Sample records for xylitol production rate

  1. Evaluation of cotton stalk hydrolysate for xylitol production.

    PubMed

    Sapcı, Burcu; Akpinar, Ozlem; Bolukbasi, Ufuk; Yilmaz, Levent

    2016-07-03

    Cotton stalk is a widely distributed and abundant lignocellulosic waste found in Turkey. Because of its rich xylose content, it can be a promising source for the production of xylitol. Xylitol can be produced by chemical or biotechnological methods. Because the biotechnological method is a simple process with great substrate specificity and low energy requirements, it is more of an economic alternative for the xylitol production. This study aimed to use cotton stalk for the production of xylitol with Candida tropicalis Kuen 1022. For this purpose, the combined effects of different oxygen concentration, inoculum level and substrate concentration were investigated to obtain high xylitol yield and volumetric xylitol production rate. Candida tropicalis Kuen 1022 afforded different concentrations of xylitol depending on xylose concentration, inoculum level, and oxygen concentration. The optimum xylose, yeast concentration, and airflow rate for cotton stalk hydrolysate were found as 10.41 g L(-1), 0.99 g L(-1), and 1.02 vvm, respectively, and under these conditions, xylitol yield and volumetric xylitol production rate were obtained as 36% and 0.06 g L(-1) hr(-1), respectively. The results of this study show that cotton stalk can serve as a potential renewable source for the production of xylitol.

  2. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis.

    PubMed

    Kim, J-H; Han, K-C; Koh, Y-H; Ryu, Y-W; Seo, J-H

    2002-07-01

    Xylitol, a functional sweetener, was produced from xylose by biological conversion using Candida tropicalis ATCC 13803. Based on a two-substrate fermentation using glucose for cell growth and xylose for xylitol production, fed-batch fermentations were undertaken to increase the final xylitol concentration. The effects of xylose and xylitol on xylitol production rate were studied to determine the optimum concentrations for fed-batch fermentation. Xylose concentration in the medium (100 g l(-1)) and less than 200 g l(-1) total xylose plus xylitol concentration were determined as optimum for maximum xylitol production rate and xylitol yield. Increasing the concentrations of xylose and xylitol decreased the rate and yield of xylitol production and the specific cell growth rate, probably because of an increase in osmotic stress that would interfere with xylose transport, xylitol flux to secretion to cell metabolism. The feeding rate of xylose solution during the fed-batch mode of operation was determined by using the mass balance equations and kinetic parameters involved in the equations in order to increase final xylitol concentration without affecting xylitol and productivity. The optimized fed-batch fermentation resulted in 187 g l(-1) xylitol concentration, 0.75 g xylitol g xylose(-1) xylitol yield and 3.9 g xylitol l(-1) h(-1) volumetric productivity.

  3. Production of xylitol from D-xylose by Debaryomyces hansenii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez, J.M.; Gong, Cheng S.; Tsao, G.T.

    1997-12-31

    Xylitol, a naturally occurring five-carbon sugar alcohol, can be produced from D-xylose through microbial hydrogenation. Xylitol has found increasing use in the food industries, especially in confectionary. It is the only so-called {open_quotes}second-generation polyol sweeteners{close_quotes} that is allowed to have the specific health claims in some world markets. In this study, the effect of cell density on the xylitol production by the yeast Debaryomyces hansenii NRRL Y-7426 from D-xylose under microaerobic conditions was examined. The rate of xylitol production increased with increasing yeast cell density to 3 g/L. Beyond this amount there was no increase in the xylitol production withmore » increasing cell density. The optimal pH range for xylitol production was between 4.5 and 5.5. The optimal temperature was between 28 and 37{degrees}C, and the optimal shaking speed was 300 rpm. The rate of xylitol production increased linearly with increasing initial xylose concentration. A high concentration of xylose (279 g/L) was converted rapidly and efficiently to produce xylitol with a product concentration of 221 g/L was reached after 48 h of incubation under optimum conditions. 18 refs., 5 figs.« less

  4. A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol.

    PubMed

    Granström, Tom Birger; Izumori, Ken; Leisola, Matti

    2007-02-01

    Xylitol is the first rare sugar that has global markets. It has beneficial health properties and represents an alternative to current conventional sweeteners. Industrially, xylitol is produced by chemical hydrogenation of D-xylose into xylitol. The biotechnological method of producing xylitol by metabolically engineered yeasts, Saccharomyces cerevisiae or Candida, has been studied as an alternative to the chemical method. Due to the industrial scale of production, xylitol serves as an inexpensive starting material for the production of other rare sugars. The second part of this mini-review on xylitol will look more closely at the biotechnological production and future applications of the rare sugar, xylitol.

  5. Production of xylitol from corn cob hydrolysate through acid and enzymatic hydrolysis by yeast

    NASA Astrophysics Data System (ADS)

    Mardawati, Efri; Andoyo, R.; Syukra, K. A.; Kresnowati, MTAP; Bindar, Y.

    2018-03-01

    The abundance of corn production in Indonesia offers the potential for its application as the raw material for biorefinery process. The hemicellulose content in corn cobs can be considered to be used as a raw material for xylitol production. The purpose of this research was to study the effect of hydrolysis methods for xylitol production and the effect of the hydrolyzed corn cobs to produce xylitol through fermentation. Hydrolysis methods that would be evaluated were acid and enzymatic hydrolysis. The result showed that the xylitol yield of fermented solution using enzymatic hydrolysates was 0.216 g-xylitol/g-xylose, which was higher than the one that used acid hydrolysates, which was 0.100 g-xylitol/g-xylose. Moreover, the specific growth rate of biomass in fermentation using enzymatic hydrolysates was also higher than the one that used acid hydrolysates, 0.039/h compared to 0.0056/h.

  6. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis.

    PubMed

    Tamburini, Elena; Costa, Stefania; Marchetti, Maria Gabriella; Pedrini, Paola

    2015-08-19

    The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose) concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60-80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w) on consumed xylose in microaerophilic conditions (kLa = 2·h(-1)). Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w), against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions.

  7. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis

    PubMed Central

    Tamburini, Elena; Costa, Stefania; Marchetti, Maria Gabriella; Pedrini, Paola

    2015-01-01

    The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose) concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60–80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w) on consumed xylose in microaerophilic conditions (kLa = 2·h−1). Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w), against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions. PMID:26295411

  8. Optimal experimental condition for hemicellulosic hydrolyzate treatment with activated charcoal for xylitol production.

    PubMed

    Mussatto, Solange I; Roberto, Inês C

    2004-01-01

    Rice straw was hydrolyzed into a mixture of sugars using diluted H(2)SO(4). During hydrolysis, a variety of inhibitors was also produced, including acetic acid, furfural, hydroxymethylfurfural, and lignin degradation products (several aromatic and phenolic compounds). To reduce the toxic compounds concentration in the hydrolyzate and to improve the xylitol yield and volumetric productivity, rice straw hemicellulosic hydrolyzate was treated with activated charcoal under different pH values, stirring rates, contact times, and temperatures, employing a 2(4) full-factorial design. Fermentative assays were conducted with treated hydrolyzates containing 90 g/L xylose. The results indicated that temperature, pH, and stirring rate strongly influenced the hydrolyzate treatment, temperature and pH interfering with all of the responses analyzed (removal of color and lignin degradation products, xylitol yield factor, and volumetric productivity). The combination of pH 2.0, 150 rpm, 45 degrees C, and 60 min was considered an optimal condition, providing significant removal rates of color (48.9%) and lignin degradation products (25.8%), as well as a xylitol production of 66 g/L, a volumetric productivity of 0.57 g/L.h, and a yield factor of 0.72 g/g.

  9. Engineering of Corynebacterium glutamicum for xylitol production from lignocellulosic pentose sugars.

    PubMed

    Dhar, Kiran S; Wendisch, Volker F; Nampoothiri, Kesavan Madhavan

    2016-07-20

    Xylitol is a non-fermentable sugar alcohol used as sweetener. Corynebacterium glutamicum ATCC13032 was metabolically engineered for xylitol production from the lignocellulosic pentose sugars xylose and arabinose. Direct conversion of xylose to xylitol was achieved through the heterologous expression of NAD(P)H-dependent xylose reductase (xr) gene from Rhodotorula mucilaginosa. Xylitol synthesis from arabinose was attained through polycistronic expression of l-arabinose isomerase (araA), d-psicose 3 epimerase (dpe) and l-xylulose reductase (lxr) genes from Escherichia coli, Agrobacterium tumefaciens and Mycobacterium smegmatis, respectively. Expression of xr and the synthetic araA-dpe-lxr operon under the control of IPTG-inducible Ptac promoter enabled production of xylitol from both xylose and arabinose in the mineral (CGXII) medium with glucose as carbon source. Additional expression of a pentose transporter (araTF) gene enhanced xylitol production by about four-fold compared to the parent strain. The constructed strain Cg-ax3 produced 6.7±0.4g/L of xylitol in batch fermentations and 31±0.5g/L of xylitol in fed-batch fermentations with a specific productivity of 0.28±0.05g/g cdw/h. The strain Cg-ax3 was also validated for xylitol production from pentose rich, acid pre-treated liquor of sorghum stover (SAPL) and the results were comparable in both SAPL (27±0.3g/L) and mineral medium (31±0.5g/L). Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli.

    PubMed

    Su, Buli; Wu, Mianbin; Zhang, Zhe; Lin, Jianping; Yang, Lirong

    2015-09-01

    A metabolically engineered Escherichia coli has been constructed for the production of xylitol, one of the top 12 platform chemicals from agricultural sources identified by the US Department of Energy. An optimal plasmid was constructed to express xylose reductase from Neurospora crassa with almost no inclusion bodies at relatively high temperature. The phosphoenolpyruvate-dependent glucose phosphotransferase system (ptsG) was disrupted to eliminate catabolite repression and allow simultaneous uptake of glucose and xylose. The native pathway for D-xylose catabolism in E. coli W3110 was blocked by deleting the xylose isomerase (xylA) and xylulose kinase (xylB) genes. The putative pathway for xylitol phosphorylation was also blocked by disrupting the phosphoenolpyruvate-dependent fructose phosphotransferase system (ptsF). The xylitol producing recombinant E. coli allowed production of 172.4 g L(-1) xylitol after 110 h of fed-batch cultivation with an average productivity of 1.57 g L(-1) h(-1). The molar yield of xylitol to glucose reached approximately 2.2 (mol xylitol mol(-1) glucose). Furthermore, the recombinant strain also produced about 150 g L(-1) xylitol from hemicellulosic sugars in modified M9 minimal medium and the overall productivity was 1.40 g L(-1) h(-1), representing the highest xylitol concentration and productivity reported to date from hemicellulosic sugars using bacteria. Thus, this engineered E. coli is a candidate for the development of efficient industrial-scale production of xylitol from hemicellulosic hydrolysate. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. Xylitol production in immobilized cultures: a recent review.

    PubMed

    Pérez-Bibbins, Belinda; Torrado-Agrasar, Ana; Salgado, José Manuel; Mussatto, Solange I; Domínguez, José Manuel

    2016-08-01

    Xylitol is a pentahydroxy sugar alcohol coming from xylose with many applications in the food and pharmaceutical industries as a low caloric sweetener suitable for diabetics and as an active ingredient in several biomedical applications. The microbial bioproduction of xylitol from natural xylose coming from lignocellulosic materials appears a sustainable and a promising alternative to chemical synthesis, which works at stronger reaction conditions and generates undesirable co-products which must be removed. There are several reviews that study the metabolic pathways in wild and transformed xylitol producing yeasts and the culture conditions that enhance xylitol accumulation, which are mainly related to the need of microaerobiose for the best producing wild yeasts. Nevertheless, there are relatively few studies focusing on the engineering aspects related to scalable systems and bioreactors that could result in a final industrial stage. This review explores recent advances on xylitol production using immobilized systems, which have been proposed to facilitate the reuse of the biocatalyst for extended periods and the main types of bioreactors available assayed for this purpose.

  12. Enhanced xylitol production: Expression of xylitol dehydrogenase from Gluconobacter oxydans and mixed culture of resting cell.

    PubMed

    Qi, Xiang-Hui; Zhu, Jing-Fei; Yun, Jun-Hua; Lin, Jing; Qi, Yi-Lin; Guo, Qi; Xu, Hong

    2016-09-01

    Xylitol has numerous applications in food and pharmaceutical industry, and it can be biosynthesized by microorganisms. In the present study, xdh gene, encoding xylitol dehydrogenase (XDH), was cloned from the genome of Gluconobacter oxydans CGMCC 1.49 and overexpressed in Escherichia coli BL21. Sequence analysis revealed that XDH has a TGXXGXXG NAD(H)-binding motif and a YXXXK active site motif, and belongs to the short-chain dehydrogenase/reductase family. And then, the enzymatic properties and kinetic parameter of purified recombinant XDH were investigated. Subsequently, transformations of xylitol from d-xylulose and d-arabitol, respectively, were studied through mixed culture of resting cells of G. oxydans wild-type strain and recombinant strain BL21-xdh. We obtained 28.80 g/L xylitol by mixed culture from 30 g/L d-xylulose in 28 h. The production was increased by more than three times as compared with that of wild-type strain. Furthermore, 25.10 g/L xylitol was produced by the mixed culture from 30 g/L d-arabitol in 30 h with a yield of 0.837 g/g, and the max volumetric productivity of 0.990 g/L h was obtained at 22 h. These contrast to the fact that wild-type strain G. oxydans only produced 8.10 g/L xylitol in 30 h with a yield of 0.270 g/g. To our knowledge, these values are the highest among the reported yields and productivity efficiencies of xylitol from d-arabitol with engineering strains. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. A surrogate method for comparison analysis of salivary concentrations of Xylitol-containing products

    PubMed Central

    Riedy, Christine A; Milgrom, Peter; Ly, Kiet A; Rothen, Marilynn; Mueller, Gregory; Hagstrom, Mary K; Tolentino, Ernie; Zhou, Lingmei; Roberts, Marilyn C

    2008-01-01

    Background Xylitol chewing gum has been shown to reduce Streptococcus mutans levels and decay. Two studies examined the presence and time course of salivary xylitol concentrations delivered via xylitol-containing pellet gum and compared them to other xylitol-containing products. Methods A within-subjects design was used for both studies. Study 1, adults (N = 15) received three xylitol-containing products (pellet gum (2.6 g), gummy bears (2.6 g), and commercially available stick gum (Koolerz, 3.0 g)); Study 2, a second group of adults (N = 15) received three xylitol-containing products (pellet gum, gummy bears, and a 33% xylitol syrup (2.67 g). For both studies subjects consumed one xylitol product per visit with a 7-day washout between each product. A standardized protocol was followed for each product visit. Product order was randomly determined at the initial visit. Saliva samples (0.5 mL to 1.0 mL) were collected at baseline and up to 10 time points (~16 min in length) after product consumption initiated. Concentration of xylitol in saliva samples was analyzed using high-performance liquid chromatography. Area under the curve (AUC) for determining the average xylitol concentration in saliva over the total sampling period was calculated for each product. Results In both studies all three xylitol products (Study 1: pellet gum, gummy bears, and stick gum; Study 2: pellet gum, gummy bears, and syrup) had similar time curves with two xylitol concentration peaks during the sampling period. Study 1 had its highest mean peaks at the 4 min sampling point while Study 2 had its highest mean peaks between 13 to 16 minutes. Salivary xylitol levels returned to baseline at about 18 minutes for all forms tested. Additionally, for both studies the total AUC for the xylitol products were similar compared to the pellet gum (Study 1: pellet gum – 51.3 μg.min/mL, gummy bears – 59.6 μg.min/mL, and stick gum – 46.4 μg.min/mL; Study 2: pellet gum – 63.0 μg.min/mL, gummy

  14. Microbial production of xylitol from xylose and L-arabinose: conversion of L-arabitol to xylitol using bacterial oxidoreductases

    USDA-ARS?s Scientific Manuscript database

    Microbial production of xylitol, using hemicellulosic biomass such as agricultural residues, is becoming more attractive for reducing its manufacturing cost. L-arabitol is a particular problem to xylitol production from hemicellulosic hydrolyzates that contain both xylose and L-arabinose because it...

  15. Utilization of xylitol dehydrogenase in a combined microbial/enzymatic process for production of xylitol from D-glucose.

    PubMed

    Mayer, Gerhard; Kulbe, Klaus D; Nidetzky, Bernd

    2002-01-01

    The production of xylitol from D-glucose occurs through a three-step process in which D-arabitol and D-xylulose are formed as the first and second intermediate product, respectively, and both are obtained via microbial bioconversion reactions. Catalytic hydrogenation of D-xylulose yields xylitol; however, it is contaminated with D-arabitol. The aim of this study was to increase the stereoselectivity of the D-xylulose reduction step by using enzymatic catalysis. Recombinant xylitol dehydrogenase from the yeast Galactocandida mastotermitis was employed to catalyze xylitol formation from D-xylulose in an NADH-dependent reaction, and coenzyme regeneration was achieved by means of formate dehydrogenase-catalyzed oxidation of formate into carbon dioxide. The xylitol yield from D-xylulose was close to 100%. Optimal productivity was found for initial coenzyme concentrations of between 0.5 and 0.75 mM. In the presence of 0.30 M (45 g/L) D-xylulose and 2000 U/L of both dehydrogenases, exhaustive substrate turnover was achieved typically in a 4-h reaction time. The enzymes were recovered after the reaction in yields of approx 90% by means of ultrafiltration and could be reused for up to six cycles of D-xylulose reduction. The advantages of incorporating the enzyme-catalyzed step in a process for producing xylitol from D-glucose are discussed, and strategies for downstream processing are proposed by which the observed coenzyme turnover number of approx 600 could be increased significantly.

  16. Production of Xylitol from D-Xylose by Overexpression of Xylose Reductase in Osmotolerant Yeast Candida glycerinogenes WL2002-5.

    PubMed

    Zhang, Cheng; Zong, Hong; Zhuge, Bin; Lu, Xinyao; Fang, Huiying; Zhuge, Jian

    2015-07-01

    Efficient bioconversion of D-xylose into various biochemicals is critical for the developing lignocelluloses application. In this study, we compared D-xylose utilization in Candida glycerinogenes WL2002-5 transformants expressing xylose reductase (XYL1) in D-xylose metabolism. C. glycerinogenes WL2002-5 expressing XYL1 from Schefferomyces stipitis can produce xylitol. Xylitol production by the recombinant strains was evaluated using a xylitol fermentation medium with glucose as a co-substrate. As glucose was found to be an insufficient co-substrate, various carbon sources were screened for efficient cofactor regeneration, and glycerol was found to be the best co-substrate. The effects of glycerol on the xylitol production rate by a xylose reductase gene (XYL1)-overexpressed mutant of C. glycerinogenes WL2002-5 were investigated. The XYL1-overexpressed mutant produced xylitol from D-xylose using glycerol as a co-substrate for cell growth and NAD (P) H regeneration: 100 g/L D-xylose was completely converted into xylitol when at least 20 g/L glycerol was used as a co-substrate. XYL1 overexpressed mutant grown on glycerol as co-substrate accumulated 2.1-fold increased xylitol concentration over those cells grown on glucose as co-substrate. XYL1 overexpressed mutant produced xylitol with a volumetric productivity of 0.83 g/L/h, and a xylitol yield of 98 % xylose. Recombinant yeast strains obtained in this study are promising candidates for xylitol production. This is the first report of XYL1 gene overexpression of C. glycerinogenes WL2002-5 for enhancing the efficiency of xylitol production.

  17. Biochemical conversion of sugarcane straw hemicellulosic hydrolyzate supplemented with co-substrates for xylitol production.

    PubMed

    Hernández-Pérez, A F; Costa, I A L; Silva, D D V; Dussán, K J; Villela, T R; Canettieri, E V; Carvalho, J A; Soares Neto, T G; Felipe, M G A

    2016-01-01

    Biotechnological production of xylitol is an attractive route to add value to a sugarcane biorefinery, through utilization of the hemicellulosic fraction of sugarcane straw, whose availability is increasing in Brazil. Herein, supplementation of the sugarcane straw hemicellulosic hydrolyzate (xylose 57gL(-1)) with maltose, sucrose, cellobiose or glycerol was proposed, and their effect as co-substrates on xylitol production by Candida guilliermondii FTI 20037 was studied. Sucrose (10gL(-1)) and glycerol (0.7gL(-1)) supplementation led to significant increase of 8.88% and 6.86% on xylose uptake rate (1.11gL(-1)h(-1) and 1.09gL(-1)), respectively, but only with sucrose, significant increments of 12.88% and 8.69% on final xylitol concentration (36.11gL(-1)) and volumetric productivity (0.75gL(-1)h(-1)), respectively, were achieved. Based on these results, utilization of complex sources of sucrose, derived from agro-industries, as nutritional supplementation for xylitol production can be proposed as a strategy for improving the yeast performance and reducing the cost of this bioprocess by replacing more expensive nutrients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Coupling two sizes of CSTR-type bioreactors for sequential lactic acid and xylitol production from hemicellulosic hydrolysates of vineshoot trimmings.

    PubMed

    Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Domínguez, José Manuel

    2012-02-15

    This study develops a system for the efficient valorisation of hemicellulosic hydrolysates of vineshoot trimmings. By connecting two reactors of 2L and 10L, operational conditions were set up for the sequential production of lactic acid and xylitol in continuous fermentation, considering the dependence of the main metabolites and fermentation parameters on the dilution rate. In the first bioreactor, Lactobacillus rhamnosus consumed all the glucose to produce lactic acid at 31.5°C, with 150rpm and 1L of working volume as the optimal conditions. The residual sugars were employed for the xylose to xylitol bioconversion by Debaryomyces hansenii in the second bioreactor at 30°C, 250rpm and an air-flow rate of 2Lmin(-1). Several steady states were reached at flow rates (F) in the range of 0.54-5.33mLmin(-1), leading to dilution rates (D) ranging from 0.032 to 0.320h(-1) in Bioreactor 1 and from 0.006 to 0.064h(-1) in Bioreactor 2. The maximum volumetric lactic acid productivity (Q(P LA)=2.908gL(-1)h(-1)) was achieved under D=0.266h(-1) (F=4.44mLmin(-1)); meanwhile, the maximum production of xylitol (5.1gL(-1)), volumetric xylitol productivity (Q(P xylitol)=0.218gL(-1)h(-1)), volumetric rate of xylose consumption (Q(S xylose)=0.398gL(-1)h(-1)) and product yield (0.55gg(-1)) were achieved at an intermediate dilution rate of 0.043h(-1) (F=3.55mLmin(-1)). Under these conditions, ethanol, which was the main by-product of the fermentation, was produced in higher amounts (1.9gL(-1)). Finally, lactic acid and xylitol were effectively recovered by conventional procedures. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Xylitol-containing products for preventing dental caries in children and adults.

    PubMed

    Riley, Philip; Moore, Deborah; Ahmed, Farooq; Sharif, Mohammad O; Worthington, Helen V

    2015-03-26

    to use a random-effects model in the event that there were four or more studies in a meta-analysis. We included 10 studies that analysed a total of 5903 participants. One study was assessed as being at low risk of bias, two were assessed as being at unclear risk of bias, with the remaining seven being at high risk of bias.The main finding of the review was that, over 2.5 to 3 years of use, a fluoride toothpaste containing 10% xylitol may reduce caries by 13% when compared to a fluoride-only toothpaste (PF -0.13, 95% CI -0.18 to -0.08, 4216 children analysed, low-quality evidence).The remaining evidence on children, from small single studies with risk of bias issues and great uncertainty associated with the effect estimates, was insufficient to determine a benefit from xylitol products. One study reported that xylitol syrup (8 g per day) reduced caries by 58% (95% CI 33% to 83%, 94 infants analysed, low quality evidence) when compared to a low-dose xylitol syrup (2.67 g per day) consumed for 1 year.The following results had 95% CIs that were compatible with both a reduction and an increase in caries associated with xylitol: xylitol lozenges versus no treatment in children (very low quality body of evidence); xylitol sucking tablets versus no treatment in infants (very low quality body of evidence); xylitol tablets versus control (sorbitol) tablets in infants (very low quality body of evidence); xylitol wipes versus control wipes in infants (low quality body of evidence).There was only one study investigating the effects of xylitol lozenges, when compared to control lozenges, in adults (low quality body of evidence). The effect estimate had a 95% CI that was compatible with both a reduction and an increase in caries associated with xylitol.Four studies reported that there were no adverse effects from any of the interventions. Two studies reported similar rates of adverse effects between study arms. The remaining studies either mentioned adverse effects but did not

  20. Challenges and prospects of xylitol production with whole cell bio-catalysis: A review.

    PubMed

    Dasgupta, Diptarka; Bandhu, Sheetal; Adhikari, Dilip K; Ghosh, Debashish

    2017-04-01

    Xylitol, as an alternative low calorie sweetener is well accepted in formulations of various confectioneries and healthcare products. Worldwide it is industrially produced by catalytic hydrogenation of pure d-xylose solution under high temperature and pressure. Biotechnological xylitol production is a potentially attractive replacement for chemical process, as it occurs under much milder process conditions and can be based on sugar mixtures derived from low-cost industrial and agri-waste. However, microbial fermentation route of xylitol production is not so far practiced industrially. This review highlights the challenges and prospects of biotechnological xylitol production considering possible genetic modifications of fermenting microorganisms and various aspects of industrial bioprocessing and product downstreaming. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Improving xylitol production at elevated temperature with engineered Kluyveromyces marxianus through over-expressing transporters.

    PubMed

    Zhang, Jia; Zhang, Biao; Wang, Dongmei; Gao, Xiaolian; Hong, Jiong

    2015-01-01

    Three transporter genes including Kluyveromyces marxianus aquaglyceroporin gene (KmFPS1), Candida intermedia glucose/xylose facilitator gene (CiGXF1) or glucose/xylose symporter gene (CiGXS1) were over-expressed in K. marxianus YZJ017 to improve xylitol production at elevated temperatures. The xylitol production of YZJ074 that harbored CiGXF1 was improved to 147.62g/L in Erlenmeyer flask at 42°C. In fermenter, 99.29 and 149.60g/L xylitol were produced from 99.55 and 151.91g/L xylose with productivity of 4.14 and 3.40g/L/h respectively at 42°C. Even at 45°C, YZJ074 could produce 101.30g/L xylitol from 101.41g/L xylose with productivity of 2.81g/L/h. Using fed-batch fermentation through repeatedly adding non-sterilized substrate directly, YZJ074 could produce 312.05g/L xylitol which is the highest yield reported to date. The engineered strains YZJ074 which can produce xylitol at elevated temperatures is an excellent foundation for xylitol bioconversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Xylitol production by genetically modified industrial strain of Saccharomyces cerevisiae using glycerol as co-substrate.

    PubMed

    Kogje, Anushree B; Ghosalkar, Anand

    2017-06-01

    Xylitol is commercially used in chewing gum and dental care products as a low calorie sweetener having medicinal properties. Industrial yeast strain of S. cerevisiae was genetically modified to overexpress an endogenous aldose reductase gene GRE3 and a xylose transporter gene SUT1 for the production of xylitol. The recombinant strain (XP-RTK) carried the expression cassettes of both the genes and the G418 resistance marker cassette KanMX integrated into the genome of S. cerevisiae. Short segments from the 5' and 3' delta regions of the Ty1 retrotransposons were used as homology regions for integration of the cassettes. Xylitol production by the industrial recombinant strain was evaluated using hemicellulosic hydrolysate of the corn cob with glucose as the cosubstrate. The recombinant strain XP-RTK showed significantly higher xylitol productivity (212 mg L -1  h -1 ) over the control strain XP (81 mg L -1  h -1 ). Glucose was successfully replaced by glycerol as a co-substrate for xylitol production by S. cerevisiae. Strain XP-RTK showed the highest xylitol productivity of 318.6 mg L -1  h -1 and titre of 47 g L -1 of xylitol at 12 g L -1 initial DCW using glycerol as cosubstrate. The amount of glycerol consumed per amount of xylitol produced (0.47 mol mol -1 ) was significantly lower than glucose (23.7 mol mol -1 ). Fermentation strategies such as cell recycle and use of the industrial nitrogen sources were demonstrated using hemicellulosic hydrolysate for xylitol production.

  3. Xylitol production by a Pichia stipitis D-xylulokinase mutant

    Treesearch

    Yong-Su Jin; Jose Cruz; Thomas W. Jeffries

    2005-01-01

    Xylitol production by Pichia stipitis FPL-YS30, a xyl3-Ä1 mutant that metabolizes xylose using an alternative metabolic pathway, was investigated under aerobic and oxygen-limited culture conditions. Under both culture conditions, FPL-YS30 (xyl3-Ä1) produced a negligible amount of ethanol and converted xylose mainly into xylitol with comparable yields (0.30 and 0.27 g...

  4. Furfural and glucose can enhance conversion of xylose to xylitol by Candida magnoliae TISTR 5663.

    PubMed

    Wannawilai, Siwaporn; Lee, Wen-Chien; Chisti, Yusuf; Sirisansaneeyakul, Sarote

    2017-01-10

    Xylitol production from xylose by the yeast Candida magnoliae TISTR 5663 was enhanced by supplementing the fermentation medium with furfural (300mg/L) and glucose (3g/L with an initial mass ratio of glucose to xylose of 1:10) together under oxygen limiting conditions. In the presence of furfural and glucose, the final concentration of xylitol was unaffected relative to control cultures but the xylitol yield on xylose increased by about 5%. Supplementation of the culture medium with glucose alone at an initial concentration of 3g/L, stimulated the volumetric and specific rates of xylose consumption and the rate of xylitol production from xylose. In a culture medium containing 30g/L xylose, 300mg/L furfural and 3g/L glucose, the volumetric production rate of xylitol was 1.04g/L h and the specific production rate was 0.169g/g h. In the absence of furfural and glucose, the volumetric production rate of xylitol was ∼35% lower and the specific production rate was nearly 30% lower. In view of these results, xylose-containing lignocellulosic hydrolysates contaminated with furfural can be effectively used for producing xylitol by fermentation so long as the glucose-to-xylose mass ratio in the hydrolysate does not exceed 1:10 and the furfural concentration is ≤300mg/L. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae.

    PubMed

    Jo, Jung-Hyun; Oh, Sun-Young; Lee, Hyeun-Soo; Park, Yong-Cheol; Seo, Jin-Ho

    2015-12-01

    Xylitol, a natural sweetener, can be produced by hydrogenation of xylose in hemicelluloses. In microbial processes, utilization of only NADPH cofactor limited commercialization of xylitol biosynthesis. To overcome this drawback, Saccharomyces cerevisiae D452-2 was engineered to express two types of xylose reductase (XR) with either NADPH-dependence or NADH-preference. Engineered S. cerevisiae DWM expressing both the XRs exhibited higher xylitol productivity than the yeast strain expressing NADPH-dependent XR only (DWW) in both batch and glucose-limited fed-batch cultures. Furthermore, the coexpression of S. cerevisiae ZWF1 and ACS1 genes in the DWM strain increased intracellular concentrations of NADPH and NADH and improved maximum xylitol productivity by 17%, relative to that for the DWM strain. Finally, the optimized fed-batch fermentation of S. cerevisiae DWM-ZWF1-ACS1 resulted in 196.2 g/L xylitol concentration, 4.27 g/L h productivity and almost the theoretical yield. Expression of the two types of XR utilizing both NADPH and NADH is a promising strategy to meet the industrial demands for microbial xylitol production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Microbial xylitol production from corn cobs using Candida magnoliae.

    PubMed

    Tada, Kiyoshi; Horiuchi, Jun-Ichi; Kanno, Tohru; Kobayashi, Masayoshi

    2004-01-01

    Microbial production of xylitol from corn cobs using Candida magnoliae was experimentally investigated. Approximately 25 g-xylose/l solution was obtained from 100 g-corn cobs/l solution by hydrolysis using 1.0% sulfuric acid at 121 degrees C for 60 min. To remove inhibitors from the hydrolysates, charcoal pellets were found to be effective in selectively removing the inhibitors from the hydrolysates without affecting xylose concentration. C. magnoliae was successfully cultivated using the treated corn cob hydrolysate, resulting in the production of 18.7 g-xylitol/l from 25 g-xylose/l within 36 h.

  7. Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate.

    PubMed

    Guirimand, Gregory; Sasaki, Kengo; Inokuma, Kentaro; Bamba, Takahiro; Hasunuma, Tomohisa; Kondo, Akihiko

    2016-04-01

    Xylitol, a value-added polyol deriving from D-xylose, is widely used in both the food and pharmaceutical industries. Despite extensive studies aiming to streamline the production of xylitol, the manufacturing cost of this product remains high while demand is constantly growing worldwide. Biotechnological production of xylitol from lignocellulosic waste may constitute an advantageous and sustainable option to address this issue. However, to date, there have been few reports of biomass conversion to xylitol. In the present study, xylitol was directly produced from rice straw hydrolysate using a recombinant Saccharomyces cerevisiae YPH499 strain expressing cytosolic xylose reductase (XR), along with β-glucosidase (BGL), xylosidase (XYL), and xylanase (XYN) enzymes (co-)displayed on the cell surface; xylitol production by this strain did not require addition of any commercial enzymes. All of these enzymes contributed to the consolidated bioprocessing (CBP) of the lignocellulosic hydrolysate to xylitol to produce 5.8 g/L xylitol with 79.5 % of theoretical yield from xylose contained in the biomass. Furthermore, nanofiltration of the rice straw hydrolysate provided removal of fermentation inhibitors while simultaneously increasing sugar concentrations, facilitating high concentration xylitol production (37.9 g/L) in the CBP. This study is the first report (to our knowledge) of the combination of cell surface engineering approach and membrane separation technology for xylitol production, which could be extended to further industrial applications.

  8. Detoxification of Corncob Acid Hydrolysate with SAA Pretreatment and Xylitol Production by Immobilized Candida tropicalis

    PubMed Central

    Deng, Li-Hong; Tang, Yong; Liu, Yun

    2014-01-01

    Xylitol fermentation production from corncob acid hydrolysate has become an attractive and promising process. However, corncob acid hydrolysate cannot be directly used as fermentation substrate owing to various inhibitors. In this work, soaking in aqueous ammonia (SAA) pretreatment was employed to reduce the inhibitors in acid hydrolysate. After detoxification, the corncob acid hydrolysate was fermented by immobilized Candida tropicalis cell to produce xylitol. Results revealed that SAA pretreatment showed high delignification and efficient removal of acetyl group compounds without effect on cellulose and xylan content. Acetic acid was completely removed, and the content of phenolic compounds was reduced by 80%. Furthermore, kinetic behaviors of xylitol production by immobilized C. tropicalis cell were elucidated from corncob acid hydrolysate detoxified with SAA pretreatment and two-step adsorption method, respectively. The immobilized C. tropicalis cell showed higher productivity efficiency using the corncob acid hydrolysate as fermentation substrate after detoxification with SAA pretreatment than by two-step adsorption method in the five successive batch fermentation rounds. After the fifth round fermentation, about 60 g xylitol/L fermentation substrate was obtained for SAA pretreatment detoxification, while about 30 g xylitol/L fermentation substrate was obtained for two-step adsorption detoxification. PMID:25133211

  9. Effect of Furfural, Vanillin and Syringaldehyde on Candida guilliermondii Growth and Xylitol Biosynthesis

    NASA Astrophysics Data System (ADS)

    Kelly, Christine; Jones, Opal; Barnhart, Christopher; Lajoie, Curtis

    Xylitol is a five-carbon sugar alcohol with established commercial use as an alternative sweetener and can be produced from hemicellulose hydrolysate. However, there are difficulties with microbiological growth and xylitol biosynthesis on hydrolysate because of the inhibitors formed from hydrolysis of hemicellulose. This research focused on the effect of furfural, vanillin, and syringaldehyde on growth of Candida guilliermondii and xylitol accumulation from xylose in a semi-synthetic medium in microwell plate and bioreactor cultivations. All three compounds reduced specific growth rate, increased lag time, and reduced xylitol production rate. In general, increasing concentration of inhibitor increased the severity of inhibition, except in the case of 0.5 g vanillin per liter, which resulted in a faster late batch phase growth rate and increased biomass yield. At concentrations of 1 g/1 or higher, furfural was the least inhibitory to growth, followed by syringaldehyde. Vanillin most severely reduced specific growth rate. All three inhibitors reduced xylitol production rate approximately to the same degree.

  10. Effect of furfural, vanillin and syringaldehyde on Candida guilliermondii growth and xylitol biosynthesis.

    PubMed

    Kelly, Christine; Jones, Opal; Barnhart, Christopher; Lajoie, Curtis

    2008-03-01

    Xylitol is a five-carbon sugar alcohol with established commercial use as an alternative sweetener and can be produced from hemicellulose hydrolysate. However, there are difficulties with microbiological growth and xylitol biosynthesis on hydrolysate because of the inhibitors formed from hydrolysis of hemicellulose. This research focused on the effect of furfural, vanillin, and syringaldehyde on growth of Candida guilliermondii and xylitol accumulation from xylose in a semi-synthetic medium in microwell plate and bioreactor cultivations. All three compounds reduced specific growth rate, increased lag time, and reduced xylitol production rate. In general, increasing concentration of inhibitor increased the severity of inhibition, except in the case of 0.5 g vanillin per liter, which resulted in a faster late batch phase growth rate and increased biomass yield. At concentrations of 1 g/l or higher, furfural was the least inhibitory to growth, followed by syringaldehyde. Vanillin most severely reduced specific growth rate. All three inhibitors reduced xylitol production rate approximately to the same degree.

  11. Production of ethanol and xylitol from corn cobs by yeasts.

    PubMed

    Latif, F; Rajoka, M I

    2001-03-01

    Saccharomyces cerevisiae and Candida tropicalis were used separately and as co-culture for simultaneous saccharification and fermentation (SSF) of 5-20% (w/v) dry corn cobs. A maximal ethanol concentration of 27, 23, 21 g/l (w/v) from 200 g/l (w/v) dry corn cobs was obtained by S. cerevisiae, C. tropicalis and the co-culture, respectively, after 96 h of fermentation. However, theoretical yields of 82%, 71% and 63% were observed from 50 g/l dry corn cobs for the above cultures, respectively. Maximal xylitol concentration of 21, 20 and 15 g/l from 200 g/l (w/v) dry corn cobs was obtained by C. tropicalis, co-culture, and S. cerevisiae, respectively. Maximum theoretical yields of 79.0%, 77.0% and 58% were observed from 50 g/l of corn cobs, respectively. The volumetric productivities for ethanol and xylitol increased with the increase in substrate concentration, whereas, yield decreased. Glycerol and acetic acid were formed as minor by-products. S. cerevisiae and C. tropicalis resulted in better product yields (0.42 and 0.36 g/g) for ethanol and (0.52 and 0.71 g/g) for xylitol, respectively, whereas, the co-culture showed moderate level of ethanol (0.32 g/g) and almost maximal levels of xylitol (0.69 g/g).

  12. Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor.

    PubMed

    Zahed, Omid; Jouzani, Gholamreza Salehi; Abbasalizadeh, Saeed; Khodaiyan, Faramarz; Tabatabaei, Meisam

    2016-05-01

    The present study was set to develop a robust and economic biorefinery process for continuous co-production of ethanol and xylitol from rice straw in a membrane bioreactor. Acid pretreatment, enzymatic hydrolysis, detoxification, yeast strains selection, single and co-culture batch fermentation, and finally continuous co-fermentation were optimized. The combination of diluted acid pretreatment (3.5 %) and enzymatic conversion (1:10 enzyme (63 floating-point unit (FPU)/mL)/biomass ratio) resulted in the maximum sugar yield (81 % conversion). By concentrating the hydrolysates, sugars level increased by threefold while that of furfural reduced by 50 % (0.56 to 0.28 g/L). Combined application of active carbon and resin led to complete removal of furfural, hydroxyl methyl furfural, and acetic acid. The strains Saccharomyces cerevisiae NCIM 3090 with 66.4 g/L ethanol production and Candida tropicalis NCIM 3119 with 9.9 g/L xylitol production were selected. The maximum concentrations of ethanol and xylitol in the single cultures were recorded at 31.5 g/L (0.42 g/g yield) and 26.5 g/L (0.58 g/g yield), respectively. In the batch co-culture system, the ethanol and xylitol productions were 33.4 g/L (0.44 g/g yield) and 25.1 g/L (0.55 g/g yield), respectively. The maximum ethanol and xylitol volumetric productivity values in the batch co-culture system were 65 and 58 % after 25 and 60 h, but were improved in the continuous co-culture mode and reached 80 % (55 g/L) and 68 % (31 g/L) at the dilution rate of 0.03 L per hour, respectively. Hence, the continuous co-production strategy developed in this study could be recommended for producing value-added products from this hugely generated lignocellulosic waste.

  13. Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037.

    PubMed

    Hernández-Pérez, Andrés Felipe; de Arruda, Priscila Vaz; Felipe, Maria das Graças de Almeida

    2016-01-01

    Sugarcane straw has become an available lignocellulosic biomass since the progressive introduction of the non-burning harvest in Brazil. Besides keeping this biomass in the field, it can be used as a feedstock in thermochemical or biochemical conversion processes. This makes feasible its incorporation in a biorefinery, whose economic profitability could be supported by integrated production of low-value biofuels and high-value chemicals, e.g., xylitol, which has important industrial and clinical applications. Herein, biotechnological production of xylitol is presented as a possible route for the valorization of sugarcane straw and its incorporation in a biorefinery. Nutritional supplementation of the sugarcane straw hemicellulosic hydrolyzate as a function of initial oxygen availability was studied in batch fermentation of Candida guilliermondii FTI 20037. The nutritional supplementation conditions evaluated were: no supplementation; supplementation with (NH4)2SO4, and full supplementation with (NH4)2SO4, rice bran extract and CaCl2·2H2O. Experiments were performed at pH 5.5, 30°C, 200rpm, for 48h in 125mL Erlenmeyer flasks containing either 25 or 50mL of medium in order to vary initial oxygen availability. Without supplementation, complete consumption of glucose and partial consumption of xylose were observed. In this condition the maximum xylitol yield (0.67gg(-1)) was obtained under reduced initial oxygen availability. Nutritional supplementation increased xylose consumption and xylitol production by up to 200% and 240%, respectively. The maximum xylitol volumetric productivity (0.34gL(-1)h(-1)) was reached at full supplementation and increased initial oxygen availability. The results demonstrated a combined effect of nutritional supplementation and initial oxygen availability on xylitol production from sugarcane straw hemicellulosic hydrolyzate. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  14. Optimization of CDT-1 and XYL1 Expression for Balanced Co-Production of Ethanol and Xylitol from Cellobiose and Xylose by Engineered Saccharomyces cerevisiae

    PubMed Central

    Zha, Jian; Li, Bing-Zhi; Shen, Ming-Hua; Hu, Meng-Long; Song, Hao; Yuan, Ying-Jin

    2013-01-01

    Production of ethanol and xylitol from lignocellulosic hydrolysates is an alternative to the traditional production of ethanol in utilizing biomass. However, the conversion efficiency of xylose to xylitol is restricted by glucose repression, causing a low xylitol titer. To this end, we cloned genes CDT-1 (encoding a cellodextrin transporter) and gh1-1 (encoding an intracellular β-glucosidase) from Neurospora crassa and XYL1 (encoding a xylose reductase that converts xylose into xylitol) from Scheffersomyces stipitis into Saccharomyces cerevisiae, enabling simultaneous production of ethanol and xylitol from a mixture of cellobiose and xylose (main components of lignocellulosic hydrolysates). We further optimized the expression levels of CDT-1 and XYL1 by manipulating their promoters and copy-numbers, and constructed an engineered S. cerevisiae strain (carrying one copy of PGK1p-CDT1 and two copies of TDH3p-XYL1), which showed an 85.7% increase in xylitol production from the mixture of cellobiose and xylose than that from the mixture of glucose and xylose. Thus, we achieved a balanced co-fermentation of cellobiose (0.165 g/L/h) and xylose (0.162 g/L/h) at similar rates to co-produce ethanol (0.36 g/g) and xylitol (1.00 g/g). PMID:23844185

  15. Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations.

    PubMed

    Chin, Jonathan W; Cirino, Patrick C

    2011-01-01

    Escherichia coli engineered to uptake xylose while metabolizing glucose was previously shown to produce high levels of xylitol from a mixture of glucose and xylose when expressing NADPH-dependent xylose reductase from Candida boidinii (CbXR) (Cirino et al., Biotechnol Bioeng. 2006;95:1167-1176). We then described the effects of deletions of key metabolic pathways (e.g., Embden-Meyerhof-Parnas and pentose phosphate pathway) and reactions (e.g., transhydrogenase and NADH dehydrogenase) on resting-cell xylitol yield (Y RPG: moles of xylitol produced per mole of glucose consumed) (Chin et al., Biotechnol Bioeng. 2009;102:209-220). These prior results demonstrated the importance of direct NADPH supply by NADP+-utilizing enzymes in central metabolism for driving heterologous NADPH-dependent reactions. This study describes strain modifications that improve coupling between glucose catabolism (oxidation) and xylose reduction using two fundamentally different strategies. We first examined the effects of deleting the phosphofructokinase (pfk) gene(s) on growth-uncoupled xylitol production and found that deleting both pfkA and sthA (encoding the E. coli-soluble transhydrogenase) improved the xylitol Y RPG from 3.4 ± 0.6 to 5.4 ± 0.4. The second strategy focused on coupling aerobic growth on glucose to xylitol production by deleting pgi (encoding phosphoglucose isomerase) and sthA. Impaired growth due to imbalanced NADPH metabolism (Sauer et al., J Biol Chem. 2004;279:6613-6619) was alleviated upon expressing CbXR, resulting in xylitol production similar to that of the growth-uncoupled precursor strains but with much less acetate secretion and more efficient utilization of glucose. Intracellular nicotinamide cofactor levels were also quantified, and the magnitude of the change in the NADPH/NADP+ ratio measured from cells consuming glucose in the absence vs. presence of xylose showed a strong correlation to the resulting Y RPG. Copyright © 2011 American Institute of Chemical

  16. Effects of xylitol on xylitol-sensitive versus xylitol-resistant Streptococcus mutans strains in a three-species in vitro biofilm.

    PubMed

    Marttinen, Aino M; Ruas-Madiedo, Patricia; Hidalgo-Cantabrana, Claudio; Saari, Markku A; Ihalin, Riikka A; Söderling, Eva M

    2012-09-01

    We studied the effects of xylitol on biofilms containing xylitol-resistant (Xr) and xylitol-sensitive (Xs) Streptococcus mutans, Actinomyces naeslundii and S. sanguinis. The biofilms were grown for 8 and 24 h on hydroxyapatite discs. The viable microorganisms were determined by plate culturing techniques and fluorescence in situ hybridization (FISH) was performed using a S. mutans-specific probe. Extracellular cell-bound polysaccharides (EPS) were determined by spectrofluorometry from single-species S. mutans biofilms. In the presence of 5 % xylitol, the counts of the Xs S. mutans decreased tenfold in the young (8 h) biofilm (p < 0.05) but no effect was seen in the mature (24 h) biofilm. No decrease was observed for the Xr strains, and FISH confirmed these results. No differences were detected in the EPS production of the Xs S. mutans grown with or without xylitol, nor between Xr and Xs S. mutans strains. Thus, it seems that xylitol did not affect the EPS synthesis of the S. mutans strains. Since the Xr S. mutans strains, not inhibited by xylitol, showed no xylitol-induced decrease in the biofilms, we conclude that growth inhibition could be responsible for the decrease of the counts of the Xs S. mutans strains in the clinically relevant young biofilms.

  17. Construction of plasmid-free Escherichia coli for the production of arabitol-free xylitol from corncob hemicellulosic hydrolysate.

    PubMed

    Su, Buli; Zhang, Zhe; Wu, Mianbin; Lin, Jianping; Yang, Lirong

    2016-05-26

    High costs and low production efficiency are a serious constraint to bio-based xylitol production. For industrial-scale production of xylitol, a plasmid-free Escherichia coli for arabitol-free xylitol production from corncob hemicellulosic hydrolysate has been constructed. Instead of being plasmid and inducer dependent, this strain relied on multiple-copy integration of xylose reductase (XR) genes into the chromosome, where their expression was controlled by the constitutive promoter P43. In addition, to minimize the flux from L-arabinose to arabitol, two strategies including low XR total activity and high selectivity of XR has been adopted. Arabitol was significantly decreased using plasmid-free strain which had lower XR total activity and an eight point-mutations of XR with a 27-fold lower enzyme activity toward L-arabinose was achieved. The plasmid-free strain in conjunction with this mutant XR can completely eliminate arabitol formation in xylitol production. In fed-batch fermentation, this plasmid-free strain produced 143.8 g L(-1) xylitol at 1.84 g L(-1) h(-1) from corncob hemicellulosic hydrolysate. From these results, we conclude that this route by plasmid-free E. coli has potential to become a commercially viable process for xylitol production.

  18. Construction of plasmid-free Escherichia coli for the production of arabitol-free xylitol from corncob hemicellulosic hydrolysate

    PubMed Central

    Su, Buli; Zhang, Zhe; Wu, Mianbin; Lin, Jianping; Yang, Lirong

    2016-01-01

    High costs and low production efficiency are a serious constraint to bio-based xylitol production. For industrial-scale production of xylitol, a plasmid-free Escherichia coli for arabitol-free xylitol production from corncob hemicellulosic hydrolysate has been constructed. Instead of being plasmid and inducer dependent, this strain relied on multiple-copy integration of xylose reductase (XR) genes into the chromosome, where their expression was controlled by the constitutive promoter P43. In addition, to minimize the flux from L-arabinose to arabitol, two strategies including low XR total activity and high selectivity of XR has been adopted. Arabitol was significantly decreased using plasmid-free strain which had lower XR total activity and an eight point-mutations of XR with a 27-fold lower enzyme activity toward L-arabinose was achieved. The plasmid-free strain in conjunction with this mutant XR can completely eliminate arabitol formation in xylitol production. In fed-batch fermentation, this plasmid-free strain produced 143.8 g L−1 xylitol at 1.84 g L−1 h−1 from corncob hemicellulosic hydrolysate. From these results, we conclude that this route by plasmid-free E. coli has potential to become a commercially viable process for xylitol production. PMID:27225023

  19. Evaluation of sorghum straw hemicellulosic hydrolysate for biotechnological production of xylitol by Candida guilliermondii

    PubMed Central

    Sene, L.; Arruda, P.V.; Oliveira, S.M.M.; Felipe, M.G.A.

    2011-01-01

    A preliminary study on xylitol production by Candida guilliermondii in sorghum straw hemicellulosic hydrolysate was performed. Hydrolysate had high xylose content and inhibitors concentrations did not exceed the commonly found values in other hemicellulosic hydrolysates. The highest xylitol yield (0.44 g/g) and productivity (0.19 g/Lh) were verified after 72 hours. PMID:24031733

  20. Ethanol production using xylitol synthesis mutant of xylose-utilizing zymomonas

    DOEpatents

    Viitanen, Paul V.; McCutchen, Carol M.; Emptage, Mark; Caimi, Perry G.; Zhang, Min; Chou, Yat-Chen

    2010-06-22

    Production of ethanol using a strain of xylose-utilizing Zymomonas with a genetic modification of the glucose-fructose oxidoreductase gene was found to be improved due to greatly reduced production of xylitol, a detrimental by-product of xylose metabolism synthesized during fermentation.

  1. A novel aldose-aldose oxidoreductase for co-production of D-xylonate and xylitol from D-xylose with Saccharomyces cerevisiae.

    PubMed

    Wiebe, Marilyn G; Nygård, Yvonne; Oja, Merja; Andberg, Martina; Ruohonen, Laura; Koivula, Anu; Penttilä, Merja; Toivari, Mervi

    2015-11-01

    An open reading frame CC1225 from the Caulobacter crescentus CB15 genome sequence belongs to the Gfo/Idh/MocA protein family and has 47 % amino acid sequence identity with the glucose-fructose oxidoreductase from Zymomonas mobilis (Zm GFOR). We expressed the ORF CC1225 in the yeast Saccharomyces cerevisiae and used a yeast strain expressing the gene coding for Zm GFOR as a reference. Cell extracts of strains overexpressing CC1225 (renamed as Cc aaor) showed some Zm GFOR type of activity, producing D-gluconate and D-sorbitol when a mixture of D-glucose and D-fructose was used as substrate. However, the activity in Cc aaor expressing strain was >100-fold lower compared to strains expressing Zm gfor. Interestingly, C. crescentus AAOR was clearly more efficient than the Zm GFOR in converting in vitro a single sugar substrate D-xylose (10 mM) to xylitol without an added cofactor, whereas this type of activity was very low with Zm GFOR. Furthermore, when cultured in the presence of D-xylose, the S. cerevisiae strain expressing Cc aaor produced nearly equal concentrations of D-xylonate and xylitol (12.5 g D-xylonate l(-1) and 11.5 g D-xylitol l(-1) from 26 g D-xylose l(-1)), whereas the control strain and strain expressing Zm gfor produced only D-xylitol (5 g l(-1)). Deletion of the gene encoding the major aldose reductase, Gre3p, did not affect xylitol production in the strain expressing Cc aaor, but decreased xylitol production in the strain expressing Zm gfor. In addition, expression of Cc aaor together with the D-xylonolactone lactonase encoding the gene xylC from C. crescentus slightly increased the final concentration and initial volumetric production rate of both D-xylonate and D-xylitol. These results suggest that C. crescentus AAOR is a novel type of oxidoreductase able to convert the single aldose substrate D-xylose to both its oxidized and reduced product.

  2. Formation of xylitol and xylitol-5-phosphate and its impact on growth of d-xylose-utilizing Corynebacterium glutamicum strains.

    PubMed

    Radek, Andreas; Müller, Moritz-Fabian; Gätgens, Jochem; Eggeling, Lothar; Krumbach, Karin; Marienhagen, Jan; Noack, Stephan

    2016-08-10

    Wild-type Corynebacterium glutamicum has no endogenous metabolic activity for utilizing the lignocellulosic pentose d-xylose for cell growth. Therefore, two different engineering approaches have been pursued resulting in platform strains harbouring a functional version of either the Isomerase (ISO) or the Weimberg (WMB) pathway for d-xylose assimilation. In a previous study we found for C. glutamicum WMB by-product formation of xylitol during growth on d-xylose and speculated that the observed lower growth rates are due to the growth inhibiting effect of this compound. Based on a detailed phenotyping of the ISO, WMB and the wild-type strain of C. glutamicum, we here show that this organism has a natural capability to synthesize xylitol from d-xylose under aerobic cultivation conditions. We furthermore observed the intracellular accumulation of xylitol-5-phosphate as a result of the intracellular phosphorylation of xylitol, which was particularly pronounced in the C. glutamicum ISO strain. Interestingly, low amounts of supplemented xylitol strongly inhibit growth of this strain on d-xylose, d-glucose and d-arabitol. These findings demonstrate that xylitol is a suitable substrate of the endogenous xylulokinase (XK, encoded by xylB) and its overexpression in the ISO strain leads to a significant phosphorylation of xylitol in C. glutamicum. Therefore, in order to circumvent cytotoxicity by xylitol-5-phosphate, the WMB pathway represents an interesting alternative route for engineering C. glutamicum towards efficient d-xylose utilization. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 I: production of xylitol and ethanol.

    PubMed

    Bura, Renata; Vajzovic, Azra; Doty, Sharon L

    2012-07-01

    An endophytic yeast, Rhodotorula mucilaginosa strain PTD3, that was isolated from stems of hybrid poplar was found to be capable of production of xylitol from xylose, of ethanol from glucose, galactose, and mannose, and of arabitol from arabinose. The utilization of 30 g/L of each of the five sugars during fermentation by PTD3 was studied in liquid batch cultures. Glucose-acclimated PTD3 produced enhanced yields of xylitol (67% of theoretical yield) from xylose and of ethanol (84, 86, and 94% of theoretical yield, respectively) from glucose, galactose, and mannose. Additionally, this yeast was capable of metabolizing high concentrations of mixed sugars (150 g/L), with high yields of xylitol (61% of theoretical yield) and ethanol (83% of theoretical yield). A 1:1 glucose:xylose ratio with 30 g/L of each during double sugar fermentation did not affect PTD3's ability to produce high yields of xylitol (65% of theoretical yield) and ethanol (92% of theoretical yield). Surprisingly, the highest yields of xylitol (76% of theoretical yield) and ethanol (100% of theoretical yield) were observed during fermentation of sugars present in the lignocellulosic hydrolysate obtained after steam pretreatment of a mixture of hybrid poplar and Douglas fir. PTD3 demonstrated an exceptional ability to ferment the hydrolysate, overcome hexose repression of xylose utilization with a short lag period of 10 h, and tolerate sugar degradation products. In direct comparison, PTD3 had higher xylitol yields from the mixed sugar hydrolysate compared with the widely studied and used xylitol producer Candida guilliermondii.

  4. Effect of solvent on crystallization behavior of xylitol

    NASA Astrophysics Data System (ADS)

    Hao, Hongxun; Hou, Baohong; Wang, Jing-Kang; Lin, Guangyu

    2006-04-01

    Effect of organic solvents content on crystallization behavior of xylitol was studied. Solubility and crystallization kinetics of xylitol in methanol-water system were experimentally determined. It was found that the solubility of xylitol at various methanol content all increases with increase of temperature. But it decreases when increasing methanol content at constant temperature. Based on the theory of population balance, the nucleation and growth rates of xylitol in methanol-water mixed solvents were calculated by moments method. From a series of experimental population density data of xylitol gotten from a batch-operated crystallizer, parameters of crystal nucleation and growth rate equations at different methanol content were got by the method of nonlinear least-squares. By analyzing, it was found that the content of methanol had an apparent effect on nucleation and growth rate of xylitol. At constant temperature, the nucleation and growth rate of xylitol all decrease with increase of methanol content.

  5. Fermentation Kinetics for Xylitol Production by a Pichia stipitis d-Xylulokinase Mutant Previously Grown in Spent Sulfite Liquor

    NASA Astrophysics Data System (ADS)

    Rodrigues, Rita C. L. B.; Lu, Chenfeng; Lin, Bernice; Jeffries, Thomas W.

    Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3Δ) to convert these sugars into useful products. FPL-YS30 produces a negligible amount of ethanol while converting xylose into xylitol. This work describes the xylose fermentation kinetics of yeast strain P.stipitis FPL-YS30. Yeast was grown in rich medium supplemented with different carbon sources: glucose, xylose, or ammonia-base SSL. The SSL and glucose-acclimatized cells showed similar maximum specific growth rates (0.146 h-1). The highest xylose consumption at the beginning of the fermentation process occurred using cells precultivated in xylose, which showed relatively high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49). However, the maximum specific rates of xylose consumption (0.19 gxylose/gcel h) and xylitol production (0.059 gxylitol/gcel h) were obtained with cells acclimatized in glucose, in which the ratio between xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) was kept at higher level (0.82). In this case, xylitol production (31.6 g/l) was 19 and 8% higher than in SSL and xylose-acclimatized cells, respectively. Maximum glycerol (6.26 g/l) and arabitol (0.206 g/l) production were obtained using SSL and xylose-acclimatized cells, respectively. The medium composition used for the yeast precultivation directly reflected their xylose fermentation performance. The SSL could be used as a carbon source for cell production. However, the inoculum condition to obtain a high cell concentration in SSL needs to be optimized.

  6. Xylitol Chewing Gums on the Market: Do They Prevent Caries?

    PubMed

    Alanzi, Abrar; Soderling, Eva; Varghese, Anisha; Honkala, Eino

    To measure the xylitol content in sugar-free chewing gums available on the market in Gulf Cooperation Council (GCC) countries in the Middle East, in order to identify those products that can provide the recommended daily dose of xylitol for caries prevention (6-7 g). Acid production from chewing gums was also measured in vitro and in vivo. Twenty-one chewing gums containing xylitol were identified and collected from the GCC market (Kuwait, Bahrain, Qatar, Saudi Arabia, UAE and Oman). Xylitol was extracted and its concentration was analysed using a special enzymatic kit. The pH of extracts was measured during 30-min incubation with Streptococcus mutans. Changes in saliva and plaque pH were noted in four subjects after the consumption of highly concentrated xylitol gums. The xylitol content in grams was clearly mentioned only on one product's label. Twelve products stated the percentage of xylitol (3.5% to 35%). The rest did not specify the amount. The mean measured weight of one piece of gum was 1.67 ± 0.38 g. The mean measured xylitol content/piece was 0.33 ± 0.21 g. Xylitol content was < 0.3 g/ piece in 9 products, 0.3-0.5 g in 7 and > 0.5 g in 5 products. None of the highly concentrated xylitol gums showed a pH drop in vitro or in vivo. One chewing gum, containing xylitol and glucose, resulted in a low pH level (< 5.5) when tested in vitro. The majority of xylitol chewing gums sold on the GCC market do not provide the consumers with the recommended daily dose of xylitol for caries prevention. Clear, accurate labeling is recommended.

  7. The Influence of Sugar Cane Bagasse Type and Its Particle Size on Xylose Production and Xylose-to-Xylitol Bioconversion with the Yeast Debaryomyces hansenii.

    PubMed

    Aghcheh, Razieh Karimi; Bonakdarpour, Babak; Ashtiani, Farzin Zokaee

    2016-11-01

    In the present study, the effect of the type of sugar cane bagasse (non-depithed or depithed) and its particle size on the production of xylose and its subsequent fermentation to xylitol by Debaryomyces hansenii CBS767 was investigated using a full factorial experimental design. It was found that the particle size range and whether bagasse was depithed or not had a significant effect on the concentration and yield of xylose in the resulting hemicellulose hydrolysate. Depithed bagasse resulted in higher xylose concentrations compared to non-depithed bagasse. The corresponding detoxified hemicellulose hydrolysates were used as fermentation media for the production of xylitol. The hemicellulose hydrolysate prepared from depithed bagasse also yielded meaningfully higher xylitol fermentation rates compared to non-depithed bagasse. However, in the case of non-depithed bagasse, the hemicellulose hydrolysate prepared from larger particle size range resulted in higher xylitol fermentation rates, whereas the effect in the case of non-depithed bagasse was not pronounced. Therefore, depithing of bagasse is an advantageous pretreatment when it is to be employed in bioconversion processes.

  8. The ACEII recombinant Trichoderma reesei QM9414 strains with enhanced xylanase production and its applications in production of xylitol from tree barks.

    PubMed

    Xiong, Lili; Kameshwar, Ayyappa Kumar Sista; Chen, Xi; Guo, Zhiyun; Mao, Canquan; Chen, Sanfeng; Qin, Wensheng

    2016-12-28

    ACEII transcription factor plays a significant role in regulating the expression of cellulase and hemicellulase encoding genes. Apart from ACEII, transcription factors such as XYR1, CRE1, HAP2/3/5 complex and ACEI function in a coordinated pattern for regulating the gene expression of cellulases and hemicellulases. Studies have demonstrated that ACEII gene deletion results in decreased total cellulase and xylanase activities with reduced transcript levels of lignocellulolytic enzymes. In this study, we have successfully transformed the ACEII transcription factor encoding gene in Trichoderma reesei to significantly improve its degrading abilities. Transformation experiments on parental strain T. reesei QM9414 has resulted in five genetically engineered strains T/Ace2-2, T/Ace2-5, T/Ace2-8, T/Ace5-4 and T/Ace10-1. Among which, T/Ace2-2 has exhibited significant increase in enzyme activity by twofolds, when compared to parental strain. The T/Ace2-2 was cultured on growth substrates containing 2% bark supplemented with (a) sugar free + MA medium (b) glucose + MA medium and (c) xylose + MA medium. The bark degradation efficiency of genetically modified T/Ace2-2 strain was assessed by analyzing the xylitol production yield using HPAEC. By 6th day, about 10.52 g/l of xylitol was produced through enzymatic conversion of bark (2% bark + MA + xylose) by the T/Ace2-2 strain and by 7th day the conversion rate was found to be 0.21 g/g. Obtained results confirmed that bark growth medium supplemented with D-xylose has profoundly increased the conversion rate of bark by T/Ace2-2 strain when compared to sugar free and glucose supplemented growth media. Results obtained from scanning electron microscopy has endorsed our current results. Bark samples inoculated with T/Ace2-2 strain has showed large number of degraded cells with clearly visible cavities and fractures, by exposing the microfibrillar interwoven complex. We propose a cost effective and ecofriendly method for

  9. Evaluation of the Simultaneous Production of Xylitol and Ethanol from Sisal Fiber

    PubMed Central

    Damião Xavier, Franklin; Santos Bezerra, Gustavo; Florentino Melo Santos, Sharline; Sousa Conrado Oliveira, Líbia; Luiz Honorato Silva, Flávio; Joice Oliveira Silva, Aleir; Maria Conceição, Marta

    2018-01-01

    Recent years have seen an increase in the use of lignocellulosic materials in the development of bioproducts. Because sisal fiber is a low cost raw material and is readily available, this work aimed to evaluate its hemicellulose fraction for the simultaneous production of xylitol and ethanol. The sisal fiber presented a higher hemicellulose content than other frequently-employed biomasses, such as sugarcane bagasse. A pretreatment with dilute acid and low temperatures was conducted in order to obtain the hemicellulose fraction. The highest xylose contents (0.132 g·g−1 of sisal fiber) were obtained at 120 °C with 2.5% (v/v) of sulfuric acid. The yeast Candida tropicalis CCT 1516 was used in the fermentation. In the sisal fiber hemicellulose hydrolysate, the maximum production of xylitol (0.32 g·g−1) and of ethanol (0.27 g·g−1) was achieved in 60 h. Thus, sisal fiber presents as a potential biomass for the production of ethanol and xylitol, creating value with the use of hemicellulosic liquor without detoxification and without the additional steps of alkaline pretreatment. PMID:29320469

  10. Army's "look for xylitol first" program.

    PubMed

    Richter, Pamila; Chaffin, Jeffrey

    2004-01-01

    Xylitol is a sugar substitute not well known in the United States. This sugar substitute is not only low in calories but can also help prevent dental caries. The U.S. Army Dental Command's Health Promotion Program is constantly seeking additional prevention measures to enhance the oral health of America's Army. The Dental Command has created the "Look for Xylitol First" initiative aimed at training all members of the dental care team on the positive benefits of xylitol and to teach patients how to be smart consumers and evaluate products for their xylitol content.

  11. Kinetic behavior of Candida guilliermondii yeast during xylitol production from Brewer's spent grain hemicellulosic hydrolysate.

    PubMed

    Mussatto, Solange I; Dragone, Giuliano; Roberto, Inês C

    2005-01-01

    Brewer's spent grain, the main byproduct of breweries, was hydrolyzed with dilute sulfuric acid to produce a hemicellulosic hydrolysate (containing xylose as the main sugar). The obtained hydrolysate was used as cultivation medium by Candidaguilliermondii yeast in the raw form (containing 20 g/L xylose) and after concentration (85 g/L xylose), and the kinetic behavior of the yeast during xylitol production was evaluated in both media. Assays in semisynthetic media were also performed to compare the yeast performance in media without toxic compounds. According to the results, the kinetic behavior of the yeast cultivated in raw hydrolysate was as effective as in semisynthetic medium containing 20 g/L xylose. However, in concentrated hydrolysate medium, the xylitol production efficiency was 30.6% and 42.6% lower than in raw hydrolysate and semisynthetic medium containing 85 g/L xylose, respectively. In other words, the xylose-to-xylitol bioconversion from hydrolysate medium was strongly affected when the initial xylose concentration was increased; however, similar behavior did not occur from semisynthetic media. The lowest efficiency of xylitol production from concentrated hydrolysate can be attributed to the high concentration of toxic compounds present in this medium, resulting from the hydrolysate concentration process.

  12. Simultaneous catalytic conversion of cellulose and corncob xylan under temperature programming for enhanced sorbitol and xylitol production.

    PubMed

    Ribeiro, Lucília Sousa; Órfão, José J de Melo; Pereira, Manuel Fernando Ribeiro

    2017-11-01

    Sorbitol and xylitol yields can be improved by converting cellulose and xylan simultaneously, due to a synergetic effect between both substrates. Furthermore, both yields can be greatly enhanced by simply adjusting the reaction conditions regarding the optimum for the production of each product, since xylitol (from xylan) and sorbitol (from cellulose) yields are maximized when the reaction is carried out at 170 and 205°C, respectively. Therefore, the combination of a simultaneous conversion of cellulose and xylan with a two-step temperature approach, which consists in the variation of the reaction temperature from 170 to 205°C after 2h, showed to be a good strategy for maximizing the production of sorbitol and xylitol directly from mixture of cellulose and xylan. Using this new and environmentally friendly approach, yields of sorbitol and xylitol of 75 and 77%, respectively, were obtained after 6h of reaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Xylitol synthesis mutant of xylose-utilizing zymomonas for ethanol production

    DOEpatents

    Viitanen, Paul V.; Chou, Yat-Chen; McCutchen, Carol M.; Zhang, Min

    2010-06-22

    A strain of xylose-utilizing Zymomonas was engineered with a genetic modification to the glucose-fructose oxidoreductase gene resulting in reduced expression of GFOR enzyme activity. The engineered strain exhibits reduced production of xylitol, a detrimental by-product of xylose metabolism. It also consumes more xylose and produces more ethanol during mixed sugar fermentation under process-relevant conditions.

  14. Preliminary safety assessment of C-8 xylitol monoester and xylitol phosphate esters.

    PubMed

    Silveira, J E P S; Pereda, M C V; Nogueira, C; Dieamant, G; Cesar, C K M; Assanome, K M; Silva, M S; Torello, C O; Queiroz, M L S; Eberlin, S

    2016-02-01

    Most of the cosmetic compounds with preservative properties available in the market pose some risks concerning safety, such as the possibility of causing sensitization. Due to the fact that there are few options, the proper development of new molecules with this purpose is needed. Xylitol is a natural sugar, and the antimicrobial properties of xylitol-derived compounds have already been described in the literature. C-8 xylitol monoester and xylitol phosphate esters may be useful for the development of skincare products. As an initial screen for safety of chemicals, the combination of in silico methods and in vitro testing can aid in prioritizing resources in toxicological investigations while reducing the ethical and monetary costs that are related to animal and human testing. This study was designed to evaluate the safety of C-8 xylitol monoester and xylitol phosphate esters regarding carcinogenicity, mutagenicity, skin and eye irritation/corrosion and sensitization through alternative methods. For the initial safety assessment, quantitative structure-activity relationship methodology was used. The prediction of the parameters carcinogenicity/mutagenicity, skin and eye irritation/corrosion and sensitization was generated from the chemical structure. The analysis also comprised physical-chemical properties, Cramer rules, threshold of toxicological concern and Michael reaction. In silico results of candidate molecules were compared to 19 compounds with preservative properties that are available in the market. Additionally, in vitro tests (Ames test for mutagenicity, cytotoxicity and phototoxicity tests and hen's egg test--chorioallantoic membrane for irritation) were performed to complement the evaluation. In silico evaluation of both molecules presented no structural alerts related to eye and skin irritation, corrosion and sensitization, but some alerts for micronucleus and carcinogenicity were detected. However, by comparison, C-8 xylitol monoester, xylitol

  15. The yeast Scheffersomyces amazonensis is an efficient xylitol producer.

    PubMed

    Cadete, Raquel M; Melo-Cheab, Monaliza A; Viana, Adriana L; Oliveira, Evelyn S; Fonseca, César; Rosa, Carlos A

    2016-12-01

    This study assessed the efficiency of Scheffersomyces amazonensis UFMG-CM-Y493 T , cultured in xylose-supplemented medium (YPX) and rice hull hydrolysate (RHH), to convert xylose to xylitol under moderate and severe oxygen limitation. The highest xylitol yields of 0.75 and 1.04 g g -1 in YPX and RHH, respectively, were obtained under severe oxygen limitation. However, volumetric productivity in RHH was ninefold decrease than that in YPX medium. The xylose reductase (XR) and xylitol dehydrogenase (XDH) activities in the YPX cultures were strictly dependent on NADPH and NAD + respectively, and were approximately 10% higher under severe oxygen limitation than under moderate oxygen limitation. This higher xylitol production observed under severe oxygen limitation can be attributed to the higher XR activity and shortage of the NAD + needed by XDH. These results suggest that Sc. amazonensis UFMG-CM-Y493 T is one of the greatest xylitol producers described to date and reveal its potential use in the biotechnological production of xylitol.

  16. Xylitol concentrations in artificial saliva after application of different xylitol dental varnishes

    PubMed Central

    PEREIRA, Agnes de Fátima Faustino; da SILVA, Thiago Cruvinel; da SILVA, Thelma Lopes; CALDANA, Magali de Lourdes; BASTOS, José Roberto Magalhães; BUZALAF, Marília Afonso Rabelo

    2012-01-01

    Objective The present study analyzed xylitol concentrations in artificial saliva over time after application of varnishes containing 10% and 20% xylitol. Material and Methods Fifteen bovine enamel specimens (8x4 mm) were randomly allocated to 3 groups (n=5/group), according to the type of varnish used: 10% xylitol, 20% xylitol and no xylitol (control). After varnish application (4 mg), specimens were immersed in vials containing 500 µL of artificial saliva. Saliva samples were collected in different times (1, 8, 12, 16, 24, 48 and 72 h) and xylitol concentrations were analyzed. Data were assessed by two-way repeated-measures ANOVA (p<0.05). Results Colorimetric analysis was not able to detect xylitol in saliva samples of the control group. Salivary xylitol concentrations were significantly higher up to 8 h after application of the 20% xylitol varnish. Thereafter, the 10% xylitol varnish released larger amounts of that polyol in artificial saliva. Conclusions Despite the results in short-term, sustained xylitol releases could be obtained when the 10% xylitol varnish was used. These varnishes seem to be viable alternatives to increase salivary xylitol levels, and therefore, should be clinically tested to confirm their effectiveness. PMID:22666828

  17. Improved Xylitol Production from D-Arabitol by Enhancing the Coenzyme Regeneration Efficiency of the Pentose Phosphate Pathway in Gluconobacter oxydans.

    PubMed

    Li, Sha; Zhang, Jinliang; Xu, Hong; Feng, Xiaohai

    2016-02-10

    Gluconobacter oxydans is used to produce xylitol from D-arabitol. This study aims to improve xylitol production by increasing the coenzyme regeneration efficiency of the pentose phosphate pathway in G. oxydans. Glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were overexpressed in G. oxydans. Real-time PCR and enzyme activity assays revealed that G6PDH/6PGDH activity and coenzyme regeneration efficiency increased in the recombinant G. oxydans strains. Approximately 29.3 g/L xylitol was obtained, with a yield of 73.2%, from 40 g/L d-arabitol in the batch biotransformation with the G. oxydans PZ strain. Moreover, the xylitol productivity (0.62 g/L/h) was 3.26-fold of the wild type strain (0.19 g/L/h). In repetitive batch biotransformation, the G. oxydans PZ cells were used for five cycles without incurring a significant loss in productivity. These results indicate that the recombinant G. oxydans PZ strain is economically feasible for xylitol production in industrial bioconversion.

  18. Xylitol chewing gum and dental caries.

    PubMed

    Tanzer, J M

    1995-02-01

    There is an extensive peer-reviewed literature on xylitol chewing gum as it pertains to effects on tooth decay in human subjects, on human dental plaque reduction, on inhibition of dental plaque acid production, on inhibition of the growth and metabolism of the mutans group of streptococci which are the prime causative agents of tooth decay, on reduction of tooth decay in experimental animals, and on xylitol's reported contribution to the remineralisation of teeth. The literature not only supports the conclusion that xylitol is non-cariogenic but it is now strongly suggestive that xylitol is caries inhibitory, that is, anti-cariogenic in human subjects, and it supplies reasonable mechanistic explanation(s).

  19. Microbial and Bioconversion Production of D-xylitol and Its Detection and Application

    PubMed Central

    Chen, Xi; Jiang, Zi-Hua; Chen, Sanfeng; Qin, Wensheng

    2010-01-01

    D-Xylitol is found in low content as a natural constituent of many fruits and vegetables. It is a five-carbon sugar polyol and has been used as a food additive and sweetening agent to replace sucrose, especially for non-insulin dependent diabetics. It has multiple beneficial health effects, such as the prevention of dental caries, and acute otitis media. In industry, it has been produced by chemical reduction of D-xylose mainly from photosynthetic biomass hydrolysates. As an alternative method of chemical reduction, biosynthesis of D-xylitol has been focused on the metabolically engineered Saccharomyces cerevisiae and Candida strains. In order to detect D-xylitol in the production processes, several detection methods have been established, such as gas chromatography (GC)-based methods, high performance liquid chromatography (HPLC)-based methods, LC-MS methods, and capillary electrophoresis methods (CE). The advantages and disadvantages of these methods are compared in this review. PMID:21179590

  20. Xylitol and caries prevention.

    PubMed

    Duane, Brett

    2015-06-01

    Cochrane Oral Health Group Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), Medline, Embase, CINAHL, Web of Science Conference Proceedings, Proquest Dissertations and Theses, US National Institutes of Health Trials Register (http://clinicaltrials.gov) and the WHO Clinical Trials Registry Platform for ongoing trials. No language or year restrictions were used. Randomised controlled trials assessing the effects of xylitol products on dental caries in children and adults. Two review authors independently screened the results of the electronic searches, extracted data and assessed the risk of bias of the included studies. Authors were contacted where possible for missing data or clarification where feasible. For continuous outcomes, means and standard deviations were used to obtain the mean difference and 95% confidence interval (CI). Continuous data was used to calculate prevented fractions (PF) and 95% CIs to summarise the percentage reduction in caries. For dichotomous outcomes, reported risk ratios (RR) and 95% CIs were used. As there were fewer than four studies included in the meta-analysis, a fixed effect model was used. Ten studies were included with a total of 5903 participants. One study was assessed as being at low risk of bias, two were assessed as unclear risk of bias with seven at high risk of bias. Over 2.5–3 years, low quality evidence demonstrated that with 4216 children analysed, a fluoride toothpaste with 10% xylitol (exact dosage unsure) reduced caries by 13% when compared to a fluoride only toothpaste. (PF −0.13, 95% CI −0.18 to −0.08. Remaining evidence of the use of xylitol in children has risk of bias and uncertainty of effect and was therefore insufficient to determine a benefit from xylitol. Four studies reported that there were no adverse effects from any of the interventions. Two studies reported similar rates of adverse effects between study arms. The remaining studies either mentioned adverse effects

  1. Direct and efficient xylitol production from xylan by Saccharomyces cerevisiae through transcriptional level and fermentation processing optimizations.

