DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-01
This annual groundwater report contains groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activitiesmore » in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater report for the Chestnut Ridge Regime is completed in two-parts; Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-03-01
This annual monitoring report contains groundwater and surface water monitoring data obtained during calendar year (CY) 1998 by the Lockheed Martin Energy Systems, Inc. Y-12 Plant Groundwater Protection Program (GWPP) at the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant, Groundwater and surface water monitoring during CY 1998 was performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), and the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valleymore » (BCV), and the Chestnut Ridge Regime which is located south of the Y-12 Plant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, S.B.
1998-09-01
This report presents an evaluation of the groundwater monitoring data obtained in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) during calendar year (CY) 1997. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge bordered by the U.S. Department of Energy (DOE) Y-12 Plant in Bear Creek Valley (BCV) to the north, Scarboro Road to the eas~ Bethel Valley Road to the south, and an unnamed drainage basin southwest of the Y-12 Plant (Figure 1). Groundwater quality monitoring is performed at hazardous and nonhazardous waste management facilities in the regime under the auspices of the Y-12 Plant Groundwater Protectionmore » Program (GWPP). The CY 1997 monitoring data are presented in Calendar Year 1997 Annual Groundwater Monitoring Report for the Chestnut Ridge Hydrogeolo~"c Regime at the US. Department of Energy Y-12 Plant, Oak Ridge, Tennessee (MA Technical Services, Inc. 1998), which also presents results of site-specific monitoring data evaluations required under the Resource Conservation and Recovery Act (RCIL4) post-closure permit (PCP) for the Chestnut Ridge Regime« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-02-01
This annual monitoring report contains groundwater and surface water monitoring data obtained in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) during calendar year (CY) 1996. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge west of Scarboro Road and east of an unnamed drainage feature southwest of the US Department of Energy (DOE) Oak Ridge Y-12 Plant (unless otherwise noted, directions are in reference to the Y-12 Plant administrative grid). The Chestnut Ridge Regime contains several sites used for management of hazardous and nonhazardous wastes associated with plant operations. Groundwater and surface water quality monitoring associated with thesemore » waste management sites is performed under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). Included in this annual monitoring report are the groundwater monitoring data obtained in compliance with the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit for the Chestnut Ridge Regime (post-closure permit) issued by the Tennessee Department of Environment and Conservation (TDEC) in June 1996. Besides the signed certification statement and the RCRA facility information summarized below, condition II.C.6 of the post-closure permit requires annual reporting of groundwater monitoring activities, inclusive of the analytical data and results of applicable data evaluations, performed at three RCRA hazardous waste treatment, storage, or disposal (TSD) units: the Chestnut Ridge Sediment Disposal Basin (Sediment Disposal Basin), the Chestnut Ridge Security Pits (Security Pits), and Kerr Hollow Quarry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, S.B.
1998-09-01
1 1.0 INTRODUCTION This report presents an evaluation of the groundwater quality monitoring data reported in: Calendar Year 1997 Annual Groundwatw Monitoring Report for the Upper East Fork Poplar Creek Hydrogeologtc Rep-meat the US. Department of Energy Y-12 Plant, Oak Ridge, Tennessee (AJA Technical Services, Inc. 1998), which is hereafter referenced as the Annual Monitoring Report. Section 2.0 presents background information for the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) that is relevant to data evaluation, including brief descriptions of the geology, the groundwater flow system, the contaminant source areas, and the extent of groundwater contamination inmore » the regime. Section 3.0 provides an overview of the groundwater sampling and analysis activities petiormed during calendar year (CY) 1997, including monitoring well locations, sampling frequency and methods, and laboratory analyses. Evaluation and interpretation of the monitoring da% described in Section 4.0, is generally focused on an overview of data quality assurance/quality control (QA/QC), long-term concentration trends for selected inorganic, organic, and radiological contaminants, and consistency with applicable site-specific conceptual contaminant transport models described in: Report on the Remedial Investigation of the Upper East Fork Poplar Creek Characterization Area at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (U.S. Department of Energy 1998), which is referenced hereafter as the Remedial Investigation @I) Report. Findings of the data evaluations are summarized :in Section 5.0 and a list of technical reports and regulatory documents cited for more detailed irdormation (Section 6.0) concludes the report. All of the illustrations (maps and trend graphs) and data summary tables referenced in the text are presented in Appendm A and Appendix B, respectively. Appendix C provides a summary of the analytical results that meet applicable data quality objectives (DQOS) of the Y-12 Plant Groundwater Protection Program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drier, R.B.; Caldanaro, A.J.
1996-12-01
This document, Sampling Results, DNAPL Monitoring Well G W-729, Third Quarter FY 1995 through Third Quarter FY 1996, was performed under Work Breakdown Structure 1.4.12.1.1.02 (Activity Data Sheet 2312, `Bear Creek Valley`). This document provides the Environmental Restoration Program with groundwater concentrations for nonradionuclides in the vicinity of the Y-12 Burial Grounds. These data can be used to determine reference concentrations for intermediate and deep groundwater systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-05-01
This report presents proposed modifications to several conditions of the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Chestnut Ridge Hydrogeologic Regime (CRHR) (permit number TNHW-088, EPA ID No. TN3 89 009 0001). These permit conditions define the requirements for RCRA post-closure detection groundwater monitoring at the Chestnut Ridge Sediment Disposal Basin (CRSDB) and Kerr Hollow Quarry (KHQ), and RCRA post-closure corrective action groundwater monitoring at the Chestnut Ridge Security Pits (CRSPs). Modification of these PCP conditions is requested to: (1) clarify the planned integration of RCRA post-closure corrective action groundwater monitoring at the CRSPs with themore » monitoring program to be established in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) record of decision (ROD), (2) revise several of the current technical requirements for groundwater monitoring based on implementation of the RCRA monitoring programs during 1996, (3) replace several of the technical procedures included in the PCP with updated versions recently issued by the Y-12 Plant Groundwater Protection Program (GWPP), and (4) correct inaccurate regulatory citations and references to permit conditions and permit attachments. With these modifications, the Y- 12 Plant will continue to meet the full intent of all regulatory obligations for post-closure care of these facilities. Section 2 provides the technical justification for each proposed permit modification. Section 3.0 contains proposed changes to Section II of the PCP. Modifications to site-specific permit conditions are presented in Section 4.0 (CRSDB), Section 5.0 (CRSPs), and Section 6.0 (KHQ). Sections 7.0 and 8.0 reference updated and revised procedures for groundwater sampling, and monitoring well plugging and abandonment, respectively. Appendix A includes all proposed revisions to the permit attachments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental LLC; Environmental Compliance Department Environment, Safety, and Health Division Y-12 National Security Complex
This document presents the Groundwater Protection Program (GWPP) management plan for the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12). The Y-12 GWPP functions as the primary point-of-contact for groundwater-related issues at Y-12, provides stewardship of the extensive network of groundwater monitoring wells at Y-12, and serves as a resource for technical expertise, support, and historical data for groundwater-related activities at Y-12. These organizational functions each serve the primary programmatic purpose of the GWPP, which is to ensure that groundwater monitoring activities within areas under Y-12 administrative control provide representative data in compliance with themore » multiple purposes of applicable state and federal regulations, DOE orders, and the corporate policies of BWXT Y-12, L.L.C. (hereafter referenced as BWXT), the Y-12 management and operations (M&O) contractor for DOE. This GWPP management plan addresses the requirements of DOE Order 450.1 (BWXT Y12 S/RID) regarding the implementation of a site-wide approach for groundwater protection at each DOE facility. Additionally, this plan is a ''living'' document that is reviewed annually, revised and reissued every three years, and is formatted to provide for updating individual sections independent of the rest of the document. Section 2 includes a short description of the groundwater system at Y-12, the history of groundwater monitoring at Y-12 and the corresponding evolution of the GWPP, and an overview of ongoing Y-12 groundwater monitoring activities. Section 3 describes the key elements of the GWPP management strategy. Organizational roles and responsibilities of GWPP personnel are outlined in Section 4. Section 5 presents an overview of the GWPP project plans for applicable programmatic elements. Section 6 lists the reports, plans, and documents that are referenced for technical and administrative details.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental, LLC
2009-09-01
This document presents the Groundwater Protection Program (GWPP) management plan for the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12). The Y-12 GWPP functions as the primary point-of-contact for groundwater-related issues at Y-12, provides stewardship of the extensive network of groundwater monitoring wells at Y-12, and serves as a resource for technical expertise, support, and historical data for groundwater-related activities at Y-12. These organizational functions each serve the primary programmatic purpose of the GWPP, which is to ensure that groundwater monitoring activities within areas under Y-12 administrative control provide representative data in compliance with themore » multiple purposes of applicable state and federal regulations, DOE orders, and the corporate policies of Babcock & Wilcox Technical Services Y-12 LLC (hereafter referenced as B&W Y-12), the Y-12 management and operations (M&O) contractor for DOE. B&W Y-12 is a new corporate name, assumed in January 2007, for the company formerly known as BWXT Y-12, L.L.C., hereafter referenced as BWXT. This GWPP management plan addresses the requirements of DOE Order 450.1A Environmental Protection Program (hereafter referenced as DOE O 450.1A), which emphasize a site-wide approach for groundwater protection at each DOE facility through implementation of groundwater surveillance monitoring. Additionally, this plan addresses the relevant and applicable GWPP elements and goals described in the DOE O 450.1A technical guidance documents issued in June 2004 (DOE 2004) and May 2005 (DOE 2005). This GWPP management plan is a 'living' document that is reviewed annually, revised and reissued every three years, and is formatted to provide for updating individual sections independent of the rest of the document. Section 2 includes a short description of the groundwater system at Y-12, the history of groundwater monitoring at Y-12 and the corresponding evolution of the GWPP, and an overview of ongoing Y-12 groundwater monitoring activities. Section 3 describes the key elements of the GWPP management strategy. Organizational roles and responsibilities of GWPP personnel are outlined in Section 4. Section 5 presents an overview of the GWPP project plans for applicable programmatic elements. Section 6 lists the reports, plans, and documents that are referenced for technical and administrative details.« less
History of mercury use and environmental contamination at the Oak Ridge Y-12 Plant.
Brooks, Scott C; Southworth, George R
2011-01-01
Between 1950 and 1963 approximately 11 million kilograms of mercury (Hg) were used at the Oak Ridge Y-12 National Security Complex (Y-12 NSC) for lithium isotope separation processes. About 3% of the Hg was lost to the air, soil and rock under facilities, and East Fork Poplar Creek (EFPC) which originates in the plant site. Smaller amounts of Hg were used at other Oak Ridge facilities with similar results. Although the primary Hg discharges from Y-12 NSC stopped in 1963, small amounts of Hg continue to be released into the creek from point sources and diffuse contaminated soil and groundwater sources within Y-12 NSC. Mercury concentration in EFPC has decreased 85% from ∼2000 ng/L in the 1980s. In general, methylmercury concentrations in water and in fish have not declined in response to improvements in water quality and exhibit trends of increasing concentration in some cases. Published by Elsevier Ltd.
Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium, Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This document is a compendium of water quality and hydrologic characterization data obtained through December 2005 from the network of groundwater monitoring wells and surface water sampling stations (including springs and building sumps) at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee that have been sampled since January 2003. The primary objectives of this document, hereafter referenced as the Y-12 Groundwater Protection Program (GWPP) Compendium, are to: (1) Serve as a single-source reference for monitoring data that meet the requirements of the Y-12 GWPP, as defined in the Y-12 GWPP Management Plan (BWXTmore » Y-12 L.L.C. [BWXT] 2004); (2) Maintain a detailed analysis and evaluation of the monitoring data for each applicable well, spring, and surface water sampling station, with a focus on results for the primary inorganic, organic, and radiological contaminants in groundwater and surface water at Y-12; and (3) Ensure retention of ''institutional knowledge'' obtained over the long-term (>20-year) history of groundwater and surface water monitoring at Y-12 and the related sources of groundwater and surface water contamination. To achieve these goals, the Y-12 GWPP Compendium brings together salient hydrologic, geologic, geochemical, water-quality, and environmental compliance information that is otherwise disseminated throughout numerous technical documents and reports prepared in support of completed and ongoing environmental contamination assessment, remediation, and monitoring activities performed at Y-12. The following subsections provide background information regarding the overall scope and format of the Y-12 GWPP Compendium and the planned approach for distribution and revision (i.e., administration) of this ''living'' document.« less
Radiological monitoring plan for the Oak Ridge Y-12 Plant: Surface Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-10-01
The Y-12 Plant conducts a surface water monitoring program in response to DOE Orders and state of Tennessee requirements under the National Pollutant Discharge Elimination System (NPDES). The anticipated codification of DOE Order 5400.5 for radiation protection of the public and the environment (10 CFR Part 834) will require an environmental radiation protection plan (ERPP). The NPDES permit issued by the state of Tennessee requires a radiological monitoring plan (RMP) for Y-12 Plant surface waters. In a May 4, 1995 memo, the state of Tennessee, Division of Water Pollution Control, stated their desired needs and goals regarding the content ofmore » RMPs, associated documentation, and data resulting from the RMPs required under the NPDES permitting system (L. Bunting, General Discussion, Radiological Monitoring Plans, Tennessee Division of Water Pollution Control, May 4,1995). Appendix A provides an overview of how the Y-12 Plant will begin to address these needs and goals. It provides a more complete, documented basis for the current Y-12 Plant surface water monitoring program and is intended to supplement documentation provided in the Annual Site Environmental Reports (ASERs), NPDES reports, Groundwater Quality Assessment Reports, and studies conducted under the Y-12 Plant Environmental Restoration (ER) Program. The purpose of this update to the Y-12 Plant RMP is to satisfy the requirements of the current NPDES permit, DOE Order 5400.5, and 10 CFR Part 834, as current proposed, by defining the radiological monitoring plan for surface water for the Y-12 Plant. This plan includes initial storm water monitoring and data analysis. Related activities such as sanitary sewer and sediment monitoring are also summarized. The plan discusses monitoring goals necessary to determine background concentrations of radionuclides, to quantify releases, determine trends, satisfy regulatory requirements, support consequence assessments, and meet requirements that releases be ``as low as reasonably achievable`` (ALARA).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental LLC
2008-12-01
This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2007 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2007 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions aremore » in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2007 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT), and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). In December 2007, the BWXT corporate name was changed to Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12), which is applied to personnel and organizations throughout CY 2007 for this report. Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2007 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and surface water sampling and analysis activities implemented under the Y-12 GWPP including sampling locations and frequency; quality assurance (QA)/quality control (QC) sampling; sample collection and handling; field measurements and laboratory analytes; data management and data quality objective (DQO) evaluation; and groundwater elevation monitoring. However, this report does not include equivalent information regarding the groundwater and surface water sampling and analysis activities associated with the monitoring programs implemented by BJC. Such details are deferred to the respective programmatic plans and reports issued by BJC (see Section 3.0). Collectively, the groundwater and surface water monitoring data obtained during CY 2007 by the Y-12 GWPP and BJC address DOE Order 450.1 (Environmental Protection Program) requirements for monitoring groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). Section 4 of this report presents a summary evaluation of the monitoring data with regard to the respective objectives of surveillance monitoring and exit pathway/perimeter monitoring, based on the analytical results for the principal groundwater and surface water contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. Section 5 of this report summarizes the most pertinent findings regarding the principal contaminants, along with recommendations proposed for ongoing groundwater and surface water quality monitoring performed under the Y-12 GWPP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2004-09-30
This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2005 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2005 will be in accordance with DOE Order 540.1 requirements and the following goals: (1) to maintain surveillance of existing and potential groundwater contamination sources; (2) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminantsmore » are most likely to migrate beyond the Oak Ridge Reservation property line; (3) to identify and characterize long-term trends in groundwater quality at Y-12; and (4) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2005 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2005 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental LLC,
2012-12-01
This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2011 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2011 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12. The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12more » grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. This report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and known extent of groundwater contamination. The CY 2011 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by the DOE Environmental Management (EM) contractor responsible for environmental cleanup on the ORR. In August 2011, URS | CH2M Oak Ridge LLC (UCOR) replaced Bechtel Jacobs Company LLC (BJC) as the DOE EM contractor. For this report, BJC/UCOR will be referenced as the managing contractor for CY 2011. Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC/UCOR (i.e., coordinating sample collection and sharing data) ensures that the CY 2011 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. This report contains a summary of information regarding the groundwater and surface water sampling and analysis activities implemented under the Y-12 GWPP including sampling locations and frequency; quality assurance (QA)/quality control (QC) sampling; sample collection and handling; field measurements and laboratory analytes; data management and data quality objective (DQO) evaluation; and groundwater elevation monitoring. However, this report does not include equivalent QA/QC or DQO evaluation information regarding the groundwater and surface water sampling and analysis activities associated with the monitoring programs implemented by BJC/UCOR. Such details are deferred to the respective programmatic plans and reports issued by BJC. Collectively, the groundwater and surface water monitoring data obtained during CY 2011 by the Y-12 GWPP and BJC/UCOR address DOE Order 436.1 and DOE Order 458.1 requirements for monitoring groundwater and surface water quality in areas (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring) and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). This report presents a summary evaluation of the monitoring data with regard to the respective objectives of surveillance monitoring and exit pathway/perimeter monitoring, based on the analytical results for the principal groundwater contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. This report summarizes the most pertinent findings regarding the principal contaminants, along with recommendations proposed for ongoing groundwater and surface water quality monitoring performed under the Y-12 GWPP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental LLC
2010-12-01
This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2009 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2009 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12. The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in referencemore » to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2009 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2009 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and surface water sampling and analysis activities implemented under the Y-12 GWPP including sampling locations and frequency; quality assurance (QA)/quality control (QC) sampling; sample collection and handling; field measurements and laboratory analytes; data management and data quality objective (DQO) evaluation; and groundwater elevation monitoring. However, this report does not include equivalent QA/QC or DQO evaluation information regarding the groundwater and surface water sampling and analysis activities associated with the monitoring programs implemented by BJC. Such details are deferred to the respective programmatic plans and reports issued by BJC (see Section 3.0). Collectively, the groundwater and surface water monitoring data obtained during CY 2009 by the Y-12 GWPP and BJC address DOE Order 450.1A (Environmental Protection Program) requirements for monitoring groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). Section 4 of this report presents a summary evaluation of the monitoring data with regard to the respective objectives of surveillance monitoring and exit pathway/perimeter monitoring, based on the analytical results for the principal groundwater contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. Section 5 of this report summarizes the most pertinent findings regarding the principal contaminants, along with recommendations proposed for ongoing groundwater and surface water quality monitoring performed under the Y-12 GWPP. Narrative sections of this report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Appendix C contains construction details for the wells in each regime that were sampled during CY 2009 by either the Y-12 GWPP or BJC. Field measurements recorded during collection of the groundwater and surface water samples and results of laboratory analyses of the samples are in Appendix D (Bear Creek Regime), Appendix E (East Fork Regime and surrounding areas), and Appendix F (Chestnut Ridge Regime). Appendix G contains data for the QA/QC samples associated with monitoring performed in each regime by the Y-12 GWPP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. The plan describes the technical approach that is implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and groundwater quality monitoring data. The technical approach is based on the GWPP status designation for each well. Under this approach, wells granted “active” status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling, whereas wells grantedmore » “inactive” status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP. Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMaster, B.W.; Jones, S.B.; Sitzler, J.L.
1995-06-01
This document is a compendium of results of the calendar year 1994 Monitor Well Inspection and Maintenance Program at the Department of Energy Y-12 Plant in Oak Ridge, Tennessee. This report documents the work relating to well inspections and maintenance requests. Inspections are implemented in order to better assess the condition and maintenance needs of wells that are actively being monitored. Currently this approach calls for inspecting all wells on a routine (annual or triennial) basis which are: (1) in an active sampling program; (2) included in a hydrologic study; or (3) not in service, but not scheduled for pluggingmore » and abandonment. Routine inspections help to ensure that representative groundwater samples and hydrologic data are being collected, and contribute to the life expectancy of each well. This report formally presents well inspection and maintenance activities that were conducted at the Y-12 Plant during 1994. All inspections were conducted between April and December.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental LLC for the Environmental Compliance Department ES&H Division, Y-12 National Security Complex Oak Ridge, Tennessee
2003-09-30
This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2004 at the U.S. Department of Energy (DOE) Y-12 National Security Complex that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2004 will be in accordance with the following requirements of DOE Order 5400.1: (1) to maintain surveillance of existing and potential groundwater contamination sources; (2) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are mostmore » likely to migrate beyond the Oak Ridge Reservation property line; (3) to identify and characterize long-term trends in groundwater quality at Y-12; and (4) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2004 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2004 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental LLC
This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2008 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2008 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions aremore » in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2008 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2008 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and surface water sampling and analysis activities implemented under the Y-12 GWPP including sampling locations and frequency; quality assurance (QA)/quality control (QC) sampling; sample collection and handling; field measurements and laboratory analytes; data management and data quality objective (DQO) evaluation; and groundwater elevation monitoring. However, this report does not include equivalent QA/QC or DQO evaluation information regarding the groundwater and surface water sampling and analysis activities associated with the monitoring programs implemented by BJC. Such details are deferred to the respective programmatic plans and reports issued by BJC (see Section 3.0).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2006 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2006 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions aremore » in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2006 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT), and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., preparing SAPs, coordinating sample collection, and sharing data) ensures that the CY 2006 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and surface water sampling and analysis activities implemented under the Y-12 GWPP including sampling locations and frequency; quality assurance (QA)/quality control (QC) sampling; sample collection and handling; field measurements and laboratory analytes; data management and data quality objective (DQO) evaluation; and groundwater elevation monitoring. However, this report does not include equivalent information regarding the groundwater and surface water sampling and analysis activities associated with the monitoring programs implemented by BJC. Such details are deferred to the respective programmatic plans and reports issued by BJC (see Section 3.0). Collectively, the groundwater and surface water monitoring data obtained during CY 2006 by the Y-12 GWPP and BJC address DOE Order 450.1 (Environmental Protection Program) requirements for monitoring groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). Section 4 of this report presents a summary evaluation of the monitoring data with regard to the respective objectives of surveillance monitoring and exit pathway/perimeter monitoring, based on the analytical results for the principal groundwater and surface water contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. Section 5 of this report summarizes the most pertinent findings regarding the principal contaminants, along with recommendations proposed for ongoing groundwater and surface water quality monitoring performed under the Y-12 GWPP. Narrative sections of this report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Appendix C contains construction details for the wells in each regime that were sampled during CY 2006 by either the Y-12 GWPP or BJC. Field measurements recorded during collection of the groundwater and surface water samples and results of laboratory analyses of the samples are in Appendix D (Bear Creek Regime), Appendix E (East Fork Regime and surrounding areas), and Appendix F (Chestnut Ridge Regime). Appendix G contains data for the QA/QC samples associated with monitoring performed in each regime by the Y-12 GWPP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
2005-09-01
This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2004 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2004 monitoring data were obtained from groundwater and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are inmore » reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of Y-12. The CY 2004 monitoring data were obtained under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT) and several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Data contained in this report meet applicable requirements of DOE Order 450.1 (Environmental Protection Program) regarding evaluation of groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). However, detailed analysis, evaluation, and interpretation of the CY 2004 monitoring data is deferred to the Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium (BWXT 2005). For each monitoring well, spring, and surface water sampling station included in this report, the GWPP Compendium provides: (1) pertinent well installation and construction information; (2) a complete sampling history, including sampling methods and distinguishing sampling characteristics; (3) an evaluation of hydrologic characteristics, based on pre-sampling groundwater elevations, along with a compilation of available test results (e.g., hydraulic conductivity test data); (4) a discussion of geochemical characteristics based on evaluation of the analytical results for the primary anions and cations; and (5) a detailed analysis and interpretation of the available data for the principal groundwater contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. The following sections of this report provide details regarding the CY 2004 groundwater and surface water monitoring activities in the Bear Creek, East Fork, and Chestnut Ridge Regime. Section 2 briefly describes the hydrogeologic system and generalized extent of groundwater contamination in each regime. Section 3 describes the monitoring programs implemented and associated sampling activities performed in each regime during CY 2004. Section 4 presents an a summary of the CY 2004 monitoring data with regard to the provisions of DOE Order 450.1 (surveillance and exit pathway/perimeter monitoring), including highlights of notable findings and time-series plots of data for CY 2004 sampling locations that provide representative examples of long-term contaminant concentration trends. Brief conclusions and proposed recommendations are provided in Section 5. Section 6 lists the documents cited for more detailed operational, regulatory, and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Monitoring well construction details are in Appendix C. Results of field measurements and laboratory analyses of the groundwater and surface water samples collected during CY 2004 are in Appendix D (Bear Creek Regime), Appendix E (East Fork Regime and surrounding areas), and Appendix F (Chestnut Ridge Regime). Appendix G contains data for quality assurance/quality control (QA/QC) samples associated with monitoring performed in each regime by the Y-12 GWPP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-01-01
This report on the BCV OU 2 at the Y-12 Plant, was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting the results of a site characterization for public review. It provides the Environmental Restoration Program with information about the results of the 1993 investigation. It includes information on risk assessments that have evaluated impacts to human health and the environment. Field activities included collection of subsurface soil samples, groundwater and surface water samples, and sediments and seep at the Rust Spoil Area (RSA), SY-200 Yard, and SA-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
2006-01-01
This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2006 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2006 will be in accordance with DOE Order 540.1 requirements and the following goals: {sm_bullet} to maintain surveillance of existing and potential groundwater contamination sources; {sm_bullet} to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminantsmore » are most likely to migrate beyond the Oak Ridge Reservation property line; {sm_bullet} to identify and characterize long-term trends in groundwater quality at Y-12; and ! to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2006 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2006 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2006 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3; sample collection methods and procedures are described in Section 4; and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. The monitoring frequency and selection criteria for each sampling location is in Appendix C. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix D. If issued, addenda to this plan will be inserted in Appendix E, and Groundwater Monitoring Schedules (when issued) will be inserted in Appendix F. Guidance for managing purged groundwater is provided in Appendix G.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental LLC
This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2009 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2009 will be in accordance with DOE Order 540.1 requirements and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination andmore » determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2009 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation. Modifications to the CY 2009 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2009 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3; sample collection methods and procedures are described in Section 4; and Section 5 lists the documents cited for more detailed operational and technical information.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental LLC
2009-09-01
This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2010 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2010 will be in accordance with requirements of DOE Order 540.1A and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contaminationmore » and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2010 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation. Modifications to the CY 2010 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2010 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2010) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-09-01
The Oak Ridge Y-12 Plant, located within the Oak Ridge Reservation (ORR), is owned by the US Department of Energy (DOE) and managed by Lockheed Martin Energy Systems, Inc. The entire ORR was placed on the National Priorities List (NPL) of CERCLA sites in November 1989. Following CERCLA guidelines, sites under investigation require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) of potential remedial actions. The need to complete RIs in a timely manner resulted in the establishmentmore » of the Upper East Fork Poplar Creek (UEFPC) Characterization Area (CA) and the Bear Creek CA. The CA approach considers the entire watershed and examines all appropriate media within it. The UEFPC CA, which includes the main Y-12 Plant area, is an operationally and hydrogeologically complex area that contains numerous contaminants and containment sources, as well as ongoing industrial and defense-related activities. The UEFPC CA also is the suspected point of origin for off-site groundwater and surface-water contamination. The UEFPC CA RI also will address a carbon-tetrachloride/chloroform-dominated groundwater plume that extends east of the DOE property line into Union Valley, which appears to be connected with springs in the valley. In addition, surface water in UEFPC to the Lower East Fork Poplar Creek CA boundary will be addressed. Through investigation of the entire watershed as one ``site,`` data gaps and contaminated areas will be identified and prioritized more efficiently than through separate investigations of many discrete units.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-12-01
This document represents a Site-specific Standard Request for underground storage tanks (USTs) 1219-U,1222-U and 2082-U previously located at former Building 9754-1, and tank 2086-U previously located at Building 9720-15, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. The tanks previously contained petroleum products. For the purposes of this report, the two building sites will be regarded as a single UST site and will be referred to as the Rust Garage Facility. The current land use associated with the Y-12 Plant is light industrial and the operational period of the plant is projected to be at least 30 years. Thus, potential futuremore » residential exposures are not expected to occur for at least 30 years. Based on the degradation coefficient for benzene (the only carcinogenic petroleum constituent detected in soils or groundwater at the Rust Garage Facility), it is expected that the benzene and other contaminants at the site will likely be reduced prior to expiration of the 30-year plant operational period. As the original sources of petroleum contamination have been removed, and the area of petroleum contamination is limited, a site-specific standard is therefore being requested for the Rust Garage Facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-09-01
This document is the triennial report for the Well Inspection and Maintenance Program of the Y- 12 Groundwater Protection Program (GWPP), at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12). This report formally documents well inspections completed by the GWPP on active and inactive wells at Y-12 during calendar years (CY) 2010 through 2012. In addition, this report also documents well inspections performed under the Y-12 Water Resources Restoration Program, which is administered by URS|CH2M Oak Ridge (UCOR). This report documents well maintenance activities completed since the last triennial inspection event (CY 2009); and provides summary tablesmore » of well inspections and well maintenance activities during the reference time period.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-05-01
This report presents proposed modifications to the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Upper East Fork Poplar Creek Hydrogeologic Regime (permit number TNHW-088, EPA ID No. TN3 89 009 0001). The modifications are proposed to: (1) revise the current text for two of the Permit Conditions included in Permit Section II - General Facility Conditions, and (2) update the PCP with revised versions of the Y-12 Plant Groundwater Protection Program (GWPP) technical field procedures included in several of the Permit Attachments. The updated field procedures and editorial revisions are Class 1 permit modifications, as specifiedmore » in Title 40, Code of Federal Regulations (CFR) {section}270.42; Appendix I - Classification of Permit Modifications. These modifications are summarized below.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oakley, L.B.; Siberell, J.K.; Voskuil, T.L.
