylose within 24 h and aerobically consumed 92-100% of the xylitol within 96 h, but anaerobically consumed only 20% of the xylitol within 96 h. Cells of both strains grew well in aerobic culture. The addition of acetaldehyde (an effective oxidizer of NADH) increased the xylitol consumption by the anaerobically cultured strain. These results indicate that in anaerobic culture, NAD + generated in the NAD(P)H-dependent xylose reductase reaction was likely needed in the NAD + -dependent xylitol dehydrogenase reaction, whereas in aerobic culture, the NAD + generated by oxidation of NADH in the mitochondria is required in the xylitol dehydrogenase reaction. The role of Gal2 and Fps1 in importing xylitol into the cytosol and exporting it from the cells was analyzed by examining the xylitol consumption in aerobic culture and the export of xylitol metabolized from xylose in anaerobic culture, respectively. The xylitol consumptions of gal80Δ gal2Δ and gal80Δ gal2Δ fps1Δ strains were reduced by 81% and 88% respectively, relative to the gal80Δ strain. The maximum xylitol concentration accumulated by the gal80Δ, gal80Δ gal2Δ, and gal80Δ gal2Δ fps1Δ strains was 7.25 g/L, 5.30 g/L, and 4.27 g/L respectively, indicating that Gal2 and Fps1 transport xylitol both inward and outward. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis.

    PubMed

    Watanabe, Seiya; Abu Saleh, Ahmed; Pack, Seung Pil; Annaluru, Narayana; Kodaki, Tsutomu; Makino, Keisuke

    2007-09-01

    A recombinant Saccharomyces cerevisiae strain transformed with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes from Pichia stipitis (PsXR and PsXDH, respectively) has the ability to convert xylose to ethanol together with the unfavourable excretion of xylitol, which may be due to intercellular redox imbalance caused by the different coenzyme specificity between NADPH-preferring XR and NAD(+)-dependent XDH. In this study, we focused on the effect(s) of mutated NADH-preferring PsXR in fermentation. The R276H and K270R/N272D mutants were improved 52- and 146-fold, respectively, in the ratio of NADH/NADPH in catalytic efficiency [(k(cat)/K(m) with NADH)/(k(cat)/K(m) with NADPH)] compared with the wild-type (WT), which was due to decrease of k(cat) with NADPH in the R276H mutant and increase of K(m) with NADPH in the K270R/N272D mutant. Furthermore, R276H mutation led to significant thermostabilization in PsXR. The most positive effect on xylose fermentation to ethanol was found by using the Y-R276H strain, expressing PsXR R276H mutant and PsXDH WT: 20 % increase of ethanol production and 52 % decrease of xylitol excretion, compared with the Y-WT strain expressing PsXR WT and PsXDH WT. Measurement of intracellular coenzyme concentrations suggested that maintenance of the of NADPH/NADP(+) and NADH/NAD(+) ratios is important for efficient ethanol fermentation from xylose by recombinant S. cerevisiae.

  16. Deletion of FPS1, Encoding Aquaglyceroporin Fps1p, Improves Xylose Fermentation by Engineered Saccharomyces cerevisiae

    PubMed Central

    Wei, Na; Xu, Haiqing; Kim, Soo Rin

    2013-01-01

    Accumulation of xylitol in xylose fermentation with engineered Saccharomyces cerevisiae presents a major problem that hampers economically feasible production of biofuels from cellulosic plant biomass. In particular, substantial production of xylitol due to unbalanced redox cofactor usage by xylose reductase (XR) and xylitol dehydrogenase (XDH) leads to low yields of ethanol. While previous research focused on manipulating intracellular enzymatic reactions to improve xylose metabolism, this study demonstrated a new strategy to reduce xylitol formation and increase carbon flux toward target products by controlling the process of xylitol secretion. Using xylitol-producing S. cerevisiae strains expressing XR only, we determined the role of aquaglyceroporin Fps1p in xylitol export by characterizing extracellular and intracellular xylitol. In addition, when FPS1 was deleted in a poorly xylose-fermenting strain with unbalanced XR and XDH activities, the xylitol yield was decreased by 71% and the ethanol yield was substantially increased by nearly four times. Experiments with our optimized xylose-fermenting strain also showed that FPS1 deletion reduced xylitol production by 21% to 30% and increased ethanol yields by 3% to 10% under various fermentation conditions. Deletion of FPS1 decreased the xylose consumption rate under anaerobic conditions, but the effect was not significant in fermentation at high cell density. Deletion of FPS1 resulted in higher intracellular xylitol concentrations but did not significantly change the intracellular NAD+/NADH ratio in xylose-fermenting strains. The results demonstrate that Fps1p is involved in xylitol export in S. cerevisiae and present a new gene deletion target, FPS1, and a mechanism different from those previously reported to engineer yeast for improved xylose fermentation. PMID:23475614

  17. Construction of brewing-wine Aspergillus oryzae pyrG- mutant by pyrG gene deletion and its application in homology transformation.

    PubMed

    Du, Yu; Xie, Guizhen; Yang, Chunfa; Fang, Baishan; Chen, Hongwen

    2014-06-01

    pyrG(-) host cells are indispensable for pyrG(-) based transformation system. Isolations of pyrG(-) host cells by random mutations are limited by time-consuming, unclear genetic background and potential interferences of homogenous recombination. The purpose of this study was to construct brewing-wine Aspergillus oryzae pyrG(-) mutant by site-directed mutation of pyrG gene deletion which would be used as a host for further transformation. pMD-pyrGAB, a vector carrying pyrG deletion cassette, was used to construct pyrG(-) mutant of A. oryzae. Three stable pyrG deletion mutants of A. oryzae were isolated by resistant to 5-fluoroorotic acid and confirmed by polymerase chain reaction analysis, indicating that pyrG was completely excised. The ΔpyrG mutants were applied as pyrG(-) host cells to disrupt xdh gene encoding xylitol dehydrogenase, which involves in xylitol production of A. oryzae. The xdh disruption mutants were efficiently constructed by transforming a pMD-pyrG-xdh disruption plasmid carrying pyrG, and the produced xylitol concentration of the Δxdh mutant was three times as much as that of the ΔpyrG recipient. Site-directed pyrG gene deletion is thus an effective way for the isolation of pyrG(-) host cells, and the established host-vector system could be applied in further functional genomics analysis and molecular breeding of A. oryzae. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  18. Interaction of cytoplasmic dehydrogenases: quantitation of pathways of ethanol metabolism.

    PubMed

    Vind, C; Grunnet, N

    1983-01-01

    The interaction between xylitol, alcohol and lactate dehydrogenase has been studied in hepatocytes from rats by applying specifically tritiated substrates. A simple model, describing the metabolic fate of tritium from [2-3H] xylitol and (1R) [1-3H]ethanol is presented. The model allows calculation of the specific radioactivity of free, cytosolic NADH, based on transfer of tritium to lactate, glucose and water. From the initial labelling rate of lactate and the specific radioactivity of cytosolic NADH, we have determined the reversible flow through the lactate dehydrogenase catalyzed reaction to 1-5 mumol/min . g wet wt. The results suggest that xylitol, alcohol and lactate dehydrogenase share the same pool of NAD(H) in the cytoplasma. This finding allows estimation of the ethanol oxidation rate by the non-alcohol dehydrogenase pathways from the relative yield of tritium in water and glucose. The calculations are based on a comparison of the fate of the 1-pro-R hydrogen of ethanol and the hydrogen bound to carbon 2 of xylitol or carbon 2 of lactate under identical conditions.

  19. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums.

    PubMed

    Zhang, Guo-Chang; Turner, Timothy L; Jin, Yong-Su

    2017-03-01

    Accumulation of reduced byproducts such as glycerol and xylitol during xylose fermentation by engineered Saccharomyces cerevisiae hampers the economic production of biofuels and chemicals from cellulosic hydrolysates. In particular, engineered S. cerevisiae expressing NADPH-linked xylose reductase (XR) and NAD + -linked xylitol dehydrogenase (XDH) produces substantial amounts of the reduced byproducts under anaerobic conditions due to the cofactor difference of XR and XDH. While the additional expression of a water-forming NADH oxidase (NoxE) from Lactococcus lactis in engineered S. cerevisiae with the XR/XDH pathway led to reduced glycerol and xylitol production and increased ethanol yields from xylose, volumetric ethanol productivities by the engineered yeast decreased because of growth defects from the overexpression of noxE. In this study, we introduced noxE into an engineered yeast strain (SR8) exhibiting near-optimal xylose fermentation capacity. To overcome the growth defect caused by the overexpression of noxE, we used a high cell density inoculum for xylose fermentation by the SR8 expressing noxE. The resulting strain, SR8N, not only showed a higher ethanol yield and lower byproduct yields, but also exhibited a high ethanol productivity during xylose fermentation. As noxE overexpression elicits a negligible growth defect on glucose conditions, the beneficial effects of noxE overexpression were substantial when a mixture of glucose and xylose was used. Consumption of glucose led to rapid cell growth and therefore enhanced the subsequent xylose fermentation. As a result, the SR8N strain produced more ethanol and fewer byproducts from a mixture of glucose and xylose than the parental SR8 strain without noxE overexpression. Our results suggest that the growth defects from noxE overexpression can be overcome in the case of fermenting lignocellulose-derived sugars such as glucose and xylose.

  20. Improved Xylitol Production from D-Arabitol by Enhancing the Coenzyme Regeneration Efficiency of the Pentose Phosphate Pathway in Gluconobacter oxydans.

    PubMed

    Li, Sha; Zhang, Jinliang; Xu, Hong; Feng, Xiaohai

    2016-02-10

    Gluconobacter oxydans is used to produce xylitol from D-arabitol. This study aims to improve xylitol production by increasing the coenzyme regeneration efficiency of the pentose phosphate pathway in G. oxydans. Glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were overexpressed in G. oxydans. Real-time PCR and enzyme activity assays revealed that G6PDH/6PGDH activity and coenzyme regeneration efficiency increased in the recombinant G. oxydans strains. Approximately 29.3 g/L xylitol was obtained, with a yield of 73.2%, from 40 g/L d-arabitol in the batch biotransformation with the G. oxydans PZ strain. Moreover, the xylitol productivity (0.62 g/L/h) was 3.26-fold of the wild type strain (0.19 g/L/h). In repetitive batch biotransformation, the G. oxydans PZ cells were used for five cycles without incurring a significant loss in productivity. These results indicate that the recombinant G. oxydans PZ strain is economically feasible for xylitol production in industrial bioconversion.

  1. Xylitol concentrations in artificial saliva after application of different xylitol dental varnishes

    PubMed Central

    PEREIRA, Agnes de Fátima Faustino; da SILVA, Thiago Cruvinel; da SILVA, Thelma Lopes; CALDANA, Magali de Lourdes; BASTOS, José Roberto Magalhães; BUZALAF, Marília Afonso Rabelo

    2012-01-01

    Objective The present study analyzed xylitol concentrations in artificial saliva over time after application of varnishes containing 10% and 20% xylitol. Material and Methods Fifteen bovine enamel specimens (8x4 mm) were randomly allocated to 3 groups (n=5/group), according to the type of varnish used: 10% xylitol, 20% xylitol and no xylitol (control). After varnish application (4 mg), specimens were immersed in vials containing 500 µL of artificial saliva. Saliva samples were collected in different times (1, 8, 12, 16, 24, 48 and 72 h) and xylitol concentrations were analyzed. Data were assessed by two-way repeated-measures ANOVA (p<0.05). Results Colorimetric analysis was not able to detect xylitol in saliva samples of the control group. Salivary xylitol concentrations were significantly higher up to 8 h after application of the 20% xylitol varnish. Thereafter, the 10% xylitol varnish released larger amounts of that polyol in artificial saliva. Conclusions Despite the results in short-term, sustained xylitol releases could be obtained when the 10% xylitol varnish was used. These varnishes seem to be viable alternatives to increase salivary xylitol levels, and therefore, should be clinically tested to confirm their effectiveness. PMID:22666828

  2. Sequential activation of JAKs, STATs and xanthine dehydrogenase/oxidase by hypoxia in lung microvascular endothelial cells.

    PubMed

    Wang, Guansong; Qian, Pin; Jackson, Fannie R; Qian, Guisheng; Wu, Guangyu

    2008-01-01

    Xanthine dehydrogenase/oxidase (XDH/XO) is associated with various pathological conditions related to the endothelial injury. However, the molecular mechanism underlying the activation of XDH/XO by hypoxia remains largely unknown. In this report, we determined whether the Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) signaling pathway is involved in hypoxia-induced activation of XDH/XO in primary cultures of lung microvascular endothelial cells (LMVEC). We found that hypoxia significantly increased interleukin 6 (IL6) production in a time-dependent manner in LMVEC. Hypoxia also markedly augmented phosphorylation/activation of JAKs (JAK1, JAK2 and JAK3) and the JAK downstream effectors STATs (STAT3 and STAT5). Hypoxia-induced activation of STAT3 was blocked by IL6 antibodies, the JAK inhibitor AG490 and the suppressor of cytokine signaling 3 (SOCS3), implying that hypoxia-promoted IL6 secretion activates the JAK/STAT pathway in LMVEC. Phosphorylation and DNA-binding activity of STAT3 were also inhibited by the p38 MAPK inhibitor SB203580 and the phosphatidylinositol 3-kinase inhibitor LY294002, suggesting that multiple signaling pathways involved in STAT activation by hypoxia. Importantly, hypoxia promoted XDH/XO activation in LMVEC, which was markedly reversed by inhibiting the JAK-STAT pathway using IL6 antibodies, AG490 and SOCS3. These data demonstrated that JAKs, STATs and XDH/XO were sequentially activated by hypoxia. These data provide the first evidence indicating that the JAK-STAT pathway is involved in hypoxia-mediated XDH/XO activation in LMVEC.

  3. Co-immobilization of glucose oxidase and xylose dehydrogenase displayed whole cell on multiwalled carbon nanotube nanocomposite films modified electrode for simultaneous voltammetric detection of D-glucose and D-xylose.

    PubMed

    Li, Liang; Liang, Bo; Li, Feng; Shi, Jianguo; Mascini, Marco; Lang, Qiaolin; Liu, Aihua

    2013-04-15

    In this paper, we first report the construction of Nafion/glucose oxidase (GOD)/xylose dehydrogenase displayed bacteria (XDH-bacteria)/multiwalled carbon nanotubes (MWNTs) modified electrode for simultaneous voltammetric determination of D-glucose and D-xylose. The optimal conditions for the immobilized enzymes were established. Both enzymes retained their good stability and activities. In the mixture solution of D-glucose and D-xylose containing coenzyme NAD⁺ (the oxidized form of nicotinamide adenine dinucleotide), the Nafion/GOD/XDH-bacteria/MWNTs modified electrode exhibited quasi-reversible oxidation-reduction peak at -0.5 V (vs. saturated calomel electrode, SCE) originating from the catalytic oxidation of D-glucose, and oxidation peak at +0.55 V(vs. SCE) responding to the oxidation of NADH (the reduced form of nicotinamide adenine dinucleotide) by the carbon nanotubes, where NADH is the resultant product of coenzyme NAD⁺ involved in the catalysis of D-xylose by XDH-displayed bacteria. For the proposed biosensor, cathodic peak current at -0.5 V was linear with the concentration of D-glucose within the range of 0.25-6 mM with a low detection limit of 0.1 mM D-glucose (S/N=3), and the anodic peak current at +0.55 V was linear with the concentration of d-xylose in the range of 0.25∼4 mM with a low detection limit of 0.1 mM D-xylose (S/N=3). Further, D-xylose and D-glucose did not interfere with each other. 300-fold excess saccharides including D-maltose, D-galactose, D-mannose, D-sucrose, D-fructose, D-cellobiose, and 60-fold excess L-arabinose, and common interfering substances (100-fold excess ascorbic acid, dopamine, uric acid) as well as 300-fold excess D-xylitol did not affect the detection of D-glucose and D-xylose (both 1 mM). Therefore, the proposed biosensor is stable, specific, reproducible, simple, rapid and cost-effective, which holds great potential in real applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Characterization of xanthine dehydrogenase and aldehyde oxidase of Marsupenaeus japonicus and their response to microbial pathogen.

    PubMed

    Okamura, Yo; Inada, Mari; Elshopakey, Gehad Elsaid; Itami, Toshiaki

    2018-05-16

    Reactive oxygen species (ROS) play key roles in many physiological processes. In particular, the sterilization mechanism of bacteria using ROS in macrophages is a very important function for biological defense. Xanthine dehydrogenase (XDH) and aldehyde oxidase (AOX), members of the molybdo-flavoenzyme subfamily, are known to generate ROS. Although these enzymes occur in many vertebrates, some insects, and plants, little research has been conducted on XDHs and AOXs in crustaceans. Here, we cloned the entire cDNA sequences of XDH (MjXDH: 4328 bp) and AOX (MjAOX: 4425 bp) from Marsupenaeus japonicus (kuruma shrimp) using reverse transcriptase-polymerase chain reaction (RT-PCR) and random amplification of cDNA ends (RACE). Quantitative real-time RT-PCR transcriptional analysis revealed that MjXDH mRNA is highly expressed in heart and stomach tissues, whereas MjAOX mRNA is highly expressed in the lymphoid organ and intestinal tissues. Furthermore, expression of MjAOX was determined to be up-regulated in the lymphoid organ in response to Vibrio penaeicida at 48 and 72 h after injection; in contrast, hydrogen peroxide (H 2 O 2 ) concentrations increased significantly at 6, 12, 48, and 72 h after injection with white spot syndrome virus (WSSV) and at 72 h after injection with V. penaeicida. To the best of our knowledge, this study is the first to have identified and cloned XDH and AOX from a crustacean species.

  5. Xylose reductase and xylitol dehydrogenase activities of Candida guilliermondii as a function of different treatments of sugarcane bagasse hemicellulosic hydrolysate employing experimental design.

    PubMed

    Alves, Lourdes A; Vitolo, Michele; Felipe, Maria das Graças A; de Almeida e Silva, João Batista

    2002-01-01

    The sugarcane bagasse hydrolysate, which is rich in xylose, can be used as culture medium for Candida guilliermondii in xylitol production. However, the hydrolysate obtained from bagasse by acid hydrolysis at 120 degrees C for 20 min has by-products (acetic acid and furfural, among others), which are toxic to the yeast over certain concentrations. So, the hydrolysate must be pretreated before using in fermentation. The pretreatment variables considered were: adsorption time (15,37.5, and 60 min), type of acid used (H2So4 and H3Po4), hydrolysate concentration (original, twofold, and fourfold concentrated), and active charcoal (0.5, 1.75 and 3.0%). The suitability of the pretreatment was followed by measuring the xylose reductase (XR) and xylitol dehydrogenase (XD) activity of yeast grown in each treated hydrolysate. The response surface methodology (2(4) full factorial design with a centered face) indicated that the hydrolysate might be concentrated fourfold and the pH adjusted to 7.0 with CaO, followed by reduction to 5.5 with H3PO4. After that it was treated with active charcoal (3.0%) by 60 min. This pretreated hydrolysate attained the high XR/XD ratio of 4.5.

  6. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.

    PubMed

    Iverson, Andrew; Garza, Erin; Manow, Ryan; Wang, Jinhua; Gao, Yuanyuan; Grayburn, Scott; Zhou, Shengde

    2016-04-16

    Anaerobic rather than aerobic fermentation is preferred for conversion of biomass derived sugars to high value redox-neutral and reduced commodities. This will likely result in a higher yield of substrate to product conversion and decrease production cost since substrate often accounts for a significant portion of the overall cost. To this goal, metabolic pathway engineering has been used to optimize substrate carbon flow to target products. This approach works well for the production of redox neutral products such as lactic acid from redox neutral sugars using the reducing power NADH (nicotinamide adenine dinucleotide, reduced) generated from glycolysis (2 NADH per glucose equivalent). Nevertheless, greater than two NADH per glucose catabolized is needed for the production of reduced products (such as xylitol) from redox neutral sugars by anaerobic fermentation. The Escherichia coli strain AI05 (ΔfrdBC ΔldhA ΔackA Δ(focA-pflB) ΔadhE ΔptsG ΔpdhR::pflBp 6-(aceEF-lpd)), previously engineered for reduction of xylose to xylitol using reducing power (NADH equivalent) of glucose catabolism, was further engineered by 1) deleting xylAB operon (encoding for xylose isomerase and xylulokinase) to prevent xylose from entering the pentose phosphate pathway; 2) anaerobically expressing the sdhCDAB-sucABCD operon (encoding for succinate dehydrogenase, α-ketoglutarate dehydrogenase and succinyl-CoA synthetase) to enable an anaerobically functional tricarboxcylic acid cycle with a theoretical 10 NAD(P)H equivalent per glucose catabolized. These reducing equivalents can be oxidized by synthetic respiration via xylose reduction, producing xylitol. The resulting strain, AI21 (pAI02), achieved a 96 % xylose to xylitol conversion, with a yield of 6 xylitol per glucose catabolized (molar yield of xylitol per glucose consumed (YRPG) = 6). This represents a 33 % improvement in xylose to xylitol conversion, and a 63 % increase in xylitol yield per glucose catabolized over

  7. A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol.

    PubMed

    Granström, Tom Birger; Izumori, Ken; Leisola, Matti

    2007-02-01

    Xylitol is the first rare sugar that has global markets. It has beneficial health properties and represents an alternative to current conventional sweeteners. Industrially, xylitol is produced by chemical hydrogenation of D-xylose into xylitol. The biotechnological method of producing xylitol by metabolically engineered yeasts, Saccharomyces cerevisiae or Candida, has been studied as an alternative to the chemical method. Due to the industrial scale of production, xylitol serves as an inexpensive starting material for the production of other rare sugars. The second part of this mini-review on xylitol will look more closely at the biotechnological production and future applications of the rare sugar, xylitol.

  8. Xanthine urolithiasis in a cat: a case report and evaluation of a candidate gene for xanthine dehydrogenase.

    PubMed

    Tsuchida, Shuichi; Kagi, Akiko; Koyama, Hidekazu; Tagawa, Masahiro

    2007-12-01

    Xanthine urolithiasis was found in a 4-year-old spayed female Himalayan cat with a 10-month history of intermittent haematuria and dysuria. Ultrasonographs indicated the existence of several calculi in the bladder that were undetectable by survey radiographic examination. Four bladder stones were removed by cystotomy. The stones were spherical brownish-yellow and their surface was smooth and glossy. Quantitative mineral analysis showed a representative urolith to be composed of more than 95% xanthine. Ultrasonographic examination of the bladder 4.5 months postoperatively indicated the recurrence of urolithiasis. Analysis of purine concentration in urine and blood showed that the cat excreted excessive amounts of xanthine. In order to test the hypothesis that xanthinuria was caused by a homozygote of the inherited mutant allele of a gene responsible for deficiency of enzyme activity in purine degradation pathway, the allele composition of xanthine dehydrogenase (XDH) gene (one of the candidate genes for hereditary xanthinuria) was evaluated. The cat with xanthinuria was a heterozygote of the polymorphism. A single nucleotide polymorphism analysis of the cat XDH gene strongly indicated that the XDH gene of the patient cat was composed of two kinds of alleles and ruled out the hypothesis that the cat inherited the same recessive XDH allele suggesting no activity from a single ancestor.

  9. Effects of xylitol on xylitol-sensitive versus xylitol-resistant Streptococcus mutans strains in a three-species in vitro biofilm.

    PubMed

    Marttinen, Aino M; Ruas-Madiedo, Patricia; Hidalgo-Cantabrana, Claudio; Saari, Markku A; Ihalin, Riikka A; Söderling, Eva M

    2012-09-01

    We studied the effects of xylitol on biofilms containing xylitol-resistant (Xr) and xylitol-sensitive (Xs) Streptococcus mutans, Actinomyces naeslundii and S. sanguinis. The biofilms were grown for 8 and 24 h on hydroxyapatite discs. The viable microorganisms were determined by plate culturing techniques and fluorescence in situ hybridization (FISH) was performed using a S. mutans-specific probe. Extracellular cell-bound polysaccharides (EPS) were determined by spectrofluorometry from single-species S. mutans biofilms. In the presence of 5 % xylitol, the counts of the Xs S. mutans decreased tenfold in the young (8 h) biofilm (p < 0.05) but no effect was seen in the mature (24 h) biofilm. No decrease was observed for the Xr strains, and FISH confirmed these results. No differences were detected in the EPS production of the Xs S. mutans grown with or without xylitol, nor between Xr and Xs S. mutans strains. Thus, it seems that xylitol did not affect the EPS synthesis of the S. mutans strains. Since the Xr S. mutans strains, not inhibited by xylitol, showed no xylitol-induced decrease in the biofilms, we conclude that growth inhibition could be responsible for the decrease of the counts of the Xs S. mutans strains in the clinically relevant young biofilms.

  10. Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations.

    PubMed

    Chin, Jonathan W; Cirino, Patrick C

    2011-01-01

    Escherichia coli engineered to uptake xylose while metabolizing glucose was previously shown to produce high levels of xylitol from a mixture of glucose and xylose when expressing NADPH-dependent xylose reductase from Candida boidinii (CbXR) (Cirino et al., Biotechnol Bioeng. 2006;95:1167-1176). We then described the effects of deletions of key metabolic pathways (e.g., Embden-Meyerhof-Parnas and pentose phosphate pathway) and reactions (e.g., transhydrogenase and NADH dehydrogenase) on resting-cell xylitol yield (Y RPG: moles of xylitol produced per mole of glucose consumed) (Chin et al., Biotechnol Bioeng. 2009;102:209-220). These prior results demonstrated the importance of direct NADPH supply by NADP+-utilizing enzymes in central metabolism for driving heterologous NADPH-dependent reactions. This study describes strain modifications that improve coupling between glucose catabolism (oxidation) and xylose reduction using two fundamentally different strategies. We first examined the effects of deleting the phosphofructokinase (pfk) gene(s) on growth-uncoupled xylitol production and found that deleting both pfkA and sthA (encoding the E. coli-soluble transhydrogenase) improved the xylitol Y RPG from 3.4 ± 0.6 to 5.4 ± 0.4. The second strategy focused on coupling aerobic growth on glucose to xylitol production by deleting pgi (encoding phosphoglucose isomerase) and sthA. Impaired growth due to imbalanced NADPH metabolism (Sauer et al., J Biol Chem. 2004;279:6613-6619) was alleviated upon expressing CbXR, resulting in xylitol production similar to that of the growth-uncoupled precursor strains but with much less acetate secretion and more efficient utilization of glucose. Intracellular nicotinamide cofactor levels were also quantified, and the magnitude of the change in the NADPH/NADP+ ratio measured from cells consuming glucose in the absence vs. presence of xylose showed a strong correlation to the resulting Y RPG. Copyright © 2011 American Institute of Chemical

  11. Production of xylitol by a Coniochaeta ligniaria strain tolerant of inhibitors and defective in growth on xylose.

    PubMed

    Nichols, Nancy N; Saha, Badal C

    2016-05-01

    In conversion of biomass to fuels or chemicals, inhibitory compounds arising from physical-chemical pretreatment of the feedstock can interfere with fermentation of the sugars to product. Fungal strain Coniochaeta ligniaria NRRL30616 metabolizes the furan aldehydes furfural and 5-hydroxymethylfurfural, as well as a number of aromatic and aliphatic acids and aldehydes. Use of NRRL30616 to condition biomass sugars by metabolizing the inhibitors improves their fermentability. Wild-type C. ligniaria has the ability to grow on xylose as sole source of carbon and energy, with no accumulation of xylitol. Mutants of C. ligniaria unable to grow on xylose were constructed. Xylose reductase and xylitol dehydrogenase activities were reduced by approximately two thirds in mutant C8100. The mutant retained ability to metabolize inhibitors in biomass hydrolysates. Although C. ligniaria C8100 did not grow on xylose, the strain converted a portion of xylose to xylitol, producing 0.59 g xylitol/g xylose in rich medium and 0.48 g xylitol/g xylose in corn stover dilute acid hydrolysate. 2016 American Institute of Chemical Engineers Biotechnol. Prog., 2016 © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:606-612, 2016. © 2016 American Institute of Chemical Engineers.

  12. Preliminary safety assessment of C-8 xylitol monoester and xylitol phosphate esters.

    PubMed

    Silveira, J E P S; Pereda, M C V; Nogueira, C; Dieamant, G; Cesar, C K M; Assanome, K M; Silva, M S; Torello, C O; Queiroz, M L S; Eberlin, S

    2016-02-01

    Most of the cosmetic compounds with preservative properties available in the market pose some risks concerning safety, such as the possibility of causing sensitization. Due to the fact that there are few options, the proper development of new molecules with this purpose is needed. Xylitol is a natural sugar, and the antimicrobial properties of xylitol-derived compounds have already been described in the literature. C-8 xylitol monoester and xylitol phosphate esters may be useful for the development of skincare products. As an initial screen for safety of chemicals, the combination of in silico methods and in vitro testing can aid in prioritizing resources in toxicological investigations while reducing the ethical and monetary costs that are related to animal and human testing. This study was designed to evaluate the safety of C-8 xylitol monoester and xylitol phosphate esters regarding carcinogenicity, mutagenicity, skin and eye irritation/corrosion and sensitization through alternative methods. For the initial safety assessment, quantitative structure-activity relationship methodology was used. The prediction of the parameters carcinogenicity/mutagenicity, skin and eye irritation/corrosion and sensitization was generated from the chemical structure. The analysis also comprised physical-chemical properties, Cramer rules, threshold of toxicological concern and Michael reaction. In silico results of candidate molecules were compared to 19 compounds with preservative properties that are available in the market. Additionally, in vitro tests (Ames test for mutagenicity, cytotoxicity and phototoxicity tests and hen's egg test--chorioallantoic membrane for irritation) were performed to complement the evaluation. In silico evaluation of both molecules presented no structural alerts related to eye and skin irritation, corrosion and sensitization, but some alerts for micronucleus and carcinogenicity were detected. However, by comparison, C-8 xylitol monoester, xylitol

  13. A selective and sensitive D-xylose electrochemical biosensor based on xylose dehydrogenase displayed on the surface of bacteria and multi-walled carbon nanotubes modified electrode.

    PubMed

    Li, Liang; Liang, Bo; Shi, Jianguo; Li, Feng; Mascini, Marco; Liu, Aihua

    2012-03-15

    A novel Nafion/bacteria-displaying xylose dehydrogenase (XDH)/multi-walled carbon nanotubes (MWNTs) composite film-modified electrode was fabricated and applied for the sensitive and selective determination of d-xylose (INS 967), where the XDH-displayed bacteria (XDH-bacteria) was prepared using a newly identified ice nucleation protein from Pseudomonas borealis DL7 as an anchoring motif. The XDH-displayed bacteria can be used directly, eliminating further enzyme-extraction and purification, thus greatly improved the stability of the enzyme. The optimal conditions for the construction of biosensor were established: homogeneous Nafion-MWNTs composite dispersion (10 μL) was cast onto the inverted glassy carbon electrode, followed by casting 10-μL of XDH-bacteria aqueous solution to stand overnight to dry, then a 5-μL of Nafion solution (0.05 wt%) is syringed to the electrode surface. The bacteria-displaying XDH could catalyze the oxidization of xylose to xylonolactone with coenzyme NAD(+) in 0.1M PBS buffer (pH7.4), where NAD(+) (nicotinamide adenine dinucleotide) is reduced to NADH (the reduced form of nicotinamide adenine dinucleotide). The resultant NADH is further electrocatalytically oxidized by MWNTs on the electrode, resulting in an obvious oxidation peak around 0.50 V (vs. Ag/AgCl). In contrast, the bacteria-XDH-only modified electrode showed oxidation peak at higher potential of 0.7 V and less sensitivity. Therefore, the electrode/MWNTs/bacteria-XDH/Nafion exhibited good analytical performance such as long-term stability, a wide dynamic range of 0.6-100 μM and a low detection limit of 0.5 μM D-xylose (S/N=3). No interference was observed in the presence of 300-fold excess of other saccharides including D-glucose, D-fructose, D-maltose, D-galactose, D-mannose, D-sucrose, and D-cellbiose as well as 60-fold excess of L-arabinose. The proposed microbial biosensor is stable, specific, sensitive, reproducible, simple, rapid and cost-effective, which holds

  14. Xylitol improves pancreatic islets morphology to ameliorate type 2 diabetes in rats: a dose response study.

    PubMed

    Rahman, Md Atiar; Islam, Md Shahdiul

    2014-07-01

    Xylitol has been reported as a potential antidiabetic sweetener in a number of recent studies; however, the most effective dietary dose and organ-specific effects are still unclear. Six-week-old male Sprague-Dawley rats were randomly divided into 5 groups: normal control (NC), diabetic control (DBC), diabetic xylitol 2.5% (DXL2.5), diabetic xylitol 5.0% (DXL5), and diabetic xylitol 10.0% (DXL10). Diabetes was induced only in the animals in DBC and DXL groups and considered diabetic when their nonfasting blood glucose level was >300 mg/dL. The DXL groups were fed with 2.5%, 5.0%, and 10% xylitol solution, whereas the NC and DBC groups were supplied with normal drinking water. After 4-wk intervention, body weight, food and fluid intake, blood glucose, serum fructosamine, liver glycogen, serum alanine transaminase, aspartate transaminase, lactate dehydrogenase, creatine kinase, uric acid, creatinine, and most serum lipids were significantly decreased, and serum insulin concentration, glucose tolerance ability, and pancreatic islets morphology were significantly improved in the DXL10 group compared to the DBC group. The data of this study suggest that 10% xylitol has the better antidiabetic effects compared to 2.5% and 5.0% and it can be used as an excellent antidiabetic sweetener and food supplement in antidiabetic foods. Xylitol is widely used as a potential anticariogenic and sweetening agent in a number of oral care and food products when many of its health benefits are still unknown. Due to its similar sweetening power but lower calorific value (2.5 compared with 4 kcal) and lower glycemic index (13 compared with 65) compared to sucrose, recently it has been widely used as a sugar substitute particularly by overweight, obese, and diabetic patients in order to reduce their calorie intake from sucrose. However, the potential antidiabetic effects of xylitol have been discovered recently. The results of this study confirmed the effective dietary dose of xylitol for

  15. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol

    PubMed Central

    Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana

    2016-01-01

    Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds. PMID:27294124

  16. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol.

    PubMed

    Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana

    2016-01-01

    Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds.

  17. Fermentation Kinetics for Xylitol Production by a Pichia stipitis d-Xylulokinase Mutant Previously Grown in Spent Sulfite Liquor

    NASA Astrophysics Data System (ADS)

    Rodrigues, Rita C. L. B.; Lu, Chenfeng; Lin, Bernice; Jeffries, Thomas W.

    Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3Δ) to convert these sugars into useful products. FPL-YS30 produces a negligible amount of ethanol while converting xylose into xylitol. This work describes the xylose fermentation kinetics of yeast strain P.stipitis FPL-YS30. Yeast was grown in rich medium supplemented with different carbon sources: glucose, xylose, or ammonia-base SSL. The SSL and glucose-acclimatized cells showed similar maximum specific growth rates (0.146 h-1). The highest xylose consumption at the beginning of the fermentation process occurred using cells precultivated in xylose, which showed relatively high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49). However, the maximum specific rates of xylose consumption (0.19 gxylose/gcel h) and xylitol production (0.059 gxylitol/gcel h) were obtained with cells acclimatized in glucose, in which the ratio between xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) was kept at higher level (0.82). In this case, xylitol production (31.6 g/l) was 19 and 8% higher than in SSL and xylose-acclimatized cells, respectively. Maximum glycerol (6.26 g/l) and arabitol (0.206 g/l) production were obtained using SSL and xylose-acclimatized cells, respectively. The medium composition used for the yeast precultivation directly reflected their xylose fermentation performance. The SSL could be used as a carbon source for cell production. However, the inoculum condition to obtain a high cell concentration in SSL needs to be optimized.

  18. Army's "look for xylitol first" program.

    PubMed

    Richter, Pamila; Chaffin, Jeffrey

    2004-01-01

    Xylitol is a sugar substitute not well known in the United States. This sugar substitute is not only low in calories but can also help prevent dental caries. The U.S. Army Dental Command's Health Promotion Program is constantly seeking additional prevention measures to enhance the oral health of America's Army. The Dental Command has created the "Look for Xylitol First" initiative aimed at training all members of the dental care team on the positive benefits of xylitol and to teach patients how to be smart consumers and evaluate products for their xylitol content.

  19. Evaluation of cotton stalk hydrolysate for xylitol production.

    PubMed

    Sapcı, Burcu; Akpinar, Ozlem; Bolukbasi, Ufuk; Yilmaz, Levent

    2016-07-03

    Cotton stalk is a widely distributed and abundant lignocellulosic waste found in Turkey. Because of its rich xylose content, it can be a promising source for the production of xylitol. Xylitol can be produced by chemical or biotechnological methods. Because the biotechnological method is a simple process with great substrate specificity and low energy requirements, it is more of an economic alternative for the xylitol production. This study aimed to use cotton stalk for the production of xylitol with Candida tropicalis Kuen 1022. For this purpose, the combined effects of different oxygen concentration, inoculum level and substrate concentration were investigated to obtain high xylitol yield and volumetric xylitol production rate. Candida tropicalis Kuen 1022 afforded different concentrations of xylitol depending on xylose concentration, inoculum level, and oxygen concentration. The optimum xylose, yeast concentration, and airflow rate for cotton stalk hydrolysate were found as 10.41 g L(-1), 0.99 g L(-1), and 1.02 vvm, respectively, and under these conditions, xylitol yield and volumetric xylitol production rate were obtained as 36% and 0.06 g L(-1) hr(-1), respectively. The results of this study show that cotton stalk can serve as a potential renewable source for the production of xylitol.

  20. 21 CFR 172.395 - Xylitol.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.395 Xylitol. Xylitol may be safely used in foods for special...

  1. 21 CFR 172.395 - Xylitol.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.395 Xylitol. Xylitol may be safely used in foods for special...

  2. Xylitol chewing gum and dental caries.

    PubMed

    Tanzer, J M

    1995-02-01

    There is an extensive peer-reviewed literature on xylitol chewing gum as it pertains to effects on tooth decay in human subjects, on human dental plaque reduction, on inhibition of dental plaque acid production, on inhibition of the growth and metabolism of the mutans group of streptococci which are the prime causative agents of tooth decay, on reduction of tooth decay in experimental animals, and on xylitol's reported contribution to the remineralisation of teeth. The literature not only supports the conclusion that xylitol is non-cariogenic but it is now strongly suggestive that xylitol is caries inhibitory, that is, anti-cariogenic in human subjects, and it supplies reasonable mechanistic explanation(s).

  3. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis.

    PubMed

    Kim, J-H; Han, K-C; Koh, Y-H; Ryu, Y-W; Seo, J-H

    2002-07-01

    Xylitol, a functional sweetener, was produced from xylose by biological conversion using Candida tropicalis ATCC 13803. Based on a two-substrate fermentation using glucose for cell growth and xylose for xylitol production, fed-batch fermentations were undertaken to increase the final xylitol concentration. The effects of xylose and xylitol on xylitol production rate were studied to determine the optimum concentrations for fed-batch fermentation. Xylose concentration in the medium (100 g l(-1)) and less than 200 g l(-1) total xylose plus xylitol concentration were determined as optimum for maximum xylitol production rate and xylitol yield. Increasing the concentrations of xylose and xylitol decreased the rate and yield of xylitol production and the specific cell growth rate, probably because of an increase in osmotic stress that would interfere with xylose transport, xylitol flux to secretion to cell metabolism. The feeding rate of xylose solution during the fed-batch mode of operation was determined by using the mass balance equations and kinetic parameters involved in the equations in order to increase final xylitol concentration without affecting xylitol and productivity. The optimized fed-batch fermentation resulted in 187 g l(-1) xylitol concentration, 0.75 g xylitol g xylose(-1) xylitol yield and 3.9 g xylitol l(-1) h(-1) volumetric productivity.

  4. Xylitol gum and maternal transmission of mutans streptococci.

    PubMed

    Nakai, Y; Shinga-Ishihara, C; Kaji, M; Moriya, K; Murakami-Yamanaka, K; Takimura, M

    2010-01-01

    An important caries prevention strategy for children includes measures to interfere with transmission of mutans streptococci (MS). This study confirmed the effectiveness of maternal early exposure to xylitol chewing gum on mother-child transmission of MS. After screening, 107 pregnant women with high salivary MS were randomized into two groups: xylitol gum (Xylitol; n = 56) and no gum (Control; n = 51) groups. Maternal chewing started at the sixth month of pregnancy and terminated 13 months later in the Xylitol group. Outcome measures were the presence of MS in saliva or plaque of the children until age 24 months. The Xylitol-group children were significantly less likely to show MS colonization than Control-group children aged 9-24 months. The Control-group children acquired MS 8.8 months earlier than those in the Xylitol group, suggesting that maternal xylitol gum chewing in Japan shows beneficial effects similar to those demonstrated in Nordic countries.

  5. Effect of solvent on crystallization behavior of xylitol

    NASA Astrophysics Data System (ADS)

    Hao, Hongxun; Hou, Baohong; Wang, Jing-Kang; Lin, Guangyu

    2006-04-01

    Effect of organic solvents content on crystallization behavior of xylitol was studied. Solubility and crystallization kinetics of xylitol in methanol-water system were experimentally determined. It was found that the solubility of xylitol at various methanol content all increases with increase of temperature. But it decreases when increasing methanol content at constant temperature. Based on the theory of population balance, the nucleation and growth rates of xylitol in methanol-water mixed solvents were calculated by moments method. From a series of experimental population density data of xylitol gotten from a batch-operated crystallizer, parameters of crystal nucleation and growth rate equations at different methanol content were got by the method of nonlinear least-squares. By analyzing, it was found that the content of methanol had an apparent effect on nucleation and growth rate of xylitol. At constant temperature, the nucleation and growth rate of xylitol all decrease with increase of methanol content.

  6. Formation of xylitol and xylitol-5-phosphate and its impact on growth of d-xylose-utilizing Corynebacterium glutamicum strains.

    PubMed

    Radek, Andreas; Müller, Moritz-Fabian; Gätgens, Jochem; Eggeling, Lothar; Krumbach, Karin; Marienhagen, Jan; Noack, Stephan

    2016-08-10

    Wild-type Corynebacterium glutamicum has no endogenous metabolic activity for utilizing the lignocellulosic pentose d-xylose for cell growth. Therefore, two different engineering approaches have been pursued resulting in platform strains harbouring a functional version of either the Isomerase (ISO) or the Weimberg (WMB) pathway for d-xylose assimilation. In a previous study we found for C. glutamicum WMB by-product formation of xylitol during growth on d-xylose and speculated that the observed lower growth rates are due to the growth inhibiting effect of this compound. Based on a detailed phenotyping of the ISO, WMB and the wild-type strain of C. glutamicum, we here show that this organism has a natural capability to synthesize xylitol from d-xylose under aerobic cultivation conditions. We furthermore observed the intracellular accumulation of xylitol-5-phosphate as a result of the intracellular phosphorylation of xylitol, which was particularly pronounced in the C. glutamicum ISO strain. Interestingly, low amounts of supplemented xylitol strongly inhibit growth of this strain on d-xylose, d-glucose and d-arabitol. These findings demonstrate that xylitol is a suitable substrate of the endogenous xylulokinase (XK, encoded by xylB) and its overexpression in the ISO strain leads to a significant phosphorylation of xylitol in C. glutamicum. Therefore, in order to circumvent cytotoxicity by xylitol-5-phosphate, the WMB pathway represents an interesting alternative route for engineering C. glutamicum towards efficient d-xylose utilization. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. 21 CFR 172.395 - Xylitol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.395 Xylitol. Xylitol may be safely used in foods for special...

  8. Functional assignment of gene AAC16202.1 from Rhodobacter capsulatus SB1003: new insights into the bacterial SDR sorbitol dehydrogenases family.

    PubMed

    Sola-Carvajal, Agustín; García-García, María Inmaculada; Sánchez-Carrón, Guiomar; García-Carmona, Francisco; Sánchez-Ferrer, Alvaro

    2012-11-01

    Short-chain dehydrogenases/reductases (SDR) constitute one of the largest enzyme superfamilies with over 60,000 non-redundant sequences in the database, many of which need a correct functional assignment. Among them, the gene AAC16202.1 (NCBI) from Rhodobacter capsulatus SB1003 has been assigned in Uniprot both as a sorbitol dehydrogenase (#D5AUY1) and, as an N-acetyl-d-mannosamine dehydrogenase (#O66112), both enzymes being of biotechnological interest. When the gene was overexpressed in Escherichia coli Rosetta (DE3)pLys, the purified enzyme was not active toward N-acetyl-d-mannosamine, whereas it was active toward d-sorbitol and d-fructose. However, the relative activities toward xylitol and l-iditol (0.45 and 6.9%, respectively) were low compared with that toward d-sorbitol. Thus, the enzyme could be considered sorbitol dehydrogenase (SDH) with very low activity toward xylitol, which could increase its biotechnological interest for determining sorbitol without the unspecific cross-determination of added xylitol in food and pharma compositions. The tetrameric enzyme (120 kDa) showed similar catalytic efficiency (2.2 × 10(3) M(-1) s(-1)) to other sorbitol dehydrogenases for d-sorbitol, with an optimum pH of 9.0 and an optimum temperature of 37 °C. The enzyme was also more thermostable than other reported SDH, ammonium sulfate being the best stabilizer in this respect, increasing the melting temperature (T(m)) up to 52.9 °C. The enzyme can also be considered as a new member of the Zn(2+) independent SDH family since no effect on activity was detected in the presence of divalent cations or chelating agents. Finally, its in silico analysis enabled the specific conserved sequence blocks that are the fingerprints of bacterial sorbitol dehydrogenases and mainly located at C-terminal of the protein, to be determined for the first time. This knowledge will facilitate future data curation of present databases and a better functional assignment of newly described

  9. Protective Effect of Dietary Xylitol on Influenza A Virus Infection

    PubMed Central

    Yin, Sun Young; Kim, Hyoung Jin; Kim, Hong-Jin

    2014-01-01

    Xylitol has been used as a substitute for sugar to prevent cavity-causing bacteria, and most studies have focused on its benefits in dental care. Meanwhile, the constituents of red ginseng (RG) are known to be effective in ameliorating the symptoms of influenza virus infection when they are administered orally for 14 days. In this study, we investigated the effect of dietary xylitol on influenza A virus infection (H1N1). We designed regimens containing various fractions of RG (RGs: whole extract, water soluble fraction, saponin and polysaccharide) and xylitol, and combination of xylitol with the RG fractions. Mice received the various combinations orally for 5 days prior to lethal influenza A virus infection. Almost all the mice died post challenge when xylitol or RGs were administered separately. Survival was markedly enhanced when xylitol was administered along with RGs, pointing to a synergistic effect. The effect of xylitol plus RG fractions increased with increasing dose of xylitol. Moreover, dietary xylitol along with the RG water soluble fraction significantly reduced lung virus titers after infection. Therefore, we suggest that dietary xylitol is effective in ameliorating influenza-induced symptoms when it is administered with RG fractions, and this protective effect of xylitol should be considered in relation to other diseases. PMID:24392148

  10. [The cariogenicity of xylitol in the animal experiment].

    PubMed

    Karle, E J

    1977-01-01

    After programmed feeding of rats in a six and eight-week long conventional experiment with increasing concentrations of xylitol, compared to sorbitol, fructose and saccharose, the non-cariogenic nature of xylitol was confirmed. The increasing amounts of xylitol after sorbitol in chocolate diets (up to 30 g/day/rat) led to serious dilatation of the cecum and to changes in the mucosa of cecum and colon when sorbitol was given. Examination of plaques of the germ-free rats monoassociated with S. mutans showed that xylitol had no bacteriostatic effect on this type of germ. Since xylitol is not broken down by these germs with acid being formed, careis did not continue to extend.

  11. Xylitol prevents NEFA-induced insulin resistance in rats

    PubMed Central

    Kishore, P.; Kehlenbrink, S.; Hu, M.; Zhang, K.; Gutierrez-Juarez, R.; Koppaka, S.; El-Maghrabi, M. R.

    2013-01-01

    Aims/hypothesis Increased NEFA levels, characteristic of type 2 diabetes mellitus, contribute to skeletal muscle insulin resistance. While NEFA-induced insulin resistance was formerly attributed to decreased glycolysis, it is likely that glucose transport is the rate-limiting defect. Recently, the plant-derived sugar alcohol xylitol has been shown to have favourable metabolic effects in various animal models. Furthermore, its derivative xylulose 5-phosphate may prevent NEFA-induced suppression of glycolysis. We therefore examined whether and how xylitol might prevent NEFA-induced insulin resistance. Methods We examined the ability of xylitol to prevent NEFA-induced insulin resistance. Sustained ~1.5-fold elevations in NEFA levels were induced with Intralipid/heparin infusions during 5 h euglycaemic–hyperinsulinaemic clamp studies in 24 conscious non-diabetic Sprague-Dawley rats, with or without infusion of xylitol. Results Intralipid infusion reduced peripheral glucose uptake by ~25%, predominantly through suppression of glycogen synthesis. Co-infusion of xylitol prevented the NEFA-induced decreases in both glucose uptake and glycogen synthesis. Although glycolysis was increased by xylitol infusion alone, there was minimal NEFA-induced suppression of glycolysis, which was not affected by co-infusion of xylitol. Conclusions/interpretation We conclude that xylitol prevented NEFA-induced insulin resistance, with favourable effects on glycogen synthesis accompanying the improved insulin-mediated glucose uptake. This suggests that this pentose sweetener has beneficial insulin-sensitising effects. PMID:22460760

  12. Possible mechanisms for the cariostatic effect of xylitol.

    PubMed

    Mäkinen, K K

    1976-01-01

    Xylitol appears to be the only known cariostatic natural carbohydrate which meets most of the desiderata for a sweetener in the human diet. Possible mechanisms for this cariostatic action can be derived from a consideration of the factors which may be operating at a molecular and microbiological level. These include: a) Molecular size and e.g. the short, open-chain structure and absence of reducing groups b) Absence or relative lack in most oral microorganisms of xylitol-binding factors in dental plaque c) Lack of bacterial genes coding for xylitol-utilizing enzymes or of inducible or de-repressible genes for this purpose d) Inhibition of enzymes involved in cariogenesis (competitive in case of some isomerases) e) Enzyme specificity requirements f) Higher osmotic pressure exerted by xylitol as compared to hexoses and disaccharides g) Ability of xylitol to produce a favourable electrolyte concentration in the saliva without lowering plaque pH h) Ability of xylitol to increase the secretion and activity of salivary lactoperoxidase and certain other (muco) proteins. Xylitol may enhance the adsorption of glycoproteins on the tooth surfaces and strengthen the acquired pellicle.

  13. Xylitol Chewing Gums on the Market: Do They Prevent Caries?

    PubMed

    Alanzi, Abrar; Soderling, Eva; Varghese, Anisha; Honkala, Eino

    To measure the xylitol content in sugar-free chewing gums available on the market in Gulf Cooperation Council (GCC) countries in the Middle East, in order to identify those products that can provide the recommended daily dose of xylitol for caries prevention (6-7 g). Acid production from chewing gums was also measured in vitro and in vivo. Twenty-one chewing gums containing xylitol were identified and collected from the GCC market (Kuwait, Bahrain, Qatar, Saudi Arabia, UAE and Oman). Xylitol was extracted and its concentration was analysed using a special enzymatic kit. The pH of extracts was measured during 30-min incubation with Streptococcus mutans. Changes in saliva and plaque pH were noted in four subjects after the consumption of highly concentrated xylitol gums. The xylitol content in grams was clearly mentioned only on one product's label. Twelve products stated the percentage of xylitol (3.5% to 35%). The rest did not specify the amount. The mean measured weight of one piece of gum was 1.67 ± 0.38 g. The mean measured xylitol content/piece was 0.33 ± 0.21 g. Xylitol content was < 0.3 g/ piece in 9 products, 0.3-0.5 g in 7 and > 0.5 g in 5 products. None of the highly concentrated xylitol gums showed a pH drop in vitro or in vivo. One chewing gum, containing xylitol and glucose, resulted in a low pH level (< 5.5) when tested in vitro. The majority of xylitol chewing gums sold on the GCC market do not provide the consumers with the recommended daily dose of xylitol for caries prevention. Clear, accurate labeling is recommended.

  14. The in vitro effect of xylitol on chronic rhinosinusitis biofilms.

    PubMed

    Jain, R; Lee, T; Hardcastle, T; Biswas, K; Radcliff, F; Douglas, R

    2016-12-01

    Biofilms have been implicated in chronic rhinosinusitis (CRS) and may explain the limited efficacy of antibiotics. There is a need to find more effective, non-antibiotic based therapies for CRS. This study examines the effects of xylitol on CRS biofilms and planktonic bacteria. Crystal violet assay and spectrophotometry were used to quantify the effects of xylitol (5% and 10% solutions) against Staphylococcus epidermidis, Pseudomonas aeruginosa, and Staphylococcus aureus. The disruption of established biofilms, inhibition of biofilm formation and effects on planktonic bacteria growth were investigated and compared to saline and no treatment. Xylitol 5% and 10% significantly reduced biofilm biomass (S. epidermidis), inhibited biofilm formation (S. aureus and P. aeruginosa) and reduced growth of planktonic bacteria (S. epidermidis, S. aureus, and P. aeruginosa). Xylitol 5% inhibited formation of S. epidermidis biofilms more effectively than xylitol 10%. Xylitol 10% reduced S. epidermidis planktonic bacteria more effectively than xylitol 5%. Saline, xylitol 5% and 10% disrupted established biofilms of S. aureus when compared with no treatment. No solution was effective against established P. aeruginosa biofilm. Xylitol has variable activity against biofilms and planktonic bacteria in vitro and may have therapeutic efficacy in the management of CRS.

  15. Synergistic inhibition of Streptococcal biofilm by ribose and xylitol.

    PubMed

    Lee, Heon-Jin; Kim, Se Chul; Kim, Jinkyung; Do, Aejin; Han, Se Yeong; Lee, Bhumgey David; Lee, Hyun Ho; Lee, Min Chan; Lee, So Hui; Oh, Taejun; Park, Sangbin; Hong, Su-Hyung

    2015-02-01

    Streptococcus mutans and Streptococcus sobrinus are the major causative agents of human dental caries. Therefore, the removal or inhibition of these streptococcal biofilms is essential for dental caries prevention. In the present study, we evaluated the effects of ribose treatment alone or in combination with xylitol on streptococcal biofilm formation for both species. Furthermore, we examined the expression of genes responsible for dextran-dependent aggregation (DDAG). In addition, we investigated whether ribose affects the biofilm formation of xylitol-insensitive streptococci, which results from long-term exposure to xylitol. The viability of streptococci biofilms formed in a 24-well polystyrene plate was quantified by fluorescent staining with the LIVE/DEAD bacterial viability and counting kit, which was followed by fluorescence activated cell sorting analysis. The effects of ribose and/or xylitol on the mRNA expression of DDAG-responsible genes, gbpC and dblB, was evaluated by RT-qPCR. Our data showed that ribose and other pentose molecules significantly inhibited streptococcal biofilm formation and the expression of DDAG-responsible genes. In addition, co-treatment with ribose and xylitol decreased streptococcal biofilm formation to a further extent than ribose or xylitol treatment alone in both streptococcal species. Furthermore, ribose attenuated the increase of xylitol-insensitive streptococcal biofilm, which results in the reduced difference of biofilm formation between S. mutans that are sensitive and insensitive to xylitol. These data suggest that pentose may be used as an additive for teeth-protective materials or in sweets. Furthermore, ribose co-treatment with xylitol might help to increase the anti-cariogenic efficacy of xylitol. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Production of xylitol from D-xylose by Debaryomyces hansenii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez, J.M.; Gong, Cheng S.; Tsao, G.T.

    1997-12-31

    Xylitol, a naturally occurring five-carbon sugar alcohol, can be produced from D-xylose through microbial hydrogenation. Xylitol has found increasing use in the food industries, especially in confectionary. It is the only so-called {open_quotes}second-generation polyol sweeteners{close_quotes} that is allowed to have the specific health claims in some world markets. In this study, the effect of cell density on the xylitol production by the yeast Debaryomyces hansenii NRRL Y-7426 from D-xylose under microaerobic conditions was examined. The rate of xylitol production increased with increasing yeast cell density to 3 g/L. Beyond this amount there was no increase in the xylitol production withmore » increasing cell density. The optimal pH range for xylitol production was between 4.5 and 5.5. The optimal temperature was between 28 and 37{degrees}C, and the optimal shaking speed was 300 rpm. The rate of xylitol production increased linearly with increasing initial xylose concentration. A high concentration of xylose (279 g/L) was converted rapidly and efficiently to produce xylitol with a product concentration of 221 g/L was reached after 48 h of incubation under optimum conditions. 18 refs., 5 figs.« less

  17. Xylitol and Your Dog: Danger, Paws Off

    MedlinePlus

    ... Home For Consumers Consumer Updates Xylitol and Your Dog: Danger, Paws Off Share Tweet Linkedin Pin it ... vitamins mouthwash toothpaste Why is Xylitol Dangerous to Dogs, but Not People? In both people and dogs, ...

  18. Microbial production of xylitol from xylose and L-arabinose: conversion of L-arabitol to xylitol using bacterial oxidoreductases

    USDA-ARS?s Scientific Manuscript database

    Microbial production of xylitol, using hemicellulosic biomass such as agricultural residues, is becoming more attractive for reducing its manufacturing cost. L-arabitol is a particular problem to xylitol production from hemicellulosic hydrolyzates that contain both xylose and L-arabinose because it...

  19. Optimized extraction by cetyl trimethyl ammonium bromide reversed micelles of xylose reductase and xylitol dehydrogenase from Candida guilliermondii homogenate.

    PubMed

    Cortez, Ely Vieira; Pessoa, Adalberto; das Graças de Almeida Felipe, Maria; Roberto, Inês Conceição; Vitolo, Michele

    2004-07-25

    The intracellular enzymes xylose reductase (XR, EC 1.1.1.21) and xylitol dehydrogenase (XD, EC 1.1.1.9) from Candida guilliermondii, grown in sugar cane bagasse hydrolysate, were separated by reversed micelles of cetyl trimethyl ammonium bromide (CTAB) cationic surfactant. An experimental design was employed to optimize the extraction conditions of both enzymes. Under these conditions (temperature = 5 degree C, hexanol: isooctane proportion = 5% (v/v), 22 %, surfactant concentration = 0.15M, pH = 7.0 and electrical conductivity = 14 mScm(-1)) recovery values of about 100 and 80% were achieved for the enzymes XR and XD, respectively. The purity of XR and XD increased 5.6- and 1.8-fold, respectively. The extraction process caused some structural modifications in the enzymes molecules, as evidenced by the alteration of K(M) values determined before and after extraction, either in regard to the substrate (up 35% for XR and down 48% for XD) or cofactor (down 29% for XR and up 11% for XD). However, the average variation of V(max) values for both enzymes was not higher than 7%, indicating that the modified affinity of enzymes for their respective substrates and cofactors, as consequence of structural modifications suffered by them during the extraction, are compensated in some extension. This study demonstrated that liquid-liquid extraction by CTAB reversed micelles is an efficient process to separate the enzymes XR and XD present in the cell extract, and simultaneously increase the enzymatic activity and the purity of both enzymes produced by C. guilliermondii.

  20. Novel Xylose Dehydrogenase in the Halophilic Archaeon Haloarcula marismortui†

    PubMed Central

    Johnsen, Ulrike; Schönheit, Peter

    2004-01-01

    During growth of the halophilic archaeon Haloarcula marismortui on d-xylose, a specific d-xylose dehydrogenase was induced. The enzyme was purified to homogeneity. It constitutes a homotetramer of about 175 kDa and catalyzed the oxidation of xylose with both NADP+ and NAD+ as cosubstrates with 10-fold higher affinity for NADP+. In addition to d-xylose, d-ribose was oxidized at similar kinetic constants, whereas d-glucose was used with about 70-fold lower catalytic efficiency (kcat/Km). With the N-terminal amino acid sequence of the subunit, an open reading frame (ORF)—coding for a 39.9-kDA protein—was identified in the partially sequenced genome of H. marismortui. The function of the ORF as the gene designated xdh and coding for xylose dehydrogenase was proven by its functional overexpression in Escherichia coli. The recombinant enzyme was reactivated from inclusion bodies following solubilization in urea and refolding in the presence of salts, reduced and oxidized glutathione, and substrates. Xylose dehydrogenase showed the highest sequence similarity to glucose-fructose oxidoreductase from Zymomonas mobilis and other putative bacterial and archaeal oxidoreductases. Activities of xylose isomerase and xylulose kinase, the initial reactions of xylose catabolism of most bacteria, could not be detected in xylose-grown cells of H. marismortui, and the genes that encode them, xylA and xylB, were not found in the genome of H. marismortui. Thus, we propose that this first characterized archaeal xylose dehydrogenase catalyzes the initial step in xylose degradation by H. marismortui. PMID:15342590

  1. Research Findings on Xylitol and the Development of Xylitol Vehicles to Address Public Health Needs

    PubMed Central

    Milgrom, P.; Ly, K.A.; Rothen, M.

    2013-01-01

    Xylitol has been demonstrated to be a safe and effective tooth decay preventive agent when used habitually. Nevertheless, its application has been limited by absence of formulations that demand minimal adherence and are acceptable and safe in settings where chewing gum may not be allowed. A substantial literature suggests that a minimum of five to six grams and three exposures per day from chewing gum or candies are needed for a clinical effect. At the same time there is conflicting evidence in the literature from toothpaste studies suggesting that lower-doses and less frequent exposures might be effective. The growing use of xylitol as a sweetener in low amounts in foods and other consumables is, simultaneously, increasing the overall exposure of the public to xylitol and may have additive benefits. PMID:19710081

  2. Acute Hepatic Failure in a Dog after Xylitol Ingestion.

    PubMed

    Schmid, Renee D; Hovda, Lynn R

    2016-06-01

    Xylitol is a five-carbon sugar alcohol produced from natural resources frequently used as a sugar substitute for humans. We report the development and successful treatment of acute hepatic failure and coagulopathy in a dog after xylitol ingestion. A 9-year-old 4.95 kg (10.9 lb) neutered male Chihuahua was evaluated at a veterinary clinic for vomiting after ingesting 224 g (45 g/kg, 20.5 g/lb) of granulated xylitol. Hypoglycemia developed within 1-2 h, elevated liver values, suggesting the development of acute hepatic failure, within 12 h and coagulopathy less than 24 h after ingestion. Treatment included maropitant, intravenous dextrose, phytonadione, metronidazole, and fresh frozen plasma. N-acetylcysteine (NAC) and S-adensoyl-L-methionine (SAMe) provided hepatic detoxification and support. The dog survived and liver values returned to normal within 1 month post ingestion. No adverse effects to hepatic function have been identified 2 years after acute xylitol toxicity. This paper is one of the few reports of successful management of a dog with hypoglycemia, hepatic failure, and coagulopathy caused by xylitol toxicity. To date, this is the highest published xylitol dose survived by a dog, as well as the only reported case that documents laboratory changes throughout the course of toxicity and includes normal hepatic indices for 7 months following xylitol toxicity. The rapidly expanding use of xylitol in a variety of products intended for human consumption has led to a rise in xylitol toxicity cases reported in dogs, and clinicians should be aware that more dogs may potentially be exposed and develop similar manifestations.

  3. Streptococcus mutans: Fructose Transport, Xylitol Resistance, and Virulence

    PubMed Central

    Tanzer, J.M.; Thompson, A.; Wen, Z.T.; Burne, R.A.

    2008-01-01

    Streptococcus mutans, the primary etiological agent of human dental caries, possesses at least two fructose phosphotransferase systems (PTSs), encoded by fruI and fruCD. fruI is also responsible for xylitol transport. We hypothesized that fructose and xylitol transport systems do not affect virulence. Thus, colonization and cariogenicity of fruI− and fruCD− single and double mutants, their WT (UA159), and xylitol resistance (Xr) of S. mutans were studied in rats fed a high-sucrose diet. A sucrose phosphorylase (gtfA−) mutant and a reference strain (NCTC-10449S) were additional controls. Recoveries of fruI mutant from the teeth were decreased, unlike those for the other strains. The fruCD mutation was associated with a slight loss of cariogenicity on enamel, whereas mutation of fruI was associated with a loss of cariogenicity in dentin. These results also suggest why xylitol inhibition of caries is paradoxically associated with spontaneous emergence of so-called Xr S. mutans in habitual human xylitol users. PMID:16567561

  4. Cell Adhesion Modification of Streptococcus viridians in the Presence of Xylitol

    NASA Astrophysics Data System (ADS)

    Esmacher, Jason; Vidakovich, Blair; Giangrande, Michael; Hoffmann, Peter

    2012-10-01

    There is scientific documentation that those who chew gum sweetened by the sugar alcohol xylitol report a dramatically lower incident of both dental caries and otitis media compared to those who chew conventional gum sweetened by sucrose. An explanation contends that xylitol interferes with the ability of Streptococcus viridian (SV) to form biofilms which is a necessary precursor to the bacteria's ability to damage human tissues. We have used atomic force microscopy to study the cell wall/fimbria properties at the nanonewton level in both the presence and absence of xylitol. The first set of measurements used varying concentrations of xylitol incorporated within the incubation medium. The second used non-xylitol grown bacteria, the xylitol was added externally at various concentrations. Our study suggests that growing SV with xylitol reduces their ability to adhere together. Additionally, externally added xylitol showed grouping of cell adhesion to a relatively narrow nanonewton spread that is concentration dependent. Measurement of the adhesion properties of the bacterial cell wall have found that there is a dramatic increase in the cell wall's firmness which simultaneously accompanied a decrease in its ability to support adhesion, even at very low concentrations of xylitol.

  5. Origin of Xylitol in Chewing Gum: A Compound-Specific Isotope Technique for the Differentiation of Corn- and Wood-Based Xylitol by LC-IRMS.

    PubMed

    Köster, Daniel; Wolbert, Jens-Benjamin; Schulte, Marcel S; Jochmann, Maik A; Schmidt, Torsten C

    2018-02-28

    The sugar replacement compound xylitol has gained increasing attention because of its use in many commercial food products, dental-hygiene articles, and pharmaceuticals. It can be classified by the origin of the raw material used for its production. The traditional "birch xylitol" is considered a premium product, in contrast to xylitol produced from agriculture byproducts such as corn husks or sugar-cane straw. Bulk stable-isotope analysis (BSIA) and compound-specific stable-isotope analysis (CSIA) by liquid-chromatography isotope-ratio mass spectrometry (LC-IRMS) of chewing-gum extracts were used to determine the δ 13 C isotope signatures for xylitol. These were applied to elucidate the original plant type the xylitol was produced from on the basis of differences in isotope-fractionation processes of photosynthetic CO 2 fixation. For the LC-IRMS analysis, an organic-solvent-free extraction protocol and HPLC method for the separation of xylitol from different artificial sweeteners and sugar-replacement compounds was successfully developed and applied to the analysis of 21 samples of chewing gum, from which 18 could be clearly related to the raw-material plant class.

  6. Increased xanthine oxidase during labour--implications for oxidative stress.

    PubMed

    Many, A; Roberts, J M

    1997-11-01

    Xanthine dehydrogenase/oxidase (XDH/XO) produces uric acid. When in the oxidase form, this production is coupled with the generation of free radicals. Hypoxia-reperfusion enhances conversion of XDH to XO. Since the placenta is exposed to short periods of hypoxia reperfusion during labour, 17 placentae of pregnancy terminated by elective caesarean section and five placentae of pregnancies terminated by caesarean section during labour were examined for XDH/XO activity. It was found that XO activity was higher in the placentae of labouring women (P = 0.003), which suggests that labour enhances conversion of XDH to XO, facilitating free radical production.

  7. Effects of short-term xylitol gum chewing on the oral microbiome.

    PubMed

    Söderling, Eva; ElSalhy, Mohamed; Honkala, Eino; Fontana, Margherita; Flannagan, Susan; Eckert, George; Kokaras, Alexis; Paster, Bruce; Tolvanen, Mimmi; Honkala, Sisko

    2015-03-01

    The aim of this study was to determine the effects of short-term xylitol gum chewing on the salivary microbiota of children. The study was a randomised, controlled, double-blind trial. Healthy children used xylitol chewing gum (xylitol group, n = 35) or sorbitol chewing gum (control group, n = 38) for 5 weeks. The daily dose of xylitol/sorbitol was approximately 6 g/day. At baseline and at the end of the test period, unstimulated and paraffin-stimulated saliva were collected. The microbial composition of the saliva was assessed using human oral microbe identification microarray (HOMIM). Mutans streptococci (MS) were plate cultured. As judged by HOMIM results, no xylitol-induced changes in the salivary microbiota took place in the xylitol group. In the control group, Veillonella atypica showed a significant decrease (p = 0.0001). The xylitol gum chewing decreased viable counts of MS in both stimulated (p = 0.006) and unstimulated (p = 0.002) saliva, but similar effects were also seen in the control group. The use of xylitol gum decreased MS, in general, but did not change the salivary microbial composition. Short-term consumption of xylitol had no impact on the composition of the salivary microbiota, but resulted in a decrease in the levels of MS.

  8. Xylitol and caries prevention.

    PubMed

    Duane, Brett

    2015-06-01

    Cochrane Oral Health Group Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), Medline, Embase, CINAHL, Web of Science Conference Proceedings, Proquest Dissertations and Theses, US National Institutes of Health Trials Register (http://clinicaltrials.gov) and the WHO Clinical Trials Registry Platform for ongoing trials. No language or year restrictions were used. Randomised controlled trials assessing the effects of xylitol products on dental caries in children and adults. Two review authors independently screened the results of the electronic searches, extracted data and assessed the risk of bias of the included studies. Authors were contacted where possible for missing data or clarification where feasible. For continuous outcomes, means and standard deviations were used to obtain the mean difference and 95% confidence interval (CI). Continuous data was used to calculate prevented fractions (PF) and 95% CIs to summarise the percentage reduction in caries. For dichotomous outcomes, reported risk ratios (RR) and 95% CIs were used. As there were fewer than four studies included in the meta-analysis, a fixed effect model was used. Ten studies were included with a total of 5903 participants. One study was assessed as being at low risk of bias, two were assessed as unclear risk of bias with seven at high risk of bias. Over 2.5–3 years, low quality evidence demonstrated that with 4216 children analysed, a fluoride toothpaste with 10% xylitol (exact dosage unsure) reduced caries by 13% when compared to a fluoride only toothpaste. (PF −0.13, 95% CI −0.18 to −0.08. Remaining evidence of the use of xylitol in children has risk of bias and uncertainty of effect and was therefore insufficient to determine a benefit from xylitol. Four studies reported that there were no adverse effects from any of the interventions. Two studies reported similar rates of adverse effects between study arms. The remaining studies either mentioned adverse effects

  9. Xylitol production in immobilized cultures: a recent review.

    PubMed

    Pérez-Bibbins, Belinda; Torrado-Agrasar, Ana; Salgado, José Manuel; Mussatto, Solange I; Domínguez, José Manuel

    2016-08-01

    Xylitol is a pentahydroxy sugar alcohol coming from xylose with many applications in the food and pharmaceutical industries as a low caloric sweetener suitable for diabetics and as an active ingredient in several biomedical applications. The microbial bioproduction of xylitol from natural xylose coming from lignocellulosic materials appears a sustainable and a promising alternative to chemical synthesis, which works at stronger reaction conditions and generates undesirable co-products which must be removed. There are several reviews that study the metabolic pathways in wild and transformed xylitol producing yeasts and the culture conditions that enhance xylitol accumulation, which are mainly related to the need of microaerobiose for the best producing wild yeasts. Nevertheless, there are relatively few studies focusing on the engineering aspects related to scalable systems and bioreactors that could result in a final industrial stage. This review explores recent advances on xylitol production using immobilized systems, which have been proposed to facilitate the reuse of the biocatalyst for extended periods and the main types of bioreactors available assayed for this purpose.

  10. Xylitol Syrup for the Prevention of Acute Otitis Media

    PubMed Central

    Corwin, Michael J.; Vezina, Richard M.; Pelton, Steven I.; Feldman, Henry A.; Coyne-Beasley, Tamera; Mitchell, Allen A.

    2014-01-01

    BACKGROUND: Acute otitis media (AOM) is a common childhood illness and the leading indication for antibiotic prescriptions for US children. Xylitol, a naturally occurring sugar alcohol, can reduce AOM when given 5 times per day as a gum or syrup, but a more convenient dosing regimen is needed for widespread adoption. METHODS: We designed a pragmatic practice-based randomized controlled trial to determine if viscous xylitol solution at a dose of 5 g 3 times per day could reduce the occurrence of clinically diagnosed AOM among otitis-prone children 6 months through 5 years of age. RESULTS: A total of 326 subjects were enrolled, with 160 allocated to xylitol and 166 to placebo. In the primary analysis of time to first clinically diagnosed AOM episode, the hazard ratio for xylitol versus placebo recipients was 0.88 (95% confidence interval [CI] 0.61 to 1.3). In secondary analyses, the incidence of AOM was 0.53 episodes per 90 days in the xylitol group versus 0.59 in the placebo group (difference 0.06; 95% CI –0.25 to 0.13); total antibiotic use was 6.8 days per 90 days in the xylitol group versus 6.4 in the placebo group (difference 0.4; 95% CI –1.8 to 2.7). The lack of effectiveness was not explained by nonadherence to treatment, as the hazard ratio for those taking nearly all assigned xylitol compared with those taking none was 0.93 (95% CI 0.56 to 1.57). CONCLUSIONS: Viscous xylitol solution in a dose of 5 g 3 times per day was ineffective in reducing clinically diagnosed AOM among otitis-prone children. PMID:24394686

  11. Bronchoscopic assessment of airway retention time of aerosolized xylitol

    PubMed Central

    Durairaj, Lakshmi; Neelakantan, Srividya; Launspach, Janice; Watt, Janet L; Allaman, Margaret M; Kearney, William R; Veng-Pedersen, Peter; Zabner, Joseph

    2006-01-01

    Background Human airway surface liquid (ASL) has abundant antimicrobial peptides whose potency increases as the salt concentration decreases. Xylitol is a 5-carbon sugar that has the ability to lower ASL salt concentration, potentially enhancing innate immunity. Xylitol was detected for 8 hours in the ASL after application in airway epithelium in vitro. We tested the airway retention time of aerosolized iso-osmotic xylitol in healthy volunteers. Methods After a screening spirometry, volunteers received 10 ml of nebulized 5% xylitol. Bronchoscopy was done at 20 minutes (n = 6), 90 minutes (n = 6), and 3 hours (n = 5) after nebulization and ASL was collected using microsampling probes, followed by bronchoalveolar lavage (BAL). Xylitol concentration was measured by nuclear magnetic resonance spectroscopy and corrected for dilution using urea concentration. Results All subjects tolerated nebulization and bronchoscopy well. Mean ASL volume recovered from the probes was 49 ± 23 μl. The mean ASL xylitol concentration at 20, 90, and 180 minutes was 1.6 ± 1.9 μg/μl, 0.6 ± 0.6 μg/μl, and 0.1 ± 0.1 μg/μl, respectively. Corresponding BAL concentration corrected for dilution was consistently lower at all time points. The terminal half-life of aerosolized xylitol obtained by the probes was 45 minutes with a mean residence time of 65 minutes in ASL. Corresponding BAL values were 36 and 50 minutes, respectively. Conclusion After a single dose nebulization, xylitol was detected in ASL for 3 hours, which was shorter than our in vitro measurement. The microsampling probe performed superior to BAL when sampling bronchial ASL. PMID:16483382

  12. Engineering of Corynebacterium glutamicum for xylitol production from lignocellulosic pentose sugars.

    PubMed

    Dhar, Kiran S; Wendisch, Volker F; Nampoothiri, Kesavan Madhavan

    2016-07-20

    Xylitol is a non-fermentable sugar alcohol used as sweetener. Corynebacterium glutamicum ATCC13032 was metabolically engineered for xylitol production from the lignocellulosic pentose sugars xylose and arabinose. Direct conversion of xylose to xylitol was achieved through the heterologous expression of NAD(P)H-dependent xylose reductase (xr) gene from Rhodotorula mucilaginosa. Xylitol synthesis from arabinose was attained through polycistronic expression of l-arabinose isomerase (araA), d-psicose 3 epimerase (dpe) and l-xylulose reductase (lxr) genes from Escherichia coli, Agrobacterium tumefaciens and Mycobacterium smegmatis, respectively. Expression of xr and the synthetic araA-dpe-lxr operon under the control of IPTG-inducible Ptac promoter enabled production of xylitol from both xylose and arabinose in the mineral (CGXII) medium with glucose as carbon source. Additional expression of a pentose transporter (araTF) gene enhanced xylitol production by about four-fold compared to the parent strain. The constructed strain Cg-ax3 produced 6.7±0.4g/L of xylitol in batch fermentations and 31±0.5g/L of xylitol in fed-batch fermentations with a specific productivity of 0.28±0.05g/g cdw/h. The strain Cg-ax3 was also validated for xylitol production from pentose rich, acid pre-treated liquor of sorghum stover (SAPL) and the results were comparable in both SAPL (27±0.3g/L) and mineral medium (31±0.5g/L). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Antisolvent precipitation of novel xylitol-additive crystals to engineer tablets with improved pharmaceutical performance.