    PubMed

    Li, Zhe; Qu, Hongnan; Li, Chun; Zhou, Xiaohong

    2013-12-01

    In this study, four engineered Saccharomyces cerevisiae carrying xylanase, β-xylosidase and xylose reductase genes by different transcriptional regulations were constructed to directly convert xylan to xylitol. According to the results, the high-copy number plasmid required a rigid selection for promoter characteristics, on the contrast, the selection of promoters could be more flexible for low-copy number plasmid. For cell growth and xylitol production, glucose and galactose were found more efficient than other sugars. The semi-aerobic condition and feeding of co-substrates were taken to improve the yield of xylitol. It was found that the strain containing high-copy number plasmid had the highest xylitol yield, but it was sensitive to the change of fermentation. However, the strain carrying low-copy number plasmid was more adaptable to different processes. By optimization of the transcriptional regulation and fermentation processes, the xylitol concentration could be increased of 1.7 folds and the yield was 0.71 g xylitol/g xylan. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. A Burkholderia sacchari cell factory: production of poly-3-hydroxybutyrate, xylitol and xylonic acid from xylose-rich sugar mixtures.

    PubMed

    Raposo, Rodrigo S; de Almeida, M Catarina M D; de Oliveira, M da Conceição M A; da Fonseca, M Manuela; Cesário, M Teresa

    2017-01-25

    Efficient production of poly-3-hydroxybutyrate (P(3HB)) based on glucose-xylose mixtures simulating different types of lignocellulosic hydrolysate (LCH) was addressed using Burkholderia sacchari, a wild strain capable of metabolizing both sugars and producing P(3HB). Carbon catabolite repression was avoided by maintaining glucose concentration below 10g/L. Xylose concentrations above 30g/L were inhibitory for growth and production. In fed-batch cultivations, pulse size and feed addition rate were controlled in order to reach high productivities and efficient sugar consumptions. High xylose uptake and P(3HB) productivity were attained with glucose-rich mixtures (glucose/xylose ratio in the feed=1.5w/w) using high feeding rates, while with xylose-richer feeds (glucose/xylose=0.8w/w), a lower feeding rate is a robust strategy to avoid xylose build-up in the medium. Xylitol production was observed with xylose concentrations in the medium above 30-40g/L. With sugar mixtures featuring even lower glucose/xylose ratios, i.e. xylose-richer feeds (glucose/xylose=0.5), xylonic acid (a second byproduct) was produced. This is the first report of the ability of Burkholderia sacchari to produce both xylitol and xylonic acid. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Origin of Xylitol in Chewing Gum: A Compound-Specific Isotope Technique for the Differentiation of Corn- and Wood-Based Xylitol by LC-IRMS.

    PubMed

    Köster, Daniel; Wolbert, Jens-Benjamin; Schulte, Marcel S; Jochmann, Maik A; Schmidt, Torsten C

    2018-02-28

    The sugar replacement compound xylitol has gained increasing attention because of its use in many commercial food products, dental-hygiene articles, and pharmaceuticals. It can be classified by the origin of the raw material used for its production. The traditional "birch xylitol" is considered a premium product, in contrast to xylitol produced from agriculture byproducts such as corn husks or sugar-cane straw. Bulk stable-isotope analysis (BSIA) and compound-specific stable-isotope analysis (CSIA) by liquid-chromatography isotope-ratio mass spectrometry (LC-IRMS) of chewing-gum extracts were used to determine the δ 13 C isotope signatures for xylitol. These were applied to elucidate the original plant type the xylitol was produced from on the basis of differences in isotope-fractionation processes of photosynthetic CO 2 fixation. For the LC-IRMS analysis, an organic-solvent-free extraction protocol and HPLC method for the separation of xylitol from different artificial sweeteners and sugar-replacement compounds was successfully developed and applied to the analysis of 21 samples of chewing gum, from which 18 could be clearly related to the raw-material plant class.

  4. Products based on olive oil, betaine, and xylitol in the post-radiotherapy xerostomia.

    PubMed

    Martín, Margarita; Marín, Alicia; López, Mario; Liñán, Olga; Alvarenga, Felipe; Büchser, David; Cerezo, Laura

    2017-01-01

    The objective of this study was determining if the use of products based in olive oil, betaine and xylitol are efficacious to decrease the impact of the dry mouth in the quality of life of the patients with xerostomia due to radiotherapy treatment. Following therapeutic irradiation of the head and neck, patients with profound xerostomia have complaints associated with oral dryness, speech, and taste. There is no strong evidence that any topical therapy is effective for relieving the symptom of dry mouth. 40 patients who had been treated with radiotherapy for head and neck carcinoma and reported symptoms of dry mouth were included in the study. A xerostomia-related quality of life questionnaire, visual analogue scale questionnaire for subjective assessment of salivary dysfunction and salivary flow were reported before and 15 days after the use of topical products based on olive oil, betaina and xylitol. The four primary quality of life areas demonstrated significantly greater improvement after the use of topical products and all eight VAS items had favourable changes. The reduction of symptoms was statistically significant in 7 of the 8 items. After the use of the products, there were improvements in salivary flow in 45%. The use of products based on olive oil, betaine and xylitol, shaped like collutory, toothpaste, gel and spray significantly improved most symptoms and the quality of life limitations produced by dry mouth in patients treated with radiotherapy.

  5. Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 II: production of xylitol and ethanol in the presence of inhibitors.

    PubMed

    Vajzovic, Azra; Bura, Renata; Kohlmeier, Kevin; Doty, Sharon L

    2012-10-01

    A systematic study was conducted characterizing the effect of furfural, 5-hydroxymethylfurfural (5-HMF), and acetic acid concentration on the production of xylitol and ethanol by a novel endophytic yeast, Rhodotorula mucilaginosa strain PTD3. The influence of different inhibitor concentrations on the growth and fermentation abilities of PTD3 cultivated in synthetic nutrient media containing 30 g/l xylose or glucose were measured during liquid batch cultures. Concentrations of up to 5 g/l of furfural stimulated production of xylitol to 77 % of theoretical yield (10 % higher compared to the control) by PTD3. Xylitol yields produced by this yeast were not affected in the presence of 5-HMF at concentrations of up to 3 g/l. At higher concentrations of furfural and 5-HMF, xylitol and ethanol yields were negatively affected. The higher the concentration of acetic acid present in a media, the higher the ethanol yield approaching 99 % of theoretical yield (15 % higher compared to the control) was produced by the yeast. At all concentrations of acetic acid tested, xylitol yield was lowered. PTD3 was capable of metabolizing concentrations of 5, 15, and 5 g/l of furfural, 5-HMF, and acetic acid, respectively. This yeast would be a potent candidate for the bioconversion of lignocellulosic sugars to biochemicals given that in the presence of low concentrations of inhibitors, its xylitol and ethanol yields are stimulated, and it is capable of metabolizing pretreatment degradation products.

  6. Xylitol: a review on bioproduction, application, health benefits, and related safety issues.

    PubMed

    Ur-Rehman, Salim; Mushtaq, Zarina; Zahoor, Tahir; Jamil, Amir; Murtaza, Mian Anjum

    2015-01-01

    Xylitol is a pentahydroxy sugar-alcohol which exists in a very low quantity in fruits and vegetables (plums, strawberries, cauliflower, and pumpkin). On commercial scale, xylitol can be produced by chemical and biotechnological processes. Chemical production is costly and extensive in purification steps. However, biotechnological method utilizes agricultural and forestry wastes which offer the possibilities of economic production of xylitol by reducing required energy. The precursor xylose is produced from agricultural biomass by chemical and enzymatic hydrolysis and can be converted to xylitol primarily by yeast strain. Hydrolysis under acidic condition is the more commonly used practice influenced by various process parameters. Various fermentation process inhibitors are produced during chemical hydrolysis that reduce xylitol production, a detoxification step is, therefore, necessary. Biotechnological xylitol production is an integral process of microbial species belonging to Candida genus which is influenced by various process parameters such as pH, temperature, time, nitrogen source, and yeast extract level. Xylitol has application and potential for food and pharmaceutical industries. It is a functional sweetener as it has prebiotic effects which can reduce blood glucose, triglyceride, and cholesterol level. This review describes recent research developments related to bioproduction of xylitol from agricultural wastes, application, health, and safety issues.

  7. Modeling and simulation of xylitol production in bioreactor by Debaryomyces nepalensis NCYC 3413 using unstructured and artificial neural network models.

    PubMed

    Pappu, J Sharon Mano; Gummadi, Sathyanarayana N

    2016-11-01

    This study examines the use of unstructured kinetic model and artificial neural networks as predictive tools for xylitol production by Debaryomyces nepalensis NCYC 3413 in bioreactor. An unstructured kinetic model was proposed in order to assess the influence of pH (4, 5 and 6), temperature (25°C, 30°C and 35°C) and volumetric oxygen transfer coefficient kLa (0.14h(-1), 0.28h(-1) and 0.56h(-1)) on growth and xylitol production. A feed-forward back-propagation artificial neural network (ANN) has been developed to investigate the effect of process condition on xylitol production. ANN configuration of 6-10-3 layers was selected and trained with 339 experimental data points from bioreactor studies. Results showed that simulation and prediction accuracy of ANN was apparently higher when compared to unstructured mechanistic model under varying operational conditions. ANN was found to be an efficient data-driven tool to predict the optimal harvest time in xylitol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Microbial Production of Xylitol from L-arabinose by Metabolically Engineered Escherichia coli

    USDA-ARS?s Scientific Manuscript database

    Xylitol is used commercially as a natural sweetener in some food products such as chewing gum, soft drinks, and confectionery. It is currently produced by chemical reduction of D-xylose derived from plant materials, mainly hemicellulosic hydrolysates from birch trees. Expanding the substrate range...

  9. Lipase-catalyzed synthesis of xylitol monoesters: solvent engineering approach.

    PubMed

    Castillo, E; Pezzotti, F; Navarro, A; López-Munguía, A

    2003-05-08

    A solvent engineering strategy was applied to the lipase-catalyzed synthesis of xylitol-oleic acid monoesters. The different esterification degrees for this polyhydroxylated molecule were examined in different organic solvent mixtures. In this context, conditions for high selectivity towards monooleoyl xylitol synthesis were enhanced from 6 mol% in pure n-hexane to 73 mol% in 2-methyl-2-propanol/dimethylsulfoxide (DMSO) 80:20 (v/v). On the contrary, the highest production of di- and trioleoyl xylitol, corresponding to 94 mol%, was achieved in n-hexane. Changes in polarity of the reaction medium and in the molecular interactions between solvents and reactants were correlated with the activity coefficients of products. Based on experimental results and calculated thermodynamic activities, the effect of different binary mixtures of solvents on the selective production of xylitol esters is reported. From this analysis, it is concluded that in the more polar conditions (100% dimethylsulfoxide (DMSO)), the synthesis of xylitol monoesters is favored. However, these conditions are unfavorable in terms of enzyme stability. As an alternative, binary mixtures of solvents were proposed. Each mixture of solvents was characterized in terms of the quantitative polarity parameter E(T)(30) and related with the activity coefficients of xylitol esters. To our knowledge, the characterization of solvent mixtures in terms of this polarity parameter and its relationship with the selectivity of the process has not been previously reported.

  10. Production of xylitol by a Coniochaeta ligniaria strain tolerant of inhibitors and defective in growth on xylose.

    PubMed

    Nichols, Nancy N; Saha, Badal C

    2016-05-01

    In conversion of biomass to fuels or chemicals, inhibitory compounds arising from physical-chemical pretreatment of the feedstock can interfere with fermentation of the sugars to product. Fungal strain Coniochaeta ligniaria NRRL30616 metabolizes the furan aldehydes furfural and 5-hydroxymethylfurfural, as well as a number of aromatic and aliphatic acids and aldehydes. Use of NRRL30616 to condition biomass sugars by metabolizing the inhibitors improves their fermentability. Wild-type C. ligniaria has the ability to grow on xylose as sole source of carbon and energy, with no accumulation of xylitol. Mutants of C. ligniaria unable to grow on xylose were constructed. Xylose reductase and xylitol dehydrogenase activities were reduced by approximately two thirds in mutant C8100. The mutant retained ability to metabolize inhibitors in biomass hydrolysates. Although C. ligniaria C8100 did not grow on xylose, the strain converted a portion of xylose to xylitol, producing 0.59 g xylitol/g xylose in rich medium and 0.48 g xylitol/g xylose in corn stover dilute acid hydrolysate. 2016 American Institute of Chemical Engineers Biotechnol. Prog., 2016 © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:606-612, 2016. © 2016 American Institute of Chemical Engineers.

  11. Xylitol as a potential co-crystal co-former for enhancing dissolution rate of felodipine: preparation and evaluation of sublingual tablets.

    PubMed

    Arafa, Mona F; El-Gizawy, Sanaa A; Osman, Mohamed A; El Maghraby, Gamal M

    2018-06-01

    Dissolution enhancement is a promising strategy for improving drug bioavailability. Co-crystallization of drugs with inert material can help in this direction. The benefit will become even greater if the inert material can form co-crystal while maintaining its main function as excipient. Accordingly, the objective of the current study was to investigate xylitol as a potential co-crystal co-former for felodipine with the goal of preparing felodipine sublingual tablets. Co-crystallization was achieved by wet co-grinding of the crystals deposited from methanolic solutions containing felodipine with increasing molar ratios of xylitol (1:1, 1:2 and 1:3). The developed co-crystals were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) before monitoring drug dissolution. These results reflected the development of new crystalline species depending on the relative proportions of felodipine and xylitol with complete co-crystallization of felodipine being achieved in the presence of double its molar concentration of xylitol. This co-crystal formulation was compressed into sublingual tablet with ultrashort disintegration time with subsequent fast dissolution. Co-crystal formation was associated with enhanced dissolution with the optimum formulation producing the fastest dissolution rate. In conclusion, xylitol can be considered as a co-crystal co-former for enhanced dissolution rate of drugs.

  12. Xylitol production by yeasts isolated from rotting wood in the Galápagos Islands, Ecuador, and description of Cyberlindnera galapagoensis f.a., sp. nov.

    PubMed

    Guamán-Burneo, Maria C; Dussán, Kelly J; Cadete, Raquel M; Cheab, Monaliza A M; Portero, Patricia; Carvajal-Barriga, Enrique J; da Silva, Sílvio S; Rosa, Carlos A

    2015-10-01

    This study evaluated D-xylose-assimilating yeasts that are associated with rotting wood from the Galápagos Archipelago, Ecuador, for xylitol production from hemicellulose hydrolysates. A total of 140 yeast strains were isolated. Yeasts related to the clades Yamadazyma, Kazachstania, Kurtzmaniella, Lodderomyces, Metschnikowia and Saturnispora were predominant. In culture assays using sugarcane bagasse hemicellulose hydrolysate, Candida tropicalis CLQCA-24SC-125 showed the highest xylitol production, yield and productivity (27.1 g L(-1) xylitol, Y p/s (xyl) = 0.67 g g(-1), Qp = 0.38 g L(-1). A new species of Cyberlindnera, strain CLQCA-24SC-025, was responsible for the second highest xylitol production (24 g L(-1), Y p/s (xyl) = 0.64 g g(-1), Qp = 0.33 g L(-1) h(-1)) on sugarcane hydrolysate. The new xylitol-producing species Cyberlindnera galapagoensis f.a., sp. nov., is proposed to accommodate the strain CLQCA-24SC-025(T) (=UFMG-CM-Y517(T); CBS 13997(T)). The MycoBank number is MB 812171.

  13. Xylitol prevents NEFA-induced insulin resistance in rats

    PubMed Central

    Kishore, P.; Kehlenbrink, S.; Hu, M.; Zhang, K.; Gutierrez-Juarez, R.; Koppaka, S.; El-Maghrabi, M. R.

    2013-01-01

    Aims/hypothesis Increased NEFA levels, characteristic of type 2 diabetes mellitus, contribute to skeletal muscle insulin resistance. While NEFA-induced insulin resistance was formerly attributed to decreased glycolysis, it is likely that glucose transport is the rate-limiting defect. Recently, the plant-derived sugar alcohol xylitol has been shown to have favourable metabolic effects in various animal models. Furthermore, its derivative xylulose 5-phosphate may prevent NEFA-induced suppression of glycolysis. We therefore examined whether and how xylitol might prevent NEFA-induced insulin resistance. Methods We examined the ability of xylitol to prevent NEFA-induced insulin resistance. Sustained ~1.5-fold elevations in NEFA levels were induced with Intralipid/heparin infusions during 5 h euglycaemic–hyperinsulinaemic clamp studies in 24 conscious non-diabetic Sprague-Dawley rats, with or without infusion of xylitol. Results Intralipid infusion reduced peripheral glucose uptake by ~25%, predominantly through suppression of glycogen synthesis. Co-infusion of xylitol prevented the NEFA-induced decreases in both glucose uptake and glycogen synthesis. Although glycolysis was increased by xylitol infusion alone, there was minimal NEFA-induced suppression of glycolysis, which was not affected by co-infusion of xylitol. Conclusions/interpretation We conclude that xylitol prevented NEFA-induced insulin resistance, with favourable effects on glycogen synthesis accompanying the improved insulin-mediated glucose uptake. This suggests that this pentose sweetener has beneficial insulin-sensitising effects. PMID:22460760

  14. Overexpression of D-Xylose Reductase (xyl1) Gene and Antisense Inhibition of D-Xylulokinase (xyiH) Gene Increase Xylitol Production in Trichoderma reesei

    PubMed Central

    Hong, Yuanyuan; Dashtban, Mehdi; Kepka, Greg; Chen, Sanfeng; Qin, Wensheng

    2014-01-01

    T. reesei is an efficient cellulase producer and biomass degrader. To improve xylitol production in Trichoderma reesei strains by genetic engineering, two approaches were used in this study. First, the presumptive D-xylulokinase gene in T. reesei (xyiH), which has high homology to known fungi D-xylulokinase genes, was silenced by transformation of T. reesei QM9414 strain with an antisense construct to create strain S6-2-2. The expression of the xyiH gene in the transformed strain S6-2-2 decreased at the mRNA level, and D-xylulokinase activity decreased after 48 h of incubation. This led to an increase in xylitol production from undetectable levels in wild-type T. reesei QM9414 to 8.6 mM in S6-2-2. The T. reesei Δxdh is a xylose dehydrogenase knockout strain with increased xylitol production compared to the wild-type T. reesei QM9414 (22.8 mM versus undetectable). The copy number of the xylose reductase gene (xyl1) in T. reesei Δxdh strain was increased by genetic engineering to create a new strain Δ9-5-1. The Δ9-5-1 strain showed a higher xyl1 expression and a higher yield of xylose reductase, and xylitol production was increased from 22.8 mM to 24.8 mM. Two novel strains S6-2-2 and Δ9-5-1 are capable of producing higher yields of xylitol. T. reesei has great potential in the industrial production of xylitol. PMID:25013760

  15. Systematic strain construction and process development: Xylitol production by Saccharomyces cerevisiae expressing Candida tenuis xylose reductase in wild-type or mutant form.

    PubMed

    Pratter, S M; Eixelsberger, T; Nidetzky, B

    2015-12-01

    A novel Saccharomyces cerevisiae whole-cell biocatalyst for xylitol production based on Candida tenuis xylose reductase (CtXR) is presented. Six recombinant strains expressing wild-type CtXR or an NADH-specific mutant were constructed and evaluated regarding effects of expression mode, promoter strength, biocatalyst concentration and medium composition. Intracellular XR activities ranged from 0.09 U mgProt(-1) to 1.05 U mgProt(-1) but did not correlate with the strains' xylitol productivities, indicating that other factors limited xylose conversion in the high-activity strains. The CtXR mutant decreased the biocatalyst's performance, suggesting use of the NADPH-preferring wild-type enzyme when (semi-)aerobic conditions are applied. In a bioreactor process, the best-performing strain converted 40 g L(-1) xylose with an initial productivity of 1.16 g L(-1)h(-1) and a xylitol yield of 100%. The obtained results underline the potential of CtXR wild-type for xylose reduction and point out parameters to improve "green" xylitol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Metabolomic effects of xylitol and fluoride on plaque biofilm in vivo.

    PubMed

    Takahashi, N; Washio, J

    2011-12-01

    Dental caries is initiated by demineralization of the tooth surface through acid production from sugar by plaque biofilm. Fluoride and xylitol have been used worldwide as caries-preventive reagents, based on in vitro-proven inhibitory mechanisms on bacterial acid production. We attempted to confirm the inhibitory mechanisms of fluoride and xylitol in vivo by performing metabolome analysis on the central carbon metabolism in supragingival plaque using the combination of capillary electrophoresis and a time-of-flight mass spectrometer. Fluoride (225 and 900 ppm F(-)) inhibited lactate production from 10% glucose by 34% and 46%, respectively, along with the increase in 3-phosphoglycerate and the decrease in phosphoenolpyruvate in the EMP pathway in supragingival plaque. These results confirmed that fluoride inhibited bacterial enolase in the EMP pathway and subsequently repressed acid production in vivo. In contrast, 10% xylitol had no effect on acid production and the metabolome profile in supragingival plaque, although xylitol 5-phosphate was produced. These results suggest that xylitol is not an inhibitor of plaque acid production but rather a non-fermentative sugar alcohol. Metabolome analyses of plaque biofilm can be applied for monitoring the efficacy of dietary components and medicines for plaque biofilm, leading to the development of effective plaque control.

  17. Metabolomic Effects of Xylitol and Fluoride on Plaque Biofilm in Vivo

    PubMed Central

    Takahashi, N.; Washio, J.

    2011-01-01

    Dental caries is initiated by demineralization of the tooth surface through acid production from sugar by plaque biofilm. Fluoride and xylitol have been used worldwide as caries-preventive reagents, based on in vitro-proven inhibitory mechanisms on bacterial acid production. We attempted to confirm the inhibitory mechanisms of fluoride and xylitol in vivo by performing metabolome analysis on the central carbon metabolism in supragingival plaque using the combination of capillary electrophoresis and a time-of-flight mass spectrometer. Fluoride (225 and 900 ppm F−) inhibited lactate production from 10% glucose by 34% and 46%, respectively, along with the increase in 3-phosphoglycerate and the decrease in phosphoenolpyruvate in the EMP pathway in supragingival plaque. These results confirmed that fluoride inhibited bacterial enolase in the EMP pathway and subsequently repressed acid production in vivo. In contrast, 10% xylitol had no effect on acid production and the metabolome profile in supragingival plaque, although xylitol 5-phosphate was produced. These results suggest that xylitol is not an inhibitor of plaque acid production but rather a non-fermentative sugar alcohol. Metabolome analyses of plaque biofilm can be applied for monitoring the efficacy of dietary components and medicines for plaque biofilm, leading to the development of effective plaque control. PMID:21940519

  18. Analysis of metabolisms and transports of xylitol using xylose- and xylitol-assimilating Saccharomyces cerevisiae.

    PubMed

    Tani, Tatsunori; Taguchi, Hisataka; Akamatsu, Takashi

    2017-05-01

    To clarify the relationship between NAD(P) + /NAD(P)H redox balances and the metabolisms of xylose or xylitol as carbon sources, we analyzed aerobic and anaerobic batch cultures of recombinant Saccharomyces cerevisiae in a complex medium containing 20 g/L xylose or 20 g/L xylitol at pH 5.0 and 30°C. The TDH3p-GAL2 or gal80Δ strain completely consumed the xylose within 24 h and aerobically consumed 92-100% of the xylitol within 96 h, but anaerobically consumed only 20% of the xylitol within 96 h. Cells of both strains grew well in aerobic culture. The addition of acetaldehyde (an effective oxidizer of NADH) increased the xylitol consumption by the anaerobically cultured strain. These results indicate that in anaerobic culture, NAD + generated in the NAD(P)H-dependent xylose reductase reaction was likely needed in the NAD + -dependent xylitol dehydrogenase reaction, whereas in aerobic culture, the NAD + generated by oxidation of NADH in the mitochondria is required in the xylitol dehydrogenase reaction. The role of Gal2 and Fps1 in importing xylitol into the cytosol and exporting it from the cells was analyzed by examining the xylitol consumption in aerobic culture and the export of xylitol metabolized from xylose in anaerobic culture, respectively. The xylitol consumptions of gal80Δ gal2Δ and gal80Δ gal2Δ fps1Δ strains were reduced by 81% and 88% respectively, relative to the gal80Δ strain. The maximum xylitol concentration accumulated by the gal80Δ, gal80Δ gal2Δ, and gal80Δ gal2Δ fps1Δ strains was 7.25 g/L, 5.30 g/L, and 4.27 g/L respectively, indicating that Gal2 and Fps1 transport xylitol both inward and outward. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Xylitol production from xylose mother liquor: a novel strategy that combines the use of recombinant Bacillus subtilis and Candida maltosa

    PubMed Central

    2011-01-01

    Background Xylose mother liquor has high concentrations of xylose (35%-40%) as well as other sugars such as L-arabinose (10%-15%), galactose (8%-10%), glucose (8%-10%), and other minor sugars. Due to the complexity of this mother liquor, further isolation of xylose by simple method is not possible. In China, more than 50,000 metric tons of xylose mother liquor was produced in 2009, and the management of sugars like xylose that present in the low-cost liquor is a problem. Results We designed a novel strategy in which Bacillus subtilis and Candida maltosa were combined and used to convert xylose in this mother liquor to xylitol, a product of higher value. First, the xylose mother liquor was detoxified with the yeast C. maltosa to remove furfural and 5-hydromethylfurfural (HMF), which are inhibitors of B. subtilis growth. The glucose present in the mother liquor was also depleted by this yeast, which was an added advantage because glucose causes carbon catabolite repression in B. subtilis. This detoxification treatment resulted in an inhibitor-free mother liquor, and the C. maltosa cells could be reused as biocatalysts at a later stage to reduce xylose to xylitol. In the second step, a recombinant B. subtilis strain with a disrupted xylose isomerase gene was constructed. The detoxified xylose mother liquor was used as the medium for recombinant B. subtilis cultivation, and this led to L-arabinose depletion and xylose enrichment of the medium. In the third step, the xylose was further reduced to xylitol by C. maltosa cells, and crystallized xylitol was obtained from this yeast transformation medium. C. maltosa transformation of the xylose-enriched medium resulted in xylitol with 4.25 g L-1·h-1 volumetric productivity and 0.85 g xylitol/g xylose specific productivity. Conclusion In this study, we developed a biological method for the purification of xylose from xylose mother liquor and subsequent preparation of xylitol by C. maltosa-mediated biohydrogenation of xylose

  20. Acute Hepatic Failure in a Dog after Xylitol Ingestion.

    PubMed

    Schmid, Renee D; Hovda, Lynn R

    2016-06-01

    Xylitol is a five-carbon sugar alcohol produced from natural resources frequently used as a sugar substitute for humans. We report the development and successful treatment of acute hepatic failure and coagulopathy in a dog after xylitol ingestion. A 9-year-old 4.95 kg (10.9 lb) neutered male Chihuahua was evaluated at a veterinary clinic for vomiting after ingesting 224 g (45 g/kg, 20.5 g/lb) of granulated xylitol. Hypoglycemia developed within 1-2 h, elevated liver values, suggesting the development of acute hepatic failure, within 12 h and coagulopathy less than 24 h after ingestion. Treatment included maropitant, intravenous dextrose, phytonadione, metronidazole, and fresh frozen plasma. N-acetylcysteine (NAC) and S-adensoyl-L-methionine (SAMe) provided hepatic detoxification and support. The dog survived and liver values returned to normal within 1 month post ingestion. No adverse effects to hepatic function have been identified 2 years after acute xylitol toxicity. This paper is one of the few reports of successful management of a dog with hypoglycemia, hepatic failure, and coagulopathy caused by xylitol toxicity. To date, this is the highest published xylitol dose survived by a dog, as well as the only reported case that documents laboratory changes throughout the course of toxicity and includes normal hepatic indices for 7 months following xylitol toxicity. The rapidly expanding use of xylitol in a variety of products intended for human consumption has led to a rise in xylitol toxicity cases reported in dogs, and clinicians should be aware that more dogs may potentially be exposed and develop similar manifestations.

  1. Production of xylitol and bio-detoxification of cocoa pod husk hemicellulose hydrolysate by Candida boidinii XM02G

    PubMed Central

    2018-01-01

    The use of cocoa pod husk hemicellulose hydrolysate (CPHHH) was evaluated for the production of xylitol by Candida boidinii XM02G yeast isolated from soil of cocoa-growing areas and decaying bark, as an alternative means of reusing this type of waste. Xylitol was obtained in concentrations of 11.34 g.L-1, corresponding to a yield (Yp/s) of 0.52 g.g-1 with a fermentation efficiency (ε) of 56.6%. The yeast was tolerant to inhibitor compounds present in CPHHH without detoxification in different concentration factors, and was able to tolerate phenolic compounds at approximately 6 g.L-1. The yeast was also able to metabolize more than 99% (p/v) of furfural and hydroxymethylfurfural present in the non-detoxified CPHHH without extension of the cell-growth lag phase, showing the potential of this microorganism for the production of xylitol. The fermentation of cocoa pod husk hydrolysates appears to provide an alternative use which may reduce the impact generated by incorrect disposal of this waste. PMID:29641547

  2. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol

    PubMed Central

    Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana

    2016-01-01

    Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds. PMID:27294124

  3. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol.

    PubMed

    Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana

    2016-01-01

    Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds.

  4. Bioconversion of lignocellulosic biomass to xylitol: An overview.

    PubMed

    Venkateswar Rao, Linga; Goli, Jyosthna Khanna; Gentela, Jahnavi; Koti, Sravanthi

    2016-08-01

    Lignocellulosic wastes include agricultural and forest residues which are most promising alternative energy sources and serve as potential low cost raw materials that can be exploited to produce xylitol. The strong physical and chemical construction of lignocelluloses is a major constraint for the recovery of xylose. The large scale production of xylitol is attained by nickel catalyzed chemical process that is based on xylose hydrogenation, that requires purified xylose as raw substrate and the process requires high temperature and pressure that remains to be cost intensive and energy consuming. Therefore, there is a necessity to develop an integrated process for biotechnological conversion of lignocelluloses to xylitol and make the process economical. The present review confers about the pretreatment strategies that facilitate cellulose and hemicellulose acquiescent for hydrolysis. There is also an emphasis on various detoxification and fermentation methodologies including genetic engineering strategies for the efficient conversion of xylose to xylitol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Xylitol production from waste xylose mother liquor containing miscellaneous sugars and inhibitors: one-pot biotransformation by Candida tropicalis and recombinant Bacillus subtilis.

    PubMed

    Wang, Hengwei; Li, Lijuan; Zhang, Lebin; An, Jin; Cheng, Hairong; Deng, Zixin

    2016-05-16

    The process of industrial xylitol production is a massive source of organic pollutants, such as waste xylose mother liquor (WXML), a viscous reddish-brown liquid. Currently, WXML is difficult to reuse due to its miscellaneous low-cost sugars, high content of inhibitors and complex composition. WXML, as an organic pollutant of hemicellulosic hydrolysates, accumulates and has become an issue of industrial concern in China. Previous studies have focused only on the catalysis of xylose in the hydrolysates into xylitol using one strain, without considering the removal of other miscellaneous sugars, thus creating an obstacle to subsequent large-scale purification. In the present study, we aimed to develop a simple one-pot biotransformation to produce high-purity xylitol from WXML to improve its economic value. In the present study, we developed a procedure to produce xylitol from WXML, which combines detoxification, biotransformation and removal of by-product sugars (purification) in one bioreactor using two complementary strains, Candida tropicalis X828 and Bacillus subtilis Bs12. At the first stage of micro-aerobic biotransformation, the yeast cells were allowed to grow and metabolized glucose and the inhibitors furfural and hydroxymethyl furfural (HMF), and converted xylose into xylitol. At the second stage of aerobic biotransformation, B. subtilis Bs12 was activated and depleted the by-product sugars. The one-pot process was successfully scaled up from shake flasks to 5, 150 L and 30 m(3) bioreactors. Approximately 95 g/L of pure xylitol could be obtained from the medium containing 400 g/L of WXML at a yield of 0.75 g/g xylose consumed, and the by-product sugars glucose, L-arabinose and galactose were depleted simultaneously. Our results demonstrate that the one-pot procedure is a viable option for the industrial application of WXML to produce value-added chemicals. The integration of complementary strains in the biotransformation of hemicellulosic hydrolysates is

  6. Ethanol and xylitol production by fermentation of acid hydrolysate from olive pruning with Candida tropicalis NBRC 0618.

    PubMed

    Mateo, Soledad; Puentes, Juan G; Moya, Alberto J; Sánchez, Sebastián

    2015-08-01

    Olive tree pruning biomass has been pretreated with pressurized steam, hydrolysed with hydrochloric acid, conditioned and afterwards fermented using the non-traditional yeast Candida tropicalis NBRC 0618. The main aim of this study was to analyse the influence of acid concentration on the hydrolysis process and its effect on the subsequent fermentation to produce ethanol and xylitol. From the results, it could be deduced that both total sugars and d-glucose recovery were enhanced by increasing the acid concentration tested; almost the whole hemicellulose fraction was hydrolysed when 3.77% was used. It has been observed a sequential production first of ethanol, from d-glucose, and then xylitol from d-xylose. The overall ethanol and xylitol yields ranged from 0.27 to 0.38kgkg(-1), and 0.12 to 0.23kgkg(-1) respectively, reaching the highest values in the fermentation of the hydrolysates obtained with hydrochloric acid 2.61% and 1.11%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains

    PubMed Central

    Bettiga, Maurizio; Hahn-Hägerdal, Bärbel; Gorwa-Grauslund, Marie F

    2008-01-01

    Background Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose. Results The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells)-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells)-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells)-1 h-1 compared with 0.01 g (g cells)-1 h-1 for the xylose reductase/xylitol

  8. Aggregatibacter actinomycetemcomitans-Induced AIM2 Inflammasome Activation Is Suppressed by Xylitol in Differentiated THP-1 Macrophages.

    PubMed

    Kim, Seyeon; Park, Mi Hee; Song, Yu Ri; Na, Hee Sam; Chung, Jin

    2016-06-01

    Aggressive periodontitis is characterized by rapid destruction of periodontal tissue caused by Aggregatibacter actinomycetemcomitans. Interleukin (IL)-1β is a proinflammatory cytokine, and its production is tightly regulated by inflammasome activation. Xylitol, an anticaries agent, is anti-inflammatory, but its effect on inflammasome activation has not been researched. This study investigates the effect of xylitol on inflammasome activation induced by A. actinomycetemcomitans. The differentiated THP-1 macrophages were stimulated by A. actinomycetemcomitans with or without xylitol and the expressions of IL-1β and inflammasome components were detected by real time PCR, ELISA, confocal microscopy and Immunoblot analysis. The effects of xylitol on the adhesion and invasion of A. actinomycetemcomitans to cells were measured by viable cell count. A. actinomycetemcomitans increased pro IL-1β synthesis and IL-1β secretion in a multiplicity of infection- and time-dependent manner. A. actinomycetemcomitans also stimulated caspase-1 activation. Among inflammasome components, apoptosis-associated speck-like protein containing a CARD (ASC) and absent in melanoma 2 (AIM2) proteins were upregulated by A. actinomycetemcomitans infection. When cells were pretreated with xylitol, proIL-1β and IL-1β production by A. actinomycetemcomitans infection was significantly decreased. Xylitol also inhibited ASC and AIM2 proteins and formation of ASC puncta. Furthermore, xylitol suppressed internalization of A. actinomycetemcomitans into differentiated THP-1 macrophages without affecting viability of A. actinomycetemcomitans within cells. A. actinomycetemcomitans induced IL-1β production and AIM2 inflammasome activation. Xylitol inhibited these effects, possibly by suppressing internalization of A. actinomycetemcomitans into cells. Thus, this study proposes a mechanism for IL-1β production via inflammasome activation and discusses a possible use for xylitol in periodontal inflammation

  9. 21 CFR 172.395 - Xylitol.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.395 Xylitol. Xylitol may be safely used in foods for special...

  10. 21 CFR 172.395 - Xylitol.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.395 Xylitol. Xylitol may be safely used in foods for special...

  11. Xylitol, an anticaries agent, exhibits potent inhibition of inflammatory responses in human THP-1-derived macrophages infected with Porphyromonas gingivalis.

    PubMed

    Park, Eunjoo; Na, Hee Sam; Kim, Sheon Min; Wallet, Shannon; Cha, Seunghee; Chung, Jin

    2014-06-01

    Xylitol is a well-known anticaries agent and has been used for the prevention and treatment of dental caries. In this study, the anti-inflammatory effects of xylitol are evaluated for possible use in the prevention and treatment of periodontal infections. Cytokine expression was stimulated in THP-1 (human monocyte cell line)-derived macrophages by live Porphyromonas gingivalis, and enzyme-linked immunosorbent assay and a commercial multiplex assay kit were used to determine the effects of xylitol on live P. gingivalis-induced production of cytokine. The effects of xylitol on phagocytosis and the production of nitric oxide were determined using phagocytosis assay, viable cell count, and Griess reagent. The effects of xylitol on P. gingivalis adhesion were determined by immunostaining, and costimulatory molecule expression was examined by flow cytometry. Live P. gingivalis infection increased the production of representative proinflammatory cytokines, such as tumor necrosis factor-α and interleukin (IL)-1β, in a multiplicity of infection- and time-dependent manner. Live P. gingivalis also enhanced the release of cytokines and chemokines, such as IL-12 p40, eotaxin, interferon γ-induced protein 10, monocyte chemotactic protein-1, and macrophage inflammatory protein-1. The pretreatment of xylitol significantly inhibited the P. gingivalis-induced cytokines production and nitric oxide production. In addition, xylitol inhibited the attachment of live P. gingivalis on THP-1-derived macrophages. Furthermore, xylitol exerted antiphagocytic activity against both Escherichia coli and P. gingivalis. These findings suggest that xylitol acts as an anti-inflammatory agent in THP-1-derived macrophages infected with live P. gingivalis, which supports its use in periodontitis.

  12. Evaluation of xylitol production using corncob hemicellulosic hydrolysate by combining tetrabutylammonium hydroxide extraction with dilute acid hydrolysis.

    PubMed

    Jia, Honghua; Shao, Tingting; Zhong, Chao; Li, Hengxiang; Jiang, Min; Zhou, Hua; Wei, Ping

    2016-10-20

    In this paper, we produced hemicellulosic hydrolysate from corncob by tetrabutylammonium hydroxide (TBAH) extraction and dilute acid hydrolysis combined, further evaluating the feasibility of the resultant corncob hemicellulosic hydrolysate used in xylitol production by Candida tropicalis. Optimized conditions for corncob hemicellulose extraction by TBAH was obtained via response surface methodology: time of 90min, temperature of 60°C, liquid/solid ratio of 12 (v/w), and TBAH concentration of 55%, resulting in a hemicellulose extraction of 80.07% under these conditions. The FT-IR spectrum of the extracted corncob hemicellulose is consistent with that of birchwood hemicellulose and exhibits specific absorbance of hemicelluloses at 1380, 1168, 1050, and 900cm(-1). In addition, we found that C. tropicalis can ferment the resulting corncob hemicellulosic hydrolysate with pH adjustment and activated charcoal treatment leading to a high xylitol yield and productivity of 0.77g/g and 2.45g/(Lh), respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Single-cell Protein and Xylitol Production by a Novel Yeast Strain Candida intermedia FL023 from Lignocellulosic Hydrolysates and Xylose.

    PubMed

    Wu, Jiaqiang; Hu, Jinlong; Zhao, Shumiao; He, Mingxiong; Hu, Guoquan; Ge, Xiangyang; Peng, Nan

    2018-05-01

    Yeasts are good candidates to utilize the hydrolysates of lignocellulose, the most abundant bioresource, for bioproducts. This study aimed to evaluate the efficiencies of single-cell protein (SCP) and xylitol production by a novel yeast strain, Candida intermedia FL023, from lignocellulosic hydrolysates and xylose. This strain efficiently assimilated hexose, pentose, and cellubiose for cell mass production with the crude protein content of 484.2 g kg -1 dry cell mass. SCP was produced by strain FL023 using corncob hydrolysate and urea as the carbon and nitrogen sources with the dry cell mass productivity 0.86 g L -1  h -1 and the yield of 0.40 g g -1 sugar. SCP was also produced using NaOH-pretreated Miscanthus sinensis straw and corn steep liquor as the carbon and nitrogen sources through simultaneous saccharification and fermentation with the dry cell productivity of 0.23 g L -1  h -1 and yield of 0.17 g g -1 straw. C. intermedia FL023 was tolerant to 0.5 g L -1 furfural, acetic acid, and syringaldehyde in xylitol fermentation and produced 45.7 g L -1 xylitol from xylose with the productivity of 0.38 g L -1  h -1 and the yield of 0.57 g g -1 xylose. This study provides feasible methods for feed and food additive production from the abundant lignocellulosic bioresources.

  14. By passing microbial resistance: xylitol controls microorganisms growth by means of its anti-adherence property.

    PubMed

    Ferreira, Aline S; Silva-Paes-Leme, Annelisa F; Raposo, Nádia R B; da Silva, Sílvio S

    2015-01-01

    Xylitol is an important polyalcohol suitable for use in odontological, medical and pharmaceutical products and as an additive in food. The first studies on the efficacy of xylitol in the control and treatment of infections started in the late 1970s and it is still applied for this purpose, with safety and very little contribution to resistance. Xylitol seems to act against microorganisms exerting an anti-adherence effect. Some research studies have demonstrated its action against Gram-positive and Gram-negative bacteria and yeasts. However, a clear explanation of how xylitol is effective has not been completely established yet. Some evidence shows that xylitol acts on gene expression, down-regulating the ones which are involved in the microorganisms' virulence, such as capsule formation. Another possible clarification is that xylitol blocks lectin-like receptors. The most important aspect is that, over time, xylitol bypasses microbial resistance and succeeds in controlling infection, either alone or combined with another compound. In this review, the effect of xylitol in inhibiting the growth of a different microorganism is described, focusing on studies in which such an anti-adherent property was highlighted. This is the first mini-review to describe xylitol as an anti-adherent compound and take into consideration how it exerts such action.

  15. Xylitol, an Anticaries Agent, Exhibits Potent Inhibition of Inflammatory Responses in Human THP-1-Derived Macrophages Infected With Porphyromonas gingivalis

    PubMed Central

    Park, Eunjoo; Na, Hee Sam; Kim, Sheon Min; Wallet, Shannon; Cha, Seunghee; Chung, Jin

    2016-01-01

    Background Xylitol is a well-known anticaries agent and has been used for the prevention and treatment of dental caries. In this study, the anti-inflammatory effects of xylitol are evaluated for possible use in the prevention and treatment of periodontal infections. Methods Cytokine expression was stimulated in THP-1 (human monocyte cell line)-derived macrophages by live Porphyromonas gingivalis, and enzyme-linked immunosorbent assay and a commercial multiplex assay kit were used to determine the effects of xylitol on live P. gingivalis–induced production of cytokine. The effects of xylitol on phagocytosis and the production of nitric oxide were determined using phagocytosis assay, viable cell count, and Griess reagent. The effects of xylitol on P. gingivalis adhesion were determined by immunostaining, and costimulatory molecule expression was examined by flow cytometry. Results Live P. gingivalis infection increased the production of representative proinflammatory cytokines, such as tumor necrosis factor-α and interleukin (IL)-1β, in a multiplicity of infection– and time-dependent manner. Live P. gingivalis also enhanced the release of cytokines and chemokines, such as IL-12 p40, eotaxin, interferon γ–induced protein 10, monocyte chemotactic protein-1, and macrophage inflammatory protein-1. The pretreatment of xylitol significantly inhibited the P. gingivalis– induced cytokines production and nitric oxide production. In addition, xylitol inhibited the attachment of live P. gingivalis on THP-1-derived macrophages. Furthermore, xylitol exerted anti-phagocytic activity against both Escherichia coli and P. gingivalis. Conclusion These findings suggest that xylitol acts as an antiinflammatory agent in THP-1-derived macrophages infected with live P. gingivalis, which supports its use in periodontitis. PMID:24592909

  16. Xylitol gum and maternal transmission of mutans streptococci.

    PubMed

    Nakai, Y; Shinga-Ishihara, C; Kaji, M; Moriya, K; Murakami-Yamanaka, K; Takimura, M

    2010-01-01

    An important caries prevention strategy for children includes measures to interfere with transmission of mutans streptococci (MS). This study confirmed the effectiveness of maternal early exposure to xylitol chewing gum on mother-child transmission of MS. After screening, 107 pregnant women with high salivary MS were randomized into two groups: xylitol gum (Xylitol; n = 56) and no gum (Control; n = 51) groups. Maternal chewing started at the sixth month of pregnancy and terminated 13 months later in the Xylitol group. Outcome measures were the presence of MS in saliva or plaque of the children until age 24 months. The Xylitol-group children were significantly less likely to show MS colonization than Control-group children aged 9-24 months. The Control-group children acquired MS 8.8 months earlier than those in the Xylitol group, suggesting that maternal xylitol gum chewing in Japan shows beneficial effects similar to those demonstrated in Nordic countries.

  17. Effects of xylitol chewing gum on salivary flow rate, pH, buffering capacity and presence of Streptococcus mutans in saliva.

    PubMed

    Ribelles Llop, M; Guinot Jimeno, F; Mayné Acién, R; Bellet Dalmau, L J

    2010-03-01

    The first studies on the use of chewing gum in dentistry were done in the 1970s. The Turku Sugar Studies, carried out between 1970 and 1973, showed the excellent anticaries properties of xylitol chewing gums. Since then, many dentists, particularly in Scandinavian countries, have studied the role of chewing xylitol-sweetened chewing gums as another preventive strategy in the control of dental caries. To compare variations in salivary flow rate, pH, buffering capacity, and levels of Streptococcus mutans in baseline conditions and after chewing paraffin pellets or xylitol chewing gum in children between the ages of 6 and 12 years who eat lunch in a school canteen. The study sample consisted of 90 children divided into 2 study groups, and a control group. The children ate lunch at the canteen of the Escultor Ortells state school in the town of Vila-real (Castellón, Spain). The baseline data recorded in the first phase of the study were compared with the data recorded in the second phase, after 15 minutes of chewing xylitol- sweetened chewing gums or paraffin pellets, depending on the study group. Salivary flow rate was measured by collecting the stimulated saliva in a graduated beaker. Levels of pH were measured using a Cyberscan pH 110 pH meter (Eutech Instruments). CRT buffer strips and the CRT bacteria test (Ivoclar-Vivadent) were used to measure buffering capacity and levels of S. mutans, respectively. The data obtained after sample collection were compared by means of a 1-way analysis of variance using the StatGraphics Plus statistical software package, version 5.0. Statistically significant differences were found (p<.05) when pH, buffering capacity and levels of S. mutans were compared between the 3 groups. Comparison of salivary flow rates revealed no statistically significant differences (p>.05), though salivary flow rates were higher in the groups where gum was chewed. The effect of chewing is essential to the stimulation of salivary flow and the resulting

  18. 21 CFR 172.395 - Xylitol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.395 Xylitol. Xylitol may be safely used in foods for special...

  19. Milk sweetened with xylitol: a proof-of-principle caries prevention randomized clinical trial

    PubMed Central

    Chi, Donald L.; Zegarra, Graciela; Vasquez Huerta, Elsa C.; Castillo, Jorge L.; Milgrom, Peter; Roberts, Marilyn C.; Cabrera Matta, Ailin R.; Mancl, Lloyd; Merino, Ana P.

    2016-01-01

    Purpose To evaluate the efficacy of xylitol-sweetened milk as a caries preventive strategy. Methods In this nine-month prospective proof-of-principle trial, 153 Peruvian school children Peru were randomized to a milk group: 8g xylitol/200mL milk once/day, 4g xylitol/100mL milk twice/day, 8g sorbitol/200mL milk once/day, 4g sorbitol/100mL milk twice/day, or 8g sucrose/200mL milk once/day. The primary outcome was plaque mutans streptococci (MS) at nine-months. A secondary outcome was tooth decay incidence. We hypothesized children in the xylitol groups would have a greater MS decline and lower tooth decay incidence. Results One-hundred-thirty-five children were included in the intent-to-treat analyses. Children receiving xylitol had a greater reduction in MS than sucrose (P=0.02) but were not different from sorbitol (P=0.07). Tooth decay incidence for xylitol once/day or twice/day was 5.3±3.4 and 4.3±4.0 surfaces, respectively, compared to sorbitol once/day, sorbitol twice/day, or sucrose (4.1±2.8,3.7±4.2, and 3.2±3.4 surfaces, respectively). There were no differences in tooth decay incidence between xylitol and sucrose (Rate Ratio [RR]=1.51;95% confidence interval [CI]=0.88,2.59;P=0.13) or between xylitol and sorbitol (RR=1.28;95% CI=0.90,1.83;P=0.16). Conclusion Xylitol-sweetened milk significantly reduced MS levels compared to sucrose-sweetened milk, but we were unable to detect differences in caries incidence. ISRCTN34705772. PMID:28327266

  20. Protective Effect of Dietary Xylitol on Influenza A Virus Infection

    PubMed Central

    Yin, Sun Young; Kim, Hyoung Jin; Kim, Hong-Jin

    2014-01-01

    Xylitol has been used as a substitute for sugar to prevent cavity-causing bacteria, and most studies have focused on its benefits in dental care. Meanwhile, the constituents of red ginseng (RG) are known to be effective in ameliorating the symptoms of influenza virus infection when they are administered orally for 14 days. In this study, we investigated the effect of dietary xylitol on influenza A virus infection (H1N1). We designed regimens containing various fractions of RG (RGs: whole extract, water soluble fraction, saponin and polysaccharide) and xylitol, and combination of xylitol with the RG fractions. Mice received the various combinations orally for 5 days prior to lethal influenza A virus infection. Almost all the mice died post challenge when xylitol or RGs were administered separately. Survival was markedly enhanced when xylitol was administered along with RGs, pointing to a synergistic effect. The effect of xylitol plus RG fractions increased with increasing dose of xylitol. Moreover, dietary xylitol along with the RG water soluble fraction significantly reduced lung virus titers after infection. Therefore, we suggest that dietary xylitol is effective in ameliorating influenza-induced symptoms when it is administered with RG fractions, and this protective effect of xylitol should be considered in relation to other diseases. PMID:24392148

  1. [The cariogenicity of xylitol in the animal experiment].

    PubMed

    Karle, E J

    1977-01-01

    After programmed feeding of rats in a six and eight-week long conventional experiment with increasing concentrations of xylitol, compared to sorbitol, fructose and saccharose, the non-cariogenic nature of xylitol was confirmed. The increasing amounts of xylitol after sorbitol in chocolate diets (up to 30 g/day/rat) led to serious dilatation of the cecum and to changes in the mucosa of cecum and colon when sorbitol was given. Examination of plaques of the germ-free rats monoassociated with S. mutans showed that xylitol had no bacteriostatic effect on this type of germ. Since xylitol is not broken down by these germs with acid being formed, careis did not continue to extend.

  2. Benzoate-induced stress enhances xylitol yield in aerobic fed-batch culture of Candida mogii TISTR 5892.

    PubMed

    Wannawilai, Siwaporn; Sirisansaneeyakul, Sarote; Chisti, Yusuf

    2015-01-20

    Production of the natural sweetener xylitol from xylose via the yeast Candida mogii TISTR 5892 was compared with and without the growth inhibitor sodium benzoate in the culture medium. Sodium benzoate proved to be an uncompetitive inhibitor in relatively poorly oxygenated shake flask aerobic cultures. In a better controlled aerobic environment of a bioreactor, the role of sodium benzoate could equally well be described as competitive, uncompetitive or noncompetitive inhibitor of growth. In intermittent fed-batch fermentations under highly aerobic conditions, the presence of sodium benzoate at 0.15gL(-1) clearly enhanced the xylitol titer relative to the control culture without the sodium benzoate. The final xylitol concentration and the average xylitol yield on xylose were nearly 50gL(-1) and 0.57gg(-1), respectively, in the presence of sodium benzoate. Both these values were substantially higher than reported for the same fermentation under microaerobic conditions. Therefore, a fed-batch aerobic fermentation in the presence of sodium benzoate is promising for xylitol production using C. mogii. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Possible mechanisms for the cariostatic effect of xylitol.

    PubMed

    Mäkinen, K K

    1976-01-01

    Xylitol appears to be the only known cariostatic natural carbohydrate which meets most of the desiderata for a sweetener in the human diet. Possible mechanisms for this cariostatic action can be derived from a consideration of the factors which may be operating at a molecular and microbiological level. These include: a) Molecular size and e.g. the short, open-chain structure and absence of reducing groups b) Absence or relative lack in most oral microorganisms of xylitol-binding factors in dental plaque c) Lack of bacterial genes coding for xylitol-utilizing enzymes or of inducible or de-repressible genes for this purpose d) Inhibition of enzymes involved in cariogenesis (competitive in case of some isomerases) e) Enzyme specificity requirements f) Higher osmotic pressure exerted by xylitol as compared to hexoses and disaccharides g) Ability of xylitol to produce a favourable electrolyte concentration in the saliva without lowering plaque pH h) Ability of xylitol to increase the secretion and activity of salivary lactoperoxidase and certain other (muco) proteins. Xylitol may enhance the adsorption of glycoproteins on the tooth surfaces and strengthen the acquired pellicle.

  4. Milk Sweetened with Xylitol: A Proof-of-Principle Caries Prevention Randomized Clinical Trial.

    PubMed

    Chi, Donald L; Zegarra, Graciela; Vasquez Huerta, Elsa C; Castillo, Jorge L; Milgrom, Peter; Roberts, Marilyn C; Cabrera-Matta, Ailin R; Merino, Ana P

    2016-09-15

    To evaluate the efficacy of xylitol-sweetened milk as a caries-preventive strategy. In this nine-month prospective proof-of-principle trial, Peruvian schoolchildren were randomized to one of five different milk groups: (1) eight g of xylitol per 200 mL milk once per day; (2) four g of xylitol per 100 mL milk twice per day; (3) eight g of sorbitol per 200 mL milk once per day; (4) four g of sorbitol per 100 mL milk twice per day; or (5) eight g of sucrose per 200 mL milk once per day. The primary outcome was plaque mutans streptococci (MS) at nine months. A secondary outcome was caries incidence. We hypothesized that children in the xylitol groups would have a greater MS decline and lower caries incidence. One hundred fifty-three children were randomized in the intent-to-treat analyses. Children receiving xylitol had a greater decline in MS than children receiving sucrose (P=0.02) but were not different from children receiving sorbitol (P=0.07). Dental caries incidence for xylitol once per day or twice per day was 5.3±3.4 and 4.3±4.0 surfaces, respectively, compared to sorbitol once per day, sorbitol twice per day, or sucrose (4.1±2.8, 3.7±4.2, and 3.2±3.4 surfaces, respectively). There were no differences in caries incidence between xylitol and sucrose (rate ratio [RR] = 1.51; 95 percent confidence interval [CI] = 0.88, 2.59; P=0.13) or between xylitol and sorbitol (RR = 1.28; 95 percent CI = 0.90, 1.83; P=0.16). Xylitol-sweetened milk significantly reduced mutans streptococci levels compared to sucrose-sweetened milk, but differences in caries incidence were not detected.

  5. The in vitro effect of xylitol on chronic rhinosinusitis biofilms.

    PubMed

    Jain, R; Lee, T; Hardcastle, T; Biswas, K; Radcliff, F; Douglas, R

    2016-12-01

    Biofilms have been implicated in chronic rhinosinusitis (CRS) and may explain the limited efficacy of antibiotics. There is a need to find more effective, non-antibiotic based therapies for CRS. This study examines the effects of xylitol on CRS biofilms and planktonic bacteria. Crystal violet assay and spectrophotometry were used to quantify the effects of xylitol (5% and 10% solutions) against Staphylococcus epidermidis, Pseudomonas aeruginosa, and Staphylococcus aureus. The disruption of established biofilms, inhibition of biofilm formation and effects on planktonic bacteria growth were investigated and compared to saline and no treatment. Xylitol 5% and 10% significantly reduced biofilm biomass (S. epidermidis), inhibited biofilm formation (S. aureus and P. aeruginosa) and reduced growth of planktonic bacteria (S. epidermidis, S. aureus, and P. aeruginosa). Xylitol 5% inhibited formation of S. epidermidis biofilms more effectively than xylitol 10%. Xylitol 10% reduced S. epidermidis planktonic bacteria more effectively than xylitol 5%. Saline, xylitol 5% and 10% disrupted established biofilms of S. aureus when compared with no treatment. No solution was effective against established P. aeruginosa biofilm. Xylitol has variable activity against biofilms and planktonic bacteria in vitro and may have therapeutic efficacy in the management of CRS.

  6. Synergistic inhibition of Streptococcal biofilm by ribose and xylitol.

    PubMed

    Lee, Heon-Jin; Kim, Se Chul; Kim, Jinkyung; Do, Aejin; Han, Se Yeong; Lee, Bhumgey David; Lee, Hyun Ho; Lee, Min Chan; Lee, So Hui; Oh, Taejun; Park, Sangbin; Hong, Su-Hyung

    2015-02-01

    Streptococcus mutans and Streptococcus sobrinus are the major causative agents of human dental caries. Therefore, the removal or inhibition of these streptococcal biofilms is essential for dental caries prevention. In the present study, we evaluated the effects of ribose treatment alone or in combination with xylitol on streptococcal biofilm formation for both species. Furthermore, we examined the expression of genes responsible for dextran-dependent aggregation (DDAG). In addition, we investigated whether ribose affects the biofilm formation of xylitol-insensitive streptococci, which results from long-term exposure to xylitol. The viability of streptococci biofilms formed in a 24-well polystyrene plate was quantified by fluorescent staining with the LIVE/DEAD bacterial viability and counting kit, which was followed by fluorescence activated cell sorting analysis. The effects of ribose and/or xylitol on the mRNA expression of DDAG-responsible genes, gbpC and dblB, was evaluated by RT-qPCR. Our data showed that ribose and other pentose molecules significantly inhibited streptococcal biofilm formation and the expression of DDAG-responsible genes. In addition, co-treatment with ribose and xylitol decreased streptococcal biofilm formation to a further extent than ribose or xylitol treatment alone in both streptococcal species. Furthermore, ribose attenuated the increase of xylitol-insensitive streptococcal biofilm, which results in the reduced difference of biofilm formation between S. mutans that are sensitive and insensitive to xylitol. These data suggest that pentose may be used as an additive for teeth-protective materials or in sweets. Furthermore, ribose co-treatment with xylitol might help to increase the anti-cariogenic efficacy of xylitol. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The effects of xylitol and sorbitol on lysozyme- and peroxidase-related enzymatic and candidacidal activities.

    PubMed

    Kim, Bum-Soo; Chang, Ji-Youn; Kim, Yoon-Young; Kho, Hong-Seop

    2015-07-01

    To investigate whether xylitol and sorbitol affect enzymatic and candidacidal activities of lysozyme, the peroxidase system, and the glucose oxidase-mediated peroxidase system. Xylitol and sorbitol were added to hen egg-white lysozyme, bovine lactoperoxidase, glucose oxidase-mediated peroxidase, and whole saliva in solution and on hydroxyapatite surfaces. The enzymatic activities of lysozyme, peroxidase, and glucose oxidase-mediated peroxidase were determined by the turbidimetric method, the NbsSCN assay, and production of oxidized o-dianisidine, respectively. Candidacidal activities were determined by comparing colony forming units using Candida albicans ATCC strains 10231, 11006, and 18804. While xylitol and sorbitol did not affect the enzymatic activity of hen egg-white lysozyme both in solution and on hydroxyapatite surfaces, they did inhibit the enzymatic activity of salivary lysozyme significantly in solution, but not on the surfaces. Xylitol and sorbitol enhanced the enzymatic activities of both bovine lactoperoxidase and salivary peroxidase significantly in a dose-dependent manner in solution, but not on the surfaces. Sorbitol, but not xylitol, inhibited the enzymatic activity of glucose oxidase-mediated peroxidase significantly. Both xylitol and sorbitol did not affect candidacidal activities of hen egg-white lysozyme, the bovine lactoperoxidase system, or the glucose oxidase-mediated bovine lactoperoxidase system. Xylitol and sorbitol inhibited salivary lysozyme activity, but enhanced both bovine lactoperoxidase and salivary peroxidase activities significantly in solution. Xylitol and sorbitol did not augment lysozyme- and peroxidase-related candidacidal activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Xylitol and Your Dog: Danger, Paws Off

    MedlinePlus

    ... Home For Consumers Consumer Updates Xylitol and Your Dog: Danger, Paws Off Share Tweet Linkedin Pin it ... vitamins mouthwash toothpaste Why is Xylitol Dangerous to Dogs, but Not People? In both people and dogs, ...

  9. Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose.

    PubMed

    Decker, Eva-Maria; Klein, Christian; Schwindt, Dimitri; von Ohle, Christiane

    2014-12-01

    The objective of the study was to analyse Streptococcus mutans biofilms grown under different dietary conditions by using multifaceted methodological approaches to gain deeper insight into the cariogenic impact of carbohydrates. S. mutans biofilms were generated during a period of 24 h in the following media: Schaedler broth as a control medium containing endogenous glucose, Schaedler broth with an additional 5% sucrose, and Schaedler broth supplemented with 1% xylitol. The confocal laser scanning microscopy (CLSM)-based analyses of the microbial vitality, respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride, CTC) and production of extracellular polysaccharides (EPS) were performed separately in the inner, middle and outer biofilm layers. In addition to the microbiological sample testing, the glucose/sucrose consumption of the biofilm bacteria was quantified, and the expression of glucosyltransferases and other biofilm-associated genes was investigated. Xylitol exposure did not inhibit the viability of S. mutans biofilms, as monitored by the following experimental parameters: culture growth, vitality, CTC activity and EPS production. However, xylitol exposure caused a difference in gene expression compared to the control. GtfC was upregulated only in the presence of xylitol. Under xylitol exposure, gtfB was upregulated by a factor of 6, while under sucrose exposure, it was upregulated by a factor of three. Compared with glucose and xylitol, sucrose increased cell vitality in all biofilm layers. In all nutrient media, the intrinsic glucose was almost completely consumed by the cells of the S. mutans biofilm within 24 h. After 24 h of biofilm formation, the multiparametric measurements showed that xylitol in the presence of glucose caused predominantly genotypic differences but did not induce metabolic differences compared to the control. Thus, the availability of dietary carbohydrates in either a pure or combined form seems to affect the

  10. Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose

    PubMed Central

    Decker, Eva-Maria; Klein, Christian; Schwindt, Dimitri; von Ohle, Christiane

    2014-01-01

    The objective of the study was to analyse Streptococcus mutans biofilms grown under different dietary conditions by using multifaceted methodological approaches to gain deeper insight into the cariogenic impact of carbohydrates. S. mutans biofilms were generated during a period of 24 h in the following media: Schaedler broth as a control medium containing endogenous glucose, Schaedler broth with an additional 5% sucrose, and Schaedler broth supplemented with 1% xylitol. The confocal laser scanning microscopy (CLSM)-based analyses of the microbial vitality, respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride, CTC) and production of extracellular polysaccharides (EPS) were performed separately in the inner, middle and outer biofilm layers. In addition to the microbiological sample testing, the glucose/sucrose consumption of the biofilm bacteria was quantified, and the expression of glucosyltransferases and other biofilm-associated genes was investigated. Xylitol exposure did not inhibit the viability of S. mutans biofilms, as monitored by the following experimental parameters: culture growth, vitality, CTC activity and EPS production. However, xylitol exposure caused a difference in gene expression compared to the control. GtfC was upregulated only in the presence of xylitol. Under xylitol exposure, gtfB was upregulated by a factor of 6, while under sucrose exposure, it was upregulated by a factor of three. Compared with glucose and xylitol, sucrose increased cell vitality in all biofilm layers. In all nutrient media, the intrinsic glucose was almost completely consumed by the cells of the S. mutans biofilm within 24 h. After 24 h of biofilm formation, the multiparametric measurements showed that xylitol in the presence of glucose caused predominantly genotypic differences but did not induce metabolic differences compared to the control. Thus, the availability of dietary carbohydrates in either a pure or combined form seems to affect the

  11. Monitoring the recrystallisation of amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering.

    PubMed

    Palomäki, Emmi; Ahvenainen, Patrik; Ehlers, Henrik; Svedström, Kirsi; Huotari, Simo; Yliruusi, Jouko

    2016-07-11

    In this paper we present a fast model system for monitoring the recrystallization of quench-cooled amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering. The use of these two methods enables comparison between surface and bulk crystallization. Non-ordered mesoporous silica micro-particles were added to the system in order to alter the rate of crystallization of the amorphous xylitol. Raman measurements showed that adding silica to the system increased the rate of surface crystallization, while X-ray measurements showed that the rate of bulk crystallization decreased. Using this model system it is possible to measure fast changes, which occur in minutes or within a few hours. Raman-spectroscopy and wide-angle X-ray scattering were found to be complementary techniques when assessing surface and bulk crystallization of amorphous xylitol. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Developing Public Health Interventions with Xylitol for the US and US-Associated Territories and States

    PubMed Central

    Milgrom, Peter; Rothen, Marilynn; Milgrom, Linda

    2006-01-01

    Summary This paper examines how the limited exposure of the professional dental community in the United States to the potential caries reduction benefits of xylitol, and the absence of vehicles for xylitol that could be recommended in private practice settings or applied in public health programs, has retarded xylitol’s adoption. Few papers appeared in the English language literature prior to the last two decades but now a greater number are appearing. Current work at the University of Washington has led to a series of randomized controlled trials more clearly establishing dosing and frequency guidelines and increased interest in use of xylitol products for caries prevention. Steps to develop effective alternative vehicles for the delivery of xylitol particularly useful for young children and institutional settings in America, and their bioequivalency, are explored. PMID:17369871

  13. Research Findings on Xylitol and the Development of Xylitol Vehicles to Address Public Health Needs

    PubMed Central

    Milgrom, P.; Ly, K.A.; Rothen, M.

    2013-01-01

    Xylitol has been demonstrated to be a safe and effective tooth decay preventive agent when used habitually. Nevertheless, its application has been limited by absence of formulations that demand minimal adherence and are acceptable and safe in settings where chewing gum may not be allowed. A substantial literature suggests that a minimum of five to six grams and three exposures per day from chewing gum or candies are needed for a clinical effect. At the same time there is conflicting evidence in the literature from toothpaste studies suggesting that lower-doses and less frequent exposures might be effective. The growing use of xylitol as a sweetener in low amounts in foods and other consumables is, simultaneously, increasing the overall exposure of the public to xylitol and may have additive benefits. PMID:19710081

  14. Streptococcus mutans: Fructose Transport, Xylitol Resistance, and Virulence

    PubMed Central

    Tanzer, J.M.; Thompson, A.; Wen, Z.T.; Burne, R.A.

    2008-01-01

    Streptococcus mutans, the primary etiological agent of human dental caries, possesses at least two fructose phosphotransferase systems (PTSs), encoded by fruI and fruCD. fruI is also responsible for xylitol transport. We hypothesized that fructose and xylitol transport systems do not affect virulence. Thus, colonization and cariogenicity of fruI− and fruCD− single and double mutants, their WT (UA159), and xylitol resistance (Xr) of S. mutans were studied in rats fed a high-sucrose diet. A sucrose phosphorylase (gtfA−) mutant and a reference strain (NCTC-10449S) were additional controls. Recoveries of fruI mutant from the teeth were decreased, unlike those for the other strains. The fruCD mutation was associated with a slight loss of cariogenicity on enamel, whereas mutation of fruI was associated with a loss of cariogenicity in dentin. These results also suggest why xylitol inhibition of caries is paradoxically associated with spontaneous emergence of so-called Xr S. mutans in habitual human xylitol users. PMID:16567561

  15. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.

    PubMed

    Iverson, Andrew; Garza, Erin; Manow, Ryan; Wang, Jinhua; Gao, Yuanyuan; Grayburn, Scott; Zhou, Shengde

    2016-04-16

    Anaerobic rather than aerobic fermentation is preferred for conversion of biomass derived sugars to high value redox-neutral and reduced commodities. This will likely result in a higher yield of substrate to product conversion and decrease production cost since substrate often accounts for a significant portion of the overall cost. To this goal, metabolic pathway engineering has been used to optimize substrate carbon flow to target products. This approach works well for the production of redox neutral products such as lactic acid from redox neutral sugars using the reducing power NADH (nicotinamide adenine dinucleotide, reduced) generated from glycolysis (2 NADH per glucose equivalent). Nevertheless, greater than two NADH per glucose catabolized is needed for the production of reduced products (such as xylitol) from redox neutral sugars by anaerobic fermentation. The Escherichia coli strain AI05 (ΔfrdBC ΔldhA ΔackA Δ(focA-pflB) ΔadhE ΔptsG ΔpdhR::pflBp 6-(aceEF-lpd)), previously engineered for reduction of xylose to xylitol using reducing power (NADH equivalent) of glucose catabolism, was further engineered by 1) deleting xylAB operon (encoding for xylose isomerase and xylulokinase) to prevent xylose from entering the pentose phosphate pathway; 2) anaerobically expressing the sdhCDAB-sucABCD operon (encoding for succinate dehydrogenase, α-ketoglutarate dehydrogenase and succinyl-CoA synthetase) to enable an anaerobically functional tricarboxcylic acid cycle with a theoretical 10 NAD(P)H equivalent per glucose catabolized. These reducing equivalents can be oxidized by synthetic respiration via xylose reduction, producing xylitol. The resulting strain, AI21 (pAI02), achieved a 96 % xylose to xylitol conversion, with a yield of 6 xylitol per glucose catabolized (molar yield of xylitol per glucose consumed (YRPG) = 6). This represents a 33 % improvement in xylose to xylitol conversion, and a 63 % increase in xylitol yield per glucose catabolized over

  16. Cell Adhesion Modification of Streptococcus viridians in the Presence of Xylitol

    NASA Astrophysics Data System (ADS)

    Esmacher, Jason; Vidakovich, Blair; Giangrande, Michael; Hoffmann, Peter

    2012-10-01

    There is scientific documentation that those who chew gum sweetened by the sugar alcohol xylitol report a dramatically lower incident of both dental caries and otitis media compared to those who chew conventional gum sweetened by sucrose. An explanation contends that xylitol interferes with the ability of Streptococcus viridian (SV) to form biofilms which is a necessary precursor to the bacteria's ability to damage human tissues. We have used atomic force microscopy to study the cell wall/fimbria properties at the nanonewton level in both the presence and absence of xylitol. The first set of measurements used varying concentrations of xylitol incorporated within the incubation medium. The second used non-xylitol grown bacteria, the xylitol was added externally at various concentrations. Our study suggests that growing SV with xylitol reduces their ability to adhere together. Additionally, externally added xylitol showed grouping of cell adhesion to a relatively narrow nanonewton spread that is concentration dependent. Measurement of the adhesion properties of the bacterial cell wall have found that there is a dramatic increase in the cell wall's firmness which simultaneously accompanied a decrease in its ability to support adhesion, even at very low concentrations of xylitol.

  17. Effects of short-term xylitol gum chewing on the oral microbiome.

    PubMed

    Söderling, Eva; ElSalhy, Mohamed; Honkala, Eino; Fontana, Margherita; Flannagan, Susan; Eckert, George; Kokaras, Alexis; Paster, Bruce; Tolvanen, Mimmi; Honkala, Sisko

    2015-03-01

    The aim of this study was to determine the effects of short-term xylitol gum chewing on the salivary microbiota of children. The study was a randomised, controlled, double-blind trial. Healthy children used xylitol chewing gum (xylitol group, n = 35) or sorbitol chewing gum (control group, n = 38) for 5 weeks. The daily dose of xylitol/sorbitol was approximately 6 g/day. At baseline and at the end of the test period, unstimulated and paraffin-stimulated saliva were collected. The microbial composition of the saliva was assessed using human oral microbe identification microarray (HOMIM). Mutans streptococci (MS) were plate cultured. As judged by HOMIM results, no xylitol-induced changes in the salivary microbiota took place in the xylitol group. In the control group, Veillonella atypica showed a significant decrease (p = 0.0001). The xylitol gum chewing decreased viable counts of MS in both stimulated (p = 0.006) and unstimulated (p = 0.002) saliva, but similar effects were also seen in the control group. The use of xylitol gum decreased MS, in general, but did not change the salivary microbial composition. Short-term consumption of xylitol had no impact on the composition of the salivary microbiota, but resulted in a decrease in the levels of MS.

  18. Xylitol Syrup for the Prevention of Acute Otitis Media

    PubMed Central

    Corwin, Michael J.; Vezina, Richard M.; Pelton, Steven I.; Feldman, Henry A.; Coyne-Beasley, Tamera; Mitchell, Allen A.

    2014-01-01

    BACKGROUND: Acute otitis media (AOM) is a common childhood illness and the leading indication for antibiotic prescriptions for US children. Xylitol, a naturally occurring sugar alcohol, can reduce AOM when given 5 times per day as a gum or syrup, but a more convenient dosing regimen is needed for widespread adoption. METHODS: We designed a pragmatic practice-based randomized controlled trial to determine if viscous xylitol solution at a dose of 5 g 3 times per day could reduce the occurrence of clinically diagnosed AOM among otitis-prone children 6 months through 5 years of age. RESULTS: A total of 326 subjects were enrolled, with 160 allocated to xylitol and 166 to placebo. In the primary analysis of time to first clinically diagnosed AOM episode, the hazard ratio for xylitol versus placebo recipients was 0.88 (95% confidence interval [CI] 0.61 to 1.3). In secondary analyses, the incidence of AOM was 0.53 episodes per 90 days in the xylitol group versus 0.59 in the placebo group (difference 0.06; 95% CI –0.25 to 0.13); total antibiotic use was 6.8 days per 90 days in the xylitol group versus 6.4 in the placebo group (difference 0.4; 95% CI –1.8 to 2.7). The lack of effectiveness was not explained by nonadherence to treatment, as the hazard ratio for those taking nearly all assigned xylitol compared with those taking none was 0.93 (95% CI 0.56 to 1.57). CONCLUSIONS: Viscous xylitol solution in a dose of 5 g 3 times per day was ineffective in reducing clinically diagnosed AOM among otitis-prone children. PMID:24394686

  19. Bronchoscopic assessment of airway retention time of aerosolized xylitol

    PubMed Central

    Durairaj, Lakshmi; Neelakantan, Srividya; Launspach, Janice; Watt, Janet L; Allaman, Margaret M; Kearney, William R; Veng-Pedersen, Peter; Zabner, Joseph

    2006-01-01

    Background Human airway surface liquid (ASL) has abundant antimicrobial peptides whose potency increases as the salt concentration decreases. Xylitol is a 5-carbon sugar that has the ability to lower ASL salt concentration, potentially enhancing innate immunity. Xylitol was detected for 8 hours in the ASL after application in airway epithelium in vitro. We tested the airway retention time of aerosolized iso-osmotic xylitol in healthy volunteers. Methods After a screening spirometry, volunteers received 10 ml of nebulized 5% xylitol. Bronchoscopy was done at 20 minutes (n = 6), 90 minutes (n = 6), and 3 hours (n = 5) after nebulization and ASL was collected using microsampling probes, followed by bronchoalveolar lavage (BAL). Xylitol concentration was measured by nuclear magnetic resonance spectroscopy and corrected for dilution using urea concentration. Results All subjects tolerated nebulization and bronchoscopy well. Mean ASL volume recovered from the probes was 49 ± 23 μl. The mean ASL xylitol concentration at 20, 90, and 180 minutes was 1.6 ± 1.9 μg/μl, 0.6 ± 0.6 μg/μl, and 0.1 ± 0.1 μg/μl, respectively. Corresponding BAL concentration corrected for dilution was consistently lower at all time points. The terminal half-life of aerosolized xylitol obtained by the probes was 45 minutes with a mean residence time of 65 minutes in ASL. Corresponding BAL values were 36 and 50 minutes, respectively. Conclusion After a single dose nebulization, xylitol was detected in ASL for 3 hours, which was shorter than our in vitro measurement. The microsampling probe performed superior to BAL when sampling bronchial ASL. PMID:16483382

  20. Improvement on D-xylose to Xylitol Biotransformation by Candida guilliermondii Using Cells Permeabilized with Triton X-100 and Selected Process Conditions.

    PubMed

    Cortez, Daniela Vieira; Mussatto, Solange I; Roberto, Inês Conceição

    2016-11-01

    Cells of Candida guilliermondii permeabilized with Triton X-100 were able to efficiently produce xylitol from a medium composed only by D-xylose and MgCl 2 ·6H 2 O in potassium phosphate buffer, at 35 °C and pH 6.5. Under these conditions, the results were similar to those obtained when cofactor and co-substrate or nutrients were added to the medium (about 95 % D-xylose was assimilated producing 42 g/L of xylitol, corresponding to 0.80 g/g yield and 2.65 g/L h volumetric productivity). Furthermore, the permeabilized cells kept the D-xylose assimilation in about 90 % and the xylitol production in approx. 40 g/L during three bioconversion cycles of 16 h each. These values are highly relevant when compared to others reported in the literature using enzyme technology and fermentative process, thereby demonstrating the effectiveness of the proposed method. The present study reveals that the use of permeabilized cells is an interesting alternative to obtain high xylitol productivity using low cost medium formulation. This approach may allow the future development of xylitol production from xylose present in lignocellulosic biomass, with additional potential for implementation in biorefinery strategies.

  1. Antisolvent precipitation of novel xylitol-additive crystals to engineer tablets with improved pharmaceutical performance.

    PubMed

    Kaialy, Waseem; Maniruzzaman, Mohammad; Shojaee, Saeed; Nokhodchi, Ali

    2014-12-30

    The purpose of this work was to develop stable xylitol particles with modified physical properties, improved compactibility and enhanced pharmaceutical performance without altering polymorphic form of xylitol. Xylitol was crystallized using antisolvent crystallization technique in the presence of various hydrophilic polymer additives, i.e., polyethylene glycol (PEG), polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) at a range of concentrations. The crystallization process did not influence the stable polymorphic form or true density of xylitol. However, botryoidal-shaped crystallized xylitols demonstrated different particle morphologies and lower powder bulk and tap densities in comparison to subangular-shaped commercial xylitol. Xylitol crystallized without additive and xylitol crystallized in the presence of PVP or PVA demonstrated significant improvement in hardness of directly compressed tablets; however, such improvement was observed to lesser extent for xylitol crystallized in the presence of PEG. Crystallized xylitols produced enhanced dissolution profiles for indomethacin in comparison to original xylitol. The influence of additive concentration on tablet hardness was dependent on the type of additive, whereas an increased concentration of all additives provided an improvement in the dissolution behavior of indomethacin. Antisolvent crystallization using judiciously selected type and concentration of additive can be a potential approach to prepare xylitol powders with promising physicomechanical and pharmaceutical properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Isolation and characterization of xylitol-assimilating mutants of recombinant Saccharomyces cerevisiae.