1993-06-01
Remedial actions conducted under the auspices of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) were completed at the Y-12 United Nuclear Corporation (UNC) Disposal Site in August 1992. The purpose of this Postconstruction Report is to summarize numerous technical reports and provide CERCLA documentation for completion of the remedial actions. Other CERCLA reports, such as the Feasibility Study for the UNC Disposal Site, provide documentation leading up to the remedial action decision. The remedial action chosen, placement of a modified RCRA cap, was completed successfully, and performance standards were either met or exceeded. This remedial action provided solutionsmore » to two environmentally contaminated areas and achieved the goal of minimizing the potential for contamination of the shallow groundwater downgradient of the site, thereby providing protection of human health and the environment. Surveillance and maintenance of the cap will be accomplished to ensure cap integrity, and groundwater monitoring downgradient of the site will continue to confirm the acceptability of the remedial action chosen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-05-01
In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analysesmore » and forms, inspection logs, equipment identification, etc.« less
Iwagami, Sho; Tsujimura, Maki; Onda, Yuichi; Nishino, Masataka; Konuma, Ryohei; Abe, Yutaka; Hada, Manami; Pun, Ishwar; Sakaguchi, Aya; Kondo, Hiroaki; Yamamoto, Masayoshi; Miyata, Yoshiki; Igarashi, Yasuhito
2017-01-01
The concentration of dissolved 137 Cs in groundwater and stream water in the headwater catchments in Yamakiya district, located ∼35 km north west of Fukushima Dai-ichi Nuclear Power Plant (FDNPP), was monitored from June 2011 to July 2013, after the earthquake and tsunami disaster. Groundwater and stream water were sampled at intervals of approximately 2 months at each site. Intensive sampling was also conducted during rainstorm events. Compared with previous data from the Chernobyl NPP accident, the concentration of dissolved 137 Cs in stream water was low. In the Iboishi-yama catchment, a trend was observed for the concentration of dissolved 137 Cs in stream water to decline, which could be divided into two phases by October 2011 (a fast flush of activity as a result of rapid washoff and a slow decline as a result of soil fixation and redistribution processes). The highest 137 Cs concentration recorded at Iboishi-yama was 1.2 Bq/L on August 6, 2011, which then declined to 0.021-0.049 Bq/L during 2013 (in stream water under normal water-flow conditions). During the rainfall events, the concentration of dissolved 137 Cs in stream water increased temporarily. The concentration of dissolved 137 Cs in groundwater at a depth of 30 m at Iboishi-yama displayed a decreasing trend from 2011 to 2013, with a range from 0.039 Bq/L to 0.0025 Bq/L. The effective half-lives of stream water in the initial fast flush and secondary phases were 0.10-0.21 and 0.69-1.5 y, respectively in the three catchments. The effective half-life of groundwater was 0.46-0.58 y at Koutaishi-yama and 0.50-3.3 y at Iboishi-yama. The trend for the concentration of dissolved 137 Cs to decline in groundwater and stream water was similar throughout 2012-2013, and the concentrations recorded in deeper groundwater were closer to those in stream water. The declining trend of dissolved 137 Cs concentrations in stream water was similar to that of the loss of canopy 137 Cs by throughfall, as shown in other reports of forest sites in the Yamakiya district. Copyright © 2016. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-01
Upper East Fork Popular Creek Operable Unit 3 (UEFPC OU 3) is a source term OU composed of seven sites, and is located in the western portion of the Y-12 Plant. For the most part, the UEFPC OU 3 sites served unrelated purposes and are geographically removed from one another. The seven sites include the following: Building 81-10, the S-2 Site, Salvage Yard oil storage tanks, the Salvage Yard oil/solvent drum storage area, Tank Site 2063-U, the Salvage Yard drum deheader, and the Salvage Yard scrap metal storage area. All of these sites are contaminated with at least one ormore » more hazardous and/or radioactive chemicals. All sites have had some previous investigation under the Y-12 Plant RCRA Program. The work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to each OU 3 site. The potential for release of contaminants to receptors through various media is addressed, and a sampling and analysis plan is presented to obtain objectives for the remedial investigation. Proposed sampling activities are contingent upon the screening level risk assessment, which includes shallow soil sampling, soil borings, monitoring well installation, groundwater sampling, and surface water sampling. Data from the site characterization activities will be used to meet the above objectives. A Field Sampling Investigation Plan, Health and Safety Plan, and Waste Management Plan are also included in this work plan.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, D.; Leavitt, M.; Moss, D.
1997-03-01
Historical waste disposal activities within the Bear Creek Valley (BCV) Characterization Area (CA), at the U.S. Department of Energy (DOE) Oak Ridge Y-12 plant, have contaminated groundwater and surface water above human health risk levels and impacted the ecology of Bear Creek. Contaminates include nitrate, radioisotopes, metals, volatile organic chemicals (VOCS), and common ions. This paper provides a status report on a technology demonstration project that is investigating the feasibility of using passive in situ treatment systems to remove these contaminants. Although this technology may be applicable to many locations at the Oak Ridge Y-12 Plant, the project focuses onmore » collecting the information needed to take CERCLA removal actions in 1998 at the S-3 Disposal Ponds site. Phase 1 has been completed and included site characterization, laboratory screening of treatment media (sorbents; and iron), and limited field testing of biological treatment systems. Batch tests using different Y-12 Plant waters were conducted to evaluate the removal efficiencies of most of the media. Phase 1 results suggest that the most promising treatment media are Dowex 21 k resin, peat moss, zero-valent iron, and iron oxides. Phase 2 will include in-field column testing of these media to assess loading rates, and concerns with clogging, by-products, and long-term treatment efficiency and media stability. Continued testing of wetlands and algal mats (MATs) will be conducted to determine if they can be used for in-stream polishing of surface water. Hydraulic testing of a shallow trench and horizontal well will also be completed during Phase 2. 4 refs., 3 tabs.« less
Pankow, J.F.; Thomson, N.R.; Johnson, Richard L.; Baehr, A.L.; Zogorski, J.S.
1997-01-01
Infiltration and dispersion (including molecular diffusion) can transport volatile organic compounds (VOCs) from urban air into shallow groundwater. The gasoline additive methyl-tert-butyl ether (MTBE) is of special interest because of its (1) current levels in some urban air, (2) strong partitioning from air into water, (3) resistance to degradation, (4) use as an octane-booster since the 1970s, (5) rapidly increasing use in the 1990s to reduce CO and O3 in urban air, and (6) its frequent detection at low microgram per liter levels in shallow urban groundwater in Denver, New England, and elsewhere. Numerical simulations were conducted using a 1-D model domain set in medium sand (depth to water table = 5 m) to provide a test of whether MTBE and other atmospheric VOCs could move to shallow groundwater within the 10−15 y time frame over which MTBE has now been used in large amounts. Degradation and sorption were assumed negligible. In case 1 (no infiltration, steady atmospheric source), 10 y was not long enough to permit significant VOC movement by diffusion into shallow groundwater. Case 2 considered a steady atmospheric source plus 36 cm/y of net infiltration; groundwater at 2 m below the water table became nearly saturated with atmospheric levels of VOC within 5 y. Case 3 was similar to case 2, but considered the source to be seasonal, being “on” for only 5 of 12 months each year, as with the use of MTBE during the winter fuel-oxygenate season; groundwater at 2 m below the water table became equilibrated with 5/12 of the “source-on” concentration within 5 y. Cases 4 and 5 added an evapotranspiration (ET) loss of 36 cm/y, resulting in no net recharge. Case 4 took the ET from the surface, and case 5 took the ET from the capillary fringe at a depth of 3.5 m. Net VOC mass transfer to shallow groundwater after 5 y was less for both cases 4 and 5 than for case 3. However, it was significantly greater for cases 4 and 5 than for case 1, even though cases 1, 4, and 5 were all no-net recharge cases. The mechanism responsible for this effect was the dispersion acting on each downward infiltration event, and also on the ET-induced flow. The ability of MTBE to reach groundwater in cases 2−5 is taken as evidence of the potential importance of urban air as a non-point source for VOCs in shallow urban groundwater. Two subcases were run for both case 4 and case 5: subcase a (water and VOCs move with ET) and subcase b (water only moves with ET).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-07-01
To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation.more » The result will be more immediate attention [Records of Decision (RODs) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regimes, which are labeled as integrator OUs. This remedial investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the feasibility study to evaluate all probable or likely alternatives.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-09-01
To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation.more » The result will be more immediate attention [Records of Decision (RODS) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regime`s, which are labeled as integrator OUs. This Remedial Investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the Feasibility Study to evaluate all probable or likely alternatives.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental
2008-02-01
This report contains groundwater quality monitoring data obtained during calendar year (CY) 2007 at the following hazardous waste treatment, storage, and disposal (TSD) units located at the US Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) in Oak Ridge, Tennessee; this S-3 Site, Oil Landfarm, Bear Creek Burial Grounds/Walk-In Pits (BCBG/WIP), Eastern S-3 Site Plume, Chestnut Ridge Security Pits (CRSP), Chestnut Ridge Sediment Disposal Baste (CRSDB), few Hollow Quarry (KHQ), and East Chestnut Ridge Waste Pile (ECRWP). Hit monitoring data were obtained in accordance with the applicable Resource Conservation and Recovery Act of 1976 (RCRA) hazardousmore » waste post-closure permit (PCP). The Tennessee Department of Environment and Conservation (TDEC) - Division of Solid Waste Management issued the PCPs to define the requirements for RCRA post-closure inspection, maintenance, and groundwater monitoring at the specified TSD units located within the Bear Creek Hydrogeologic Regime (PCP no. TNHW-116), Upper East Fork Poplar Creek Hydrogeologic Regime (PCP no. TNHW-113), and Chestnut Ridge Hydrogeologic Regime (PCP no. TNHW-128). Each PCP requires the Submittal of an annual RCRA groundwater monitoring report containing the groundwater sampling information and analytical results obtained at each applicable TSD unit during the preceding CY, along with an evaluation of groundwater low rates and directions and the analytical results for specified RCRA groundwater target compounds; this report is the RCRA annual groundwater monitoring report for CY 2007. The RCRA post-closure groundwater monitoring requirements specified in the above-referenced PCP for the Chestnut Ridge Regime replace those defined in the previous PCP (permit no. TNHW-088), which expired on September 18, 2005, but remained effective until the TDEC issued the new PCP in September 2006. The new PCP defines site-specific groundwater sampling and analysis requirements for the CRSDB, CRSP, and KHQ that differ from those established under the expired PCP, including modified suites of laboratory analytes (RCRA groundwater target compounds) for each site and annual rather than semiannual sampling frequencies for the CRSDB and KHQ. The new PCP also specifies the RCRA post-closure groundwater monitoring requirements for the ECRWP, a closed TSD unit that was not addressed in the expired PCP.« less
Martin Marietta, Y-12 Plant Laboratory Partnership Program Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koger, J.
1995-02-10
The Y-12 Plant currently embraces three mission areas; stockpile surveillance, maintaining production capability, and storage of special nuclear materials. The Y-12 Plant also contributes to the nations` economic strength by partnering with industry in deploying technology. This partnering has been supported to a great extent through the Technology Transfer Initiative (TTI) directed by DOE/Defense Programs (DP-14). The Oak Ridge Centers for Manufacturing Technology (ORCMT) was established to draw upon the manufacturing and fabrication capabilities at the Y-12 Plant to coordinate and support collaborative efforts, between DP and the domestic industrial sector, toward the development of technologies which offer mutual benefitmore » to both DOE/DP programs and the private sector. Most of the needed technologies for the ``Factory of the Future`` (FOF) are being pursued as core areas at the Y-12 Plant. As a result, 85% of DP-14 projects already support the FOF. The unique capabilities of ORCMT can be applied to a wide range of manufacturing problems to enhance the capabilities of the US industrial base and its economic outcome. The ORCMT has an important role to play in DOE`s Technology Transfer initiative because its capabilities are focused on applied manufacturing and technology deployment which has a more near-term impact on private sector competitiveness. The Y-12 Plant uses the ORCMT to help maintain its own core competencies for the FOF by challenging its engineers and capabilities with technical problems from industry. Areas of strength at the Y-12 Plant that could impact the FOF include modeling of processes and advanced materials; intelligent inspection systems with standardized operator interfaces, analysis software, and part programming language; electronic transfer of designs and features; existing computer-based concurrent engineering; and knowledge-based forming process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-05-01
The study involved defining the flood potential and local rainfall depth and duration data for the Department of Energy`s (DOE) Y-12, Oak Ridge National Laboratory (ORNL), and K-25 plants. All three plants are subject to flooding from the Clinch River. In addition, the Y-12 plant is subject to flooding from East Fork Poplar and Bear Creeks, the ORNL plant from Whiteoak Creek and Melton Branch, and the K-25 plant from Poplar Creek. Determination of flood levels included consideration of both rainfall events and postulated failures of Norris and Melton Hill Dams in seismic events.
An investigation of shallow ground-water quality near East Fork Poplar Creek, Oak Ridge, Tennessee
Carmichael, J.K.
1989-01-01
Alluvial soils of the flood plain of East Fork Poplar Creek in Oak Ridge, Tennessee, are contaminated with mercury and other metals, organic compounds, and radio-nuclides originating from the Y-12 Plant, a nuclear-processing facility located within the U.S. Department of Energy 's Oak Ridge Reservation. Observation wells were installed in the shallow aquifer of the flood plain, and water quality samples were collected to determine if contaminants are present in the shallow groundwater. Groundwater in the shallow aquifer occurs under water-table conditions. Recharge is primarily from precipitation and discharge is to East Fork Poplar Creek. Groundwater levels fluctuate seasonally in response to variations in recharge and evapotranspiration. During extremely dry periods, the water table drops below the base of the shallow aquifer in some flood-plain areas. Contaminants found in water samples from several of the wells in concentrations which equaled or exceeded drinking-water standards established by the U.S. Environmental Protection Agency are antimony, chromium, lead, mercury, selenium, phenols, and strontium-90. Total and dissolved uranium concentrations exceeded the analytical detection limit in nearly 70% of the wells in the flood plain. The results of water quality determinations demonstrate that elevated concentrations of most trace metals (and possibly organic compounds and radionuclides) were caused by contaminated sediments in the samples. The presence of contaminated sediment in samples is suspected to be the result of borehole contamination during well installation. (USGS)
Bergeron, M.P.; Kappel, W.M.; Yager, R.M.
1987-01-01
A nuclear-fuel reprocessing plant, a high-level radioactive liquid-waste tank complex, and related waste facilities occupy 100 hectares (ha) within the Western New York Nuclear Service Center near West Valley, N.Y. The facilities are underlain by glacial and postglacial deposits that fill an ancestrial bedrock valley. The main plant facilities are on an elevated plateau referred to as the north plateau. Groundwater on the north plateau moves laterally within a surficial sand and gravel from the main plant building to areas northeast, east, and southeast of the facilities. The sand and gravel ranges from 1 to 10 m thick and has a hydraulic conductivity ranging from 0.1 to 7.9 m/day. Two separate burial grounds, a 4-ha area for low-level radioactive waste disposal and a 2.9-ha area for disposal of higher-level waste are excavated into a clay-rich till that ranges from 22 to 28 m thick. Migration of an organic solvent from the area of higher level waste at shallow depth in the till suggests that a shallow, fractured, oxidized, and weathered till is a significant pathway for lateral movement of groundwater. Below this zone, groundwater moves vertically downward through the till to recharge a lacustrine silt and fine sand. Within the saturated parts of the lacustrine unit, groundwater moves laterally to the northeast toward Buttermilk Creek. Hydraulic conductivity of the till, based on field and laboratory analyses , ranges from 0.000018 to 0.000086 m/day. (USGS)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-06
... evaluation, is as follows: Facility: Y-12 Plant. Location: Oak Ridge, TN. Job Titles and/or Job Duties: All... Analysis and Support, National Institute for Occupational Safety and Health (NIOSH), 4676 Columbia Parkway...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-08-01
This document is a report on the remedial investigation (RI) of Chestnut Ridge Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant. Chestnut Ridge OU 2 consists of Upper McCoy Branch (UMB), the Filled Coal Ash Pond (FCAP), and the area surrounding the Sluice Channel formerly associated with coal ash disposal in the FCAP. Chestnut Ridge OU 2 is located within the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation in Anderson County, Tennessee, approximately 24 miles west of Knoxville. The pond is an 8.5-acre area on the southern slope of Chestnut Ridge, 0.5 mile south of the mainmore » Y-12 Plant and geographically separated from the Y-12 Plant by Chestnut Ridge. The elevation of the FCAP is {approximately} 950 ft above mean sea level (msl), and it is relatively flat and largely vegetated. Two small ponds are usually present at the northeast and northwest comers of the FCAP. The Sluice Channel Area extends {approximately}1000 ft from the northern margin of the FCAP to the crest of Chestnut Ridge, which has an elevation of {approximately}1100 ft above msl. The Sluice Channel Area is largely vegetated also. McCoy Branch runs from the top of Chestnut Ridge across the FCAP into Rogers Quarry and out of the quarry where it runs a short distance into Milton Hill Lake at McCoy Embayment, termed UMB. The portion south of Rogers Quarry, within Chestnut Ridge OU 4, is termed Lower McCoy Branch. The DOE Oak Ridge Y-12 Plant disposed of coal ash from its steam plant operations as a slurry that was discharged into an ash retention impoundment; this impoundment is the FCAP. The FCAP was built in 1955 to serve as a settling basin after coal ash slurried over Chestnut Ridge from the Y-12 Plant. The FCAP was constructed by building an earthen dam across the northern tributary of McCoy Branch. The dam was designed to hold 20 years of Y-12 steam plant ash. By July 1967, ash had filled up the impoundment storage behind the dam to within 4 ft of the top.« less
Prevalence and magnitude of groundwater use by vegetation: a global stable isotope meta-analysis
Evaristo, Jaivime; McDonnell, Jeffrey J.
2017-01-01
The role of groundwater as a resource in sustaining terrestrial vegetation is widely recognized. But the global prevalence and magnitude of groundwater use by vegetation is unknown. Here we perform a meta-analysis of plant xylem water stable isotope (δ2H and δ18O, n = 7367) information from 138 published papers – representing 251 genera, and 414 species of angiosperms (n = 376) and gymnosperms (n = 38). We show that the prevalence of groundwater use by vegetation (defined as the number of samples out of a universe of plant samples reported to have groundwater contribution to xylem water) is 37% (95% confidence interval, 28–46%). This is across 162 sites and 12 terrestrial biomes (89% of heterogeneity explained; Q-value = 1235; P < 0.0001). However, the magnitude of groundwater source contribution to the xylem water mixture (defined as the proportion of groundwater contribution in xylem water) is limited to 23% (95% CI, 20–26%; 95% prediction interval, 3–77%). Spatial analysis shows that the magnitude of groundwater source contribution increases with aridity. Our results suggest that while groundwater influence is globally prevalent, its proportional contribution to the total terrestrial transpiration is limited. PMID:28281644
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becthel Jacobs Company LLC
2002-11-01
The Y-12 National Security Complex (Y-12 Complex) is an active manufacturing and developmental engineering facility that is located on the U.S. Department of Energy (DOE) Oak Ridge Reservation. Building 9201-2 was one of the first process buildings constructed at the Y-12 Complex. Construction involved relocating and straightening of the Upper East Fork Poplar Creek (UEFPC) channel, adding large quantities of fill material to level areas along the creek, and pumping of concrete into sinkholes and solution cavities present within the limestone bedrock. Flow from a large natural spring designated as ''Big Spring'' on the original 1943 Stone & Webster Buildingmore » 9201-2 Field Sketch FS6003 was captured and directed to UEFPC through a drainpipe designated Outfall 51. The building was used from 1953 to 1955 for pilot plant operations for an industrial process that involved the use of large quantities of elemental mercury. Past operations at the Y-12 Complex led to the release of mercury to the environment. Significant environmental media at the site were contaminated by accidental releases of mercury from the building process facilities piping and sumps associated with Y-12 Complex mercury handling facilities. Releases to the soil surrounding the buildings have resulted in significant levels of mercury in these areas of contamination, which is ultimately transported to UEFPC, its streambed, and off-site. Bechtel Jacobs Company LLC (BJC) is the DOE-Oak Ridge Operations prime contractor responsible for conducting environmental restoration activities at the Y-12 Complex. In order to mitigate the mercury being released to UEFPC, the Big Spring Water Treatment System will be designed and constructed as a Comprehensive Environmental Response, Compensation, and Liability Act action. This facility will treat the combined flow from Big Spring feeding Outfall 51 and the inflow now being processed at the East End Mercury Treatment System (EEMTS). Both discharge to UEFPC adjacent to Bldg. 9201-2. The EEMTS treats mercury-contaminated groundwater that collects in sumps in the basement of Bldg. 9201-2. A pre-design study was performed to investigate the applicability of various treatment technologies for reducing mercury discharges at Outfall 51 in support of the design of the Big Spring Water Treatment System. This document evaluates the results of the pre-design study for selection of the mercury removal technology for the treatment system.« less
Zhang, Shu; Hou, Zhen; Du, Xiao-Ming; Li, Dong-Ming; Lu, Xiao-Xia
2016-11-01
Site in a former chemical manufacture plant in China was found contaminated with high level of chlorinated volatile organic compounds (CVOCs). The major contaminants chloroform (CF), 1,2-dichloroethane (1,2-DCA) and vinyl chloride (VC) in groundwater were up to 4.49 × 10 4 , 2.76 × 10 6 and 4.35 × 10 4 μg/L, respectively. Ethene and methane were at concentrations up to 2219.80 and 165.85 μg/L, respectively. To test the hypothesis that the CVOCs in groundwater at this site could be removed via biodegradation, biomarker analyses and microcosm studies were conducted. Dehalococcoides 16S rRNA gene and VC-reductase gene vcrA at densities up to 1.5 × 10 4 and 3.2 × 10 4 copies/L were detected in some of the groundwater samples, providing strong evidence that dechlorinating bacteria were present in the aquifer. Results from the microcosm studies showed that at moderate concentrations (CF about 4000 μg/L and 1,2-DCA about 100 μg/L), CF was recalcitrant under natural condition but was degraded under biostimulation and bioaugmentation, while 1,2-DCA was degraded under all the three conditions. At high concentration (CF about 1,000,000 μg/L and 1,2-DCA about 20,000 μg/L), CF was recalcitrant under all the three treatments and 1,2-DCA was only degraded under bioaugmentation, indicating that high concentrations of contaminants were inhibitory to the bacteria. Electron donors had influence on the degradation of contaminants. Of the four fatty acids (pyruvate, acetate, propionate and lactate) examined, all could stimulate the degradation of 1,2-DCA at both moderate and high concentrations, whereas only pyruvate and acetate could stimulate the degradation of CF at moderate concentration. In the microcosms, the observed first-order degradation rates of CF and 1,2-DCA were up to 0.12 and 0.11/day, respectively. Results from the present study provided scientific basis for remediating CVOCs contaminated groundwater at the site.
NASA Astrophysics Data System (ADS)
Manteca, Ivan Alhama
The Agua Amarga coastal aquifer, located in the south of Alicante province, has been subjected to successive anthropogenic actions: salt works activity (1925-1975) and water withdrawal to supply the Alicante I and II desalination plants (since 2003). These interventions have influenced the salinity and the flow regime. Due to the existence of a salt marsh of ecological interest linked to the aquifer, the 'Mancomunidad de los Canales del Taibilla' (agency responsible for the desalination plants) designed a piezometric network for monitoring piezometry and electrical conductivity (in operation since May 2008). Soil humidity and piezometrics levels have been recovered by means of a seawater pouring programme over the salt marsh (since December 2009),which represents the third anthropic intervention. In this memoria, we investigate the Agua Amarga coastal aquifer to develop a physical conceptual model. Firstly, the study area is characterized in relation to climatology, geology, geomorphology and hydrogeology, using published information, describing, in addition, the desalination plants catchment system. Next, based on hydrogeological studies prior to the start up of the desalination plants, the aquifer is characterized: type, lithology, hydraulic parameters, thickness, surface extension, etc. Water quantity relating to rainfall, water withdrawal and pourings over the salt marsh, have been integrated in conjunction with data from monthly piezometric campaigns. In adittion, in order to gain insight into the groundwater mixing processes, chemical and isotope analyses were carried out on meteoric water and groundwater samples taken at different locations. The results were used to elaborate a conceptual physical model and a water budget. As an extension tool to understand processes and assess aquifer management, a 3-D fluid-flow and solute-transport model is designed with SEAWAT. Also, the 2-D physical characterization of scenarios with seawater intrusion and salt flats is presented. Finally, after describing ecological values of the salt marsh, the effect of the seawater pouring programme on aquifer piezometry and salinity is studied, assessing the possibility of applying this pilot scheme to other scenarios.
Rainfall-induced nutrient losses from manure-fertilized farmland in an alluvial plain.
Wang, Yiyao; Li, Huaizheng; Xu, Zuxin
2016-01-01
Nutrient transport and loss in farmlands are affected by factors such as land cover, fertilization, soil type, rainfall, and management practices. We investigated the temporal and spatial changes in macronutrient transport and loss after fertilization and precipitation in manure-fertilized eggplant farmland in an alluvial plain. Upon adding topical fertilizer, concentrations of most nutrients in runoff and groundwater increased, and nitrogen runoff increased from 22.11 to 35.81 kg/ha, although eggplant yield did not increase correspondingly. Incorporation of fertilizer by plowing reduced nutrient losses (nitrogen runoff/fertilizer decreased from 18.40 to 12.29 %). Measurements taken along the nutrient transport route (runoff, drainage ditch, groundwater, river water, and finally rainfall) revealed that concentrations of most nutrients declined at each stage. Nutrient characteristics varied by transport, and the forms of nitrogen and phosphorus differed greatly between runoff and groundwater (nitrate/nitrogen in runoff was ~43.49 %, while in groundwater ~5.41 %). Most nutrient concentrations in runoff decreased greatly during the planting season (total nitrogen decreased from 62.25 to 4.17 mg/L), correlated positively with temperature and stage of plant growth, but little temporal change was observed in groundwater. This field investigation during one planting season exemplifies the basic principles of nutrient loss and transport from manure-fertilized farmland in an alluvial plain.
Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo
2016-01-01
Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9–1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5–1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5–1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions. PMID:26730602
NASA Astrophysics Data System (ADS)
Wang, Q.; Ruan, X.; Chen, Y. N.; Li, W. H.
2007-10-01
Eco-physiological and plant performance responses and acclimation of Populus euphratica Oliv. to water release of the lower reaches of Tarim River, China were investigated. Three representative areas and 15 transects were selected along the lower reaches of the Tarim River. The groundwater level and salt content as well as plant performance and the contents of proline, soluble sugar, and plant endogenous hormone (ABA, CTK) in leaves were monitored and analyzed before- and after-water release. The groundwater level was raised in different areas and transects by the water release program. The physiological stress to P. euphratica decreased after the water release. Our results suggested that the groundwater level in the studied region changed from -3.15 to -4.12 m, salt content of the groundwater from 67.15 to 72.65 mM, the proline content from 9.28 to 11.06 mM, the soluble sugar content from 224.71 to 252.16 mM, the ABA content from 3.59 to 5.01 ng/(g FW), and the CK content from 4.01 to 4.56 ng/(g FW)- for the optimum growth and recover of P. euphratica indicated by the plant performance parameters, and the efficiency of water release was the highest.
The February 21, 1993 tornadoes of East Tennessee
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fricke, K.E.; Kornegay, F.C.
1993-08-11
A series of tornadoes struck the east Tennessee area on Sunday afternoon, February 21, 1993 around Knoxville, Lenoir City, and Oak Ridge causing millions of dollars worth of damage to both homes and businesses in the area, killing one, injuring a number of persons, and leaving a large area without power for many hours or even days due to damage to the local TVA transmission line network. One tornado touched down in the Department of Energy Oak Ridge Reservation near the Oak Ridge Y-12 Plant, continued through the Union Valley business district located just east of the plant, through themore » adjacent University of Tennessee Arboretum and then continued into the communities of Claxton and Powell. The path length of the tornado was approximately 13 miles. Damage to the Y-12 Plant was minimal, but the Union Valley business district was seriously damaged, including the Fusion Energy Design Center (FEDC) which houses a number of DOE related projects. The preliminary cost estimate of the damage to DOE facilities (both at Y-12 and at the FEDC) was around $520,000. This paper describes the local meteorological data, the tornado that struck near the Y-12 plant, the resulting damage both to the DOE facilities and to the surrounding communities, the plant emergency response and recovery activities, and the current hazard analyses being undertaken at the plant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinzman, R.L.; Adams, S.M.; Black, M.C.
1993-06-01
As stipulated in the National Pollutant Discharge Elimination System (NDPES) permit issued to the Oak Ridge Y-12 Plant on May 24, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream, East Fork Poplar Creek (EFPC). The objectives of BMAP are (1) to demonstrate that the current effluent limitations established for the Y-12 Plant protect the classified uses of EFPC (e.g., the growth and propagation of fish and aquatic life), as designated by the Tennessee Department of Environment and Conservation (TDEC) and (2) to document the ecological effects resulting from implementation of a Water Pollution Controlmore » Program that includes construction of several large wastewater treatment facilities. BMAP consists of four major tasks: (1) ambient toxicity testing; (2) bioaccumulation studies; (3) biological indicator studies; and (4) ecological surveys of stream communities, including periphyton (attached algae), benthic (bottom-dwelling) macroinvertebrates, and fish. This document, the second in a series of reports on the results of the Y-12 Plant BMAP, describes studies that were conducted between July 1986 and July 1988, although additional data collected outside this time period are included, as appropriate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loar, J.M.; Adams, S.M.; Allison, L.J.
1992-07-01
As stipulated in the National Pollutant Discharge Elimination System (NPDES) permit issued to the Oak Ridge Y-12 Plant on May 24, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream, East Fork Poplar Creek (EFPC). The objectives of the BMAP are (1) to demonstrate that the current effluent limitations established for the Oak Ridge Y-12 Plant protect the uses of EFPC (e.g., the growth and propagation of fish and aquatic life), as designated by the Tennessee Department of Environment and Conservation (TDEC) [formerly the Tennessee Department of Health and Environment (TDHE)], and (2) to documentmore » the ecological effects resulting from implementation of a water pollution control program that includes construction of several large wastewater treatment facilities. The BMAP consists of four major tasks: (1) ambient toxicity testing, (2) bioaccumulation studies, (3) biological indicator studies, and (4) ecological surveys of stream communities, including periphyton (attached algae), benthic macroinvertebrates, and fish. This document, the first in a series of reports on the results of the Y-12 Plant BMAP, describes studies that were conducted from May 1985 through September 1986.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singleton, M J; Moran, J E; Esser, B K
2010-04-14
This study investigates nitrate contamination of a deep municipal drinking water production well in Ripon, CA to demonstrate the utility of natural groundwater tracers in constraining the sources and transport of nitrate to deep aquifers in the Central Valley. The goal of the study was to investigate the origin (source) of elevated nitrate and the potential for the deep aquifer to attenuate anthropogenic nitrate. The site is ideal for such an investigation. The production well is screened from 165-325 feet below ground surface and a number of nearby shallow and deep monitoring wells were available for sampling. Furthermore, potential sourcesmore » of nitrate contamination to the well had been identified, including a fertilizer supply plant located approximately 1000 feet to the east and local almond groves. A variety of natural isotopic and dissolved gas tracers including {sup 3}H-{sup 3}He groundwater age and the isotopic composition of nitrate are applied to identify nitrate sources and to characterize nitrate transport. An advanced method for sampling production wells is employed to help identify contaminant contributions from specific screen intervals. Nitrate transport: Groundwater nitrate at this field site is not being actively denitrified. Groundwater parameters indicate oxic conditions, the dissolved gas data shows no evidence for excess nitrogen as the result of denitrification, and nitrate-N and -O isotope compositions do not display patterns typical of denitrification. Contaminant nitrate source: The ambient nitrate concentration in shallow groundwater at the Ripon site ({approx}12 mg/L as nitrate) is typical of shallow groundwaters affected by recharge from agricultural and urban areas. Nitrate concentrations in Ripon City Well 12 (50-58 mg/L as nitrate) are significantly higher than these ambient concentrations, indicating an additional source of anthropogenic nitrate is affecting groundwater in the capture zone of this municipal drinking water well. This study provides two new pieces of evidence that the Ripon Farm Services Plant is the source of elevated nitrate in Ripon City Well 12. (1) Chemical mass balance calculations using nitrate concentration, nitrate isotopic composition, and initial tritium activity all indicate that that the source water for elevated nitrate to Ripon City Well 12 is a very small component of the water produced by City Well 12 and thus must have extremely high nitrate concentration. The high source water nitrate concentration ({approx}1500 mg/L as nitrate) required by these mass balance calculations precludes common sources of nitrate such as irrigated agriculture, dairy wastewater, and septic discharge. Shallow groundwater under the Ripon Farm Services RFS plant does contain extremely high concentrations of nitrate (>1700 mg/L as nitrate). (2) Nitrogen and oxygen isotope compositions of nitrate indicate that the additional anthropogenic nitrate source to Ripon City Well 12 is significantly enriched in {delta}{sup 18}O-NO{sub 3}, an isotopic signature consistent with synthetic nitrate fertilizer, and not with human or animal wastewater discharge (i.e. dairy operations, septic system discharge, or municipal wastewater discharge), or with organic fertilizer. Monitoring wells on and near the RFS plant also have high {delta}{sup 18}O-NO{sub 3}, and the plant has handled and stored synthetic nitrate fertilizer that will have this isotopic signature. The results described here highlight the complexity of attributing nitrate found in long screened, high capacity wells to specific sources. In this case, the presence of a very high concentration source near the well site combined with sampling using multiple isotopic tracer techniques and specialized depth-specific techniques allowed fingerprinting of the source in the mixed-age samples drawn from the production well.« less
Challan, Mohsen B
2016-06-01
The present study aims to estimate the residence time of groundwater based on bomb-produced (36)Cl. (36)Cl/Cl ratios in the water samples are determined by inductively coupled plasma mass spectrometry and liquid scintillation counting. (36)Cl/Cl ratios in the groundwater were estimated to be 1.0-2.0 × 10(-12). Estimates of residence time were obtained by comparing the measured bomb-derived (36)Cl concentrations in groundwater with the background reference. Dating based on a (36)Cl bomb pulse may be more reliable and sensitive for groundwater recharged before 1975, back as far as the mid-1950s. The above (36)Cl background concentration was deduced by determining the background-corrected Dye-3 ice core data from the frozen Arctic data, according to the estimated total (36)Cl resources. The residence time of 7.81 × 10(4) y is obtained from extrapolated groundwater flow velocity. (36)Cl concentration in groundwater does not reflect the input of bomb pulse (36)Cl, and it belongs to the era before 1950.
NASA Astrophysics Data System (ADS)
Yin, Lihe; Zhou, Yangxiao; Huang, Jinting; Wenninger, Jochen; Zhang, Eryong; Hou, Guangcai; Dong, Jiaqiu
2015-09-01
The understanding of the interaction between groundwater and trees is vital for sustainable groundwater use and maintenance of a healthy ecosystem in arid regions. The short- and long-term groundwater contribution to tree water use was investigated using the HYDRUS-1D model and stable isotopes. For the short-term simulation, the ratio between the actual transpiration (Ta) and potential transpiration (Tp) approached almost ∼1.0 due to the constant groundwater uptake. The results from the short-term simulation indicated that the groundwater contribution to tree water use ranged between 53% and 56% in the dry season (May-June) and 16-19% in the wet period (August-September). Isotopic analysis indicated that groundwater contributed to 45% of plant water use in the dry season, decreasing to 4-12% during the wet period. Because of canopy interception and transpiration, groundwater recharge only occurred after heavy rainfall and accounted for 3-8% of the total heavy rainfall. For the long-term simulation, Ta/Tp ranged between 0.91 and 1.00 except in 2007 (0.78), when the water table declined because of groundwater abstraction. In the scenario simulation for deep water table conditions caused by anthropogenic activities, Ta/Tp ranged between 0.09 and 0.40 (mean = 0.22) that is significantly lower than the values in the natural conditions. In conclusion, vegetation restoration in arid zones should be cautious as over-planting of trees will decrease the groundwater recharge and potentially cause a rapid drop in water table levels, which in turn may result in the death of planted trees. Trees adapt to arid regions by adopting root patterns that allow soil water uptake by shallow roots and groundwater use by deep roots, thus climatic variation itself may not bring severe negative impact on trees. However, anthropogenic activities, such as groundwater abstraction, will result in significant water table decline that will reduce actual transpiration of trees significantly according to the results from the scenario simulation.
Y-12 Site environmental protection program implementation plan (EPPIP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-11-01
The Y-12 Plant Environmental Protection Program is conducted to: (1) protect public health and the environment from chemical and radiological releases occurring from current plant operations and past waste management and operational practices; (2) ensure compliance with federal, state, and local environmental regulations and DOE directives; (3) identify potential environmental problems; (4) evaluate existing environmental contamination and determine the need for remedial actions and mitigative measures; (5) monitor the progress of ongoing remedial actions and cleanup measures; and (6) inform the public of environmental issues relating to DOE operations. DOE Order 5400.1, General Environmental Protection Program, defines the general requirementsmore » for environmental protection programs at DOE facilities. This Environmental Protection Program Implementation Plan (EPPIP) defines the methods by which the Y-12 Plant staff will comply with the order by: (1) referencing environmental protection goals and objectives and identifying strategies and timetables for attaining them; (2) providing the overall framework for the design and implementation of the Y-12 Environmental Protection Program; and (3) assigning responsibilities for complying with the requirements of the order. The EPPIP is revised and updated annually.« less
Storm water runoff for the Y-12 Plant and selected parking lots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, E.T.
1996-01-01
A comparison of storm water runoff from the Y-12 Plant and selected employee vehicle parking lots to various industry data is provided in this document. This work is an outgrowth of and part of the continuing Non-Point Source Pollution Elimination Project that was initiated in the late 1980s. This project seeks to identify area pollution sources and remediate these areas through the Resource Conservation and Recovery Act/Comprehensive Environmental Response, Compensation, and Liability Act (RCRA/CERCLA) process as managed by the Environmental Restoration Organization staff. This work is also driven by the Clean Water Act Section 402(p) which, in part, deals withmore » establishing a National Pollutant Discharge Elimination System (NPDES) permit for storm water discharges. Storm water data from events occurring in 1988 through 1991 were analyzed in two reports: Feasibility Study for the Best Management Practices to Control Area Source Pollution Derived from Parking Lots at the DOE Y-12 Plant, September 1992, and Feasibility Study of Best Management Practices for Non-Point Source Pollution Control at the Oak Ridge Y-12 Plant, February 1993. These data consisted of analysis of outfalls discharging to upper East Fork Poplar Creek (EFPC) within the confines of the Y-12 Plant (see Appendixes D and E). These reports identified the major characteristics of concern as copper, iron, lead, manganese, mercury, nitrate (as nitrogen), zinc, biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), fecal coliform, and aluminum. Specific sources of these contaminants were not identifiable because flows upstream of outfalls were not sampled. In general, many of these contaminants were a concern in many outfalls. Therefore, separate sampling exercises were executed to assist in identifying (or eliminating) specific suspected sources as areas of concern.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This is the RCRA required permit application for Radioactive and Hazardous Waste Management at the Oak Ridge Y-12 Plant for the following units: Building 9206 Container Storage Unit; Building 9212 Container Storage Unit; Building 9720-12 Container Storage Unit; Cyanide Treatment Unit. All four of these units are associated with the recovery of enriched uranium and other metals from wastes generated during the processing of nuclear materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
More than 200 contaminated sites created by past waste management practices have been identified at the Y-12 Plant. Many of the sites have been grouped into operable units based on priority and on investigative and remediation requirements. The Y-12 Plant is one of three major facilities on the ORR. The ORR contains both hazardous and mixed-waste sites that are subject to regulations promulgated under the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986. Under RCRA guidelines andmore » requirements from the Tennessee Department of Environment and Conservation (TDEC), the Y-12 Plant initiated investigation and monitoring of various sites within its boundaries in the mid-1980s. The entire ORR was placed on the National Priorities List (NPL) of CERCLA sites in November 1989. Following CERCLA guidelines, sites under investigation require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) of potential remedial actions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-08-01
This report comprises appendices A--J which support the Y-12 Plant`s remedial action report involving Chestnut Ridge Operable Unit 2 (filled coal ash pond/Upper McCoy Branch). The appendices cover the following: Sampling fish from McCoy Branch; well and piezometer logs; ecological effects of contaminants in McCoy Branch 1989-1990; heavy metal bioaccumulation data; microbes in polluted sediments; and baseline human health risk assessment data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plemons, R.E.; Hopwood, W.H. Jr.; Hamilton, J.H.
For a number of years the Oak Ridge Y-12 Plant Laboratory has been analyzing coal predominately for the utilities department of the Y-12 Plant. All laboratory procedures, except a Leco sulfur method which used the Leco Instruction Manual as a reference, were written based on the ASTM coal analyses. Sulfur is analyzed at the present time by two methods, gravimetric and Leco. The laboratory has two major endeavors for monitoring the quality of its coal analyses. (1) A control program by the Plant Statistical Quality Control Department. Quality Control submits one sample for every nine samples submitted by the utilitiesmore » departments and the laboratory analyzes a control sample along with the utilities samples. (2) An exchange program with the DOE Coal Analysis Laboratory in Bruceton, Pennsylvania. The Y-12 Laboratory submits to the DOE Coal Laboratory, on even numbered months, a sample that Y-12 has analyzed. The DOE Coal Laboratory submits, on odd numbered months, one of their analyzed samples to the Y-12 Plant Laboratory to be analyzed. The results of these control and exchange programs are monitored not only by laboratory personnel, but also by Statistical Quality Control personnel who provide statistical evaluations. After analysis and reporting of results, all utilities samples are retained by the laboratory until the coal contracts have been settled. The utilities departments have responsibility for the initiation and preparation of the coal samples. The samples normally received by the laboratory have been ground to 4-mesh, reduced to 0.5-gallon quantities, and sealed in air-tight containers. Sample identification numbers and a Request for Analysis are generated by the utilities departments.« less
Detecting groundwater contamination of a river in Georgia, USA using baseflow sampling
NASA Astrophysics Data System (ADS)
Reichard, James S.; Brown, Chandra M.
2009-05-01
Algal blooms and fish kills were reported on a river in coastal Georgia (USA) downstream of a poultry-processing plant, prompting officials to conclude the problems resulted from overland flow associated with over-application of wastewater at the plant’s land application system (LAS). An investigation was undertaken to test the hypothesis that contaminated groundwater was also playing a significant role. Weekly samples were collected over a 12-month period along an 18 km reach of the river and key tributaries. Results showed elevated nitrogen concentrations in tributaries draining the plant and a tenfold increase in nitrate in the river between the tributary inputs. Because ammonia concentrations were low in this reach, it was concluded that nitrate was entering via groundwater discharge. Data from detailed river sampling and direct groundwater samples from springs and boreholes were used to isolate the entry point of the contaminant plume. Analysis showed two separate plumes, one associated with the plant’s unlined wastewater lagoon and another with its LAS spray fields. The continuous discharge of contaminated groundwater during summer low-flow conditions was found to have a more profound impact on river-water quality than periodic inputs by overland flow and tributary runoff.
Statistical trend analysis of groundwater data at Louisiana Army Ammunition Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhinge, D; Patel, J.; Skibinski, J.N.
1994-12-31
Statistical regression techniques were used to characterize temporal trends in groundwater monitoring data collected between 1980 and 1994 at Former Area P Lagoons, Louisiana Army Ammunition Plant (LAAP), a National Priorities List (NPL) site. Groundwater sampling data were evaluated for 12 wells (9 in the shallow aquifer and 3 in the deeper aquifer) and 9 contaminants of concern (COCs). A trend index (TI) was calculated from the sum of the number of improving and stable trends minus the number of deteriorating trends for each contaminant, each well, and the overall site. A positive TI indicates an improving trend for themore » site, contaminant, or well. Conversely, a negative TI indicates a deteriorating trend. The overall trend indices at the site for the shallow and deeper aquifers were found to be positive, indicating that the groundwater quality at Area P is generally improving. Interim remedial action was conducted at Area P from 1988 through 1990. The effect of remedial activities on groundwater quality was assessed by comparing the groundwater concentrations of nitro compounds measured immediately after the site remediation to those measured prior to the remedial action. The regression curves and the data indicated that a downward trend in the groundwater concentrations was observed immediately following the remediation activity at Area P. The trends from the regression analysis indicated that the overall remedy at Area P has been effective in reducing COC concentrations in groundwater.« less
Hougham, A.L.; Moran, S.B.; Masterson, J.P.; Kelly, R.P.
2008-01-01
Submarine groundwater discharge (SGD) to coastal southern Rhode Island was estimated from measurements of the naturally-occurring radioisotopes 226Ra (t1/2 = 1600??y) and 228Ra (t1/2 = 5.75??y). Surface water and porewater samples were collected quarterly in Winnapaug, Quonochontaug, Ninigret, Green Hill, and Pt. Judith-Potter Ponds, as well as nearly monthly in the surface water of Rhode Island Sound, from January 2002 to August 2003; additional porewater samples were collected in August 2005. Surface water activities ranged from 12-83??dpm 100??L- 1 (60??dpm = 1??Bq) and 21-256??dpm 100??L- 1 for 226Ra and 228Ra, respectively. Porewater 226Ra activities ranged from 16-736??dpm 100??L- 1 (2002-2003) and 95-815??dpm 100??L- 1 (2005), while porewater 228Ra activities ranged from 23-1265??dpm 100??L- 1. Combining these data with a simple box model provided average 226Ra-based submarine groundwater fluxes ranging from 11-159??L m- 2 d- 1 and average 228Ra-derived fluxes of 15-259??L m- 2 d- 1. Seasonal changes in Ra-derived SGD were apparent in all ponds as well as between ponds, with SGD values of 30-472??L m- 2 d- 1 (Winnapaug Pond), 6-20??L m- 2 d- 1 (Quonochontaug Pond), 36-273??L m- 2 d- 1 (Ninigret Pond), 29-76??L m- 2 d- 1 (Green Hill Pond), and 19-83??L m- 2 d- 1 (Pt. Judith-Potter Pond). These Ra-derived fluxes are up to two orders of magnitude higher than results predicted by a numerical model of groundwater flow, estimates of aquifer recharge for the study period, and values published in previous Ra-based SGD studies in Rhode Island. This disparity may result from differences in the type of flow (recirculated seawater versus fresh groundwater) determined using each technique, as well as variability in porewater Ra activity. ?? 2007 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.H.
In 1992 there were over 6,000 employees involved in defense related activities at the Y-12 Plant. By late 1994 the plant had undergone a dramatic change in operations including a reduction of the work force to less than 4,000 employees. That this major downsizing was accomplished without a layoff is a tribute to the combined efforts of the Y-12 employees, union leadership, the DOE, Martin Marietta and local and state governments. The keys to the success are: (1) the end of the Cold War and the potential impact was recognized early and a plan of action was developed and implemented,more » the plan was based on a total reorientation of the historical role and mode of operation of the plant; (2) everyone who had an interest in the outcome was invited to join in the planning; (3) the plan was developed and implemented as if no barriers to success existed; (4) opening about one-third of the classified portion of the Y-12 Plant as the initial activity was critical to the success of the plan. The historical opening of the gates was a major factor in convincing employees and a skeptical public that change could and would occur. As the debate on the future of the DOE weapons complex evolves it is clear that the Y-12 Plant will be a major contributor to improving productivity and the competitiveness of current and future industry in Tennessee and the country while continuing to provide unique expertise to support the nation`s nuclear weapons program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The revised groundwater model includes estimates of evapotranspiration (ET). The types of vegetation and the influences of ET on groundwater hydrology vary within the model domain. Some plant species within the model domain, classified as phreatophytes, survive by extracting groundwater. ET within these plant communities can result in a net discharge of groundwater if ET exceeds precipitation. Other upland desert plants within the model domain survive on meteoric water, potentially limiting groundwater recharge if ET is equivalent to precipitation. For all plant communities within the model domain, excessive livestock grazing or other disturbances can tip the balance to a netmore » groundwater recharge. This task characterized and mapped vegetation within the groundwater model domain at the Tuba City, Arizona, Site, and then applied a remote sensing algorithm to estimate ET for each vegetation type. The task was designed to address five objectives: 1. Characterize and delineate different vegetation or ET zones within the groundwater model domain, focusing on the separation of plant communities with phreatophytes that survive by tapping groundwater and upland plant communities that are dependent on precipitation. 2. Refine a remote sensing method, developed to estimate ET at the Monument Valley site, for application at the Tuba City site. 3. Estimate recent seasonal and annual ET for all vegetation zones, separating phreatophytic and upland plant communities within the Tuba City groundwater model domain. 4. For selected vegetation zones, estimate ET that might be achieved given a scenario of limited livestock grazing. 5. Analyze uncertainty of ET estimates for each vegetation zone and for the entire groundwater model domain.« less
Yager, R.M.
1987-01-01
A two-dimensional finite-difference model was developed to simulate groundwater flow in a surficial sand and gravel deposit underlying the nuclear fuel reprocessing facility at Western New York Nuclear Service Center near West Valley, N.Y. The sand and gravel deposit overlies a till plateau that abuts an upland area of siltstone and shale on its west side, and is bounded on the other three sides by deeply incised stream channels that drain to Buttermilk Creek, a tributary to Cattaraugus Creek. Radioactive materials are stored within the reprocessing plant and are also buried within a till deposit at the facility. Tritiated water is stored in a lagoon system near the plant and released under permit to Franks Creek, a tributary to Buttermilk Creek. Groundwater levels predicted by steady-state simulations closely matched those measured in 23 observation wells, with an average error of 0.5 meter. Simulated groundwater discharges to two stream channels and a subsurface drain were within 5% of recorded values. Steady-state simulations used an average annual recharge rate of 46 cm/yr; predicted evapotranspiration loss from the ground was 20 cm/yr. The lateral range in hydraulic conductivity obtained through model calibration was 0.6 to 10 m/day. Model simulations indicated that 33% of the groundwater discharged from the sand and gravel unit (2.6 L/sec) is lost by evapotranspiration, 3% (3.0 L/sec) flows to seepage faces at the periphery of the plateau, 20% (1.6 L/sec) discharges to stream channels that drain a large wetland area near the center of the plateau, and the remaining 8% (0.6 L/sec) discharges to a subsurface french drain and to a wastewater treatment system. Groundwater levels computed by a transient-state simulation of an annual climatic cycle, including seasonal variation in recharge and evapotranspiration, closely matched water levels measured in eight observation wells. The model predicted that the subsurface drain and the stream channel that drains the wetland would intercept most of the recharge originating near the reprocessing plant. (Lantz-PTT)
The ATTA-Hefei Instrument for Radioactive Noble-gas Dating
NASA Astrophysics Data System (ADS)
Hu, S.; Cheng, C.; Cheng, G.; Sun, Y. R.; Tu, L.; Yang, G.
2013-12-01
Long-lived noble-gas isotopes 85Kr (10.8 y), 39Ar (269 y) and 81Kr (229 ky) are ideal tracers for dating environmental samples such as groundwater and ice. Together with 14C, these nuclides can be used to cover the whole range of 100-106 y. Atom Trap Trace Analysis (ATTA) is an emerging method for the analysis of these isotopes at an isotopic abundance level as low as 10^-16 [1,2]. The ATTA instrument built in Hefei, China, can determine the isotopic abundances of 85Kr and 81Kr with typically 5-10% accuracy using krypton gas samples of a few micro-liters (STP) krypton gas [3]. The krypton gas sample can be extracted from several liters of air using a distillation-chromatograph setup with a typical efficiency of 85%, while the air sample can be extracted from groundwater or ices. The typical sample size for ATTA measurement is 100L groundwater or 40Kg ices. One such ATTA beamline can handle about 100 samples per year. [1] Chen, C. Y. et al. Ultrasensitive isotope trace analyses with a magneto-optical trap. Science 286, 1139-1141 (1999). [2] Jiang, W. et al. 39Ar detection at the 10-16 isotopic abundance level with atom trap trace analysis. Phys. Rev. Lett. 106, 103001 (2011). [3] Yang, G. -M. et al. Analysis of 85Kr: a comparison at the 10-14 level using micro-liter samples, Sci. Rep. 3, 1596 (2013). Relative uncertainty of the determined 85Kr abundance by the ATTA-Hefei instrument.
Water-Use Estimates for West Virginia, 2004
Atkins, John T.
2007-01-01
This study estimates the quantity of surface water and ground water used within West Virginia. About 4,787 million gallons per day (Mgal/d) of water were withdrawn from West Virginia surface-water and ground-water sources in 2004, with about 4,641 Mgal/d (97 percent) from surface-water sources and about 146 Mgal/d (3 percent) from ground water sources. The largest surface-water withdrawals were in Grant and Mason Counties and were about 1,156 and 1,090 Mgal/d, respectively. The largest ground-water withdrawals were in Berkeley and Wood Counties and were about 12.0 and 12.8 Mgal/d, respectively. Estimates were determined for surface-water and ground-water withdrawals in seven water-use categories: public supply, domestic, thermoelectric power, industrial, irrigation, commercial, and mining. Instream water uses, including hydroelectric power generation, were not considered. Total withdrawals for public supply were 189 Mgal/d, of which 152 Mgal/d were from surface-water sources and 37 Mgal/d were from ground-water sources. Kanawha County withdrew 34 Mgal/d of surface water for public supply, which is more than any other county in the state. Wood County withdrew more ground water for public supply than any other county in the state, about 7.59 Mgal/d. The total domestic (non-publicly supplied) water withdrawal was estimated at 33.5 Mgal/d, with 98 percent from ground water and 2 percent from surface water. There were 17 fossil-fuel, steam-generating thermoelectric power plants operated in the state, 10 plants with once-through cooling systems and 7 plants with recirculation cooling systems. Thermoelectric power used the greatest amount of water compared to the other water-use categories, and water withdrawal from surface-water sources was about 3,406 Mgal/d for plants with once-through cooling systems and about 145 Mgal/d for plants with recirculation cooling systems. Only a trace of water was withdrawn from ground-water sources for plants with once-through cooling systems and about 0.20 Mgal/d for plants with recirculation cooling systems. Water withdrawal by industries was about 911 Mgal/d from surface-water sources and about 54 Mgal/d from ground-water sources. West Virginia had the lowest estimated irrigation of any state or territory of the United States, with only about 0.036 Mgal/d withdrawn from surface-water sources and 0.036 Mgal/d withdrawn from ground-water sources. Water withdrawal for commercial use was about 16.7 Mgal/d from surface-water sources and about 16.0 Mgal/d from ground-water sources. Water withdrawal for mining was about 9.78 Mgal/d from surface-water sources and about 4.89 Mgal/d from ground-water sources. The proportions of surface-water and ground-water withdrawals were similar in 1995 and 2004 (at about 3 percent ground water). Public-supply withdrawal for 2004 was about the same as for 2000 and 7 percent greater than the 1995 estimate. Domestic withdrawal for 2004 was about 18 percent less than the 1995 estimate. Withdrawal for thermoelectric power for 2004 was about 10 percent less than the 2000 estimate and about 18 percent greater than the 1995 estimate. Industrial withdrawal for 2004 was about 27 percent less than the estimate for 1995 and about the same as the estimate for 2000. Irrigation withdrawal for 2004 was about double that estimated for 2000. Commercial withdrawal for 2004 was down 28 percent from 1995. Mining withdrawals for 2004 were about 31 and 32 percent greater for surface and ground water, respectively, than estimates for 1995.