    PubMed

    Kaialy, Waseem; Maniruzzaman, Mohammad; Shojaee, Saeed; Nokhodchi, Ali

    2014-12-30

    The purpose of this work was to develop stable xylitol particles with modified physical properties, improved compactibility and enhanced pharmaceutical performance without altering polymorphic form of xylitol. Xylitol was crystallized using antisolvent crystallization technique in the presence of various hydrophilic polymer additives, i.e., polyethylene glycol (PEG), polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) at a range of concentrations. The crystallization process did not influence the stable polymorphic form or true density of xylitol. However, botryoidal-shaped crystallized xylitols demonstrated different particle morphologies and lower powder bulk and tap densities in comparison to subangular-shaped commercial xylitol. Xylitol crystallized without additive and xylitol crystallized in the presence of PVP or PVA demonstrated significant improvement in hardness of directly compressed tablets; however, such improvement was observed to lesser extent for xylitol crystallized in the presence of PEG. Crystallized xylitols produced enhanced dissolution profiles for indomethacin in comparison to original xylitol. The influence of additive concentration on tablet hardness was dependent on the type of additive, whereas an increased concentration of all additives provided an improvement in the dissolution behavior of indomethacin. Antisolvent crystallization using judiciously selected type and concentration of additive can be a potential approach to prepare xylitol powders with promising physicomechanical and pharmaceutical properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Isolation and characterization of xylitol-assimilating mutants of recombinant Saccharomyces cerevisiae.

    PubMed

    Tani, Tatsunori; Taguchi, Hisataka; Fujimori, Kazuhiro E; Sahara, Takehiko; Ohgiya, Satoru; Kamagata, Yoichi; Akamatsu, Takashi

    2016-10-01

    To clarify the mechanisms of xylitol utilization, three xylitol-assimilating mutants were isolated from recombinant Saccharomyces cerevisiae strains showing highly efficient xylose-utilization. The nucleotide sequences of the mutant genomes were analyzed and compared with those of the wild-type strains and the mutation sites were identified. gal80 mutations were common to all the mutants, and recessive to the wild-type allele. Hence we constructed a gal80Δ mutant and confirmed that the gal80Δ mutant showed a xylitol-assimilation phenotype. When the constructed gal80Δ mutant was crossed with the three isolated mutants, all diploid hybrids showed xylitol assimilation, indicating that the mutations were all located in the GAL80. We analyzed the role of the galactose permease Gal2, controlled by the regulatory protein Gal80, in assimilating xylitol. A gal2Δ gal80Δ double mutant did not show xylitol assimilation, whereas expression of GAL2 under the control of the TDH3 promoter in the GAL80 strain did result in assimilation. These data indicate that Gal2 was needed for xylitol assimilation in the wild-type strain. When the gal80 mutant with an initial cell concentration of A660 = 20 was used for batch fermentation in a complex medium containing 20 g/L xylose or 20 g/L xylitol at pH 5.0 and 30°C under oxygen limitation, the gal80 mutant consumed 100% of the xylose within 12 h, but <30% of the xylitol within 100 h, indicating that xylose reductase is required for xylitol consumption in oxygen-limited conditions. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli.

    PubMed

    Su, Buli; Wu, Mianbin; Zhang, Zhe; Lin, Jianping; Yang, Lirong

    2015-09-01

    A metabolically engineered Escherichia coli has been constructed for the production of xylitol, one of the top 12 platform chemicals from agricultural sources identified by the US Department of Energy. An optimal plasmid was constructed to express xylose reductase from Neurospora crassa with almost no inclusion bodies at relatively high temperature. The phosphoenolpyruvate-dependent glucose phosphotransferase system (ptsG) was disrupted to eliminate catabolite repression and allow simultaneous uptake of glucose and xylose. The native pathway for D-xylose catabolism in E. coli W3110 was blocked by deleting the xylose isomerase (xylA) and xylulose kinase (xylB) genes. The putative pathway for xylitol phosphorylation was also blocked by disrupting the phosphoenolpyruvate-dependent fructose phosphotransferase system (ptsF). The xylitol producing recombinant E. coli allowed production of 172.4 g L(-1) xylitol after 110 h of fed-batch cultivation with an average productivity of 1.57 g L(-1) h(-1). The molar yield of xylitol to glucose reached approximately 2.2 (mol xylitol mol(-1) glucose). Furthermore, the recombinant strain also produced about 150 g L(-1) xylitol from hemicellulosic sugars in modified M9 minimal medium and the overall productivity was 1.40 g L(-1) h(-1), representing the highest xylitol concentration and productivity reported to date from hemicellulosic sugars using bacteria. Thus, this engineered E. coli is a candidate for the development of efficient industrial-scale production of xylitol from hemicellulosic hydrolysate. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  16. Effects of xylitol as a sugar substitute on diabetes-related parameters in nondiabetic rats.

    PubMed

    Islam, Md Shahidul

    2011-05-01

    Abstract The present study was examined the effects of xylitol feeding on diabetes-associated parameters in nondiabetic rats. Seven-week-old male Sprague-Dawley rats were randomly divided into three groups: control (five rats), sucrose (six rats), and xylitol (six rats). Animal had free access to a commercial rat pellet diet, and ad libitum water, 10% sucrose solution, and 10% xylitol solution were supplied to the control, sucrose, and xylitol groups, respectively. After 3 weeks of feeding of experimental diets, food intakes were significantly (P<.05) lower in the sucrose and xylitol groups compared with the control group. Drink intake was significantly higher in the sucrose group but significantly lower in the xylitol group compared with the control group. Body weight gain was significantly lower in the xylitol group compared with the sucrose group. Weekly nonfasting blood glucose was significantly increased, but fasting blood glucose was significantly decreased, in the sucrose group compared with the control and xylitol groups. Significantly better glucose tolerance was observed in the xylitol group compared with the control and sucrose groups. Serum insulin and fructosamine concentrations were not significantly influenced by the feeding of xylitol or sucrose. Relative liver weight and liver glycogen were significantly increased in the xylitol group compared with the sucrose group, whereas no difference was observed between the xylitol and control groups. Serum total cholesterol and low-density lipoprotein-cholesterol were significantly decreased in the sucrose and xylitol groups, and serum triglyceride of the xylitol group, but not the sucrose group, was significantly increased compared with the control group. Data of this study suggest that xylitol can be a better sweetener than sucrose to maintain diabetes-related parameters at a physiologically safer and stable condition.

  17. Effects of Consuming Xylitol on Gut Microbiota and Lipid Metabolism in Mice.

    PubMed

    Uebanso, Takashi; Kano, Saki; Yoshimoto, Ayumi; Naito, Chisato; Shimohata, Takaaki; Mawatari, Kazuaki; Takahashi, Akira

    2017-07-14

    The sugar alcohol xylitol inhibits the growth of some bacterial species including Streptococcus mutans . It is used as a food additive to prevent caries. We previously showed that 1.5-4.0 g/kg body weight/day xylitol as part of a high-fat diet (HFD) improved lipid metabolism in rats. However, the effects of lower daily doses of dietary xylitol on gut microbiota and lipid metabolism are unclear. We examined the effect of 40 and 200 mg/kg body weight/day xylitol intake on gut microbiota and lipid metabolism in mice. Bacterial compositions were characterized by denaturing gradient gel electrophoresis and targeted real-time PCR. Luminal metabolites were determined by capillary electrophoresis electrospray ionization time-of-flight mass spectrometry. Plasma lipid parameters and glucose tolerance were examined. Dietary supplementation with low- or medium-dose xylitol (40 or 194 mg/kg body weight/day, respectively) significantly altered the fecal microbiota composition in mice. Relative to mice not fed xylitol, the addition of medium-dose xylitol to a regular and HFD in experimental mice reduced the abundance of fecal Bacteroidetes phylum and the genus Barnesiella , whereas the abundance of Firmicutes phylum and the genus Prevotella was increased in mice fed an HFD with medium-dose dietary xylitol. Body composition, hepatic and serum lipid parameters, oral glucose tolerance, and luminal metabolites were unaffected by xylitol consumption. In mice, 40 and 194 mg/kg body weight/day xylitol in the diet induced gradual changes in gut microbiota but not in lipid metabolism.

  18. Effects of Consuming Xylitol on Gut Microbiota and Lipid Metabolism in Mice

    PubMed Central

    Uebanso, Takashi; Kano, Saki; Yoshimoto, Ayumi; Naito, Chisato; Shimohata, Takaaki; Takahashi, Akira

    2017-01-01

    The sugar alcohol xylitol inhibits the growth of some bacterial species including Streptococcus mutans. It is used as a food additive to prevent caries. We previously showed that 1.5–4.0 g/kg body weight/day xylitol as part of a high-fat diet (HFD) improved lipid metabolism in rats. However, the effects of lower daily doses of dietary xylitol on gut microbiota and lipid metabolism are unclear. We examined the effect of 40 and 200 mg/kg body weight/day xylitol intake on gut microbiota and lipid metabolism in mice. Bacterial compositions were characterized by denaturing gradient gel electrophoresis and targeted real-time PCR. Luminal metabolites were determined by capillary electrophoresis electrospray ionization time-of-flight mass spectrometry. Plasma lipid parameters and glucose tolerance were examined. Dietary supplementation with low- or medium-dose xylitol (40 or 194 mg/kg body weight/day, respectively) significantly altered the fecal microbiota composition in mice. Relative to mice not fed xylitol, the addition of medium-dose xylitol to a regular and HFD in experimental mice reduced the abundance of fecal Bacteroidetes phylum and the genus Barnesiella, whereas the abundance of Firmicutes phylum and the genus Prevotella was increased in mice fed an HFD with medium-dose dietary xylitol. Body composition, hepatic and serum lipid parameters, oral glucose tolerance, and luminal metabolites were unaffected by xylitol consumption. In mice, 40 and 194 mg/kg body weight/day xylitol in the diet induced gradual changes in gut microbiota but not in lipid metabolism. PMID:28708089

  19. Lipase-catalyzed synthesis of xylitol monoesters: solvent engineering approach.

    PubMed

    Castillo, E; Pezzotti, F; Navarro, A; López-Munguía, A

    2003-05-08

    A solvent engineering strategy was applied to the lipase-catalyzed synthesis of xylitol-oleic acid monoesters. The different esterification degrees for this polyhydroxylated molecule were examined in different organic solvent mixtures. In this context, conditions for high selectivity towards monooleoyl xylitol synthesis were enhanced from 6 mol% in pure n-hexane to 73 mol% in 2-methyl-2-propanol/dimethylsulfoxide (DMSO) 80:20 (v/v). On the contrary, the highest production of di- and trioleoyl xylitol, corresponding to 94 mol%, was achieved in n-hexane. Changes in polarity of the reaction medium and in the molecular interactions between solvents and reactants were correlated with the activity coefficients of products. Based on experimental results and calculated thermodynamic activities, the effect of different binary mixtures of solvents on the selective production of xylitol esters is reported. From this analysis, it is concluded that in the more polar conditions (100% dimethylsulfoxide (DMSO)), the synthesis of xylitol monoesters is favored. However, these conditions are unfavorable in terms of enzyme stability. As an alternative, binary mixtures of solvents were proposed. Each mixture of solvents was characterized in terms of the quantitative polarity parameter E(T)(30) and related with the activity coefficients of xylitol esters. To our knowledge, the characterization of solvent mixtures in terms of this polarity parameter and its relationship with the selectivity of the process has not been previously reported.

  20. A surrogate method for comparison analysis of salivary concentrations of Xylitol-containing products

    PubMed Central

    Riedy, Christine A; Milgrom, Peter; Ly, Kiet A; Rothen, Marilynn; Mueller, Gregory; Hagstrom, Mary K; Tolentino, Ernie; Zhou, Lingmei; Roberts, Marilyn C

    2008-01-01

    Background Xylitol chewing gum has been shown to reduce Streptococcus mutans levels and decay. Two studies examined the presence and time course of salivary xylitol concentrations delivered via xylitol-containing pellet gum and compared them to other xylitol-containing products. Methods A within-subjects design was used for both studies. Study 1, adults (N = 15) received three xylitol-containing products (pellet gum (2.6 g), gummy bears (2.6 g), and commercially available stick gum (Koolerz, 3.0 g)); Study 2, a second group of adults (N = 15) received three xylitol-containing products (pellet gum, gummy bears, and a 33% xylitol syrup (2.67 g). For both studies subjects consumed one xylitol product per visit with a 7-day washout between each product. A standardized protocol was followed for each product visit. Product order was randomly determined at the initial visit. Saliva samples (0.5 mL to 1.0 mL) were collected at baseline and up to 10 time points (~16 min in length) after product consumption initiated. Concentration of xylitol in saliva samples was analyzed using high-performance liquid chromatography. Area under the curve (AUC) for determining the average xylitol concentration in saliva over the total sampling period was calculated for each product. Results In both studies all three xylitol products (Study 1: pellet gum, gummy bears, and stick gum; Study 2: pellet gum, gummy bears, and syrup) had similar time curves with two xylitol concentration peaks during the sampling period. Study 1 had its highest mean peaks at the 4 min sampling point while Study 2 had its highest mean peaks between 13 to 16 minutes. Salivary xylitol levels returned to baseline at about 18 minutes for all forms tested. Additionally, for both studies the total AUC for the xylitol products were similar compared to the pellet gum (Study 1: pellet gum – 51.3 μg.min/mL, gummy bears – 59.6 μg.min/mL, and stick gum – 46.4 μg.min/mL; Study 2: pellet gum – 63.0 μg.min/mL, gummy

  1. Bioconversion of lignocellulosic biomass to xylitol: An overview.

    PubMed

    Venkateswar Rao, Linga; Goli, Jyosthna Khanna; Gentela, Jahnavi; Koti, Sravanthi

    2016-08-01

    Lignocellulosic wastes include agricultural and forest residues which are most promising alternative energy sources and serve as potential low cost raw materials that can be exploited to produce xylitol. The strong physical and chemical construction of lignocelluloses is a major constraint for the recovery of xylose. The large scale production of xylitol is attained by nickel catalyzed chemical process that is based on xylose hydrogenation, that requires purified xylose as raw substrate and the process requires high temperature and pressure that remains to be cost intensive and energy consuming. Therefore, there is a necessity to develop an integrated process for biotechnological conversion of lignocelluloses to xylitol and make the process economical. The present review confers about the pretreatment strategies that facilitate cellulose and hemicellulose acquiescent for hydrolysis. There is also an emphasis on various detoxification and fermentation methodologies including genetic engineering strategies for the efficient conversion of xylose to xylitol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Xylitol: a review on bioproduction, application, health benefits, and related safety issues.

    PubMed

    Ur-Rehman, Salim; Mushtaq, Zarina; Zahoor, Tahir; Jamil, Amir; Murtaza, Mian Anjum

    2015-01-01

    Xylitol is a pentahydroxy sugar-alcohol which exists in a very low quantity in fruits and vegetables (plums, strawberries, cauliflower, and pumpkin). On commercial scale, xylitol can be produced by chemical and biotechnological processes. Chemical production is costly and extensive in purification steps. However, biotechnological method utilizes agricultural and forestry wastes which offer the possibilities of economic production of xylitol by reducing required energy. The precursor xylose is produced from agricultural biomass by chemical and enzymatic hydrolysis and can be converted to xylitol primarily by yeast strain. Hydrolysis under acidic condition is the more commonly used practice influenced by various process parameters. Various fermentation process inhibitors are produced during chemical hydrolysis that reduce xylitol production, a detoxification step is, therefore, necessary. Biotechnological xylitol production is an integral process of microbial species belonging to Candida genus which is influenced by various process parameters such as pH, temperature, time, nitrogen source, and yeast extract level. Xylitol has application and potential for food and pharmaceutical industries. It is a functional sweetener as it has prebiotic effects which can reduce blood glucose, triglyceride, and cholesterol level. This review describes recent research developments related to bioproduction of xylitol from agricultural wastes, application, health, and safety issues.

  3. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    PubMed

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells.

  4. Results from the Xylitol for Adult Caries Trial (X-ACT)

    PubMed Central

    Bader, James D.; Vollmer, William M.; Shugars, Daniel A.; Gilbert, Gregg H.; Amaechi, Bennett T.; Brown, John P.; Laws, Reesa L.; Funkhouser, Kimberly A.; Makhija, Sonia K.; Ritter, André V.; Leo, Michael C.

    2013-01-01

    Background Although caries is prevalent in adults, few preventive therapies have been tested in adult populations. This randomized clinical trial evaluated the effectiveness of xylitol lozenges in preventing caries in elevated caries-risk adults. Methods X-ACT was a three-site placebo-controlled randomized trial. Participants (n=691) ages 21–80 consumed five 1.0 g xylitol or placebo lozenges daily for 33 months. Clinical examinations occurred at baseline, 12, 24 and 33 months. Results Xylitol lozenges reduced the caries increment 11%. This reduction, which represented less than one-third of a surface per year, was not statistically significant. There was no indication of a dose-response effect. Conclusions Daily use of xylitol lozenges did not result in a statistically or clinically significant reduction in 33-month caries increment among elevated caries-risk adults. Clinical Implications These results suggest that xylitol used as a supplement in adults does not significantly reduce their caries experience. PMID:23283923

  5. Effectiveness of Xylitol in Reducing Dental Caries in Children.

    PubMed

    Marghalani, Abdullah A; Guinto, Emilie; Phan, Minhthu; Dhar, Vineet; Tinanoff, Norman

    2017-03-15

    The purpose of this study was to evaluate the effectiveness of xylitol in reducing dental caries in children compared to no treatment, a placebo, or preventive strategies. MEDLINE via PubMed, Web of Science, and Cochrane Central Register of Controlled Trials (CENTRAL) were searched from January 1, 1995 through Sept. 26, 2016 for randomized and controlled trials on children consuming xylitol for at least 12 months. The primary endpoint was caries reduction measured by mean decayed, missing, and filled primary and permanent surfaces/ teeth (dmfs/t, DMFS/T, respectively). The I2 and chi-square test for heterogeneity were used to detect trial heterogeneity. Meta-analyses were performed and quality was evaluated using GRADE profiler software. Analysis of five randomized controlled trials (RCTs) showed that xylitol had a small effect on reducing dental caries (standardized mean difference [SMD] equals -0.24; 95 percent confidence interval [CI] equals -0.48 to 0.01; P = 0.06) with a very low quality of evidence and considerable heterogeneity. Studies with higher xylitol doses (greater than four grams per day) demonstrated a medium caries reduction (SMD equals -0.54; 95 percent CI equals -1.14 to 0.05; P = 0.07), with these studies also having considerable heterogeneity and very low quality of evidence. The present systematic review examining the effectiveness of xylitol on caries incidence in children showed a small effect size in randomized controlled trials and a very low quality of evidence that makes preventive action of xylitol uncertain.

  6. Effect of xylitol varnishes on remineralization of artificial enamel caries lesions in vitro.

    PubMed

    Cardoso, C A B; de Castilho, A R F; Salomão, P M A; Costa, E N; Magalhães, A C; Buzalaf, M A R

    2014-11-01

    Analyse the effect of varnishes containing xylitol alone or combined with fluoride on the remineralization of artificial enamel caries lesions in vitro. Bovine enamel specimens were randomly allocated to 7 groups (n=15/group). Artificial caries lesions were produced by immersion in 30 mL of lactic acid buffer containing 3mM CaCl2·2H2O, 3mM KH2PO4, 6 μM tetraetil metil diphosphanate (pH 5.0) for 6 days. The enamel blocks were treated with the following varnishes: 10% xylitol; 20% xylitol; 10% xylitol plus F (5% NaF); 20% xylitol plus F (5% NaF); Duofluorid™ (6% NaF, 2.71% F+6% CaF2), Duraphat™ (5% NaF, positive control) and placebo (no-F/xylitol, negative control). The varnishes were applied in a thin layer and removed after 6h. The blocks were subjected to pH-cycles (demineralization-2h/remineralization-22 h during 8 days) and enamel alterations were quantified by surface hardness and transversal microradiography. The percentage of surface hardness recovery (%SHR), the integrated mineral loss and lesion depth were statistically analysed by ANOVA/Tukey's test or Kruskal-Wallis/Dunn's test (p<0.05). Enamel surface remineralization was significantly increased by Duraphat™, 10% xylitol plus F and 20% xylitol plus F formulations, while significant subsurface mineral remineralization could be seen only for enamel treated with Duraphat™, Duofluorid™ and 20% xylitol formulations. 20% xylitol varnishes seem to be promising alternatives to increase remineralization of artificial caries lesions. effective vehicles are desirable for caries control. Xylitol varnishes seem to be promising alternatives to increase enamel remineralization in vitro, which should be confirmed by in situ and clinical studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Xylitol gummy bear snacks: a school-based randomized clinical trial

    PubMed Central

    Ly, Kiet A; Riedy, Christine A; Milgrom, Peter; Rothen, Marilynn; Roberts, Marilyn C; Zhou, Lingmei

    2008-01-01

    Background Habitual consumption of xylitol reduces mutans streptococci (MS) levels but the effect on Lactobacillus spp. is less clear. Reduction is dependent on daily dose and frequency of consumption. For xylitol to be successfully used in prevention programs to reduce MS and prevent caries, effective xylitol delivery methods must be identified. This study examines the response of MS, specifically S. mutans/sobrinus and Lactobacillus spp., levels to xylitol delivered via gummy bears at optimal exposures. Methods Children, first to fifth grade (n = 154), from two elementary schools in rural Washington State, USA, were randomized to xylitol 15.6 g/day (X16, n = 53) or 11.7 g/day (X12, n = 49), or maltitol 44.7 g/day (M45, n = 52). Gummy bear snacks were pre-packaged in unit-doses, labeled with ID numbers, and distributed three times/day during school hours. No snacks were sent home. Plaque was sampled at baseline and six weeks and cultured on modified Mitis Salivarius agar for S. mutans/sobrinus and Rogosa SL agar for Lactobacillus spp. enumeration. Results There were no differences in S. mutans/sobrinus and Lactobacillus spp. levels in plaque between the groups at baseline. At six weeks, log10 S. mutans/sobrinus levels showed significant reductions for all groups (p = 0.0001): X16 = 1.13 (SD = 1.65); X12 = 0.89 (SD = 1.11); M45 = 0.91 (SD = 1.46). Reductions were not statistically different between groups. Results for Lactobacillus spp. were mixed. Group X16 and M45 showed 0.31 (SD = 2.35), and 0.52 (SD = 2.41) log10 reductions, respectively, while X12 showed a 0.11 (SD = 2.26) log10 increase. These changes were not significant. Post-study discussions with school staff indicated that it is feasible to implement an in-classroom gummy bear snack program. Parents are accepting and children willing to consume gummy bear snacks daily. Conclusion Reductions in S. mutans/sobrinus levels were observed after six weeks of gummy bear snack consumption containing xylitol at 11

  8. In Vitro Oxidative Metabolism of 6-Mercaptopurine in Human Liver: Insights into the Role of the Molybdoflavoenzymes Aldehyde Oxidase, Xanthine Oxidase, and Xanthine Dehydrogenase

    PubMed Central

    Choughule, Kanika V.; Barnaba, Carlo; Joswig-Jones, Carolyn A.

    2014-01-01

    Anticancer agent 6-mercaptopurine (6MP) has been in use since 1953 for the treatment of childhood acute lymphoblastic leukemia (ALL) and inflammatory bowel disease. Despite being available for 60 years, several aspects of 6MP drug metabolism and pharmacokinetics in humans are unknown. Molybdoflavoenzymes such as aldehyde oxidase (AO) and xanthine oxidase (XO) have previously been implicated in the metabolism of this drug. In this study, we investigated the in vitro metabolism of 6MP to 6-thiouric acid (6TUA) in pooled human liver cytosol. We discovered that 6MP is metabolized to 6TUA through sequential metabolism via the 6-thioxanthine (6TX) intermediate. The role of human AO and XO in the metabolism of 6MP was established using the specific inhibitors raloxifene and febuxostat. Both AO and XO were involved in the metabolism of the 6TX intermediate, whereas only XO was responsible for the conversion of 6TX to 6TUA. These findings were further confirmed using purified human AO and Escherichia coli lysate containing expressed recombinant human XO. Xanthine dehydrogenase (XDH), which belongs to the family of xanthine oxidoreductases and preferentially reduces nicotinamide adenine dinucleotide (NAD+), was shown to contribute to the overall production of the 6TX intermediate as well as the final product 6TUA in the presence of NAD+ in human liver cytosol. In conclusion, we present evidence that three enzymes, AO, XO, and XDH, contribute to the production of 6TX intermediate, whereas only XO and XDH are involved in the conversion of 6TX to 6TUA in pooled HLC. PMID:24824603

  9. In vitro oxidative metabolism of 6-mercaptopurine in human liver: insights into the role of the molybdoflavoenzymes aldehyde oxidase, xanthine oxidase, and xanthine dehydrogenase.

    PubMed

    Choughule, Kanika V; Barnaba, Carlo; Joswig-Jones, Carolyn A; Jones, Jeffrey P

    2014-08-01

    Anticancer agent 6-mercaptopurine (6MP) has been in use since 1953 for the treatment of childhood acute lymphoblastic leukemia (ALL) and inflammatory bowel disease. Despite being available for 60 years, several aspects of 6MP drug metabolism and pharmacokinetics in humans are unknown. Molybdoflavoenzymes such as aldehyde oxidase (AO) and xanthine oxidase (XO) have previously been implicated in the metabolism of this drug. In this study, we investigated the in vitro metabolism of 6MP to 6-thiouric acid (6TUA) in pooled human liver cytosol. We discovered that 6MP is metabolized to 6TUA through sequential metabolism via the 6-thioxanthine (6TX) intermediate. The role of human AO and XO in the metabolism of 6MP was established using the specific inhibitors raloxifene and febuxostat. Both AO and XO were involved in the metabolism of the 6TX intermediate, whereas only XO was responsible for the conversion of 6TX to 6TUA. These findings were further confirmed using purified human AO and Escherichia coli lysate containing expressed recombinant human XO. Xanthine dehydrogenase (XDH), which belongs to the family of xanthine oxidoreductases and preferentially reduces nicotinamide adenine dinucleotide (NAD(+)), was shown to contribute to the overall production of the 6TX intermediate as well as the final product 6TUA in the presence of NAD(+) in human liver cytosol. In conclusion, we present evidence that three enzymes, AO, XO, and XDH, contribute to the production of 6TX intermediate, whereas only XO and XDH are involved in the conversion of 6TX to 6TUA in pooled HLC. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Milk sweetened with xylitol: a proof-of-principle caries prevention randomized clinical trial

    PubMed Central

    Chi, Donald L.; Zegarra, Graciela; Vasquez Huerta, Elsa C.; Castillo, Jorge L.; Milgrom, Peter; Roberts, Marilyn C.; Cabrera Matta, Ailin R.; Mancl, Lloyd; Merino, Ana P.

    2016-01-01

    Purpose To evaluate the efficacy of xylitol-sweetened milk as a caries preventive strategy. Methods In this nine-month prospective proof-of-principle trial, 153 Peruvian school children Peru were randomized to a milk group: 8g xylitol/200mL milk once/day, 4g xylitol/100mL milk twice/day, 8g sorbitol/200mL milk once/day, 4g sorbitol/100mL milk twice/day, or 8g sucrose/200mL milk once/day. The primary outcome was plaque mutans streptococci (MS) at nine-months. A secondary outcome was tooth decay incidence. We hypothesized children in the xylitol groups would have a greater MS decline and lower tooth decay incidence. Results One-hundred-thirty-five children were included in the intent-to-treat analyses. Children receiving xylitol had a greater reduction in MS than sucrose (P=0.02) but were not different from sorbitol (P=0.07). Tooth decay incidence for xylitol once/day or twice/day was 5.3±3.4 and 4.3±4.0 surfaces, respectively, compared to sorbitol once/day, sorbitol twice/day, or sucrose (4.1±2.8,3.7±4.2, and 3.2±3.4 surfaces, respectively). There were no differences in tooth decay incidence between xylitol and sucrose (Rate Ratio [RR]=1.51;95% confidence interval [CI]=0.88,2.59;P=0.13) or between xylitol and sorbitol (RR=1.28;95% CI=0.90,1.83;P=0.16). Conclusion Xylitol-sweetened milk significantly reduced MS levels compared to sucrose-sweetened milk, but we were unable to detect differences in caries incidence. ISRCTN34705772. PMID:28327266

  11. Microencapsulation of xylitol by double emulsion followed by complex coacervation.

    PubMed

    Santos, Milla G; Bozza, Fernanda T; Thomazini, Marcelo; Favaro-Trindade, Carmen S

    2015-03-15

    The objective of this study was to produce and characterise xylitol microcapsules for use in foods, in order to prolong the sweetness and cooling effect provided by this ingredient. Complex coacervation was employed as the microencapsulation method. A preliminary double emulsion step was performed due to the hydrophilicity of xylitol. The microcapsules obtained were characterised in terms of particle size and morphology (optical, confocal and scanning electron microscopy), solubility, sorption isotherms, FTIR, encapsulation efficiency and release study. The microcapsules of xylitol showed desirable characteristics for use in foods, such as a particle size below 109 μm, low solubility and complete encapsulation of the core by the wall material. The encapsulation efficiency ranged from 31% to 71%, being higher in treatments with higher concentrations of polymers. Release of over 70% of the microencapsulated xylitol in artificial saliva occurred within 20 min. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Microbial surface displayed enzymes based biofuel cell utilizing degradation products of lignocellulosic biomass for direct electrical energy.

    PubMed

    Fan, Shuqin; Hou, Chuantao; Liang, Bo; Feng, Ruirui; Liu, Aihua

    2015-09-01

    In this work, a bacterial surface displaying enzyme based two-compartment biofuel cell for the direct electrical energy conversion from degradation products of lignocellulosic biomass is reported. Considering that the main degradation products of the lignocellulose are glucose and xylose, xylose dehydrogenase (XDH) displayed bacteria (XDH-bacteria) and glucose dehydrogenase (GDH) displayed bacteria (GDH-bacteria) were used as anode catalysts in anode chamber with methylene blue as electron transfer mediator. While the cathode chamber was constructed with laccase/multi-walled-carbon nanotube/glassy-carbon-electrode. XDH-bacteria exhibited 1.75 times higher catalytic efficiency than GDH-bacteria. This assembled enzymatic fuel cell exhibited a high open-circuit potential of 0.80 V, acceptable stability and energy conversion efficiency. Moreover, the maximum power density of the cell could reach 53 μW cm(-2) when fueled with degradation products of corn stalk. Thus, this finding holds great potential to directly convert degradation products of biomass into electrical energy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. By passing microbial resistance: xylitol controls microorganisms growth by means of its anti-adherence property.

    PubMed

    Ferreira, Aline S; Silva-Paes-Leme, Annelisa F; Raposo, Nádia R B; da Silva, Sílvio S

    2015-01-01

    Xylitol is an important polyalcohol suitable for use in odontological, medical and pharmaceutical products and as an additive in food. The first studies on the efficacy of xylitol in the control and treatment of infections started in the late 1970s and it is still applied for this purpose, with safety and very little contribution to resistance. Xylitol seems to act against microorganisms exerting an anti-adherence effect. Some research studies have demonstrated its action against Gram-positive and Gram-negative bacteria and yeasts. However, a clear explanation of how xylitol is effective has not been completely established yet. Some evidence shows that xylitol acts on gene expression, down-regulating the ones which are involved in the microorganisms' virulence, such as capsule formation. Another possible clarification is that xylitol blocks lectin-like receptors. The most important aspect is that, over time, xylitol bypasses microbial resistance and succeeds in controlling infection, either alone or combined with another compound. In this review, the effect of xylitol in inhibiting the growth of a different microorganism is described, focusing on studies in which such an anti-adherent property was highlighted. This is the first mini-review to describe xylitol as an anti-adherent compound and take into consideration how it exerts such action.

  14. Xylitol-containing products for preventing dental caries in children and adults.

    PubMed

    Riley, Philip; Moore, Deborah; Ahmed, Farooq; Sharif, Mohammad O; Worthington, Helen V

    2015-03-26

    Dental caries is a highly prevalent chronic disease which affects the majority of people. It has been postulated that the consumption of xylitol could help to prevent caries. The evidence on the effects of xylitol products is not clear and therefore it is important to summarise the available evidence to determine its effectiveness and safety. To assess the effects of different xylitol-containing products for the prevention of dental caries in children and adults. We searched the following electronic databases: the Cochrane Oral Health Group Trials Register (to 14 August 2014), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, 2014, Issue 7), MEDLINE via OVID (1946 to 14 August 2014), EMBASE via OVID (1980 to 14 August 2014), CINAHL via EBSCO (1980 to 14 August 2014), Web of Science Conference Proceedings (1990 to 14 August 2014), Proquest Dissertations and Theses (1861 to 14 August 2014). We searched the US National Institutes of Health Trials Register (http://clinicaltrials.gov) and the WHO Clinical Trials Registry Platform for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. We included randomised controlled trials assessing the effects of xylitol products on dental caries in children and adults. Two review authors independently screened the results of the electronic searches, extracted data and assessed the risk of bias of the included studies. We attempted to contact study authors for missing data or clarification where feasible. For continuous outcomes, we used means and standard deviations to obtain the mean difference and 95% confidence interval (CI). We used the continuous data to calculate prevented fractions (PF) and 95% CIs to summarise the percentage reduction in caries. For dichotomous outcomes, we reported risk ratios (RR) and 95% CIs. As there were less than four studies included in the meta-analysis, we used a fixed-effect model. We planned

  15. Milk Sweetened with Xylitol: A Proof-of-Principle Caries Prevention Randomized Clinical Trial.

    PubMed

    Chi, Donald L; Zegarra, Graciela; Vasquez Huerta, Elsa C; Castillo, Jorge L; Milgrom, Peter; Roberts, Marilyn C; Cabrera-Matta, Ailin R; Merino, Ana P

    2016-09-15

    To evaluate the efficacy of xylitol-sweetened milk as a caries-preventive strategy. In this nine-month prospective proof-of-principle trial, Peruvian schoolchildren were randomized to one of five different milk groups: (1) eight g of xylitol per 200 mL milk once per day; (2) four g of xylitol per 100 mL milk twice per day; (3) eight g of sorbitol per 200 mL milk once per day; (4) four g of sorbitol per 100 mL milk twice per day; or (5) eight g of sucrose per 200 mL milk once per day. The primary outcome was plaque mutans streptococci (MS) at nine months. A secondary outcome was caries incidence. We hypothesized that children in the xylitol groups would have a greater MS decline and lower caries incidence. One hundred fifty-three children were randomized in the intent-to-treat analyses. Children receiving xylitol had a greater decline in MS than children receiving sucrose (P=0.02) but were not different from children receiving sorbitol (P=0.07). Dental caries incidence for xylitol once per day or twice per day was 5.3±3.4 and 4.3±4.0 surfaces, respectively, compared to sorbitol once per day, sorbitol twice per day, or sucrose (4.1±2.8, 3.7±4.2, and 3.2±3.4 surfaces, respectively). There were no differences in caries incidence between xylitol and sucrose (rate ratio [RR] = 1.51; 95 percent confidence interval [CI] = 0.88, 2.59; P=0.13) or between xylitol and sorbitol (RR = 1.28; 95 percent CI = 0.90, 1.83; P=0.16). Xylitol-sweetened milk significantly reduced mutans streptococci levels compared to sucrose-sweetened milk, but differences in caries incidence were not detected.

  16. Ameliorating Effect of Dietary Xylitol on Human Respiratory Syncytial Virus (hRSV) Infection.

    PubMed

    Xu, Mei Ling; Wi, Ga Ram; Kim, Hyoung Jin; Kim, Hong-Jin

    2016-01-01

    Human respiratory syncytial virus (hRSV) is the most common cause of bronchiolitis and pneumonia in infants. The lack of proper prophylactics and therapeutics for controlling hRSV infection has been of great concern worldwide. Xylitol is a well-known sugar substitute and its effect against bacteria in the oral cavity is well known. However, little is known of its effect on viral infections. In this study, the effect of dietary xylitol on hRSV infection was investigated in a mouse model for the first time. Mice received xylitol for 14 d prior to virus challenge and for a further 3 d post challenge. Significantly larger reductions in lung virus titers were observed in the mice receiving xylitol than in the controls receiving phosphate-buffered saline (PBS). In addition, fewer CD3(+) and CD3(+)CD8(+) lymphocytes, whose numbers reflect inflammatory status, were recruited in the mice receiving xylitol. These results indicate that dietary xylitol can ameliorate hRSV infections and reduce inflammation-associated immune responses to hRSV infection.

  17. Production of xylitol from corn cob hydrolysate through acid and enzymatic hydrolysis by yeast

    NASA Astrophysics Data System (ADS)

    Mardawati, Efri; Andoyo, R.; Syukra, K. A.; Kresnowati, MTAP; Bindar, Y.

    2018-03-01

    The abundance of corn production in Indonesia offers the potential for its application as the raw material for biorefinery process. The hemicellulose content in corn cobs can be considered to be used as a raw material for xylitol production. The purpose of this research was to study the effect of hydrolysis methods for xylitol production and the effect of the hydrolyzed corn cobs to produce xylitol through fermentation. Hydrolysis methods that would be evaluated were acid and enzymatic hydrolysis. The result showed that the xylitol yield of fermented solution using enzymatic hydrolysates was 0.216 g-xylitol/g-xylose, which was higher than the one that used acid hydrolysates, which was 0.100 g-xylitol/g-xylose. Moreover, the specific growth rate of biomass in fermentation using enzymatic hydrolysates was also higher than the one that used acid hydrolysates, 0.039/h compared to 0.0056/h.

  18. Involvement of TRPV1 and AQP2 in hypertonic stress by xylitol in odontoblast cells.

    PubMed

    Tokuda, M; Fujisawa, M; Miyashita, K; Kawakami, Y; Morimoto-Yamashita, Y; Torii, M

    2015-02-01

    To examine the responses of mouse odontoblast-lineage cell line (OLC) cultures to xylitol-induced hypertonic stress. OLCs were treated with xylitol, sucrose, sorbitol, mannitol, arabinose and lyxose. Cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium assay. The expression of transient receptor potential vanilloids (TRPV) 1, 3 and 4 was detected using a reverse transcriptase-polymerase chain reaction (RT-PCR) assay. The expression of aquaporin (AQP) 2 was detected using immunofluorescence and Western blotting analysis. The expression of interleukin-6 (IL-6) under xylitol-induced hypertonic stress was assessed using an enzyme-linked immunosorbent assay (ELISA). Small interfering ribonucleic acid (siRNA) for AQP-2 was used to inhibition assay. Xylitol-induced hypertonic stress did not decrease OLC viability, unlike the other sugars tested. OLCs expressed TRPV1, 3 and 4 as well as AQP2. Xylitol inhibited lipopolysaccharide (LPS)-induced IL-6 expression after 3 h of hypertonic stress. TRPV1 mRNA expression was upregulated by xylitol. Costimulation with HgCl2 (AQP inhibitor) and Ruthenium red (TRPV1 inhibitor) decreased cell viability with xylitol stimulation. OLCs treated with siRNA against TRPV1 exhibited decreased cell viability with xylitol stimulation. OLCs have high-cell viability under xylitol-induced hypertonic stress, which may be associated with TRPV1 and AQP2 expressions.

  19. Improving xylitol production at elevated temperature with engineered Kluyveromyces marxianus through over-expressing transporters.

    PubMed

    Zhang, Jia; Zhang, Biao; Wang, Dongmei; Gao, Xiaolian; Hong, Jiong

    2015-01-01

    Three transporter genes including Kluyveromyces marxianus aquaglyceroporin gene (KmFPS1), Candida intermedia glucose/xylose facilitator gene (CiGXF1) or glucose/xylose symporter gene (CiGXS1) were over-expressed in K. marxianus YZJ017 to improve xylitol production at elevated temperatures. The xylitol production of YZJ074 that harbored CiGXF1 was improved to 147.62g/L in Erlenmeyer flask at 42°C. In fermenter, 99.29 and 149.60g/L xylitol were produced from 99.55 and 151.91g/L xylose with productivity of 4.14 and 3.40g/L/h respectively at 42°C. Even at 45°C, YZJ074 could produce 101.30g/L xylitol from 101.41g/L xylose with productivity of 2.81g/L/h. Using fed-batch fermentation through repeatedly adding non-sterilized substrate directly, YZJ074 could produce 312.05g/L xylitol which is the highest yield reported to date. The engineered strains YZJ074 which can produce xylitol at elevated temperatures is an excellent foundation for xylitol bioconversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Retrospective evaluation of xylitol ingestion in dogs: 192 cases (2007-2012).

    PubMed

    DuHadway, Meghan R; Sharp, Claire R; Meyers, Katherine E; Koenigshof, Amy M

    2015-01-01

    To summarize the signalment, clinical signs, prevalence of decreased blood glucose concentration (BG), prevalence of increased liver values, treatment, and outcome in dogs known to have ingested xylitol. Retrospective study from December 2007 to February 2012 SETTING: Three university teaching hospitals. One hundred ninety-two client-owned dogs with known or suspected xylitol ingestion. None. The median ingested xylitol dose was 0.32 g/kg (range 0.03-3.64 g/kg). Clinical signs were present in 39 (20%) dogs on presentation to the veterinary teaching hospitals. The most common clinical sign was vomiting (n = 25), followed by lethargy (12). The median duration of clinical signs prior to presentation was 93 minutes (range 0-5,040 minutes). Dogs that developed clinical signs ingested a significantly higher dose of xylitol than those that were asymptomatic. Thirty dogs became hypoglycemic (BG ≤ 3.3 mmol/L [60 mg/dL]) at some time point during their hospitalization. When evaluating all dogs, there was a significant difference between the initial and lowest BGs. Thirty dogs had increased alanine aminotransferase activity or total serum bilirubin concentration. Dogs with increases in alanine aminotransferase activity or total serum bilirubin concentration had a significantly lower nadir BG. All dogs survived to discharge and 158 were known to be alive at 28 days. The rest were lost to follow up. The prognosis for dogs evaluated by a veterinarian that ingest lower doses of xylitol and do not develop liver failure is excellent. Dogs ingesting xylitol should be hospitalized and monitored for variations in BG, because BG drops in most dogs following presentation. Additional studies are needed in dogs ingesting higher doses of xylitol before correlations between dose and the development of clinical signs or liver failure can be established. Treatment and prognosis for these dogs warrants further investigation. © Veterinary Emergency and Critical Care Society 2015.

  1. Xylitol affects the intestinal microbiota and metabolism of daidzein in adult male mice.

    PubMed

    Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko

    2013-12-10

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05). Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05). The fecal lipid contents (% dry weight) were significantly greater in the XD group than in the CD group (p < 0.01). The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05). This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health.

  2. Raman Spectroscopy of Xylitol Uptake and Metabolism in Gram-Positive and Gram-Negative Bacteria▿

    PubMed Central

    Palchaudhuri, Sunil; Rehse, Steven J.; Hamasha, Khozima; Syed, Talha; Kurtovic, Eldar; Kurtovic, Emir; Stenger, James

    2011-01-01

    Visible-wavelength Raman spectroscopy was used to investigate the uptake and metabolism of the five-carbon sugar alcohol xylitol by Gram-positive viridans group streptococcus and the two extensively used strains of Gram-negative Escherichia coli, E. coli C and E. coli K-12. E. coli C, but not E. coli K-12, contains a complete xylitol operon, and the viridans group streptococcus contains an incomplete xylitol operon used to metabolize the xylitol. Raman spectra from xylitol-exposed viridans group streptococcus exhibited significant changes that persisted even in progeny grown from the xylitol-exposed mother cells in a xylitol-free medium for 24 h. This behavior was not observed in the E. coli K-12. In both viridans group streptococcus and the E. coli C derivative HF4714, the metabolic intermediates are stably formed to create an anomaly in bacterial normal survival. The uptake of xylitol by Gram-positive and Gram-negative pathogens occurs even in the presence of other high-calorie sugars, and its stable integration within the bacterial cell wall may discontinue bacterial multiplication. This could be a contributing factor for the known efficacy of xylitol when taken as a prophylactic measure to prevent or reduce occurrences of persistent infection. Specifically, these bacteria are causative agents for several important diseases of children such as pneumonia, otitis media, meningitis, and dental caries. If properly explored, such an inexpensive and harmless sugar-alcohol, alone or used in conjunction with fluoride, would pave the way to an alternative preventive therapy for these childhood diseases when the causative pathogens have become resistant to modern medicines such as antibiotics and vaccine immunotherapy. PMID:21037297

  3. Xylitol production by a Pichia stipitis D-xylulokinase mutant

    Treesearch

    Yong-Su Jin; Jose Cruz; Thomas W. Jeffries

    2005-01-01

    Xylitol production by Pichia stipitis FPL-YS30, a xyl3-Ä1 mutant that metabolizes xylose using an alternative metabolic pathway, was investigated under aerobic and oxygen-limited culture conditions. Under both culture conditions, FPL-YS30 (xyl3-Ä1) produced a negligible amount of ethanol and converted xylose mainly into xylitol with comparable yields (0.30 and 0.27 g...

  4. Xylitol as a prophylaxis for acute otitis media: systematic review.

    PubMed

    Danhauer, Jeffrey L; Johnson, Carole E; Corbin, Nicole E; Bruccheri, Kaitlyn G

    2010-10-01

    A systematic review was conducted to evaluate evidence regarding xylitol, a sugar alcohol, as a prophylaxis for acute otitis media (AOM) in children. The authors searched PubMed and other databases to identify evidence. Criteria for included studies were: appear in English-language, peer-reviewed journals; at least quasi-experimental designs; use xylitol; and present outcome data. The authors completed evaluation forms for the included studies at all phases of the review. The authors reviewed 1479 titles and excluded 1435. Abstracts and full texts were reviewed for the remaining 44; four randomized controlled trials met inclusion criteria. Xylitol was a generally well accepted prophylaxis for AOM with few side effects when administered via chewing gum or syrup at 10 g/day given five times daily. Meta-analysis revealed significant treatment effects (Risk ratio = 0.68; 95% confidence interval = 0.57 to 0.83). Xylitol can be a prophylaxis for AOM, but warrants further study, especially of vehicles other than chewing gum for young children, and information is needed regarding cost, duration of administration required, and expected long-term effects.

  5. Xylitol Affects the Intestinal Microbiota and Metabolism of Daidzein in Adult Male Mice

    PubMed Central

    Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko

    2013-01-01

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05). Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05). The fecal lipid contents (% dry weight) were significantly greater in the XD group than in the CD group (p < 0.01). The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05). This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health. PMID:24336061

  6. Metabolomic effects of xylitol and fluoride on plaque biofilm in vivo.

    PubMed

    Takahashi, N; Washio, J

    2011-12-01

    Dental caries is initiated by demineralization of the tooth surface through acid production from sugar by plaque biofilm. Fluoride and xylitol have been used worldwide as caries-preventive reagents, based on in vitro-proven inhibitory mechanisms on bacterial acid production. We attempted to confirm the inhibitory mechanisms of fluoride and xylitol in vivo by performing metabolome analysis on the central carbon metabolism in supragingival plaque using the combination of capillary electrophoresis and a time-of-flight mass spectrometer. Fluoride (225 and 900 ppm F(-)) inhibited lactate production from 10% glucose by 34% and 46%, respectively, along with the increase in 3-phosphoglycerate and the decrease in phosphoenolpyruvate in the EMP pathway in supragingival plaque. These results confirmed that fluoride inhibited bacterial enolase in the EMP pathway and subsequently repressed acid production in vivo. In contrast, 10% xylitol had no effect on acid production and the metabolome profile in supragingival plaque, although xylitol 5-phosphate was produced. These results suggest that xylitol is not an inhibitor of plaque acid production but rather a non-fermentative sugar alcohol. Metabolome analyses of plaque biofilm can be applied for monitoring the efficacy of dietary components and medicines for plaque biofilm, leading to the development of effective plaque control.

  7. Metabolomic Effects of Xylitol and Fluoride on Plaque Biofilm in Vivo

    PubMed Central

    Takahashi, N.; Washio, J.

    2011-01-01

    Dental caries is initiated by demineralization of the tooth surface through acid production from sugar by plaque biofilm. Fluoride and xylitol have been used worldwide as caries-preventive reagents, based on in vitro-proven inhibitory mechanisms on bacterial acid production. We attempted to confirm the inhibitory mechanisms of fluoride and xylitol in vivo by performing metabolome analysis on the central carbon metabolism in supragingival plaque using the combination of capillary electrophoresis and a time-of-flight mass spectrometer. Fluoride (225 and 900 ppm F−) inhibited lactate production from 10% glucose by 34% and 46%, respectively, along with the increase in 3-phosphoglycerate and the decrease in phosphoenolpyruvate in the EMP pathway in supragingival plaque. These results confirmed that fluoride inhibited bacterial enolase in the EMP pathway and subsequently repressed acid production in vivo. In contrast, 10% xylitol had no effect on acid production and the metabolome profile in supragingival plaque, although xylitol 5-phosphate was produced. These results suggest that xylitol is not an inhibitor of plaque acid production but rather a non-fermentative sugar alcohol. Metabolome analyses of plaque biofilm can be applied for monitoring the efficacy of dietary components and medicines for plaque biofilm, leading to the development of effective plaque control. PMID:21940519

  8. Xylitol production by genetically modified industrial strain of Saccharomyces cerevisiae using glycerol as co-substrate.

    PubMed

    Kogje, Anushree B; Ghosalkar, Anand

    2017-06-01

    Xylitol is commercially used in chewing gum and dental care products as a low calorie sweetener having medicinal properties. Industrial yeast strain of S. cerevisiae was genetically modified to overexpress an endogenous aldose reductase gene GRE3 and a xylose transporter gene SUT1 for the production of xylitol. The recombinant strain (XP-RTK) carried the expression cassettes of both the genes and the G418 resistance marker cassette KanMX integrated into the genome of S. cerevisiae. Short segments from the 5' and 3' delta regions of the Ty1 retrotransposons were used as homology regions for integration of the cassettes. Xylitol production by the industrial recombinant strain was evaluated using hemicellulosic hydrolysate of the corn cob with glucose as the cosubstrate. The recombinant strain XP-RTK showed significantly higher xylitol productivity (212 mg L -1  h -1 ) over the control strain XP (81 mg L -1  h -1 ). Glucose was successfully replaced by glycerol as a co-substrate for xylitol production by S. cerevisiae. Strain XP-RTK showed the highest xylitol productivity of 318.6 mg L -1  h -1 and titre of 47 g L -1 of xylitol at 12 g L -1 initial DCW using glycerol as cosubstrate. The amount of glycerol consumed per amount of xylitol produced (0.47 mol mol -1 ) was significantly lower than glucose (23.7 mol mol -1 ). Fermentation strategies such as cell recycle and use of the industrial nitrogen sources were demonstrated using hemicellulosic hydrolysate for xylitol production.

  9. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis.

    PubMed

    Tamburini, Elena; Costa, Stefania; Marchetti, Maria Gabriella; Pedrini, Paola

    2015-08-19

    The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose) concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60-80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w) on consumed xylose in microaerophilic conditions (kLa = 2·h(-1)). Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w), against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions.

  10. Effect of Furfural, Vanillin and Syringaldehyde on Candida guilliermondii Growth and Xylitol Biosynthesis

    NASA Astrophysics Data System (ADS)

    Kelly, Christine; Jones, Opal; Barnhart, Christopher; Lajoie, Curtis

    Xylitol is a five-carbon sugar alcohol with established commercial use as an alternative sweetener and can be produced from hemicellulose hydrolysate. However, there are difficulties with microbiological growth and xylitol biosynthesis on hydrolysate because of the inhibitors formed from hydrolysis of hemicellulose. This research focused on the effect of furfural, vanillin, and syringaldehyde on growth of Candida guilliermondii and xylitol accumulation from xylose in a semi-synthetic medium in microwell plate and bioreactor cultivations. All three compounds reduced specific growth rate, increased lag time, and reduced xylitol production rate. In general, increasing concentration of inhibitor increased the severity of inhibition, except in the case of 0.5 g vanillin per liter, which resulted in a faster late batch phase growth rate and increased biomass yield. At concentrations of 1 g/1 or higher, furfural was the least inhibitory to growth, followed by syringaldehyde. Vanillin most severely reduced specific growth rate. All three inhibitors reduced xylitol production rate approximately to the same degree.

  11. Effect of furfural, vanillin and syringaldehyde on Candida guilliermondii growth and xylitol biosynthesis.

    PubMed

    Kelly, Christine; Jones, Opal; Barnhart, Christopher; Lajoie, Curtis

    2008-03-01

    Xylitol is a five-carbon sugar alcohol with established commercial use as an alternative sweetener and can be produced from hemicellulose hydrolysate. However, there are difficulties with microbiological growth and xylitol biosynthesis on hydrolysate because of the inhibitors formed from hydrolysis of hemicellulose. This research focused on the effect of furfural, vanillin, and syringaldehyde on growth of Candida guilliermondii and xylitol accumulation from xylose in a semi-synthetic medium in microwell plate and bioreactor cultivations. All three compounds reduced specific growth rate, increased lag time, and reduced xylitol production rate. In general, increasing concentration of inhibitor increased the severity of inhibition, except in the case of 0.5 g vanillin per liter, which resulted in a faster late batch phase growth rate and increased biomass yield. At concentrations of 1 g/l or higher, furfural was the least inhibitory to growth, followed by syringaldehyde. Vanillin most severely reduced specific growth rate. All three inhibitors reduced xylitol production rate approximately to the same degree.

  12. Cluster-randomized xylitol toothpaste trial for early childhood caries prevention.

    PubMed

    Chi, Donald L; Tut, Ohnmar; Milgrom, Peter

    2014-01-01

    The purpose of this study was to assess the efficacy of supervised tooth-brushing with xylitol toothpaste to prevent early childhood caries (ECC) and reduce mutans streptococci. In this cluster-randomized efficacy trial, 196 four- to five-year-old children in four Head Start classrooms in the Marshall Islands were randomly assigned to supervised toothbrushing with 1,400 ppm/31 percent fluoride xylitol or 1,450 ppm fluoride sorbitol toothpaste. We hypothesized that there would be no difference in efficacy between the two types of toothpaste. The primary outcome was the surface-level primary molar caries increment (d(2-3)mfs) after six months. A single examiner was blinded to classroom assignments. Two classrooms were assigned to the fluoride-xylitol group (85 children), and two classrooms were assigned to the fluoride-sorbitol group (83 children). The child-level analyses accounted for clustering. There was no difference between the two groups in baseline or end-of-trial mean d(2-3)mfs. The mean d(2-3)mfs increment was greater in the fluoride-xylitol group compared to the fluoride-sorbitol group (2.5 and 1.4 d(2-3)mfs, respectively), but the difference was not significant (95% confidence interval: -0.17, 2.37; P=.07). No adverse effects were reported. After six months, brushing with a low-strength xylitol/fluoride tooth-paste is no more efficacious in reducing ECC than a fluoride-only toothpaste in a high caries-risk child population.

  13. Cluster-randomized xylitol toothpaste trial for early childhood caries prevention

    PubMed Central

    Chi, Donald L.; Tut, Ohnmar K.; Milgrom, Peter

    2013-01-01

    Purpose We assessed the efficacy of supervised toothbrushing with xylitol toothpaste to prevent early childhood caries (ECC) and to reduce mutans streptococci (MS). Methods In this cluster-randomized efficacy trial, 4 Head Start classrooms in the Marshall Islands were randomly assigned to supervised toothbrushing with 1,400ppm/31% fluoride-xylitol (Epic Dental, Provo, UT) or 1,450ppm fluoride-sorbitol toothpaste (Colgate-Palmolive, New York, NY) (N=196 children, ages 4–5 yrs). We hypothesized no difference in efficacy between the two types of toothpaste. The primary outcome was primary molar d2-3mfs increment after 6 mos. A single examiner was blinded to classroom assignments. Two classrooms were assigned to the fluoride-xylitol group (85 children) and 2 classrooms to the fluoride-sorbitol group (83 children). The child-level analyses accounted for clustering. Results There was no difference between the two groups in baseline or end-of-trial mean d2-3mfs. The mean d2-3mfs increment was greater in the fluoride-xylitol group compared to the fluoride-sorbitol group (2.5 and 1.4 d2-3mfs, respectively), but the difference was not significant (95% CI:−0.17, 2.37;P=0.07). No adverse effects were reported. Conclusion After 6 mos, brushing with a low strength xylitol/fluoride toothpaste is no more efficacious in reducing ECC than a fluoride only toothpaste in a high caries risk child population. PMID:24709430

  14. Detoxification of Corncob Acid Hydrolysate with SAA Pretreatment and Xylitol Production by Immobilized Candida tropicalis

    PubMed Central

    Deng, Li-Hong; Tang, Yong; Liu, Yun

    2014-01-01

    Xylitol fermentation production from corncob acid hydrolysate has become an attractive and promising process. However, corncob acid hydrolysate cannot be directly used as fermentation substrate owing to various inhibitors. In this work, soaking in aqueous ammonia (SAA) pretreatment was employed to reduce the inhibitors in acid hydrolysate. After detoxification, the corncob acid hydrolysate was fermented by immobilized Candida tropicalis cell to produce xylitol. Results revealed that SAA pretreatment showed high delignification and efficient removal of acetyl group compounds without effect on cellulose and xylan content. Acetic acid was completely removed, and the content of phenolic compounds was reduced by 80%. Furthermore, kinetic behaviors of xylitol production by immobilized C. tropicalis cell were elucidated from corncob acid hydrolysate detoxified with SAA pretreatment and two-step adsorption method, respectively. The immobilized C. tropicalis cell showed higher productivity efficiency using the corncob acid hydrolysate as fermentation substrate after detoxification with SAA pretreatment than by two-step adsorption method in the five successive batch fermentation rounds. After the fifth round fermentation, about 60 g xylitol/L fermentation substrate was obtained for SAA pretreatment detoxification, while about 30 g xylitol/L fermentation substrate was obtained for two-step adsorption detoxification. PMID:25133211

  15. Challenges and prospects of xylitol production with whole cell bio-catalysis: A review.

    PubMed

    Dasgupta, Diptarka; Bandhu, Sheetal; Adhikari, Dilip K; Ghosh, Debashish

    2017-04-01

    Xylitol, as an alternative low calorie sweetener is well accepted in formulations of various confectioneries and healthcare products. Worldwide it is industrially produced by catalytic hydrogenation of pure d-xylose solution under high temperature and pressure. Biotechnological xylitol production is a potentially attractive replacement for chemical process, as it occurs under much milder process conditions and can be based on sugar mixtures derived from low-cost industrial and agri-waste. However, microbial fermentation route of xylitol production is not so far practiced industrially. This review highlights the challenges and prospects of biotechnological xylitol production considering possible genetic modifications of fermenting microorganisms and various aspects of industrial bioprocessing and product downstreaming. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. The effectiveness of xylitol in a school-based cluster-randomized clinical trial.

    PubMed

    Lee, Wonik; Spiekerman, Charles; Heima, Masahiro; Eggertsson, Hafsteinn; Ferretti, Gerald; Milgrom, Peter; Nelson, Suchitra

    2015-01-01

    The purpose of this double-blind, cluster-randomized clinical trial was to examine the effects of xylitol gummy bear snacks on dental caries progression in primary and permanent teeth of inner-city school children. A total of 562 children aged 5-6 years were recruited from five elementary schools in East Cleveland, Ohio. Children were randomized by classroom to receive xylitol (7.8 g/day) or placebo (inulin fiber 20 g/day) gummy bears. Gummy bears were given three times per day for the 9-month kindergarten year within a supervised school environment. Children in both groups also received oral health education, toothbrush and fluoridated toothpaste, topical fluoride varnish treatment and dental sealants. The numbers of new decayed, missing, and filled surfaces for primary teeth (dmfs) and permanent teeth (DMFS) from baseline to the middle of 2nd grade (exit exam) were compared between the treatment (xylitol/placebo) groups using an optimally-weighted permutation test for cluster-randomized data. The mean new d(3-6)mfs at the exit exam was 5.0 ± 7.6 and 4.0 ± 6.5 for the xylitol and placebo group, respectively. Similarly, the mean new D(3-6)MFS was 0.38 ± 0.88 and 0.48 ± 1.39 for the xylitol and placebo group, respectively. The adjusted mean difference between the two groups was not statistically significant: new d(3-6)mfs: mean 0.4, 95% CI -0.25, 0.8), and new D(3-6)MFS: mean 0.16, 95% CI -0.16, 0.43. Xylitol consumption did not have additional benefit beyond other preventive measures. Caries progression in the permanent teeth of both groups was minimal, suggesting that other simultaneous prevention modalities may have masked the possible beneficial effects of xylitol in this trial. © 2014 S. Karger AG, Basel.

  17. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis

    PubMed Central

    Tamburini, Elena; Costa, Stefania; Marchetti, Maria Gabriella; Pedrini, Paola

    2015-01-01

    The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose) concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60–80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w) on consumed xylose in microaerophilic conditions (kLa = 2·h−1). Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w), against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions. PMID:26295411

  18. The effects of xylitol and sorbitol on lysozyme- and peroxidase-related enzymatic and candidacidal activities.

    PubMed

    Kim, Bum-Soo; Chang, Ji-Youn; Kim, Yoon-Young; Kho, Hong-Seop

    2015-07-01

    To investigate whether xylitol and sorbitol affect enzymatic and candidacidal activities of lysozyme, the peroxidase system, and the glucose oxidase-mediated peroxidase system. Xylitol and sorbitol were added to hen egg-white lysozyme, bovine lactoperoxidase, glucose oxidase-mediated peroxidase, and whole saliva in solution and on hydroxyapatite surfaces. The enzymatic activities of lysozyme, peroxidase, and glucose oxidase-mediated peroxidase were determined by the turbidimetric method, the NbsSCN assay, and production of oxidized o-dianisidine, respectively. Candidacidal activities were determined by comparing colony forming units using Candida albicans ATCC strains 10231, 11006, and 18804. While xylitol and sorbitol did not affect the enzymatic activity of hen egg-white lysozyme both in solution and on hydroxyapatite surfaces, they did inhibit the enzymatic activity of salivary lysozyme significantly in solution, but not on the surfaces. Xylitol and sorbitol enhanced the enzymatic activities of both bovine lactoperoxidase and salivary peroxidase significantly in a dose-dependent manner in solution, but not on the surfaces. Sorbitol, but not xylitol, inhibited the enzymatic activity of glucose oxidase-mediated peroxidase significantly. Both xylitol and sorbitol did not affect candidacidal activities of hen egg-white lysozyme, the bovine lactoperoxidase system, or the glucose oxidase-mediated bovine lactoperoxidase system. Xylitol and sorbitol inhibited salivary lysozyme activity, but enhanced both bovine lactoperoxidase and salivary peroxidase activities significantly in solution. Xylitol and sorbitol did not augment lysozyme- and peroxidase-related candidacidal activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae.

    PubMed

    Jo, Jung-Hyun; Oh, Sun-Young; Lee, Hyeun-Soo; Park, Yong-Cheol; Seo, Jin-Ho

    2015-12-01

    Xylitol, a natural sweetener, can be produced by hydrogenation of xylose in hemicelluloses. In microbial processes, utilization of only NADPH cofactor limited commercialization of xylitol biosynthesis. To overcome this drawback, Saccharomyces cerevisiae D452-2 was engineered to express two types of xylose reductase (XR) with either NADPH-dependence or NADH-preference. Engineered S. cerevisiae DWM expressing both the XRs exhibited higher xylitol productivity than the yeast strain expressing NADPH-dependent XR only (DWW) in both batch and glucose-limited fed-batch cultures. Furthermore, the coexpression of S. cerevisiae ZWF1 and ACS1 genes in the DWM strain increased intracellular concentrations of NADPH and NADH and improved maximum xylitol productivity by 17%, relative to that for the DWM strain. Finally, the optimized fed-batch fermentation of S. cerevisiae DWM-ZWF1-ACS1 resulted in 196.2 g/L xylitol concentration, 4.27 g/L h productivity and almost the theoretical yield. Expression of the two types of XR utilizing both NADPH and NADH is a promising strategy to meet the industrial demands for microbial xylitol production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Xylitol-supplemented nutrition enhances bacterial killing and prolongs survival of rats in experimental pneumococcal sepsis

    PubMed Central

    Renko, Marjo; Valkonen, Päivi; Tapiainen, Terhi; Kontiokari, Tero; Mattila, Pauli; Knuuttila, Matti; Svanberg, Martti; Leinonen, Maija; Karttunen, Riitta; Uhari, Matti

    2008-01-01

    Background Xylitol has antiadhesive effects on Streptococcus pneumoniae and inhibits its growth, and has also been found to be effective in preventing acute otitis media and has been used in intensive care as a valuable source of energy. Results We evaluated the oxidative burst of neutrophils in rats fed with and without xylitol. The mean increase in the percentage of activated neutrophils from the baseline was higher in the xylitol-exposed group than in the control group (58.1% vs 51.4%, P = 0.03 for the difference) and the mean induced increase in the median strength of the burst per neutrophil was similarly higher in the xylitol group (159.6 vs 140.3, P = 0.04). In two pneumococcal sepsis experiments rats were fed either a basal powder diet (control group) or the same diet supplemented with 10% or 20% xylitol and infected with an intraperitoneal inoculation of S. pneumoniae after two weeks. The mean survival time was 48 hours in the xylitol groups and 34 hours in the control groups (P < 0.001 in log rank test). Conclusion Xylitol has beneficial effects on both the oxidative killing of bacteria in neutrophilic leucocytes and on the survival of rats with experimental pneumococcal sepsis. PMID:18334022

  1. Breeding of a xylose-fermenting hybrid strain by mating genetically engineered haploid strains derived from industrial Saccharomyces cerevisiae.

    PubMed

    Inoue, Hiroyuki; Hashimoto, Seitaro; Matsushika, Akinori; Watanabe, Seiya; Sawayama, Shigeki

    2014-12-01

    The industrial Saccharomyces cerevisiae IR-2 is a promising host strain to genetically engineer xylose-utilizing yeasts for ethanol fermentation from lignocellulosic hydrolysates. Two IR-2-based haploid strains were selected based upon the rate of xylulose fermentation, and hybrids were obtained by mating recombinant haploid strains harboring heterogeneous xylose dehydrogenase (XDH) (wild-type NAD(+)-dependent XDH or engineered NADP(+)-dependent XDH, ARSdR), xylose reductase (XR) and xylulose kinase (XK) genes. ARSdR in the hybrids selected for growth rates on yeast extract-peptone-dextrose (YPD) agar and YP-xylose agar plates typically had a higher activity than NAD(+)-dependent XDH. Furthermore, the xylose-fermenting performance of the hybrid strain SE12 with the same level of heterogeneous XDH activity was similar to that of a recombinant strain of IR-2 harboring a single set of genes, XR/ARSdR/XK. These results suggest not only that the recombinant haploid strains retain the appropriate genetic background of IR-2 for ethanol production from xylose but also that ARSdR is preferable for xylose fermentation.

  2. Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate.

    PubMed

    Guirimand, Gregory; Sasaki, Kengo; Inokuma, Kentaro; Bamba, Takahiro; Hasunuma, Tomohisa; Kondo, Akihiko

    2016-04-01

    Xylitol, a value-added polyol deriving from D-xylose, is widely used in both the food and pharmaceutical industries. Despite extensive studies aiming to streamline the production of xylitol, the manufacturing cost of this product remains high while demand is constantly growing worldwide. Biotechnological production of xylitol from lignocellulosic waste may constitute an advantageous and sustainable option to address this issue. However, to date, there have been few reports of biomass conversion to xylitol. In the present study, xylitol was directly produced from rice straw hydrolysate using a recombinant Saccharomyces cerevisiae YPH499 strain expressing cytosolic xylose reductase (XR), along with β-glucosidase (BGL), xylosidase (XYL), and xylanase (XYN) enzymes (co-)displayed on the cell surface; xylitol production by this strain did not require addition of any commercial enzymes. All of these enzymes contributed to the consolidated bioprocessing (CBP) of the lignocellulosic hydrolysate to xylitol to produce 5.8 g/L xylitol with 79.5 % of theoretical yield from xylose contained in the biomass. Furthermore, nanofiltration of the rice straw hydrolysate provided removal of fermentation inhibitors while simultaneously increasing sugar concentrations, facilitating high concentration xylitol production (37.9 g/L) in the CBP. This study is the first report (to our knowledge) of the combination of cell surface engineering approach and membrane separation technology for xylitol production, which could be extended to further industrial applications.

  3. Long-term clinical and bacterial effects of xylitol on patients with fixed orthodontic appliances.

    PubMed

    Masoud, Mohamed I; Allarakia, Reem; Alamoudi, Najlaa M; Nalliah, Romesh; Allareddy, Veerasathpurush

    2015-01-01

    The objective of this study was to evaluate long-term clinical and bacterial effects of using 6 g of xylitol per day for 3 months on patients with full fixed orthodontic appliances. The study was a pilot clinical trial that included 41 subjects who were undergoing orthodontic treatment. The subjects were randomly divided into three groups. Group A received xylitol chewing gum, group B received xylitol dissolvable chewable tablets, and Group C served as the control group and did not receive xylitol gums or tablets. Clinical examination and the collection of plaque and saliva samples were carried out at baseline and 3, 6, and 12 months. All three groups were given oral hygiene instruction and were put on a 6-month cleaning and topical fluoride schedule. Plaque scores and bacterial counts were used to evaluate the effectiveness of the different approaches at reducing the caries risk. Xylitol groups did not experience any more reduction in plaque score, plaque MS counts, or salivary MS counts than the control group nor did they have lower values at any of the time points. Chewing gum did not significantly increase the incidence of debonded brackets over the other groups. Xylitol does not have a clinical or bacterial benefit in patients with fixed orthodontic appliances. Oral hygiene instructions and 6-month topical fluoride application were effective at reducing plaque scores and bacterial counts in patients with full fixed appliances regardless of whether or not xylitol was used.

  4. Influence of sucrose and xylitol on an early Streptococcus mutans biofilm in a dental simulator.

    PubMed

    Salli, K M; Forssten, S D; Lahtinen, S J; Ouwehand, A C

    2016-10-01

    In vitro methods to study dental biofilms are useful in finding ways to support a healthy microbial balance in the oral cavity. The effects of sucrose, xylitol, and their combination on three strains of Streptococcus mutans and one strain of Streptococcus sobrinus were studied using a dental simulator. A simulator was used to mimic the oral cavity environment. It provided a continuous-flow system using artificial saliva (AS), constant temperature, mixing, and hydroxyapatite (HA) surface in which the influence of xylitol was studied. The quantities of planktonic and adhered bacteria were measured by real-time qPCR. Compared against the untreated AS, adding 1% sucrose increased the bacterial colonization of HA (p<0.0001) whereas 2% xylitol decreased it (p<0.05), with the exception of clinical S. mutans isolate 117. The combination of xylitol and sucrose decreased the bacterial quantities within the AS and the colonization on the HA by clinical S. mutans isolate 2366 was reduced (p<0.05). Increasing the concentration (2%-5%) of xylitol caused a reduction in bacterial counts even in the presence of sucrose. The continuous-culture biofilm model showed that within a young biofilm, sucrose significantly promotes whereas xylitol reduces bacterial colonization and proliferation. The results indicate that xylitol affects the ability of certain S. mutans strains to adhere to the HA. Clinical studies have also shown that xylitol consumption decreases caries incidence and reduces the amount of plaque. This study contributes to the understanding of the mechanism behind these clinical observations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Calorimetric and relaxation properties of xylitol-water mixtures

    NASA Astrophysics Data System (ADS)

    Elamin, Khalid; Sjöström, Johan; Jansson, Helén; Swenson, Jan

    2012-03-01

    We present the first broadband dielectric spectroscopy (BDS) and differential scanning calorimetry study of supercooled xylitol-water mixtures in the whole concentration range and in wide frequency (10-2-106 Hz) and temperature (120-365 K) ranges. The calorimetric glass transition, Tg, decreases from 247 K for pure xylitol to about 181 K at a water concentration of approximately 37 wt. %. At water concentrations in the range 29-35 wt. % a plentiful calorimetric behaviour is observed. In addition to the glass transition, almost simultaneous crystallization and melting events occurring around 230-240 K. At higher water concentrations ice is formed during cooling and the glass transition temperature increases to a steady value of about 200 K for all higher water concentrations. This Tg corresponds to an unfrozen xylitol-water solution containing 20 wt. % water. In addition to the true glass transition we also observed a glass transition-like feature at 220 K for all the ice containing samples. However, this feature is more likely due to ice dissolution [A. Inaba and O. Andersson, Thermochim. Acta, 461, 44 (2007)]. In the case of the BDS measurements the presence of water clearly has an effect on both the cooperative α-relaxation and the secondary β-relaxation. The α-relaxation shows a non-Arrhenius temperature dependence and becomes faster with increasing concentration of water. The fragility of the solutions, determined by the temperature dependence of the α-relaxation close to the dynamic glass transition, decreases with increasing water content up to about 26 wt. % water, where ice starts to form. This decrease in fragility with increasing water content is most likely caused by the increasing density of hydrogen bonds, forming a network-like structure in the deeply supercooled regime. The intensity of the secondary β-relaxation of xylitol decreases noticeably already at a water content of 2 wt. %, and at a water content above 5 wt. % it has been replaced by a

  6. Furfural and glucose can enhance conversion of xylose to xylitol by Candida magnoliae TISTR 5663.

    PubMed

    Wannawilai, Siwaporn; Lee, Wen-Chien; Chisti, Yusuf; Sirisansaneeyakul, Sarote

    2017-01-10

    Xylitol production from xylose by the yeast Candida magnoliae TISTR 5663 was enhanced by supplementing the fermentation medium with furfural (300mg/L) and glucose (3g/L with an initial mass ratio of glucose to xylose of 1:10) together under oxygen limiting conditions. In the presence of furfural and glucose, the final concentration of xylitol was unaffected relative to control cultures but the xylitol yield on xylose increased by about 5%. Supplementation of the culture medium with glucose alone at an initial concentration of 3g/L, stimulated the volumetric and specific rates of xylose consumption and the rate of xylitol production from xylose. In a culture medium containing 30g/L xylose, 300mg/L furfural and 3g/L glucose, the volumetric production rate of xylitol was 1.04g/L h and the specific production rate was 0.169g/g h. In the absence of furfural and glucose, the volumetric production rate of xylitol was ∼35% lower and the specific production rate was nearly 30% lower. In view of these results, xylose-containing lignocellulosic hydrolysates contaminated with furfural can be effectively used for producing xylitol by fermentation so long as the glucose-to-xylose mass ratio in the hydrolysate does not exceed 1:10 and the furfural concentration is ≤300mg/L. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 I: production of xylitol and ethanol.

    PubMed

    Bura, Renata; Vajzovic, Azra; Doty, Sharon L

    2012-07-01

    An endophytic yeast, Rhodotorula mucilaginosa strain PTD3, that was isolated from stems of hybrid poplar was found to be capable of production of xylitol from xylose, of ethanol from glucose, galactose, and mannose, and of arabitol from arabinose. The utilization of 30 g/L of each of the five sugars during fermentation by PTD3 was studied in liquid batch cultures. Glucose-acclimated PTD3 produced enhanced yields of xylitol (67% of theoretical yield) from xylose and of ethanol (84, 86, and 94% of theoretical yield, respectively) from glucose, galactose, and mannose. Additionally, this yeast was capable of metabolizing high concentrations of mixed sugars (150 g/L), with high yields of xylitol (61% of theoretical yield) and ethanol (83% of theoretical yield). A 1:1 glucose:xylose ratio with 30 g/L of each during double sugar fermentation did not affect PTD3's ability to produce high yields of xylitol (65% of theoretical yield) and ethanol (92% of theoretical yield). Surprisingly, the highest yields of xylitol (76% of theoretical yield) and ethanol (100% of theoretical yield) were observed during fermentation of sugars present in the lignocellulosic hydrolysate obtained after steam pretreatment of a mixture of hybrid poplar and Douglas fir. PTD3 demonstrated an exceptional ability to ferment the hydrolysate, overcome hexose repression of xylose utilization with a short lag period of 10 h, and tolerate sugar degradation products. In direct comparison, PTD3 had higher xylitol yields from the mixed sugar hydrolysate compared with the widely studied and used xylitol producer Candida guilliermondii.

  8. 21 CFR 172.395 - Xylitol.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Xylitol. 172.395 Section 172.395 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172...