    PubMed

    Tani, Tatsunori; Taguchi, Hisataka; Fujimori, Kazuhiro E; Sahara, Takehiko; Ohgiya, Satoru; Kamagata, Yoichi; Akamatsu, Takashi

    2016-10-01

    To clarify the mechanisms of xylitol utilization, three xylitol-assimilating mutants were isolated from recombinant Saccharomyces cerevisiae strains showing highly efficient xylose-utilization. The nucleotide sequences of the mutant genomes were analyzed and compared with those of the wild-type strains and the mutation sites were identified. gal80 mutations were common to all the mutants, and recessive to the wild-type allele. Hence we constructed a gal80Δ mutant and confirmed that the gal80Δ mutant showed a xylitol-assimilation phenotype. When the constructed gal80Δ mutant was crossed with the three isolated mutants, all diploid hybrids showed xylitol assimilation, indicating that the mutations were all located in the GAL80. We analyzed the role of the galactose permease Gal2, controlled by the regulatory protein Gal80, in assimilating xylitol. A gal2Δ gal80Δ double mutant did not show xylitol assimilation, whereas expression of GAL2 under the control of the TDH3 promoter in the GAL80 strain did result in assimilation. These data indicate that Gal2 was needed for xylitol assimilation in the wild-type strain. When the gal80 mutant with an initial cell concentration of A660 = 20 was used for batch fermentation in a complex medium containing 20 g/L xylose or 20 g/L xylitol at pH 5.0 and 30°C under oxygen limitation, the gal80 mutant consumed 100% of the xylose within 12 h, but <30% of the xylitol within 100 h, indicating that xylose reductase is required for xylitol consumption in oxygen-limited conditions. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Effects of xylitol as a sugar substitute on diabetes-related parameters in nondiabetic rats.

    PubMed

    Islam, Md Shahidul

    2011-05-01

    Abstract The present study was examined the effects of xylitol feeding on diabetes-associated parameters in nondiabetic rats. Seven-week-old male Sprague-Dawley rats were randomly divided into three groups: control (five rats), sucrose (six rats), and xylitol (six rats). Animal had free access to a commercial rat pellet diet, and ad libitum water, 10% sucrose solution, and 10% xylitol solution were supplied to the control, sucrose, and xylitol groups, respectively. After 3 weeks of feeding of experimental diets, food intakes were significantly (P<.05) lower in the sucrose and xylitol groups compared with the control group. Drink intake was significantly higher in the sucrose group but significantly lower in the xylitol group compared with the control group. Body weight gain was significantly lower in the xylitol group compared with the sucrose group. Weekly nonfasting blood glucose was significantly increased, but fasting blood glucose was significantly decreased, in the sucrose group compared with the control and xylitol groups. Significantly better glucose tolerance was observed in the xylitol group compared with the control and sucrose groups. Serum insulin and fructosamine concentrations were not significantly influenced by the feeding of xylitol or sucrose. Relative liver weight and liver glycogen were significantly increased in the xylitol group compared with the sucrose group, whereas no difference was observed between the xylitol and control groups. Serum total cholesterol and low-density lipoprotein-cholesterol were significantly decreased in the sucrose and xylitol groups, and serum triglyceride of the xylitol group, but not the sucrose group, was significantly increased compared with the control group. Data of this study suggest that xylitol can be a better sweetener than sucrose to maintain diabetes-related parameters at a physiologically safer and stable condition.

  4. Calorimetric and relaxation properties of xylitol-water mixtures

    NASA Astrophysics Data System (ADS)

    Elamin, Khalid; Sjöström, Johan; Jansson, Helén; Swenson, Jan

    2012-03-01

    considerably stronger water (w) relaxation at about the same frequency. However, the similarities in time scale and activation energy between the w-relaxation and the β-relaxation of xylitol at water contents below 13 wt. % suggest that the w-relaxation is governed, in some way, by the β-relaxation of xylitol, since clusters of water molecules are rare at these water concentrations. At higher water concentrations the intensity and relaxation rate of the w-relaxation increase rapidly with increasing water content (up to the concentration where ice starts to form), most likely due to a rapid increase of small water clusters where an increasing number of water molecules interacting with other water molecules.

  5. Effects of Consuming Xylitol on Gut Microbiota and Lipid Metabolism in Mice.

    PubMed

    Uebanso, Takashi; Kano, Saki; Yoshimoto, Ayumi; Naito, Chisato; Shimohata, Takaaki; Mawatari, Kazuaki; Takahashi, Akira

    2017-07-14

    The sugar alcohol xylitol inhibits the growth of some bacterial species including Streptococcus mutans . It is used as a food additive to prevent caries. We previously showed that 1.5-4.0 g/kg body weight/day xylitol as part of a high-fat diet (HFD) improved lipid metabolism in rats. However, the effects of lower daily doses of dietary xylitol on gut microbiota and lipid metabolism are unclear. We examined the effect of 40 and 200 mg/kg body weight/day xylitol intake on gut microbiota and lipid metabolism in mice. Bacterial compositions were characterized by denaturing gradient gel electrophoresis and targeted real-time PCR. Luminal metabolites were determined by capillary electrophoresis electrospray ionization time-of-flight mass spectrometry. Plasma lipid parameters and glucose tolerance were examined. Dietary supplementation with low- or medium-dose xylitol (40 or 194 mg/kg body weight/day, respectively) significantly altered the fecal microbiota composition in mice. Relative to mice not fed xylitol, the addition of medium-dose xylitol to a regular and HFD in experimental mice reduced the abundance of fecal Bacteroidetes phylum and the genus Barnesiella , whereas the abundance of Firmicutes phylum and the genus Prevotella was increased in mice fed an HFD with medium-dose dietary xylitol. Body composition, hepatic and serum lipid parameters, oral glucose tolerance, and luminal metabolites were unaffected by xylitol consumption. In mice, 40 and 194 mg/kg body weight/day xylitol in the diet induced gradual changes in gut microbiota but not in lipid metabolism.

  6. Effects of Consuming Xylitol on Gut Microbiota and Lipid Metabolism in Mice

    PubMed Central

    Uebanso, Takashi; Kano, Saki; Yoshimoto, Ayumi; Naito, Chisato; Shimohata, Takaaki; Takahashi, Akira

    2017-01-01

    The sugar alcohol xylitol inhibits the growth of some bacterial species including Streptococcus mutans. It is used as a food additive to prevent caries. We previously showed that 1.5–4.0 g/kg body weight/day xylitol as part of a high-fat diet (HFD) improved lipid metabolism in rats. However, the effects of lower daily doses of dietary xylitol on gut microbiota and lipid metabolism are unclear. We examined the effect of 40 and 200 mg/kg body weight/day xylitol intake on gut microbiota and lipid metabolism in mice. Bacterial compositions were characterized by denaturing gradient gel electrophoresis and targeted real-time PCR. Luminal metabolites were determined by capillary electrophoresis electrospray ionization time-of-flight mass spectrometry. Plasma lipid parameters and glucose tolerance were examined. Dietary supplementation with low- or medium-dose xylitol (40 or 194 mg/kg body weight/day, respectively) significantly altered the fecal microbiota composition in mice. Relative to mice not fed xylitol, the addition of medium-dose xylitol to a regular and HFD in experimental mice reduced the abundance of fecal Bacteroidetes phylum and the genus Barnesiella, whereas the abundance of Firmicutes phylum and the genus Prevotella was increased in mice fed an HFD with medium-dose dietary xylitol. Body composition, hepatic and serum lipid parameters, oral glucose tolerance, and luminal metabolites were unaffected by xylitol consumption. In mice, 40 and 194 mg/kg body weight/day xylitol in the diet induced gradual changes in gut microbiota but not in lipid metabolism. PMID:28708089

  7. Effects of water on the primary and secondary relaxation of xylitol and sorbitol: Implication on the origin of the Johari-Goldstein relaxation

    NASA Astrophysics Data System (ADS)

    Psurek, T.; Maslanka, S.; Paluch, M.; Nozaki, R.; Ngai, K. L.

    2004-07-01

    Dielectric spectroscopy was employed to study the effects of water on the primary α -relaxation and the secondary β -relaxation of xylitol. The measurements were made on anhydrous xylitol and mixtures of xylitol with water with three different water concentrations over a temperature range from 173K to 293K . The α -relaxation speeds up with increasing concentration of water in xylitol, whereas the rate of the β -relaxation is essentially unchanged. Some systematic differences in the behavior of α -relaxation for anhydrous xylitol and the mixtures were observed. Our findings confirm all the observations of Nozaki [R. Nozaki, H. Zenitani, A. Minoguchi, and K. Kitai, J. Non-Cryst. Solids 307, 349 (2002)] in sorbitol/water mixtures. Effects of water on both the α - and β -relaxation dynamics in xylitol and sorbitol are explained by using the coupling model.

  8. Microbial Production of Xylitol from L-arabinose by Metabolically Engineered Escherichia coli

    USDA-ARS?s Scientific Manuscript database

    An Escherichia coli strain, ZUC99(pATX210), which can produce xylitol from L-arabinose at a high yield has been created by introducing a new bioconversion pathway into cells. This pathway consists of three enzymes: L-arabinose isomerase, which converts L-arabinose to L-ribulose; D-psicose 3-epimer...

  9. Xylitol improves pancreatic islets morphology to ameliorate type 2 diabetes in rats: a dose response study.

    PubMed

    Rahman, Md Atiar; Islam, Md Shahdiul

    2014-07-01

    Xylitol has been reported as a potential antidiabetic sweetener in a number of recent studies; however, the most effective dietary dose and organ-specific effects are still unclear. Six-week-old male Sprague-Dawley rats were randomly divided into 5 groups: normal control (NC), diabetic control (DBC), diabetic xylitol 2.5% (DXL2.5), diabetic xylitol 5.0% (DXL5), and diabetic xylitol 10.0% (DXL10). Diabetes was induced only in the animals in DBC and DXL groups and considered diabetic when their nonfasting blood glucose level was >300 mg/dL. The DXL groups were fed with 2.5%, 5.0%, and 10% xylitol solution, whereas the NC and DBC groups were supplied with normal drinking water. After 4-wk intervention, body weight, food and fluid intake, blood glucose, serum fructosamine, liver glycogen, serum alanine transaminase, aspartate transaminase, lactate dehydrogenase, creatine kinase, uric acid, creatinine, and most serum lipids were significantly decreased, and serum insulin concentration, glucose tolerance ability, and pancreatic islets morphology were significantly improved in the DXL10 group compared to the DBC group. The data of this study suggest that 10% xylitol has the better antidiabetic effects compared to 2.5% and 5.0% and it can be used as an excellent antidiabetic sweetener and food supplement in antidiabetic foods. Xylitol is widely used as a potential anticariogenic and sweetening agent in a number of oral care and food products when many of its health benefits are still unknown. Due to its similar sweetening power but lower calorific value (2.5 compared with 4 kcal) and lower glycemic index (13 compared with 65) compared to sucrose, recently it has been widely used as a sugar substitute particularly by overweight, obese, and diabetic patients in order to reduce their calorie intake from sucrose. However, the potential antidiabetic effects of xylitol have been discovered recently. The results of this study confirmed the effective dietary dose of xylitol for

  10. Comparative evaluation of the effects of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and xylitol-containing chewing gum on salivary flow rate, pH and buffering capacity in children: An in vivo study.

    PubMed

    Hegde, Rahul J; Thakkar, Janhavi B

    2017-01-01

    This study aimed to compare and evaluate the changes in the salivary flow rate, pH, and buffering capacity before and after chewing casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and xylitol-containing chewing gums in children. Sixty children aged between 8 and 12 years were selected for the study. They were randomly divided into Group 1 (CPP-ACP chewing gum) and Group 2 (xylitol-containing chewing gum) comprising thirty children each. Unstimulated and stimulated saliva samples at 15 and 30 min interval were collected from all children. All the saliva samples were estimated for salivary flow rate, pH, and buffering capacity. Significant increase in salivary flow rate, pH, and buffering capacity from baseline to immediately after spitting the chewing gum was found in both the study groups. No significant difference was found between the two study groups with respect to salivary flow rate and pH. Intergroup comparison indicated a significant increase in salivary buffer capacity in Group 1 when compared to Group 2. Chewing gums containing CPP-ACP and xylitol can significantly increase the physiochemical properties of saliva. These physiochemical properties of saliva have a definite relation with caries activity in children.

  11. Effects of xylitol on carbohydrate digesting enzymes activity, intestinal glucose absorption and muscle glucose uptake: a multi-mode study.

    PubMed

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2015-03-01

    The present study investigated the possible mechanism(s) behind the effects of xylitol on carbohydrate digesting enzymes activity, muscle glucose uptake and intestinal glucose absorption using in vitro, ex vivo and in vivo experimental models. The effects of increasing concentrations of xylitol (2.5%-40% or 164.31 mM-2628.99 mM) on alpha amylase and alpha glucosidase activity in vitro and intestinal glucose absorption and muscle glucose uptake were investigated under ex vivo conditions. Additionally, the effects of an oral bolus dose of xylitol (1 g per kg BW) on gastric emptying and intestinal glucose absorption and digesta transit in the different segments of the intestinal tract were investigated in normal and type 2 diabetic rats at 1 hour after dose administration, when phenol red was used as a recovery marker. Xylitol exhibited concentration-dependent inhibition of alpha amylase (IC₅₀ = 1364.04 mM) and alpha glucosidase (IC₅₀ = 1127.52 mM) activity in vitro and small intestinal glucose absorption under ex vivo condition. Xylitol also increased dose dependent muscle glucose uptake with and without insulin, although the uptake was not significantly affected by the addition of insulin. Oral single bolus dose of xylitol significantly delayed gastric emptying, inhibited intestinal glucose absorption but increased the intestinal digesta transit rate in both normal and diabetic rats compared to their respective controls. The data of this study suggest that xylitol reduces intestinal glucose absorption via inhibiting major carbohydrate digesting enzymes, slowing gastric emptying and fastening the intestinal transit rate, but increases muscle glucose uptake in normal and type 2 diabetic rats.

  12. D-Xylose fermentation, xylitol production and xylanase activities by seven new species of Sugiyamaella.

    PubMed

    Sena, Letícia M F; Morais, Camila G; Lopes, Mariana R; Santos, Renata O; Uetanabaro, Ana P T; Morais, Paula B; Vital, Marcos J S; de Morais, Marcos A; Lachance, Marc-André; Rosa, Carlos A

    2017-01-01

    Sixteen yeast isolates identified as belonging to the genus Sugiyamaella were studied in relation to D-xylose fermentation, xylitol production, and xylanase activities. The yeasts were recovered from rotting wood and sugarcane bagasse samples in different Brazilian regions. Sequence analyses of the internal transcribed spacer (ITS) region and the D1/D2 domains of large subunit rRNA gene showed that these isolates belong to seven new species. The species are described here as Sugiyamaella ayubii f.a., sp. nov. (UFMG-CM-Y607 T  = CBS 14108 T ), Sugiyamaella bahiana f.a., sp. nov. (UFMG-CM-Y304 T  = CBS 13474 T ), Sugiyamaella bonitensis f.a., sp. nov. (UFMG-CM-Y608 T  = CBS 14270 T ), Sugiyamaella carassensis f.a., sp. nov. (UFMG-CM-Y606 T  = CBS 14107 T ), Sugiyamaella ligni f.a., sp. nov. (UFMG-CM-Y295 T  = CBS 13482 T ), Sugiyamaella valenteae f.a., sp. nov. (UFMG-CM-Y609 T  = CBS 14109 T ) and Sugiyamaella xylolytica f.a., sp. nov. (UFMG-CM-Y348 T  = CBS 13493 T ). Strains of the described species S. boreocaroliniensis, S. lignohabitans, S. novakii and S. xylanicola, isolated from rotting wood of Brazilian ecosystems, were also compared for traits relevant to xylose metabolism. S. valenteae sp. nov., S. xylolytica sp. nov., S. bahiana sp. nov., S. bonitensis sp. nov., S. boreocarolinensis, S. lignohabitans and S. xylanicola were able to ferment D-xylose to ethanol. Xylitol production was observed for all Sugiyamaella species studied, except for S. ayubii sp. nov. All species studied showed xylanolytic activity, with S. xylanicola, S. lignohabitans and S. valenteae sp. nov. having the highest values. Our results suggest these Sugiyamaella species have good potential for biotechnological applications.

  13. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    PubMed

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells.

  14. Results from the Xylitol for Adult Caries Trial (X-ACT)

    PubMed Central

    Bader, James D.; Vollmer, William M.; Shugars, Daniel A.; Gilbert, Gregg H.; Amaechi, Bennett T.; Brown, John P.; Laws, Reesa L.; Funkhouser, Kimberly A.; Makhija, Sonia K.; Ritter, André V.; Leo, Michael C.

    2013-01-01

    Background Although caries is prevalent in adults, few preventive therapies have been tested in adult populations. This randomized clinical trial evaluated the effectiveness of xylitol lozenges in preventing caries in elevated caries-risk adults. Methods X-ACT was a three-site placebo-controlled randomized trial. Participants (n=691) ages 21–80 consumed five 1.0 g xylitol or placebo lozenges daily for 33 months. Clinical examinations occurred at baseline, 12, 24 and 33 months. Results Xylitol lozenges reduced the caries increment 11%. This reduction, which represented less than one-third of a surface per year, was not statistically significant. There was no indication of a dose-response effect. Conclusions Daily use of xylitol lozenges did not result in a statistically or clinically significant reduction in 33-month caries increment among elevated caries-risk adults. Clinical Implications These results suggest that xylitol used as a supplement in adults does not significantly reduce their caries experience. PMID:23283923

  15. Effectiveness of Xylitol in Reducing Dental Caries in Children.

    PubMed

    Marghalani, Abdullah A; Guinto, Emilie; Phan, Minhthu; Dhar, Vineet; Tinanoff, Norman

    2017-03-15

    The purpose of this study was to evaluate the effectiveness of xylitol in reducing dental caries in children compared to no treatment, a placebo, or preventive strategies. MEDLINE via PubMed, Web of Science, and Cochrane Central Register of Controlled Trials (CENTRAL) were searched from January 1, 1995 through Sept. 26, 2016 for randomized and controlled trials on children consuming xylitol for at least 12 months. The primary endpoint was caries reduction measured by mean decayed, missing, and filled primary and permanent surfaces/ teeth (dmfs/t, DMFS/T, respectively). The I2 and chi-square test for heterogeneity were used to detect trial heterogeneity. Meta-analyses were performed and quality was evaluated using GRADE profiler software. Analysis of five randomized controlled trials (RCTs) showed that xylitol had a small effect on reducing dental caries (standardized mean difference [SMD] equals -0.24; 95 percent confidence interval [CI] equals -0.48 to 0.01; P = 0.06) with a very low quality of evidence and considerable heterogeneity. Studies with higher xylitol doses (greater than four grams per day) demonstrated a medium caries reduction (SMD equals -0.54; 95 percent CI equals -1.14 to 0.05; P = 0.07), with these studies also having considerable heterogeneity and very low quality of evidence. The present systematic review examining the effectiveness of xylitol on caries incidence in children showed a small effect size in randomized controlled trials and a very low quality of evidence that makes preventive action of xylitol uncertain.

  16. Effect of xylitol varnishes on remineralization of artificial enamel caries lesions in vitro.

    PubMed

    Cardoso, C A B; de Castilho, A R F; Salomão, P M A; Costa, E N; Magalhães, A C; Buzalaf, M A R

    2014-11-01

    Analyse the effect of varnishes containing xylitol alone or combined with fluoride on the remineralization of artificial enamel caries lesions in vitro. Bovine enamel specimens were randomly allocated to 7 groups (n=15/group). Artificial caries lesions were produced by immersion in 30 mL of lactic acid buffer containing 3mM CaCl2·2H2O, 3mM KH2PO4, 6 μM tetraetil metil diphosphanate (pH 5.0) for 6 days. The enamel blocks were treated with the following varnishes: 10% xylitol; 20% xylitol; 10% xylitol plus F (5% NaF); 20% xylitol plus F (5% NaF); Duofluorid™ (6% NaF, 2.71% F+6% CaF2), Duraphat™ (5% NaF, positive control) and placebo (no-F/xylitol, negative control). The varnishes were applied in a thin layer and removed after 6h. The blocks were subjected to pH-cycles (demineralization-2h/remineralization-22 h during 8 days) and enamel alterations were quantified by surface hardness and transversal microradiography. The percentage of surface hardness recovery (%SHR), the integrated mineral loss and lesion depth were statistically analysed by ANOVA/Tukey's test or Kruskal-Wallis/Dunn's test (p<0.05). Enamel surface remineralization was significantly increased by Duraphat™, 10% xylitol plus F and 20% xylitol plus F formulations, while significant subsurface mineral remineralization could be seen only for enamel treated with Duraphat™, Duofluorid™ and 20% xylitol formulations. 20% xylitol varnishes seem to be promising alternatives to increase remineralization of artificial caries lesions. effective vehicles are desirable for caries control. Xylitol varnishes seem to be promising alternatives to increase enamel remineralization in vitro, which should be confirmed by in situ and clinical studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The in vitro mucolytic effect of xylitol and dornase alfa on chronic rhinosinusitis mucus.

    PubMed

    Hardcastle, Tim; Jain, Ravi; Radcliff, Fiona; Waldvogel-Thurlow, Sharon; Zoing, Melissa; Biswas, Kristi; Douglas, Richard

    2017-09-01

    The overproduction and stagnation of purulent mucus impair mucociliary clearance and exacerbate the symptoms of chronic rhinosinusitis (CRS). There is a clinical need for effective topical mucolytic agents to facilitate removal of mucus and improve postoperative outcomes. The effects of xylitol (5%) and dornase alfa (1 mg/mL) on mucus and mucus crusts were investigated. Viscoelasticity and viscosity of wet mucus derived from 30 CRS patients was measured with a plate rheometer. Postoperative dried mucus crust dissolution was measured by examining peripheral transparency, central transparency, and border definition of treated crust samples from 17 CRS patients. Xylitol and dornase alfa reduced wet mucus viscoelasticity at a frequency of 0.1 Hz significantly more than the saline control. Treatments also produced significantly lower viscosities than saline at a shear rate of 10 and 100 seconds -1 . Xylitol and dornase alfa significantly decreased mucus crust border definition relative to saline. Xylitol and dornase alfa may be efficacious mucolytics, encouraging the breakdown of postoperative mucus crusts and the reduction of viscoelasticity and viscosity of wet mucus. In vivo study is required to evaluate the potential of these agents in treating recalcitrant CRS. © 2017 ARS-AAOA, LLC.

  18. 3,6-Anhydro-l-galactose, a rare sugar from agar, a new anticariogenic sugar to replace xylitol.

    PubMed

    Yun, Eun Ju; Lee, Ah Reum; Kim, Jung Hyun; Cho, Kyung Mun; Kim, Kyoung Heon

    2017-04-15

    The significance for anticariogenic sugar substitutes is growing due to increasing demands for dietary sugars and rising concerns of dental caries. Xylitol is widely used as an anticariogenic sugar substitute, but the inhibitory effects of xylitol on Streptococcus mutans, the main cause of tooth decay, are exhibited only at high concentrations. Here, the inhibitory effects of 3,6-anhydro-l-galactose (AHG), a rare sugar from red macroalgae, were evaluated on S. mutans, in comparison with those of xylitol. In the presence of 5g/l of AHG, the growth of S. mutans was retarded. At 10g/l of AHG, the growth and acid production by S. mutans were completely inhibited. However, in the presence of xylitol, at a much higher concentration (i.e., 40g/l), the growth of S. mutans still occurred. These results suggest that AHG can be used as a new anticariogenic sugar substitute for preventing dental caries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. XYLITOL IMPROVES ANTI-OXIDATIVE DEFENSE SYSTEM IN SERUM, LIVER, HEART, KIDNEY AND PANCREAS OF NORMAL AND TYPE 2 DIABETES MODEL OF RATS.

    PubMed

    Chukwuma, Chika Ifeanyi; Islam, Shahidul

    2017-05-01

    The present study investigated the anti-oxidative effects of xylitol both in vitro and in vivo in normal and type 2 diabetes (T2D) rat model. Free radical scavenging and ferric reducing potentials of different concentrations of xylitol were investigated in vitro. For in vivo study, six weeks old male Sprague-Dawley rats were divided into four groups, namely: Normal Control (NC), Diabetic Control (DBC), Normal Xylitol (NXYL) and Diabetic Xylitol (DXYL). T2D was induced in the DBC and DXYL groups. After the confirmation of diabetes, a 10% xylitol solution was supplied instead of drinking water to NXYL and DXYL, while normal drinking water was supplied to NC and DBC ad libitum. After five weeks intervention period, the animals were sacri- ficed and thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) concentrations as well as superoxide dismutase, catalase glutathione reductase and glutathione peroxidase activities were determined in the liver, heart, kidney, pancreatic tissues and serum samples. Xylitol exhibited significant (p < 0.05) in vitro nitric oxide and hydroxyl radical scavenging and ferric reducing activities. In vivo study revealed significant (p < 0.05) reduction in TBARS concentrations in the xylitol consuming groups compared to their respective controls. Significant (p < 0.05) increase in GSH levels and antioxidant enzyme activities were observed in analyzed tissues and serum of xylitol-fed animals compared to their respective controls. Results of this study indicate that xylitol has strong anti-oxidative potential against T2D-associated oxidative stress. Hence, xylitol can be used as a potential supplement in diabetic foods and food products.

  20. Lignocellulosic sugar management for xylitol and ethanol fermentation with multiple cell recycling by Kluyveromyces marxianus IIPE453.

    PubMed

    Dasgupta, Diptarka; Ghosh, Debashish; Bandhu, Sheetal; Adhikari, Dilip K

    2017-07-01

    Optimum utilization of fermentable sugars from lignocellulosic biomass to deliver multiple products under biorefinery concept has been reported in this work. Alcohol fermentation has been carried out with multiple cell recycling of Kluyveromyces marxianus IIPE453. The yeast utilized xylose-rich fraction from acid and steam treated biomass for cell generation and xylitol production with an average yield of 0.315±0.01g/g while the entire glucose rich saccharified fraction had been fermented to ethanol with high productivity of 0.9±0.08g/L/h. A detailed insight into its genome illustrated the strain's complete set of genes associated with sugar transport and metabolism for high-temperature fermentation. A set flocculation proteins were identified that aided in high cell recovery in successive fermentation cycles to achieve alcohols with high productivity. We have brought biomass derived sugars, yeast cell biomass generation, and ethanol and xylitol fermentation in one platform and validated the overall material balance. 2kg sugarcane bagasse yielded 193.4g yeast cell, and with multiple times cell recycling generated 125.56g xylitol and 289.2g ethanol (366mL). Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Xylitol gummy bear snacks: a school-based randomized clinical trial

    PubMed Central

    Ly, Kiet A; Riedy, Christine A; Milgrom, Peter; Rothen, Marilynn; Roberts, Marilyn C; Zhou, Lingmei

    2008-01-01

    Background Habitual consumption of xylitol reduces mutans streptococci (MS) levels but the effect on Lactobacillus spp. is less clear. Reduction is dependent on daily dose and frequency of consumption. For xylitol to be successfully used in prevention programs to reduce MS and prevent caries, effective xylitol delivery methods must be identified. This study examines the response of MS, specifically S. mutans/sobrinus and Lactobacillus spp., levels to xylitol delivered via gummy bears at optimal exposures. Methods Children, first to fifth grade (n = 154), from two elementary schools in rural Washington State, USA, were randomized to xylitol 15.6 g/day (X16, n = 53) or 11.7 g/day (X12, n = 49), or maltitol 44.7 g/day (M45, n = 52). Gummy bear snacks were pre-packaged in unit-doses, labeled with ID numbers, and distributed three times/day during school hours. No snacks were sent home. Plaque was sampled at baseline and six weeks and cultured on modified Mitis Salivarius agar for S. mutans/sobrinus and Rogosa SL agar for Lactobacillus spp. enumeration. Results There were no differences in S. mutans/sobrinus and Lactobacillus spp. levels in plaque between the groups at baseline. At six weeks, log10 S. mutans/sobrinus levels showed significant reductions for all groups (p = 0.0001): X16 = 1.13 (SD = 1.65); X12 = 0.89 (SD = 1.11); M45 = 0.91 (SD = 1.46). Reductions were not statistically different between groups. Results for Lactobacillus spp. were mixed. Group X16 and M45 showed 0.31 (SD = 2.35), and 0.52 (SD = 2.41) log10 reductions, respectively, while X12 showed a 0.11 (SD = 2.26) log10 increase. These changes were not significant. Post-study discussions with school staff indicated that it is feasible to implement an in-classroom gummy bear snack program. Parents are accepting and children willing to consume gummy bear snacks daily. Conclusion Reductions in S. mutans/sobrinus levels were observed after six weeks of gummy bear snack consumption containing xylitol at 11

  2. Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30

    Treesearch

    Rita C.L.B. Rodrigues; William R. Kenealy; Thomas W. Jeffries

    2011-01-01

    Corn stover that had been treated with vapor-phase diethyl oxalate released a mixture of mono-and oligosaccharides consisting mainly of xylose and glucose. Following overliming and neutralization, a D-xylulokinase mutant of Pichia stipitis, FPL-YS30 (xyl3 -Ä1), converted the stover hydrolysate into xylitol. This research examined the effects of phosphoric or gluconic...

  3. Microencapsulation of xylitol by double emulsion followed by complex coacervation.

    PubMed

    Santos, Milla G; Bozza, Fernanda T; Thomazini, Marcelo; Favaro-Trindade, Carmen S

    2015-03-15

    The objective of this study was to produce and characterise xylitol microcapsules for use in foods, in order to prolong the sweetness and cooling effect provided by this ingredient. Complex coacervation was employed as the microencapsulation method. A preliminary double emulsion step was performed due to the hydrophilicity of xylitol. The microcapsules obtained were characterised in terms of particle size and morphology (optical, confocal and scanning electron microscopy), solubility, sorption isotherms, FTIR, encapsulation efficiency and release study. The microcapsules of xylitol showed desirable characteristics for use in foods, such as a particle size below 109 μm, low solubility and complete encapsulation of the core by the wall material. The encapsulation efficiency ranged from 31% to 71%, being higher in treatments with higher concentrations of polymers. Release of over 70% of the microencapsulated xylitol in artificial saliva occurred within 20 min. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Xylitol for preventing acute otitis media in children up to 12 years of age.

    PubMed

    Azarpazhooh, Amir; Lawrence, Herenia P; Shah, Prakeshkumar S

    2016-08-03

    Acute otitis media (AOM) is the most common bacterial infection among young children in the United States. There are limitations and concerns over its treatment with antibiotics and surgery and so effective preventative measures are attractive. A potential preventative measure is xylitol, a natural sugar substitute that reduces the risk of dental decay. Xylitol can reduce the adherence of Streptococcus pneumoniae (S pneumoniae) and Haemophilus influenzae (H influenzae) to nasopharyngeal cells in vitro. This is an update of a review first published in 2011. To assess the efficacy and safety of xylitol to prevent AOM in children aged up to 12 years. We searched CENTRAL (to Issue 12, 2015), MEDLINE (1950 to January 2016), Embase (1974 to January 2016), CINAHL (1981 to January 2016), LILACS (1982 to January 2016), Web of Science (2011 to January 2016) and International Pharmaceutical Abstracts (2000 to January 2016). Randomised controlled trials (RCTs) or quasi-RCTs of children aged 12 years or younger where xylitol supplementation was compared with placebo or no treatment to prevent AOM. Two review authors independently selected trials from search results, assessed and rated study quality and extracted relevant data for inclusion in the review. We contacted trial authors to request missing data. We noted data on any adverse events of xylitol. We extracted data on relevant outcomes and estimated the effect size by calculating risk ratio (RR), risk difference (RD) and associated 95% confidence intervals (CI). We identified five clinical trials that involved 3405 children for inclusion. For this 2016 update, we identified one new trial for inclusion. This trial was systematically reviewed but due to several sources of heterogeneity, was not included in the meta-analysis. The remaining four trials were of adequate methodological quality. In three RCTs that involved a total of 1826 healthy Finnish children attending daycare, there is moderate quality evidence that

  5. Ameliorating Effect of Dietary Xylitol on Human Respiratory Syncytial Virus (hRSV) Infection.

    PubMed

    Xu, Mei Ling; Wi, Ga Ram; Kim, Hyoung Jin; Kim, Hong-Jin

    2016-01-01

    Human respiratory syncytial virus (hRSV) is the most common cause of bronchiolitis and pneumonia in infants. The lack of proper prophylactics and therapeutics for controlling hRSV infection has been of great concern worldwide. Xylitol is a well-known sugar substitute and its effect against bacteria in the oral cavity is well known. However, little is known of its effect on viral infections. In this study, the effect of dietary xylitol on hRSV infection was investigated in a mouse model for the first time. Mice received xylitol for 14 d prior to virus challenge and for a further 3 d post challenge. Significantly larger reductions in lung virus titers were observed in the mice receiving xylitol than in the controls receiving phosphate-buffered saline (PBS). In addition, fewer CD3(+) and CD3(+)CD8(+) lymphocytes, whose numbers reflect inflammatory status, were recruited in the mice receiving xylitol. These results indicate that dietary xylitol can ameliorate hRSV infections and reduce inflammation-associated immune responses to hRSV infection.

  6. Involvement of TRPV1 and AQP2 in hypertonic stress by xylitol in odontoblast cells.

    PubMed

    Tokuda, M; Fujisawa, M; Miyashita, K; Kawakami, Y; Morimoto-Yamashita, Y; Torii, M

    2015-02-01

    To examine the responses of mouse odontoblast-lineage cell line (OLC) cultures to xylitol-induced hypertonic stress. OLCs were treated with xylitol, sucrose, sorbitol, mannitol, arabinose and lyxose. Cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium assay. The expression of transient receptor potential vanilloids (TRPV) 1, 3 and 4 was detected using a reverse transcriptase-polymerase chain reaction (RT-PCR) assay. The expression of aquaporin (AQP) 2 was detected using immunofluorescence and Western blotting analysis. The expression of interleukin-6 (IL-6) under xylitol-induced hypertonic stress was assessed using an enzyme-linked immunosorbent assay (ELISA). Small interfering ribonucleic acid (siRNA) for AQP-2 was used to inhibition assay. Xylitol-induced hypertonic stress did not decrease OLC viability, unlike the other sugars tested. OLCs expressed TRPV1, 3 and 4 as well as AQP2. Xylitol inhibited lipopolysaccharide (LPS)-induced IL-6 expression after 3 h of hypertonic stress. TRPV1 mRNA expression was upregulated by xylitol. Costimulation with HgCl2 (AQP inhibitor) and Ruthenium red (TRPV1 inhibitor) decreased cell viability with xylitol stimulation. OLCs treated with siRNA against TRPV1 exhibited decreased cell viability with xylitol stimulation. OLCs have high-cell viability under xylitol-induced hypertonic stress, which may be associated with TRPV1 and AQP2 expressions.

  7. Prebiotic potential of L-sorbose and xylitol in promoting the growth and metabolic activity of specific butyrate-producing bacteria in human fecal culture.

    PubMed

    Sato, Tadashi; Kusuhara, Shiro; Yokoi, Wakae; Ito, Masahiko; Miyazaki, Kouji

    2017-01-01

    Dietary low-digestible carbohydrates (LDCs) affect gut microbial metabolism, including the production of short-chain fatty acids. The ability of various LDCs to promote butyrate production was evaluated in in vitro human fecal cultures. Fecal suspensions from five healthy males were anaerobically incubated with various LDCs. L-Sorbose and xylitol markedly promoted butyrate formation in cultures. Bacterial 16S rRNA gene-based denaturing gradient gel electrophoresis analyses of these fecal cultures revealed a marked increase in the abundance of bacteria closely related to the species Anaerostipes hadrus or A. caccae or both, during enhanced butyrate formation from L-sorbose or xylitol. By using an agar plate culture, two strains of A. hadrus that produced butyrate from each substrate were isolated from the feces of two donors. Furthermore, of 12 species of representative colonic butyrate producers, only A. hadrus and A. caccae demonstrated augmented butyrate production from L-sorbose or xylitol. These findings suggest that L-sorbose and xylitol cause prebiotic stimulation of the growth and metabolic activity of Anaerostipes spp. in the human colon. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Retrospective evaluation of xylitol ingestion in dogs: 192 cases (2007-2012).

    PubMed

    DuHadway, Meghan R; Sharp, Claire R; Meyers, Katherine E; Koenigshof, Amy M

    2015-01-01

    To summarize the signalment, clinical signs, prevalence of decreased blood glucose concentration (BG), prevalence of increased liver values, treatment, and outcome in dogs known to have ingested xylitol. Retrospective study from December 2007 to February 2012 SETTING: Three university teaching hospitals. One hundred ninety-two client-owned dogs with known or suspected xylitol ingestion. None. The median ingested xylitol dose was 0.32 g/kg (range 0.03-3.64 g/kg). Clinical signs were present in 39 (20%) dogs on presentation to the veterinary teaching hospitals. The most common clinical sign was vomiting (n = 25), followed by lethargy (12). The median duration of clinical signs prior to presentation was 93 minutes (range 0-5,040 minutes). Dogs that developed clinical signs ingested a significantly higher dose of xylitol than those that were asymptomatic. Thirty dogs became hypoglycemic (BG ≤ 3.3 mmol/L [60 mg/dL]) at some time point during their hospitalization. When evaluating all dogs, there was a significant difference between the initial and lowest BGs. Thirty dogs had increased alanine aminotransferase activity or total serum bilirubin concentration. Dogs with increases in alanine aminotransferase activity or total serum bilirubin concentration had a significantly lower nadir BG. All dogs survived to discharge and 158 were known to be alive at 28 days. The rest were lost to follow up. The prognosis for dogs evaluated by a veterinarian that ingest lower doses of xylitol and do not develop liver failure is excellent. Dogs ingesting xylitol should be hospitalized and monitored for variations in BG, because BG drops in most dogs following presentation. Additional studies are needed in dogs ingesting higher doses of xylitol before correlations between dose and the development of clinical signs or liver failure can be established. Treatment and prognosis for these dogs warrants further investigation. © Veterinary Emergency and Critical Care Society 2015.

  9. Xylitol affects the intestinal microbiota and metabolism of daidzein in adult male mice.

    PubMed

    Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko

    2013-12-10

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05). Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05). The fecal lipid contents (% dry weight) were significantly greater in the XD group than in the CD group (p < 0.01). The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05). This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health.

  10. Simultaneous fermentation of glucose and xylose at elevated temperatures co-produces ethanol and xylitol through overexpression of a xylose-specific transporter in engineered Kluyveromyces marxianus.

    PubMed

    Zhang, Biao; Zhang, Jia; Wang, Dongmei; Han, Ruixiang; Ding, Rui; Gao, Xiaolian; Sun, Lianhong; Hong, Jiong

    2016-09-01

    Engineered Kluyveromyces marxianus strains were constructed through over-expression of various transporters for simultaneous co-fermentation of glucose and xylose. The glucose was converted into ethanol, whereas xylose was converted into xylitol which has higher value than ethanol. Over-expressing xylose-specific transporter ScGAL2-N376F mutant enabled yeast to co-ferment glucose and xylose and the co-fermentation ability was obviously improved through increasing ScGAL2-N376F expression. The production of glycerol was blocked and acetate production was reduced by disrupting gene KmGPD1. The obtained K. marxianus YZJ119 utilized 120g/L glucose and 60g/L xylose simultaneously and produced 50.10g/L ethanol and 55.88g/L xylitol at 42°C. The yield of xylitol from consumed xylose was over 98% (0.99g/g). Through simultaneous saccharification and co-fermentation at 42°C, YZJ119 produced a maximal concentration of 44.58g/L ethanol and 32.03g/L xylitol or 29.82g/L ethanol and 31.72g/L xylitol, respectively, from detoxified or non-detoxified diluted acid pretreated corncob. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Raman Spectroscopy of Xylitol Uptake and Metabolism in Gram-Positive and Gram-Negative Bacteria▿

    PubMed Central

    Palchaudhuri, Sunil; Rehse, Steven J.; Hamasha, Khozima; Syed, Talha; Kurtovic, Eldar; Kurtovic, Emir; Stenger, James

    2011-01-01

    Visible-wavelength Raman spectroscopy was used to investigate the uptake and metabolism of the five-carbon sugar alcohol xylitol by Gram-positive viridans group streptococcus and the two extensively used strains of Gram-negative Escherichia coli, E. coli C and E. coli K-12. E. coli C, but not E. coli K-12, contains a complete xylitol operon, and the viridans group streptococcus contains an incomplete xylitol operon used to metabolize the xylitol. Raman spectra from xylitol-exposed viridans group streptococcus exhibited significant changes that persisted even in progeny grown from the xylitol-exposed mother cells in a xylitol-free medium for 24 h. This behavior was not observed in the E. coli K-12. In both viridans group streptococcus and the E. coli C derivative HF4714, the metabolic intermediates are stably formed to create an anomaly in bacterial normal survival. The uptake of xylitol by Gram-positive and Gram-negative pathogens occurs even in the presence of other high-calorie sugars, and its stable integration within the bacterial cell wall may discontinue bacterial multiplication. This could be a contributing factor for the known efficacy of xylitol when taken as a prophylactic measure to prevent or reduce occurrences of persistent infection. Specifically, these bacteria are causative agents for several important diseases of children such as pneumonia, otitis media, meningitis, and dental caries. If properly explored, such an inexpensive and harmless sugar-alcohol, alone or used in conjunction with fluoride, would pave the way to an alternative preventive therapy for these childhood diseases when the causative pathogens have become resistant to modern medicines such as antibiotics and vaccine immunotherapy. PMID:21037297

  12. Xylitol as a prophylaxis for acute otitis media: systematic review.

    PubMed

    Danhauer, Jeffrey L; Johnson, Carole E; Corbin, Nicole E; Bruccheri, Kaitlyn G

    2010-10-01

    A systematic review was conducted to evaluate evidence regarding xylitol, a sugar alcohol, as a prophylaxis for acute otitis media (AOM) in children. The authors searched PubMed and other databases to identify evidence. Criteria for included studies were: appear in English-language, peer-reviewed journals; at least quasi-experimental designs; use xylitol; and present outcome data. The authors completed evaluation forms for the included studies at all phases of the review. The authors reviewed 1479 titles and excluded 1435. Abstracts and full texts were reviewed for the remaining 44; four randomized controlled trials met inclusion criteria. Xylitol was a generally well accepted prophylaxis for AOM with few side effects when administered via chewing gum or syrup at 10 g/day given five times daily. Meta-analysis revealed significant treatment effects (Risk ratio = 0.68; 95% confidence interval = 0.57 to 0.83). Xylitol can be a prophylaxis for AOM, but warrants further study, especially of vehicles other than chewing gum for young children, and information is needed regarding cost, duration of administration required, and expected long-term effects.

  13. Xylitol Affects the Intestinal Microbiota and Metabolism of Daidzein in Adult Male Mice

    PubMed Central

    Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko

    2013-01-01

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05). Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05). The fecal lipid contents (% dry weight) were significantly greater in the XD group than in the CD group (p < 0.01). The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05). This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health. PMID:24336061

  14. Cluster-randomized xylitol toothpaste trial for early childhood caries prevention.

    PubMed

    Chi, Donald L; Tut, Ohnmar; Milgrom, Peter

    2014-01-01

    The purpose of this study was to assess the efficacy of supervised tooth-brushing with xylitol toothpaste to prevent early childhood caries (ECC) and reduce mutans streptococci. In this cluster-randomized efficacy trial, 196 four- to five-year-old children in four Head Start classrooms in the Marshall Islands were randomly assigned to supervised toothbrushing with 1,400 ppm/31 percent fluoride xylitol or 1,450 ppm fluoride sorbitol toothpaste. We hypothesized that there would be no difference in efficacy between the two types of toothpaste. The primary outcome was the surface-level primary molar caries increment (d(2-3)mfs) after six months. A single examiner was blinded to classroom assignments. Two classrooms were assigned to the fluoride-xylitol group (85 children), and two classrooms were assigned to the fluoride-sorbitol group (83 children). The child-level analyses accounted for clustering. There was no difference between the two groups in baseline or end-of-trial mean d(2-3)mfs. The mean d(2-3)mfs increment was greater in the fluoride-xylitol group compared to the fluoride-sorbitol group (2.5 and 1.4 d(2-3)mfs, respectively), but the difference was not significant (95% confidence interval: -0.17, 2.37; P=.07). No adverse effects were reported. After six months, brushing with a low-strength xylitol/fluoride tooth-paste is no more efficacious in reducing ECC than a fluoride-only toothpaste in a high caries-risk child population.

  15. Cluster-randomized xylitol toothpaste trial for early childhood caries prevention

    PubMed Central

    Chi, Donald L.; Tut, Ohnmar K.; Milgrom, Peter

    2013-01-01

    Purpose We assessed the efficacy of supervised toothbrushing with xylitol toothpaste to prevent early childhood caries (ECC) and to reduce mutans streptococci (MS). Methods In this cluster-randomized efficacy trial, 4 Head Start classrooms in the Marshall Islands were randomly assigned to supervised toothbrushing with 1,400ppm/31% fluoride-xylitol (Epic Dental, Provo, UT) or 1,450ppm fluoride-sorbitol toothpaste (Colgate-Palmolive, New York, NY) (N=196 children, ages 4–5 yrs). We hypothesized no difference in efficacy between the two types of toothpaste. The primary outcome was primary molar d2-3mfs increment after 6 mos. A single examiner was blinded to classroom assignments. Two classrooms were assigned to the fluoride-xylitol group (85 children) and 2 classrooms to the fluoride-sorbitol group (83 children). The child-level analyses accounted for clustering. Results There was no difference between the two groups in baseline or end-of-trial mean d2-3mfs. The mean d2-3mfs increment was greater in the fluoride-xylitol group compared to the fluoride-sorbitol group (2.5 and 1.4 d2-3mfs, respectively), but the difference was not significant (95% CI:−0.17, 2.37;P=0.07). No adverse effects were reported. Conclusion After 6 mos, brushing with a low strength xylitol/fluoride toothpaste is no more efficacious in reducing ECC than a fluoride only toothpaste in a high caries risk child population. PMID:24709430

  16. Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion.

    PubMed

    Wang, Shizeng; Li, Hao; Fan, Xiaoguang; Zhang, Jingkun; Tang, Pingwah; Yuan, Qipeng

    2015-09-01

    During xylitol fermentation, Candida tropicalis is often inhibited by inhibitors in hemicellulose hydrolysate. The mechanisms involved in the metabolic responses to inhibitor stress and the resistances to inhibitors are still not clear. To understand the inhibition mechanisms and the metabolic responses to inhibitors, a GC/MS-based metabolomics approach was performed on C. tropicalis treated with and without complex inhibitors (CI, including furfural, phenol and acetic acid). Partial least squares discriminant analysis was used to determine the metabolic variability between CI-treated groups and control groups, and 25 metabolites were identified as possible entities responsible for the discrimination caused by inhibitors. We found that xylose uptake rate and xylitol oxidation rate were promoted by CI treatment. Metabolomics analysis showed that the flux from xylulose to pentose phosphate pathway increased, and tricarboxylic acid cycle was disturbed by CI. Moreover, the changes in levels of 1,3-propanediol, trehalose, saturated fatty acids and amino acids showed different mechanisms involved in metabolic responses to inhibitor stress. The increase of 1,3-propanediol was considered to be correlated with regulating redox balance and osmoregulation. The increase of trehalose might play a role in protein stabilization and cellular membranes protection. Saturated fatty acids could cause the decrease of membrane fluidity and make the plasma membrane rigid to maintain the integrity of plasma membrane. The deeper understanding of the inhibition mechanisms and the metabolic responses to inhibitors will provide us with more information on the metabolism regulation during xylitol bioconversion and the construction of industrial strains with inhibitor tolerance for better utilization of bioresource. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The effectiveness of xylitol in a school-based cluster-randomized clinical trial.

    PubMed

    Lee, Wonik; Spiekerman, Charles; Heima, Masahiro; Eggertsson, Hafsteinn; Ferretti, Gerald; Milgrom, Peter; Nelson, Suchitra

    2015-01-01

    The purpose of this double-blind, cluster-randomized clinical trial was to examine the effects of xylitol gummy bear snacks on dental caries progression in primary and permanent teeth of inner-city school children. A total of 562 children aged 5-6 years were recruited from five elementary schools in East Cleveland, Ohio. Children were randomized by classroom to receive xylitol (7.8 g/day) or placebo (inulin fiber 20 g/day) gummy bears. Gummy bears were given three times per day for the 9-month kindergarten year within a supervised school environment. Children in both groups also received oral health education, toothbrush and fluoridated toothpaste, topical fluoride varnish treatment and dental sealants. The numbers of new decayed, missing, and filled surfaces for primary teeth (dmfs) and permanent teeth (DMFS) from baseline to the middle of 2nd grade (exit exam) were compared between the treatment (xylitol/placebo) groups using an optimally-weighted permutation test for cluster-randomized data. The mean new d(3-6)mfs at the exit exam was 5.0 ± 7.6 and 4.0 ± 6.5 for the xylitol and placebo group, respectively. Similarly, the mean new D(3-6)MFS was 0.38 ± 0.88 and 0.48 ± 1.39 for the xylitol and placebo group, respectively. The adjusted mean difference between the two groups was not statistically significant: new d(3-6)mfs: mean 0.4, 95% CI -0.25, 0.8), and new D(3-6)MFS: mean 0.16, 95% CI -0.16, 0.43. Xylitol consumption did not have additional benefit beyond other preventive measures. Caries progression in the permanent teeth of both groups was minimal, suggesting that other simultaneous prevention modalities may have masked the possible beneficial effects of xylitol in this trial. © 2014 S. Karger AG, Basel.

  18. Xylitol-supplemented nutrition enhances bacterial killing and prolongs survival of rats in experimental pneumococcal sepsis

    PubMed Central

    Renko, Marjo; Valkonen, Päivi; Tapiainen, Terhi; Kontiokari, Tero; Mattila, Pauli; Knuuttila, Matti; Svanberg, Martti; Leinonen, Maija; Karttunen, Riitta; Uhari, Matti

    2008-01-01

    Background Xylitol has antiadhesive effects on Streptococcus pneumoniae and inhibits its growth, and has also been found to be effective in preventing acute otitis media and has been used in intensive care as a valuable source of energy. Results We evaluated the oxidative burst of neutrophils in rats fed with and without xylitol. The mean increase in the percentage of activated neutrophils from the baseline was higher in the xylitol-exposed group than in the control group (58.1% vs 51.4%, P = 0.03 for the difference) and the mean induced increase in the median strength of the burst per neutrophil was similarly higher in the xylitol group (159.6 vs 140.3, P = 0.04). In two pneumococcal sepsis experiments rats were fed either a basal powder diet (control group) or the same diet supplemented with 10% or 20% xylitol and infected with an intraperitoneal inoculation of S. pneumoniae after two weeks. The mean survival time was 48 hours in the xylitol groups and 34 hours in the control groups (P < 0.001 in log rank test). Conclusion Xylitol has beneficial effects on both the oxidative killing of bacteria in neutrophilic leucocytes and on the survival of rats with experimental pneumococcal sepsis. PMID:18334022

  19. Long-term clinical and bacterial effects of xylitol on patients with fixed orthodontic appliances.

    PubMed

    Masoud, Mohamed I; Allarakia, Reem; Alamoudi, Najlaa M; Nalliah, Romesh; Allareddy, Veerasathpurush

    2015-01-01

    The objective of this study was to evaluate long-term clinical and bacterial effects of using 6 g of xylitol per day for 3 months on patients with full fixed orthodontic appliances. The study was a pilot clinical trial that included 41 subjects who were undergoing orthodontic treatment. The subjects were randomly divided into three groups. Group A received xylitol chewing gum, group B received xylitol dissolvable chewable tablets, and Group C served as the control group and did not receive xylitol gums or tablets. Clinical examination and the collection of plaque and saliva samples were carried out at baseline and 3, 6, and 12 months. All three groups were given oral hygiene instruction and were put on a 6-month cleaning and topical fluoride schedule. Plaque scores and bacterial counts were used to evaluate the effectiveness of the different approaches at reducing the caries risk. Xylitol groups did not experience any more reduction in plaque score, plaque MS counts, or salivary MS counts than the control group nor did they have lower values at any of the time points. Chewing gum did not significantly increase the incidence of debonded brackets over the other groups. Xylitol does not have a clinical or bacterial benefit in patients with fixed orthodontic appliances. Oral hygiene instructions and 6-month topical fluoride application were effective at reducing plaque scores and bacterial counts in patients with full fixed appliances regardless of whether or not xylitol was used.

  20. Effects of xylitol on blood glucose, glucose tolerance, serum insulin and lipid profile in a type 2 diabetes model of rats.

    PubMed

    Islam, Md Shahidul; Indrajit, Mitesh

    2012-01-01

    The present study was conducted to examine the antidiabetic effects of xylitol in a type 2 diabetes rat model. Six-week-old male Sprague-Dawley rats were randomly divided into 3 groups: normal control (NC), diabetic control (DBC) and xylitol (XYL). Diabetes was induced only in the DBC and XYL animal groups by feeding them a 10% fructose solution for 2 weeks followed by an injection (i.p.) of streptozotocin (40 mg/kg body weight). One week after the streptozotocin injection, the animals with a nonfasting blood glucose level of >300 mg/dl were considered to be diabetic. The XYL group was fed further with a 10% xylitol solution, whereas the NC and DBC groups were supplied with normal drinking water. After 5 weeks of intervention, food and fluid intake, body weight, blood glucose, serum fructosamine and most of the serum lipids were significantly decreased, and serum insulin concentration and glucose tolerance ability was significantly increased in the XYL group compared to the DBC group. Liver weight, liver glycogen and serum triglycerides were not influenced by feeding with xylitol. The data of this study suggest that xylitol can be used not only as a sugar substitute but also as a supplement to antidiabetic food and other food products. Copyright © 2012 S. Karger AG, Basel.

  1. Influence of sucrose and xylitol on an early Streptococcus mutans biofilm in a dental simulator.

    PubMed

    Salli, K M; Forssten, S D; Lahtinen, S J; Ouwehand, A C

    2016-10-01

    In vitro methods to study dental biofilms are useful in finding ways to support a healthy microbial balance in the oral cavity. The effects of sucrose, xylitol, and their combination on three strains of Streptococcus mutans and one strain of Streptococcus sobrinus were studied using a dental simulator. A simulator was used to mimic the oral cavity environment. It provided a continuous-flow system using artificial saliva (AS), constant temperature, mixing, and hydroxyapatite (HA) surface in which the influence of xylitol was studied. The quantities of planktonic and adhered bacteria were measured by real-time qPCR. Compared against the untreated AS, adding 1% sucrose increased the bacterial colonization of HA (p<0.0001) whereas 2% xylitol decreased it (p<0.05), with the exception of clinical S. mutans isolate 117. The combination of xylitol and sucrose decreased the bacterial quantities within the AS and the colonization on the HA by clinical S. mutans isolate 2366 was reduced (p<0.05). Increasing the concentration (2%-5%) of xylitol caused a reduction in bacterial counts even in the presence of sucrose. The continuous-culture biofilm model showed that within a young biofilm, sucrose significantly promotes whereas xylitol reduces bacterial colonization and proliferation. The results indicate that xylitol affects the ability of certain S. mutans strains to adhere to the HA. Clinical studies have also shown that xylitol consumption decreases caries incidence and reduces the amount of plaque. This study contributes to the understanding of the mechanism behind these clinical observations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Determination of glutathione in apoptotic SMMC-7221 cells induced by xylitol selenite using capillary electrophoresis.

    PubMed

    Wu, Xue; Cao, Yu; Zhang, Jian; Lei, Ming; Deng, Xiaojie; Zahid, Kashif Rafiq; Liu, Yanli; Liu, Ke; Yang, Jihong; Xiong, Guomei; Yao, Hanchao; Qi, Chao

    2016-05-01

    To determine the glutathione (GSH) content in a human hepatoma cell line (SMMC-7221) treated with xylitol/selenite, providing a part of an investigation of its anti-cancer mechanisms. The nuclei of SMMC-7221 cells were stained with Hoechst 33258 in an apoptosis assay, and their morphology subsequently changed from circular to crescent shape. The calibration curve (r(2) = 0.992) was established, and GSH content markedly decreased after treated with 0.5 and 1 mg xylitol/selenite l(-1) for 12, 36 and 60 h (12 h: from 95.57 ± 19.57 to 29.09 ± 7.74 and 24.27 ± 11.15; 36 h: from 70.73 ± 11.35 to 19.54 ± 6.39 and 9.35 ± 6.69; 60 h: from 72.63 ± 16.94 to 7.432 ± 3.84 and 0). The depletion rate of GSH was more related to the concentration of xylitol/selenite than the treatment time (from 69.95 ± 1.87 to 100 % vs. 0.22 ± 0.2 to 100 %). Xylitol/selenite is a promising anti-cancer drug to induce apoptosis in SMMC-7221 cells. It may regulate the apoptosis through the co-action of multiple mechanisms related to GSH depletion.

  3. 21 CFR 172.395 - Xylitol.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Xylitol. 172.395 Section 172.395 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172...

  4. Effect of xylitol versus sorbitol: a quantitative systematic review of clinical trials.

    PubMed

    Mickenautsch, Steffen; Yengopal, Veerasamy

    2012-08-01

    This study aimed to appraise, within the context of tooth caries, the current clinical evidence and its risk for bias regarding the effects of xylitol in comparison with sorbitol. Databases were searched for clinical trials to 19 March 2011. Inclusion criteria required studies to: test a caries-related primary outcome; compare the effects of xylitol with those of sorbitol; describe a clinical trial with two or more arms, and utilise a prospective study design. Articles were excluded if they did not report computable data or did not follow up test and control groups in the same way. Individual dichotomous and continuous datasets were extracted from accepted articles. Selection and performance/detection bias were assessed. Sensitivity analysis was used to investigate attrition bias. Egger's regression and funnel plotting were used to investigate risk for publication bias. Nine articles were identified. Of these, eight were accepted and one was excluded. Ten continuous and eight dichotomous datasets were extracted. Because of high clinical heterogeneity, no meta-analysis was performed. Most of the datasets favoured xylitol, but this was not consistent. The accepted trials may be limited by selection bias. Results of the sensitivity analysis indicate a high risk for attrition bias. The funnel plot and Egger's regression results suggest a low publication bias risk. External fluoride exposure and stimulated saliva flow may have confounded the measured anticariogenic effect of xylitol. The evidence identified in support of xylitol over sorbitol is contradictory, is at high risk for selection and attrition bias and may be limited by confounder effects. Future high-quality randomised controlled trials are needed to show whether xylitol has a greater anticariogenic effect than sorbitol. © 2012 FDI World Dental Federation.

  5. Effect of Xylitol on Growth of Streptococcus pneumoniae in the Presence of Fructose and Sorbitol

    PubMed Central

    Tapiainen, Terhi; Kontiokari, Tero; Sammalkivi, Laura; Ikäheimo, Irma; Koskela, Markku; Uhari, Matti

    2001-01-01

    Xylitol is effective in preventing acute otitis media by inhibiting the growth of Streptococcus pneumoniae. To clarify this inhibition we used fructose, which is known to block similar growth inhibition observed in Streptococcus mutans. In addition, we evaluated the efficacy of sorbitol in inhibiting the growth of pneumococci, as sorbitol is widely used for indications similar to those for which xylitol is used. The addition of 5% xylitol to the growth medium resulted in marked growth inhibition, an effect which was totally eliminated in the presence of 1, 2.5, or 5% fructose but not in the presence of 1 or 5% glucose, 1% galactose, or 1% sucrose. This finding implies that xylitol-induced inhibition of pneumococcal growth is mediated via the fructose phosphotransferase system in a way similar to that in which mutans group streptococcal growth is inhibited. The addition of sorbitol at concentrations of 1, 2.5, or 5% to the growth medium did not affect the growth of pneumococci and neither inhibited nor enhanced the xylitol-induced growth impairment. Thus, it seems that xylitol is the only commercially used sugar substitute proven to have an antimicrobial effect on pneumococci. PMID:11120960

  6. The Efficacy of Xylitol, Xylitol-Probiotic and Fluoride Dentifrices in Plaque Reduction and Gingival Inflammation in Children: A Randomised Controlled Clinical Trial.

    PubMed

    Arat Maden, Eda; Altun, Ceyhan; Açikel, Cengizhan

    The present prospective, randomised, placebo-controlled, clinical trial was designed to evaluate the clinical effects of a commercially available dentifrice containing fluoride, xylitol or xylitol-probiotic on the decrease of plaque and gingival inflammation in children between 13 and 15 years of age. Forty-eight adolescents were randomly grouped into three groups of n = 16 each: study group A received xylitol (Xyliwhite) toothpaste; study group B received xylitol-probiotic (Periobiotic) toothpaste; and the control group C received fluoride (Colgate Max Fresh) toothpaste. The subjects were instructed to use the dentifrice determined and a modified Bass brushing technique twice a day for two minutes over a 6-week perioed. Clinical evaluation was performed using a gingival index and a plaque index at baseline and at the end of the 6-week period. From day 0 to 42, reductions in the plaque index were statistically significant in all groups, Colgate Max Fresh, PerioBiotic and Xyliwhite (p-values 0.001, 0.001 and 0.035, respectively), but reductions in the gingival index were statistically significant only in the Colgate Max Fresh and PerioBiotic groups (both with p = 0.001), not in the Xyliwhite group (p = 0.116). PerioBiotic toothpaste was found to be better than Xyliwhite and Colgate Max Fresh toothpastes at reducing plaque and gingival scores. However, statistically significant differences with PerioBiotic and Colgate Max Fresh toothpaste were not observed. It was concluded that PerioBiotic was an all-round dentifrice that produced a significant reduction in both gingivitis and plaque.

  7. Investigation of Water Absorption and Diffusion in Microparticles Containing Xylitol to Provide a Cooling Effect by Thermal Analysis

    NASA Astrophysics Data System (ADS)

    Salaün, F.; Bedek, G.; Devaux, E.; Dupont, D.; Deranton, D.

    2009-08-01

    Polyurethane microparticles containing xylitol as a sweat sensor system were prepared by interfacial polymerization. The structural and thermal properties of the resultant microparticles were studied. The surface morphology and chemical structure of microparticles were investigated using an optical microscope (OM) and a Fourier-transform infrared spectroscope (FTIR), respectively. The thermal properties of samples were investigated by thermogravimetric analysis (TGA) and by differential scanning calorimetry (DSC). Thus, two types of microparticles were synthesized by varying the percentage of monomers introduced. The obtained morphology is directly related to the synthesis conditions. DSC analysis indicated that the mass content of crystalline xylitol was up to 63.8 %, which resulted in a high enthalpy of dilution of 127.7 J · g-1. Furthermore, the water release rate monitored by TGA analysis was found to be faster from the microparticles than from raw xylitol. Thus, the microparticles could be applied for thermal energy storage and moisture sensor enhancement.

  8. The production of (14C) oxalate during the metabolism of (14C) carbohydrates in isolated rat hepatocytes.

    PubMed

    Rofe, A M; James, H M; Bais, R; Edwards, J B; Conyers, R A

    1980-04-01

    Oxalate (14C) was produced during the metabolism of (U-14C) carbohydrates in hepatocytes isolated from normal rats. At 10 mM, the order of oxalate production was fructose > glycerol > xylitol > sorbitol greater than or equal to glucose in the ratio 10 : 4 : 3 : 1 : 1. This difference between oxalate production from fructose and glucose was reflected in their rates of utilisation, glucose being poorly metabolised in hepatocytes from fasted rats. Fructose was rapidly metabolised, producing glucose, lactate and pyruvate as the major metabolites. Glycerol, xylitol and sorbitol were metabolised at half the rate of fructose, the major metabolites being glucose, lactate and glycerophosphate. The marked similarity in the pattern of intermediary metabolites produced by these polyols was not, however, reflected in the rates of oxalate production. Hepatic polyol metabolism resulted in high levels of cytosolic NADH, as indicated by elevated lactate : pyruvate and glycerophosphate : dihydroxyacetone phosphate ratios. The artificial electron acceptor, phenazine methosulphate (PMS) stimulated oxalate production from the polyols, particularly xylitol. In the presence of PMS, the order of oxalate production was fructose greater than or equal to xylitol > glycerol > sorbitol in the ratio 10 : 10 : 6 : 2. The production of glucose, lactate and pyruvate from the polyols was also stimulated by PMS, whereas the general metabolism of fructose, including oxalate production, was little affected. Oxalate (14C) was produced from (1-14C), (2-14C) and (6-14C) but not (3,4-14C) glucose in hepatocytes isolated from non-fasted, pyridoxine-deficient rats. Whilst this labelling pattern is consistent with oxalate being produced by a number of pathways, it is suggested that metabolism via hydroxypyruvate is a major route for oxalate production from various carbohydrates, with perhaps the exception of xylitol, which appears to have an alternative mechanism for oxalate production. The observation that

  9. Effect of white tea and xylitol on structure and properties of demineralized enamel and jawbone

    NASA Astrophysics Data System (ADS)

    Auerkari, EI; Kiranahayu, R.; Emerita, D.; Sumariningsih, P.; Sarita, D.; Adiwirya, MS; Suhartono, AW

    2018-05-01

    White tea and xylitol have been suggested as potential agents to combat dental caries and osteoporosis through enhanced remineralization. This investigation aimed to determine the effects of exposure to white tea with and without xylitol on the structure, composition and hardness of demineralized human dental enamel. For control, samples of untreated and demineralized enamel and samples of untreated rat jawbone were subjected to similar measurements. For demineralization, the enamel samples were immersed for two days at 50°C in an acetate solution (pH 4.0). All samples were then soaked for two weeks at 37°C in a solution containing three different concentrations of white tea, xylitol or both, and an optional addition of the remineralization ingredients including Ca, P and F. For enamel samples without preceding demineralization and without added remineralization ingredients, the results showed highest mean hardness after immersion in a solution containing both white tea and xylitol, practically independently of their applied concentration level. However, for demineralized enamel samples with added remineralization ingredients, the resulting mean hardness was also dependent on concentration of white tea and xylitol. With sufficient concentration, hardness was again higher for combined white tea and xylitol than for either of these used alone.

  10. The purification and properties of human liver ketohexokinase. A role for ketohexokinase and fructose-bisphosphate aldolase in the metabolic production of oxalate from xylitol.

    PubMed Central

    Bais, R; James, H M; Rofe, A M; Conyers, R A

    1985-01-01

    Ketohexokinase (EC 2.7.1.3) was purified to homogeneity from human liver, and fructose-bisphosphate aldolase (EC 4.1.2.13) was partially purified from the same source. Ketohexokinase was shown, by column chromatography and polyacrylamide-gel electrophoresis, to be a dimer of Mr 75000. Inhibition studies with p-chloromercuribenzoate and N-ethylmaleimide indicate that ketohexokinase contains thiol groups, which are required for full activity. With D-xylulose as substrate, ketohexokinase and aldolase can catalyse a reaction sequence which forms glycolaldehyde, a known precursor of oxalate. The distribution of both enzymes in human tissues indicates that this reaction sequence occurs mainly in the liver, to a lesser extent in the kidney, and very little in heart, brain and muscle. The kinetic properties of ketohexokinase show that this enzyme can phosphorylate D-xylulose as readily as D-fructose, except that higher concentrations of D-xylulose are required. The kinetic properties of aldolase show that the enzyme has a higher affinity for D-xylulose 1-phosphate than for D-fructose 1-phosphate. These findings support a role for ketohexokinase and aldolase in the formation of glycolaldehyde. The effect of various metabolites on the activity of the two enzymes was tested to determine the conditions that favour the formation of glycolaldehyde from xylitol. The results indicate that few of these metabolites affect the activity of ketohexokinase, but that aldolase can be inhibited by several phosphorylated compounds. This work suggests that, although the formation of oxalate from xylitol is normally a minor pathway, under certain conditions of increased xylitol metabolism oxalate production can become significant and may result in oxalosis. Images Fig. 1. PMID:2996495

  11. Dielectric relaxation and hydrogen bonding interaction in xylitol-water mixtures using time domain reflectometry

    NASA Astrophysics Data System (ADS)

    Rander, D. N.; Joshi, Y. S.; Kanse, K. S.; Kumbharkhane, A. C.

    2016-01-01

    The measurements of complex dielectric permittivity of xylitol-water mixtures have been carried out in the frequency range of 10 MHz-30 GHz using a time domain reflectometry technique. Measurements have been done at six temperatures from 0 to 25 °C and at different weight fractions of xylitol (0 < W X ≤ 0.7) in water. There are different models to explain the dielectric relaxation behaviour of binary mixtures, such as Debye, Cole-Cole or Cole-Davidson model. We have observed that the dielectric relaxation behaviour of binary mixtures of xylitol-water can be well described by Cole-Davidson model having an asymmetric distribution of relaxation times. The dielectric parameters such as static dielectric constant and relaxation time for the mixtures have been evaluated. The molecular interaction between xylitol and water molecules is discussed using the Kirkwood correlation factor ( g eff ) and thermodynamic parameter.

  12. Effect of xylitol varnishes on remineralization of artificial enamel caries lesions in situ.

    PubMed

    Cardoso, C A B; Cassiano, L P S; Costa, E N; Souza-E-Silva, C M; Magalhães, A C; Grizzo, L T; Caldana, M L; Bastos, J R M; Buzalaf, M A R

    2016-07-01

    Analyze the effect of varnishes containing xylitol compared to commercial fluoridated varnishes on the remineralization of artificial enamel caries lesions in situ. Twenty subjects took part in this crossover, double-blind study performed in four phases of 5days each. Each subject worn palatal appliances containing four predemineralized bovine enamel specimens. Artificial caries lesions were produced by immersion in 30ml of lactic acid buffer containing 3mM CaCl2·2H2O, 3mM KH2PO4, 6μM tetraetil metil diphosphanate (pH 5.0) for 6days. The specimens in each subject were treated once with the following varnishes: 20% xylitol (experimental); Duofluorid™ (6% NaF, 6% CaF2), Duraphat™ (5% NaF, positive control) and placebo (no-F/xylitol, negative control). The varnishes were applied in a thin layer and removed after 6h. Fifteen subjects were able to finish all phases. The enamel alterations were quantified by surface hardness and transversal microradiography. The percentage of surface hardness recovery (%SHR), the integrated mineral loss and lesion depth were statistically analyzed by Friedmann and Dunn's tests test (p<0.05). Enamel surface remineralization was significantly increased by Duraphat™, Duofluorid™ and 20% xylitol formulations. Significant subsurface mineral remineralization could also be seen for the experimental and commercial varnishes, except for Duraphat™, when the parameter "lesion depth" was considered. 20% xylitol varnish seem to be a promising alternative to increase surface and subsurface remineralization of artificial caries lesions in situ. effective vehicles are desirable for caries control. Xylitol varnishes seem to be promising alternatives to increase enamel remineralization in situ, which should be confirmed by clinical studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Is mother-child transmission a possible vehicle for xylitol prophylaxis in acute otitis media?

    PubMed

    Danhauer, Jeffrey L; Kelly, Allison; Johnson, Carole E

    2011-10-01

    Xylitol can be a prophylaxis for acute otitis media (AOM), especially when administered via chewing gum, but that vehicle has limitations for children. This review sought evidence for links of mother-child transmission of bacteria and as a vehicle for xylitol as a prophylaxis for dental caries and its translation to AOM in infants and young children. Qualitative systematic review. Combining output from 43 search strings used earlier and submitting 20 new strings to PubMed resulted in 14 studies (six were excluded; eight were included). Included studies had to be published in English-language, peer-reviewed journals; involve mothers using xylitol; and assess bacteria or caries in their children. Evaluation forms were completed for search, retrieval, and quality assessment of included studies. The studies showed that mothers' chewing xylitol gum was a prophylaxis against bacteria and caries in their children. A mother-child transmission model was presented as a possible vehicle for use in comprehensive prevention programs for AOM. Potential for xylitol use to prevent AOM warrants further study. A mother-child model may apply to AOM for transmission of bacteria and as a prophylaxis, but alternative vehicles like nasal sprays should be investigated for ease of use and effectiveness.

  14. Effect of xylitol on cariogenic and beneficial oral streptococci: a randomized, double-blind crossover trial

    PubMed Central

    Bahador, A; Lesan, S; Kashi, N

    2012-01-01

    Background/purpose Although habitual consumption of xylitol reduces cariogenic streptococci levels, its effect on beneficial oral streptococci is less clear. The main aim of the study is to investigate the effect of short-term xylitol consumption on the oral beneficial streptococci level of saliva, Streptococcus sanguinis and S. mitis. Material and Methods Twenty four volunteers with a median age of 23.7 years (range: 20-28) harboring Streptococcus mutans, S. sobrinus, S. sanguinis and S. mitis participated in the randomized, double-blind, cross-over study. The experimental chewing gum (1.5 g/pellet) contained 70% xylitol w/w while the control gum contained 63% sorbitol w/w. Saliva samples were collected before and after two three-week test periods with a four-week washout interval. Colony-forming units (CFU)/ml were enumerated for the estimation of S. mutans levels on Mitis Salivarius-Mutans valinomycin (MS-MUTV), S. sobrinus on Mitis Salivarius-Sobrinus (MS-SOB), S. sanguinis on Modified Medium 10-Sucrose (MM10-S) and S. mitis on Mitis Salivarius Agar with Tellurite (MSAT) media. Results The S. mutans and S. sobrinus counts of the saliva samples decreased significantly (p = 0.01 and p = 0.011, respectively) in the xylitol gum group but not in the sorbitol gum group. The salivary S. sanguinis and S. mitis counts did not decrease in both xylitol and sorbitol gum groups. Conclusions Based on the findings of this study, xylitol consumption reduced S. mutans and S. sobrinus counts in saliva but appeared not to effect numbers of S. sanguinis and S. mitis in saliva. So, habitual consumption of xylitol reduces cariogenic streptococci levels without any effect on beneficial sterptococci for the oral cavity. PMID:22973473

  15. Electrochemical oxidation and electroanalytical determination of xylitol at a boron-doped diamond electrode.

    PubMed

    Lourenço, Anabel S; Sanches, Fátima A C; Magalhães, Renata R; Costa, Daniel J E; Ribeiro, Williame F; Bichinho, Kátia M; Salazar-Banda, Giancarlo R; Araújo, Mário C U

    2014-02-01

    Xylitol is a reduced sugar with anticariogenic properties used by insulin-dependent diabetics, and which has attracted great attention of the pharmaceutical, cosmetics, food and dental industries. The detection of xylitol in different matrices is generally based on separation techniques. Alternatively, in this paper, the application of a boron-doped diamond (BDD) electrode allied to differing voltammetric techniques is presented to study the electrochemical behavior of xylitol, and to develop an analytical methodology for its determination in mouthwash. Xylitol undergoes two oxidation steps in an irreversible diffusion-controlled process (D=5.05 × 10(-5)cm(2)s(-1)). Differential pulse voltammetry studies revealed that the oxidation mechanism for peaks P1 (3.4 ≤ pH ≤ 8.0), and P2 (6.0 ≤ pH ≤ 9.0) involves transfer of 1H(+)/1e(-), and 1e(-) alone, respectively. The oxidation process P1 is mediated by the (•)OH generated at the BDD hydrogen-terminated surface. The maximum peak current was obtained at a pH of 7.0, and the electroanalytical method developed, (employing square wave voltammetry) yielded low detection (1.3 × 10(-6) mol L(-1)), and quantification (4.5 × 10(-6) mol L(-1)) limits, associated with good levels of repeatability (4.7%), and reproducibility (5.3%); thus demonstrating the viability of the methodology for detection of xylitol in biological samples containing low concentrations. © 2013 Elsevier B.V. All rights reserved.

  16. Crystal structure of glucose isomerase in complex with xylitol inhibitor in one metal binding mode.

    PubMed

    Bae, Ji-Eun; Kim, In Jung; Nam, Ki Hyun

    2017-11-04

    Glucose isomerase (GI) is an intramolecular oxidoreductase that interconverts aldoses and ketoses. These characteristics are widely used in the food, detergent, and pharmaceutical industries. In order to obtain an efficient GI, identification of novel GI genes and substrate binding/inhibition have been studied. Xylitol is a well-known inhibitor of GI. In Streptomyces rubiginosus, two crystal structures have been reported for GI in complex with xylitol inhibitor. However, a structural comparison showed that xylitol can have variable conformation at the substrate binding site, e.g., a nonspecific binding mode. In this study, we report the crystal structure of S. rubiginosus GI in a complex with xylitol and glycerol. Our crystal structure showed one metal binding mode in GI, which we presumed to represent the inactive form of the GI. The metal ion was found only at the M1 site, which was involved in substrate binding, and was not present at the M2 site, which was involved in catalytic function. The O 2 and O 4 atoms of xylitol molecules contributed to the stable octahedral coordination of the metal in M1. Although there was no metal at the M2 site, no large conformational change was observed for the conserved residues coordinating M2. Our structural analysis showed that the metal at the M2 site was not important when a xylitol inhibitor was bound to the M1 site in GI. Thus, these findings provided important information for elucidation or engineering of GI functions. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Purification and characterization of xylitol dehydrogenase with l-arabitol dehydrogenase activity from the newly isolated pentose-fermenting yeast Meyerozyma caribbica 5XY2.

    PubMed

    Sukpipat, Wiphat; Komeda, Hidenobu; Prasertsan, Poonsuk; Asano, Yasuhisa

    2017-01-01

    Meyerozyma caribbica strain 5XY2, which was isolated from an alcohol fermentation starter in Thailand, was found to catabolize l-arabinose as well as d-glucose and d-xylose. The highest production amounts of ethanol from d-glucose, xylitol from d-xylose, and l-arabitol from l-arabinose were 0.45 g/g d-glucose, 0.60 g/g d-xylose, and 0.61 g/g l-arabinose with 21.7 g/L ethanol, 20.2 g/L xylitol, and 30.3 g/l l-arabitol, respectively. The enzyme with l-arabitol dehydrogenase (LAD) activity was purified from the strain and found to exhibit broad specificity to polyols, such as xylitol, d-sorbitol, ribitol, and l-arabitol. Xylitol was the preferred substrate with K m =16.1 mM and k cat /K m =67.0 min -1 mM -1 , while l-arabitol was also a substrate for the enzyme with K m =31.1 mM and k cat /K m =6.5 min -1  mM -1 . Therefore, this enzyme from M. caribbica was named xylitol dehydrogenase (McXDH). McXDH had an optimum temperature and pH at 40°C and 9.5, respectively. The McXDH gene included a coding sequence of 1086 bp encoding a putative 362 amino acid protein of 39 kDa with an apparent homopentamer structure. Native McXDH and recombinant McXDH exhibited relative activities toward l-arabitol of approximately 20% that toward xylitol, suggesting the applicability of this enzyme with the functions of XDH and LAD to the development of pentose-fermenting Saccharomyces cerevisiae. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Gut hormone secretion, gastric emptying, and glycemic responses to erythritol and xylitol in lean and obese subjects.