Environmental assessment for the Plating Shop Replacement, Y-12 Plant, Oak Ridge, Tennessee
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-03-01
The existing of Y-12 Plant Plating Shop provides vital support functions for the US Department of Energy (DOE) Defense Programs operations. In addition to weapon component plating, the facility performs other plating services to support existing operations for the Y-12 Plant, other DOE facilities, and other federal agencies. In addition, the facility would also provide essential deplating services for weapons reclamation and teardown. The existing Y-12 Plant Plating Shop is presently located in a structure which is rapidly deteriorating and obsolete. The existing building structure was originally designed to house a steam plant, not chemical plating operations. As such, vaporsmore » from plating operations have deteriorated the structure to a point where a new facility is needed for continued safe operations. The potential environmental impacts of the proposed action was anticipated to be minimal and would affect no environmentally sensitive areas. Some short-term construction- and demolition-related effects would occur in an already highly industrialized setting. These include temporarily disturbing 72,000 square feet of land for the new plating shop and related site preparation activities, constructing a permanent building on part of the area, and using 80 construction personnel over a period of 18 months for site preparation and construction. Demolition effects vary depending on the environmentally suitable option selected, but they could involve as much as 262 cubic yards of concrete rubble and approximately 1600 cubic yards of soil disposed as waste. Either 1600 cubic yards of fresh soil or 1850 yards of clay and fresh soil could be required. Soil erosion would be minimal. Approximately 20 construction personnel would be involved for 12 months in demolition activities.« less
Vroblesky, Don A.; Petkewich, Matthew D.
2009-01-01
The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated natural and engineered remediation of chlorinated volatile organic compound (VOC) groundwater contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina, beginning in 2000. The primary contaminants of interest in the study are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. Engineered remediation aspects at the site consist of a zero-valent-iron permeable reactive barrier (PRB) installed in December 2002 intercepting the contamination plume and a phytoremediation test stand of loblolly pine trees planted in the source area in May 2003. The U.S. Geological Survey planted an additional phytoremediation test stand of loblolly pine trees on the upgradient side of the southern end of the PRB in February 2008. At least once during the summer, however, the trees were inadvertently mowed during lawn cutting activity. The PRB along the main axis of the contaminant plume appears to be actively removing contamination. In contrast to the central area of the PRB, the data from the southern end of the PRB indicate that contaminants are moving around the PRB. Concentrations in wells upgradient from the PRB showed a general decrease in VOC concentrations. VOC concentrations in some wells in the forest downgradient from the PRB showed a sharp increase in 2005, followed by a decrease in 2006. Farther downgradient in the forest, the VOC concentrations began to increase in 2007 and continued to increase into 2008. The VOC-concentration changes in groundwater beneath the forest appear to indicate movement of a groundwater-contaminant pulse through the forest. It also is possible that the data may represent lateral shifting of the plume in response to changes in groundwater-flow direction.
Groundwater Interim Measures Work Plan for the Former Chemical Plant
May 2012 Groundwater IMWP, revised per EPA's approval, focuses on the installation of a groundwater containment system to mitigate groundwater migration from the former plant. A prior 2002 work plan is included in its entirety in Appendix B.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, P.M.
This Construction Quality Assurance (CQA) Report provides documentation that Bid Option 2 of the Y-12 Plant Construction Demolition Landfill 7 (CDL-7) was constructed in substantial compliance with the Tennessee Department of Environment and Conservation (TDEC) approved design, as indicated and specified in the permit drawings, approved changes, and specifications. CDL-7 is located in Anderson County on the south side of Chestnut Ridge, approximately 0.5 miles south of the Y-12 Plant in Oak Ridge, Tennessee. This report applies specifically to the limits of excavation for Area No. 1 portions of the perimeter maintenance road and drainage channel and Sedimentation Pond No.more » 3. A partial ``As-Built`` survey was performed and is included.« less
Xu, Longhua; Yao, Buqing; Wang, Wenying; Wang, Fangping; Zhou, Huakun; Shi, Jianjun; Zhao, Xinquan
2017-01-01
Artificial grasslands play a role in carbon storage on the Qinghai–Tibetan Plateau. The artificial grasslands exhibit decreased proportions of graminate and increased species richness with age. However, the effect of the graminate proportions and species richness on ecosystem C stocks in artificial grasslands have not been elucidated. We conducted an in situ13C pulse-labeling experiment in August 2012 using artificial grasslands that had been established for two years (2Y), five years (5Y), and twelve years (12Y). Each region was plowed fallow from severely degraded alpine meadow in the Qinghai-Tibetan Plateau. The 12Y grassland had moderate proportions of graminate and the highest species richness. This region showed more recovered 13C in soil and a longer mean residence time, which suggests species richness controls the ecosystem C stock. The loss rate of leaf-assimilated C of the graminate-dominant plant species Elymus nutans in artificial grasslands of different ages was lowest in the 12Y grassland, which also had the highest species richness. Thus the lower loss rate of leaf-assimilated C can be partially responsible for the larger ecosystem carbon stocks in the 12Y grassland. This finding is a novel mechanism for the effects of species richness on the increase in ecosystem functioning. PMID:28067300
Characterizing Groundwater Sources of Organic Matter to Arctic Coastal Waters
NASA Astrophysics Data System (ADS)
Connolly, C. T.; Spencer, R. G.; Cardenas, M. B.; Bennett, P. C.; McNichol, A. P.; McClelland, J. W.
2016-12-01
The Arctic is projected to transition from a runoff-dominated system to a groundwater-dominated system as permafrost thaws due to climate change. This fundamental shift in hydrology is expected to increase groundwater flow to Arctic coastal waters, which may be a significant source of dissolved organic matter (DOM) to these waters—even under present conditions—that has been largely overlooked. Here we quantify and elucidate sources of groundwater DOM inputs to lagoons along the eastern Alaskan Beaufort Sea coast using an approach that combines concentration measurements and radiocarbon dating of groundwater, soil profiles, and soil leachable dissolved organic carbon (DOC). Samples were collected in late summer, when soil thaw depths (active layer) were near their maximum extent. As anticipated, the radiocarbon age of bulk soil organic matter increased with depth (modern - 6,100 yBP), while the amount of extractable DOC decreased with depth within the active layer. However, amounts of extractable DOC increased dramatically in thawed permafrost samples collected directly below the actively layer. Concentrations of DOM in groundwater (ranging from 902 to 5,118 μmolL-1 DOC) are one to two orders of magnitude higher than those measured in lagoons and nearby river water. In contrast, the 14C-DOC ages of groundwater (1,400 ± 718 s.d. yBP), lagoon water (1,750 yBP), and river water (1,610 yBP) are comparable. Together these results suggest that: (1) groundwater provides a highly concentrated input of old DOC to Arctic coastal waters; (2) groundwater DOM is likely sourced from organic matter spanning the entire soil profile; and (3) the DOM in rivers along the eastern Alaskan Beaufort Sea coast during late summer is strongly influenced by groundwater sources, but is much lower in concentration due to photo-mineralization and/or biological consumption. These results are key for assessing how changes in land-ocean export of organic matter as permafrost thaws will change into the future with clear ramifications for Arctic coastal environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
In January 1990, dense, non aqueous phase liquids (DNAPLs) were discovered at a depth of approximately 274 foot below ground surface along the southern border of the Y-12 Plant Burial Grounds. Immediately after the discovery, an investigation was conducted to assess the occurrence of DNAPL at the site and to make recommendations for further action. This report summarizes purging and sampling activities for one of these multiport wells, GW-726, and presents analytical results for GW-726.
Over 600 Cottonwood trees were planted over a shallow groundwater plume in an attempt to detoxify the tricWoroethylene (TCE) in a groundwater plume at a former Air Force facility. Two planting techniques were used: rooted stock about two years old, and 18 inch cuttings were insta...
Over 600 Cottonwood trees were planted over a shallow groundwater plume in an attempt to detoxify the trichloroethylene (TCE) in a groundwater plume at a former Air Force facility. Two planting techniques were used: rooted stock about two years old, and 18 inch cuttings were inst...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-02
... fluctuating water levels and temperature changes. The incremental and cumulative groundwater recharge effects... quality parameters such as oxygen and temperature, along with changes in water quantity, such as increased... effects in fish species, affecting the immune system, hormone regulation, reproduction, and developmental...
Engineering a Catabolic Pathway in Plants for the Degradation of 1,2-Dichloroethane1[OA
Mena-Benitez, Gilda L.; Gandia-Herrero, Fernando; Graham, Stuart; Larson, Tony R.; McQueen-Mason, Simon J.; French, Christopher E.; Rylott, Elizabeth L.; Bruce, Neil C.
2008-01-01
Plants are increasingly being employed to clean up environmental pollutants such as heavy metals; however, a major limitation of phytoremediation is the inability of plants to mineralize most organic pollutants. A key component of organic pollutants is halogenated aliphatic compounds that include 1,2-dichloroethane (1,2-DCA). Although plants lack the enzymatic activity required to metabolize this compound, two bacterial enzymes, haloalkane dehalogenase (DhlA) and haloacid dehalogenase (DhlB) from the bacterium Xanthobacter autotrophicus GJ10, have the ability to dehalogenate a range of halogenated aliphatics, including 1,2-DCA. We have engineered the dhlA and dhlB genes into tobacco (Nicotiana tabacum ‘Xanthi’) plants and used 1,2-DCA as a model substrate to demonstrate the ability of the transgenic tobacco to remediate a range of halogenated, aliphatic hydrocarbons. DhlA converts 1,2-DCA to 2-chloroethanol, which is then metabolized to the phytotoxic 2-chloroacetaldehyde, then chloroacetic acid, by endogenous plant alcohol dehydrogenase and aldehyde dehydrogenase activities, respectively. Chloroacetic acid is dehalogenated by DhlB to produce the glyoxylate cycle intermediate glycolate. Plants expressing only DhlA produced phytotoxic levels of chlorinated intermediates and died, while plants expressing DhlA together with DhlB thrived at levels of 1,2-DCA that were toxic to DhlA-expressing plants. This represents a significant advance in the development of a low-cost phytoremediation approach toward the clean-up of halogenated organic pollutants from contaminated soil and groundwater. PMID:18467461
Barbeta, Adrià; Mejía-Chang, Monica; Ogaya, Romà; Voltas, Jordi; Dawson, Todd E; Peñuelas, Josep
2015-03-01
Vegetation in water-limited ecosystems relies strongly on access to deep water reserves to withstand dry periods. Most of these ecosystems have shallow soils over deep groundwater reserves. Understanding the functioning and functional plasticity of species-specific root systems and the patterns of or differences in the use of water sources under more frequent or intense droughts is therefore necessary to properly predict the responses of seasonally dry ecosystems to future climate. We used stable isotopes to investigate the seasonal patterns of water uptake by a sclerophyll forest on sloped terrain with shallow soils. We assessed the effect of a long-term experimental drought (12 years) and the added impact of an extreme natural drought that produced widespread tree mortality and crown defoliation. The dominant species, Quercus ilex, Arbutus unedo and Phillyrea latifolia, all have dimorphic root systems enabling them to access different water sources in space and time. The plants extracted water mainly from the soil in the cold and wet seasons but increased their use of groundwater during the summer drought. Interestingly, the plants subjected to the long-term experimental drought shifted water uptake toward deeper (10-35 cm) soil layers during the wet season and reduced groundwater uptake in summer, indicating plasticity in the functional distribution of fine roots that dampened the effect of our experimental drought over the long term. An extreme drought in 2011, however, further reduced the contribution of deep soil layers and groundwater to transpiration, which resulted in greater crown defoliation in the drought-affected plants. This study suggests that extreme droughts aggravate moderate but persistent drier conditions (simulated by our manipulation) and may lead to the depletion of water from groundwater reservoirs and weathered bedrock, threatening the preservation of these Mediterranean ecosystems in their current structures and compositions. © 2014 John Wiley & Sons Ltd.
Doty, Sharon L; Freeman, John L; Cohu, Christopher M; Burken, Joel G; Firrincieli, Andrea; Simon, Andrew; Khan, Zareen; Isebrands, J G; Lukas, Joseph; Blaylock, Michael J
2017-09-05
Trichloroethylene (TCE) is a widespread environmental pollutant common in groundwater plumes associated with industrial manufacturing areas. We had previously isolated and characterized a natural bacterial endophyte, Enterobacter sp. strain PDN3, of poplar trees, that rapidly metabolizes TCE, releasing chloride ion. We now report findings from a successful three-year field trial of endophyte-assisted phytoremediation on the Middlefield-Ellis-Whisman Superfund Study Area TCE plume in the Silicon Valley of California. The inoculated poplar trees exhibited increased growth and reduced TCE phytotoxic effects with a 32% increase in trunk diameter compared to mock-inoculated control poplar trees. The inoculated trees excreted 50% more chloride ion into the rhizosphere, indicative of increased TCE metabolism in planta. Data from tree core analysis of the tree tissues provided further supporting evidence of the enhanced rate of degradation of the chlorinated solvents in the inoculated trees. Test well groundwater analyses demonstrated a marked decrease in concentration of TCE and its derivatives from the tree-associated groundwater plume. The concentration of TCE decreased from 300 μg/L upstream of the planted area to less than 5 μg/L downstream of the planted area. TCE derivatives were similarly removed with cis-1,2-dichloroethene decreasing from 160 μg/L to less than 5 μg/L and trans-1,2-dichloroethene decreasing from 3.1 μg/L to less than 0.5 μg/L downstream of the planted trees. 1,1-dichloroethene and vinyl chloride both decreased from 6.8 and 0.77 μg/L, respectively, to below the reporting limit of 0.5 μg/L providing strong evidence of the ability of the endophytic inoculated trees to effectively remove TCE from affected groundwater. The combination of native pollutant-degrading endophytic bacteria and fast-growing poplar tree systems offers a readily deployable, cost-effective approach for the degradation of TCE, and may help mitigate potential transfer up the food chain, volatilization to the atmosphere, as well as direct phytotoxic impacts to plants used in this type of phytoremediation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This Safety Analysis Report for Packaging for the Oak Ridge Y-12 Plant for the Model DC-1 package with highly enriched uranium (HEU) oxide contents has been prepared in accordance with governing regulations form the Nuclear Regulatory Commission and the Department of Transportation and orders from the Department of energy. The fundamental safety requirements addressed by these regulations and orders pertain to the containment of radioactive material, radiation shielding, and nuclear subcriticality. This report demonstrates how these requirements are met.
Groundwater nitrate remediation using plant-chip bioreactors under phosphorus-limited environment
NASA Astrophysics Data System (ADS)
Satake, Shunichi; Tang, Changyuan
2018-02-01
Groundwater denitrification bioreactors under limited phosphorus conditions were studied in column experiments using four types of plant-chips. When the phosphate-P concentration in the influent increased from 0.04 mg/L to 0.4 mg/L, the nitrate removal ratio increased from 61.6% to 86.1% in reed, from 7.2% to 12.6% in Japanese cedar, from 37.0% to 73.6% in Moso bamboo, and from 19.2% to 50.5% in Lithocarpus edulis. The carbon source of the denitrifiers' growth was indicated by the content of acid detergent soluble organic matter in the chips. Furthermore, according to the modified Michaelis-Menten-type equation proposed in the study, the denitrification rate was largely limited by the phosphate-P concentration in reed and L. eduilis, and by the dissolved organic carbon (DOC) in Japanese cedar. Denitrification in Moso bamboo was affected by both phosphate-P and DOC. Besides the DOC, phosphorus emerged as an important limiting element of denitrification in some bioreactor plant-chips.
[Case study on health risk assessment based on site-specific conceptual model].
Zhong, Mao-Sheng; Jiang, Lin; Yao, Jue-Jun; Xia, Tian-Xiang; Zhu, Xiao-Ying; Han, Dan; Zhang, Li-Na
2013-02-01
Site investigation was carried out on an area to be redeveloped as a subway station, which is right downstream of the groundwater of a former chemical plant. The results indicate the subsurface soil and groundwater in the area are both polluted heavily by 1,2-dichloroethane, which was caused by the chemical plant upstream with the highest concentration was 104.08 mg.kg-1 for soil sample at 8.6 m below ground and the highest concentration was 18500 microg.L-1 for groundwater. Further, a site-specific contamination conceptual model, giving consideration to the specific structure configuration of the station, was developed, and the corresponding risk calculation equation was derived. The carcinogenic risks calculated with models developed on the generic site conceptual model and derived herein on the site-specific conceptual model were compared. Both models indicate that the carcinogenic risk is significantly higher than the acceptable level which is 1 x 10(-6). The comparison result reveals that the risk calculated with the former models for soil and groundwater are higher than the one calculated with the latter models by 2 times and 1.5 times, respectively. The finding in this paper indicates that the generic risk assessment model may underestimate the risk if specific site conditions and structure configuration are not considered.
Evans, W.C.; Bergfeld, D.; Sutton, A.J.; Lee, R.C.; Lorenson, T.D.
2015-01-01
We report chemical data for selected shallow wells and coastal springs that were sampled in 2014 to determine whether geothermal power production in the Puna area over the past two decades has affected the characteristics of regional groundwater. The samples were analyzed for major and minor chemical species, trace metals of environmental concern, stable isotopes of water, and two organic compounds (pentane and isopropanol) that are injected into the deep geothermal reservoir at the power plant. Isopropanol was not detected in any of the groundwaters; confirmed detection of pentane was restricted to one monitoring well near the power plant at a low concentration not indicative of source. Thus, neither organic compound linked geothermal operations to groundwater contamination, though chemical stability and transport velocity questions exist for both tracers. Based on our chemical analysis of geothermal fluid at the power plant and on many similar results from commercially analyzed samples, we could not show that geothermal constituents in the groundwaters we sampled came from the commercially developed reservoir. Our data are consistent with a long-held view that heat moves by conduction from the geothermal reservoir into shallow groundwaters through a zone of low permeability rock that blocks passage of geothermal water. The data do not rule out all impacts of geothermal production on groundwater. Removal of heat during production, for example, may be responsible for minor changes that have occurred in some groundwater over time, such as the decline in temperature of one monitoring well near the power plant. Such indirect impacts are much harder to assess, but point out the need for an ongoing groundwater monitoring program that should include the coastal springs down-gradient from the power plant.
NASA Astrophysics Data System (ADS)
Pujades, Estanislao; Bodeux, Sarah; Orban, Philippe; Dassargues, Alain
2016-04-01
Pumped Storage Hydropower (PSH) plants can be used to manage the production of electrical energy according to the demand. These plants allow storing and generating electricity during low and high demand energy periods, respectively. Nevertheless, PSH plants require a determined topography because two reservoirs located at different heights are needed. At sites where PSH plants cannot be constructed due to topography requirements (flat regions), Underground Pumped Storage Hydropower (UPSH) plants can be used to adjust the electricity production. These plants consist in two reservoirs, the upper one is located at the surface (or at shallow depth) while the lower one is underground (or deeper). Abandoned open pit mines can be used as lower reservoirs but these are rarely isolated. As a consequence, UPSH plants will interact with surrounding aquifers exchanging groundwater. Groundwater seepage will modify hydraulic head inside the underground reservoir affecting global efficiency of the UPSH plant. The influence on the plant efficiency caused by the interaction between UPSH plants and aquifers will depend on the aquifer parameters, underground reservoir properties and pumping and injection characteristics. The alteration of the efficiency produced by the groundwater exchanges, which has not been previously considered, is now studied numerically. A set of numerical simulations are performed to establish in terms of efficiency the effects of groundwater exchanges and the optimum conditions to locate an UPSH plant.
NASA Astrophysics Data System (ADS)
Hayashi, Masaki; Farrow, Christopher R.
2014-12-01
Groundwater recharge sets a constraint on aquifer water balance in the context of water management. Historical data on groundwater and other relevant hydrological processes can be used to understand the effects of climatic variability on recharge, but such data sets are rare. The climate of the Canadian prairies is characterized by large inter-annual and inter-decadal variability in precipitation, which provides opportunities to examine the response of groundwater recharge to changes in meteorological conditions. A decadal study was conducted in a small (250 km2) prairie watershed in Alberta, Canada. Relative magnitude of annual recharge, indicated by water-level rise, was significantly correlated with a combination of growing-season precipitation and snowmelt runoff, which drives depression-focussed infiltration of meltwater. Annual precipitation was greater than vapour flux at an experimental site in some years and smaller in other years. On average precipitation minus vapour flux was 10 mm y-1, which was comparable to the magnitude of watershed-scale groundwater recharge estimated from creek baseflow. Average baseflow showed a distinct shift from a low value (4 mm y-1) in 1982-1995 to a high value (15 mm y-1) in 2003-2013, indicating the sensitivity of groundwater recharge to a decadal-scale variability of meteorological conditions.
van Zelm, Rosalie; Schipper, Aafke M; Rombouts, Michiel; Snepvangers, Judith; Huijbregts, Mark A J
2011-01-15
An operational method to evaluate the environmental impacts associated with groundwater use is currently lacking in life cycle assessment (LCA). This paper outlines a method to calculate characterization factors that address the effects of groundwater extraction on the species richness of terrestrial vegetation. Characterization factors (CF) were derived for The Netherlands and consist of a fate and an effect part. The fate factor equals the change in drawdown due to a change in groundwater extraction and expresses the amount of time required for groundwater replenishment. It was obtained with a grid-specific steady-state groundwater flow model. Effect factors were obtained from groundwater level response curves of potential plant species richness, which was constructed based on the soil moisture requirements of 625 plant species. Depending on the initial groundwater level, effect factors range up to 9.2% loss of species per 10 cm of groundwater level decrease. The total Dutch CF for groundwater extraction depended on the value choices taken and ranged from 0.09 to 0.61 m(2)·yr/m(3). For tap water production, we showed that groundwater extraction can be responsible for up to 32% of the total terrestrial ecosystem damage. With the proposed approach, effects of groundwater extraction on terrestrial ecosystems can be systematically included in LCA.
Carbon footprint assessment of Western Australian Groundwater Recycling Scheme
NASA Astrophysics Data System (ADS)
Simms, Andrew; Hamilton, Stacey; Biswas, Wahidul K.
2017-04-01
This research has determined the carbon footprint or the carbon dioxide equivalent (CO2 eq) of potable water production from a groundwater recycling scheme, consisting of the Beenyup wastewater treatment plant, the Beenyup groundwater replenishment trial plant and the Wanneroo groundwater treatment plant in Western Australia, using a life cycle assessment approach. It was found that the scheme produces 1300 tonnes of CO2 eq per gigalitre (GL) of water produced, which is 933 tonnes of CO2 eq higher than the desalination plant at Binningup in Western Australia powered by 100% renewable energy generated electricity. A Monte Carlo Simulation uncertainty analysis calculated a Coefficient of Variation value of 5.4%, thus confirming the accuracy of the simulation. Electricity input accounts for 83% of the carbon dioxide equivalent produced during the production of potable water. The chosen mitigation strategy was to consider the use of renewable energy to generate electricity for carbon intensive groundwater replenishment trial plant. Depending on the local situation, a maximum of 93% and a minimum of 21% greenhouse gas saving from electricity use can be attained at groundwater replenishment trial plant by replacing grid electricity with renewable electricity. In addition, the consideration of vibrational separation (V-Sep) that helps reduce wastes generation and chemical use resulted in a 4.03 tonne of CO2 eq saving per GL of water produced by the plant.
Carbon footprint assessment of Western Australian Groundwater Recycling Scheme.
Simms, Andrew; Hamilton, Stacey; Biswas, Wahidul K
2017-04-01
This research has determined the carbon footprint or the carbon dioxide equivalent (CO 2 eq) of potable water production from a groundwater recycling scheme, consisting of the Beenyup wastewater treatment plant, the Beenyup groundwater replenishment trial plant and the Wanneroo groundwater treatment plant in Western Australia, using a life cycle assessment approach. It was found that the scheme produces 1300 tonnes of CO 2 eq per gigalitre (GL) of water produced, which is 933 tonnes of CO 2 eq higher than the desalination plant at Binningup in Western Australia powered by 100% renewable energy generated electricity. A Monte Carlo Simulation uncertainty analysis calculated a Coefficient of Variation value of 5.4%, thus confirming the accuracy of the simulation. Electricity input accounts for 83% of the carbon dioxide equivalent produced during the production of potable water. The chosen mitigation strategy was to consider the use of renewable energy to generate electricity for carbon intensive groundwater replenishment trial plant. Depending on the local situation, a maximum of 93% and a minimum of 21% greenhouse gas saving from electricity use can be attained at groundwater replenishment trial plant by replacing grid electricity with renewable electricity. In addition, the consideration of vibrational separation (V-Sep) that helps reduce wastes generation and chemical use resulted in a 4.03 tonne of CO 2 eq saving per GL of water produced by the plant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
This decision document presents the selected Early Interim Remedial Action for the Burning Ground No. 3 site (the site), Longhorn Army Ammunition Plant, in Karnack, Texas. The major components of the selected remedy include: extraction and Treatment of contaminated shallow groundwater using Organic Air Stripping and Off-gas Treatment and Metals precipitation, and Excavation and Treatment of Source Material using Low Temperature Thermal Desorption and Catalytic Oxidation for off-gas.