  9. Effect of xylitol versus sorbitol: a quantitative systematic review of clinical trials.

    PubMed

    Mickenautsch, Steffen; Yengopal, Veerasamy

    2012-08-01

    This study aimed to appraise, within the context of tooth caries, the current clinical evidence and its risk for bias regarding the effects of xylitol in comparison with sorbitol. Databases were searched for clinical trials to 19 March 2011. Inclusion criteria required studies to: test a caries-related primary outcome; compare the effects of xylitol with those of sorbitol; describe a clinical trial with two or more arms, and utilise a prospective study design. Articles were excluded if they did not report computable data or did not follow up test and control groups in the same way. Individual dichotomous and continuous datasets were extracted from accepted articles. Selection and performance/detection bias were assessed. Sensitivity analysis was used to investigate attrition bias. Egger's regression and funnel plotting were used to investigate risk for publication bias. Nine articles were identified. Of these, eight were accepted and one was excluded. Ten continuous and eight dichotomous datasets were extracted. Because of high clinical heterogeneity, no meta-analysis was performed. Most of the datasets favoured xylitol, but this was not consistent. The accepted trials may be limited by selection bias. Results of the sensitivity analysis indicate a high risk for attrition bias. The funnel plot and Egger's regression results suggest a low publication bias risk. External fluoride exposure and stimulated saliva flow may have confounded the measured anticariogenic effect of xylitol. The evidence identified in support of xylitol over sorbitol is contradictory, is at high risk for selection and attrition bias and may be limited by confounder effects. Future high-quality randomised controlled trials are needed to show whether xylitol has a greater anticariogenic effect than sorbitol. © 2012 FDI World Dental Federation.

  10. Effect of Xylitol on Growth of Streptococcus pneumoniae in the Presence of Fructose and Sorbitol

    PubMed Central

    Tapiainen, Terhi; Kontiokari, Tero; Sammalkivi, Laura; Ikäheimo, Irma; Koskela, Markku; Uhari, Matti

    2001-01-01

    Xylitol is effective in preventing acute otitis media by inhibiting the growth of Streptococcus pneumoniae. To clarify this inhibition we used fructose, which is known to block similar growth inhibition observed in Streptococcus mutans. In addition, we evaluated the efficacy of sorbitol in inhibiting the growth of pneumococci, as sorbitol is widely used for indications similar to those for which xylitol is used. The addition of 5% xylitol to the growth medium resulted in marked growth inhibition, an effect which was totally eliminated in the presence of 1, 2.5, or 5% fructose but not in the presence of 1 or 5% glucose, 1% galactose, or 1% sucrose. This finding implies that xylitol-induced inhibition of pneumococcal growth is mediated via the fructose phosphotransferase system in a way similar to that in which mutans group streptococcal growth is inhibited. The addition of sorbitol at concentrations of 1, 2.5, or 5% to the growth medium did not affect the growth of pneumococci and neither inhibited nor enhanced the xylitol-induced growth impairment. Thus, it seems that xylitol is the only commercially used sugar substitute proven to have an antimicrobial effect on pneumococci. PMID:11120960

  11. Production of Xylitol from D-Xylose by Overexpression of Xylose Reductase in Osmotolerant Yeast Candida glycerinogenes WL2002-5.

    PubMed

    Zhang, Cheng; Zong, Hong; Zhuge, Bin; Lu, Xinyao; Fang, Huiying; Zhuge, Jian

    2015-07-01

    Efficient bioconversion of D-xylose into various biochemicals is critical for the developing lignocelluloses application. In this study, we compared D-xylose utilization in Candida glycerinogenes WL2002-5 transformants expressing xylose reductase (XYL1) in D-xylose metabolism. C. glycerinogenes WL2002-5 expressing XYL1 from Schefferomyces stipitis can produce xylitol. Xylitol production by the recombinant strains was evaluated using a xylitol fermentation medium with glucose as a co-substrate. As glucose was found to be an insufficient co-substrate, various carbon sources were screened for efficient cofactor regeneration, and glycerol was found to be the best co-substrate. The effects of glycerol on the xylitol production rate by a xylose reductase gene (XYL1)-overexpressed mutant of C. glycerinogenes WL2002-5 were investigated. The XYL1-overexpressed mutant produced xylitol from D-xylose using glycerol as a co-substrate for cell growth and NAD (P) H regeneration: 100 g/L D-xylose was completely converted into xylitol when at least 20 g/L glycerol was used as a co-substrate. XYL1 overexpressed mutant grown on glycerol as co-substrate accumulated 2.1-fold increased xylitol concentration over those cells grown on glucose as co-substrate. XYL1 overexpressed mutant produced xylitol with a volumetric productivity of 0.83 g/L/h, and a xylitol yield of 98 % xylose. Recombinant yeast strains obtained in this study are promising candidates for xylitol production. This is the first report of XYL1 gene overexpression of C. glycerinogenes WL2002-5 for enhancing the efficiency of xylitol production.

  12. Aggregatibacter actinomycetemcomitans-Induced AIM2 Inflammasome Activation Is Suppressed by Xylitol in Differentiated THP-1 Macrophages.

    PubMed

    Kim, Seyeon; Park, Mi Hee; Song, Yu Ri; Na, Hee Sam; Chung, Jin

    2016-06-01

    Aggressive periodontitis is characterized by rapid destruction of periodontal tissue caused by Aggregatibacter actinomycetemcomitans. Interleukin (IL)-1β is a proinflammatory cytokine, and its production is tightly regulated by inflammasome activation. Xylitol, an anticaries agent, is anti-inflammatory, but its effect on inflammasome activation has not been researched. This study investigates the effect of xylitol on inflammasome activation induced by A. actinomycetemcomitans. The differentiated THP-1 macrophages were stimulated by A. actinomycetemcomitans with or without xylitol and the expressions of IL-1β and inflammasome components were detected by real time PCR, ELISA, confocal microscopy and Immunoblot analysis. The effects of xylitol on the adhesion and invasion of A. actinomycetemcomitans to cells were measured by viable cell count. A. actinomycetemcomitans increased pro IL-1β synthesis and IL-1β secretion in a multiplicity of infection- and time-dependent manner. A. actinomycetemcomitans also stimulated caspase-1 activation. Among inflammasome components, apoptosis-associated speck-like protein containing a CARD (ASC) and absent in melanoma 2 (AIM2) proteins were upregulated by A. actinomycetemcomitans infection. When cells were pretreated with xylitol, proIL-1β and IL-1β production by A. actinomycetemcomitans infection was significantly decreased. Xylitol also inhibited ASC and AIM2 proteins and formation of ASC puncta. Furthermore, xylitol suppressed internalization of A. actinomycetemcomitans into differentiated THP-1 macrophages without affecting viability of A. actinomycetemcomitans within cells. A. actinomycetemcomitans induced IL-1β production and AIM2 inflammasome activation. Xylitol inhibited these effects, possibly by suppressing internalization of A. actinomycetemcomitans into cells. Thus, this study proposes a mechanism for IL-1β production via inflammasome activation and discusses a possible use for xylitol in periodontal inflammation

  13. The Efficacy of Xylitol, Xylitol-Probiotic and Fluoride Dentifrices in Plaque Reduction and Gingival Inflammation in Children: A Randomised Controlled Clinical Trial.

    PubMed

    Arat Maden, Eda; Altun, Ceyhan; Açikel, Cengizhan

    The present prospective, randomised, placebo-controlled, clinical trial was designed to evaluate the clinical effects of a commercially available dentifrice containing fluoride, xylitol or xylitol-probiotic on the decrease of plaque and gingival inflammation in children between 13 and 15 years of age. Forty-eight adolescents were randomly grouped into three groups of n = 16 each: study group A received xylitol (Xyliwhite) toothpaste; study group B received xylitol-probiotic (Periobiotic) toothpaste; and the control group C received fluoride (Colgate Max Fresh) toothpaste. The subjects were instructed to use the dentifrice determined and a modified Bass brushing technique twice a day for two minutes over a 6-week perioed. Clinical evaluation was performed using a gingival index and a plaque index at baseline and at the end of the 6-week period. From day 0 to 42, reductions in the plaque index were statistically significant in all groups, Colgate Max Fresh, PerioBiotic and Xyliwhite (p-values 0.001, 0.001 and 0.035, respectively), but reductions in the gingival index were statistically significant only in the Colgate Max Fresh and PerioBiotic groups (both with p = 0.001), not in the Xyliwhite group (p = 0.116). PerioBiotic toothpaste was found to be better than Xyliwhite and Colgate Max Fresh toothpastes at reducing plaque and gingival scores. However, statistically significant differences with PerioBiotic and Colgate Max Fresh toothpaste were not observed. It was concluded that PerioBiotic was an all-round dentifrice that produced a significant reduction in both gingivitis and plaque.

  14. Effect of white tea and xylitol on structure and properties of demineralized enamel and jawbone

    NASA Astrophysics Data System (ADS)

    Auerkari, EI; Kiranahayu, R.; Emerita, D.; Sumariningsih, P.; Sarita, D.; Adiwirya, MS; Suhartono, AW

    2018-05-01

    White tea and xylitol have been suggested as potential agents to combat dental caries and osteoporosis through enhanced remineralization. This investigation aimed to determine the effects of exposure to white tea with and without xylitol on the structure, composition and hardness of demineralized human dental enamel. For control, samples of untreated and demineralized enamel and samples of untreated rat jawbone were subjected to similar measurements. For demineralization, the enamel samples were immersed for two days at 50°C in an acetate solution (pH 4.0). All samples were then soaked for two weeks at 37°C in a solution containing three different concentrations of white tea, xylitol or both, and an optional addition of the remineralization ingredients including Ca, P and F. For enamel samples without preceding demineralization and without added remineralization ingredients, the results showed highest mean hardness after immersion in a solution containing both white tea and xylitol, practically independently of their applied concentration level. However, for demineralized enamel samples with added remineralization ingredients, the resulting mean hardness was also dependent on concentration of white tea and xylitol. With sufficient concentration, hardness was again higher for combined white tea and xylitol than for either of these used alone.

  15. Production of ethanol and xylitol from corn cobs by yeasts.

    PubMed

    Latif, F; Rajoka, M I

    2001-03-01

    Saccharomyces cerevisiae and Candida tropicalis were used separately and as co-culture for simultaneous saccharification and fermentation (SSF) of 5-20% (w/v) dry corn cobs. A maximal ethanol concentration of 27, 23, 21 g/l (w/v) from 200 g/l (w/v) dry corn cobs was obtained by S. cerevisiae, C. tropicalis and the co-culture, respectively, after 96 h of fermentation. However, theoretical yields of 82%, 71% and 63% were observed from 50 g/l dry corn cobs for the above cultures, respectively. Maximal xylitol concentration of 21, 20 and 15 g/l from 200 g/l (w/v) dry corn cobs was obtained by C. tropicalis, co-culture, and S. cerevisiae, respectively. Maximum theoretical yields of 79.0%, 77.0% and 58% were observed from 50 g/l of corn cobs, respectively. The volumetric productivities for ethanol and xylitol increased with the increase in substrate concentration, whereas, yield decreased. Glycerol and acetic acid were formed as minor by-products. S. cerevisiae and C. tropicalis resulted in better product yields (0.42 and 0.36 g/g) for ethanol and (0.52 and 0.71 g/g) for xylitol, respectively, whereas, the co-culture showed moderate level of ethanol (0.32 g/g) and almost maximal levels of xylitol (0.69 g/g).

  16. Communication: xDH double hybrid functionals can be qualitatively incorrect for non-equilibrium geometries: Dipole moment inversion and barriers to radical-radical association using XYG3 and XYGJ-OS

    NASA Astrophysics Data System (ADS)

    Hait, Diptarka; Head-Gordon, Martin

    2018-05-01

    Double hybrid (DH) density functionals are amongst the most accurate density functional approximations developed so far, largely due to the incorporation of correlation effects from unoccupied orbitals via second order perturbation theory (PT2). The xDH family of DH functionals calculate energy directly from orbitals optimized by a lower level approach like B3LYP, without self-consistent optimization. XYG3 and XYGJ-OS are two widely used xDH functionals that are known to be quite accurate at equilibrium geometries. Here, we show that the XYG3 and XYGJ-OS functionals can be ill behaved for stretched bonds well beyond the Coulson-Fischer point, predicting unphysical dipole moments and humps in potential energy curves for some simple systems like the hydrogen fluoride molecule. Numerical experiments and analysis show that these failures are not due to PT2. Instead, a large mismatch at stretched bond-lengths between the reference B3LYP orbitals and the optimized orbitals associated with the non-PT2 part of XYG3 leads to an unphysically large non-Hellman-Feynman contribution to first order properties like forces and electron densities.

  17. Microbial xylitol production from corn cobs using Candida magnoliae.

    PubMed

    Tada, Kiyoshi; Horiuchi, Jun-Ichi; Kanno, Tohru; Kobayashi, Masayoshi

    2004-01-01

    Microbial production of xylitol from corn cobs using Candida magnoliae was experimentally investigated. Approximately 25 g-xylose/l solution was obtained from 100 g-corn cobs/l solution by hydrolysis using 1.0% sulfuric acid at 121 degrees C for 60 min. To remove inhibitors from the hydrolysates, charcoal pellets were found to be effective in selectively removing the inhibitors from the hydrolysates without affecting xylose concentration. C. magnoliae was successfully cultivated using the treated corn cob hydrolysate, resulting in the production of 18.7 g-xylitol/l from 25 g-xylose/l within 36 h.

  18. Direct and efficient xylitol production from xylan by Saccharomyces cerevisiae through transcriptional level and fermentation processing optimizations.

    PubMed

    Li, Zhe; Qu, Hongnan; Li, Chun; Zhou, Xiaohong

    2013-12-01

    In this study, four engineered Saccharomyces cerevisiae carrying xylanase, β-xylosidase and xylose reductase genes by different transcriptional regulations were constructed to directly convert xylan to xylitol. According to the results, the high-copy number plasmid required a rigid selection for promoter characteristics, on the contrast, the selection of promoters could be more flexible for low-copy number plasmid. For cell growth and xylitol production, glucose and galactose were found more efficient than other sugars. The semi-aerobic condition and feeding of co-substrates were taken to improve the yield of xylitol. It was found that the strain containing high-copy number plasmid had the highest xylitol yield, but it was sensitive to the change of fermentation. However, the strain carrying low-copy number plasmid was more adaptable to different processes. By optimization of the transcriptional regulation and fermentation processes, the xylitol concentration could be increased of 1.7 folds and the yield was 0.71 g xylitol/g xylan. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Dielectric relaxation and hydrogen bonding interaction in xylitol-water mixtures using time domain reflectometry

    NASA Astrophysics Data System (ADS)

    Rander, D. N.; Joshi, Y. S.; Kanse, K. S.; Kumbharkhane, A. C.

    2016-01-01

    The measurements of complex dielectric permittivity of xylitol-water mixtures have been carried out in the frequency range of 10 MHz-30 GHz using a time domain reflectometry technique. Measurements have been done at six temperatures from 0 to 25 °C and at different weight fractions of xylitol (0 < W X ≤ 0.7) in water. There are different models to explain the dielectric relaxation behaviour of binary mixtures, such as Debye, Cole-Cole or Cole-Davidson model. We have observed that the dielectric relaxation behaviour of binary mixtures of xylitol-water can be well described by Cole-Davidson model having an asymmetric distribution of relaxation times. The dielectric parameters such as static dielectric constant and relaxation time for the mixtures have been evaluated. The molecular interaction between xylitol and water molecules is discussed using the Kirkwood correlation factor ( g eff ) and thermodynamic parameter.

  20. Developing Public Health Interventions with Xylitol for the US and US-Associated Territories and States

    PubMed Central

    Milgrom, Peter; Rothen, Marilynn; Milgrom, Linda

    2006-01-01

    Summary This paper examines how the limited exposure of the professional dental community in the United States to the potential caries reduction benefits of xylitol, and the absence of vehicles for xylitol that could be recommended in private practice settings or applied in public health programs, has retarded xylitol’s adoption. Few papers appeared in the English language literature prior to the last two decades but now a greater number are appearing. Current work at the University of Washington has led to a series of randomized controlled trials more clearly establishing dosing and frequency guidelines and increased interest in use of xylitol products for caries prevention. Steps to develop effective alternative vehicles for the delivery of xylitol particularly useful for young children and institutional settings in America, and their bioequivalency, are explored. PMID:17369871

  1. Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037.

    PubMed

    Hernández-Pérez, Andrés Felipe; de Arruda, Priscila Vaz; Felipe, Maria das Graças de Almeida

    2016-01-01

    Sugarcane straw has become an available lignocellulosic biomass since the progressive introduction of the non-burning harvest in Brazil. Besides keeping this biomass in the field, it can be used as a feedstock in thermochemical or biochemical conversion processes. This makes feasible its incorporation in a biorefinery, whose economic profitability could be supported by integrated production of low-value biofuels and high-value chemicals, e.g., xylitol, which has important industrial and clinical applications. Herein, biotechnological production of xylitol is presented as a possible route for the valorization of sugarcane straw and its incorporation in a biorefinery. Nutritional supplementation of the sugarcane straw hemicellulosic hydrolyzate as a function of initial oxygen availability was studied in batch fermentation of Candida guilliermondii FTI 20037. The nutritional supplementation conditions evaluated were: no supplementation; supplementation with (NH4)2SO4, and full supplementation with (NH4)2SO4, rice bran extract and CaCl2·2H2O. Experiments were performed at pH 5.5, 30°C, 200rpm, for 48h in 125mL Erlenmeyer flasks containing either 25 or 50mL of medium in order to vary initial oxygen availability. Without supplementation, complete consumption of glucose and partial consumption of xylose were observed. In this condition the maximum xylitol yield (0.67gg(-1)) was obtained under reduced initial oxygen availability. Nutritional supplementation increased xylose consumption and xylitol production by up to 200% and 240%, respectively. The maximum xylitol volumetric productivity (0.34gL(-1)h(-1)) was reached at full supplementation and increased initial oxygen availability. The results demonstrated a combined effect of nutritional supplementation and initial oxygen availability on xylitol production from sugarcane straw hemicellulosic hydrolyzate. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  2. Effect of xylitol varnishes on remineralization of artificial enamel caries lesions in situ.

    PubMed

    Cardoso, C A B; Cassiano, L P S; Costa, E N; Souza-E-Silva, C M; Magalhães, A C; Grizzo, L T; Caldana, M L; Bastos, J R M; Buzalaf, M A R

    2016-07-01

    Analyze the effect of varnishes containing xylitol compared to commercial fluoridated varnishes on the remineralization of artificial enamel caries lesions in situ. Twenty subjects took part in this crossover, double-blind study performed in four phases of 5days each. Each subject worn palatal appliances containing four predemineralized bovine enamel specimens. Artificial caries lesions were produced by immersion in 30ml of lactic acid buffer containing 3mM CaCl2·2H2O, 3mM KH2PO4, 6μM tetraetil metil diphosphanate (pH 5.0) for 6days. The specimens in each subject were treated once with the following varnishes: 20% xylitol (experimental); Duofluorid™ (6% NaF, 6% CaF2), Duraphat™ (5% NaF, positive control) and placebo (no-F/xylitol, negative control). The varnishes were applied in a thin layer and removed after 6h. Fifteen subjects were able to finish all phases. The enamel alterations were quantified by surface hardness and transversal microradiography. The percentage of surface hardness recovery (%SHR), the integrated mineral loss and lesion depth were statistically analyzed by Friedmann and Dunn's tests test (p<0.05). Enamel surface remineralization was significantly increased by Duraphat™, Duofluorid™ and 20% xylitol formulations. Significant subsurface mineral remineralization could also be seen for the experimental and commercial varnishes, except for Duraphat™, when the parameter "lesion depth" was considered. 20% xylitol varnish seem to be a promising alternative to increase surface and subsurface remineralization of artificial caries lesions in situ. effective vehicles are desirable for caries control. Xylitol varnishes seem to be promising alternatives to increase enamel remineralization in situ, which should be confirmed by clinical studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Is mother-child transmission a possible vehicle for xylitol prophylaxis in acute otitis media?

    PubMed

    Danhauer, Jeffrey L; Kelly, Allison; Johnson, Carole E

    2011-10-01

    Xylitol can be a prophylaxis for acute otitis media (AOM), especially when administered via chewing gum, but that vehicle has limitations for children. This review sought evidence for links of mother-child transmission of bacteria and as a vehicle for xylitol as a prophylaxis for dental caries and its translation to AOM in infants and young children. Qualitative systematic review. Combining output from 43 search strings used earlier and submitting 20 new strings to PubMed resulted in 14 studies (six were excluded; eight were included). Included studies had to be published in English-language, peer-reviewed journals; involve mothers using xylitol; and assess bacteria or caries in their children. Evaluation forms were completed for search, retrieval, and quality assessment of included studies. The studies showed that mothers' chewing xylitol gum was a prophylaxis against bacteria and caries in their children. A mother-child transmission model was presented as a possible vehicle for use in comprehensive prevention programs for AOM. Potential for xylitol use to prevent AOM warrants further study. A mother-child model may apply to AOM for transmission of bacteria and as a prophylaxis, but alternative vehicles like nasal sprays should be investigated for ease of use and effectiveness.

  4. Protein Conformational Gating of Enzymatic Activity in Xanthine Oxidoreductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikita, Hiroshi; Eger, Bryan T.; Okamoto, Ken

    2012-05-24

    In mammals, xanthine oxidoreductase can exist as xanthine dehydrogenase (XDH) and xanthine oxidase (XO). The two enzymes possess common redox active cofactors, which form an electron transfer (ET) pathway terminated by a flavin cofactor. In spite of identical protein primary structures, the redox potential difference between XDH and XO for the flavin semiquinone/hydroquinone pair (E{sub sq/hq}) is {approx}170 mV, a striking difference. The former greatly prefers NAD{sup +} as ultimate substrate for ET from the iron-sulfur cluster FeS-II via flavin while the latter only accepts dioxygen. In XDH (without NAD{sup +}), however, the redox potential of the electron donor FeS-IImore » is 180 mV higher than that for the acceptor flavin, yielding an energetically uphill ET. On the basis of new 1.65, 2.3, 1.9, and 2.2 {angstrom} resolution crystal structures for XDH, XO, the NAD{sup +}- and NADH-complexed XDH, E{sub sq/hq} were calculated to better understand how the enzyme activates an ET from FeS-II to flavin. The majority of the E{sub sq/hq} difference between XDH and XO originates from a conformational change in the loop at positions 423-433 near the flavin binding site, causing the differences in stability of the semiquinone state. There was no large conformational change observed in response to NAD{sup +} binding at XDH. Instead, the positive charge of the NAD{sup +} ring, deprotonation of Asp429, and capping of the bulk surface of the flavin by the NAD{sup +} molecule all contribute to altering E{sub sq/hq} upon NAD{sup +} binding to XDH.« less

  5. Effect of xylitol on cariogenic and beneficial oral streptococci: a randomized, double-blind crossover trial

    PubMed Central

    Bahador, A; Lesan, S; Kashi, N

    2012-01-01

    Background/purpose Although habitual consumption of xylitol reduces cariogenic streptococci levels, its effect on beneficial oral streptococci is less clear. The main aim of the study is to investigate the effect of short-term xylitol consumption on the oral beneficial streptococci level of saliva, Streptococcus sanguinis and S. mitis. Material and Methods Twenty four volunteers with a median age of 23.7 years (range: 20-28) harboring Streptococcus mutans, S. sobrinus, S. sanguinis and S. mitis participated in the randomized, double-blind, cross-over study. The experimental chewing gum (1.5 g/pellet) contained 70% xylitol w/w while the control gum contained 63% sorbitol w/w. Saliva samples were collected before and after two three-week test periods with a four-week washout interval. Colony-forming units (CFU)/ml were enumerated for the estimation of S. mutans levels on Mitis Salivarius-Mutans valinomycin (MS-MUTV), S. sobrinus on Mitis Salivarius-Sobrinus (MS-SOB), S. sanguinis on Modified Medium 10-Sucrose (MM10-S) and S. mitis on Mitis Salivarius Agar with Tellurite (MSAT) media. Results The S. mutans and S. sobrinus counts of the saliva samples decreased significantly (p = 0.01 and p = 0.011, respectively) in the xylitol gum group but not in the sorbitol gum group. The salivary S. sanguinis and S. mitis counts did not decrease in both xylitol and sorbitol gum groups. Conclusions Based on the findings of this study, xylitol consumption reduced S. mutans and S. sobrinus counts in saliva but appeared not to effect numbers of S. sanguinis and S. mitis in saliva. So, habitual consumption of xylitol reduces cariogenic streptococci levels without any effect on beneficial sterptococci for the oral cavity. PMID:22973473

  6. Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose.

    PubMed

    Decker, Eva-Maria; Klein, Christian; Schwindt, Dimitri; von Ohle, Christiane

    2014-12-01

    The objective of the study was to analyse Streptococcus mutans biofilms grown under different dietary conditions by using multifaceted methodological approaches to gain deeper insight into the cariogenic impact of carbohydrates. S. mutans biofilms were generated during a period of 24 h in the following media: Schaedler broth as a control medium containing endogenous glucose, Schaedler broth with an additional 5% sucrose, and Schaedler broth supplemented with 1% xylitol. The confocal laser scanning microscopy (CLSM)-based analyses of the microbial vitality, respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride, CTC) and production of extracellular polysaccharides (EPS) were performed separately in the inner, middle and outer biofilm layers. In addition to the microbiological sample testing, the glucose/sucrose consumption of the biofilm bacteria was quantified, and the expression of glucosyltransferases and other biofilm-associated genes was investigated. Xylitol exposure did not inhibit the viability of S. mutans biofilms, as monitored by the following experimental parameters: culture growth, vitality, CTC activity and EPS production. However, xylitol exposure caused a difference in gene expression compared to the control. GtfC was upregulated only in the presence of xylitol. Under xylitol exposure, gtfB was upregulated by a factor of 6, while under sucrose exposure, it was upregulated by a factor of three. Compared with glucose and xylitol, sucrose increased cell vitality in all biofilm layers. In all nutrient media, the intrinsic glucose was almost completely consumed by the cells of the S. mutans biofilm within 24 h. After 24 h of biofilm formation, the multiparametric measurements showed that xylitol in the presence of glucose caused predominantly genotypic differences but did not induce metabolic differences compared to the control. Thus, the availability of dietary carbohydrates in either a pure or combined form seems to affect the

  7. Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose

    PubMed Central

    Decker, Eva-Maria; Klein, Christian; Schwindt, Dimitri; von Ohle, Christiane

    2014-01-01

    The objective of the study was to analyse Streptococcus mutans biofilms grown under different dietary conditions by using multifaceted methodological approaches to gain deeper insight into the cariogenic impact of carbohydrates. S. mutans biofilms were generated during a period of 24 h in the following media: Schaedler broth as a control medium containing endogenous glucose, Schaedler broth with an additional 5% sucrose, and Schaedler broth supplemented with 1% xylitol. The confocal laser scanning microscopy (CLSM)-based analyses of the microbial vitality, respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride, CTC) and production of extracellular polysaccharides (EPS) were performed separately in the inner, middle and outer biofilm layers. In addition to the microbiological sample testing, the glucose/sucrose consumption of the biofilm bacteria was quantified, and the expression of glucosyltransferases and other biofilm-associated genes was investigated. Xylitol exposure did not inhibit the viability of S. mutans biofilms, as monitored by the following experimental parameters: culture growth, vitality, CTC activity and EPS production. However, xylitol exposure caused a difference in gene expression compared to the control. GtfC was upregulated only in the presence of xylitol. Under xylitol exposure, gtfB was upregulated by a factor of 6, while under sucrose exposure, it was upregulated by a factor of three. Compared with glucose and xylitol, sucrose increased cell vitality in all biofilm layers. In all nutrient media, the intrinsic glucose was almost completely consumed by the cells of the S. mutans biofilm within 24 h. After 24 h of biofilm formation, the multiparametric measurements showed that xylitol in the presence of glucose caused predominantly genotypic differences but did not induce metabolic differences compared to the control. Thus, the availability of dietary carbohydrates in either a pure or combined form seems to affect the

  8. Xylitol for preventing acute otitis media in children up to 12 years of age.

    PubMed

    Azarpazhooh, Amir; Lawrence, Herenia P; Shah, Prakeshkumar S

    2016-08-03

    Acute otitis media (AOM) is the most common bacterial infection among young children in the United States. There are limitations and concerns over its treatment with antibiotics and surgery and so effective preventative measures are attractive. A potential preventative measure is xylitol, a natural sugar substitute that reduces the risk of dental decay. Xylitol can reduce the adherence of Streptococcus pneumoniae (S pneumoniae) and Haemophilus influenzae (H influenzae) to nasopharyngeal cells in vitro. This is an update of a review first published in 2011. To assess the efficacy and safety of xylitol to prevent AOM in children aged up to 12 years. We searched CENTRAL (to Issue 12, 2015), MEDLINE (1950 to January 2016), Embase (1974 to January 2016), CINAHL (1981 to January 2016), LILACS (1982 to January 2016), Web of Science (2011 to January 2016) and International Pharmaceutical Abstracts (2000 to January 2016). Randomised controlled trials (RCTs) or quasi-RCTs of children aged 12 years or younger where xylitol supplementation was compared with placebo or no treatment to prevent AOM. Two review authors independently selected trials from search results, assessed and rated study quality and extracted relevant data for inclusion in the review. We contacted trial authors to request missing data. We noted data on any adverse events of xylitol. We extracted data on relevant outcomes and estimated the effect size by calculating risk ratio (RR), risk difference (RD) and associated 95% confidence intervals (CI). We identified five clinical trials that involved 3405 children for inclusion. For this 2016 update, we identified one new trial for inclusion. This trial was systematically reviewed but due to several sources of heterogeneity, was not included in the meta-analysis. The remaining four trials were of adequate methodological quality. In three RCTs that involved a total of 1826 healthy Finnish children attending daycare, there is moderate quality evidence that

  9. Electrochemical oxidation and electroanalytical determination of xylitol at a boron-doped diamond electrode.

    PubMed

    Lourenço, Anabel S; Sanches, Fátima A C; Magalhães, Renata R; Costa, Daniel J E; Ribeiro, Williame F; Bichinho, Kátia M; Salazar-Banda, Giancarlo R; Araújo, Mário C U

    2014-02-01

    Xylitol is a reduced sugar with anticariogenic properties used by insulin-dependent diabetics, and which has attracted great attention of the pharmaceutical, cosmetics, food and dental industries. The detection of xylitol in different matrices is generally based on separation techniques. Alternatively, in this paper, the application of a boron-doped diamond (BDD) electrode allied to differing voltammetric techniques is presented to study the electrochemical behavior of xylitol, and to develop an analytical methodology for its determination in mouthwash. Xylitol undergoes two oxidation steps in an irreversible diffusion-controlled process (D=5.05 × 10(-5)cm(2)s(-1)). Differential pulse voltammetry studies revealed that the oxidation mechanism for peaks P1 (3.4 ≤ pH ≤ 8.0), and P2 (6.0 ≤ pH ≤ 9.0) involves transfer of 1H(+)/1e(-), and 1e(-) alone, respectively. The oxidation process P1 is mediated by the (•)OH generated at the BDD hydrogen-terminated surface. The maximum peak current was obtained at a pH of 7.0, and the electroanalytical method developed, (employing square wave voltammetry) yielded low detection (1.3 × 10(-6) mol L(-1)), and quantification (4.5 × 10(-6) mol L(-1)) limits, associated with good levels of repeatability (4.7%), and reproducibility (5.3%); thus demonstrating the viability of the methodology for detection of xylitol in biological samples containing low concentrations. © 2013 Elsevier B.V. All rights reserved.

  10. Benzoate-induced stress enhances xylitol yield in aerobic fed-batch culture of Candida mogii TISTR 5892.

    PubMed

    Wannawilai, Siwaporn; Sirisansaneeyakul, Sarote; Chisti, Yusuf

    2015-01-20

    Production of the natural sweetener xylitol from xylose via the yeast Candida mogii TISTR 5892 was compared with and without the growth inhibitor sodium benzoate in the culture medium. Sodium benzoate proved to be an uncompetitive inhibitor in relatively poorly oxygenated shake flask aerobic cultures. In a better controlled aerobic environment of a bioreactor, the role of sodium benzoate could equally well be described as competitive, uncompetitive or noncompetitive inhibitor of growth. In intermittent fed-batch fermentations under highly aerobic conditions, the presence of sodium benzoate at 0.15gL(-1) clearly enhanced the xylitol titer relative to the control culture without the sodium benzoate. The final xylitol concentration and the average xylitol yield on xylose were nearly 50gL(-1) and 0.57gg(-1), respectively, in the presence of sodium benzoate. Both these values were substantially higher than reported for the same fermentation under microaerobic conditions. Therefore, a fed-batch aerobic fermentation in the presence of sodium benzoate is promising for xylitol production using C. mogii. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Improving Xylose Utilization of Saccharomyces cerevisiae by Expressing the MIG1 Mutant from the Self-Flocculating Yeast SPSC01.

    PubMed

    Xu, Jian-Ren; Zhao, Xin-Qing; Liu, Chen-Guang; Bai, Feng-Wu

    2018-01-01

    The major carbohydrate components of lignocellulosic biomass are cellulose and hemicelluloses. Saccharomyces cerevisiae cannot efficiently utilize xylose derived upon the hydrolysis of hemicelluloses. Although engineering the yeast with xylose metabolic pathway has been intensively studied, challenges are still ahead for developing robust strains for lignocellulosic bioethanol production. The main objective of this study was to reveal the role of the MIG1 mutant isolated from the self-flocculating S. cerevisiae SPSC01 in xylose utilization, glucose repression and ethanol fermentation by S. cerevisiae. The MIG1 mutant was amplified from S. cerevisiae SPSC01 by PCR and MIG1- overexpression-cassette was transformed into S. cerevisiae S288c and xylose-metabolizing strain YB-2625-T through homologous recombination. Yeast growth was measured by colony assay on plates with or without xylose supplementation. Then xylose utilization and ethanol production were further evaluated through flask fermentation when mixed sugars of glucose and xylose at 3:1 and 2:1, respectively, were supplied. Fermentation products were detected by HPLC, and activities of xylose reductase (XR), xylitol dehydrogenase (XDH) and xylulokinase (XK) were also measured. The transcription of genes regulated by the expression of the MIG1 mutant was analyzed by RTqPCR. Evolutionary relationship of various MIG1s was developed by gene sequencing and sequence alignment. No difference was observed for S288c growing with xylose when it was engineered with the overexpression or deletion of its native MIG1, but its growth was enhanced when overexpressing the MIG1 mutant from SPSC01. The submerged culture of YB-2625-T MIG1-SPSC engineered with xylose-metabolic pathway and the MIG1 mutant indicated that xylitol accumulation was decreased, and consequently, more biomass was accumulated. Furthermore, improved activities of the key enzymes such as XR, XDH and XK were detected in YB-2625-T MIG1-SPSC. Evolutionary

  12. Construction of plasmid-free Escherichia coli for the production of arabitol-free xylitol from corncob hemicellulosic hydrolysate.

    PubMed

    Su, Buli; Zhang, Zhe; Wu, Mianbin; Lin, Jianping; Yang, Lirong

    2016-05-26

    High costs and low production efficiency are a serious constraint to bio-based xylitol production. For industrial-scale production of xylitol, a plasmid-free Escherichia coli for arabitol-free xylitol production from corncob hemicellulosic hydrolysate has been constructed. Instead of being plasmid and inducer dependent, this strain relied on multiple-copy integration of xylose reductase (XR) genes into the chromosome, where their expression was controlled by the constitutive promoter P43. In addition, to minimize the flux from L-arabinose to arabitol, two strategies including low XR total activity and high selectivity of XR has been adopted. Arabitol was significantly decreased using plasmid-free strain which had lower XR total activity and an eight point-mutations of XR with a 27-fold lower enzyme activity toward L-arabinose was achieved. The plasmid-free strain in conjunction with this mutant XR can completely eliminate arabitol formation in xylitol production. In fed-batch fermentation, this plasmid-free strain produced 143.8 g L(-1) xylitol at 1.84 g L(-1) h(-1) from corncob hemicellulosic hydrolysate. From these results, we conclude that this route by plasmid-free E. coli has potential to become a commercially viable process for xylitol production.

  13. Construction of plasmid-free Escherichia coli for the production of arabitol-free xylitol from corncob hemicellulosic hydrolysate

    PubMed Central

    Su, Buli; Zhang, Zhe; Wu, Mianbin; Lin, Jianping; Yang, Lirong

    2016-01-01

    High costs and low production efficiency are a serious constraint to bio-based xylitol production. For industrial-scale production of xylitol, a plasmid-free Escherichia coli for arabitol-free xylitol production from corncob hemicellulosic hydrolysate has been constructed. Instead of being plasmid and inducer dependent, this strain relied on multiple-copy integration of xylose reductase (XR) genes into the chromosome, where their expression was controlled by the constitutive promoter P43. In addition, to minimize the flux from L-arabinose to arabitol, two strategies including low XR total activity and high selectivity of XR has been adopted. Arabitol was significantly decreased using plasmid-free strain which had lower XR total activity and an eight point-mutations of XR with a 27-fold lower enzyme activity toward L-arabinose was achieved. The plasmid-free strain in conjunction with this mutant XR can completely eliminate arabitol formation in xylitol production. In fed-batch fermentation, this plasmid-free strain produced 143.8 g L−1 xylitol at 1.84 g L−1 h−1 from corncob hemicellulosic hydrolysate. From these results, we conclude that this route by plasmid-free E. coli has potential to become a commercially viable process for xylitol production. PMID:27225023

  14. Crystal structure of glucose isomerase in complex with xylitol inhibitor in one metal binding mode.

    PubMed

    Bae, Ji-Eun; Kim, In Jung; Nam, Ki Hyun

    2017-11-04

    Glucose isomerase (GI) is an intramolecular oxidoreductase that interconverts aldoses and ketoses. These characteristics are widely used in the food, detergent, and pharmaceutical industries. In order to obtain an efficient GI, identification of novel GI genes and substrate binding/inhibition have been studied. Xylitol is a well-known inhibitor of GI. In Streptomyces rubiginosus, two crystal structures have been reported for GI in complex with xylitol inhibitor. However, a structural comparison showed that xylitol can have variable conformation at the substrate binding site, e.g., a nonspecific binding mode. In this study, we report the crystal structure of S. rubiginosus GI in a complex with xylitol and glycerol. Our crystal structure showed one metal binding mode in GI, which we presumed to represent the inactive form of the GI. The metal ion was found only at the M1 site, which was involved in substrate binding, and was not present at the M2 site, which was involved in catalytic function. The O 2 and O 4 atoms of xylitol molecules contributed to the stable octahedral coordination of the metal in M1. Although there was no metal at the M2 site, no large conformational change was observed for the conserved residues coordinating M2. Our structural analysis showed that the metal at the M2 site was not important when a xylitol inhibitor was bound to the M1 site in GI. Thus, these findings provided important information for elucidation or engineering of GI functions. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Xylitol, an anticaries agent, exhibits potent inhibition of inflammatory responses in human THP-1-derived macrophages infected with Porphyromonas gingivalis.

    PubMed

    Park, Eunjoo; Na, Hee Sam; Kim, Sheon Min; Wallet, Shannon; Cha, Seunghee; Chung, Jin

    2014-06-01

    Xylitol is a well-known anticaries agent and has been used for the prevention and treatment of dental caries. In this study, the anti-inflammatory effects of xylitol are evaluated for possible use in the prevention and treatment of periodontal infections. Cytokine expression was stimulated in THP-1 (human monocyte cell line)-derived macrophages by live Porphyromonas gingivalis, and enzyme-linked immunosorbent assay and a commercial multiplex assay kit were used to determine the effects of xylitol on live P. gingivalis-induced production of cytokine. The effects of xylitol on phagocytosis and the production of nitric oxide were determined using phagocytosis assay, viable cell count, and Griess reagent. The effects of xylitol on P. gingivalis adhesion were determined by immunostaining, and costimulatory molecule expression was examined by flow cytometry. Live P. gingivalis infection increased the production of representative proinflammatory cytokines, such as tumor necrosis factor-α and interleukin (IL)-1β, in a multiplicity of infection- and time-dependent manner. Live P. gingivalis also enhanced the release of cytokines and chemokines, such as IL-12 p40, eotaxin, interferon γ-induced protein 10, monocyte chemotactic protein-1, and macrophage inflammatory protein-1. The pretreatment of xylitol significantly inhibited the P. gingivalis-induced cytokines production and nitric oxide production. In addition, xylitol inhibited the attachment of live P. gingivalis on THP-1-derived macrophages. Furthermore, xylitol exerted antiphagocytic activity against both Escherichia coli and P. gingivalis. These findings suggest that xylitol acts as an anti-inflammatory agent in THP-1-derived macrophages infected with live P. gingivalis, which supports its use in periodontitis.

  16. Evaluation of sorghum straw hemicellulosic hydrolysate for biotechnological production of xylitol by Candida guilliermondii

    PubMed Central

    Sene, L.; Arruda, P.V.; Oliveira, S.M.M.; Felipe, M.G.A.

    2011-01-01

    A preliminary study on xylitol production by Candida guilliermondii in sorghum straw hemicellulosic hydrolysate was performed. Hydrolysate had high xylose content and inhibitors concentrations did not exceed the commonly found values in other hemicellulosic hydrolysates. The highest xylitol yield (0.44 g/g) and productivity (0.19 g/Lh) were verified after 72 hours. PMID:24031733

  17. Xylitol, an Anticaries Agent, Exhibits Potent Inhibition of Inflammatory Responses in Human THP-1-Derived Macrophages Infected With Porphyromonas gingivalis

    PubMed Central

    Park, Eunjoo; Na, Hee Sam; Kim, Sheon Min; Wallet, Shannon; Cha, Seunghee; Chung, Jin

    2016-01-01

    Background Xylitol is a well-known anticaries agent and has been used for the prevention and treatment of dental caries. In this study, the anti-inflammatory effects of xylitol are evaluated for possible use in the prevention and treatment of periodontal infections. Methods Cytokine expression was stimulated in THP-1 (human monocyte cell line)-derived macrophages by live Porphyromonas gingivalis, and enzyme-linked immunosorbent assay and a commercial multiplex assay kit were used to determine the effects of xylitol on live P. gingivalis–induced production of cytokine. The effects of xylitol on phagocytosis and the production of nitric oxide were determined using phagocytosis assay, viable cell count, and Griess reagent. The effects of xylitol on P. gingivalis adhesion were determined by immunostaining, and costimulatory molecule expression was examined by flow cytometry. Results Live P. gingivalis infection increased the production of representative proinflammatory cytokines, such as tumor necrosis factor-α and interleukin (IL)-1β, in a multiplicity of infection– and time-dependent manner. Live P. gingivalis also enhanced the release of cytokines and chemokines, such as IL-12 p40, eotaxin, interferon γ–induced protein 10, monocyte chemotactic protein-1, and macrophage inflammatory protein-1. The pretreatment of xylitol significantly inhibited the P. gingivalis– induced cytokines production and nitric oxide production. In addition, xylitol inhibited the attachment of live P. gingivalis on THP-1-derived macrophages. Furthermore, xylitol exerted anti-phagocytic activity against both Escherichia coli and P. gingivalis. Conclusion These findings suggest that xylitol acts as an antiinflammatory agent in THP-1-derived macrophages infected with live P. gingivalis, which supports its use in periodontitis. PMID:24592909

  18. XYLITOL IMPROVES ANTI-OXIDATIVE DEFENSE SYSTEM IN SERUM, LIVER, HEART, KIDNEY AND PANCREAS OF NORMAL AND TYPE 2 DIABETES MODEL OF RATS.

    PubMed

    Chukwuma, Chika Ifeanyi; Islam, Shahidul

    2017-05-01

    The present study investigated the anti-oxidative effects of xylitol both in vitro and in vivo in normal and type 2 diabetes (T2D) rat model. Free radical scavenging and ferric reducing potentials of different concentrations of xylitol were investigated in vitro. For in vivo study, six weeks old male Sprague-Dawley rats were divided into four groups, namely: Normal Control (NC), Diabetic Control (DBC), Normal Xylitol (NXYL) and Diabetic Xylitol (DXYL). T2D was induced in the DBC and DXYL groups. After the confirmation of diabetes, a 10% xylitol solution was supplied instead of drinking water to NXYL and DXYL, while normal drinking water was supplied to NC and DBC ad libitum. After five weeks intervention period, the animals were sacri- ficed and thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) concentrations as well as superoxide dismutase, catalase glutathione reductase and glutathione peroxidase activities were determined in the liver, heart, kidney, pancreatic tissues and serum samples. Xylitol exhibited significant (p < 0.05) in vitro nitric oxide and hydroxyl radical scavenging and ferric reducing activities. In vivo study revealed significant (p < 0.05) reduction in TBARS concentrations in the xylitol consuming groups compared to their respective controls. Significant (p < 0.05) increase in GSH levels and antioxidant enzyme activities were observed in analyzed tissues and serum of xylitol-fed animals compared to their respective controls. Results of this study indicate that xylitol has strong anti-oxidative potential against T2D-associated oxidative stress. Hence, xylitol can be used as a potential supplement in diabetic foods and food products.

  19. Gut hormone secretion, gastric emptying, and glycemic responses to erythritol and xylitol in lean and obese subjects.

    PubMed

    Wölnerhanssen, Bettina K; Cajacob, Lucian; Keller, Nino; Doody, Alison; Rehfeld, Jens F; Drewe, Juergen; Peterli, Ralph; Beglinger, Christoph; Meyer-Gerspach, Anne Christin

    2016-06-01

    With the increasing prevalence of obesity and a possible association with increasing sucrose consumption, nonnutritive sweeteners are gaining popularity. Given that some studies indicate that artificial sweeteners might have adverse effects, alternative solutions are sought. Xylitol and erythritol have been known for a long time and their beneficial effects on caries prevention and potential health benefits in diabetic patients have been demonstrated in several studies. Glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) are released from the gut in response to food intake, promote satiation, reduce gastric emptying (GE), and modulate glucose homeostasis. Although glucose ingestion stimulates sweet taste receptors in the gut and leads to incretin and gastrointestinal hormone release, the effects of xylitol and erythritol have not been well studied. Ten lean and 10 obese volunteers were given 75 g of glucose, 50 g of xylitol, or 75 g of erythritol in 300 ml of water or placebo (water) by a nasogastric tube. We examined plasma glucose, insulin, active GLP-1, CCK, and GE with a [(13)C]sodium acetate breath test and assessed subjective feelings of satiation. Xylitol and erythritol led to a marked increase in CCK and GLP-1, whereas insulin and plasma glucose were not (erythritol) or only slightly (xylitol) affected. Both xylitol and erythritol induced a significant retardation in GE. Subjective feelings of appetite were not significantly different after carbohydrate intake compared with placebo. In conclusion, acute ingestion of erythritol and xylitol stimulates gut hormone release and slows down gastric emptying, whereas there is no or only little effect on insulin release. Copyright © 2016 the American Physiological Society.

  20. Microbial and Bioconversion Production of D-xylitol and Its Detection and Application

    PubMed Central

    Chen, Xi; Jiang, Zi-Hua; Chen, Sanfeng; Qin, Wensheng

    2010-01-01

    D-Xylitol is found in low content as a natural constituent of many fruits and vegetables. It is a five-carbon sugar polyol and has been used as a food additive and sweetening agent to replace sucrose, especially for non-insulin dependent diabetics. It has multiple beneficial health effects, such as the prevention of dental caries, and acute otitis media. In industry, it has been produced by chemical reduction of D-xylose mainly from photosynthetic biomass hydrolysates. As an alternative method of chemical reduction, biosynthesis of D-xylitol has been focused on the metabolically engineered Saccharomyces cerevisiae and Candida strains. In order to detect D-xylitol in the production processes, several detection methods have been established, such as gas chromatography (GC)-based methods, high performance liquid chromatography (HPLC)-based methods, LC-MS methods, and capillary electrophoresis methods (CE). The advantages and disadvantages of these methods are compared in this review. PMID:21179590

  1. Effects of water on the primary and secondary relaxation of xylitol and sorbitol: Implication on the origin of the Johari-Goldstein relaxation

    NASA Astrophysics Data System (ADS)

    Psurek, T.; Maslanka, S.; Paluch, M.; Nozaki, R.; Ngai, K. L.

    2004-07-01

    Dielectric spectroscopy was employed to study the effects of water on the primary α -relaxation and the secondary β -relaxation of xylitol. The measurements were made on anhydrous xylitol and mixtures of xylitol with water with three different water concentrations over a temperature range from 173K to 293K . The α -relaxation speeds up with increasing concentration of water in xylitol, whereas the rate of the β -relaxation is essentially unchanged. Some systematic differences in the behavior of α -relaxation for anhydrous xylitol and the mixtures were observed. Our findings confirm all the observations of Nozaki [R. Nozaki, H. Zenitani, A. Minoguchi, and K. Kitai, J. Non-Cryst. Solids 307, 349 (2002)] in sorbitol/water mixtures. Effects of water on both the α - and β -relaxation dynamics in xylitol and sorbitol are explained by using the coupling model.

  2. 75 FR 8920 - Grant of Authority for Subzone Status; Danisco USA, Inc., Sweeteners Division (Xylitol, Xylose...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... Status; Danisco USA, Inc., Sweeteners Division (Xylitol, Xylose, Galactose and Mannose); Thomson, IL...., Sweeteners Division, located in Thomson, Illinois, (FTZ Docket 4-2009, filed 2/4/2009); Whereas, notice... xylitol, xylose, galactose and mannose at the facility of Danisco USA, Inc., Sweeteners Division, located...

  3. Linear response of mutans streptococci to increasing frequency of xylitol chewing gum use: a randomized controlled trial [ISRCTN43479664

    PubMed Central

    Ly, Kiet A; Milgrom, Peter; Roberts, Marilyn C; Yamaguchi, David K; Rothen, Marilynn; Mueller, Greg

    2006-01-01

    Background Xylitol is a naturally occurring sugar substitute that has been shown to reduce the level of mutans streptococci in plaque and saliva and to reduce tooth decay. It has been suggested that the degree of reduction is dependent on both the amount and the frequency of xylitol consumption. For xylitol to be successfully and cost-effectively used in public health prevention strategies dosing and frequency guidelines should be established. This study determined the reduction in mutans streptococci levels in plaque and unstimulated saliva to increasing frequency of xylitol gum use at a fixed total daily dose of 10.32 g over five weeks. Methods Participants (n = 132) were randomized to either active groups (10.32 g xylitol/day) or a placebo control (9.828 g sorbitol and 0.7 g maltitol/day). All groups chewed 12 pieces of gum per day. The control group chewed 4 times/day and active groups chewed xylitol gum at a frequency of 2 times/day, 3 times/day, or 4 times/day. The 12 gum pieces were evenly divided into the frequency assigned to each group. Plaque and unstimulated saliva samples were taken at baseline and five-weeks and were cultured on modified Mitis Salivarius agar for mutans streptococci enumeration. Results There were no significant differences in mutans streptococci level among the groups at baseline. At five-weeks, mutans streptococci levels in plaque and unstimulated saliva showed a linear reduction with increasing frequency of xylitol chewing gum use at the constant daily dose. Although the difference observed for the group that chewed xylitol 2 times/day was consistent with the linear model, the difference was not significant. Conclusion There was a linear reduction in mutans streptococci levels in plaque and saliva with increasing frequency of xylitol gum use at a constant daily dose. Reduction at a consumption frequency of 2 times per day was small and consistent with the linear-response line but was not statistically significant. PMID:16556326

  4. Linear response of mutans streptococci to increasing frequency of xylitol chewing gum use: a randomized controlled trial [ISRCTN43479664].

    PubMed

    Ly, Kiet A; Milgrom, Peter; Roberts, Marilyn C; Yamaguchi, David K; Rothen, Marilynn; Mueller, Greg

    2006-03-24

    Xylitol is a naturally occurring sugar substitute that has been shown to reduce the level of mutans streptococci in plaque and saliva and to reduce tooth decay. It has been suggested that the degree of reduction is dependent on both the amount and the frequency of xylitol consumption. For xylitol to be successfully and cost-effectively used in public health prevention strategies dosing and frequency guidelines should be established. This study determined the reduction in mutans streptococci levels in plaque and unstimulated saliva to increasing frequency of xylitol gum use at a fixed total daily dose of 10.32 g over five weeks. Participants (n = 132) were randomized to either active groups (10.32 g xylitol/day) or a placebo control (9.828 g sorbitol and 0.7 g maltitol/day). All groups chewed 12 pieces of gum per day. The control group chewed 4 times/day and active groups chewed xylitol gum at a frequency of 2 times/day, 3 times/day, or 4 times/day. The 12 gum pieces were evenly divided into the frequency assigned to each group. Plaque and unstimulated saliva samples were taken at baseline and five-weeks and were cultured on modified Mitis Salivarius agar for mutans streptococci enumeration. There were no significant differences in mutans streptococci level among the groups at baseline. At five-weeks, mutans streptococci levels in plaque and unstimulated saliva showed a linear reduction with increasing frequency of xylitol chewing gum use at the constant daily dose. Although the difference observed for the group that chewed xylitol 2 times/day was consistent with the linear model, the difference was not significant. There was a linear reduction in mutans streptococci levels in plaque and saliva with increasing frequency of xylitol gum use at a constant daily dose. Reduction at a consumption frequency of 2 times per day was small and consistent with the linear-response line but was not statistically significant.

  5. The in vitro mucolytic effect of xylitol and dornase alfa on chronic rhinosinusitis mucus.

    PubMed

    Hardcastle, Tim; Jain, Ravi; Radcliff, Fiona; Waldvogel-Thurlow, Sharon; Zoing, Melissa; Biswas, Kristi; Douglas, Richard

    2017-09-01

    The overproduction and stagnation of purulent mucus impair mucociliary clearance and exacerbate the symptoms of chronic rhinosinusitis (CRS). There is a clinical need for effective topical mucolytic agents to facilitate removal of mucus and improve postoperative outcomes. The effects of xylitol (5%) and dornase alfa (1 mg/mL) on mucus and mucus crusts were investigated. Viscoelasticity and viscosity of wet mucus derived from 30 CRS patients was measured with a plate rheometer. Postoperative dried mucus crust dissolution was measured by examining peripheral transparency, central transparency, and border definition of treated crust samples from 17 CRS patients. Xylitol and dornase alfa reduced wet mucus viscoelasticity at a frequency of 0.1 Hz significantly more than the saline control. Treatments also produced significantly lower viscosities than saline at a shear rate of 10 and 100 seconds -1 . Xylitol and dornase alfa significantly decreased mucus crust border definition relative to saline. Xylitol and dornase alfa may be efficacious mucolytics, encouraging the breakdown of postoperative mucus crusts and the reduction of viscoelasticity and viscosity of wet mucus. In vivo study is required to evaluate the potential of these agents in treating recalcitrant CRS. © 2017 ARS-AAOA, LLC.

  6. Biochemical conversion of sugarcane straw hemicellulosic hydrolyzate supplemented with co-substrates for xylitol production.

    PubMed

    Hernández-Pérez, A F; Costa, I A L; Silva, D D V; Dussán, K J; Villela, T R; Canettieri, E V; Carvalho, J A; Soares Neto, T G; Felipe, M G A

    2016-01-01

    Biotechnological production of xylitol is an attractive route to add value to a sugarcane biorefinery, through utilization of the hemicellulosic fraction of sugarcane straw, whose availability is increasing in Brazil. Herein, supplementation of the sugarcane straw hemicellulosic hydrolyzate (xylose 57gL(-1)) with maltose, sucrose, cellobiose or glycerol was proposed, and their effect as co-substrates on xylitol production by Candida guilliermondii FTI 20037 was studied. Sucrose (10gL(-1)) and glycerol (0.7gL(-1)) supplementation led to significant increase of 8.88% and 6.86% on xylose uptake rate (1.11gL(-1)h(-1) and 1.09gL(-1)), respectively, but only with sucrose, significant increments of 12.88% and 8.69% on final xylitol concentration (36.11gL(-1)) and volumetric productivity (0.75gL(-1)h(-1)), respectively, were achieved. Based on these results, utilization of complex sources of sucrose, derived from agro-industries, as nutritional supplementation for xylitol production can be proposed as a strategy for improving the yeast performance and reducing the cost of this bioprocess by replacing more expensive nutrients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Xylitol pediatric topical oral syrup to prevent dental caries: a double-blind randomized clinical trial of efficacy.

    PubMed

    Milgrom, Peter; Ly, Kiet A; Tut, Ohnmar K; Mancl, Lloyd; Roberts, Marilyn C; Briand, Kennar; Gancio, Mary Jane

    2009-07-01

    To evaluate the effectiveness of a xylitol pediatric topical oral syrup to reduce the incidence of dental caries among very young children and to evaluate the effect of xylitol in reducing acute otitis media in a subsequent study. Double-blind randomized controlled trial. Communities in the Republic of the Marshall Islands. One hundred eight children aged 9 to 15 months were screened, and 100 were enrolled. Intervention Children were randomized to receive xylitol topical oral syrup (administered by their parents) twice a day (2 xylitol [4.00-g] doses and 1 sorbitol dose) (Xyl-2 x group) or thrice per day (3 xylitol [2.67-g] doses) (Xyl-3x group) vs a control syrup (1 xylitol [2.67-g] dose and 2 sorbitol doses) (control group). The primary outcome end point of the study was the number of decayed primary teeth. A secondary outcome end point was the incidence of acute otitis media for reporting in a subsequent report. Ninety-four children (mean [SD] age, 15.0 [2.7] months at randomization) with at least 1 follow-up examination were included in the intent-to-treat analysis. The mean (SD) follow-up period was 10.5 (2.2) months. Fifteen of 29 of the children in the control group (51.7%) had tooth decay compared with 13 of 32 children in the Xyl-3x group (40.6%) and eight of 33 children in the Xyl-2x group (24.2%). The mean (SD) numbers of decayed teeth were 1.9 (2.4) in the control group, 1.0 (1.4) in the Xyl-3x group, and 0.6 (1.1) in the Xyl-2x group. Compared with the control group, there were significantly fewer decayed teeth in the Xyl-2x group (relative risk, 0.30; 95% confidence interval, 0.13-0.66; P = .003) and in the Xyl-3x group (0.50; 0.26-0.96; P = .04). No statistical difference was noted between the 2 xylitol treatment groups (P = .22). Xylitol oral syrup administered topically 2 or 3 times daily at a total daily dose of 8 g was effective in preventing early childhood caries.

  8. Will parents participate in and comply with programs and regimens using xylitol for preventing acute otitis media in their children?

    PubMed

    Danhauer, Jeffrey L; Johnson, Carole E; Baker, Jason A; Ryu, Jung A; Smith, Rachel A; Umeda, Claire J

    2015-04-01

    Antiadhesive properties in xylitol, a natural sugar alcohol, can help prevent acute otitis media (AOM) in children by inhibiting harmful bacteria from colonizing and adhering to oral and nasopharyngeal areas and traveling to the Eustachian tube and middle ear. This study investigated parents' willingness to use and comply with a regimen of xylitol for preventing AOM in their preschool- and kindergarten-aged children. An Internet questionnaire was designed and administered to parents of young children in preschool and kindergarten settings. Most parents were unaware of xylitol's use for AOM and would not likely comply with regimens for preventing AOM in their children; however, parents having previous knowledge of xylitol and whose children had a history of AOM would be more likely to do so. Generally, most of these parents did not know about xylitol and probably would not use it to prevent ear infections. Unfortunately, these results parallel earlier findings for teachers and schools, which present obstacles for establishing ear infection prevention programs using similar protocols for young children. The results showed that considerable education and age-appropriate vehicles for administering xylitol are needed before establishing AOM prevention programs in schools and/or at home.

  9. Effect of pressure on the α relaxation in glycerol and xylitol

    NASA Astrophysics Data System (ADS)

    Paluch, M.; Casalini, R.; Hensel-Bielowka, S.; Roland, C. M.

    2002-06-01

    The effect of pressure on the dielectric relaxation of two polyhydroxy alcohols is examined by analysis of existing data on glycerol, together with new measurements on xylitol. The fragility, or Tg-normalized temperature dependence, changes with pressure for low pressures, but becomes invariant above 1 GPa. When compared at temperatures for which the α-relaxation times are equal, there is no effect of pressure (<1 GPa) on the shape of the α dispersion at higher temperatures. However, nearer Tg, pressure broadens the α peak, consistent with the expected correlation of fragility with the breadth of the relaxation function. We also observe that the α-relaxation peaks for both glycerol and xylitol show an excess intensity at higher frequencies. For xylitol, unlike for glycerol, at lower temperatures this wing disjoins to form a separate peak. For both glass formers, elevated pressure causes the excess wing to become more separated from the peak maximum; that is, the properties of the primary and excess intensities are not correlated. This implies that the excess wing in glycerol is also a distinct secondary process, although it cannot be resolved from the primary peak.

  10. Kinetic behavior of Candida guilliermondii yeast during xylitol production from Brewer's spent grain hemicellulosic hydrolysate.

    PubMed

    Mussatto, Solange I; Dragone, Giuliano; Roberto, Inês C

    2005-01-01

    Brewer's spent grain, the main byproduct of breweries, was hydrolyzed with dilute sulfuric acid to produce a hemicellulosic hydrolysate (containing xylose as the main sugar). The obtained hydrolysate was used as cultivation medium by Candidaguilliermondii yeast in the raw form (containing 20 g/L xylose) and after concentration (85 g/L xylose), and the kinetic behavior of the yeast during xylitol production was evaluated in both media. Assays in semisynthetic media were also performed to compare the yeast performance in media without toxic compounds. According to the results, the kinetic behavior of the yeast cultivated in raw hydrolysate was as effective as in semisynthetic medium containing 20 g/L xylose. However, in concentrated hydrolysate medium, the xylitol production efficiency was 30.6% and 42.6% lower than in raw hydrolysate and semisynthetic medium containing 85 g/L xylose, respectively. In other words, the xylose-to-xylitol bioconversion from hydrolysate medium was strongly affected when the initial xylose concentration was increased; however, similar behavior did not occur from semisynthetic media. The lowest efficiency of xylitol production from concentrated hydrolysate can be attributed to the high concentration of toxic compounds present in this medium, resulting from the hydrolysate concentration process.

  11. EFFECTS OF SHORT-TERM USE OF XYLITOL CHEWING GUM AND MOLTITOL ORAL SPRAY ON SALIVARY STREPTOCOCCUS MUTANS AND ORAL PLAQUE.

    PubMed

    Mitrakul, Kemthong; Srisatjaluk, Ratchapin; Vongsawan, Kutkao; Teerawongpairoj, Chayanid; Choongphong, Nachata; Panich, Tathata; Kaewvimonrat, Pravee

    2017-03-01

    The purpose of this study was to investigate the short-term effects of xylitol chewing gum and maltitol spray on the concentration of salivary mutans streptococci (MS) and on the plaque index. Eighty-one second, third and fourth year dental and dental assistant students with a salivary MS concentration > 103 CFU/ml cultured on mitis salivarius bacitracin (MSB) agar were included in the study. The age range of subjects was 18-23 years. The participants were divided into 3 groups: control, xylitol chewing gum and maltitol spray groups. Each subject brushed their teeth with fluoridated toothpaste (1,000 ppm). Each subject in the xylitol chewing gum group was told to chew 2 pieces, 6 times a day (total xylitol dose=7.3 g/day) for 4 weeks. Each subject in the maltitol spray group was told to spray one puff twice daily (morning and evening) for 4 weeks. A dental examination and saliva samples to determine the salivary MS concentration were collected at baseline and at 2 and 4 weeks after experiment initiation. The nonparametric Mann–Whitney U test was used to analyze differences among groups. The mean ages in the control, xylitol chewing gum and maltitol spray groups were 22±1, 20±1 and 20±1 years, respectively. The mean MS concentrations at the beginning of the study and after 2 weeks in the control, and xylitol chewing gum and moltitol oral spray groups were not significantly different from each other. There was a significantly lower MS concentration in the moltitol oral spray group than in the control group by 4 weeks (p=0.045) but no significant difference between the control group and the xylitol gum group by 4 weeks. There were no significant differences in the mean plaque index at baseline among the control group, the xylitol chewing gum group and the moltitol oral spray group. The plaque index was significantly lower in the xylitol chewing gum group than the control group (p=0.003) at 2 weeks but not 4 weeks. There was no significant difference in the mean

  12. 3,6-Anhydro-l-galactose, a rare sugar from agar, a new anticariogenic sugar to replace xylitol.

    PubMed

    Yun, Eun Ju; Lee, Ah Reum; Kim, Jung Hyun; Cho, Kyung Mun; Kim, Kyoung Heon

    2017-04-15

    The significance for anticariogenic sugar substitutes is growing due to increasing demands for dietary sugars and rising concerns of dental caries. Xylitol is widely used as an anticariogenic sugar substitute, but the inhibitory effects of xylitol on Streptococcus mutans, the main cause of tooth decay, are exhibited only at high concentrations. Here, the inhibitory effects of 3,6-anhydro-l-galactose (AHG), a rare sugar from red macroalgae, were evaluated on S. mutans, in comparison with those of xylitol. In the presence of 5g/l of AHG, the growth of S. mutans was retarded. At 10g/l of AHG, the growth and acid production by S. mutans were completely inhibited. However, in the presence of xylitol, at a much higher concentration (i.e., 40g/l), the growth of S. mutans still occurred. These results suggest that AHG can be used as a new anticariogenic sugar substitute for preventing dental caries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Simultaneous catalytic conversion of cellulose and corncob xylan under temperature programming for enhanced sorbitol and xylitol production.

    PubMed

    Ribeiro, Lucília Sousa; Órfão, José J de Melo; Pereira, Manuel Fernando Ribeiro

    2017-11-01

    Sorbitol and xylitol yields can be improved by converting cellulose and xylan simultaneously, due to a synergetic effect between both substrates. Furthermore, both yields can be greatly enhanced by simply adjusting the reaction conditions regarding the optimum for the production of each product, since xylitol (from xylan) and sorbitol (from cellulose) yields are maximized when the reaction is carried out at 170 and 205°C, respectively. Therefore, the combination of a simultaneous conversion of cellulose and xylan with a two-step temperature approach, which consists in the variation of the reaction temperature from 170 to 205°C after 2h, showed to be a good strategy for maximizing the production of sorbitol and xylitol directly from mixture of cellulose and xylan. Using this new and environmentally friendly approach, yields of sorbitol and xylitol of 75 and 77%, respectively, were obtained after 6h of reaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Xylitol pediatric topical oral syrup to prevent dental caries: a double blind, randomized clinical trial of efficacy

    PubMed Central

    Milgrom, Peter; Ly, Kiet A.; Tut, Ohnmar K.; Mancl, Lloyd; Roberts, Marilyn C.; Briand, Kennar; Gancio, Mary Jane

    2009-01-01

    Objective To evaluate the effectiveness of a xylitol pediatric topical oral syrup to reduce the incidence of dental caries of very young children. Design Randomized, double-blinded, controlled trial. Setting Communities in the Republic of the Marshall Islands. Participants 108 children aged 9 to 15 months were screened and 100 were enrolled. Intervention Children were randomized and parents administered topical oral xylitol syrup two times (Xyl-2X, two xylitol 4.00 g/dose + one sorbitol dose) or three times (Xyl-3X, three xylitol 2.67 g/dose) per day (total 8 g) or control (one xylitol 2.67 g/dose + two sorbitol dose). Outcome Measures The outcome end-point of the study was the number of decayed primary teeth. Results Ninety-four of 100 children (mean±SD age, 15.0±2.7 months at randomization) with at least one follow-up exam were included in the intent-to-treat analysis. The mean±SD follow-up period was 10.5±2.2 months. Nearly 52% of children in the control condition had tooth decay compared to 40.6% among Xyl-3X and 24.2% among Xyl-2X conditions. The mean±SD number of decayed teeth was 1.9±2.4 for control, 1.0±1.4 for Xyl-3X, and 0.6±1.1 for Xyl-2X condition. Compared to controls, there was significantly fewer decayed teeth in the Xyl-2X (relative risk [RR], 0.30; 95% confidence interval [CI] 0.13, 0.66; P=.003) and Xyl-3X (RR, 0.50; 95% CI 0.26, 0.96; P=0.037) conditions. There was no statistical difference between the two xylitol treatment conditions (P=0.22). Conclusion Oral xylitol syrup administered topically two or three times each day at a total dose of 8 g was effective in preventing Early Childhood Caries. PMID:19581542

  15. Effects of xylitol on carbohydrate digesting enzymes activity, intestinal glucose absorption and muscle glucose uptake: a multi-mode study.

    PubMed

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2015-03-01

    The present study investigated the possible mechanism(s) behind the effects of xylitol on carbohydrate digesting enzymes activity, muscle glucose uptake and intestinal glucose absorption using in vitro, ex vivo and in vivo experimental models. The effects of increasing concentrations of xylitol (2.5%-40% or 164.31 mM-2628.99 mM) on alpha amylase and alpha glucosidase activity in vitro and intestinal glucose absorption and muscle glucose uptake were investigated under ex vivo conditions. Additionally, the effects of an oral bolus dose of xylitol (1 g per kg BW) on gastric emptying and intestinal glucose absorption and digesta transit in the different segments of the intestinal tract were investigated in normal and type 2 diabetic rats at 1 hour after dose administration, when phenol red was used as a recovery marker. Xylitol exhibited concentration-dependent inhibition of alpha amylase (IC₅₀ = 1364.04 mM) and alpha glucosidase (IC₅₀ = 1127.52 mM) activity in vitro and small intestinal glucose absorption under ex vivo condition. Xylitol also increased dose dependent muscle glucose uptake with and without insulin, although the uptake was not significantly affected by the addition of insulin. Oral single bolus dose of xylitol significantly delayed gastric emptying, inhibited intestinal glucose absorption but increased the intestinal digesta transit rate in both normal and diabetic rats compared to their respective controls. The data of this study suggest that xylitol reduces intestinal glucose absorption via inhibiting major carbohydrate digesting enzymes, slowing gastric emptying and fastening the intestinal transit rate, but increases muscle glucose uptake in normal and type 2 diabetic rats.

  16. The Role of Xylitol Gum Chewing in Restoring Postoperative Bowel Activity After Cesarean Section.

    PubMed

    Lee, Jian Tao; Hsieh, Mei-Hui; Cheng, Po-Jen; Lin, Jr-Rung

    2016-03-01

    The goal of this study was to evaluate the effects of xylitol gum chewing on gastrointestinal recovery after cesarean section. Women who underwent cesarean section (N = 120) were randomly allocated into Group A (xylitol gum), Group B (nonxylitol gum), or the control group (no chewing gum). Every 2 hr post-cesarean section and until first flatus, Groups A and B received two pellets of chewing gum and were asked to chew for 15 min. The times to first bowel sounds, first flatus, and first defecation were then compared among the three groups. Group A had the shortest mean time to first bowel sounds (6.9 ± 1.7 hr), followed by Group B (8 ± 1.6 hr) and the control group (12.8 ± 2.5 hr; one-way analysis of variance, p < .001; Scheffe's post hoc comparisons, p < .05). The gum-chewing groups demonstrated a faster return of flatus than the control group did (p < .001), but the time to flatus did not differ significantly between the gum-chewing groups. Additionally, the differences in the time to first defecation were not significant. After cesarean section, chewing gum increased participants' return of bowel activity, as measured by the appearance of bowel sounds and the passage of flatus. In this context, xylitol-containing gum may be superior to xylitol-free gum. © The Author(s) 2015.

  17. Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 II: production of xylitol and ethanol in the presence of inhibitors.

    PubMed

    Vajzovic, Azra; Bura, Renata; Kohlmeier, Kevin; Doty, Sharon L

    2012-10-01

    A systematic study was conducted characterizing the effect of furfural, 5-hydroxymethylfurfural (5-HMF), and acetic acid concentration on the production of xylitol and ethanol by a novel endophytic yeast, Rhodotorula mucilaginosa strain PTD3. The influence of different inhibitor concentrations on the growth and fermentation abilities of PTD3 cultivated in synthetic nutrient media containing 30 g/l xylose or glucose were measured during liquid batch cultures. Concentrations of up to 5 g/l of furfural stimulated production of xylitol to 77 % of theoretical yield (10 % higher compared to the control) by PTD3. Xylitol yields produced by this yeast were not affected in the presence of 5-HMF at concentrations of up to 3 g/l. At higher concentrations of furfural and 5-HMF, xylitol and ethanol yields were negatively affected. The higher the concentration of acetic acid present in a media, the higher the ethanol yield approaching 99 % of theoretical yield (15 % higher compared to the control) was produced by the yeast. At all concentrations of acetic acid tested, xylitol yield was lowered. PTD3 was capable of metabolizing concentrations of 5, 15, and 5 g/l of furfural, 5-HMF, and acetic acid, respectively. This yeast would be a potent candidate for the bioconversion of lignocellulosic sugars to biochemicals given that in the presence of low concentrations of inhibitors, its xylitol and ethanol yields are stimulated, and it is capable of metabolizing pretreatment degradation products.

  18. Evaluation of the Simultaneous Production of Xylitol and Ethanol from Sisal Fiber

    PubMed Central

    Damião Xavier, Franklin; Santos Bezerra, Gustavo; Florentino Melo Santos, Sharline; Sousa Conrado Oliveira, Líbia; Luiz Honorato Silva, Flávio; Joice Oliveira Silva, Aleir; Maria Conceição, Marta

    2018-01-01

    Recent years have seen an increase in the use of lignocellulosic materials in the development of bioproducts. Because sisal fiber is a low cost raw material and is readily available, this work aimed to evaluate its hemicellulose fraction for the simultaneous production of xylitol and ethanol. The sisal fiber presented a higher hemicellulose content than other frequently-employed biomasses, such as sugarcane bagasse. A pretreatment with dilute acid and low temperatures was conducted in order to obtain the hemicellulose fraction. The highest xylose contents (0.132 g·g−1 of sisal fiber) were obtained at 120 °C with 2.5% (v/v) of sulfuric acid. The yeast Candida tropicalis CCT 1516 was used in the fermentation. In the sisal fiber hemicellulose hydrolysate, the maximum production of xylitol (0.32 g·g−1) and of ethanol (0.27 g·g−1) was achieved in 60 h. Thus, sisal fiber presents as a potential biomass for the production of ethanol and xylitol, creating value with the use of hemicellulosic liquor without detoxification and without the additional steps of alkaline pretreatment. PMID:29320469

  19. Monitoring the recrystallisation of amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering.

    PubMed

    Palomäki, Emmi; Ahvenainen, Patrik; Ehlers, Henrik; Svedström, Kirsi; Huotari, Simo; Yliruusi, Jouko

    2016-07-11

    In this paper we present a fast model system for monitoring the recrystallization of quench-cooled amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering. The use of these two methods enables comparison between surface and bulk crystallization. Non-ordered mesoporous silica micro-particles were added to the system in order to alter the rate of crystallization of the amorphous xylitol. Raman measurements showed that adding silica to the system increased the rate of surface crystallization, while X-ray measurements showed that the rate of bulk crystallization decreased. Using this model system it is possible to measure fast changes, which occur in minutes or within a few hours. Raman-spectroscopy and wide-angle X-ray scattering were found to be complementary techniques when assessing surface and bulk crystallization of amorphous xylitol. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Anti-irritant and anti-inflammatory effects of glycerol and xylitol in sodium lauryl sulphate-induced acute irritation.

    PubMed

    Szél, E; Polyánka, H; Szabó, K; Hartmann, P; Degovics, D; Balázs, B; Németh, I B; Korponyai, C; Csányi, E; Kaszaki, J; Dikstein, S; Nagy, K; Kemény, L; Erős, G

    2015-12-01

    Glycerol is known to possess anti-irritant and hydrating properties and previous studies suggested that xylitol may also have similar effects. Our aim was to study whether different concentrations of these polyols restore skin barrier function and soothe inflammation in sodium lauryl sulphate (SLS)-induced acute irritation. The experiments were performed on male SKH-1 hairless mice. The skin of the dorsal region was exposed to SLS (5%) for 3 h alone or together with 5% or 10% of glycerol respectively. Further two groups received xylitol solutions (8.26% and 16.52% respectively) using the same osmolarities, which were equivalent to those of the glycerol treatments. The control group was treated with purified water. Transepidermal water loss (TEWL) and skin hydration were determined. Microcirculatory parameters of inflammation were observed by means of intravital videomicroscopy (IVM). Furthermore, accumulation of neutrophil granulocytes and lymphocytes, the expression of inflammatory cytokines and SLS penetration were assessed, as well. Treatment with the 10% of glycerol and both concentrations of xylitol inhibited the SLS-induced elevation of TEWL and moderated the irritant-induced increase in dermal blood flow and in the number of leucocyte-endothelial interactions. All concentrations of the applied polyols improved hydration and prevented the accumulation of lymphocytes near the treatment site. At the mRNA level, neither glycerol nor xylitol influenced the expression of interleukin-1 alpha. However, expression of interleukin-1 beta was significantly decreased by the 10% glycerol treatment, while expression of tumour necrosis factor-alpha decreased upon the same treatment, as well as in response to xylitol. Higher polyol treatments decreased the SLS penetration to the deeper layers of the stratum corneum. Both of the analysed polyols exert considerable anti-irritant and anti-inflammatory properties, but the effective concentration of xylitol is lower than that of

  1. Visual scoring of non cavitated caries lesions and clinical trial efficiency, testing xylitol in caries-active adults.