    PubMed

    Wölnerhanssen, Bettina K; Cajacob, Lucian; Keller, Nino; Doody, Alison; Rehfeld, Jens F; Drewe, Juergen; Peterli, Ralph; Beglinger, Christoph; Meyer-Gerspach, Anne Christin

    2016-06-01

    With the increasing prevalence of obesity and a possible association with increasing sucrose consumption, nonnutritive sweeteners are gaining popularity. Given that some studies indicate that artificial sweeteners might have adverse effects, alternative solutions are sought. Xylitol and erythritol have been known for a long time and their beneficial effects on caries prevention and potential health benefits in diabetic patients have been demonstrated in several studies. Glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) are released from the gut in response to food intake, promote satiation, reduce gastric emptying (GE), and modulate glucose homeostasis. Although glucose ingestion stimulates sweet taste receptors in the gut and leads to incretin and gastrointestinal hormone release, the effects of xylitol and erythritol have not been well studied. Ten lean and 10 obese volunteers were given 75 g of glucose, 50 g of xylitol, or 75 g of erythritol in 300 ml of water or placebo (water) by a nasogastric tube. We examined plasma glucose, insulin, active GLP-1, CCK, and GE with a [(13)C]sodium acetate breath test and assessed subjective feelings of satiation. Xylitol and erythritol led to a marked increase in CCK and GLP-1, whereas insulin and plasma glucose were not (erythritol) or only slightly (xylitol) affected. Both xylitol and erythritol induced a significant retardation in GE. Subjective feelings of appetite were not significantly different after carbohydrate intake compared with placebo. In conclusion, acute ingestion of erythritol and xylitol stimulates gut hormone release and slows down gastric emptying, whereas there is no or only little effect on insulin release. Copyright © 2016 the American Physiological Society.

  19. 75 FR 8920 - Grant of Authority for Subzone Status; Danisco USA, Inc., Sweeteners Division (Xylitol, Xylose...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... Status; Danisco USA, Inc., Sweeteners Division (Xylitol, Xylose, Galactose and Mannose); Thomson, IL...., Sweeteners Division, located in Thomson, Illinois, (FTZ Docket 4-2009, filed 2/4/2009); Whereas, notice... xylitol, xylose, galactose and mannose at the facility of Danisco USA, Inc., Sweeteners Division, located...

  20. Linear response of mutans streptococci to increasing frequency of xylitol chewing gum use: a randomized controlled trial [ISRCTN43479664

    PubMed Central

    Ly, Kiet A; Milgrom, Peter; Roberts, Marilyn C; Yamaguchi, David K; Rothen, Marilynn; Mueller, Greg

    2006-01-01

    Background Xylitol is a naturally occurring sugar substitute that has been shown to reduce the level of mutans streptococci in plaque and saliva and to reduce tooth decay. It has been suggested that the degree of reduction is dependent on both the amount and the frequency of xylitol consumption. For xylitol to be successfully and cost-effectively used in public health prevention strategies dosing and frequency guidelines should be established. This study determined the reduction in mutans streptococci levels in plaque and unstimulated saliva to increasing frequency of xylitol gum use at a fixed total daily dose of 10.32 g over five weeks. Methods Participants (n = 132) were randomized to either active groups (10.32 g xylitol/day) or a placebo control (9.828 g sorbitol and 0.7 g maltitol/day). All groups chewed 12 pieces of gum per day. The control group chewed 4 times/day and active groups chewed xylitol gum at a frequency of 2 times/day, 3 times/day, or 4 times/day. The 12 gum pieces were evenly divided into the frequency assigned to each group. Plaque and unstimulated saliva samples were taken at baseline and five-weeks and were cultured on modified Mitis Salivarius agar for mutans streptococci enumeration. Results There were no significant differences in mutans streptococci level among the groups at baseline. At five-weeks, mutans streptococci levels in plaque and unstimulated saliva showed a linear reduction with increasing frequency of xylitol chewing gum use at the constant daily dose. Although the difference observed for the group that chewed xylitol 2 times/day was consistent with the linear model, the difference was not significant. Conclusion There was a linear reduction in mutans streptococci levels in plaque and saliva with increasing frequency of xylitol gum use at a constant daily dose. Reduction at a consumption frequency of 2 times per day was small and consistent with the linear-response line but was not statistically significant. PMID:16556326

  1. Linear response of mutans streptococci to increasing frequency of xylitol chewing gum use: a randomized controlled trial [ISRCTN43479664].

    PubMed

    Ly, Kiet A; Milgrom, Peter; Roberts, Marilyn C; Yamaguchi, David K; Rothen, Marilynn; Mueller, Greg

    2006-03-24

    Xylitol is a naturally occurring sugar substitute that has been shown to reduce the level of mutans streptococci in plaque and saliva and to reduce tooth decay. It has been suggested that the degree of reduction is dependent on both the amount and the frequency of xylitol consumption. For xylitol to be successfully and cost-effectively used in public health prevention strategies dosing and frequency guidelines should be established. This study determined the reduction in mutans streptococci levels in plaque and unstimulated saliva to increasing frequency of xylitol gum use at a fixed total daily dose of 10.32 g over five weeks. Participants (n = 132) were randomized to either active groups (10.32 g xylitol/day) or a placebo control (9.828 g sorbitol and 0.7 g maltitol/day). All groups chewed 12 pieces of gum per day. The control group chewed 4 times/day and active groups chewed xylitol gum at a frequency of 2 times/day, 3 times/day, or 4 times/day. The 12 gum pieces were evenly divided into the frequency assigned to each group. Plaque and unstimulated saliva samples were taken at baseline and five-weeks and were cultured on modified Mitis Salivarius agar for mutans streptococci enumeration. There were no significant differences in mutans streptococci level among the groups at baseline. At five-weeks, mutans streptococci levels in plaque and unstimulated saliva showed a linear reduction with increasing frequency of xylitol chewing gum use at the constant daily dose. Although the difference observed for the group that chewed xylitol 2 times/day was consistent with the linear model, the difference was not significant. There was a linear reduction in mutans streptococci levels in plaque and saliva with increasing frequency of xylitol gum use at a constant daily dose. Reduction at a consumption frequency of 2 times per day was small and consistent with the linear-response line but was not statistically significant.

  2. Xylitol pediatric topical oral syrup to prevent dental caries: a double-blind randomized clinical trial of efficacy.

    PubMed

    Milgrom, Peter; Ly, Kiet A; Tut, Ohnmar K; Mancl, Lloyd; Roberts, Marilyn C; Briand, Kennar; Gancio, Mary Jane

    2009-07-01

    To evaluate the effectiveness of a xylitol pediatric topical oral syrup to reduce the incidence of dental caries among very young children and to evaluate the effect of xylitol in reducing acute otitis media in a subsequent study. Double-blind randomized controlled trial. Communities in the Republic of the Marshall Islands. One hundred eight children aged 9 to 15 months were screened, and 100 were enrolled. Intervention Children were randomized to receive xylitol topical oral syrup (administered by their parents) twice a day (2 xylitol [4.00-g] doses and 1 sorbitol dose) (Xyl-2 x group) or thrice per day (3 xylitol [2.67-g] doses) (Xyl-3x group) vs a control syrup (1 xylitol [2.67-g] dose and 2 sorbitol doses) (control group). The primary outcome end point of the study was the number of decayed primary teeth. A secondary outcome end point was the incidence of acute otitis media for reporting in a subsequent report. Ninety-four children (mean [SD] age, 15.0 [2.7] months at randomization) with at least 1 follow-up examination were included in the intent-to-treat analysis. The mean (SD) follow-up period was 10.5 (2.2) months. Fifteen of 29 of the children in the control group (51.7%) had tooth decay compared with 13 of 32 children in the Xyl-3x group (40.6%) and eight of 33 children in the Xyl-2x group (24.2%). The mean (SD) numbers of decayed teeth were 1.9 (2.4) in the control group, 1.0 (1.4) in the Xyl-3x group, and 0.6 (1.1) in the Xyl-2x group. Compared with the control group, there were significantly fewer decayed teeth in the Xyl-2x group (relative risk, 0.30; 95% confidence interval, 0.13-0.66; P = .003) and in the Xyl-3x group (0.50; 0.26-0.96; P = .04). No statistical difference was noted between the 2 xylitol treatment groups (P = .22). Xylitol oral syrup administered topically 2 or 3 times daily at a total daily dose of 8 g was effective in preventing early childhood caries.

  3. Will parents participate in and comply with programs and regimens using xylitol for preventing acute otitis media in their children?

    PubMed

    Danhauer, Jeffrey L; Johnson, Carole E; Baker, Jason A; Ryu, Jung A; Smith, Rachel A; Umeda, Claire J

    2015-04-01

    Antiadhesive properties in xylitol, a natural sugar alcohol, can help prevent acute otitis media (AOM) in children by inhibiting harmful bacteria from colonizing and adhering to oral and nasopharyngeal areas and traveling to the Eustachian tube and middle ear. This study investigated parents' willingness to use and comply with a regimen of xylitol for preventing AOM in their preschool- and kindergarten-aged children. An Internet questionnaire was designed and administered to parents of young children in preschool and kindergarten settings. Most parents were unaware of xylitol's use for AOM and would not likely comply with regimens for preventing AOM in their children; however, parents having previous knowledge of xylitol and whose children had a history of AOM would be more likely to do so. Generally, most of these parents did not know about xylitol and probably would not use it to prevent ear infections. Unfortunately, these results parallel earlier findings for teachers and schools, which present obstacles for establishing ear infection prevention programs using similar protocols for young children. The results showed that considerable education and age-appropriate vehicles for administering xylitol are needed before establishing AOM prevention programs in schools and/or at home.

  4. Effect of pressure on the α relaxation in glycerol and xylitol

    NASA Astrophysics Data System (ADS)

    Paluch, M.; Casalini, R.; Hensel-Bielowka, S.; Roland, C. M.

    2002-06-01

    The effect of pressure on the dielectric relaxation of two polyhydroxy alcohols is examined by analysis of existing data on glycerol, together with new measurements on xylitol. The fragility, or Tg-normalized temperature dependence, changes with pressure for low pressures, but becomes invariant above 1 GPa. When compared at temperatures for which the α-relaxation times are equal, there is no effect of pressure (<1 GPa) on the shape of the α dispersion at higher temperatures. However, nearer Tg, pressure broadens the α peak, consistent with the expected correlation of fragility with the breadth of the relaxation function. We also observe that the α-relaxation peaks for both glycerol and xylitol show an excess intensity at higher frequencies. For xylitol, unlike for glycerol, at lower temperatures this wing disjoins to form a separate peak. For both glass formers, elevated pressure causes the excess wing to become more separated from the peak maximum; that is, the properties of the primary and excess intensities are not correlated. This implies that the excess wing in glycerol is also a distinct secondary process, although it cannot be resolved from the primary peak.

  5. EFFECTS OF SHORT-TERM USE OF XYLITOL CHEWING GUM AND MOLTITOL ORAL SPRAY ON SALIVARY STREPTOCOCCUS MUTANS AND ORAL PLAQUE.

    PubMed

    Mitrakul, Kemthong; Srisatjaluk, Ratchapin; Vongsawan, Kutkao; Teerawongpairoj, Chayanid; Choongphong, Nachata; Panich, Tathata; Kaewvimonrat, Pravee

    2017-03-01

    The purpose of this study was to investigate the short-term effects of xylitol chewing gum and maltitol spray on the concentration of salivary mutans streptococci (MS) and on the plaque index. Eighty-one second, third and fourth year dental and dental assistant students with a salivary MS concentration > 103 CFU/ml cultured on mitis salivarius bacitracin (MSB) agar were included in the study. The age range of subjects was 18-23 years. The participants were divided into 3 groups: control, xylitol chewing gum and maltitol spray groups. Each subject brushed their teeth with fluoridated toothpaste (1,000 ppm). Each subject in the xylitol chewing gum group was told to chew 2 pieces, 6 times a day (total xylitol dose=7.3 g/day) for 4 weeks. Each subject in the maltitol spray group was told to spray one puff twice daily (morning and evening) for 4 weeks. A dental examination and saliva samples to determine the salivary MS concentration were collected at baseline and at 2 and 4 weeks after experiment initiation. The nonparametric Mann–Whitney U test was used to analyze differences among groups. The mean ages in the control, xylitol chewing gum and maltitol spray groups were 22±1, 20±1 and 20±1 years, respectively. The mean MS concentrations at the beginning of the study and after 2 weeks in the control, and xylitol chewing gum and moltitol oral spray groups were not significantly different from each other. There was a significantly lower MS concentration in the moltitol oral spray group than in the control group by 4 weeks (p=0.045) but no significant difference between the control group and the xylitol gum group by 4 weeks. There were no significant differences in the mean plaque index at baseline among the control group, the xylitol chewing gum group and the moltitol oral spray group. The plaque index was significantly lower in the xylitol chewing gum group than the control group (p=0.003) at 2 weeks but not 4 weeks. There was no significant difference in the mean

  6. Xylitol pediatric topical oral syrup to prevent dental caries: a double blind, randomized clinical trial of efficacy

    PubMed Central

    Milgrom, Peter; Ly, Kiet A.; Tut, Ohnmar K.; Mancl, Lloyd; Roberts, Marilyn C.; Briand, Kennar; Gancio, Mary Jane

    2009-01-01

    Objective To evaluate the effectiveness of a xylitol pediatric topical oral syrup to reduce the incidence of dental caries of very young children. Design Randomized, double-blinded, controlled trial. Setting Communities in the Republic of the Marshall Islands. Participants 108 children aged 9 to 15 months were screened and 100 were enrolled. Intervention Children were randomized and parents administered topical oral xylitol syrup two times (Xyl-2X, two xylitol 4.00 g/dose + one sorbitol dose) or three times (Xyl-3X, three xylitol 2.67 g/dose) per day (total 8 g) or control (one xylitol 2.67 g/dose + two sorbitol dose). Outcome Measures The outcome end-point of the study was the number of decayed primary teeth. Results Ninety-four of 100 children (mean±SD age, 15.0±2.7 months at randomization) with at least one follow-up exam were included in the intent-to-treat analysis. The mean±SD follow-up period was 10.5±2.2 months. Nearly 52% of children in the control condition had tooth decay compared to 40.6% among Xyl-3X and 24.2% among Xyl-2X conditions. The mean±SD number of decayed teeth was 1.9±2.4 for control, 1.0±1.4 for Xyl-3X, and 0.6±1.1 for Xyl-2X condition. Compared to controls, there was significantly fewer decayed teeth in the Xyl-2X (relative risk [RR], 0.30; 95% confidence interval [CI] 0.13, 0.66; P=.003) and Xyl-3X (RR, 0.50; 95% CI 0.26, 0.96; P=0.037) conditions. There was no statistical difference between the two xylitol treatment conditions (P=0.22). Conclusion Oral xylitol syrup administered topically two or three times each day at a total dose of 8 g was effective in preventing Early Childhood Caries. PMID:19581542

  7. Effect of three-year consumption of erythritol, xylitol and sorbitol candies on various plaque and salivary caries-related variables.

    PubMed

    Runnel, Riina; Mäkinen, Kauko K; Honkala, Sisko; Olak, Jana; Mäkinen, Pirkko-Liisa; Nõmmela, Rita; Vahlberg, Tero; Honkala, Eino; Saag, Mare

    2013-12-01

    The objective of the present paper is to report results from oral biologic studies carried out in connection with a caries study. Samples of whole-mouth saliva and dental plaque were collected from initially 7- to 8-year-old subjects who participated in a 3-year school-based programme investigating the effect of the consumption of polyol-containing candies on caries rates. The subjects were randomized in three cohorts, consumed erythritol, xylitol, or sorbitol candies. The daily polyol consumption from the candies was approximately 7.5 g. A significant reduction in dental plaque weight from baseline (p<0.05) occurred in the erythritol group during almost all intervention years while no changes were found in xylitol and sorbitol groups. Usage of polyol candies had no significant or consistent effect on the levels of plaque protein, glucose, glycerol, or calcium, determined yearly in connection with caries examinations. After three years, the plaque of erythritol-receiving subjects contained significantly (p<0.05) lower levels of acetic acid and propionic acid than that of subjects receiving xylitol or sorbitol. Lactic acid levels partly followed the same pattern. The consumption of erythritol was generally associated with significantly (p<0.05) lower counts of salivary and plaque mutans streptococci compared with the other groups. There was no change in salivary Lactobacillus levels. Three-year consumption of erythritol-containing candies by initially 7- to 8-year old children was associated with reduced plaque growth, lower levels of plaque acetic acid and propionic acid, and reduced oral counts of mutans streptococci compared with the consumption of xylitol or sorbitol candies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The Role of Xylitol Gum Chewing in Restoring Postoperative Bowel Activity After Cesarean Section.

    PubMed

    Lee, Jian Tao; Hsieh, Mei-Hui; Cheng, Po-Jen; Lin, Jr-Rung

    2016-03-01

    The goal of this study was to evaluate the effects of xylitol gum chewing on gastrointestinal recovery after cesarean section. Women who underwent cesarean section (N = 120) were randomly allocated into Group A (xylitol gum), Group B (nonxylitol gum), or the control group (no chewing gum). Every 2 hr post-cesarean section and until first flatus, Groups A and B received two pellets of chewing gum and were asked to chew for 15 min. The times to first bowel sounds, first flatus, and first defecation were then compared among the three groups. Group A had the shortest mean time to first bowel sounds (6.9 ± 1.7 hr), followed by Group B (8 ± 1.6 hr) and the control group (12.8 ± 2.5 hr; one-way analysis of variance, p < .001; Scheffe's post hoc comparisons, p < .05). The gum-chewing groups demonstrated a faster return of flatus than the control group did (p < .001), but the time to flatus did not differ significantly between the gum-chewing groups. Additionally, the differences in the time to first defecation were not significant. After cesarean section, chewing gum increased participants' return of bowel activity, as measured by the appearance of bowel sounds and the passage of flatus. In this context, xylitol-containing gum may be superior to xylitol-free gum. © The Author(s) 2015.

  9. Anti-irritant and anti-inflammatory effects of glycerol and xylitol in sodium lauryl sulphate-induced acute irritation.

    PubMed

    Szél, E; Polyánka, H; Szabó, K; Hartmann, P; Degovics, D; Balázs, B; Németh, I B; Korponyai, C; Csányi, E; Kaszaki, J; Dikstein, S; Nagy, K; Kemény, L; Erős, G

    2015-12-01

    Glycerol is known to possess anti-irritant and hydrating properties and previous studies suggested that xylitol may also have similar effects. Our aim was to study whether different concentrations of these polyols restore skin barrier function and soothe inflammation in sodium lauryl sulphate (SLS)-induced acute irritation. The experiments were performed on male SKH-1 hairless mice. The skin of the dorsal region was exposed to SLS (5%) for 3 h alone or together with 5% or 10% of glycerol respectively. Further two groups received xylitol solutions (8.26% and 16.52% respectively) using the same osmolarities, which were equivalent to those of the glycerol treatments. The control group was treated with purified water. Transepidermal water loss (TEWL) and skin hydration were determined. Microcirculatory parameters of inflammation were observed by means of intravital videomicroscopy (IVM). Furthermore, accumulation of neutrophil granulocytes and lymphocytes, the expression of inflammatory cytokines and SLS penetration were assessed, as well. Treatment with the 10% of glycerol and both concentrations of xylitol inhibited the SLS-induced elevation of TEWL and moderated the irritant-induced increase in dermal blood flow and in the number of leucocyte-endothelial interactions. All concentrations of the applied polyols improved hydration and prevented the accumulation of lymphocytes near the treatment site. At the mRNA level, neither glycerol nor xylitol influenced the expression of interleukin-1 alpha. However, expression of interleukin-1 beta was significantly decreased by the 10% glycerol treatment, while expression of tumour necrosis factor-alpha decreased upon the same treatment, as well as in response to xylitol. Higher polyol treatments decreased the SLS penetration to the deeper layers of the stratum corneum. Both of the analysed polyols exert considerable anti-irritant and anti-inflammatory properties, but the effective concentration of xylitol is lower than that of

  10. Visual scoring of non cavitated caries lesions and clinical trial efficiency, testing xylitol in caries-active adults.

    PubMed

    Brown, John P; Amaechi, Bennett T; Bader, James D; Gilbert, Gregg H; Makhija, Sonia K; Lozano-Pineda, Juanita; Leo, Michael C; Chen, Chuhe; Vollmer, William M

    2014-06-01

    To better understand the effectiveness of xylitol in caries prevention in adults and to attempt improved clinical trial efficiency. As part of the Xylitol for Adult Caries Trial (X-ACT), non cavitated and cavitated caries lesions were assessed in subjects who were experiencing the disease. The trial was a test of the effectiveness of 5 g/day of xylitol, consumed by dissolving in the mouth five 1 g lozenges spaced across each day, compared with a sucralose placebo. For this analysis, seeking trial efficiency, 538 subjects aged 21-80, with complete data for four dental examinations, were selected from the 691 randomized into the 3-year trial, conducted at three sites. Acceptable inter- and intra-examiner reliability before and during the trial was quantified using the kappa statistic. The mean annualized noncavitated plus cavitated lesion transition scores in coronal and root surfaces, from sound to carious favoured xylitol over placebo, during the three cumulative periods of 12, 24, and 33 months, but these clinically and statistically nonsignificant differences declined in magnitude over time. Restricting the present assessment to those subjects with a higher baseline lifetime caries experience showed possible but inconsistent benefit. There was no clear and clinically relevant preventive effect of xylitol on caries in adults with adequate fluoride exposure when non cavitated plus cavitated lesions were assessed. This conformed to the X-ACT trial result assessing cavitated lesions. Including non cavitated lesion assessment in this full-scale, placebo-controlled, multisite, randomized, double-blinded clinical trial in adults experiencing dental caries did not achieve added trial efficiency or demonstrate practical benefit of xylitol. ClinicalTrials.Gov NCT00393055. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Visual scoring of non-cavitated caries lesions and clinical trial efficiency, testing xylitol in caries active adults

    PubMed Central

    Brown, JP; Amaechi, BT; Bader, JD; Gilbert, GH; Makhija, SK; Lozano-Pineda, J; Leo, MC; Chuhe, C; Vollmer, WM

    2013-01-01

    Objectives To better understand the effectiveness of xylitol in caries prevention in adults, and to attempt improved clinical trial efficiency. Methods As part of the Xylitol for Adult Caries Trial (X-ACT), non-cavitated and cavitated caries lesions were assessed in subjects who were experiencing the disease. The trial was a test of the effectiveness of 5 grams/day of xylitol, consumed by dissolving in the mouth five 1 gram lozenges spaced across each day, compared with a sucralose placebo. For this analysis, seeking trial efficiency, 538 subjects aged 21–80, with complete data for four dental examinations were selected from the 691 randomized into the three year trial, conducted at three sites. Acceptable inter and intra examiner reliability before and during the trial was quantified using the kappa statistic. Results The mean annualized non-cavitated plus cavitated lesion transition scores in coronal and root surfaces, from sound to carious favoured xylitol over placebo, during the three cumulative periods of 12, 24, and 33 months, but these clinically and statistically non-significant differences declined in magnitude over time. Restricting the present assessment to those subjects with a higher baseline lifetime caries experience showed possible but inconsistent benefit. Conclusions There was no clear and clinically relevant preventive effect of xylitol on caries in adults with adequate fluoride exposure when non-cavitated plus cavitated lesions were assessed. This conformed to the X-ACT trial result assessing cavitated lesions. Including non-cavitated lesion assessment in this full scale, placebo controlled, multi site, randomized, double blinded clinical trial in adults experiencing dental caries, did not achieve added trial efficiency or demonstrate practical benefit of xylitol. Trial Registration ClinicalTrials.Gov NCT00393055 PMID:24205951

  12. Effects of Locally Applied Glycerol and Xylitol on the Hydration, Barrier Function and Morphological Parameters of the Skin.

    PubMed

    Korponyai, Csilla; Szél, Edit; Behány, Zoltán; Varga, Erika; Mohos, Gábor; Dura, Ágnes; Dikstein, Shabtay; Kemény, Lajos; Erős, Gábor

    2017-02-08

    Glycerol and xylitol hydrate the skin and improve its barrier function over a short period. We studied the effects of glycerol and xylitol on the physiological properties and morphology of the skin after longer-term application. Twelve volunteers with dry skin were examined. Three areas on the arms were determined. Area 1 served as untreated control. The vehicle was applied to area 2, while area 3 was treated twice daily with a formulation containing glycerol (5%) and xylitol (5%) for 14 days. Transepidermal water loss (TEWL), hydration and biomechanical properties of the skin were monitored. Biopsies were taken for routine histology and immunohistochemistry for filaggrin and matrix metalloproteinase-1 (MMP-1). The polyols increased the skin hydration and protein quantity of filaggrin, elevated the interdigitation index, decreased the TEWL and improved the biomechanical properties of the skin, but did not change the protein expression of MMP-1. A combination of glycerol and xylitol can be useful additional therapy for dry skin.

  13. Xylitol lozenges were not effective in overall dental caries prevention in adults.

    PubMed

    Fontana, Margherita; Gonzalez-Cabezas, Carlos

    2013-09-01

    Results from the xylitol for adult caries trial (X-ACT). Bader JD, Vollmer WM, Shugars DA, Gilbert GH, Amaechi BT, Brown JP, Laws RL, Kunkhouser KA, Makhija SK, Ritter AV, Leo MC. JADA 2013; 144(1): 21-30. Margherita Fontana, DDS, PhD, Carlos Gonzalez-Cabezas, DDS, MSD, PhD PURPOSE/QUESTION: Among an adult population at risk of dental caries, does the use of five 1 g xylitol lozenges per day over 33 months reduce the experience of cavitated caries lesions? Government: National Institute of Dental and Craniofacial Research Multicenter, double blind, placebo-controlled, randomized clinical trial Level 1: Good quality, patient-oriented evidence B: Limited quality patient-oriented evidence. Published by Mosby, Inc.

  14. Extent and quality of systematic review evidence related to minimum intervention in dentistry: essential oils, powered toothbrushes, triclosan, xylitol.

    PubMed

    Mickenautsch, Steffen; Yengopal, Veerasamy

    2011-08-01

    To investigate extent and quality of current systematic review evidence regarding: powered toothbrushes, triclosan toothpaste, essential oil mouthwashes, xylitol chewing gum. Five databases were searched for systematic reviews until 13 November 2010. relevant to topic, systematic review according to title and/or abstract, published in English. Article exclusion criteria were based on QUOROM recommendations for the reporting of systematic review methods. Systematic review quality was judged using the AMSTAR tool. All trials included by reviews were assessed for selection bias. 119 articles were found, of which 11 systematic reviews were included. Of these, six were excluded and five accepted: one for triclosan toothpaste; one for xylitol chewing gum; two for powered toothbrushes; one for essential oil mouthwashes. AMSTAR scores: triclosan toothpaste 7; powered toothbrushes 9 and 11; xylitol chewing gum 9; essential oil mouthwashes 8. In total, 75 (out of 76) reviewed trials were identified. In-depth assessment showed a high risk of selection bias for all trials. The extent of available systematic review evidence is low. Although the few identified systematic reviews could be rated as of medium and high quality, the validity of their conclusions needs to be treated with caution, owing to high risk of selection bias in the reviewed trials. High quality randomised control trials are needed in order to provide convincing evidence regarding true clinical efficacy. © 2011 FDI World Dental Federation.

  15. Comparative evaluation of the effects of xylitol and sugar-free chewing gums on salivary and dental plaque pH in children.

    PubMed

    Kumar, Shikhar; Sogi, Suma H P; Indushekar, K R

    2013-01-01

    This research paper primarily focuses on the importance of use of xylitol among school children. The purpose of this paper is to evaluate the salivary and dental plaque pH changes after consumption of sugared and sugar-free (xylitol) chewing gums in children. A total of 30 school children were selected for this study and were divided into two equal groups and given both chewing gums for the experiment. Children consuming the sugar-free (xylitol) chewing gum showed a marked increase in the pH of saliva and plaque when compared to their counterpart. All these values had a significant difference of P ≤ 0.0001. Xylitol is a safe all-natural sweetener which helps to reduce tooth decay. It plays a unique role in preventive strategies for better health.

  16. Individual and interaction effects of vanillin and syringaldehyde on the xylitol formation by Candida guilliermondii.

    PubMed

    Cortez, Daniela Vieira; Roberto, Inês Conceição

    2010-03-01

    The effect of lignin degradation products liberated during chemical hydrolysis of lignocellulosic materials on xylose-to-xylitol bioconversion by Candida guilliermondii FTI 20037 was studied. Two aromatic aldehydes (vanillin and syringaldehyde) were selected as model compounds. A two-level factorial design was employed to evaluate the effects of pH (5.5-7.0), cell concentration (1.0-3.0 g l(-1)), vanillin concentration (0-2.0 g l(-1)) and syringaldehyde concentration (0-2.0 g l(-1)) on this bioprocess. The results showed that in the presence of vanillin or syringaldehyde (up to 2.0 g l(-1)) the cell growth was inhibited to different degrees with a complete inhibition of the yeast growth when the mixture of both (at 2.0 g l(-1) each) was added to the fermentation medium. The xylitol yield was not significantly influenced by vanillin, but was strongly reduced by syringaldehyde, which showed a more pronounced inhibitor effect at pH 7.0. The yeast was also able to convert vanillin and syringaldehyde to the corresponding aromatic acids or alcohols and their formation was dependent of the experimental conditions employed. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  17. Viscoelastic and Functional Properties of Cod-Bone Gelatin in the Presence of Xylitol and Stevioside

    NASA Astrophysics Data System (ADS)

    Nian, Linyu; Cao, Ailing; Wang, Jing; Tian, Hongyu; Liu, Yongguo; Gong, Lingxiao; Cai, Luyun; Wang, Yuhao

    2018-05-01

    The physical, rheological, structural and functional properties of cod bone gelatin (CBG) with various concentrations (0, 2, 4, 6, 10 and 15%) of low-calorie sweeteners (xylitol (X) and stevioside (S)) to form gels were investigated. The gel strength of CBGX increased with increased xylitol due presumably to hydrogen bonds between xylitol and gelatin, but with CBGS the highest gel strength occurred when S concentration was 4%. Viscosity of CBGS samples were higher than CBGX due to S’s high molecular mass. The viscoelasticity (G' and G″), foaming capacity and fat binding capacity of CBGX were higher while foam stability was lower. The emulsion activity and emulsion stability of CBGX were a little lower than CBGS at the same concentration. The structure of X is linear making it easier to form a dense three-dimensional network structure, while the complex cyclic structure of S had more difficulty forming a network structure with cod bone gelatin. Therefore, X may be a better choice for sweetening gelatin gels.

  18. Viscoelastic and Functional Properties of Cod-Bone Gelatin in the Presence of Xylitol and Stevioside.

    PubMed

    Nian, Linyu; Cao, Ailing; Wang, Jing; Tian, Hongyu; Liu, Yongguo; Gong, Lingxiao; Cai, Luyun; Wang, Yuhao

    2018-01-01

    The physical, rheological, structural and functional properties of cod bone gelatin (CBG) with various concentrations (0, 2, 4, 6, 10, and 15%) of low-calorie sweeteners [xylitol (X) and stevioside (S)] to form gels were investigated. The gel strength of CBGX increased with increased xylitol due presumably to hydrogen bonds between xylitol and gelatin, but with CBGS the highest gel strength occurred when S concentration was 4%. Viscosity of CBGS samples were higher than CBGX due to S's high molecular mass. The viscoelasticity (G' and G''), foaming capacity and fat binding capacity of CBGX were higher while foam stability was lower. The emulsion activity and emulsion stability of CBGX were a little lower than CBGS at the same concentration. The structure of X is linear making it easier to form a dense three-dimensional network structure, while the complex cyclic structure of S had more difficulty forming a network structure with cod bone gelatin. Therefore, X may be a better choice for sweetening gelatin gels.

  19. Effect of Probiotic Yogurt and Xylitol-Containing Chewing Gums on Salivary S Mutans Count.

    PubMed

    Ghasemi, Elnaz; Mazaheri, Romina; Tahmourespour, Arezoo

    In addition to improving gastrointestinal health and intestinal microflora, probiotic bacteria have been recently suggested to decrease cariogenic agents in the oral cavity. The aim of this study was to investigate the effects of probiotic yogurt and xylitol-containing chewing gums on reducing salivary Streptococcus mutans levels. This randomized clinical trial recruited 50 female students with over 10 5 colony forming units S. mutans per milliliter of their saliva. The participants were randomly allocated to two equal groups to receive either probiotic yogurt containing Lactobacillus acidophilus ATCC 4356 andBifidobacteriumbifidum ATCC 29521 (200 g daily) or xylitol-containing chewing gums (two gums three times daily after each meal; total xylitol content: 5.58 g daily) for three weeks. At baseline and one day, two weeks, and four weeks after the interventions, saliva samples were cultured on mitis-salivarius-bacitracin agar and salivary S. mutans counts were determined. Data were analyzed with independent t-tests, analysis of variance, and Fisher's least significant difference test. In both groups, S. mutans counts on the first day, second week, and fourth weeks after the intervention were significantly lower than baseline values (P < 0.05). The greatest level of reduction in both groups was observed in the second week after the intervention. Moreover, although the reduction was greater in probiotic yogurt consumers, the difference between the two groups was not statistically significant. Probiotic yogurt and xylitol-containing chewing gums seem to be as effective in reduction of salivary S. mutans levels. Their constant long-term consumption is thus recommended to prevent caries.

  20. Xylitol dehydrogenase from Candida tropicalis: molecular cloning of the gene and structural analysis of the protein.

    PubMed

    Lima, Luanne Helena Augusto; Pinheiro, Cristiano Guimarães do Amaral; de Moraes, Lídia Maria Pepe; de Freitas, Sonia Maria; Torres, Fernando Araripe Gonçalves

    2006-12-01

    Yeasts can metabolize xylose by the action of two key enzymes: xylose reductase and xylitol dehydrogenase. In this work, we present data concerning the cloning of the XYL2 gene encoding xylitol dehydrogenase from the yeast Candida tropicalis. The gene is present as a single copy in the genome and is controlled at the transcriptional level by the presence of the inducer xylose. XYL2 was functionally tested by heterologous expression in Saccharomyces cerevisiae to develop a yeast strain capable of producing ethanol from xylose. Structural analysis of C. tropicalis xylitol dehydrogenase, Xyl2, suggests that it is a member of the medium-chain dehydrogenase (MDR) family. This is supported by the presence of the amino acid signature [GHE]xx[G]xxxxx[G]xx[V] in its primary sequence and a typical alcohol dehydrogenase Rossmann fold pattern composed by NAD(+) and zinc ion binding domains.

  1. Probiotic capsules and xylitol chewing gum to manage symptoms of pharyngitis: a randomized controlled factorial trial

    PubMed Central

    Little, Paul; Stuart, Beth; Wingrove, Zoe; Mullee, Mark; Thomas, Tammy; Johnson, Sophie; Leydon, Gerry; Richards-Hall, Samantha; Williamson, Ian; Yao, Lily; Zhu, Shihua; Moore, Michael

    2017-01-01

    BACKGROUND: Reducing the use of antibiotics for upper respiratory tract infections is needed to limit the global threat of antibiotic resistance. We estimated the effectiveness of probiotics and xylitol for the management of pharyngitis. METHODS: In this parallel-group factorial randomized controlled trial, participants in primary care (aged 3 years or older) with pharyngitis underwent randomization by nurses who provided sequential intervention packs. Pack contents for 3 kinds of material and advice were previously determined by computer-generated random numbers: no chewing gum, xylitol-based chewing gum (15% xylitol; 5 pieces daily) and sorbitol gum (5 pieces daily). Half of each group were also randomly assigned to receive either probiotic capsules (containing 24 × 109 colony-forming units of lactobacilli and bifidobacteria) or placebo. The primary outcome was mean self-reported severity of sore throat and difficulty swallowing (scale 0–6) in the first 3 days. We used multiple imputation to avoid the assumption that data were missing completely at random. RESULTS: A total of 1009 individuals consented, 934 completed the baseline assessment, and 689 provided complete data for the primary outcome. Probiotics were not effective in reducing the severity of symptoms: mean severity scores 2.75 with no probiotic and 2.78 with probiotic (adjusted difference −0.001, 95% confidence interval [CI] −0.24 to 0.24). Chewing gum was also ineffective: mean severity scores 2.73 without gum, 2.72 with sorbitol gum (adjusted difference 0.07, 95% CI −0.23 to 0.37) and 2.73 with xylitol gum (adjusted difference 0.01, 95% CI −0.29 to 0.30). None of the secondary outcomes differed significantly between groups, and no harms were reported. INTERPRETATION: Neither probiotics nor advice to chew xylitol-based chewing gum was effective for managing pharyngitis. Trial registration: ISRCTN, no. ISRCTN51472596 PMID:29255098

  2. Probiotic capsules and xylitol chewing gum to manage symptoms of pharyngitis: a randomized controlled factorial trial.

    PubMed

    Little, Paul; Stuart, Beth; Wingrove, Zoe; Mullee, Mark; Thomas, Tammy; Johnson, Sophie; Leydon, Gerry; Richards-Hall, Samantha; Williamson, Ian; Yao, Lily; Zhu, Shihua; Moore, Michael

    2017-12-18

    Reducing the use of antibiotics for upper respiratory tract infections is needed to limit the global threat of antibiotic resistance. We estimated the effectiveness of probiotics and xylitol for the management of pharyngitis. In this parallel-group factorial randomized controlled trial, participants in primary care (aged 3 years or older) with pharyngitis underwent randomization by nurses who provided sequential intervention packs. Pack contents for 3 kinds of material and advice were previously determined by computer-generated random numbers: no chewing gum, xylitol-based chewing gum (15% xylitol; 5 pieces daily) and sorbitol gum (5 pieces daily). Half of each group were also randomly assigned to receive either probiotic capsules (containing 24 × 10 9 colony-forming units of lactobacilli and bifidobacteria) or placebo. The primary outcome was mean self-reported severity of sore throat and difficulty swallowing (scale 0-6) in the first 3 days. We used multiple imputation to avoid the assumption that data were missing completely at random. A total of 1009 individuals consented, 934 completed the baseline assessment, and 689 provided complete data for the primary outcome. Probiotics were not effective in reducing the severity of symptoms: mean severity scores 2.75 with no probiotic and 2.78 with probiotic (adjusted difference -0.001, 95% confidence interval [CI] -0.24 to 0.24). Chewing gum was also ineffective: mean severity scores 2.73 without gum, 2.72 with sorbitol gum (adjusted difference 0.07, 95% CI -0.23 to 0.37) and 2.73 with xylitol gum (adjusted difference 0.01, 95% CI -0.29 to 0.30). None of the secondary outcomes differed significantly between groups, and no harms were reported. Neither probiotics nor advice to chew xylitol-based chewing gum was effective for managing pharyngitis. Trial registration: ISRCTN, no. ISRCTN51472596. © 2017 Joule Inc. or its licensors.

  3. The effect of xylitol on dental caries and oral flora

    PubMed Central

    Nayak, Prathibha Anand; Nayak, Ullal Anand; Khandelwal, Vishal

    2014-01-01

    Dental caries, the most chronic disease affecting mankind, has been in the limelight with regard to its prevention and treatment. Professional clinical management of caries has been very successful in cases of different severities of disease manifestations. However, tertiary management of this disease has been gaining attention, with numerous methods and agents emerging on a daily basis. Higher intake of nutritive sweeteners can result in higher energy intake and lower diet quality and thereby predispose an individual to conditions like obesity, cardiovascular disorders, and type 2 diabetes mellitus. Non-nutritive sweeteners have gained popularity as they are sweeter and are required in substantially lesser quantities. Xylitol, a five-carbon sugar polyol, has been found to be promising in reducing dental caries disease and also reversing the process of early caries. This paper throws light on the role and effects of various forms of xylitol on dental caries and oral hygiene status of an individual. PMID:25422590

  4. Ultrasonic speed, densities and viscosities of xylitol in water and in aqueous tyrosine and phenylalanine solutions at different temperatures

    NASA Astrophysics Data System (ADS)

    Ali, A.; Bidhuri, P.; Uzair, S.

    2014-07-01

    Ultrasonic speed u, densities ρ and viscosities η of xylitol in water and in 0.001 m aqueous l-tyrosine (Tyr) and l-phenylalanine (Phe) have been measured at different temperatures. From the density and ultrasonic speed measurements apparent molar isentropic compression κ_{φ}, apparent molar isentropic compressions at infinite dilution κ_{{S,φ}}0 , experimental slope S K , hydration number n H , transfer partial molar isentropic compressibility Δ_{tr} κ_{{S,φ}}0 of xylitol from water to aqueous Tyr and Phe have been obtained. From the viscosity data, B-coefficient and B-coefficient of transfer Δ tr B of xylitol from water to aqueous Phe and Tyr at different temperatures have also been estimated. Gibbs free energies of activation of viscous flow per mole of solvent Δ μ 1 0# and per mole of solute Δ μ 2 0# have been calculated by using Feakins transition state theory for the studied systems. The calculated parameters have been interpreted in terms of solute-solute and solute-solvent interactions and hydration behavior of xylitol.

  5. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.

    PubMed

    Lee, Sung-Haeng; Kodaki, Tsutomu; Park, Yong-Cheol; Seo, Jin-Ho

    2012-04-30

    Efficient conversion of xylose to ethanol is an essential factor for commercialization of lignocellulosic ethanol. To minimize production of xylitol, a major by-product in xylose metabolism and concomitantly improve ethanol production, Saccharomyces cerevisiae D452-2 was engineered to overexpress NADH-preferable xylose reductase mutant (XR(MUT)) and NAD⁺-dependent xylitol dehydrogenase (XDH) from Pichia stipitis and endogenous xylulokinase (XK). In vitro enzyme assay confirmed the functional expression of XR(MUT), XDH and XK in recombinant S. cerevisiae strains. The change of wild type XR to XR(MUT) along with XK overexpression led to reduction of xylitol accumulation in microaerobic culture. More modulation of the xylose metabolism including overexpression of XR(MUT) and transaldolase, and disruption of the chromosomal ALD6 gene encoding aldehyde dehydrogenase (SX6(MUT)) improved the performance of ethanol production from xylose remarkably. Finally, oxygen-limited fermentation of S. cerevisiae SX6(MUT) resulted in 0.64 g l⁻¹ h⁻¹ xylose consumption rate, 0.25 g l⁻¹ h⁻¹ ethanol productivity and 39% ethanol yield based on the xylose consumed, which were 1.8, 4.2 and 2.2 times higher than the corresponding values of recombinant S. cerevisiae expressing XR(MUT), XDH and XK only. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing

    NASA Astrophysics Data System (ADS)

    Zabner, Joseph; Seiler, Michael P.; Launspach, Janice L.; Karp, Philip H.; Kearney, William R.; Look, Dwight C.; Smith, Jeffrey J.; Welsh, Michael J.

    2000-10-01

    The thin layer of airway surface liquid (ASL) contains antimicrobial substances that kill the small numbers of bacteria that are constantly being deposited in the lungs. An increase in ASL salt concentration inhibits the activity of airway antimicrobial factors and may partially explain the pathogenesis of cystic fibrosis (CF). We tested the hypothesis that an osmolyte with a low transepithelial permeability may lower the ASL salt concentration, thereby enhancing innate immunity. We found that the five-carbon sugar xylitol has a low transepithelial permeability, is poorly metabolized by several bacteria, and can lower the ASL salt concentration in both CF and non-CF airway epithelia in vitro. Furthermore, in a double-blind, randomized, crossover study, xylitol sprayed for 4 days into each nostril of normal volunteers significantly decreased the number of nasal coagulase-negative Staphylococcus compared with saline control. Xylitol may be of value in decreasing ASL salt concentration and enhancing the innate antimicrobial defense at the airway surface.

  7. Cellulolytic enzyme expression and simultaneous conversion of lignocellulosic sugars into ethanol and xylitol by a new Candida tropicalis strain.

    PubMed

    Mattam, Anu Jose; Kuila, Arindam; Suralikerimath, Niranjan; Choudary, Nettem; Rao, Peddy V C; Velankar, Harshad Ravindra

    2016-01-01

    Lignocellulosic ethanol production involves major steps such as thermochemical pretreatment of biomass, enzymatic hydrolysis of pre-treated biomass and the fermentation of released sugars into ethanol. At least two different organisms are conventionally utilized for producing cellulolytic enzymes and for ethanol production through fermentation, whereas in the present study a single yeast isolate with the capacity to simultaneously produce cellulases and xylanases and ferment the released sugars into ethanol and xylitol has been described. A yeast strain isolated from soil samples and identified as Candida tropicalis MTCC 25057 expressed cellulases and xylanases over a wide range of temperatures (32 and 42 °C) and in the presence of different cellulosic substrates [carboxymethylcellulose and wheat straw (WS)]. The studies indicated that the cultivation of yeast at 42 °C in pre-treated hydrolysate containing 0.5 % WS resulted in proportional expression of cellulases (exoglucanases and endoglucanases) at concentrations of 114.1 and 97.8 U g(-1) ds, respectively. A high xylanase activity (689.3 U g(-1) ds) was also exhibited by the yeast under similar growth conditions. Maximum expression of cellulolytic enzymes by the yeast occurred within 24 h of incubation. Of the sugars released from biomass after pretreatment, 49 g L(-1) xylose was aerobically converted into 15.8 g L(-1) of xylitol. In addition, 25.4 g L(-1) glucose released after the enzymatic hydrolysis of biomass was fermented by the same yeast to obtain an ethanol titer of 7.3 g L(-1). During the present study, a new strain of C. tropicalis was isolated and found to have potential for consolidated bioprocessing (CBP) applications. The strain could grow in a wide range of process conditions (temperature, pH) and in the presence of lignocellulosic inhibitors such as furfural, HMF and acetic acid. The new yeast produced cellulolytic enzymes over a wide temperature range and in the presence of

  8. Comparison of nasal hyperosmolar xylitol and xylometazoline solutions on quality of life in patients with inferior turbinate hypertrophy secondary to nonallergic rhinitis.

    PubMed

    Cingi, Cemal; Birdane, Leman; Ural, Ahmet; Oghan, Fatih; Bal, Cengiz

    2014-06-01

    The purpose of this study was to objectively determine and compare the efficacy and effectiveness of xylitol solution (Xlear Nasal Sprey®) compared with xylometazoline and physiological saline with respect to quality of life (QoL) in patients with nasal congestion. A prospective, randomized study was performed in 42 patients who had nasal obstruction and hypertrophied turbinate mucosa that was refractory to medical treatment. The study population was randomized into 3 groups according to the application of xylometazoline, physiological saline, and xylitol hyperosmolar solution. The efficacy of treatment was evaluated objectively (4-phase rhinomanometry) and subjectively (visual analogue scale VAS.) before and after the application of the nasal solutions. QoL was evaluated by means of Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ). VAS scores and 4-phase rhinomanometry scores were better in the group treated with xylometazoline compared to those treated with xylitol or saline. The xylitol procedure yielded better results than the saline procedure, but differences were not statistically significant in both objective and subjective evaluation methods. For overall QoL, there was a significant improvement from baseline for the xylometazoline and xylitol groups. However, the improvement in the xylometazoline group was significantly greater than that obtained in the xylitol group. Xlear Nasal Spray® is an effective modality in the treatment of nasal congestion and has positive effect on the QoL of patients. Further studies are needed in order to plan an ongoing treatment of Xlear Nasal Sprey® at certain intervals for continuous relief of symptoms and a better and longstanding QoL. © 2014 ARS-AAOA, LLC.

  9. [Carbohydrate and lipid metabolism following heart bypass operations. The effect of the intravenous hypocaloric administration of glucose versus glucose xylitol (1:1)].

    PubMed

    Gross, G; Schricker, T; Hilpert, W; Braun, G; von der Emde, J; Georgieff, M

    1992-10-30

    The effect of glucose-xylitol infusion on carbohydrate and lipid metabolism was investigated in 18 metabolically normal men (mean age 56.1 [35-65] years) with coronary heart disease after they had undergone a coronary artery bypass operation. During the first postoperative hours, group I (n = 6) received glucose only (2 mg/kg.min), group II (n = 6) glucose+xylitol (1 mg/kg.min each), and group II a glucose-containing electrolyte solution (0.83 mg/kg.min glucose). Blood glucose and insulin concentrations during the infusion period were significantly (P < 0.05) lower in groups II and III than I (glucose after 6 h: group I 21.5 [15.3-26.8] mmol/l; group II 14.2 [11.2-18.1] mmol/l; group III 12.6 [6.8-16.0] mmol/l). The highest lactate concentrations were reached in group I, 6 hours after the operation. Palmitine and stearine, as well as oleic and linoleic acid concentrations were significantly lower 12 hours postoperatively in group I than groups II and III (P < 0.05). These data indicate that energy-ineffective high glucose concentrations were avoided and endogenous lactate production reduced by the postoperative infusion of glucose+xylitol. In addition, it achieved a higher supply of free fatty acids as energy source to the myocardium without reaching toxic concentrations in the postischaemic myocardium.

  10. Effect of maternal use of chewing gums containing xylitol on transmission of mutans streptococci in children: a meta-analysis of randomized controlled trials.

    PubMed

    Lin, Hsi-Kuei; Fang, Chia-En; Huang, Mao-Suan; Cheng, Hsin-Chung; Huang, Tsai-Wei; Chang, Hui-Ting; Tam, Ka-Wai

    2016-01-01

    Mutans streptococci (MS) are the major causative bacteria involved in human dental decay. Habitual consumption of xylitol has been proved to reduce MS levels in saliva and plaque. To evaluate the effect of the maternal use of xylitol gum on MS reduction in infants. A structured literature review and meta-analysis. A random effects model was used to assess the relative risks of the incidence of MS in the saliva or plaque of children who were 6, 9, 12, 18, and 24 months old. We reviewed 11 RCTs derived from 5 research teams that included 601 mothers. Our results indicated that the incidence of MS in the saliva or plaque of the infants was significantly reduced in the xylitol group (risk ratio: 0.54; 95% confidence interval: 0.39-0.73, at 12-18 months) and (risk ratio: 0.56; 95% confidence interval: 0.40-0.79, at 36 months) compared with the control groups. The long-term effect of maternal xylitol gum exposure on their children's dental caries was controversial. Habitual xylitol consumption by mothers with high MS levels was associated with a significant reduction in the mother-child transmission of salivary MS. © 2015 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Antimicrobial evaluation of new metallic complexes with xylitol active against P. aeruginosa and C. albicans: MIC determination, post-agent effect and Zn-uptake.

    PubMed

    Santi, E; Facchin, G; Faccio, R; Barroso, R P; Costa-Filho, A J; Borthagaray, G; Torre, M H

    2016-02-01

    Xylitol (xylH5) is metabolized via the pentose pathway in humans, but it is unsuitable as an energy source for many microorganisms where it produces a xylitol-induced growth inhibition and disturbance in protein synthesis. For this reason, xylitol is used in the prophylaxis of several infections. In the search of better antimicrobial agents, new copper and zinc complexes with xylitol were synthesized and characterized by analytical and spectrosco pic methods: Na2[Cu3(xylH−4)2]·NaCl·4.5H2O (Cu-xyl) and [Zn4(xylH−4)2(H2O)2]·NaCl·3H2O (Zn-xyl). Both copper and zinc complexes presented higher MIC against Pseudomona aeruginosa than the free xylitol while two different behaviors were found against Candida albicans depending on the complex. The growth curves showed that Cu-xyl presented lower activity than the free ligand during all the studied period. In the case of Znxyl the growth curves showed that the inhibition of the microorganism growth in the first stage was equivalent to that of xylitol but in the second stage (after 18 h) Zn-xyl inhibited more. Besides, the PAE (post agent effect)obtained for Zn-xyl and xyl showed that the recovery from the damage of microbial cells had a delay of 14 and 13 h respectively. This behavior could be useful in prophylaxis treatments for infectious diseases where it is important that the antimicrobial effect lasts longer. With the aim to understand the microbiological activities the analysis of the particle size, lipophilicity and Zn uptake was performed.

  12. Levorotatory carbohydrates and xylitol subdue Streptococcus mutans and Candida albicans adhesion and biofilm formation.

    PubMed

    Brambilla, Eugenio; Ionescu, Andrei C; Cazzaniga, Gloria; Ottobelli, Marco; Samaranayake, Lakshman P

    2016-05-01

    Dietary carbohydrates and polyols affect the microbial colonization of oral surfaces by modulating adhesion and biofilm formation. The aim of this study was to evaluate the influence of a select group of l-carbohydrates and polyols on either Streptococcus mutans or Candida albicans adhesion and biofilm formation in vitro. S. mutans or C. albicans suspensions were inoculated on polystyrene substrata in the presence of Tryptic soy broth containing 5% of the following compounds: d-glucose, d-mannose, l-glucose, l-mannose, d- and l-glucose (raceme), d- and l-mannose (raceme), l-glucose and l-mannose, sorbitol, mannitol, and xylitol. Microbial adhesion (2 h) and biofilm formation (24 h) were evaluated using MTT-test and Scanning Electron Microscopy (SEM). Xylitol and l-carbohydrates induced the lowest adhesion and biofilm formation in both the tested species, while sorbitol and mannitol did not promote C. albicans biofilm formation. Higher adhesion and biofilm formation was noted in both organisms in the presence of d-carbohydrates relative to their l-carbohydrate counterparts. These results elucidate, hitherto undescribed, interactions of the individually tested strains with l- and d-carbohydrates, and how they impact fungal and bacterial colonization. In translational terms, our data raise the possibility of using l-form of carbohydrates and xylitol for dietary control of oral plaque biofilms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Potent inhibitory effects of D-tagatose on the acid production and water-insoluble glucan synthesis of Streptococcus mutans GS5 in the presence of sucrose.

    PubMed

    Sawada, Daijo; Ogawa, Takaaki; Miyake, Minoru; Hasui, Yoshinori; Yamaguchi, Fuminori; Izumori, Ken; Tokuda, Masaaki

    2015-01-01

    We examined and compared the inhibitory effects of D-tagatose on the growth, acid production, and water-insoluble glucan synthesis of GS5, a bacterial strain of Streptococcus mutans, with those of xylitol, D-psicose, L-psicose and L-tagatose. GS5 was cultured for 12h in a medium containing 10% (w/v) of xylitol, D-psicose, L-psicose, D-tagatose or L-tagatose, and the inhibitory effect of GS5 growth was assessed. Each sugar showed different inhibitory effects on GS5. Both D-tagatose and xylitol significantly inhibited the acid production and water-insoluble glucan synthesis of GS5 in the presence of 1% (w/v) sucrose. However, the inhibitory effect of acid production by D-tagatose was significantly stronger than that of xylitol in presence of sucrose.

  14. Gastrointestinal Disturbances Associated with the Consumption of Sugar Alcohols with Special Consideration of Xylitol: Scientific Review and Instructions for Dentists and Other Health-Care Professionals

    PubMed Central

    2016-01-01

    Sugar alcohols (polyols) are used in food manufacturing and in medical tests and examinations. d-Glucitol (sorbitol) and d-mannitol were previously the most common alditols used for these purposes. After the 1960s, xylitol became a common ingredient in noncariogenic confectioneries, oral hygiene products, and diabetic food. Erythritol, a polyol of the tetritol type, can be regarded as the sweetener of the “next generation.” The disaccharide polyols maltitol, lactitol, and isomalt have also been used in food manufacturing and in medical tests. Consumption of pentitol- and hexitol-type polyols and disaccharide polyols may cause gastrointestinal disturbances at least in unaccustomed subjects. The occurrence of disturbances depends on consumer properties and on the molecular size and configuration of the polyol molecule. Adaptation may take place as a result of enzyme induction in the intestinal flora. Some of the literature on xylitol has been difficult to access by health-care professionals and will be reviewed here. Research and clinical field experience have found no pathology in polyol-associated osmotic diarrhea—the intestinal mucosa having normal basic structure, except in extreme instances. Xylitol is better tolerated than hexitols or the disaccharide polyols. Erythritol, owing to its smaller molecular weight and configuration that differ from other alditols, normally avoids the gastrointestinal reactions encountered with other polyols. This review will also touch upon the FODMAPs diet concept. PMID:27840639

  15. Effect of selected aldehydes found in the corncob hemicellulose hydrolysate on the growth and xylitol fermentation of Candida tropicalis.

    PubMed

    Wang, Le; Tang, Pingwah; Fan, Xiaoguang; Yuan, Qipeng

    2013-01-01

    The effects of four aldehydes (furfural, 5-hydroxymethylfurfural, vanillin and syringaldehyde), which were found in the corncob hemicellulose hydrolysate, on the growth and xylitol fermentation of Candida tropicalis were investigated. The results showed that vanillin was the most toxic aldehyde for the xylitol fermentation, followed by syringaldehyde, furfural and 5-hydroxymethylfurfural. Moreover, the binary combination tests revealed that furfural amplified the toxicity of other aldehydes and the toxicities of other binary combinations without furfural were simply additive. Based on the fermentation experiments, it was demonstrated that the inhibition of aldehydes could be alleviated by prolonging the fermentation incubation, increasing the initial cell concentration, enhancing the initial pH value and minimizing the furfural levels in the hydrolysate evaporation process. The strategies that we proposed to suppress the inhibitory effects of the aldehydes successfully avoided the complicated and costly detoxifications. Our findings could be potentially adopted for the industrial xylitol fermentation from hydrolysates. © 2013 American Institute of Chemical Engineers.

  16. Deletion of FPS1, Encoding Aquaglyceroporin Fps1p, Improves Xylose Fermentation by Engineered Saccharomyces cerevisiae

    PubMed Central

    Wei, Na; Xu, Haiqing; Kim, Soo Rin

    2013-01-01

    Accumulation of xylitol in xylose fermentation with engineered Saccharomyces cerevisiae presents a major problem that hampers economically feasible production of biofuels from cellulosic plant biomass. In particular, substantial production of xylitol due to unbalanced redox cofactor usage by xylose reductase (XR) and xylitol dehydrogenase (XDH) leads to low yields of ethanol. While previous research focused on manipulating intracellular enzymatic reactions to improve xylose metabolism, this study demonstrated a new strategy to reduce xylitol formation and increase carbon flux toward target products by controlling the process of xylitol secretion. Using xylitol-producing S. cerevisiae strains expressing XR only, we determined the role of aquaglyceroporin Fps1p in xylitol export by characterizing extracellular and intracellular xylitol. In addition, when FPS1 was deleted in a poorly xylose-fermenting strain with unbalanced XR and XDH activities, the xylitol yield was decreased by 71% and the ethanol yield was substantially increased by nearly four times. Experiments with our optimized xylose-fermenting strain also showed that FPS1 deletion reduced xylitol production by 21% to 30% and increased ethanol yields by 3% to 10% under various fermentation conditions. Deletion of FPS1 decreased the xylose consumption rate under anaerobic conditions, but the effect was not significant in fermentation at high cell density. Deletion of FPS1 resulted in higher intracellular xylitol concentrations but did not significantly change the intracellular NAD+/NADH ratio in xylose-fermenting strains. The results demonstrate that Fps1p is involved in xylitol export in S. cerevisiae and present a new gene deletion target, FPS1, and a mechanism different from those previously reported to engineer yeast for improved xylose fermentation. PMID:23475614

  17. Mortality of the House Fly (Diptera: Muscidae) After Exposure to Combinations of Beauveria bassiana (Hypocreales: Clavicipitaceae) With the Polyol Sweeteners Erythritol and Xylitol.

    PubMed

    Burgess, Edwin R; Johnson, Dana M; Geden, Christopher J

    2018-06-01

    Documented resistance to traditional insecticides in the house fly, Musca domestica L. (Diptera: Muscidae), has expedited a need for alternative forms of control. One such method is the use of biological control organisms, such as the entomopathogenic fungus, Beauveria bassiana (Balsamo - Crivelli) Vuillemin (Hypocreales: Clavicipitaceae). Administering B. bassiana with a calorically rich phagostimulant such as sucrose may have the unintended effect of increasing fly vitality and thus reproduction before mortality sets in. Therefore, finding a phagostimulant with lower caloric value that can replace sucrose is valuable. Here B. bassiana was combined with the sweeteners erythritol and xylitol as potential low-calorie substitutes for sucrose. Female flies consumed as much xylitol alone as they did sucrose alone, but less erythritol than both. After 24 h of exposure, B. bassiana administered at 1 mg in erythritol and in sucrose were equally effective at reducing survival and better than xylitol. B. bassiana administered at 10 mg worked equally well at reducing survival in all three sweeteners. When exposed to 10 mg of B. bassiana in sweetener for 1 h, sucrose reduced survival more than in erythritol or xylitol, but mortality was still in excess of 97% after 8 d in all three sweeteners. Each sweetener mixed with B. bassiana worked as well in an environment with additional food sources and stimuli as they did in an environment lacking these additions. Erythritol and xylitol appear to be strong candidates to replace sucrose in baits formulated around B. bassiana.

  18. Xylose reductase and xylitol dehydrogenase activities of Candida guilliermondii as a function of different treatments of sugarcane bagasse hemicellulosic hydrolysate employing experimental design.

    PubMed

    Alves, Lourdes A; Vitolo, Michele; Felipe, Maria das Graças A; de Almeida e Silva, João Batista

    2002-01-01

    The sugarcane bagasse hydrolysate, which is rich in xylose, can be used as culture medium for Candida guilliermondii in xylitol production. However, the hydrolysate obtained from bagasse by acid hydrolysis at 120 degrees C for 20 min has by-products (acetic acid and furfural, among others), which are toxic to the yeast over certain concentrations. So, the hydrolysate must be pretreated before using in fermentation. The pretreatment variables considered were: adsorption time (15,37.5, and 60 min), type of acid used (H2So4 and H3Po4), hydrolysate concentration (original, twofold, and fourfold concentrated), and active charcoal (0.5, 1.75 and 3.0%). The suitability of the pretreatment was followed by measuring the xylose reductase (XR) and xylitol dehydrogenase (XD) activity of yeast grown in each treated hydrolysate. The response surface methodology (2(4) full factorial design with a centered face) indicated that the hydrolysate might be concentrated fourfold and the pH adjusted to 7.0 with CaO, followed by reduction to 5.5 with H3PO4. After that it was treated with active charcoal (3.0%) by 60 min. This pretreated hydrolysate attained the high XR/XD ratio of 4.5.

  19. Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae.

    PubMed

    Lee, Ye-Gi; Jin, Yong-Su; Cha, Young-Lok; Seo, Jin-Ho

    2017-03-01

    Even though industrial yeast strains exhibit numerous advantageous traits for the production of bioethanol, their genetic manipulation has been limited. This study demonstrates that an industrial polyploidy Saccharomyces cerevisiae JHS200 can be engineered through Cas9 (CRISPR associated protein 9)-based genome editing. Specifically, we generated auxotrophic mutants and introduced a xylose metabolic pathway into the auxotrophic mutants. As expected, the engineered strain (JX123) enhanced ethanol production from cellulosic hydrolysates as compared to other engineered haploid strains. However, the JX123 strain produced substantial amounts of xylitol as a by-product during xylose fermentation. Hypothesizing that the xylitol accumulation might be caused by intracellular redox imbalance from cofactor difference, the NADH oxidase from Lactococcus lactis was introduced into the JX123 strain. The resulting strain (JX123_noxE) not only produced more ethanol, but also produced xylitol less than the JX123 strain. These results suggest that industrial polyploidy yeast can be modified for producing biofuels and chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Production of arabitol from glycerol: strain screening and study of factors affecting production yield

    USDA-ARS?s Scientific Manuscript database

    Glycerol is a major byproduct from biodiesel production, and developing new uses for glycerol is imperative to overall economics and sustainability of the biodiesel industry. With the aim of producing xylitol and/or arabitol as the value-added products from glycerol, 214 yeast strains, many osmotole...

  1. Comparing the efficacy of xylitol-containing and conventional chewing gums in reducing salivary counts of Streptococcus mutans: An in vivo study

    PubMed Central

    Haghgoo, Rosa; Afshari, Elahe; Ghanaat, Tahere; Aghazadeh, Samaneh

    2015-01-01

    Objective: Dental caries is among the most common chronic diseases in humans. Streptococcus mutans is generally responsible for most cases of dental caries. The present study sought to compare the effects of xylitol-containing and conventional chewing gums on salivary levels of S. mutans. Materials and Methods: This study adopted a crossover design. Two type of chewing gums (one containing 70% xylitol and approved by the Iranian Dental Association, and another containing sucrose) were purchased. The participants were 32 individuals aged 18–35 years whose oral hygiene was categorized as moderate or poor based on a caries risk assessment table. Salivary levels of S. mutans were measured at baseline, after the first and second phases of chewing gums, and after the washout period. The measurements were performed on blood agar and mitis salivarius-bacitracin agar (MSBA). Pairwise comparisons were then used to analyze the collected data. Results: Salivary levels of S. mutans in both groups were significantly higher during the two stages of chewing gum than in the washout period or baseline. Moreover, comparisons between the two types of gums suggested that chewing xylitol-containing gums led to greater reductions in S. mutans counts. This effect was more apparent in subjects with poor oral hygiene than in those with moderate oral hygiene. Conclusions: Xylitol-containing chewing gums are more effective than conventional gums in reducing salivary levels of S. mutans in individuals with poor–moderate oral hygiene. PMID:26942114

  2. Enhanced anticaries efficacy of a 0.243% sodium fluoride/10% xylitol/silica dentifrice: 3-year clinical results.

    PubMed

    Sintes, J L; Escalante, C; Stewart, B; McCool, J J; Garcia, L; Volpe, A R; Triol, C

    1995-10-01

    To evaluate the efficacy of a sodium fluoride (NaF)/silica/xylitol dentifrice compared with that of a positive control NaF/silica dentifrice on caries increments in school children over a 3-year period in an area without an optimal level of fluoride in the drinking water (mean level <0.1 ppm). A 3-year, double-blind clinical caries study was conducted in 2,630 children initially aged 8-10 years at 17 schools in the San Jose, Costa Rica metropolitan area. Clinical dental examinations were performed at participating schools utilizing portable dental equipment. Caries evaluations employed conventional tactile/visual methodology consisting of artificial light, dental mirrors and single-edge #23 explorers. Children accepted into the study were stratified by age and sex into two balanced groups within each school, and randomly assigned to use either a positive control dentifrice containing 0.243% NaF/silica or a test dentifrice containing 0.234% NaF/silica/10% xylitol. Children were instructed to brush with the assigned dentifrice twice daily. Caries evaluations were conducted at baseline, 2 years, and 3 years. After 3 years, subjects using the 0.234% NaF/silica/10% xylitol dentifrice had statistically significantly reduced decayed/filled surfaces (DFS; -12.3% reduction; P < or = 0.001) and decayed/filled buccal and lingual surfaces (DFS-BL; -10.5% reduction; P < or = 0/01).

  3. Streptococcus mutans forms xylitol-resistant biofilm on excess adhesive flash in novel ex-vivo orthodontic bracket model.

    PubMed

    Ho, Cindy S F; Ming, Yue; Foong, Kelvin W C; Rosa, Vinicius; Thuyen, Truong; Seneviratne, Chaminda J

    2017-04-01

    During orthodontic bonding procedures, excess adhesive is invariably left on the tooth surface at the interface between the bracket and the enamel junction; it is called excess adhesive flash (EAF). We comparatively evaluated the biofilm formation of Streptococcus mutans on EAF produced by 2 adhesives and examined the therapeutic efficacy of xylitol on S mutans formed on EAF. First, we investigated the biofilm formation of S mutans on 3 orthodontic bracket types: stainless steel preadjusted edgewise, ceramic preadjusted edgewise, and stainless steel self-ligating. Subsequently, tooth-colored Transbond XT (3M Unitek, Monrovia, Calif) and green Grengloo (Ormco, Glendora, Calif) adhesives were used for bonding ceramic brackets to extracted teeth. S mutans biofilms on EAF produced by the adhesives were studied using the crystal violet assay and scanning electron microscopy. Surface roughness and surface energy of the EAF were examined. The therapeutic efficacies of different concentrations of xylitol were tested on S mutans biofilms. Significantly higher biofilms were formed on the ceramic preadjusted edgewise brackets (P = 0.003). Transbond XT had significantly higher S mutans biofilms compared with Grengloo surfaces (P = 0.007). There was no significant difference in surface roughness between Transbond XT and Grengloo surfaces (P >0.05). Surface energy of Transbond XT had a considerably smaller contact angle than did Grengloo, suggesting that Transbond XT is a more hydrophilic material. Xylitol at low concentrations had no significant effect on the reduction of S mutans biofilms on orthodontic adhesives (P = 0.016). Transbond XT orthodontic adhesive resulted in more S mutans biofilm compared with Grengloo adhesive on ceramic brackets. Surface energy seemed to play a more important role than surface roughness for the formation of S mutans biofilm on EAF. Xylitol does not appear to have a therapeutic effect on mature S mutans biofilm. Copyright © 2017 American

  4. Biotechnological and in situ food production of polyols by lactic acid bacteria.

    PubMed

    Ortiz, Maria Eugenia; Bleckwedel, Juliana; Raya, Raúl R; Mozzi, Fernanda

    2013-06-01

    Polyols such as mannitol, erythritol, sorbitol, and xylitol are naturally found in fruits and vegetables and are produced by certain bacteria, fungi, yeasts, and algae. These sugar alcohols are widely used in food and pharmaceutical industries and in medicine because of their interesting physicochemical properties. In the food industry, polyols are employed as natural sweeteners applicable in light and diabetic food products. In the last decade, biotechnological production of polyols by lactic acid bacteria (LAB) has been investigated as an alternative to their current industrial production. While heterofermentative LAB may naturally produce mannitol and erythritol under certain culture conditions, sorbitol and xylitol have been only synthesized through metabolic engineering processes. This review deals with the spontaneous formation of mannitol and erythritol in fermented foods and their biotechnological production by heterofermentative LAB and briefly presented the metabolic engineering processes applied for polyol formation.

  5. Effects of sugar-free chewing gum sweetened with xylitol or maltitol on the development of gingivitis and plaque: a randomized clinical trial.

    PubMed

    Keukenmeester, R S; Slot, D E; Rosema, N A M; Van Loveren, C; Van der Weijden, G A

    2014-11-01

    The objective of this study was to test the effect of sugar-free chewing gum sweetened with xylitol or maltitol compared to the use of a gum base or no gum on gingivitis and plaque scores under both brushing and non-brushing circumstances. The design of the study was a four-group, double-blinded, randomized controlled study with a 3-week duration. In each group, the participants did not brush the teeth in the lower jaw designated to develop experimental gingivitis, while maintaining normal oral hygiene procedures in the upper jaw. After professional dental prophylaxis, the participants were allocated into one of four groups (xylitol, maltitol, gum base or no gum). Chewing gum was used five times a day for 10 min. 220 participants completed the study and provided evaluable data. The increase in bleeding on marginal probing (BOMP) and plaque scores (PS) in the non-brushed (lower) jaw with experimental gingivitis was significant in all groups (P < 0.001). As compared to the gum base, the increase in BOMP in the xylitol and maltitol group was significantly lower. In the brushed upper jaw, no significant changes for BOMP were observed from the baseline to the end point of the study, and there were no significant differences in BOMP and PS between the groups. In circumstances where regular brushing is performed, no effect of chewing gum was observed on bleeding and plaque scores. In the absence of brushing, chewing xylitol or maltitol gum provided a significant inhibitory effect on gingivitis scores compared to chewing gum base. The difference when compared to the group not using gum was not significant. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Aging of the Johari-Goldstein relaxation in the glass-forming liquids sorbitol and xylitol

    NASA Astrophysics Data System (ADS)

    Yardimci, Hasan; Leheny, Robert L.

    2006-06-01

    Employing frequency-dependent dielectric susceptibility we characterize the aging in two supercooled liquids, sorbitol and xylitol, below their calorimetric glass transition temperatures. In addition to the alpha relaxation that tracks the structural dynamics, the susceptibility of both liquids possesses a secondary Johari-Goldstein relaxation at higher frequencies. Following a quench through the glass transition, the susceptibility slowly approaches the equilibrium behavior. For both liquids, the magnitude of the Johari-Goldstein relaxation displays a dependence on the time since the quench, or aging time, that is quantitatively very similar to the age dependence of the alpha peak frequency. The Johari-Goldstein relaxation time remains constant during aging for sorbitol while it decreases slightly with age for xylitol. Hence, one cannot sensibly assign a fictive temperature to the Johari-Goldstein relaxation. This behavior contrasts with that of liquids lacking distinct Johari-Goldstein peaks for which the excess wing of the alpha peak tracks the main part of the peak during aging, enabling the assignment of a single fictive temperature to the entire spectrum. The aging behavior of the Johari-Goldstein relaxation time further calls into question the possibility that the relaxation time possesses stronger temperature dependence in equilibrium than is observed in the out-of-equilibrium state below the glass transition.

  7. Anti-MRSA activity of oxysporone and xylitol from the endophytic fungus Pestalotia sp. growing on the Sundarbans mangrove plant Heritiera fomes.

    PubMed

    Nurunnabi, Tauhidur Rahman; Nahar, Lutfun; Al-Majmaie, Shaymaa; Rahman, S M Mahbubur; Sohrab, Md Hossain; Billah, Md Morsaline; Ismail, Fyaz M D; Rahman, M Mukhlesur; Sharples, George P; Sarker, Satyajit D

    2018-02-01

    Heritiera fomes Buch.-Ham., a mangrove plant from the Sundarbans, has adapted to a unique habitat, muddy saline water, anaerobic soil, brackish tidal activities, and high microbial competition. Endophytic fungal association protects this plant from adverse environmental conditions. This plant is used in Bangladeshi folk medicine, but it has not been extensively studied phytochemically, and there is hardly any report on investigation on endophytic fungi growing on this plant. In this study, endophytic fungi were isolated from the surface sterilized cladodes and leaves of H. fomes. The antimicrobial activities were evaluated against two Gram-positive and two Gram-negative bacteria and the fungal strain, Candida albicans. Extracts of Pestalotia sp. showed activities against all test bacterial strains, except that the ethyl acetate extract was inactive against Escherichia coli. The structures of the purified compounds, oxysporone and xylitol, were elucidated by spectroscopic means. The anti-MRSA potential of the isolated compounds were determined against various MRSA strains, that is, ATCC 25923, SA-1199B, RN4220, XU212, EMRSA-15, and EMRSA-16, with minimum inhibitory concentration values ranging from 32 to 128 μg/ml. This paper, for the first time, reports on the anti-MRSA property of oxysporone and xylitol, isolation of the endophyte Pestalotia sp. from H. fomes, and isolation of xylitol from a Pestalotia sp. Copyright © 2017 John Wiley & Sons, Ltd.

  8. N-Guanidino Derivatives of 1,5-Dideoxy-1,5-imino-d-xylitol are Potent, Selective, and Stable Inhibitors of β-Glucocerebrosidase.

    PubMed

    Sevšek, Alen; Šrot, Luka; Rihter, Jakob; Čelan, Maša; van Ufford, Linda Quarles; Moret, Ed E; Martin, Nathaniel I; Pieters, Roland J

    2017-04-06

    A series of lipidated guanidino and urea derivatives of 1,5-dideoxy-1,5-imino-d-xylitol were prepared from d-xylose using a concise synthetic protocol. Inhibition assays with a panel of glycosidases revealed that the guanidino analogues display potent inhibition against human recombinant β-glucocerebrosidase with IC 50 values in the low nanomolar range. Related urea analogues of 1,5-dideoxy-1,5-imino-d-xylitol were also synthesized and evaluated in the same fashion and found to be selective for β-galactosidase from bovine liver. No inhibition of human recombinant β-glucocerebrosidase was observed for the urea analogues. Computational studies provided insight into the potent activity of analogues bearing the substituted guanidine moiety in the inhibition of lysosomal glucocerebrosidase (GBA). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. [Studies of local anaesthetics - part 197. Effect of xylitol on pharmaceutical availability of lidocaine and flow properties of hydrogels].

    PubMed

    Zuzana, Vitková; Petra, Herdová; Jozef, Cižmárik; Daniel, Grančai; Lukáš, Benč

    2012-06-01

    The paper examines the formulation of hydrogel on the base of a synthetic polymer containing a local anaesthetic and a mass-produced drug in the form of a solution with an antiphlogistic effect. It aimed to prepare a hydrogel of a suitable composition with suitable flow properties and drug release, the active ingredient being lidocaine hydrochloride. Besides the role of a synthetic polymer which ensures that the active ingredient remains at the affected site, an important role in the formulation is played by the presence of an artificial sweetener, which to a great extent as a taste correcting agent of the unpleasant taste of the active ingredient influences the compliance of many patients. The study examined the effect of concentration of the artificial sweetener xylitol on the liberation of the active ingredient from prepared hydrogels. The optimum concentration of the artificial sweetener was adjusted to a degree which does not affect the qualitative properties of the active ingredient. lidocaine hydrochloride, xylitol, hydrogel, liberation.

  10. Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae

    Treesearch

    Yong-Su Jin; Thomas W. Jeffries

    2003-01-01

    We changed the fluxes of xylose metabolites in recombinant Saccharomyces cerevisiae by manipulating expression of Pichia stipitis genes(XYL1 and XYL2) coding for xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively. XYL1 copy number was kept constant by integrating it into the chromosome. Copy numbers of XYL2 were varied either by integrating XYL2 into...

  11. A Novel Aqueous Two Phase System Composed of Surfactant and Xylitol for the Purification of Lipase from Pumpkin (Cucurbita moschata) Seeds and Recycling of Phase Components.

    PubMed

    Amid, Mehrnoush; Manap, Mohd Yazid; Hussin, Muhaini; Mustafa, Shuhaimi

    2015-06-17

    Lipase is one of the more important enzymes used in various industries such as the food, detergent, pharmaceutical, textile, and pulp and paper sectors. A novel aqueous two-phase system composed of surfactant and xylitol was employed for the first time to purify lipase from Cucurbita moschata. The influence of different parameters such as type and concentration of surfactants, and the composition of the surfactant/xylitol mixtures on the partitioning behavior and recovery of lipase was investigated. Moreover, the effect of system pH and crude load on the degree of purification and yield of the purified lipase were studied. The results indicated that the lipase was partitioned into the top surfactant rich phase while the impurities partitioned into the bottom xylitol-rich phase using an aqueous two phase system composed of 24% (w/w) Triton X-100 and 20% (w/w) xylitol, at 56.2% of tie line length (TLL), (TTL is one of the important parameters in this study and it is determined from a bimodal curve in which the tie-line connects two nodes on the bimodal, that represent concentration of phase components in the top and bottom phases) and a crude load of 25% (w/w) at pH 8.0. Recovery and recycling of components was also measured in each successive step process. The enzyme was successfully recovered by the proposed method with a high purification factor of 16.4 and yield of 97.4% while over 97% of the phase components were also recovered and recycled. This study demonstrated that the proposed novel aqueous two phase system method is more efficient and economical than the traditional aqueous two phase system method for the purification and recovery of the valuable enzyme lipase.

  12. Radiolysis of carbohydrates as studied by ESR and spin-trapping—II. Glycerol- d8 xylitol, dulcitol, d-sorbitol and d-mannitol

    NASA Astrophysics Data System (ADS)

    Kuwabara, M.; Zhang, Z.-Y.; Inanami, O.; Yoshii, G.