Gas generation behavior of transuranic waste under disposal conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujisawa, Ryutaro; Kurashige, Tetsunari; Inagaki, Yusuke
1999-07-01
The generation of hydrogen-gas from metallic waste is an important issue for the safety analysis of geological disposal facilities for transuranic (TRU) radioactive waste in Japan. The objective of this study is to clarify the gas-generation behavior of stainless steel and carbon steel in non-oxidizing alkaline synthetic groundwater (pH 12.8 and 10.5) at 30 C simulating geological disposal environments. At pH 12.8, the observed gas-generation rate from stainless steel in the initial period of immersion was 1.0 x 10{sup 2} Nml/m{sup 2}/y and 1.0 x 10 Nml/m{sup 2}/y after 200 days (N represents the standard state of gas at 0more » C and 1 atm). At pH 10.5, gas generation was not observed for 60 days in the initial period. At 60 days, the gas-generation observed was 5.0 x 10 NMl/m{sup 2}/y. After 250 days, the gas-generation rate approaches zero. At pH 12.8, the observed gas generation rate of carbon steel in the initial period of immersion was 1.5 x 10{sup 2} Nml/m{sup 2}/y and the gas generation rate began to decrease after 200 days. After 300 days, it was 25 Nml/m{sup 2}/y. At pH 10.5, the gas generation rate in the initial period was 5.0 x 10{sup 2} Nml/m{sup 2}/y and was 1.0 x 10 Nml/m{sup 2}/y after 200 days.« less
Surface and Ground Water Quality in Köprüören Basin (Kütahya), Turkey
NASA Astrophysics Data System (ADS)
Arslan, Şebnem; Çelik, Mehmet; Erdem Dokuz, Uǧur; Abadi Berhe, Berihu
2014-05-01
In this study, quality of the water resources in Köprüören Basin, located to the west of Kütahya city in western Anatolia, were investigated. The total catchment area of the basin is 275 km2 and it is located upstream of Kütahya and Eskişehir plains. Therefore, besides 6,000 people residing in the basin, a much larger population will be impacted by the quality of surface and groundwater resources. Groundwater occurs under confined conditions in the limestones of Pliocene units. Groundwater flow is from north to south and south to north towards Kocasu stream, which flows to Enne Dam. The surface and ground water quality in this area are negatively affected by the mining activities. In the northern part of the area, there are coal deposits present in Miocene Tunçbilek formation. Ground waters in contact with the coal deposits contain low concentrations of arsenic (up to 30 µg/l). In the southern part, the only silver deposit of Turkey is present, which is developed in metamorphic basement rocks, Early Miocene volcanics and Pliocene units near Gümüşköy (Gümüş means silver, köy means village in Turkish). The amount of silver manufactured annually in this silver plant is huge and comprises about 1% of the World's Silver Production. The wastes, enriched in cyanide, arsenic, stibnite, lead and zinc, are stored in waste pools and there is extensive leakage of these heavy metals from these pools. Therefore, surface waters, soils and plants in the affected areas contain high concentrations of arsenic, stibnite and lead. The As, Sb, Pb and Zn concentrations are up to 733 µg/l, 158 µg/l, 48 µg/l, and 286 µg/l in surface waters (in dry season), 6180 ppm, 410 ppm, 4180 ppm, 9950 ppm in soils and 809 ppm, 399 ppm, 800 ppm, 2217 ppm in plants, respectively. Today, most of the As, Sb, Pb and Zn are absorbed by the soils and only a small part are dissolved in water. However, conditions might change in future leading to desorption of these contaminants. Therefore, necessary precautions should be undertaken immediately to protect the environment in the area.
Poskas, Povilas; Grigaliuniene, Dalia; Narkuniene, Asta; Kilda, Raimondas; Justinavicius, Darius
2016-11-01
There are two RBMK-1500 type graphite moderated reactors at the Ignalina nuclear power plant in Lithuania, and they are under decommissioning now. The graphite cannot be disposed of in a near surface repository, because of large amounts of (14)C. Therefore, disposal of the graphite in a geological repository is a reasonable solution. This study presents evaluation of the (14)C transfer by the groundwater pathway into the geosphere from the irradiated graphite in a generic geological repository in crystalline rocks and demonstration of the role of the different components of the engineered barrier system by performing local sensitivity analysis. The speciation of the released (14)C into organic and inorganic compounds as well as the most recent information on (14)C source term was taken into account. Two alternatives were considered in the analysis: disposal of graphite in containers with encapsulant and without it. It was evaluated that the maximal fractional flux of inorganic (14)C into the geosphere can vary from 10(-11)y(-1) (for non-encapsulated graphite) to 10(-12)y(-1) (for encapsulated graphite) while of organic (14)C it was about 10(-3)y(-1) of its inventory. Such difference demonstrates that investigations on the (14)C inventory and chemical form in which it is released are especially important. The parameter with the highest influence on the maximal flux into the geosphere for inorganic (14)C transfer was the sorption coefficient in the backfill and for organic (14)C transfer - the backfill hydraulic conductivity. Copyright © 2016 Elsevier B.V. All rights reserved.
1998-12-01
1030 1 DEMONSTRATION RESULTS OF PHYTOREMEDIATION OF EXPLOSIVES-CONTAMINATED GROUNDWATER USING CONSTRUCTED WETLANDS AT THE MILAN ARMY...88826V Report No. SFIM-AEC-ET-CR-97059 UTIC QUALITY INSPECTED 4 Demonstration Results of Phytoremediation of Explosives-Contaminated Groundwater...SUBTITLE Demonstration Results of Phytoremediation of Explosives-Contaminated Groundwater Using Constructed Wetlands at the Milan Army Ammunition Plant
Nitrogen fixation and metabolism by groundwater-dependent perennial plants in a hyperarid desert.
Arndt, Stefan K; Kahmen, Ansgar; Arampatsis, Christina; Popp, Marianne; Adams, Mark
2004-11-01
The Central Asian Taklamakan desert is characterized by a hyperarid climate with less than 50 mm annual precipitation but a permanent shallow groundwater table. The perched groundwater (2-16 m) could present a reliable and constant source of nitrogen throughout the growing season and help overcome temporal nitrogen limitations that are common in arid environments. We investigated the importance of groundwater and nitrogen fixation in the nitrogen metabolism of desert plants by assessing the possible forms and availability of soil N and atmospheric N and the seasonal variation in concentration as well as isotopic composition of plant N. Water availability was experimentally modified in the desert foreland through simulated flooding to estimate the contribution of surface water and temporally increased soil moisture for nutrient uptake and plant-water relations. The natural vegetation of the Taklamakan desert is dominated by plants with high foliar nitrogen concentrations (2-3% DM) and leaf nitrate reductase activity (NRA) (0.2-1 micromol NO2- g(-1) FW h(-1)). There is little evidence that nitrogen is a limiting resource as all perennial plants exhibited fast rates of growth. The extremely dry soil conditions preclude all but minor contributions of soil N to total plant N so that groundwater is suggested as the dominant source of N with concentrations of 100 microM NO3-. Flood irrigation had little beneficial effect on nitrogen metabolism and growth, further confirming the dependence on groundwater. Nitrogen fixation was determined by the 15N natural abundance method and was a significant component of the N-requirement of the legume Alhagi, the average contribution of biologically fixed nitrogen in Alhagi was 54.8%. But nitrogen fixing plants had little ecological advantage owing to the more or less constant supply of N available from groundwater. From our data we conclude that the perennial species investigated have adapted to the environmental conditions through development of root systems that access groundwater to satisfy demands for both water and nutrients. This is an ecologically favourable strategy since only groundwater is a predictable and stable resource.
1991-01-01
B~est Availlable COPY AD-A280 438’El UlHI~ll lIMEll l Ulll "U.S. Army Environmental Center 7C, 0* £0 t;,2.’ . .. US AR.Y E[N,’IP r TM,’.F A, CENtIR...Split Groundwater Samples Vol. 6 APPENDIX M - CALCULATIONS FOR PARAMETERS USED IN RISK ASSESSMENT Vol. 7 APPENDIX N - IRIS FILES FOR COMPOUNDS OF...POTENTIAL CONCERN Vol. 7 APPENDIX 0 - HUMAN HEALTH RISK CALCULATIONS Vol. 7 APPENDIX P - INVENTORY OF SITE SPECIES Vol. 7 APPENDIX Q - EXPOSURE
The Oak Ridge Refrigerant Management Program
NASA Technical Reports Server (NTRS)
Kevil, Thomas H.
1995-01-01
For many years, chlorofluorocarbons (CFC's) have been used by the Department of Energy's (DOE) Oak Ridge Y-12 Plant in air conditioning and process refrigeration systems. However, Title 6 of the Clean Air Act Amendments (CAAA) and Executive Order 12843 (Procurement Requirements and Policies for Federal Agencies for Ozone Depleting Substances) signed by President Clinton require, as policy, that all federal agencies maximize their use of safe, alternate refrigerants and minimize, where economically practical, the use of Class 1 refrigerants. Unfortunately, many government facilities and industrial plants have no plan or strategy in place to make this changeover, even though their air conditioning and process refrigeration equipment may not be sustainable after CFC production ends December 31, 1995. The Y-12 Plant in Oak Ridge, Tennessee, has taken an aggressive approach to complying with the CAAA and is working with private industry and other government agencies to solve tough manufacturing and application problems associated with CFC and hydrochlorofluorocarbon (HCFC) alternatives. Y-12 was the first DOE Defense Program (DP) facility to develop a long-range Stratospheric Ozone Protection Plan for refrigerant management for compliance with the CAAA. It was also the first DOE DP facility to complete detailed engineering studies on retrofitting and replacing all air conditioning and process refrigeration equipment to enable operation with alternate refrigerants. The management plan and engineering studies are models for use by other government agencies, manufacturing plants, and private industry. This presentation identifies some of the hidden pitfalls to be encountered in the accelerated phaseout schedule of CFC's and explains how to overcome and prevent these problems. In addition, it outlines the general issues that must be considered when addressing the phase-out of ozone depleting substances and gives some 'lessons learned' by Y-12 from its Refrigerant Management Program. Discussion topics include requirements for developing a refrigerant management plan and establishing priorities for cost-effective compliance with the CAAA, as well as ways in which employees can be empowered to develop a comprehensive refrigerant management plan. The result of this employee empowerment was a cooperative labor-management effort that is beneficial for Y-12, DOE, and the environment.
Regional ground-water evapotranspiration and ground-water budgets, Great Basin, Nevada
Nichols, William D.
2000-01-01
PART A: Ground-water evapotranspiration data from five sites in Nevada and seven sites in Owens Valley, California, were used to develop equations for estimating ground-water evapotranspiration as a function of phreatophyte plant cover or as a function of the depth to ground water. Equations are given for estimating mean daily seasonal and annual ground-water evapotranspiration. The equations that estimate ground-water evapotranspiration as a function of plant cover can be used to estimate regional-scale ground-water evapotranspiration using vegetation indices derived from satellite data for areas where the depth to ground water is poorly known. Equations that estimate ground-water evapotranspiration as a function of the depth to ground water can be used where the depth to ground water is known, but for which information on plant cover is lacking. PART B: Previous ground-water studies estimated groundwater evapotranspiration by phreatophytes and bare soil in Nevada on the basis of results of field studies published in 1912 and 1932. More recent studies of evapotranspiration by rangeland phreatophytes, using micrometeorological methods as discussed in Chapter A of this report, provide new data on which to base estimates of ground-water evapotranspiration. An approach correlating ground-water evapotranspiration with plant cover is used in conjunction with a modified soil-adjusted vegetation index derived from Landsat data to develop a method for estimating the magnitude and distribution of ground-water evapotranspiration at a regional scale. Large areas of phreatophytes near Duckwater and Lockes in Railroad Valley are believed to subsist on ground water discharged from nearby regional springs. Ground-water evapotranspiration by the Duckwater phreatophytes of about 11,500 acre-feet estimated by the method described in this report compares well with measured discharge of about 13,500 acre-feet from the springs near Duckwater. Measured discharge from springs near Lockes was about 2,400 acre-feet; estimated ground-water evapotranspiration using the proposed method was about 2,450 acre-feet. PART C: Previous estimates of ground-water budgets in Nevada were based on methods and data that now are more than 60 years old. Newer methods, data, and technologies were used in the present study to estimate ground-water recharge from precipitation and ground-water discharge by evapotranspiration by phreatophytes for 16 contiguous valleys in eastern Nevada. Annual ground-water recharge to these valleys was estimated to be about 855,000 acre-feet and annual ground-water evapotranspiration was estimated to be about 790,000 acrefeet; both are a little more than two times greater than previous estimates. The imbalance of recharge over evapotranspiration represents recharge that either (1) leaves the area as interbasin flow or (2) is derived from precipitation that falls on terrain within the topographic boundary of the study area but contributes to discharge from hydrologic systems that lie outside these topographic limits. A vegetation index derived from Landsat-satellite data was used to estimate phreatophyte plant cover on the floors of the 16 valleys. The estimated phreatophyte plant cover then was used to estimate annual ground-water evapotranspiration. Detailed estimates of summer, winter, and annual ground-water evapotranspiration for areas with different ranges of phreatophyte plant cover were prepared for each valley. The estimated ground-water discharge from 15 valleys, combined with independent estimates of interbasin ground-water flow into or from a valley, were used to calculate the percentage of recharge derived from precipitation within the topographic boundary of each valley. These percentages then were used to estimate ground-water recharge from precipitation within each valley. Ground-water budgets for all 16 valleys were based on the estimated recharge from precipitation and estimated evapotranspiration. Any imba
Environmental Impact From Accelerator Operation at SLAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, James C
1999-03-22
Environmental impacts from electron accelerator operations at the Stanford Linear Accelerator Center, which is located near populated areas, are illustrated by using examples of three different accelerator facilities: the low power (a few watts) SSRL, the high power (a few kilowatts) PEP-II, and the 50-kW SLC. Three types of major impacts are discussed: (1) off-site doses from skyshine radiation, mainly neutrons, (2) off-site doses from radioactive air emission, mainly {sup 13}N, and (3) radioactivities, mainly {sup 3}H, produced in the groundwater. It was found that, from SSRL operation, the skyshine radiation result in a MEI (Maximum Exposed Individual) of 0.3more » {mu}Sv/y while a conservative calculation using CAP88 showed a MEI of 0.36 {mu}Sv/y from radioactive air releases. The calculated MEI doses due to future PEP-II operation are 30 {mu}Sv/y from skyshine radiation and 2 {mu}Sv/y from air releases. The population doses due to radioactive air emission are 0.5 person-mSv from SSRL and 12 person-mSv from PEP-II. Because of the stronger decrease of skyshine dose as the distance increases, the population dose from skyshine radiation are smaller than that from air release. The third environmental impact, tritium activity produced in the groundwater, was also demonstrated to be acceptable from both the well water measurements and the FLUKA calculations for the worst case of the SLC high-power dump.« less
Monitored Natural Attenuation as a Remediation Strategy for Nuclear Power Plant Applications
NASA Astrophysics Data System (ADS)
Kim, K.; Bushart, S.
2009-12-01
A NRC Information Notice (IN 2006-13) was produced to inform holders of nuclear operating licenses “of the occurrence of radioactive contamination of ground water at multiple facilities due to undetected leakage from facility structures, systems, or components (SSCs) that contain or transport radioactive fluids” so that they could consider actions, as appropriate, to avoid similar problems. To reinforce their commitment to environmental stewardship the nuclear energy industry has committed to improving management of situations that have the potential to lead to the inadvertent release of radioactive fluids. This Industry Groundwater Protection Initiative, finalized in June 2007 as [NEI 07-07], calls for implementation and improvement of on-site groundwater monitoring programs and enhanced communications with stakeholders and regulators about situations related to inadvertent releases. EPRI developed its Groundwater Protection Program to provide the nuclear energy industry with the technical support needed to implement the Industry Groundwater Initiative. An objective of the EPRI Groundwater Protection Program is to provide the nuclear industry with technically sound guidance for implementing and enhancing on-site groundwater monitoring programs. EPRI, in collaboration with the EPRI Groundwater Protection Committee of utility members, developed the EPRI Groundwater Protection Guidelines for Nuclear Power Plants (EPRI Report 1015118, November 2007), which provides site-specific guidance for implementing a technically sound groundwater monitoring program. The guidance applies a graded approach for nuclear plants to tailor a technically effective and cost efficient groundwater monitoring program to the site’s hydrogeology and risk for groundwater contamination. As part of the Groundwater Protection Program, EPRI is also investigating innovative remediation technologies for addressing low-level radioactive contamination in soils and groundwater at nuclear power plant sites. One of these remediation technologies is monitored natural attenuation (MNA), which has been widely used in other industries for the remediation of contaminants in soil and groundwater. Monitored natural attenuation (MNA) is a non-intervention, but not a no-action, groundwater and soil remediation approach that involves monitoring the dilution, dispersion, and decay of contaminants to meet remediation objectives. MNA has been commonly applied at sites where soil and groundwater have been contaminated by volatile organic compounds. This method has also been applied to remediation of radiological contamination at U.S. DOE facilities and decommissioning nuclear power plant sites. The EPRI published report (1016764) provides guidance for implementing MNA at nuclear power plants for remediation of radiological contaminants in groundwater and soil. The goal of the EPRI Groundwater Protection program is to bring together experience and technologies - both from within the nuclear industry and other industries - to support the industry’s commitment to environmental stewardship. Results from the program are being published in an extensive series of reports and software, and are being communicated to members in an annual EPRI Groundwater Protection technical exchange workshop.
Long-term fate of nitrate fertilizer in agricultural soils.
Sebilo, Mathieu; Mayer, Bernhard; Nicolardot, Bernard; Pinay, Gilles; Mariotti, André
2013-11-05
Increasing diffuse nitrate loading of surface waters and groundwater has emerged as a major problem in many agricultural areas of the world, resulting in contamination of drinking water resources in aquifers as well as eutrophication of freshwaters and coastal marine ecosystems. Although empirical correlations between application rates of N fertilizers to agricultural soils and nitrate contamination of adjacent hydrological systems have been demonstrated, the transit times of fertilizer N in the pedosphere-hydrosphere system are poorly understood. We investigated the fate of isotopically labeled nitrogen fertilizers in a three-decade-long in situ tracer experiment that quantified not only fertilizer N uptake by plants and retention in soils, but also determined to which extent and over which time periods fertilizer N stored in soil organic matter is rereleased for either uptake in crops or export into the hydrosphere. We found that 61-65% of the applied fertilizers N were taken up by plants, whereas 12-15% of the labeled fertilizer N were still residing in the soil organic matter more than a quarter century after tracer application. Between 8-12% of the applied fertilizer had leaked toward the hydrosphere during the 30-y observation period. We predict that additional exports of (15)N-labeled nitrate from the tracer application in 1982 toward the hydrosphere will continue for at least another five decades. Therefore, attempts to reduce agricultural nitrate contamination of aquatic systems must consider the long-term legacy of past applications of synthetic fertilizers in agricultural systems and the nitrogen retention capacity of agricultural soils.
Long-term fate of nitrate fertilizer in agricultural soils
Sebilo, Mathieu; Mayer, Bernhard; Nicolardot, Bernard; Pinay, Gilles; Mariotti, André
2013-01-01
Increasing diffuse nitrate loading of surface waters and groundwater has emerged as a major problem in many agricultural areas of the world, resulting in contamination of drinking water resources in aquifers as well as eutrophication of freshwaters and coastal marine ecosystems. Although empirical correlations between application rates of N fertilizers to agricultural soils and nitrate contamination of adjacent hydrological systems have been demonstrated, the transit times of fertilizer N in the pedosphere–hydrosphere system are poorly understood. We investigated the fate of isotopically labeled nitrogen fertilizers in a three–decade-long in situ tracer experiment that quantified not only fertilizer N uptake by plants and retention in soils, but also determined to which extent and over which time periods fertilizer N stored in soil organic matter is rereleased for either uptake in crops or export into the hydrosphere. We found that 61–65% of the applied fertilizers N were taken up by plants, whereas 12–15% of the labeled fertilizer N were still residing in the soil organic matter more than a quarter century after tracer application. Between 8–12% of the applied fertilizer had leaked toward the hydrosphere during the 30-y observation period. We predict that additional exports of 15N-labeled nitrate from the tracer application in 1982 toward the hydrosphere will continue for at least another five decades. Therefore, attempts to reduce agricultural nitrate contamination of aquatic systems must consider the long-term legacy of past applications of synthetic fertilizers in agricultural systems and the nitrogen retention capacity of agricultural soils. PMID:24145428
Extracellular plant DNA in Geneva groundwater and traditional artesian drinking water fountains.
Poté, John; Mavingui, Patrick; Navarro, Elisabeth; Rosselli, Walter; Wildi, Walter; Simonet, Pascal; Vogel, Timothy M
2009-04-01
DNA, as the signature of life, has been extensively studied in a wide range of environments. While DNA analysis has become central to work on natural gene exchange, forensic analyses, soil bioremediation, genetically modified organisms, exobiology, and palaeontology, fundamental questions about DNA resistance to degradation remain. This paper investigated on the presence of plant DNA in groundwater and artesian fountain (groundwater-fed) samples, which relates to the movement and persistence of DNA in the environment. The study was performed in the groundwater and in the fountains, which are considered as a traditional artesian drinking water in Geneva Champagne Basin. DNA from water samples was extracted, analysed and quantified. Plant gene sequences were detected using PCR amplification based on 18S rRNA gene primers specific for eukaryotes. Physicochemical parameters of water samples including temperature, pH, conductivity, organic matter, dissolved organic carbon (DOC) and total organic carbon (TOC) were measured throughout the study. The results revealed that important quantities of plant DNA can be found in the groundwater. PCR amplification based on 18S rDNA, cloning, RFLP analysis and sequencing demonstrated the presence of plant DNA including Vitis rupestris, Vitis berlandieri, Polygonum sp. Soltis, Boopis graminea, and Sinapis alba in the water samples. Our observations support the notion of plant DNA release, long-term persistence and movement in the unsaturated medium as well as in groundwater aquifers.
Interim-status groundwater monitoring plan for the 216-B-63 trench. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweeney, M.D.
1995-06-13
This document outlines the groundwater monitoring plan for interim-status detection-level monitoring of the 216-B-63 Trench. This is a revision of the initial groundwater monitoring plan prepared for Westinghouse Hanford Company (WHC) by Bjornstad and Dudziak (1989). The 216-B-63 Trench, located at the Hanford Site in south-central Washington State, is an open, unlined, earthern trench approximately 1.2 m (4 ft) wide at the bottom, 427 m (1400 ft) long, and 3 m (10 ft) deep that received wastewater containing hazardous waste and radioactive materials from B Plant, located in the 200 East Area. Liquid effluent discharge to the 216-B-63 Trench beganmore » in March 1970 and ceased in February 1992. The trench is now managed by Waste Tank Operations.« less
77 FR 45337 - U.S. Environmental Solutions Toolkit
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-31
... services relevant to (a) groundwater remediation; (b) mercury emissions control from power plants; (c...) Groundwater remediation (b) Mercury emissions control from power plants (c) Emissions control from large...
Tirumalesh, K; Shivanna, K; Sriraman, A K; Tyagi, A K
2010-04-01
This paper summarizes the findings obtained in a monitoring study to understand the sources and processes affecting the quality of shallow and deep groundwater near central air conditioning plant site in Trombay region by making use of physicochemical and biological analyses. All the measured parameters of the groundwaters indicate that the groundwater quality is good and within permissible limits set by (Indian Bureau of Standards 1990). Shallow groundwater is dominantly of Na-HCO(3) type whereas deep groundwater is of Ca-Mg-HCO(3) type. The groundwater chemistry is mainly influenced by dissolution of minerals and base exchange processes. High total dissolved solids in shallow groundwater compared to deeper ones indicate faster circulation of groundwater in deep zone preferably through fissures and fractures whereas groundwater flow is sluggish in shallow zone. The characteristic ionic ratio values and absence of bromide point to the fact that seawater has no influence on groundwater system.
NASA Astrophysics Data System (ADS)
Premrov, Alina; Coxon, Catherine; Hackett, Richard; Richards, Karl
2010-05-01
The biogeochemistry of nitrogen is often connected to carbon and C/N dynamics. The dissolved organic carbon (DOC) electron donor availability can be related to groundwater denitrification (Buss, et al. 2005). Therefore groundwater nitrate attenuation processes are also frequently linked to carbon availability. In recent years the role of over-winter green cover in tillage farming has been studied extensively. Nevertheless further research on the biogeochemical effect of green cover on soil/sediment and groundwater quality is still needed. In particular plant roots are known to exude different types of organic compounds, but their role in groundwater quality has not been investigated in depth. According to Cannavo et al. (2004a,b), in addition to quantity, the quality of water-extractable soil organic matter (e.g. molecular size/weight) has also an important role for microbial activity. In this study we investigate the effect of over-winter green-cover on potential DOC export to shallow groundwater (2 - 5 m below ground level), located on tillage land in Oak Park, Carlow, Ireland. The experiment includes three over-winter green-cover treatments: natural green-cover, mustard and no-cover (sprayed with herbicide following harvest); and is underlain by a sand and gravel aquifer. The site is equipped with 4 shallow piezometers per treatment (total no. of piezometers is 20, including treatments and surrounding piezometers). In addition to monitoring the quantity of DOC concentrations in shallow groundwater under different green cover treatments over time, an attempt was made to evaluate the quality of dissolved organic matter in shallow groundwater using Excitation Emission Fluorescence Matrix (EEFM) profiles obtained from analyses performed on a Varian Fluorescence Spectrophotometer of a single batch of samples (from all 20 installed piezometers in September 2009). To evaluate the quality of dissolved organic matter in shallow groundwater, computation of the humification index (HIX) was performed. Computation of HIX was adapted from the methodology described in Zsolnay (2003) and Cannavo et al. (2004b) using emission spectra from excitation at 245nm, and the HIX was expressed as the H/L ratio. H/L is defined as the ratio between the area of the higher and lower usable quarter of emission spectrum peak [i.e. H (352 - 382nm), L (450 - 480nm)], corresponding to the pools of high (H) and low (L) organic molecule sizes (Cannavo et al., 2004b). Quantitatively the results showed generally low DOC values (< 3mg/L). However, the groundwater DOC concentrations under mustard-cover were higher if compared to two other treatments, which indicated possible mustard plant DOC export to shallow groundwater (Premrov et al., 2009). Qualitative analyses showed an EEFM profile pattern typical for water extractable organic matter. Mean HIX values were generally low (< 2), as expected for shallow groundwater, corresponding to small organic molecules. The HIX levels obtained in this study were also generally comparable to the low HIX values found by Cannavo (2004b) (e.g. HIX of c. 2 at 1- 2 m unsaturated zone depth). Despite slightly higher mean HIX values under mustard-cover, no clear trend was observed in the quality of dissolved organic matter in groundwater in relation to different green cover treatments: i.e. mean groundwater HIX value under mustard treatment (n=4 per treatment) was 1.84, std.err.= 0.19; while the mean value for natural regeneration was 1.62 (std.err.=0.15) and that for the no-cover treatment was 1.60 (std.err.=0.16). The results indicate the importance of further studies using EEFM analysis to assess the quality of dissolved organic matter in shallow groundwater. Acknowledgements This work was funded by a Teagasc Walsh Fellowship and a Trinity College Dublin One-year Postgraduate Student Award. The authors thank Dr. Norman Allot and Dr. Carlos Rocha from Trinity College Dublin for their support and suggestions regarding the Fluorescence Spectrophotometrical analysis. Literature: Buss, S.R., Rivett, M.O., Morgan, P., Bemment, C.D., 2005. Using science to create a better place: Attenuation of nitrate in the sub-surface environment. Science Report SC030155/SR2. Environment Agency, UK. Cannavo, P., Richaume, A., Lafolie, F., 2004a. Fate of nitrogen and carbon in the vadose zone: in situ and laboratory measurements of seasonal variations in aerobic respiratory and denitrifying activities. Soil Biology and Biochemistry 36, p. 463-478. Cannavo, P., Dudal, Y., Boudenne, J.L., Lafolie, F., 2004b. Potential for Fluorescence Spectroscopy To Assess the Quality of Soil Water-Extracted Organic Matter. Soil Science 169, p. 688-696. Premrov, A., Coxon, C.E., Hackett, R., Brennan D., Sills, P. & Richards, K. 2009. Over-winter green cover in a spring barley system: Role in exporting dissolved organic carbon to shallow groundwater and implications for denitrification. 16th Nitrogen Workshop: Connecting different scales of nitrogen use in agriculture. Turin, Italy. (Eds.: Grignani, C., Acutis, M., Zavattaro, L., Bechini, L., Bertora, C., Gallina, P. M. and Sacco, D.), p. 11-12. Zsolnay, Á., 2003. Dissolved organic matter: artefacts, definitions, and functions. Geoderma 113, p. 187-209.