    PubMed

    Brown, John P; Amaechi, Bennett T; Bader, James D; Gilbert, Gregg H; Makhija, Sonia K; Lozano-Pineda, Juanita; Leo, Michael C; Chen, Chuhe; Vollmer, William M

    2014-06-01

    To better understand the effectiveness of xylitol in caries prevention in adults and to attempt improved clinical trial efficiency. As part of the Xylitol for Adult Caries Trial (X-ACT), non cavitated and cavitated caries lesions were assessed in subjects who were experiencing the disease. The trial was a test of the effectiveness of 5 g/day of xylitol, consumed by dissolving in the mouth five 1 g lozenges spaced across each day, compared with a sucralose placebo. For this analysis, seeking trial efficiency, 538 subjects aged 21-80, with complete data for four dental examinations, were selected from the 691 randomized into the 3-year trial, conducted at three sites. Acceptable inter- and intra-examiner reliability before and during the trial was quantified using the kappa statistic. The mean annualized noncavitated plus cavitated lesion transition scores in coronal and root surfaces, from sound to carious favoured xylitol over placebo, during the three cumulative periods of 12, 24, and 33 months, but these clinically and statistically nonsignificant differences declined in magnitude over time. Restricting the present assessment to those subjects with a higher baseline lifetime caries experience showed possible but inconsistent benefit. There was no clear and clinically relevant preventive effect of xylitol on caries in adults with adequate fluoride exposure when non cavitated plus cavitated lesions were assessed. This conformed to the X-ACT trial result assessing cavitated lesions. Including non cavitated lesion assessment in this full-scale, placebo-controlled, multisite, randomized, double-blinded clinical trial in adults experiencing dental caries did not achieve added trial efficiency or demonstrate practical benefit of xylitol. ClinicalTrials.Gov NCT00393055. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Visual scoring of non-cavitated caries lesions and clinical trial efficiency, testing xylitol in caries active adults

    PubMed Central

    Brown, JP; Amaechi, BT; Bader, JD; Gilbert, GH; Makhija, SK; Lozano-Pineda, J; Leo, MC; Chuhe, C; Vollmer, WM

    2013-01-01

    Objectives To better understand the effectiveness of xylitol in caries prevention in adults, and to attempt improved clinical trial efficiency. Methods As part of the Xylitol for Adult Caries Trial (X-ACT), non-cavitated and cavitated caries lesions were assessed in subjects who were experiencing the disease. The trial was a test of the effectiveness of 5 grams/day of xylitol, consumed by dissolving in the mouth five 1 gram lozenges spaced across each day, compared with a sucralose placebo. For this analysis, seeking trial efficiency, 538 subjects aged 21–80, with complete data for four dental examinations were selected from the 691 randomized into the three year trial, conducted at three sites. Acceptable inter and intra examiner reliability before and during the trial was quantified using the kappa statistic. Results The mean annualized non-cavitated plus cavitated lesion transition scores in coronal and root surfaces, from sound to carious favoured xylitol over placebo, during the three cumulative periods of 12, 24, and 33 months, but these clinically and statistically non-significant differences declined in magnitude over time. Restricting the present assessment to those subjects with a higher baseline lifetime caries experience showed possible but inconsistent benefit. Conclusions There was no clear and clinically relevant preventive effect of xylitol on caries in adults with adequate fluoride exposure when non-cavitated plus cavitated lesions were assessed. This conformed to the X-ACT trial result assessing cavitated lesions. Including non-cavitated lesion assessment in this full scale, placebo controlled, multi site, randomized, double blinded clinical trial in adults experiencing dental caries, did not achieve added trial efficiency or demonstrate practical benefit of xylitol. Trial Registration ClinicalTrials.Gov NCT00393055 PMID:24205951

  3. Effects of Locally Applied Glycerol and Xylitol on the Hydration, Barrier Function and Morphological Parameters of the Skin.

    PubMed

    Korponyai, Csilla; Szél, Edit; Behány, Zoltán; Varga, Erika; Mohos, Gábor; Dura, Ágnes; Dikstein, Shabtay; Kemény, Lajos; Erős, Gábor

    2017-02-08

    Glycerol and xylitol hydrate the skin and improve its barrier function over a short period. We studied the effects of glycerol and xylitol on the physiological properties and morphology of the skin after longer-term application. Twelve volunteers with dry skin were examined. Three areas on the arms were determined. Area 1 served as untreated control. The vehicle was applied to area 2, while area 3 was treated twice daily with a formulation containing glycerol (5%) and xylitol (5%) for 14 days. Transepidermal water loss (TEWL), hydration and biomechanical properties of the skin were monitored. Biopsies were taken for routine histology and immunohistochemistry for filaggrin and matrix metalloproteinase-1 (MMP-1). The polyols increased the skin hydration and protein quantity of filaggrin, elevated the interdigitation index, decreased the TEWL and improved the biomechanical properties of the skin, but did not change the protein expression of MMP-1. A combination of glycerol and xylitol can be useful additional therapy for dry skin.

  4. Optimization of CDT-1 and XYL1 Expression for Balanced Co-Production of Ethanol and Xylitol from Cellobiose and Xylose by Engineered Saccharomyces cerevisiae

    PubMed Central

    Zha, Jian; Li, Bing-Zhi; Shen, Ming-Hua; Hu, Meng-Long; Song, Hao; Yuan, Ying-Jin

    2013-01-01

    Production of ethanol and xylitol from lignocellulosic hydrolysates is an alternative to the traditional production of ethanol in utilizing biomass. However, the conversion efficiency of xylose to xylitol is restricted by glucose repression, causing a low xylitol titer. To this end, we cloned genes CDT-1 (encoding a cellodextrin transporter) and gh1-1 (encoding an intracellular β-glucosidase) from Neurospora crassa and XYL1 (encoding a xylose reductase that converts xylose into xylitol) from Scheffersomyces stipitis into Saccharomyces cerevisiae, enabling simultaneous production of ethanol and xylitol from a mixture of cellobiose and xylose (main components of lignocellulosic hydrolysates). We further optimized the expression levels of CDT-1 and XYL1 by manipulating their promoters and copy-numbers, and constructed an engineered S. cerevisiae strain (carrying one copy of PGK1p-CDT1 and two copies of TDH3p-XYL1), which showed an 85.7% increase in xylitol production from the mixture of cellobiose and xylose than that from the mixture of glucose and xylose. Thus, we achieved a balanced co-fermentation of cellobiose (0.165 g/L/h) and xylose (0.162 g/L/h) at similar rates to co-produce ethanol (0.36 g/g) and xylitol (1.00 g/g). PMID:23844185

  5. Xylitol lozenges were not effective in overall dental caries prevention in adults.

    PubMed

    Fontana, Margherita; Gonzalez-Cabezas, Carlos

    2013-09-01

    Results from the xylitol for adult caries trial (X-ACT). Bader JD, Vollmer WM, Shugars DA, Gilbert GH, Amaechi BT, Brown JP, Laws RL, Kunkhouser KA, Makhija SK, Ritter AV, Leo MC. JADA 2013; 144(1): 21-30. Margherita Fontana, DDS, PhD, Carlos Gonzalez-Cabezas, DDS, MSD, PhD PURPOSE/QUESTION: Among an adult population at risk of dental caries, does the use of five 1 g xylitol lozenges per day over 33 months reduce the experience of cavitated caries lesions? Government: National Institute of Dental and Craniofacial Research Multicenter, double blind, placebo-controlled, randomized clinical trial Level 1: Good quality, patient-oriented evidence B: Limited quality patient-oriented evidence. Published by Mosby, Inc.

  6. A novel aldose-aldose oxidoreductase for co-production of D-xylonate and xylitol from D-xylose with Saccharomyces cerevisiae.

    PubMed

    Wiebe, Marilyn G; Nygård, Yvonne; Oja, Merja; Andberg, Martina; Ruohonen, Laura; Koivula, Anu; Penttilä, Merja; Toivari, Mervi

    2015-11-01

    An open reading frame CC1225 from the Caulobacter crescentus CB15 genome sequence belongs to the Gfo/Idh/MocA protein family and has 47 % amino acid sequence identity with the glucose-fructose oxidoreductase from Zymomonas mobilis (Zm GFOR). We expressed the ORF CC1225 in the yeast Saccharomyces cerevisiae and used a yeast strain expressing the gene coding for Zm GFOR as a reference. Cell extracts of strains overexpressing CC1225 (renamed as Cc aaor) showed some Zm GFOR type of activity, producing D-gluconate and D-sorbitol when a mixture of D-glucose and D-fructose was used as substrate. However, the activity in Cc aaor expressing strain was >100-fold lower compared to strains expressing Zm gfor. Interestingly, C. crescentus AAOR was clearly more efficient than the Zm GFOR in converting in vitro a single sugar substrate D-xylose (10 mM) to xylitol without an added cofactor, whereas this type of activity was very low with Zm GFOR. Furthermore, when cultured in the presence of D-xylose, the S. cerevisiae strain expressing Cc aaor produced nearly equal concentrations of D-xylonate and xylitol (12.5 g D-xylonate l(-1) and 11.5 g D-xylitol l(-1) from 26 g D-xylose l(-1)), whereas the control strain and strain expressing Zm gfor produced only D-xylitol (5 g l(-1)). Deletion of the gene encoding the major aldose reductase, Gre3p, did not affect xylitol production in the strain expressing Cc aaor, but decreased xylitol production in the strain expressing Zm gfor. In addition, expression of Cc aaor together with the D-xylonolactone lactonase encoding the gene xylC from C. crescentus slightly increased the final concentration and initial volumetric production rate of both D-xylonate and D-xylitol. These results suggest that C. crescentus AAOR is a novel type of oxidoreductase able to convert the single aldose substrate D-xylose to both its oxidized and reduced product.

  7. Ethanol production using xylitol synthesis mutant of xylose-utilizing zymomonas

    DOEpatents

    Viitanen, Paul V.; McCutchen, Carol M.; Emptage, Mark; Caimi, Perry G.; Zhang, Min; Chou, Yat-Chen

    2010-06-22

    Production of ethanol using a strain of xylose-utilizing Zymomonas with a genetic modification of the glucose-fructose oxidoreductase gene was found to be improved due to greatly reduced production of xylitol, a detrimental by-product of xylose metabolism synthesized during fermentation.

  8. Comparative evaluation of the effects of xylitol and sugar-free chewing gums on salivary and dental plaque pH in children.

    PubMed

    Kumar, Shikhar; Sogi, Suma H P; Indushekar, K R

    2013-01-01

    This research paper primarily focuses on the importance of use of xylitol among school children. The purpose of this paper is to evaluate the salivary and dental plaque pH changes after consumption of sugared and sugar-free (xylitol) chewing gums in children. A total of 30 school children were selected for this study and were divided into two equal groups and given both chewing gums for the experiment. Children consuming the sugar-free (xylitol) chewing gum showed a marked increase in the pH of saliva and plaque when compared to their counterpart. All these values had a significant difference of P ≤ 0.0001. Xylitol is a safe all-natural sweetener which helps to reduce tooth decay. It plays a unique role in preventive strategies for better health.

  9. Optimal experimental condition for hemicellulosic hydrolyzate treatment with activated charcoal for xylitol production.

    PubMed

    Mussatto, Solange I; Roberto, Inês C

    2004-01-01

    Rice straw was hydrolyzed into a mixture of sugars using diluted H(2)SO(4). During hydrolysis, a variety of inhibitors was also produced, including acetic acid, furfural, hydroxymethylfurfural, and lignin degradation products (several aromatic and phenolic compounds). To reduce the toxic compounds concentration in the hydrolyzate and to improve the xylitol yield and volumetric productivity, rice straw hemicellulosic hydrolyzate was treated with activated charcoal under different pH values, stirring rates, contact times, and temperatures, employing a 2(4) full-factorial design. Fermentative assays were conducted with treated hydrolyzates containing 90 g/L xylose. The results indicated that temperature, pH, and stirring rate strongly influenced the hydrolyzate treatment, temperature and pH interfering with all of the responses analyzed (removal of color and lignin degradation products, xylitol yield factor, and volumetric productivity). The combination of pH 2.0, 150 rpm, 45 degrees C, and 60 min was considered an optimal condition, providing significant removal rates of color (48.9%) and lignin degradation products (25.8%), as well as a xylitol production of 66 g/L, a volumetric productivity of 0.57 g/L.h, and a yield factor of 0.72 g/g.

  10. Viscoelastic and Functional Properties of Cod-Bone Gelatin in the Presence of Xylitol and Stevioside

    NASA Astrophysics Data System (ADS)

    Nian, Linyu; Cao, Ailing; Wang, Jing; Tian, Hongyu; Liu, Yongguo; Gong, Lingxiao; Cai, Luyun; Wang, Yuhao

    2018-05-01

    The physical, rheological, structural and functional properties of cod bone gelatin (CBG) with various concentrations (0, 2, 4, 6, 10 and 15%) of low-calorie sweeteners (xylitol (X) and stevioside (S)) to form gels were investigated. The gel strength of CBGX increased with increased xylitol due presumably to hydrogen bonds between xylitol and gelatin, but with CBGS the highest gel strength occurred when S concentration was 4%. Viscosity of CBGS samples were higher than CBGX due to S’s high molecular mass. The viscoelasticity (G' and G″), foaming capacity and fat binding capacity of CBGX were higher while foam stability was lower. The emulsion activity and emulsion stability of CBGX were a little lower than CBGS at the same concentration. The structure of X is linear making it easier to form a dense three-dimensional network structure, while the complex cyclic structure of S had more difficulty forming a network structure with cod bone gelatin. Therefore, X may be a better choice for sweetening gelatin gels.

  11. Viscoelastic and Functional Properties of Cod-Bone Gelatin in the Presence of Xylitol and Stevioside.

    PubMed

    Nian, Linyu; Cao, Ailing; Wang, Jing; Tian, Hongyu; Liu, Yongguo; Gong, Lingxiao; Cai, Luyun; Wang, Yuhao

    2018-01-01

    The physical, rheological, structural and functional properties of cod bone gelatin (CBG) with various concentrations (0, 2, 4, 6, 10, and 15%) of low-calorie sweeteners [xylitol (X) and stevioside (S)] to form gels were investigated. The gel strength of CBGX increased with increased xylitol due presumably to hydrogen bonds between xylitol and gelatin, but with CBGS the highest gel strength occurred when S concentration was 4%. Viscosity of CBGS samples were higher than CBGX due to S's high molecular mass. The viscoelasticity (G' and G''), foaming capacity and fat binding capacity of CBGX were higher while foam stability was lower. The emulsion activity and emulsion stability of CBGX were a little lower than CBGS at the same concentration. The structure of X is linear making it easier to form a dense three-dimensional network structure, while the complex cyclic structure of S had more difficulty forming a network structure with cod bone gelatin. Therefore, X may be a better choice for sweetening gelatin gels.

  12. Effect of Probiotic Yogurt and Xylitol-Containing Chewing Gums on Salivary S Mutans Count.

    PubMed

    Ghasemi, Elnaz; Mazaheri, Romina; Tahmourespour, Arezoo

    In addition to improving gastrointestinal health and intestinal microflora, probiotic bacteria have been recently suggested to decrease cariogenic agents in the oral cavity. The aim of this study was to investigate the effects of probiotic yogurt and xylitol-containing chewing gums on reducing salivary Streptococcus mutans levels. This randomized clinical trial recruited 50 female students with over 10 5 colony forming units S. mutans per milliliter of their saliva. The participants were randomly allocated to two equal groups to receive either probiotic yogurt containing Lactobacillus acidophilus ATCC 4356 andBifidobacteriumbifidum ATCC 29521 (200 g daily) or xylitol-containing chewing gums (two gums three times daily after each meal; total xylitol content: 5.58 g daily) for three weeks. At baseline and one day, two weeks, and four weeks after the interventions, saliva samples were cultured on mitis-salivarius-bacitracin agar and salivary S. mutans counts were determined. Data were analyzed with independent t-tests, analysis of variance, and Fisher's least significant difference test. In both groups, S. mutans counts on the first day, second week, and fourth weeks after the intervention were significantly lower than baseline values (P < 0.05). The greatest level of reduction in both groups was observed in the second week after the intervention. Moreover, although the reduction was greater in probiotic yogurt consumers, the difference between the two groups was not statistically significant. Probiotic yogurt and xylitol-containing chewing gums seem to be as effective in reduction of salivary S. mutans levels. Their constant long-term consumption is thus recommended to prevent caries.

  13. Probiotic capsules and xylitol chewing gum to manage symptoms of pharyngitis: a randomized controlled factorial trial

    PubMed Central

    Little, Paul; Stuart, Beth; Wingrove, Zoe; Mullee, Mark; Thomas, Tammy; Johnson, Sophie; Leydon, Gerry; Richards-Hall, Samantha; Williamson, Ian; Yao, Lily; Zhu, Shihua; Moore, Michael

    2017-01-01

    BACKGROUND: Reducing the use of antibiotics for upper respiratory tract infections is needed to limit the global threat of antibiotic resistance. We estimated the effectiveness of probiotics and xylitol for the management of pharyngitis. METHODS: In this parallel-group factorial randomized controlled trial, participants in primary care (aged 3 years or older) with pharyngitis underwent randomization by nurses who provided sequential intervention packs. Pack contents for 3 kinds of material and advice were previously determined by computer-generated random numbers: no chewing gum, xylitol-based chewing gum (15% xylitol; 5 pieces daily) and sorbitol gum (5 pieces daily). Half of each group were also randomly assigned to receive either probiotic capsules (containing 24 × 109 colony-forming units of lactobacilli and bifidobacteria) or placebo. The primary outcome was mean self-reported severity of sore throat and difficulty swallowing (scale 0–6) in the first 3 days. We used multiple imputation to avoid the assumption that data were missing completely at random. RESULTS: A total of 1009 individuals consented, 934 completed the baseline assessment, and 689 provided complete data for the primary outcome. Probiotics were not effective in reducing the severity of symptoms: mean severity scores 2.75 with no probiotic and 2.78 with probiotic (adjusted difference −0.001, 95% confidence interval [CI] −0.24 to 0.24). Chewing gum was also ineffective: mean severity scores 2.73 without gum, 2.72 with sorbitol gum (adjusted difference 0.07, 95% CI −0.23 to 0.37) and 2.73 with xylitol gum (adjusted difference 0.01, 95% CI −0.29 to 0.30). None of the secondary outcomes differed significantly between groups, and no harms were reported. INTERPRETATION: Neither probiotics nor advice to chew xylitol-based chewing gum was effective for managing pharyngitis. Trial registration: ISRCTN, no. ISRCTN51472596 PMID:29255098

  14. Probiotic capsules and xylitol chewing gum to manage symptoms of pharyngitis: a randomized controlled factorial trial.

    PubMed

    Little, Paul; Stuart, Beth; Wingrove, Zoe; Mullee, Mark; Thomas, Tammy; Johnson, Sophie; Leydon, Gerry; Richards-Hall, Samantha; Williamson, Ian; Yao, Lily; Zhu, Shihua; Moore, Michael

    2017-12-18

    Reducing the use of antibiotics for upper respiratory tract infections is needed to limit the global threat of antibiotic resistance. We estimated the effectiveness of probiotics and xylitol for the management of pharyngitis. In this parallel-group factorial randomized controlled trial, participants in primary care (aged 3 years or older) with pharyngitis underwent randomization by nurses who provided sequential intervention packs. Pack contents for 3 kinds of material and advice were previously determined by computer-generated random numbers: no chewing gum, xylitol-based chewing gum (15% xylitol; 5 pieces daily) and sorbitol gum (5 pieces daily). Half of each group were also randomly assigned to receive either probiotic capsules (containing 24 × 10 9 colony-forming units of lactobacilli and bifidobacteria) or placebo. The primary outcome was mean self-reported severity of sore throat and difficulty swallowing (scale 0-6) in the first 3 days. We used multiple imputation to avoid the assumption that data were missing completely at random. A total of 1009 individuals consented, 934 completed the baseline assessment, and 689 provided complete data for the primary outcome. Probiotics were not effective in reducing the severity of symptoms: mean severity scores 2.75 with no probiotic and 2.78 with probiotic (adjusted difference -0.001, 95% confidence interval [CI] -0.24 to 0.24). Chewing gum was also ineffective: mean severity scores 2.73 without gum, 2.72 with sorbitol gum (adjusted difference 0.07, 95% CI -0.23 to 0.37) and 2.73 with xylitol gum (adjusted difference 0.01, 95% CI -0.29 to 0.30). None of the secondary outcomes differed significantly between groups, and no harms were reported. Neither probiotics nor advice to chew xylitol-based chewing gum was effective for managing pharyngitis. Trial registration: ISRCTN, no. ISRCTN51472596. © 2017 Joule Inc. or its licensors.

  15. Determination of glutathione in apoptotic SMMC-7221 cells induced by xylitol selenite using capillary electrophoresis.

    PubMed

    Wu, Xue; Cao, Yu; Zhang, Jian; Lei, Ming; Deng, Xiaojie; Zahid, Kashif Rafiq; Liu, Yanli; Liu, Ke; Yang, Jihong; Xiong, Guomei; Yao, Hanchao; Qi, Chao

    2016-05-01

    To determine the glutathione (GSH) content in a human hepatoma cell line (SMMC-7221) treated with xylitol/selenite, providing a part of an investigation of its anti-cancer mechanisms. The nuclei of SMMC-7221 cells were stained with Hoechst 33258 in an apoptosis assay, and their morphology subsequently changed from circular to crescent shape. The calibration curve (r(2) = 0.992) was established, and GSH content markedly decreased after treated with 0.5 and 1 mg xylitol/selenite l(-1) for 12, 36 and 60 h (12 h: from 95.57 ± 19.57 to 29.09 ± 7.74 and 24.27 ± 11.15; 36 h: from 70.73 ± 11.35 to 19.54 ± 6.39 and 9.35 ± 6.69; 60 h: from 72.63 ± 16.94 to 7.432 ± 3.84 and 0). The depletion rate of GSH was more related to the concentration of xylitol/selenite than the treatment time (from 69.95 ± 1.87 to 100 % vs. 0.22 ± 0.2 to 100 %). Xylitol/selenite is a promising anti-cancer drug to induce apoptosis in SMMC-7221 cells. It may regulate the apoptosis through the co-action of multiple mechanisms related to GSH depletion.

  16. The effect of xylitol on dental caries and oral flora

    PubMed Central

    Nayak, Prathibha Anand; Nayak, Ullal Anand; Khandelwal, Vishal

    2014-01-01

    Dental caries, the most chronic disease affecting mankind, has been in the limelight with regard to its prevention and treatment. Professional clinical management of caries has been very successful in cases of different severities of disease manifestations. However, tertiary management of this disease has been gaining attention, with numerous methods and agents emerging on a daily basis. Higher intake of nutritive sweeteners can result in higher energy intake and lower diet quality and thereby predispose an individual to conditions like obesity, cardiovascular disorders, and type 2 diabetes mellitus. Non-nutritive sweeteners have gained popularity as they are sweeter and are required in substantially lesser quantities. Xylitol, a five-carbon sugar polyol, has been found to be promising in reducing dental caries disease and also reversing the process of early caries. This paper throws light on the role and effects of various forms of xylitol on dental caries and oral hygiene status of an individual. PMID:25422590

  17. Xylitol production from xylose mother liquor: a novel strategy that combines the use of recombinant Bacillus subtilis and Candida maltosa

    PubMed Central

    2011-01-01

    Background Xylose mother liquor has high concentrations of xylose (35%-40%) as well as other sugars such as L-arabinose (10%-15%), galactose (8%-10%), glucose (8%-10%), and other minor sugars. Due to the complexity of this mother liquor, further isolation of xylose by simple method is not possible. In China, more than 50,000 metric tons of xylose mother liquor was produced in 2009, and the management of sugars like xylose that present in the low-cost liquor is a problem. Results We designed a novel strategy in which Bacillus subtilis and Candida maltosa were combined and used to convert xylose in this mother liquor to xylitol, a product of higher value. First, the xylose mother liquor was detoxified with the yeast C. maltosa to remove furfural and 5-hydromethylfurfural (HMF), which are inhibitors of B. subtilis growth. The glucose present in the mother liquor was also depleted by this yeast, which was an added advantage because glucose causes carbon catabolite repression in B. subtilis. This detoxification treatment resulted in an inhibitor-free mother liquor, and the C. maltosa cells could be reused as biocatalysts at a later stage to reduce xylose to xylitol. In the second step, a recombinant B. subtilis strain with a disrupted xylose isomerase gene was constructed. The detoxified xylose mother liquor was used as the medium for recombinant B. subtilis cultivation, and this led to L-arabinose depletion and xylose enrichment of the medium. In the third step, the xylose was further reduced to xylitol by C. maltosa cells, and crystallized xylitol was obtained from this yeast transformation medium. C. maltosa transformation of the xylose-enriched medium resulted in xylitol with 4.25 g L-1·h-1 volumetric productivity and 0.85 g xylitol/g xylose specific productivity. Conclusion In this study, we developed a biological method for the purification of xylose from xylose mother liquor and subsequent preparation of xylitol by C. maltosa-mediated biohydrogenation of xylose

  18. Ultrasonic speed, densities and viscosities of xylitol in water and in aqueous tyrosine and phenylalanine solutions at different temperatures

    NASA Astrophysics Data System (ADS)

    Ali, A.; Bidhuri, P.; Uzair, S.

    2014-07-01

    Ultrasonic speed u, densities ρ and viscosities η of xylitol in water and in 0.001 m aqueous l-tyrosine (Tyr) and l-phenylalanine (Phe) have been measured at different temperatures. From the density and ultrasonic speed measurements apparent molar isentropic compression κ_{φ}, apparent molar isentropic compressions at infinite dilution κ_{{S,φ}}0 , experimental slope S K , hydration number n H , transfer partial molar isentropic compressibility Δ_{tr} κ_{{S,φ}}0 of xylitol from water to aqueous Tyr and Phe have been obtained. From the viscosity data, B-coefficient and B-coefficient of transfer Δ tr B of xylitol from water to aqueous Phe and Tyr at different temperatures have also been estimated. Gibbs free energies of activation of viscous flow per mole of solvent Δ μ 1 0# and per mole of solute Δ μ 2 0# have been calculated by using Feakins transition state theory for the studied systems. The calculated parameters have been interpreted in terms of solute-solute and solute-solvent interactions and hydration behavior of xylitol.

  19. Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor.

    PubMed

    Zahed, Omid; Jouzani, Gholamreza Salehi; Abbasalizadeh, Saeed; Khodaiyan, Faramarz; Tabatabaei, Meisam

    2016-05-01

    The present study was set to develop a robust and economic biorefinery process for continuous co-production of ethanol and xylitol from rice straw in a membrane bioreactor. Acid pretreatment, enzymatic hydrolysis, detoxification, yeast strains selection, single and co-culture batch fermentation, and finally continuous co-fermentation were optimized. The combination of diluted acid pretreatment (3.5 %) and enzymatic conversion (1:10 enzyme (63 floating-point unit (FPU)/mL)/biomass ratio) resulted in the maximum sugar yield (81 % conversion). By concentrating the hydrolysates, sugars level increased by threefold while that of furfural reduced by 50 % (0.56 to 0.28 g/L). Combined application of active carbon and resin led to complete removal of furfural, hydroxyl methyl furfural, and acetic acid. The strains Saccharomyces cerevisiae NCIM 3090 with 66.4 g/L ethanol production and Candida tropicalis NCIM 3119 with 9.9 g/L xylitol production were selected. The maximum concentrations of ethanol and xylitol in the single cultures were recorded at 31.5 g/L (0.42 g/g yield) and 26.5 g/L (0.58 g/g yield), respectively. In the batch co-culture system, the ethanol and xylitol productions were 33.4 g/L (0.44 g/g yield) and 25.1 g/L (0.55 g/g yield), respectively. The maximum ethanol and xylitol volumetric productivity values in the batch co-culture system were 65 and 58 % after 25 and 60 h, but were improved in the continuous co-culture mode and reached 80 % (55 g/L) and 68 % (31 g/L) at the dilution rate of 0.03 L per hour, respectively. Hence, the continuous co-production strategy developed in this study could be recommended for producing value-added products from this hugely generated lignocellulosic waste.

  20. The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing

    NASA Astrophysics Data System (ADS)

    Zabner, Joseph; Seiler, Michael P.; Launspach, Janice L.; Karp, Philip H.; Kearney, William R.; Look, Dwight C.; Smith, Jeffrey J.; Welsh, Michael J.

    2000-10-01

    The thin layer of airway surface liquid (ASL) contains antimicrobial substances that kill the small numbers of bacteria that are constantly being deposited in the lungs. An increase in ASL salt concentration inhibits the activity of airway antimicrobial factors and may partially explain the pathogenesis of cystic fibrosis (CF). We tested the hypothesis that an osmolyte with a low transepithelial permeability may lower the ASL salt concentration, thereby enhancing innate immunity. We found that the five-carbon sugar xylitol has a low transepithelial permeability, is poorly metabolized by several bacteria, and can lower the ASL salt concentration in both CF and non-CF airway epithelia in vitro. Furthermore, in a double-blind, randomized, crossover study, xylitol sprayed for 4 days into each nostril of normal volunteers significantly decreased the number of nasal coagulase-negative Staphylococcus compared with saline control. Xylitol may be of value in decreasing ASL salt concentration and enhancing the innate antimicrobial defense at the airway surface.

  1. Xylitol as a potential co-crystal co-former for enhancing dissolution rate of felodipine: preparation and evaluation of sublingual tablets.

    PubMed

    Arafa, Mona F; El-Gizawy, Sanaa A; Osman, Mohamed A; El Maghraby, Gamal M

    2018-06-01

    Dissolution enhancement is a promising strategy for improving drug bioavailability. Co-crystallization of drugs with inert material can help in this direction. The benefit will become even greater if the inert material can form co-crystal while maintaining its main function as excipient. Accordingly, the objective of the current study was to investigate xylitol as a potential co-crystal co-former for felodipine with the goal of preparing felodipine sublingual tablets. Co-crystallization was achieved by wet co-grinding of the crystals deposited from methanolic solutions containing felodipine with increasing molar ratios of xylitol (1:1, 1:2 and 1:3). The developed co-crystals were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) before monitoring drug dissolution. These results reflected the development of new crystalline species depending on the relative proportions of felodipine and xylitol with complete co-crystallization of felodipine being achieved in the presence of double its molar concentration of xylitol. This co-crystal formulation was compressed into sublingual tablet with ultrashort disintegration time with subsequent fast dissolution. Co-crystal formation was associated with enhanced dissolution with the optimum formulation producing the fastest dissolution rate. In conclusion, xylitol can be considered as a co-crystal co-former for enhanced dissolution rate of drugs.

  2. Effects of xylitol on blood glucose, glucose tolerance, serum insulin and lipid profile in a type 2 diabetes model of rats.

    PubMed

    Islam, Md Shahidul; Indrajit, Mitesh

    2012-01-01

    The present study was conducted to examine the antidiabetic effects of xylitol in a type 2 diabetes rat model. Six-week-old male Sprague-Dawley rats were randomly divided into 3 groups: normal control (NC), diabetic control (DBC) and xylitol (XYL). Diabetes was induced only in the DBC and XYL animal groups by feeding them a 10% fructose solution for 2 weeks followed by an injection (i.p.) of streptozotocin (40 mg/kg body weight). One week after the streptozotocin injection, the animals with a nonfasting blood glucose level of >300 mg/dl were considered to be diabetic. The XYL group was fed further with a 10% xylitol solution, whereas the NC and DBC groups were supplied with normal drinking water. After 5 weeks of intervention, food and fluid intake, body weight, blood glucose, serum fructosamine and most of the serum lipids were significantly decreased, and serum insulin concentration and glucose tolerance ability was significantly increased in the XYL group compared to the DBC group. Liver weight, liver glycogen and serum triglycerides were not influenced by feeding with xylitol. The data of this study suggest that xylitol can be used not only as a sugar substitute but also as a supplement to antidiabetic food and other food products. Copyright © 2012 S. Karger AG, Basel.

  3. Improvement on D-xylose to Xylitol Biotransformation by Candida guilliermondii Using Cells Permeabilized with Triton X-100 and Selected Process Conditions.

    PubMed

    Cortez, Daniela Vieira; Mussatto, Solange I; Roberto, Inês Conceição

    2016-11-01

    Cells of Candida guilliermondii permeabilized with Triton X-100 were able to efficiently produce xylitol from a medium composed only by D-xylose and MgCl 2 ·6H 2 O in potassium phosphate buffer, at 35 °C and pH 6.5. Under these conditions, the results were similar to those obtained when cofactor and co-substrate or nutrients were added to the medium (about 95 % D-xylose was assimilated producing 42 g/L of xylitol, corresponding to 0.80 g/g yield and 2.65 g/L h volumetric productivity). Furthermore, the permeabilized cells kept the D-xylose assimilation in about 90 % and the xylitol production in approx. 40 g/L during three bioconversion cycles of 16 h each. These values are highly relevant when compared to others reported in the literature using enzyme technology and fermentative process, thereby demonstrating the effectiveness of the proposed method. The present study reveals that the use of permeabilized cells is an interesting alternative to obtain high xylitol productivity using low cost medium formulation. This approach may allow the future development of xylitol production from xylose present in lignocellulosic biomass, with additional potential for implementation in biorefinery strategies.

  4. Coupling two sizes of CSTR-type bioreactors for sequential lactic acid and xylitol production from hemicellulosic hydrolysates of vineshoot trimmings.

    PubMed

    Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Domínguez, José Manuel

    2012-02-15

    This study develops a system for the efficient valorisation of hemicellulosic hydrolysates of vineshoot trimmings. By connecting two reactors of 2L and 10L, operational conditions were set up for the sequential production of lactic acid and xylitol in continuous fermentation, considering the dependence of the main metabolites and fermentation parameters on the dilution rate. In the first bioreactor, Lactobacillus rhamnosus consumed all the glucose to produce lactic acid at 31.5°C, with 150rpm and 1L of working volume as the optimal conditions. The residual sugars were employed for the xylose to xylitol bioconversion by Debaryomyces hansenii in the second bioreactor at 30°C, 250rpm and an air-flow rate of 2Lmin(-1). Several steady states were reached at flow rates (F) in the range of 0.54-5.33mLmin(-1), leading to dilution rates (D) ranging from 0.032 to 0.320h(-1) in Bioreactor 1 and from 0.006 to 0.064h(-1) in Bioreactor 2. The maximum volumetric lactic acid productivity (Q(P LA)=2.908gL(-1)h(-1)) was achieved under D=0.266h(-1) (F=4.44mLmin(-1)); meanwhile, the maximum production of xylitol (5.1gL(-1)), volumetric xylitol productivity (Q(P xylitol)=0.218gL(-1)h(-1)), volumetric rate of xylose consumption (Q(S xylose)=0.398gL(-1)h(-1)) and product yield (0.55gg(-1)) were achieved at an intermediate dilution rate of 0.043h(-1) (F=3.55mLmin(-1)). Under these conditions, ethanol, which was the main by-product of the fermentation, was produced in higher amounts (1.9gL(-1)). Finally, lactic acid and xylitol were effectively recovered by conventional procedures. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Modeling and simulation of xylitol production in bioreactor by Debaryomyces nepalensis NCYC 3413 using unstructured and artificial neural network models.

    PubMed

    Pappu, J Sharon Mano; Gummadi, Sathyanarayana N

    2016-11-01

    This study examines the use of unstructured kinetic model and artificial neural networks as predictive tools for xylitol production by Debaryomyces nepalensis NCYC 3413 in bioreactor. An unstructured kinetic model was proposed in order to assess the influence of pH (4, 5 and 6), temperature (25°C, 30°C and 35°C) and volumetric oxygen transfer coefficient kLa (0.14h(-1), 0.28h(-1) and 0.56h(-1)) on growth and xylitol production. A feed-forward back-propagation artificial neural network (ANN) has been developed to investigate the effect of process condition on xylitol production. ANN configuration of 6-10-3 layers was selected and trained with 339 experimental data points from bioreactor studies. Results showed that simulation and prediction accuracy of ANN was apparently higher when compared to unstructured mechanistic model under varying operational conditions. ANN was found to be an efficient data-driven tool to predict the optimal harvest time in xylitol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Xylitol production by yeasts isolated from rotting wood in the Galápagos Islands, Ecuador, and description of Cyberlindnera galapagoensis f.a., sp. nov.

    PubMed

    Guamán-Burneo, Maria C; Dussán, Kelly J; Cadete, Raquel M; Cheab, Monaliza A M; Portero, Patricia; Carvajal-Barriga, Enrique J; da Silva, Sílvio S; Rosa, Carlos A

    2015-10-01

    This study evaluated D-xylose-assimilating yeasts that are associated with rotting wood from the Galápagos Archipelago, Ecuador, for xylitol production from hemicellulose hydrolysates. A total of 140 yeast strains were isolated. Yeasts related to the clades Yamadazyma, Kazachstania, Kurtzmaniella, Lodderomyces, Metschnikowia and Saturnispora were predominant. In culture assays using sugarcane bagasse hemicellulose hydrolysate, Candida tropicalis CLQCA-24SC-125 showed the highest xylitol production, yield and productivity (27.1 g L(-1) xylitol, Y p/s (xyl) = 0.67 g g(-1), Qp = 0.38 g L(-1). A new species of Cyberlindnera, strain CLQCA-24SC-025, was responsible for the second highest xylitol production (24 g L(-1), Y p/s (xyl) = 0.64 g g(-1), Qp = 0.33 g L(-1) h(-1)) on sugarcane hydrolysate. The new xylitol-producing species Cyberlindnera galapagoensis f.a., sp. nov., is proposed to accommodate the strain CLQCA-24SC-025(T) (=UFMG-CM-Y517(T); CBS 13997(T)). The MycoBank number is MB 812171.

  7. Comparison of nasal hyperosmolar xylitol and xylometazoline solutions on quality of life in patients with inferior turbinate hypertrophy secondary to nonallergic rhinitis.

    PubMed

    Cingi, Cemal; Birdane, Leman; Ural, Ahmet; Oghan, Fatih; Bal, Cengiz

    2014-06-01

    The purpose of this study was to objectively determine and compare the efficacy and effectiveness of xylitol solution (Xlear Nasal Sprey®) compared with xylometazoline and physiological saline with respect to quality of life (QoL) in patients with nasal congestion. A prospective, randomized study was performed in 42 patients who had nasal obstruction and hypertrophied turbinate mucosa that was refractory to medical treatment. The study population was randomized into 3 groups according to the application of xylometazoline, physiological saline, and xylitol hyperosmolar solution. The efficacy of treatment was evaluated objectively (4-phase rhinomanometry) and subjectively (visual analogue scale VAS.) before and after the application of the nasal solutions. QoL was evaluated by means of Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ). VAS scores and 4-phase rhinomanometry scores were better in the group treated with xylometazoline compared to those treated with xylitol or saline. The xylitol procedure yielded better results than the saline procedure, but differences were not statistically significant in both objective and subjective evaluation methods. For overall QoL, there was a significant improvement from baseline for the xylometazoline and xylitol groups. However, the improvement in the xylometazoline group was significantly greater than that obtained in the xylitol group. Xlear Nasal Spray® is an effective modality in the treatment of nasal congestion and has positive effect on the QoL of patients. Further studies are needed in order to plan an ongoing treatment of Xlear Nasal Sprey® at certain intervals for continuous relief of symptoms and a better and longstanding QoL. © 2014 ARS-AAOA, LLC.

  8. Ethanol and xylitol production by fermentation of acid hydrolysate from olive pruning with Candida tropicalis NBRC 0618.

    PubMed

    Mateo, Soledad; Puentes, Juan G; Moya, Alberto J; Sánchez, Sebastián

    2015-08-01

    Olive tree pruning biomass has been pretreated with pressurized steam, hydrolysed with hydrochloric acid, conditioned and afterwards fermented using the non-traditional yeast Candida tropicalis NBRC 0618. The main aim of this study was to analyse the influence of acid concentration on the hydrolysis process and its effect on the subsequent fermentation to produce ethanol and xylitol. From the results, it could be deduced that both total sugars and d-glucose recovery were enhanced by increasing the acid concentration tested; almost the whole hemicellulose fraction was hydrolysed when 3.77% was used. It has been observed a sequential production first of ethanol, from d-glucose, and then xylitol from d-xylose. The overall ethanol and xylitol yields ranged from 0.27 to 0.38kgkg(-1), and 0.12 to 0.23kgkg(-1) respectively, reaching the highest values in the fermentation of the hydrolysates obtained with hydrochloric acid 2.61% and 1.11%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Xylitol synthesis mutant of xylose-utilizing zymomonas for ethanol production

    DOEpatents

    Viitanen, Paul V.; Chou, Yat-Chen; McCutchen, Carol M.; Zhang, Min

    2010-06-22

    A strain of xylose-utilizing Zymomonas was engineered with a genetic modification to the glucose-fructose oxidoreductase gene resulting in reduced expression of GFOR enzyme activity. The engineered strain exhibits reduced production of xylitol, a detrimental by-product of xylose metabolism. It also consumes more xylose and produces more ethanol during mixed sugar fermentation under process-relevant conditions.

  10. Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion.

    PubMed

    Wang, Shizeng; Li, Hao; Fan, Xiaoguang; Zhang, Jingkun; Tang, Pingwah; Yuan, Qipeng

    2015-09-01

    During xylitol fermentation, Candida tropicalis is often inhibited by inhibitors in hemicellulose hydrolysate. The mechanisms involved in the metabolic responses to inhibitor stress and the resistances to inhibitors are still not clear. To understand the inhibition mechanisms and the metabolic responses to inhibitors, a GC/MS-based metabolomics approach was performed on C. tropicalis treated with and without complex inhibitors (CI, including furfural, phenol and acetic acid). Partial least squares discriminant analysis was used to determine the metabolic variability between CI-treated groups and control groups, and 25 metabolites were identified as possible entities responsible for the discrimination caused by inhibitors. We found that xylose uptake rate and xylitol oxidation rate were promoted by CI treatment. Metabolomics analysis showed that the flux from xylulose to pentose phosphate pathway increased, and tricarboxylic acid cycle was disturbed by CI. Moreover, the changes in levels of 1,3-propanediol, trehalose, saturated fatty acids and amino acids showed different mechanisms involved in metabolic responses to inhibitor stress. The increase of 1,3-propanediol was considered to be correlated with regulating redox balance and osmoregulation. The increase of trehalose might play a role in protein stabilization and cellular membranes protection. Saturated fatty acids could cause the decrease of membrane fluidity and make the plasma membrane rigid to maintain the integrity of plasma membrane. The deeper understanding of the inhibition mechanisms and the metabolic responses to inhibitors will provide us with more information on the metabolism regulation during xylitol bioconversion and the construction of industrial strains with inhibitor tolerance for better utilization of bioresource. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Effect of maternal use of chewing gums containing xylitol on transmission of mutans streptococci in children: a meta-analysis of randomized controlled trials.

    PubMed

    Lin, Hsi-Kuei; Fang, Chia-En; Huang, Mao-Suan; Cheng, Hsin-Chung; Huang, Tsai-Wei; Chang, Hui-Ting; Tam, Ka-Wai

    2016-01-01

    Mutans streptococci (MS) are the major causative bacteria involved in human dental decay. Habitual consumption of xylitol has been proved to reduce MS levels in saliva and plaque. To evaluate the effect of the maternal use of xylitol gum on MS reduction in infants. A structured literature review and meta-analysis. A random effects model was used to assess the relative risks of the incidence of MS in the saliva or plaque of children who were 6, 9, 12, 18, and 24 months old. We reviewed 11 RCTs derived from 5 research teams that included 601 mothers. Our results indicated that the incidence of MS in the saliva or plaque of the infants was significantly reduced in the xylitol group (risk ratio: 0.54; 95% confidence interval: 0.39-0.73, at 12-18 months) and (risk ratio: 0.56; 95% confidence interval: 0.40-0.79, at 36 months) compared with the control groups. The long-term effect of maternal xylitol gum exposure on their children's dental caries was controversial. Habitual xylitol consumption by mothers with high MS levels was associated with a significant reduction in the mother-child transmission of salivary MS. © 2015 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Microbial Production of Xylitol from L-arabinose by Metabolically Engineered Escherichia coli

    USDA-ARS?s Scientific Manuscript database

    Xylitol is used commercially as a natural sweetener in some food products such as chewing gum, soft drinks, and confectionery. It is currently produced by chemical reduction of D-xylose derived from plant materials, mainly hemicellulosic hydrolysates from birch trees. Expanding the substrate range...

  13. Investigation of Water Absorption and Diffusion in Microparticles Containing Xylitol to Provide a Cooling Effect by Thermal Analysis

    NASA Astrophysics Data System (ADS)

    Salaün, F.; Bedek, G.; Devaux, E.; Dupont, D.; Deranton, D.

    2009-08-01

    Polyurethane microparticles containing xylitol as a sweat sensor system were prepared by interfacial polymerization. The structural and thermal properties of the resultant microparticles were studied. The surface morphology and chemical structure of microparticles were investigated using an optical microscope (OM) and a Fourier-transform infrared spectroscope (FTIR), respectively. The thermal properties of samples were investigated by thermogravimetric analysis (TGA) and by differential scanning calorimetry (DSC). Thus, two types of microparticles were synthesized by varying the percentage of monomers introduced. The obtained morphology is directly related to the synthesis conditions. DSC analysis indicated that the mass content of crystalline xylitol was up to 63.8 %, which resulted in a high enthalpy of dilution of 127.7 J · g-1. Furthermore, the water release rate monitored by TGA analysis was found to be faster from the microparticles than from raw xylitol. Thus, the microparticles could be applied for thermal energy storage and moisture sensor enhancement.

  14. Products based on olive oil, betaine, and xylitol in the post-radiotherapy xerostomia.

    PubMed

    Martín, Margarita; Marín, Alicia; López, Mario; Liñán, Olga; Alvarenga, Felipe; Büchser, David; Cerezo, Laura

    2017-01-01

    The objective of this study was determining if the use of products based in olive oil, betaine and xylitol are efficacious to decrease the impact of the dry mouth in the quality of life of the patients with xerostomia due to radiotherapy treatment. Following therapeutic irradiation of the head and neck, patients with profound xerostomia have complaints associated with oral dryness, speech, and taste. There is no strong evidence that any topical therapy is effective for relieving the symptom of dry mouth. 40 patients who had been treated with radiotherapy for head and neck carcinoma and reported symptoms of dry mouth were included in the study. A xerostomia-related quality of life questionnaire, visual analogue scale questionnaire for subjective assessment of salivary dysfunction and salivary flow were reported before and 15 days after the use of topical products based on olive oil, betaina and xylitol. The four primary quality of life areas demonstrated significantly greater improvement after the use of topical products and all eight VAS items had favourable changes. The reduction of symptoms was statistically significant in 7 of the 8 items. After the use of the products, there were improvements in salivary flow in 45%. The use of products based on olive oil, betaine and xylitol, shaped like collutory, toothpaste, gel and spray significantly improved most symptoms and the quality of life limitations produced by dry mouth in patients treated with radiotherapy.

  15. Systematic strain construction and process development: Xylitol production by Saccharomyces cerevisiae expressing Candida tenuis xylose reductase in wild-type or mutant form.

    PubMed

    Pratter, S M; Eixelsberger, T; Nidetzky, B

    2015-12-01

    A novel Saccharomyces cerevisiae whole-cell biocatalyst for xylitol production based on Candida tenuis xylose reductase (CtXR) is presented. Six recombinant strains expressing wild-type CtXR or an NADH-specific mutant were constructed and evaluated regarding effects of expression mode, promoter strength, biocatalyst concentration and medium composition. Intracellular XR activities ranged from 0.09 U mgProt(-1) to 1.05 U mgProt(-1) but did not correlate with the strains' xylitol productivities, indicating that other factors limited xylose conversion in the high-activity strains. The CtXR mutant decreased the biocatalyst's performance, suggesting use of the NADPH-preferring wild-type enzyme when (semi-)aerobic conditions are applied. In a bioreactor process, the best-performing strain converted 40 g L(-1) xylose with an initial productivity of 1.16 g L(-1)h(-1) and a xylitol yield of 100%. The obtained results underline the potential of CtXR wild-type for xylose reduction and point out parameters to improve "green" xylitol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Antimicrobial evaluation of new metallic complexes with xylitol active against P. aeruginosa and C. albicans: MIC determination, post-agent effect and Zn-uptake.

    PubMed

    Santi, E; Facchin, G; Faccio, R; Barroso, R P; Costa-Filho, A J; Borthagaray, G; Torre, M H

    2016-02-01

    Xylitol (xylH5) is metabolized via the pentose pathway in humans, but it is unsuitable as an energy source for many microorganisms where it produces a xylitol-induced growth inhibition and disturbance in protein synthesis. For this reason, xylitol is used in the prophylaxis of several infections. In the search of better antimicrobial agents, new copper and zinc complexes with xylitol were synthesized and characterized by analytical and spectrosco pic methods: Na2[Cu3(xylH−4)2]·NaCl·4.5H2O (Cu-xyl) and [Zn4(xylH−4)2(H2O)2]·NaCl·3H2O (Zn-xyl). Both copper and zinc complexes presented higher MIC against Pseudomona aeruginosa than the free xylitol while two different behaviors were found against Candida albicans depending on the complex. The growth curves showed that Cu-xyl presented lower activity than the free ligand during all the studied period. In the case of Znxyl the growth curves showed that the inhibition of the microorganism growth in the first stage was equivalent to that of xylitol but in the second stage (after 18 h) Zn-xyl inhibited more. Besides, the PAE (post agent effect)obtained for Zn-xyl and xyl showed that the recovery from the damage of microbial cells had a delay of 14 and 13 h respectively. This behavior could be useful in prophylaxis treatments for infectious diseases where it is important that the antimicrobial effect lasts longer. With the aim to understand the microbiological activities the analysis of the particle size, lipophilicity and Zn uptake was performed.

  17. Simultaneous fermentation of glucose and xylose at elevated temperatures co-produces ethanol and xylitol through overexpression of a xylose-specific transporter in engineered Kluyveromyces marxianus.

    PubMed

    Zhang, Biao; Zhang, Jia; Wang, Dongmei; Han, Ruixiang; Ding, Rui; Gao, Xiaolian; Sun, Lianhong; Hong, Jiong

    2016-09-01

    Engineered Kluyveromyces marxianus strains were constructed through over-expression of various transporters for simultaneous co-fermentation of glucose and xylose. The glucose was converted into ethanol, whereas xylose was converted into xylitol which has higher value than ethanol. Over-expressing xylose-specific transporter ScGAL2-N376F mutant enabled yeast to co-ferment glucose and xylose and the co-fermentation ability was obviously improved through increasing ScGAL2-N376F expression. The production of glycerol was blocked and acetate production was reduced by disrupting gene KmGPD1. The obtained K. marxianus YZJ119 utilized 120g/L glucose and 60g/L xylose simultaneously and produced 50.10g/L ethanol and 55.88g/L xylitol at 42°C. The yield of xylitol from consumed xylose was over 98% (0.99g/g). Through simultaneous saccharification and co-fermentation at 42°C, YZJ119 produced a maximal concentration of 44.58g/L ethanol and 32.03g/L xylitol or 29.82g/L ethanol and 31.72g/L xylitol, respectively, from detoxified or non-detoxified diluted acid pretreated corncob. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Levorotatory carbohydrates and xylitol subdue Streptococcus mutans and Candida albicans adhesion and biofilm formation.

    PubMed

    Brambilla, Eugenio; Ionescu, Andrei C; Cazzaniga, Gloria; Ottobelli, Marco; Samaranayake, Lakshman P

    2016-05-01

    Dietary carbohydrates and polyols affect the microbial colonization of oral surfaces by modulating adhesion and biofilm formation. The aim of this study was to evaluate the influence of a select group of l-carbohydrates and polyols on either Streptococcus mutans or Candida albicans adhesion and biofilm formation in vitro. S. mutans or C. albicans suspensions were inoculated on polystyrene substrata in the presence of Tryptic soy broth containing 5% of the following compounds: d-glucose, d-mannose, l-glucose, l-mannose, d- and l-glucose (raceme), d- and l-mannose (raceme), l-glucose and l-mannose, sorbitol, mannitol, and xylitol. Microbial adhesion (2 h) and biofilm formation (24 h) were evaluated using MTT-test and Scanning Electron Microscopy (SEM). Xylitol and l-carbohydrates induced the lowest adhesion and biofilm formation in both the tested species, while sorbitol and mannitol did not promote C. albicans biofilm formation. Higher adhesion and biofilm formation was noted in both organisms in the presence of d-carbohydrates relative to their l-carbohydrate counterparts. These results elucidate, hitherto undescribed, interactions of the individually tested strains with l- and d-carbohydrates, and how they impact fungal and bacterial colonization. In translational terms, our data raise the possibility of using l-form of carbohydrates and xylitol for dietary control of oral plaque biofilms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of selected aldehydes found in the corncob hemicellulose hydrolysate on the growth and xylitol fermentation of Candida tropicalis.

    PubMed

    Wang, Le; Tang, Pingwah; Fan, Xiaoguang; Yuan, Qipeng

    2013-01-01

    The effects of four aldehydes (furfural, 5-hydroxymethylfurfural, vanillin and syringaldehyde), which were found in the corncob hemicellulose hydrolysate, on the growth and xylitol fermentation of Candida tropicalis were investigated. The results showed that vanillin was the most toxic aldehyde for the xylitol fermentation, followed by syringaldehyde, furfural and 5-hydroxymethylfurfural. Moreover, the binary combination tests revealed that furfural amplified the toxicity of other aldehydes and the toxicities of other binary combinations without furfural were simply additive. Based on the fermentation experiments, it was demonstrated that the inhibition of aldehydes could be alleviated by prolonging the fermentation incubation, increasing the initial cell concentration, enhancing the initial pH value and minimizing the furfural levels in the hydrolysate evaporation process. The strategies that we proposed to suppress the inhibitory effects of the aldehydes successfully avoided the complicated and costly detoxifications. Our findings could be potentially adopted for the industrial xylitol fermentation from hydrolysates. © 2013 American Institute of Chemical Engineers.

  20. Microbial Production of Xylitol from L-arabinose by Metabolically Engineered Escherichia coli

    USDA-ARS?s Scientific Manuscript database

    An Escherichia coli strain, ZUC99(pATX210), which can produce xylitol from L-arabinose at a high yield has been created by introducing a new bioconversion pathway into cells. This pathway consists of three enzymes: L-arabinose isomerase, which converts L-arabinose to L-ribulose; D-psicose 3-epimer...

  1. Production of xylitol and bio-detoxification of cocoa pod husk hemicellulose hydrolysate by Candida boidinii XM02G

    PubMed Central

    2018-01-01

    The use of cocoa pod husk hemicellulose hydrolysate (CPHHH) was evaluated for the production of xylitol by Candida boidinii XM02G yeast isolated from soil of cocoa-growing areas and decaying bark, as an alternative means of reusing this type of waste. Xylitol was obtained in concentrations of 11.34 g.L-1, corresponding to a yield (Yp/s) of 0.52 g.g-1 with a fermentation efficiency (ε) of 56.6%. The yeast was tolerant to inhibitor compounds present in CPHHH without detoxification in different concentration factors, and was able to tolerate phenolic compounds at approximately 6 g.L-1. The yeast was also able to metabolize more than 99% (p/v) of furfural and hydroxymethylfurfural present in the non-detoxified CPHHH without extension of the cell-growth lag phase, showing the potential of this microorganism for the production of xylitol. The fermentation of cocoa pod husk hydrolysates appears to provide an alternative use which may reduce the impact generated by incorrect disposal of this waste. PMID:29641547

  2. Mortality of the House Fly (Diptera: Muscidae) After Exposure to Combinations of Beauveria bassiana (Hypocreales: Clavicipitaceae) With the Polyol Sweeteners Erythritol and Xylitol.

    PubMed

    Burgess, Edwin R; Johnson, Dana M; Geden, Christopher J

    2018-06-01

    Documented resistance to traditional insecticides in the house fly, Musca domestica L. (Diptera: Muscidae), has expedited a need for alternative forms of control. One such method is the use of biological control organisms, such as the entomopathogenic fungus, Beauveria bassiana (Balsamo - Crivelli) Vuillemin (Hypocreales: Clavicipitaceae). Administering B. bassiana with a calorically rich phagostimulant such as sucrose may have the unintended effect of increasing fly vitality and thus reproduction before mortality sets in. Therefore, finding a phagostimulant with lower caloric value that can replace sucrose is valuable. Here B. bassiana was combined with the sweeteners erythritol and xylitol as potential low-calorie substitutes for sucrose. Female flies consumed as much xylitol alone as they did sucrose alone, but less erythritol than both. After 24 h of exposure, B. bassiana administered at 1 mg in erythritol and in sucrose were equally effective at reducing survival and better than xylitol. B. bassiana administered at 10 mg worked equally well at reducing survival in all three sweeteners. When exposed to 10 mg of B. bassiana in sweetener for 1 h, sucrose reduced survival more than in erythritol or xylitol, but mortality was still in excess of 97% after 8 d in all three sweeteners. Each sweetener mixed with B. bassiana worked as well in an environment with additional food sources and stimuli as they did in an environment lacking these additions. Erythritol and xylitol appear to be strong candidates to replace sucrose in baits formulated around B. bassiana.

  3. Effect of oxygenation and temperature on glucose-xylose fermentation in Kluyveromyces marxianus CBS712 strain

    PubMed Central

    2014-01-01

    Background The yeast Kluyveromyces marxianus features specific traits that render it attractive for industrial applications. These include production of ethanol which, together with thermotolerance and the ability to grow with a high specific growth rate on a wide range of substrates, could make it an alternative to Saccharomyces cerevisiae as an ethanol producer. However, its ability to co-ferment C5 and C6 sugars under oxygen-limited conditions is far from being fully characterized. Results In the present study, K. marxianus CBS712 strain was cultivated in defined medium with glucose and xylose as carbon source. Ethanol fermentation and sugar consumption of CBS712 were investigated under different oxygen supplies (1.75%, 11.00% and 20.95% of O2) and different temperatures (30°C and 41°C). By decreasing oxygen supply, independently from the temperature, both biomass production as well as sugar utilization rate were progressively reduced. In all the tested conditions xylose consumption followed glucose exhaustion. Therefore, xylose metabolism was mainly affected by oxygen depletion. Loss in cell viability cannot explain the decrease in sugar consumption rates, as demonstrated by single cell analyses, while cofactor imbalance is commonly considered as the main cause of impairment of the xylose reductase (KmXR) - xylitol dehydrogenase (KmXDH) pathway. Remarkably, when these enzyme activities were assayed in vitro, a significant decrease was observed together with oxygen depletion, not ascribed to reduced transcription of the corresponding genes. Conclusions In the present study both oxygen supply and temperature were shown to be key parameters affecting the fermentation capability of sugars in the K. marxianus CBS712 strain. In particular, a direct correlation was observed between the decreased efficiency to consume xylose with the reduced specific activity of the two main enzymes (KmXR and KmXDH) involved in its catabolism. These data suggest that, in addition to

  4. Effect of oxygenation and temperature on glucose-xylose fermentation in Kluyveromyces marxianus CBS712 strain.

    PubMed

    Signori, Lorenzo; Passolunghi, Simone; Ruohonen, Laura; Porro, Danilo; Branduardi, Paola

    2014-04-08

    The yeast Kluyveromyces marxianus features specific traits that render it attractive for industrial applications. These include production of ethanol which, together with thermotolerance and the ability to grow with a high specific growth rate on a wide range of substrates, could make it an alternative to Saccharomyces cerevisiae as an ethanol producer. However, its ability to co-ferment C5 and C6 sugars under oxygen-limited conditions is far from being fully characterized. In the present study, K. marxianus CBS712 strain was cultivated in defined medium with glucose and xylose as carbon source. Ethanol fermentation and sugar consumption of CBS712 were investigated under different oxygen supplies (1.75%, 11.00% and 20.95% of O2) and different temperatures (30°C and 41°C). By decreasing oxygen supply, independently from the temperature, both biomass production as well as sugar utilization rate were progressively reduced. In all the tested conditions xylose consumption followed glucose exhaustion. Therefore, xylose metabolism was mainly affected by oxygen depletion. Loss in cell viability cannot explain the decrease in sugar consumption rates, as demonstrated by single cell analyses, while cofactor imbalance is commonly considered as the main cause of impairment of the xylose reductase (KmXR) - xylitol dehydrogenase (KmXDH) pathway. Remarkably, when these enzyme activities were assayed in vitro, a significant decrease was observed together with oxygen depletion, not ascribed to reduced transcription of the corresponding genes. In the present study both oxygen supply and temperature were shown to be key parameters affecting the fermentation capability of sugars in the K. marxianus CBS712 strain. In particular, a direct correlation was observed between the decreased efficiency to consume xylose with the reduced specific activity of the two main enzymes (KmXR and KmXDH) involved in its catabolism. These data suggest that, in addition to the impairment of the

  5. Lignocellulosic sugar management for xylitol and ethanol fermentation with multiple cell recycling by Kluyveromyces marxianus IIPE453.

    PubMed

    Dasgupta, Diptarka; Ghosh, Debashish; Bandhu, Sheetal; Adhikari, Dilip K

    2017-07-01

    Optimum utilization of fermentable sugars from lignocellulosic biomass to deliver multiple products under biorefinery concept has been reported in this work. Alcohol fermentation has been carried out with multiple cell recycling of Kluyveromyces marxianus IIPE453. The yeast utilized xylose-rich fraction from acid and steam treated biomass for cell generation and xylitol production with an average yield of 0.315±0.01g/g while the entire glucose rich saccharified fraction had been fermented to ethanol with high productivity of 0.9±0.08g/L/h. A detailed insight into its genome illustrated the strain's complete set of genes associated with sugar transport and metabolism for high-temperature fermentation. A set flocculation proteins were identified that aided in high cell recovery in successive fermentation cycles to achieve alcohols with high productivity. We have brought biomass derived sugars, yeast cell biomass generation, and ethanol and xylitol fermentation in one platform and validated the overall material balance. 2kg sugarcane bagasse yielded 193.4g yeast cell, and with multiple times cell recycling generated 125.56g xylitol and 289.2g ethanol (366mL). Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Xylitol production from waste xylose mother liquor containing miscellaneous sugars and inhibitors: one-pot biotransformation by Candida tropicalis and recombinant Bacillus subtilis.

    PubMed

    Wang, Hengwei; Li, Lijuan; Zhang, Lebin; An, Jin; Cheng, Hairong; Deng, Zixin

    2016-05-16

    The process of industrial xylitol production is a massive source of organic pollutants, such as waste xylose mother liquor (WXML), a viscous reddish-brown liquid. Currently, WXML is difficult to reuse due to its miscellaneous low-cost sugars, high content of inhibitors and complex composition. WXML, as an organic pollutant of hemicellulosic hydrolysates, accumulates and has become an issue of industrial concern in China. Previous studies have focused only on the catalysis of xylose in the hydrolysates into xylitol using one strain, without considering the removal of other miscellaneous sugars, thus creating an obstacle to subsequent large-scale purification. In the present study, we aimed to develop a simple one-pot biotransformation to produce high-purity xylitol from WXML to improve its economic value. In the present study, we developed a procedure to produce xylitol from WXML, which combines detoxification, biotransformation and removal of by-product sugars (purification) in one bioreactor using two complementary strains, Candida tropicalis X828 and Bacillus subtilis Bs12. At the first stage of micro-aerobic biotransformation, the yeast cells were allowed to grow and metabolized glucose and the inhibitors furfural and hydroxymethyl furfural (HMF), and converted xylose into xylitol. At the second stage of aerobic biotransformation, B. subtilis Bs12 was activated and depleted the by-product sugars. The one-pot process was successfully scaled up from shake flasks to 5, 150 L and 30 m(3) bioreactors. Approximately 95 g/L of pure xylitol could be obtained from the medium containing 400 g/L of WXML at a yield of 0.75 g/g xylose consumed, and the by-product sugars glucose, L-arabinose and galactose were depleted simultaneously. Our results demonstrate that the one-pot procedure is a viable option for the industrial application of WXML to produce value-added chemicals. The integration of complementary strains in the biotransformation of hemicellulosic hydrolysates is

  7. The Influence of Sugar Cane Bagasse Type and Its Particle Size on Xylose Production and Xylose-to-Xylitol Bioconversion with the Yeast Debaryomyces hansenii.

    PubMed

    Aghcheh, Razieh Karimi; Bonakdarpour, Babak; Ashtiani, Farzin Zokaee

    2016-11-01

    In the present study, the effect of the type of sugar cane bagasse (non-depithed or depithed) and its particle size on the production of xylose and its subsequent fermentation to xylitol by Debaryomyces hansenii CBS767 was investigated using a full factorial experimental design. It was found that the particle size range and whether bagasse was depithed or not had a significant effect on the concentration and yield of xylose in the resulting hemicellulose hydrolysate. Depithed bagasse resulted in higher xylose concentrations compared to non-depithed bagasse. The corresponding detoxified hemicellulose hydrolysates were used as fermentation media for the production of xylitol. The hemicellulose hydrolysate prepared from depithed bagasse also yielded meaningfully higher xylitol fermentation rates compared to non-depithed bagasse. However, in the case of non-depithed bagasse, the hemicellulose hydrolysate prepared from larger particle size range resulted in higher xylitol fermentation rates, whereas the effect in the case of non-depithed bagasse was not pronounced. Therefore, depithing of bagasse is an advantageous pretreatment when it is to be employed in bioconversion processes.

  8. Prebiotic potential of L-sorbose and xylitol in promoting the growth and metabolic activity of specific butyrate-producing bacteria in human fecal culture.

    PubMed

    Sato, Tadashi; Kusuhara, Shiro; Yokoi, Wakae; Ito, Masahiko; Miyazaki, Kouji

    2017-01-01

    Dietary low-digestible carbohydrates (LDCs) affect gut microbial metabolism, including the production of short-chain fatty acids. The ability of various LDCs to promote butyrate production was evaluated in in vitro human fecal cultures. Fecal suspensions from five healthy males were anaerobically incubated with various LDCs. L-Sorbose and xylitol markedly promoted butyrate formation in cultures. Bacterial 16S rRNA gene-based denaturing gradient gel electrophoresis analyses of these fecal cultures revealed a marked increase in the abundance of bacteria closely related to the species Anaerostipes hadrus or A. caccae or both, during enhanced butyrate formation from L-sorbose or xylitol. By using an agar plate culture, two strains of A. hadrus that produced butyrate from each substrate were isolated from the feces of two donors. Furthermore, of 12 species of representative colonic butyrate producers, only A. hadrus and A. caccae demonstrated augmented butyrate production from L-sorbose or xylitol. These findings suggest that L-sorbose and xylitol cause prebiotic stimulation of the growth and metabolic activity of Anaerostipes spp. in the human colon. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Molybdenum cofactor deficiency causes translucent integument, male-biased lethality, and flaccid paralysis in the silkworm Bombyx mori.

    PubMed

    Fujii, Tsuguru; Yamamoto, Kimiko; Banno, Yutaka

    2016-06-01

    Uric acid accumulates in the epidermis of Bombyx mori larvae and renders the larval integument opaque and white. Yamamoto translucent (oya) is a novel spontaneous mutant with a translucent larval integument and unique phenotypic characteristics, such as male-biased lethality and flaccid larval paralysis. Xanthine dehydrogenase (XDH) that requires a molybdenum cofactor (MoCo) for its activity is a key enzyme for uric acid synthesis. It has been observed that injection of a bovine xanthine oxidase, which corresponds functionally to XDH and contains its own MoCo activity, changes the integuments of oya mutants from translucent to opaque and white. This finding suggests that XDH/MoCo activity might be defective in oya mutants. Our linkage analysis identified an association between the oya locus and chromosome 23. Because XDH is not linked to chromosome 23 in B. mori, MoCo appears to be defective in oya mutants. In eukaryotes, MoCo is synthesized by a conserved biosynthesis pathway governed by four loci (MOCS1, MOCS2, MOCS3, and GEPH). Through a candidate gene approach followed by sequence analysis, a 6-bp deletion was detected in an exon of the B. mori molybdenum cofactor synthesis-step 1 gene (BmMOCS1) in the oya strain. Moreover, recombination was not observed between the oya and BmMOCS1 loci. These results indicate that the BmMOCS1 locus is responsible for the oya locus. Finally, we discuss the potential cause of male-biased lethality and flaccid paralysis observed in the oya mutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Comparing the efficacy of xylitol-containing and conventional chewing gums in reducing salivary counts of Streptococcus mutans: An in vivo study

    PubMed Central

    Haghgoo, Rosa; Afshari, Elahe; Ghanaat, Tahere; Aghazadeh, Samaneh

    2015-01-01

    Objective: Dental caries is among the most common chronic diseases in humans. Streptococcus mutans is generally responsible for most cases of dental caries. The present study sought to compare the effects of xylitol-containing and conventional chewing gums on salivary levels of S. mutans. Materials and Methods: This study adopted a crossover design. Two type of chewing gums (one containing 70% xylitol and approved by the Iranian Dental Association, and another containing sucrose) were purchased. The participants were 32 individuals aged 18–35 years whose oral hygiene was categorized as moderate or poor based on a caries risk assessment table. Salivary levels of S. mutans were measured at baseline, after the first and second phases of chewing gums, and after the washout period. The measurements were performed on blood agar and mitis salivarius-bacitracin agar (MSBA). Pairwise comparisons were then used to analyze the collected data. Results: Salivary levels of S. mutans in both groups were significantly higher during the two stages of chewing gum than in the washout period or baseline. Moreover, comparisons between the two types of gums suggested that chewing xylitol-containing gums led to greater reductions in S. mutans counts. This effect was more apparent in subjects with poor oral hygiene than in those with moderate oral hygiene. Conclusions: Xylitol-containing chewing gums are more effective than conventional gums in reducing salivary levels of S. mutans in individuals with poor–moderate oral hygiene. PMID:26942114

  11. DB Dehydrogenase: an online integrated structural database on enzyme dehydrogenase.

    PubMed

    Nandy, Suman Kumar; Bhuyan, Rajabrata; Seal, Alpana

    2012-01-01

    Dehydrogenase enzymes are almost inevitable for metabolic processes. Shortage or malfunctioning of dehydrogenases often leads to several acute diseases like cancers, retinal diseases, diabetes mellitus, Alzheimer, hepatitis B & C etc. With advancement in modern-day research, huge amount of sequential, structural and functional data are generated everyday and widens the gap between structural attributes and its functional understanding. DB Dehydrogenase is an effort to relate the functionalities of dehydrogenase with its structures. It is a completely web-based structural database, covering almost all dehydrogenases [~150 enzyme classes, ~1200 entries from ~160 organisms] whose structures are known. It is created by extracting and integrating various online resources to provide the true and reliable data and implemented by MySQL relational database through user friendly web interfaces using CGI Perl. Flexible search options are there for data extraction and exploration. To summarize, sequence, structure, function of all dehydrogenases in one place along with the necessary option of cross-referencing; this database will be utile for researchers to carry out further work in this field. The database is available for free at http://www.bifku.in/DBD/

  12. Effect of three-year consumption of erythritol, xylitol and sorbitol candies on various plaque and salivary caries-related variables.

    PubMed

    Runnel, Riina; Mäkinen, Kauko K; Honkala, Sisko; Olak, Jana; Mäkinen, Pirkko-Liisa; Nõmmela, Rita; Vahlberg, Tero; Honkala, Eino; Saag, Mare

    2013-12-01

    The objective of the present paper is to report results from oral biologic studies carried out in connection with a caries study. Samples of whole-mouth saliva and dental plaque were collected from initially 7- to 8-year-old subjects who participated in a 3-year school-based programme investigating the effect of the consumption of polyol-containing candies on caries rates. The subjects were randomized in three cohorts, consumed erythritol, xylitol, or sorbitol candies. The daily polyol consumption from the candies was approximately 7.5 g. A significant reduction in dental plaque weight from baseline (p<0.05) occurred in the erythritol group during almost all intervention years while no changes were found in xylitol and sorbitol groups. Usage of polyol candies had no significant or consistent effect on the levels of plaque protein, glucose, glycerol, or calcium, determined yearly in connection with caries examinations. After three years, the plaque of erythritol-receiving subjects contained significantly (p<0.05) lower levels of acetic acid and propionic acid than that of subjects receiving xylitol or sorbitol. Lactic acid levels partly followed the same pattern. The consumption of erythritol was generally associated with significantly (p<0.05) lower counts of salivary and plaque mutans streptococci compared with the other groups. There was no change in salivary Lactobacillus levels. Three-year consumption of erythritol-containing candies by initially 7- to 8-year old children was associated with reduced plaque growth, lower levels of plaque acetic acid and propionic acid, and reduced oral counts of mutans streptococci compared with the consumption of xylitol or sorbitol candies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30

    Treesearch

    Rita C.L.B. Rodrigues; William R. Kenealy; Thomas W. Jeffries

    2011-01-01

    Corn stover that had been treated with vapor-phase diethyl oxalate released a mixture of mono-and oligosaccharides consisting mainly of xylose and glucose. Following overliming and neutralization, a D-xylulokinase mutant of Pichia stipitis, FPL-YS30 (xyl3 -Ä1), converted the stover hydrolysate into xylitol. This research examined the effects of phosphoric or gluconic...

  14. Enhanced anticaries efficacy of a 0.243% sodium fluoride/10% xylitol/silica dentifrice: 3-year clinical results.

    PubMed

    Sintes, J L; Escalante, C; Stewart, B; McCool, J J; Garcia, L; Volpe, A R; Triol, C

    1995-10-01

    To evaluate the efficacy of a sodium fluoride (NaF)/silica/xylitol dentifrice compared with that of a positive control NaF/silica dentifrice on caries increments in school children over a 3-year period in an area without an optimal level of fluoride in the drinking water (mean level <0.1 ppm). A 3-year, double-blind clinical caries study was conducted in 2,630 children initially aged 8-10 years at 17 schools in the San Jose, Costa Rica metropolitan area. Clinical dental examinations were performed at participating schools utilizing portable dental equipment. Caries evaluations employed conventional tactile/visual methodology consisting of artificial light, dental mirrors and single-edge #23 explorers. Children accepted into the study were stratified by age and sex into two balanced groups within each school, and randomly assigned to use either a positive control dentifrice containing 0.243% NaF/silica or a test dentifrice containing 0.234% NaF/silica/10% xylitol. Children were instructed to brush with the assigned dentifrice twice daily. Caries evaluations were conducted at baseline, 2 years, and 3 years. After 3 years, subjects using the 0.234% NaF/silica/10% xylitol dentifrice had statistically significantly reduced decayed/filled surfaces (DFS; -12.3% reduction; P < or = 0.001) and decayed/filled buccal and lingual surfaces (DFS-BL; -10.5% reduction; P < or = 0/01).

  15. Streptococcus mutans forms xylitol-resistant biofilm on excess adhesive flash in novel ex-vivo orthodontic bracket model.