    Studies concerning the radicals produced in glycerol by reactions with OH radicals have been carried out by investigating deuterated glycerol (glycerol-d 8) by spin-trapping with 2-methyl-2-nitrosopropane. Free radicals produced in linear carbohydrates such as xylitol, dulcitol, D-sorbitol and D-mannitol by reactions with OH radicals as well as by direct γ-radiolysis have been also investigated by spin-trapping. The ESR spectra of the spin-trapped radicals were analysed on the basis of the results from ESR and spin-trapping experiments on glycerol and deuterated glycerol, and the formation of three radical species, CHO-CH-, CH 2-CO- and HO-CH-, due to both OH reactions and direct γ-radiolysis was confirmed for all compounds. The presence of a radical, -CO-CH-, was detected for xylitol, D-sorbitol and D-mannitol. General reactions processes induced by OH reactions or γ-radiolysis in the solid state are discussed.

  13. The effect of 1% chlorhexidine varnish and 40% xylitol solution on Streptococcus mutans and plaque accumulation in children.

    PubMed

    Simões Moraes, Renata; Modesto, Adriana; Regina Netto Dos Santos, Kátia; Drake, David

    2011-01-01

    The purpose of this study was to determine the effect of the association of 1% chlorhexidine varnish (CHX) and 40% xylitol solution (XYL) on Streptococcus mutans (SM) counts and plaque indices in 2- to 5-year-olds. Sixty-eight children were selected with medium levels (1 x 10³) to very high levels (>1 x 10⁵) of SM in the saliva. Subjects were divided into 4 groups of 17 children each: (1) CHX; (2) CHX+XYL; (3) XYL; and(4) 0.05% sodium fluoride (F). An assessment of SM levels and plaque indices was done on all children at baseline, 15 days, and at 1, 3, and 6 months. SM levels were determined by the spatula method. Although the reduction in SM counts in all groups was statistically significant, differences among groups were not observed, and the CHX and F groups seemed to show the greatest effect. Plaque reduction was observed in all groups, whereas statistically significant decreases among groups were not observed. One percent chlorhexidine varnish associated with 40% xylitol solution tested in the present study does not provide significant suppression of Streptococcus mutans counts and reduction of plaque accumulation at any follow-up time points.

  14. Will Parents Participate in and Comply with Programs and Regimens Using Xylitol for Preventing Acute Otitis Media in Their Children?

    ERIC Educational Resources Information Center

    Danhauer, Jeffrey L.; Johnson, Carole E.; Baker, Jason A.; Ryu, Jung A.; Smith, Rachel A.; Umeda, Claire J.

    2015-01-01

    Purpose: Antiadhesive properties in xylitol, a natural sugar alcohol, can help prevent acute otitis media (AOM) in children by inhibiting harmful bacteria from colonizing and adhering to oral and nasopharyngeal areas and traveling to the Eustachian tube and middle ear. This study investigated parents' willingness to use and comply with a regimen…

  15. Acid production in dental plaque after exposure to probiotic bacteria.

    PubMed

    Keller, Mette K; Twetman, Svante

    2012-10-24

    The increasing interest in probiotic lactobacilli in health maintenance has raised the question of potential risks. One possible side effect could be an increased acidogenicity in dental plaque. The aim of this study was to investigate the effect of probiotic lactobacilli on plaque lactic acid (LA) production in vitro and in vivo. In the first part (A), suspensions of two lactobacilli strains (L. reuteri DSM 17938, L. plantarum 299v) were added to suspensions of supragingival dental plaque collected from healthy young adults (n=25). LA production after fermentation with either xylitol or fructose was analyzed. In the second part (B), subjects (n=18) were given lozenges with probiotic lactobacilli (L. reuteri DSM 17938 and ATCC PTA 5289) or placebo for two weeks in a double-blinded, randomized cross-over trial. The concentration of LA in supragingival plaque samples was determined at baseline and after 2 weeks. Salivary counts of mutans streptococci (MS) and lactobacilli were estimated with chair-side methods. Plaque suspensions with L. reuteri DSM 17938 produced significantly less LA compared with L. plantarum 299v or controls (p<0.05). Fructose gave higher LA concentrations than xylitol. In part B, there were no significant differences in LA production between baseline and follow up in any of the groups and no differences between test and placebo were displayed. The salivary MS counts were not significantly altered during the intervention but the lactobacilli counts increased significantly in the test group (p<0.05). Lactic acid production in suspensions of plaque and probiotic lactobacilli was strain-dependant and the present study provides no evidence of an increase in plaque acidity by the supply of selected probiotic lactobacilli when challenged by fructose or xylitol. The study protocol was approved by The Danish National Committee on Biomedical Research Ethics (protocol no H-2-2010-112). NCT01700712.

  16. Fermentation of oat and soybean hull hydrolysates into ethanol and xylitol by recombinant industrial strains of Saccharomyces cerevisiae under diverse oxygen environments

    USDA-ARS?s Scientific Manuscript database

    In this study, we evaluated the capacity of recombinant industrial Saccharomyces cerevisiae YRH 396 and YRH 400 strains to ferment sugars from oat hull and soybean hull hydrolysates into ethanol and xylitol. The strains were genetically modified by chromosomal integration of Pichia stipitis XYLI/XYL...

  17. Role of polyols (erythritol, xylitol and sorbitol) on the structural stabilization of collagen

    NASA Astrophysics Data System (ADS)

    Usha, R.; Raman, S. Sundar; Subramanian, V.; Ramasami, T.

    2006-10-01

    The effect of erythritol, xylitol and sorbitol on monomeric collagen solution was evaluated with melting temperature, fluorescence studies, conformational stability and binding energy. The emission intensity and the melting temperature increase as the chain length of polyols increases. Circular dichroism (CD) results indicate the possibility of aggregation of collagen in the presence of polyols. The interaction between collagen and polyols were calculated using binding energy, RMS deviation with collagen like models. Molecular mechanics calculations suggest that polyols bind well with collagen models, that have serine in the X position. The stability of collagen decreases as the number of carbon atoms present in the polyols increases.

  18. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.

    PubMed

    Matsushika, Akinori; Inoue, Hiroyuki; Murakami, Katsuji; Takimura, Osamu; Sawayama, Shigeki

    2009-04-01

    In this study, five recombinant Saccharomyces cerevisiae strains were compared for their xylose-fermenting ability. The most efficient xylose-to-ethanol fermentation was found by using the industrial strain MA-R4, in which the genes for xylose reductase and xylitol dehydrogenase from Pichia stipitis along with an endogenous xylulokinase gene were expressed by chromosomal integration of the flocculent yeast strain IR-2. The MA-R4 strain rapidly converted xylose to ethanol with a low xylitol yield. Furthermore, the MA-R4 strain had the highest ethanol production when fermenting not only a mixture of glucose and xylose, but also mixed sugars in the detoxified hydrolysate of wood chips. These results collectively suggest that MA-R4 may be a suitable recombinant strain for further study into large-scale ethanol production from mixed sugars present in lignocellulosic hydrolysates.

  19. Direct production of L-tagatose from L-psicose by Enterobacter aerogenes 230S.

    PubMed

    Rao, Devendar; Gullapalli, Pushpakiran; Yoshihara, Akihide; Jenkinson, Sarah F; Morimoto, Kenji; Takata, Goro; Akimitsu, Kazuya; Tajima, Shigeyuki; Fleet, George W J; Izumori, Ken

    2008-11-01

    L-tagatose was produced directly from L-psicose by subjecting the same biomass suspension to microbial reduction followed by oxidation using a newly isolated bacteria Enterobacter aerogenes 230S. After various optimizations, it was observed that cells grown on xylitol have the best conversion potential. Moreover, E. aerogenes 230S converted L-psicose to L-tagatose at a faster rate in the presence of polyols such as glycerol, D-sorbitol, ribitol, L-arabitol, D-mannitol and xylitol. At 5% substrate concentration, the conversion ratio of L-psicose to L-tagatose was above 60% in the presence of glycerol. Identity of crystalline L-tagatose was confirmed by HPLC analysis, (13)C-NMR spectra, and optical rotation.

  20. Comparison of antimicrobial effects of titanium tetrafluoride, chlorhexidine, xylitol and sodium fluoride on streptococcus mutans: An in-vitro study.

    PubMed

    Eskandarian, Tahereh; Motamedifar, Mohammad; Arasteh, Peyman; Eghbali, Seyed Sajad; Adib, Ali; Abdoli, Zahra

    2017-03-01

    No studies have yet documented the bactericidal effects of TiF4, and its role in the treatment of dental caries, and no definite protocol has been introduced to regulate its use. The aim of this study was to determine the antimicrobial/bactericidal effects of TiF4 on Streptococcus Mutans ( S. Mutans ) and to compare it with chlorhexidine (Chx), sodium fluoride (NaF) and xylitol. This study was conducted at the Shiraz University of Medical Sciences microbiology laboratory during March 2015 to September 2015. In this in-vitro study, first a bacterial suspension was prepared and adjusted to a 0.5 McFarland standard (equivalent to 1×10 8 CFU/ml). The minimal inhibitory concentration (MIC) and minimal bactericidal concentrations (MBC) of TiF4, Chx, NaF and xylitol were assessed using broth microdilution assay and disk diffusion methods. In order to neutralize the acidic nature of TiF4, we used a sodium hydroxide preparation to obtain a pH of 7.2 and repeated all of the previous tests with the neutralized TiF4 solution. We reported the final results as percentages where appropriate. The MIC of TiF4, NaF and Chx for S. Mutans were 12.5%, 12.5% and 6.25%, respectively. At a concentration of 12.5% the inhibition zone diameters were 9 mm, 15mm and 14mm for TiF4, NaF and Chx, respectively. The MBC was 25%, 12.5% and 12.5% for TiF4, NaF and Chx, respectively. Xylitol failed to show any bactericidal or growth inhibitory effect in all of its concentrations. When we repeated the tests with an adjusted pH, identical results were obtained. TiF4 solutions have anti-growth and bactericidal effects on S. Mutans at a concentration of 12.5% which is comparable with chlorhexidine and NaF, indicating the possible use of this solution in dental practice as an anti-cariogenic agent, furthermore the antimicrobial activity is unaffected by pH of the environment.

  1. Atomic layer deposited highly dispersed platinum nanoparticles supported on non-functionalized multiwalled carbon nanotubes for the hydrogenation of xylose to xylitol

    NASA Astrophysics Data System (ADS)

    Liang, Xinhua; Jiang, Chengjun

    2013-09-01

    Highly dispersed platinum nanoparticles were deposited on gram quantities of non-functionalized multiwalled carbon nanotubes (MWCNTs) by atomic layer deposition (ALD) in a fluidized bed reactor at 300 °C. (Methylcyclopentadienyl) trimethylplatinum and oxygen were used as precursors. The results of TEM analysis showed that 1.3 nm Pt nanoparticles were highly dispersed on non-functionalized MWCNTs. The porous structures of MWCNTs did not change with the deposition of Pt nanoparticles. For comparison, the commercial 3 wt% Pt/C catalyst was also characterized. The ALD-prepared Pt/MWCNT was used for the hydrogenation of xylose to xylitol. The ALD-prepared Pt/MWCNT showed the best catalytic performance with 100 % conversion of xylose and 99.3 % selectivity to xylitol, compared to commercially available Pt/C, Ru/C, and Raney Ni catalysts. The stability of ALD produced Pt/MWCNT catalyst was higher than that of the commercial Pt/C, due to the presence of surface defects on the MWCNTs and the strong metal-support interaction for the ALD-prepared Pt/MWCNT catalyst.

  2. Development of a more efficient process for production of fuel ethanol from bamboo.

    PubMed

    Sun, Zhao-Yong; Wang, Ting; Tan, Li; Tang, Yue-Qin; Kida, Kenji

    2015-06-01

    A process for production of fuel ethanol from bamboo treated with concentrated sulfuric acid has been previously proposed. To improve efficiency of the process, we tested saccharification with 70 weight% (wt%) sulfuric acid, acid-sugar separation by ion exclusion, addition of nutrients to the ethanol fermentation, and bioconversion of xylose to xylitol. A high efficiency of both sugar recovery (82.5 %) and acid recovery (97.5 %) was achieved in the saccharification process and in the continuous acid-sugar separation using a modified anion exchange resin, respectively. Reduction of the amount of mineral salts added to the saccharified liquid after acid-sugar separation did not negatively affect performance of the continuous ethanol fermentation. The ethanol yield and productivity were 93.7 % and 6 g/l h, respectively, at 35 °C and pH 4.0. And the ethanol yield and productivity were almost the same even at pH 3.5. Moreover, the xylose remaining in the fermented mash was efficiently converted to xylitol in batch fermentation by Candida tropicalis strain 2.1776. These results demonstrate a more efficient process for the production of fuel ethanol from bamboo.

  3. Acid production in dental plaque after exposure to probiotic bacteria

    PubMed Central

    2012-01-01

    Background The increasing interest in probiotic lactobacilli in health maintenance has raised the question of potential risks. One possible side effect could be an increased acidogenicity in dental plaque. The aim of this study was to investigate the effect of probiotic lactobacilli on plaque lactic acid (LA) production in vitro and in vivo. Methods In the first part (A), suspensions of two lactobacilli strains (L. reuteri DSM 17938, L. plantarum 299v) were added to suspensions of supragingival dental plaque collected from healthy young adults (n=25). LA production after fermentation with either xylitol or fructose was analyzed. In the second part (B), subjects (n=18) were given lozenges with probiotic lactobacilli (L. reuteri DSM 17938 and ATCC PTA 5289) or placebo for two weeks in a double-blinded, randomized cross-over trial. The concentration of LA in supragingival plaque samples was determined at baseline and after 2 weeks. Salivary counts of mutans streptococci (MS) and lactobacilli were estimated with chair-side methods. Results Plaque suspensions with L. reuteri DSM 17938 produced significantly less LA compared with L. plantarum 299v or controls (p<0.05). Fructose gave higher LA concentrations than xylitol. In part B, there were no significant differences in LA production between baseline and follow up in any of the groups and no differences between test and placebo were displayed. The salivary MS counts were not significantly altered during the intervention but the lactobacilli counts increased significantly in the test group (p<0.05). Conclusion Lactic acid production in suspensions of plaque and probiotic lactobacilli was strain-dependant and the present study provides no evidence of an increase in plaque acidity by the supply of selected probiotic lactobacilli when challenged by fructose or xylitol. The study protocol was approved by The Danish National Committee on Biomedical Research Ethics (protocol no H-2-2010-112). Trial registration NCT01700712

  4. “Caregiver Acceptability and Preferences for Early Childhood Caries Preventive Treatments for Hispanic Children”

    PubMed Central

    Adams, Sally H.; Hyde, Susan; Gansky, Stuart A.

    2011-01-01

    Objective Determine caregiver treatment acceptability and preferences for five preventive dental treatments for early childhood caries (ECC) in young Hispanic children. Methods We interviewed 211 parents/caregivers of Hispanic children attending Head Start programs regarding their acceptability of and preferences for five standard preventive dental treatments for young children. Treatments assessed were: toothbrushing with fluoride toothpaste, fluoride varnish, xylitol in food for children; and xylitol gum and chlorhexidine rinse for mothers. The interview assessment included presentation of: illustrated cards with verbal description of treatment; picture/video clip; and treatment samples. Parents rated the acceptability of each treatment (1-5 scale) and treatment preferences within each of 10 possible pairs. Individual treatment preferences were summed to create overall preference scores (range 0–4). Results All treatments were rated as highly acceptable, however there were differences (range 4.6-4.9; Friedman Chi Square = 23.4, p< 0.001). Chlorhexidine, toothbrushing, and varnish were most acceptable, not different from each other, but more acceptable than xylitol in food (p< 0.05). Summed treatment preferences revealed greater variability (means ranged 1.4-2.6; Friedman Chi Square=128.2, p< 0.001). Fluoride varnish (2.6) and toothbrushing (2.5) were most highly preferred, and differences between preferences for xylitol in food (1.4), xylitol gum (1.5) and chlorhexidine (2.1) were all significant, p < 0.001. Preferences for chlorhexidine were also significantly greater than those for the xylitol products (p < 0.001). Conclusions All 5 treatments were highly acceptable, however when choosing among treatments overall, fluoride varnish and toothbrushing were favored over other treatments. PMID:19486461

  5. Caregiver acceptability and preferences for early childhood caries preventive treatments for Hispanic children.

    PubMed

    Adams, Sally H; Hyde, Susan; Gansky, Stuart A

    2009-01-01

    The objective of this study was to determine caregiver treatment acceptability and preferences for five preventive dental treatments for early childhood caries in young Hispanic children. We interviewed 211 parents/caregivers of Hispanic children attending Head Start programs regarding their acceptability of, and preferences for, five standard preventive dental treatments for young children. Treatments assessed were toothbrushing with fluoride toothpaste, fluoride varnish, and xylitol in food for children, and xylitol gum and chlorhexidine rinse for mothers. The interview assessment included presentation of illustrated cards with verbal description of treatment, photograph/video clip, and treatment samples. Parents rated the acceptability of each treatment (1-5 scale) and treatment preferences within each of 10 possible pairs. Individual treatment preferences were summed to create overall preference scores (range 0-4). All treatments were rated as highly acceptable, however, there were differences (range 4.6-4.9; Friedman chi-square = 23.4, P < 0.001). Chlorhexidine, toothbrushing, and varnish were most acceptable, not different from each other, but more acceptable than xylitol in food (P < 0.05). Summed treatment preferences revealed greater variability (means ranged 1.4-2.6; Friedman chi-square = 128.2, P < 0.001). Fluoride varnish (2.6) and toothbrushing (2.5) were most highly preferred, and differences between preferences for xylitol in food (1.4), xylitol gum (1.5), and chlorhexidine (2.1) were all significant (P < 0.001). Preferences for chlorhexidine were also significantly greater than those for the xylitol products (P < 0.001). All five treatments were highly acceptable, however, when choosing among treatments overall, fluoride varnish and toothbrushing were favored over other treatments.

  6. Pharmacokinetics and Plasma Cellular Antioxidative Effects of Flavanols After Oral Intake of Green Tea Formulated with Vitamin C and Xylitol in Healthy Subjects.

    PubMed

    Son, Yu-Ra; Park, Tae-Sik; Shim, Soon-Mi

    2016-02-01

    This study aimed to test whether green tea formulated with vitamin C and xylitol (GTVX) could improve absorption of flavanols and total antioxidant activity (TAC) of plasma compared with green tea only (GT) in healthy subjects. The total radical-trapping antioxidant parameter method was used to measure the TAC of plasma. Cmax, Tmax, and area under the curve (AUC) of flavanols in plasma after consumption of GTVX were 5980.58 μg/mL, 2.14 h, and 18,915.56 h·μg/mL, respectively, indicating that GTVX showed significantly higher AUC than GT (13,855.43 μg/mL). The peak TACs occurred at 3 and 0.5 h after intake of GT and GTVX, respectively. The TAC of plasma was found to be significantly higher in GTVX than in GT at each time point. This study suggests that formulating green tea with vitamin C and xylitol could increase the absorption of flavanols in green tea, enhancing cellular antioxidative effects.

  7. Comparison of antimicrobial effects of titanium tetrafluoride, chlorhexidine, xylitol and sodium fluoride on streptococcus mutans: An in-vitro study

    PubMed Central

    Eskandarian, Tahereh; Motamedifar, Mohammad; Arasteh, Peyman; Eghbali, Seyed Sajad; Adib, Ali; Abdoli, Zahra

    2017-01-01

    Introduction No studies have yet documented the bactericidal effects of TiF4, and its role in the treatment of dental caries, and no definite protocol has been introduced to regulate its use. The aim of this study was to determine the antimicrobial/bactericidal effects of TiF4 on Streptococcus Mutans (S. Mutans) and to compare it with chlorhexidine (Chx), sodium fluoride (NaF) and xylitol. Methods This study was conducted at the Shiraz University of Medical Sciences microbiology laboratory during March 2015 to September 2015. In this in-vitro study, first a bacterial suspension was prepared and adjusted to a 0.5 McFarland standard (equivalent to 1×108 CFU/ml). The minimal inhibitory concentration (MIC) and minimal bactericidal concentrations (MBC) of TiF4, Chx, NaF and xylitol were assessed using broth microdilution assay and disk diffusion methods. In order to neutralize the acidic nature of TiF4, we used a sodium hydroxide preparation to obtain a pH of 7.2 and repeated all of the previous tests with the neutralized TiF4 solution. We reported the final results as percentages where appropriate. Results The MIC of TiF4, NaF and Chx for S. Mutans were 12.5%, 12.5% and 6.25%, respectively. At a concentration of 12.5% the inhibition zone diameters were 9 mm, 15mm and 14mm for TiF4, NaF and Chx, respectively. The MBC was 25%, 12.5% and 12.5% for TiF4, NaF and Chx, respectively. Xylitol failed to show any bactericidal or growth inhibitory effect in all of its concentrations. When we repeated the tests with an adjusted pH, identical results were obtained. Conclusion TiF4 solutions have anti-growth and bactericidal effects on S. Mutans at a concentration of 12.5% which is comparable with chlorhexidine and NaF, indicating the possible use of this solution in dental practice as an anti-cariogenic agent, furthermore the antimicrobial activity is unaffected by pH of the environment. PMID:28461883

  8. Heterologous expression of Spathaspora passalidarum xylose reductase and xylitol dehydrogenase genes improved xylose fermentation ability of Aureobasidium pullulans.

    PubMed

    Guo, Jian; Huang, Siyao; Chen, Yefu; Guo, Xuewu; Xiao, Dongguang

    2018-04-30

    Aureobasidium pullulans is a yeast-like fungus that can ferment xylose to generate high-value-added products, such as pullulan, heavy oil, and melanin. The combinatorial expression of two xylose reductase (XR) genes and two xylitol dehydrogenase (XDH) genes from Spathaspora passalidarum and the heterologous expression of the Piromyces sp. xylose isomerase (XI) gene were induced in A. pullulans to increase the consumption capability of A. pullulans on xylose. The overexpression of XYL1.2 (encoding XR) and XYL2.2 (encoding XDH) was the most beneficial for xylose utilization, resulting in a 17.76% increase in consumed xylose compared with the parent strain, whereas the introduction of the Piromyces sp. XI pathway failed to enhance xylose utilization efficiency. Mutants with superior xylose fermentation performance exhibited increased intracellular reducing equivalents. The fermentation performance of all recombinant strains was not affected when glucose or sucrose was utilized as the carbon source. The strain with overexpression of XYL1.2 and XYL2.2 exhibited excellent fermentation performance with mimicked hydrolysate, and pullulan production increased by 97.72% compared with that of the parent strain. The present work indicates that the P4 mutant (using the XR/XDH pathway) with overexpressed XYL1.2 and XYL2.2 exhibited the best xylose fermentation performance. The P4 strain showed the highest intracellular reducing equivalents and XR and XDH activity, with consequently improved pullulan productivity and reduced melanin production. This valuable development in aerobic fermentation by the P4 strain may provide guidance for the biotransformation of xylose to high-value products by A. pullulans through genetic approach.

  9. 30 CFR 250.1632 - Production rates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Production rates. 250.1632 Section 250.1632 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE... § 250.1632 Production rates. Each sulphur deposit shall be produced at rates that will provide economic...

  10. 30 CFR 250.1632 - Production rates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Production rates. 250.1632 Section 250.1632... OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur Operations § 250.1632 Production rates. Each sulphur deposit shall be produced at rates that will provide economic development and depletion of the deposit in...

  11. Improved Ethanol Production from Xylose by Candida shehatae Induced by Dielectric Barrier Discharge Air Plasma

    NASA Astrophysics Data System (ADS)

    Chen, Huixia; Xiu, Zhilong; Bai, Fengwu

    2014-06-01

    Xylose fermentation is essential for ethanol production from lignocellulosic biomass. Exposure of the xylose-fermenting yeast Candida shehatae (C. shehatae) CICC1766 to atmospheric pressure dielectric barrier discharge (DBD) air plasma yields a clone (designated as C81015) with stability, which exhibits a higher ethanol fermentation rate from xylose, giving a maximal enhancement in ethanol production of 36.2% compared to the control (untreated). However, the biomass production of C81015 is lower than that of the control. Analysis of the NADH (nicotinamide adenine dinucleotide)- and NADPH (nicotinamide adenine dinucleotide phosphate)-linked xylose reductases and NAD+-linked xylitol dehydrogenase indicates that their activities are enhanced by 34.1%, 61.5% and 66.3%, respectively, suggesting that the activities of these three enzymes are responsible for improving ethanol fermentation in C81015 with xylose as a substrate. The results of this study show that DBD air plasma could serve as a novel and effective means of generating microbial strains that can better use xylose for ethanol fermentation.

  12. A simple method for determination of erythritol, maltitol, xylitol, and sorbitol in sugar-free chocolates by capillary electrophoresis with capacitively coupled contactless conductivity detection.

    PubMed

    Coelho, Aline Guadalupe; de Jesus, Dosil Pereira

    2016-11-01

    In this work, a novel and simple analytical method using capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C 4 D) is proposed for the determination of the polyols erythritol, maltitol, xylitol, and sorbitol in sugar-free chocolate. CE separation of the polyols was achieved in less than 6 min, and it was mediated by the interaction between the polyols and the borate ions in the background electrolyte, forming negatively charged borate esters. The extraction of the polyols from the samples was simply obtained using ultra-pure water and ultrasonic energy. Linearity was assessed by calibration curves that showed R 2 varying from 0.9920 to 0.9976. The LOQs were 12.4, 15.9, 9.0, and 9.0 μg/g for erythritol, maltitol, xylitol, and sorbitol, respectively. The accuracy of the method was evaluated by recovery tests, and the obtained recoveries varied from 70 to 116% with standard deviations ranging from 0.2 to 19%. The CE-C 4 D method was successfully applied for the determination of the studied polyols in commercial samples of sugar-free chocolate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Yat-Chen Chou | NREL

    Science.gov Websites

    Patents "Xylitol synthesis mutant of xylose-utilizing Zymomonas for ethanol production," U.S . Patent No. 7,741,119 (2010) "Ethanol production using xylitol synthesis mutant of xylose-utilizing formulation using cellobiohydrolase-1 from Penicillium funiculosum," U.S. Patent No. 7,449,550 (2008

  14. Relative crater production rates on planets

    NASA Technical Reports Server (NTRS)

    Hartmann, W. K.

    1977-01-01

    The relative numbers of impacts on different planets, estimated from the dynamical histories of planetesimals in specified orbits (Wetherill, 1975), are converted by a described procedure to crater production rates. Conversions are dependent on impact velocity and surface gravity. Crater retention ages can then be derived from the ratio of the crater density to the crater production rate. The data indicate that the terrestrial planets have crater production rates within a factor ten of each other. As an example, for the case of Mars, least-squares fits to crater-count data suggest an average age of 0.3 to 3 billion years for two types of channels. The age of Olympus Mons is discussed, and the effect of Tharsis volcanism on channel formation is considered.

  15. Effects of Oxygen Limitation on Xylose Fermentation, Intracellular Metabolites, and Key Enzymes of Neurospora crassa AS3.1602

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihua; Qu, Yinbo; Zhang, Xiao; Lin, Jianqiang

    The effects of oxygen limitation on xylose fermentation of Neurospora crassa AS3.1602 were studied using batch cultures. The maximum yield of ethanol was 0.34 g/g at oxygen transfer rate (OTR) of 8.4 mmol/L·h. The maximum yield of xylitol was 0.33 g/g at OTR of 5.1 mmol/L·h. Oxygen limitation greatly affected mycelia growth and xylitol and ethanol productions. The specific growth rate (μ) decreased 82% from 0.045 to 0.008 h-1 when OTR changed from 12.6 to 8.4 mmol/L·h. Intracellular metabolites of the pentose phosphate pathway, glycolysis, and tricarboxylic acid cycle were determined at various OTRs. Concentrations of most intracellular metabolites decreased with the increase in oxygen limitation. Intracellular enzyme activities of xylose reductase, xylitol dehydrogenase, and xylulokinase, the first three enzymes in xylose metabolic pathway, decreased with the increase in oxygen limitation, resulting in the decreased xylose uptake rate. Under all tested conditions, transaldolase and transketolase activities always maintained at low levels, indicating a great control on xylose metabolism. The enzyme of glucose-6-phosphate dehydrogenase played a major role in NADPH regeneration, and its activity decreased remarkably with the increase in oxygen limitation.

  16. 30 CFR 250.1632 - Production rates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Production rates. 250.1632 Section 250.1632 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... rates. Each sulphur deposit shall be produced at rates that will provide economic development and...

  17. 30 CFR 250.1632 - Production rates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Production rates. 250.1632 Section 250.1632 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... rates. Each sulphur deposit shall be produced at rates that will provide economic development and...

  18. 30 CFR 250.1632 - Production rates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Production rates. 250.1632 Section 250.1632 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... rates. Each sulphur deposit shall be produced at rates that will provide economic development and...

  19. 78 FR 39784 - International Product Change-Priority Mail International Regional Rate Boxes-Non-Published Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ...-Published Rates AGENCY: Postal Service\\TM\\. ACTION: Notice. SUMMARY: The Postal Service hereby gives notice...[supreg] Regional Rate Boxes--Non-Published Rates to the Competitive Products List. DATES: As of: July 2... Mail International Regional Rate Boxes--Non-Published Rates to the Competitive Product List and, (2) a...

  20. Diversity and Fermentation Products of Xylose-Utilizing Yeasts Isolated from Buffalo Feces in Thailand

    PubMed Central

    Lorliam, Wanlapa; Akaracharanya, Ancharida; Suzuki, Motofumi; Ohkuma, Moriya; Tanasupawat, Somboon

    2013-01-01

    Twenty-eight xylose-utilizing yeast strains were isolated by enrichment culture from 11 samples of feces from the rectum of Murrah buffalo and Swamp buffalo in Thailand. On the basis of their morphological and biochemical characteristics, including sequence analysis of the D1/D2 region of the large-subunit ribosomal RNA gene (LSU rDNA), they were identified as Candida tropicalis (designated as Group I, 11 isolates), Candida parasilosis (Group II, 2 isolates), Candida mengyuniae (Group III, 2 isolates), Sporopachydermia lactativora (Group IV, 2 isolates), Geotrichum sp. (Group V, 5 isolates) and Trichosporon asahii (Group VI, 6 isolates). All isolates utilized xylose as the sole carbon source but 27 isolates could ferment xylose to ethanol (0.006–0.602 g L−1) and 21 isolates could ferment xylose to xylitol (0.19–22.84 g L−1). Candida tropicalis isolates produced the highest yield of xylitol (74.80%). Their ability to convert xylose to xylitol and ethanol ranged from 15.06 g L−1 to 22.84 g L−1 xylitol and 0.110 g L−1 to 0.602 g L−1 ethanol, respectively. PMID:24005843

  1. De Novo Assembly of Candida sojae and Candida boidinii Genomes, Unexplored Xylose-Consuming Yeasts with Potential for Renewable Biochemical Production

    PubMed Central

    Borelli, Guilherme; José, Juliana; Teixeira, Paulo José Pereira Lima; dos Santos, Leandro Vieira

    2016-01-01

    Candida boidinii and Candida sojae yeasts were isolated from energy cane bagasse and plague-insects. Both have fast xylose uptake rate and produce great amounts of xylitol, which are interesting features for food and 2G ethanol industries. Because they lack published genomes, we have sequenced and assembled them, offering new possibilities for gene prospection. PMID:26769937

  2. Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels.

    PubMed

    Li, Xin; Yu, Vivian Yaci; Lin, Yuping; Chomvong, Kulika; Estrela, Raíssa; Park, Annsea; Liang, Julie M; Znameroski, Elizabeth A; Feehan, Joanna; Kim, Soo Rin; Jin, Yong-Su; Glass, N Louise; Cate, Jamie H D

    2015-02-03

    Sustainable biofuel production from renewable biomass will require the efficient and complete use of all abundant sugars in the plant cell wall. Using the cellulolytic fungus Neurospora crassa as a model, we identified a xylodextrin transport and consumption pathway required for its growth on hemicellulose. Reconstitution of this xylodextrin utilization pathway in Saccharomyces cerevisiae revealed that fungal xylose reductases act as xylodextrin reductases, producing xylosyl-xylitol oligomers as metabolic intermediates. These xylosyl-xylitol intermediates are generated by diverse fungi and bacteria, indicating that xylodextrin reduction is widespread in nature. Xylodextrins and xylosyl-xylitol oligomers are then hydrolyzed by two hydrolases to generate intracellular xylose and xylitol. Xylodextrin consumption using a xylodextrin transporter, xylodextrin reductases and tandem intracellular hydrolases in cofermentations with sucrose and glucose greatly expands the capacity of yeast to use plant cell wall-derived sugars and has the potential to increase the efficiency of both first-generation and next-generation biofuel production.

  3. Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels

    PubMed Central

    Li, Xin; Yu, Vivian Yaci; Lin, Yuping; Chomvong, Kulika; Estrela, Raíssa; Park, Annsea; Liang, Julie M; Znameroski, Elizabeth A; Feehan, Joanna; Kim, Soo Rin; Jin, Yong-Su; Glass, N Louise; Cate, Jamie HD

    2015-01-01

    Sustainable biofuel production from renewable biomass will require the efficient and complete use of all abundant sugars in the plant cell wall. Using the cellulolytic fungus Neurospora crassa as a model, we identified a xylodextrin transport and consumption pathway required for its growth on hemicellulose. Reconstitution of this xylodextrin utilization pathway in Saccharomyces cerevisiae revealed that fungal xylose reductases act as xylodextrin reductases, producing xylosyl-xylitol oligomers as metabolic intermediates. These xylosyl-xylitol intermediates are generated by diverse fungi and bacteria, indicating that xylodextrin reduction is widespread in nature. Xylodextrins and xylosyl-xylitol oligomers are then hydrolyzed by two hydrolases to generate intracellular xylose and xylitol. Xylodextrin consumption using a xylodextrin transporter, xylodextrin reductases and tandem intracellular hydrolases in cofermentations with sucrose and glucose greatly expands the capacity of yeast to use plant cell wall-derived sugars and has the potential to increase the efficiency of both first-generation and next-generation biofuel production. DOI: http://dx.doi.org/10.7554/eLife.05896.001 PMID:25647728

  4. De Novo Assembly of Candida sojae and Candida boidinii Genomes, Unexplored Xylose-Consuming Yeasts with Potential for Renewable Biochemical Production.

    PubMed

    Borelli, Guilherme; José, Juliana; Teixeira, Paulo José Pereira Lima; Dos Santos, Leandro Vieira; Pereira, Gonçalo Amarante Guimarães

    2016-01-14

    Candida boidinii and Candida sojae yeasts were isolated from energy cane bagasse and plague-insects. Both have fast xylose uptake rate and produce great amounts of xylitol, which are interesting features for food and 2G ethanol industries. Because they lack published genomes, we have sequenced and assembled them, offering new possibilities for gene prospection. Copyright © 2016 Borelli et al.

  5. Developing ratings for food products: lessons learned from media rating systems.

    PubMed

    Kunkel, Dale; McKinley, Christopher

    2007-01-01

    Children regularly consume low-nutrient, high-calorie food that is not consistent with a healthful diet, contributing to an increasing epidemic of overweight and obesity. Among the multiple causes of this problem is the food industry's emphasis on marketing calorie-dense food products to children. The Institute of Medicine (IOM) has recommended that industry adopt a uniform system of simplified food ratings to convey the nutritional qualities of food in a manner that is understandable and appealing to children and youth. This report analyzes the need for such a system in a food marketing environment that increasingly identifies healthful products for the consumer in inconsistent fashion. It considers evidence regarding current usage of food labeling and draws parallels with media rating systems in discussing the prospects for a uniform food rating system that would accomplish the IOM's objective.

  6. Thermophysical Characterization of MgCl₂·6H₂O, Xylitol and Erythritol as Phase Change Materials (PCM) for Latent Heat Thermal Energy Storage (LHTES).

    PubMed

    Höhlein, Stephan; König-Haagen, Andreas; Brüggemann, Dieter

    2017-04-24

    The application range of existing real scale mobile thermal storage units with phase change materials (PCM) is restricted by the low phase change temperature of 58 ∘ C for sodium acetate trihydrate, which is a commonly used storage material. Therefore, only low temperature heat sinks like swimming pools or greenhouses can be supplied. With increasing phase change temperatures, more applications like domestic heating or industrial process heat could be operated. The aim of this study is to find alternative PCM with phase change temperatures between 90 and 150 ∘ C . Temperature dependent thermophysical properties like phase change temperatures and enthalpies, densities and thermal diffusivities are measured for the technical grade purity materials xylitol (C 5 H 12 O 5 ), erythritol (C 4 H 10 O 4 ) and magnesiumchloride hexahydrate (MCHH, MgCl 2 · 6H 2 O). The sugar alcohols xylitol and erythritol indicate a large supercooling and different melting regimes. The salt hydrate MgCl 2 · 6H 2 O seems to be a suitable candidate for practical applications. It has a melting temperature of 115.1 ± 0.1 ∘ C and a phase change enthalpy of 166.9 ± 1.2 J / g with only 2.8 K supercooling at sample sizes of 100 g . The PCM is stable over 500 repeated melting and solidification cycles at differential scanning calorimeter (DSC) scale with only small changes of the melting enthalpy and temperature.

  7. Ultrafiltration of hemicellulose hydrolysate fermentation broth

    NASA Astrophysics Data System (ADS)

    Kresnowati, M. T. A. P.; Desiriani, Ria; Wenten, I. G.

    2017-03-01

    Hemicelulosic material is often used as the main substrate to obtain high-value products such as xylose. The five carbon sugar, xylose, could be further processed by fermentation to produce xylitol. However, not only the hemicellulose hydrolysate fermentation broth contains xylitol, but also metabolite products, residual substances, biomass and mineral salts. Therefore, in order to obtain the end products, various separation processes are required to separate and purify the desired product from the fermentation broth. One of the most promising downstream processing methods of fermentation broth clarification is ultrafiltration due to its potential for energy saving and higher purity. In addition, ultrafiltration membrane has a high performance in separating inhibitory components in the fermentation broth. This paper assesses the influence of operating conditions; including trans-membrane pressure, velocity, pH of the fermentation broth solutions, and also to the xylitol concentration in the product. The challenges of the ultrafiltration process will be pointed out.

  8. Increasing protein production rates can decrease the rate at which functional protein is produced

    NASA Astrophysics Data System (ADS)

    Sharma, Ajeet; O'Brien, Edward

    The rate at which soluble, functional protein is produced by the ribosome has recently been found to vary in complex and unexplained ways as various translation-associated rates are altered through synonymous codon substitutions. We combine a well-established ribosome-traffic model with a master-equation model of co-translational domain folding to explore the scenarios that are possible for the protein production rate, J, and the functional-nascent protein production rate, F, as the rates associated with translation are altered. We find that while J monotonically increases as the rates of translation-initiation, -elongation and -termination increase, F can either increase or decrease. F exhibits non-monotonic behavior because increasing these rates can cause a protein to be synthesized more rapidly but provide less time for nascent-protein domains to co-translationally fold thereby producing less functional nascent protein immediately after synthesis. We further demonstrate that these non-monotonic changes in Faffect the post-translational, steady-state levels of functional protein in a similar manner. Our results provide a possible explanation for recent experimental observations that the specific activity of enzymatic proteins can decrease with increased synthesis rates and can in principle be used to rationally-design transcripts to maximize the production of functional nascent protein.

  9. Effect of seeding rate on organic production

    USDA-ARS?s Scientific Manuscript database

    Increased demand for organic rice (Oryza sativa L.) has incentivized producer conversion from conventional to organically-managed rice production in the U.S. Little is known on the impacts of seeding rate on organic rice production. A completely randomized factorial design with four replications was...

  10. Insights into the simultaneous utilization of glucose and glycerol by Streptomyces albulus M-Z18 for high ε-poly-L-lysine productivity.

    PubMed

    Zeng, Xin; Zhao, Junjie; Chen, Xusheng; Mao, Zhonggui; Miao, Wenyun

    2017-12-01

    The simultaneous consumption of glucose and glycerol led to remarkably higher productivity of both biomass and ε-poly-L-lysine (ε-PL), which was of great significance in industrial microbial fermentation. To further understand the superior fermentation performances, transcriptional analysis and exogenous substrates addition were carried out to study the simultaneous utilization of glucose and glycerol by Streptomyces albulus M-Z18. Transcriptome analysis revealed that there was no mutual transcriptional suppression between the utilization of glucose and glycerol, which was quite different from typical "glucose effect". In addition, microorganisms cultivated with single glycerol showed significant demand for ribose-5-phosphate, which resulted in potential demand for glucose and xylitol. The above demand could be relieved by glucose (in the mixed carbon source) or xylitol addition, leading to improvement of biomass production. It indicated that glucose in the mixed carbon source was more important for biomass production. Besides, transcriptional analysis and exogenous citrate addition proved that single carbon sources could not afford enough carbon skeletons for Embden Meyerhof pathway (EMP) while a glucose-glycerol combination could provided sufficient carbon skeletons to saturate the metabolic capability of EMP, which contributed to the replenishment of precursors and energy consumed in ε-PL production. This study offered insight into the simultaneous consumption of glucose and glycerol in the ε-PL batch fermentation, which deepened our comprehension on the high ε-PL productivity in the mixed carbon source.

  11. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis.

    PubMed

    Watanabe, Seiya; Abu Saleh, Ahmed; Pack, Seung Pil; Annaluru, Narayana; Kodaki, Tsutomu; Makino, Keisuke

    2007-09-01

    A recombinant Saccharomyces cerevisiae strain transformed with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes from Pichia stipitis (PsXR and PsXDH, respectively) has the ability to convert xylose to ethanol together with the unfavourable excretion of xylitol, which may be due to intercellular redox imbalance caused by the different coenzyme specificity between NADPH-preferring XR and NAD(+)-dependent XDH. In this study, we focused on the effect(s) of mutated NADH-preferring PsXR in fermentation. The R276H and K270R/N272D mutants were improved 52- and 146-fold, respectively, in the ratio of NADH/NADPH in catalytic efficiency [(k(cat)/K(m) with NADH)/(k(cat)/K(m) with NADPH)] compared with the wild-type (WT), which was due to decrease of k(cat) with NADPH in the R276H mutant and increase of K(m) with NADPH in the K270R/N272D mutant. Furthermore, R276H mutation led to significant thermostabilization in PsXR. The most positive effect on xylose fermentation to ethanol was found by using the Y-R276H strain, expressing PsXR R276H mutant and PsXDH WT: 20 % increase of ethanol production and 52 % decrease of xylitol excretion, compared with the Y-WT strain expressing PsXR WT and PsXDH WT. Measurement of intracellular coenzyme concentrations suggested that maintenance of the of NADPH/NADP(+) and NADH/NAD(+) ratios is important for efficient ethanol fermentation from xylose by recombinant S. cerevisiae.

  12. Deciphering mRNA Sequence Determinants of Protein Production Rate

    NASA Astrophysics Data System (ADS)

    Szavits-Nossan, Juraj; Ciandrini, Luca; Romano, M. Carmen

    2018-03-01

    One of the greatest challenges in biophysical models of translation is to identify coding sequence features that affect the rate of translation and therefore the overall protein production in the cell. We propose an analytic method to solve a translation model based on the inhomogeneous totally asymmetric simple exclusion process, which allows us to unveil simple design principles of nucleotide sequences determining protein production rates. Our solution shows an excellent agreement when compared to numerical genome-wide simulations of S. cerevisiae transcript sequences and predicts that the first 10 codons, which is the ribosome footprint length on the mRNA, together with the value of the initiation rate, are the main determinants of protein production rate under physiological conditions. Finally, we interpret the obtained analytic results based on the evolutionary role of the codons' choice for regulating translation rates and ribosome densities.

  13. A combination of the probiotic and prebiotic product can prevent the germination of Clostridium difficile spores and infection.

    PubMed

    Rätsep, M; Kõljalg, S; Sepp, E; Smidt, I; Truusalu, K; Songisepp, E; Stsepetova, J; Naaber, P; Mikelsaar, R H; Mikelsaar, M

    2017-10-01

    Clostridium difficile infection (CDI) is one of the most prevalent healthcare associated infections in hospitals and nursing homes. Different approaches are used for prevention of CDI. Absence of intestinal lactobacilli and bifidobacteria has been associated with C. difficile colonization in hospitalized patients. Our aim was to test a) the susceptibility of C. difficile strains of different origin and the intestinal probiotic Lactobacillus plantarum Inducia (DSM 21379) to various antimicrobial preparations incl. metronidazole, vancomycin; b) the susceptibility of C. difficile strains to antagonistic effects of the probiotic L. plantarum Inducia, prebiotic xylitol (Xyl) and their combination as a synbiotic (Syn) product; c) the suppression of germination of C. difficile spores in vitro and in vivo in animal model of C. difficile infection with Inducia, Xyl and Syn treatment. The VPI strain 10463 (ATCC 43255), epidemic strain (M 13042) and clinical isolates (n = 12) of C. difficile from Norway and Estonia were susceptible and contrarily L. plantarum Inducia resistant to vancomycin, metronidazole and ciprofloxacin. The intact cells of Inducia, natural and neutralized cell free supernatant inhibited in vitro the growth of tested C. difficile reference strain VPI and Estonian and Norwegian clinical isolates of C. difficile after co-cultivation. This effect against C. difficile sustained in liquid media under ampicillin (0.75 μg/ml) and Xyl (5%) application. Further, incubation of Inducia in the media with 5% Xyl fully stopped germination of spores of C. difficile VPI strain after 48 h. In infection model the 48 hamsters were administered ampicillin (30 mg/kg) and 10-30 spores of C. difficile VPI strain. They also received five days before and after the challenge a pretreatment with a synbiotic (single daily dose of L. plantarum Inducia 1 ml of 10 10  CFU/ml and 20% xylitol in 1 ml by orogastric gavage). The survival rate of hamsters was

  14. Production of xylitol from biomass using an inhibitor-tolerant fungal strain

    USDA-ARS?s Scientific Manuscript database

    Inhibitory compounds arising from physical–chemical pretreatment of biomass feedstock can interfere with fermentation of biomass sugars to product. A fungus, Coniochaeta ligniaria NRRL30616 improves fermentability of biomass sugars by metabolizing a variety of microbial inhibitors including furan al...

  15. Exact solutions for the entropy production rate of several irreversible processes.

    PubMed

    Ross, John; Vlad, Marcel O

    2005-11-24

    We investigate thermal conduction described by Newton's law of cooling and by Fourier's transport equation and chemical reactions based on mass action kinetics where we detail a simple example of a reaction mechanism with one intermediate. In these cases we derive exact expressions for the entropy production rate and its differential. We show that at a stationary state the entropy production rate is an extremum if and only if the stationary state is a state of thermodynamic equilibrium. These results are exact and independent of any expansions of the entropy production rate. In the case of thermal conduction we compare our exact approach with the conventional approach based on the expansion of the entropy production rate near equilibrium. If we expand the entropy production rate in a series and keep terms up to the third order in the deviation variables and then differentiate, we find out that the entropy production rate is not an extremum at a nonequilibrium steady state. If there is a strict proportionality between fluxes and forces, then the entropy production rate is an extremum at the stationary state even if the stationary state is far away from equilibrium.

  16. Cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025.

    PubMed

    Rocha, Maria Valderez Ponte; Rodrigues, Tigressa Helena Soares; Melo, Vania M M; Gonçalves, Luciana R B; de Macedo, Gorete Ribeiro

    2011-08-01

    The potential of cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025 was evaluated in this work. This strain was preliminarily cultivated in a synthetic medium containing glucose and xylose and was able to produce ethanol and xylitol at pH 4.5. Next, cashew apple bagasse hydrolysate (CABH) was prepared by a diluted sulfuric acid pretreatment and used as fermentation media. This hydrolysate is rich in glucose, xylose, and arabinose and contains traces of formic acid and acetic acid. In batch fermentations of CABH at pH 4.5, the strain produced only ethanol. The effects of temperature on the kinetic parameters of ethanol fermentation by K. marxianus CE025 using CABH were also evaluated. Maximum specific growth rate (μ(max)), overall yields of ethanol based on glucose consumption [Formula: see text] and based on glucose + xylose consumption (Y ( P/S )), overall yield of ethanol based on biomass (Y ( P/X )), and ethanol productivity (P (E)) were determined as a function of temperature. Best results of ethanol production were achieved at 30°C, which is also quite close to the optimum temperature for the formation of biomass. The process yielded 12.36 ± 0.06 g l(-1) of ethanol with a volumetric production rate of 0.257 ± 0.002 g l(-1) h(-1) and an ethanol yield of 0.417 ± 0.003 g g(-1) glucose.

  17. Fermentation of sugars and sugar alcohols by plaque Lactobacillus strains.

    PubMed

    Almståhl, Annica; Lingström, Peter; Eliasson, Lars; Carlén, Anette

    2013-07-01

    The objective was to analyse the ability of Lactobacillus strains isolated from supragingival plaque of subjects with hyposalivation and from healthy controls to ferment sugars and sugar alcohols. Fifty strains isolated from interproximal plaque from subjects with radiation-induced hyposalivation (25 strains), subjects with primary Sjögren's syndrome (16 strains) and from subjects with normal salivary secretion rate (9 strains) were tested. Growth and pH were determined after 24 and 48 h of anaerobic incubation in vials containing basal media with 1 % of glucose, fructose, sucrose, mannitol, sorbitol or xylitol. No differences between strains isolated from hyposalivated subjects and controls were detected. All strains lowered the pH to <5.0 from fructose and the majority of the strains from glucose and sucrose. A pH of <5.5 was seen for 52 % of the strains using mannitol, 50 % using sorbitol and 36 % using xylitol. The ability to produce acids from sugars and sugar alcohols was highest among strains of Lactobacillus rhamnosus, Lactobacillus casei and Lactobacillus paracasei and lowest among Lactobacillus fermentum strains. A large number of Lactobacillus strains are able to ferment not only sugars but also the sugar substitutes mannitol, sorbitol and xylitol to pH levels critical for enamel demineralisation. Our findings suggest that products containing mannitol, sorbitol and/or xylitol may contribute to the acidogenic potential of the dental plaque and especially in hyposalivated subjects with high numbers of lactobacilli.

  18. Production rates for crews using hand tools on firelines

    Treesearch

    Lisa Haven; T. Parkin Hunter; Theodore G. Storey

    1982-01-01

    Reported rates at which hand crews construct firelines can vary widely because of differences in fuels, fire and measurement conditions, and fuel resistance-to-control classification schemes. Real-time fire dispatching and fire simulation planning models, however, require accurate estimates of hand crew productivity. Errors in estimating rate of fireline production...

  19. Thermophysical Characterization of MgCl2·6H2O, Xylitol and Erythritol as Phase Change Materials (PCM) for Latent Heat Thermal Energy Storage (LHTES)

    PubMed Central

    Höhlein, Stephan; König-Haagen, Andreas; Brüggemann, Dieter

    2017-01-01

    The application range of existing real scale mobile thermal storage units with phase change materials (PCM) is restricted by the low phase change temperature of 58 ∘C for sodium acetate trihydrate, which is a commonly used storage material. Therefore, only low temperature heat sinks like swimming pools or greenhouses can be supplied. With increasing phase change temperatures, more applications like domestic heating or industrial process heat could be operated. The aim of this study is to find alternative PCM with phase change temperatures between 90 and 150 ∘C. Temperature dependent thermophysical properties like phase change temperatures and enthalpies, densities and thermal diffusivities are measured for the technical grade purity materials xylitol (C5H12O5), erythritol (C4H10O4) and magnesiumchloride hexahydrate (MCHH, MgCl2·6H2O). The sugar alcohols xylitol and erythritol indicate a large supercooling and different melting regimes. The salt hydrate MgCl2·6H2O seems to be a suitable candidate for practical applications. It has a melting temperature of 115.1 ± 0.1 ∘C and a phase change enthalpy of 166.9 ± 1.2 J/g with only 2.8 K supercooling at sample sizes of 100 g. The PCM is stable over 500 repeated melting and solidification cycles at differential scanning calorimeter (DSC) scale with only small changes of the melting enthalpy and temperature. PMID:28772806

  20. Interaction of cytoplasmic dehydrogenases: quantitation of pathways of ethanol metabolism.

    PubMed

    Vind, C; Grunnet, N

    1983-01-01

    The interaction between xylitol, alcohol and lactate dehydrogenase has been studied in hepatocytes from rats by applying specifically tritiated substrates. A simple model, describing the metabolic fate of tritium from [2-3H] xylitol and (1R) [1-3H]ethanol is presented. The model allows calculation of the specific radioactivity of free, cytosolic NADH, based on transfer of tritium to lactate, glucose and water. From the initial labelling rate of lactate and the specific radioactivity of cytosolic NADH, we have determined the reversible flow through the lactate dehydrogenase catalyzed reaction to 1-5 mumol/min . g wet wt. The results suggest that xylitol, alcohol and lactate dehydrogenase share the same pool of NAD(H) in the cytoplasma. This finding allows estimation of the ethanol oxidation rate by the non-alcohol dehydrogenase pathways from the relative yield of tritium in water and glucose. The calculations are based on a comparison of the fate of the 1-pro-R hydrogen of ethanol and the hydrogen bound to carbon 2 of xylitol or carbon 2 of lactate under identical conditions.

  1. Acetaldehyde production by major oral microbes.

    PubMed

    Moritani, K; Takeshita, T; Shibata, Y; Ninomiya, T; Kiyohara, Y; Yamashita, Y

    2015-09-01

    To assess acetaldehyde (ACH) production by bacteria constituting the oral microbiota and the inhibitory effects of sugar alcohols on ACH production. The predominant bacterial components of the salivary microbiota of 166 orally healthy subjects were determined by barcoded pyrosequencing analysis of the 16S rRNA gene. Bacterial ACH production from ethanol or glucose was measured using gas chromatography. In addition, inhibition by four sugars and five sugar alcohols of ACH production was assayed. Forty-one species from 16 genera were selected as predominant and prevalent bacteria based on the following criteria: identification in ≥95% of the subjects, ≥1% of mean relative abundance or ≥5% of maximum relative abundance. All Neisseria species tested produced conspicuous amounts of ACH from ethanol, as did Rothia mucilaginosa, Streptococcus mitis and Prevotella histicola exhibited the ability to produce ACH. In addition, xylitol and sorbitol inhibited ACH production by Neisseria mucosa by more than 90%. The oral microbiota of orally healthy subjects comprises considerable amounts of bacteria possessing the ability to produce ACH, an oral carcinogen. Consumption of sugar alcohols may regulate ACH production by oral microbes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Analysis of two production inventory systems with buffer, retrials and different production rates

    NASA Astrophysics Data System (ADS)

    Jose, K. P.; Nair, Salini S.

    2017-09-01

    This paper considers the comparison of two ( {s,S} ) production inventory systems with retrials of unsatisfied customers. The time for producing and adding each item to the inventory is exponentially distributed with rate β. However, a production rate α β higher than β is used at the beginning of the production. The higher production rate will reduce customers' loss when inventory level approaches zero. The demand from customers is according to a Poisson process. Service times are exponentially distributed. Upon arrival, the customers enter into a buffer of finite capacity. An arriving customer, who finds the buffer full, moves to an orbit. They can retry from there and inter-retrial times are exponentially distributed. The two models differ in the capacity of the buffer. The aim is to find the minimum value of total cost by varying different parameters and compare the efficiency of the models. The optimum value of α corresponding to minimum total cost is an important evaluation. Matrix analytic method is used to find an algorithmic solution to the problem. We also provide several numerical or graphical illustrations.

  3. Mapping {sup 15}O Production Rate for Proton Therapy Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grogg, Kira; Alpert, Nathaniel M.; Zhu, Xuping

    Purpose: This work was a proof-of-principle study for the evaluation of oxygen-15 ({sup 15}O) production as an imaging target through the use of positron emission tomography (PET), to improve verification of proton treatment plans and to study the effects of perfusion. Methods and Materials: Dynamic PET measurements of irradiation-produced isotopes were made for a phantom and rabbit thigh muscles. The rabbit muscle was irradiated and imaged under both live and dead conditions. A differential equation was fitted to phantom and in vivo data, yielding estimates of {sup 15}O production and clearance rates, which were compared to live versus dead rates formore » the rabbit and to Monte Carlo predictions. Results: PET clearance rates agreed with decay constants of the dominant radionuclide species in 3 different phantom materials. In 2 oxygen-rich materials, the ratio of {sup 15}O production rates agreed with the expected ratio. In the dead rabbit thighs, the dynamic PET concentration histories were accurately described using {sup 15}O decay constant, whereas the live thigh activity decayed faster. Most importantly, the {sup 15}O production rates agreed within 2% (P>.5) between conditions. Conclusions: We developed a new method for quantitative measurement of {sup 15}O production and clearance rates in the period immediately following proton therapy. Measurements in the phantom and rabbits were well described in terms of {sup 15}O production and clearance rates, plus a correction for other isotopes. These proof-of-principle results support the feasibility of detailed verification of proton therapy treatment delivery. In addition, {sup 15}O clearance rates may be useful in monitoring permeability changes due to therapy.« less

  4. NPP ATMS Snowfall Rate Product

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua

    2015-01-01

    Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2015). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. NCEP CMORPH analysis has shown that integration of ATMS SFR has improved the performance of CMORPH-Snow. The ATMS SFR product is also being assessed at several NWS Weather Forecast Offices for its usefulness in weather forecast.

  5. Development of cost-effective media to increase the economic potential for larger-scale bioproduction of natural food additives by Lactobacillus rhamnosus , Debaryomyces hansenii , and Aspergillus niger.

    PubMed

    Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Domínguez, José Manuel

    2009-11-11

    Yeast extract (YE) is the most common nitrogen source in a variety of bioprocesses in spite of the high cost. Therefore, the use of YE in culture media is one of the major technical hurdles to be overcome for the development of low-cost fermentation routes, making the search for alternative-cheaper nitrogen sources particularly desired. The aim of the current study is to develop cost-effective media based on corn steep liquor (CSL) and locally available vinasses in order to increase the economic potential for larger-scale bioproduction. Three microorganisms were evaluated: Lactobacillus rhamnosus , Debaryomyces hansenii , and Aspergillus niger . The amino acid profile and protein concentration was relevant for the xylitol and citric acid production by D. hansenii and A. niger , respectively. Metals also played an important role for citric acid production, meanwhile, D. hansenii showed a strong dependence with the initial amount of Mg(2+). Under the best conditions, 28.8 g lactic acid/L (Q(LA) = 0.800 g/L.h, Y(LA/S) = 0.95 g/g), 35.3 g xylitol/L (Q(xylitol) = 0.380 g/L.h, Y(xylitol/S) = 0.69 g/g), and 13.9 g citric acid/L (Q(CA) = 0.146 g/L.h, Y(CA/S) = 0.63 g/g) were obtained. The economic efficiency (E(p/euro)) parameter identify vinasses as a lower cost and more effective nutrient source in comparison to CSL.

  6. Experimental Determination of the Cosmogenic Ar Production Rate From Ca

    NASA Astrophysics Data System (ADS)

    Niedermann, S.; Schäfer, J. M.; Wieler, R.; Naumann, R.

    2005-12-01

    Cosmogenic 38Ar is produced in terrestrial surface rocks by spallation of target nuclides, in particular K and Ca. Though the presence of cosmogenic Ar in Ca-rich minerals has been demonstrated earlier [1], is has proven difficult to establish its production rate. To circumvent problems connected to 36Ar production by 35Cl neutron capture and different production rates from K and Ca, we have analyzed the noble gases in seven pyroxene separates (px) from the Antarctic Dry Valleys which are essentially free of Cl and K. The px were obtained from dolerite rocks, for which 3He and 21Ne exposure ages from 1.5 to 6.5 Ma have been reported [2]. The noble gases were extracted in two or three heating steps at GFZ Potsdam, yielding 38Ar/36Ar ratios up to 0.2283 ± 0.0008 (air: 0.1880). Ca (3.7-11.2 wt. %) is expected to be the only relevant target element for Ar production in the five pure px (<0.05% K); the production rate from Fe is at least two orders of magnitude lower than that from Ca [e.g. 3]. Assuming an 38Ar/36Ar production ratio of 1.5 ± 0.2, we obtain cosmogenic 38Ar concentrations between 130 and 530x106 atoms/g. The 38Ar production rate was calculated based on 21Ne exposure ages [2], corrected for elevated nuclide production in Antarctica due to prevailing low air pressure and for the revised 21Ne production rate from Si. We obtain values between 188 ± 17 and 243 +110/-24 atoms (g Ca)-1 a-1 at sea level and high (northern) latitudes for four out of the five pure px, while one yields a very high value of 348 ± 70 atoms (g Ca)-1 a-1. Values above 250 atoms (g Ca)-1 a-1 are also obtained from two less pure px containing 0.3 and 0.9% K and from one feldspar/quartz accumulate, indicating that the production rate from K may be higher than that from Ca. The weighted mean (excluding the outlier) of ~200 atoms (g Ca)-1 a-1 is in excellent agreement with Lal's [3] theoretical estimate. [1] Renne et al., EPSL 188 (2001) 435. [2] Schäfer et al., EPSL 167 (1999) 215. [3

  7. The rate of decay of fresh fission products from a nuclear reactor

    NASA Astrophysics Data System (ADS)

    Dolan, David J.

    Determining the rate of decay of fresh fission products from a nuclear reactor is complex because of the number of isotopes involved, different types of decay, half-lives of the isotopes, and some isotopes decay into other radioactive isotopes. Traditionally, a simplified rule of 7s and 10s is used to determine the dose rate from nuclear weapons and can be to estimate the dose rate from fresh fission products of a nuclear reactor. An experiment was designed to determine the dose rate with respect to time from fresh fission products of a nuclear reactor. The experiment exposed 0.5 grams of unenriched Uranium to a fast and thermal neutron flux from a TRIGA Research Reactor (Lakewood, CO) for ten minutes. The dose rate from the fission products was measured by four Mirion DMC 2000XB electronic personal dosimeters over a period of six days. The resulting dose rate following a rule of 10s: the dose rate of fresh fission products from a nuclear reactor decreases by a factor of 10 for every 10 units of time.

  8. Kinetic modeling of hydrogen production rate by photoautotrophic cyanobacterium A. variabilis ATCC 29413 as a function of both CO2 concentration and oxygen production rate.

    PubMed

    Salleh, Siti Fatihah; Kamaruddin, Azlina; Uzir, Mohamad Hekarl; Mohamed, Abdul Rahman; Shamsuddin, Abdul Halim

    2017-02-07

    Hydrogen production by cyanobacteria could be one of the promising energy resources in the future. However, there is very limited information regarding the kinetic modeling of hydrogen production by cyanobacteria available in the literature. To provide an in-depth understanding of the biological system involved during the process, the Haldane's noncompetitive inhibition equation has been modified to determine the specific hydrogen production rate (HPR) as a function of both dissolved CO 2 concentration (C TOT ) and oxygen production rate (OPR). The highest HPR of 15 [Formula: see text] was found at x CO2 of 5% vol/vol and the rate consequently decreased when the C TOT and OPR were 0.015 k mol m -3 and 0.55 mL h -1 , respectively. The model provided a fairly good estimation of the HPR with respect to the experimental data collected.

  9. Blood product transfusion and wastage rates in obstetric hemorrhage.

    PubMed

    Yazer, Mark H; Dunbar, Nancy M; Cohn, Claudia; Dillon, Jessica; Eldib, Howida; Jackson, Bryon; Kaufman, Richard; Murphy, Michael F; O'Brien, Kerry; Raval, Jay S; Seheult, Jansen; Staves, Julie; Waters, Jonathan H

    2018-03-07

    Bleeding emergencies can complicate pregnancies. Understanding the disposition of the products that are issued in this clinical setting can help inform inventory levels at hospitals where obstetric patients are seen. Patients who had an obstetric hemorrhage of any etiology between January 2013 and June 2017, and whose resuscitation began with uncrossmatched red blood cells (RBCs) or emergency-issued plasma or platelets (PLT), were included. The disposition of all blood products issued within 6 hours of the first uncrossmatched or emergency-issued product was documented, as was basic patient demographic information. In total, 301 women with an obstetric hemorrhage from seven academic institutions were identified. Their mean ± standard deviation age was 30.9 ± 6.1 years, 45.2% delivered by Cesarean section, and 40.5% delivered vaginally, while 12% did not deliver. The largest single etiology of hemorrhage was related to abnormal placentation. Of the 2280 issued RBC units, 55% were transfused, 43% were returned, and 2% were wasted. The rates of transfusion of the other blood products ranged from 58% for plasma units to 82% for cryoprecipitate. Seventeen percent of the issued cryoprecipitate units were wasted, the highest of any blood product. The rate of a patient receiving a transfusion when at least one blood product had been ordered ranged from 74% for PLTs to 91% for cryoprecipitate. Although the rates of receiving a transfusion of at least one blood product when one is ordered was high, many of the issued units were returned, especially for RBCs. © 2018 AABB.

  10. Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation.

    PubMed

    Romaní, Aloia; Pereira, Filipa; Johansson, Björn; Domingues, Lucília

    2015-03-01

    In this work, Saccharomyces cerevisiae strains PE-2 and CAT-1, commonly used in the Brazilian fuel ethanol industry, were engineered for xylose fermentation, where the first fermented xylose faster than the latter, but also produced considerable amounts of xylitol. An engineered PE-2 strain (MEC1121) efficiently consumed xylose in presence of inhibitors both in synthetic and corn-cob hydrolysates. Interestingly, the S. cerevisiae MEC1121 consumed xylose and glucose simultaneously, while a CEN.PK based strain consumed glucose and xylose sequentially. Deletion of the aldose reductase GRE3 lowered xylitol production to undetectable levels and increased xylose consumption rate which led to higher final ethanol concentrations. Fermentation of corn-cob hydrolysate using this strain, MEC1133, resulted in an ethanol yield of 0.47 g/g of total sugars which is 92% of the theoretical yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Removal of inhibitors from pre-hydrolysis liquor of kraft-based dissolving pulp production process using adsorption and flocculation processes.

    PubMed

    Liu, Xin; Fatehi, Pedram; Ni, Yonghao

    2012-07-01

    A process for removing inhibitors from pre-hydrolysis liquor (PHL) of a kraft-based dissolving pulp production process by adsorption and flocculation, and the characteristics of this process were studied. In this process, industrially produced PHL was treated with unmodified and oxidized activated carbon as an absorbent and polydiallyldimethylammonium chloride (PDADMAC) as a flocculant. The overall removal of lignin and furfural in the developed process was 83.3% and 100%, respectively, while that of hemicelluloses was 32.7%. These results confirmed that the developed process can remove inhibitors from PHL prior to producing value-added products, e.g. ethanol and xylitol via fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Towards a Model for Protein Production Rates

    NASA Astrophysics Data System (ADS)

    Dong, J. J.; Schmittmann, B.; Zia, R. K. P.

    2007-07-01

    In the process of translation, ribosomes read the genetic code on an mRNA and assemble the corresponding polypeptide chain. The ribosomes perform discrete directed motion which is well modeled by a totally asymmetric simple exclusion process (TASEP) with open boundaries. Using Monte Carlo simulations and a simple mean-field theory, we discuss the effect of one or two "bottlenecks" (i.e., slow codons) on the production rate of the final protein. Confirming and extending previous work by Chou and Lakatos, we find that the location and spacing of the slow codons can affect the production rate quite dramatically. In particular, we observe a novel "edge" effect, i.e., an interaction of a single slow codon with the system boundary. We focus in detail on ribosome density profiles and provide a simple explanation for the length scale which controls the range of these interactions.

  13. Soil Production and Erosion Rates and Processes in Mountainous Landscapes

    NASA Astrophysics Data System (ADS)

    Heimsath, A. M.; DiBiase, R. A.; Whipple, K. X.

    2012-12-01

    We focus here on high-relief, steeply sloped landscapes from the Nepal Himalaya to the San Gabriels of California that are typically thought to be at a critical threshold of soil cover. Observations reveal that, instead, there are significant areas mantled with soil that fit the conceptual framework of a physically mobile layer derived from the underlying parent material with some locally-derived organic content. The extent and persistence of such soils depends on the long-term balance between soil production and erosion despite the perceived discrepancy between high erosion and low soil production rates. We present cosmogenic Be-10-derived soil production and erosion rates that show that soil production increases with catchment-averaged erosion, suggesting a feedback that enhances soil-cover persistence, even in threshold landscapes. Soil production rates do decline systematically with increasing soil thickness, but hint at the potential for separate soil production functions for different erosional regimes. We also show that a process transistion to landslide-dominated erosion results in thinner, patchier soils and rockier topography, but find that there is no sudden transition to bedrock landscapes. Our landslide modeling is combined with a detailed quantification of bedrock exposure for these steep, mountainous landscapes. We also draw an important conclusion connecting the physical processes producing and transporting soil and the chemical processes weathering the parent material by measuring parent material strength across three different field settings. We observe that parent material strength increases with overlying soil thickness and, therefore, the weathered extent of the saprolite. Soil production rates, thus, decrease with increasing parent material competence. These observation highlight the importance of quantifying hillslope hydrologic processes where such multi-facted measurements are made.

  14. Application potential for some sugar substitutes in some low energy and diabetic foods.

    PubMed

    Bakr, A A

    1997-06-01

    Preparation of acceptable low energy fiber enriched and diabetic jams, cakes and biscuits using different formulas of sucrose substitutes with the partial replacement of wheat flour with bran as a source of dietary fibre, was studied. Special care was paid to evaluate the nutritional plus keeping qualities and the potential effect of the most acceptable formulae from each food stuffs group on the blood glucose level in lean and obese diabetes mellitus patients. It was technologically possible to prepare acceptable, high nutritional diabetic and low energy apricot, guava and strawberry jams and jellies by combinations of sweeteners using xylitol (i.e. xylitol-sorbitol-aspartame and xylitol-fructose). The attainment of a suitable texture may be more difficult in xylitol and sorbitol jams, therefore 0.2 g CaCl2. 2H2O was added. Storage of these jams at 4 degrees C improved their keeping quality significantly (p < 0.05), where the microbial load was less than 20 cells per gram and the products were free from molds and yeasts. Also, high nutritional and acceptable cakes and biscuits for low energy supply and for diabetic subjects can be sweetened with low level of aspartame in combination with fructose, sorbitol and xylitol. Consumption of such low energic and diabetic food items reduces significantly (p < 0.05) the plasma glucose level in lean and obese diabetics. Addition of wheat bran in bakery products not only reduced both energy value of these foods and blood glucose, but it also improved peripheral insulin activity by its system modification.

  15. An artificial transport metabolon facilitates improved substrate utilization in yeast.

    PubMed

    Thomik, Thomas; Wittig, Ilka; Choe, Jun-Yong; Boles, Eckhard; Oreb, Mislav

    2017-11-01

    Efficient substrate utilization is the first and most important prerequisite for economically viable production of biofuels and chemicals by microbial cell factories. However, production rates and yields are often compromised by low transport rates of substrates across biological membranes and their diversion to competing pathways. This is especially true when common chassis organisms are engineered to utilize nonphysiological feedstocks. Here, we addressed this problem by constructing an artificial complex between an endogenous sugar transporter and a heterologous xylose isomerase in Saccharomyces cerevisiae. Direct feeding of the enzyme through the transporter resulted in acceleration of xylose consumption and substantially diminished production of xylitol as an undesired side product, with a concomitant increase in the production of ethanol. This underlying principle could also likely be implemented in other biotechnological applications.

  16. RADIOLYTIC GAS PRODUCTION RATES OF POLYMERS EXPOSED TO TRITIUM GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, E.

    Data from previous reports on studies of polymers exposed to tritium gas is further analyzed to estimate rates of radiolytic gas production. Also, graphs of gas release during tritium exposure from ultrahigh molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE, a trade name is Teflon®), and Vespel® polyimide are re-plotted as moles of gas as a function of time, which is consistent with a later study of tritium effects on various formulations of the elastomer ethylene-propylene-diene monomer (EPDM). These gas production rate estimates may be useful while considering using these polymers in tritium processing systems. These rates are valid at least formore » the longest exposure times for each material, two years for UHMW-PE, PTFE, and Vespel®, and fourteen months for filled and unfilled EPDM. Note that the production “rate” for Vespel® is a quantity of H{sub 2} produced during a single exposure to tritium, independent of length of time. The larger production rate per unit mass for unfilled EPDM results from the lack of filler- the carbon black in filled EPDM does not produce H{sub 2} or HT. This is one aspect of how inert fillers reduce the effects of ionizing radiation on polymers.« less

  17. Oxygen production rates for P/Halley over much of the 1985-1986 apparition

    NASA Technical Reports Server (NTRS)

    Spinrad, Hyron; Mccarthy, Patrick J.; Strauss, Michael A.

    1986-01-01

    Long slit CCD spectrophotometry of comet P/Halley in the visible region was used to measure the production rate of atomic oxygen during the 1985/86 apparition. The observations cover a large range of heliocentric distances, since the technique is applicable to apparently bright and faint comets. The cometary gas production rate for P/Halley increases rapidly with decreasing heliocentric distance toward perihelion and is systematicaly larger at a given heliocentric distance for the postperihelion observations. The average production rate for O1D on the day of the Giotto flyby is 4 times 10 to the 28th power atoms/sec giving an extrapolated total water production rate of 6 times 10 to the 29th power mols/sec. A method for comparing the absolute cometary gas production rates for different comets is discussed.

  18. Peak capacity, peak-capacity production rate, and boiling point resolution for temperature-programmed GC with very high programming rates

    PubMed

    Grall; Leonard; Sacks

    2000-02-01

    Recent advances in column heating technology have made possible very fast linear temperature programming for high-speed gas chromatography. A fused-silica capillary column is contained in a tubular metal jacket, which is resistively heated by a precision power supply. With very rapid column heating, the rate of peak-capacity production is significantly enhanced, but the total peak capacity and the boiling-point resolution (minimum boiling-point difference required for the separation of two nonpolar compounds on a nonpolar column) are reduced relative to more conventional heating rates used with convection-oven instruments. As temperature-programming rates increase, elution temperatures also increase with the result that retention may become insignificant prior to elution. This results in inefficient utilization of the down-stream end of the column and causes a loss in the rate of peak-capacity production. The rate of peak-capacity production is increased by the use of shorter columns and higher carrier gas velocities. With high programming rates (100-600 degrees C/min), column lengths of 6-12 m and average linear carrier gas velocities in the 100-150 cm/s range are satisfactory. In this study, the rate of peak-capacity production, the total peak capacity, and the boiling point resolution are determined for C10-C28 n-alkanes using 6-18 m long columns, 50-200 cm/s average carrier gas velocities, and 60-600 degrees C/min programming rates. It was found that with a 6-meter-long, 0.25-mm i.d. column programmed at a rate of 600 degrees C/min, a maximum peak-capacity production rate of 6.1 peaks/s was obtained. A total peak capacity of about 75 peaks was produced in a 37-s long separation spanning a boiling-point range from n-C10 (174 degrees C) to n-C28 (432 degrees C).

  19. Heart rate, rate-pressure product, and oxygen uptake during four sexual activities.

    PubMed

    Bohlen, J G; Held, J P; Sanderson, M O; Patterson, R P

    1984-09-01

    Heart rate, rate-pressure product, and VO2 were measured in ten healthy men during four specified sexual activities: coitus with husband on top, coitus with wife on top, noncoital stimulation of husband by wife, and self-stimulation by husband. Foreplay generated slight, but statistically significant, increases above resting baseline in cardiac and metabolic variables. From stimulation through orgasm, average effort was modest for relatively short spans. Maximum exercise values occurred during the brief spans of orgasm, then returned quickly to near baseline levels. The two noncoital activities required lower expenditures than the two coital positions, with man-on-top coitus rating the highest. Large variations among subjects and among activities discourage use of a general equivalent activity for comparison, such as "two flights of stairs," to represent "sexual activity."

  20. Utilization of xylose for growth by the eukaryotic alga, Chlorella.

    PubMed

    Hawkins, R L

    1999-06-01

    A green alga, Chlorella, was found to be capable of utilizing xylose or other pentose sugars (xylitol, arabinose) for enhanced growth rates when grown in the light, but not when grown heterotrophically in the dark. With selection for growth in xylose-containing medium, it was possible to improve dramatically the ability of selected Chlorella strains to grow on xylose mixotrophically. Growth on arabinose or xylitol was not changed in the xylose-selected strains.

  1. Dissolution Rates and Reaction Products of Olivine Interaction with Ammonia-Rich Fluid

    NASA Astrophysics Data System (ADS)

    Zandanel, A. E.; Truche, L.; Hellmann, R.; Tobie, G.; Marrocchi, Y.

    2018-05-01

    Olivine dissolution rates and reaction products in NH3-rich fluids are determined from experiments simulating H2O-rock interaction on Enceladus. Kinetic rates are calculated from flow through experiments and reaction products from static experiments.

  2. An age-structured model of hiv infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells.

    PubMed

    Nelson, Patrick W; Gilchrist, Michael A; Coombs, Daniel; Hyman, James M; Perelson, Alan S

    2004-09-01

    Mathematical models of HIV-1 infection can help interpret drug treatment experiments and improve our understanding of the interplay between HIV-1 and the immune system. We develop and analyze an age- structured model of HIV-1 infection that allows for variations in the death rate of productively infected T cells and the production rate of viral particles as a function of the length of time a T cell has been infected. We show that this model is a generalization of the standard differential equation and of delay models previously used to describe HIV-1 infection, and provides a means for exploring fundamental issues of viral production and death. We show that the model has uninfected and infected steady states, linked by a transcritical bifurcation. We perform a local stability analysis of the nontrivial equilibrium solution and provide a general stability condition for models with age structure. We then use numerical methods to study solutions of our model focusing on the analysis of primary HIV infection. We show that the time to reach peak viral levels in the blood depends not only on initial conditions but also on the way in which viral production ramps up. If viral production ramps up slowly, we find that the time to peak viral load is delayed compared to results obtained using the standard (constant viral production) model of HIV infection. We find that data on viral load changing over time is insufficient to identify the functions specifying the dependence of the viral production rate or infected cell death rate on infected cell age. These functions must be determined through new quantitative experiments.

  3. Antimicrobial efficacy of an innovative emulsion of medium chain triglycerides against canine and feline periodontopathogens.

    PubMed

    Laverty, G; Gilmore, B F; Jones, D S; Coyle, L; Folan, M; Breathnach, R

    2015-04-01

    To test the in vitro antimicrobial efficacy of a non-toxic emulsion of free fatty acids against clinically relevant canine and feline periodontopathogens Antimicrobial kill kinetics were established utilising an alamarBlue(®) viability assay against 10 species of canine and feline periodontopathogens in the biofilm mode of growth at a concentration of 0·125% v/v medium chain triglyceride (ML:8) emulsion. The results were compared with 0·12% v/v chlorhexidine digluconate and a xylitol-containing dental formulation. Mammalian cellular cytotoxicity was also investigated for both the ML:8 emulsion and chlorhexidine digluconate (0·25 to 0·0625% v/v) using in vitro tissue culture techniques. No statistically significant difference was observed in the antimicrobial activity of the ML:8 emulsion and chlorhexidine digluconate; a high percentage kill rate (>70%) was achieved within 5 minutes of exposure and was maintained at subsequent time points. A statistically significant improvement in antibiofilm activity was observed with the ML:8 emulsion compared with the xylitol-containing formulation. The ML:8 emulsion possessed a significantly lower (P < 0·001) toxicity profile compared with the chlorhexidine digluconate in mammalian cellular cytotoxicity assays. The ML:8 emulsion exhibited significant potential as a putative effective antimicrobial alternative to chlorhexidine- and xylitol- based products for the reduction of canine and feline periodontopathogens. © 2015 British Small Animal Veterinary Association.