NASA Astrophysics Data System (ADS)
Nelson, Sheldon
2013-04-01
Nitrate Remediation of Soil and Groundwater Using Phytoremediation: Transfer of Nitrogen Containing Compounds from the Subsurface to Surface Vegetation Sheldon Nelson Chevron Energy Technology Company 6001 Bollinger Canyon Road San Ramon, California 94583 snne@chevron.com The basic concept of using a plant-based remedial approach (phytoremediation) for nitrogen containing compounds is the incorporation and transformation of the inorganic nitrogen from the soil and/or groundwater (nitrate, ammonium) into plant biomass, thereby removing the constituent from the subsurface. There is a general preference in many plants for the ammonium nitrogen form during the early growth stage, with the uptake and accumulation of nitrate often increasing as the plant matures. The synthesis process refers to the variety of biochemical mechanisms that use ammonium or nitrate compounds to primarily form plant proteins, and to a lesser extent other nitrogen containing organic compounds. The shallow soil at the former warehouse facility test site is impacted primarily by elevated concentrations of nitrate, with a minimal presence of ammonium. Dissolved nitrate (NO3-) is the primary dissolved nitrogen compound in on-site groundwater, historically reaching concentrations of 1000 mg/L. The initial phases of the project consisted of the installation of approximately 1750 trees, planted in 10-foot centers in the areas impacted by nitrate and ammonia in the shallow soil and groundwater. As of the most recent groundwater analytical data, dissolved nitrate reductions of 40% to 96% have been observed in monitor wells located both within, and immediately downgradient of the planted area. In summary, an evaluation of time series groundwater analytical data from the initial planted groves suggests that the trees are an effective means of transfering nitrogen compounds from the subsurface to overlying vegetation. The mechanism of concentration reduction may be the uptake of residual nitrate from the vadose zone, the direct uptake of dissolved constituent from the upper portion of the saturated zone/capillary fringe, or a combination of these two processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryon, M.G.; Loar, J.M.; Southworth, G.R.
1990-09-01
The Environmental Sciences Division (ESD) investigated two fish kills that occurred on November 21, 1986, and July 9, 1987, in upper East Fork Poplar Creek at the outfall of New Hope Pond (NHP) below the Oak Ridge Y-12 Plant. Investigative procedures included sampling of water at the inlet and outfall of NHP for water quality, examination of operating procedures at the Y-12 Plant and in the biomonitoring program that may have adversely affected the fish populations, review of results of concurrent ambient toxicity tests of the inlet and outfall water of NHP, autopsy investigations of the cause of death ofmore » the stonerollers, and laboratory experimentation to evaluate potential causes. The investigations revealed that the cause of death was bacterial hemorrhagic septicemia caused by Aeromonas hydrophila, which is a stress-mediated disease. The specific stressor responsible for the outbreak of the disease was not identified. Several possible stresses were indicated, including elevated concentrations of mercury and chlorine, excessive electroshocking activity, and elevated levels of the pathogen. Cumulative stress due to the combination of several factors was also suggested. Elevated temperatures and overcrowding may have enhanced the spread of the epizootic but were not the primary causes. The impact on the stoneroller population below NHP was not ecologically significant. 23 refs., 3 figs., 12 tabs.« less
Walraven, N; van Os, B J H; Klaver, G Th; Middelburg, J J; Davies, G R
2014-02-15
In this study the origin, behaviour and fate of anthropogenic Pb in sandy roadside soils were assessed by measuring soil characteristics, Pb isotope composition and content. In 1991 and 2003 samples were taken at different depth intervals at approximately 8 and 75 m from two highways in The Netherlands. The Pb isotope composition of the litter layer ((206)Pb/(207)Pb=1.12-1.14) differs from the deeper soil samples ((206)Pb/(207)Pb=1.20-1.21). Based on a mixing model it is concluded that the samples contain two Pb sources: natural Pb and anthropogenic Pb, the latter mainly derived from gasoline. (206)Pb/(207)Pb ratios demonstrate that the roadside soils were polluted to a depth of ~15 cm. Within this depth interval, anthropogenic Pb content is associated with organic matter. Although Pb pollution only reached a depth of ~15 cm, this does not mean that the topsoils retain all anthropogenic Pb. Due to the low pH and negligible binding capacity of soils at depths >15 cm, anthropogenic Pb migrated towards groundwater after reaching depths of >15 cm. The Pb isotope composition of the groundwater ((206)Pb/(207)Pb=1.135-1.185) establishes that groundwater is polluted with anthropogenic Pb. The contribution of anthropogenic Pb to the groundwater varies between ~30 and 100%. Based on the difference in soil Pb content and Pb isotope compositions over a period of 12 years, downward Pb migration is calculated to vary from 72 ± 95 to 324 ± 279 mg m(-2)y(-1). Assuming that the downward Pb flux is constant over time, it is calculated that 35-90% of the atmospherically delivered Pb has migrated to the groundwater. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinzman, R.L.; Beauchamp, J.J.; Cada, G.F.
1996-04-01
The Bear Creek Valley watershed drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in the Bear Creek Valley resulted in the contamination of Bear Creek and consequent ecological damage. Ecological monitoring by the Biological Monitoring and Abatement Program (BMAP) was initiated in the Bear Creek watershed in May 1984 and continues at present. Studies conducted during the first year provided a detailed characterization of the benthic invertebrate and fish communities in Bear Creek. The initial characterization was followed by a biological monitoring phase in which studies were conducted at reduced intensities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuller, P. Ellies, A.; Handl, J.
1998-07-01
The time dependency of nuclear test {sup 137}Cs in soil, prairie plants, and milk was observed on pastures of seven dairy farms in the 10th Region, Chile, from 1982 to 1997, without any appreciable deposition of radioactive fallout after 1983. Whereas the {sup 137}Cs concentration in the soil decreased at a rate close to that of the radionuclide`s physical decay during the whole observation period, the rate of decrease of the {sup 137}Cs concentration in the prairie plants and in the milk, having been very rapid between 1982--1990, became slower between 1991--1997. The effective half-lives of the concentration in plantsmore » were found to be 5.6 y and 12 y during the first and second observation periods, respectively. Similar half-lives of 5.5 y and 13 y were found for the concentration decline in milk during each period. These data clearly demonstrate a reduction in the long-term decrease of the {sup 137}Cs plant uptake, and consequently in the decrease of the {sup 137}Cs concentration in milk, resulting from a decline of {sup 137}Cs availability for prairie plants in the Hapludand soils over the whole 15-y observation period.« less
NASA Astrophysics Data System (ADS)
Strack, O. D. L.
2009-01-01
We present in this paper a new method for deriving discharge potentials for groundwater flow. Discharge potentials are two-dimensional functions; the discharge potential to be presented represents steady groundwater flow with an elliptical pond of constant rate of extraction or infiltration. The method relies on Wirtinger calculus. We demonstrate that it is possible, in principle, to construct a holomorphic function Ω(z), defined so as to produce the same gradient vector in two dimensions as that obtained from an arbitrary function F(x, y) along any Jordan curve ?. We will call Ω(z) the holomorphic match of F(x, y) along ?. Let the line ? be a closed contour bounding a domain ?, and let F(x, y) be defined in ? and represent the discharge potential for some case of divergent groundwater flow. Holomorphic matching makes it possible to create a function Ω(z), valid outside ?, such that ?Ω equals F(x, y) and the gradient of ?Ω equals that of F(x, y) along ?. (Note that the technique applies also if ? is the domain outside ?.) We can use this technique to construct solutions for cases of flow where there is nonzero divergence (due to infiltration or leakage, for example) in ? but zero divergence outside ?. The special case that the divergence within ? is constant and is zero outside ? is chosen to illustrate the approach and to obtain a solution that, to the knowledge of the author, does not exist in the field of groundwater flow.
Fox, P; Narayanaswamy, K; Genz, A; Drewes, J E
2001-01-01
Water quality transformations during soil aquifer treatment at the Mesa Northwest Water Reclamation Plant (NWWRP) were evaluated by sampling a network of groundwater monitoring wells located within the reclaimed water plume. The Mesa Northwest Water Reclamation Plant has used soil aquifer treatment (SAT) since it began operation in 1990 and the recovery of reclaimed water from the impacted groundwater has been minimal. Groundwater samples obtained represent travel times from several days to greater than five years. Samples were analyzed for a wide range of organic and inorganic constituents. Sulfate was used as a tracer to estimate travel times and define reclaimed water plume movement. Dissolved organic carbon concentrations were reduced to approximately 1 mg/L after 12 to 24 months of soil aquifer treatment with an applied DOC concentration from the NWWRP of 5 to 7 mg/L. The specific ultraviolet absorbance (SUVA) increased during initial soil aquifer treatment on a time-scale of days and then decreased as longer term soil aquifer treatment removed UV absorbing compounds. The trihalomethane formation potential (THMFP) was a function of the dissolved organic carbon concentration and ranged from 50 to 65 micrograms THMFP/mg DOC. Analysis of trace organics revealed that the majority of trace organics were removed as DOC was removed with the exception of organic iodine. The majority of nitrogen was applied as nitrate-nitrogen and the reclaimed water plume had lower nitrate-nitrogen concentrations as compared to the background groundwater. The average dissolved organic carbon concentrations in the reclaimed water plume were less than 50% of the drinking water dissolved organic concentrations from which the reclaimed water originated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maes, G.J.
1993-10-01
This document contains the proceedings of the 62nd Interagency Manufacturing Operations Group (IMOG) Numerical Systems Group. Included are the minutes of the 61st meeting and the agenda for the 62nd meeting. Presentations at the meeting are provided in the appendices to this document. Presentations were: 1992 NSG Annual Report to IMOG Steering Committee; Charter for the IMOG Numerical Systems Group; Y-12 Coordinate Measuring Machine Training Project; IBH NC Controller; Automatically Programmed Metrology Update; Certification of Anvil-5000 for Production Use at the Y-12 Plant; Accord Project; Sandia National Laboratories {open_quotes}Accord{close_quotes}; Demo/Anvil Tool Path Generation 5-Axis; Demo/Video Machine/Robot Animation Dynamics; Demo/Certification ofmore » Anvil Tool Path Generation; Tour of the M-60 Inspection Machine; Distributed Numerical Control Certification; Spline Usage Method; Y-12 NC Engineering Status; and Y-12 Manufacturing CAD Systems.« less
NASA Astrophysics Data System (ADS)
El-Rawy, Mustafa; Zlotnik, Vitaly; Al-Maktoumi, Ali; Al-Raggad, Marwan; Kacimov, Anvar; Abdalla, Osman
2016-04-01
Jordan is an arid country, facing great challenges due to limited water resources. The shortage of water resources constrains economy, especially agriculture that consumes the largest amount of available water (about 53 % of the total demand). According to the Jordan Water Strategy 2008 - 2022, groundwater is twice greater than the recharge rate. Therefore, the government charged the planners to consider treated wastewater (TWW) as a choice in the water resources management and development strategies. In Jordan, there are 31 TWW plants. Among them, As Samra plant serving the two major cities, Amman and Zarqa, is the largest, with projected maximum capacity of 135 Million m3/year. This plant is located upstream of the Zarqa River basin that accepts all TWW discharges. The Zarqa River is considered the most important source of surface water in Jordan and more than 78 % of its current is composed of TWW. The main objectives were to develop a conceptual model for a selected part of the Zarqa River basin, including the As Samrapant, and to provide insights to water resources management in the area using TWW. The groundwater flow model was developed using MODFLOW 2005 and used to assess changes in the aquifer and the Zarqa River under a set of different increments in discharge rates from the As Samra plant and different groundwater pumping rates. The results show that the water table in the study area underwent an average water table decline of 29 m prior to the As Samra plant construction, comparing with the current situation (with annual TWW discharge of 110 Million m3). The analysis of the TWW rate increase to 135 million m3/year (maximum capacity of the As Samra plant) shows that the average groundwater level will rise 0.55 m, compared to the current conditions. We found that the best practices require conjunctive use management of surface- and groundwater. The simulated scenarios highlight the significant role of TWW in augmenting the aquifer storage, improving water availability, and better farming activities in the Zarqa River valley. Keywords: Managed Aquifer Recharge, Treated Wastewater, Zarqa River Basin, Jordan, MODFLOW 2005 Acknowledgments This study was funded by USAID-FABRI, project contract: AID-OAA-TO-11-00049 (project codes: 1001626 - 104 and 1001624-12S-19745). First author acknowledges Sultan Qaboos University, Oman for the postdoctoral fellowship. The authors acknowledge support of the Ministry of Water and Irrigation, Jordan for providing access to the data and field assistance.
Removal of Fast Flowing Nitrogen from Marshes Restored in Sandy Soils
Sparks, Eric L.; Cebrian, Just; Smith, Sara M.
2014-01-01
Groundwater flow rates and nitrate removal capacity from an introduced solution were examined for five marsh restoration designs and unvegetated plots shortly after planting and 1 year post-planting. The restoration site was a sandy beach with a wave-dampening fence 10 m offshore. Simulated groundwater flow into the marsh was introduced at a rate to mimic intense rainfall events. Restoration designs varied in initial planting density and corresponded to 25%, 50%, 75% and 100% of the plot area planted. In general, groundwater flow was slower with increasing planting density and decreased from year 0 to year 1 across all treatments. Nevertheless, removal of nitrate from the introduced solution was similar and low for all restoration designs (3–7%) and similar to the unvegetated plots. We suggest that the low NO3 − removal was due to sandy sediments allowing rapid flow of groundwater through the marsh rhizosphere, thereby decreasing the contact time of the NO3 − with the marsh biota. Our findings demonstrate that knowledge of the groundwater flow regime for restoration projects is essential when nutrient filtration is a target goal of the project. PMID:25353607
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report describes activities associated with conducting dry weather surface water sampling of Upper East Fork Poplar Creek (UEFPC) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. This activity is a portion of the work to be performed at UEFPC Operable Unit (OU) 1 [now known as the UEFPC Characterization Area (CA)], as described in the RCRA Facility Investigation Plan for Group 4 at the Oak- Ridge Y-12 Plant, Oak Ridge, Tennessee and in the Response to Comments and Recommendations on RCRA Facility Investigation Plan for Group 4 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Volume 1,more » Operable Unit 1. Because these documents contained sensitive information, they were labeled as unclassified controlled nuclear information and as such are not readily available for public review. To address this issue the U.S. Department of Energy (DOE) published an unclassified, nonsensitive version of the initial plan, text and appendixes, of this Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Plan in early 1994. These documents describe a program for collecting four rounds of wet weather and dry weather surface water samples and one round of sediment samples from UEFPC. They provide the strategy for the overall sample collection program including dry weather sampling, wet weather sampling, and sediment sampling. Figure 1.1 is a schematic flowchart of the overall sampling strategy and other associated activities. A Quality Assurance Project Plan (QAPJP) was prepared to specifically address four rounds of dry weather surface water sampling and one round of sediment sampling. For a variety of reasons, sediment sampling has not been conducted and has been deferred to the UEFPC CA Remedial Investigation (RI), as has wet weather sampling.« less
Groundwater dependent ecohydrology in a semi-arid oak savanna (Invited)
NASA Astrophysics Data System (ADS)
Miller, G. R.; Rubin, Y.; Baldocchi, D. D.; Chen, X.; Ma, S.
2010-12-01
Groundwater can serve as an important resource for woody vegetation in semi-arid landscapes, particularly when soil water is functionally depleted and unavailable to plants. This study examines the uptake of groundwater by deciduous blue oak trees (Quercus douglasii) in a California oak savanna. Here, we present a suite of direct and indirect measurement techniques, combined with modeling, that demonstrate its occurrence and quantify its rates. The study site is similar to others with shallow-soil ecohydrology: it is underlain by a thin, rocky soil layer followed fractured metavolcanic bedrock. Typical depth to groundwater is approximately 8 m and varies from 7- 10 m, both spatially and temporally. A variety of water storage and flux measurements were collected from 2005 to 2008, including groundwater levels, soil moisture contents, sap flows, and latent heat fluxes. During the dry season, groundwater uptake rates ranged from 4 to 25 mm per month, and approximately 80% of total ET during June, July, and August came from groundwater. Leaf and soil water potentials supported these results, indicating that groundwater uptake was thermodynamically favorable over soil water uptake for key portions of the growing season. Sap flow rates suggest differential access to groundwater by trees of varying size classes. Dynamic groundwater-soil-plant-atmosphere modeling has shown that in order to achieve these uptake rates, approximately 20% of roots must be exposed to groundwater. Modeled evapotranspiration rates drop dramatically during the late summer when this connection is severed (Figure 1). These findings strongly suggest that blue oaks should be considered obligate phreatophytes, and that groundwater reserves provide a buffer to rapid changes in their hydro-climate, if these assets are not otherwise depleted by prolonged drought or human consumption. While groundwater uptake may provide for short-term protection, it should be viewed not as a mechanism for continued plant growth. It allows the woody vegetation to subsist during the summer, but not to flourish. Figure 1: Modeled evapotranspiration is depressed during the summer dry season, as soil moisture is depleted. However, when plant access to groundwater is removed, evapotranspiration rates drop to near zero levels during the late summer.
Steward, David R; Bruss, Paul J; Yang, Xiaoying; Staggenborg, Scott A; Welch, Stephen M; Apley, Michael D
2013-09-10
Groundwater provides a reliable tap to sustain agricultural production, yet persistent aquifer depletion threatens future sustainability. The High Plains Aquifer supplies 30% of the nation's irrigated groundwater, and the Kansas portion supports the congressional district with the highest market value for agriculture in the nation. We project groundwater declines to assess when the study area might run out of water, and comprehensively forecast the impacts of reduced pumping on corn and cattle production. So far, 30% of the groundwater has been pumped and another 39% will be depleted over the next 50 y given existing trends. Recharge supplies 15% of current pumping and would take an average of 500-1,300 y to completely refill a depleted aquifer. Significant declines in the region's pumping rates will occur over the next 15-20 y given current trends, yet irrigated agricultural production might increase through 2040 because of projected increases in water use efficiencies in corn production. Water use reductions of 20% today would cut agricultural production to the levels of 15-20 y ago, the time of peak agricultural production would extend to the 2070s, and production beyond 2070 would significantly exceed that projected without reduced pumping. Scenarios evaluate incremental reductions of current pumping by 20-80%, the latter rate approaching natural recharge. Findings substantiate that saving more water today would result in increased net production due to projected future increases in crop water use efficiencies. Society has an opportunity now to make changes with tremendous implications for future sustainability and livability.
Steward, David R.; Bruss, Paul J.; Yang, Xiaoying; Staggenborg, Scott A.; Welch, Stephen M.; Apley, Michael D.
2013-01-01
Groundwater provides a reliable tap to sustain agricultural production, yet persistent aquifer depletion threatens future sustainability. The High Plains Aquifer supplies 30% of the nation’s irrigated groundwater, and the Kansas portion supports the congressional district with the highest market value for agriculture in the nation. We project groundwater declines to assess when the study area might run out of water, and comprehensively forecast the impacts of reduced pumping on corn and cattle production. So far, 30% of the groundwater has been pumped and another 39% will be depleted over the next 50 y given existing trends. Recharge supplies 15% of current pumping and would take an average of 500–1,300 y to completely refill a depleted aquifer. Significant declines in the region’s pumping rates will occur over the next 15–20 y given current trends, yet irrigated agricultural production might increase through 2040 because of projected increases in water use efficiencies in corn production. Water use reductions of 20% today would cut agricultural production to the levels of 15–20 y ago, the time of peak agricultural production would extend to the 2070s, and production beyond 2070 would significantly exceed that projected without reduced pumping. Scenarios evaluate incremental reductions of current pumping by 20–80%, the latter rate approaching natural recharge. Findings substantiate that saving more water today would result in increased net production due to projected future increases in crop water use efficiencies. Society has an opportunity now to make changes with tremendous implications for future sustainability and livability. PMID:23980153
Stabilization and Solidification of Nitric Acid Effluent Waste at Y-12
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Dileep; Lorenzo-Martin, Cinta
Consolidated Nuclear Security, LLC (CNS) at the Y-12 plant is investigating approaches for the treatment (stabilization and solidification) of a nitric acid waste effluent that contains uranium. Because the pH of the waste stream is 1-2, it is a difficult waste stream to treat and stabilize by a standard cement-based process. Alternative waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the nitric acid effluent wastes.
Christensen, Allen H.
1999-01-01
The U.S. Air Force Plant 42 (Plant 42) which is in the Antelope Valley about 1.5 miles northeast of Palmdale and 3 miles southeast of Lancaster in Los Angeles County. Historically, ground water has been the primary source of water owing, in large part, to the scarcity of surface water in the region. Since 1972, supplemental surface water has been imported from the California Water Project to help meet the demand for water. Despite the importation of surface water, ground-water withdrawal for both municipal and agricultural uses is affecting ground-water levels in the vicinity of Plant 42. To better understand the effects of ground-water withdrawal on ground-water levels and movement in the area, the U.S. Geological Survey (USGS), in cooperation with the U.S. Air Force, constructed a generalized water-table-contour map of the aquifer system underlying Plant 42 and the surrounding area.
Chen, Yapeng; Chen, Yaning; Xu, Changchun; Li, Weihong
2016-09-01
Knowledge of the water sources used by desert trees and shrubs is critical for understanding how they function and respond to groundwater decline and predicting the influence of water table changes on riparian plants. In this paper, we test whether increased depth to groundwater changed the water uptake pattern of desert riparian species and whether competition for water resources between trees and shrubs became more intense with a groundwater depth gradient. The water sources used by plants were calculated using the IsoSource model, and the results suggested differences in water uptake patterns with varying groundwater depths. At the river bank (groundwater depth = 1.8 m), Populus euphratica and Tamarix ramosissima both used a mixture of river water, groundwater, and deeper soil water (>75 cm). When groundwater depth was 3.8 m, trees and shrubs both depended predominantly on soil water stored at 150-375 cm depth. When the groundwater depth was 7.2 m, plant species switched to predominantly use both groundwater and deeper soil water (>375 cm). However, differences in water acquisition patterns between species were not found. The proportional similarity index (PSI) of proportional contribution to water uptake of different water resources between P. euphratica and T. ramosissima was calculated, and results showed that there was intense water resource competition between P. euphratica and T. ramosissima when grown at shallow groundwater depth (not more than 3.8 m), and the competition weakened when the groundwater depth increased to 7.2 m.
Draft Protocol for Controlling Contaminated Groundwater by Phytostabilization
1999-11-05
leachates .” (U. S. Environmental Protection Agency, 1999). Phytoremediation has been investigated extensively by research and small-scale...Section Page 1 Introduction 1 1.1 Phytoremediation Definitions 1 1.2 Focus 3 1.3 Contents and Use of this Protocol 3 2 Phytostabilization 5 2.1...remediate several types of contaminated sites. The new concepts that utilize growing plants are known collectively as phytoremediation . One or more
Calendar years 1989 and 1990 monitoring well installation program Y-12 plant, Oak Ridge, Tennessee
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-10-01
This report documents the well-construction activities at the Y-12 Plant in Oak Ridge, Tennessee during 1989 and 1990. The well- construction program consisted of installing seventy-five monitoring wells. Geologists from ERCE (formally the Engineering, Design and Geosciences Group) and Martin Marietta Energy Systems (Energy Systems), supervised and documented well-construction activities and monitored for health and safety concerns. Sixty-seven monitoring wells were installed under the supervision of an ERCE geologist from March 1989 to September 1990. Beginning in September 1990, Energy Systems supervised drilling activities for eight monitoring wells, the last of which was completed in December 1990. 9 refs., 3more » figs., 2 tabs.« less
Mahara, Y; Kubota, T; Wakayama, R; Nakano-Ohta, T; Nakamura, T
2007-11-15
We investigated the role of natural organic matter in cadmium mobility in soil environments. We collected the dissolved organic matter from two different types of natural waters: pond surface water, which is oxic, and deep anoxic groundwater. The collected organic matter was fractionated into four groups with molecular weights (unit: Da (Daltons)) of <1 x 10(3), 1-10 x 10(3), 10-100 x 10(3), and >100 x 10(3). The organic matter source was land plants, based on the carbon isotope ratios (delta(13)C/(12)C). The organic matter in surface water originated from presently growing land plants, based on (14)C dating, but the organic matter in deep groundwater originated from land plants that grew approximately 4000 years ago. However, some carbon was supplied by the high-molecular-weight fraction of humic substances in soil or sediments. Cadmium interacted in a system of siliceous sand, fractionated organic matter, and water. The lowest molecular weight fraction of organic matter (<1 x 10(3)) bound more cadmium than did the higher molecular weight fractions. Organic matter in deep groundwater was more strongly bound to cadmium than was organic matter in surface water. The binding behaviours of organic matter with cadmium depended on concentration, age, molecular weight, and degradation conditions of the organic matter in natural waters. Consequently, the dissolved, low-molecular-weight fraction in organic matter strongly influences cadmium migration and mobility in the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Best, E.P.; Sprecher, S.L.; Fredrickson, H.L.
1997-11-01
As an alternative to other groundwater extraction and surface treatment techniques, phytoremediation systems are currently being evaluated by civilian and military administrators for their ability to enhance removal of potentially toxic or mutagenic munitions materiel such as 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5- trinitro-1,3,5-triazine (RDX), and their degradation products. To guide selection of aquatic plants for use in demonstration phytoremediation lagoons at the Milan Army Ammunition Plant (MAAP), Milan, TN, this study evaluated the relative ability of ten species to decrease levels of TNT and RDX explosives and related nitrobodies in contaminated MAAP groundwater.
NASA Astrophysics Data System (ADS)
Valois, Remi; Vouillamoz, Jean-Michel; Lun, Sambo; Arnout, Ludovic
2018-06-01
Lack of access to water is the primary constraint to development in rural areas of northwestern Cambodia. Communities lack water for both domestic and irrigation purposes. To provide access to drinking water, governmental and aid agencies have focused on drilling shallow boreholes but they have not had a clear understanding of groundwater potential. The goal of this study has been to improve hydrogeological knowledge of two districts in Oddar Meanchey Province by analyzing borehole lithologs and geophysical data sets. The comparison of 55 time-domain electromagnetic (TEM) soundings and lithologs, as well as 66 magnetic-resonance soundings (MRS) with TEM soundings, allows a better understanding of the links between geology, electrical resistivity and hydrogeological parameters such as the specific yield ( S y) derived from MRS. The main findings are that water inflow and S y are more related to electrical resistivity and elevation than to the litholog description. Indeed, conductive media are associated with a null value of S y, whereas resistive rocks at low elevation are always linked to strictly positive S y. A new methodology was developed to create maps of groundwater reserves based on 612 TEM soundings and the observed relationship between resistivity and S y. TEM soundings were inverted using a quasi-3D modeling approach called `spatially constrained inversion'. Such maps will, no doubt, be very useful for borehole siting and in the economic development of the province because they clearly distinguish areas of high groundwater-reserves potential from areas that lack reserves.
1998-12-01
10301 ~>& DEMONSTRATION RESULTS OF PHYTOREMEDIATION OF EXPLOSIVES-CONTAMINATED GROUNDWATER USING CONSTRUCTED WETLANDS AT THE MILAN ARMY...Demonstration Results of Phytoremediation of Explosives-Contaminated Groundwater Using Constructed Wetlands At The Milan Army Ammunition Plant...December 1998 2. REPORT TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Demonstration Results of Phytoremediation of Explosives
Global separation of plant transpiration from groundwater and streamflow
Jaivime Evaristo; Scott Jasechko; Jeffrey J. McDonnell
2015-01-01
Current land surface models assume that groundwater, streamflow and plant transpiration are all sourced and mediated by the same well mixed water reservoirâthe soil. However, recent work in Oregon and Mexico has shown evidence of ecohydrological separation, whereby different subsurface compartmentalized pools of water supply either plant transpiration fluxes or the...
NASA Astrophysics Data System (ADS)
Hassan, S. M. Tanvir; Lubczynski, Maciek W.; Niswonger, Richard G.; Su, Zhongbo
2014-09-01
The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface-groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic model (IHM) GSFLOW (Groundwater and Surface water FLOW) was calibrated and post-audited using 18 years of daily groundwater head and stream discharge data to evaluate the surface-groundwater interactions in semi-arid, ∼80 km2 granitic Sardon hilly catchment in Spain characterized by shallow water table conditions, relatively low storage, dense drainage networks and frequent, high intensity rainfall. The following hydrological observations for the Sardon Catchment, and more generally for HRSs were made: (i) significant bi-directional vertical flows occur between surface water and groundwater throughout the HRSs; (ii) relatively large groundwater recharge represents 16% of precipitation (P, 562 mm.y-1) and large groundwater exfiltration (∼11% of P) results in short groundwater flow paths due to a dense network of streams, low permeability and hilly topographic relief; deep, long groundwater flow paths constitute a smaller component of the water budget (∼1% of P); quite high groundwater evapotranspiration (∼5% of P and ∼7% of total evapotranspiration); low permeability and shallow soils are the main reasons for relatively large components of Hortonian flow and interflow (15% and 11% of P, respectively); (iii) the majority of drainage from the catchment leaves as surface water; (iv) declining 18 years trend (4.44 mm.y-1) of groundwater storage; and (v) large spatio-temporal variability of water fluxes. This IHM study of HRSs provides greater understanding of these relatively unknown hydrologic systems that are widespread throughout the world and are important for water resources in many regions.