    PubMed

    Ho, Cindy S F; Ming, Yue; Foong, Kelvin W C; Rosa, Vinicius; Thuyen, Truong; Seneviratne, Chaminda J

    2017-04-01

    During orthodontic bonding procedures, excess adhesive is invariably left on the tooth surface at the interface between the bracket and the enamel junction; it is called excess adhesive flash (EAF). We comparatively evaluated the biofilm formation of Streptococcus mutans on EAF produced by 2 adhesives and examined the therapeutic efficacy of xylitol on S mutans formed on EAF. First, we investigated the biofilm formation of S mutans on 3 orthodontic bracket types: stainless steel preadjusted edgewise, ceramic preadjusted edgewise, and stainless steel self-ligating. Subsequently, tooth-colored Transbond XT (3M Unitek, Monrovia, Calif) and green Grengloo (Ormco, Glendora, Calif) adhesives were used for bonding ceramic brackets to extracted teeth. S mutans biofilms on EAF produced by the adhesives were studied using the crystal violet assay and scanning electron microscopy. Surface roughness and surface energy of the EAF were examined. The therapeutic efficacies of different concentrations of xylitol were tested on S mutans biofilms. Significantly higher biofilms were formed on the ceramic preadjusted edgewise brackets (P = 0.003). Transbond XT had significantly higher S mutans biofilms compared with Grengloo surfaces (P = 0.007). There was no significant difference in surface roughness between Transbond XT and Grengloo surfaces (P >0.05). Surface energy of Transbond XT had a considerably smaller contact angle than did Grengloo, suggesting that Transbond XT is a more hydrophilic material. Xylitol at low concentrations had no significant effect on the reduction of S mutans biofilms on orthodontic adhesives (P = 0.016). Transbond XT orthodontic adhesive resulted in more S mutans biofilm compared with Grengloo adhesive on ceramic brackets. Surface energy seemed to play a more important role than surface roughness for the formation of S mutans biofilm on EAF. Xylitol does not appear to have a therapeutic effect on mature S mutans biofilm. Copyright © 2017 American

  16. Mutations Affecting Expression of the rosy Locus in Drosophila melanogaster

    PubMed Central

    Lee, Chong Sung; Curtis, Daniel; McCarron, Margaret; Love, Carol; Gray, Mark; Bender, Welcome; Chovnick, Arthur

    1987-01-01

    The rosy locus in Drosophila melanogaster codes for the enzyme xanthine dehydrogenase (XDH). Previous studies defined a "control element" near the 5' end of the gene, where variant sites affected the amount of rosy mRNA and protein produced. We have determined the DNA sequence of this region from both genomic and cDNA clones, and from the ry+10 underproducer strain. This variant strain had many sequence differences, so that the site of the regulatory change could not be fixed. A mutagenesis was also undertaken to isolate new regulatory mutations. We induced 376 new mutations with 1-ethyl-1-nitrosourea (ENU) and screened them to isolate those that reduced the amount of XDH protein produced, but did not change the properties of the enzyme. Genetic mapping was used to find mutations located near the 5' end of the gene. DNA from each of seven mutants was cloned and sequenced through the 5' region. Mutant base changes were identified in all seven; they appear to affect splicing and translation of the rosy mRNA. In a related study (T. P. Keith et al. 1987), the genomic and cDNA sequences are extended through the 3' end of the gene; the combined sequences define the processing pattern of the rosy transcript and predict the amino acid sequence of XDH. PMID:3036645

  17. Extent and quality of systematic review evidence related to minimum intervention in dentistry: essential oils, powered toothbrushes, triclosan, xylitol.

    PubMed

    Mickenautsch, Steffen; Yengopal, Veerasamy

    2011-08-01

    To investigate extent and quality of current systematic review evidence regarding: powered toothbrushes, triclosan toothpaste, essential oil mouthwashes, xylitol chewing gum. Five databases were searched for systematic reviews until 13 November 2010. relevant to topic, systematic review according to title and/or abstract, published in English. Article exclusion criteria were based on QUOROM recommendations for the reporting of systematic review methods. Systematic review quality was judged using the AMSTAR tool. All trials included by reviews were assessed for selection bias. 119 articles were found, of which 11 systematic reviews were included. Of these, six were excluded and five accepted: one for triclosan toothpaste; one for xylitol chewing gum; two for powered toothbrushes; one for essential oil mouthwashes. AMSTAR scores: triclosan toothpaste 7; powered toothbrushes 9 and 11; xylitol chewing gum 9; essential oil mouthwashes 8. In total, 75 (out of 76) reviewed trials were identified. In-depth assessment showed a high risk of selection bias for all trials. The extent of available systematic review evidence is low. Although the few identified systematic reviews could be rated as of medium and high quality, the validity of their conclusions needs to be treated with caution, owing to high risk of selection bias in the reviewed trials. High quality randomised control trials are needed in order to provide convincing evidence regarding true clinical efficacy. © 2011 FDI World Dental Federation.

  18. Bifunctional isocitrate-homoisocitrate dehydrogenase: a missing link in the evolution of beta-decarboxylating dehydrogenase.

    PubMed

    Miyazaki, Kentaro

    2005-05-27

    Beta-decarboxylating dehydrogenases comprise 3-isopropylmalate dehydrogenase, isocitrate dehydrogenase, and homoisocitrate dehydrogenase. They share a high degree of amino acid sequence identity and occupy equivalent positions in the amino acid biosynthetic pathways for leucine, glutamate, and lysine, respectively. Therefore, not only the enzymes but also the whole pathways should have evolved from a common ancestral pathway. In Pyrococcus horikoshii, only one pathway of the three has been identified in the genomic sequence, and PH1722 is the sole beta-decarboxylating dehydrogenase gene. The organism does not require leucine, glutamate, or lysine for growth; the single pathway might play multiple (i.e., ancestral) roles in amino acid biosynthesis. The PH1722 gene was cloned and expressed in Escherichia coli and the substrate specificity of the recombinant enzyme was investigated. It exhibited activities on isocitrate and homoisocitrate at near equal efficiency, but not on 3-isopropylmalate. PH1722 is thus a novel, bifunctional beta-decarboxylating dehydrogenase, which likely plays a dual role in glutamate and lysine biosynthesis in vivo.

  19. Evaluation of xylitol production using corncob hemicellulosic hydrolysate by combining tetrabutylammonium hydroxide extraction with dilute acid hydrolysis.

    PubMed

    Jia, Honghua; Shao, Tingting; Zhong, Chao; Li, Hengxiang; Jiang, Min; Zhou, Hua; Wei, Ping

    2016-10-20

    In this paper, we produced hemicellulosic hydrolysate from corncob by tetrabutylammonium hydroxide (TBAH) extraction and dilute acid hydrolysis combined, further evaluating the feasibility of the resultant corncob hemicellulosic hydrolysate used in xylitol production by Candida tropicalis. Optimized conditions for corncob hemicellulose extraction by TBAH was obtained via response surface methodology: time of 90min, temperature of 60°C, liquid/solid ratio of 12 (v/w), and TBAH concentration of 55%, resulting in a hemicellulose extraction of 80.07% under these conditions. The FT-IR spectrum of the extracted corncob hemicellulose is consistent with that of birchwood hemicellulose and exhibits specific absorbance of hemicelluloses at 1380, 1168, 1050, and 900cm(-1). In addition, we found that C. tropicalis can ferment the resulting corncob hemicellulosic hydrolysate with pH adjustment and activated charcoal treatment leading to a high xylitol yield and productivity of 0.77g/g and 2.45g/(Lh), respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effects of Oxygen Limitation on Xylose Fermentation, Intracellular Metabolites, and Key Enzymes of Neurospora crassa AS3.1602

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihua; Qu, Yinbo; Zhang, Xiao; Lin, Jianqiang

    The effects of oxygen limitation on xylose fermentation of Neurospora crassa AS3.1602 were studied using batch cultures. The maximum yield of ethanol was 0.34 g/g at oxygen transfer rate (OTR) of 8.4 mmol/L·h. The maximum yield of xylitol was 0.33 g/g at OTR of 5.1 mmol/L·h. Oxygen limitation greatly affected mycelia growth and xylitol and ethanol productions. The specific growth rate (μ) decreased 82% from 0.045 to 0.008 h-1 when OTR changed from 12.6 to 8.4 mmol/L·h. Intracellular metabolites of the pentose phosphate pathway, glycolysis, and tricarboxylic acid cycle were determined at various OTRs. Concentrations of most intracellular metabolites decreased with the increase in oxygen limitation. Intracellular enzyme activities of xylose reductase, xylitol dehydrogenase, and xylulokinase, the first three enzymes in xylose metabolic pathway, decreased with the increase in oxygen limitation, resulting in the decreased xylose uptake rate. Under all tested conditions, transaldolase and transketolase activities always maintained at low levels, indicating a great control on xylose metabolism. The enzyme of glucose-6-phosphate dehydrogenase played a major role in NADPH regeneration, and its activity decreased remarkably with the increase in oxygen limitation.

  1. Sorbitol dehydrogenase is a cytosolic protein required for sorbitol metabolism in Arabidopsis thaliana.

    PubMed

    Aguayo, María Francisca; Ampuero, Diego; Mandujano, Patricio; Parada, Roberto; Muñoz, Rodrigo; Gallart, Marta; Altabella, Teresa; Cabrera, Ricardo; Stange, Claudia; Handford, Michael

    2013-05-01

    Sorbitol is converted to fructose in Rosaceae species by SORBITOL DEHYDROGENASE (SDH, EC 1.1.1.14), especially in sink organs. SDH has also been found in non-Rosaceae species and here we show that the protein encoded by At5g51970 in Arabidopsis thaliana (L.) Heynh. possesses the molecular characteristics of an SDH. Using a green fluorescent protein-tagged version and anti-SDH antisera, we determined that SDH is cytosolically localized, consistent with bioinformatic predictions. We also show that SDH is widely expressed, and that SDH protein accumulates in both source and sink organs. In the presence of NAD+, recombinant SDH exhibited greatest oxidative activity with sorbitol, ribitol and xylitol as substrates; other sugar alcohols were oxidized to a lesser extent. Under standard growth conditions, three independent sdh- mutants developed as wild-type. Nevertheless, all three exhibited reduced dry weight and primary root length compared to wild-type when grown in the presence of sorbitol. Additionally, under short-day conditions, the mutants were more resistant to dehydration stress, as shown by a reduced loss of leaf water content when watering was withheld, and a greater survival rate on re-watering. This evidence suggests that limitations in the metabolism of sugar alcohols alter the growth of Arabidopsis and its response to drought. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Effects of sugar-free chewing gum sweetened with xylitol or maltitol on the development of gingivitis and plaque: a randomized clinical trial.

    PubMed

    Keukenmeester, R S; Slot, D E; Rosema, N A M; Van Loveren, C; Van der Weijden, G A

    2014-11-01

    The objective of this study was to test the effect of sugar-free chewing gum sweetened with xylitol or maltitol compared to the use of a gum base or no gum on gingivitis and plaque scores under both brushing and non-brushing circumstances. The design of the study was a four-group, double-blinded, randomized controlled study with a 3-week duration. In each group, the participants did not brush the teeth in the lower jaw designated to develop experimental gingivitis, while maintaining normal oral hygiene procedures in the upper jaw. After professional dental prophylaxis, the participants were allocated into one of four groups (xylitol, maltitol, gum base or no gum). Chewing gum was used five times a day for 10 min. 220 participants completed the study and provided evaluable data. The increase in bleeding on marginal probing (BOMP) and plaque scores (PS) in the non-brushed (lower) jaw with experimental gingivitis was significant in all groups (P < 0.001). As compared to the gum base, the increase in BOMP in the xylitol and maltitol group was significantly lower. In the brushed upper jaw, no significant changes for BOMP were observed from the baseline to the end point of the study, and there were no significant differences in BOMP and PS between the groups. In circumstances where regular brushing is performed, no effect of chewing gum was observed on bleeding and plaque scores. In the absence of brushing, chewing xylitol or maltitol gum provided a significant inhibitory effect on gingivitis scores compared to chewing gum base. The difference when compared to the group not using gum was not significant. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Individual and interaction effects of vanillin and syringaldehyde on the xylitol formation by Candida guilliermondii.

    PubMed

    Cortez, Daniela Vieira; Roberto, Inês Conceição

    2010-03-01

    The effect of lignin degradation products liberated during chemical hydrolysis of lignocellulosic materials on xylose-to-xylitol bioconversion by Candida guilliermondii FTI 20037 was studied. Two aromatic aldehydes (vanillin and syringaldehyde) were selected as model compounds. A two-level factorial design was employed to evaluate the effects of pH (5.5-7.0), cell concentration (1.0-3.0 g l(-1)), vanillin concentration (0-2.0 g l(-1)) and syringaldehyde concentration (0-2.0 g l(-1)) on this bioprocess. The results showed that in the presence of vanillin or syringaldehyde (up to 2.0 g l(-1)) the cell growth was inhibited to different degrees with a complete inhibition of the yeast growth when the mixture of both (at 2.0 g l(-1) each) was added to the fermentation medium. The xylitol yield was not significantly influenced by vanillin, but was strongly reduced by syringaldehyde, which showed a more pronounced inhibitor effect at pH 7.0. The yeast was also able to convert vanillin and syringaldehyde to the corresponding aromatic acids or alcohols and their formation was dependent of the experimental conditions employed. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  4. Aging of the Johari-Goldstein relaxation in the glass-forming liquids sorbitol and xylitol

    NASA Astrophysics Data System (ADS)

    Yardimci, Hasan; Leheny, Robert L.

    2006-06-01

    Employing frequency-dependent dielectric susceptibility we characterize the aging in two supercooled liquids, sorbitol and xylitol, below their calorimetric glass transition temperatures. In addition to the alpha relaxation that tracks the structural dynamics, the susceptibility of both liquids possesses a secondary Johari-Goldstein relaxation at higher frequencies. Following a quench through the glass transition, the susceptibility slowly approaches the equilibrium behavior. For both liquids, the magnitude of the Johari-Goldstein relaxation displays a dependence on the time since the quench, or aging time, that is quantitatively very similar to the age dependence of the alpha peak frequency. The Johari-Goldstein relaxation time remains constant during aging for sorbitol while it decreases slightly with age for xylitol. Hence, one cannot sensibly assign a fictive temperature to the Johari-Goldstein relaxation. This behavior contrasts with that of liquids lacking distinct Johari-Goldstein peaks for which the excess wing of the alpha peak tracks the main part of the peak during aging, enabling the assignment of a single fictive temperature to the entire spectrum. The aging behavior of the Johari-Goldstein relaxation time further calls into question the possibility that the relaxation time possesses stronger temperature dependence in equilibrium than is observed in the out-of-equilibrium state below the glass transition.

  5. The ACEII recombinant Trichoderma reesei QM9414 strains with enhanced xylanase production and its applications in production of xylitol from tree barks.

    PubMed

    Xiong, Lili; Kameshwar, Ayyappa Kumar Sista; Chen, Xi; Guo, Zhiyun; Mao, Canquan; Chen, Sanfeng; Qin, Wensheng

    2016-12-28

    ACEII transcription factor plays a significant role in regulating the expression of cellulase and hemicellulase encoding genes. Apart from ACEII, transcription factors such as XYR1, CRE1, HAP2/3/5 complex and ACEI function in a coordinated pattern for regulating the gene expression of cellulases and hemicellulases. Studies have demonstrated that ACEII gene deletion results in decreased total cellulase and xylanase activities with reduced transcript levels of lignocellulolytic enzymes. In this study, we have successfully transformed the ACEII transcription factor encoding gene in Trichoderma reesei to significantly improve its degrading abilities. Transformation experiments on parental strain T. reesei QM9414 has resulted in five genetically engineered strains T/Ace2-2, T/Ace2-5, T/Ace2-8, T/Ace5-4 and T/Ace10-1. Among which, T/Ace2-2 has exhibited significant increase in enzyme activity by twofolds, when compared to parental strain. The T/Ace2-2 was cultured on growth substrates containing 2% bark supplemented with (a) sugar free + MA medium (b) glucose + MA medium and (c) xylose + MA medium. The bark degradation efficiency of genetically modified T/Ace2-2 strain was assessed by analyzing the xylitol production yield using HPAEC. By 6th day, about 10.52 g/l of xylitol was produced through enzymatic conversion of bark (2% bark + MA + xylose) by the T/Ace2-2 strain and by 7th day the conversion rate was found to be 0.21 g/g. Obtained results confirmed that bark growth medium supplemented with D-xylose has profoundly increased the conversion rate of bark by T/Ace2-2 strain when compared to sugar free and glucose supplemented growth media. Results obtained from scanning electron microscopy has endorsed our current results. Bark samples inoculated with T/Ace2-2 strain has showed large number of degraded cells with clearly visible cavities and fractures, by exposing the microfibrillar interwoven complex. We propose a cost effective and ecofriendly method for

  6. Anti-MRSA activity of oxysporone and xylitol from the endophytic fungus Pestalotia sp. growing on the Sundarbans mangrove plant Heritiera fomes.

    PubMed

    Nurunnabi, Tauhidur Rahman; Nahar, Lutfun; Al-Majmaie, Shaymaa; Rahman, S M Mahbubur; Sohrab, Md Hossain; Billah, Md Morsaline; Ismail, Fyaz M D; Rahman, M Mukhlesur; Sharples, George P; Sarker, Satyajit D

    2018-02-01

    Heritiera fomes Buch.-Ham., a mangrove plant from the Sundarbans, has adapted to a unique habitat, muddy saline water, anaerobic soil, brackish tidal activities, and high microbial competition. Endophytic fungal association protects this plant from adverse environmental conditions. This plant is used in Bangladeshi folk medicine, but it has not been extensively studied phytochemically, and there is hardly any report on investigation on endophytic fungi growing on this plant. In this study, endophytic fungi were isolated from the surface sterilized cladodes and leaves of H. fomes. The antimicrobial activities were evaluated against two Gram-positive and two Gram-negative bacteria and the fungal strain, Candida albicans. Extracts of Pestalotia sp. showed activities against all test bacterial strains, except that the ethyl acetate extract was inactive against Escherichia coli. The structures of the purified compounds, oxysporone and xylitol, were elucidated by spectroscopic means. The anti-MRSA potential of the isolated compounds were determined against various MRSA strains, that is, ATCC 25923, SA-1199B, RN4220, XU212, EMRSA-15, and EMRSA-16, with minimum inhibitory concentration values ranging from 32 to 128 μg/ml. This paper, for the first time, reports on the anti-MRSA property of oxysporone and xylitol, isolation of the endophyte Pestalotia sp. from H. fomes, and isolation of xylitol from a Pestalotia sp. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that helps ...

  8. N-Guanidino Derivatives of 1,5-Dideoxy-1,5-imino-d-xylitol are Potent, Selective, and Stable Inhibitors of β-Glucocerebrosidase.

    PubMed

    Sevšek, Alen; Šrot, Luka; Rihter, Jakob; Čelan, Maša; van Ufford, Linda Quarles; Moret, Ed E; Martin, Nathaniel I; Pieters, Roland J

    2017-04-06

    A series of lipidated guanidino and urea derivatives of 1,5-dideoxy-1,5-imino-d-xylitol were prepared from d-xylose using a concise synthetic protocol. Inhibition assays with a panel of glycosidases revealed that the guanidino analogues display potent inhibition against human recombinant β-glucocerebrosidase with IC 50 values in the low nanomolar range. Related urea analogues of 1,5-dideoxy-1,5-imino-d-xylitol were also synthesized and evaluated in the same fashion and found to be selective for β-galactosidase from bovine liver. No inhibition of human recombinant β-glucocerebrosidase was observed for the urea analogues. Computational studies provided insight into the potent activity of analogues bearing the substituted guanidine moiety in the inhibition of lysosomal glucocerebrosidase (GBA). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci.

    PubMed

    Pavlova, Sylvia I; Jin, Ling; Gasparovich, Stephen R; Tao, Lin

    2013-07-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.

  10. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci

    PubMed Central

    Pavlova, Sylvia I.; Jin, Ling; Gasparovich, Stephen R.

    2013-01-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci. PMID:23637459

  11. [Carbohydrate and lipid metabolism following heart bypass operations. The effect of the intravenous hypocaloric administration of glucose versus glucose xylitol (1:1)].

    PubMed

    Gross, G; Schricker, T; Hilpert, W; Braun, G; von der Emde, J; Georgieff, M

    1992-10-30

    The effect of glucose-xylitol infusion on carbohydrate and lipid metabolism was investigated in 18 metabolically normal men (mean age 56.1 [35-65] years) with coronary heart disease after they had undergone a coronary artery bypass operation. During the first postoperative hours, group I (n = 6) received glucose only (2 mg/kg.min), group II (n = 6) glucose+xylitol (1 mg/kg.min each), and group II a glucose-containing electrolyte solution (0.83 mg/kg.min glucose). Blood glucose and insulin concentrations during the infusion period were significantly (P < 0.05) lower in groups II and III than I (glucose after 6 h: group I 21.5 [15.3-26.8] mmol/l; group II 14.2 [11.2-18.1] mmol/l; group III 12.6 [6.8-16.0] mmol/l). The highest lactate concentrations were reached in group I, 6 hours after the operation. Palmitine and stearine, as well as oleic and linoleic acid concentrations were significantly lower 12 hours postoperatively in group I than groups II and III (P < 0.05). These data indicate that energy-ineffective high glucose concentrations were avoided and endogenous lactate production reduced by the postoperative infusion of glucose+xylitol. In addition, it achieved a higher supply of free fatty acids as energy source to the myocardium without reaching toxic concentrations in the postischaemic myocardium.

  12. [Studies of local anaesthetics - part 197. Effect of xylitol on pharmaceutical availability of lidocaine and flow properties of hydrogels].

    PubMed

    Zuzana, Vitková; Petra, Herdová; Jozef, Cižmárik; Daniel, Grančai; Lukáš, Benč

    2012-06-01

    The paper examines the formulation of hydrogel on the base of a synthetic polymer containing a local anaesthetic and a mass-produced drug in the form of a solution with an antiphlogistic effect. It aimed to prepare a hydrogel of a suitable composition with suitable flow properties and drug release, the active ingredient being lidocaine hydrochloride. Besides the role of a synthetic polymer which ensures that the active ingredient remains at the affected site, an important role in the formulation is played by the presence of an artificial sweetener, which to a great extent as a taste correcting agent of the unpleasant taste of the active ingredient influences the compliance of many patients. The study examined the effect of concentration of the artificial sweetener xylitol on the liberation of the active ingredient from prepared hydrogels. The optimum concentration of the artificial sweetener was adjusted to a degree which does not affect the qualitative properties of the active ingredient. lidocaine hydrochloride, xylitol, hydrogel, liberation.

  13. Effects of xylitol chewing gum on salivary flow rate, pH, buffering capacity and presence of Streptococcus mutans in saliva.

    PubMed

    Ribelles Llop, M; Guinot Jimeno, F; Mayné Acién, R; Bellet Dalmau, L J

    2010-03-01

    The first studies on the use of chewing gum in dentistry were done in the 1970s. The Turku Sugar Studies, carried out between 1970 and 1973, showed the excellent anticaries properties of xylitol chewing gums. Since then, many dentists, particularly in Scandinavian countries, have studied the role of chewing xylitol-sweetened chewing gums as another preventive strategy in the control of dental caries. To compare variations in salivary flow rate, pH, buffering capacity, and levels of Streptococcus mutans in baseline conditions and after chewing paraffin pellets or xylitol chewing gum in children between the ages of 6 and 12 years who eat lunch in a school canteen. The study sample consisted of 90 children divided into 2 study groups, and a control group. The children ate lunch at the canteen of the Escultor Ortells state school in the town of Vila-real (Castellón, Spain). The baseline data recorded in the first phase of the study were compared with the data recorded in the second phase, after 15 minutes of chewing xylitol- sweetened chewing gums or paraffin pellets, depending on the study group. Salivary flow rate was measured by collecting the stimulated saliva in a graduated beaker. Levels of pH were measured using a Cyberscan pH 110 pH meter (Eutech Instruments). CRT buffer strips and the CRT bacteria test (Ivoclar-Vivadent) were used to measure buffering capacity and levels of S. mutans, respectively. The data obtained after sample collection were compared by means of a 1-way analysis of variance using the StatGraphics Plus statistical software package, version 5.0. Statistically significant differences were found (p<.05) when pH, buffering capacity and levels of S. mutans were compared between the 3 groups. Comparison of salivary flow rates revealed no statistically significant differences (p>.05), though salivary flow rates were higher in the groups where gum was chewed. The effect of chewing is essential to the stimulation of salivary flow and the resulting

  14. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase.

    PubMed Central

    Modig, Tobias; Lidén, Gunnar; Taherzadeh, Mohammad J

    2002-01-01

    The kinetics of furfural inhibition of the enzymes alcohol dehydrogenase (ADH; EC 1.1.1.1), aldehyde dehydrogenase (AlDH; EC 1.2.1.5) and the pyruvate dehydrogenase (PDH) complex were studied in vitro. At a concentration of less than 2 mM furfural was found to decrease the activity of both PDH and AlDH by more than 90%, whereas the ADH activity decreased by less than 20% at the same concentration. Furfural inhibition of ADH and AlDH activities could be described well by a competitive inhibition model, whereas the inhibition of PDH was best described as non-competitive. The estimated K(m) value of AlDH for furfural was found to be about 5 microM, which was lower than that for acetaldehyde (10 microM). For ADH, however, the estimated K(m) value for furfural (1.2 mM) was higher than that for acetaldehyde (0.4 mM). The inhibition of the three enzymes by 5-hydroxymethylfurfural (HMF) was also measured. The inhibition caused by HMF of ADH was very similar to that caused by furfural. However, HMF did not inhibit either AlDH or PDH as severely as furfural. The inhibition effects on the three enzymes could well explain previously reported in vivo effects caused by furfural and HMF on the overall metabolism of Saccharomyces cerevisiae, suggesting a critical role of these enzymes in the observed inhibition. PMID:11964178

  15. Single-cell Protein and Xylitol Production by a Novel Yeast Strain Candida intermedia FL023 from Lignocellulosic Hydrolysates and Xylose.

    PubMed

    Wu, Jiaqiang; Hu, Jinlong; Zhao, Shumiao; He, Mingxiong; Hu, Guoquan; Ge, Xiangyang; Peng, Nan

    2018-05-01

    Yeasts are good candidates to utilize the hydrolysates of lignocellulose, the most abundant bioresource, for bioproducts. This study aimed to evaluate the efficiencies of single-cell protein (SCP) and xylitol production by a novel yeast strain, Candida intermedia FL023, from lignocellulosic hydrolysates and xylose. This strain efficiently assimilated hexose, pentose, and cellubiose for cell mass production with the crude protein content of 484.2 g kg -1 dry cell mass. SCP was produced by strain FL023 using corncob hydrolysate and urea as the carbon and nitrogen sources with the dry cell mass productivity 0.86 g L -1  h -1 and the yield of 0.40 g g -1 sugar. SCP was also produced using NaOH-pretreated Miscanthus sinensis straw and corn steep liquor as the carbon and nitrogen sources through simultaneous saccharification and fermentation with the dry cell productivity of 0.23 g L -1  h -1 and yield of 0.17 g g -1 straw. C. intermedia FL023 was tolerant to 0.5 g L -1 furfural, acetic acid, and syringaldehyde in xylitol fermentation and produced 45.7 g L -1 xylitol from xylose with the productivity of 0.38 g L -1  h -1 and the yield of 0.57 g g -1 xylose. This study provides feasible methods for feed and food additive production from the abundant lignocellulosic bioresources.

  16. Guinea-pig liver testosterone 17 beta-dehydrogenase (NADP+) and aldehyde reductase exhibit benzene dihydrodiol dehydrogenase activity.

    PubMed Central

    Hara, A; Hayashibara, M; Nakayama, T; Hasebe, K; Usui, S; Sawada, H

    1985-01-01

    We have kinetically and immunologically demonstrated that testosterone 17 beta-dehydrogenase (NADP+) isoenzymes (EC 1.1.1.64) and aldehyde reductase (EC 1.1.1.2) from guinea-pig liver catalyse the oxidation of benzene dihydrodiol (trans-1,2-dihydroxycyclohexa-3,5-diene) to catechol. One isoenzyme of testosterone 17 beta-dehydrogenase, which has specificity for 5 beta-androstanes, oxidized benzene dihydrodiol at a 3-fold higher rate than 5 beta-dihydrotestosterone, and showed a more than 4-fold higher affinity for benzene dihydrodiol and Vmax. value than did another isoenzyme, which exhibits specificity for 5 alpha-androstanes, and aldehyde reductase. Immunoprecipitation of guinea-pig liver cytosol with antisera against the testosterone 17 beta-dehydrogenase isoenzymes and aldehyde reductase indicated that most of the benzene dihydrodiol dehydrogenase activity in the tissue is due to testosterone 17 beta-dehydrogenase. PMID:2983661

  17. Cellulolytic enzyme expression and simultaneous conversion of lignocellulosic sugars into ethanol and xylitol by a new Candida tropicalis strain.

    PubMed

    Mattam, Anu Jose; Kuila, Arindam; Suralikerimath, Niranjan; Choudary, Nettem; Rao, Peddy V C; Velankar, Harshad Ravindra

    2016-01-01

    Lignocellulosic ethanol production involves major steps such as thermochemical pretreatment of biomass, enzymatic hydrolysis of pre-treated biomass and the fermentation of released sugars into ethanol. At least two different organisms are conventionally utilized for producing cellulolytic enzymes and for ethanol production through fermentation, whereas in the present study a single yeast isolate with the capacity to simultaneously produce cellulases and xylanases and ferment the released sugars into ethanol and xylitol has been described. A yeast strain isolated from soil samples and identified as Candida tropicalis MTCC 25057 expressed cellulases and xylanases over a wide range of temperatures (32 and 42 °C) and in the presence of different cellulosic substrates [carboxymethylcellulose and wheat straw (WS)]. The studies indicated that the cultivation of yeast at 42 °C in pre-treated hydrolysate containing 0.5 % WS resulted in proportional expression of cellulases (exoglucanases and endoglucanases) at concentrations of 114.1 and 97.8 U g(-1) ds, respectively. A high xylanase activity (689.3 U g(-1) ds) was also exhibited by the yeast under similar growth conditions. Maximum expression of cellulolytic enzymes by the yeast occurred within 24 h of incubation. Of the sugars released from biomass after pretreatment, 49 g L(-1) xylose was aerobically converted into 15.8 g L(-1) of xylitol. In addition, 25.4 g L(-1) glucose released after the enzymatic hydrolysis of biomass was fermented by the same yeast to obtain an ethanol titer of 7.3 g L(-1). During the present study, a new strain of C. tropicalis was isolated and found to have potential for consolidated bioprocessing (CBP) applications. The strain could grow in a wide range of process conditions (temperature, pH) and in the presence of lignocellulosic inhibitors such as furfural, HMF and acetic acid. The new yeast produced cellulolytic enzymes over a wide temperature range and in the presence of

  18. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2014-01-07

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  19. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37.

    PubMed

    Li, Yun-Cheng; Mitsumasu, Kanako; Gou, Zi-Xi; Gou, Min; Tang, Yue-Qin; Li, Guo-Ying; Wu, Xiao-Lei; Akamatsu, Takashi; Taguchi, Hisataka; Kida, Kenji

    2016-02-01

    Industrial yeast strains with good xylose fermentation ability and inhibitor tolerance are important for economical lignocellulosic bioethanol production. The flocculating industrial Saccharomyces cerevisiae strain NAPX37, harboring the xylose reductase-xylitol dehydrogenase (XR-XDH)-based xylose metabolic pathway, displayed efficient xylose fermentation during batch and continuous fermentation. During batch fermentation, the xylose consumption rates at the first 36 h were similar (1.37 g/L/h) when the initial xylose concentrations were 50 and 75 g/L, indicating that xylose fermentation was not inhibited even when the xylose concentration was as high as 75 g/L. The presence of glucose, at concentrations of up to 25 g/L, did not affect xylose consumption rate at the first 36 h. Strain NAPX37 showed stable xylose fermentation capacity during continuous ethanol fermentation using xylose as the sole sugar, for almost 1 year. Fermentation remained stable at a dilution rate of 0.05/h, even though the xylose concentration in the feed was as high as 100 g/L. Aeration rate, xylose concentration, and MgSO4 concentration were found to affect xylose consumption and ethanol yield. When the xylose concentration in the feed was 75 g/L, a high xylose consumption rate of 6.62 g/L/h and an ethanol yield of 0.394 were achieved under an aeration rate of 0.1 vvm, dilution rate of 0.1/h, and 5 mM MgSO4. In addition, strain NAPX37 exhibited good tolerance to inhibitors such as weak acids, furans, and phenolics during xylose fermentation. These findings indicate that strain NAPX37 is a promising candidate for application in the industrial production of lignocellulosic bioethanol.

  20. Cross-reactions between engineered xylose and galactose pathways in recombinant Saccharomyces cerevisiae.

    PubMed

    Garcia Sanchez, Rosa; Hahn-Hägerdal, Bärbel; Gorwa-Grauslund, Marie F

    2010-09-01

    Overexpression of the PGM2 gene encoding phosphoglucomutase (Pgm2p) has been shown to improve galactose utilization both under aerobic and under anaerobic conditions. Similarly, xylose utilization has been improved by overexpression of genes encoding xylulokinase (XK), enzymes from the non-oxidative pentose phosphate pathway (non-ox PPP) and deletion of the endogenous aldose reductase GRE3 gene in engineered Saccharomyces cerevisiae strains carrying either fungal or bacterial xylose pathways. In the present study, we investigated how the combination of these traits affect xylose and galactose utilization in the presence or absence of glucose in S. cerevisiae strains engineered with the xylose reductase (XR)-xylitol dehydrogenase (XDH) pathway. In the absence of PGM2 overexpression, the combined overexpression of XK, the non-ox PPP and deletion of the GRE3 gene significantly delayed aerobic growth on galactose, whereas no difference was observed between the control strain and the xylose-engineered strain when the PGM2 gene was overexpressed. Under anaerobic conditions, the overexpression of the PGM2 gene increased the ethanol yield and the xylose consumption rate in medium containing xylose as the only carbon source. The possibility of Pgm2p acting as a xylose isomerase (XI) could be excluded by measuring the XI activity in both strains. The additional copy of the PGM2 gene also resulted in a shorter fermentation time during the co-consumption of galactose and xylose. However, the effect was lost upon addition of glucose to the growth medium. PGM2 overexpression was shown to benefit xylose and galactose fermentation, alone and in combination. In contrast, galactose fermentation was impaired in the engineered xylose-utilizing strain harbouring extra copies of the non-ox PPP genes and a deletion of the GRE3 gene, unless PGM2 was overexpressed. These cross-reactions are of particular relevance for the fermentation of mixed sugars from lignocellulosic feedstock.

  1. Reconstitution of the Escherichia coli pyruvate dehydrogenase complex.

    PubMed Central

    Reed, L J; Pettit, F H; Eley, M H; Hamilton, L; Collins, J H; Oliver, R M

    1975-01-01

    The binding of pyruvate dehydrogenase and dihydrolipoyl dehydrogenase (flavoprotein) to dihydrolipoyl transacetylase, the core enzyme of the E. coli pyruvate dehydrogenase complex [EC 1.2.4.1:pyruvate:lipoate oxidoreductase (decaryboxylating and acceptor-acetylating)], has been studied using sedimentation equilibrium analysis and radioactive enzymes in conjunction with gel filtration chromatography. The results show that the transacetylase, which consists of 24 apparently identical polypeptide chains organized into a cube-like structure, has the potential to bind 24 pyruvate dehydrogenase dimers in the absence of flavoprotein and 24 flavoprotein dimers in the absence of pyruvate dehydrogenase. The results of reconstitution experiments, utilizing binding and activity measurements, indicate that the transacetylase can accommodate a total of only about 12 pyruvate dehydrogenase dimers and six flavoprotein dimers and that this stoichiometry, which is the same as that of the native pyruvate dehydrogenase complex, produces maximum activity. It appears that steric hindrance between the relatively bulky pyruvate dehydrogenase and flavoprotein molecules prevents the transacetylase from binding 24 molecules of each ligand. A structural model for the native and reconstituted pyruvate dehydrogenase complexes is proposed in which the 12 pyruvate dehydrogenase dimers are distributed symmetrically on the 12 edges of the transacetylase cube and the six flavoprotein dimers are distributed in the six faces of the cube. Images PMID:1103138

  2. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma.

    PubMed

    Kipp, Benjamin R; Voss, Jesse S; Kerr, Sarah E; Barr Fritcher, Emily G; Graham, Rondell P; Zhang, Lizhi; Highsmith, W Edward; Zhang, Jun; Roberts, Lewis R; Gores, Gregory J; Halling, Kevin C

    2012-10-01

    Somatic mutations in isocitrate dehydrogenase 1 and 2 genes are common in gliomas and help stratify patients with brain cancer into histologic and molecular subtypes. However, these mutations are considered rare in other solid tumors. The aims of this study were to determine the frequency of isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma and to assess histopathologic differences between specimens with and without an isocitrate dehydrogenase mutation. We sequenced 94 formalin-fixed, paraffin-embedded cholangiocarcinoma (67 intrahepatic and 27 extrahepatic) assessing for isocitrate dehydrogenase 1 (codon 132) and isocitrate dehydrogenase 2 (codons 140 and 172) mutations. Multiple histopathologic characteristics were also evaluated and compared with isocitrate dehydrogenase 1/2 mutation status. Of the 94 evaluated specimens, 21 (22%) had a mutation including 14 isocitrate dehydrogenase 1 and 7 isocitrate dehydrogenase 2 mutations. Isocitrate dehydrogenase mutations were more frequently observed in intrahepatic cholangiocarcinoma than in extrahepatic cholangiocarcinoma (28% versus 7%, respectively; P = .030). The 14 isocitrate dehydrogenase 1 mutations were R132C (n = 9), R132S (n = 2), R132G (n = 2), and R132L (n = 1). The 7 isocitrate dehydrogenase 2 mutations were R172K (n = 5), R172M (n = 1), and R172G (n = 1). Isocitrate dehydrogenase mutations were more frequently observed in tumors with clear cell change (P < .001) and poorly differentiated histology (P = .012). The results of this study show for the first time that isocitrate dehydrogenase 1 and 2 genes are mutated in cholangiocarcinoma. The results of this study are encouraging because it identifies a new potential target for genotype-directed therapeutic trials and may represent a potential biomarker for earlier detection of cholangiocarcinoma in a subset of cases. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2013-05-14

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  4. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2017-09-12

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  5. Genetically modified yeast species and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2011-05-17

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications', include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  6. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2016-08-09

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  7. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbitol dehydrogenase test system. 862.1670... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in serum...

  8. A Novel Aqueous Two Phase System Composed of Surfactant and Xylitol for the Purification of Lipase from Pumpkin (Cucurbita moschata) Seeds and Recycling of Phase Components.

    PubMed

    Amid, Mehrnoush; Manap, Mohd Yazid; Hussin, Muhaini; Mustafa, Shuhaimi

    2015-06-17

    Lipase is one of the more important enzymes used in various industries such as the food, detergent, pharmaceutical, textile, and pulp and paper sectors. A novel aqueous two-phase system composed of surfactant and xylitol was employed for the first time to purify lipase from Cucurbita moschata. The influence of different parameters such as type and concentration of surfactants, and the composition of the surfactant/xylitol mixtures on the partitioning behavior and recovery of lipase was investigated. Moreover, the effect of system pH and crude load on the degree of purification and yield of the purified lipase were studied. The results indicated that the lipase was partitioned into the top surfactant rich phase while the impurities partitioned into the bottom xylitol-rich phase using an aqueous two phase system composed of 24% (w/w) Triton X-100 and 20% (w/w) xylitol, at 56.2% of tie line length (TLL), (TTL is one of the important parameters in this study and it is determined from a bimodal curve in which the tie-line connects two nodes on the bimodal, that represent concentration of phase components in the top and bottom phases) and a crude load of 25% (w/w) at pH 8.0. Recovery and recycling of components was also measured in each successive step process. The enzyme was successfully recovered by the proposed method with a high purification factor of 16.4 and yield of 97.4% while over 97% of the phase components were also recovered and recycled. This study demonstrated that the proposed novel aqueous two phase system method is more efficient and economical than the traditional aqueous two phase system method for the purification and recovery of the valuable enzyme lipase.

  9. Radiolysis of carbohydrates as studied by ESR and spin-trapping—II. Glycerol- d8 xylitol, dulcitol, d-sorbitol and d-mannitol

    NASA Astrophysics Data System (ADS)

    Kuwabara, M.; Zhang, Z.-Y.; Inanami, O.; Yoshii, G.

    Studies concerning the radicals produced in glycerol by reactions with OH radicals have been carried out by investigating deuterated glycerol (glycerol-d 8) by spin-trapping with 2-methyl-2-nitrosopropane. Free radicals produced in linear carbohydrates such as xylitol, dulcitol, D-sorbitol and D-mannitol by reactions with OH radicals as well as by direct γ-radiolysis have been also investigated by spin-trapping. The ESR spectra of the spin-trapped radicals were analysed on the basis of the results from ESR and spin-trapping experiments on glycerol and deuterated glycerol, and the formation of three radical species, CHO-CH-, CH 2-CO- and HO-CH-, due to both OH reactions and direct γ-radiolysis was confirmed for all compounds. The presence of a radical, -CO-CH-, was detected for xylitol, D-sorbitol and D-mannitol. General reactions processes induced by OH reactions or γ-radiolysis in the solid state are discussed.

  10. Enzymatic characterization of a novel bovine liver dihydrodiol dehydrogenase--reaction mechanism and bile acid dehydrogenase activity.

    PubMed

    Nanjo, H; Adachi, H; Morihana, S; Mizoguchi, T; Nishihara, T; Terada, T

    1995-05-11

    Bovine liver cytosolic dihydrodiol dehydrogenase (DD3) has been characterized by its unique dihydrodiol dehydrogenase activity for trans-benzenedihydrodiol (trans-1,2-dihydrobenzene-1,2-diol) with the highest affinity and the greatest velocity among three multiple forms of dihydrodiol dehydrogenases (DD1-DD3). It is the first time that DD3 has shown a significant dehydrogenase activity for (S)-(+)-1-indanol with low Km value (0.33 +/- 0.022 mM) and high K(cat) value (25 +/- 0.79 min-1). The investigation of the product inhibition of (S)-(+)-1-indanol with NADP+ versus 1-indanone and NADPH clearly showed that the enzymatic reaction of DD3 may follow a typical ordered Bi Bi mechanism similar to many aldo/keto reductases. Additionally, DD3 was shown to catalyze the dehydrogenation of bile acids (lithocholic acid, taurolithocholic acid and taurochenodeoxycholic acid) having no 12-hydroxy groups with low Km values (17 +/- 0.65, 33 +/- 1.9 and 890 +/- 73 microM, respectively). In contrast, DD1, 3 alpha-hydroxysteroid dehydrogenase, shows a broad substrate specificity for many bile acids with higher affinity than those of DD3. Competitive inhibition of DD3 with androsterone against dehydrogenase activity for (S)-(+)-1-indanol, trans-benzenedihydrodiol or lithocholic acid suggests that these three substrates bind to the same substrate binding site of DD3, different from the case of human liver bile acid binder/dihydrodiol dehydrogenase (Takikawa, H., Stolz, A., Sugiyama, Y., Yoshida, H., Yamamoto, M. and Kaplowitz, N. (1990) J. Biol. Chem. 265, 2132-2136). Considering the reaction mechanism, DD3 may also play an important role in bile acids metabolism as well as the detoxication of aromatic hydrocarbons.

  11. The effect of 1% chlorhexidine varnish and 40% xylitol solution on Streptococcus mutans and plaque accumulation in children.

    PubMed

    Simões Moraes, Renata; Modesto, Adriana; Regina Netto Dos Santos, Kátia; Drake, David

    2011-01-01

    The purpose of this study was to determine the effect of the association of 1% chlorhexidine varnish (CHX) and 40% xylitol solution (XYL) on Streptococcus mutans (SM) counts and plaque indices in 2- to 5-year-olds. Sixty-eight children were selected with medium levels (1 x 10³) to very high levels (>1 x 10⁵) of SM in the saliva. Subjects were divided into 4 groups of 17 children each: (1) CHX; (2) CHX+XYL; (3) XYL; and(4) 0.05% sodium fluoride (F). An assessment of SM levels and plaque indices was done on all children at baseline, 15 days, and at 1, 3, and 6 months. SM levels were determined by the spatula method. Although the reduction in SM counts in all groups was statistically significant, differences among groups were not observed, and the CHX and F groups seemed to show the greatest effect. Plaque reduction was observed in all groups, whereas statistically significant decreases among groups were not observed. One percent chlorhexidine varnish associated with 40% xylitol solution tested in the present study does not provide significant suppression of Streptococcus mutans counts and reduction of plaque accumulation at any follow-up time points.

  12. Will Parents Participate in and Comply with Programs and Regimens Using Xylitol for Preventing Acute Otitis Media in Their Children?

    ERIC Educational Resources Information Center

    Danhauer, Jeffrey L.; Johnson, Carole E.; Baker, Jason A.; Ryu, Jung A.; Smith, Rachel A.; Umeda, Claire J.

    2015-01-01

    Purpose: Antiadhesive properties in xylitol, a natural sugar alcohol, can help prevent acute otitis media (AOM) in children by inhibiting harmful bacteria from colonizing and adhering to oral and nasopharyngeal areas and traveling to the Eustachian tube and middle ear. This study investigated parents' willingness to use and comply with a regimen…

  13. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response

    Treesearch

    Yong-Su Jin; Jose M. Laplaza; Thomas W. Jeffries

    2004-01-01

    Native strains of Saccharomyces cerevisiae do not assimilate xylose. S. cerevisiae engineered for D-xylose utilization through the heterologous expression of genes for aldose reductase ( XYL1), xylitol dehydrogenase (XYL2), and D-xylulokinase ( XYL3 or XKS1) produce only limited amounts of ethanol in xylose medium. In recombinant S. cerevisiae expressing XYL1, XYL2,...

  14. Fermentation of oat and soybean hull hydrolysates into ethanol and xylitol by recombinant industrial strains of Saccharomyces cerevisiae under diverse oxygen environments

    USDA-ARS?s Scientific Manuscript database

    In this study, we evaluated the capacity of recombinant industrial Saccharomyces cerevisiae YRH 396 and YRH 400 strains to ferment sugars from oat hull and soybean hull hydrolysates into ethanol and xylitol. The strains were genetically modified by chromosomal integration of Pichia stipitis XYLI/XYL...

  15. Gastrointestinal Disturbances Associated with the Consumption of Sugar Alcohols with Special Consideration of Xylitol: Scientific Review and Instructions for Dentists and Other Health-Care Professionals

    PubMed Central

    2016-01-01

    Sugar alcohols (polyols) are used in food manufacturing and in medical tests and examinations. d-Glucitol (sorbitol) and d-mannitol were previously the most common alditols used for these purposes. After the 1960s, xylitol became a common ingredient in noncariogenic confectioneries, oral hygiene products, and diabetic food. Erythritol, a polyol of the tetritol type, can be regarded as the sweetener of the “next generation.” The disaccharide polyols maltitol, lactitol, and isomalt have also been used in food manufacturing and in medical tests. Consumption of pentitol- and hexitol-type polyols and disaccharide polyols may cause gastrointestinal disturbances at least in unaccustomed subjects. The occurrence of disturbances depends on consumer properties and on the molecular size and configuration of the polyol molecule. Adaptation may take place as a result of enzyme induction in the intestinal flora. Some of the literature on xylitol has been difficult to access by health-care professionals and will be reviewed here. Research and clinical field experience have found no pathology in polyol-associated osmotic diarrhea—the intestinal mucosa having normal basic structure, except in extreme instances. Xylitol is better tolerated than hexitols or the disaccharide polyols. Erythritol, owing to its smaller molecular weight and configuration that differ from other alditols, normally avoids the gastrointestinal reactions encountered with other polyols. This review will also touch upon the FODMAPs diet concept. PMID:27840639

  16. Role of polyols (erythritol, xylitol and sorbitol) on the structural stabilization of collagen

    NASA Astrophysics Data System (ADS)

    Usha, R.; Raman, S. Sundar; Subramanian, V.; Ramasami, T.

    2006-10-01

    The effect of erythritol, xylitol and sorbitol on monomeric collagen solution was evaluated with melting temperature, fluorescence studies, conformational stability and binding energy. The emission intensity and the melting temperature increase as the chain length of polyols increases. Circular dichroism (CD) results indicate the possibility of aggregation of collagen in the presence of polyols. The interaction between collagen and polyols were calculated using binding energy, RMS deviation with collagen like models. Molecular mechanics calculations suggest that polyols bind well with collagen models, that have serine in the X position. The stability of collagen decreases as the number of carbon atoms present in the polyols increases.

  17. Demonstration of 3 alpha(17 beta)-hydroxysteroid dehydrogenase distinct from 3 alpha-hydroxysteroid dehydrogenase in hamster liver.

    PubMed Central

    Ohmura, M; Hara, A; Nakagawa, M; Sawada, H

    1990-01-01

    NAD(+)-linked and NADP(+)-linked 3 alpha-hydroxysteroid dehydrogenases were purified to homogeneity from hamster liver cytosol. The two monomeric enzymes, although having similar molecular masses of 38,000, differed from each other in pI values, activation energy and heat stability. The two proteins also gave different fragmentation patterns by gel electrophoresis after digestion with protease. The NADP(+)-linked enzyme catalysed the oxidoreduction of various 3 alpha-hydroxysteroids, whereas the NAD(+)-linked enzyme oxidized the 3 alpha-hydroxy group of pregnanes and some bile acids, and the 17 beta-hydroxy group of testosterone and androstanes. The thermal stabilities of the 3 alpha- and 17 beta-hydroxysteroid dehydrogenase activities of the NAD(+)-linked enzyme were identical, and the two enzyme activities were inhibited by mixing 17 beta- and 3 alpha-hydroxysteroid substrates, respectively. Medroxyprogesterone acetate, hexoestrol and 3 beta-hydroxysteroids competitively inhibited 3 alpha- and 17 beta-hydroxysteroid dehydrogenase activities of the enzyme. These results show that hamster liver contains a 3 alpha(17 beta)-hydroxysteroid dehydrogenase structurally and functionally distinct from 3 alpha-hydroxysteroid dehydrogenase. Images Fig. 1. Fig. 2. PMID:2317205

  18. Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity.

    PubMed

    Hecht, K; Wrba, A; Jaenicke, R

    1989-07-15

    Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.

  19. Yeast surface display of dehydrogenases in microbial fuel-cells.

    PubMed

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Genetics Home Reference: lactate dehydrogenase deficiency

    MedlinePlus

    ... dehydrogenase-B pieces (subunits) of the lactate dehydrogenase enzyme. This enzyme is found throughout the body and is important ... cells. There are five different forms of this enzyme, each made up of four protein subunits. Various ...

  1. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Systems § 862.1440 Lactate dehydrogenase test system. (a) Identification. A lactate dehydrogenase test system is a device intended to measure the activity of the enzyme lactate dehydrogenase in serum. Lactate... hepatitis, cirrhosis, and metastatic carcinoma of the liver, cardiac diseases such as myocardial infarction...

  2. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Systems § 862.1420 Isocitric dehydrogenase test system. (a) Identification. An isocitric dehydrogenase test system is a device intended to measure the activity of the enzyme isocitric dehydrogenase in serum... disease such as viral hepatitis, cirrhosis, or acute inflammation of the biliary tract; pulmonary disease...

  3. Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose

    Treesearch

    Haiying Ni; Jose M. Laplaza; Thomas W. Jeffries

    2007-01-01

    Saccharomyces cerevisiae L2612 transformed with genes for xylose reductase and xylitol dehydrogenase (XYL1 and XYL2) grows well on glucose but very poorly on D-xylose. When a gene for D-xylulokinase (XYL3 or XKS1) is overexpressed, growth on glucose is unaffected, but growth on xylose is blocked. Spontaneous or chemically induced mutants of this engineered yeast that...

  4. Diaphorase Coupling Protocols for Red-Shifting Dehydrogenase Assays

    PubMed Central

    Davis, Mindy I.; Shen, Min; Simeonov, Anton

    2016-01-01

    Abstract Dehydrogenases are an important target for the development of cancer therapeutics. Dehydrogenases either produce or consume NAD(P)H, which is fluorescent but at a wavelength where many compounds found in chemical libraries are also fluorescent. By coupling dehydrogenases to diaphorase, which utilizes NAD(P)H to produce the fluorescent molecule resorufin from resazurin, the assay can be red-shifted into a spectral region that reduces interference from compound libraries. Dehydrogenases that produce NAD(P)H, such as isocitrate dehydrogenase 1 (IDH1), can be read in kinetic mode. Dehydrogenases that consume NAD(P)H, such as mutant IDH1 R132H, can be read in endpoint mode. Here, we report protocols for robust and miniaturized 1,536-well assays for WT IDH1 and IDH1 R132H coupled to diaphorase, and the counterassays used to further detect compound interference with the coupling reagents. This coupling technique is applicable to dehydrogenases that either produce or consume NAD(P)H, and the examples provided here can act as guidelines for the development of high-throughput screens against this enzyme class. PMID:27078681

  5. Comparison of antimicrobial effects of titanium tetrafluoride, chlorhexidine, xylitol and sodium fluoride on streptococcus mutans: An in-vitro study.

    PubMed

    Eskandarian, Tahereh; Motamedifar, Mohammad; Arasteh, Peyman; Eghbali, Seyed Sajad; Adib, Ali; Abdoli, Zahra

    2017-03-01

    No studies have yet documented the bactericidal effects of TiF4, and its role in the treatment of dental caries, and no definite protocol has been introduced to regulate its use. The aim of this study was to determine the antimicrobial/bactericidal effects of TiF4 on Streptococcus Mutans ( S. Mutans ) and to compare it with chlorhexidine (Chx), sodium fluoride (NaF) and xylitol. This study was conducted at the Shiraz University of Medical Sciences microbiology laboratory during March 2015 to September 2015. In this in-vitro study, first a bacterial suspension was prepared and adjusted to a 0.5 McFarland standard (equivalent to 1×10 8 CFU/ml). The minimal inhibitory concentration (MIC) and minimal bactericidal concentrations (MBC) of TiF4, Chx, NaF and xylitol were assessed using broth microdilution assay and disk diffusion methods. In order to neutralize the acidic nature of TiF4, we used a sodium hydroxide preparation to obtain a pH of 7.2 and repeated all of the previous tests with the neutralized TiF4 solution. We reported the final results as percentages where appropriate. The MIC of TiF4, NaF and Chx for S. Mutans were 12.5%, 12.5% and 6.25%, respectively. At a concentration of 12.5% the inhibition zone diameters were 9 mm, 15mm and 14mm for TiF4, NaF and Chx, respectively. The MBC was 25%, 12.5% and 12.5% for TiF4, NaF and Chx, respectively. Xylitol failed to show any bactericidal or growth inhibitory effect in all of its concentrations. When we repeated the tests with an adjusted pH, identical results were obtained. TiF4 solutions have anti-growth and bactericidal effects on S. Mutans at a concentration of 12.5% which is comparable with chlorhexidine and NaF, indicating the possible use of this solution in dental practice as an anti-cariogenic agent, furthermore the antimicrobial activity is unaffected by pH of the environment.

  6. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in serum... cirrhosis or acute hepatitis. (b) Classification. Class I (general controls). The device is exempt from the...

  7. Atomic layer deposited highly dispersed platinum nanoparticles supported on non-functionalized multiwalled carbon nanotubes for the hydrogenation of xylose to xylitol

    NASA Astrophysics Data System (ADS)

    Liang, Xinhua; Jiang, Chengjun

    2013-09-01

    Highly dispersed platinum nanoparticles were deposited on gram quantities of non-functionalized multiwalled carbon nanotubes (MWCNTs) by atomic layer deposition (ALD) in a fluidized bed reactor at 300 °C. (Methylcyclopentadienyl) trimethylplatinum and oxygen were used as precursors. The results of TEM analysis showed that 1.3 nm Pt nanoparticles were highly dispersed on non-functionalized MWCNTs. The porous structures of MWCNTs did not change with the deposition of Pt nanoparticles. For comparison, the commercial 3 wt% Pt/C catalyst was also characterized. The ALD-prepared Pt/MWCNT was used for the hydrogenation of xylose to xylitol. The ALD-prepared Pt/MWCNT showed the best catalytic performance with 100 % conversion of xylose and 99.3 % selectivity to xylitol, compared to commercially available Pt/C, Ru/C, and Raney Ni catalysts. The stability of ALD produced Pt/MWCNT catalyst was higher than that of the commercial Pt/C, due to the presence of surface defects on the MWCNTs and the strong metal-support interaction for the ALD-prepared Pt/MWCNT catalyst.

  8. Pichia stipitis Genes for Alcohol Dehydrogenase with Fermentative and Respiratory Functions

    PubMed Central

    Cho, Jae-yong; Jeffries, Thomas W.

    1998-01-01

    Two genes coding for isozymes of alcohol dehydrogenase (ADH); designated PsADH1 and PsADH2, have been identified and isolated from Pichia stipitis CBS 6054 genomic DNA by Southern hybridization to Saccharomyces cerevisiae ADH genes, and their physiological roles have been characterized through disruption. The amino acid sequences of the PsADH1 and PsADH2 isozymes are 80.5% identical to one another and are 71.9 and 74.7% identical to the S. cerevisiae ADH1 protein. They also show a high level identity with the group I ADH proteins from Kluyveromyces lactis. The PsADH isozymes are presumably localized in the cytoplasm, as they do not possess the amino-terminal extension of mitochondrion-targeted ADHs. Gene disruption studies suggest that PsADH1 plays a major role in xylose fermentation because PsADH1 disruption results in a lower growth rate and profoundly greater accumulation of xylitol. Disruption of PsADH2 does not significantly affect ethanol production or aerobic growth on ethanol as long as PsADH1 is present. The PsADH1 and PsADH2 isozymes appear to be equivalent in the ability to convert ethanol to acetaldehyde, and either is sufficient to allow cell growth on ethanol. However, disruption of both genes blocks growth on ethanol. P. stipitis strains disrupted in either PsADH1 or PsADH2 still accumulate ethanol, although in different amounts, when grown on xylose under oxygen-limited conditions. The PsADH double disruptant, which is unable to grow on ethanol, still produces ethanol from xylose at about 13% of the rate seen in the parental strain. Thus, deletion of both PsADH1 and PsADH2 blocks ethanol respiration but not production, implying a separate path for fermentation. PMID:9546172

  9. Glutamate Dehydrogenase from Apodachlya (Oomycetes) 1

    PubMed Central

    Price, Jeffrey S.; Gleason, Frank H.

    1972-01-01

    A glutamate dehydrogenase specific for nicotinamide-adenine-dinucleotide has been purified 50-fold from Apodachlya brachynema (Leptomitales). Certain physical, chemical, and kinetic properties of this enzyme have been studied, particularly specificity for coenzymes and substrates. With glucose as the sole carbon source, the synthesis of glutamate dehydrogenase was repressed, whereas glutamate, proline, alanine, or ornithine plus aspartate as sole carbon sources induced synthesis of the enzyme. These data indicate that the function of this enzyme is primarily degradative, although there is no evidence for a nicotinamide-adenine-dinucleotide-phosphate-specific biosynthetic glutamate dehydrogenase in Apodachlya. PMID:16657902

  10. insilico Characterization and Homology Modeling of Arabitol Dehydrogenase (ArDH) from Candida albican.

    PubMed

    Sarwar, Muhammad Waseem; Saleem, Irum Baddisha; Ali, Asif; Abbas, Farhat

    2013-01-01

    Arabitol dehydrogenase (ArDH) is involved in the production of different sugar alcohols like arabitol, sorbitol, mannitol, erythritol and xylitol by using five carbon sugars as substrate. Arabinose, d-ribose, d-ribulose, xylose and d-xylulose are known substrate of this enzyme. ArDH is mainly produced by osmophilic fungi for the conversion of ribulose to arabitol under stress conditions. Recently this enzyme has been used by various industries for the production of pharmaceutically important sugar alcohols form cheap source than glucose. But the information at structure level as well as its binding energy analysis with different substrates was missing. The present study was focused on sequence analysis, insilico characterization and substrate binding analysis of ArDH from a fungus specie candida albican. Sequence analysis and physicochemical properties showed that this protein is highly stable, negatively charged and having more hydrophilic regions, these properties made this enzyme to bind with number of five carbon sugars as substrate. The predicted 3D model will helpful for further structure based studies. Docking analysis provided free energies of binding of each substrate from a best pose as arabinose -9.8224calK/mol, dribose -11.3701Kcal/mol, d-ribulose -8.9230Kcal/mol, xylose -9.7007Kcal/mol and d-xylulose 9.7802Kcal/mol. Our study provided insight information of structure and interactions of ArDH with its substrate. These results obtained from this study clearly indicate that d-ribose is best substrate for ArDH for the production of sugar alcohols. This information will be helpful for better usage of this enzyme for hyper-production of sugar alcohols by different industries.

  11. insilico Characterization and Homology Modeling of Arabitol Dehydrogenase (ArDH) from Candida albican

    PubMed Central

    Sarwar, Muhammad Waseem; Saleem, Irum Baddisha; Ali, Asif; Abbas, Farhat

    2013-01-01

    Background: Arabitol dehydrogenase (ArDH) is involved in the production of different sugar alcohols like arabitol, sorbitol, mannitol, erythritol and xylitol by using five carbon sugars as substrate. Arabinose, d-ribose, d-ribulose, xylose and d-xylulose are known substrate of this enzyme. ArDH is mainly produced by osmophilic fungi for the conversion of ribulose to arabitol under stress conditions. Recently this enzyme has been used by various industries for the production of pharmaceutically important sugar alcohols form cheap source than glucose. But the information at structure level as well as its binding energy analysis with different substrates was missing. Results: The present study was focused on sequence analysis, insilico characterization and substrate binding analysis of ArDH from a fungus specie candida albican. Sequence analysis and physicochemical properties showed that this protein is highly stable, negatively charged and having more hydrophilic regions, these properties made this enzyme to bind with number of five carbon sugars as substrate. The predicted 3D model will helpful for further structure based studies. Docking analysis provided free energies of binding of each substrate from a best pose as arabinose -9.8224calK/mol, dribose -11.3701Kcal/mol, d-ribulose -8.9230Kcal/mol, xylose -9.7007Kcal/mol and d-xylulose 9.7802Kcal/mol. Conclusion: Our study provided insight information of structure and interactions of ArDH with its substrate. These results obtained from this study clearly indicate that d-ribose is best substrate for ArDH for the production of sugar alcohols. This information will be helpful for better usage of this enzyme for hyper-production of sugar alcohols by different industries. PMID:24391356

  12. A Burkholderia sacchari cell factory: production of poly-3-hydroxybutyrate, xylitol and xylonic acid from xylose-rich sugar mixtures.

    PubMed

    Raposo, Rodrigo S; de Almeida, M Catarina M D; de Oliveira, M da Conceição M A; da Fonseca, M Manuela; Cesário, M Teresa

    2017-01-25

    Efficient production of poly-3-hydroxybutyrate (P(3HB)) based on glucose-xylose mixtures simulating different types of lignocellulosic hydrolysate (LCH) was addressed using Burkholderia sacchari, a wild strain capable of metabolizing both sugars and producing P(3HB). Carbon catabolite repression was avoided by maintaining glucose concentration below 10g/L. Xylose concentrations above 30g/L were inhibitory for growth and production. In fed-batch cultivations, pulse size and feed addition rate were controlled in order to reach high productivities and efficient sugar consumptions. High xylose uptake and P(3HB) productivity were attained with glucose-rich mixtures (glucose/xylose ratio in the feed=1.5w/w) using high feeding rates, while with xylose-richer feeds (glucose/xylose=0.8w/w), a lower feeding rate is a robust strategy to avoid xylose build-up in the medium. Xylitol production was observed with xylose concentrations in the medium above 30-40g/L. With sugar mixtures featuring even lower glucose/xylose ratios, i.e. xylose-richer feeds (glucose/xylose=0.5), xylonic acid (a second byproduct) was produced. This is the first report of the ability of Burkholderia sacchari to produce both xylitol and xylonic acid. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5560 Lactic dehydrogenase immunological test system. (a) Identification. A lactic dehydrogenase... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactic dehydrogenase immunological test system...

  14. GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE-S, A SPERM-SPECIFIC GLYCOLYTIC ENZYME, IS REQUIRED FOR SPERM MOTILITY AND MALE FERTILITY

    EPA Science Inventory

    While glycolysis is highly conserved, it is remarkable that several novel isozymes in this central metabolic pathway are found in mammalian sperm. Glyceraldehyde 3-phosphate dehydrogenase-S (GAPDS) is the product of a mouse gene expressed only during spermatogenesis and, like it...

  15. D-Xylose fermentation, xylitol production and xylanase activities by seven new species of Sugiyamaella.

    PubMed

    Sena, Letícia M F; Morais, Camila G; Lopes, Mariana R; Santos, Renata O; Uetanabaro, Ana P T; Morais, Paula B; Vital, Marcos J S; de Morais, Marcos A; Lachance, Marc-André; Rosa, Carlos A

    2017-01-01

    Sixteen yeast isolates identified as belonging to the genus Sugiyamaella were studied in relation to D-xylose fermentation, xylitol production, and xylanase activities. The yeasts were recovered from rotting wood and sugarcane bagasse samples in different Brazilian regions. Sequence analyses of the internal transcribed spacer (ITS) region and the D1/D2 domains of large subunit rRNA gene showed that these isolates belong to seven new species. The species are described here as Sugiyamaella ayubii f.a., sp. nov. (UFMG-CM-Y607 T  = CBS 14108 T ), Sugiyamaella bahiana f.a., sp. nov. (UFMG-CM-Y304 T  = CBS 13474 T ), Sugiyamaella bonitensis f.a., sp. nov. (UFMG-CM-Y608 T  = CBS 14270 T ), Sugiyamaella carassensis f.a., sp. nov. (UFMG-CM-Y606 T  = CBS 14107 T ), Sugiyamaella ligni f.a., sp. nov. (UFMG-CM-Y295 T  = CBS 13482 T ), Sugiyamaella valenteae f.a., sp. nov. (UFMG-CM-Y609 T  = CBS 14109 T ) and Sugiyamaella xylolytica f.a., sp. nov. (UFMG-CM-Y348 T  = CBS 13493 T ). Strains of the described species S. boreocaroliniensis, S. lignohabitans, S. novakii and S. xylanicola, isolated from rotting wood of Brazilian ecosystems, were also compared for traits relevant to xylose metabolism. S. valenteae sp. nov., S. xylolytica sp. nov., S. bahiana sp. nov., S. bonitensis sp. nov., S. boreocarolinensis, S. lignohabitans and S. xylanicola were able to ferment D-xylose to ethanol. Xylitol production was observed for all Sugiyamaella species studied, except for S. ayubii sp. nov. All species studied showed xylanolytic activity, with S. xylanicola, S. lignohabitans and S. valenteae sp. nov. having the highest values. Our results suggest these Sugiyamaella species have good potential for biotechnological applications.

  16. A Bacillus subtilis malate dehydrogenase gene.

    PubMed Central

    Jin, S; De Jesús-Berríos, M; Sonenshein, A L

    1996-01-01

    A Bacillus subtilis gene for malate dehydrogenase (citH) was found downstream of genes for citrate synthase and isocitrate dehydrogenase. Disruption of citH caused partial auxotrophy for aspartate and a requirement for aspartate during sporulation. In the absence of aspartate, citH mutant cells were blocked at a late stage of spore formation. PMID:8550482

  17. The purification and properties of human liver ketohexokinase. A role for ketohexokinase and fructose-bisphosphate aldolase in the metabolic production of oxalate from xylitol.

    PubMed Central

    Bais, R; James, H M; Rofe, A M; Conyers, R A

    1985-01-01

    Ketohexokinase (EC 2.7.1.3) was purified to homogeneity from human liver, and fructose-bisphosphate aldolase (EC 4.1.2.13) was partially purified from the same source. Ketohexokinase was shown, by column chromatography and polyacrylamide-gel electrophoresis, to be a dimer of Mr 75000. Inhibition studies with p-chloromercuribenzoate and N-ethylmaleimide indicate that ketohexokinase contains thiol groups, which are required for full activity. With D-xylulose as substrate, ketohexokinase and aldolase can catalyse a reaction sequence which forms glycolaldehyde, a known precursor of oxalate. The distribution of both enzymes in human tissues indicates that this reaction sequence occurs mainly in the liver, to a lesser extent in the kidney, and very little in heart, brain and muscle. The kinetic properties of ketohexokinase show that this enzyme can phosphorylate D-xylulose as readily as D-fructose, except that higher concentrations of D-xylulose are required. The kinetic properties of aldolase show that the enzyme has a higher affinity for D-xylulose 1-phosphate than for D-fructose 1-phosphate. These findings support a role for ketohexokinase and aldolase in the formation of glycolaldehyde. The effect of various metabolites on the activity of the two enzymes was tested to determine the conditions that favour the formation of glycolaldehyde from xylitol. The results indicate that few of these metabolites affect the activity of ketohexokinase, but that aldolase can be inhibited by several phosphorylated compounds. This work suggests that, although the formation of oxalate from xylitol is normally a minor pathway, under certain conditions of increased xylitol metabolism oxalate production can become significant and may result in oxalosis. Images Fig. 1. PMID:2996495

  18. Comparative evaluation of the effects of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and xylitol-containing chewing gum on salivary flow rate, pH and buffering capacity in children: An in vivo study.

    PubMed

    Hegde, Rahul J; Thakkar, Janhavi B

    2017-01-01

    This study aimed to compare and evaluate the changes in the salivary flow rate, pH, and buffering capacity before and after chewing casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and xylitol-containing chewing gums in children. Sixty children aged between 8 and 12 years were selected for the study. They were randomly divided into Group 1 (CPP-ACP chewing gum) and Group 2 (xylitol-containing chewing gum) comprising thirty children each. Unstimulated and stimulated saliva samples at 15 and 30 min interval were collected from all children. All the saliva samples were estimated for salivary flow rate, pH, and buffering capacity. Significant increase in salivary flow rate, pH, and buffering capacity from baseline to immediately after spitting the chewing gum was found in both the study groups. No significant difference was found between the two study groups with respect to salivary flow rate and pH. Intergroup comparison indicated a significant increase in salivary buffer capacity in Group 1 when compared to Group 2. Chewing gums containing CPP-ACP and xylitol can significantly increase the physiochemical properties of saliva. These physiochemical properties of saliva have a definite relation with caries activity in children.

  19. Pharmacokinetics and Plasma Cellular Antioxidative Effects of Flavanols After Oral Intake of Green Tea Formulated with Vitamin C and Xylitol in Healthy Subjects.

    PubMed

    Son, Yu-Ra; Park, Tae-Sik; Shim, Soon-Mi

    2016-02-01

    This study aimed to test whether green tea formulated with vitamin C and xylitol (GTVX) could improve absorption of flavanols and total antioxidant activity (TAC) of plasma compared with green tea only (GT) in healthy subjects. The total radical-trapping antioxidant parameter method was used to measure the TAC of plasma. Cmax, Tmax, and area under the curve (AUC) of flavanols in plasma after consumption of GTVX were 5980.58 μg/mL, 2.14 h, and 18,915.56 h·μg/mL, respectively, indicating that GTVX showed significantly higher AUC than GT (13,855.43 μg/mL). The peak TACs occurred at 3 and 0.5 h after intake of GT and GTVX, respectively. The TAC of plasma was found to be significantly higher in GTVX than in GT at each time point. This study suggests that formulating green tea with vitamin C and xylitol could increase the absorption of flavanols in green tea, enhancing cellular antioxidative effects.

  20. Comparison of antimicrobial effects of titanium tetrafluoride, chlorhexidine, xylitol and sodium fluoride on streptococcus mutans: An in-vitro study

    PubMed Central

    Eskandarian, Tahereh; Motamedifar, Mohammad; Arasteh, Peyman; Eghbali, Seyed Sajad; Adib, Ali; Abdoli, Zahra

    2017-01-01

    Introduction No studies have yet documented the bactericidal effects of TiF4, and its role in the treatment of dental caries, and no definite protocol has been introduced to regulate its use. The aim of this study was to determine the antimicrobial/bactericidal effects of TiF4 on Streptococcus Mutans (S. Mutans) and to compare it with chlorhexidine (Chx), sodium fluoride (NaF) and xylitol. Methods This study was conducted at the Shiraz University of Medical Sciences microbiology laboratory during March 2015 to September 2015. In this in-vitro study, first a bacterial suspension was prepared and adjusted to a 0.5 McFarland standard (equivalent to 1×108 CFU/ml). The minimal inhibitory concentration (MIC) and minimal bactericidal concentrations (MBC) of TiF4, Chx, NaF and xylitol were assessed using broth microdilution assay and disk diffusion methods. In order to neutralize the acidic nature of TiF4, we used a sodium hydroxide preparation to obtain a pH of 7.2 and repeated all of the previous tests with the neutralized TiF4 solution. We reported the final results as percentages where appropriate. Results The MIC of TiF4, NaF and Chx for S. Mutans were 12.5%, 12.5% and 6.25%, respectively. At a concentration of 12.5% the inhibition zone diameters were 9 mm, 15mm and 14mm for TiF4, NaF and Chx, respectively. The MBC was 25%, 12.5% and 12.5% for TiF4, NaF and Chx, respectively. Xylitol failed to show any bactericidal or growth inhibitory effect in all of its concentrations. When we repeated the tests with an adjusted pH, identical results were obtained. Conclusion TiF4 solutions have anti-growth and bactericidal effects on S. Mutans at a concentration of 12.5% which is comparable with chlorhexidine and NaF, indicating the possible use of this solution in dental practice as an anti-cariogenic agent, furthermore the antimicrobial activity is unaffected by pH of the environment. PMID:28461883

  1. The investigation of plasma glucose-6-phosphate dehydrogenase, 6-phoshogluconate dehydrogenase, glutathione reductase in premenauposal patients with iron deficiency anemia.

    PubMed

    Ozcicek, Fatih; Aktas, Mehmet; Türkmen, Kultigin; Coban, T Abdulkadir; Cankaya, Murat

    2014-07-01

    Iron is an essential element that is necessary for all cells in the body. Iron deficiency anemia (IDA) is one of the most common nutritional disorders in both developed and developing countries. The glutathione pathway is paramount to antioxidant defense and glucose-6-phosphate dehydrogenase (G6PD)-deficient cells do not cope well with oxidative damage. The goal of this study was to check the activities of G6PD, 6-phosphogluconate dehydrogenase, glutathione reductase in patients with IDA. We analyzed the plasma samples of 102 premenopausal women with IDA and 88 healthy control subjects. Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activity as compared to the reduction of NADP +, glutathione reductase activity was performed based on the oxidation of NADPH. 2 ml of plasma were used in all analyzes. SPSS program was used for all of the statistical analysis. Diagnosis of iron deficiency in patients belonging to the analysis of blood were ferritin 3.60 ± 2.7 ng / mL, hemoglobin 9.4 ± 1.5 mg / dl and hematocrit 30.7 ± 4.1% ratio; in healthy subjects ferritin 53.5 ± 41.7 ng/ml, hemoglobin level 13.9 ± 1.3 mg / dl and hematocrit ratio 42 ± 3.53%. When compared to healthy subjects the glutathione reductase level (P<0.001) was found to be significantly higher in patients with IDA. IDA patients with moderate and severe anemia had lower GR activity when compared to IDA patients with mild anemia. But the plasma levels of glucose-6-phosphate dehydrogenase (P<0,600) and 6-phosphogluconate dehydrogenase (P<0,671) did not show any differences between healthy subjects and in patients with IDA. It was shown that Glucose-6-Phosphate Dehydrogenase and 6-Phosphogluconate Dehydrogenase have no effect on iron-deficiency anemia in patients. The plasma GR levels of premenopausal women with IDA were found to be higher compared to healthy subjects, which could be secondary to erythrocyte protection against oxidative stress being commonly seen in IDA.

  2. Biochemical and structural characterization of Cryptosporidium parvum Lactate dehydrogenase.

    PubMed

    Cook, William J; Senkovich, Olga; Hernandez, Agustin; Speed, Haley; Chattopadhyay, Debasish

    2015-03-01

    The protozoan parasite Cryptosporidium parvum causes waterborne diseases worldwide. There is no effective therapy for C. parvum infection. The parasite depends mainly on glycolysis for energy production. Lactate dehydrogenase is a major regulator of glycolysis. This paper describes the biochemical characterization of C. parvum lactate dehydrogenase and high resolution crystal structures of the apo-enzyme and four ternary complexes. The ternary complexes capture the enzyme bound to NAD/NADH or its 3-acetylpyridine analog in the cofactor binding pocket, while the substrate binding site is occupied by one of the following ligands: lactate, pyruvate or oxamate. The results reveal distinctive features of the parasitic enzyme. For example, C. parvum lactate dehydrogenase prefers the acetylpyridine analog of NADH as a cofactor. Moreover, it is slightly less sensitive to gossypol inhibition compared with mammalian lactate dehydrogenases and not inhibited by excess pyruvate. The active site loop and the antigenic loop in C. parvum lactate dehydrogenase are considerably different from those in the human counterpart. Structural features and enzymatic properties of C. parvum lactate dehydrogenase are similar to enzymes from related parasites. Structural comparison with malate dehydrogenase supports a common ancestry for the two genes. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Stringency of substrate specificity of Escherichia coli malate dehydrogenase.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boernke, W. E.; Millard, C. S.; Stevens, P. W.