  4. An overview: Recycling of solid barley waste generated as a by-product in distillery and brewery.

    PubMed

    Nigam, Poonam Singh

    2017-04-01

    This overview has focused on the options available for the utilisation of residual-biomass generated in distillery and brewery for the production of added-value products. Bio-processing approaches have been reviewed and discussed for the economical bioconversion and utilisation of this waste for the production of bioproducts, such as lactic acid, enzymes, xylitol and animal feed. Though this overview provides several options for the bioprocessing of this residual material, a more suitable one could be chosen according to the processing-facilities available and the amount of residue available in local area. The feasibility of any chosen process should be evaluated on the basis of cost of material available, its local utilisation for animal feed, and the overall economical advantages that could be gained by changing its current traditional landfill use to produce higher added value products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Photochemical free radical production rates in the eastern Caribbean

    NASA Astrophysics Data System (ADS)

    Dister, Brian; Zafiriou, Oliver C.

    1993-02-01

    Potential photochemical production rates of total (NO-scavengeable) free radicals were surveyed underway (> 900 points) in the eastern Caribbean and Orinoco delta in spring and fall 1988. These data document seasonal trends and large-scale (˜ 10-1000 km) variability in the pools of sunlight-generated reactive transients, which probably mediate a major portion of marine photoredox transformations. Radical production potential was detectable in all waters and was reasonably quantifiable at rates above 0.25 nmol L-1 min-1 sun-1. Radical production rates varied from ˜ 0.1-0.5 nmol L-1 min-1 of full-sun illumination in "blue water" to > 60 nmol L-1 min-1 in some estuarine waters in the high-flow season. Qualitatively, spatiotemporal potential rate distributions strikingly resembled that of "chlorophyll" (a riverine-influence tracer of uncertain specificity) in 1979-1981 CZCS images of the region [Müller-Karger et al., 1988] at all scales. Basin-scale occurrence of greatly enhanced rates in fall compared to spring is attributed to terrestrial chromophore inputs, primarily from the Orinoco River, any contributions from Amazon water and nutrient-stimulus effects could not be resolved. A major part of the functionally photoreactive colored organic matter (COM) involved in radical formation clearly mixes without massive loss out into high-salinity waters, although humic acids may flocculate in estuaries. A similar conclusion applies over smaller scales for COM as measured optically [Blough et al., this issue]. Furthermore, optical absorption and radical production rates were positively correlated in the estuarine region in fall. These cruises demonstrated that photochemical techniques are now adequate to treat terrestrial photochemical chromophore inputs as an estuarine mixing problem on a large scale, though the ancillary data base does not currently support such an analysis in this region. Eastern Caribbean waters are not markedly more reactive at comparable salinities

  6. Utilisation of corn (Zea mays) bran and corn fiber in the production of food components.

    PubMed

    Rose, Devin J; Inglett, George E; Liu, Sean X

    2010-04-30

    The milling of corn for the production of food constituents results in a number of low-value co-products. Two of the major co-products produced by this operation are corn bran and corn fiber, which currently have low commercial value. This review focuses on current and prospective research surrounding the utilization of corn fiber and corn bran in the production of potentially higher-value food components. Corn bran and corn fiber contain potentially useful components that may be harvested through physical, chemical or enzymatic means for the production of food ingredients or additives, including corn fiber oil, corn fiber gum, cellulosic fiber gels, xylo-oligosaccharides and ferulic acid. Components of corn bran and corn fiber may also be converted to food chemicals such as vanillin and xylitol. Commercialization of processes for the isolation or production of food products from corn bran or corn fiber has been met with numerous technical challenges, therefore further research that improves the production of these components from corn bran or corn fiber is needed.

  7. Methane and Carbon Dioxide Production Rates in Lake Sediments from Sub-Arctic Sweden

    NASA Astrophysics Data System (ADS)

    DeStasio, J.; Halloran, M.; Erickson, L. M.; Varner, R. K.; Johnson, J. E.; Setera, J.; Prado, M. F.; Wik, M.; Crill, P. M.

    2013-12-01

    Ecosystems at high latitudes are undergoing rapid change due to amplified arctic warming. Lakes in these regions are sources of both methane (CH4) and carbon dioxide (CO2) to the atmosphere and will likely be impacted by elevated temperatures. Because of the potential increase in the release of organic carbon due to thawing permafrost, it is believed that methanogenesis rates within neighboring fresh water sediments will display a positive feedback response, by increasing CH4 emission to the atmosphere. We studied CH4 production potential of sediments using cores from three lakes in the Stordalen Mire complex in sub-Arctic, Sweden: Inre Harrsjön, Mellan Harrsjön, and Villasjön. Sediment cores were incubated to determine CO2 and CH4 production rates and were analyzed for CH4 concentrations, dissolved inorganic carbon (DIC) concentrations, total organic carbon (TOC) concentrations, as well as carbon, nitrogen and sulfur content. Our results from the Villasjön cores indicate that CH4 production rates were highest at the same sediment depths as peak dissolved CH4 concentrations, with maximum values between depths of approximately 10cm and 30cm. Additionally, the highest observed CH4 production rates were in sediments from areas within Villasjön known to have the highest rates of CH4 ebullition. CO2 production rates were generally highest within surface sediments ranging from about 4cm to 11cm in depth, with production rates displaying a steady decrease below 11cm. Additionally, observed CO2 production rates correlated with total organic carbon (TOC) concentrations with respect to sediment depth, but displayed no relationship with dissolved inorganic carbon (DIC). Further analysis will be conducted to determine how CH4 and CO2 production characteristics vary between sediment core samples, as well as isotopic analysis of select samples taken from each lake.

  8. Formation flow rate control method in multi-layer production

    NASA Astrophysics Data System (ADS)

    Muzipov, H. N.; Akhmadulin, R. К; Bakanovskaya, L. N.

    2018-05-01

    The article describes a method of flow rate control of separate formations in multilayer production by noises frequency response (FR). The noise FR is converted into electrical signals scaled in proportion to the flow rates using secondary facilities. The pump noise is suggested to be reduced with the quarter-wave acoustic resonator working as an acoustic filter.

  9. 78 FR 1277 - International Product Change-Global Expedited Package Services-Non-Published Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... POSTAL SERVICE International Product Change--Global Expedited Package Services-- Non-Published...-- Non-Published Rates 4 (GEPS-NPR 4) to the Competitive Products List. DATES: Effective date: January 8... add Global Expedited Package Services-- Non-Published Rates 4 (GEPS-NPR 4) to the Competitive Products...

  10. Buyer-vendor coordination for fixed lifetime product with quantity discount under finite production rate

    NASA Astrophysics Data System (ADS)

    Zhang, Qinghong; Luo, Jianwen; Duan, Yongrui

    2016-03-01

    Buyer-vendor coordination has been widely addressed; however, the fixed lifetime of the product is seldom considered. In this paper, we study the coordination of an integrated production-inventory system with quantity discount for a fixed lifetime product under finite production rate and deterministic demand. We first derive the buyer's ordering policy and the vendor's production batch size in decentralised and centralised systems. We then compare the two systems and show the non-coordination of the ordering policies and the production batch sizes. To improve the supply chain efficiency, we propose quantity discount contract and prove that the contract can coordinate the buyer-vendor supply chain. Finally, we present analytically tractable solutions and give a numerical example to illustrate the benefits of the proposed quantity discount strategy.

  11. Diversity and physiological characterization of D-xylose-fermenting yeasts isolated from the Brazilian Amazonian Forest.

    PubMed

    Cadete, Raquel M; Melo, Monaliza A; Dussán, Kelly J; Rodrigues, Rita C L B; Silva, Silvio S; Zilli, Jerri E; Vital, Marcos J S; Gomes, Fátima C O; Lachance, Marc-André; Rosa, Carlos A

    2012-01-01

    This study is the first to investigate the Brazilian Amazonian Forest to identify new D-xylose-fermenting yeasts that might potentially be used in the production of ethanol from sugarcane bagasse hemicellulosic hydrolysates. A total of 224 yeast strains were isolated from rotting wood samples collected in two Amazonian forest reserve sites. These samples were cultured in yeast nitrogen base (YNB)-D-xylose or YNB-xylan media. Candida tropicalis, Asterotremella humicola, Candida boidinii and Debaryomyces hansenii were the most frequently isolated yeasts. Among D-xylose-fermenting yeasts, six strains of Spathaspora passalidarum, two of Scheffersomyces stipitis, and representatives of five new species were identified. The new species included Candida amazonensis of the Scheffersomyces clade and Spathaspora sp. 1, Spathaspora sp. 2, Spathaspora sp. 3, and Candida sp. 1 of the Spathaspora clade. In fermentation assays using D-xylose (50 g/L) culture medium, S. passalidarum strains showed the highest ethanol yields (0.31 g/g to 0.37 g/g) and productivities (0.62 g/L · h to 0.75 g/L · h). Candida amazonensis exhibited a virtually complete D-xylose consumption and the highest xylitol yields (0.55 g/g to 0.59 g/g), with concentrations up to 25.2 g/L. The new Spathaspora species produced ethanol and/or xylitol in different concentrations as the main fermentation products. In sugarcane bagasse hemicellulosic fermentation assays, S. stipitis UFMG-XMD-15.2 generated the highest ethanol yield (0.34 g/g) and productivity (0.2 g/L · h), while the new species Spathaspora sp. 1 UFMG-XMD-16.2 and Spathaspora sp. 2 UFMG-XMD-23.2 were very good xylitol producers. This study demonstrates the promise of using new D-xylose-fermenting yeast strains from the Brazilian Amazonian Forest for ethanol or xylitol production from sugarcane bagasse hemicellulosic hydrolysates.

  12. 75 FR 47650 - International Product Change-Global Expedited Package Services-Non-Published Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... POSTAL SERVICE International Product Change--Global Expedited Package Services-- Non-Published...-Published Rates to the Competitive Products List pursuant to 39 U.S.C. 3642. DATES: August 6, 2010. FOR...-Published Rates to the Competitive Products List, and Notice of Filing (Under Seal) of Contract and Enabling...

  13. Energetics of the molecular interactions of L-alanine and L-serine with xylitol, D-sorbitol, and D-mannitol in aqueous solutions at 298.15 K

    NASA Astrophysics Data System (ADS)

    Mezhevoi, I. N.; Badelin, V. G.

    2013-04-01

    Integral enthalpies of dissolution Δsol H m of L-alanine and L-serine are measured via the calorimetry of dissolution in aqueous solutions of xylitol, D-sorbitol, and D-mannitol. Standard enthalpies of dissolution (Δsol H ○) and the transfer (Δtr H ○) of amino acids from water to binary solvent are calculated from the experimental data. Using the McMillan-Mayer theory, enthalpy coefficients of pairwise interactions h xy of amino acids with molecules of polyols are calculated that are negative. The obtained results are discussed within the theory of the prevalence of different types of interactions in mixed solutions and the effect of the structural features of interacting biomolecules on the thermochemical parameters of dissolution of amino acids.

  14. Measurement of broiler litter production rates and nutrient content using recycled litter.

    PubMed

    Coufal, C D; Chavez, C; Niemeyer, P R; Carey, J B

    2006-03-01

    It is important for broiler producers to know litter production rates and litter nutrient content when developing nutrient management plans. Estimation of broiler litter production varies widely in the literature due to factors such as geographical region, type of housing, size of broiler produced, and number of flocks reared on the same litter. Published data for N, P, and K content are also highly variable. In addition, few data are available regarding the rate of production, characteristics, and nutrient content of caked litter (cake). In this study, 18 consecutive flocks of broilers were reared on the same litter in experimental pens under simulated commercial conditions. The mass of litter and cake produced was measured after each flock. Samples of all litter materials were analyzed for pH, moisture, N, P, and K. Average litter and cake moisture content were 26.4 and 46.9%, respectively. Significant variation in litter and cake nutrient content was observed and can largely be attributed to ambient temperature differences. Average litter, cake, and total litter (litter plus cake) production rates were 153.3, 74.8, and 228.2 g of dry litter material per kg of live broiler weight (g/kg) per flock, respectively. Significant variation in litter production rates among flocks was also observed. Cumulative litter, cake, and total litter production rates after 18 flocks were 170.3, 78.7, and 249.0 g/kg, respectively. The data produced from this research can be used by broiler producers to estimate broiler litter and cake production and the nutrient content of these materials.

  15. 76 FR 396 - Product Change-Priority Mail-Non-Published Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... POSTAL SERVICE Product Change--Priority Mail--Non-Published Rates AGENCY: Postal Service TM . ACTION: Notice. SUMMARY: Postal Service notice of filing of a request with the Postal Regulatory... States Postal Service Concerning Priority Mail--Non-Published Rates and Notice of Filing Materials Under...

  16. Greater soil carbon stocks and faster turnover rates with increasing agricultural productivity

    NASA Astrophysics Data System (ADS)

    Sanderman, Jonathan; Creamer, Courtney; Baisden, W. Troy; Farrell, Mark; Fallon, Stewart

    2017-01-01

    Devising agricultural management schemes that enhance food security and soil carbon levels is a high priority for many nations. However, the coupling between agricultural productivity, soil carbon stocks and organic matter turnover rates is still unclear. Archived soil samples from four decades of a long-term crop rotation trial were analyzed for soil organic matter (SOM) cycling-relevant properties: C and N content, bulk composition by nuclear magnetic resonance (NMR) spectroscopy, amino sugar content, short-term C bioavailability assays, and long-term C turnover rates by modeling the incorporation of the bomb spike in atmospheric 14C into the soil. After > 40 years under consistent management, topsoil carbon stocks ranged from 14 to 33 Mg C ha-1 and were linearly related to the mean productivity of each treatment. Measurements of SOM composition demonstrated increasing amounts of plant- and microbially derived SOM along the productivity gradient. Under two modeling scenarios, radiocarbon data indicated overall SOM turnover time decreased from 40 to 13 years with increasing productivity - twice the rate of decline predicted from simple steady-state models or static three-pool decay rates of measured C pool distributions. Similarly, the half-life of synthetic root exudates decreased from 30.4 to 21.5 h with increasing productivity, indicating accelerated microbial activity. These findings suggest that there is a direct feedback between accelerated biological activity, carbon cycling rates and rates of carbon stabilization with important implications for how SOM dynamics are represented in models.

  17. High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide.

    PubMed

    Jourdin, Ludovic; Grieger, Timothy; Monetti, Juliette; Flexer, Victoria; Freguia, Stefano; Lu, Yang; Chen, Jun; Romano, Mark; Wallace, Gordon G; Keller, Jurg

    2015-11-17

    High product specificity and production rate are regarded as key success parameters for large-scale applicability of a (bio)chemical reaction technology. Here, we report a significant performance enhancement in acetate formation from CO2, reaching comparable productivity levels as in industrial fermentation processes (volumetric production rate and product yield). A biocathode current density of -102 ± 1 A m(-2) and an acetic acid production rate of 685 ± 30 (g m(-2) day(-1)) have been achieved in this study. High recoveries of 94 ± 2% of the CO2 supplied as the sole carbon source and 100 ± 4% of electrons into the final product (acetic acid) were achieved after development of a mature biofilm, reaching an elevated product titer of up to 11 g L(-1). This high product specificity is remarkable for mixed microbial cultures, which would make the product downstream processing easier and the technology more attractive. This performance enhancement was enabled through the combination of a well-acclimatized and enriched microbial culture (very fast start-up after culture transfer), coupled with the use of a newly synthesized electrode material, EPD-3D. The throwing power of the electrophoretic deposition technique, a method suitable for large-scale production, was harnessed to form multiwalled carbon nanotube coatings onto reticulated vitreous carbon to generate a hierarchical porous structure.

  18. Clinical Evidence for Polyol Efficacy

    PubMed Central

    Milgrom, P.; Söderling, E.M.; Nelson, S.; Chi, D.L.; Nakai, Y.

    2012-01-01

    Xylitol is a safe dental caries preventive when incorporated into chewing gum or confections used habitually. The goal of this paper is to identify and assess the work on xylitol and other polyols and dental caries since 2008. Xylitol is effective when used by the mother prenatally or after delivery to prevent mutans transmission and subsequent dental caries in the offspring. One new completed trial confirmed that children of mothers who used xylitol lozenges after delivery had less dental caries than a comparison group. A similar study confirmed that the use of xylitol gum by the mother either prevented or postponed MS transmission to the offspring. Xylitol use among schoolchildren delivered via a gummy bear confection reduced S. mutans levels, but a once per day use of xylitol-containing toothpaste did not. Randomized trials, with caries outcomes, assessing xylitol-containing lozenges in adults and xylitol-containing gummy bears in children will release results in the coming year. Other studies are ongoing but are not systematic and will fail to answer important questions about how xylitol, or other polyols, can address the global dental caries problem. PMID:22899692

  19. [Proceeding: Production rate, metabolic clearance rate and mean plasma concentration of cortisol in hyperthyroidism (author's transl)].

    PubMed

    Linquette, M; Lefebvre, J; Racadot, A; Cappoen, J P

    1975-01-01

    The adrenocortical function was studied in 23 patients with hyperthyroidism and compared with a group of 15 normal subjects. Parameters of adrenal function were determined with 1,2(3)H-cortisol. The half-life of cortisol is significantly shortened in hyperthyroidism, as compared to normal subjects (49,5 +/- 6,6 min vs 68,3 +/- 10,5 min) and metabolic clearance rate is increased (418,5 +/- 89,5 L/24 h vs 237,5 +/- 48,5 L/24 h, for normal subjects). The production rate of cortisol, calculated from specific and cumulate activities of THE and THF is increased in hyperthyroidism expressed as mg/24 h or mg/m2/24 h (respectively : 26,7 +/- 7,8 mg/24 h vs 15,7 +/- 3 mg/24 h and 16,9 +/- 4,6 mg/m2/24 h vs 9,5 +/- 1,8 mg/m2/24 h). The mean plasma concentration, calculated as the radio (see article) is not statiscally different in hyperthyroid and normal subjects (6,8 +/- 2,1 microg/100 ml vs 7,3 +/- 1,9 microg/100 ml). 7 patients were reinvestigated after treatment of thyrotoxicosis when they were clinically and biologically in euthyroid state. All the values were normalized, without statistically significant difference from control (T 1/2 = 65,4 +/- 18 min, Metb Cl. Rate : 255 +/- 64,5 L/24 h, production rate : 15,6 +/- 1,8 mg/24 h and 9 +/- 1,4 mg/m2/24 h. mean plasma concentration : 6,8 +/- 2,8 microg/100 ml). Shortened cortisol half life, increased metabolic clearance rate and production rate, and normal mean plasma concentration have been reported in hyperthyroidism (Peterson, Copinschi, Gallagher). These changes, secondary to thyroid hormone excess, are the consequences of increased hepatic catabolism of cortisol. The activity of 11 OH steroid deshydrogenase is increased, as demonstrated by increased ratio (see article) in normal subjects (0,001 less than p less than 0,005). There is a high proportion of 17 kéto metabolites (E, DHE, THE) whose feed-back effect is weak as compared to 17 OH metabolites (F, DHF, THF). The hypothalamo-hypophyso-adrenal system is

  20. Measurements of in situ chemical ozone (oxidant) production rates

    NASA Astrophysics Data System (ADS)

    Huang, Hao; Faloon, Kate; Najera, Juan; Bloss, William

    2013-04-01

    Tropospheric ozone is a major air pollutant, harmful to human health, agricultural crops and vegetation, the main precursor to the atmospheric oxidants which initiate the degradation of most reactive gases emitted to the atmosphere, and an important greenhouse gas in its own right. The capacity to understand and predict tropospheric ozone levels is a key goal for atmospheric science - but one which is challenging, as ozone is formed in the atmosphere from the complex oxidation of VOCs in the presence of NOx and sunlight, on a timescale such that in situ chemical processes, deposition and transport all affect ozone levels. Known uncertainties in emissions, chemistry, dynamics and deposition affect the accuracy of predictions of current and future ozone levels, and hinder development of optimal air quality policies to mitigate against ozone exposure. Recently new approaches to directly measure the local chemical ozone production rate, bypassing the many uncertainties in emissions and chemical schemes, have been developed (Cazorla & Brune, AMT 2010). Here, we describe the development of an analogous Ozone Production Rate (OPR) approach: Air is sampled into parallel reactors, within which ozone formation either occurs as in the ambient atmosphere, or is suppressed. Comparisons of ozone levels exiting a pair of such reactors determines the net chemical oxidant production rate, after correction for perturbation of the NOx-O3 photochemical steady state, and when operated under conditions such that wall effects are minimised. We report preliminary measurements of local chemical ozone production made during the UK NERC ClearfLo (Clean Air for London) campaign at an urban background location in London in January and July 2012. The OPR system was used to measure the local chemical oxidant formation rate, which is compared with observed trends in O3 and NOx and the prevailing meteorology, and with the predictions of a detailed zero-dimensional atmospheric chemistry model

  1. Kinetic modeling of Candida shehatae ATCC 22984 on xylose and glucose for ethanol production.

    PubMed

    Yuvadetkun, Prawphan; Leksawasdi, Noppol; Boonmee, Mallika

    2017-03-16

    Candida shehatae ATCC 22984, a xylose-fermenting yeast, showed an ability to produce ethanol in both glucose and xylose medium. Maximum ethanol produced by the yeast was 48.8 g/L in xylose and 52.6 g/L in glucose medium with ethanol yields that varied between 0.3 and 0.4 g/g depended on initial sugar concentrations. Xylitol was a coproduct of ethanol production using xylose as substrate, and glycerol was detected in both glucose and xylose media. Kinetic model equations indicated that growth, substrate consumption, and product formation of C. shehatae were governed by substrate limitation and inhibition by ethanol. The model suggested that cell growth was totally inhibited at 40 g/L of ethanol and ethanol production capacity of the yeast was 52 g/L, which were in good agreement with experimental results. The developed model could be used to explain C. shehatae fermentation in glucose and xylose media from 20 to 170 g/L sugar concentrations.

  2. Simultaneous determination of rhamnose, xylitol, arabitol, fructose, glucose, inositol, sucrose, maltose in jujube (Zizyphus jujube Mill.) extract: comparison of HPLC-ELSD, LC-ESI-MS/MS and GC-MS.

    PubMed

    Sun, Shihao; Wang, Hui; Xie, Jianping; Su, Yue

    2016-01-01

    Jujube extract is commonly used as a food additive and flavoring. The sensory properties of the extract, especially sweetness, are a critical factor determining the product quality and therefore affecting consumer acceptability. Small molecular carbohydrates make major contribution to the sweetness of the jujube extract, and their types and contents in the extract have direct influence on quality of the product. So, an appropriate qualitative and quantitative method for determination of the carbohydrates is vitally important for quality control of the product. High performance liquid chromatography-evaporative light scattering detection (HPLC-ELSD), liquid chromatography-electronic spay ionization tandem mass spectrometry (LC-ESI-MS/MS), and gas chromatography-mass spectrometry (GC-MS) methods have been developed and applied to determining small molecular carbohydrates in jujube extract, respectively. Eight sugars and alditols were identified from the extract, including rhamnose, xylitol, arabitol, fructose, glucose, inositol, sucrose, and maltose. Comparisons were carried out to investigate the performance of the methods. Although the methods have been found to perform satisfactorily, only three sugars (fructose, glucose and inositol) could be detected by all these methods. Meanwhile, a similar quantitative result for the three sugars can be obtained by the methods. Eight sugars and alditols in the jujube extract were determined by HPLC-ELSD, LC-ESI-MS/MS and GC-MS, respectively. The LC-ELSD method and the LC-ESI-MS/MS method with good precision and accuracy were suitable for quantitative analysis of carbohydrates in jujube extract; although the performance of the GC-MS method for quantitative analysis was inferior to the other methods, it has a wider scope in qualitative analysis. A multi-analysis technique should be adopted in order to obtain complete constituents of about the carbohydrates in jujube extract, and the methods should be employed according to the

  3. Improvement of sticking in tablet compaction for tocopherol acetate.

    PubMed

    Sakata, Yukoh; Yamaguchi, Hiroyuki

    2011-09-01

    We have found that the addition of xylitol solution effectively improves the sticking observed in tablet compaction using a powder prescription including kneading mixtures comprising tocopherol acetate (TA)/Florite(®) RE (FLR) blends. The aim of the present study was to investigate the distribution states of TA and xylitol in kneaded mixtures comprising TA/FLR/xylitol blends and the particle states of these mixtures in order to derive an appropriate powder formulation for tablet compaction. Nitrogen gas adsorption analysis revealed that xylitol is distributed on the interparticle and intraparticle pores of FLR in the same manner as TA. Moreover, it was found that xylitol was distributed in an incomplete crystalline form because of its interaction with FLR particles in the kneaded mixtures comprising TA/FLR/xylitol blends. It was also observed that the surfaces of the particles of the kneaded mixtures comprising TA/FLR blends changed from rough to smooth because of kneading with xylitol. The occurrence of sticking can be prevented not only by the addition of xylitol but also by changing the particle states of TA/FLR/xylitol blends.

  4. 30 CFR 250.1159 - May the Regional Supervisor limit my well or reservoir production rates?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reservoir production rates? 250.1159 Section 250.1159 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and... reservoir production rates? (a) The Regional Supervisor may set a Maximum Production Rate (MPR) for a...

  5. Spatial Variability in Biodegradation Rates as Evidenced by Methane Production from an Aquifer

    PubMed Central

    Adrian, Neal R.; Robinson, Joseph A.; Suflita, Joseph M.

    1994-01-01

    Accurate predictions of carbon and energy cycling rates in the environment depend on sampling frequencies and on the spatial variability associated with biological activities. We examined the variability associated with anaerobic biodegradation rates at two sites in an alluvial sand aquifer polluted by municipal landfill leachate. In situ rates of methane production were measured for almost a year, using anaerobic wells installed at two sites. Methane production ranged from 0 to 560 μmol · m-2 · day-1 at one site (A), while a range of 0 to 120,000 μmol · m-2 · day-1 was measured at site B. The mean and standard deviations associated with methane production at site A were 17 and 57 μmol · m-2 · day-1, respectively. The comparable summary statistics for site B were 2,000 and 9,900 μmol · m-2 · day-1. The coefficients of variation at sites A and B were 340 and 490%, respectively. Despite these differences, the two sites had similar seasonal trends, with the maximal rate of methane production occurring in summer. However, the relative variability associated with the seasonal rates changed very little. Our results suggest that (i) two spatially distinct sites exist in the aquifer, (ii) methanogenesis is a highly variable process, (iii) the coefficient of variation varied little with the rate of methane production, and (iv) in situ anaerobic biodegradation rates are lognormally distributed. PMID:16349410

  6. The kinematic and microphysical control of lightning rate, extent, and NOX production

    NASA Astrophysics Data System (ADS)

    Carey, Lawrence D.; Koshak, William; Peterson, Harold; Mecikalski, Retha M.

    2016-07-01

    This study investigates the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOX = NO + NO2) via lightning (LNOX), such as flash rate, type, and extent. The NASA Lightning Nitrogen Oxides Model (LNOM) is applied to lightning observations following multicell thunderstorms through their lifecycle in a Lagrangian sense over Northern Alabama on 21 May 2012 during the Deep Convective Clouds and Chemistry (DC3) experiment. LNOM provides estimates of flash rate, type, channel length distributions, channel segment altitude distributions (SADs), and LNOX production profiles. The LNOM-derived lightning characteristics and LNOX production are compared to the evolution of radar-inferred updraft and precipitation properties. Intercloud, intracloud (IC) flash SAD comprises a significant fraction of the total (IC + cloud-to-ground [CG]) SAD, while increased CG flash SAD at altitudes >6 km occurs after the simultaneous peaks in several thunderstorm properties (i.e., total [IC + CG] and IC flash rate, graupel volume/mass, convective updraft volume, and maximum updraft speed). At heights <6 km, the CG LNOX production dominates the column-integrated total LNOX production. Unlike the SAD, total LNOX production consists of a more equal contribution from IC and CG flashes for heights >6 km. Graupel volume/mass, updraft volume, and maximum updraft speed are all well correlated to the total flash rate (correlation coefficient, ρ ≥ 0.8) but are less correlated to total flash extent (ρ ≥ 0.6) and total LNOX production (ρ ≥ 0.5). Although LNOM transforms lightning observations into LNOX production values, these values are estimates and are subject to further independent validation.

  7. Communication—Electrolysis at High Efficiency with Remarkable Hydrogen Production Rates

    DOE PAGES

    Wood, Anthony; He, Hongpeng; Joia, Tahir; ...

    2016-01-20

    Solid Oxide Electrolysis (SOE) can be used to produce hydrogen with very high efficiencies at remarkable hydrogen production rates. Through microstructural and compositional modification, conventional low cost Solid Oxide Fuel Cell (SOFC) materials have been used to create a Solid Oxide Electrolysis Cell (SOEC) that can achieve remarkable current density at cell voltages allowing higher conversion efficiency than current commercial electrolysers. Current densities in excess of 6 A/cm2 have been achieved at 800°C with a cell voltage of < 1.67 V. This cell shows a more than 3-fold increase in hydrogen production rate at higher efficiency than established commercial electrolysers.

  8. Direct measurement of neon production rates by (α,n) reactions in minerals

    NASA Astrophysics Data System (ADS)

    Cox, Stephen E.; Farley, Kenneth A.; Cherniak, Daniele J.

    2015-01-01

    The production of nucleogenic neon from alpha particle capture by 18O and 19F offers a potential chronometer sensitive to temperatures higher than the more widely used (U-Th)/He chronometer. The accuracy depends on the cross sections and the calculated stopping power for alpha particles in the mineral being studied. Published 18O(α,n)21Ne production rates are in poor agreement and were calculated from contradictory cross sections, and therefore demand experimental verification. Similarly, the stopping powers for alpha particles are calculated from SRIM (Stopping Range of Ions in Matter software) based on a limited experimental dataset. To address these issues we used a particle accelerator to implant alpha particles at precisely known energies into slabs of synthetic quartz (SiO2) and barium tungstate (BaWO4) to measure 21Ne production from capture by 18O. Within experimental uncertainties the observed 21Ne production rates compare favorably to our predictions using published cross sections and stopping powers, indicating that ages calculated using these quantities are accurate at the ∼3% level. In addition, we measured the 22Ne/21Ne ratio and (U-Th)/He and (U-Th)/Ne ages of Durango fluorapatite, which is an important model system for this work because it contains both oxygen and fluorine. Finally, we present 21Ne/4He production rate ratios for a variety of minerals of geochemical interest along with software for calculating neon production rates and (U-Th)/Ne ages.

  9. Cell-production rates estimated by the use of vincristine sulphate and flow cytometry. II. Correlation between the cell-production rates of ageing ascites tumours and the number of S phase tumour cells.

    PubMed

    Barfod, I H; Barfod, N M

    1980-01-01

    A new method for the evaluation of cell production rates combining flow cytometry (FCM) and the stathmokinetic method using vincristine sulphate (VS) has been used for the analysis of three aneuploid ascites tumours at different stages of growth. Using this technique it was possible to estimate the well-known decrease in cell production rates of ageing ascites tumours. The percentage of normal host cells in the aneuploid tumours studied was easily determined by FCM prior to the calculation of the tumour cell-production rates. A correlation was found between the percentage of tumour cells in the S phase and the tumour cell-production rate. This correlation is probably explained by the gradual transfer of proliferating cells in S phase to resting G1 and G2 phases with increasing tumour age.

  10. Pair production rates in mildly relativistic, magnetized plasmas

    NASA Technical Reports Server (NTRS)

    Burns, M. L.; Harding, A. K.

    1984-01-01

    Electron-positron pairs may be produced by either one or two photons in the presence of a strong magnetic field. In magnetized plasmas with temperatures kT approximately sq mc, both of these processes may be important and could be competitive. The rates of one-photon and two-photon pair production by photons with Maxwellian, thermal bremsstrahlung, thermal synchrotron and power law spectra are calculated as a function of temperature or power law index and field strength. This allows a comparison of the two rates and a determination of the conditions under which each process may be a significant source of pairs in astrophysical plasmas. It is found that for photon densities n(gamma) or = 10 to the 25th power/cu cm and magnetic field strengths B or = 10 to the 12th power G, one-photon pair production dominates at kT approximately sq mc for a Maxwellian, at kT approximately 2 sq mc for a thermal bremsstrahlung spectrum, at all temperatures for a thermal synchrotron spectrum, and for power law spectra with indices s approximately 4.

  11. 50 CFR Table 3 to Part 679 - Product Recovery Rates for Groundfish Species and Conversion Rates for Pacific Halibut

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Product Recovery Rates for Groundfish Species and Conversion Rates for Pacific Halibut 3 Table 3 to Part 679 Wildlife and Fisheries FISHERY... Rates for Groundfish Species and Conversion Rates for Pacific Halibut ER28JA02.074 ER10JY02.000 ER28JA02...

  12. Titan-Like Exoplanets: Variations in Geometric Albedo and Effective Transit Height with Haze Production Rate

    NASA Technical Reports Server (NTRS)

    Checlair, Jade; McKay, Christopher P.; Imanaka, Hiroshi

    2016-01-01

    Extensive studies characterizing Titan present an opportunity to study the atmospheric properties of Titan-like exoplanets. Using an existing model of Titan's atmospheric haze, we computed geometric albedo spectra and effective transit height spectra for six values of the haze production rate (zero haze to twice present) over a wide range of wavelengths (0.2-2 microns). In the geometric albedo spectra, the slope in the UV-visible changes from blue to red when varying the haze production rate values from zero to twice the current Titan value. This spectral feature is the most effective way to characterize the haze production rates. Methane absorption bands in the visible-NIR compete with the absorbing haze, being more prominent for smaller haze production rates. The effective transit heights probe a region of the atmosphere where the haze and gas are optically thin and that is thus not effectively probed by the geometric albedo. The effective transit height decreases smoothly with increasing wavelength, from 376 km to 123 km at 0.2 and 2 microns, respectively. When decreasing the haze production rate, the methane absorption bands become more prominent, and the effective transit height decreases with a steeper slope with increasing wavelength. The slope of the geometric albedo in the UV-visible increases smoothly with increasing haze production rate, while the slope of the effective transit height spectra is not sensitive to the haze production rate other than showing a sharp rise when the haze production rate increases from zero. We conclude that geometric albedo spectra provide the most sensitive indicator of the haze production rate and the background Rayleigh gas. Our results suggest that important and complementary information can be obtained from the geometric albedo and motivates improvements in the technology for direct imaging of nearby exoplanets.

  13. Lack of bedrock grain size influence on the soil production rate

    NASA Astrophysics Data System (ADS)

    Gontier, Adrien; Rihs, Sophie; Chabaux, Francois; Lemarchand, Damien; Pelt, Eric; Turpault, Marie-Pierre

    2015-10-01

    Our study deals with the part played by bedrock grain size on soil formation rates. U- and Th-series disequilibria were measured in two soil profiles developed from two different facies of the same bedrock, i.e., fine and coarse grain size granites, in the geomorphically flat landscape of the experimental Breuil-Chenue forest site, Morvan, France. The U- and Th-series disequilibria of soil layers and the inferred soil formation rate (1-2 mm ky-1) are nearly identical along the two profiles despite differences in bedrock grain size, variable weathering states and a significant redistribution of U and Th from the uppermost soil layers. This indicates that the soil production rate is more affected by regional geomorphology than by the underlying bedrock texture. Such a production rate inferred from residual soil minerals integrated over the age of the soil is consistent with the flat and slowly eroding geomorphic landscape of the study site. It also compares well to the rate inferred from dissolved solutes integrated over the shorter time scale of solute transport from granitic and basaltic watersheds under similar climates. However, it is significantly lower than the denudation or soil formation rates previously reported from either cosmogenic isotope or U-series measurements from similar climates and lithologies. Our results highlight the particularly low soil production rates of flat terrains in temperate climates. Moreover, they provide evidence that the reactions of mineral weathering actually take place in horizons deeper than 1 m, while a chemical steady state of both concentrations and U-series disequilibria is established in the upper most soil layers, i.e., above ∼70 cm depth. In such cases, the use of soil surface horizons for determining weathering rates is precluded and illustrates the need to focus instead on the deepest soil horizons.

  14. Ozone, ozone production rates and NO observations on the outskirts of Quito, Ecuador

    NASA Astrophysics Data System (ADS)

    Cazorla, M.

    2014-12-01

    Air quality measurements of ambient ozone, ozone production rates and nitrogen oxides, in addition to baseline meterology observations, are being taken at a recently built roof-top facility on the campus of Universidad San Francisco de Quito, in Ecuador. The measurement site is located in Cumbayá, a densely populated valley adjacent to the city of Quito. Time series of ozone and NO are being obtained with commercial air quality monitors. Rush-hour peaks of NO, above 100 ppb, have been observed, while daytime ozone levels are low. In addition, ozone production rates are being measured with the Ecuadorian version of the MOPS, Measurement of Ozone Production Sensor, originally built at Penn State University in 2010. NO and ozone observations and test results of measured ozone production rates will be presented.

  15. Direct Measurements of the Ozone Production Rate: Methods, Measurements, and Implications for Air Quality Monitoring

    NASA Astrophysics Data System (ADS)

    Brune, W. H.; Baier, B.; Miller, D. O.; Apel, E. C.; Wisthaler, A.; Fried, A.; Cantrell, C. A.; Blake, D. R.; Brown, S. S.; McDuffie, E. E.; Kaser, L.; Long, R.; Weinheimer, A. J.

    2017-12-01

    Ground level ozone pollution remains a health hazard in the United States despite dramatic reductions due to regulatory actions over the past three decades. The key to understanding the link between the ozone precursor gases, nitrogen oxides (NOx) and volatile organic compounds (VOCs), and ozone pollution is the ozone production rate. However, in air quality models, uncertainties in emissions and meteorology hide the true sensitivity of modeled ozone to the chemistry of the ozone production rate. A better way to understand the ozone production rate is to measure it directly. We devised a method for measuring the ozone production rate directly and have deployed it in a few field studies. In this presentation, we will discuss some fairly recent observations, the strengths and weaknesses of the current method, and a path toward routine monitoring of the ozone production rate.

  16. Intramolecular dehydration of biomass-derived sugar alcohols in high-temperature water.

    PubMed

    Yamaguchi, Aritomo; Muramatsu, Natsumi; Mimura, Naoki; Shirai, Masayuki; Sato, Osamu

    2017-01-25

    The intramolecular dehydration of biomass-derived sugar alcohols d-sorbitol, d-mannitol, galactitol, xylitol, ribitol, l-arabitol, erythritol, l-threitol, and dl-threitol was investigated in high-temperature water at 523-573 K without the addition of any acid catalysts. d-Sorbitol and d-mannitol were dehydrated into isosorbide and isomannide, respectively, as dianhydrohexitol products. Galactitol was dehydrated into anhydrogalactitols; however, the anhydrogalactitols could not be dehydrated into dianhydrogalactitol products because of the orientation of the hydroxyl groups at the C-3 and C-6 positions. Pentitols such as xylitol, ribitol, and l-arabitol were dehydrated into anhydropentitols. The dehydration rates of the pentitols containing hydroxyl groups in the trans form, which remained as hydroxyl groups in the product tetrahydrofuran, were larger than those containing hydroxyl groups in the cis form because of the structural hindrance caused by the hydroxyl groups in the cis form during the dehydration process. In the case of the tetritols, the dehydration of erythritol was slower than that of threitol, which could also be explained by the structural hindrance of the hydroxyl groups. The dehydration of l-threitol was faster than that of dl-threitol, which implies that molecular clusters were formed by hydrogen bonding between the sugar alcohols in water, which could be an important factor that affects the dehydration process.

  17. Variation in the production rate of biosonar signals in freshwater porpoises.

    PubMed

    Kimura, Satoko; Akamatsu, Tomonari; Wang, Ding; Li, Songhai; Wang, Kexiong; Yoda, Ken

    2013-05-01

    The biosonar (click train) production rate of ten Yangtze finless porpoises and their behavior were examined using animal-borne data loggers. The sound production rate varied from 0 to 290 click trains per 10-min time interval. Large individual differences were observed, regardless of body size. Taken together, however, sound production did not differ significantly between daytime and nighttime. Over the 172.5 h of analyzed recordings, an average of 99.0% of the click trains were produced within intervals of less than 60 s, indicating that during a 1-min interval, the number of click trains produced by each porpoise was typically greater than one. Most of the porpoises exhibited differences in average swimming speed and depth between day and night. Swimming speed reductions and usage of short-range sonar, which relates to prey-capture attempts, were observed more often during nighttime. However, biosonar appears to be affected not only by porpoise foraging, but also by their sensory environment, i.e., the turbid Yangtze River system. These features will be useful for passive acoustic detection of the porpoises. Calculations of porpoise density or abundance should be conducted carefully because large individual differences in the sound production rate will lead to large estimation error.

  18. Light dose versus rate of delivery: implications for macroalgal productivity.

    PubMed

    Desmond, Matthew J; Pritchard, Daniel W; Hepburn, Christopher D

    2017-06-01

    The role of how light is delivered over time is an area of macroalgal photosynthesis that has been overlooked but may play a significant role in controlling rates of productivity and the structure and persistence of communities. Here we present data that quantify the relative influence of total quantum dose and delivery rate on the photosynthetic productivity of five ecologically important Phaeophyceae species from southern New Zealand. Results suggested that greater net oxygen production occurs when light is delivered at a lower photon flux density (PFD) over a longer period compared to a greater PFD over a shorter period, given the same total dose. This was due to greater efficiency (α) at a lower PFD which, for some species, meant a compensatory effect can occur. This resulted in equal or greater productivity even when the total quantum dose of the lower PFD was significantly reduced. It was also shown that light limitation at Huriawa Peninsula, where macroaglae were sourced, may be restricting the acclimation potential of species at greater depths, and that even at shallow depth periods of significant light limitation are likely to occur. This research is of particular interest as the variability of light delivery to coastal reef systems increases as a result of anthropogenic disturbances, and as the value of in situ community primary productivity estimates is recognised.

  19. Response surface methodology as an approach to determine the optimal activities of xylose reductase and xylitol dehydrogenase enzymes from Candida Mogii.

    PubMed

    Mayerhoff, Zea D V L; Roberto, Inês C; Franco, Telma T

    2006-05-01

    A central composite experimental design leading to a set of 16 experiments with different combinations of pH and temperature was performed to attain the optimal activities of xylose reductase (XR) and xylitol dehydrogenase (XDH) enzymes from Candida mogii cell extract. Under optimized conditions (pH 6.5 and 38 degrees C), the XR and XDH activities were found to be 0.48 U/ml and 0.22 U/ml, respectively, resulting in an XR to XDH ratio of 2.2. Stability, cofactor specificity and kinetic parameters of the enzyme XR were also evaluated. XR activity remained stable for 3 h under 4 and 38 degrees C and for 4 months of storage at -18 degrees C. Studies on cofactor specificity showed that only NADPH-dependent XR was obtained under the cultivation conditions employed. The XR present in C. mogii extracts showed a superior Km value for xylose when compared with other yeast strains. Besides, this parameter was not modified after enzyme extraction by aqueous two-phase system.

  20. Acid-producing capacity from sugars and sugar alcohols among Lactobacillus isolates collected in connection with radiation therapy.

    PubMed

    Almståhl, Annica; Rudbäck, Helena; Basic, Amina; Carlén, Anette; Alstad, Torgny

    2017-12-01

    To investigate the acid-producing capacity from sugars and sugar alcohols of oral Lactobacillus collected in connection with radiation therapy (RT) to the head and neck region. Lactobacillus were collected from the tongue, buccal mucosa and supragingival plaque in 24 patients before, during, and after RT. The acid-producing capacity of Lactobacillus isolates (n=211) was analyzed using a colorimetric fermentation test in microtiter plates. Solutions containing 2% sugars (sucrose, glucose, fructose, lactose) or sugar-alcohols (sorbitol and xylitol) were used. After 24h of incubation, bacterial acid-producing capacity was determined as strong (pH<5), weak (pH  ≥5-≤ 6) or low/absent (pH>6). Data regarding intake frequency of sugar-rich products and products with sugar-alcohols was collected. The highest acid-producing capacity using the sugars was seen for isolates collected during RT. Sorbitol was fermented to a higher extent during and post RT, especially among isolates from plaque. Lactobacillus fermenting xylitol showed the highest acid-producing capacity during RT (p<0.05). No statistically significant correlations between stimulated whole salivary secretion rate and acid-producing capacity, or between the intake frequency of sugar-rich products or sugar-alcohol containing products and Lactobacillus acid-producing capacity, were found. The results suggest that Lactobacillus isolates, collected from the tongue, buccal mucosa and supragingival plaque, have a higher acid-producing capacity using sugars and sugar-alcohols during RT than one year post RT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Phytoplankton production and taxon-specific growth rates in the Costa Rica Dome

    PubMed Central

    Selph, Karen E.; Landry, Michael R.; Taylor, Andrew G.; Gutiérrez-Rodríguez, Andrés; Stukel, Michael R.; Wokuluk, John; Pasulka, Alexis

    2016-01-01

    During summer 2010, we investigated phytoplankton production and growth rates at 19 stations in the eastern tropical Pacific, where winds and strong opposing currents generate the Costa Rica Dome (CRD), an open-ocean upwelling feature. Primary production (14C-incorporation) and group-specific growth and net growth rates (two-treatment seawater dilution method) were estimated from samples incubated in situ at eight depths. Our cruise coincided with a mild El Niño event, and only weak upwelling was observed in the CRD. Nevertheless, the highest phytoplankton abundances were found near the dome center. However, mixed-layer growth rates were lowest in the dome center (∼0.5–0.9 day−1), but higher on the edge of the dome (∼0.9–1.0 day−1) and in adjacent coastal waters (0.9–1.3 day−1). We found good agreement between independent methods to estimate growth rates. Mixed-layer growth rates of Prochlorococcus and Synechococcus were largely balanced by mortality, whereas eukaryotic phytoplankton showed positive net growth (∼0.5–0.6 day−1), that is, growth available to support larger (mesozooplankton) consumer biomass. These are the first group-specific phytoplankton rate estimates in this region, and they demonstrate that integrated primary production is high, exceeding 1 g C m−2 day−1 on average, even during a period of reduced upwelling. PMID:27275025

  2. Phytoplankton production and taxon-specific growth rates in the Costa Rica Dome.

    PubMed

    Selph, Karen E; Landry, Michael R; Taylor, Andrew G; Gutiérrez-Rodríguez, Andrés; Stukel, Michael R; Wokuluk, John; Pasulka, Alexis

    2016-03-01

    During summer 2010, we investigated phytoplankton production and growth rates at 19 stations in the eastern tropical Pacific, where winds and strong opposing currents generate the Costa Rica Dome (CRD), an open-ocean upwelling feature. Primary production ( 14 C-incorporation) and group-specific growth and net growth rates (two-treatment seawater dilution method) were estimated from samples incubated in situ at eight depths. Our cruise coincided with a mild El Niño event, and only weak upwelling was observed in the CRD. Nevertheless, the highest phytoplankton abundances were found near the dome center. However, mixed-layer growth rates were lowest in the dome center (∼0.5-0.9 day -1 ), but higher on the edge of the dome (∼0.9-1.0 day -1 ) and in adjacent coastal waters (0.9-1.3 day -1 ). We found good agreement between independent methods to estimate growth rates. Mixed-layer growth rates of Prochlorococcus and Synechococcus were largely balanced by mortality, whereas eukaryotic phytoplankton showed positive net growth (∼0.5-0.6 day -1 ), that is, growth available to support larger (mesozooplankton) consumer biomass. These are the first group-specific phytoplankton rate estimates in this region, and they demonstrate that integrated primary production is high, exceeding 1 g C m -2 day -1 on average, even during a period of reduced upwelling.

  3. Memory behaviors of entropy production rates in heat conduction

    NASA Astrophysics Data System (ADS)

    Li, Shu-Nan; Cao, Bing-Yang

    2018-02-01

    Based on the relaxation time approximation and first-order expansion, memory behaviors in heat conduction are found between the macroscopic and Boltzmann-Gibbs-Shannon (BGS) entropy production rates with exponentially decaying memory kernels. In the frameworks of classical irreversible thermodynamics (CIT) and BGS statistical mechanics, the memory dependency on the integrated history is unidirectional, while for the extended irreversible thermodynamics (EIT) and BGS entropy production rates, the memory dependences are bidirectional and coexist with the linear terms. When macroscopic and microscopic relaxation times satisfy a specific relationship, the entropic memory dependences will be eliminated. There also exist initial effects in entropic memory behaviors, which decay exponentially. The second-order term are also discussed, which can be understood as the global non-equilibrium degree. The effects of the second-order term are consisted of three parts: memory dependency, initial value and linear term. The corresponding memory kernels are still exponential and the initial effects of the global non-equilibrium degree also decay exponentially.

  4. Atmospheric Pb and Ti accumulation rates from Sphagnum moss: dependence upon plant productivity.

    PubMed

    Kempter, H; Krachler, M; Shotyk, W

    2010-07-15

    The accumulation rates of atmospheric Pb and Ti were obtained using the production rates of Sphagnum mosses collected in four ombrotrophic bogs from two regions of southern Germany: Upper Bavaria (Oberbayern, OB) and the Northern Black Forest (Nordschwarzwald, NBF). Surfaces of Sphagnum carpets were marked with plastic mesh and one year later the production of plant matter was harvested. Metal concentrations were determined in acid digests using sector field ICP-MS employing well established analytical procedures. Up to 12 samples (40 x 40 cm) were collected per site, and 6-10 sites were investigated per bog. Variations within a given sampling site were in the range 2.3-4x for Pb concentrations, 1.8-2.5x for Ti concentrations, 3-8.3x for Pb/Ti, 5.6-7.8x for Pb accumulation rates, and 2.3-6.4x for Ti accumulation rates. However, the median values of these parameters for the sites (6-10 per bog) were quite consistent. The mosses from the bogs in NBF exhibited significantly greater productivity (187-202 g m(-2) a(-1)) compared to the OB peat bogs (71-91 g m(-2) a(-1)), and these differences had a pronounced effect on the Pb and Ti accumulation rates. Highly productive mosses showed no indication of a "dilution effect" of Pb or Ti concentrations, suggesting that more productive plants were simply able to accumulate more particles from the air. The median rates of net Pb accumulation by the mosses are in excellent agreement with the fluxes obtained by direct atmospheric measurements at nearby monitoring stations in both regions (EMEP and MAPESI data).

  5. Large-scale production of kappa-carrageenan droplets for gel-bead production: theoretical and practical limitations of size and production rate.

    PubMed

    Hunik, J H; Tramper, J

    1993-01-01

    Immobilization of biocatalysts in kappa-carrageenan gel beads is a widely used technique nowadays. Several methods are used to produce the gel beads. The gel-bead production rate is usually sufficient to make the relatively small quantities needed for bench-scale experiments. The droplet diameter can, within limits, be adjusted to the desired size, but it is difficult to predict because of the non-Newtonian fluid behavior of the kappa-carrageenan solution. Here we present the further scale-up of the extrusion technique with the theory to predict the droplet diameters for non-Newtonian fluids. The emphasis is on the droplet formation, which is the rate-limiting step in this extrusion technique. Uniform droplets were formed by breaking up a capillary jet with a sinusoidal signal of a vibration exciter. At the maximum production rate of 27.6 dm3/h, uniform droplets with a diameter of (2.1 +/- 0.12) x 10(-3) m were obtained. This maximum flow rate was limited by the power transfer of the vibration exciter to the liquid flow. It was possible to get a good prediction of the droplet diameter by estimating the local viscosity from shear-rate calculations and an experimental relation between the shear rate and viscosity. In this way the theory of Newtonian fluids could be used for the non-Newtonian kappa-carrageenan solution. The calculated optimal break-up frequencies and droplet sizes were in good agreement with those found in the experiments.

  6. Investigation of OxProduction Rates in the Mexico City Metropolitan Area during MILAGRO

    NASA Astrophysics Data System (ADS)

    Dusanter, S.; Molina, L. T.; Stevens, P. S.

    2009-12-01

    Understanding the oxidative capacity of the atmosphere and the formation of secondary pollutants are important issues in atmospheric chemistry. For instance, the photochemical production of tropospheric ozone (O3) is of particular interest due to its detrimental effects on both human health and agricultural ecosystems. A detailed characterization of tropospheric O3 production rates will help in the development of effective control strategies. The 2006 Mexico City Metropolitan Area field campaign (MCMA-2006) was one of four components of MILAGRO (Megacity Initiative: Local And Global Research Observations) intended to collect information on the impact of megacity emissions on local, regional and global scales. In this presentation, rates of production of Ox (Ox = O3 + NO2) species during MCMA-2006 at the supersite T0 (Instituto Mexicano del Petroleo) will be presented using different approaches based on measured and modeled concentrations of ROx (OH + HO2 + RO2) radicals. In addition, we will examine both the reactivity of OH and the contribution of specific peroxy radicals to the oxidation rate of NO to estimate the contribution of groups of VOCs (alkanes, alkenes, aromatics, oxygenated and biogenic VOCs) to the total production rate of Ox species.

  7. Radiation effects in x-irradiated hydroxy compounds

    NASA Astrophysics Data System (ADS)

    Budzinski, Edwin E.; Potter, William R.; Box, Harold C.

    1980-01-01

    Radiation effects are compared in single crystals of xylitol, sorbitol, and dulcitol x-irradiated at 4.2 °K. In xylitol and dulcitol, but not in sorbitol, a primary oxidation product is identified as an alkoxy radical. ENDOR measurements detected three proton hyperfine couplings associated with the alkoxy ESR absorption, one of which is attributed to a proton three bond lengths removed from the seat of unpaired spin density. Intermolecular trapping of electrons is observed in all three crystals. ENDOR measurements were made of the hyperfine couplings between the trapped electron and the hydroxy protons forming the trap.

  8. Low nitrous oxide production through nitrifier-denitrification in intermittent-feed high-rate nitritation reactors.

    PubMed

    Su, Qingxian; Ma, Chun; Domingo-Félez, Carlos; Kiil, Anne Sofie; Thamdrup, Bo; Jensen, Marlene Mark; Smets, Barth F

    2017-10-15

    Nitrous oxide (N 2 O) production from autotrophic nitrogen conversion processes, especially nitritation systems, can be significant, requires understanding and calls for mitigation. In this study, the rates and pathways of N 2 O production were quantified in two lab-scale sequencing batch reactors operated with intermittent feeding and demonstrating long-term and high-rate nitritation. The resulting reactor biomass was highly enriched in ammonia-oxidizing bacteria, and converted ∼93 ± 14% of the oxidized ammonium to nitrite. The low DO set-point combined with intermittent feeding was sufficient to maintain high nitritation efficiency and high nitritation rates at 20-26 °C over a period of ∼300 days. Even at the high nitritation efficiencies, net N 2 O production was low (∼2% of the oxidized ammonium). Net N 2 O production rates transiently increased with a rise in pH after each feeding, suggesting a potential effect of pH on N 2 O production. In situ application of 15 N labeled substrates revealed nitrifier denitrification as the dominant pathway of N 2 O production. Our study highlights operational conditions that minimize N 2 O emission from two-stage autotrophic nitrogen removal systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Proceedings of a Workshop on Cosmogenic Nuclide Production Rates

    NASA Technical Reports Server (NTRS)

    Englert, Peter A. J. (Editor); Reedy, Robert C. (Editor); Michel, Rolf (Editor)

    1989-01-01

    Abstracts of reports from the proceedings are presented. The presentations were divided into discussion topics. The following general topic areas were used: (1) measured cosmogenic noble gas and radionuclide production rates in meteorite and planetary surface samples; (2) cross-section measurements and simulation experiments; and (3) interpretation of sample studies and simulation experiments.

  10. Cable logging production rate equations for thinning young-growth Douglas-fir

    Treesearch

    Chris B. LeDoux; Lawson W. Starnes

    1986-01-01

    A cable logging thinning simulation model and field study data from cable thinning production studies have been assembled and converted into a set of simple equations. These equations can be used to estimate the hourly production rates of various cable thinning machines operating in the mountainous terrain of western Oregon and western Washington. The equations include...

  11. Linear extension rates and gross carbonate production of Acropora cervicornis at Coral Gardens, Belize.

    NASA Astrophysics Data System (ADS)

    Peeling, E.; Greer, L.; Lescinsky, H.; Humston, R.; Wirth, K. R.; Baums, I. B.; Curran, A.

    2014-12-01

    Branching Acropora coral species have fast growth and carbonate production rates, and thus have functioned as important reef-building species throughout the Pleistocene and Holocene. Recently, net carbonate production (kg CaCO3 m-2 year-1) has been recognized as an important measure of reef health, especially when monitoring endangered species, such as Acropora cervicornis. This study examines carbonate production in a thriving population of A. cervicornis at the Coral Gardens reef in Belize. Photographic surveys were conducted along five transects of A. cervicornis-dominated reefs from 2011-2014. Matching photographs from 2013 and 2014 were scaled to 1 m2 and compared to calculate 84 individual A. cervicornis linear extension rates across the reef. Linear extension rates averaged 12.4 cm/yr and were as high as 17 cm/yr in some areas of the reef. Carbonate production was calculated two ways. The first followed the standard procedure of multiplying percent live coral cover, by the linear extension rate and skeletal density. The second used the number of live coral tips per square meter in place of percent live coral multiplied by the average cross-sectional area of the branches. The standard method yielded a carbonate production rate of 113 kg CaCO3 m-2 year-1 for the reef, and the tip method yielded a rate of 6 kg m-2 year-1. We suggest that the tip method is a more accurate measure of production, because A. cervicornis grows primarily from the live tips, with only limited radial growth and resheeting over dead skeleton. While this method omits the contributions of radial growth and resheeting, and is therefore somewhat of an underestimate, our future work will quantify these aspects of growth in a more complete carbonate budget. Still, our estimate suggests a carbonate production rate per unit area of A. cervicornis that is on par with other Caribbean coral species, rather than two orders of magnitude higher as reported by Perry et al (2013). Although gross coral

  12. Effect of turbulence on the disintegration rate of flushable consumer products.

    PubMed

    Karadagli, Fatih; Rittmann, Bruce E; McAvoy, Drew C; Richardson, John E

    2012-05-01

    A previously developed model for the physical disintegration of flushable consumer products is expanded by investigating the effects of turbulence on the rate of physical disintegration. Disintegration experiments were conducted with cardboard tampon applicators at 100, 150, and 200 rotations per minute, corresponding to Reynold's numbers of 25,900, 39,400, and 52,900, respectively, which were estimated by using computational fluid dynamics modeling. The experiments were simulated with the disintegration model to obtain best-fit values of the kinetic and distribution parameters. Computed rate coefficients (ki) for all solid sizes (i.e., greater than 8, 4 to 8, 2 to 4, and 1 to 2 mm) increased strongly with Reynold's number or rotational speed. Thus, turbulence strongly affected the disintegration rate of flushable products, and the relationship of the ki values to Reynold's number can be included in mathematical representations of physical disintegration.

  13. Spatio-temporal variation in click production rates of beaked whales: Implications for passive acoustic density estimation.

    PubMed

    Warren, Victoria E; Marques, Tiago A; Harris, Danielle; Thomas, Len; Tyack, Peter L; Aguilar de Soto, Natacha; Hickmott, Leigh S; Johnson, Mark P

    2017-03-01

    Passive acoustic monitoring has become an increasingly prevalent tool for estimating density of marine mammals, such as beaked whales, which vocalize often but are difficult to survey visually. Counts of acoustic cues (e.g., vocalizations), when corrected for detection probability, can be translated into animal density estimates by applying an individual cue production rate multiplier. It is essential to understand variation in these rates to avoid biased estimates. The most direct way to measure cue production rate is with animal-mounted acoustic recorders. This study utilized data from sound recording tags deployed on Blainville's (Mesoplodon densirostris, 19 deployments) and Cuvier's (Ziphius cavirostris, 16 deployments) beaked whales, in two locations per species, to explore spatial and temporal variation in click production rates. No spatial or temporal variation was detected within the average click production rate of Blainville's beaked whales when calculated over dive cycles (including silent periods between dives); however, spatial variation was detected when averaged only over vocal periods. Cuvier's beaked whales exhibited significant spatial and temporal variation in click production rates within vocal periods and when silent periods were included. This evidence of variation emphasizes the need to utilize appropriate cue production rates when estimating density from passive acoustic data.

  14. Computed rate coefficients and product yields for c-C5H5 + CH3 --> products.

    PubMed

    Sharma, Sandeep; Green, William H

    2009-08-06

    Using quantum chemical methods, we have explored the region of the C6H8 potential energy surface that is relevant in predicting the rate coefficients of various wells and major product channels following the reaction between cyclopentadienyl radical and methyl radical, c-C5H5 + CH3. Variational transition state theory is used to calculate the high-pressure-limit rate coefficient for all of the barrierless reactions. RRKM theory and the master equation are used to calculate the pressure dependent rate coefficients for 12 reactions. The calculated results are compared with the limited experimental data available in the literature and the agreement between the two is quite good. All of the rate coefficients calculated in this work are tabulated and can be used in building detailed chemical kinetic models.

  15. A model of northern pintail productivity and population growth rate

    USGS Publications Warehouse

    Flint, Paul L.; Grand, James B.; Rockwell, Robert F.

    1998-01-01

    Our objective was to synthesize individual components of reproductive ecology into a single estimate of productivity and to assess the relative effects of survival and productivity on population dynamics. We used information on nesting ecology, renesting potential, and duckling survival of northern pintails (Anas acuta) collected on the Yukon-Kuskokwim Delta (Y-K Delta), Alaska, 1991-95, to model the number of ducklings produced under a range of nest success and duckling survival probabilities. Using average values of 25% nest success, 11% duckling survival, and 56% renesting probability from our study population, we calculated that all young in our population were produced by 13% of the breeding females, and that early-nesting females produced more young than later-nesting females. Further, we calculated, on average, that each female produced only 0.16 young females/nesting season. We combined these results with estimates of first-year and adult survival to examine the growth rate (X) of the population and the relative contributions of these demographic parameters to that growth rate. Contrary to aerial survey data, the population projection model suggests our study population is declining rapidly (X = 0.6969). The relative effects on population growth rate were 0.1175 for reproductive success, 0.1175 for first-year survival, and 0.8825 for adult survival. Adult survival had the greatest influence on X for our population, and this conclusion was robust over a range of survival and productivity estimates. Given published estimates of annual survival for adult females (61%), our model suggested nest success and duckling survival need to increase to approximately 40% to achieve population stability. We discuss reasons for the apparent discrepancy in population trends between our model and aerial surveys in terms of bias in productivity and survival estimates.

  16. Harvesting costs and production rates for seed-tree removal in young-growth, mixed-conifer stands

    Treesearch

    Philip M. McDonald

    1969-01-01

    Ponderosa pine seed trees left from a previous cutting on the Challenge Experimental Forest, California, were removed in October 1963. Logging costs and production rates were compared with those for a seed-tree cutting on an area nearby. Production rates for seed-tree removal greatly exceeded those for the operation as a whole. Skidding production increased by 38...

  17. High substrate uptake rates empower Vibrio natriegens as production host for industrial biotechnology.

    PubMed

    Hoffart, Eugenia; Grenz, Sebastian; Lange, Julian; Nitschel, Robert; Müller, Felix; Schwentner, Andreas; Feith, André; Lenfers-Lücker, Mira; Takors, Ralf; Blombach, Bastian

    2017-09-08

    The productivity of industrial fermentation processes is essentially limited by the biomass specific substrate consumption rate (q S ) of the applied microbial production system. Since q S depends on the growth rate (μ), we highlight the potential of the fastest growing non-pathogenic bacterium, Vibrio natriegens , as novel candidate for future biotechnological processes. V. natriegens grows rapidly in BHIN complex medium with a μ of up to 4.43 h -1 (doubling time of 9.4 min) as well as in minimal medium supplemented with various industrially relevant substrates. Bioreactor cultivations in minimal medium with glucose showed that V. natriegens possesses an exceptionally high q S under aerobic (3.90 ± 0.08 g g -1 h -1 ) and anaerobic (7.81 ± 0.71 g g -1 h -1 ) conditions. Fermentations with resting cells of genetically engineered V. natriegens under anaerobic conditions yielded an overall volumetric productivity of 0.56 ± 0.10 g alanine L -1 min -1 (i.e. 34 g L -1 h -1 ). These inherent properties render V. natriegens a promising new microbial platform for future industrial fermentation processes operating with high productivity. Importance Low conversion rates are one major challenge to realize microbial fermentation processes for the production of commodities operating competitively to existing petrochemical approaches. For this reason, we screened for a novel platform organism possessing superior characteristics to traditionally employed microbial systems. We identified the fast growing Vibrio natriegens which exhibits a versatile metabolism and shows striking growth and conversion rates, as a solid candidate to reach outstanding productivities. Due to these inherent characteristics V. natriegens can speed up common laboratory routines, is suitable for already existing production procedures, and forms an excellent foundation to engineer next generation bioprocesses. Copyright © 2017 American Society for Microbiology.

  18. Integrated hot-melt extrusion - injection molding continuous tablet manufacturing platform: Effects of critical process parameters and formulation attributes on product robustness and dimensional stability.

    PubMed

    Desai, Parind M; Hogan, Rachael C; Brancazio, David; Puri, Vibha; Jensen, Keith D; Chun, Jung-Hoon; Myerson, Allan S; Trout, Bernhardt L

    2017-10-05

    This study provides a framework for robust tablet development using an integrated hot-melt extrusion-injection molding (IM) continuous manufacturing platform. Griseofulvin, maltodextrin, xylitol and lactose were employed as drug, carrier, plasticizer and reinforcing agent respectively. A pre-blended drug-excipient mixture was fed from a loss-in-weight feeder to a twin-screw extruder. The extrudate was subsequently injected directly into the integrated IM unit and molded into tablets. Tablets were stored in different storage conditions up to 20 weeks to monitor physical stability and were evaluated by polarized light microscopy, DSC, SEM, XRD and dissolution analysis. Optimized injection pressure provided robust tablet formulations. Tablets manufactured at low and high injection pressures exhibited the flaws of sink marks and flashing respectively. Higher solidification temperature during IM process reduced the thermal induced residual stress and prevented chipping and cracking issues. Polarized light microscopy revealed a homogeneous dispersion of crystalline griseofulvin in an amorphous matrix. DSC underpinned the effect of high tablet residual moisture on maltodextrin-xylitol phase separation that resulted in dimensional instability. Tablets with low residual moisture demonstrated long term dimensional stability. This study serves as a model for IM tablet formulations for mechanistic understanding of critical process parameters and formulation attributes required for optimal product performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Employee self-rated productivity and objective organizational production levels: effects of worksite health interventions involving reduced work hours and physical exercise.

    PubMed

    von Thiele Schwarz, Ulrica; Hasson, Henna

    2011-08-01

    To investigate how worksite health interventions involving a 2.5-hour reduction of weekly working hours with (PE) or without (RWH) mandatory physical exercise affects productivity. Six workplaces in dental health care were matched and randomized to three conditions (PE, RWH and referents). Employees' (N = 177) self-rated productivity and the workplaces' production levels (number of patients) were examined longitudinally. Number of treated patients increased in all conditions during the intervention year. While RWH showed the largest increase in this measure, PE showed significant increases in self-rated productivity, that is, increased quantity of work and work-ability and decreased sickness absence. A reduction in work hours may be used for health promotion activities with sustained or improved production levels, suggesting an increased productivity since the same, or higher, production level can be achieved with lesser resources.

  20. Subterranean production of neutrons, 39Ar and 21Ne: Rates and uncertainties

    NASA Astrophysics Data System (ADS)

    Šrámek, Ondřej; Stevens, Lauren; McDonough, William F.; Mukhopadhyay, Sujoy; Peterson, R. J.

    2017-01-01

    Accurate understanding of the subsurface production rate of the radionuclide 39Ar is necessary for argon dating techniques and noble gas geochemistry of the shallow and the deep Earth, and is also of interest to the WIMP dark matter experimental particle physics community. Our new calculations of subsurface production of neutrons, 21Ne , and 39Ar take advantage of the state-of-the-art reliable tools of nuclear physics to obtain reaction cross sections and spectra (TALYS) and to evaluate neutron propagation in rock (MCNP6). We discuss our method and results in relation to previous studies and show the relative importance of various neutron, 21Ne , and 39Ar nucleogenic production channels. Uncertainty in nuclear reaction cross sections, which is the major contributor to overall calculation uncertainty, is estimated from variability in existing experimental and library data. Depending on selected rock composition, on the order of 107-1010 α particles are produced in one kilogram of rock per year (order of 1-103 kg-1 s-1); the number of produced neutrons is lower by ∼ 6 orders of magnitude, 21Ne production rate drops by an additional factor of 15-20, and another one order of magnitude or more is dropped in production of 39Ar. Our calculation yields a nucleogenic 21Ne /4He production ratio of (4.6 ± 0.6) ×10-8 in Continental Crust and (4.2 ± 0.5) ×10-8 in Oceanic Crust and Depleted Mantle. Calculated 39Ar production rates span a great range from 29 ± 9 atoms kg-rock-1 yr-1 in the K-Th-U-enriched Upper Continental Crust to (2.6 ± 0.8) × 10-4 atoms kg-rock-1 yr-1 in Depleted Upper Mantle. Nucleogenic 39Ar production exceeds the cosmogenic production below ∼700 m depth and thus, affects radiometric ages of groundwater. The 39Ar chronometer, which fills in a gap between 3H and 14C , is particularly important given the need to tap deep reservoirs of ancient drinking water.

  1. The trend of production rates with heliocentric distance for comet P/Halley

    NASA Technical Reports Server (NTRS)

    Fink, Uwe

    1994-01-01

    Comet P/Halley was observed spectroscopically in the wavelength range 5200-10,400 A during 10 observing runs, roughly a month apart from 1985 August 28 to 1986 June 6. The observations span a heliocentric distance from 0.73 to 2.52 AU. This data set is analyzed to determine the course of the production rate with heliocentric distance for C2, NH2, CN, and the continuum. The effect of changing the Haser scale lengths and their heliocentric distance dependence is examined. The production rate ratios to water change only in a minor way, but the absolute values of the production rates are more severely affected. Fluorescent efficiencies, or g-factors for the CN red system are calculated, and band intensity ratios for NH2 and CN are presented. Using presently available fluorescence efficiencies and Haser scale lengths, mixing ratios for the parents of C2, CN, and NH2 with respect to water are: 0.34 +/- 0.07%, 0.15 +/- 0.04%, and 0.13 +/- 0.05%. It is found that these mixing ratios are essentially constant over the heliocentric distance range of the observations, implying a rather uniform nucleus and uniform outgassing characteristics, although there are indications of smaller scale day-to-day variations. The results provide strong observational confirmation that water evaporation controls the activity of the comet over the distance range studied. Continuum values Af rho are determined, and their ratios to QH2O are found to have a clear dependence with heliocentric distance approximately r(exp -1.0) with a post-perihelion enhancement. No correlation of the production rate ratios with light curve of P/Halley were found, nor was there any correlation of the C2 or CN production with the dust.

  2. Mass-Specific Metabolic Rate Influences Sperm Performance through Energy Production in Mammals

    PubMed Central

    Tourmente, Maximiliano; Roldan, Eduardo R. S.

    2015-01-01

    Mass-specific metabolic rate, the rate at which organisms consume energy per gram of body weight, is negatively associated with body size in metazoans. As a consequence, small species have higher cellular metabolic rates and are able to process resources at a faster rate than large species. Since mass-specific metabolic rate has been shown to constrain evolution of sperm traits, and most of the metabolic activity of sperm cells relates to ATP production for sperm motility, we hypothesized that mass-specific metabolic rate could influence sperm energetic metabolism at the cellular level if sperm cells maintain the metabolic rate of organisms that generate them. We compared data on sperm straight-line velocity, mass-specific metabolic rate, and sperm ATP content from 40 mammalian species and found that the mass-specific metabolic rate positively influences sperm swimming velocity by (a) an indirect effect of sperm as the result of an increased sperm length, and (b) a direct effect independent of sperm length. In addition, our analyses show that species with higher mass-specific metabolic rate have higher ATP content per sperm and higher concentration of ATP per μm of sperm length, which are positively associated with sperm velocity. In conclusion, our results suggest that species with high mass-specific metabolic rate have been able to evolve both long and fast sperm. Moreover, independently of its effect on the production of larger sperm, the mass-specific metabolic rate is able to influence sperm velocity by increasing sperm ATP content in mammals. PMID:26371474

  3. Quantifying VOC-Reaction Tracers, Ozone Production, and Continuing Aerosol Production Rates in Urban and Far-Downwind Atmospheres

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert; Ren, X.; Brune, W.; Fried, A.; Schwab, J.

    2008-01-01

    We have found a surprisingly informative decomposition of the complex question of smoggy ozone production (basically, [HO2] in a more locally determined field of [NO]) in the process of linked investigations of modestly smoggy Eastern North America (by NASA aircraft, July 2004) and rather polluted Flushing, NYC (Queens College, July, 2001). In both rural and very polluted situations, we find that a simple contour graph parameterization of the local principal ozone production rate can be estimated using only the variables [NO] and j(sub rads) [HCHO]: Po(O3) = c (j(sub rads) [HCHO])(sup a) [HCHO](sup b). Here j(sub rads) is the photolysis of HCHO to radicals, presumably capturing many harder-UV photolytic processes and the principle ozone production is that due to HO2; mechanisms suggest that ozone production due to RO2 is closely correlated, often suggesting a limited range of different proportionality factors. The method immediately suggests a local interpretation for concepts of VOC limitation and NOx limitation. We believe that the product j(sub rads) [HCHO] guages the oxidation rate of observed VOC mixtures in a way that also provides [HO2] useful for the principle ozone production rate k [HO2] [NO], and indeed, all ozone chemical production. The success of the method suggests that dominant urban primary-HCHO sources may transition to secondary plume-HCHO sources in a convenient way. Are there other, simple, near-terminal oxidized VOC's which help guage ozone production and aerosol particle formation? Regarding particles, we report on, to the extent NASA Research resources allow, on appealing relationships between far-downwind (Atlantic PBL) HCHO and very fine aerosol (including sulfate. Since j(sub rads) [HCHO] provides a time-scale, we may understand distant-plume particle production in a more quantitative manner. Additionally we report on a statistical search in the nearer field for relationships between glyoxals (important near-terminal aromatic and isoprene

  4. Investigating nutrient profiling and Health Star Ratings on core dairy products in Australia.

    PubMed

    Wellard, Lyndal; Hughes, Clare; Watson, Wendy L

    2016-10-01

    To determine whether the ratings from the Australian front-of-pack labelling scheme, Health Star Rating (HSR), and the ability to carry health claims using the Nutrient Profiling Scoring Criterion (NPSC) for core dairy products promote foods consistent with the Australian Dietary Guidelines. The Australian nutrient profiling model used for assessing eligibility for health claims was compared with the nutrient profiling model underpinning the HSR system to determine their agreement when assessing dairy products. Agreement between the extent to which products met nutrient profiling criteria and scored three stars or over using the HSR calculator was determined using Cohen's kappa tests. The four largest supermarket chains in Sydney, Australia. All available products in the milk, hard cheese, soft cheese and yoghurt categories (n 1363) were surveyed in March-May 2014. Nutrition composition and ingredients lists were recorded for each product. There was 'good' agreement between NPSC and HSR overall (κ=0·78; 95 % CI 0·75, 0·81; P<0·001), for hard cheeses (κ=0·72; 95 % CI 0·65, 0·79; P<0·001) and yoghurt (κ=0·79; 95 % CI 0·73, 0·86; P<0·001). There was 'fair' agreement for milk (κ=0·33; 95 % CI 0·20, 0·45; P<0·001) and 'very good' agreement for soft cheese (κ=0·84; 95 % CI 0·75, 0·92; P<0·001). Generally, products tended to have HSR consistent with other products of a similar type within their categories. For dairy products, the HSR scheme largely aligned with the NPSC used for determining eligibility for health claims. Both systems appeared be consistent with the Australian Dietary Guidelines for dairy products, with lower-fat products rating higher.

  5. Optical measurements of atomic oxygen concentration, temperature and nitric oxide production rate in flames

    NASA Astrophysics Data System (ADS)

    Myhr, Franklin Henry

    An optical method for measuring nitric oxide (NO) production rates in flames was developed and characterized in a series of steady, one-dimensional, atmospheric-pressure laminar flames of 0.700 Hsb2/0.199 Nsb2/0.101 COsb2 or 0.700 CHsb4/0.300 Nsb2 (by moles) with dry air, with equivalence ratios from 0.79 to 1.27. Oxygen atom concentration, (O), was measured by two-photon laser-induced fluorescence (LIF), temperature was measured by ultraviolet Rayleigh scattering, and nitrogen concentration was calculated from supplied reactant flows; together this information was used to calculate the NO production rate through the thermal (Zel'dovich) mechanism. Measurements by two other techniques were compared with results from the above method. In the first comparison, gas sampling was used to measure axial NO concentration profiles, the slopes of which were multiplied by velocity to obtain total NO production rates. In the second comparison, LIF measurements of hydroxyl radical (OH) were used with equilibrium water concentrations and a partial equilibrium assumption to find (O). Nitric oxide production rates from all three methods agreed reasonably well. Photolytic interference was observed during (O) LIF measurements in all of the flames; this is the major difficulty in applying the optical technique. Photolysis of molecular oxygen in lean flames has been well documented before, but the degree of interference observed in the rich flames suggests that some other molecule is also dissociating; the candidates are OH, CO, COsb2 and Hsb2O. An extrapolative technique for removing the effects of photolysis from (O) LIF measurements worked well in all flames where NO production was significant. Using the optical method to measure NO production rates in turbulent flames will involve a tradeoff among spatial resolution, systematic photolysis error, and random shot noise. With the conventional laser system used in this work, a single pulse with a resolution of 700 mum measured NO

  6. Reduction of production rate in Y-shaped microreactors in the presence of viscoelasticity.

    PubMed

    Helisaz, Hamed; Saidi, Mohammad Hassan; Sadeghi, Arman

    2017-10-16

    The viscoelasticity effects on the reaction-diffusion rates in a Y-shaped microreactor are studied utilizing the PTT rheological model. The flow is assumed to be fully developed and considered to be created under a combined action of electroosmotic and pressure forces. In general, finite-volume-based numerical simulations are conducted to handle the problem; however, analytical solutions based on the depthwise averaging approach are also obtained for the case for which there is no reaction between the inlet components. The analytical solutions are found to predict accurate results when the width to height ratio is at least 10 and acceptable results for lower aspect ratios. An investigation of the viscoelasticity effect reveals that it is accompanied by a significant reduction of the production rate and the production efficiency, defined as the ratio of the average product concentration to the inlet concentration of the limiting reactant. In addition, this effect gives rise to a more uniform transport with more symmetric concentration distributions. The pressure effects on the reaction-diffusion rates are also pronounced in the presence of viscoelasticity. Finally, the influences of the product diffusivity are investigated for the first time revealing that the lower it is the thinner the area of significant production becomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A strain of Meyerozyma guilliermondii isolated from sugarcane juice is able to grow and ferment pentoses in synthetic and bagasse hydrolysate media.