Estimating pumping time and ground-water withdrawals using energy- consumption data
Hurr, R.T.; Litke, D.W.
1989-01-01
Evaluation of the hydrology of an aquifer requires knowledge about the volume of groundwater in storage and also about the volume of groundwater withdrawals. Totalizer flow meters may be installed at pumping plants to measure withdrawals; however, it generally is impractical to equip all pumping plants in an area with meters. A viable alternative is the use of rate-time methods. Rate-time methods may be used at individual pumping plants to decrease the data collection necessary for determining withdrawals. At sites where pumping-time measurement devices are not installed, pumping time may be determined on the basis of energy consumption and power demand. At pumping plants where energy consumption is metered, data acquired by reading of meters is used to estimate pumping time. Care needs to be taken to read these meters correctly. At pumping plants powered by electricity, the calculations need to be modified if transformers are present. At pumping plants powered by natural gas, the effects of the pressure-correction factor need to be included in the calculations. At pumping plants powered by gasoline, diesel oil, or liquid petroleum gas, the geometry of storage tanks needs to be analyzed as part of the calculations. The relation between power demand and pumping rate at a pumping plant can be described through the use of the power-consumption coefficient. Where equipment and hydrologic conditions are stable, this coefficient can be applied to total energy consumption at a site to estimate total groundwater withdrawals. Random sampling of power consumption coefficients can be used to estimate area-wide groundwater withdrawal. (USGS)
Zhou, Xiaobo; Helmers, Matthew J; Asbjornsen, Heidi; Kolka, Randy; Tomer, Mark D
2010-01-01
Many croplands planted to perennial grasses under the Conservation Reserve Program are being returned to crop production, and with potential consequences for water quality. The objective of this study was to quantify the impact of grassland-to-cropland conversion on nitrate-nitrogen (NO3-N) concentrations in soil and shallow groundwater and to assess the potential for perennial filter strips (PFS) to mitigate increases in NO3-N levels. The study, conducted at the Neal Smith National Wildlife Refuge (NSNWR) in central Iowa, consisted of a balanced incomplete block design with 12 watersheds and four watershed-scale treatments having different proportions and topographic positions of PFS planted in native prairie grasses: 100% rowcrop, 10% PFS (toeslope position), 10% PFS (distributed on toe and as contour strips), and 20 PFS (distributed on toe and as contour strips). All treatments were established in fall 2006 on watersheds that were under bromegrass (Bromus L.) cover for at least 10 yr. Nonperennial areas were maintained under a no-till 2-yr corn (Zea mays L.)--soybean [Glycine max. (L.) Merr.] rotation since spring 2007. Suction lysimeter and shallow groundwater wells located at upslope and toeslope positions were sampled monthly during the growing season to determine NO3-N concentration from 2005 to 2008. The results indicated significant increases in NO3-N concentration in soil and groundwater following grassland-to-cropland conversion. Nitrate-nitrogen levels in the vadose zone and groundwater under PFS were lower compared with 100% cropland, with the most significant differences occurring at the toeslope position. During the years following conversion, PFS mitigated increases in subsurface nitrate, but long-term monitoring is needed to observe and understand the full response to land-use conversion.
Moreno Merino, Luis; Imbern Fernández, Núria; Durán Valsero, Juan José; Aguilera, Héctor
2018-01-15
Concentrating solar power plants (CSPPs) are considered to be particularly respectful of the environment but under Mediterranean climate where surface water scarcity is a key issue, these types of electrical plants usually require groundwater for their cooling towers and use the same aquifers to discharge their salinized effluents. This study analyses de Spanish case, where fifteen out of the fifty active CSPPs use groundwater directly, four discharge their effluents to infiltration ponds and forty-three to surface watercourses most of which recharge underlying aquifers. The volume of water withdrawn and discharged varies greatly among similar plants. The salinity of the effluent exceeds 2.5 times that of the withdrawn water in half of the plants and it may alter the current or potential use of the water turning it unsuitable for drinking or even for irrigation. There is a risk that the impact on groundwater can be extended to related ecosystems such as wetlands. This can become a serious environmental problem, but specific impacts on groundwater are often overlooked in environmental impact assessments of CSPPs and no research on the matter has been reported so far. Other legal and political implications of CSPPs are further discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, R.W.; Jones, S.A.; Kuniansky, E.L.; Harvey, G.; Lollar, B.S.; Slater, G.F.
2000-01-01
Phytoremediation uses the natural ability of plants to degrade contaminants in groundwater. A field demonstration designed to remediate aerobic shallow groundwater contaminated with trichloroethene began in April 1996 with the planting of cottonwood trees, a short-rotation woody crop, over an approximately 0.2-ha area at the Naval Air Station, Fort Worth, Texas. The project was developed to demonstrate capture of contaminated groundwater and degradation of contaminants by phreatophytes. Analyses from samples of groundwater collected from July 1997 to June 1998 indicate that tree roots have the potential to create anaerobic conditions in the groundwater that will facilitate degradation of trichloroethene by microbially mediated reductive dechlorination. Organic matter from root exudates and decay of tree roots probably stimulate microbial activity, consuming dissolved oxygen. Dissolved oxygen concentrations, which varied across the site, were smallest near a mature cottonwood tree (about 20 years of age and 60 meters southwest of the cottonwood plantings) where degradation products of trichloroethene were measured. Oxidation of organic matter is the primary microbially mediated reaction occurring in the groundwater beneath the planted trees whereas near the mature cottonwood tree, data indicate that methanogenesis is the most probable reaction occurring. Reductive dechlorination in groundwater either is not occurring or is not a primary process away from the mature tree. Carbon-13 isotope values for trichloroethene are nearly identical at locations away from the mature tree, further confirming that dechlorination is not occurring at the site.
Recapitalizing Nuclear Weapons (Walker Paper, Number 8)
2007-08-01
Sandia National Laboratories, with cam- puses in California and New Mexico), four production plants (the Pantex Plant in Amarillo, TX; the Y-12 Plant in...Oak Ridge, TN; the Kansas City Plant in Kansas City, MO; and the Savan- nah River Site in Savannah River, SC), and the Nevada Test Site. The fall...this infrastructure (e.g., closures of Rocky Flats, Mound, and Pinellas facilities). At the same time, investments in the remaining supporting
Distribution of uranium and thorium in dolomitic gravel fill and shale saprolite
Phillips, D. H.; Watson, D. B.
2014-12-05
The objectives of this study were to examine (1) the distribution of U and Th in dolomitic gravel fill and shale saprolite, and (2) the removal of uranium from acidic groundwater by dolomitic gravel through precipitation with amorphous basaluminite at the U.S. DOE Oak Ridge Integrated Field Research Challenge (ORIFRC) field site west of the Oak Ridge Y-12 National Security Complex in East Tennessee. Media reactivity and sustainability are a technical concern with the deployment of any subsurface reactive media. Because the gravel was placed in the subsurface and exposed to contaminated groundwater for over 20 years, it provided amore » unique opportunity to study the solid and water phase geochemical conditions within the media after this length of exposure. This study illustrates that dolomite gravel can remove U from acidic contaminated groundwater with high levels of Al 3+, Ca 2+, NO 3-, and SO 4 2- over the long term. As the groundwater flows through high pH carbonate gravel, U containing amorphous basaluminite precipitates as the pH increases. This is due to an increase in groundwater pH from 3.2 to ~6.5 as it comes in contact with the gravel. Therefore, carbonate gravel could be considered as a possible treatment medium for removal and sequestration ofUand otherpHsensitive metals from acidic contaminated groundwater. Thorium concentrations are also high in the carbonate gravel. Thorium generally shows an inverse relationship with U from the surface down into the deeper saprolite. Barite precipitated in the shallow saprolite directly below the dolomitic gravel from barium present in the acidic contaminated groundwater.« less
Darin J. Law; Deborah M. Finch
2011-01-01
Plant water use in drylands can be complex due to variation in hydrologic, abiotic and biotic factors, particularly near ephemeral or intermittent streams. Plant use of groundwater may be important but is usually uncertain. Disturbances like fire contribute to complex spatiotemporal heterogeneity. Improved understanding of how such hydrologic, abiotic, and biotic...
NASA Astrophysics Data System (ADS)
Booth, E.; Steven, L. I.; Bart, D.
2017-12-01
Calcareous fens are unique and often isolated ecosystems of high conservation value worldwide because they provide habitat for many rare plant and animal species. Their identity is inextricably linked to an absolute dependence on a consistent discharge of groundwater that saturates the near surface for most of the growing season leading to the accumulation of carbon as peat or tufa and sequestration of nutrients. The stresses resulting from consistent saturation and low-nutrient availability result in high native plant diversity including very high rare species richness compared to other ecosystems. Decreases in the saturation stress by reduced groundwater inputs (e.g., from nearby pumping) can result in losses of native diversity, decreases in rare-species abundance, and increased invasion by non-native species. As such, fen ecosystems are particularly susceptible to changes in groundwater conditions including reduction in water levels due to nearby groundwater pumping. Trajectories of degradation are complex due to feedbacks between loss of soil organic carbon, changes in soil properties, and plant water use. We present a model of an archetype fen that couples a hydrological niche model with a variably-saturated groundwater flow model to predict changes in vegetation composition in response to different groundwater drawdown scenarios (step change, declining trend, and periodic drawdown during dry periods). The model also includes feedbacks among vegetation composition, plant water use, and soil properties. The hydrological niche models (using surface soil moisture as predictor) and relationships between vegetation composition, plant water use (via stomatal conductance and leaf-area index), and soil hydraulic properties (van Genuchten parameters) were determined based on data collected from six fens in Wisconsin under various states of degradation. Results reveal a complex response to drawdown and provide insight into other ecosystems with linkages between the hydrologic regime, plants, water use, and soil properties.
NASA Astrophysics Data System (ADS)
Afrifa, George Yamoah; Sakyi, Patrick Asamoah; Chegbeleh, Larry Pax
2017-07-01
Sustainable development and the management of groundwater resources for optimal socio-economic development constitutes one of the most effective strategies for mitigating the effects of climate change in rural areas where poverty is a critical cause of environmental damage. This research assessed groundwater recharge and its spatial and temporal variations in Gushiegu District in the Northern Region of Ghana, where groundwater is the main source of water supply for most uses. Isotopic data of precipitation and groundwater were used to infer the origin of groundwater and the possible relationship between groundwater and surface water in the partially metamorphosed sedimentary aquifer system in the study area. Though the data do not significantly establish strong relation between groundwater and surface water, the study suggests that groundwater in the area is of meteoric origin. However, the data also indicate significant enrichment of the heavy isotopes (18O and 2H) in groundwater relative to rainwater in the area. The Chloride Mass Balance (CMB) and Water Table Fluctuations (WTF) techniques were used to quantitatively estimate the groundwater recharge in the area. The results suggest groundwater recharge in a range of 13.9 mm/y - 218 mm/y, with an average of 89 mm/yr, representing about 1.4%-21.8% (average 8.9%) of the annual precipitation in the area. There is no clearly defined trend in the temporal variations of groundwater recharge in the area, but the spatial variations are discussed in relation to the underlying lithologies. The results suggest that the fraction of precipitation that reaches the saturated zone as groundwater recharge is largely controlled by the vertical hydraulic conductivities of the material of the unsaturated zone. The vertical hydraulic conductivity coupled with humidity variations in the area modulates the vertical infiltration and percolation of precipitation.
Trost, Jared J.; Kiesling, Richard L.; Erickson, Melinda L.; Rose, Peter J.; Elliott, Sarah M.
2013-01-01
A plot-scale field experiment on a sandy outwash plain in Anoka County in east-central Minnesota was used to investigate the fate and transport of two antibiotics, sulfamethazine (SMZ) and sulfamethoxazole (SMX), and a hormone, 17-beta-estradiol (17BE), in four land-cover types: bare soil, corn, hay, and prairie. The SMZ, SMX, and 17BE were applied to the surface of five plots of each land-cover type in May 2008 and again in April 2009. The cumulative application rate was 16.8 milligrams per square meter (mg/m2) for each antibiotic and 0.6 mg/m2 for 17BE. Concentrations of each chemical in plant-tissue, soil, soil-water, and groundwater samples were determined by using enzyme-linked immunosorbent assay (ELISA) kits. Soil-water and groundwater sampling events were scheduled to capture the transport of SMZ, SMX, and 17BE during two growing seasons. Soil and plant-tissue sampling events were scheduled to identify the fate of the parent chemicals of SMZ, SMX, and 17BE in these matrices after two chemical applications. Areal concentrations (mg/m2) of SMZ and SMX in soil tended to decrease in prairie plots in the 8 weeks after the second chemical application, from April 2009 to June 2009, but not in other land-cover types. During these same 8 weeks, prairie plots produced more aboveground biomass and had extracted more water from the upper 125 centimeters of the soil profile compared to all other land-cover types. Areal concentrations of SMZ and SMX in prairie plant tissue did not explain the temporal changes in areal concentrations of these chemicals in soil. The areal concentrations of SMZ and SMX in the aboveground plant tissues in June 2009 and August 2009 were much lower, generally two to three orders of magnitude, than the areal concentrations of these chemicals in soil. Pooling all treatment plot data, the median areal concentration of SMZ and SMX in plant tissues was 0.01 and 0.10 percent of the applied chemical mass compared to 22 and 12 percent in soil, respectively. Furthermore, areal concentrations of SMZ and SMX in plant-tissue samples were variable, and did not differ significantly between control and treatment plots within each land-cover type. SMZ was detected in 23 percent of soil-water samples and in 16 percent of groundwater samples collected between October 2008 and October 2009 in treatment plots, indicating that surface-applied SMZ leached below the rooting zone and reached groundwater. SMX was detected in only 1 percent of soil-water and groundwater samples during this same time period. In contrast to the antibiotics, 17BE was not reliably detected in soil samples. Additionally, ELISA-determined 17BE concentrations in plant-tissue, soil-water, and groundwater samples indicated the presence of chemicals that were not applied as part of this experiment [17BE from an external source or other chemical(s) that interfered with the 17BE ELISA kits].
PHYTOREMEDIATION: USING PLANTS TO CLEAN UP CONTAMINATED SOIL, GROUNDWATER, AND WASTEWATER
Phytoremediation is an emerging cleanup technology for contaminated soils, groundwater, and wastewater that is both low-tech and low-cost. The cleanup technology is defined as the use of green plants to remove, contain, or render harmless such environmental contaminants as heavy ...
Long-Term Capacity of Plant Mulch to Remediate Trichloroethylene in Groundwater
Passive reactive barriers are commonly used to treat groundwater that is contaminated with chlorinated solvents such as trichloroethylene (TCE). A number of passive reactive barriers have been constructed with plant mulch as the reactive medium. The TCE is removed in these barr...
Leenheer, J.A.; Hsu, J.; Barber, L.B.
2001-01-01
In January 1999, wastewater influent and effluent from the pretreatment plant at the Stringfellow hazardous waste disposal site were sampled along with groundwater at six locations along the groundwater contaminant plume. The objectives of this sampling and study were to identify at the compound class level the unidentified 40-60% of wastewater organic contaminants, and to determine what organic compound classes were being removed by the wastewater pretreatment plant, and what organic compound classes persisted during subsurface waste migration. The unidentified organic wastes are primarily chlorinated aromatic sulfonic acids derived from wastes from DDT manufacture. Trace amounts of EDTA and NTA organic complexing agents were discovered along with carboxylate metabolites of the common alkylphenolpolyethoxylate plasticizers and nonionic surfactants. The wastewater pretreatment plant removed most of the aromatic chlorinated sulfonic acids that have hydrophobic neutral properties, but the p-chlorobenzenesulfonic acid which is the primary waste constituent passed through the pretreatment plant and was discharged in the treated wastewaters transported to an industrial sewer. During migration in groundwater, p-chlorobenzenesulfonic acid is removed by natural remediation processes. Wastewater organic contaminants have decreased 3- to 45-fold in the groundwater from 1985 to 1999 as a result of site remediation and natural remediation processes. The chlorinated aromatic sulfonic acids with hydrophobic neutral properties persist and have migrated into groundwater that underlies the adjacent residential community. Copyright ?? 2001 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-08-10
This Proposed Plan addresses the remediation of groundwater contamination at the chemical plant area of the Weldon Spring site in Weldon Spring, Missouri. The site is located approximately 48 km (30 mi) west of St. Louis in St. Charles County . Remedial activities at the site will be conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The U.S. Department of Energy (DOE), in conjunction with the U.S. Department of the Army (DA), conducted a joint remedial investigation/feasibility study (RI/FS) to allow for a comprehensive evaluation of groundwater conditions at the Weldon Spring chemical plant areamore » and the Weldon Spring ordnance works area, which is an Army site adjacent to the chemical plant area. Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. That is, the analysis conducted and presented in the RVFS reports included an evaluation of environmental impacts that is comparable to that performed under NEPA. This Proposed Plan summarizes information about chemical plant area groundwater that is presented in the following documents: (1) The Remedial Investigation (RI), which presents information on the nature and extent of contamination; (2) The Baseline Risk Assessment (BRA), which evaluates impacts to human health and the environment that could occur if no cleanup action of the groundwater were taken (DOE and DA 1997a); and (3) The Feasibility Study (FS) and the Supplemental FS, which develop and evaluate remedial action alternatives for groundwater remediation.« less
EVALUATION OF SULFATE-REDUCING BACTERIA TO PRECIPITATE MERCURY FROM CONTAMINATED GROUNDWATER
Several regions in the Republic of Kazakhstan are contaminated with mercury as a result of releases from industrial plants. Operations at an old chemical plant, "Khimprom", which produced chlorine and alkali in the 1970s - 1990s, resulted in significant pollution of groundwater ...
Occurrence of greenhouse gases in the aquifers of the Walloon Region (Belgium).
Jurado, Anna; Borges, Alberto V; Pujades, Estanislao; Hakoun, Vivien; Otten, Joël; Knöller, Kay; Brouyère, Serge
2018-04-01
This work aims to (1) identify the most conductive conditions for the generation of greenhouses gases (GHGs) in groundwater (e.g., hydrogeological contexts and geochemical processes) and (2) evaluate the indirect emissions of GHGs from groundwater at a regional scale in Wallonia (Belgium). To this end, nitrous oxide (N 2 O), methane (CH 4 ) and carbon dioxide (CO 2 ) concentrations and the stable isotopes of nitrate (NO 3 - ) and sulphate were monitored in 12 aquifers of the Walloon Region (Belgium). The concentrations of GHGs range from 0.05μg/L to 1631.2μg/L for N 2 O, 0μg/L to 17.1μg/L for CH 4 , and 1769 to 100,514ppm for the partial pressure of CO 2 (pCO 2 ). The highest average concentrations of N 2 O and pCO 2 are found in a chalky aquifer. The coupled use of statistical techniques and stable isotopes is a useful approach to identify the geochemical conditions that control the occurrence of GHGs in the aquifers of the Walloon Region. The accumulation of N 2 O is most likely due to nitrification (high concentrations of dissolved oxygen and NO 3 - and null concentrations of ammonium) and, to a lesser extent, initial denitrification in a few sampling locations (medium concentrations of dissolved oxygen and NO 3 - ). The oxic character found in groundwater is not prone to the accumulation of CH 4 in Walloon aquifers. Nevertheless, groundwater is oversaturated with GHGs with respect to atmospheric equilibrium (especially for N 2 O and pCO 2 ); the fluxes of N 2 O (0.32kgN 2 O-NHa -1 y -1 ) and CO 2 (27kgCO 2 Ha -1 y -1 ) from groundwater are much lower than the direct emissions of N 2 O from agricultural soils and fossil-fuel-related CO 2 emissions. Thus, indirect GHG emissions from the aquifers of the Walloon Region are likely to be a minor contributor to atmospheric GHG emissions, but their quantification would help to better constrain the nitrogen and carbon budgets. Copyright © 2017 Elsevier B.V. All rights reserved.
The application of parallel wells to support the use of groundwater for sustainable irrigation
NASA Astrophysics Data System (ADS)
Suhardi
2018-05-01
The use of groundwater as a source of irrigation is one alternative in meeting water needs of plants. Using groundwater for irrigation requires a high cost because of the discharge that can be taken is limited. In addition, the use of large groundwater can cause environmental damage and social conflict. To minimize costs, maintain quality of the environment and to prevent social conflicts, it is necessary to innovate in the groundwater taking system. The study was conducted with an innovation of using parallel wells. Performance is measured by comparing parallel wells with a single well. The results showed that the use of parallel wells to meet the water needs of rice plants and increase the pump discharge up to 100%. In addition, parallel wells can reduce the influence radius of taking of groundwater compared to single well so as to prevent social conflict. Thus, the use of parallel wells can support the achievement of the use of groundwater for sustainable irrigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-01
The decision document presents the selected interim remedial action for the groundwater operable unit at the Cornhusker Army Ammunition Plant (CAAP). Operable Unit One encompasses the explosives groundwater plume(s), both on-post and off-post. Explosives of concern in the contaminant plume include RDX, TNT, HMX, and their decomposition products. The objective of the interim action is to contain the plume and prevent further migration of contaminants, and does not encompass full restoration of the plume of contaminated groundwater. The recommended alternatives provide an approach to containing and removing contaminant mass from the groundwater plume. This approach will control further migration ofmore » the plume and reduce the levels of the contamination in groundwater.« less
Ademola, Janet Ayobami; Oyeleke, Oyebode Akanni
2017-03-20
Radon concentration in groundwater collected from the eleven Local Government Areas (LGAs) of Ibadan, Nigeria, was analyzed. Annual effective doses due to ingestion and inhalation of radon from the consumption of the water were determined. The arithmetic means (AMs) of radon concentration for the 11 LGAs varied from 2.18 to 76.75 Bq l -1 with a standard deviation of 1.57 and 70.64 Bq l -1 , respectively. The geometric means (GMs) varied from 1.67 to 49.47 Bq l -1 with geometric standard deviation of 2.22 and 3.04, respectively. About 58% of the 84 water samples examined had a higher concentration of radon than the 11.1 Bq l -1 recommended by United States Environmental Protection Agency (USEPA); the AMs of six LGAs and GMs of three LGAs were higher than the recommended value. However the AMs and GMs of all the LGAs with about 93% of the water sampled were lower than the 100 Bq l -1 recommended by the World Health Organization and EURATOM drinking water directive. The concentration of radon varied with the geological formation of the area. The AMs of the annual effective dose due to ingestion of radon in water ranged from 0.036 to 1.261 mSv y -1 , 0.071 to 2.521 mSv y -1 and 0.042 to 1.471 mSv y -1 for adult, child and infant, respectively and the GMs in the range of 0.026 to 0.813, 0.055 to 1.625 and 0.032 to 0.948 mSv y -1 , respectively. The AMs of 10 LGAs and GMs of 7 LGAs were higher than the recommended reference dose level of 0.1 mSv y -1 from the consumption of water for the duration of one year for all the three categories of people. The AMs and GMs of the annual effective dose due to inhalation of radon in drinking water ranged from 0.533 to 18.82 μSv y -1 and 0.411 to 12.13 μSv y -1 , respectively, contributing less to the overall dose.
Enhanced biotransformation of TCE using plant terpenoids in contaminated groundwater.
Brown, J R-M; Thompson, I P; Paton, G I; Singer, A C
2009-12-01
To examine plant terpenoids as inducers of TCE (trichloroethylene) biotransformation by an indigenous microbial community originating from a plume of TCE-contaminated groundwater. One-litre microcosms of groundwater were spiked with 100 micromol 1(-1) of TCE and amended weekly for 16 weeks with 20 microl 1(-1) of the following plant monoterpenes: linalool, pulegone, R-(+) carvone, S-(-) carvone, farnesol, cumene. Yeast extract-amended and unamended control treatments were also prepared. The addition of R-carvone and S-carvone, linalool and cumene resulted in the biotransformation of upwards of 88% of the TCE, significantly more than the unamendment control (61%). The aforementioned group of terpenes also significantly (P < 0.05) allowed more TCE to be degraded than the remaining two terpenes (farnesol and pulegone), and the yeast extract treatment which biotransformed 74-75% of the TCE. The microbial community profile was monitored by denaturing gradient gel electrophoresis and demonstrated much greater similarities between the microbial communities in terpene-amended treatments than in the yeast extract or unamended controls. TCE biotransformation can be significantly enhanced through the addition of selected plant terpenoids. Plant terpenoid and nutrient supplementation to groundwater might provide an environmentally benign means of enhancing the rate of in situ TCE bioremediation.
Geomorphic aspects of groundwater flow
NASA Astrophysics Data System (ADS)
LaFleur, Robert G.
The many roles that groundwater plays in landscape evolution are becoming more widely appreciated. In this overview, three major categories of groundwater processes and resulting landforms are considered: (1) Dissolution creates various karst geometries, mainly in carbonate rocks, in response to conditions of recharge, geologic setting, lithology, and groundwater circulation. Denudation and cave formation rates can be estimated from kinetic and hydraulic parameters. (2) Groundwater weathering generates regoliths of residual alteration products at weathering fronts, and subsequent exhumation exposes corestones, flared slopes, balanced rocks, domed inselbergs, and etchplains of regional importance. Groundwater relocation of dissolved salts creates duricrusts of various compositions, which become landforms. (3) Soil and rock erosion by groundwater processes include piping, seepage erosion, and sapping, important agents in slope retreat and headward gully migration. Thresholds and limits are important in many chemical and mechanical groundwater actions. A quantitative, morphometric approach to groundwater landforms and processes is exemplified by selected studies in carbonate and clastic terrains of ancient and recent origins. Résumé Les rôles variés joués par les eaux souterraines dans l'évolution des paysages deviennent nettement mieux connus. La revue faite ici prend en considération trois grandes catégories de processus liés aux eaux souterraines et les formes associées: (1) La dissolution crée des formes karstiques variées, surtout dans les roches carbonatées, en fonction des conditions d'alimentation, du cadre géologique, de la lithologie et de la circulation des eaux souterraines. Les taux d'érosion et de formation des grottes peuvent être estimés à partir de paramètres cinétiques et hydrauliques. (2) L'érosion par les eaux souterraines donne naissance à des régolites, résidus d'altération sur des fronts d'altération, et l'exhumation résultante fait apparaître des rognons, des pentes qui s'évasent, des roches en équilibre, des inselbergs et des plaines de corrosion d'extension régionale. La migration des sels dissous des eaux souterraines crée des croûtes de compositions variées, qui constituent des paysages particuliers. (3) Les processus d'érosion des sols et des roches par les eaux souterraines comprennent les phénomènes suivants: la chenalisation, l'érosion par suintement, le sapement, qui tous sont des agents notables du recul des versants et d'érosion régressive vers l'amont. Les seuils et les limites sont importants dans de nombreuses actions chimiques et mécaniques des eaux souterraines. Une approche morphométrique quantitative des formes et des processus liés aux eaux souterraines est donnée en exemple à partir d'études choisies dans les terrains carbonatés et détritiques d'origine aussi bien ancienne que récente. Resumen Las aguas subterráneas tienen una importancia fundamental en la evolución de los paisajes geomorfológicos. En este artículo se consideran tres grandes categorías de procesos ligados al agua subterránea y sus correspondientes paisajes resultantes: (1) La disolución crea distintas geometrías kársticas, fundamentalmente en rocas carbonatadas, como respuesta a las condiciones de recarga, condicionantes geológicos, litologías y al propio flujo de agua subterránea. La velocidad de denudación y formación de cavernas se puede estimar a partir de los parámetros cinéticos e hidráulicos. (2) La erosión producida por las aguas subterráneas genera regolitas de alteración residual en los frentes de erosión, con los subsiguientes afloramientos de rocas inalteradas, inselbergs, rocas oscilantes o llanuras de corrosión de carácter regional. La recolocación de las sales disueltas crea costras superficiales de diferente composición. (3) La erosión de rocas y suelos por procesos ligados al agua subterránea, como filtración y arrastre de finos da lugar a un movimiento de retroceso de taludes y barrancos. La existencia de umbrales y límites de actuación es muy importante en muchas acciones químicas y mecánicas. Una metodología para el estudio de relieves y procesos, basada en aspectos cuantitativos y morfométricos se ejemplifica mediante estudios realizados en rocas carbonatadas y en terrenos clásticos de diferentes edades.