    1995-09-10

    Malate dehydrogenase and lactate dehydrogenase are members of the structurally and functionally homologous family of 2-ketoacid dehydrogenases. Both enzymes display high specificity for their respective keto substrates, oxaloacetate and pyruvate. Closer analysis of their specificity, however, reveals that the specificity of malate dehydrogenase is much stricter and less malleable than that of lactate dehydrogenase. Site-specific mutagenesis of the two enzymes in an attempt to reverse their specificity has met with contrary results. Conversion of a specific active-site glutamine to arginine in lactate dehydrogenase from Bacillus stearothermophilus generated an enzyme that displayed activity toward oxaloacetate equal to that of the nativemore » enzyme toward pyruvate (H. M. Wilks et al. (1988) Science 242, 1541-1544). We have constructed a series of mutants in the mobile, active site loop of the Escherichia coli malate dehydrogenase that incorporate the complementary change, conversion of arginine 81 to glutamine, to evaluate the role of charge distribution and conformational flexibility within this loop in defining the substrate specificity of these enzymes. Mutants incorporating the change R81Q all had reversed specificity, displaying much higher activity toward pyruvate than to the natural substrate, oxaloacetate. In contrast to the mutated lactate dehydrogenase, these reversed-specificity mutants were much less active than the native enzyme. Secondary mutations within the loop of the E. coli enzyme (A80N, A80P, A80P/M85E/D86T) had either no or only moderately beneficial effects on the activity of the mutant enzyme toward pyruvate. The mutation A80P, which can be expected to reduce the overall flexibility of the loop, modestly improved activity toward pyruvate. The possible physiological relevance of the stringent specificity of malate dehydrogenase was investigated. In normal strains of E. coli, fermentative metabolism was not affected by expression of the

  4. Digitalis metabolism and human liver alcohol dehydrogenase.

    PubMed Central

    Frey, W A; Vallee, B L

    1980-01-01

    Human liver alcohol dehydrogenase (alcohol: NAD" oxidoreductase, EC 1.1.1.1) catalyzes the oxidation of the 3 beta-OH group of digitoxigenin, digoxigenin, and gitoxigenin to their 3-keto derivatives, which have been characterized by high performance liquid chromatography and mass spectrometry. These studies have identified human liver alcohol dehydrogenase as the unknown NAD(H)-dependent liver enzyme specific for the free hydroxyl group at C3 of the cardiac genins; this hydroxyl is the critical site of the genins' enzymatic oxidation and concomitant pharmacological inactivation in humans. Several kinetic approaches have demonstrated that ethanol and the pharmacologically active components of the digitalis glycosides are oxidized with closely similar kcat/Km values at the same site on human liver alcohol dehydrogenase, for which they compete. Human liver alcohol dehydrogenase thereby becomes an important biochemical link in the metabolism, pharmacology, and toxicology of ethanol and these glycosides, structurally unrelated agents that are both used widely. Both the competition of ethanol with these cardiac sterols and the narrow margin of safety in the therapeutic use of digitalis derivatives would seem to place at increased risk those individuals who receive digitalis and simultaneously consume large amounts of ethanol or whose alcohol dehydrogenase function is impaired. PMID:6987673

  5. Genetics Home Reference: isobutyryl-CoA dehydrogenase deficiency

    MedlinePlus

    ... dehydrogenase deficiency Orphanet: Isobutyryl-CoA dehydrogenase deficiency Screening, Technology and Research in Genetics Patient Support and Advocacy Resources (3 links) Children's Cardiomyopathy Foundation CLIMB (Children Living with Inherited Metabolic ...

  6. Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase.

    PubMed

    Van Noorden, C J

    1984-01-01

    Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase has found many applications in biomedical research. However, up to several years ago, the methods used often appeared to be unreliable because many artefacts occurred during processing and staining of tissue sections or cells. The development of histochemical methods preventing loss or redistribution of the enzyme by using either polyvinyl alcohol as a stabilizer or a semipermeable membrane interposed between tissue section and incubation medium, has lead to progress in the topochemical localization of glucose-6-phosphate dehydrogenase. Optimization of incubation conditions has further increased the precision of histochemical methods. Precise cytochemical methods have been developed either by the use of a polyacrylamide carrier in which individual cells have been incorporated before staining or by including polyvinyl alcohol in the incubation medium. In the present text, these methods for the histochemical and cytochemical localization of glucose-6-phosphate dehydrogenase for light microscopical and electron microscopical purposes are extensively discussed along with immunocytochemical techniques. Moreover, the validity of the staining methods is considered both for the localization of glucose-6-phosphate dehydrogenase activity in cells and tissues and for cytophotometric analysis. Finally, many applications of the methods are reviewed in the fields of functional heterogeneity of tissues, early diagnosis of carcinoma, effects of xenobiotics on cellular metabolism, diagnosis of inherited glucose-6-phosphate dehydrogenase deficiency, analysis of steroid-production in reproductive organs, and quality control of oocytes of mammals. It is concluded that the use of histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase is of highly significant value in the study of diseased tissues. In many cases, the first pathological change is an increase in glucose-6-phosphate dehydrogenase activity

  7. Activity of select dehydrogenases with sepharose-immobilized N(6)-carboxymethyl-NAD.

    PubMed

    Beauchamp, Justin; Vieille, Claire

    2015-01-01

    N(6)-carboxymethyl-NAD (N(6)-CM-NAD) can be used to immobilize NAD onto a substrate containing terminal primary amines. We previously immobilized N(6)-CM-NAD onto sepharose beads and showed that Thermotoga maritima glycerol dehydrogenase could use the immobilized cofactor with cofactor recycling. We now show that Saccharomyces cerevisiae alcohol dehydrogenase, rabbit muscle L-lactate dehydrogenase (type XI), bovine liver L-glutamic dehydrogenase (type III), Leuconostoc mesenteroides glucose-6-phosphate dehydro-genase, and Thermotoga maritima mannitol dehydrogenase are active with soluble N(6)-CM-NAD. The products of all enzymes but 6-phospho-D-glucono-1,5-lactone were formed when sepharose-immobilized N(6)-CM-NAD was recycled by T. maritima glycerol dehydrogenase, indicating that N(6)-immobilized NAD is suitable for use by a variety of different dehydrogenases. Observations of the enzyme active sites suggest that steric hindrance plays a greater role in limiting or allowing activity with the modified cofactor than do polarity and charge of the residues surrounding the N(6)-amine group on NAD.

  8. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus.

    PubMed

    Mansourian, Arash; Shanbehzadeh, Najmeh; Kia, Seyed Javad; Moosavi, Mahdieh-Sadat

    2017-01-01

    Oral lichen planus is a potentially malignant disorder. One of the malignant transformation markers is cancer stem cells. One of the proposed marker for the detection of cancer stem cells's in head and neck cancer is aldehyde dehydrogenase. Recently it is shown that aldehyde dehydrogenase 1 expression in tissue samples is associated with oral lichen planus malignant transformation. This study evaluates salivary aldehyde dehydrogenase 1 in oral lichen planus. Thirty patients and 30 age and sex-matched healthy volunteers were recruited. Oral lichen planus was diagnosed based on the modified World Health Organization criteria. Subjects in the case group were divided into reticular and non-reticular forms. Unstimulated salivary samples were collected at 10-12 AM. Saliva concentrations of aldehyde dehydrogenase 1 were measured by ELISA. The differences between aldehyde dehydrogenase levels in the oral lichen planus group compared with the control group were not significant but aldehyde dehydrogenase in non-reticular oral lichen planus was significantly higher than that of the reticular form. This is a cross-sectional study, thus longitudinal studies in oral lichen planus may present similar or different results. The mechanism of malignant transformation in oral lichen planus is not defined. Previous analyses revealed that the aldehyde dehydrogenase 1 expression is significantly correlated with increased risk of transformation. This finding is consistent with our results because in the erosive and ulcerative forms of oral lichen planus, which have an increased risk of transformation, salivary aldehyde dehydrogenase 1 was overexpressed. A higher salivary aldehyde dehydrogenase level in non-reticular oral lichen planus can be a defensive mechanism against higher oxidative stress in these groups. Aldehyde dehydrogenase may be one of the malignant transformation markers in oral lichen planus. Further studies are needed for introducing aldehyde dehydrogenase as a prognostic

  9. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus*

    PubMed Central

    Mansourian, Arash; Shanbehzadeh, Najmeh; Kia, Seyed Javad; Moosavi, Mahdieh-Sadat

    2017-01-01

    Background Oral lichen planus is a potentially malignant disorder. One of the malignant transformation markers is cancer stem cells. One of the proposed marker for the detection of cancer stem cells's in head and neck cancer is aldehyde dehydrogenase. Recently it is shown that aldehyde dehydrogenase 1 expression in tissue samples is associated with oral lichen planus malignant transformation. Objective This study evaluates salivary aldehyde dehydrogenase 1 in oral lichen planus. Method Thirty patients and 30 age and sex-matched healthy volunteers were recruited. Oral lichen planus was diagnosed based on the modified World Health Organization criteria. Subjects in the case group were divided into reticular and non-reticular forms. Unstimulated salivary samples were collected at 10-12 AM. Saliva concentrations of aldehyde dehydrogenase 1 were measured by ELISA. Results The differences between aldehyde dehydrogenase levels in the oral lichen planus group compared with the control group were not significant but aldehyde dehydrogenase in non-reticular oral lichen planus was significantly higher than that of the reticular form. Limitations of the study This is a cross-sectional study, thus longitudinal studies in oral lichen planus may present similar or different results. Conclusions The mechanism of malignant transformation in oral lichen planus is not defined. Previous analyses revealed that the aldehyde dehydrogenase 1 expression is significantly correlated with increased risk of transformation. This finding is consistent with our results because in the erosive and ulcerative forms of oral lichen planus, which have an increased risk of transformation, salivary aldehyde dehydrogenase 1 was overexpressed. A higher salivary aldehyde dehydrogenase level in non-reticular oral lichen planus can be a defensive mechanism against higher oxidative stress in these groups. Aldehyde dehydrogenase may be one of the malignant transformation markers in oral lichen planus. Further

  10. Catalytic Mechanism of Short Ethoxy Chain Nonylphenol Dehydrogenase Belonging to a Polyethylene Glycol Dehydrogenase Group in the GMC Oxidoreductase Family

    PubMed Central

    Liu, Xin; Ohta, Takeshi; Kawabata, Takeshi; Kawai, Fusako

    2013-01-01

    Ethoxy (EO) chain nonylphenol dehydrogenase (NPEO-DH) from Ensifer sp. AS08 and EO chain octylphenol dehydrogenase from Pseudomonas putida share common molecular characteristics with polyethylene glycol (PEG) dehydrogenases (PEG-DH) and comprise a PEG-DH subgroup in the family of glucose-methanol-choline (GMC) oxidoreductases that includes glucose/alcohol oxidase and glucose/choline dehydrogenase. Three-dimensional (3D) molecular modeling suggested that differences in the size, secondary structure and hydropathy in the active site caused differences in their substrate specificities toward EO chain alkylphenols and free PEGs. Based on 3D molecular modeling, site-directed mutagenesis was utilized to introduce mutations into potential catalytic residues of NPEO-DH. From steady state and rapid kinetic characterization of wild type and mutant NPEO-DHs, we can conclude that His465 and Asn507 are directly involved in the catalysis. Asn507 mediates the transfer of proton from a substrate to FAD and His465 transfers the same proton from the reduced flavin to an electron acceptor. PMID:23306149

  11. Catalytic mechanism of short ethoxy chain nonylphenol dehydrogenase belonging to a polyethylene glycol dehydrogenase group in the GMC oxidoreductase family.

    PubMed

    Liu, Xin; Ohta, Takeshi; Kawabata, Takeshi; Kawai, Fusako

    2013-01-10

    Ethoxy (EO) chain nonylphenol dehydrogenase (NPEO-DH) from Ensifer sp. AS08 and EO chain octylphenol dehydrogenase from Pseudomonas putida share common molecular characteristics with polyethylene glycol (PEG) dehydrogenases (PEG-DH) and comprise a PEG-DH subgroup in the family of glucose-methanol-choline (GMC) oxidoreductases that includes glucose/alcohol oxidase and glucose/choline dehydrogenase. Three-dimensional (3D) molecular modeling suggested that differences in the size, secondary structure and hydropathy in the active site caused differences in their substrate specificities toward EO chain alkylphenols and free PEGs. Based on 3D molecular modeling, site-directed mutagenesis was utilized to introduce mutations into potential catalytic residues of NPEO-DH. From steady state and rapid kinetic characterization of wild type and mutant NPEO-DHs, we can conclude that His465 and Asn507 are directly involved in the catalysis. Asn507 mediates the transfer of proton from a substrate to FAD and His465 transfers the same proton from the reduced flavin to an electron acceptor.

  12. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.

    PubMed

    Matsushika, Akinori; Inoue, Hiroyuki; Murakami, Katsuji; Takimura, Osamu; Sawayama, Shigeki

    2009-04-01

    In this study, five recombinant Saccharomyces cerevisiae strains were compared for their xylose-fermenting ability. The most efficient xylose-to-ethanol fermentation was found by using the industrial strain MA-R4, in which the genes for xylose reductase and xylitol dehydrogenase from Pichia stipitis along with an endogenous xylulokinase gene were expressed by chromosomal integration of the flocculent yeast strain IR-2. The MA-R4 strain rapidly converted xylose to ethanol with a low xylitol yield. Furthermore, the MA-R4 strain had the highest ethanol production when fermenting not only a mixture of glucose and xylose, but also mixed sugars in the detoxified hydrolysate of wood chips. These results collectively suggest that MA-R4 may be a suitable recombinant strain for further study into large-scale ethanol production from mixed sugars present in lignocellulosic hydrolysates.

  13. Reversible inactivation of CO dehydrogenase with thiol compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreß, Oliver; Gnida, Manuel; Pelzmann, Astrid M.

    2014-05-09

    Highlights: • Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase. • CO- and H{sub 2}-oxidizing activity of CO dehydrogenase is inhibited by thiols. • Inhibition by thiols was reversed by CO or upon lowering the thiol concentration. • Thiols coordinate the Cu ion in the [CuSMo(=O)OH] active site as a third ligand. - Abstract: Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO + H{sub 2}O → CO{sub 2} + 2e{sup −} + 2H{sup +}) which proceedsmore » at a unique [CuSMo(=O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding K{sub i}-values (mM): L-cysteine (5.2), D-cysteine (9.7), N-acetyl-L-cysteine (8.2), D,L-homocysteine (25.8), L-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand ([Mo{sup VI}(=O)OH{sub (2)}SCu{sup I}(SR)S-Cys]) leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration

  14. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    PubMed Central

    Napora-Wijata, Kamila; Strohmeier, Gernot A.; Sonavane, Manoj N.; Avi, Manuela; Robins, Karen; Winkler, Margit

    2013-01-01

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S)-selectivity and together with a highly (R)-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases. PMID:24970175

  15. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase.

    PubMed

    Napora-Wijata, Kamila; Strohmeier, Gernot A; Sonavane, Manoj N; Avi, Manuela; Robins, Karen; Winkler, Margit

    2013-08-12

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S)-selectivity and together with a highly (R)-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  16. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase isoenzymes (a group of enzymes with similar biological activity) in serum. Measurements of lactate...

  17. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase isoenzymes (a group of enzymes with similar biological activity) in serum. Measurements of lactate...

  18. Structural and functional comparison of two human liver dihydrodiol dehydrogenases associated with 3 alpha-hydroxysteroid dehydrogenase activity.

    PubMed Central

    Deyashiki, Y; Taniguchi, H; Amano, T; Nakayama, T; Hara, A; Sawada, H

    1992-01-01

    Two monomeric dihydrodiol dehydrogenases with pI values of 5.4 and 7.6 were co-purified with androsterone dehydrogenase activity to homogeneity from human liver. The two enzymes differed from each other on peptide mapping and in their heat-stabilities; with respect to the latter the dihydrodiol dehydrogenase and 3 alpha-hydroxysteroid dehydrogenase activities of the respective enzymes were similarly inactivated. The pI 5.4 enzyme was equally active towards trans- and cis-benzene dihydrodiols, and towards (S)- and (R)-forms of indan-1-ol and 1,2,3,4-tetrahydronaphth-1-ol and oxidized the 3 alpha-hydroxy group of C19-, C21- and C24-steroids, whereas the pI 7.6 enzyme showed high specificity for trans-benzene dihydrodiol, (S)-forms of the alicyclic alcohols and C19- and C21-steroids. Although the two enzymes reduced various xenobiotic carbonyl compounds and the 3-oxo group of C19- and C21-steroids, and were A-specific in the hydrogen transfer from NADPH, only the pI 5.4 enzyme showed reductase activity towards 7 alpha-hydroxy-5 beta-cholestan-3-one and dehydrolithocholic acid. The affinity of the two enzymes for the steroidal substrates was higher than that for the xenobiotic substrates. The two enzymes also showed different susceptibilities to the inhibition by anti-inflammatory drugs and bile acids. Whereas the pI-5.4 enzyme was highly sensitive to anti-inflammatory steroids, showing mixed-type inhibitions with respect to indan-1-ol and androsterone, the pI 7.6 enzyme was inhibited more potently by non-steroidal anti-inflammatory drugs and bile acids than by the steroidal drugs, and the inhibitions were all competitive. These structural and functional differences suggest that the two enzymes are 3 alpha-hydroxysteroid dehydrogenase isoenzymes. Images Fig. 2. PMID:1554355

  19. Human dehydrogenase/reductase (SDR family) member 11 is a novel type of 17β-hydroxysteroid dehydrogenase.

    PubMed

    Endo, Satoshi; Miyagi, Namiki; Matsunaga, Toshiyuki; Hara, Akira; Ikari, Akira

    2016-03-25

    We report characterization of a member of the short-chain dehydrogenase/reductase superfamily encoded in a human gene, DHRS11. The recombinant protein (DHRS11) efficiently catalyzed the conversion of the 17-keto group of estrone, 4- and 5-androstenes and 5α-androstanes into their 17β-hydroxyl metabolites with NADPH as a coenzyme. In contrast, it exhibited reductive 3β-hydroxysteroid dehydrogenase activity toward 5β-androstanes, 5β-pregnanes, 4-pregnenes and bile acids. Additionally, DHRS11 reduced α-dicarbonyls (such as diacetyl and methylglyoxal) and alicyclic ketones (such as 1-indanone and loxoprofen). The enzyme activity was inhibited in a mixed-type manner by flavonoids, and competitively by carbenoxolone, glycyrrhetinic acid, zearalenone, curcumin and flufenamic acid. The expression of DHRS11 mRNA was observed widely in human tissues, most abundantly in testis, small intestine, colon, kidney and cancer cell lines. Thus, DHRS11 represents a novel type of 17β-hydroxysteroid dehydrogenase with unique catalytic properties and tissue distribution. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A simple method for determination of erythritol, maltitol, xylitol, and sorbitol in sugar-free chocolates by capillary electrophoresis with capacitively coupled contactless conductivity detection.

    PubMed

    Coelho, Aline Guadalupe; de Jesus, Dosil Pereira

    2016-11-01

    In this work, a novel and simple analytical method using capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C 4 D) is proposed for the determination of the polyols erythritol, maltitol, xylitol, and sorbitol in sugar-free chocolate. CE separation of the polyols was achieved in less than 6 min, and it was mediated by the interaction between the polyols and the borate ions in the background electrolyte, forming negatively charged borate esters. The extraction of the polyols from the samples was simply obtained using ultra-pure water and ultrasonic energy. Linearity was assessed by calibration curves that showed R 2 varying from 0.9920 to 0.9976. The LOQs were 12.4, 15.9, 9.0, and 9.0 μg/g for erythritol, maltitol, xylitol, and sorbitol, respectively. The accuracy of the method was evaluated by recovery tests, and the obtained recoveries varied from 70 to 116% with standard deviations ranging from 0.2 to 19%. The CE-C 4 D method was successfully applied for the determination of the studied polyols in commercial samples of sugar-free chocolate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Adrenal 11-beta hydroxysteroid dehydrogenase activity in response to stress.

    PubMed

    Zallocchi, Marisa; Matković, Laura; Damasco, María C

    2004-06-01

    This work studied the effect of stresses produced by simulated gavage or gavage with 200 mmol/L HCl two hours before adrenal extraction, on the activities of the 11beta-hydroxysteroid dehydrogenase 1 and 11beta-hydroxysteroid dehydrogenase 2 isoforms present in the rat adrenal gland. These activities were determined on immediately prepared adrenal microsomes following incubations with 3H-corticosterone and NAD+ or NADP+. 11-dehydrocorticosterone was measured as an end-product by TLC, and controls were adrenal microsomes from rats kept under basal (unstressed) conditions. 11beta-hydroxysteroid dehydrogenase 1 activity, but not 11beta-hydroxysteroid dehydrogenase 2 activity, was increased under both stress-conditions. Homeostatically, the stimulation of 11beta-hydroxysteroid dehydrogenase 1 activity would increase the supply of glucocorticoids. These, in turn, would activate the enzyme phenylethanolamine N-methyl transferase, thereby improving the synthesis of epinephrine as part of the stress-response.

  2. Isolation, sequence, and characterization of the Cercospora nicotianae phytoene dehydrogenase gene.

    PubMed Central

    Ehrenshaft, M; Daub, M E

    1994-01-01

    We have cloned and sequenced the Cercospora nicotianae gene for the carotenoid biosynthetic enzyme phytoene dehydrogenase. Analysis of the derived amino acid sequence revealed it has greater than 50% identity with its counterpart in Neurospora crassa and approximately 30% identity with prokaryotic phytoene dehydrogenases and is related, but more distantly, to phytoene dehydrogenases from plants and cyanobacteria. Our analysis confirms that phytoene dehydrogenase proteins fall into two groups: those from plants and cyanobacteria and those from eukaryotic and noncyanobacter prokaryotic microbes. Southern analysis indicated that the C. nicotianae phytoene dehydrogenase gene is present in a single copy. Extraction of beta-carotene, the sole carotenoid accumulated by C. nicotianae, showed that both light- and dark-grown cultures synthesize carotenoids, but higher levels accumulate in the light. Northern (RNA) analysis of poly(A)+ RNA, however, showed no differential accumulation of phytoene dehydrogenase mRNA between light- and dark-grown fungal cultures. Images PMID:8085820

  3. The Activity of Class I-IV Alcohol Dehydrogenase Isoenzymes and Aldehyde Dehydrogenase in Bladder Cancer Cells.

    PubMed

    Orywal, Karolina; Jelski, Wojciech; Werel, Tadeusz; Szmitkowski, Maciej

    2018-01-02

    The aim of this study was to determine the differences in the activity of Alcohol Dehydrogenase (ADH) isoenzymes and Aldehyde Dehydrogenase (ALDH) in normal and cancerous bladder cells. Class III, IV of ADH and total ADH activity were measured by the photometric method and class I, II ADH and ALDH activity by the fluorometric method. Significantly higher total activity of ADH was found in both, low-grade and high-grade bladder cancer, in comparison to healthy tissues. The increased activity of total ADH in bladder cancer cells may be the cause of metabolic disorders in cancer cells, which may intensify carcinogenesis.

  4. Mannitol and Mannitol Dehydrogenases in Conidia of Aspergillus oryzae

    PubMed Central

    Horikoshi, Koki; Iida, Shigeji; Ikeda, Yonosuke

    1965-01-01

    Horikoshi, Koki (The Institute of Physical and Chemical Research, Tokyo, Japan), Shigeji Iida, and Yonosuke Ikeda. Mannitol and mannitol dehydrogenases in conidia of Aspergillus oryzae. J. Bacteriol. 89:326–330. 1965.—A sugar alcohol was isolated from the conidia of Aspergillus oryzae and identified as d-mannitol. Two types of d-mannitol dehydrogenases, nicotinamide adenine dinucleotide phosphate-linked and nicotinamide adenine dinucleotide-linked, were found in the conidia. Substrate specificities, pH optima, Michaelis-Menton constants, and the effects of inhibitors were studied. d-Mannitol was converted to fructose by the dehydrogenases. Synthesis of d-mannitol dehydrogenases was not observed during germination; the content of d-mannitol decreased at an early stage of germination. It was assumed, therefore, that d-mannitol might be used as the source of endogenous respiration and provide energy for the germination. PMID:14255698

  5. Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C.

    Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases thatmore » includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal

  6. Activation of liver alcohol dehydrogenase by glycosylation.

    PubMed Central

    Tsai, C S; White, J H

    1983-01-01

    D-Fructose and D-glucose activate alcohol dehydrogenase from horse liver to oxidize ethanol. One mol of D-[U-14C]fructose or D-[U-14C]glucose is covalently incorporated per mol of the maximally activated enzyme. Amino acid and N-terminal analyses of the 14C-labelled glycopeptide isolated from a proteolytic digest of the [14C]glycosylated enzyme implicate lysine-315 as the site of the glycosylation. 13C-n.m.r.-spectroscopic studies indicate that D-[13C]glucose is covalently linked in N-glucosidic and Amadori-rearranged structures in the [13C]glucosylated alcohol dehydrogenase. Experimental results are consistent with the formation of the N-glycosylic linkage between glycose and lysine-315 of liver alcohol dehydrogenase in the initial step that results in an enhanced catalytic efficiency to oxidize ethanol. PMID:6342612

  7. Febuxostat ameliorates diabetic renal injury in a streptozotocin-induced diabetic rat model.

    PubMed

    Lee, Hong-Joo; Jeong, Kyung Hwan; Kim, Yang Gyun; Moon, Joo Young; Lee, Sang Ho; Ihm, Chun Gyoo; Sung, Ji Youn; Lee, Tae Won

    2014-01-01

    Oxidative stress and inflammation are known to play central roles in the development of diabetic nephropathy (DN). Febuxostat is a novel non-purine xanthine oxidase (XO)-specific inhibitor developed to treat hyperuricemia. In this study, we investigated whether febuxostat could ameliorate DN via renoprotective mechanisms such as alleviation of oxidative stress and anti-inflammatory actions. Male Sprague-Dawley rats were divided into three groups: a normal group, a diabetes group (DM group), and a febuxostat-treated diabetes group (DM+Fx group). We administered 5 mg/kg of febuxostat to experimental rats for 7 weeks and evaluated clinical and biochemical parameters and XO and xanthine dehydrogenase (XDH) activity in hepatic tissue. The degree of oxidative stress and extent of inflammation were evaluated from urine samples and renal tissue collected from each group. Diabetic rats (DM and DM+Fx groups) had higher blood glucose and kidney weight relative to body weight than normal rats. Albuminuria was significantly reduced in febuxostat-treated diabetic rats compared with untreated diabetic rats. Quantitative analysis showed that hepatic XO and XDH activities were higher in the DM groups, but decreased after treatment with febuxostat. Urinary 8-OHdG concentrations and renal cortical nitrotyrosine also indicated reduced oxidative stress in the DM+Fx group relative to the DM group. The number of ED-1-stained cells in the glomerulus and tubule of diabetic renal tissue decreased in febuxostat-treated diabetic rats relative to that of non-treated diabetic rats. Diabetic rats also expressed higher transcript levels of inflammatory genes (E-selectin and VCAM-1), an inflammation-induced enzyme (COX-2), and inflammatory mediators (ED-1 and NF-κB) than control rats; expression of these genes was significantly reduced by treatment with febuxostat. Febuxostat prevents diabetic renal injury such as albuminuria. This renoprotective effect appears to be due to attenuation of the

  8. Regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+ ions within toluene-permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD+ ratios.

    PubMed Central

    Rutter, G A; Denton, R M

    1988-01-01

    1. Toluene-permeabilized rat heart mitochondria have been used to study the regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+, adenine and nicotinamide nucleotides, and to compare the properties of the enzymes in situ, with those in mitochondrial extracts. 2. Although K0.5 values (concn. giving half-maximal effect) for Ca2+ of 2-oxoglutarate dehydrogenase were around 1 microM under all conditions, corresponding values for NAD+-linked isocitrate dehydrogenase were in the range 5-43 microM. 3. For both enzymes, K0.5 values for Ca2+ observed in the presence of ATP were 3-10-fold higher than those in the presence of ADP, with values increasing over the ADP/ATP range 0.0-1.0. 4. 2-Oxoglutarate dehydrogenase was less sensitive to inhibition by NADH when assayed in permeabilized mitochondria than in mitochondrial extracts. Similarly, the Km of NAD+-linked isocitrate dehydrogenase for threo-Ds-isocitrate was lower in permeabilized mitochondria than in extracts under all the conditions investigated. 5. It is concluded that in the intact heart Ca2+ activation of NAD+-linked isocitrate dehydrogenase may not necessarily occur in parallel with that of the other mitochondrial Ca2+-sensitive enzymes, 2-oxoglutarate dehydrogenase and the pyruvate dehydrogenase system. PMID:3421900

  9. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels.

    PubMed

    Akduman, Begüm; Uygun, Murat; Uygun, Deniz Aktaş; Akgöl, Sinan; Denizli, Adil

    2013-12-01

    In this study, poly(2-hydroxyethyl methacrylate-glycidylmethacrylate) [poly(HEMA-GMA)] cryogels were prepared by radical cryocopolymerization of HEMA with GMA as a functional comonomer and N,N'-methylene-bisacrylamide (MBAAm) as a crosslinker. Iminodiacetic acid (IDA) functional groups were attached via ring opening of the epoxy group on the poly(HEMA-GMA) cryogels and then Zn(II) ions were chelated with these structures. Characterization of cryogels was performed by FTIR, SEM, EDX and swelling studies. These cryogels have interconnected pores of 30-50 μm size. The equilibrium swelling degree of Zn(II) chelated poly(HEMA-GMA)-IDA cryogels was approximately 600%. Zn(II) chelated poly(HEMA-GMA)-IDA cryogels were used in the adsorption of alcohol dehydrogenase from aqueous solutions and adsorption was performed in continuous system. The effects of pH, alcohol dehydrogenase concentration, temperature, and flow rate on adsorption were investigated. The maximum amount of alcohol dehydrogenase adsorption was determined to be 9.94 mg/g cryogel at 1.0mg/mL alcohol dehydrogenase concentration and in acetate buffer at pH5.0 with a flow rate of 0.5 mL/min. Desorption of adsorbed alcohol dehydrogenase was carried out by using 1.0M NaCI at pH8.0 phosphate buffer and desorption yield was found to be 93.5%. Additionally, these cryogels were used for purification of alcohol dehydrogenase from yeast with a single-step. The purity of desorbed alcohol dehydrogenase was shown by silver-stained SDS-PAGE. This purification process can successfully be used for the purification of alcohol dehydrogenase from unclarified yeast homogenates and this work is the first report about the usage of the cryogels for purification of alcohol dehydrogenase. © 2013 Elsevier B.V. All rights reserved.

  10. Molecular structure of the pyruvate dehydrogenase complex from Escherichia coli K-12.

    PubMed

    Vogel, O; Hoehn, B; Henning, U

    1972-06-01

    The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 x 10(6). All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This "excess" component is bound differently than are the eight dimers in the core complex.

  11. Molecular Structure of the Pyruvate Dehydrogenase Complex from Escherichia coli K-12

    PubMed Central

    Vogel, Otto; Hoehn, Barbara; Henning, Ulf

    1972-01-01

    The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 × 106. All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This “excess” component is bound differently than are the eight dimers in the core complex. Images PMID:4556465

  12. Tricarboxylic acid cycle without malate dehydrogenase in Streptomyces coelicolor M-145.

    PubMed

    Takahashi-Íñiguez, Tóshiko; Barrios-Hernández, Joana; Rodríguez-Maldonado, Marion; Flores, María Elena

    2018-06-23

    The oxidation of malate to oxaloacetate is catalysed only by a nicotinamide adenine dinucleotide-dependent malate dehydrogenase encoded by SCO4827 in Streptomyces coelicolor. A mutant lacking the malate dehydrogenase gene was isolated and no enzymatic activity was detected. As expected, the ∆mdh mutant was unable to grow on malate as the sole carbon source. However, the mutant grew less in minimal medium with glucose and there was a delay of 36 h. The same behaviour was observed when the mutant was grown on minimal medium with casamino acids or glycerol. For unknown reasons, the mutant was not able to grow in YEME medium with glucose. The deficiency of malate dehydrogenase affected the expression of the isocitrate dehydrogenase and alpha-ketoglutarate dehydrogenase genes, decreasing the expression of both genes by approximately two- to threefold.

  13. Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum.

    PubMed

    Verbeke, Tobin J; Giannone, Richard J; Klingeman, Dawn M; Engle, Nancy L; Rydzak, Thomas; Guss, Adam M; Tschaplinski, Timothy J; Brown, Steven D; Hettich, Robert L; Elkins, James G

    2017-02-23

    Clostridium thermocellum could potentially be used as a microbial biocatalyst to produce renewable fuels directly from lignocellulosic biomass due to its ability to rapidly solubilize plant cell walls. While the organism readily ferments sugars derived from cellulose, pentose sugars from xylan are not metabolized. Here, we show that non-fermentable pentoses inhibit growth and end-product formation during fermentation of cellulose-derived sugars. Metabolomic experiments confirmed that xylose is transported intracellularly and reduced to the dead-end metabolite xylitol. Comparative RNA-seq analysis of xylose-inhibited cultures revealed several up-regulated genes potentially involved in pentose transport and metabolism, which were targeted for disruption. Deletion of the ATP-dependent transporter, CbpD partially alleviated xylose inhibition. A putative xylitol dehydrogenase, encoded by Clo1313_0076, was also deleted resulting in decreased total xylitol production and yield by 41% and 46%, respectively. Finally, xylose-induced inhibition corresponds with the up-regulation and biogenesis of a cyclical AgrD-type, pentapeptide. Medium supplementation with the mature cyclical pentapeptide also inhibits bacterial growth. Together, these findings provide new foundational insights needed for engineering improved pentose utilizing strains of C. thermocellum and reveal the first functional Agr-type cyclic peptide to be produced by a thermophilic member of the Firmicutes.

  14. Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum

    PubMed Central

    Verbeke, Tobin J.; Giannone, Richard J.; Klingeman, Dawn M.; Engle, Nancy L.; Rydzak, Thomas; Guss, Adam M.; Tschaplinski, Timothy J.; Brown, Steven D.; Hettich, Robert L.; Elkins, James G.

    2017-01-01

    Clostridium thermocellum could potentially be used as a microbial biocatalyst to produce renewable fuels directly from lignocellulosic biomass due to its ability to rapidly solubilize plant cell walls. While the organism readily ferments sugars derived from cellulose, pentose sugars from xylan are not metabolized. Here, we show that non-fermentable pentoses inhibit growth and end-product formation during fermentation of cellulose-derived sugars. Metabolomic experiments confirmed that xylose is transported intracellularly and reduced to the dead-end metabolite xylitol. Comparative RNA-seq analysis of xylose-inhibited cultures revealed several up-regulated genes potentially involved in pentose transport and metabolism, which were targeted for disruption. Deletion of the ATP-dependent transporter, CbpD partially alleviated xylose inhibition. A putative xylitol dehydrogenase, encoded by Clo1313_0076, was also deleted resulting in decreased total xylitol production and yield by 41% and 46%, respectively. Finally, xylose-induced inhibition corresponds with the up-regulation and biogenesis of a cyclical AgrD-type, pentapeptide. Medium supplementation with the mature cyclical pentapeptide also inhibits bacterial growth. Together, these findings provide new foundational insights needed for engineering improved pentose utilizing strains of C. thermocellum and reveal the first functional Agr-type cyclic peptide to be produced by a thermophilic member of the Firmicutes. PMID:28230109

  15. 21 CFR 862.1565 - 6-Phosphogluconate dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Test Systems § 862.1565 6-Phosphogluconate dehydrogenase test system. (a) Identification. A 6-phosphogluconate dehydrogenase test system is a device intended to measure the activity of the enzyme 6... are used in the diagnosis and treatment of certain liver diseases (such as hepatitis) and anemias. (b...

  16. 21 CFR 862.1565 - 6-Phosphogluconate dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Test Systems § 862.1565 6-Phosphogluconate dehydrogenase test system. (a) Identification. A 6-phosphogluconate dehydrogenase test system is a device intended to measure the activity of the enzyme 6... are used in the diagnosis and treatment of certain liver diseases (such as hepatitis) and anemias. (b...

  17. Structural Basis for "Flip-Flop" Action of Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Korotchkina, Lioubov; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand

    2003-01-01

    The derivative of vitamin B1, thiamin pyrophosphate is a cofactor of pyruvate dehydrogenase, a component enzyme of the mitochondrial pyruvate dehydrogenase multienzyme complex that plays a major role in directing energy metabolism in the cell. This cofactor is used to cleave the C(sup alpha)-C(=O) bond of pyruvate followed by reductive acetyl transfer to lipoyl-dihydrolipoamide acetyltransferase. In alpha(sub 2)beta(sub 2)-tetrameric human pyruvate dehydrogenase, there are two cofactor binding sites, each of them being a center of independently conducted, although highly coordinated enzymatic reactions. The dynamic nonequivalence of two, otherwise chemically equivalent, catalytic sites can now be understood based on the recently determined crystal structure of the holo-form of human pyruvate dehydrogenase at 1.95A resolution. The structure of pyruvate dehydrogenase was determined using a combination of MAD phasing and molecular replacement followed by rounds of torsion-angles molecular-dynamics simulated-annealing refinement. The final pyruvate dehydrogenase structure included coordinates for all protein amino acids two cofactor molecules, two magnesium and two potassium ions, and 742 water molecules. The structure was refined to R = 0.202 and R(sub free) = 0.244. Our structural analysis of the enzyme folding and domain assembly identified a simple mechanism of this protein motion required for the conduct of catalytic action.

  18. [Discovery of the target genes inhibited by formic acid in Candida shehatae].

    PubMed

    Cai, Peng; Xiong, Xujie; Xu, Yong; Yong, Qiang; Zhu, Junjun; Shiyuan, Yu

    2014-01-04

    At transcriptional level, the inhibitory effects of formic acid was investigated on Candida shehatae, a model yeast strain capable of fermenting xylose to ethanol. Thereby, the target genes were regulated by formic acid and the transcript profiles were discovered. On the basis of the transcriptome data of C. shehatae metabolizing glucose and xylose, the genes responsible for ethanol fermentation were chosen as candidates by the combined method of yeast metabolic pathway analysis and manual gene BLAST search. These candidates were then quantitatively detected by RQ-PCR technique to find the regulating genes under gradient doses of formic acid. By quantitative analysis of 42 candidate genes, we finally identified 10 and 5 genes as markedly down-regulated and up-regulated targets by formic acid, respectively. With regard to gene transcripts regulated by formic acid in C. shehatae, the markedly down-regulated genes ranking declines as follows: xylitol dehydrogenase (XYL2), acetyl-CoA synthetase (ACS), ribose-5-phosphate isomerase (RKI), transaldolase (TAL), phosphogluconate dehydrogenase (GND1), transketolase (TKL), glucose-6-phosphate dehydrogenase (ZWF1), xylose reductase (XYL1), pyruvate dehydrogenase (PDH) and pyruvate decarboxylase (PDC); and a declining rank for up-regulated gens as follows: fructose-bisphosphate aldolase (ALD), glucokinase (GLK), malate dehydrogenase (MDH), 6-phosphofructokinase (PFK) and alcohol dehydrogenase (ADH).

  19. Three-dimensional structure of holo 3 alpha,20 beta-hydroxysteroid dehydrogenase: a member of a short-chain dehydrogenase family.

    PubMed Central

    Ghosh, D; Weeks, C M; Grochulski, P; Duax, W L; Erman, M; Rimsay, R L; Orr, J C

    1991-01-01

    The x-ray structure of a short-chain dehydrogenase, the bacterial holo 3 alpha,20 beta-hydroxysteroid dehydrogenase (EC 1.1.1.53), is described at 2.6 A resolution. This enzyme is active as a tetramer and crystallizes with four identical subunits in the asymmetric unit. It has the alpha/beta fold characteristic of the dinucleotide binding region. The fold of the rest of the subunit, the quaternary structure, and the nature of the cofactor-enzyme interactions are, however, significantly different from those observed in the long-chain dehydrogenases. The architecture of the postulated active site is consistent with the observed stereospecificity of the enzyme and the fact that the tetramer is the active form. There is only one cofactor and one substrate-binding site per subunit; the specificity for both 3 alpha- and 20 beta-ends of the steroid results from the binding of the steroid in two orientations near the same cofactor at the same catalytic site. Images PMID:1946424

  20. Characterization of human short chain dehydrogenase/reductase SDR16C family members related to retinol dehydrogenase 10.

    PubMed

    Adams, Mark K; Lee, Seung-Ah; Belyaeva, Olga V; Wu, Lizhi; Kedishvili, Natalia Y

    2017-10-01

    All-trans-retinoic acid (RA) is a bioactive derivative of vitamin A that serves as an activating ligand for nuclear transcription factors, retinoic acid receptors. RA biosynthesis is initiated by the enzymes that oxidize retinol to retinaldehyde. It is well established that retinol dehydrogenase 10 (RDH10, SDR16C4), which belongs to the 16C family of the short chain dehydrogenase/reductase (SDR) superfamily of proteins, is the major enzyme responsible for the oxidation of retinol to retinaldehyde for RA biosynthesis during embryogenesis. However, several lines of evidence point towards the existence of additional retinol dehydrogenases that contribute to RA biosynthesis in vivo. In close proximity to RDH10 gene on human chromosome 8 are located two genes that are phylogenetically related to RDH10. The predicted protein products of these genes, retinol dehydrogenase epidermal 2 (RDHE2, SDR16C5) and retinol dehydrogenase epidermal 2-similar (RDHE2S, SDR16C6), share 59% and 56% sequence similarity with RDH10, respectively. Previously, we showed that the single ortholog of the human RDHE2 and RDHE2S in frogs, Xenopus laevis rdhe2, oxidizes retinol to retinaldehyde and is essential for frog embryonic development. In this study, we explored the potential of each of the two human proteins to contribute to RA biosynthesis. The results of this study demonstrate that human RDHE2 exhibits a relatively low but reproducible activity when expressed in either HepG2 or HEK293 cells. Expression of the native RDHE2 is downregulated in the presence of elevated levels of RA. On the other hand, the protein encoded by the human RDHE2S gene is unstable when expressed in HEK293 cells. RDHE2S protein produced in Sf9 cells is stable but has no detectable catalytic activity towards retinol. We conclude that the human RDHE2S does not contribute to RA biosynthesis, whereas the low-activity RA-sensitive human RDHE2 may have a role in adjusting the cellular levels of RA in accord with

  1. Glucose-6-phosphate dehydrogenase deficiency presented with convulsion: a rare case.

    PubMed

    Merdin, Alparslan; Avci, Fatma; Guzelay, Nihal

    2014-01-29

    Red blood cells carry oxygen in the body and Glucose-6-Phosphate Dehydrogenase protects these cells from oxidative chemicals. If there is a lack of Glucose-6-Phosphate Dehydrogenase, red blood cells can go acute hemolysis. Convulsion is a rare presentation for acute hemolysis due to Glucose-6-Phosphate Dehydrogenase deficiency. Herein, we report a case report of a Glucose-6-Phosphate Dehydrogenase deficiency diagnosed patient after presentation with convulsion. A 70 year-old woman patient had been hospitalized because of convulsion and fatigue. She has not had similar symptoms before. She had ingested fava beans in the last two days. Her hypophyseal and brain magnetic resonance imaging were normal. Blood transfusion was performed and the patient recovered.

  2. Priapism and glucose-6-phosphate dehydrogenase deficiency: An underestimated correlation?

    PubMed

    De Rose, Aldo Franco; Mantica, Guglielmo; Tosi, Mattia; Bovio, Giulio; Terrone, Carlo

    2016-10-05

    Priapism is a rare clinical condition characterized by a persistent erection unrelated to sexual excitement. Often the etiology is idiopathic. Three cases of priapism in glucose-6-phosphate dehydrogenase (G6PD) deficiency patients have been described in literature. We present the case of a 39-year-old man with glucose- 6-phosphate dehydrogenase deficiency, who reached out to our department for the arising of a non-ischemic priapism without arteriolacunar fistula. We suggest that the glucose-6-phosphate dehydrogenase deficiency could be an underestimated risk factor for priapism.

  3. Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion.

    PubMed

    Hector, Ronald E; Dien, Bruce S; Cotta, Michael A; Qureshi, Nasib

    2011-09-01

    Saccharomyces' physiology and fermentation-related properties vary broadly among industrial strains used to ferment glucose. How genetic background affects xylose metabolism in recombinant Saccharomyces strains has not been adequately explored. In this study, six industrial strains of varied genetic background were engineered to ferment xylose by stable integration of the xylose reductase, xylitol dehydrogenase, and xylulokinase genes. Aerobic growth rates on xylose were 0.04-0.17 h(-1). Fermentation of xylose and glucose/xylose mixtures also showed a wide range of performance between strains. During xylose fermentation, xylose consumption rates were 0.17-0.31 g/l/h, with ethanol yields 0.18-0.27 g/g. Yields of ethanol and the metabolite xylitol were positively correlated, indicating that all of the strains had downstream limitations to xylose metabolism. The better-performing engineered and parental strains were compared for conversion of alkaline pretreated switchgrass to ethanol. The engineered strains produced 13-17% more ethanol than the parental control strains because of their ability to ferment xylose.

  4. [Genetic control of the isocitrate dehydrogenase and shikimate dehydrogenase isoenzyme systems in Sesame (Sesamun indicum L.)].

    PubMed

    Díaz, Antonio J; Layrisse, Alfredo J

    2002-01-01

    Taking into consideration that the ideal manipulation of isozymic markers needs knowledge of their genetic control, the aim of this study was to establish the inheritance and linkage degree of loci that control the expression of two sesame isozyme systems: isocitrate dehydrogenase (IDH) and shikimate dehydrogenase (SKD). The F2 electrophoretic behaviour of IDH and SKD from cultivars Turen x Arawaca cross was evaluated. The results suggest that IDH is controlled by two loci, Idh1 and Idh2 meanwhile SKD by only one, Skd1. The loci Idh1 and Skd1 showed three distinguishable patterns, corresponding to the homocygote genotypes and the heterocygote one, adjusted to a one-character common mendelian segregation 1:2:1. Cosegregation between Idh1 and Skd1 was independent.

  5. Characterization of human DHRS6, an orphan short chain dehydrogenase/reductase enzyme: a novel, cytosolic type 2 R-beta-hydroxybutyrate dehydrogenase.

    PubMed

    Guo, Kunde; Lukacik, Petra; Papagrigoriou, Evangelos; Meier, Marc; Lee, Wen Hwa; Adamski, Jerzy; Oppermann, Udo

    2006-04-14

    Human DHRS6 is a previously uncharacterized member of the short chain dehydrogenases/reductase family and displays significant homologies to bacterial hydroxybutyrate dehydrogenases. Substrate screening reveals sole NAD(+)-dependent conversion of (R)-hydroxybutyrate to acetoacetate with K(m) values of about 10 mm, consistent with plasma levels of circulating ketone bodies in situations of starvation or ketoacidosis. The structure of human DHRS6 was determined at a resolution of 1.8 A in complex with NAD(H) and reveals a tetrameric organization with a short chain dehydrogenases/reductase-typical folding pattern. A highly conserved triad of Arg residues ("triple R" motif consisting of Arg(144), Arg(188), and Arg(205)) was found to bind a sulfate molecule at the active site. Docking analysis of R-beta-hydroxybutyrate into the active site reveals an experimentally consistent model of substrate carboxylate binding and catalytically competent orientation. GFP reporter gene analysis reveals a cytosolic localization upon transfection into mammalian cells. These data establish DHRS6 as a novel, cytosolic type 2 (R)-hydroxybutyrate dehydrogenase, distinct from its well characterized mitochondrial type 1 counterpart. The properties determined for DHRS6 suggest a possible physiological role in cytosolic ketone body utilization, either as a secondary system for energy supply in starvation or to generate precursors for lipid and sterol synthesis.

  6. 9-Hydroxyprostaglandin dehydrogenase activity in the adult rat kidney. Regional distribution and sub-fractionation.

    PubMed

    Asciak, C P; Domazet, Z

    1975-02-20

    1. Catabolism of prostaglandin F2alpha in the adult rat kidney takes place by the following sequence of enzymatic steps: (1) 15-hydroxyprostaglandin dehydrogenase; (2) prostaglandin delta13-reductase; and (3) 9-hydroxyprostaglandin dehydrogenase. 2. 9-Hydroxyprostaglandin dehydrogenase activity was highest in the cortex with lesser amounts in the medulla and negligible activity detected in the papilla. A similar distribution was observed for 15-hydroxyprostaglandin dehydrogenase and prostaglandin delta13-reductase. 3. Most of the 9-hydroxyprostaglandin dehydrogenase activity in the homogenate was found in the high-speed supernatant as also observed for 15-hydroxyprostaglandin dehydrogenase and prostaglandin delta13-reductase. 4. These observations indicate that the rat kidney contains an abundance of prostaglandin-catabolising enzymes which favour formation of metabolites of the E-type.

  7. Role of quinate dehydrogenase in quinic acid metabolism in conifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipov, V.I.; Shein, I.V.

    1986-08-10

    Quinate dehydrogenase was isolated from young needles of the Siberian larch and partially purified by ammonium sulfate fractionation. It was found that in conifers, in contrast to other plants, quinate dehydrogenase is active both with NAD and with NADP. The values of K/sub m/ for quinate and NADP were 1.8 and 0.18 mM. The enzyme exhibits maximum activity at pH 9.0. It was assumed that NADP-dependent quinate dehydrogenase is responsible for quinic acid synthesis. The special features of the organization and regulation of the initial stages of the shikimate pathway in conifers are discussed.

  8. Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2 degrees Adh) as a bifunctional alcohol dehydrogenase--acetyl-CoA reductive thioesterase.

    PubMed Central

    Burdette, D; Zeikus, J G

    1994-01-01

    The purification and characterization of three enzymes involved in ethanol formation from acetyl-CoA in Thermoanaerobacter ethanolicus 39E (formerly Clostridium thermohydrosulfuricum 39E) is described. The secondary-alcohol dehydrogenase (2 degrees Adh) was determined to be a homotetramer of 40 kDa subunits (SDS/PAGE) with a molecular mass of 160 kDa. The 2 degrees Adh had a lower catalytic efficiency for the oxidation of 1 degree alcohols, including ethanol, than for the oxidation of secondary (2 degrees) alcohols or the reduction of ketones or aldehydes. This enzyme possesses a significant acetyl-CoA reductive thioesterase activity as determined by NADPH oxidation, thiol formation and ethanol production. The primary-alcohol dehydrogenase (1 degree Adh) was determined to be a homotetramer of 41.5 kDa (SDS/PAGE) subunits with a molecular mass of 170 kDa. The 1 degree Adh used both NAD(H) and NADP(H) and displayed higher catalytic efficiencies for NADP(+)-dependent ethanol oxidation and NADH-dependent acetaldehyde (identical to ethanal) reduction than for NADPH-dependent acetaldehyde reduction or NAD(+)-dependent ethanol oxidation. The NAD(H)-linked acetaldehyde dehydrogenase was a homotetramer (360 kDa) of identical subunits (100 kDa) that readily catalysed thioester cleavage and condensation. The 1 degree Adh was expressed at 5-20% of the level of the 2 degrees Adh throughout the growth cycle on glucose. The results suggest that the 2 degrees Adh primarily functions in ethanol production from acetyl-CoA and acetaldehyde, whereas the 1 degree Adh functions in ethanol consumption for nicotinamide-cofactor recycling. Images Figure 1 PMID:8068002

  9. Central carbon metabolism in marine bacteria examined with a simplified assay for dehydrogenases.

    PubMed

    Wen, Weiwei; Wang, Shizhen; Zhou, Xiaofen; Fang, Baishan

    2013-06-01

    A simplified assay platform was developed to measure the activities of the key oxidoreductases in central carbon metabolism of various marine bacteria. Based on microplate assay, the platform was low-cost and simplified by unifying the reaction conditions of enzymes including temperature, buffers, and ionic strength. The central carbon metabolism of 16 marine bacteria, involving Pseudomonas, Exiguobacterium, Marinobacter, Citreicella, and Novosphingobium were studied. Six key oxidoreductases of central carbon metabolism, glucose-6-phosphate dehydrogenase, pyruvate dehydrogenase, 2-ketoglutarate dehydrogenase, malate dehydrogenase, malic enzyme, and isocitrate dehydrogenase were investigated by testing their activities in the pathway. High activity of malate dehydrogenase was found in Citreicella marina, and the specific activity achieved 22 U/mg in cell crude extract. The results also suggested that there was a considerable variability on key enzymes' activities of central carbon metabolism in some strains which have close evolutionary relationship while they adapted to the requirements of the niche they (try to) occupy.

  10. Increased IMP dehydrogenase gene expression in solid tumor tissues and tumor cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collart, F.R.; Chubb, C.B.; Mirkin, B.L.

    1992-07-10

    IMP dehydrogenase, a regulatory enzyme of guanine nucleotide biosynthesis, may play a role in cell proliferation and malignancy. To assess this possibility, we examined IMP dehydrogenase expression in a series of human solid tumor tissues and tumor cell lines in comparison with their normal counterparts. Increased IMP dehydrogenase gene expression was observed in brain tumors relative to normal brain tissue and in sarcoma cells relative to normal fibroblasts. Similarly, in several B- and T-lymphoid leukemia cell lines, elevated levels of IMP dehydrogenase mRNA and cellular enzyme were observed in comparison with the levels in peripheral blood lymphocytes. These results aremore » consistent with an association between increased IMP dehydrogenase expression and either enhanced cell proliferation or malignant transformation.« less

  11. Toxic Neuronal Death by Glyeraldehyde-3-Phosphate Dehydrogenase and Mitochondria

    DTIC Science & Technology

    2003-08-01

    Neuroreport, 10(5), 1149-1153. Sioud, M., & Jespersen, L. (1996). Enhancement of hammerhead ribozyme catalysis by glyceraldehyde-3-phosphate dehydrogenase...1996) Enhancemen t of hammerhead r ibozyme cata lysis by glycera ldehyde-3- phospha te dehydrogenase. J Mol Biol 257:775–789. Sirover MA (1997) Role of

  12. Genetics Home Reference: pyruvate dehydrogenase deficiency

    MedlinePlus

    ... form that cells can use. The pyruvate dehydrogenase complex converts a molecule called pyruvate, which is formed from the breakdown of carbohydrates, into another molecule called acetyl-CoA. This conversion ...

  13. The importance of alcohol dehydrogenase in regulation of ethanol metabolism in rat liver cells.

    PubMed Central

    Page, R A; Kitson, K E; Hardman, M J

    1991-01-01

    We used titration with the inhibitors tetramethylene sulphoxide and isobutyramide to assess quantitatively the importance of alcohol dehydrogenase in regulation of ethanol oxidation in rat hepatocytes. In hepatocytes isolated from starved rats the apparent Flux Control Coefficient (calculated assuming a single-substrate irreversible reaction with non-competitive inhibition) of alcohol dehydrogenase is 0.3-0.5. Adjustment of this coefficient to allow for alcohol dehydrogenase being a two-substrate reversible enzyme increases the value by 1.3-1.4-fold. The final value of the Flux Control Coefficient of 0.5-0.7 indicates that alcohol dehydrogenase is a major rate-determining enzyme, but that other factors also have a regulatory role. In hepatocytes from fed rats the Flux Control Coefficient for alcohol dehydrogenase decreases with increasing acetaldehyde concentration. This suggests that, as acetaldehyde concentrations rise, control of the pathway shifts from alcohol dehydrogenase to other enzymes, particularly aldehyde dehydrogenase. There is not a single rate-determining step for the ethanol metabolism pathway and control is shared among several steps. PMID:1898355

  14. Variants of glycerol dehydrogenase having D-lactate dehydrogenase activity and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qingzhao; Shanmugam, Keelnatham T.; Ingram, Lonnie O'Neal

    The present invention provides methods of designing and generating glycerol dehydrogenase (GlyDH) variants that have altered function as compared to a parent polypeptide. The present invention further provides nucleic acids encoding GlyDH polypeptide variants having altered function as compared to the parent polypeptide. Host cells comprising polynucleotides encoding GlyDH variants and methods of producing lactic acids are also provided in various aspects of the invention.

  15. Systematic comparison of co-expression of multiple recombinant thermophilic enzymes in Escherichia coli BL21(DE3).

    PubMed

    Chen, Hui; Huang, Rui; Zhang, Y-H Percival

    2017-06-01

    The precise control of multiple heterologous enzyme expression levels in one Escherichia coli strain is important for cascade biocatalysis, metabolic engineering, synthetic biology, natural product synthesis, and studies of complexed proteins. We systematically investigated the co-expression of up to four thermophilic enzymes (i.e., α-glucan phosphorylase (αGP), phosphoglucomutase (PGM), glucose 6-phosphate dehydrogenase (G6PDH), and 6-phosphogluconate dehydrogenase (6PGDH)) in E. coli BL21(DE3) by adding T7 promoter or T7 terminator of each gene for multiple genes in tandem, changing gene alignment, and comparing one or two plasmid systems. It was found that the addition of T7 terminator after each gene was useful to decrease the influence of the upstream gene. The co-expression of the four enzymes in E. coli BL21(DE3) was demonstrated to generate two NADPH molecules from one glucose unit of maltodextrin, where NADPH was oxidized to convert xylose to xylitol. The best four-gene co-expression system was based on two plasmids (pET and pACYC) which harbored two genes. As a result, apparent enzymatic activities of the four enzymes were regulated to be at similar levels and the overall four-enzyme activity was the highest based on the formation of xylitol. This study provides useful information for the precise control of multi-enzyme-coordinated expression in E. coli BL21(DE3).

  16. Alcohol Dehydrogenase Activities of Wine Yeasts in Relation to Higher Alcohol Formation

    PubMed Central

    Singh, Rajendra; Kunkee, Ralph E.

    1976-01-01

    Alcohol dehydrogenase activities were examined in cell-free extracts of 10 representative wine yeast strains having various productivities of higher alcohols (fusel oil). The amount of fusel alcohols (n-propanol, isobutanol, active pentanol, and isopentanol) produced by the different yeasts and the specific alcohol dehydrogenase activities with the corresponding alcohols as substrates were found to be significantly related. No such relationship was found for ethanol. The amounts of higher alcohols formed during vinification could be predicted from the specific activities of the alcohol dehydrogenases with high accuracy. The results suggest a close relationship between the control of the activities of alcohol dehydrogenase and the formation of fusel oil alcohols. Also, new procedures for the prediction of higher alcohol formation during alcoholic beverage fermentation are suggested. PMID:16345179

  17. Pyruvate dehydrogenase deficiency and epilepsy.

    PubMed

    Prasad, Chitra; Rupar, Tony; Prasad, Asuri N

    2011-11-01

    The pyruvate dehydrogenase complex (PDHc) is a mitochondrial matrix multienzyme complex that provides the link between glycolysis and the tricarboxylic acid (TCA) cycle by catalyzing the conversion of pyruvate into acetyl-CoA. PDHc deficiency is one of the commoner metabolic disorders of lactic acidosis presenting with neurological phenotypes that vary with age and gender. In this mini-review, we postulate mechanisms of epilepsy in the setting of PDHc deficiency using two illustrative cases (one with pyruvate dehydrogenase complex E1-alpha polypeptide (PDHA1) deficiency and the second one with pyruvate dehydrogenase complex E1-beta subunit (PDHB) deficiency (a rare subtype of PDHc deficiency)) and a selected review of published case series. PDHc plays a critical role in the pathway of carbohydrate metabolism and energy production. In severe deficiency states the resulting energy deficit impacts on brain development in utero resulting in structural brain anomalies and epilepsy. Milder deficiency states present with variable manifestations that include cognitive delay, ataxia, and seizures. Epileptogenesis in PDHc deficiency is linked to energy failure, development of structural brain anomalies and abnormal neurotransmitter metabolism. The use of the ketogenic diet bypasses the metabolic block, by providing a direct source of acetyl-CoA, leading to amelioration of some symptoms. Genetic counseling is essential as PDHA1 deficiency (commonest defect) is X-linked although females can be affected due to unfavorable lyonization, while PDHB and PDH phosphatase (PDP) deficiencies (much rarer defects) are of autosomal recessive inheritance. Research is in progress for looking into animal models to better understand pathogenesis and management of this challenging disorder. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  18. A high effective NADH-ferricyanide dehydrogenase coupled with laccase for NAD(+) regeneration.

    PubMed

    Wang, Jizhong; Yang, Chengli; Chen, Xing; Bao, Bingxin; Zhang, Xuan; Li, Dali; Du, Xingfan; Shi, Ruofu; Yang, Junfang; Zhu, Ronghui

    2016-08-01

    To find an efficient and cheap system for NAD(+) regeneration A NADH-ferricyanide dehydrogenase was obtained from an isolate of Escherichia coli. Optimal activity of the NADH dehydrogenase was at 45 °C and pH 7.5, with a K m value for NADH of 10 μM. By combining the NADH dehydrogenase, potassium ferricyanide and laccase, a bi-enzyme system for NAD(+) regeneration was established. The system is attractive in that the O2 consumed by laccase is from air and the sole byproduct of the reaction is water. During the reaction process, 10 mM NAD(+) was transformed from NADH in less than 2 h under the condition of 0.5 U NADH dehydrogenase, 0.5 U laccase, 0.1 mM potassium ferricyanide at pH 5.6, 30 °C CONCLUSION: The bi-enzyme system employed the NADH-ferricyanide dehydrogenase and laccase as catalysts, and potassium ferricyanide as redox mediator, is a promising alternative for NAD(+) regeneration.

  19. Geraniol and Geranial Dehydrogenases Induced in Anaerobic Monoterpene Degradation by Castellaniella defragrans

    PubMed Central

    Lüddeke, Frauke; Wülfing, Annika; Timke, Markus; Germer, Frauke; Weber, Johanna; Dikfidan, Aytac; Rahnfeld, Tobias; Linder, Dietmar; Meyerdierks, Anke

    2012-01-01

    Castellaniella defragrans is a Betaproteobacterium capable of coupling the oxidation of monoterpenes with denitrification. Geraniol dehydrogenase (GeDH) activity was induced during growth with limonene in comparison to growth with acetate. The N-terminal sequence of the purified enzyme directed the cloning of the corresponding open reading frame (ORF), the first bacterial gene for a GeDH (geoA, for geraniol oxidation pathway). The C. defragrans geraniol dehydrogenase is a homodimeric enzyme that affiliates with the zinc-containing benzyl alcohol dehydrogenases in the superfamily of medium-chain-length dehydrogenases/reductases (MDR). The purified enzyme most efficiently catalyzes the oxidation of perillyl alcohol (kcat/Km = 2.02 × 106 M−1 s−1), followed by geraniol (kcat/Km = 1.57 × 106 M−1 s−1). Apparent Km values of <10 μM are consistent with an in vivo toxicity of geraniol above 5 μM. In the genetic vicinity of geoA is a putative aldehyde dehydrogenase that was named geoB and identified as a highly abundant protein during growth with phellandrene. Extracts of Escherichia coli expressing geoB demonstrated in vitro a geranial dehydrogenase (GaDH) activity. GaDH activity was independent of coenzyme A. The irreversible formation of geranic acid allows for a metabolic flux from β-myrcene via linalool, geraniol, and geranial to geranic acid. PMID:22286981

  20. Geraniol and geranial dehydrogenases induced in anaerobic monoterpene degradation by Castellaniella defragrans.

    PubMed

    Lüddeke, Frauke; Wülfing, Annika; Timke, Markus; Germer, Frauke; Weber, Johanna; Dikfidan, Aytac; Rahnfeld, Tobias; Linder, Dietmar; Meyerdierks, Anke; Harder, Jens

    2012-04-01

    Castellaniella defragrans is a Betaproteobacterium capable of coupling the oxidation of monoterpenes with denitrification. Geraniol dehydrogenase (GeDH) activity was induced during growth with limonene in comparison to growth with acetate. The N-terminal sequence of the purified enzyme directed the cloning of the corresponding open reading frame (ORF), the first bacterial gene for a GeDH (geoA, for geraniol oxidation pathway). The C. defragrans geraniol dehydrogenase is a homodimeric enzyme that affiliates with the zinc-containing benzyl alcohol dehydrogenases in the superfamily of medium-chain-length dehydrogenases/reductases (MDR). The purified enzyme most efficiently catalyzes the oxidation of perillyl alcohol (k(cat)/K(m) = 2.02 × 10(6) M(-1) s(-1)), followed by geraniol (k(cat)/K(m) = 1.57 × 10(6) M(-1) s(-1)). Apparent K(m) values of <10 μM are consistent with an in vivo toxicity of geraniol above 5 μM. In the genetic vicinity of geoA is a putative aldehyde dehydrogenase that was named geoB and identified as a highly abundant protein during growth with phellandrene. Extracts of Escherichia coli expressing geoB demonstrated in vitro a geranial dehydrogenase (GaDH) activity. GaDH activity was independent of coenzyme A. The irreversible formation of geranic acid allows for a metabolic flux from β-myrcene via linalool, geraniol, and geranial to geranic acid.

  1. Cloning and characterization of the glutamate dehydrogenase gene in Streptococcus bovis.

    PubMed

    Ando, Tasuke; Sugawara, Yoko; Nishio, Ryohei; Murakami, Miho; Isogai, Emiko; Yoneyama, Hiroshi

    2017-07-01

    Streptococcus bovis, an etiologic agent of rumen acidosis in cattle, is a rumen bacterium that can grow in a chemically defined medium containing ammonia as a sole source of nitrogen. To understand its ability to assimilate inorganic ammonia, we focused on the function of glutamate dehydrogenase. In order to identify the gene encoding this enzyme, we first amplified an internal region of the gene by using degenerate primers corresponding to hexameric family I and NAD(P) + binding motifs. Subsequently, inverse PCR was used to identify the whole gene, comprising an open reading frame of 1350 bp that encodes 449 amino acid residues that appear to have the substrate binding site of glutamate dehydrogenase observed in other organisms. Upon introduction of a recombinant plasmid harboring the gene into an Escherichia coli glutamate auxotroph lacking glutamate dehydrogenase and glutamate synthase, the transformants gained the ability to grow on minimal medium without glutamate supplementation. When cell extracts of the transformant were resolved by blue native polyacrylamide gel electrophoresis followed by activity staining, a single protein band appeared that corresponded to the size of S. bovis glutamate dehydrogenase. Based on these results, we concluded that the gene obtained encodes glutamate dehydrogenase in S. bovis. © 2016 Japanese Society of Animal Science.

  2. Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity

    PubMed Central

    Horaguchi, Yohei; Saito, Shoko; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2012-01-01

    Mutagenesis studies on glucose oxidases (GOxs) were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe) and Aspergillus niger GOx (PDB ID; 1cf3). We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC) oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor. PMID:23203056

  3. The metabolism of ethanol-derived acetaldehyde by alcohol dehydrogenase (EC 1.1.1.1) and aldehyde dehydrogenase (EC 1.2.1.3) in Drosophila melanogaster larvae.

    PubMed Central

    Heinstra, P W; Geer, B W; Seykens, D; Langevin, M

    1989-01-01

    Both aldehyde dehydrogenase (ALDH, EC 1.2.1.3) and the aldehyde dehydrogenase activity of alcohol dehydrogenase (ADH, EC 1.1.1.1) were found to coexist in Drosophila melanogaster larvae. The enzymes, however, showed different inhibition patterns with respect to pyrazole, cyanamide and disulphiram. ALDH-1 and ALDH-2 isoenzymes were detected in larvae by electrophoretic methods. Nonetheless, in tracer studies in vivo, more than 75% of the acetaldehyde converted to acetate by the ADH ethanol-degrading pathway appeared to be also catalysed by the ADH enzyme. The larval fat body probably was the major site of this pathway. Images Fig. 1. Fig. 2. PMID:2499314

  4. Structural Insights into l-Tryptophan Dehydrogenase from a Photoautotrophic Cyanobacterium, Nostoc punctiforme.

    PubMed

    Wakamatsu, Taisuke; Sakuraba, Haruhiko; Kitamura, Megumi; Hakumai, Yuichi; Fukui, Kenji; Ohnishi, Kouhei; Ashiuchi, Makoto; Ohshima, Toshihisa

    2017-01-15

    l-Tryptophan dehydrogenase from Nostoc punctiforme NIES-2108 (NpTrpDH), despite exhibiting high amino acid sequence identity (>30%)/homology (>50%) with NAD(P) + -dependent l-Glu/l-Leu/l-Phe/l-Val dehydrogenases, exclusively catalyzes reversible oxidative deamination of l-Trp to 3-indolepyruvate in the presence of NAD + Here, we determined the crystal structure of the apo form of NpTrpDH. The structure of the NpTrpDH monomer, which exhibited high similarity to that of l-Glu/l-Leu/l-Phe dehydrogenases, consisted of a substrate-binding domain (domain I, residues 3 to 133 and 328 to 343) and an NAD + /NADH-binding domain (domain II, residues 142 to 327) separated by a deep cleft. The apo-NpTrpDH existed in an open conformation, where domains I and II were apart from each other. The subunits dimerized themselves mainly through interactions between amino acid residues around the β-1 strand of each subunit, as was observed in the case of l-Phe dehydrogenase. The binding site for the substrate l-Trp was predicted by a molecular docking simulation and validated by site-directed mutagenesis. Several hydrophobic residues, which were located in the active site of NpTrpDH and possibly interacted with the side chain of the substrate l-Trp, were arranged similarly to that found in l-Leu/l-Phe dehydrogenases but fairly different from that of an l-Glu dehydrogenase. Our crystal structure revealed that Met-40, Ala-69, Ile-74, Ile-110, Leu-288, Ile-289, and Tyr-292 formed a hydrophobic cluster around the active site. The results of the site-directed mutagenesis experiments suggested that the hydrophobic cluster plays critical roles in protein folding, l-Trp recognition, and catalysis. Our results provide critical information for further characterization and engineering of this enzyme. In this study, we determined the three-dimensional structure of l-Trp dehydrogenase, analyzed its various site-directed substitution mutants at residues located in the active site, and obtained the

  5. An efficient ribitol-specific dehydrogenase from Enterobacter aerogenes.

    PubMed

    Singh, Ranjitha; Singh, Raushan; Kim, In-Won; Sigdel, Sujan; Kalia, Vipin C; Kang, Yun Chan; Lee, Jung-Kul

    2015-05-01

    An NAD(+)-dependent ribitol dehydrogenase from Enterobacter aerogenes KCTC 2190 (EaRDH) was cloned and successfully expressed in Escherichia coli. The complete 729-bp gene was amplified, cloned, expressed, and subsequently purified in an active soluble form using nickel affinity chromatography. The enzyme had an optimal pH and temperature of 11.0 and 45°C, respectively. Among various polyols, EaRDH exhibited activity only toward ribitol, with Km, Vmax, and kcat/Km values of 10.3mM, 185Umg(-1), and 30.9s(-1)mM(-1), respectively. The enzyme showed strong preference for NAD(+) and displayed no detectable activity with NADP(+). Homology modeling and sequence analysis of EaRDH, along with its biochemical properties, confirmed that EaRDH belongs to the family of NAD(+)-dependent ribitol dehydrogenases, a member of short-chain dehydrogenase/reductase (SCOR) family. EaRDH showed the highest activity and unique substrate specificity among all known RDHs. Homology modeling and docking analysis shed light on the molecular basis of its unusually high activity and substrate specificity. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Estrogen and androgen-converting enzymes 17β-hydroxysteroid dehydrogenase and their involvement in cancer: with a special focus on 17β-hydroxysteroid dehydrogenase type 1, 2, and breast cancer

    PubMed Central

    Hilborn, Erik; Stål, Olle; Jansson, Agneta

    2017-01-01

    Sex steroid hormones such as estrogens and androgens are involved in the development and differentiation of the breast tissue. The activity and concentration of sex steroids is determined by the availability from the circulation, and on local conversion. This conversion is primarily mediated by aromatase, steroid sulfatase, and 17β-hydroxysteroid dehydrogenases. In postmenopausal women, this is the primary source of estrogens in the breast. Up to 70-80% of all breast cancers express the estrogen receptor-α, responsible for promoting the growth of the tissue. Further, 60-80% express the androgen receptor, which has been shown to have tissue protective effects in estrogen receptor positive breast cancer, and a more ambiguous response in estrogen receptor negative breast cancers. In this review, we summarize the function and clinical relevance in cancer for 17β-hydroxysteroid dehydrogenases 1, which facilitates the reduction of estrone to estradiol, dehydroepiandrosterone to androstendiol and dihydrotestosterone to 3α- and 3β-diol as well as 17β-hydroxysteroid dehydrogenases 2 which mediates the oxidation of estradiol to estrone, testosterone to androstenedione and androstendiol to dehydroepiandrosterone. The expression of 17β-hydroxysteroid dehydrogenases 1 and 2 alone and in combination has been shown to predict patient outcome, and inhibition of 17β-hydroxysteroid dehydrogenases 1 has been proposed to be a prime candidate for inhibition in patients who develop aromatase inhibitor resistance or in combination with aromatase inhibitors as a first line treatment. Here we review the status of inhibitors against 17β-hydroxysteroid dehydrogenases 1. In addition, we review the involvement of 17β-hydroxysteroid dehydrogenases 4, 5, 7, and 14 in breast cancer. PMID:28430630

  7. Estrogen and androgen-converting enzymes 17β-hydroxysteroid dehydrogenase and their involvement in cancer: with a special focus on 17β-hydroxysteroid dehydrogenase type 1, 2, and breast cancer.

    PubMed

    Hilborn, Erik; Stål, Olle; Jansson, Agneta

    2017-05-02

    Sex steroid hormones such as estrogens and androgens are involved in the development and differentiation of the breast tissue. The activity and concentration of sex steroids is determined by the availability from the circulation, and on local conversion. This conversion is primarily mediated by aromatase, steroid sulfatase, and 17β-hydroxysteroid dehydrogenases. In postmenopausal women, this is the primary source of estrogens in the breast. Up to 70-80% of all breast cancers express the estrogen receptor-α, responsible for promoting the growth of the tissue. Further, 60-80% express the androgen receptor, which has been shown to have tissue protective effects in estrogen receptor positive breast cancer, and a more ambiguous response in estrogen receptor negative breast cancers. In this review, we summarize the function and clinical relevance in cancer for 17β-hydroxysteroid dehydrogenases 1, which facilitates the reduction of estrone to estradiol, dehydroepiandrosterone to androstendiol and dihydrotestosterone to 3α- and 3β-diol as well as 17β-hydroxysteroid dehydrogenases 2 which mediates the oxidation of estradiol to estrone, testosterone to androstenedione and androstendiol to dehydroepiandrosterone. The expression of 17β-hydroxysteroid dehydrogenases 1 and 2 alone and in combination has been shown to predict patient outcome, and inhibition of 17β-hydroxysteroid dehydrogenases 1 has been proposed to be a prime candidate for inhibition in patients who develop aromatase inhibitor resistance or in combination with aromatase inhibitors as a first line treatment. Here we review the status of inhibitors against 17β-hydroxysteroid dehydrogenases 1. In addition, we review the involvement of 17β-hydroxysteroid dehydrogenases 4, 5, 7, and 14 in breast cancer.

  8. Structural and biochemical insights into 7β-hydroxysteroid dehydrogenase stereoselectivity.

    PubMed

    Savino, Simone; Ferrandi, Erica Elisa; Forneris, Federico; Rovida, Stefano; Riva, Sergio; Monti, Daniela; Mattevi, Andrea

    2016-06-01

    Hydroxysteroid dehydrogenases are of great interest as biocatalysts for transformations involving steroid substrates. They feature a high degree of stereo- and regio-selectivity, acting on a defined atom with a specific configuration of the steroid nucleus. The crystal structure of 7β-hydroxysteroid dehydrogenase from Collinsella aerofaciens reveals a loop gating active-site accessibility, the bases of the specificity for NADP(+) , and the general architecture of the steroid binding site. Comparison with 7α-hydroxysteroid dehydrogenase provides a rationale for the opposite stereoselectivity. The presence of a C-terminal extension reshapes the substrate site of the β-selective enzyme, possibly leading to an inverted orientation of the bound substrate. Proteins 2016; 84:859-865. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. [Cloning and sequence analysis of full-length cDNA of secoisolariciresinol dehydrogenase of Dysosma versipellis].

    PubMed

    Xu, Li; Ding, Zhi-Shan; Zhou, Yun-Kai; Tao, Xue-Fen

    2009-06-01

    To obtain the full-length cDNA sequence of Secoisolariciresinol Dehydrogenase gene from Dysosma versipellis by RACE PCR,then investigate the character of Secoisolariciresinol Dehydrogenase gene. The full-length cDNA sequence of Secoisolariciresinol Dehydrogenase gene was obtained by 3'-RACE and 5'-RACE from Dysosma versipellis. We first reported the full cDNA sequences of Secoisolariciresinol Dehydrogenase in Dysosma versipellis. The acquired gene was 991bp in full length, including 5' untranslated region of 42bp, 3' untranslated region of 112bp with Poly (A). The open reading frame (ORF) encoding 278 amino acid with molecular weight 29253.3 Daltons and isolectric point 6.328. The gene accession nucleotide sequence number in GeneBank was EU573789. Semi-quantitative RT-PCR analysis revealed that the Secoisolariciresinol Dehydrogenase gene was highly expressed in stem. Alignment of the amino acid sequence of Secoisolariciresinol Dehydrogenase indicated there may be some significant amino acid sequence difference among different species. Obtain the full-length cDNA sequence of Secoisolariciresinol Dehydrogenase gene from Dysosma versipellis.