    PubMed

    Martini, Cristina; Tauk-Tornisielo, Sâmia Maria; Codato, Carolina Brito; Bastos, Reinaldo Gaspar; Ceccato-Antonini, Sandra Regina

    2016-05-01

    The search for new microbial strains that are able to withstand inhibitors released from hemicellulosic hydrolysis and are also still able to convert sugars in ethanol/xylitol is highly desirable. A yeast strain isolated from sugarcane juice and identified as Meyerozyma guilliermondii was evaluated for the ability to grow and ferment pentoses in synthetic media and in sugarcane bagasse hydrolysate. The yeast grew in xylose, arabinose and glucose at the same rate at an initial medium pH of 5.5. At pH 4.5, the yeast grew more slowly in arabinose. There was no sugar exhaustion within 60 h. At higher xylose concentrations with a higher initial cell concentration, sugar was exhausted within 96 h at pH 4.5. An increase of 350 % in biomass was obtained in detoxified hydrolysates, whereas supplementation with 3 g/L yeast extract increased biomass production by approximately 40 %. Ethanol and xylitol were produced more significantly in supplemented hydrolysates regardless of detoxification. Xylose consumption was enhanced in supplemented hydrolysates and arabinose was consumed only when xylose and glucose were no longer available. Supplementation had a greater impact on ethanol yield and productivity than detoxification; however, the product yields obtained in the present study are still much lower when compared to other yeast species in bagasse hydrolysate. By the other hand, the fermentation of both xylose and arabinose and capability of withstanding inhibitors are important characteristics of the strain assayed.

  8. Nasal Irrigation for Chronic Rhinosinusitis and Fatigue in Patients with Gulf War Syndrome

    DTIC Science & Technology

    2013-07-01

    materials (neti pots, xylitol , saline), and subject recruitment and enrollment. The human subjects research approval process required protocol submission...application submitted on 11/25/11 was also approved on 7/10/12. The company that provided xylitol (Danisco) is now owned by a private company (DuPont) a...regarding continuity of study as well as procurement and packaging of xylitol packets (sachets) for individual use by participants in the xylitol arm of

  9. Effects of bulk composition on production rates of cosmogenic nuclides in meteorites

    NASA Technical Reports Server (NTRS)

    Masarik, Jozef; Reedy, Robert C.

    1993-01-01

    The bulk chemical composition of meteorites has been suggested as a main factor influencing the production of cosmogenic nuclides. Numerical simulations with Los Alamos Monte Carlo production and transport codes were done for Ne-21/Ne-22 ratios and Ar-38 production rates in meteorites with a wide range of compositions. The calculations show that an enhanced flux of low-energy secondary particles in metal-rich phases is the essential key for the explanation of experimentally observed differences in nuclide production processes in various meteorite classes.

  10. Cosmogenic Ne-21 Production Rates in H-Chondrites Based on Cl-36 - Ar-36 Ages

    NASA Technical Reports Server (NTRS)

    Leya, I.; Graf, Th.; Nishiizumi, K.; Guenther, D.; Wieler, R.

    2000-01-01

    We measured Ne-21 production rates in 14 H-chondrites in good agreement with model calculations. The production rates are based on Ne-21 concentrations measured on bulk samples or the non-magnetic fraction and Cl-36 - Ar-36 ages determined from the metal phase.

  11. Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum.

    PubMed

    Verbeke, Tobin J; Giannone, Richard J; Klingeman, Dawn M; Engle, Nancy L; Rydzak, Thomas; Guss, Adam M; Tschaplinski, Timothy J; Brown, Steven D; Hettich, Robert L; Elkins, James G

    2017-02-23

    Clostridium thermocellum could potentially be used as a microbial biocatalyst to produce renewable fuels directly from lignocellulosic biomass due to its ability to rapidly solubilize plant cell walls. While the organism readily ferments sugars derived from cellulose, pentose sugars from xylan are not metabolized. Here, we show that non-fermentable pentoses inhibit growth and end-product formation during fermentation of cellulose-derived sugars. Metabolomic experiments confirmed that xylose is transported intracellularly and reduced to the dead-end metabolite xylitol. Comparative RNA-seq analysis of xylose-inhibited cultures revealed several up-regulated genes potentially involved in pentose transport and metabolism, which were targeted for disruption. Deletion of the ATP-dependent transporter, CbpD partially alleviated xylose inhibition. A putative xylitol dehydrogenase, encoded by Clo1313_0076, was also deleted resulting in decreased total xylitol production and yield by 41% and 46%, respectively. Finally, xylose-induced inhibition corresponds with the up-regulation and biogenesis of a cyclical AgrD-type, pentapeptide. Medium supplementation with the mature cyclical pentapeptide also inhibits bacterial growth. Together, these findings provide new foundational insights needed for engineering improved pentose utilizing strains of C. thermocellum and reveal the first functional Agr-type cyclic peptide to be produced by a thermophilic member of the Firmicutes.

  12. Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum

    PubMed Central

    Verbeke, Tobin J.; Giannone, Richard J.; Klingeman, Dawn M.; Engle, Nancy L.; Rydzak, Thomas; Guss, Adam M.; Tschaplinski, Timothy J.; Brown, Steven D.; Hettich, Robert L.; Elkins, James G.

    2017-01-01

    Clostridium thermocellum could potentially be used as a microbial biocatalyst to produce renewable fuels directly from lignocellulosic biomass due to its ability to rapidly solubilize plant cell walls. While the organism readily ferments sugars derived from cellulose, pentose sugars from xylan are not metabolized. Here, we show that non-fermentable pentoses inhibit growth and end-product formation during fermentation of cellulose-derived sugars. Metabolomic experiments confirmed that xylose is transported intracellularly and reduced to the dead-end metabolite xylitol. Comparative RNA-seq analysis of xylose-inhibited cultures revealed several up-regulated genes potentially involved in pentose transport and metabolism, which were targeted for disruption. Deletion of the ATP-dependent transporter, CbpD partially alleviated xylose inhibition. A putative xylitol dehydrogenase, encoded by Clo1313_0076, was also deleted resulting in decreased total xylitol production and yield by 41% and 46%, respectively. Finally, xylose-induced inhibition corresponds with the up-regulation and biogenesis of a cyclical AgrD-type, pentapeptide. Medium supplementation with the mature cyclical pentapeptide also inhibits bacterial growth. Together, these findings provide new foundational insights needed for engineering improved pentose utilizing strains of C. thermocellum and reveal the first functional Agr-type cyclic peptide to be produced by a thermophilic member of the Firmicutes. PMID:28230109

  13. Determination of optimal lot size and production rate for multi-production channels with limited capacity

    NASA Astrophysics Data System (ADS)

    Huang, Yeu-Shiang; Wang, Ruei-Pei; Ho, Jyh-Wen

    2015-07-01

    Due to the constantly changing business environment, producers often have to deal with customers by adopting different procurement policies. That is, manufacturers confront not only predictable and regular orders, but also unpredictable and irregular orders. In this study, from the perspective of upstream manufacturers, both regular and irregular orders are considered in coping with the situation in which an uncertain demand is faced by the manufacturer, and a capacity confirming mechanism is used to examine such demand. If the demand is less than or equal to the capacity of the ordinary production channel, the general supply channel is utilised to fully account for the manufacturing process, but if the demand is greater than the capacity of the ordinary production channel, the contingency production channel would be activated along with the ordinary channel to satisfy the upcoming high demand. Besides, the reproductive property of the probability distribution is employed to represent the order quantity of the two types of demand. Accordingly, the optimal production rates and lot sizes for both channels are derived to provide managers with insights for further production planning.

  14. 30 CFR 250.1159 - May the Regional Supervisor limit my well or reservoir production rates?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reservoir production rates? 250.1159 Section 250.1159 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE... Supervisor limit my well or reservoir production rates? (a) The Regional Supervisor may set a Maximum...

  15. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production

    PubMed Central

    Catlett, Jennie L.; Ortiz, Alicia M.

    2015-01-01

    Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron transport system by reducing the coenzyme M (2-mercaptoethane sulfonate) and coenzyme B (7-mercaptoheptanoylthreonine sulfonate) heterodisulfide, CoM-S-S-CoB, to regenerate the thiol-coenzymes for reuse. In Methanosarcina acetivorans, HdrABC expression caused an increased rate of methanogenesis and a decrease in metabolic efficiency on methylotrophic substrates. When acetate was the sole carbon and energy source, neither deletion nor overexpression of HdrABC had an effect on growth or methane production rates. These results suggest that in cells grown on methylated substrates, the cell compensates for energy losses due to expression of HdrABC with an increased rate of substrate turnover and that HdrABC lacks the appropriate electron donor in acetate-grown cells. PMID:26162885

  16. Production of ethanol and arabitol by Debaryomyces nepalensis: influence of process parameters

    PubMed Central

    2013-01-01

    Debaryomyces nepalensis, osmotolerant yeast isolated from rotten apple, is known to utilize both hexoses and pentoses and produce industrially important metabolites like ethanol, xylitol and arabitol. In the present study, the effect of different growth substrates, trace elements, nitrogen concentration and initial pH on growth and formation of ethanol and arabitol were examined. Optimum conditions for maximizing the product yields were established: glucose as carbon source, an initial pH of 6.0, 6 g/L of ammonium sulphate and addition of micronutrients. Under these best suited conditions, a concentration of 11g/L of arabitol and 19 g/L of ethanol was obtained in shake flask fermentations. The fermentation was scaled up to 2.5 L bioreactor and the influence of aeration, agitation and initial substrate concentration was also determined. Under optimal conditions (150 g/L glucose, 400 rpm and 0.5 vvm) ethanol concentration reached 52 g/L, which corresponds to a yield of 0.34 g/g and volumetric productivity of 0.28 g/L/h, whereas arabitol production reached a maximum of 14 g/L with a yield and volumetric productivity of 0.1 g/g and 0.07 g/L/h respectively. PMID:23659479

  17. The exposure history of Jilin and production rates of cosmogenic nuclides

    NASA Technical Reports Server (NTRS)

    Heusser, G.

    1986-01-01

    Jilin, the largest known story meteorite, is a very suitable object for studying the systematics of cosmic ray produced nuclides in stony meteorites. Its well established two stage exposure history even permits to gain information about two different irradiation geometries (2pi and 4pi). All stable and long-lived cosmogenic nuclides measured in Jilin so far correlate well with each other. An example is shown where the Al-26 activities are plotted vs. the spallogenic Ne-21 concentration. These records of cosmic-ray interaction in Jilin can be used both to determine the history of the target and to study the nature of production rate profiles. This is unavoidably a bootstrap process, involving studying one with assumption about the other. Production rate equations are presented and discussed.

  18. Quantum Kronecker sum-product low-density parity-check codes with finite rate

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.; Pryadko, Leonid P.

    2013-07-01

    We introduce an ansatz for quantum codes which gives the hypergraph-product (generalized toric) codes by Tillich and Zémor and generalized bicycle codes by MacKay as limiting cases. The construction allows for both the lower and the upper bounds on the minimum distance; they scale as a square root of the block length. Many thus defined codes have a finite rate and limited-weight stabilizer generators, an analog of classical low-density parity-check (LDPC) codes. Compared to the hypergraph-product codes, hyperbicycle codes generally have a wider range of parameters; in particular, they can have a higher rate while preserving the estimated error threshold.

  19. Implications of two Holocene time-dependent geomagnetic models for cosmogenic nuclide production rate scaling

    NASA Astrophysics Data System (ADS)

    Lifton, Nathaniel

    2016-01-01

    The geomagnetic field is a major influence on in situ cosmogenic nuclide production rates at a given location (in addition to atmospheric pressure and, to a lesser extent, solar modulation effects). A better understanding of how past fluctuations in these influences affected production rates should allow more accurate application of cosmogenic nuclides. As such, this work explores the cosmogenic nuclide production rate scaling implications of two recent time-dependent spherical harmonic geomagnetic models spanning the Holocene. Korte and Constable (2011, Phys. Earth Planet. Inter.188, 247-259) and Korte et al. (2011, Earth Planet. Sci. Lett. 312, 497-505) recently updated earlier spherical harmonic paleomagnetic models with new paleomagnetic data from sediment cores in addition to new archeomagnetic and volcanic data. These updated models offer improved resolution and accuracy over the previous versions, in part due to increased temporal and spatial data coverage. In addition, Pavón-Carrasco et al. (2014, Earth Planet. Sci. Lett. 388, 98-109) developed another time-dependent spherical harmonic model of the Holocene geomagnetic field, based solely on archeomagnetic and volcanic paleomagnetic data from the same underlying paleomagnetic database as the Korte et al. models, but extending to 14 ka. With the new models as input, trajectory-traced estimates of effective vertical cutoff rigidity (RC - the standard method for ordering cosmic ray data) yield significantly different time-integrated scaling predictions when compared to each other and to results using the earlier models. In addition, predictions of each new model using RC are tested empirically using recently published production rate calibration data for both 10Be and 3He, and compared to predictions using corresponding time-varying geocentric dipolar RC formulations and a static geocentric axial dipole (GAD) model. Results for the few calibration sites from geomagnetically sensitive regions suggest that the

  20. Production of arabitol by yeasts: current status and future prospects.

    PubMed

    Kordowska-Wiater, M

    2015-08-01

    Arabitol belongs to the pentitol family and is used in the food industry as a sweetener and in the production of human therapeutics as an anticariogenic agent and an adipose tissue reducer. It can also be utilized as a substrate for chemical products such as arabinoic and xylonic acids, propylene, ethylene glycol, xylitol and others. It is included on the list of 12 building block C3-C6 compounds, designated for further biotechnological research. This polyol can be produced by yeasts in the processes of bioconversion or biotransformation of waste materials from agriculture, the forest industry (l-arabinose, glucose) and the biodiesel industry (glycerol). The present review discusses research on native yeasts from the genera Candida, Pichia, Debaryomyces and Zygosaccharomyces as well as genetically modified strains of Saccharomyces cerevisiae which are able to utilize biomass hydrolysates to effectively produce L- or D-arabitol. The metabolic pathways of these yeasts leading from sugars and glycerol to arabitol are presented. Although the number of reports concerning microbial production of arabitol is rather limited, the research on this topic has been growing for the last several years, with researchers looking for new micro-organisms, substrates and technologies. © 2015 The Society for Applied Microbiology.

  1. 76 FR 2930 - International Product Change-Global Expedited Package Services-Non- Published Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... POSTAL SERVICE International Product Change--Global Expedited Package Services-- Non- Published... request with the Postal Regulatory Commission to add Global Expedited Package Services-- Non-Published...--Non-Published Rates, to the Competitive Products List, and Notice of Filing (Under Seal) the Enabling...

  2. 19 CFR 132.17 - Export certificate for sugar-containing products subject to tariff-rate quota.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Export certificate for sugar-containing products subject to tariff-rate quota. 132.17 Section 132.17 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... certificate for sugar-containing products subject to tariff-rate quota. (a) Requirement. For sugar-containing...

  3. 19 CFR 132.17 - Export certificate for sugar-containing products subject to tariff-rate quota.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Export certificate for sugar-containing products subject to tariff-rate quota. 132.17 Section 132.17 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... certificate for sugar-containing products subject to tariff-rate quota. (a) Requirement. For sugar-containing...

  4. 19 CFR 132.17 - Export certificate for sugar-containing products subject to tariff-rate quota.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Export certificate for sugar-containing products subject to tariff-rate quota. 132.17 Section 132.17 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... certificate for sugar-containing products subject to tariff-rate quota. (a) Requirement. For sugar-containing...

  5. 19 CFR 132.17 - Export certificate for sugar-containing products subject to tariff-rate quota.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Export certificate for sugar-containing products subject to tariff-rate quota. 132.17 Section 132.17 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... certificate for sugar-containing products subject to tariff-rate quota. (a) Requirement. For sugar-containing...

  6. 19 CFR 132.17 - Export certificate for sugar-containing products subject to tariff-rate quota.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Export certificate for sugar-containing products subject to tariff-rate quota. 132.17 Section 132.17 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... certificate for sugar-containing products subject to tariff-rate quota. (a) Requirement. For sugar-containing...

  7. Measurement of the single π0 production rate in neutral current neutrino interactions on water

    NASA Astrophysics Data System (ADS)

    Abe, K.; Amey, J.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Ariga, A.; Ashida, Y.; Assylbekov, S.; Autiero, D.; Ban, S.; Barbi, M.; Barker, G. J.; Barr, G.; Barry, C.; Bartet-Friburg, P.; Batkiewicz, M.; Berardi, V.; Berkman, S.; Bhadra, S.; Bienstock, S.; Blondel, A.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buizza Avanzini, M.; Calland, R. G.; Campbell, T.; Cao, S.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Chappell, A.; Checchia, C.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Collazuol, G.; Coplowe, D.; Cremonesi, L.; Cudd, A.; Dabrowska, A.; De Rosa, G.; Dealtry, T.; Denner, P. F.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duffy, K. E.; Dumarchez, J.; Dunkman, M.; Dunne, P.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, D.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S. G.; Giganti, C.; Gilje, K.; Gizzarelli, F.; Golan, T.; Gonin, M.; Grant, N.; Hadley, D. R.; Haegel, L.; Haigh, J. T.; Hamilton, P.; Hansen, D.; Harada, J.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Helmer, R. L.; Hierholzer, M.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hiramoto, A.; Hirota, S.; Hogan, M.; Holeczek, J.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ikeda, M.; Imber, J.; Insler, J.; Intonti, R. A.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kim, H.; Kim, J.; King, S.; Kisiel, J.; Knight, A.; Knox, A.; Kobayashi, T.; Koch, L.; Koga, T.; Koller, P. P.; Konaka, A.; Kondo, K.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kowalik, K.; Kropp, W.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Lamoureux, M.; Larkin, E.; Lasorak, P.; Laveder, M.; Lawe, M.; Lazos, M.; Licciardi, M.; Lindner, T.; Liptak, Z. J.; Litchfield, R. P.; Li, X.; Longhin, A.; Lopez, J. P.; Lou, T.; Ludovici, L.; Lu, X.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Maret, L.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Ma, W. Y.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Moriyama, S.; Morrison, J.; Mueller, Th. A.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakamura, K. D.; Nakanishi, Y.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Novella, P.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Patel, N. D.; Paudyal, P.; Pavin, M.; Payne, D.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pickering, L.; Pinzon Guerra, E. S.; Pistillo, C.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Pritchard, A.; Przewlocki, P.; Quilain, B.; Radermacher, T.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A.; Redij, A.; Reinherz-Aronis, E.; Riccio, C.; Rojas, P.; Rondio, E.; Rossi, B.; Roth, S.; Rubbia, A.; Ruggeri, A. C.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaikhiev, A.; Shaker, F.; Shaw, D.; Shiozawa, M.; Shirahige, T.; Short, S.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Stewart, T.; Stowell, P.; Suda, Y.; Suvorov, S.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tamura, R.; Tanaka, H. K.; Tanaka, H. A.; Terhorst, D.; Terri, R.; Thakore, T.; Thompson, L. F.; Tobayama, S.; Toki, W.; Tomura, T.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vallari, Z.; Vasseur, G.; Vilela, C.; Vladisavljevic, T.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Wilson, J. R.; Wilson, R. J.; Wret, C.; Yamada, Y.; Yamamoto, K.; Yamamoto, M.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2018-02-01

    The single π0 production rate in neutral current neutrino interactions on water in a neutrino beam with a peak neutrino energy of 0.6 GeV has been measured using the PØD, one of the subdetectors of the T2K near detector. The production rate was measured for data taking periods when the PØD contained water (2.64 ×1020 protons-on-target) and also periods without water (3.49 ×1020 protons-on-target). A measurement of the neutral current single π0 production rate on water is made using appropriate subtraction of the production rate with water in from the rate with water out of the target region. The subtraction analysis yields 106 ±41 ±69 signal events where the uncertainties are statistical (stat.) and systematic (sys.) respectively. This is consistent with the prediction of 157 events from the nominal simulation. The measured to expected ratio is 0.68 ±0.26 (stat ) ±0.44 (sys ) ±0.12 (flux ) . The nominal simulation uses a flux integrated cross section of 7.63 ×10-39 cm2 per nucleon with an average neutrino interaction energy of 1.3 GeV.

  8. Survey response rates in the forest products literature from 2000 to 2015

    Treesearch

    Matt Bumgardner; Iris Montague; Jan Wiedenbeck

    2017-01-01

    A literature analysis was conducted to synthesize typical response rates from forest-productsindustry- based survey studies published from 2000 to mid-2015. One hundred and ninety-five surveys published in several forest products and forestry journals and proceedings (mostly North American based) were analyzed. Overall, the typical response rate was found to be about...

  9. Assessing hydrodynamic effects on jarosite dissolution rates, reaction products, and preservation on Mars

    NASA Astrophysics Data System (ADS)

    Dixon, Emily M.; Elwood Madden, Andrew S.; Hausrath, Elisabeth M.; Elwood Madden, Megan E.

    2015-04-01

    Jarosite flow-through dissolution experiments were conducted in ultrapure water (UPW), pH 2 sulfuric acid, and saturated NaCl and CaCl2 brines at 295-298 K to investigate how hydrologic variables may affect jarosite preservation and reaction products on Mars. K+-based dissolution rates in flowing UPW did not vary significantly with flow rate, indicating that mineral surface reactions control dissolution rates over the range of flow rates investigated. In all of the solutions tested, hydrologic variables do not significantly affect extent of jarosite alteration; therefore, jarosite is equally likely to be preserved in flowing or stagnant waters on Mars. However, increasing flow rate did affect the mineralogy and accumulation of secondary reaction products. Iron release rates in dilute solutions increased as the flow rate increased, likely due to nanoscale iron (hydr)oxide transport in flowing water. Anhydrite formed in CaCl2 brine flow-through experiments despite low temperatures, while metastable gypsum and bassanite were observed in batch experiments. Therefore, observations of the hydration state of calcium sulfate minerals on Mars may provide clues to unravel past salinity and hydrologic conditions as well as temperatures and vapor pressures.

  10. Salivary pH after a glucose rinse: effect of a new mucoadhesive spray (Cariex) based on sodium bicarbonate and xylitol.

    PubMed

    Abbate, G M; Levrini, L; Caria, M P

    2014-01-01

    This study evaluated whether sodium bicarbonate applied on the oral mucosa through a new mucoadhesive spray (Cariex) could control a drop in salivary pH after a glucose rinse, and therefore enhance the buffering potential of saliva. A sample of 50 healthy adults was selected. At day 1, the measurement of salivary pH was performed in the lower fornix in correspondence with the lower molars. Each subject rinsed with 10 ml of a 10% glucose solution and then pH was monitored continually for 40 minutes. At day 2, the same experimental procedure was repeated and three shots of the spray were administered on the oral mucosa. The tested spray is composed of sodium bicarbonate, xylitol, and excipients. Without the mucoadhesive spray, salivary pH became significantly lower following the glucose rinse (p < 0.01). Following the spray, the time in which the pH remained lower than 6.0 was reduced statistically significantly (p < 0.01). A continual rise of salivary pH was observed for the 40 minutes in which the pH recording was performed. Conclusions: The use of a sodium bicarbonate spray on the mucosa was shown to control the lowering of salivary pH following carbohydrate consumption, and might therefore add to the prevention of caries and dental erosion.

  11. Stable isotope labeling tandem mass spectrometry (SILT) to quantify protein production and clearance rates

    PubMed Central

    Bateman, Randall J.; Munsell, Ling Y.; Chen, Xianghong; Holtzman, David M.; Yarasheski, Kevin E.

    2007-01-01

    In all biological systems, protein amount is a function of the rate of production and clearance. The speed of a response to a disturbance in protein homeostasis is determined by turnover rate. Quantifying alterations in protein synthesis and clearance rates is vital to understanding disease pathogenesis (e.g., aging, inflammation). No methods exist for quantifying production and clearance rates of low abundance (femtomole) proteins in vivo. We describe a novel, mass spectrometry-based method for quantitating low abundance protein synthesis and clearance rates in vitro and in vivo in animals and humans. The utility of this method is demonstrated with amyloid-beta (Aß), an important low abundance protein involved in Alzheimer's disease pathogenesis. We used in vivo stable isotope labeling, immunoprecipitation of Aß from cerebrospinal fluid, and quantitative liquid chromatography electrospray-ionization tandem mass spectrometry (LC-ESI-tandem MS) to quantify human Aß protein production and clearance rates. The method is sensitive and specific for stable isotope labeled amino acid incorporation into CNS (± 1% accuracy). This in vivo method can be used to identify pathophysiologic changes in protein metabolism; and may serve as a biomarker for monitoring disease risk, progression, or response to novel therapeutic agents. The technique is adaptable to other macromolecules, such as carbohydrates or lipids. PMID:17383190

  12. The Production Rate and Employment of Ph.D. Astronomers

    NASA Astrophysics Data System (ADS)

    Metcalfe, Travis S.

    2008-02-01

    In an effort to encourage self-regulation of the astronomy job market, I examine the supply of, and demand for, astronomers over time. On the supply side, I document the production rate of Ph.D. astronomers from 1970 to 2006 using the UMI Dissertation Abstracts database, along with data from other independent sources. I compare the long-term trends in Ph.D. production with federal astronomy research funding over the same time period, and I demonstrate that additional funding is correlated with higher subsequent Ph.D. production. On the demand side, I monitor the changing patterns of employment using statistics about the number and types of jobs advertised in the AAS Job Register from 1984 to 2006. Finally, I assess the sustainability of the job market by normalizing this demand by the annual Ph.D. production. The most recent data suggest that there are now annual advertisements for about one postdoctoral job, half a faculty job, and half a research/support position for every new domestic Ph.D. recipient in astronomy and astrophysics. The average new astronomer might expect to hold up to 3 jobs before finding a steady position.

  13. Success rates for product development strategies in new drug development.

    PubMed

    Dahlin, E; Nelson, G M; Haynes, M; Sargeant, F

    2016-04-01

    While research has examined the likelihood that drugs progress across phases of clinical trials, no research to date has examined the types of product development strategies that are the most likely to be successful in clinical trials. This research seeks to identify the strategies that are most likely to reach the market-those generated using a novel product development strategy or strategies that combine a company's expertise with both drugs and indications, which we call combined experience strategies. We evaluate the success of product development strategies in the drug development process for a sample of 2562 clinical trials completed by 406 US pharmaceutical companies. To identify product development strategies, we coded each clinical trial according to whether it consisted of an indication or a drug that was new to the firm. Accordingly, a clinical trial that consists of both an indication and a drug that were both new to the firm represents a novel product development strategy; indication experience is a product development strategy that consists of an indication that a firm had tested previously in a clinical trial, but with a drug that was new to the firm; drug experience is a product development strategy that consists of a drug that the firm had prior experience testing in clinical trials, but with an indication that was new to the firm; combined experience consists of both a drug and an indication that the firm had experience testing in clinical trials. Success rates for product development strategies across clinical phases were calculated for the clinical trials in our sample. Combined experience strategies had the highest success rate. More than three and a half percent (0·036) of the trials that combined experience with drugs and indications eventually reached the market. The next most successful strategy is drug experience (0·025) with novel strategies trailing closely (0·024). Indication experience strategies are the least successful (0·008

  14. The potential of dental-protective chewing gum in oral health interventions.

    PubMed

    Ly, Kiet A; Milgrom, Peter; Rothen, Marilynn

    2008-05-01

    The authors provide an overview of chewing gum as a delivery vehicle for dental-protective agents, highlighting xylitol and its potential application in caries-prevention programs for children. The authors reviewed selected clinical investigations and previous reviews associated with chewing gum containing substances such as calcium, bicarbonate, carbamide, chlorhexidine, fluoride and xylitol and their effects on reducing caries. They searched the MEDLINE database by using the key words "dental caries," "oral health," "calcium," "bicarbonate," "carbamide," "chlorhexidine," "fluoride" and "xylitol." Chewing gum is being used as a delivery vehicle for substances such as calcium, bicarbonate, carbamide, chlorhexidine, fluoride and xylitol to improve oral health and reduce caries. These substances exhibit properties that are protective of the oral environment and mediate common oral diseases. The debate for advocating xylitol use in caries prevention is advancing; however, chewing gum use by young schoolchildren in the United States is hindered by choking hazard concerns and lack of specific xylitol dosing recommendations. The use of chewing gum containing dental-protective substances, particularly xylitol, in caries-prevention programs can reduce the tooth decay epidemic. Chewing gum use by children in the school setting should be reconsidered.

  15. 76 FR 80987 - International Product Change-Global Expedited Package Services-Non-Published Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... POSTAL SERVICE International Product Change--Global Expedited Package Services-- Non-Published... request with the Postal Regulatory Commission to add Global Expedited Package Services-- Non-Published... Package Services--Non- Published Rates 3 (GEPS--NPR 3) to the Competitive Products List and Notice of...

  16. The drainage of the Baltic Ice Lake and a new Scandinavian reference 10Be production rate

    NASA Astrophysics Data System (ADS)

    Stroeven, Arjen P.; Heyman, Jakob; Fabel, Derek; Björck, Svante; Caffee, Marc W.; Fredin, Ola; Harbor, Jonathan M.

    2015-04-01

    An important constraint on the reliability of cosmogenic nuclide exposure dating is the derivation of tightly controlled production rates. We present a new dataset for 10Be production rate calibration from Mount Billingen, southern Sweden, the site of the final drainage of the Baltic Ice Lake, an event dated to 11,620 ± 100 cal yr BP. Nine samples of flood-scoured bedrock surfaces and depositional boulders and cobbles unambiguously connected to the drainage event yield a reference 10Be production rate of 4.09 ± 0.22 atoms g-1 yr-1 for the CRONUS Lm scaling and 3.93 ± 0.21 atoms g-1 yr-1 for the LSD general spallation scaling. We also recalibrate the reference 10Be production rates for four sites in Norway and combine these with the Billingen results to derive a tightly clustered Scandinavian reference 10Be production rate of 4.12 ± 0.10 (4.12 ± 0.25 for altitude scaling) atoms g-1 yr-1 for the Lm scaling scheme and 3.96 ± 0.10 (3.96 ± 0.24 for altitude scaling) atoms g-1 yr-1 for the LSD scaling scheme.

  17. Are Methods for Estimating Primary Production and the Growth Rates of Phytoplankton Approaching Agreement?

    NASA Astrophysics Data System (ADS)

    Cullen, J. J.

    2016-02-01

    During the 1980s, estimates of primary productivity and the growth rates of phytoplankton in oligotrophic waters were controversial, in part because rates based on seasonal accumulations of oxygen in the shallow oxygen maximum were reported to be much higher than could be accounted for with measurements of photosynthesis based on incubations with C-14. Since then, much has changed: tested and standardized methods have been employed to collect comprehensive time-series observations of primary production and related oceanographic properties in oligotrophic waters of the North Pacific subtropical gyre and the Sargasso Sea; technical and theoretical advances have led to new tracer-based estimates of photosynthesis (e.g., oxygen/argon and triple isotopes of dissolved oxygen); and biogeochemical sensor systems on ocean gliders and profiling floats can describe with unprecedented resolution the dynamics of phytoplankton, oxygen and nitrate as driven by growth, loss processes including grazing, and vertical migration for nutrient acquisition. Meanwhile, the estimation of primary productivity, phytoplankton biomass and phytoplankton growth rates from remote sensing of ocean color has matured, complementing biogeochemical models that describe and predict these key properties of plankton dynamics. In a selective review focused on well-studied oligotrophic waters, I compare methods for estimating the primary productivity and growth rates of phytoplankton to see if they are converging on agreement, not only in the estimated rates, but also in the underlying assumptions, such as the ratio of gross- to net primary production — and how this relates to the measurement — and the ratio of chlorophyll to carbon in phytoplankton. Examples of agreement are encouraging, but some stark contrasts illustrate the need for improved mechanistic understanding of exactly what each method is measuring.

  18. Picoplankton contribution to biogenic silica stocks and production rates in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Krause, J. W.; Brzezinski, M. A.; Baines, S. B.; Collier, J.; Ohnemus, D.; Twining, B. S.

    2016-02-01

    The picoplankton size class (< 3 µm) was observed to contribute a measurable, and at times significant, proportion of the total biogenic silica (>0.4 µm) standing stock and to its rate of production in the Sargasso Sea. These trends were robust after correcting biogenic silica, and the calculated rates which use these data, for interference by lithogenic silica. The 100-m total integrated biogenic silica concentration was low and ranged from 0.7 - 5.0 mmol Si m-2, with the highest value within a mesoscale eddy. Material within the picoplankton size fraction was present at every low-biomass station and provided a relatively consistent contribution to total biogenic silica (10 - 24%, average 14%). The integrated rates of total biogenic silica production were reflective of the low biomass: 0.2 - 1.8 mmol Si m-2 d-1 in non-eddy stations and 6.0 mmol Si m-2 d-1 within the eddy. The average proportion of biogenic silica production in the picoplankton was 16% (range 3 - 38%), with a lower value within the eddy. Outside the eddy, the biomass-normalized rates of silica production were similar for each size class, 0.6 d-1. Using Synechococcus abundance data in the upper 30 m and assuming this group was the only contributor to the picoplankton biogenic silica, we calculate an average Si quota of 229 amol Si cell-1; this is two-fold higher than reported previously by direct measurement on cells using x-ray fluorescence. In the eddy, the estimated Synechococcus Si-quotas were up to 50-fold higher than estimated at other stations, suggesting that most of the pico-sized biogenic silica in this feature may have been diatom fragments. This interpretation is also supported by the eddy having the lowest biomass-normalized production rates for the picoplankton. Our results suggest picoplankton may have a small, but relatively stable, contribution to biogenic silica in this region, which underlies a more dynamic microplankton biogenic silica pool driven by diatoms.

  19. Logging production rates in young-growth, mixed-conifer stands in north central California

    Treesearch

    Philip M. McDonald

    1972-01-01

    To quantify production rates for small trees, this study examined the components of log-making and tractor yarding at the Challenge Experimental Forest, Yuba County, California. Rates were calculated over a range of 12 to 40 inches d.b.h. The rate for incense-cedar was lowest; for ponderosa pine it was intermediate; and for Douglas-fir, white fir, and sugar pine...

  20. The production rate of cosmogenic deuterium at the Moon's surface

    NASA Astrophysics Data System (ADS)

    Füri, Evelyn; Deloule, Etienne; Trappitsch, Reto

    2017-09-01

    The hydrogen (D/H) isotope ratio is a key tracer for the source of planetary water. However, secondary processes such as solar wind implantation and cosmic ray induced spallation reactions have modified the primordial D/H signature of 'water' in all rocks and soils recovered on the Moon. Here, we re-evaluate the production rate of cosmogenic deuterium (D) at the Moon's surface through ion microprobe analyses of hydrogen isotopes in olivines from eight Apollo 12 and 15 mare basalts. These in situ measurements are complemented by CO2 laser extraction-static mass spectrometry analyses of cosmogenic noble gas nuclides (3He, 21Ne, 38Ar). Cosmic ray exposure (CRE) ages of the mare basalts, derived from their cosmogenic 21Ne content, range from 60 to 422 Ma. These CRE ages are 35% higher, on average, than the published values for the same samples. The amount of D detected in the olivines increases linearly with increasing CRE ages, consistent with a production rate of (2.17 ± 0.11) ×10-12 mol(g rock)-1 Ma-1. This value is more than twice as high as previous estimates for the production of D by galactic cosmic rays, indicating that for water-poor lunar samples, i.e., samples with water concentrations ≤50 ppm, corrected D/H ratios have been severely overestimated.

  1. The production rate of cosmogenic deuterium at the Moon's surface

    DOE PAGES

    Füri, Evelyn; Deloule, Etienne; Trappitsch, Reto

    2017-07-03

    The hydrogen (D/H) isotope ratio is a key tracer for the source of planetary water. However, secondary processes such as solar wind implantation and cosmic ray induced spallation reactions have modified the primordial D/H signature of ‘water’ in all rocks and soils recovered on the Moon. We re-evaluate the production rate of cosmogenic deuterium (D) at the Moon's surface through ion microprobe analyses of hydrogen isotopes in olivines from eight Apollo 12 and 15 mare basalts. Furthermore, these in situ measurements are complemented by CO2 laser extraction-static mass spectrometry analyses of cosmogenic noble gas nuclides ( 3He, 21Ne, 38Ar). Cosmicmore » ray exposure (CRE) ages of the mare basalts, derived from their cosmogenic 21Ne content, range from 60 to 422 Ma. These CRE ages are 35% higher, on average, than the published values for the same samples. The amount of D detected in the olivines increases linearly with increasing CRE ages, consistent with a production rate of (2.17±0.11)×10 -12 mol(g rock) -1 Ma -1. This value is more than twice as high as previous estimates for the production of D by galactic cosmic rays, indicating that for water-poor lunar samples, i.e., samples with water concentrations ≤50 ppm, corrected D/H ratios have been severely overestimated.« less

  2. Behavioral Characteristics and CO+CO2 Production Rates of Halley-type Comets Observed by NEOWISE

    NASA Astrophysics Data System (ADS)

    Rosser, J. D.; Bauer, J. M.; Mainzer, A. K.; Kramer, E.; Masiero, J. R.; Nugent, C. R.; Sonnett, S.; Fernández, Y. R.; Ruecker, K.; Krings, P.; Wright, E. L.; WISE, The; NEOWISE Teams

    2018-04-01

    From the entire data set of comets observed by NEOWISE, we have analyzed 11 different Halley-type Comets (HTCs) for dust production rates, CO+CO2 production rates, and nucleus sizes. Incorporating HTCs from previous studies and multiple comet visits, we have a total of 21 stacked visits, 13 of which are active and 8 for which we calculated upper limits of production. We determined the nucleus sizes of 27P, P/2006 HR30, P/2012 NJ, and C/2016 S1. Furthermore, we analyzed the relationships between dust production and heliocentric distance, and gas production and heliocentric distance. We concluded that for this population of HTCs, ranging in heliocentric distance from 1.21 to 2.66 au, there was no significant correlation between dust production and heliocentric distance, nor between gas production and heliocentric distance.

  3. Haze production rates in super-Earth and mini-Neptune atmosphere experiments

    NASA Astrophysics Data System (ADS)

    Hörst, Sarah M.; He, Chao; Lewis, Nikole K.; Kempton, Eliza M.-R.; Marley, Mark S.; Morley, Caroline V.; Moses, Julianne I.; Valenti, Jeff A.; Vuitton, Véronique

    2018-04-01

    Numerous Solar System atmospheres possess photochemically generated hazes, including the characteristic organic hazes of Titan and Pluto. Haze particles substantially impact atmospheric temperature structures and may provide organic material to the surface of a world, potentially affecting its habitability. Observations of exoplanet atmospheres suggest the presence of aerosols, especially in cooler (<800 K), smaller (<0.3× Jupiter's mass) exoplanets. It remains unclear whether the aerosols muting the spectroscopic features of exoplanet atmospheres are condensate clouds or photochemical hazes1-3, which is difficult to predict from theory alone4. Here, we present laboratory haze simulation experiments that probe a broad range of atmospheric parameters relevant to super-Earth- and mini-Neptune-type planets5, the most frequently occurring type of planet in our galaxy6. It is expected that photochemical haze will play a much greater role in the atmospheres of planets with average temperatures below 1,000 K (ref. 7), especially those planets that may have enhanced atmospheric metallicity and/or enhanced C/O ratios, such as super-Earths and Neptune-mass planets8-12. We explored temperatures from 300 to 600 K and a range of atmospheric metallicities (100×, 1,000× and 10,000× solar). All simulated atmospheres produced particles, and the cooler (300 and 400 K) 1,000× solar metallicity (`H2O-dominated' and CH4-rich) experiments exhibited haze production rates higher than our standard Titan simulation ( 10 mg h-1 versus 7.4 mg h-1 for Titan13). However, the particle production rates varied greatly, with measured rates as low as 0.04 mg h-1 (for the case with 100× solar metallicity at 600 K). Here, we show that we should expect great diversity in haze production rates, as some—but not all—super-Earth and mini-Neptune atmospheres will possess photochemically generated haze.

  4. Haze production rates in super-Earth and mini-Neptune atmosphere experiments

    NASA Astrophysics Data System (ADS)

    Hörst, Sarah M.; He, Chao; Lewis, Nikole K.; Kempton, Eliza M.-R.; Marley, Mark S.; Morley, Caroline V.; Moses, Julianne I.; Valenti, Jeff A.; Vuitton, Véronique

    2018-03-01

    Numerous Solar System atmospheres possess photochemically generated hazes, including the characteristic organic hazes of Titan and Pluto. Haze particles substantially impact atmospheric temperature structures and may provide organic material to the surface of a world, potentially affecting its habitability. Observations of exoplanet atmospheres suggest the presence of aerosols, especially in cooler (<800 K), smaller (<0.3× Jupiter's mass) exoplanets. It remains unclear whether the aerosols muting the spectroscopic features of exoplanet atmospheres are condensate clouds or photochemical hazes1-3, which is difficult to predict from theory alone4. Here, we present laboratory haze simulation experiments that probe a broad range of atmospheric parameters relevant to super-Earth- and mini-Neptune-type planets5, the most frequently occurring type of planet in our galaxy6. It is expected that photochemical haze will play a much greater role in the atmospheres of planets with average temperatures below 1,000 K (ref. 7), especially those planets that may have enhanced atmospheric metallicity and/or enhanced C/O ratios, such as super-Earths and Neptune-mass planets8-12. We explored temperatures from 300 to 600 K and a range of atmospheric metallicities (100×, 1,000× and 10,000× solar). All simulated atmospheres produced particles, and the cooler (300 and 400 K) 1,000× solar metallicity (`H2O-dominated' and CH4-rich) experiments exhibited haze production rates higher than our standard Titan simulation ( 10 mg h-1 versus 7.4 mg h-1 for Titan13). However, the particle production rates varied greatly, with measured rates as low as 0.04 mg h-1 (for the case with 100× solar metallicity at 600 K). Here, we show that we should expect great diversity in haze production rates, as some—but not all—super-Earth and mini-Neptune atmospheres will possess photochemically generated haze.

  5. Short- and long-run exchange rate effects on forest product trade: evidence from panel data

    Treesearch

    Torjus F. Bolksejo; Joseph Buongiorno

    2006-01-01

    Impacts of exchange rates on international forest products trade are widely debated, but the empirical evidence regarding this issue is still inconclusive. Here, we report findings of the impacts of the exchange rates on the main forest product imports and exports of the US, from January 1989 to November 2004. Export data consisted of monthly series of the main...

  6. The production rate of cosmogenic 21-Ne in chondrites deduced from 81-Kr measurements

    NASA Technical Reports Server (NTRS)

    Schultz, L.; Freundel, M.

    1986-01-01

    Cosmogenic Ne-21 is used widely to calculate exposure ages of stone meteorites. In order to do so, the production rate P(21) must be known. This rate, however, is dependent on the chemical composition of the meteorite as well as the mass of, and position within, the meteoroid during its exposure to the cosmic radiation. Even for a mean shielding the production rates determined from measurments of different radionuclides vary by a factor of two. A method that can be used to determine exposure ages of meteorites that avoids shielding and chemical composition corrections is the -81-Kr-Kr-method. However, for chondrites, in many cases, the direct determination of production rates for the Kr isotopes is prevented by the trapped gases and the neutron effects on bromine. Therefore, this method was applied to four eucrite falls and then their 81-Kr-83-Kr-ages were compared to their cosmogenic Ne-21 and Ar-38 concentrations. The eucrites Bouvante-le-Haut, Juvinas, Sioux County, and Stannern were chosen for these measurements because of their similar chemical composition regarding the major elements.

  7. Cosmogenic Cl-36 production rates in meteorites and the lunar surface

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Arnold, J. R.; Kubik, P. W.; Elmore, D.; Reedy, R. C.

    1989-01-01

    Activity vs. depth profiles of cosmic ray produced Cl-36 were measured in metal from two cores each in the St. Severin and Jilin chondrites and in lunar core 15008. Production of Cl-36 in these samples range from high-energy reactions with Fe and Ni to low-energy reactions with Ca and K and possibly neutron-capture reactions with Cl-36. The cross sections used in the Reedy-Arnold model for neutron-induced reactions were adjusted to get production rates that fit the measured Cl-36 activities in St. Severin metal and in the lunar soil of core 15008. The Cl-36 in metal from St. Severin has a fairly flat activity-vs-depth profile, unlike most other cosmogenic nuclides in bulk samples from St. Severin, which increase in concentration with depth. In metal from Jilin, a decrease in Cl-36 was observed near its center. The length of Jilin's most recent cosmic-ray exposure was approximately 0.5 My. Lunar core 15008 has an excess in Cl-36 of about 4 dpm/kg near its surface that was produced by solar-proton-induced reactions. The calculated production rates are consistent with these measured trends in 15008.

  8. Specific light uptake rates can enhance astaxanthin productivity in Haematococcus lacustris.

    PubMed

    Lee, Ho-Sang; Kim, Z-Hun; Park, Hanwool; Lee, Choul-Gyun

    2016-05-01

    Lumostatic operation was applied for efficient astaxanthin production in autotrophic Haematococcus lacustris cultures using 0.4-L bubble column photobioreactors. The lumostatic operation in this study was performed with three different specific light uptake rates (q(e)) based on cell concentration, cell projection area, and fresh weight as one-, two- and three-dimensional characteristics values, respectively. The q(e) value from the cell concentration (q(e1D)) obtained was 13.5 × 10⁻⁸ μE cell⁻¹ s⁻¹, and the maximum astaxanthin concentration was increased to 150 % compared to that of a control with constant light intensity. The other optimum q e values by cell projection area (q(e2D)) and fresh weight (q( e3D)) were determined to be 195 μE m⁻² s⁻¹ and 10.5 μE g⁻¹ s⁻¹ for astaxanthin production, respectively. The maximum astaxanthin production from the lumostatic cultures using the parameters controlled by cell projection area (2D) and fresh weight (3D) also increased by 36 and 22% over that of the controls, respectively. When comparing the optimal q e values among the three different types, the lumostatic cultures using q(e) based on fresh weight showed the highest astaxanthin productivity (22.8 mg L⁻¹ day⁻¹), which was a higher level than previously reported. The lumostatic operations reported here demonstrated that more efficient and effective astaxanthin production was obtained by H. lacustris than providing a constant light intensity, regardless of which parameter is used to calculate the specific light uptake rate.

  9. 77 FR 69819 - The Proctor & Gamble Paper Products Company; Supplemental Notice That Initial Market-Based Rate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-368-000] The Proctor & Gamble Paper Products Company; Supplemental Notice That Initial Market-Based Rate Filing Includes Request..., of The Proctor & Gamble Paper Products Company's application for market-based rate authority, with an...

  10. The Kinematic and Microphysical Control of Lightning Rate, Extent and NOX Production

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Koshak, William; Peterson, Harold; Matthee, Retha; Bain, A. Lamont

    2014-01-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOx). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOx production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOx production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection Network(TM) (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOx are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell

  11. Development of variable-rate precision spraying systems for tree crop production

    USDA-ARS?s Scientific Manuscript database

    Excessive pesticides are often applied to target and non-target areas in orchards and nurseries, resulting in greater production costs, worker exposure to unnecessary pesticide risks, and adverse contamination of the environment. To improve spray application efficiency, two types of variable-rate pr...

  12. 76 FR 65639 - International Mail: Proposed Product Rate and Fee Changes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... Customs Clearance and Delivery Fee International Reply Coupons International Business Reply Service The... * * * * * International Business Reply Service (382) [For each country that offers International Business Reply Service... POSTAL SERVICE 39 CFR Part 20 International Mail: Proposed Product Rate and Fee Changes AGENCY...

  13. Measurement of the incorporation rates of four amino acids into proteins for estimating bacterial production.

    PubMed

    Servais, P

    1995-03-01

    In aquatic ecosystems, [(3)H]thymidine incorporation into bacterial DNA and [(3)H]leucine incorporation into proteins are usually used to estimate bacterial production. The incorporation rates of four amino acids (leucine, tyrosine, lysine, alanine) into proteins of bacteria were measured in parallel on natural freshwater samples from the basin of the river Meuse (Belgium). Comparison of the incorporation into proteins and into the total macromolecular fraction showed that these different amino acids were incorporated at more than 90% into proteins. From incorporation measurements at four subsaturated concentrations (range, 2-77 nm), the maximum incorporation rates were determined. Strong correlations (r > 0.91 for all the calculated correlations) were found between the maximum incorporation rates of the different tested amino acids over a range of two orders of magnitude of bacterial activity. Bacterial production estimates were calculated using theoretical and experimental conversion factors. The productions calculated from the incorporation rates of the four amino acids were in good concordance, especially when the experimental conversion factors were used (slope range, 0.91-1.11, and r > 0.91). This study suggests that the incorporation of various amino acids into proteins can be used to estimate bacterial production.

  14. Biodiesel from wastewater: lipid production in high rate algal pond receiving disinfected effluent.

    PubMed

    Assemany, Paula Peixoto; Calijuri, Maria Lucia; do Couto, Eduardo de Aguiar; Santiago, Aníbal Fonseca; Dos Reis, Alberto José Delgado

    2015-01-01

    The production of different species of microalgae in consortium with other micro-organisms from wastewaters may represent an alternative process, to reduce the costs, for obtaining biofuels. The aim of this study was to evaluate the influence of pre-ultraviolet disinfection (UV) in the production of lipids from biomass produced in high rate ponds. Two high rate algal ponds were evaluated: a pond that received domestic sewage without disinfection and the other receiving domestic sewage previously disinfected by UV radiation (uvHRAP). The UV disinfection did not lead to significant differences in fatty acid profile and total lipid productivities, although it increased algal biomass concentration and productivity as well as lipid content. Moreover, the overall biomass concentrations and productivities decreased with the UV disinfection, mostly as a consequence of a loss in bacterial load. We thus conclude that uvHRAP disinfection may represent a potential strategy to promote the cleaner and safer growth of algal biomass when cultivated in consortium with other micro-organisms. Mainly regarding the use of wastewater as culture medium, together with a cheaper production of lipids for biodiesel, pre-disinfection may represent an advance since extraction costs could be significantly trimmed due to the increase in lipid content.

  15. 3D printed microneedles for insulin skin delivery.

    PubMed

    Pere, Cristiane Patricia Pissinato; Economidou, Sophia N; Lall, Gurprit; Ziraud, Clémentine; Boateng, Joshua S; Alexander, Bruce D; Lamprou, Dimitrios A; Douroumis, Dennis

    2018-06-15

    In this study, polymeric microneedle patches were fabricated by stereolithography, a 3D printing technique, for the transdermal delivery of insulin. A biocompatible resin was photopolymerized to build pyramid and cone microneedle designs followed by inkjet print coating of insulin formulations. Trehalose, mannitol and xylitol were used as drug carriers with the aim to preserve insulin integrity and stability but also to facilitate rapid release rates. Circular dichroism and Raman analysis demonstrated that all carriers maintained the native form of insulin, with xylitol presenting the best performance. Franz cell release studies were used for in vitro determination of insulin release rates in porcine skin. Insulin was released rapidly within 30 min irrespectively of the microneedle design. 3D printing was proved an effective technology for the fabrication of biocompatible and scalable microneedle patches. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Behavioral Characteristics and CO+CO2 Production Rates of Halley-Type Comets Observed by NEOWISE

    NASA Astrophysics Data System (ADS)

    Rosser, Joshua David; Bauer, James M.; Mainzer, Amy K.; Kramer, Emily A.; Masiero, Joseph R.; Nugent, Carrie; Sonnett, Sarah M.; Fernandez, Yanga R.; Wright, Edward L.; WISE, NEOWISE

    2017-10-01

    From the NEOWISE dataset of comet images, 11 different Halley-Type Comets (HTCs) were identified and analyzed for dust production rates (Afρ), CO+CO2 production rates (QCO2), and nucleus size. The objects considered ranged in heliocentric distance from 1.21 AU to 2.66 AU and were only considered when showing signs of reasonable activity. When multiple epochs were included and when combined with data from previous WISE and NEOWISE studies, our dataset totaled to 21 observations; 13 of which included active comets, and 7 for which we calculated upper limits of production. Comet P/2010 JC81 was removed from consideration due to clear inactivity. For this study, active comets are defined as those which exhibit excess signal of at least 3σ in the 4.6 μm detection band, while comets for which upper limits were calculated demonstrated excess signal of 1σ in the 4.6 μm detection band. Furthermore, we confirmed the nucleus size of 27P, P/2006 HR30, C/2010 L5, P/2012 NJ, C/2016 S1. We found that given the range in heliocentric distance for this sample of HTCs, Afρ ranged from 0.790 ± 0.036 to 2.64 ± 0.14, and QCO2 ranged from 25.08 ± 0.08 to 26.71 ± 0.12. No significant correlation between dust production and heliocentric distance, nor CO+CO2 production with heliocentric distance was found for this population. This poster will display production rates and other physical properties of these HTCs, as well as place the ensemble of HTC production rate properties into context.

  17. Maximising electricity production by controlling the biofilm specific growth rate in microbial fuel cells.

    PubMed

    Ledezma, Pablo; Greenman, John; Ieropoulos, Ioannis

    2012-08-01

    The aim of this work is to study the relationship between growth rate and electricity production in perfusion-electrode microbial fuel cells (MFCs), across a wide range of flow rates by co-measurement of electrical output and changes in population numbers by viable counts and optical density. The experiments hereby presented demonstrate, for the first time to the authors' knowledge, that the anodic biofilm specific growth rate can be determined and controlled in common with other loose matrix perfusion systems. Feeding with nutrient-limiting conditions at a critical flow rate (50.8 mL h(-1)) resulted in the first experimental determination of maximum specific growth rate μ(max) (19.8 day(-1)) for Shewanella spp. MFC biofilms, which is considerably higher than those predicted or assumed via mathematical modelling. It is also shown that, under carbon-energy limiting conditions there is a strong direct relationship between growth rate and electrical power output, with μ(max) coinciding with maximum electrical power production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Production of xylitol by a Coniochaeta ligniaria strain tolerant of inhibitors and defective in xylose metabolism

    USDA-ARS?s Scientific Manuscript database

    In conversion of biomass to fuels or chemicals, inhibitory compounds arising from physical-chemical pretreatment of the feedstock can interfere with fermentation of the sugars to product. Fungal strain Coniochaeta ligniaria NRRL30616, metabolizes the furan aldehydes furfural and 5-hydroxymethylfurfu...

  19. Rate of production, dissolution and accumulation of biogenic solids in the ocean

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1988-01-01

    The equatorial current system, by its response to global circulation changes, provides a unique recording mechanism for long range climatic oscillations. A permanent record of the changes in rate of upwelling and organic production is generated in the equatorial deep sea sediments, particularly by such biogenic components which are unaffected by secondary dissolution. In order to determine the rates of accumulation of various sedimentary components, a reliable differential measurement of age of the strata must be obtained. Various approaches to this problem are reviewed, and sources of error discussed. Secondary dissolution of calcium carbonate introduces a substantial and variable difference between the dissolution-modified, and hence a priori unknown, rate of deposition on one hand and the rate of accumulation, derivable from the observed concentration, on the other. The cause and magnitude of these variations are of importance, particularly since some current dating schemes are based on assumed constancy in the rate of accumulation of this and, in some cases, also all other sedimentary components. The concepts used in rate evaluation are discussed with emphasis on the difference between the state of dissolution, an observable property of the sediment, and the rate of dissolution, a parameter that requires deduction of the carbonate fraction dissolved, and of the time differential. As a most likely cause of the enhanced state of dissolution of the interglacial carbonate sediments is proposed the lowered rates of biogenic production and deposition, which cause longer exposure of the carbonate microfossils to corrosion in the bioturbated surface layer of the sediment. Historical perspective is included in the discussion in view of the dedication of the Symposium to Hans Pettersson, the leader of the Swedish Deep Sea Expedition 1947-1948, an undertaking that opened a new era in deep sea research and planetary dynamics.

  20. Detection rates of the MODIS active fire product in the United States

    USGS Publications Warehouse

    Hawbaker, T.J.; Radeloff, V.C.; Syphard, A.D.; Zhu, Z.; Stewart, S.I.

    2008-01-01

    MODIS active fire data offer new information about global fire patterns. However, uncertainties in detection rates can render satellite-derived fire statistics difficult to interpret. We evaluated the MODIS 1??km daily active fire product to quantify detection rates for both Terra and Aqua MODIS sensors, examined how cloud cover and fire size affected detection rates, and estimated how detection rates varied across the United States. MODIS active fire detections were compared to 361 reference fires (??? 18??ha) that had been delineated using pre- and post-fire Landsat imagery. Reference fires were considered detected if at least one MODIS active fire pixel occurred within 1??km of the edge of the fire. When active fire data from both Aqua and Terra were combined, 82% of all reference fires were found, but detection rates were less for Aqua and Terra individually (73% and 66% respectively). Fires not detected generally had more cloudy days, but not when the Aqua data were considered exclusively. MODIS detection rates decreased with fire size, and the size at which 50% of all fires were detected was 105??ha when combining Aqua and Terra (195??ha for Aqua and 334??ha for Terra alone). Across the United States, detection rates were greatest in the West, lower in the Great Plains, and lowest in the East. The MODIS active fire product captures large fires in the U.S. well, but may under-represent fires in areas with frequent cloud cover or rapidly burning, small, and low-intensity fires. We recommend that users of the MODIS active fire data perform individual validations to ensure that all relevant fires are included. ?? 2008 Elsevier Inc. All rights reserved.

  1. [Productive social activities in mothers of intellectually disabled children moderate the relationship between caregiver burden and self-rated health].

    PubMed

    Yatsugi, Sawa; Suzukamo, Yoshimi; Izumi, Sinichi

    2013-07-01

    Recently, the length of time for which intellectually disabled children receive homecare has increased; hence, the mothers caring for these intellectually disabled children at home are being exposed to increasingly heavy caregiver burden. Previous studies have reported that negative psychological states, including caregiver burden, influence self-rated health status; however, when elderly people engaged in productive social activities, they experienced heightened positive psychological states. Therefore, the objective of this study was to investigate whether mothers' participation in productive social activities influenced the relationship between caregiver burden and self-rated health status. We performed a cross-sectional study using a questionnaire that included items on self-rated health, the modified Japanese version of the Zarit Caregiver Burden Interview, productive social activities, and various confounding variables. We sent the questionnaires to 270 mothers belonging to patient and family advocacy groups. We then compared the self-rated health and caregiver burden between a group of mothers involved in productive social activities and a group not involved in such activities. The relationships between self-rated health, caregiver burden, and productive social activities were analyzed using analysis of variance (ANOVA) and post-hoc testing. We obtained 120 valid responses. Mothers with greater burden had worse self-rated health than the other group (r=-0.305). According to the ANOVA results, the self-rated health of mothers involved in productive social activities did not significantly differ between caregiver burden groups (mild burden group: 3.4 vs. severe burden group: 3.12; F=1.3, P=.253), whereas the self-rated health of mothers without productive social activities showed a significant difference between caregiver burden groups (mild burden group: 3.4 vs. severe burden group: 2.7; F=5.6, P=.017). Mothers with greater burden had worse self-rated health

  2. Temperature response of denitrification rate and greenhouse gas production in agricultural river marginal wetland soils.

    PubMed

    Bonnett, S A F; Blackwell, M S A; Leah, R; Cook, V; O'Connor, M; Maltby, E

    2013-05-01

    Soils are predicted to exhibit significant feedback to global warming via the temperature response of greenhouse gas (GHG) production. However, the temperature response of hydromorphic wetland soils is complicated by confounding factors such as oxygen (O2 ), nitrate (NO3-) and soil carbon (C). We examined the effect of a temperature gradient (2-25 °C) on denitrification rates and net nitrous oxide (N2 O), methane (CH4 ) production and heterotrophic respiration in mineral (Eutric cambisol and Fluvisol) and organic (Histosol) soil types in a river marginal landscape of the Tamar catchment, Devon, UK, under non-flooded and flooded with enriched NO3- conditions. It was hypothesized that the temperature response is dependent on interactions with NO3--enriched flooding, and the physicochemical conditions of these soil types. Denitrification rate (mean, 746 ± 97.3 μg m(-2)  h(-1) ), net N2 O production (mean, 180 ± 26.6 μg m(-2)  h(-1) ) and net CH4 production (mean, 1065 ± 183 μg m(-2)  h(-1) ) were highest in the organic Histosol, with higher organic matter, ammonium and moisture, and lower NO3- concentrations. Heterotrophic respiration (mean, 127 ± 4.6 mg m(-2)  h(-1) ) was not significantly different between soil types and dominated total GHG (CO2 eq) production in all soil types. Generally, the temperature responses of denitrification rate and net N2 O production were exponential, whilst net CH4 production was unresponsive, possibly due to substrate limitation, and heterotrophic respiration was exponential but limited in summer at higher temperatures. Flooding with NO3- increased denitrification rate, net N2 O production and heterotrophic respiration, but a reduction in net CH4 production suggests inhibition of methanogenesis by NO3- or N2 O produced from denitrification. Implications for management and policy are that warming and flood events may promote microbial interactions in soil between distinct microbial communities and increase

  3. The Production Rate and Employment of Ph.D. Astronomers

    NASA Astrophysics Data System (ADS)

    Metcalfe, Travis S.

    2007-05-01

    As in many sciences, the production rate of new Ph.D. astronomers is decoupled from the global demand for trained scientists. As noted by Thronson (1991, PASP, 103, 90), overproduction appears to be built into the system, making the mathematical formulation of surplus astronomer production similar to that for industrial pollution models -- an unintended side effect of the process. Following Harris (1994, ASP Conf., 57, 12), I document the production of Ph.D. astronomers from 1990 to 2005 using the online Dissertation Abstracts database. To monitor the changing patterns of employment, I examine the number of postdoctoral, tenure-track, and other jobs advertised in the AAS Job Register during this same period. Although the current situation is clearly unsustainable, it was much worse a decade ago with nearly 7 new Ph.D. astronomers in 1995 for every new tenure-track job. While the number of new permanent positions steadily increased throughout the late 1990's, the number of new Ph.D. recipients gradually declined. After the turn of the century, the production of new astronomers leveled off, but new postdoctoral positions grew dramatically. There has also been recent growth in the number of non-tenure-track lecturer, research, and support positions. This is just one example of a larger cultural shift to temporary employment that is happening throughout society -- it is not unique to astronomy.

  4. Development of Long REBCO with BMO Coated Conductors by PLD Method with High Production Rate

    NASA Astrophysics Data System (ADS)

    Ibi, A.; Yoshida, T.; Taneda, T.; Yoshizumi, M.; Izumi, T.; Shiohara, Y.

    We have been developing long REBa2Cu3O7-δ (RE: Y, Gd and Eu etc.) with BaMO3 (M: Zr, Sn and Hf etc.) coated conductors by the combination of the ion-beam assisted deposition (IBAD) and the pulsed laser deposition (PLD) methods. REBa2Cu3O7-δ with BaMO3 coated conductors showed high in-field performance, therefore, these coated conductors could be expected for the industrial and commercial applications at high temperatures in magnetic fields. However, to realize the low production cost for long REBa2Cu3O7-δ with BaMO3 coated conductors, improvement of the production rate of the REBa2Cu3O7-δ layers containing BaMO3 rods with maintaining high superconducting properties is required. To solve these problems, we have tried deposition of the REBa2Cu3O7-δ layers with high superconducting properties by the PLD method with high production rate. As a result, we have successfully fabricated EuBa2Cu3O7-δ layers containing BaHfO3 rods with high in-field Jc and Ic by the PLD method with high production rate. This EuBa2Cu3O7-δ with BaHfO3 coated conductor exhibit a high Ic value of 412 and 48.7 A/cm-width at 77 K in self-field and 3 T, respectively at the deposition rate of about 40 μm/h and the production rate of 10 m/h for a 1.35 μm EuBCO layer thick.

  5. Composition and production rate of pharmaceutical and chemical waste from Xanthi General Hospital in Greece

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voudrias, Evangelos, E-mail: voudrias@env.duth.gr; Goudakou, Lambrini; Kermenidou, Marianthi

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer We studied pharmaceutical and chemical waste production in a Greek hospital. Black-Right-Pointing-Pointer Pharmaceutical waste comprised 3.9% w/w of total hazardous medical waste. Black-Right-Pointing-Pointer Unit production rate for total pharmaceutical waste was 12.4 {+-} 3.90 g/patient/d. Black-Right-Pointing-Pointer Chemical waste comprised 1.8% w/w of total hazardous medical waste. Black-Right-Pointing-Pointer Unit production rate for total chemical waste was 5.8 {+-} 2.2 g/patient/d. - Abstract: The objective of this work was to determine the composition and production rates of pharmaceutical and chemical waste produced by Xanthi General Hospital in Greece (XGH). This information is important to design and cost management systems formore » pharmaceutical and chemical waste, for safety and health considerations and for assessing environmental impact. A total of 233 kg pharmaceutical and 110 kg chemical waste was collected, manually separated and weighed over a period of five working weeks. The total production of pharmaceutical waste comprised 3.9% w/w of the total hazardous medical waste produced by the hospital. Total pharmaceutical waste was classified in three categories, vial waste comprising 51.1%, syringe waste with 11.4% and intravenous therapy (IV) waste with 37.5% w/w of the total. Vial pharmaceutical waste only was further classified in six major categories: antibiotics, digestive system drugs, analgesics, hormones, circulatory system drugs and 'other'. Production data below are presented as average (standard deviation in parenthesis). The unit production rates for total pharmaceutical waste for the hospital were 12.4 (3.90) g/patient/d and 24.6 (7.48) g/bed/d. The respective unit production rates were: (1) for vial waste 6.4 (1.6) g/patient/d and 13 (2.6) g/bed/d, (2) for syringe waste 1.4 (0.4) g/patient/d and 2.8 (0.8) g/bed/d and (3) for IV waste 4.6 (3.0) g/patient/d and 9.2 (5.9) g/bed/d. Total

  6. Seasonal Changes in Mycosporine-Like Amino Acid Production Rate with Respect to Natural Phytoplankton Species Composition.

    PubMed

    Ha, Sun-Yong; Lee, Yeonjung; Kim, Min-Seob; Kumar, K Suresh; Shin, Kyung-Hoon

    2015-11-06

    After in situ incubation at the site for a year, phytoplanktons in surface water were exposed to natural light in temperate lakes (every month); thereafter, the net production rate of photoprotective compounds (mycosporine-like amino acids, MAAs) was calculated using (13)C labeled tracer. This is the first report describing seasonal variation in the net production rate of individual MAAs in temperate lakes using a compound-specific stable isotope method. In the mid-latitude region of the Korean Peninsula, UV radiation (UVR) usually peaks from July to August. In Lake Paldang and Lake Cheongpyeong, diatoms dominated among the phytoplankton throughout the year. The relative abundance of Cyanophyceae (Anabaena spiroides) reached over 80% during July in Lake Cheongpyeong. Changes in phytoplankton abundance indicate that the phytoplankton community structure is influenced by seasonal changes in the net production rate and concentration of MAAs. Notably, particulate organic matter (POM) showed a remarkable change based on the UV intensity occurring during that period; this was because of the fact that cyanobacteria that are highly sensitive to UV irradiance dominated the community. POM cultured in Lake Paldang had the greatest shinorine (SH) production rate during October, i.e., 83.83 ± 10.47 fgC·L(-1)·h(-1). The dominance of diatoms indicated that they had a long-term response to UVR. Evaluation of POM cultured in Lake Cheongpyeong revealed that there was an increase in the net MAA production in July (when UVR reached the maximum); a substantial amount of SH, i.e., 17.62 ± 18.34 fgC·L(-1)·h(-1), was recorded during this period. Our results demonstrate that both the net production rate as well as the concentration of MAAs related to photoinduction depended on the phytoplankton community structure. In addition, seasonal changes in UVR also influenced the quantity and production of MAAs in phytoplanktons (especially Cyanophyceae).

  7. Inventory model with two rates of production for deteriorating items with permissible delay in payments

    NASA Astrophysics Data System (ADS)

    Roy, Ajanta; Samanta, G. P.

    2011-08-01

    Goyal (1985) ['Economic Order Quantity Under Conditions of Permissible Delay in Payments', Journal of Operational research Society, 36, 35-38] assumed that unit selling price and unit purchasing price are equal. But in real-life the scenario is different. The purpose of this article is to reflect the real life problem by allowing unit selling price and purchasing price to be unequal. Our model is a continuous production control inventory model for deteriorating items in which two different rates of production are available. The results are illustrated with the help of a numerical example. We discuss the sensitivity of the solution together with the changes of the values of the parameters associated with the model. Our model may be applicable in many manufacturing planning situations where management practices for deterioration are stringent; e.g. the two-production rate will be more profitable than the one-production rate in the manufacture of cold, asthma and allergy medicine. Our proposed model might be applicable to develop a prototype advance planning system for those manufacturers to integrate the management science techniques into commercial planning.

  8. The cancer Warburg effect may be a testable example of the minimum entropy production rate principle

    NASA Astrophysics Data System (ADS)

    Marín, Dolores; Sabater, Bartolomé

    2017-04-01

    Cancer cells consume more glucose by glycolytic fermentation to lactate than by respiration, a characteristic known as the Warburg effect. In contrast with the 36 moles of ATP produced by respiration, fermentation produces two moles of ATP per mole of glucose consumed, which poses a puzzle with regard to the function of the Warburg effect. The production of free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) per mole linearly varies with the fraction (x) of glucose consumed by fermentation that is frequently estimated around 0.9. Hence, calculation shows that, in respect to pure respiration, the predominant fermentative metabolism decreases around 10% the production of entropy per mole of glucose consumed in cancer cells. We hypothesize that increased fermentation could allow cancer cells to accomplish the Prigogine theorem of the trend to minimize the rate of production of entropy. According to the theorem, open cellular systems near the steady state could evolve to minimize the rates of entropy production that may be reached by modified replicating cells producing entropy at a low rate. Remarkably, at CO2 concentrations above 930 ppm, glucose respiration produces less entropy than fermentation, which suggests experimental tests to validate the hypothesis of minimization of the rate of entropy production through the Warburg effect.

  9. The cancer Warburg effect may be a testable example of the minimum entropy production rate principle.

    PubMed

    Marín, Dolores; Sabater, Bartolomé

    2017-04-28

    Cancer cells consume more glucose by glycolytic fermentation to lactate than by respiration, a characteristic known as the Warburg effect. In contrast with the 36 moles of ATP produced by respiration, fermentation produces two moles of ATP per mole of glucose consumed, which poses a puzzle with regard to the function of the Warburg effect. The production of free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) per mole linearly varies with the fraction (x) of glucose consumed by fermentation that is frequently estimated around 0.9. Hence, calculation shows that, in respect to pure respiration, the predominant fermentative metabolism decreases around 10% the production of entropy per mole of glucose consumed in cancer cells. We hypothesize that increased fermentation could allow cancer cells to accomplish the Prigogine theorem of the trend to minimize the rate of production of entropy. According to the theorem, open cellular systems near the steady state could evolve to minimize the rates of entropy production that may be reached by modified replicating cells producing entropy at a low rate. Remarkably, at CO 2 concentrations above 930 ppm, glucose respiration produces less entropy than fermentation, which suggests experimental tests to validate the hypothesis of minimization of the rate of entropy production through the Warburg effect.

  10. Language-independent talker-specificity in first-language and second-language speech production by bilingual talkers: L1 speaking rate predicts L2 speaking rate

    PubMed Central

    Bradlow, Ann R.; Kim, Midam; Blasingame, Michael

    2017-01-01

    Second-language (L2) speech is consistently slower than first-language (L1) speech, and L1 speaking rate varies within- and across-talkers depending on many individual, situational, linguistic, and sociolinguistic factors. It is asked whether speaking rate is also determined by a language-independent talker-specific trait such that, across a group of bilinguals, L1 speaking rate significantly predicts L2 speaking rate. Two measurements of speaking rate were automatically extracted from recordings of read and spontaneous speech by English monolinguals (n = 27) and bilinguals from ten L1 backgrounds (n = 86): speech rate (syllables/second), and articulation rate (syllables/second excluding silent pauses). Replicating prior work, L2 speaking rates were significantly slower than L1 speaking rates both across-groups (monolinguals' L1 English vs bilinguals' L2 English), and across L1 and L2 within bilinguals. Critically, within the bilingual group, L1 speaking rate significantly predicted L2 speaking rate, suggesting that a significant portion of inter-talker variation in L2 speech is derived from inter-talker variation in L1 speech, and that individual variability in L2 spoken language production may be best understood within the context of individual variability in L1 spoken language production. PMID:28253679

  11. 78 FR 41129 - Market Test of Experimental Product - International Merchandise Return Service-Non-Published Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ...--Non-Published Rates AGENCY: U.S. Postal Service\\TM\\. ACTION: Notice. SUMMARY: The Postal Service hereby gives notice of a market test for International Merchandise Return Service--Non-Published Rates in... Return Service (IMRS) Non-published Rate (NPR) experimental product on August 15, 2013. The Postal...

  12. Effect of pH and dilution rate on specific production rate of extra cellular metabolites by Lactobacillus salivarius UCO_979C in continuous culture.

    PubMed

    Valenzuela, Javier Ferrer; Pinuer, Luis; Cancino, Apolinaria García; Yáñez, Rodrigo Bórquez

    2015-08-01

    The effect of pH and dilution rate on the production of extracellular metabolites of Lactobacillus salivarius UCO_979 was studied. The experiments were carried out in continuous mode, with chemically defined culture medium at a temperature of 37 °C, 200 rpm agitation and synthetic air flow of 100 ml/min. Ethanol, acetic acid, formic acid, lactic acid and glucose were quantified through HPLC, while exopolysaccharide (EPS) was extracted with ethanol and quantified through the Dubois method. The results showed no linear trends for the specific production of lactic acid, EPS, acetic acid and ethanol, while the specific glucose consumption and ATP production rates showed linear trends. There was a metabolic change of the strain for dilution rates below 0.3 h(-1). The pH had a significant effect on the metabolism of the strain, which was evidenced by a higher specific glucose consumption and increased production of ATP at pH 6 compared with that obtained at pH 7. This work shows not only the metabolic capabilities of L. salivarius UCO_979C, but also shows that it is possible to quantify some molecules associated with its current use as gastrointestinal probiotic, especially regarding the production of organic acids and EPS.

  13. 7 CFR 457.3 - Premium rates, production guarantees or amounts of insurance, coverage levels, and prices at...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Premium rates, production guarantees or amounts of... Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.3 Premium rates, production guarantees or...

  14. Development and field deployment of an instrument to measure ozone production rates in the troposphere

    NASA Astrophysics Data System (ADS)

    Sklaveniti, S.; Locoge, N.; Dusanter, S.; Leonardis, T.; Lew, M.; Bottorff, B.; Sigler, P. S. R.; Stevens, P. S.; Wood, E. C. D.; Kundu, S.; Gentner, D. R.

    2015-12-01

    Ozone is a greenhouse gas and a primary constituent of urban smog, irritating the respiratory system and damaging the vegetation. The current understanding of ozone chemistry in the troposphere indicates that net ozone production P(O3) occurs when peroxy radicals (HO2+RO2) react with NO producing NO2, whose photolysis leads to O3 formation. P(O3) values can be calculated from peroxy radical concentrations, either from ambient measurements or box model outputs. These two estimation methods often disagree for NOx mixing ratios higher than a few ppb, questioning our ability to measure peroxy radicals under high NOx conditions or indicating that there are still unknowns in our understanding of the radical and ozone production chemistry. Direct measurements of ozone production rates will help to address this issue and improve air quality regulations. We will present the development of an instrument for direct measurements of ozone production rates (OPR). The OPR instrument consists of three parts: (i) two quartz flow tubes sampling ambient air ("Ambient" and "Reference" flow tube), (ii) an O3-to-NO2 conversion unit, and (iii) a Cavity Attenuated Phase Shift (CAPS) monitor to measure NO2. The air in the Ambient flow tube undergoes the same photochemistry as in ambient air, while the Reference flow tube is covered by a UV filter limiting the formation of ozone. Exiting the flow tubes, ozone is converted into NO2 and the sum O3+NO2 (Ox) is measured by the CAPS monitor. The difference in Ox between the two flow tubes divided by the residence time yields the Ox production rate, P(Ox). P(O3) is assumed to be equal to P(Ox) when NO2 is efficiently photolyzed during daytime. We will present preliminary results from the Indiana Radical, Reactivity and Ozone Production Intercomparison (IRRONIC) campaign in Bloomington, Indiana, during July 2015, where ozone production rates were measured by introducing various amounts of NO inside the flow tubes to investigate the ozone

  15. On scaling cosmogenic nuclide production rates for altitude and latitude using cosmic-ray measurements

    NASA Astrophysics Data System (ADS)

    Desilets, Darin; Zreda, Marek

    2001-11-01

    The wide use of cosmogenic nuclides for dating terrestrial landforms has prompted a renewed interest in characterizing the spatial distribution of terrestrial cosmic rays. Cosmic-ray measurements from neutron monitors, nuclear emulsions and cloud chambers have played an important role in developing new models for scaling cosmic-ray neutron intensities and, indirectly, cosmogenic production rates. Unfortunately, current scaling models overlook or misinterpret many of these data. In this paper, we describe factors that must be considered when using neutron measurements to determine scaling formulations for production rates of cosmogenic nuclides. Over the past 50 years, the overwhelming majority of nucleon flux measurements have been taken with neutron monitors. However, in order to use these data for scaling spallation reactions, the following factors must be considered: (1) sensitivity of instruments to muons and to background, (2) instrumental biases in energy sensitivity, (3) solar activity, and (4) the way of ordering cosmic-ray data in the geomagnetic field. Failure to account for these factors can result in discrepancies of as much as 7% in neutron attenuation lengths measured at the same location. This magnitude of deviation can result in an error on the order of 20% in cosmogenic production rates scaled from 4300 m to sea level. The shapes of latitude curves of nucleon flux also depend on these factors to a measurable extent, thereby causing additional uncertainties in cosmogenic production rates. The corrections proposed herein significantly improve our ability to transfer scaling formulations based on neutron measurements to scaling formulations applicable to spallation reactions, and, therefore, constitute an important advance in cosmogenic dating methodology.

  16. Metabolic rate and environmental productivity: Well-provisioned animals evolved to run and idle fast

    PubMed Central

    Mueller, Pamela; Diamond, Jared

    2001-01-01

    Even among vertebrate species of the same body mass and higher-level taxonomic group, metabolic rates exhibit substantial differences, for which diverse explanatory factors—such as dietary energy content, latitude, altitude, temperature, and rainfall—have been postulated. A unifying underlying factor could be food availability, in turn controlled by net primary productivity (NPP) of the animal's natural environment. We tested this possibility by studying five North American species of Peromyscus mice, all of them similar in diet (generalist omnivores) and in gut morphology but differing by factors of up to 13 in NPP of their habitat of origin. We maintained breeding colonies of all five species in the laboratory under identical conditions and consuming identical diets. Basal metabolic rate (BMR) and daily ad libitum food intake both increased with NPP, which explained 88% and 90% of their variances, respectively. High-metabolism mouse species from high-NPP environments were behaviorally more active than were low-metabolism species from low-NPP environments. Intestinal glucose uptake capacity also increased with NPP (and with BMR and food intake), because species of high-NPP environments had larger small intestines and higher uptake rates. For metabolic rates of our five species, the driving environmental variable is environmental productivity itself (and hence food availability), rather than temporal variability of productivity. Thus, species that have evolved in the presence of abundant food run their metabolism “fast,” both while active and while idling, as compared with species of less productive environments, even when all species are given access to unlimited food. PMID:11606744

  17. Succinic acid production with Actinobacillus succinogenes: rate and yield analysis of chemostat and biofilm cultures.

    PubMed

    Brink, Hendrik Gideon; Nicol, Willie

    2014-08-19

    Succinic acid is well established as bio-based platform chemical with production quantities expecting to increase exponentially within the next decade. Actinobacillus succinogenes is by far the most studied wild organism for producing succinic acid and is known for high yield and titre during production on various sugars in batch culture. At low shear conditions continuous fermentation with A. succinogenes results in biofilm formation. In this study, a novel shear controlled fermenter was developed that enabled: 1) chemostat operation where self-immobilisation was opposed by high shear rates and, 2) in-situ removal of biofilm by increasing shear rates and subsequent analysis thereof. The volumetric productivity of the biofilm fermentations were an order of magnitude more than the chemostat runs. In addition the biofilm runs obtained substantially higher yields. Succinic acid to acetic acid ratios for chemostat runs were 1.28±0.2 g.g(-1), while the ratios for biofilm runs started at 2.4 g.g(-1) and increased up to 3.3 g.g(-1) as glucose consumption increased. This corresponded to an overall yield on glucose of 0.48±0.05 g.g(-1) for chemostat runs, while the yields varied between 0.63 g.g(-1) and 0.74 g.g(-1) for biofilm runs. Specific growth rates (μ) were shown to be severely inhibited by the formation of organic acids, with μ only 12% of μ(max) at a succinic acid titre of 7 g.L(-1). Maintenance production of succinic acid was shown to be dominant for the biofilm runs with cell based production rates (extracellular polymeric substance removed) decreasing as SA titre increases. The novel fermenter allowed for an in-depth bioreaction analysis of A. succinogenes. Biofilm cells achieve higher SA yields than suspended cells and allow for operation at higher succinic acid titre. Both growth and maintenance rates were shown to drastically decrease with succinic acid titre. The A. succinogenes biofilm process has vast potential, where self-induced high cell densities

  18. Silvichemicals: ready for a breakthrough

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bratt, L.

    1979-07-01

    An appraisal is given of the various markets for chemicals produced from wood or from spent pulping liquor. These include tall oil, turpentine, dimethyl sulfide, lignosulphonates, yeast, and charcoal briquettes. The article also examines new developments such as production of xylitol and wood hydrolysis.

  19. Raman spectroscopy for the microbiological characterization and identification of medically relevant bacteria

    NASA Astrophysics Data System (ADS)

    Hamasha, Khozima Mahmoud

    The detection and identification of pathogenic bacteria has become more important than ever due to the increase of potential bioterrorism threats and the high mortality rate of bacterial infections worldwide. Raman spectroscopy has recently gained popularity as an attractive robust approach for the molecular characterization, rapid identification, and accurate classification of a wide range of bacteria. In this dissertation, Raman spectroscopy utilizing advanced statistical techniques was used to identify and discriminate between different pathogenic and non-pathogenic bacterial strains of E. coli and Staphylococcus aureus bacterial species by probing the molecular compositions of the cells. The five-carbon sugar xylitol, which cannot be metabolized by the oral and nasopharyngeal bacteria, had been recognized by clinicians as a preventive agents for dental caries and many studies have demonstrated that xylitol causes a reduction in otitis media (chronic inner ear infections) and other nasopharyngeal infections. Raman spectroscopy was used to characterize the uptake and metabolic activity of xylitol in pathogenic (viridans group Streptococcus) and nonpathogenic (E. coli) bacteria by taking their Raman spectra before xylitol exposure and after growing with xylitol and quantifying the significant differences in the molecular vibrational modes due to this exposure. The results of this study showed significant stable spectral changes in the S. viridians bacteria induced by xylitol and those changes were not the same as in some E. coli strains. Finally, Raman spectroscopy experiments were conducted to provide important information about the function of a certain protein (wag31) of Mycobacterium tuberculosis using a relative non-pathogenic bacterium called Mycobacterium smegmatis. Raman spectra of conditional mutants of bacteria expressing three different phosphorylation forms of wag31 were collected and analyzed. The results show that that the phosphorylation of wag31

  20. Overexpression of NADH-dependent fumarate reductase improves D-xylose fermentation in recombinant Saccharomyces cerevisiae.

    PubMed

    Salusjärvi, Laura; Kaunisto, Sanna; Holmström, Sami; Vehkomäki, Maija-Leena; Koivuranta, Kari; Pitkänen, Juha-Pekka; Ruohonen, Laura

    2013-12-01

    Deviation from optimal levels and ratios of redox cofactors NAD(H) and NADP(H) is common when microbes are metabolically engineered. The resulting redox imbalance often reduces the rate of substrate utilization as well as biomass and product formation. An example is the metabolism of D-xylose by recombinant Saccharomyces cerevisiae strains expressing xylose reductase and xylitol dehydrogenase encoding genes from Scheffersomyces stipitis. This pathway requires both NADPH and NAD(+). The effect of overexpressing the glycosomal NADH-dependent fumarate reductase (FRD) of Trypanosoma brucei in D-xylose-utilizing S. cerevisiae alone and together with an endogenous, cytosol directed NADH-kinase (POS5Δ17) was studied as one possible solution to overcome this imbalance. Expression of FRD and FRD + POS5Δ17 resulted in 60 and 23 % increase in ethanol yield, respectively, on D-xylose under anaerobic conditions. At the same time, xylitol yield decreased in the FRD strain suggesting an improvement in redox balance. We show that fumarate reductase of T. brucei can provide an important source of NAD(+) in yeast under anaerobic conditions, and can be useful for metabolic engineering strategies where the redox cofactors need to be balanced. The effects of FRD and NADH-kinase on aerobic and anaerobic D-xylose and D-glucose metabolism are discussed.

  1. Low tanker rates are enabling more long-distance crude oil and petroleum product trade

    EIA Publications

    2016-01-01

    Recent expansion of the global crude oil and petroleum product tanker fleet has resulted in falling or lower tanker rates for much of 2016 that have widened the geographic scope for economically attractive trade at a time when inventories of both crude oil and petroleum products are at high levels.

  2. In-situ Measurements of Ozone Production Rates and Comparisons to Model-derived Production Rates During the Houston, TX and Denver, CO DISCOVER-AQ Campaigns

    NASA Astrophysics Data System (ADS)

    Baier, B. C.; Brune, W. H.; Miller, D. O.; Lefer, B. L.

    2015-12-01

    Tropospheric ozone (O3) is a secondary pollutant that has harmful effects on human and plant life. The climate and urban emissions in Houston, TX and Denver, CO can be conducive for significant ozone production and thus, high ozone events. Tighter government strategies for ozone mitigation have been proposed, which involve reducing the current EPA eight-hour ozone standard from 75 ppb to 65-70 ppb. These strategies rely on the reduction of ozone precursors in order to decrease the ozone production rate, P(O3). The changes in the ozone concentration at a certain location are dependent upon P(O3), so decreasing P(O3) can decrease ozone levels provided that it has not been transported from other areas. Air quality models test reduction strategies before they are implemented, locate ozone sources, and predict ozone episodes. Traditionally, P(O3) has been calculated by models. However, large uncertainties in model emissions inventories, chemical mechanisms, and meteorology can reduce confidence in this approach. A new instrument, the Measurement of Ozone Production Sensor (MOPS) directly measures P(O3) and can provide an alternate approach to determining P(O3). An updated version of the Penn State MOPS (MOPSv2.0) was deployed to Houston, TX and Denver, CO as a part of NASA's DISCOVER-AQ field campaign in the summers of 2013 and 2014, respectively. We present MOPS directly-measured P(O3) rates from these areas, as well as comparisons to zero-dimensional and three-dimensional modeled P(O3) using the RACM2 and MCMv2.2 mechanisms. These comparisons demonstrate the potential of the MOPS to test and evaluate model-derived P(O3), to advance the understanding of model chemical mechanisms, and to improve predictions of high ozone events.

  3. Causes and implications of the correlation between forest productivity and tree mortality rates

    USGS Publications Warehouse

    Stephenson, Nathan L.; van Mantgem, Philip J.; Bunn, Andrew G.; Bruner, Howard; Harmon, Mark E.; O'Connell, Kari B.; Urban, Dean L.; Franklin, Jerry F.

    2011-01-01

    For only one of these four mechanisms, competition, can high mortality rates be considered to be a relatively direct consequence of high NPP. The remaining mechanisms force us to adopt a different view of causality, in which tree growth rates and probability of mortality can vary with at least a degree of independence along productivity gradients. In many cases, rather than being a direct cause of high mortality rates, NPP may remain high in spite of high mortality rates. The independent influence of plant enemies and other factors helps explain why forest biomass can show little correlation, or even negative correlation, with forest NPP.

  4. Seasonal Changes in Mycosporine-Like Amino Acid Production Rate with Respect to Natural Phytoplankton Species Composition

    PubMed Central

    Ha, Sun-Yong; Lee, Yeonjung; Kim, Min-Seob; Kumar, K. Suresh; Shin, Kyung-Hoon

    2015-01-01

    After in situ incubation at the site for a year, phytoplanktons in surface water were exposed to natural light in temperate lakes (every month); thereafter, the net production rate of photoprotective compounds (mycosporine-like amino acids, MAAs) was calculated using 13C labeled tracer. This is the first report describing seasonal variation in the net production rate of individual MAAs in temperate lakes using a compound-specific stable isotope method. In the mid-latitude region of the Korean Peninsula, UV radiation (UVR) usually peaks from July to August. In Lake Paldang and Lake Cheongpyeong, diatoms dominated among the phytoplankton throughout the year. The relative abundance of Cyanophyceae (Anabaena spiroides) reached over 80% during July in Lake Cheongpyeong. Changes in phytoplankton abundance indicate that the phytoplankton community structure is influenced by seasonal changes in the net production rate and concentration of MAAs. Notably, particulate organic matter (POM) showed a remarkable change based on the UV intensity occurring during that period; this was because of the fact that cyanobacteria that are highly sensitive to UV irradiance dominated the community. POM cultured in Lake Paldang had the greatest shinorine (SH) production rate during October, i.e., 83.83 ± 10.47 fgC·L−1·h−1. The dominance of diatoms indicated that they had a long-term response to UVR. Evaluation of POM cultured in Lake Cheongpyeong revealed that there was an increase in the net MAA production in July (when UVR reached the maximum); a substantial amount of SH, i.e., 17.62 ± 18.34 fgC·L−1·h−1, was recorded during this period. Our results demonstrate that both the net production rate as well as the concentration of MAAs related to photoinduction depended on the phytoplankton community structure. In addition, seasonal changes in UVR also influenced the quantity and production of MAAs in phytoplanktons (especially Cyanophyceae). PMID:26561820

  5. Coal flow aids reduce coke plant operating costs and improve production rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.

    2005-06-01

    Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

  6. Deterioration rates of blowndown timber and potential problems associated with product recovery.

    Treesearch

    Paul E. Aho; James M. Cahill

    1984-01-01

    This paper summarizes published reports of deterioration and product recovery studies conducted on dead timber. Decay rates experienced in blowndown timber are presented for western redcedar (Thuja plicata Donn ex D. Don), Douglasfir (Pseudotsuga menziesii (Mirb.) Franco), western hemlock (Tsuga heterophylla (Raf.) Sarg.), and...

  7. RNA:DNA ratios as a proxy of egg production rates of Acartia

    NASA Astrophysics Data System (ADS)

    Cruz, Joana; Teodósio, M. Alexandra; Ben-Hamadou, Radhouane; Chícharo, Luís; Garrido, Susana; Ré, Pedro; Santos, A. Miguel P.

    2017-03-01

    Estimates of copepod secondary production are of great importance to infer the global organic matter fluxes in aquatic ecosystems and species-specific responses of zooplankton to hydrologic variability. However, there is still no routine method to determine copepods secondary production in order to eliminate time consuming experimental analyses. Therefore, we determined whether there is a correlation between Egg Production Rates (EPR) and RNA:DNA ratios of Acartia species, by measuring their seasonal and spatial variability and the influence of environmental factors for Acartia sp. collected in the Guadiana river estuary. EPR of Acartia tonsa was positively related with chlorophyll a concentration, freshwater inflow and biomass of dinoflagellates, while Acartia clausi was only related to dinoflagellates. Dinoflagellates seem to be the optimal food item influencing the reproduction of both Acartia species in the studied area. The biochemical index RNA:DNA was positively related to EPR, indicating that it is a good proxy of copepod production and a promising method to use in the future to estimate secondary production.

  8. Herschel/SPIRE observations of water production rates and ortho-to-para ratios in comets★

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas G.; Rawlings, Jonathan M. C.; Swinyard, Bruce M.

    2017-04-01

    This paper presents Herschel/SPIRE (Spectral and Photometric Imaging Receiver) spectroscopic observations of several fundamental rotational ortho- and para-water transitions seen in three Jupiter-family comets and one Oort-cloud comet. Radiative transfer models that include excitation by collisions with neutrals and electrons, and by solar infrared radiation, were used to produce synthetic emission line profiles originating in the cometary coma. Ortho-to-para ratios (OPRs) were determined and used to derived water production rates for all comets. Comparisons are made with the water production rates derived using an OPR of 3. The OPR of three of the comets in this study is much lower than the statistical equilibrium value of 3; however they agree with observations of comets 1P/Halley and C/2001 A2 (LINEAR), and the protoplanetary disc TW Hydrae. These results provide evidence suggesting that OPR variation is caused by post-sublimation gas-phase nuclear-spin conversion processes. The water production rates of all comets agree with previous work and, in general, decrease with increasing nucleocentric offset. This could be due to a temperature profile, additional water source or OPR variation in the comae, or model inaccuracies.

  9. Rates of molecular evolution in tree ferns are associated with body size, environmental temperature, and biological productivity.

    PubMed

    Barrera-Redondo, Josué; Ramírez-Barahona, Santiago; Eguiarte, Luis E

    2018-05-01

    Variation in rates of molecular evolution (heterotachy) is a common phenomenon among plants. Although multiple theoretical models have been proposed, fundamental questions remain regarding the combined effects of ecological and morphological traits on rate heterogeneity. Here, we used tree ferns to explore the correlation between rates of molecular evolution in chloroplast DNA sequences and several morphological and environmental factors within a Bayesian framework. We revealed direct and indirect effects of body size, biological productivity, and temperature on substitution rates, where smaller tree ferns living in warmer and less productive environments tend to have faster rates of molecular evolution. In addition, we found that variation in the ratio of nonsynonymous to synonymous substitution rates (dN/dS) in the chloroplast rbcL gene was significantly correlated with ecological and morphological variables. Heterotachy in tree ferns may be influenced by effective population size associated with variation in body size and productivity. Macroevolutionary hypotheses should go beyond explaining heterotachy in terms of mutation rates and instead, should integrate population-level factors to better understand the processes affecting the tempo of evolution at the molecular level. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  10. Greater carbon stocks and faster turnover rates with increasing agricultural productivity

    NASA Astrophysics Data System (ADS)

    Sanderman, J.; Fallon, S.; Baisden, T. W.

    2013-12-01

    H.H. Janzen (2006) eloquently argued that from an agricultural perspective there is a tradeoff between storing carbon as soil organic matter (SOM) and the soil nutrient and energy benefit provided during SOM mineralization. Here we report on results from the Permanent Rotation Trial at the Waite Agricultural Institute, South Australia, indicating that shifting to an agricultural management strategy which returns more carbon to the soil, not only leads to greater carbon stocks but also increases the rate of carbon cycling through the soil. The Permanent Rotation Trial was established on a red Chromosol in 1925 with upgrades made to several treatments in 1948. Decadal soil samples were collected starting in 1963 at two depths, 0-10 and 10-22.5 cm, by compositing 20 soil cores taken along the length of each plot. We have chosen to analyze five trials representing a gradient in productivity: permanent pasture (Pa), wheat-pasture rotation (2W4Pa), continuous wheat (WW), wheat-oats-fallow rotation (WOF) and wheat-fallow (WF). For each of the soil samples (40 in total), the radiocarbon activity in the bulk soil as well as size-fractionated samples was measured by accelerator mass spectrometry at ANU's Radiocarbon Dating Laboratory (Fallon et al. 2010). After nearly 70 years under each rotation, SOC stocks increased linearly with productivity data across the trials from 24 to 58 tC ha-1. Importantly, these differences were due to greater losses over time in the low productivity trials rather than gains in SOC in any of the trials. Uptake of the bomb-spike in atmospheric 14C into the soil was greatest in the trials with the greatest productivity. The coarse size fraction always had greater Δ14C values than the bulk soil samples. Several different multi-pool steady state and non-steady state models were used to interpret the Δ14C data in terms of SOC turnover rates. Regardless of model choice, either the decay rates of all pools needed to increase or the allocation of C to

  11. Solvent and viscosity effects on the rate-limiting product release step of glucoamylase during maltose hydrolysis.

    PubMed

    Sierks, M R; Sico, C; Zaw, M

    1997-01-01

    Release of product from the active site is the rate-limiting step in a number of enzymatic reactions, including maltose hydrolysis by glucoamylase (GA). With GA, an enzymatic conformational change has been associated with the product release step. Solvent characteristics such as viscosity can strongly influence protein conformational changes. Here we show that the rate-limiting step of GA has a rather complex dependence on solvent characteristics. Seven different cosolvents were added to the GA/maltose reaction solution. Five of the cosolvents, all having an ethylene glycol base, resulted in an increase in activity at low concentration of cosolvent and variable decreases in activity at higher concentrations. The increase in enzyme activity was dependent on polymer length of the cosolvent; the longer the polymer, the lower the concentration needed. The maximum increase in catalytic activity at 45 degrees C (40-45%) was obtained with the three longest polymers (degree of polymerization from 200 to 8000). A further increase in activity to 60-65% was obtained at 60 degrees C. The linear relationship between ln(kcat) and (viscosity)2 obtained with all the cosolvents provides further evidence that product release is the rate-limiting step in the GA catalytic mechanism. A substantial increase in the turnover rate of GA by addition of relatively small amounts of a cosolvent has potential applications for the food industry where high-fructose corn syrup (HFCS) is one of the primary products produced with GA. Since maltodextrin hydrolysis by GA is by far the slowest step in the production of HFCS, increasing the catalytic rate of GA can substantially reduce the process time.

  12. Technologies that affect the weaning rate in beef cattle production systems.

    PubMed

    Dill, Matheus Dhein; Pereira, Gabriel Ribas; Costa, João Batista Gonçalves; Canellas, Leonardo Canali; Peripolli, Vanessa; Neto, José Braccini; Sant'Anna, Danilo Menezes; McManus, Concepta; Barcellos, Júlio Otávio Jardim

    2015-10-01

    We investigated the differences between weaning rates and technologies adopted by farmers in cow-calf production systems in Rio Grande do Sul State, Brazil. Interviews were carried out with 73 farmers about 48 technologies that could affect reproductive performance. Data were analyzed by multivariate analysis using a non-hierarchical cluster method. The level of significance was set at P < 0.05. Three distinct clusters of farmers were created (R (2) = 0.90), named as low (LWR), intermediate (IWR), and high (HWR) weaning rate, with 100, 91, and 96 % of the farmers identified within their respective groups and average weaning rates of 59, 72, and 83 %, respectively. IWR and HWR farmers used more improved natural pasture, fixed-time artificial insemination, selection for birth weight, and proteinated salt compared to LWR. HWR farmers used more stocking rate control, and IWR farmers used more ultrasound to evaluate reproductive performance compared to the LWR group. IWR and HWR adopted more technologies related to nutrition and reproductive aspects of the herd in comparison to LWR. We concluded that farmers with higher technology use on farm had higher weaning rates which could be used to benefit less efficient farmers.

  13. Translation elicits a growth rate-dependent, genome-wide, differential protein production in Bacillus subtilis.

    PubMed

    Borkowski, Olivier; Goelzer, Anne; Schaffer, Marc; Calabre, Magali; Mäder, Ulrike; Aymerich, Stéphane; Jules, Matthieu; Fromion, Vincent

    2016-05-17

    Complex regulatory programs control cell adaptation to environmental changes by setting condition-specific proteomes. In balanced growth, bacterial protein abundances depend on the dilution rate, transcript abundances and transcript-specific translation efficiencies. We revisited the current theory claiming the invariance of bacterial translation efficiency. By integrating genome-wide transcriptome datasets and datasets from a library of synthetic gfp-reporter fusions, we demonstrated that translation efficiencies in Bacillus subtilis decreased up to fourfold from slow to fast growth. The translation initiation regions elicited a growth rate-dependent, differential production of proteins without regulators, hence revealing a unique, hard-coded, growth rate-dependent mode of regulation. We combined model-based data analyses of transcript and protein abundances genome-wide and revealed that this global regulation is extensively used in B. subtilis We eventually developed a knowledge-based, three-step translation initiation model, experimentally challenged the model predictions and proposed that a growth rate-dependent drop in free ribosome abundance accounted for the differential protein production. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Nasal Irrigation for Chronic Rhinosinusitis and Fatigue in Patients with Gulf War Syndrome

    DTIC Science & Technology

    2012-07-01

    final R&D Committee approval was granted on 7/16/12 We were also recently informed that the company that will provide Xylitol (Danisco) has been...communication with Danisco-Dupont regarding continuity of study regarding procurement and packaging of xylitol packets (saches) for individual use by...participants in the xylitol arm of the study. These communications have been positive and the study remains a priority of Danisco-Dupont. The PI, study

  15. Nasal Irrigation for Chronic Rhinosinusitis and Fatigue in Patients with Gulf War Syndrome

    DTIC Science & Technology

    2014-07-01

    xylitol has continued to provide daily use packets at no cost as indicated in the protocol and letter of support in the initial grant application...Pharmaceutical Research Center (PRC) which will be housing and dispensing all study medications ( Xylitol and Saline). We have final approval on all...recruitment strategies  Procurement of xylitol  Recruitment and enrollment of subjects 6 REPORTABLE OUTCOMES:  UW HS IRB continuing review

  16. Effect of pranayama on rate pressure product in mild hypertensives.

    PubMed

    Goyal, Rajni; Lata, Hem; Walia, Lily; Narula, Manjit K

    2014-07-01

    The modern living life-style is known to produce various physical and psychological stresses resulting in increased blood pressure (BP) and heart rate (HR). This can lead to increased myocardial oxygen demand (MVO2). MVO2 correlated best with rate pressure product (RPP). RPP is a product of HR and systolic BP. The present study was conducted to evaluate the effect of relaxation in the form of pranayama on RPP in mild hypertensives. Mild hypertensive patients were divided into two groups. Group A received antihypertensive drugs for 6 weeks and Group B received antihypertensive drugs along with pranayama training for 6 weeks. BP decreased significantly in Group B (148 ± 8.09-127 ± 12.10 mm of Hg) where pranayama was added. The decrease was significant as compared to Group A. HR decreased significantly in both the groups as compared to baseline, however the decrease was similar in both groups. RPP decreased significantly in both groups as compared to baseline, however the decrease was significantly more (P < 0.01) when pranayama was added to antihypertensive drugs (96.73 ± 20.53) when compared to antihypertensive drugs alone (114.66 ± 26.30). The pranayama produces relaxed state and in this state parasympathetic activity overrides sympathetic activity. Hence, addition of pranayama can be a useful addition to antihypertensive drugs for better control of hypertension in mild hypertensives.

  17. CS band intensity and column densities and production rates of 15 comets

    NASA Astrophysics Data System (ADS)

    Sanzovo, G. C.; Singh, P. D.; Huebner, W. F.

    1993-09-01

    An accurate fluorescence efficiency of the CS(0,0) band and the lifetime of CS have been calculated at 1 AU heliocentric distance. Model-independent CS column densities and production rates are determined from derived fluorescent emission rates (g-factors) and lifetimes for 15 comets: Austin (1982g), Borrelly (1980i), Bradfield (1979X), Crommelin (1983n), Encke (1980), Encke (1984), Giacobini-Zinner (1984e), Halley (1982i), IRAS-Araki-Alcock (1983d), Meier (1980q), Panther (1980u), Stephan-Oterma (1980g), Tuttle (1980h), West (1975n), and Wilson (1986l).

  18. CS band intensity and column densities and production rates of 15 comets

    NASA Technical Reports Server (NTRS)

    Sanzovo, G. C.; Singh, P. D.; Huebner, W. F.

    1993-01-01

    An accurate fluorescence efficiency of the CS(0,0) band and the lifetime of CS have been calculated at 1 AU heliocentric distance. Model-independent CS column densities and production rates are determined from derived fluorescent emission rates (g-factors) and lifetimes for 15 comets: Austin (1982g), Borrelly (1980i), Bradfield (1979X), Crommelin (1983n), Encke (1980), Encke (1984), Giacobini-Zinner (1984e), Halley (1982i), IRAS-Araki-Alcock (1983d), Meier (1980q), Panther (1980u), Stephan-Oterma (1980g), Tuttle (1980h), West (1975n), and Wilson (1986l).

  19. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums.

    PubMed

    Zhang, Guo-Chang; Turner, Timothy L; Jin, Yong-Su

    2017-03-01

    Accumulation of reduced byproducts such as glycerol and xylitol during xylose fermentation by engineered Saccharomyces cerevisiae hampers the economic production of biofuels and chemicals from cellulosic hydrolysates. In particular, engineered S. cerevisiae expressing NADPH-linked xylose reductase (XR) and NAD + -linked xylitol dehydrogenase (XDH) produces substantial amounts of the reduced byproducts under anaerobic conditions due to the cofactor difference of XR and XDH. While the additional expression of a water-forming NADH oxidase (NoxE) from Lactococcus lactis in engineered S. cerevisiae with the XR/XDH pathway led to reduced glycerol and xylitol production and increased ethanol yields from xylose, volumetric ethanol productivities by the engineered yeast decreased because of growth defects from the overexpression of noxE. In this study, we introduced noxE into an engineered yeast strain (SR8) exhibiting near-optimal xylose fermentation capacity. To overcome the growth defect caused by the overexpression of noxE, we used a high cell density inoculum for xylose fermentation by the SR8 expressing noxE. The resulting strain, SR8N, not only showed a higher ethanol yield and lower byproduct yields, but also exhibited a high ethanol productivity during xylose fermentation. As noxE overexpression elicits a negligible growth defect on glucose conditions, the beneficial effects of noxE overexpression were substantial when a mixture of glucose and xylose was used. Consumption of glucose led to rapid cell growth and therefore enhanced the subsequent xylose fermentation. As a result, the SR8N strain produced more ethanol and fewer byproducts from a mixture of glucose and xylose than the parental SR8 strain without noxE overexpression. Our results suggest that the growth defects from noxE overexpression can be overcome in the case of fermenting lignocellulose-derived sugars such as glucose and xylose.

  20. Composition and production rate of pharmaceutical and chemical waste from Xanthi General Hospital in Greece.

    PubMed

    Voudrias, Evangelos; Goudakou, Lambrini; Kermenidou, Marianthi; Softa, Aikaterini

    2012-07-01

    The objective of this work was to determine the composition and production rates of pharmaceutical and chemical waste produced by Xanthi General Hospital in Greece (XGH). This information is important to design and cost management systems for pharmaceutical and chemical waste, for safety and health considerations and for assessing environmental impact. A total of 233 kg pharmaceutical and 110 kg chemical waste was collected, manually separated and weighed over a period of five working weeks. The total production of pharmaceutical waste comprised 3.9% w/w of the total hazardous medical waste produced by the hospital. Total pharmaceutical waste was classified in three categories, vial waste comprising 51.1%, syringe waste with 11.4% and intravenous therapy (IV) waste with 37.5% w/w of the total. Vial pharmaceutical waste only was further classified in six major categories: antibiotics, digestive system drugs, analgesics, hormones, circulatory system drugs and "other". Production data below are presented as average (standard deviation in parenthesis). The unit production rates for total pharmaceutical waste for the hospital were 12.4 (3.90) g/patient/d and 24.6 (7.48) g/bed/d. The respective unit production rates were: (1) for vial waste 6.4 (1.6) g/patient/d and 13 (2.6) g/bed/d, (2) for syringe waste 1.4 (0.4) g/patient/d and 2.8 (0.8) g/bed/d and (3) for IV waste 4.6 (3.0) g/patient/d and 9.2 (5.9) g/bed/d. Total chemical waste was classified in four categories, chemical reagents comprising 18.2%, solvents with 52.3%, dyes and tracers with 18.2% and solid waste with 11.4% w/w of the total. The total production of chemical waste comprised 1.8% w/w of the total hazardous medical waste produced by the hospital. Thus, the sum of pharmaceutical and chemical waste was 5.7% w/w of the total hazardous medical waste produced by the hospital. The unit production rates for total chemical waste for the hospital were 5.8 (2.2) g/patient/d and 1.1 (0.4) g/exam/d. The respective

  1. Long-range Cooper pair splitter with high entanglement production rate

    PubMed Central

    Chen, Wei; Shi, D. N.; Xing, D. Y.

    2015-01-01

    Cooper pairs in the superconductor are a natural source of spin entanglement. The existing proposals of the Cooper pair splitter can only realize a low efficiency of entanglement production, and its size is constrained by the superconducting coherence length. Here we show that a long-range Cooper pair splitter can be implemented in a normal metal-superconductor-normal metal (NSN) junction by driving a supercurrent in the S. The supercurrent results in a band gap modification of the S, which significantly enhances the crossed Andreev reflection (CAR) of the NSN junction and simultaneously quenches its elastic cotunneling. Therefore, a high entanglement production rate close to its saturation value can be achieved by the inverse CAR. Interestingly, in addition to the conventional entangled electron states between opposite energy levels, novel entangled states with equal energy can also be induced in our proposal. PMID:25556521

  2. Expressed microRNA associated with high rate of egg production in chicken ovarian follicles.

    PubMed

    Wu, N; Gaur, U; Zhu, Q; Chen, B; Xu, Z; Zhao, X; Yang, M; Li, D

    2017-04-01

    MicroRNA (miRNA) is a highly conserved class of small noncoding RNA about 19-24 nucleotides in length that function in a specific manner to post-transcriptionally regulate gene expression in organisms. Tissue miRNA expression studies have discovered a myriad of functions for miRNAs in various aspects, but a role for miRNAs in chicken ovarian tissue at 300 days of age has not hitherto been reported. In this study, we performed the first miRNA analysis of ovarian tissues in chickens with low and high rates of egg production using high-throughput sequencing. By comparing low rate of egg production chickens with high rate of egg production chickens, 17 significantly differentially expressed miRNAs were found (P < 0.05), including 11 known and six novel miRNAs. We found that all 11 known miRNAs were involved mainly in pathways of reproduction regulation, such as steroid hormone biosynthesis and dopaminergic synapse. Additionally, expression profiling of six randomly selected differentially regulated miRNAs were validated by quantitative real-time polymerase chain reaction (RT-qPCR). Some miRNAs, such as gga-miR-34b, gga-miR-34c and gga-miR-216b, were reported to regulate processes such as proliferation, cell cycle, apoptosis and metastasis and were expressed differentially in ovaries of chickens with high rates of egg production, suggesting that these miRNAs have an important role in ovary development and reproductive management of chicken. Furthermore, we uncovered that a significantly up-regulated miRNA-gga-miR-200a-3p-is ubiquitous in reproduction-regulation-related pathways. This miRNA may play a special central role in the reproductive management of chicken, and needs to be further studied for confirmation. © 2016 Stichting International Foundation for Animal Genetics.

  3. Optimized extraction by cetyl trimethyl ammonium bromide reversed micelles of xylose reductase and xylitol dehydrogenase from Candida guilliermondii homogenate.

    PubMed

    Cortez, Ely Vieira; Pessoa, Adalberto; das Graças de Almeida Felipe, Maria; Roberto, Inês Conceição; Vitolo, Michele

    2004-07-25

    The intracellular enzymes xylose reductase (XR, EC 1.1.1.21) and xylitol dehydrogenase (XD, EC 1.1.1.9) from Candida guilliermondii, grown in sugar cane bagasse hydrolysate, were separated by reversed micelles of cetyl trimethyl ammonium bromide (CTAB) cationic surfactant. An experimental design was employed to optimize the extraction conditions of both enzymes. Under these conditions (temperature = 5 degree C, hexanol: isooctane proportion = 5% (v/v), 22 %, surfactant concentration = 0.15M, pH = 7.0 and electrical conductivity = 14 mScm(-1)) recovery values of about 100 and 80% were achieved for the enzymes XR and XD, respectively. The purity of XR and XD increased 5.6- and 1.8-fold, respectively. The extraction process caused some structural modifications in the enzymes molecules, as evidenced by the alteration of K(M) values determined before and after extraction, either in regard to the substrate (up 35% for XR and down 48% for XD) or cofactor (down 29% for XR and up 11% for XD). However, the average variation of V(max) values for both enzymes was not higher than 7%, indicating that the modified affinity of enzymes for their respective substrates and cofactors, as consequence of structural modifications suffered by them during the extraction, are compensated in some extension. This study demonstrated that liquid-liquid extraction by CTAB reversed micelles is an efficient process to separate the enzymes XR and XD present in the cell extract, and simultaneously increase the enzymatic activity and the purity of both enzymes produced by C. guilliermondii.

  4. Chipping and grinding production rate calculator

    Treesearch

    Mathew Smidt; Dana Mitchell

    2014-01-01

    The data for individual chipper and grinder production estimates were recorded with all the attributes available. If a study provided more than one production estimate and there was sufficient detail to describe each estimate, we entered multiple production estimates.

  5. Xylanase production from marine derived Trichoderma pleuroticola 08ÇK001 strain isolated from Mediterranean coastal sediments.

    PubMed

    Korkmaz, Melih N; Ozdemir, Sennur C; Uzel, Ataç

    2017-10-01

    Xylanases constitutes one the most important enzymes with diverse applications in different industries such as bioethanol production, animal feedstock production, production of xylo-oligosaccharides, baking industry, paper and pulp industry, xylitol production, fruit juice, and beer finishing, degumming, and agriculture. Currently, industrial xylanases are mainly produced by Aspergillus and Trichoderma members. Since the marine environments are less studied compared to terrestrial environments and harbors great microbial diversity we aimed to investigate the xylanase production of 88 marine-derived filamentous fungal strains. These strains are semi-quantitatively screened for their extracellular xylanase production and Trichoderma pleuroticola 08ÇK001 xylanase activity was further characterized. Optimum pH and temperature was determined as 5.0 and 50 °C, respectively. The enzyme preparation retained 53% of its activity at pH 5.0 after 1 h and have found resistant against several ions and compounds such as K + , Ba 2+ , Na + , β-mercaptoethanol, Triton X-100 and toluene. This study demonstrates that marine-derived fungal strains are prolific sources for xylanase production and presents the first report about the production and characterization of xylanase from a marine derived T. pleuroticola strain. The characteristics of T. pleuroticola 08ÇK001 xylanase activity indicate possible employment in some industrial processes such as animal feed, juice and wine industries or paper pulping applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation.

    PubMed

    Bera, Aloke K; Ho, Nancy W Y; Khan, Aftab; Sedlak, Miroslav

    2011-05-01

    Robust microorganisms are necessary for economical bioethanol production. However, such organisms must be able to effectively ferment both hexose and pentose sugars present in lignocellulosic hydrolysate to ethanol. Wild type Saccharomyces cerevisiae can rapidly ferment hexose, but cannot ferment pentose sugars. Considerable efforts were made to genetically engineer S. cerevisiae to ferment xylose. Our genetically engineered S cerevisiae yeast, 424A(LNH-ST), expresses NADPH/NADH xylose reductase (XR) that prefer NADPH and NAD(+)-dependent xylitol dehydrogenase (XD) from Pichia stipitis, and overexpresses endogenous xylulokinase (XK). This strain is able to ferment glucose and xylose, as well as other hexose sugars, to ethanol. However, the preference for different cofactors by XR and XD might lead to redox imbalance, xylitol excretion, and thus might reduce ethanol yield and productivity. In the present study, genes responsible for the conversion of xylose to xylulose with different cofactor specificity (1) XR from N. crassa (NADPH-dependent) and C. parapsilosis (NADH-dependent), and (2) mutant XD from P. stipitis (containing three mutations D207A/I208R/F209S) were overexpressed in wild type yeast. To increase the NADPH pool, the fungal GAPDH enzyme from Kluyveromyces lactis was overexpressed in the 424A(LNH-ST) strain. Four pentose phosphate pathway (PPP) genes, TKL1, TAL1, RKI1 and RPE1 from S. cerevisiae, were also overexpressed in 424A(LNH-ST). Overexpression of GAPDH lowered xylitol production by more than 40%. However, other strains carrying different combinations of XR and XD, as well as new strains containing the overexpressed PPP genes, did not yield any significant improvement in xylose fermentation.

  7. Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum

    DOE PAGES

    Verbeke, Tobin J.; Giannone, Richard J.; Klingeman, Dawn M.; ...

    2017-02-23

    Significant hurdles exist in efforts to domesticate and industrialize a microbial species for biotechnological application as specific metabolic functions found in natural communities disappear in axenic cultures. For the lignocellulose-deconstructing specialist Clostridium thermocellum, the catabolism of hemicellulose-derived pentoses, which the bacterium cannot ferment, is one such function. Here, we report that various xylo-oligomers significantly inhibit C. thermocellum metabolism and growth and that microbe-sugar interactions occur across multiple dimensions. First, stable isotope metabolomics confirmed C. thermocellum s ability to transport and metabolize pentose sugars. This transport occurs, at least in part, through the ATP-dependent transporter, CbpD. Secondly, xylose is an electronmore » sink for C. thermocellum metabolism leading to the production of xylitol. Deletion of Clo1313_0076, annotated as a xylitol dehydrogenase, reduced the total production and molar xylitol yields by 41% and 46%, respectively. However, it also altered the relative end-product distribution patterns confirming that external electron acceptors may influence the bacterium s redox metabolism to a greater extent than previously considered. Finally, xylose-induced inhibition corresponds with the up-regulation and biogenesis of an AgrD-type, lactone cyclized pentapeptide signaling molecule; which is the first report of an AgrD-type signaling peptide in any thermophile. Addition of synthetic versions of the cyclic peptide inhibited cultures grown in the absence of xylose, but had no effect on cultures already inhibited by the pentose sugar. Together, our findings identify that C. thermocellum has evolved previously unrecognized strategies to cope with C5-sugars, but the absence of a native catabolic sink negatively affects strain metabolism and growth.« less

  8. Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verbeke, Tobin J.; Giannone, Richard J.; Klingeman, Dawn M.

    Significant hurdles exist in efforts to domesticate and industrialize a microbial species for biotechnological application as specific metabolic functions found in natural communities disappear in axenic cultures. For the lignocellulose-deconstructing specialist Clostridium thermocellum, the catabolism of hemicellulose-derived pentoses, which the bacterium cannot ferment, is one such function. Here, we report that various xylo-oligomers significantly inhibit C. thermocellum metabolism and growth and that microbe-sugar interactions occur across multiple dimensions. First, stable isotope metabolomics confirmed C. thermocellum s ability to transport and metabolize pentose sugars. This transport occurs, at least in part, through the ATP-dependent transporter, CbpD. Secondly, xylose is an electronmore » sink for C. thermocellum metabolism leading to the production of xylitol. Deletion of Clo1313_0076, annotated as a xylitol dehydrogenase, reduced the total production and molar xylitol yields by 41% and 46%, respectively. However, it also altered the relative end-product distribution patterns confirming that external electron acceptors may influence the bacterium s redox metabolism to a greater extent than previously considered. Finally, xylose-induced inhibition corresponds with the up-regulation and biogenesis of an AgrD-type, lactone cyclized pentapeptide signaling molecule; which is the first report of an AgrD-type signaling peptide in any thermophile. Addition of synthetic versions of the cyclic peptide inhibited cultures grown in the absence of xylose, but had no effect on cultures already inhibited by the pentose sugar. Together, our findings identify that C. thermocellum has evolved previously unrecognized strategies to cope with C5-sugars, but the absence of a native catabolic sink negatively affects strain metabolism and growth.« less

  9. Quantification of Viral and Prokaryotic Production Rates in Benthic Ecosystems: A Methods Comparison

    PubMed Central

    Rastelli, Eugenio; Dell’Anno, Antonio; Corinaldesi, Cinzia; Middelboe, Mathias; Noble, Rachel T.; Danovaro, Roberto

    2016-01-01

    Viruses profoundly influence benthic marine ecosystems by infecting and subsequently killing their prokaryotic hosts, thereby impacting the cycling of carbon and nutrients. Previously conducted studies, based on different methodologies, have provided widely differing estimates of the relevance of viruses on benthic prokaryotes. There has been no attempt so far to compare these independent approaches, including contextual comparisons among different approaches for sample manipulation (i.e., dilution or not of the sediments during incubations), between methods based on epifluorescence microscopy (EFM) or radiotracers, and between the use of different radiotracers. Therefore, it has been difficult to identify the most suitable methodologies and protocols to be used as standard approaches for the quantification of viral infections of prokaryotes. Here, we compared for the first time different methods for determining viral and prokaryotic production rates in marine sediments collected at two benthic sites, differing in depth and environmental conditions. We used a highly replicated experimental design, testing the potential biases associated to the incubation of sediments as diluted or undiluted. In parallel, we also compared EFM counts with the 3H-thymidine incubations for the determination of viral production rates, and the use of 3H-thymidine versus 3H-leucine radiotracers for the determination of prokaryotic production. We show here that, independent from sediment dilution, EFM-based values of viral production ranged from 1.4 to 4.6 × 107 viruses g-1 h-1, and were similar but overall less variable compared to those obtained by the 3H-thymidine method (0.3 to 9.0 × 107 viruses g-1h-1). In addition, the prokaryotic production rates were not affected by sediment dilution, and the use of different radiotracers provided very consistent estimates (10.3–35.1 and 9.3–34.6 ngC g-1h-1 using the 3H-thymidine or 3H-leucine method, respectively). These results indicated

  10. Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion.

    PubMed

    Hector, Ronald E; Dien, Bruce S; Cotta, Michael A; Qureshi, Nasib

    2011-09-01

    Saccharomyces' physiology and fermentation-related properties vary broadly among industrial strains used to ferment glucose. How genetic background affects xylose metabolism in recombinant Saccharomyces strains has not been adequately explored. In this study, six industrial strains of varied genetic background were engineered to ferment xylose by stable integration of the xylose reductase, xylitol dehydrogenase, and xylulokinase genes. Aerobic growth rates on xylose were 0.04-0.17 h(-1). Fermentation of xylose and glucose/xylose mixtures also showed a wide range of performance between strains. During xylose fermentation, xylose consumption rates were 0.17-0.31 g/l/h, with ethanol yields 0.18-0.27 g/g. Yields of ethanol and the metabolite xylitol were positively correlated, indicating that all of the strains had downstream limitations to xylose metabolism. The better-performing engineered and parental strains were compared for conversion of alkaline pretreated switchgrass to ethanol. The engineered strains produced 13-17% more ethanol than the parental control strains because of their ability to ferment xylose.

  11. Optimising stocking rate and grazing management to enhance environmental and production outcomes for native temperate grasslands

    NASA Astrophysics Data System (ADS)

    Badgery, Warwick; Zhang, Yingjun; Huang, Ding; Broadfoot, Kim; Kemp, David; Mitchell, David

    2015-04-01

    Stocking rate and grazing management can be altered to enhance the sustainable production of grasslands but the relative influence of each has not often been determined for native temperate grasslands. Grazing management can range from seasonal rests through to intensive rotational grazing involving >30 paddocks. In large scale grazing, it can be difficult to segregate the influence of grazing pressure from the timing of utilisation. Moreover, relative grazing pressure can change between years as seasonal conditions influence grassland production compared to the relative constant requirements of animals. This paper reports on two studies in temperate native grasslands of northern China and south eastern Australia that examined stocking rate and regionally relevant grazing management strategies. In China, the grazing experiment involved combinations of a rest, moderate or heavy grazing pressure of sheep in spring, then moderate or heavy grazing in summer and autumn. Moderate grazing pressure at 50% of the current district average, resulted in the better balance between maintaining productive and diverse grasslands, a profitable livestock system, and mitigation of greenhouse gases through increased soil carbon, methane uptake by the soil, and efficient methane emissions per unit of weight gain. Spring rests best maintained a desirable grassland composition, but had few other benefits and reduced livestock productivity due to lower feed quality from grazing later in the season. In Australia, the grazing experiment compared continuous grazing to flexible 4- and 20-paddock rotational grazing systems with sheep. Stocking rates were adjusted between systems biannually based on the average herbage mass of the grassland. No treatment degraded the perennial pasture composition, but ground cover was maintained at higher levels in the 20-paddock system even though this treatment had a higher stocking rate. Overall there was little difference in livestock production (e.g. kg

  12. Quadratic Frequency Modulation Signals Parameter Estimation Based on Two-Dimensional Product Modified Parameterized Chirp Rate-Quadratic Chirp Rate Distribution.

    PubMed

    Qu, Zhiyu; Qu, Fuxin; Hou, Changbo; Jing, Fulong

    2018-05-19

    In an inverse synthetic aperture radar (ISAR) imaging system for targets with complex motion, the azimuth echo signals of the target are always modeled as multicomponent quadratic frequency modulation (QFM) signals. The chirp rate (CR) and quadratic chirp rate (QCR) estimation of QFM signals is very important to solve the ISAR image defocus problem. For multicomponent QFM (multi-QFM) signals, the conventional QR and QCR estimation algorithms suffer from the cross-term and poor anti-noise ability. This paper proposes a novel estimation algorithm called a two-dimensional product modified parameterized chirp rate-quadratic chirp rate distribution (2D-PMPCRD) for QFM signals parameter estimation. The 2D-PMPCRD employs a multi-scale parametric symmetric self-correlation function and modified nonuniform fast Fourier transform-Fast Fourier transform to transform the signals into the chirp rate-quadratic chirp rate (CR-QCR) domains. It can greatly suppress the cross-terms while strengthening the auto-terms by multiplying different CR-QCR domains with different scale factors. Compared with high order ambiguity function-integrated cubic phase function and modified Lv's distribution, the simulation results verify that the 2D-PMPCRD acquires higher anti-noise performance and obtains better cross-terms suppression performance for multi-QFM signals with reasonable computation cost.

  13. Xylose Isomerase Improves Growth and Ethanol Production Rates from Biomass Sugars for Both Saccharomyces Pastorianus and Saccharomyces Cerevisiae

    PubMed Central

    Miller, Kristen P.; Gowtham, Yogender Kumar; Henson, J. Michael; Harcum, Sarah W.

    2013-01-01

    The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion. PMID:22866331

  14. Joule heat production rate and the particle energy injection rate as a function of the geomagnetic indices AE and AL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, B.; Akasofu, S.; Kamide, Y.

    1983-08-01

    As a part of the joint efforts of operating six meridian chains of magnetometers during the IMS, magnetic records from 71 stations are used to deduce the distribution of electric fields and currents in the polar ionosphere for March 17, 18, and 19, 1978. As a continuation of this project, we have constructed hourly distribution maps of the Joule heat production rate and their sum over the entire polar region on the three days. For this purpose the conductivity distribution is inferred at each instant partially on the basis of an empirical method devised by Ahn et al. (1982). Themore » particle energy injection rate is estimated similarly by using an empirical method. The data set thus obtained allows us to estimate also the global Joule heat production rate U/sub J/, the global particle energy injection rate U/sub A/ and the sum U/sub Gamma/ of the two quantities. It is found that three global quantities (watt) are related almost linearly to the AE(nT) and AL(nT) indices. Our present estimates give the following relationships: U/sub J/ = 2.3 times 10/sup 8/ x AE/sub 8/ U/sub A/ = 0.6 times 10/sup 8/ x AE/sub 8/ and U/sub I/ = 2.9 times 10/sup 8/ x AE: U/sub J/ = 3.0 times 10/sup 8/ x AL/sub 8/ U/sub A/ = 0.8 times 10/sup 8/ x AL, and U/sub I/ = 3.8 times 10/sup 8/ x AL.« less

  15. Calibration of cosmogenic 3He and 10Be production rates in the High Tropics

    NASA Astrophysics Data System (ADS)

    Blard, Pierre-Henri; Martin, Léo; Lavé, Jérôme; Charreau, Julien; Condom, Thomas; Lupker, Maarten; Braucher, Régis; Bourlès, Didier

    2014-05-01

    It is critical to refine both the accuracy and the precision of the in situ cosmogenic dating tool, especially for establishing reliable glacial chronologies that can be compared to other paleoclimatic records. Recent cross-calibrations of cosmogenic 3He in pyroxene and 10Be in quartz [1, 2] showed that, both at low (1300 m) and high elevation (4850 m), the 3He/10Be production ratio was probably ~40% higher than the value of ~23 initially defined in the 90's. This recent update is consistent with the last independent determinations of the sea level high latitude production rates of 10Be and 3He, that are about 4 and 125 at.g-1.yr-1, respectively [e.g. 3, 4]. However, major questions remain about these production rates at high elevation, notably because existing calibration sites for both 3He and 10Be are scarce above 2000 m. It is thus crucial to produce new high precision calibration data at high elevation. Here we report cosmogenic 10Be data from boulders sampled on a glacial fan located at 3800 m in the Central Altiplano (Bolivia), whose age is independently constrained by stratigraphic correlations and radiocarbon dating at ca. 16 ka. These data can be used to calibrate the production rate of 10Be at high elevation, in the Tropics. After scaling to sea level and high latitude, these data yield a sea level high latitude P10 ranging from 3.8 to 4.2 at.g-1.yr-1, depending on the used scaling scheme. These new calibration data are in good agreement with recent absolute and cross-calibration of 3He in pyroxenes and 10Be in quartz, from dacitic moraines located at 4850 m in the Southern Altiplano (22° S, Tropical Andes) [2,5]. The so-obtained 3He/10Be production ratio of 33.3±0.9 (1σ) combined with an absolute 3He production rate locally calibrated in the Central Altiplano, at 3800 m, indeed yielded a sea level high latitude P10 ranging from 3.7±0.2 to 4.1±0.2 at.g-1.yr-1, depending on the scaling scheme [2,5]. These values are also consistent with the 10Be

  16. Production rates and costs of cable yarding wood residue from clearcut units

    Treesearch

    Chris B. LeDoux

    1984-01-01

    Wood residue is a little used source of fiber, chips, and fuel because harvest costs are largely unknown. This study calculates incremental production rates and costs for yarding and loading logging residue in clearcut old-growth Douglas-fir/western hemlock forests. Harvest operations were observed for two timber sales in western Oregon. Three different cable yarding...

  17. Hekla Volcano, Iceland, in the 20th Century: Lava Volumes, Production Rates, and Effusion Rates

    NASA Astrophysics Data System (ADS)

    Pedersen, G. B. M.; Belart, J. M. C.; Magnússon, E.; Vilmundardóttir, O. K.; Kizel, F.; Sigurmundsson, F. S.; Gísladóttir, G.; Benediktsson, J. A.

    2018-02-01

    Lava flow thicknesses, volumes, and effusion rates provide essential information for understanding the behavior of eruptions and their associated deformation signals. Preeruption and posteruption elevation models were generated from historical stereo photographs to produce the lava flow thickness maps for the last five eruptions at Hekla volcano, Iceland. These results provide precise estimation of lava bulk volumes: V1947-1948 = 0.742 ± 0.138 km3, V1970 = 0.205 ± 0.012 km3, V1980-1981 = 0.169 ± 0.016 km3, V1991 = 0.241 ± 0.019 km3, and V2000 = 0.095 ± 0.005 km3 and reveal variable production rate through the 20th century. These new volumes improve the linear correlation between erupted volume and coeruption tilt change, indicating that tilt may be used to determine eruption volume. During eruptions the active vents migrate 325-480 m downhill, suggesting rough excess pressures of 8-12 MPa and that the gradient of this excess pressure increases from 0.4 to 11 Pa s-1 during the 20th century. We suggest that this is related to increased resistance along the eruptive conduit.

  18. Relative contributions of mercury bioavailability and microbial growth rate on net methylmercury production by anaerobic mixed cultures

    DOE PAGES

    Kucharzyk, Katarzyna H.; Deshusses, Marc A.; Porter, Kaitlyn A.; ...

    2015-01-01

    Net production of methylmercury correlated with sulfate reduction rates in cultures exposed to dissolved Hg, but was insensitive to sulfate reduction rates for cultures exposed to nanoparticulate HgS.

  19. Cosmogenic nuclide production rates as a function of latitude and altitude calculated via a physics based model and excitation functions

    NASA Astrophysics Data System (ADS)

    Argento, D.; Reedy, R. C.; Stone, J. O.

    2012-12-01

    Cosmogenic nuclides have been used to develop a set of tools critical to the quantification of a wide range of geomorphic and climatic processes and events (Dunai 2010). Having reliable absolute measurement methods has had great impact on research constraining ice age extents as well as providing important climatic data via well constrained erosion rates, etc. Continuing to improve CN methods is critical for these sciences. While significant progress has been made in the last two decades to reduce uncertainties (Dunai 2010; Gosse & Phillips 2001), numerous aspects still need to be refined in order to achieve the analytic resolution desired by glaciologists and geomorphologists. In order to investigate the finer details of the radiation responsible for cosmogenic nuclide production, we have developed a physics based model which models the radiation cascade of primary and secondary cosmic-rays through the atmosphere. In this study, a Monte Carlo method radiation transport code, MCNPX, is used to model the galactic cosmic-ray (GCR) radiation impinging on the upper atmosphere. Beginning with a spectrum of high energy protons and alpha particles at the top of the atmosphere, the code tracks the primary and resulting secondary particles through a model of the Earth's atmosphere and into the lithosphere. Folding the neutron and proton flux results with energy dependent cross sections for nuclide production provides production rates for key cosmogenic nuclides (Argento et al. 2012, in press; Reedy 2012, in press). Our initial study for high latitude shows that nuclides scale at different rates for each nuclide (Argento 2012, in press). Furthermore, the attenuation length for each of these nuclide production rates increases with altitude, and again, they increase at different rates. This has the consequence of changing the production rate ratio as a function of altitude. The earth's geomagnetic field differentially filters low energy cosmic-rays by deflecting them away

  20. Bacterial secondary production on vascular plant detritus: relationships to detritus composition and degradation rate.

    PubMed Central

    Moran, M A; Hodson, R E

    1989-01-01

    Bacterial production at the expense of vascular plant detritus was measured for three emergent plant species (Juncus effusus, Panicum hemitomon, and Typha latifolia) degrading in the littoral zone of a thermally impacted lake. Bacterial secondary production, measured as tritiated thymidine incorporation into DNA, ranged from 0.01 to 0.81 microgram of bacterial C mg of detritus-1 day-1. The three plant species differed with respect to the amount of bacterial productivity they supported per milligram of detritus, in accordance with the predicted biodegradability of the plant material based on initial nitrogen content, lignin content, and C/N ratio. Bacterial production also varied throughout the 22 weeks of in situ decomposition and was positively related to the nitrogen content and lignin content of the remaining detritus, as well as to the temperature of the lake water. Over time, production was negatively related to the C/N ratio and cellulose content of the degrading plant material. Bacterial production on degrading plant material was also calculated on the basis of plant surface area and ranged from 0.17 to 1.98 micrograms of bacterial C cm-2 day-1. Surface area-based calculations did not correlate well with either initial plant composition or changing composition of the remaining detritus during decomposition. The rate of bacterial detritus degradation, calculated from measured production of surface-attached bacteria, was much lower than the actual rate of weight loss of plant material. This discrepancy may be attributable to the importance of nonbacterial organisms in the degradation and loss of plant material from litterbags or to the microbially mediated solubilization of particulate material prior to bacterial utilization, or both. PMID:2802603

  1. Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production.

    PubMed

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2015-05-01

    Growing energy demand and water consumption have increased concerns about energy security and efficient wastewater treatment and reuse. Wastewater treatment high rate algal ponds (WWT HRAPs) are a promising technology that could help solve these challenges concurrently where climate is favorable. WWT HRAPs have great potential for biofuel production as a by-product of WWT, since the costs of algal cultivation and harvest for biofuel production are covered by the wastewater treatment function. Generally, 800-1400 GJ/ha/year energy (average biomass energy content: 20 GJ/ton; HRAP biomass productivity: 40-70 tons/ha/year) can be produced in the form of harvestable biomass from WWT HRAP which can be used to provide community-level energy supply. In this paper the benefits of WWT HRAPs are compared with conventional mass algal culture systems. Moreover, parameters to effectively increase algal energy content and overall energy production from WWT HRAP are discussed including selection of appropriate algal biomass biofuel conversion pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Microaerobic conversion of xylose to ethanol in recombinant Saccharomyces cerevisiae SX6(MUT) expressing cofactor-balanced xylose metabolic enzymes and deficient in ALD6.

    PubMed

    Jo, Sung-Eun; Seong, Yeong-Je; Lee, Hyun-Soo; Lee, Soo Min; Kim, Soo-Jung; Park, Kyungmoon; Park, Yong-Cheol

    2016-06-10

    Xylose is a major monosugar in cellulosic biomass and should be utilized for cost-effective ethanol production. In this study, xylose-converting ability of recombinant Saccharomyces cerevisiae SX6(MUT) expressing NADH-preferring xylose reductase mutant (R276H) and other xylose-metabolic enzymes, and deficient in aldehyde dehydrogenase 6 (Ald6p) were characterized at microaerobic conditions using various sugar mixtures. The reduction of air supply from 0.5vvm to 0.1vvm increased specific ethanol production rate by 75% and did not affect specific xylose consumption rate. In batch fermentations using various concentrations of xylose (50-104g/L), higher xylose concentration enhanced xylose consumption rate and ethanol productivity but reduced ethanol yield, owing to the accumulation of xylitol and glycerol from xylose. SX6(MUT) consumed monosugars in pitch pine hydrolysates and produced 23.1g/L ethanol from 58.7g/L sugars with 0.39g/g ethanol yield, which was 14% higher than the host strain of S. cerevisiae D452-2 without the xylose assimilating enzymes. In conclusion, S. cerevisiae SX6(MUT) was characterized to possess high xylose-consuming ability in microaerobic conditions and a potential for ethanol production from cellulosic biomass. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Xylose isomerase improves growth and ethanol production rates from biomass sugars for both Saccharomyces pastorianus and Saccharomyces cerevisiae.

    PubMed

    Miller, Kristen P; Gowtham, Yogender Kumar; Henson, J Michael; Harcum, Sarah W

    2012-01-01

    The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  4. Composition, production rate and characterization of Greek dental solid waste.

    PubMed

    Mandalidis, Alexandros; Topalidis, Antonios; Voudrias, Evangelos A; Iosifidis, Nikolaos

    2018-05-01

    The overall objective of this work is to determine the composition, characterization and production rate of Greek dental solid waste (DSW). This information is important to design and cost management systems for DSW, for safety and health considerations and for assessing environmental impact. A total of 141 kg of DSW produced by a total of 2542 patients in 20 dental practices from Xanthi, Greece was collected, manually separated and weighed over a period of four working weeks. The waste was separated in 19 sub fractions, which were classified in 2 major categories, according to Greek regulations: Domestic-type waste comprising 8% and hazardous waste comprising 92% by weight of total DSW. The latter was further classified in infectious waste, toxic waste and mixed type waste (infectious and toxic together), accounting for 88.5%, 3.5% and 0.03% of total DSW by weight, respectively. The overall unit production rates (mean ± standard error of the mean) were 381 ± 15 g/practice/d and 53.3 ± 1.4 g/patient/d for total DSW, 337 ± 14 g/practice/d and 46.6 ± 1.2 g/patient/d for total infectious DSW, 13.4 ± 0.7 g/practice/d and 2.1 ± 0.1 g/patient/d for total toxic DSW and 30.4 ± 2.5 g/practice/d and 4.6 ± 0.4 g/patient/d for domestic-type waste. Daily DSW production was correlated with daily number of patients and regression correlations were produced. DSW was subject to laboratory characterization in terms of bulk density, calorific value, moisture, ash and volatile solids content. Measured calorific values were compared to predictions from empirical models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Forest turnover rates follow global and regional patterns of productivity

    USGS Publications Warehouse

    Stephenson, N.L.; van Mantgem, P.J.

    2005-01-01

    Using a global database, we found that forest turnover rates (the average of tree mortality and recruitment rates) parallel broad-scale patterns of net primary productivity. First, forest turnover was higher in tropical than in temperate forests. Second, as recently demonstrated by others, Amazonian forest turnover was higher on fertile than infertile soils. Third, within temperate latitudes, turnover was highest in angiosperm forests, intermediate in mixed forests, and lowest in gymnosperm forests. Finally, within a single forest physiognomic type, turnover declined sharply with elevation (hence with temperature). These patterns of turnover in populations of trees are broadly similar to the patterns of turnover in populations of plant organs (leaves and roots) found in other studies. Our findings suggest a link between forest mass balance and the population dynamics of trees, and have implications for understanding and predicting the effects of environmental changes on forest structure and terrestrial carbon dynamics. ??2005 Blackwell Publishing Ltd/CNRS.

  6. Effect of chewing gums on the production of volatile sulfur compounds (VSC) in vivo.

    PubMed

    Rösing, Cassiano K; Gomes, Sabrina C; Bassani, Diego G; Oppermann, Rui V

    2009-01-01

    The aim of the present study was to evaluate the effect of two chewing gums on the production of volatile sulfur-containing compounds (VSC) in vivo. Fourteen periodontally healthy participants (20-35 years old) were included in the test panel. Test gum 1 (TG1) contained sucrose and Test gum 2 (TG2) contained xylitol and zinc citrate. Two series of tests were conducted with a double-blind cross-over design. Following an overnight refrain from oral hygiene, VSC was measured before and at 5, 15, 30, 45 and 60 minutes of chewing the test gums. In the second series, VSC production was monitored prior to and up to 30 minutes after a rinse with cysteine 6 mM alone or after a rinse followed by chewing the test gums. For the first test, the results were analyzed by repeated measurements ANOVA for intra-group and paired sample t test for intergroup comparisons. In the second series, percent reduction of VSC was compared by Friedman and Wilcoxon tests (p < .05). The test gums did not differ in terms of VSC production, with values ranging from 146 ppb after 5 minutes to 86 ppb after 60 minutes. Similar reductions in VSC production following cysteine were observed for both test gums, with the largest reductions (71% to 52%) observed after 5 and 15 minutes. It can be concluded that VSC production is diminished after chewing gum and that the use of chewing gums reduces temporarily the VSC production enhanced by cysteine rinses.

  7. Boosting autofermentation rates and product yields with sodium stress cycling: application to production of renewable fuels by cyanobacteria.

    PubMed

    Carrieri, Damian; Momot, Dariya; Brasg, Ian A; Ananyev, Gennady; Lenz, Oliver; Bryant, Donald A; Dismukes, G Charles

    2010-10-01

    Sodium concentration cycling was examined as a new strategy for redistributing carbon storage products and increasing autofermentative product yields following photosynthetic carbon fixation in the cyanobacterium Arthrospira (Spirulina) maxima. The salt-tolerant hypercarbonate strain CS-328 was grown in a medium containing 0.24 to 1.24 M sodium, resulting in increased biosynthesis of soluble carbohydrates to up to 50% of the dry weight at 1.24 M sodium. Hypoionic stress during dark anaerobic metabolism (autofermentation) was induced by resuspending filaments in low-sodium (bi)carbonate buffer (0.21 M), which resulted in accelerated autofermentation rates. For cells grown in 1.24 M NaCl, the fermentative yields of acetate, ethanol, and formate increase substantially to 1.56, 0.75, and 1.54 mmol/(g [dry weight] of cells·day), respectively (36-, 121-, and 6-fold increases in rates relative to cells grown in 0.24 M NaCl). Catabolism of endogenous carbohydrate increased by approximately 2-fold upon hypoionic stress. For cultures grown at all salt concentrations, hydrogen was produced, but its yield did not correlate with increased catabolism of soluble carbohydrates. Instead, ethanol excretion becomes a preferred route for fermentative NADH reoxidation, together with intracellular accumulation of reduced products of acetyl coenzyme A (acetyl-CoA) formation when cells are hypoionically stressed. In the absence of hypoionic stress, hydrogen production is a major beneficial pathway for NAD(+) regeneration without wasting carbon intermediates such as ethanol derived from acetyl-CoA. This switch presumably improves the overall cellular economy by retaining carbon within the cell until aerobic conditions return and the acetyl unit can be used for biosynthesis or oxidized via respiration for a much greater energy return.

  8. Increasing flux rate to shorten leaching period and ramp-up production

    NASA Astrophysics Data System (ADS)

    Ngantung, Billy; Agustin, Riska; Ravi'i

    2017-01-01

    J Resources Bolaang Mongondow (JBRM) has operated a dynamic heap leach in its Bakan Gold Mine since late 2013. After successfully surpassing its name plate capacity of 2.6 MT/annum in 2014, the clayey and transition ore become the next operational challenge. The presence of transition and clayey ore requires longer leaching period, hence reducing the leach pad capacity which then caused reduced production. Maintaining or even increasing production with such longer leaching ore types can be done by expanding the leach pad area which means an additional capital investment, and/or shortening the leaching cycle which compromise a portion of gold extraction. JBRM has been successfully increasing the leach pad production from 2.6 MT/annum to 3.8 MT/annum, whilst improving the gold extraction from around 70% to around 80%. This was achieved by managing the operation of the leach pad which is shortening the leach cycle by identifying and combining the optimal flux rate application versus the tonne processed in each cell, at no capital investment for expanding the cell capacity.

  9. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2014-01-07

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  10. Mining consumer reviews to generate ratings of different product attributes while producing feature-based review-summary

    NASA Astrophysics Data System (ADS)

    Kangale, Akshay; Krishna Kumar, S.; Arshad Naeem, Mohd; Williams, Mark; Tiwari, M. K.

    2016-10-01

    With the massive growth of the internet, product reviews increasingly serve as an important source of information for customers to make choices online. Customers depend on these reviews to understand users' experience, and manufacturers rely on this user-generated content to capture user sentiments about their product. Therefore, it is in the best interest of both customers and manufacturers to have a portal where they can read a complete comprehensive summary of these reviews in minimum time. With this in mind, we arrived at our first objective which is to generate a feature-based review-summary. Our second objective is to develop a predictive model to know the next week's product sales based on numerical review ratings and textual features embedded in the reviews. When it comes to product features, every user has different priorities for different features. To capture this aspect of decision-making, we have designed a new mechanism to generate a numerical rating for every feature of the product individually. The data have been collected from a well-known commercial website for two different products. The validation of the model is carried out using a crowd-sourcing technique.

  11. Impacts of cloud water droplets on the OH production rate from peroxide photolysis.

    PubMed

    Martins-Costa, M T C; Anglada, J M; Francisco, J S; Ruiz-López, Manuel F

    2017-12-06

    Understanding the difference between observed and modeled concentrations of HO x radicals in the troposphere is a current major issue in atmospheric chemistry. It is widely believed that existing atmospheric models miss a source of such radicals and several potential new sources have been proposed. In recent years, interest has increased on the role played by cloud droplets and organic aerosols. Computer modeling of ozone photolysis, for instance, has shown that atmospheric aqueous interfaces accelerate the associated OH production rate by as much as 3-4 orders of magnitude. Since methylhydroperoxide is a main source and sink of HO x radicals, especially at low NO x concentrations, it is fundamental to assess what is the influence of clouds on its chemistry and photochemistry. In this study, computer simulations for the photolysis of methylhydroperoxide at the air-water interface have been carried out showing that the OH production rate is severely enhanced, reaching a comparable level to ozone photolysis.

  12. Comparison of rates of reported adverse events associated with i.v. iron products in the United States.

    PubMed

    Bailie, George R

    2012-02-15

    An analysis of reported adverse events (AEs) among patients using i.v. iron products, including the newer agent ferumoxytol, is presented. All AE reports to the Food and Drug Administration (FDA) citing iron sucrose, ferric gluconate, high- and low-molecular-weight iron dextran products, or ferumoxytol from October 2009 through June 2010 were evaluated. The rates of various classifications of reported AEs were calculated on a per-unit-sold basis and, for comparison of products supplied in different unit sizes, also in terms of 100-mg dose equivalents (DEq) of iron. A total of 197 reported AEs were identified (a cumulative rate of 14.1 AEs per million units sold). The rates of all AE classifications combined ranged from 5.25 to 746 per million units sold for iron sucrose and ferumoxytol, respectively; using the other method of calculation, the rates ranged from 5.24 per million DEq (iron sucrose) to 147 per million DEq (ferumoxytol). Relative to iron sucrose and sodium ferric gluconate, ferumoxytol was associated with significantly elevated risks of death (odds ratio [OR], 475 and 156, respectively; p < 0.0001), serious nonfatal AEs (OR, 263 and 121, respectively; p < 0.0001), and all evaluated AE classifications combined (OR, 142 and 109, respectively; p < 0.05). Analysis of reports submitted to FDA revealed large differences among i.v. iron products in reported deaths, serious AEs, other major AEs, and other AEs. Iron sucrose and sodium ferric gluconate were associated with much lower rates of AEs per million units sold than iron dextran or ferumoxytol, which were associated with the highest rates of all reported AE classifications.

  13. Geochemical Tracers and Rates of Short-Chain Alkane Production in Gulf of Mexico Cold Seep Sediments

    NASA Astrophysics Data System (ADS)

    Sibert, R.; Bernard, B. B.; Brooks, J. M.; Hunter, K.; Joye, S. B.

    2014-12-01

    The organic-rich cold seep sediments in the deep Gulf of Mexico commonly contain mixtures of light hydrocarbon gases either dissolved in pore fluids, adsorbed to sediment particles, trapped in methane ice, or as free gas. The dominant component in these natural gas mixtures is typically methane (C1), but ethane (C2) and propane (C3) are nearly always present in trace or major amounts. The ratio of C1:C2:C3 varies but C2 and C3 are typically present at single digit percent levels, whereas methane usually dominates at >80%. Methane production proceeds by at least two well-studied mechanisms: either 1) by thermocatalytic cracking of fossil organic matter, or 2) as a direct product of microbial metabolism, methanogenesis. In contrast, ethane and propane production in deep-sea sediments has been historically attributed only to thermocatalytic processes. However, limited data suggests production of C2/C3 compounds through the activity of archaea. Such studies of microbial- driven dynamics of C2/C3 gases (i.e. 'alkanogenesis') in cold seep sediments are rare. Furthermore, the identities of potential substrates are poorly constrained and no attempt has been made to quantify production rates of C2/C3 gases. However, carbon isotopic data on ethane and propane from deep cores from the Gulf of Mexico suggest alkanogenesis at depth in the sediment column and alkane oxidation in uppermost oxidant-rich sediments. Here, we present the results of a series of incubation experiments using sediment slurries culled from GC600, one of the most prolific natural oil and gas seeps in the Gulf of Mexico. Rates of both alkane production and oxidation were measured under a variety of conditions to assess the net rates of alkane production and elucidate the driving microbiological mechanisms and controls on the central processes of >C1 alkane cycling in cold seep sediments. Microbial processes are important both in terms of alkane production and oxidation, raising many questions as to the

  14. Vertical multiphase flow correlations for high production rates and large tubulars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aggour, M.A.; Al-Yousef, H.Y.; Al-Muraikhi, A.J.

    1996-02-01

    Numerous correlations exist for predicting pressure drop in vertical multiphase flow. These correlations, however, were all developed and tested under limited operating conditions that do not match the high production rates and large tubulars normally found in the Middle East fields. This paper presents a comprehensive evaluation of existing correlations and modifications of some correlations to determine and recommend the best correlation or correlations for various field conditions. More than 400 field data sets covering tubing sizes from 2 3/8 to 7 inches, oil rates up to 23,200 B/D, water cuts up to 95%, and gas/oil ratio (GOR) up tomore » 927 scf/STB were used in this study. Considering all data combined, the Beggs and Brill correlation provided the best pressure predictions. However, the Hagedorn and Brown correlation was better for water cuts above 80%, while the Hasan and Kabir model was better for total liquid rates above 20,000 B/D. The Aziz correlation was significantly improved when the Orkiszewski flow-pattern transition criteria were used.« less

  15. Probabilistic exposure assessment model to estimate aseptic-UHT product failure rate.

    PubMed

    Pujol, Laure; Albert, Isabelle; Magras, Catherine; Johnson, Nicholas Brian; Membré, Jeanne-Marie

    2015-01-02

    Aseptic-Ultra-High-Temperature (UHT) products are manufactured to be free of microorganisms capable of growing in the food at normal non-refrigerated conditions at which the food is likely to be held during manufacture, distribution and storage. Two important phases within the process are widely recognised as critical in controlling microbial contamination: the sterilisation steps and the following aseptic steps. Of the microbial hazards, the pathogen spore formers Clostridium botulinum and Bacillus cereus are deemed the most pertinent to be controlled. In addition, due to a relatively high thermal resistance, Geobacillus stearothermophilus spores are considered a concern for spoilage of low acid aseptic-UHT products. A probabilistic exposure assessment model has been developed in order to assess the aseptic-UHT product failure rate associated with these three bacteria. It was a Modular Process Risk Model, based on nine modules. They described: i) the microbial contamination introduced by the raw materials, either from the product (i.e. milk, cocoa and dextrose powders and water) or the packaging (i.e. bottle and sealing component), ii) the sterilisation processes, of either the product or the packaging material, iii) the possible recontamination during subsequent processing of both product and packaging. The Sterility Failure Rate (SFR) was defined as the sum of bottles contaminated for each batch, divided by the total number of bottles produced per process line run (10(6) batches simulated per process line). The SFR associated with the three bacteria was estimated at the last step of the process (i.e. after Module 9) but also after each module, allowing for the identification of modules, and responsible contamination pathways, with higher or lower intermediate SFR. The model contained 42 controlled settings associated with factory environment, process line or product formulation, and more than 55 probabilistic inputs corresponding to inputs with variability

  16. Measurements of the potential ozone production rate in a forest

    NASA Astrophysics Data System (ADS)

    Crilley, L.; Sklaveniti, S.; Kramer, L.; Bloss, W.; Flynn, J. H., III; Alvarez, S. L.; Erickson, M.; Dusanter, S.; Locoge, N.; Stevens, P. S.; Millet, D. B.; Alwe, H. D.

    2017-12-01

    Biogenic volatile organic compounds (BVOC) are a significant source of organic compounds globally and alongside NOx play a key role in the formation of ozone in the troposphere. Understanding how changes in NOx concentrations feed through to altered ozone production in BVOC dominated environments will aid our understanding of future atmospheric composition, notably as developing nations transition from NOx dominated to NOx limited chemistry as a result of mitigation strategies. Here we empirically investigate this ambient ozone formation potential. We report deployment of a custom built instrument to measure in near real time the potential for in situ chemical ozone production, using an artificial light source. Our results are thus indicative of the ozone formation potential for a sampled ambient air mixture, including full VOC complexity, i.e. independent of characterization of individual organic compounds. Ground level measurements were performed as part of the PROPHET-AMOS 2016 field campaign, at a site located within a Northern Michigan forest that has typically low NOx abundance, but high isoprene and terpenoid loadings. As the ambient NOx concentrations were low during the campaign, experiments were performed in which NO was artificially added to the sampled ambient air mixture, to quantify changes in the potential ozone production rate as a function of NOx, and hence the ozone forming characteristics of the ambient air. Preliminarily results from these experiments are presented, and indicate that while ozone production increases with added NO, significant variation was observed for a given NO addition, reflecting differences in the ambient VOC chemical reactivity and ozone formation tendency.

  17. Left Ventricular Wall Stress-Mass-Heart Rate Product and Cardiovascular Events in Treated Hypertensive Patients: LIFE Study.

    PubMed

    Devereux, Richard B; Bang, Casper N; Roman, Mary J; Palmieri, Vittorio; Boman, Kurt; Gerdts, Eva; Nieminen, Markku S; Papademetriou, Vasilios; Wachtell, Kristian; Hille, Darcy A; Dahlöf, Björn

    2015-11-01

    In the Losartan Intervention for End Point Reduction in Hypertension (LIFE) study, 4.8 years' losartan- versus atenolol-based antihypertensive treatment reduced left ventricular hypertrophy and cardiovascular end points, including cardiovascular death and stroke. However, there was no difference in myocardial infarction (MI), possibly related to greater reduction in myocardial oxygen demand by atenolol-based treatment. Myocardial oxygen demand was assessed indirectly by the left ventricular mass×wall stress×heart rate (triple product) in 905 LIFE participants. The triple product was included as time-varying covariate in Cox models assessing predictors of the LIFE primary composite end point (cardiovascular death, MI, or stroke), its individual components, and all-cause mortality. At baseline, the triple product in both treatment groups was, compared with normal adults, elevated in 70% of patients. During randomized treatment, the triple product was reduced more by atenolol, with prevalences of elevated triple product of 39% versus 51% on losartan (both P≤0.001). In Cox regression analyses adjusting for age, smoking, diabetes mellitus, and prior stroke, MI, and heart failure, 1 SD lower triple product was associated with 23% (95% confidence interval 13%-32%) fewer composite end points, 31% (18%-41%) less cardiovascular mortality, 30% (15%-41%) lower MI, and 22% (11%-33%) lower all-cause mortality (all P≤0.001), without association with stroke (P=0.34). Although losartan-based therapy reduced ventricular mass more, greater heart rate reduction with atenolol resulted in larger reduction of the triple product. Lower triple product during antihypertensive treatment was strongly, independently associated with lower rates of the LIFE primary composite end point, cardiovascular death, and MI, but not stroke. © 2015 American Heart Association, Inc.

  18. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2013-05-14

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  19. Genetically modified yeast species, and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet; Koivuranta, Kari; Penttila, Merja; Ilmen, Marja; Suominen, Pirkko; Aristidou, Aristos; Miller, Christopher Kenneth; Olson, Stacey; Ruohonen, Laura

    2017-09-12

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.

  20. Genetically modified yeast species and fermentation processes using genetically modified yeast

    DOEpatents

    Rajgarhia, Vineet [Kingsport, TN; Koivuranta, Kari [Helsinki, FI; Penttila, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Maple Grove, MN; Miller, Christopher Kenneth [Cottage Grove, MN; Olson, Stacey [St. Bonifacius, MN; Ruohonen, Laura [Helsinki, FI

    2011-05-17

    Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications', include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.