  10. Pyruvate dehydrogenase complex and lactate dehydrogenase are targets for therapy of acute liver failure.

    PubMed

    Ferriero, Rosa; Nusco, Edoardo; De Cegli, Rossella; Carissimo, Annamaria; Manco, Giuseppe; Brunetti-Pierri, Nicola

    2018-03-24

    Acute liver failure is a rapidly progressive deterioration of hepatic function resulting in high mortality and morbidity. Metabolic enzymes can translocate to the nucleus to regulate histone acetylation and gene expression. Levels and activities of pyruvate dehydrogenase complex (PDHC) and lactate dehydrogenase (LDH) were evaluated in nuclear fractions of livers of mice exposed to various hepatotoxins including CD95-antibody, α-amanitin, and acetaminophen. Whole-genome gene expression profiling by RNA-seq was performed in livers of mice with acute liver failure and analyzed by gene ontology enrichment analysis. Cell viability was evaluated in cell lines knocked-down for PDHA1 or LDH-A and in cells incubated with the LDH inhibitor galloflavin after treatment with CD95-antibody. We evaluated whether the histone acetyltransferase inhibitor garcinol or galloflavin could reduce liver damage in mice with acute liver failure. Levels and activities of PDHC and LDH were increased in nuclear fractions of livers of mice with acute liver failure. The increase of nuclear PDHC and LDH was associated with increased concentrations of acetyl-CoA and lactate in nuclear fractions, and histone H3 hyper-acetylation. Gene expression in livers of mice with acute liver failure suggested that increased histone H3 acetylation induces the expression of genes related to damage response. Reduced histone acetylation by the histone acetyltransferase inhibitor garcinol decreased liver damage and improved survival in mice with acute liver failure. Knock-down of PDHC or LDH improved viability in cells exposed to a pro-apoptotic stimulus. Treatment with the LDH inhibitor galloflavin that was also found to inhibit PDHC, reduced hepatic necrosis, apoptosis, and expression of pro-inflammatory cytokines in mice with acute liver failure. Mice treated with galloflavin also showed a dose-response increase in survival. PDHC and LDH translocate to the nucleus, leading to increased nuclear concentrations of

  11. Thermophysical Characterization of MgCl₂·6H₂O, Xylitol and Erythritol as Phase Change Materials (PCM) for Latent Heat Thermal Energy Storage (LHTES).

    PubMed

    Höhlein, Stephan; König-Haagen, Andreas; Brüggemann, Dieter

    2017-04-24

    The application range of existing real scale mobile thermal storage units with phase change materials (PCM) is restricted by the low phase change temperature of 58 ∘ C for sodium acetate trihydrate, which is a commonly used storage material. Therefore, only low temperature heat sinks like swimming pools or greenhouses can be supplied. With increasing phase change temperatures, more applications like domestic heating or industrial process heat could be operated. The aim of this study is to find alternative PCM with phase change temperatures between 90 and 150 ∘ C . Temperature dependent thermophysical properties like phase change temperatures and enthalpies, densities and thermal diffusivities are measured for the technical grade purity materials xylitol (C 5 H 12 O 5 ), erythritol (C 4 H 10 O 4 ) and magnesiumchloride hexahydrate (MCHH, MgCl 2 · 6H 2 O). The sugar alcohols xylitol and erythritol indicate a large supercooling and different melting regimes. The salt hydrate MgCl 2 · 6H 2 O seems to be a suitable candidate for practical applications. It has a melting temperature of 115.1 ± 0.1 ∘ C and a phase change enthalpy of 166.9 ± 1.2 J / g with only 2.8 K supercooling at sample sizes of 100 g . The PCM is stable over 500 repeated melting and solidification cycles at differential scanning calorimeter (DSC) scale with only small changes of the melting enthalpy and temperature.

  12. Catalysis of nitrite generation from nitroglycerin by glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

    PubMed

    Seabra, Amedea B; Ouellet, Marc; Antonic, Marija; Chrétien, Michelle N; English, Ann M

    2013-11-30

    Vascular relaxation to nitroglycerin (glyceryl trinitrate; GTN) requires its bioactivation by mechanisms that remain controversial. We report here that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the release of nitrite from GTN. In assays containing dithiothreitol (DTT) and NAD(+), the GTN reductase activity of purified GAPDH produces nitrite and 1,2-GDN as the major products. A vmax of 2.6nmolmin(-)(1)mg(-)(1) was measured for nitrite production by GAPDH from rabbit muscle and a GTN KM of 1.2mM. Reductive denitration of GTN in the absence of DTT results in dose- and time-dependent inhibition of GAPDH dehydrogenase activity. Disulfiram, a thiol-modifying drug, inhibits both the dehydrogenase and GTN reductase activity of GAPDH, while DTT or tris(2-carboxyethyl)phosphine reverse the GTN-induced inhibition. Incubation of intact human erythrocytes or hemolysates with 2mM GTN for 60min results in 50% inhibition of GAPDH's dehydrogenase activity, indicating that GTN is taken up by these cells and that the dehydrogenase is a target of GTN. Thus, erythrocyte GAPDH may contribute to GTN bioactivation. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  13. Kinetic mechanism of Escherichia coli isocitrate dehydrogenase and its inhibition by glyoxylate and oxaloacetate.

    PubMed Central

    Nimmo, H G

    1986-01-01

    The inhibition of Escherichia coli isocitrate dehydrogenase by glyoxylate and oxaloacetate was examined. The shapes of the progress curves in the presence of the inhibitors depended on the order of addition of the assay components. When isocitrate dehydrogenase or NADP+ was added last, the rate slowly decreased until a new, inhibited, steady state was obtained. When isocitrate was added last, the initial rate was almost zero, but the rate increased slowly until the same steady-state value was obtained. Glyoxylate and oxaloacetate gave competitive inhibition against isocitrate and uncompetitive inhibition against NADP+. Product-inhibition studies showed that isocitrate dehydrogenase obeys a compulsory-order mechanism, with coenzyme binding first. Glyoxylate and oxaloacetate bind to and dissociate from isocitrate dehydrogenase slowly. These observations can account for the shapes of the progress curves observed in the presence of the inhibitors. Condensation of glyoxylate and oxaloacetate produced an extremely potent inhibitor of isocitrate dehydrogenase. Analysis of the reaction by h.p.l.c. showed that this correlated with the formation of oxalomalate. This compound decomposed spontaneously in assay mixtures, giving 4-hydroxy-2-oxoglutarate, which was a much less potent inhibitor of the enzyme. Oxalomalate inhibited isocitrate dehydrogenase competitively with respect to isocitrate and was a very poor substrate for the enzyme. The data suggest that the inhibition of isocitrate dehydrogenase by glyoxylate and oxaloacetate is not physiologically significant. PMID:3521584

  14. Comparison of the effects of Ca2+, adenine nucleotides and pH on the kinetic properties of mitochondrial NAD(+)-isocitrate dehydrogenase and oxoglutarate dehydrogenase from the yeast Saccharomyces cerevisiae and rat heart.

    PubMed Central

    Nichols, B J; Rigoulet, M; Denton, R M

    1994-01-01

    The regulatory properties of NAD(+)-isocitrate dehydrogenase and oxoglutarate dehydrogenase in extracts of yeast and rat heart mitochondria were studied under identical conditions. Yeast NAD(+)-isocitrate dehydrogenase exhibits a low K0.5 for isocitrate and is activated by AMP and ADP, but is insensitive to ATP and Ca2+. In contrast, the rat heart NAD(+)-isocitrate dehydrogenase was insensitive to AMP, but was activated by ADP and by Ca2+ in the presence of ADP or ATP. Both yeast and rat heart oxoglutarate dehydrogenase were stimulated by ADP, but only the heart enzyme was activated by Ca2+. All the enzymes studied were activated by decreases in pH, but to differing extents. The effects of Ca2+, adenine nucleotides and pH were through K0.5 for isocitrate or 2-oxoglutarate. These observations are discussed with reference to the deduced amino acid sequences of the constituent subunits of the enzymes, where they are available. PMID:7980405

  15. Overexpression of Lactobacillus casei D-hydroxyisocaproic acid dehydrogenase in cheddar cheese.

    PubMed

    Broadbent, Jeffery R; Gummalla, Sanjay; Hughes, Joanne E; Johnson, Mark E; Rankin, Scott A; Drake, Mary Anne

    2004-08-01

    Metabolism of aromatic amino acids by lactic acid bacteria is an important source of off-flavor compounds in Cheddar cheese. Previous work has shown that alpha-keto acids produced from Trp, Tyr, and Phe by aminotransferase enzymes are chemically labile and may degrade spontaneously into a variety of off-flavor compounds. However, dairy lactobacilli can convert unstable alpha-keto acids to more-stable alpha-hydroxy acids via the action of alpha-keto acid dehydrogenases such as d-hydroxyisocaproic acid dehydrogenase. To further characterize the role of this enzyme in cheese flavor, the Lactobacillus casei d-hydroxyisocaproic acid dehydrogenase gene was cloned into the high-copy-number vector pTRKH2 and transformed into L. casei ATCC 334. Enzyme assays confirmed that alpha-keto acid dehydrogenase activity was significantly higher in pTRKH2:dhic transformants than in wild-type cells. Reduced-fat Cheddar cheeses were made with Lactococcus lactis starter only, starter plus L. casei ATCC 334, and starter plus L. casei ATCC 334 transformed with pTRKH2:dhic. After 3 months of aging, the cheese chemistry and flavor attributes were evaluated instrumentally by gas chromatography-mass spectrometry and by descriptive sensory analysis. The culture system used significantly affected the concentrations of various ketones, aldehydes, alcohols, and esters and one sulfur compound in cheese. Results further indicated that enhanced expression of d-hydroxyisocaproic acid dehydrogenase suppressed spontaneous degradation of alpha-keto acids, but sensory work indicated that this effect retarded cheese flavor development.

  16. Substrate specificity of sheep liver sorbitol dehydrogenase.

    PubMed Central

    Lindstad, R I; Köll, P; McKinley-McKee, J S

    1998-01-01

    The substrate specificity of sheep liver sorbitol dehydrogenase has been studied by steady-state kinetics over the range pH 7-10. Sorbitol dehydrogenase stereo-selectively catalyses the reversible NAD-linked oxidation of various polyols and other secondary alcohols into their corresponding ketones. The kinetic constants are given for various novel polyol substrates, including L-glucitol, L-mannitol, L-altritol, D-altritol, D-iditol and eight heptitols, as well as for many aliphatic and aromatic alcohols. The maximum velocities (kcat) and the substrate specificity-constants (kcat/Km) are positively correlated with increasing pH. The enzyme-catalysed reactions occur by a compulsory ordered kinetic mechanism with the coenzyme as the first, or leading, substrate. With many substrates, the rate-limiting step for the overall reaction is the enzyme-NADH product dissociation. However, with several substrates there is a transition to a mechanism with partial rate-limitation at the ternary complex level, especially at low pH. The kinetic data enable the elucidation of new empirical rules for the substrate specificity of sorbitol dehydrogenase. The specificity-constants for polyol oxidation vary as a function of substrate configuration with D-xylo> D-ribo > L-xylo > D-lyxo approximately L-arabino > D-arabino > L-lyxo. Catalytic activity with a polyol or an aromatic substrate and various 1-deoxy derivatives thereof varies with -CH2OH > -CH2NH2 > -CH2OCH3 approximately -CH3. The presence of a hydroxyl group at each of the remaining chiral centres of a polyol, apart from the reactive C2, is also nonessential for productive ternary complex formation and catalysis. A predominantly nonpolar enzymic epitope appears to constitute an important structural determinant for the substrate specificity of sorbitol dehydrogenase. The existence of two distinct substrate binding regions in the enzyme active site, along with that of the catalytic zinc, is suggested to account for the lack of

  17. Malate dehydrogenase isozymes in the longnose dace, Rhinichthys cataractae.

    PubMed

    Starzyk, R M; Merritt, R B

    1980-08-01

    The interspecies homology of dace supernatant (A2,AB,B2) and mitochondrial (C2) malate dehydrogenase isozymes has been established through cell fractionation and tissue distribution studies. Isolated supernatant malate dehydrogenase (s-MDH) isozymes show significant differences in Michaelis constants for oxaloacetate and in pH optima. Shifts in s-MDH isozyme pH optima with temperature may result in immediate compensation for increase in ectotherm body pH with decrease in temperature, but duplicate s-MDH isozymes are probably maintained through selection for tissue specific regulation of metabolism.

  18. Genetics Home Reference: succinic semialdehyde dehydrogenase deficiency

    MedlinePlus

    ... Salomons GS, Maropoulos GD, Jakobs C, Grompe M, Gibson KM. Mutational spectrum of the succinate semialdehyde dehydrogenase ( ... Dec;22(6):442-50. Citation on PubMed Gibson KM, Gupta M, Pearl PL, Tuchman M, Vezina ...

  19. Structural Biology of Proteins of the Multi-enzyme Assembly Human Pyruvate Dehydrogenase Complex

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Objectives and research challenges of this effort include: 1. Need to establish Human Pyruvate Dehydrogenase Complex protein crystals; 2. Need to test value of microgravity for improving crystal quality of Human Pyruvate Dehydrogenase Complex protein crystals; 3. Need to improve flight hardware in order to control and understand the effects of microgravity on crystallization of Human Pyruvate Dehydrogenase Complex proteins; 4. Need to integrate sets of national collaborations with the restricted and specific requirements of flight experiments; 5. Need to establish a highly controlled experiment in microgravity with a rigor not yet obtained; 6. Need to communicate both the rigor of microgravity experiments and the scientific value of results obtained from microgravity experiments to the national community; and 7. Need to advance the understanding of Human Pyruvate Dehydrogenase Complex structures so that scientific and commercial advance is identified for these proteins.

  20. Binding, hydration, and decarboxylation of the reaction intermediate glutaconyl-coenzyme A by human glutaryl-CoA dehydrogenase.

    PubMed

    Westover, J B; Goodman, S I; Frerman, F E

    2001-11-20

    Glutaconyl-coenzyme A (CoA) is the presumed enzyme-bound intermediate in the oxidative decarboxylation of glutaryl-CoA that is catalyzed by glutaryl-CoA dehydrogenase. We demonstrated glutaconyl-CoA bound to glutaryl-CoA dehydrogenase after anaerobic reduction of the dehydrogenase with glutaryl-CoA. Glutaryl-CoA dehydrogenase also has intrinsic enoyl-CoA hydratase activity, a property of other members of the acyl-CoA dehydrogenase family. The enzyme rapidly hydrates glutaconyl-CoA at pH 7.6 with a k(cat) of 2.7 s(-1). The k(cat) in the overall oxidation-decarboxylation reaction at pH 7.6 is about 9 s(-1). The binding of glutaconyl-CoA was quantitatively assessed from the K(m) in the hydratase reaction, 3 microM, and the K(i), 1.0 microM, as a competitive inhibitor of the dehydrogenase. These values compare with K(m) and K(i) of 4.0 and 12.9 microM, respectively, for crotonyl-CoA. Glu370 is the general base catalyst in the dehydrogenase that abstracts an alpha-proton of the substrate to initiate the catalytic pathway. The mutant dehydrogenase, Glu370Gln, is inactive in the dehydrogenation and the hydratase reactions. However, this mutant dehydrogenase decarboxylates glutaconyl-CoA to crotonyl-CoA without oxidation-reduction reactions of the dehydrogenase flavin. Addition of glutaconyl-CoA to this mutant dehydrogenase results in a rapid, transient increase in long-wavelength absorbance (lambda(max) approximately 725 nm), and crotonyl-CoA is found as the sole product. We propose that this 725 nm-absorbing species is the delocalized crotonyl-CoA anion that follows decarboxylation and that the decay is the result of slow protonation of the anion in the absence of the general acid catalyst, Glu370(H(+)). In the absence of detectable oxidation-reduction, the data indicate that oxidation-reduction of the dehydrogenase flavin is not essential for decarboxylation of glutaconyl-CoA.

  1. Purification and Characterization of Two Distinct NAD(P)H Dehydrogenases from Onion (Allium cepa L.) Root Plasma Membrane.

    PubMed Central

    Serrano, A.; Cordoba, F.; Gonzalez-Reyes, J. A.; Navas, P.; Villalba, J. M.

    1994-01-01

    Highly purified plasma membrane fractions were obtained from onion (Allium cepa L.) roots and used as a source for purification of redox proteins. Plasma membranes solubilized with Triton X-100 contained two distinct polypeptides showing NAD(P)H-dependent dehydrogenase activities. Dehydrogenase I was purified by gel filtration in Sephacryl S-300 HR, ion-exchange chromatography in DEAE-Sepharose CL-6B, and dye-ligand affinity chromatography in Blue-Sepharose CL-6B after biospecific elution with NADH. Dehydrogenase I consisted of a single polypeptide of about 27 kD and an isoelectric point of about 6. Dehydrogenase II was purified from the DEAE-unbound fraction by chromatography in Blue-Sepharose CL-6B and affinity elution with NADH. Dehydrogenase II consisted of a single polypeptide of about 31 kD and an isoelectric point of about 8. Purified dehydrogenase I oxidized both NADPH and NADH, although higher rates of electron transfer were obtained with NADPH. Maximal activity was achieved with NADPH as donor and juglone or coenzyme Q as acceptor. Dehydrogenase II was specific for NADH and exhibited maximal activity with ferricyanide. Optimal pH for both dehydrogenases was about 6. Dehydrogenase I was moderately inhibited by dicumarol, thenoyltrifluoroacetone, and the thiol reagent N-ethyl-maleimide. A strong inhibition of dehydrogenase II was obtained with dicumarol, thenoyltrifluoroacetone, and the thiol reagent p-hydroxymercuribenzoate. PMID:12232306

  2. Thermophysical Characterization of MgCl2·6H2O, Xylitol and Erythritol as Phase Change Materials (PCM) for Latent Heat Thermal Energy Storage (LHTES)

    PubMed Central

    Höhlein, Stephan; König-Haagen, Andreas; Brüggemann, Dieter

    2017-01-01

    The application range of existing real scale mobile thermal storage units with phase change materials (PCM) is restricted by the low phase change temperature of 58 ∘C for sodium acetate trihydrate, which is a commonly used storage material. Therefore, only low temperature heat sinks like swimming pools or greenhouses can be supplied. With increasing phase change temperatures, more applications like domestic heating or industrial process heat could be operated. The aim of this study is to find alternative PCM with phase change temperatures between 90 and 150 ∘C. Temperature dependent thermophysical properties like phase change temperatures and enthalpies, densities and thermal diffusivities are measured for the technical grade purity materials xylitol (C5H12O5), erythritol (C4H10O4) and magnesiumchloride hexahydrate (MCHH, MgCl2·6H2O). The sugar alcohols xylitol and erythritol indicate a large supercooling and different melting regimes. The salt hydrate MgCl2·6H2O seems to be a suitable candidate for practical applications. It has a melting temperature of 115.1 ± 0.1 ∘C and a phase change enthalpy of 166.9 ± 1.2 J/g with only 2.8 K supercooling at sample sizes of 100 g. The PCM is stable over 500 repeated melting and solidification cycles at differential scanning calorimeter (DSC) scale with only small changes of the melting enthalpy and temperature. PMID:28772806

  3. Arxula adeninivorans (Blastobotrys adeninivorans) — A Dimorphic Yeast of Great Biotechnological Potential

    NASA Astrophysics Data System (ADS)

    Böer, Erik; Steinborn, Gerhard; Florschütz, Kristina; Körner, Martina; Gellissen, Gerd; Kunze, Gotthard

    The dimorphic ascomycetous yeast Arxula adeninivorans exhibits some unusual properties. Being a thermo- and halotolerant species it is able to assimilate and ferment many compounds as sole carbon and/or nitrogen source. It utilises n-alkanes and is capable of degrading starch. Due to these unusual biochemical properties A. adeninivorans can be exploited as a gene donor for the production of enzymes with attractive biotechnological characteristics. Examples of A. adeninivorans-derived genes that are overexpressed include the ALIP1 gene encoding a secretory lipase, the AINV encoding invertase, the AXDH encoding xylitol dehydrogenase and the APHY encoding a secretory phosphatase with phytase activity.

  4. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... plasma. Malic dehydrogenase measurements are used in the diagnosis and treatment of muscle and liver diseases, myocardial infarctions, cancer, and blood disorders such as myelogenous (produced in the bone...

  5. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... plasma. Malic dehydrogenase measurements are used in the diagnosis and treatment of muscle and liver diseases, myocardial infarctions, cancer, and blood disorders such as myelogenous (produced in the bone...

  6. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... plasma. Malic dehydrogenase measurements are used in the diagnosis and treatment of muscle and liver diseases, myocardial infarctions, cancer, and blood disorders such as myelogenous (produced in the bone...

  7. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dehydrogenase measurements are used in the diagnosis and treatment of liver diseases such as acute viral hepatitis, cirrhosis, and metastatic carcinoma of the liver, cardiac diseases such as myocardial infarction...

  8. Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase.

    PubMed

    Bomati, Erin K; Noel, Joseph P

    2005-05-01

    We describe the three-dimensional structure of sinapyl alcohol dehydrogenase (SAD) from Populus tremuloides (aspen), a member of the NADP(H)-dependent dehydrogenase family that catalyzes the last reductive step in the formation of monolignols. The active site topology revealed by the crystal structure substantiates kinetic results indicating that SAD maintains highest specificity for the substrate sinapaldehyde. We also report substantial substrate inhibition kinetics for the SAD-catalyzed reduction of hydroxycinnamaldehydes. Although SAD and classical cinnamyl alcohol dehydrogenases (CADs) catalyze the same reaction and share some sequence identity, the active site topology of SAD is strikingly different from that predicted for classical CADs. Kinetic analyses of wild-type SAD and several active site mutants demonstrate the complexity of defining determinants of substrate specificity in these enzymes. These results, along with a phylogenetic analysis, support the inclusion of SAD in a plant alcohol dehydrogenase subfamily that includes cinnamaldehyde and benzaldehyde dehydrogenases. We used the SAD three-dimensional structure to model several of these SAD-like enzymes, and although their active site topologies largely mirror that of SAD, we describe a correlation between substrate specificity and amino acid substitution patterns in their active sites. The SAD structure thus provides a framework for understanding substrate specificity in this family of enzymes and for engineering new enzyme specificities.

  9. Nickel containing CO dehydrogenases and hydrogenases.

    PubMed

    Ragsdale, S W

    2000-01-01

    The two redox catalysts described here can generate very low potential electrons in one direction and perform chemically difficult reductions in the other. The chemical transformations occur at unusual metal clusters. Spectroscopic, crystallographic, and kinetic analyses are converging on answers to how the metals in these clusters are arranged and how they are involved in the chemical and redox steps. The first structure of CO dehydrogenase, which will appear in the next year, will help define a firm chemical basis for future mechanistic studies. In the immediate future, we hope to learn whether the hydride intermediate in hydrogenase or the carbonyl intermediate in CO dehydrogenase bind to the Ni or Fe subsites in these heterometallic clusters. Or perhaps could they be bridged to two metals? Inter- and intramolecular wires have been proposed that connect the catalytic redox machine to proximal redox centers leading eventually to the ultimate redox partners. Elucidating the pathways of electron flow is a priority for the future. There is evidence for molecular channels delivering substrates to the active sites of these enzymes. In the next few years, these channels will be better defined. The products of CO2 and proton reduction are passed to the active sites of other enzymes and, in the case of H2, even passed from one organism to another. In the future, the mechanism of gas transfer will be uncovered. General principles of how these redox reactions are catalyzed are becoming lucid as the reactions are modeled theoretically and experimentally. Proton and CO2 reduction and the generation of C-C bonds from simple precursors are important reactions in industry. H2 could be the clean fuel of the future. Hopefully, the knowledge gained from studies of hydrogenase, CO dehydrogenase, and acetyl-CoA synthase can be used to improve life on earth.

  10. Analysis of nucleotide diphosphate sugar dehydrogenases reveals family and group-specific relationships.

    PubMed

    Freas, Nicholas; Newton, Peter; Perozich, John

    2016-01-01

    UDP-glucose dehydrogenase (UDPGDH), UDP-N-acetyl-mannosamine dehydrogenase (UDPNAMDH) and GDP-mannose dehydrogenase (GDPMDH) belong to a family of NAD (+)-linked 4-electron-transfering oxidoreductases called nucleotide diphosphate sugar dehydrogenases (NDP-SDHs). UDPGDH is an enzyme responsible for converting UDP-d-glucose to UDP-d-glucuronic acid, a product that has different roles depending on the organism in which it is found. UDPNAMDH and GDPMDH convert UDP-N-acetyl-mannosamine to UDP-N-acetyl-mannosaminuronic acid and GDP-mannose to GDP-mannuronic acid, respectively, by a similar mechanism to UDPGDH. Their products are used as essential building blocks for the exopolysaccharides found in organisms like Pseudomonas aeruginosa and Staphylococcus aureus. Few studies have investigated the relationships between these enzymes. This study reveals the relationships between the three enzymes by analysing 229 amino acid sequences. Eighteen invariant and several other highly conserved residues were identified, each serving critical roles in maintaining enzyme structure, coenzyme binding or catalytic function. Also, 10 conserved motifs that included most of the conserved residues were identified and their roles proposed. A phylogenetic tree demonstrated relationships between each group and verified group assignment. Finally, group entropy analysis identified novel conservations unique to each NDP-SDH group, including residue positions critical to NDP-sugar substrate interaction, enzyme structure and intersubunit contact. These positions may serve as targets for future research. UDP-glucose dehydrogenase (UDPGDH, EC 1.1.1.22).

  11. Protein-protein interactions and substrate channeling in orthologous and chimeric aldolase-dehydrogenase complexes.

    PubMed

    Baker, Perrin; Hillis, Colleen; Carere, Jason; Seah, Stephen Y K

    2012-03-06

    Bacterial aldolase-dehydrogenase complexes catalyze the last steps in the meta cleavage pathway of aromatic hydrocarbon degradation. The aldolase (TTHB246) and dehydrogenase (TTHB247) from Thermus thermophilus were separately expressed and purified from recombinant Escherichia coli. The aldolase forms a dimer, while the dehydrogenase is a monomer; these enzymes can form a stable tetrameric complex in vitro, consisting of two aldolase and two dehydrogenase subunits. Upon complex formation, the K(m) value of 4-hydroxy-2-oxopentanoate, the substrate of TTHB246, is decreased 4-fold while the K(m) of acetaldehyde, the substrate of TTHB247, is increased 3-fold. The k(cat) values of each enzyme were reduced by ~2-fold when they were in a complex. The half-life of TTHB247 at 50 °C increased by ~4-fold when it was in a complex with TTHB246. The acetaldehyde product from TTHB246 could be efficiently channelled directly to TTHB247, but the channeling efficiency for the larger propionaldehyde was ~40% lower. A single A324G substitution in TTHB246 increased the channeling efficiency of propionaldehyde to a value comparable to that of acetaldehyde. Stable and catalytically competent chimeric complexes could be formed between the T. thermophilus enzymes and the orthologous aldolase (BphI) and dehydrogenase (BphJ) from the biphenyl degradation pathway of Burkholderia xenovorans LB400. However, channeling efficiencies for acetaldehyde in these chimeric complexes were ~10%. Structural and sequence analysis suggests that interacting residues in the interface of the aldolase-dehydrogenase complex are highly conserved among homologues, but coevolution of partner enzymes is required to fine-tune this interaction to allow for efficient substrate channeling.

  12. [Distribution of genotypes of alcohol dehydrogenase 2 and aldehyde dehydrogenase 2 in Japanese twin children].

    PubMed

    Qu, W; Yamagata, Z; Wu, D; Zhang, B; Zhang, Y

    1999-03-01

    In order to prevent alcohol related deseases, this study investigated the distribution of the genes controlling alcohol metabolism in Japan's twin. Restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR) technique was used to measure the control gene of alcohol metabolized enzymes and the genotypes of alcohol dehydrogenase 2 (ADH2) and aldehyde dehydrogenase 2 (ALDH2), which were distributed in Japan's twins. At the same time, according to the difference in genotypes, the sensitive individuals were screened from the study subjects. The distribution of ADH2 and ALDH2 genes were consistent with the Hardy-weinberg equation. The three genotypes of ADH2 gene were ADH2(1)/ADH2(1) (1.1%), ADH2(1)/ADH2(2) (44.6%) and ADH2(2)/ADH2(2) (54.3%). And those of ALDH2 gene were ALDH2(1)/ALDH2(1) (41.3%), ALDH2(1)/ALDH2(2) (39.1%) and ALDH2(2)/ALDH2(2) (19.6%). The frequency of ADH2 and ALDH2 genes was 0.255, 0.745 and 0.609, 0.391 respectively. Not only the distribution of genotypes of ADH2 and ALDH2 is known, but also the sensitive individuals are found, which can help prevent alcohol related disease.

  13. Genetics Home Reference: glucose-6-phosphate dehydrogenase deficiency

    MedlinePlus

    ... eating fava beans or inhaling pollen from fava plants (a reaction called favism). Glucose-6-phosphate dehydrogenase ... the prognosis of a genetic condition? Genetic and Rare Diseases Information Center Frequency An estimated 400 million ...

  14. Genetics Home Reference: 3-beta-hydroxysteroid dehydrogenase deficiency

    MedlinePlus

    ... Topic: Adrenal Gland Disorders Health Topic: Assisted Reproductive Technology Health Topic: Infertility Genetic and Rare Diseases Information Center (1 link) 3-beta-hydroxysteroid dehydrogenase deficiency Educational Resources (6 links) Boston Children's Hospital: Congenital Adrenal ...

  15. Structural and Kinetic Basis for Substrate Selectivity in Populus tremuloides Sinapyl Alcohol Dehydrogenase

    PubMed Central

    Bomati, Erin K.; Noel, Joseph P.

    2005-01-01

    We describe the three-dimensional structure of sinapyl alcohol dehydrogenase (SAD) from Populus tremuloides (aspen), a member of the NADP(H)-dependent dehydrogenase family that catalyzes the last reductive step in the formation of monolignols. The active site topology revealed by the crystal structure substantiates kinetic results indicating that SAD maintains highest specificity for the substrate sinapaldehyde. We also report substantial substrate inhibition kinetics for the SAD-catalyzed reduction of hydroxycinnamaldehydes. Although SAD and classical cinnamyl alcohol dehydrogenases (CADs) catalyze the same reaction and share some sequence identity, the active site topology of SAD is strikingly different from that predicted for classical CADs. Kinetic analyses of wild-type SAD and several active site mutants demonstrate the complexity of defining determinants of substrate specificity in these enzymes. These results, along with a phylogenetic analysis, support the inclusion of SAD in a plant alcohol dehydrogenase subfamily that includes cinnamaldehyde and benzaldehyde dehydrogenases. We used the SAD three-dimensional structure to model several of these SAD-like enzymes, and although their active site topologies largely mirror that of SAD, we describe a correlation between substrate specificity and amino acid substitution patterns in their active sites. The SAD structure thus provides a framework for understanding substrate specificity in this family of enzymes and for engineering new enzyme specificities. PMID:15829607

  16. Expression and kinetic properties of a recombinant 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzyme of human liver.

    PubMed

    Deyashiki, Y; Tamada, Y; Miyabe, Y; Nakanishi, M; Matsuura, K; Hara, A

    1995-08-01

    Human liver cytosol contains multiple forms of 3 alpha-hydroxysteroid dehydrogenase and dihydrodiol dehydrogenase with hydroxysteroid dehydrogenase activity, and multiple cDNAs for the enzymes have been cloned from human liver cDNA libraries. To understand the relationship of the multiple enzyme froms to the genes, a cDNA, which has been reported to code for an isoenzyme of human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase, was expressed in Escherichia coli. The recombinant enzyme showed structural and functional properties almost identical to those of the isoenzyme purified from human liver. In addition, the recombinant isoenzyme efficiently reduced 5 alpha-dihydrotestosterone and 5 beta-dihydrocortisone, the known substrates of human liver 3 alpha-hydroxysteroid dehydrogenase and chlordecone reductase previously purified, which suggests that these human liver enzymes are identical. Furthermore, the steady-state kinetic data for NADP(+)-linked (S)-1-indanol oxidation by the recombinant isoenzyme were consistent with a sequential ordered mechanism in which NADP+ binds first. Phenolphthalein inhibited this isoenzyme much more potently than it did the other human liver dihydrodiol dehydrogenases, and was a competitive inhibitor (Ki = 20 nM) that bound to the enzyme-NADP+ complex.

  17. Role of mannitol dehydrogenases in osmoprotection of Gluconobacter oxydans.

    PubMed

    Zahid, Nageena; Deppenmeier, Uwe

    2016-12-01

    Gluconobacter (G.) oxydans is able to incompletely oxidize various sugars and polyols for the production of biotechnologically important compound. Recently, we have shown that the organism produces and accumulates mannitol as compatible solute under osmotic stress conditions. The present study describes the role of two cytoplasmic mannitol dehydrogenases for osmotolerance of G. oxydans. It was shown that Gox1432 is a NADP + -dependent mannitol dehydrogenase (EC 1.1.1.138), while Gox0849 uses NAD + as cofactor (EC 1.1.1.67). The corresponding genes were deleted and the mutants were analyzed for growth under osmotic stress and non-stress conditions. A severe growth defect was detected for Δgox1432 when grown in high osmotic media, while the deletion of gox0849 had no effect when cells were exposed to 450 mM sucrose in the medium. Furthermore, the intracellular mannitol content was reduced in the mutant lacking the NADP + -dependent enzyme Gox1432 in comparison to the parental strain and the Δgox0849 mutant under stress conditions. In addition, transcriptional analysis revealed that Gox1432 is more important for mannitol production in G. oxydans than Gox0849 as the transcript abundance of gene gox1432 was 30-fold higher than of gox0849. In accordance, the activity of the NADH-dependent enzyme Gox0849 in the cell cytoplasm was 10-fold lower in comparison to the NADPH-dependent mannitol dehydrogenase Gox1432. Overexpression of gox1432 in the corresponding deletion mutant restored growth of the cells under osmotic stress, further strengthening the importance of the NADP + -dependent mannitol dehydrogenase for osmotolerance in G. oxydans. These findings provide detailed insights into the molecular mechanism of mannitol-mediated osmoprotection in G. oxydans and are helpful engineering strains with improved osmotolerance for biotechnological applications.

  18. Magnetic resonance imaging spectrum of succinate dehydrogenase-related infantile leukoencephalopathy.

    PubMed

    Helman, Guy; Caldovic, Ljubica; Whitehead, Matthew T; Simons, Cas; Brockmann, Knut; Edvardson, Simon; Bai, Renkui; Moroni, Isabella; Taylor, J Michael; Van Haren, Keith; Taft, Ryan J; Vanderver, Adeline; van der Knaap, Marjo S

    2016-03-01

    Succinate dehydrogenase-deficient leukoencephalopathy is a complex II-related mitochondrial disorder for which the clinical phenotype, neuroimaging pattern, and genetic findings have not been comprehensively reviewed. Nineteen individuals with succinate dehydrogenase deficiency-related leukoencephalopathy were reviewed for neuroradiological, clinical, and genetic findings as part of institutional review board-approved studies at Children's National Health System (Washington, DC) and VU University Medical Center (Amsterdam, the Netherlands). All individuals had signal abnormalities in the central corticospinal tracts and spinal cord where imaging was available. Other typical findings were involvement of the cerebral hemispheric white matter with sparing of the U fibers, the corpus callosum with sparing of the outer blades, the basis pontis, middle cerebellar peduncles, and cerebellar white matter, and elevated succinate on magnetic resonance spectroscopy (MRS). The thalamus was involved in most studies, with a predilection for the anterior nucleus, pulvinar, and geniculate bodies. Clinically, infantile onset neurological regression with partial recovery and subsequent stabilization was typical. All individuals had mutations in SDHA, SDHB, or SDHAF1, or proven biochemical defect. Succinate dehydrogenase deficiency is a rare leukoencephalopathy, for which improved recognition by magnetic resonance imaging (MRI) in combination with advanced sequencing technologies allows noninvasive diagnostic confirmation. The MRI pattern is characterized by cerebral hemispheric white matter abnormalities with sparing of the U fibers, corpus callosum involvement with sparing of the outer blades, and involvement of corticospinal tracts, thalami, and spinal cord. In individuals with infantile regression and this pattern of MRI abnormalities, the differential diagnosis should include succinate dehydrogenase deficiency, in particular if MRS shows elevated succinate. © 2016 American

  19. Cloning and expression studies of the Dunaliella salina UDP-glucose dehydrogenase cDNA.

    PubMed

    Qinghua, He; Dairong, Qiao; Qinglian, Zhang; Shunji, He; Yin, Li; Linhan, Bai; Zhirong, Yang; Yi, Cao

    2005-06-01

    The enzyme UDP-glucose dehydrogenase (EC 1.1.1.22) converts UDP-glucose to UDP-glucuronate. Plant UDP-glucose dehydrogenase (UGDH) is an important enzyme in the formation of hemicellulose and pectin, the components of primary cell walls. A cDNA, named DsUGDH, (GeneBank accession number: AY795899) corresponding to UGDH was cloned by RT-PCR approach from Dunaliella salina. The cDNA is 1941-bp long and has an open reading frame encoded a protein of 483 amino acids with a calculated molecular weight of 53 kDa. The derived amino acids sequence shows high homology with reported plants UGDHs, and has highly conserved amino acids motifs believed to be NAD binding site and catalytic site. Although UDP-glucose dehydrogenase is a comparatively well characterized enzyme, the cloning and characterization of the green alga Dunaliella salina UDP-glucose dehydrogenase gene is very important to understand the salt tolerance mechanism of Dunaliella salina. Northern analyses indicate that NaCl can induce the expression the DsUGDH.

  20. Role of Microsomal Retinol/Sterol Dehydrogenase-Like Short-Chain Dehydrogenases/Reductases in the Oxidation and Epimerization of 3α-Hydroxysteroids in Human Tissues

    PubMed Central

    Belyaeva, Olga V.; Chetyrkin, Sergei V.; Clark, Amy L.; Kostereva, Natalia V.; SantaCruz, Karen S.; Chronwall, Bibie M.; Kedishvili, Natalia Y.

    2008-01-01

    Allopregnanolone (ALLO) and androsterone (ADT) are naturally occurring 3α-hydroxysteroids that act as positive allosteric regulators of γ-aminobutyric acid type A receptors. In addition, ADT activates nuclear farnesoid X receptor and ALLO activates pregnane X receptor. At least with respect to γ-aminobutyric acid type A receptors, the biological activity of ALLO and ADT depends on the 3α-hydroxyl group and is lost upon its conversion to either 3-ketosteroid or 3β-hydroxyl epimer. Such strict structure-activity relationships suggest that the oxidation or epimerization of 3α-hydroxysteroids may serve as physiologically relevant mechanisms for the control of the local concentrations of bioactive 3α-hydroxysteroids. The exact enzymes responsible for the oxidation and epimerization of 3α-hydroxysteroids in vivo have not yet been identified, but our previous studies showed that microsomal nicotinamide adenine dinucleotide-dependent short-chain dehydrogenases/reductases (SDRs) with dual retinol/sterol dehydrogenase substrate specificity (RoDH-like group of SDRs) can oxidize and epimerize 3α-hydroxysteroids in vitro. Here, we present the first evidence that microsomal nicotinamide adenine dinucleotide-dependent 3α-hydroxysteroid dehydrogenase/epimerase activities are widely distributed in human tissues with the highest activity levels found in liver and testis and lower levels in lung, spleen, brain, kidney, and ovary. We demonstrate that RoDH-like SDRs contribute to the oxidation and epimerization of ALLO and ADT in living cells, and show that RoDH enzymes are expressed in tissues that have microsomal 3α-hydroxysteroid dehydrogenase/epimerase activities. Together, these results provide further support for the role of RoDH-like SDRs in human metabolism of 3α-hydroxysteroids and offer a new insight into the enzymology of ALLO and ADT inactivation. PMID:17289849

  1. Role of microsomal retinol/sterol dehydrogenase-like short-chain dehydrogenases/reductases in the oxidation and epimerization of 3alpha-hydroxysteroids in human tissues.

    PubMed

    Belyaeva, Olga V; Chetyrkin, Sergei V; Clark, Amy L; Kostereva, Natalia V; SantaCruz, Karen S; Chronwall, Bibie M; Kedishvili, Natalia Y

    2007-05-01

    Allopregnanolone (ALLO) and androsterone (ADT) are naturally occurring 3alpha-hydroxysteroids that act as positive allosteric regulators of gamma-aminobutyric acid type A receptors. In addition, ADT activates nuclear farnesoid X receptor and ALLO activates pregnane X receptor. At least with respect to gamma-aminobutyric acid type A receptors, the biological activity of ALLO and ADT depends on the 3alpha-hydroxyl group and is lost upon its conversion to either 3-ketosteroid or 3beta-hydroxyl epimer. Such strict structure-activity relationships suggest that the oxidation or epimerization of 3alpha-hydroxysteroids may serve as physiologically relevant mechanisms for the control of the local concentrations of bioactive 3alpha-hydroxysteroids. The exact enzymes responsible for the oxidation and epimerization of 3alpha-hydroxysteroids in vivo have not yet been identified, but our previous studies showed that microsomal nicotinamide adenine dinucleotide-dependent short-chain dehydrogenases/reductases (SDRs) with dual retinol/sterol dehydrogenase substrate specificity (RoDH-like group of SDRs) can oxidize and epimerize 3alpha-hydroxysteroids in vitro. Here, we present the first evidence that microsomal nicotinamide adenine dinucleotide-dependent 3alpha-hydroxysteroid dehydrogenase/epimerase activities are widely distributed in human tissues with the highest activity levels found in liver and testis and lower levels in lung, spleen, brain, kidney, and ovary. We demonstrate that RoDH-like SDRs contribute to the oxidation and epimerization of ALLO and ADT in living cells, and show that RoDH enzymes are expressed in tissues that have microsomal 3alpha-hydroxysteroid dehydrogenase/epimerase activities. Together, these results provide further support for the role of RoDH-like SDRs in human metabolism of 3alpha-hydroxysteroids and offer a new insight into the enzymology of ALLO and ADT inactivation.

  2. The 17 beta-oestradiol dehydrogenase of pig endometrial cells is localized in specialized vesicles.

    PubMed Central

    Adamski, J; Husen, B; Marks, F; Jungblut, P W

    1993-01-01

    Two monoclonal antibodies against the 17 beta-oestradiol dehydrogenase of pig endometrial cells have been used in localization studies with immunogold electron microscopy. The antibodies attach both to a fraction of dehydrogenase-rich cytoplasmic vesicles isolated from homogenates and to vesicles of similar appearance in cells. The vesicles are filled with electron-dense material. Their tagging intensity indicates a high degree of specialization. Endometrial cells from mature animals contain a host of dehydrogenase vesicles, and cells from prepubertal animals only a few. Functional aspects of the novel organelle are discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8457206

  3. Direct Electron Transfer of Dehydrogenases for Development of 3rd Generation Biosensors and Enzymatic Fuel Cells.

    PubMed

    Bollella, Paolo; Gorton, Lo; Antiochia, Riccarda

    2018-04-24

    Dehydrogenase based bioelectrocatalysis has been increasingly exploited in recent years in order to develop new bioelectrochemical devices, such as biosensors and biofuel cells, with improved performances. In some cases, dehydrogeases are able to directly exchange electrons with an appropriately designed electrode surface, without the need for an added redox mediator, allowing bioelectrocatalysis based on a direct electron transfer process. In this review we briefly describe the electron transfer mechanism of dehydrogenase enzymes and some of the characteristics required for bioelectrocatalysis reactions via a direct electron transfer mechanism. Special attention is given to cellobiose dehydrogenase and fructose dehydrogenase, which showed efficient direct electron transfer reactions. An overview of the most recent biosensors and biofuel cells based on the two dehydrogenases will be presented. The various strategies to prepare modified electrodes in order to improve the electron transfer properties of the device will be carefully investigated and all analytical parameters will be presented, discussed and compared.

  4. Pyranopterin conformation defines the function of molybdenum and tungsten enzymes.

    PubMed

    Rothery, Richard A; Stein, Benjamin; Solomonson, Matthew; Kirk, Martin L; Weiner, Joel H

    2012-09-11

    We have analyzed the conformations of 319 pyranopterins in 102 protein structures of mononuclear molybdenum and tungsten enzymes. These span a continuum between geometries anticipated for quinonoid dihydro, tetrahydro, and dihydro oxidation states. We demonstrate that pyranopterin conformation is correlated with the protein folds defining the three major mononuclear molybdenum and tungsten enzyme families, and that binding-site micro-tuning controls pyranopterin oxidation state. Enzymes belonging to the bacterial dimethyl sulfoxide reductase (DMSOR) family contain a metal-bis-pyranopterin cofactor, the two pyranopterins of which have distinct conformations, with one similar to the predicted tetrahydro form, and the other similar to the predicted dihydro form. Enzymes containing a single pyranopterin belong to either the xanthine dehydrogenase (XDH) or sulfite oxidase (SUOX) families, and these have pyranopterin conformations similar to those predicted for tetrahydro and dihydro forms, respectively. This work provides keen insight into the roles of pyranopterin conformation and oxidation state in catalysis, redox potential modulation of the metal site, and catalytic function.

  5. Biochemical Characterization of Putative Adenylate Dimethylallyltransferase and Cytokinin Dehydrogenase from Nostoc sp. PCC 7120.

    PubMed

    Frébortová, Jitka; Greplová, Marta; Seidl, Michael F; Heyl, Alexander; Frébort, Ivo

    2015-01-01

    Cytokinins, a class of phytohormones, are adenine derivatives common to many different organisms. In plants, these play a crucial role as regulators of plant development and the reaction to abiotic and biotic stress. Key enzymes in the cytokinin synthesis and degradation in modern land plants are the isopentyl transferases and the cytokinin dehydrogenases, respectively. Their encoding genes have been probably introduced into the plant lineage during the primary endosymbiosis. To shed light on the evolution of these proteins, the genes homologous to plant adenylate isopentenyl transferase and cytokinin dehydrogenase were amplified from the genomic DNA of cyanobacterium Nostoc sp. PCC 7120 and expressed in Escherichia coli. The putative isopentenyl transferase was shown to be functional in a biochemical assay. In contrast, no enzymatic activity was detected for the putative cytokinin dehydrogenase, even though the principal domains necessary for its function are present. Several mutant variants, in which conserved amino acids in land plant cytokinin dehydrogenases had been restored, were inactive. A combination of experimental data with phylogenetic analysis indicates that adenylate-type isopentenyl transferases might have evolved several times independently. While the Nostoc genome contains a gene coding for protein with characteristics of cytokinin dehydrogenase, the organism is not able to break down cytokinins in the way shown for land plants.

  6. Biochemical Characterization of Putative Adenylate Dimethylallyltransferase and Cytokinin Dehydrogenase from Nostoc sp. PCC 7120

    PubMed Central

    Frébortová, Jitka; Greplová, Marta; Seidl, Michael F.; Heyl, Alexander; Frébort, Ivo

    2015-01-01

    Cytokinins, a class of phytohormones, are adenine derivatives common to many different organisms. In plants, these play a crucial role as regulators of plant development and the reaction to abiotic and biotic stress. Key enzymes in the cytokinin synthesis and degradation in modern land plants are the isopentyl transferases and the cytokinin dehydrogenases, respectively. Their encoding genes have been probably introduced into the plant lineage during the primary endosymbiosis. To shed light on the evolution of these proteins, the genes homologous to plant adenylate isopentenyl transferase and cytokinin dehydrogenase were amplified from the genomic DNA of cyanobacterium Nostoc sp. PCC 7120 and expressed in Escherichia coli. The putative isopentenyl transferase was shown to be functional in a biochemical assay. In contrast, no enzymatic activity was detected for the putative cytokinin dehydrogenase, even though the principal domains necessary for its function are present. Several mutant variants, in which conserved amino acids in land plant cytokinin dehydrogenases had been restored, were inactive. A combination of experimental data with phylogenetic analysis indicates that adenylate-type isopentenyl transferases might have evolved several times independently. While the Nostoc genome contains a gene coding for protein with characteristics of cytokinin dehydrogenase, the organism is not able to break down cytokinins in the way shown for land plants. PMID:26376297

  7. Improved synthesis of chiral alcohols with Escherichia coli cells co-expressing pyridine nucleotide transhydrogenase, NADP+-dependent alcohol dehydrogenase and NAD+-dependent formate dehydrogenase.

    PubMed

    Weckbecker, Andrea; Hummel, Werner

    2004-11-01

    Recombinant pyridine nucleotide transhydrogenase (PNT) from Escherichia coli has been used to regenerate NAD+ and NADPH. The pnta and pntb genes encoding for the alpha- and beta-subunits were cloned and co-expressed with NADP+-dependent alcohol dehydrogenase (ADH) from Lactobacillus kefir and NAD+-dependent formate dehydrogenase (FDH) from Candida boidinii. Using this whole-cell biocatalyst, efficient conversion of prochiral ketones to chiral alcohols was achieved: 66% acetophenone was reduced to (R)-phenylethanol over 12 h, whereas only 19% (R)-phenylethanol was formed under the same conditions with cells containing ADH and FDH genes but without PNT genes. Cells that were permeabilized with toluene showed ketone reduction only if both cofactors were present.

  8. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose.

    PubMed

    Wang, Qingzhao; Ingram, Lonnie O; Shanmugam, K T

    2011-11-22

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(-)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L(-1) of optically pure D(-)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min(-1) (mg protein)(-1). By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(-) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates.

  9. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose

    PubMed Central

    Wang, Qingzhao; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(−)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L-1 of optically pure D(−)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min-1 (mg protein)-1. By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(−) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates. PMID:22065761

  10. Therapeutic Targeting of the Pyruvate Dehydrogenase Complex/Pyruvate Dehydrogenase Kinase (PDC/PDK) Axis in Cancer.

    PubMed

    Stacpoole, Peter W

    2017-11-01

    The mitochondrial pyruvate dehydrogenase complex (PDC) irreversibly decarboxylates pyruvate to acetyl coenzyme A, thereby linking glycolysis to the tricarboxylic acid cycle and defining a critical step in cellular bioenergetics. Inhibition of PDC activity by pyruvate dehydrogenase kinase (PDK)-mediated phosphorylation has been associated with the pathobiology of many disorders of metabolic integration, including cancer. Consequently, the PDC/PDK axis has long been a therapeutic target. The most common underlying mechanism accounting for PDC inhibition in these conditions is post-transcriptional upregulation of one or more PDK isoforms, leading to phosphorylation of the E1α subunit of PDC. Such perturbations of the PDC/PDK axis induce a "glycolytic shift," whereby affected cells favor adenosine triphosphate production by glycolysis over mitochondrial oxidative phosphorylation and cellular proliferation over cellular quiescence. Dichloroacetate is the prototypic xenobiotic inhibitor of PDK, thereby maintaining PDC in its unphosphorylated, catalytically active form. However, recent interest in the therapeutic targeting of the PDC/PDK axis for the treatment of cancer has yielded a new generation of small molecule PDK inhibitors. Ongoing investigations of the central role of PDC in cellular energy metabolism and its regulation by pharmacological effectors of PDKs promise to open multiple exciting vistas into the biochemical understanding and treatment of cancer and other diseases. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Alcohol Dehydrogenase and Ethanol in the Stems of Trees 1

    PubMed Central

    Kimmerer, Thomas W.; Stringer, Mary A.

    1988-01-01

    Anaerobic fermentation in plants is usually thought to be a transient phenomenon, brought about by environmental limitations to oxygen availability, or by structural constraints to oxygen transport. The vascular cambium of trees is separated from the air by the outer bark and secondary phloem, and we hypothesized that the cambium may experience sufficient hypoxia to induce anaerobic fermentation. We found high alcohol dehydrogenase activity in the cambium of several tree species. Mean activity of alcohol dehydrogenase in Populus deltoides was 165 micromoles NADH oxidized per minute per gram fresh weight in May. Pyruvate decarboxylase activity was also present in the cambium of P. deltoides, with mean activity of 26 micromoles NADH oxidized per minute per gram fresh weight in May. Lactate dehydrogenase activity was not present in any tree species we examined. Contrary to our expectation, alcohol dehydrogenase activity was inversely related to bark thickness in Acer saccharum and unrelated to bark thickness in two Populus species. Bark thickness may be less important in limiting oxygen availability to the cambium than is oxygen consumption by rapidly respiring phloem and cambium in actively growing trees. Ethanol was present in the vascular cambium of all species examined, with mean concentrations of 35 to 143 nanomoles per gram fresh weight, depending on species. Ethanol was also present in xylem sap and may have been released from the cambium into the transpiration stream. The presence in the cambium of the enzymes necessary for fermentation as well as the products of fermentation is evidence that respiration in the vascular cambium of trees may be oxygen-limited, but other biosynthetic origins of ethanol have not been ruled out. PMID:16666209

  12. A novel type of pathogen defense-related cinnamyl alcohol dehydrogenase.

    PubMed

    Logemann, E; Reinold, S; Somssich, I E; Hahlbrock, K

    1997-08-01

    We describe an aromatic alcohol dehydrogenase with properties indicating a novel type of function in the defense response of plants to pathogens. To obtain the enzyme free of contamination with possible isoforms, a parsley (Petroselinum crispum) cDNA comprising the entire coding region of the elicitor-responsive gene, ELI3, was expressed in Escherichia coli. In accord with large amino acid sequence similarities with established cinnamyl and benzyl alcohol dehydrogenases from other plants, the enzyme efficiently reduced various cinnamyl and benzyl aldehydes using NADPH as a co-substrate. Highest substrate affinities were observed for cinnamaldehyde, 4-coumaraldehyde and coniferaldehyde, whereas sinapaldehyde, one of the most efficient substrates of several previously analyzed cinnamyl alcohol dehydrogenases and a characteristic precursor molecule of angiosperm lignin, was not converted. A single form of ELI3 mRNA was strongly and rapidly induced in fungal elicitor-treated parsley cells. These results, together with earlier findings that the ELI3 gene is strongly activated both in elicitor-treated parsley cells and at fungal infection sites in parsley leaves, but not in lignifying tissue, suggest a specific role of this enzyme in pathogen defense-related phenylpropanoid metabolism.

  13. Physiological Regulation of Isocitrate Dehydrogenase and the Role of 2-Oxoglutarate in Prochlorococcus sp. Strain PCC 9511

    PubMed Central

    Diez, Jesús; Gómez-Baena, Guadalupe; Rangel-Zúñiga, Oriol Alberto; García-Fernández, José Manuel

    2014-01-01

    The enzyme isocitrate dehydrogenase (ICDH; EC 1.1.1.42) catalyzes the oxidative decarboxylation of isocitrate, to produce 2-oxoglutarate. The incompleteness of the tricarboxylic acids cycle in marine cyanobacteria confers a special importance to isocitrate dehydrogenase in the C/N balance, since 2-oxoglutarate can only be metabolized through the glutamine synthetase/glutamate synthase pathway. The physiological regulation of isocitrate dehydrogenase was studied in cultures of Prochlorococcus sp. strain PCC 9511, by measuring enzyme activity and concentration using the NADPH production assay and Western blotting, respectively. The enzyme activity showed little changes under nitrogen or phosphorus starvation, or upon addition of the inhibitors DCMU, DBMIB and MSX. Azaserine, an inhibitor of glutamate synthase, induced clear increases in the isocitrate dehydrogenase activity and icd gene expression after 24 h, and also in the 2-oxoglutarate concentration. Iron starvation had the most significant effect, inducing a complete loss of isocitrate dehydrogenase activity, possibly mediated by a process of oxidative inactivation, while its concentration was unaffected. Our results suggest that isocitrate dehydrogenase responds to changes in the intracellular concentration of 2-oxoglutarate and to the redox status of the cells in Prochlorococcus. PMID:25061751

  14. Novel amide-based inhibitors of inosine 5'-monophosphate dehydrogenase.

    PubMed

    Watterson, Scott H; Liu, Chunjian; Dhar, T G Murali; Gu, Henry H; Pitts, William J; Barrish, Joel C; Fleener, Catherine A; Rouleau, Katherine; Sherbina, N Z; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2002-10-21

    A series of novel amide-based small molecule inhibitors of inosine monophosphate dehydrogenase (IMPDH) was explored. The synthesis and the structure-activity relationships (SARs) derived from in vitro studies are described.

  15. Rapid synthesis of triazine inhibitors of inosine monophosphate dehydrogenase.

    PubMed

    Pitts, William J; Guo, Junqing; Dhar, T G Murali; Shen, Zhongqi; Gu, Henry H; Watterson, Scott H; Bednarz, Mark S; Chen, Bang Chi; Barrish, Joel C; Bassolino, Donna; Cheney, Daniel; Fleener, Catherine A; Rouleau, Katherine A; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2002-08-19

    A series of novel triazine-based small molecule inhibitors (IV) of inosine monophosphate dehydrogenase was prepared. The synthesis and the structure-activity relationships (SAR) derived from in vitro studies are described.

  16. Genetics Home Reference: 3-hydroxyacyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... short chain 3-hydroxylacyl-CoA dehydrogenase deficiency Screening, Technology and Research in Genetics (STAR-G) Patient Support and Advocacy Resources (3 links) Children Living with Inherited Metabolic Diseases (CLIMB) FOD (Fatty ...

  17. Cloning and mRNA Expression of NADH Dehydrogenase during Ochlerotatus taeniorhynchus Development and Pesticide Response

    USDA-ARS?s Scientific Manuscript database

    NADH dehydrogenase, the largest of the respiratory complexes, is the first enzyme of the mitochondrial electron transport chain. We have cloned and sequenced cDNA of NADH dehydrogenase gene from Ochlerotatus (Ochlerotatus) taeniorhynchus (Wiedemann) adult (GeneBank Accession number: FJ458415). The ...

  18. Structural characterization of a D-isomer specific 2-hydroxyacid dehydrogenase from Lactobacillus delbrueckii ssp. bulgaricus.

    PubMed

    Holton, Simon J; Anandhakrishnan, Madhankumar; Geerlof, Arie; Wilmanns, Matthias

    2013-02-01

    Hydroxyacid dehydrogenases, responsible for the stereospecific conversion of 2-keto acids to 2-hydroxyacids in lactic acid producing bacteria, have a range of biotechnology applications including antibiotic synthesis, flavor development in dairy products and the production of valuable synthons. The genome of Lactobacillus delbrueckii ssp. bulgaricus, a member of the heterogeneous group of lactic acid bacteria, encodes multiple hydroxyacid dehydrogenases whose structural and functional properties remain poorly characterized. Here, we report the apo and coenzyme NAD⁺ complexed crystal structures of the L. bulgaricusD-isomer specific 2-hydroxyacid dehydrogenase, D2-HDH. Comparison with closely related members of the NAD-dependent dehydrogenase family reveals that whilst the D2-HDH core fold is structurally conserved, the substrate-binding site has a number of non-canonical features that may influence substrate selection and thus dictate the physiological function of the enzyme. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    PubMed

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Dissimilar Deficiency of Glucose-6-Phosphate Dehydrogenase (G-6-PD) among the AFARS and the Somalis of Djibouti

    DTIC Science & Technology

    1991-01-01

    DEFICIENCY OF GLUCOSE - 6 - PHOSPHATE DEHYDROGENASE (G- 6 ...the prevalence of deficient activity of the enzyme glucose - 6 - phosphate dehydrogenase (G- 6 -PD) among - Ces difficiences enzymatiques sant plus particu...Screening for glucose - 6 - 3 - CaosBy W.H. - Hematologic diseases. In : I lunter’s Tropical phosphate dehydrogenase (G- 6 -PD) deficiency by a simple

  1. Structural and functional analysis of betaine aldehyde dehydrogenase from Staphylococcus aureus.

    PubMed

    Halavaty, Andrei S; Rich, Rebecca L; Chen, Chao; Joo, Jeong Chan; Minasov, George; Dubrovska, Ievgeniia; Winsor, James R; Myszka, David G; Duban, Mark; Shuvalova, Ludmilla; Yakunin, Alexander F; Anderson, Wayne F

    2015-05-01

    When exposed to high osmolarity, methicillin-resistant Staphylococcus aureus (MRSA) restores its growth and establishes a new steady state by accumulating the osmoprotectant metabolite betaine. Effective osmoregulation has also been implicated in the acquirement of a profound antibiotic resistance by MRSA. Betaine can be obtained from the bacterial habitat or produced intracellularly from choline via the toxic betaine aldehyde (BA) employing the choline dehydrogenase and betaine aldehyde dehydrogenase (BADH) enzymes. Here, it is shown that the putative betaine aldehyde dehydrogenase SACOL2628 from the early MRSA isolate COL (SaBADH) utilizes betaine aldehyde as the primary substrate and nicotinamide adenine dinucleotide (NAD(+)) as the cofactor. Surface plasmon resonance experiments revealed that the affinity of NAD(+), NADH and BA for SaBADH is affected by temperature, pH and buffer composition. Five crystal structures of the wild type and three structures of the Gly234Ser mutant of SaBADH in the apo and holo forms provide details of the molecular mechanisms of activity and substrate specificity/inhibition of this enzyme.

  2. Thermodynamic and electron paramagnetic resonance characterization of flavin in succinate dehydrogenase.

    PubMed

    Ohnishi, T; King, T E; Salerno, J C; Blum, H; Bowyer, J R; Maida, T

    1981-06-10

    Thermodynamic parameters of succinate dehydrogenase flavin were determined potentiometrically from the analysis of free radical signal levels as a function of the oxidation-reduction potential. Midpoint redox potentials of consecutive 1-electron transfer steps are -127 and -31 mV at pH 7.0. This corresponds to a stability constant of intermediate stability, 2.5 x 10(-2), which suggests flavin itself may be a converter from n = 2 to n = 1 electron transfer steps. The pK values of the free radical (FlH . in equilibrium Fl . -) and the fully reduced form (FlH2 in equilibrium FlH-) were estimated as 8.0 +/- 0.2 and 7.7 +/- 0.2, respectively. Succinate dehydrogenase flavosemiquinone elicits an EPR spectrum at g = 2.00 with a peak to peak width of 1.2 mT even in the protonated form, suggesting the delocalization in the unpaired electron density. A close proximity of succinate dehydrogenase flavin and iron-sulfur cluster S-1 was demonstrated based on the enhancement of flavin spin relaxation by Center S-1.

  3. Structural and functional analysis of betaine aldehyde dehydrogenase from Staphylococcus aureus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavaty, Andrei S.; Rich, Rebecca L.; Chen, Chao

    When exposed to high osmolarity, methicillin-resistant Staphylococcus aureus (MRSA) restores its growth and establishes a new steady state by accumulating the osmoprotectant metabolite betaine. Effective osmoregulation has also been implicated in the acquirement of a profound antibiotic resistance by MRSA. Betaine can be obtained from the bacterial habitat or produced intracellularly from choline via the toxic betaine aldehyde (BA) employing the choline dehydrogenase and betaine aldehyde dehydrogenase (BADH) enzymes. Here, it is shown that the putative betaine aldehyde dehydrogenase SACOL2628 from the early MRSA isolate COL ( SaBADH) utilizes betaine aldehyde as the primary substrate and nicotinamide adenine dinucleotide (NADmore » +) as the cofactor. Surface plasmon resonance experiments revealed that the affinity of NAD +, NADH and BA for SaBADH is affected by temperature, pH and buffer composition. Finally, five crystal structures of the wild type and three structures of the Gly234Ser mutant of SaBADH in the apo and holo forms provide details of the molecular mechanisms of activity and substrate specificity/inhibition of this enzyme.« less

  4. Structural and functional analysis of betaine aldehyde dehydrogenase from Staphylococcus aureus

    DOE PAGES

    Halavaty, Andrei S.; Rich, Rebecca L.; Chen, Chao; ...

    2015-04-25

    When exposed to high osmolarity, methicillin-resistant Staphylococcus aureus (MRSA) restores its growth and establishes a new steady state by accumulating the osmoprotectant metabolite betaine. Effective osmoregulation has also been implicated in the acquirement of a profound antibiotic resistance by MRSA. Betaine can be obtained from the bacterial habitat or produced intracellularly from choline via the toxic betaine aldehyde (BA) employing the choline dehydrogenase and betaine aldehyde dehydrogenase (BADH) enzymes. Here, it is shown that the putative betaine aldehyde dehydrogenase SACOL2628 from the early MRSA isolate COL ( SaBADH) utilizes betaine aldehyde as the primary substrate and nicotinamide adenine dinucleotide (NADmore » +) as the cofactor. Surface plasmon resonance experiments revealed that the affinity of NAD +, NADH and BA for SaBADH is affected by temperature, pH and buffer composition. Finally, five crystal structures of the wild type and three structures of the Gly234Ser mutant of SaBADH in the apo and holo forms provide details of the molecular mechanisms of activity and substrate specificity/inhibition of this enzyme.« less

  5. Regulation of xanthine dehydrogensase gene expression and uric acid production in human airway epithelial cells

    PubMed Central

    Huff, Ryan D.; Hsu, Alan C-Y.; Nichol, Kristy S.; Jones, Bernadette; Knight, Darryl A.; Wark, Peter A. B.; Hansbro, Philip M.

    2017-01-01

    Introduction The airway epithelium is a physical and immunological barrier that protects the pulmonary system from inhaled environmental insults. Uric acid has been detected in the respiratory tract and can function as an antioxidant or damage associated molecular pattern. We have demonstrated that human airway epithelial cells are a source of uric acid. Our hypothesis is that uric acid production by airway epithelial cells is induced by environmental stimuli associated with chronic respiratory diseases. We therefore examined how airway epithelial cells regulate uric acid production. Materials and methods Allergen and cigarette smoke mouse models were performed using house dust mite (HDM) and cigarette smoke exposure, respectively, with outcome measurements of lung uric acid levels. Primary human airway epithelial cells isolated from clinically diagnosed patients with asthma and chronic obstructive pulmonary disease (COPD) were grown in submerged cultures and compared to age-matched healthy controls for uric acid release. HBEC-6KT cells, a human airway epithelial cell line, were grown under submerged monolayer conditions for mechanistic and gene expression studies. Results HDM, but not cigarette smoke exposure, stimulated uric acid production in vivo and in vitro. Primary human airway epithelial cells from asthma, but not COPD patients, displayed elevated levels of extracellular uric acid in culture. In HBEC-6KT, production of uric acid was sensitive to the xanthine dehydrogenase (XDH) inhibitor, allopurinol, and the ATP Binding Cassette C4 (ABCC4) inhibitor, MK-571. Lastly, the pro-inflammatory cytokine combination of TNF-α and IFN-γ elevated extracellular uric acid levels and XDH gene expression in HBEC-6KT cells. Conclusions Our results suggest that the active production of uric acid from human airway epithelial cells may be intrinsically altered in asthma and be further induced by pro-inflammatory cytokines. PMID:28863172

  6. Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress

    NASA Technical Reports Server (NTRS)

    McNally, J. Scott; Davis, Michael E.; Giddens, Don P.; Saha, Aniket; Hwang, Jinah; Dikalov, Sergey; Jo, Hanjoong; Harrison, David G.

    2003-01-01

    Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (15 dyn/cm2), and oscillatory shear stress (+/-15 dyn/cm2). Oscillatory shear increased superoxide (O2.-) production by more than threefold over static and laminar conditions as detected using electron spin resonance (ESR). This increase in O2*- was inhibited by oxypurinol and culture of endothelial cells with tungsten but not by inhibitors of other enzymatic sources. Oxypurinol also prevented H2O2 production in response to oscillatory shear stress as measured by dichlorofluorescin diacetate and Amplex Red fluorescence. Xanthine-dependent O2*- production was increased in homogenates of endothelial cells exposed to oscillatory shear stress. This was associated with decreased xanthine dehydrogenase (XDH) protein levels and enzymatic activity resulting in an elevated ratio of xanthine oxidase (XO) to XDH. We also studied endothelial cells lacking the p47phox subunit of the NAD(P)H oxidase. These cells exhibited dramatically depressed O2*- production and had minimal XO protein and activity. Transfection of these cells with p47phox restored XO protein levels. Finally, in bovine aortic endothelial cells, prolonged inhibition of the NAD(P)H oxidase with apocynin decreased XO protein levels and prevented endothelial cell stimulation of O2*- production in response to oscillatory shear stress. These data suggest that the NAD(P)H oxidase maintains endothelial cell XO levels and that XO is responsible for increased reactive oxygen species production in response to oscillatory shear stress.

  7. Intestinal tract is an important organ for lowering serum uric acid in rats

    PubMed Central

    Gao, Zhiyi; Li, Yue; Gao, Tao; Duan, Jinlian; Yang, Rong; Dong, Xianxiang; Zhang, Lumei

    2017-01-01

    The kidney was recognized as a dominant organ for uric acid excretion. The main aim of the study demonstrated intestinal tract was an even more important organ for serum uric acid (SUA) lowering. Sprague-Dawley rats were treated normally or with antibiotics, uric acid, adenine, or inosine of the same molar dose orally or intraperitoneally for 5 days. Rat’s intestinal tract was equally divided into 20 segments except the cecum. Uric acid in serum and intestinal segment juice was assayed. Total RNA in the initial intestinal tract and at the end ileum was extracted and sequenced. Protein expression of xanthine dehydrogenase (XDH) and urate oxidase (UOX) was tested by Western blot analysis. The effect of oral UOX in lowering SUA was investigated in model rats treated with adenine and an inhibitor of uric oxidase for 5 days. SUA in the normal rats was 20.93±6.98 μg/ml, and total uric acid in the intestinal juice was 308.27±16.37 μg, which is two times more than the total SUA. The uric acid was very low in stomach juice, and attained maximum in the juice of the first segment (duodenum) and then declined all the way till the intestinal end. The level of uric acid in the initial intestinal tissue was very high, where XDH and most of the proteins associated with bicarbonate secretion were up-regulated. In addition, SUA was decreased by oral UOX in model rats. The results suggested that intestinal juice was an important pool for uric acid, and intestinal tract was an important organ for SUA lowering. The uric acid distribution was associated with uric acid synthesis and secretion in the upper intestinal tract, and reclamation in the lower. PMID:29267361

  8. High-throughput screening for cellobiose dehydrogenases by Prussian Blue in situ formation.

    PubMed

    Vasilchenko, Liliya G; Ludwig, Roland; Yershevich, Olga P; Haltrich, Dietmar; Rabinovich, Mikhail L

    2012-07-01

    Extracellular fungal flavocytochrome cellobiose dehydrogenase (CDH) is a promising enzyme for both bioelectronics and lignocellulose bioconversion. A selective high-throughput screening assay for CDH in the presence of various fungal oxidoreductases was developed. It is based on Prussian Blue (PB) in situ formation in the presence of cellobiose (<0.25 mM), ferric acetate, and ferricyanide. CDH induces PB formation via both reduction of ferricyanide to ferrocyanide reacting with an excess of Fe³⁺ (pathway 1) and reduction of ferric ions to Fe²⁺ reacting with the excess of ferricyanide (pathway 2). Basidiomycetous and ascomycetous CDH formed PB optimally at pH 3.5 and 4.5, respectively. In contrast to the holoenzyme CDH, its FAD-containing dehydrogenase domain lacking the cytochrome domain formed PB only via pathway 1 and was less active than the parent enzyme. The assay can be applied on active growing cultures on agar plates or on fungal culture supernatants in 96-well plates under aerobic conditions. Neither other carbohydrate oxidoreductases (pyranose dehydrogenase, FAD-dependent glucose dehydrogenase, glucose oxidase) nor laccase interfered with CDH activity in this assay. Applicability of the developed assay for the selection of new ascomycetous CDH producers as well as possibility of the controlled synthesis of new PB nanocomposites by CDH are discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Genetics Home Reference: 17-beta hydroxysteroid dehydrogenase 3 deficiency

    MedlinePlus

    ... some affected individuals may also experience breast enlargement (gynecomastia). Despite having testes, people with this disorder are ... 17-beta-hydroxysteroid oxidoreductase deficiency pseudohermaphroditism, male, with gynecomastia testosterone 17-beta-dehydrogenase deficiency Related Information How ...

  10. Subcellular distribution of delta 5-3 beta-hydroxy steroid dehydrogenase in the granulosa cells of the domestic fowl (Gallus domesticus).

    PubMed Central

    Armstrong, D G

    1979-01-01

    1. The distribution of 3 beta-hydroxy steroid dehydrogenase was examined in the subcellular fractions of granulosa cells collected from the ovary of the domestic fowl. 2. 3 beta-hydroxy steroid dehydrogenase activity was observed in the mitochondrial (4000g for 20min) and microsomal (105 000g for 120min) fractions. 3. Approximately three times more 3 beta-hydroxy steroid dehydrogenase activity was associated with the cytochrome oxidase activity (a mitochondrial marker enzyme) in anteovulatory-follicle granulosa cells than with that of the postovulatory follicle. 4. Comparison of the latent properties of mitochondrial 3 beta-hydroxy steroid dehydrogenase with those of cytochrome oxidase and isocitrate dehydrogenase indicated that 3 beta-hydroxy steroid dehydrogenase is located extramitochondrially. 5. This apparent distribution of 3 beta-hydroxy steroid dehydrogenase is explained on the basis that the mitochondrial activity is either an artefact caused by a redistribution in the subcellular location of the enzyme, occurring during homogenization, or by the existence of a functionally heterogeneous endoplasmic reticulum that yields particles of widely differing sedimentation properties. PMID:518548

  11. Partial purification and properties of tropine dehydrogenase from root cultures of Datura stramonium.

    PubMed

    Koelen, K J; Gross, G G

    1982-04-01

    From sterile root cultures of Datura stramonium, an NADP(H)-specific tropine dehydrogenase has been isolated and characterized. The enzyme catalyzes the reversible and stereospecific oxidation of tropine and related tropane-3 alpha-ols to the corresponding ketone. Isomeric pseudotropine (tropane-3 beta-ol) is neither accepted as substrate nor produced in the reverse reaction. It is assumed that this dehydrogenase is involved in the biosynthesis of tropane alkaloids.

  12. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lactate dehydrogenase test system. 862.1440 Section 862.1440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  13. 21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hydroxybutyric dehydrogenase test system. 862.1380 Section 862.1380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  14. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Malic dehydrogenase test system. 862.1500 Section 862.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  15. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Isocitric dehydrogenase test system. 862.1420 Section 862.1420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  16. Cytochemical Localization of Glycolate Dehydrogenase in Mitochondria of Chlamydomonas1

    PubMed Central

    Beezley, Belinda B.; Gruber, Peter J.; Frederick, Sue Ellen

    1976-01-01

    Mildly disrupted cells of Chlamydomonas reinhardi Dangeard were incubated in a reaction medium containing glycolate, ferricyanide, and cupric ions, and then processed for electron microscopy. As a result of the cytochemical treatment, an electron opaque product was deposited specifically in the outer compartment of mitochondria; other cellular components, including microbodies, did not accumulate stain. Incubation with d-lactate yielded similar results, while treatment with l-lactate produced only a weak reaction. Oxamate, which inhibits glycolate dehydrogenase activity in cell-free extracts, also inhibited the cytochemical reaction. These findings demonstrate in situ that glycolate dehydrogenase is localized in mitochondria, and thus corroborate similar conclusions reached on the basis of enzymic studies of isolated algal organelles. Images PMID:16659670

  17. A alpha-glycerophosphate dehydrogenase is present in Trypanosoma cruzi glycosomes.

    PubMed

    Concepcion, J L; Acosta, H; Quiñones, W; Dubourdieu, M

    2001-07-01

    alpha-glycerophosphate dehydrogenase (alpha-GPDH-EC.1.1.1.8) has been considered absent in Trypanosoma cruzi in contradiction with all other studied trypanosomatids. After observing that the sole malate dehydrogenase can not maintain the intraglycosomal redox balance, GPDH activity was looked for and found, although in very variable levels, in epimastigotes extracts. GPDH was shown to be exclusively located in the glycosome of T. cruzi by digitonin treatment and isopycnic centrifugation. Antibody against T. brucei GPDH showed that this enzyme seemed to be present in an essentially inactive form at the beginning of the epimastigotes growth. GPDH is apparently linked to a salicylhydroxmic-sensitive glycerophosphate reoxidizing system and plays an essential role in the glycosome redox balance.

  18. A family of highly conserved glycosomal 2-hydroxyacid dehydrogenases from Phytomonas sp.

    PubMed

    Uttaro, A D; Altabe, S G; Rider, M H; Michels, P A; Opperdoes, F R

    2000-10-13

    Phytomonas sp. contains two malate dehydrogenase isoforms, a mitochondrial isoenzyme with a high specificity for oxaloacetate and a glycosomal isozyme that acts on a broad range of substrates (Uttaro, A. D., and Opperdoes, F.R. (1997) Mol. Biochem. Parasitol. 89, 51-59). Here, we show that the low specificity of the latter isoenzyme is the result of a number of recent gene duplications that gave rise to a family of glycosomal 2-hydroxyacid dehydrogenase genes. Two of these genes were cloned, sequenced, and overexpressed in Escherichia coli. Although both gene products have 322 amino acids, share 90.4% identical residues, and have a similar hydrophobicity profile and net charge, their kinetic properties were strikingly different. One isoform behaved as a real malate dehydrogenase with a high specificity for oxaloacetate, whereas the other showed no activity with oxaloacetate but was able to reduce other oxoacids, such as phenyl pyruvate, 2-oxoisocaproate, 2-oxovalerate, 2-oxobutyrate, 2-oxo-4-methiolbutyrate, and pyruvate.

  19. Relayed 13C magnetization transfer: Detection of malate dehydrogenase reaction in vivo

    NASA Astrophysics Data System (ADS)

    Yang, Jehoon; Shen, Jun

    2007-02-01

    Malate dehydrogenase catalyzes rapid interconversion between dilute metabolites oxaloacetate and malate. Both oxaloacetate and malate are below the detection threshold of in vivo MRS. Oxaloacetate is also in rapid exchange with aspartate catalyzed by aspartate aminotransferase, the latter metabolite is observable in vivo using 13C MRS. We hypothesized that the rapid turnover of oxaloacetate can effectively relay perturbation of magnetization between malate and aspartate. Here, we report indirect observation of the malate dehydrogenase reaction by saturating malate C2 resonance at 71.2 ppm and detecting a reduced aspartate C2 signal at 53.2 ppm due to relayed magnetization transfer via oxaloacetate C2 at 201.3 ppm. Using this strategy the rate of the cerebral malate dehydrogenase reaction was determined to be 9 ± 2 μmol/g wet weight/min (means ± SD, n = 5) at 11.7 Tesla in anesthetized adult rats infused with [1,6- 13C 2]glucose.

  20. Alteration in substrate specificity of horse liver alcohol dehydrogenase by an acyclic nicotinamide analog of NAD(+).

    PubMed

    Malver, Olaf; Sebastian, Mina J; Oppenheimer, Norman J

    2014-11-01

    A new, acyclic NAD-analog, acycloNAD(+) has been synthesized where the nicotinamide ribosyl moiety has been replaced by the nicotinamide (2-hydroxyethoxy)methyl moiety. The chemical properties of this analog are comparable to those of β-NAD(+) with a redox potential of -324mV and a 341nm λmax for the reduced form. Both yeast alcohol dehydrogenase (YADH) and horse liver alcohol dehydrogenase (HLADH) catalyze the reduction of acycloNAD(+) by primary alcohols. With HLADH 1-butanol has the highest Vmax at 49% that of β-NAD(+). The primary deuterium kinetic isotope effect is greater than 3 indicating a significant contribution to the rate limiting step from cleavage of the carbon-hydrogen bond. The stereochemistry of the hydride transfer in the oxidation of stereospecifically deuterium labeled n-butanol is identical to that for the reaction with β-NAD(+). In contrast to the activity toward primary alcohols there is no detectable reduction of acycloNAD(+) by secondary alcohols with HLADH although these alcohols serve as competitive inhibitors. The net effect is that acycloNAD(+) has converted horse liver ADH from a broad spectrum alcohol dehydrogenase, capable of utilizing either primary or secondary alcohols, into an exclusively primary alcohol dehydrogenase. This is the first example of an NAD analog that alters the substrate specificity of a dehydrogenase and, like site-directed mutagenesis of proteins, establishes that modifications of the coenzyme distance from the active site can be used to alter enzyme function and substrate specificity. These and other results, including the activity with α-NADH, clearly demonstrate the promiscuity of the binding interactions between dehydrogenases and the riboside phosphate of the nicotinamide moiety, thus greatly expanding the possibilities for the design of analogs and inhibitors of specific dehydrogenases. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... used in the diagnosis and treatment of nonspherocytic congenital hemolytic anemia or drug-induced hemolytic anemia associated with a glucose-6-phosphate dehydrogenase deficiency. This generic device...

  2. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... used in the diagnosis and treatment of nonspherocytic congenital hemolytic anemia or drug-induced hemolytic anemia associated with a glucose-6-phosphate dehydrogenase deficiency. This generic device...

  3. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... used in the diagnosis and treatment of nonspherocytic congenital hemolytic anemia or drug-induced hemolytic anemia associated with a glucose-6-phosphate dehydrogenase deficiency. This generic device...

  4. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... used in the diagnosis and treatment of nonspherocytic congenital hemolytic anemia or drug-induced hemolytic anemia associated with a glucose-6-phosphate dehydrogenase deficiency. This generic device...

  5. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... used in the diagnosis and treatment of nonspherocytic congenital hemolytic anemia or drug-induced hemolytic anemia associated with a glucose-6-phosphate dehydrogenase deficiency. This generic device...

  6. Structural characterization of the thermostable Bradyrhizobium japonicumD-sorbitol dehydrogenase.

    PubMed

    Fredslund, Folmer; Otten, Harm; Gemperlein, Sabrina; Poulsen, Jens Christian N; Carius, Yvonne; Kohring, Gert Wieland; Lo Leggio, Leila

    2016-11-01

    Bradyrhizobium japonicum sorbitol dehydrogenase is NADH-dependent and is active at elevated temperatures. The best substrate is D-glucitol (a synonym for D-sorbitol), although L-glucitol is also accepted, giving it particular potential in industrial applications. Crystallization led to a hexagonal crystal form, with crystals diffracting to 2.9 Å resolution. In attempts to phase the data, a molecular-replacement solution based upon PDB entry 4nbu (33% identical in sequence to the target) was found. The solution contained one molecule in the asymmetric unit, but a tetramer similar to that found in other short-chain dehydrogenases, including the search model, could be reconstructed by applying crystallographic symmetry operations. The active site contains electron density consistent with D-glucitol and phosphate, but there was not clear evidence for the binding of NADH. In a search for the features that determine the thermostability of the enzyme, the T m for the orthologue from Rhodobacter sphaeroides, for which the structure was already known, was also determined, and this enzyme proved to be considerably less thermostable. A continuous β-sheet is formed between two monomers in the tetramer of the B. japonicum enzyme, a feature not generally shared by short-chain dehydrogenases, and which may contribute to thermostability, as may an increased Pro/Gly ratio.

  7. Cloning and sequencing of the cDNA species for mammalian dimeric dihydrodiol dehydrogenases.

    PubMed Central

    Arimitsu, E; Aoki, S; Ishikura, S; Nakanishi, K; Matsuura, K; Hara, A

    1999-01-01

    Cynomolgus and Japanese monkey kidneys, dog and pig livers and rabbit lens contain dimeric dihydrodiol dehydrogenase (EC 1.3.1.20) associated with high carbonyl reductase activity. Here we have isolated cDNA species for the dimeric enzymes by reverse transcriptase-PCR from human intestine in addition to the above five animal tissues. The amino acid sequences deduced from the monkey, pig and dog cDNA species perfectly matched the partial sequences of peptides digested from the respective enzymes of these animal tissues, and active recombinant proteins were expressed in a bacterial system from the monkey and human cDNA species. Northern blot analysis revealed the existence of a single 1.3 kb mRNA species for the enzyme in these animal tissues. The human enzyme shared 94%, 85%, 84% and 82% amino acid identity with the enzymes of the two monkey strains (their sequences were identical), the dog, the pig and the rabbit respectively. The sequences of the primate enzymes consisted of 335 amino acid residues and lacked one amino acid compared with the other animal enzymes. In contrast with previous reports that other types of dihydrodiol dehydrogenase, carbonyl reductases and enzymes with either activity belong to the aldo-keto reductase family or the short-chain dehydrogenase/reductase family, dimeric dihydrodiol dehydrogenase showed no sequence similarity with the members of the two protein families. The dimeric enzyme aligned with low degrees of identity (14-25%) with several prokaryotic proteins, in which 47 residues are strictly or highly conserved. Thus dimeric dihydrodiol dehydrogenase has a primary structure distinct from the previously known mammalian enzymes and is suggested to constitute a novel protein family with the prokaryotic proteins. PMID:10477285

  8. Identification of a Dehydrogenase Required for Lactose Metabolism in Caulobacter crescentus▿ †‡

    PubMed Central

    Arellano, Benjamin H.; Ortiz, Janett D.; Manzano, Janet; Chen, Joseph C.

    2010-01-01

    Caulobacter crescentus, which thrives in freshwater environments with low nutrient levels, serves as a model system for studying bacterial cell cycle regulation and organelle development. We examined its ability to utilize lactose (i) to gain insight into the metabolic capacities of oligotrophic bacteria and (ii) to obtain an additional genetic tool for studying this model organism, aiming to eliminate the basal enzymatic activity that hydrolyzes the chromogenic substrate 5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside (X-gal). Using a previously isolated transposon mutant, we identified a gene, lacA, that is required for growth on lactose as the sole carbon source and for turning colonies blue in the presence of X-gal. LacA, which contains a glucose-methanol-choline (GMC) oxidoreductase domain, has homology to the flavin subunit of Pectobacterium cypripedii's gluconate dehydrogenase. Sequence comparisons indicated that two genes near lacA, lacB and lacC, encode the other subunits of the membrane-bound dehydrogenase. In addition to lactose, all three lac genes are involved in the catabolism of three other β-galactosides (lactulose, lactitol, and methyl-β-d-galactoside) and two glucosides (salicin and trehalose). Dehydrogenase assays confirmed that the lac gene products oxidize lactose, salicin, and trehalose. This enzymatic activity is inducible, and increased lac expression in the presence of lactose and salicin likely contributes to the induction. Expression of lacA also depends on the presence of the lac genes, implying that the dehydrogenase participates in induction. The involvement of a dehydrogenase suggests that degradation of lactose and other sugars in C. crescentus may resemble a proposed pathway in Agrobacterium tumefaciens. PMID:20190087

  9. Plant mitochondrial pyruvate dehydrogenase complex: purification and identification of catalytic components in potato.

    PubMed Central

    Millar, A H; Knorpp, C; Leaver, C J; Hill, S A

    1998-01-01

    The pyruvate dehydrogenase complex (mPDC) from potato (Solanum tuberosum cv. Romano) tuber mitochondria was purified 40-fold to a specific activity of 5.60 micromol/min per mg of protein. The activity of the complex depended on pyruvate, divalent cations, NAD+ and CoA and was competitively inhibited by both NADH and acetyl-CoA. SDS/PAGE revealed the complex consisted of seven polypeptide bands with apparent molecular masses of 78, 60, 58, 55, 43, 41 and 37 kDa. N-terminal sequencing revealed that the 78 kDa protein was dihydrolipoamide transacetylase (E2), the 58 kDa protein was dihydrolipoamide dehydrogenase (E3), the 43 and 41 kDa proteins were alpha subunits of pyruvate dehydrogenase, and the 37 kDa protein was the beta subunit of pyruvate dehydrogenase. N-terminal sequencing of the 55 kDa protein band yielded two protein sequences: one was another E3; the other was similar to the sequence of E2 from plant and yeast sources but was distinctly different from the sequence of the 78 kDa protein. Incubation of the mPDC with [2-14C]pyruvate resulted in the acetylation of both the 78 and 55 kDa proteins. PMID:9729464

  10. Cloning, expression, and sequence analysis of the Bacillus methanolicus C1 methanol dehydrogenase gene.

    PubMed Central

    de Vries, G E; Arfman, N; Terpstra, P; Dijkhuizen, L

    1992-01-01

    The gene (mdh) coding for methanol dehydrogenase (MDH) of thermotolerant, methylotroph Bacillus methanolicus C1 has been cloned and sequenced. The deduced amino acid sequence of the mdh gene exhibited similarity to those of five other alcohol dehydrogenase (type III) enzymes, which are distinct from the long-chain zinc-containing (type I) or short-chain zinc-lacking (type II) enzymes. Highly efficient expression of the mdh gene in Escherichia coli was probably driven from its own promoter sequence. After purification of MDH from E. coli, the kinetic and biochemical properties of the enzyme were investigated. The physiological effect of MDH synthesis in E. coli and the role of conserved sequence patterns in type III alcohol dehydrogenases have been analyzed and are discussed. Images PMID:1644761

  11. RNA-sequencing quantification of hepatic ontogeny of phase-I enzymes in mice.

    PubMed

    Peng, Lai; Cui, Julia Y; Yoo, Byunggil; Gunewardena, Sumedha S; Lu, Hong; Klaassen, Curtis D; Zhong, Xiao-Bo

    2013-12-01

    Phase-I drug metabolizing enzymes catalyze reactions of hydrolysis, reduction, and oxidation of drugs and play a critical role in drug metabolism. However, the functions of most phase-I enzymes are not mature at birth, which markedly affects drug metabolism in newborns. Therefore, characterization of the expression profiles of phase-I enzymes and the underlying regulatory mechanisms during liver maturation is needed for better estimation of using drugs in pediatric patients. The mouse is an animal model widely used for studying the mechanisms in the regulation of developmental expression of phase-I genes. Therefore, we applied RNA sequencing to provide a "true quantification" of the mRNA expression of phase-I genes in the mouse liver during development. Liver samples of male C57BL/6 mice at 12 different ages from prenatal to adulthood were used for defining the ontogenic mRNA profiles of phase-I families, including hydrolysis: carboxylesterase (Ces), paraoxonase (Pon), and epoxide hydrolase (Ephx); reduction: aldo-keto reductase (Akr), quinone oxidoreductase (Nqo), and dihydropyrimidine dehydrogenase (Dpyd); and oxidation: alcohol dehydrogenase (Adh), aldehyde dehydrogenase (Aldh), flavin monooxygenases (Fmo), molybdenum hydroxylase (Aox and Xdh), cytochrome P450 (P450), and cytochrome P450 oxidoreductase (Por). Two rapidly increasing stages of total phase-I gene expression after birth reflect functional transition of the liver during development. Diverse expression patterns were identified, and some large gene families contained the mRNA of genes that are enriched at different stages of development. Our study reveals the mRNA abundance of phase-I genes in the mouse liver during development and provides a valuable foundation for mechanistic studies in the future.

  12. [Activity of liver mitochondrial NAD+-dependent dehydrogenases of the krebs cycle in rats with acetaminophen-induced hepatitis developed under conditions of alimentary protein deficiency].

    PubMed

    Voloshchuk, O N; Kopylchuk, G P

    2016-01-01

    Activity of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and the NAD(+)/NADН ratio were studied in the liver mitochondrial fraction of rats with toxic hepatitis induced by acetaminophen under conditions of alimentary protein deprivation. Acetaminophen-induced hepatitis was characterized by a decrease of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase and malate dehydrogenase activities, while the mitochondrial NAD(+)/NADН ratio remained at the control level. Modeling of acetaminophen-induced hepatitis in rats with alimentary protein caused a more pronounced decrease in the activity of NAD(+)-dependent dehydrogenases studied and a 2.2-fold increase of the mitochondrial NAD(+)/NADН ratio. This suggests that alimentary protein deprivation potentiated drug-induced liver damage.

  13. Cofactor-Dependent Aldose Dehydrogenase of Rhodopseudomonas spheroides

    PubMed Central

    Niederpruem, Donald J.; Doudoroff, Michael

    1965-01-01

    Niederpruem, Donald J. (University of California, Berkeley), and Michael Doudoroff. Cofactor-dependent aldose dehydrogenase of Rhodopseudomonas spheroides. J. Bacteriol. 89:697–705. 1965.—Particulate enzyme preparations of cell extracts of Rhodopseudomonas spheroides possess constitutive dehydrogenase and oxidase activities for aldose sugars, reduced nicotinamide adenine dinucleotide (NADH2), and succinate. The dehydrogenation of aldoses requires an unidentified cofactor which is not required for the oxidation of succinate nor of NADH2. The cofactor is present in the particulate fraction of aerobic cells, but is unavailable to the enzyme system. It can be liberated by boiling or by treatment with salts at high concentration. The cofactor also appears in the soluble fraction of aerobic cells, but only after exponential growth has ceased. Extracts of cells grown anaerobically in the light possess the apoenzyme, but not the cofactor, for aldose oxidation. Cofactor activity was found in extracts of Bacterium anitratum (= Moraxella sp.) but not in Escherichia coli, Pseudomonas fluorescens, yeast, or mouse liver. In 0.075 m tris(hydroxymethyl)aminomethane-phosphoric acid buffer (pH 7.3), the oxidation of NADH2 was stimulated and succinoxidase was inhibited by high salt concentrations. PMID:14273648

  14. Distribution of anaerobic carbon monoxide dehydrogenase genes in deep subseafloor sediments.

    PubMed

    Hoshino, T; Inagaki, F

    2017-05-01

    Carbon monoxide (CO) is the simplest oxocarbon generated by the decomposition of organic compounds, and it is expected to be in marine sediments in substantial amounts. However, the availability of CO in the deep subseafloor sedimentary biosphere is largely unknown even though anaerobic oxidation of CO is a thermodynamically favourable reaction that possibly occurs with sulphate reduction, methanogenesis, acetogenesis and hydrogenesis. In this study, we surveyed for the first time the distribution of the CO dehydrogenase gene (cooS), which encodes the catalytic beta subunit of anaerobic CO dehydrogenase (CODH), in subseafloor sediment-core samples from the eastern flank of the Juan de Fuca Ridge, Mars-Ursa Basin, Kumano Basin, and off the Shimokita Peninsula, Japan, during Integrated Ocean Drilling Program (IODP) Expeditions 301, 308 and 315 and the D/V Chikyu shakedown cruise CK06-06, respectively. Our results show the occurrence of diverse cooS genes from the seafloor down to about 390 m below the seafloor, suggesting that microbial communities have metabolic functions to utilize CO in anoxic microbial ecosystems beneath the ocean floor, and that the microbial community potentially responsible for anaerobic CO oxidation differs in accordance with possible energy-yielding metabolic reactions in the deep subseafloor sedimentary biosphere. Little is known about the microbial community associated with carbon monoxide (CO) in the deep subseafloor. This study is the first survey of a functional gene encoding anaerobic carbon monoxide dehydrogenase (CODH). The widespread occurrence of previously undiscovered CO dehydrogenase genes (cooS) suggests that diverse micro-organisms are capable of anaerobic oxidation of CO in the deep subseafloor sedimentary biosphere. © 2017 The Society for Applied Microbiology.

  15. Genetics Home Reference: short-chain acyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... Orphanet: Short chain acyl-CoA dehydrogenase deficiency Screening, Technology and Research in Genetics Patient Support and Advocacy Resources (5 links) Children Living with Inherited Metabolic Disease (CLIMB) Children's Mitochondrial ...

  16. Hormonal regulation of the alpha-ketoglutarate dehydrogenase complex in the isolated perfused rat liver.

    PubMed

    Rashed, H M; Waller, F M; Patel, T B

    1988-04-25

    The metabolic flux through the alpha-ketoglutarate dehydrogenase reaction in perfused livers was monitored by measuring the rate of 14CO2 production from [1-14C]alpha-ketoglutarate. The rates of 14CO2 production and glucose production from [1-14C]alpha-ketoglutarate were increased with increasing perfusate alpha-ketoglutarate concentrations. Vasopressin, angiotensin II, and the alpha 1-adrenergic agonist phenylephrine stimulated transiently by 2.5-fold the metabolic flux through the alpha-ketoglutarate dehydrogenase reaction in the presence and absence of Ca2+ in the perfusion medium. High concentrations of glucagon (1 x 10(-8) M) and 8-p-chlorophenylthio-cAMP (100 microM) (data not shown) also stimulated transiently the metabolic flux through the alpha-ketoglutarate dehydrogenase reaction. However, lower glucagon concentrations (1 x 10(-9) M) stimulated the rate of 14CO2 production from [1-14C]alpha-ketoglutarate only under conditions optimized to fix the cellular oxidation-reduction state at an intermediate level, when glucagon (1 x 10(-9) M)-mediated elevation of cAMP content was greater than that observed under highly oxidizing and reducing conditions. These data indicate that agonists which increase cytosolic free Ca2+ levels stimulate the metabolic flux through the alpha-ketoglutarate dehydrogenase complex. Furthermore, the data presented here demonstrate for the first time that physiological glucagon concentrations stimulate the metabolic flux through the alpha-ketoglutarate dehydrogenase reaction only under conditions known to be optimal for glucagon-mediated Ca2+ mobilization in the isolated perfused rat liver.

  17. ALDEHYDE DEHYDROGENASES EXPRESSION DURING POSTNATAL DEVELOPMENT: LIVER VS. LUNG

    EPA Science Inventory

    Aldehydes are highly reactive molecules present in the environment, and can be produced during biotransformation of xenobiotics. Although the lung can be a major target for aldehyde toxicity, development of aldehyde dehydrogenases (ALDHs), which detoxify aldehydes, in lung has be...

  18. A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation.

    PubMed

    Bera, Aloke K; Ho, Nancy W Y; Khan, Aftab; Sedlak, Miroslav

    2011-05-01

    Robust microorganisms are necessary for economical bioethanol production. However, such organisms must be able to effectively ferment both hexose and pentose sugars present in lignocellulosic hydrolysate to ethanol. Wild type Saccharomyces cerevisiae can rapidly ferment hexose, but cannot ferment pentose sugars. Considerable efforts were made to genetically engineer S. cerevisiae to ferment xylose. Our genetically engineered S cerevisiae yeast, 424A(LNH-ST), expresses NADPH/NADH xylose reductase (XR) that prefer NADPH and NAD(+)-dependent xylitol dehydrogenase (XD) from Pichia stipitis, and overexpresses endogenous xylulokinase (XK). This strain is able to ferment glucose and xylose, as well as other hexose sugars, to ethanol. However, the preference for different cofactors by XR and XD might lead to redox imbalance, xylitol excretion, and thus might reduce ethanol yield and productivity. In the present study, genes responsible for the conversion of xylose to xylulose with different cofactor specificity (1) XR from N. crassa (NADPH-dependent) and C. parapsilosis (NADH-dependent), and (2) mutant XD from P. stipitis (containing three mutations D207A/I208R/F209S) were overexpressed in wild type yeast. To increase the NADPH pool, the fungal GAPDH enzyme from Kluyveromyces lactis was overexpressed in the 424A(LNH-ST) strain. Four pentose phosphate pathway (PPP) genes, TKL1, TAL1, RKI1 and RPE1 from S. cerevisiae, were also overexpressed in 424A(LNH-ST). Overexpression of GAPDH lowered xylitol production by more than 40%. However, other strains carrying different combinations of XR and XD, as well as new strains containing the overexpressed PPP genes, did not yield any significant improvement in xylose fermentation.

  19. Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum

    DOE PAGES

    Verbeke, Tobin J.; Giannone, Richard J.; Klingeman, Dawn M.; ...

    2017-02-23

    Significant hurdles exist in efforts to domesticate and industrialize a microbial species for biotechnological application as specific metabolic functions found in natural communities disappear in axenic cultures. For the lignocellulose-deconstructing specialist Clostridium thermocellum, the catabolism of hemicellulose-derived pentoses, which the bacterium cannot ferment, is one such function. Here, we report that various xylo-oligomers significantly inhibit C. thermocellum metabolism and growth and that microbe-sugar interactions occur across multiple dimensions. First, stable isotope metabolomics confirmed C. thermocellum s ability to transport and metabolize pentose sugars. This transport occurs, at least in part, through the ATP-dependent transporter, CbpD. Secondly, xylose is an electronmore » sink for C. thermocellum metabolism leading to the production of xylitol. Deletion of Clo1313_0076, annotated as a xylitol dehydrogenase, reduced the total production and molar xylitol yields by 41% and 46%, respectively. However, it also altered the relative end-product distribution patterns confirming that external electron acceptors may influence the bacterium s redox metabolism to a greater extent than previously considered. Finally, xylose-induced inhibition corresponds with the up-regulation and biogenesis of an AgrD-type, lactone cyclized pentapeptide signaling molecule; which is the first report of an AgrD-type signaling peptide in any thermophile. Addition of synthetic versions of the cyclic peptide inhibited cultures grown in the absence of xylose, but had no effect on cultures already inhibited by the pentose sugar. Together, our findings identify that C. thermocellum has evolved previously unrecognized strategies to cope with C5-sugars, but the absence of a native catabolic sink negatively affects strain metabolism and growth.« less

  20. Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verbeke, Tobin J.; Giannone, Richard J.; Klingeman, Dawn M.

    Significant hurdles exist in efforts to domesticate and industrialize a microbial species for biotechnological application as specific metabolic functions found in natural communities disappear in axenic cultures. For the lignocellulose-deconstructing specialist Clostridium thermocellum, the catabolism of hemicellulose-derived pentoses, which the bacterium cannot ferment, is one such function. Here, we report that various xylo-oligomers significantly inhibit C. thermocellum metabolism and growth and that microbe-sugar interactions occur across multiple dimensions. First, stable isotope metabolomics confirmed C. thermocellum s ability to transport and metabolize pentose sugars. This transport occurs, at least in part, through the ATP-dependent transporter, CbpD. Secondly, xylose is an electronmore » sink for C. thermocellum metabolism leading to the production of xylitol. Deletion of Clo1313_0076, annotated as a xylitol dehydrogenase, reduced the total production and molar xylitol yields by 41% and 46%, respectively. However, it also altered the relative end-product distribution patterns confirming that external electron acceptors may influence the bacterium s redox metabolism to a greater extent than previously considered. Finally, xylose-induced inhibition corresponds with the up-regulation and biogenesis of an AgrD-type, lactone cyclized pentapeptide signaling molecule; which is the first report of an AgrD-type signaling peptide in any thermophile. Addition of synthetic versions of the cyclic peptide inhibited cultures grown in the absence of xylose, but had no effect on cultures already inhibited by the pentose sugar. Together, our findings identify that C. thermocellum has evolved previously unrecognized strategies to cope with C5-sugars, but the absence of a native catabolic sink negatively affects strain metabolism and growth.« less

  1. Formate Dehydrogenase of Clostridium thermoaceticum: Incorporation of Selenium-75, and the Effects of Selenite, Molybdate, and Tungstate on the Enzyme

    PubMed Central

    Andreesen, Jan R.; Ljungdahl, Lars G.

    1973-01-01

    The formation of the nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase in Clostridium thermoaceticum is stimulated by the presence of molybdate and selenite in the growth medium. The highest formate dehydrogenase activity was obtained with 2.5 × 10−4 M Na2MoO4 and 5 × 10−5 Na2SeO3. Tungstate but not vanadate could replace molybdate and stimulate the formation of formate dehydrogenase. Tungstate stimulated activity more than molybdate, and in combination with molybdate the stimulation of formation of formate dehydrogenase was additive. Formate dehydrogenase was isolated from cells grown in the presence of Na275SeO2, and a correlation was observed between bound 75Se and enzyme activity. PMID:4147651

  2. Purification and Characterization of a Novel NAD(P)+-Farnesol Dehydrogenase from Polygonum minus Leaves.

    PubMed

    Ahmad-Sohdi, Nor-Ain-Shahajar; Seman-Kamarulzaman, Ahmad-Faris; Mohamed-Hussein, Zeti-Azura; Hassan, Maizom

    2015-01-01

    Juvenile hormones have attracted attention as safe and selective targets for the design and development of environmentally friendly and biorational insecticides. In the juvenile hormone III biosynthetic pathway, the enzyme farnesol dehydrogenase catalyzes the oxidation of farnesol to farnesal. In this study, farnesol dehydrogenase was extracted from Polygonum minus leaves and purified 204-fold to apparent homogeneity by ion-exchange chromatography using DEAE-Toyopearl, SP-Toyopearl, and Super-Q Toyopearl, followed by three successive purifications by gel filtration chromatography on a TSK-gel GS3000SW. The enzyme is a heterodimer comprised of subunits with molecular masses of 65 kDa and 70 kDa. The optimum temperature and pH were 35°C and pH 9.5, respectively. Activity was inhibited by sulfhydryl reagents, metal-chelating agents and heavy metal ions. The enzyme utilized both NAD+ and NADP+ as coenzymes with Km values of 0.74 mM and 40 mM, respectively. Trans, trans-farnesol was the preferred substrate for the P. minus farnesol dehydrogenase. Geometrical isomers of trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol were also oxidized by the enzyme with lower activity. The Km values for trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol appeared to be 0.17 mM, 0.33 mM and 0.42 mM, respectively. The amino acid sequences of 4 tryptic peptides of the enzyme were analyzed by MALDI-TOF/TOF-MS spectrometry, and showed no significant similarity to those of previously reported farnesol dehydrogenases. These results suggest that the purified enzyme is a novel NAD(P)+-dependent farnesol dehydrogenase. The purification and characterization established in the current study will serve as a basis to provide new information for recombinant production of the enzyme. Therefore, recombinant farnesol dehydrogenase may provide a useful molecular tool in manipulating juvenile hormone biosynthesis to generate transgenic plants for pest control.

  3. Purification and Characterization of a Novel NAD(P)+-Farnesol Dehydrogenase from Polygonum minus Leaves

    PubMed Central

    Seman-Kamarulzaman, Ahmad-Faris; Mohamed-Hussein, Zeti-Azura

    2015-01-01

    Juvenile hormones have attracted attention as safe and selective targets for the design and development of environmentally friendly and biorational insecticides. In the juvenile hormone III biosynthetic pathway, the enzyme farnesol dehydrogenase catalyzes the oxidation of farnesol to farnesal. In this study, farnesol dehydrogenase was extracted from Polygonum minus leaves and purified 204-fold to apparent homogeneity by ion-exchange chromatography using DEAE-Toyopearl, SP-Toyopearl, and Super-Q Toyopearl, followed by three successive purifications by gel filtration chromatography on a TSK-gel GS3000SW. The enzyme is a heterodimer comprised of subunits with molecular masses of 65 kDa and 70 kDa. The optimum temperature and pH were 35°C and pH 9.5, respectively. Activity was inhibited by sulfhydryl reagents, metal-chelating agents and heavy metal ions. The enzyme utilized both NAD+ and NADP+ as coenzymes with K m values of 0.74 mM and 40 mM, respectively. Trans, trans-farnesol was the preferred substrate for the P. minus farnesol dehydrogenase. Geometrical isomers of trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol were also oxidized by the enzyme with lower activity. The K m values for trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol appeared to be 0.17 mM, 0.33 mM and 0.42 mM, respectively. The amino acid sequences of 4 tryptic peptides of the enzyme were analyzed by MALDI-TOF/TOF-MS spectrometry, and showed no significant similarity to those of previously reported farnesol dehydrogenases. These results suggest that the purified enzyme is a novel NAD(P)+-dependent farnesol dehydrogenase. The purification and characterization established in the current study will serve as a basis to provide new information for recombinant production of the enzyme. Therefore, recombinant farnesol dehydrogenase may provide a useful molecular tool in manipulating juvenile hormone biosynthesis to generate transgenic plants for pest control. PMID:26600471

  4. Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a membraneless ethanol microfluidic fuel cell

    NASA Astrophysics Data System (ADS)

    Galindo-de-la-Rosa, J.; Arjona, N.; Arriaga, L. G.; Ledesma-García, J.; Guerra-Balcázar, M.

    2015-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldH) enzymes were immobilized by covalent binding and used as the anode in a bi-enzymatic membraneless ethanol hybrid microfluidic fuel cell. The purpose of using both enzymes was to optimize the ethanol electro-oxidation reaction (EOR) by using ADH toward its direct oxidation and AldH for the oxidation of aldehydes as by-products of the EOR. For this reason, three enzymatic bioanode configurations were evaluated according with the location of enzymes: combined, vertical and horizontally separated. In the combined configuration, a current density of 16.3 mA cm-2, a voltage of 1.14 V and a power density of 7.02 mW cm-2 were obtained. When enzymes were separately placed in a horizontal and vertical position the ocp drops to 0.94 V and to 0.68 V, respectively. The current density also falls to values of 13.63 and 5.05 mA cm-2. The decrease of cell performance of bioanodes with separated enzymes compared with the combined bioanode was of 31.7% and 86.87% for the horizontal and the vertical array.

  5. Molecular simulation to investigate the cofactor specificity for pichia stipitis Xylose reductase.

    PubMed

    Xia, Xiao-Le; Cong, Shan; Weng, Xiao-Rong; Chen, Jin-Hua; Wang, Jing-Fang; Chou, Kuo-Chen

    2013-11-01

    Xylose is one of the most abundant carbohydrates in nature, and widely used to produce bioethanol via fermentation in industry. Xylulose can produce two key enzymes: xylose reductase and xylitol dehydrogenase. Owing to the disparate cofactor specificities of xylose reductase and xylitol dehydrogenase, intracellular redox imbalance is detected during the xylose fermentation, resulting in low ethanol yields. To overcome this barrier, a common strategy is applied to artificially modify the cofactor specificity of xylose reductase. In this study, we utilized molecular simulation approaches to construct a 3D (three-dimensional) structural model for the NADP-dependent Pichia stipitis xylose reductase (PsXR). Based on the 3D model, the favourable binding modes for both cofactors NAD and NADP were obtained using the flexible docking procedure and molecular dynamics simulation. Structural analysis of the favourable binding modes showed that the cofactor binding site of PsXR was composed of 3 major components: a hydrophilic pocket, a hydrophobic pocket as well as a linker channel between the aforementioned two pockets. The hydrophilic pocket could recognize the nicotinamide moiety of the cofactors by hydrogen bonding networks, while the hydrophobic pocket functioned to position the adenine moiety of the cofactors by hydrophobic and Π-Π stacking interactions. The linker channel contained some key residues for ligand-binding; their mutation could have impact to the specificity of PsXR. Finally, it was found that any of the two single mutations, K21A and K270N, might reverse the cofactor specificity of PsXR from major NADP- to NADdependent, which was further confirmed by the additional experiments. Our findings may provide useful insights into the cofactor specificity of PsXR, stimulating new strategies for better designing xylose reductase and improving ethanol production in industry.

  6. Androgen-estrogen synergy in rat levator ani muscle Glucose-6-phosphate dehydrogenase

    NASA Technical Reports Server (NTRS)

    Max, S. R.

    1984-01-01

    The effects of castration and hormone administration on the activity of glucose-6-phosphate dehydrogenase in the rat levator ani muscle were studied. Castration caused a decrease in enzyme activity and in wet weight of the levator ani muscle. Chronic administration of testosterone propionate increased glucose-6-phosphate dehydrogenase activity in the levator ani muscle of castrated rats; the magnitude of the recovery of enzyme activity was related to the length of time of exposure to testosterone propionate after castration as well as to the length of time the animals were castrated. The longer the period of castration before exposure to testosterone propionate, the greater the effect. This result may be related to previously reported castration-mediated increases in androgen receptor binding in muscle. Dihydrotestosterone was less effective than testosterone propionate in enhancing glucose-6-phosphate dehydrogenase activity in the levator ani muscle from castrated rats; estradiol-17-beta alone was ineffective. Combined treatment with estradiol-17-beta and dihydrotestosterone, however, was as effective as testosterone alone. Thus, androgens and estrogens may exert synergistic effects on levator ani muscle.

  7. Modulation of alcohol dehydrogenase and ethanol metabolism by sex hormones in the spontaneously hypertensive rat. Effect of chronic ethanol administration

    PubMed Central

    Rachamin, Gloria; Macdonald, J. Alain; Wahid, Samina; Clapp, Jeremy J.; Khanna, Jatinder M.; Israel, Yedy

    1980-01-01

    In young (4-week-old) male and female spontaneously hypertensive (SH) rats, ethanol metabolic rate in vivo and hepatic alcohol dehydrogenase activity in vitro are high and not different in the two sexes. In males, ethanol metabolic rate falls markedly between 4 and 10 weeks of age, which coincides with the time of development of sexual maturity in the rat. Alcohol dehydrogenase activity is also markedly diminished in the male SH rat and correlates well with the changes in ethanol metabolism. There is virtually no influence of age on ethanol metabolic rate and alcohol dehydrogenase activity in the female SH rat. Castration of male SH rats prevents the marked decrease in ethanol metabolic rate and alcohol dehydrogenase activity, whereas ovariectomy has no effect on these parameters in female SH rats. Chronic administration of testosterone to castrated male SH rats and to female SH rats decreases ethanol metabolic rate and alcohol dehydrogenase activity to values similar to those found in mature males. Chronic administration of oestradiol-17β to male SH rats results in marked stimulation of ethanol metabolic rate and alcohol dehydrogenase activity to values similar to those found in female SH rats. Chronic administration of ethanol to male SH rats from 4 to 11 weeks of age prevents the marked age-dependent decreases in ethanol metabolic rate and alcohol dehydrogenase activity, but has virtually no effect in castrated rats. In the intoxicated chronically ethanol-fed male SH rats, serum testosterone concentrations are significantly depressed. In vitro, testosterone has no effect on hepatic alcohol dehydrogenase activity of young male and female SH rats. In conclusion, in the male SH rat, ethanol metabolic rate appears to be limited by alcohol dehydrogenase activity and is modulated by testosterone. Testosterone has an inhibitory effect and oestradiol has a testosterone-dependent stimulatory effect on alcohol dehydrogenase activity and ethanol metabolic rate in these

  8. Purification and characterization of an oxygen-labile, NAD-dependent alcohol dehydrogenase from Desulfovibrio gigas.

    PubMed Central

    Hensgens, C M; Vonck, J; Van Beeumen, J; van Bruggen, E F; Hansen, T A

    1993-01-01

    A NAD-dependent, oxygen-labile alcohol dehydrogenase was purified from Desulfovibrio gigas. It was decameric, with subunits of M(r) 43,000. The best substrates were ethanol (Km, 0.15 mM) and 1-propanol (Km, 0.28 mM). N-terminal amino acid sequence analysis showed that the enzyme belongs to the same family of alcohol dehydrogenases as Zymomonas mobilis ADH2 and Bacillus methanolicus MDH. Images PMID:8491707

  9. Cellular distribution, purification and electrophoretic properties of malate dehydrogenase in Trichuris ovis and inhibition by benzimidazoles and pyrimidine derivatives.

    PubMed

    Sanchez-Moreno, M; Ortega, J E; Valero, A

    1989-12-01

    High levels of malate dehydrogenase were found in Trichuris ovis. Two molecular forms of the enzyme, of different cellular location and electrophoretic pattern, were isolated and purified. The activity of soluble malate dehydrogenase was greater than that of mitochondrial malate dehydrogenase. Both forms also displayed different electrophoretic profiles in comparison with purified extracts from goat (Capra hircus) liver. Substrate concentration directly affected enzyme activity. Host and parasite malate dehydrogenase activity were both inhibited by a series of benzimidazoles and pyrimidine-derived compounds, some of which markedly reduced parasite enzyme activity, but not host enzyme activity. Percentage inhibition by some pyrimidine derivatives was greater than that produced by benzimidazoles.

  10. Modulation of NADP(+)-dependent isocitrate dehydrogenase in aging.

    PubMed

    Kil, In Sup; Lee, Young Sup; Bae, Young Seuk; Huh, Tae Lin; Park, Jeen-Woo

    2004-01-01

    NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose-6-phosphate dehydrogenase, malic enzyme, and NADP(+)-specific isocitrate dehydrogenases (ICDHs). Here, we investigated age-related changes in ICDH activity and protein expression in IMR-90 human diploid fibroblast cells and tissues from Fischer 344 rats. We found that in IMR-90 cells the activity of cytosolic ICDH (IDPc) gradually increased with age up to the 46-48 population doubling level (PDL) and then gradually decreased at later PDL. 2',7'-Dichloro-fluorescein fluorescence which reflects intracellular ROS generation was increased with aging in IMR-90 cells. In ad libitum-fed rats, we noted age-related, tissue-specific modulations of IDPc and mitochondrial ICDH (IDPm) activities and protein expression in the liver, kidney and testes. In contrast, ICDH activities and protein expression were not significantly modulated in diet-restricted rats. These data suggest that modulation of ICDH is an age-dependent and a tissue-specific phenomenon.

  11. Engineering of Pyranose Dehydrogenase for Increased Oxygen Reactivity

    PubMed Central

    Krondorfer, Iris; Lipp, Katharina; Brugger, Dagmar; Staudigl, Petra; Sygmund, Christoph; Haltrich, Dietmar; Peterbauer, Clemens K.

    2014-01-01

    Pyranose dehydrogenase (PDH), a member of the GMC family of flavoproteins, shows a very broad sugar substrate specificity but is limited to a narrow range of electron acceptors and reacts extremely slowly with dioxygen as acceptor. The use of substituted quinones or (organo)metals as electron acceptors is undesirable for many production processes, especially of food ingredients. To improve the oxygen reactivity, site-saturation mutagenesis libraries of twelve amino acids around the active site of Agaricus meleagris PDH were expressed in Saccharomyces cerevisiae. We established high-throughput screening assays for oxygen reactivity and standard dehydrogenase activity using an indirect Amplex Red/horseradish peroxidase and a DCIP/D-glucose based approach. The low number of active clones confirmed the catalytic role of H512 and H556. Only one position was found to display increased oxygen reactivity. Histidine 103, carrying the covalently linked FAD cofactor in the wild-type, was substituted by tyrosine, phenylalanine, tryptophan and methionine. Variant H103Y was produced in Pichia pastoris and characterized and revealed a five-fold increase of the oxygen reactivity. PMID:24614932

  12. Energetics of the molecular interactions of L-alanine and L-serine with xylitol, D-sorbitol, and D-mannitol in aqueous solutions at 298.15 K

    NASA Astrophysics Data System (ADS)

    Mezhevoi, I. N.; Badelin, V. G.

    2013-04-01

    Integral enthalpies of dissolution Δsol H m of L-alanine and L-serine are measured via the calorimetry of dissolution in aqueous solutions of xylitol, D-sorbitol, and D-mannitol. Standard enthalpies of dissolution (Δsol H ○) and the transfer (Δtr H ○) of amino acids from water to binary solvent are calculated from the experimental data. Using the McMillan-Mayer theory, enthalpy coefficients of pairwise interactions h xy of amino acids with molecules of polyols are calculated that are negative. The obtained results are discussed within the theory of the prevalence of different types of interactions in mixed solutions and the effect of the structural features of interacting biomolecules on the thermochemical parameters of dissolution of amino acids.

  13. Novel guanidine-based inhibitors of inosine monophosphate dehydrogenase.

    PubMed

    Iwanowicz, Edwin J; Watterson, Scott H; Liu, Chunjian; Gu, Henry H; Mitt, Toomas; Leftheris, Katerina; Barrish, Joel C; Fleener, Catherine A; Rouleau, Katherine; Sherbina, N Z; Hollenbaugh, Diane L

    2002-10-21

    A series of novel guanidine-based small molecule inhibitors of inosine monophosphate dehydrogenase (IMPDH) was explored. IMPDH catalyzes the rate determining step in guanine nucleotide biosynthesis and is a target for anticancer, immunosuppressive and antiviral therapy. The synthesis and the structure-activity relationships (SARs), derived from in vitro studies, for this new series of inhibitors is given.

  14. Fulminant hemolysis in glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Moiz, Bushra; Ali, Sidra Asad

    2018-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked disorder affecting some 400 million people worldwide. Though clinically silent, it may result in hemolysis on oxidative stress induced by drugs or infections. Viral hepatitis A with coexisting G6PD deficiency can be devastating associated with severe hemolysis, anemia, renal failure, and hepatic encephalopathy.

  15. Overexpression of NADH-dependent fumarate reductase improves D-xylose fermentation in recombinant Saccharomyces cerevisiae.

    PubMed

    Salusjärvi, Laura; Kaunisto, Sanna; Holmström, Sami; Vehkomäki, Maija-Leena; Koivuranta, Kari; Pitkänen, Juha-Pekka; Ruohonen, Laura

    2013-12-01

    Deviation from optimal levels and ratios of redox cofactors NAD(H) and NADP(H) is common when microbes are metabolically engineered. The resulting redox imbalance often reduces the rate of substrate utilization as well as biomass and product formation. An example is the metabolism of D-xylose by recombinant Saccharomyces cerevisiae strains expressing xylose reductase and xylitol dehydrogenase encoding genes from Scheffersomyces stipitis. This pathway requires both NADPH and NAD(+). The effect of overexpressing the glycosomal NADH-dependent fumarate reductase (FRD) of Trypanosoma brucei in D-xylose-utilizing S. cerevisiae alone and together with an endogenous, cytosol directed NADH-kinase (POS5Δ17) was studied as one possible solution to overcome this imbalance. Expression of FRD and FRD + POS5Δ17 resulted in 60 and 23 % increase in ethanol yield, respectively, on D-xylose under anaerobic conditions. At the same time, xylitol yield decreased in the FRD strain suggesting an improvement in redox balance. We show that fumarate reductase of T. brucei can provide an important source of NAD(+) in yeast under anaerobic conditions, and can be useful for metabolic engineering strategies where the redox cofactors need to be balanced. The effects of FRD and NADH-kinase on aerobic and anaerobic D-xylose and D-glucose metabolism are discussed.

  16. Cytoplasm-to-myonucleus ratios and succinate dehydrogenase activities in adult rat slow and fast muscle fibers

    NASA Technical Reports Server (NTRS)

    Tseng, B. S.; Kasper, C. E.; Edgerton, V. R.

    1994-01-01

    The relationship between myonuclear number, cellular size, succinate dehydrogenase activity, and myosin type was examined in single fiber segments (n = 54; 9 +/- 3 mm long) mechanically dissected from soleus and plantaris muscles of adult rats. One end of each fiber segment was stained for DNA before quantitative photometric analysis of succinate dehydrogenase activity; the other end was double immunolabeled with fast and slow myosin heavy chain monoclonal antibodies. Mean +/- S.D. cytoplasmic volume/myonucleus ratio was higher in fast and slow plantaris fibers (112 +/- 69 vs. 34 +/- 21 x 10(3) microns3) than fast and slow soleus fibers (40 +/- 20 vs. 30 +/- 14 x 10(3) microns3), respectively. Slow fibers always had small volumes/myonucleus, regardless of fiber diameter, succinate dehydrogenase activity, or muscle of origin. In contrast, smaller diameter (< 70 microns) fast soleus and plantaris fibers with high succinate dehydrogenase activity appeared to have low volumes/myonucleus while larger diameter (> 70 microns) fast fibers with low succinate dehydrogenase activity always had large volume/myonucleus. Slow soleus fibers had significantly greater numbers of myonuclei/mm than did either fast soleus or fast plantaris fibers (116 +/- 51 vs. 55 +/- 22 and 44 +/- 23), respectively. These data suggest that the myonuclear domain is more limited in slow than fast fibers and in the fibers with a high, compared to a low, oxidative metabolic capability.

  17. Glutamate Dehydrogenase Affects Resistance to Cell Wall Antibiotics in Bacillus subtilis

    PubMed Central

    Lee, Yong Heon; Kingston, Anthony W.

    2012-01-01

    The glutamate dehydrogenase RocG of Bacillus subtilis is a bifunctional protein with both enzymatic and regulatory functions. Here we show that the rocG null mutant is sensitive to β-lactams, including cefuroxime (CEF), and to fosfomycin but that resistant mutants arise due to gain-of-function mutations in gudB, which encodes an otherwise inactive glutamate dehydrogenase. In the presence of CEF, ΔrocG ΔgudB mutant cells exhibit growth arrest when they reach mid-exponential phase. Using microarray-based transcriptional profiling, we found that the σW regulon was downregulated in the ΔrocG ΔgudB null mutant. A survey of σW-controlled genes for effects on CEF resistance identified both the NfeD protein YuaF and the flotillin homologue YuaG (FloT). Notably, overexpression of yuaFG in the rocG null mutant prevents the growth arrest induced by CEF. The YuaG flotillin has been shown previously to localize to defined lipid microdomains, and we show here that the yuaFGI operon contributes to a σW-dependent decrease in membrane fluidity. We conclude that glutamate dehydrogenase activity affects the expression of the σW regulon, by pathways that are yet unclear, and thereby influences resistance to CEF and other antibiotics. PMID:22178969

  18. Glutamate dehydrogenase affects resistance to cell wall antibiotics in Bacillus subtilis.

    PubMed

    Lee, Yong Heon; Kingston, Anthony W; Helmann, John D

    2012-03-01

    The glutamate dehydrogenase RocG of Bacillus subtilis is a bifunctional protein with both enzymatic and regulatory functions. Here we show that the rocG null mutant is sensitive to β-lactams, including cefuroxime (CEF), and to fosfomycin but that resistant mutants arise due to gain-of-function mutations in gudB, which encodes an otherwise inactive glutamate dehydrogenase. In the presence of CEF, ΔrocG ΔgudB mutant cells exhibit growth arrest when they reach mid-exponential phase. Using microarray-based transcriptional profiling, we found that the σ(W) regulon was downregulated in the ΔrocG ΔgudB null mutant. A survey of σ(W)-controlled genes for effects on CEF resistance identified both the NfeD protein YuaF and the flotillin homologue YuaG (FloT). Notably, overexpression of yuaFG in the rocG null mutant prevents the growth arrest induced by CEF. The YuaG flotillin has been shown previously to localize to defined lipid microdomains, and we show here that the yuaFGI operon contributes to a σ(W)-dependent decrease in membrane fluidity. We conclude that glutamate dehydrogenase activity affects the expression of the σ(W) regulon, by pathways that are yet unclear, and thereby influences resistance to CEF and other antibiotics.

  19. Amine dehydrogenases: efficient biocatalysts for the reductive amination of carbonyl compounds

    PubMed Central

    Mutti, Francesco G.

    2017-01-01

    Amines constitute the major targets for the production of a plethora of chemical compounds that have applications in the pharmaceutical, agrochemical and bulk chemical industries. However, the asymmetric synthesis of α-chiral amines with elevated catalytic efficiency and atom economy is still a very challenging synthetic problem. Here, we investigated the biocatalytic reductive amination of carbonyl compounds employing a rising class of enzymes for amine synthesis: amine dehydrogenases (AmDHs). The three AmDHs from this study – operating in tandem with a formate dehydrogenase from Candida boidinii (Cb-FDH) for the recycling of the nicotinamide coenzyme – performed the efficient amination of a range of diverse aromatic and aliphatic ketones and aldehydes with up to quantitative conversion and elevated turnover numbers (TONs). Moreover, the reductive amination of prochiral ketones proceeded with perfect stereoselectivity, always affording the (R)-configured amines with more than 99% enantiomeric excess. The most suitable amine dehydrogenase, the optimised catalyst loading and the required reaction time were determined for each substrate. The biocatalytic reductive amination with this dual-enzyme system (AmDH–Cb-FDH) possesses elevated atom efficiency as it utilizes the ammonium formate buffer as the source of both nitrogen and reducing equivalents. Inorganic carbonate is the sole by-product. PMID:28663713

  20. Amine dehydrogenases: efficient biocatalysts for the reductive amination of carbonyl compounds.

    PubMed

    Knaus, Tanja; Böhmer, Wesley; Mutti, Francesco G

    2017-01-21

    Amines constitute the major targets for the production of a plethora of chemical compounds that have applications in the pharmaceutical, agrochemical and bulk chemical industries. However, the asymmetric synthesis of α-chiral amines with elevated catalytic efficiency and atom economy is still a very challenging synthetic problem. Here, we investigated the biocatalytic reductive amination of carbonyl compounds employing a rising class of enzymes for amine synthesis: amine dehydrogenases (AmDHs). The three AmDHs from this study - operating in tandem with a formate dehydrogenase from Candida boidinii (Cb-FDH) for the recycling of the nicotinamide coenzyme - performed the efficient amination of a range of diverse aromatic and aliphatic ketones and aldehydes with up to quantitative conversion and elevated turnover numbers (TONs). Moreover, the reductive amination of prochiral ketones proceeded with perfect stereoselectivity, always affording the ( R )-configured amines with more than 99% enantiomeric excess. The most suitable amine dehydrogenase, the optimised catalyst loading and the required reaction time were determined for each substrate. The biocatalytic reductive amination with this dual-enzyme system (AmDH-Cb-FDH) possesses elevated atom efficiency as it utilizes the ammonium formate buffer as the source of both nitrogen and reducing equivalents. Inorganic carbonate is the sole by-product.

  1. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lactate dehydrogenase isoenzymes test system. 862.1445 Section 862.1445 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  2. 21 CFR 862.1565 - 6-Phosphogluconate dehydrogenase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false 6-Phosphogluconate dehydrogenase test system. 862.1565 Section 862.1565 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  3. Fecal hydroxysteroid dehydrogenase activities in vegetarian Seventh-Day Adventists, control subjects, and bowel cancer patients.

    PubMed

    Macdonald, I A; Webb, G R; Mahony, D E

    1978-10-01

    Cell-free extracts were prepared from mixed fecal anaerobic bacteria grown from stools of 14 vegetarian Seventh-Day Adventists, 16 omnivorous control subjects, and eight patients recently diagnosed with cancer of the large bowel. Preparations were assayed for NAD- and NADP-dependent 3alpha-, 7alpha- and 12alpha-hydroxysteroid dehydrogenases with bile salts and androsterone as substrates (eight substrate-cofactor combinations were tested). A significant intergroup difference was observed in the amounts of NAD- and NADP-dependent 7alpha-hydroxysteroid dehydrogenase produced: bowel cancer patients exceeded controls, and controls exceeded Seventh-Day Adventists. Other enzyme activity comparisons were not significant. The pH values of the stools were significantly higher in cancer patients compared to Seventh-Day Adventists; values were 7.03 +/- 0.60 and 6.46 +/- 0.58 respectively. The pH value for controls was 6.66 +/- 0.62. A plot of pH value versus NADP-dependent 7alpha-hydroxysteroid dehydrogenase tended to separate the cancer patients from the other groups. Comparative data suggest that much of the 3alpha-hydroxysteroid dehydrogenase active against bile salt is also active against androsterone.

  4. Role of malate dehydrogenase in facilitating lactate dehydrogenase to support the glycolysis pathway in tumors.

    PubMed

    Mansouri, Siavash; Shahriari, Ali; Kalantar, Hadi; Moini Zanjani, Taraneh; Haghi Karamallah, Mojtaba

    2017-04-01

    High aerobic glycolysis, as one of the hallmarks of cancer cells, requires nicotinamide adenine dinucleotide (NAD + ) as a vital co-factor, to guarantee the flow of glycolysis. Malate dehydrogenase (MDH), as an important enzyme in cancer metabolism, is a source of NAD + additional to lactate dehydrogenase (LDH). The current study aimed to elucidate the kinetic parameters of MDH in human breast cancer and evaluate its supportive role in the glycolysis pathway. The Michaelis-Menten constant (K m ) and maximum velocity (V max ) of MDH were determined in the crude extracts of human breast tumors and healthy tissue samples, which were obtained directly from the operating theatre. To assess the potential role of MDH in supporting glycolysis, the MDH activity was measured when the LDH activity was inhibited by different concentrations of oxamate, an inhibitor of LDH in breast cancer cell lines. The K m of cancerous MDH (C-MDH) was the same as the healthy MDH, although the V max of C-MDH was higher relative to the healthy MDH. Notably, the MDH activity was increased in the MDA-MB-231 cell line, which was treated with the LDH inhibitor (oxamate), but not in the MCF-7 cell line (P<0.05). The higher tendency of C-MDH for NAD + and malate generation in cancer cells is an effective approach for supporting glycolysis. Increasing MDH activity in the absence of LDH demonstrates the supportive role of MDH in glycolysis. Therefore, decreasing MDH activity and expression in a forward reaction may present as a valid molecular target to abolish its potential effect on tumor metabolism.

  5. Complementary DNA cloning and molecular evolution of opine dehydrogenases in some marine invertebrates.

    PubMed

    Kimura, Tomohiro; Nakano, Toshiki; Yamaguchi, Toshiyasu; Sato, Minoru; Ogawa, Tomohisa; Muramoto, Koji; Yokoyama, Takehiko; Kan-No, Nobuhiro; Nagahisa, Eizou; Janssen, Frank; Grieshaber, Manfred K

    2004-01-01

    The complete complementary DNA sequences of genes presumably coding for opine dehydrogenases from Arabella iricolor (sandworm), Haliotis discus hannai (abalone), and Patinopecten yessoensis (scallop) were determined, and partial cDNA sequences were derived for Meretrix lusoria (Japanese hard clam) and Spisula sachalinensis (Sakhalin surf clam). The primers ODH-9F and ODH-11R proved useful for amplifying the sequences for opine dehydrogenases from the 4 mollusk species investigated in this study. The sequence of the sandworm was obtained using primers constructed from the amino acid sequence of tauropine dehydrogenase, the main opine dehydrogenase in A. iricolor. The complete cDNA sequence of A. iricolor, H. discus hannai, and P. yessoensis encode 397, 400, and 405 amino acids, respectively. All sequences were aligned and compared with published databank sequences of Loligo opalescens, Loligo vulgaris (squid), Sepia officinalis (cuttlefish), and Pecten maximus (scallop). As expected, a high level of homology was observed for the cDNA from closely related species, such as for cephalopods or scallops, whereas cDNA from the other species showed lower-level homologies. A similar trend was observed when the deduced amino acid sequences were compared. Furthermore, alignment of these sequences revealed some structural motifs that are possibly related to the binding sites of the substrates. The phylogenetic trees derived from the nucleotide and amino acid sequences were consistent with the classification of species resulting from classical taxonomic analyses.

  6. Discovery of an acidic, thermostable and highly NADP+ dependent formate dehydrogenase from Lactobacillus buchneri NRRL B-30929

    USDA-ARS?s Scientific Manuscript database

    Objectives: To identify a robust NADP+ dependent formate dehydrogenase from Lactobacillus buchneri NRRL B-30929 (LbFDH) with unique biochemical properties. Results: A new NADP+ dependent formate dehydrogenase gene (fdh) was cloned from genomic DNA of L. buchneri NRRL B-30929. The recombinant constru...

  7. Deletion of murine choline dehydrogenase results in diminished sperm motility

    PubMed Central

    Johnson, Amy R.; Craciunescu, Corneliu N.; Guo, Zhong; Teng, Ya-Wen; Thresher, Randy J.; Blusztajn, Jan K.; Zeisel, Steven H.

    2010-01-01

    Choline dehydrogenase (CHDH) catalyzes the conversion of choline to betaine, an important methyl donor and organic osmolyte. We have previously identified single nucleotide polymorphisms (SNPs) in the human CHDH gene that, when present, seem to alter the activity of the CHDH enzyme. These SNPs occur frequently in humans. We created a Chdh−/− mouse to determine the functional effects of mutations that result in decreased CHDH activity. Chdh deletion did not affect fetal viability or alter growth or survival of these mice. Only one of eleven Chdh−/− males was able to reproduce. Loss of CHDH activity resulted in decreased testicular betaine and increased choline and PCho concentrations. Chdh+/+ and Chdh−/− mice produced comparable amounts of sperm; the impaired fertility was due to diminished sperm motility in the Chdh−/− males. Transmission electron microscopy revealed abnormal mitochondrial morphology in Chdh−/− sperm. ATP content, total mitochondrial dehydrogenase activity and inner mitochondrial membrane polarization were all significantly reduced in sperm from Chdh−/− animals. Mitochondrial changes were also detected in liver, kidney, heart, and testis tissues. We suggest that men who have SNPs in CHDH that decrease the activity of the CHDH enzyme could have decreased sperm motility and fertility.—Johnson, A. R., Craciunescu, C. N., Guo, Z., Teng, Y.-W., Thresher, R. J., Blusztajn, J. K., Zeisel, S. H. Deletion of murine choline dehydrogenase results in diminished sperm motility. PMID:20371614

  8. Characterization of human DHRS4: an inducible short-chain dehydrogenase/reductase enzyme with 3beta-hydroxysteroid dehydrogenase activity.

    PubMed

    Matsunaga, Toshiyuki; Endo, Satoshi; Maeda, Satoshi; Ishikura, Shuhei; Tajima, Kazuo; Tanaka, Nobutada; Nakamura, Kazuo T; Imamura, Yorishige; Hara, Akira

    2008-09-15

    Human DHRS4 is a peroxisomal member of the short-chain dehydrogenase/reductase superfamily, but its enzymatic properties, except for displaying NADP(H)-dependent retinol dehydrogenase/reductase activity, are unknown. We show that the human enzyme, a tetramer composed of 27kDa subunits, is inactivated at low temperature without dissociation into subunits. The cold inactivation was prevented by a mutation of Thr177 with the corresponding residue, Asn, in cold-stable pig DHRS4, where this residue is hydrogen-bonded to Asn165 in a substrate-binding loop of other subunit. Human DHRS4 reduced various aromatic ketones and alpha-dicarbonyl compounds including cytotoxic 9,10-phenanthrenequinone. The overexpression of the peroxisomal enzyme in cultured cells did not increase the cytotoxicity of 9,10-phenanthrenequinone. While its activity towards all-trans-retinal was low, human DHRS4 efficiently reduced 3-keto-C(19)/C(21)-steroids into 3beta-hydroxysteroids. The stereospecific conversion to 3beta-hydroxysteroids was observed in endothelial cells transfected with vectors expressing the enzyme. The mRNA for the enzyme was ubiquitously expressed in human tissues and several cancer cells, and the enzyme in HepG2 cells was induced by peroxisome-proliferator-activated receptor alpha ligands. The results suggest a novel mechanism of cold inactivation and role of the inducible human DHRS4 in 3beta-hydroxysteroid synthesis and xenobiotic carbonyl metabolism.

  9. Acute and chronic ethanol exposure differentially alters alcohol dehydrogenase and aldehyde dehydrogenase activity in the zebrafish liver.

    PubMed

    Tran, Steven; Nowicki, Magda; Chatterjee, Diptendu; Gerlai, Robert

    2015-01-02

    Chronic ethanol exposure paradigms have been successfully used in the past to induce behavioral and central nervous system related changes in zebrafish. However, it is currently unknown whether chronic ethanol exposure alters ethanol metabolism in adult zebrafish. In the current study we examine the effect of acute ethanol exposure on adult zebrafish behavioral responses, as well as alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in the liver. We then examine how two different chronic ethanol exposure paradigms (continuous and repeated ethanol exposure) alter behavioral responses and liver enzyme activity during a subsequent acute ethanol challenge. Acute ethanol exposure increased locomotor activity in a dose-dependent manner. ADH activity was shown to exhibit an inverted U-shaped curve and ALDH activity was decreased by ethanol exposure at all doses. During the acute ethanol challenge, animals that were continuously housed in ethanol exhibited a significantly reduced locomotor response and increased ADH activity, however, ALDH activity did not change. Zebrafish that were repeatedly exposed to ethanol demonstrated a small but significant attenuation of the locomotor response during the acute ethanol challenge but ADH and ALDH activity was similar to controls. Overall, we identified two different chronic ethanol exposure paradigms that differentially alter behavioral and physiological responses in zebrafish. We speculate that these two paradigms may allow dissociation of central nervous system-related and liver enzyme-dependent ethanol induced changes in zebrafish. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Mycophenolic acid exposure and complement fraction C3 influence inosine 5'-monophosphate dehydrogenase activity in systemic lupus erythematosus.

    PubMed

    Mino, Yasuaki; Naito, Takafumi; Shimoyama, Kumiko; Ogawa, Noriyoshi; Kawakami, Junichi

    2017-07-01

    Background Mycophenolate mofetil has recently been reported to be effective against systemic lupus erythematosus. The influence of the pharmacokinetics of mycophenolic acid, the active form of mycophenolate mofetil and the major inactive mycophenolic acid phenolic glucuronide on the activity of the target enzyme inosine 5'-monophosphate dehydrogenase, is expected to be revealed. The aim of this study was to identify the factors associated with inosine 5'-monophosphate dehydrogenase activity in systemic lupus erythematosus patients. Methods Fifty systemic lupus erythematosus patients in remission maintenance phase (29 received mycophenolate mofetil [MMF+] and 21 did not [MMF-]) were enrolled. Median and interquartile range of dose of mycophenolate mofetil were 1500 and 1000-1500 mg/day, respectively. Stepwise multiple linear regression analysis was performed to assess the dependence between inosine 5'-monophosphate dehydrogenase activity and 25 predictor values including predose plasma concentrations of free mycophenolic acid and mycophenolic acid phenolic glucuronide. Results Median and interquartile range of predose total plasma concentrations of mycophenolic acid and mycophenolic acid phenolic glucuronide were 2.73 and 1.43-5.73 and 25.5 and 13.1-54.7  µg/mL, respectively. Predose inosine 5'-monophosphate dehydrogenase activity was significantly higher in MMF+ than MMF- patients (median 38.3 and 20.6 nmoL xanthosine 5'-monophosphate/g haemoglobin/h, P<0.01). The plasma concentration of free mycophenolic acid phenolic glucuronide, complement fraction C3 and body weight were significant predictors accounting for interindividual variability in the inosine 5'-monophosphate dehydrogenase activity (adjusted R 2  = 0.52, P < 0.01) in a multivariate analysis. Conclusions Predose inosine 5'-monophosphate dehydrogenase activity was higher in systemic lupus erythematosus patients receiving mycophenolate mofetil therapy. Inosine 5'-monophosphate dehydrogenase

  11. Genetics Home Reference: short/branched chain acyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... PDF) Orphanet: 2-methylbutyryl-CoA dehydrogenase deficiency Screening, Technology, and Research in Genetics Patient Support and Advocacy Resources (2 links) Children Living with Inherited Metabolic Diseases (CLIMB) Organic Acidemia ...

  12. Clinical Evidence for Polyol Efficacy

    PubMed Central

    Milgrom, P.; Söderling, E.M.; Nelson, S.; Chi, D.L.; Nakai, Y.

    2012-01-01

    Xylitol is a safe dental caries preventive when incorporated into chewing gum or confections used habitually. The goal of this paper is to identify and assess the work on xylitol and other polyols and dental caries since 2008. Xylitol is effective when used by the mother prenatally or after delivery to prevent mutans transmission and subsequent dental caries in the offspring. One new completed trial confirmed that children of mothers who used xylitol lozenges after delivery had less dental caries than a comparison group. A similar study confirmed that the use of xylitol gum by the mother either prevented or postponed MS transmission to the offspring. Xylitol use among schoolchildren delivered via a gummy bear confection reduced S. mutans levels, but a once per day use of xylitol-containing toothpaste did not. Randomized trials, with caries outcomes, assessing xylitol-containing lozenges in adults and xylitol-containing gummy bears in children will release results in the coming year. Other studies are ongoing but are not systematic and will fail to answer important questions about how xylitol, or other polyols, can address the global dental caries problem. PMID:22899692

  13. Oligo(cis-1,4-isoprene) aldehyde-oxidizing dehydrogenases of the rubber-degrading bacterium Gordonia polyisoprenivorans VH2.

    PubMed

    Vivod, Robin; Oetermann, Sylvia; Hiessl, Sebastian; Gutsche, Stefanie; Remmers, Naomi; Meinert, Christina; Voigt, Birgit; Riedel, Katharina; Steinbüchel, Alexander

    2017-11-01

    The actinomycete Gordonia polyisoprenivorans strain VH2 is well-known for its ability to efficiently degrade and catabolize natural rubber [poly(cis-1,4-isoprene)]. Recently, a pathway for the catabolism of rubber by strain VH2 was postulated based on genomic data and the analysis of mutants (Hiessl et al. in Appl Environ Microbiol 78:2874-2887, 2012). To further elucidate the degradation pathway of poly(cis-1,4-isoprene), 2-dimensional-polyacrylamide gel electrophoresis was performed. The analysis of the identified protein spots by matrix-assisted laser desorption/ionization-time of flight tandem mass spectrometry confirmed the postulated intracellular pathway suggesting a degradation of rubber via β-oxidation. In addition, other valuable information on rubber catabolism of G. polyisoprenivorans strain VH2 (e.g. oxidative stress response) was provided. Identified proteins, which were more abundant in cells grown with rubber than in cells grown with propionate, implied a putative long-chain acyl-CoA-dehydrogenase, a 3-ketoacyl-CoA-thiolase, and an aldehyde dehydrogenase. The amino acid sequence of the latter showed a high similarity towards geranial dehydrogenases. The expression of the corresponding gene was upregulated > 10-fold under poly(cis-1,4-isoprene)-degrading conditions. The putative geranial dehydrogenase and a homolog were purified and used for enzyme assays. Deletion mutants for five aldehyde dehydrogenases were generated, and growth with poly(cis-1,4-isoprene) was investigated. While none of the mutants had an altered phenotype regarding growth with poly(cis-1,4-isoprene) as sole carbon and energy source, purified aldehyde dehydrogenases were able to catalyze the oxidation of oligoisoprene aldehydes indicating an involvement in rubber degradation.

  14. Crystal structure of a chimaeric bacterial glutamate dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, Tânia; Sharkey, Michael A.; Engel, Paul C.

    2016-05-23

    Glutamate dehydrogenases (EC 1.4.1.2–4) catalyse the oxidative deamination of L-glutamate to α-ketoglutarate using NAD(P) +as a cofactor. The bacterial enzymes are hexameric, arranged with 32 symmetry, and each polypeptide consists of an N-terminal substrate-binding segment (domain I) followed by a C-terminal cofactor-binding segment (domain II). The catalytic reaction takes place in the cleft formed at the junction of the two domains. Distinct signature sequences in the nucleotide-binding domain have been linked to the binding of NAD +versusNADP +, but they are not unambiguous predictors of cofactor preference. In the absence of substrate, the two domains move apart as rigid bodies,more » as shown by the apo structure of glutamate dehydrogenase fromClostridium symbiosum. Here, the crystal structure of a chimaeric clostridial/Escherichia colienzyme has been determined in the apo state. The enzyme is fully functional and reveals possible determinants of interdomain flexibility at a hinge region following the pivot helix. The enzyme retains the preference for NADP +cofactor from the parentE. colidomain II, although there are subtle differences in catalytic activity.« less

  15. Improvement of sticking in tablet compaction for tocopherol acetate.

    PubMed

    Sakata, Yukoh; Yamaguchi, Hiroyuki

    2011-09-01

    We have found that the addition of xylitol solution effectively improves the sticking observed in tablet compaction using a powder prescription including kneading mixtures comprising tocopherol acetate (TA)/Florite(®) RE (FLR) blends. The aim of the present study was to investigate the distribution states of TA and xylitol in kneaded mixtures comprising TA/FLR/xylitol blends and the particle states of these mixtures in order to derive an appropriate powder formulation for tablet compaction. Nitrogen gas adsorption analysis revealed that xylitol is distributed on the interparticle and intraparticle pores of FLR in the same manner as TA. Moreover, it was found that xylitol was distributed in an incomplete crystalline form because of its interaction with FLR particles in the kneaded mixtures comprising TA/FLR/xylitol blends. It was also observed that the surfaces of the particles of the kneaded mixtures comprising TA/FLR blends changed from rough to smooth because of kneading with xylitol. The occurrence of sticking can be prevented not only by the addition of xylitol but also by changing the particle states of TA/FLR/xylitol blends.

  16. Function and Regulation of the Formate Dehydrogenase Genes of the Methanogenic Archaeon Methanococcus maripaludis

    PubMed Central

    Wood, Gwendolyn E.; Haydock, Andrew K.; Leigh, John A.

    2003-01-01

    Methanococcus maripaludis is a mesophilic species of Archaea capable of producing methane from two substrates: hydrogen plus carbon dioxide and formate. To study the latter, we identified the formate dehydrogenase genes of M. maripaludis and found that the genome contains two gene clusters important for formate utilization. Phylogenetic analysis suggested that the two formate dehydrogenase gene sets arose from duplication events within the methanococcal lineage. The first gene cluster encodes homologs of formate dehydrogenase α (FdhA) and β (FdhB) subunits and a putative formate transporter (FdhC) as well as a carbonic anhydrase analog. The second gene cluster encodes only FdhA and FdhB homologs. Mutants lacking either fdhA gene exhibited a partial growth defect on formate, whereas a double mutant was completely unable to grow on formate as a sole methanogenic substrate. Investigation of fdh gene expression revealed that transcription of both gene clusters is controlled by the presence of H2 and not by the presence of formate. PMID:12670979

  17. Recent advances in biotechnological applications of alcohol dehydrogenases.

    PubMed

    Zheng, Yu-Guo; Yin, Huan-Huan; Yu, Dao-Fu; Chen, Xiang; Tang, Xiao-Ling; Zhang, Xiao-Jian; Xue, Ya-Ping; Wang, Ya-Jun; Liu, Zhi-Qiang

    2017-02-01

    Alcohol dehydrogenases (ADHs), which belong to the oxidoreductase superfamily, catalyze the interconversion between alcohols and aldehydes or ketones with high stereoselectivity under mild conditions. ADHs are widely employed as biocatalysts for the dynamic kinetic resolution of racemic substrates and for the preparation of enantiomerically pure chemicals. This review provides an overview of biotechnological applications for ADHs in the production of chiral pharmaceuticals and fine chemicals.

  18. [Association of methemoglobinemia and glucose-6-phosphate dehydrogenase deficiency in malaria patients treated with primaquine].

    PubMed

    Santana, Marli Stela; da Rocha, Marcos Antonio Ferreira; Arcanjo, Ana Ruth Lima; Sardinha, José Felipe Jardim; Alecrim, Wilson Duarte; Alecrim, Maria das Graças Costa

    2007-01-01

    This study had the aim of investigating occurrences of methemoglobinemia among individuals with glucose-6-phosphate dehydrogenase deficiency during treatment for malaria infection using primaquine. Patients with a diagnosis of malaria caused by Plasmodium vivax or the V+F mixture (Plasmodium vivax + Plasmodium falciparum) were selected. Group 1 consisted of 74 individuals with a clinical diagnosis of methemoglobinemia and Group 2 consisted of 161 individuals without a clinical diagnosis of methemoglobinemia. The glucose-6-phosphate dehydrogenase deficiency rates (numbers of enzymopenic individuals) in Groups 1 and 2 were 51.3% (38) and 8.7% (14) respectively. These data demonstrated a statistically significant association with methemoglobinemia only among the individuals in Group 1 (p<0.05). Investigation of the relationship between methemoglobinemia and glucose-6-phosphate dehydrogenase deficiency showed that there was a possible association such that enzymopenic individuals may develop methemoglobinemia more frequently.

  19. Characterization of the membrane-bound succinic dehydrogenase of Micrococcus lysodeikticus.

    PubMed

    Pollock, J J; Linder, R; Salton, M R

    1971-07-01

    The occurrence of succinic dehydrogenase [succinic:(acceptor) oxidoreductase, EC 1.3.99.1] in membrane fractions of Micrococcus lysodeikticus was investigated. The enzyme could be purified 10-fold, by deoxycholate treatment. Butanol extraction of membranes yielded an active fraction, nonsedimentable at 130,000 x g for 2 hr and altered in its phospholipid content relative to membranes. The activity of the enzyme in particulate preparations was decreased in the presence of competitive inhibitors and by compounds known to react with iron, sulfhydryl groups, and flavine. In this respect, the bacterial succinic dehydrogenase is similar to the enzyme derived from yeast and mammalian sources. In certain membrane fractions, Ca(2+) and Mg(2+) exhibited inhibitory effects whereas Triton X-100 caused activation. The enzyme could also be activated by substrate. In the phenazine reductase assay, incomplete reduction of electron acceptor was observed upon addition of divalent cations and iron binding agents.

  20. Coupling between d-3-phosphoglycerate dehydrogenase and d-2-hydroxyglutarate dehydrogenase drives bacterial l-serine synthesis

    PubMed Central

    Zhang, Wen; Zhang, Manman; Gao, Chao; Zhang, Yipeng; Ge, Yongsheng; Guo, Shiting; Guo, Xiaoting; Zhou, Zikang; Liu, Qiuyuan; Zhang, Yingxin; Ma, Cuiqing; Tao, Fei; Xu, Ping

    2017-01-01

    l-Serine biosynthesis, a crucial metabolic process in most domains of life, is initiated by d-3-phosphoglycerate (d-3-PG) dehydrogenation, a thermodynamically unfavorable reaction catalyzed by d-3-PG dehydrogenase (SerA). d-2-Hydroxyglutarate (d-2-HG) is traditionally viewed as an abnormal metabolite associated with cancer and neurometabolic disorders. Here, we reveal that bacterial anabolism and catabolism of d-2-HG are involved in l-serine biosynthesis in Pseudomonas stutzeri A1501 and Pseudomonas aeruginosa PAO1. SerA catalyzes the stereospecific reduction of 2-ketoglutarate (2-KG) to d-2-HG, responsible for the major production of d-2-HG in vivo. SerA combines the energetically favorable reaction of d-2-HG production to overcome the thermodynamic barrier of d-3-PG dehydrogenation. We identified a bacterial d-2-HG dehydrogenase (D2HGDH), a flavin adenine dinucleotide (FAD)-dependent enzyme, that converts d-2-HG back to 2-KG. Electron transfer flavoprotein (ETF) and ETF-ubiquinone oxidoreductase (ETFQO) are also essential in d-2-HG metabolism through their capacity to transfer electrons from D2HGDH. Furthermore, while the mutant with D2HGDH deletion displayed decreased growth, the defect was rescued by adding l-serine, suggesting that the D2HGDH is functionally tied to l-serine synthesis. Substantial flux flows through d-2-HG, being produced by SerA and removed by D2HGDH, ETF, and ETFQO, maintaining d-2-HG homeostasis. Overall, our results uncover that d-2-HG–mediated coupling between SerA and D2HGDH drives bacterial l-serine synthesis. PMID:28827360