NASA Astrophysics Data System (ADS)
Teutsch, N.; Berg, M.; von Gunten, U.; Halliday, A.
2004-12-01
In reduced groundwater iron is involved in biotic and abiotic transformation processes, both of which could lead to iron isotope fractionation. The reduced groundwater aquifers in the area of the Vietnamese capital of Hanoi are the main drinking water sources for the city. These groundwaters contain arsenic, which imposes a serious health threat to millions of people. Dissolved arsenic is related to the reducing conditions prevalent in the groundwater, and iron and arsenic contents are correlated in the sediments. We are employing iron isotope composition as a tool to better understand the processes leading to the transformation of iron in the groundwater and its role in various biogeochemical processes in reduced environments. Drinking water is supplied to the city of Hanoi from several water treatment plants (WTP) which pump the raw groundwater from a lower aquifer, while the rural surroundings pump untreated groundwater from an upper aquifer by private tubewells. Surface water from the Red River delta is the main source of recharge to these two aquifers. Due to high content of particulate natural organic matter (NOM) in the sediment leading to extensive microbial activity, the groundwaters are anoxic and rich in dissolved iron(II). The iron(II) removal in the WTPs is carried by a multi-step treatment including aeration, settling, filtration, and chlorination. We have collected natural groundwater samples for isotopic analysis from two aquifers at several locations, a groundwater depth profile and its corresponding sediment phases from the upper aquifer and the underlying aquitard, raw and treated water from several WTPs, as well as the corresponding iron(III) precipitates. The iron concentrations of groundwaters analysed in this study range from 3 to 28 mg/L and δ 57Fe (57/54 deviation from IRMM 014) values vary between -1.2 and +1.5 ‰ . The sediment depth profile has a δ 57Fe around +0.3 ‰ , which implies that the high values obtained in the groundwater nearby (+0.9 - +1.2 ‰ ) cannot be explained by a simple reductive dissolution process, which would be expected to favour the lighter Fe isotopes. Removal of iron in the WTP is followed by a strong decrease of δ 57Fe, probably due to formation of heavier Fe(III) phases. High δ 57Fe values are found in both aquifers and correspond to high concentrations of iron in the groundwater. We hypothesize that the iron isotopic variations observed so far are an indication for iron sources and transformation processes that could not be detected by only measuring dissolved iron concentrations. Current investigations will further explore this hypothesis.
Hubbard, Laura E.; Keefe, Steffanie H.; Kolpin, Dana W.; Barber, Larry B.; Duris, Joseph W.; Hutchinson, Kasey J.; Bradley, Paul M.
2016-01-01
Effluent-impacted surface water has the potential to transport not only water, but wastewater-derived contaminants to shallow groundwater systems. To better understand the effects of effluent discharge on in-stream and near-stream hydrologic conditions in wastewater-impacted systems, water-level changes were monitored in hyporheic-zone and shallow-groundwater piezometers in a reach of Fourmile Creek adjacent to and downstream of the Ankeny (Iowa, USA) wastewater treatment plant (WWTP). Water-level changes were monitored from approximately 1.5 months before to 0.5 months after WWTP closure. Diurnal patterns in WWTP discharge were closely mirrored in stream and shallow-groundwater levels immediately upstream and up to 3 km downstream of the outfall, indicating that such discharge was the primary control on water levels before shutdown. The hydrologic response to WWTP shutdown was immediately observed throughout the study reach, verifying the far-reaching hydraulic connectivity and associated contaminant transport risk. The movement of WWTP effluent into alluvial aquifers has implications for potential WWTP-derived contamination of shallow groundwater far removed from the WWTP outfall.
Woody riparian vegetation response to different alluvial water table regimes
Shafroth, P.B.; Stromberg, J.C.; Patten, D.T.
2000-01-01
Woody riparian vegetation in western North American riparian ecosystems is commonly dependent on alluvial groundwater. Various natural and anthropogenic mechanisms can cause groundwater declines that stress riparian vegetation, but little quantitative information exists on the nature of plant response to different magnitudes, rates, and durations of groundwater decline. We observed groundwater dynamics and the response of Populus fremontii, Salix gooddingii, and Tamarix ramosissima saplings at 3 sites between 1995 and 1997 along the Bill Williams River, Arizona. At a site where the lowest observed groundwater level in 1996 (-1.97 m) was 1.11 m lower than that in 1995 (-0.86 m), 92-100% of Populus and Salix saplings died, whereas 0-13% of Tamarix stems died. A site with greater absolute water table depths in 1996 (-2.55 m), but less change from the 1995 condition (0.55 m), showed less Populus and Salix mortality and increased basal area. Excavations of sapling roots suggest that root distribution is related to groundwater history. Therefore, a decline in water table relative to the condition under which roots developed may strand plant roots where they cannot obtain sufficient moisture. Plant response is likely mediated by other factors such as soil texture and stratigraphy, availability of precipitation-derived soil moisture, physiological and morphological adaptations to water stress, and tree age. An understanding of the relationships between water table declines and plant response may enable land and water managers to avoid activities that are likely to stress desirable riparian vegetation.
NASA Astrophysics Data System (ADS)
Dudley, B. D.; Miyazawa, Y.; Hughes, F.; Ostertag, R.; Kettwich, S. K.; MacKenzie, R.; Dulaiova, H.; Waters, C. A.; Bishop, J.; Giambelluca, T. W.
2013-12-01
N-fixing phreatophytic trees are common in arid and semi-arid regions worldwide, and can play significant roles in modifying hydrology and soil-plant nutrient cycling where they are present. In light of reductions in groundwater levels in many arid regions we estimated annual transpiration rates at a stand level, and alterations to C, N and P accretion in soils as a function of groundwater depth in a ca.120 year old stand of Prosopis pallida along an elevation gradient in coastal leeward Hawaii. We measured sapflow and stand level sapwood area to quantify transpiration, and calculated groundwater transpiration rates using P. pallida stem water δ18O values. By measuring soil resistivity, we were able to compare the volume of groundwater transpired by these trees to groundwater depth across the stand. We examined nutrient deposition and accretion in soils in lowland areas of the stand with accessible shallow groundwater, compared to upland areas with no groundwater access, as indicated by stem water δ18O values. Resistivity results suggested that groundwater was at a height close to sea level throughout the stand. Transpiration was around 1900 m3 ha-1 year-1 in the areas of the stand closest to the sea (where groundwater was at around 1-4 m below ground level) and decreased to around a tenth of that volume where groundwater was not accessible. Litterfall rates over the course of the year studied were 17 times greater at lowland sites, but this litterfall contributed ca. 24 times the N, and 35 times the P of upland sites. Thus, groundwater access contributed to the total mass of nitrogen and phosphorus deposited in the form of litter through higher litter quantity and quality. Total N content of soils was 4.7 times greater and inorganic N pools were eight times higher at lowland plots. These results suggest that groundwater depth can have strong effects on soil-plant nutrient cycling, so that reductions in the availability of shallow groundwater are likely to impact soil nutrient availability in arid regions.
NASA Astrophysics Data System (ADS)
Barhoum, S.; Valdès, D.; Guérin, R.; Marlin, C.; Vitale, Q.; Benmamar, J.; Gombert, P.
2014-11-01
Chalk groundwater is an important aquifer resource in France because it accounts for a production of 12 million m3 y-1 with a large proportion reserved for drinking water. Processes occurring in the unsaturated zone (UZ) and the overlying superficial formations have a high impact on Chalk groundwater geochemistry and require better understanding. The study site is a former underground Chalk quarry located near Beauvais (France) that extends over 1200 m in length, at a depth ranging from 20 to 30 m. The water table intersects the cavity creating 15 underground ;lake; that give access to the Chalk groundwater. Lakes geochemistry has been studied: water samples were collected in July 2013 and major ion concentrations were analyzed. UZ and clay-with-flints thickness above each lake were estimated qualitatively using an electromagnetic sensor (EM31) and Underground GPS. The results unexpectedly showed that groundwater quality varied widely in spatial terms for both allochthonous and autochthonous ions (e.g., HCO3- ranged from 2.03 to 4.43 meq L-1, NO3- ranged from 0.21 to 1.33 meq L-1). Principal component analysis indicated the impact of agricultural land use on water quality, with the intake of NO3- as well as SO42-, Cl- and Ca2+. Chalk groundwater geochemistry is compared with the nature and structure of the UZ. We highlight correlations (1) between thick clay-with-flints layers and the ions Mg2+ and K+, and (2) between UZ thickness and Na+. In conclusion, this paper identifies various ion sources (agriculture, clay-with-flints and Chalk) and demonstrates different processes in the UZ: dissolution, ionic exchange and solute storage.
Characterization of soils from an industrial complex contaminated with elemental mercury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Carrie L; Watson, David B; Liang, Liyuan
2013-01-01
Historic use of liquid elemental mercury (Hg(0)l) at the Y-12 National Security Complex in Oak Ridge, TN, USA resulted in large deposits of Hg(0)l in the soils. An evaluation of analytical tools for characterizing the speciation of Hg in the soils at the Y-12 facility was conducted and these tequniques were used to examine the speciation of Hg in two soil cores collect at the site. These include X-ray fluorescence (XRF), soil Hg(0) headspace analysis, and total Hg determination by acid digestion coupled with cold vapor atomic absorption. Hg concentrations determined using XRF, a tool that has been suggestions formore » quick onsite characterization of soils, were lower than concentrations determined by HgT analysis and as a result this technique is not suitable for the evaluation of Hg concentrations in heterogeneous soils containing Hg(0)l. Hg(0)g headspace analysis can be used to examine the presence of Hg(0)l in soils and when coupled with HgT analysis an understanding of the speciation of Hg in soils can be obtained. Two soil cores collected within the Y-12 complex highlight the heterogeneity in the depth and extent of Hg contamination, with Hg concentrations ranging from 0.05 to 8400 mg/kg. At one location Hg(0)l was distributed throughout 3.2 meters of core whereas the core from a location only 12 meters away only contained Hg(0)l in 0.3 m zone of the core. Sequential extractions, used to examine the forms of Hg in the soils, indicated that at depths within the core that have low Hg concentrations organically associated Hg is dominant. Soil from the zone of groundwater inundation showed reduced characteristics and the Hg is likely present as Hg-sulfide species. At this location it appears that Hg transported within the groundwater is a source of Hg to the soil. Overall the characterization of Hg in soils containing Hg(0) l is difficult due to the heterogeneous distribution within the soils and this challenge is enhanced in industrial facilities in which fill material comprise most of the soils and historical and continuing reworking of the subsurface has remobilized the Hg.« less
Schijven, J F; Mülschlegel, J H C; Hassanizadeh, S M; Teunis, P F M; de Roda Husman, A M
2006-09-01
Protection zones of shallow unconfined aquifers in The Netherlands were calculated that allow protection against virus contamination to the level that the infection risk of 10(-4) per person per year is not exceeded with a 95% certainty. An uncertainty and a sensitivity analysis of the calculated protection zones were included. It was concluded that protection zones of 1 to 2 years travel time (206-418 m) are needed (6 to 12 times the currently applied travel time of 60 days). This will lead to enlargement of protection zones, encompassing 110 unconfined groundwater well systems that produce 3 x 10(8) m3 y(-1) of drinking water (38% of total Dutch production from groundwater). A smaller protection zone is possible if it can be shown that an aquifer has properties that lead to greater reduction of virus contamination, like more attachment. Deeper aquifers beneath aquitards of at least 2 years of vertical travel time are adequately protected because vertical flow in the aquitards is only 0.7 m per year. The most sensitive parameters are virus attachment and inactivation. The next most sensitive parameters are grain size of the sand, abstraction rate of groundwater, virus concentrations in raw sewage and consumption of unboiled drinking water. Research is recommended on additional protection by attachment and under unsaturated conditions.
Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley
Scanlon, Bridget R.; Faunt, Claudia; Longuevergne, Laurent; Reedy, Robert C.; Alley, William M.; McGuire, Virginia L.; McMahon, Peter B.
2012-01-01
Aquifer overexploitation could significantly impact crop production in the United States because 60% of irrigation relies on groundwater. Groundwater depletion in the irrigated High Plains and California Central Valley accounts for ∼50% of groundwater depletion in the United States since 1900. A newly developed High Plains recharge map shows that high recharge in the northern High Plains results in sustainable pumpage, whereas lower recharge in the central and southern High Plains has resulted in focused depletion of 330 km3 of fossil groundwater, mostly recharged during the past 13,000 y. Depletion is highly localized with about a third of depletion occurring in 4% of the High Plains land area. Extrapolation of the current depletion rate suggests that 35% of the southern High Plains will be unable to support irrigation within the next 30 y. Reducing irrigation withdrawals could extend the lifespan of the aquifer but would not result in sustainable management of this fossil groundwater. The Central Valley is a more dynamic, engineered system, with north/south diversions of surface water since the 1950s contributing to ∼7× higher recharge. However, these diversions are regulated because of impacts on endangered species. A newly developed Central Valley Hydrologic Model shows that groundwater depletion since the 1960s, totaling 80 km3, occurs mostly in the south (Tulare Basin) and primarily during droughts. Increasing water storage through artificial recharge of excess surface water in aquifers by up to 3 km3 shows promise for coping with droughts and improving sustainability of groundwater resources in the Central Valley.
Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley
Scanlon, Bridget R.; Faunt, Claudia C.; Longuevergne, Laurent; Reedy, Robert C.; Alley, William M.; McGuire, Virginia L.; McMahon, Peter B.
2012-01-01
Aquifer overexploitation could significantly impact crop production in the United States because 60% of irrigation relies on groundwater. Groundwater depletion in the irrigated High Plains and California Central Valley accounts for ~50% of groundwater depletion in the United States since 1900. A newly developed High Plains recharge map shows that high recharge in the northern High Plains results in sustainable pumpage, whereas lower recharge in the central and southern High Plains has resulted in focused depletion of 330 km3 of fossil groundwater, mostly recharged during the past 13,000 y. Depletion is highly localized with about a third of depletion occurring in 4% of the High Plains land area. Extrapolation of the current depletion rate suggests that 35% of the southern High Plains will be unable to support irrigation within the next 30 y. Reducing irrigation withdrawals could extend the lifespan of the aquifer but would not result in sustainable management of this fossil groundwater. The Central Valley is a more dynamic, engineered system, with north/south diversions of surface water since the 1950s contributing to ~7× higher recharge. However, these diversions are regulated because of impacts on endangered species. A newly developed Central Valley Hydrologic Model shows that groundwater depletion since the 1960s, totaling 80 km3, occurs mostly in the south (Tulare Basin) and primarily during droughts. Increasing water storage through artificial recharge of excess surface water in aquifers by up to 3 km3 shows promise for coping with droughts and improving sustainability of groundwater resources in the Central Valley.
Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley
Scanlon, Bridget R.; Faunt, Claudia C.; Longuevergne, Laurent; Reedy, Robert C.; Alley, William M.; McGuire, Virginia L.; McMahon, Peter B.
2012-01-01
Aquifer overexploitation could significantly impact crop production in the United States because 60% of irrigation relies on groundwater. Groundwater depletion in the irrigated High Plains and California Central Valley accounts for ∼50% of groundwater depletion in the United States since 1900. A newly developed High Plains recharge map shows that high recharge in the northern High Plains results in sustainable pumpage, whereas lower recharge in the central and southern High Plains has resulted in focused depletion of 330 km3 of fossil groundwater, mostly recharged during the past 13,000 y. Depletion is highly localized with about a third of depletion occurring in 4% of the High Plains land area. Extrapolation of the current depletion rate suggests that 35% of the southern High Plains will be unable to support irrigation within the next 30 y. Reducing irrigation withdrawals could extend the lifespan of the aquifer but would not result in sustainable management of this fossil groundwater. The Central Valley is a more dynamic, engineered system, with north/south diversions of surface water since the 1950s contributing to ∼7× higher recharge. However, these diversions are regulated because of impacts on endangered species. A newly developed Central Valley Hydrologic Model shows that groundwater depletion since the 1960s, totaling 80 km3, occurs mostly in the south (Tulare Basin) and primarily during droughts. Increasing water storage through artificial recharge of excess surface water in aquifers by up to 3 km3 shows promise for coping with droughts and improving sustainability of groundwater resources in the Central Valley. PMID:22645352
Eschauzier, Christian; Raat, Klaasjan J; Stuyfzand, Pieter J; De Voogt, Pim
2013-08-01
Human exposure to perfluorinated alkylated acids (PFAA) occurs primarily via the dietary intake and drinking water can contribute significantly to the overall PFAA intake. Drinking water is produced from surface water and groundwater. Waste water treatment plants have been identified as the main source for PFAA in surface waters and corresponding drinking water. However, even though groundwater is an important source for drinking water production, PFAA sources remain largely uncertain. In this paper, we identified different direct and indirect sources of PFAA to groundwater within the catchment area of a public supply well field (PSWF) in The Netherlands. Direct sources were landfill leachate and water draining from a nearby military base/urban area. Indirect sources were infiltrated rainwater. Maximum concentrations encountered in groundwater within the landfill leachate plume were 1.8 μg/L of non branched perfluorooctanoic acid (L-PFOA) and 1.2 μg/L of perfluorobutanoic acid (PFBA). Sum concentrations amounted to 4.4 μg/L total PFAA. The maximum concentration of ΣPFAA in the groundwater originating from the military camp was around 17 ng/L. Maximum concentrations measured in the groundwater halfway the landfill and the PWSF (15 years travel distance) were 29 and 160 ng/L for L-PFOA and PFBA, respectively. Concentrations in the groundwater pumping wells (travel distance >25 years) were much lower: 0.96 and 3.5 ng/L for L-PFOA and PFBA, respectively. The chemical signature of these pumping wells corresponded to the signature encountered in other wells sampled which were fed by water that had not been in contact with potential contaminant sources, suggesting a widespread diffuse contamination from atmospheric deposition. Copyright © 2013 Elsevier B.V. All rights reserved.
An ecohydrological model for studying groundwater-vegetation interactions in wetlands
NASA Astrophysics Data System (ADS)
Chui, Ting Fong May; Low, Swee Yang; Liong, Shie-Yui
2011-10-01
SummaryDespite their importance to the natural environment, wetlands worldwide face drastic degradation from changes in land use and climatic patterns. To help preservation efforts and guide conservation strategies, a clear understanding of the dynamic relationship between coupled hydrology and vegetation systems in wetlands, and their responses to engineering works and climate change, is needed. An ecohydrological model was developed in this study to address this issue. The model combines a hydrology component based on the Richards' equation for characterizing variably saturated groundwater flow, with a vegetation component described by Lotka-Volterra equations tailored for plant growth. Vegetation is represented by two characteristic wetland herbaceous plant types which differ in their flood and drought resistances. Validation of the model on a study site in the Everglades demonstrated the capability of the model in capturing field-measured water table and transpiration dynamics. The model was next applied on a section of the Nee Soon swamp forest, a tropical wetland in Singapore, for studying the impact of possible drainage works on the groundwater hydrology and native vegetation. Drainage of 10 m downstream of the wetland resulted in a localized zone of influence within half a kilometer from the drainage site with significant adverse impacts on groundwater and biomass levels, indicating a strong need for conservation. Simulated water table-plant biomass relationships demonstrated the capability of the model in capturing the time-lag in biomass response to water table changes. To test the significance of taking plant growth into consideration, the performance of the model was compared to one that substituted the vegetation component with a pre-specified evapotranspiration rate. Unlike its revised counterpart, the original ecohydrological model explicitly accounted for the drainage-induced plant biomass decrease and translated the resulting reduced transpiration toll back to the groundwater hydrology for a more accurate soil water balance. This study represents, to our knowledge, the first development of an ecohydrological model for wetland ecosystems that characterizes the coupled relationship between variably-saturated groundwater flow and plant growth dynamics.
NASA Astrophysics Data System (ADS)
Adiaffi, B.; Marlin, C.; Yei, O. M.-S.; Massault, M.; Noret, A.; Biemi, J.
2009-04-01
Since a half of century, the forest surface area of the South Ivory Coast has been decreased for the benefit of agriculture (15 000 km2 in 1993 versus 83 000 km2 in 1955-1958). This area also undergoes climate change. Vegetation cover has gradually changed from rainforests (C3 plants) to savanna (C4 plants) and agricultural plants. In the Abidjan area (5.00-6.00°N, 2.40-4.40°W), the mean rainfall amount and temperature value evolve during the 20th century (1912 mm/year and 26.3°C/year during the first decennial to 1613 mm/year and 26.9°C/year during the last ten years). The Paleoproterozoïc fractured bedrock (PB) and the Continental Terminal (CT) deposits groundwater are studied to show the climate change and deforestation effect on the area groundwater resources using stable isotopes (18O, 2H and 13C) contents, radiocarbon (14C) contents and chemical data on a set of 25 groundwater samples. The residence time of the groundwaters is estimated by the 14C using two models: (i) the model of well-mixed reservoir (WMR model) and (ii) the piston flow model (PF model). The range of the PB groundwater residence time (15 000 - 8 000 to ~ 300 - 100 a BP) for both models shows that the recharge has started at the beginning of the post-glacial period whereas the CT aquifer recharge is much more recent (from 300 a BP to today). The PB groundwater provides information about paleoclimatic conditions that occurred over the studied area during the late Pleistocene. It is demonstrated, through this study, that the evolution of vegetation cover (from forests to savanna and agriculture plants) is shown in groundwater by the trend in 13C content from old groundwater (confined bedrock groundwater: residence time of ~ 15 000 a BP) to the recent groundwater (unconfined bedrock groundwater and CT groundwater: residence times: ~ 300 a BP and lower than 100 a BP, respectively). The δ18O and δ2H values also increase with time from the beginning of the post-glacial period (~ 15 000 a BP) to the present day (< 100 a BP), showing the evolution of the climate from cold to warm conditions. This study has shown the paleoclimate effect on the water resources in Ivory Coast and are consistent with the results obtained by some authors in Western Africa (Ghana, Liberia, Mali and Niger).
Landmeyer, James E.
2001-01-01
At contaminated groundwater sites, poplar trees can be used to affect ground-water levels, flow directions, and ultimately total groundwater and contaminant flux to areas downgradient of the trees. The magnitude of the hydrologic changes can be monitored using fundamental concepts of groundwater hydrology, in addition to plant physiology-based approaches, and can be viewed as being almost independent of the contaminant released. The affect of poplar trees on the fate of groundwater contaminants, however, is contaminant dependent. Some petroleum hydrocarbons or chlorinated solvents may be mineralized or transformed to innocuous compounds by rhizospheric bacteria associated with the tree roots, mineralized or transformed by plant tissues in the transpiration stream or leaves after uptake, or passively volatilized and rapidly dispersed or oxidized in the atmosphere. These processes also can be monitored using a combination of physiological- or geochemical-based field or laboratory approaches. When combined, such hydrologic and contaminant monitoring approaches can result in a more accurate assessment of the use of poplar trees to meet regulatory goals at contaminated groundwater sites, verify that these goals continue to be met in the future, and ultimately lead to a consensus on how the performance of plant-based remedial strategies (phytoremediation) is to be assessed.
Uptake of {sup 137}Cs in vegetable crops grown on a contaminated lakebed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seel, J.F.; Adriano, D.C.; Whicker, F.W.
1995-06-01
Mean concentration and plant:soil concentration ratios of {sup 137}Cs were determined for six vegetable crops grown on an exposed, contaminated lakebed of a former reactor cooling reservoir in South Carolina. Each crop species was grown with or without potassium fertilizer. Selected crops were also irrigated with either reservoir water or groundwater. Subsamples of crops were prepared for human consumption before analysis to determine the extent of any loss. Plant:soil concentration ratios (dry basis) ranged from 0.22 to 6.82, values which were substantially higher than those used in generic assessment models. While there was no statistically significant effect of irrigation sourcemore » or culinary preparation, the effect of potassium-fertilizer was dramatic. In many cases, concentrations of {sup 137}Cs in those plants receiving potassium were less than half of the concentrations in plants that did not receive potassium. Significant differences among species and {sup 131}Cs plant parts for concentrations were observed. Dose/risk calculations for the ingestion of these vegetables by a hypothetical 30-y resident indicates the possibility of a lifetime fatal cancer risk well-above the U.S. Environmental Protection Agency`s regulatory guideline of 10{sup -4}. 33 refs., 4 figs., 2 tabs.« less
Aquifers and hyporheic zones: Towards an ecological understanding of groundwater
NASA Astrophysics Data System (ADS)
Hancock, Peter J.; Boulton, Andrew J.; Humphreys, William F.
2005-03-01
Ecological constraints in subsurface environments relate directly to groundwater flow, hydraulic conductivity, interstitial biogeochemistry, pore size, and hydrological linkages to adjacent aquifers and surface ecosystems. Groundwater ecology has evolved from a science describing the unique subterranean biota to its current form emphasising multidisciplinary studies that integrate hydrogeology and ecology. This multidisciplinary approach seeks to elucidate the function of groundwater ecosystems and their roles in maintaining subterranean and surface water quality. In aquifer-surface water ecotones, geochemical gradients and microbial biofilms mediate transformations of water chemistry. Subsurface fauna (stygofauna) graze biofilms, alter interstitial pore size through their movement, and physically transport material through the groundwater environment. Further, changes in their populations provide signals of declining water quality. Better integrating groundwater ecology, biogeochemistry, and hydrogeology will significantly advance our understanding of subterranean ecosystems, especially in terms of bioremediation of contaminated groundwaters, maintenance or improvement of surface water quality in groundwater-dependent ecosystems, and improved protection of groundwater habitats during the extraction of natural resources. Overall, this will lead to a better understanding of the implications of groundwater hydrology and aquifer geology to distributions of subsurface fauna and microbiota, ecological processes such as carbon cycling, and sustainable groundwater management. Les contraintes écologiques dans les environnements de subsurface sont en relation directe avec les écoulements des eaux souterraines, la conductivité hydraulique, la biogéochimie des milieux interstitiels, la taille des pores, et les liens hydrologiques avec les aquifères et les écosystèmes adjacents. L'écologie des eaux souterraines a évolué d'une science décrivant uniquement les biotopes souterrains à des études multidisciplinaires qui intègrent l'écologie et l'hydrogéologie. L'approche multidisciplinaire cherche à élucider le fonctionnement des écosystèmes souterrains et leur rôle consistant à maintenir la qualité des eaux souterraines et de surface. Dans les écotones des eaux de la surfaces des aquifères, les gradients géochimiques et les biofilms microbiologiques contrôlent les transformations de la qualité de l'eau. La faune de subsurface (stygofauna) construisent les biofilms, altèrent la taille des pores interstitiels à travers leur mouvement, et transportent physiquement des matériaux à travers l'environnement des eaux souterraines. Par ailleurs, les changements de leur population signalent un déclin de la qualité de l'eau. Une meilleure intégration de l'écologie des eaux souterraines, de la biogeochimie, et de l'hydrogéologie pourra faire avancer de manière efficace de notre compréhension des écosystèmes souterrains, et spécialement en terme de bioremédiation des eaux souterraines contaminées, de maintenance et d'amélioration de la qualité des eaux de surface dépendant des écosystèmes souterrains, et l'amélioration de la protection des habitats des eaux souterraines durant l'extraction des ressources naturelles. En général, cela conduira à une meilleure compréhension de l'implication de l'hydrogéologie et de la géologie des aquifères à la distribution de la faune de subsurface et aux microbiota, aux processus écologiques tels que les cycles du carbone, et la gestion durable des eaux souterraines. Los entornos ecológicos en ambientes subsuperficiales están relacionados directamente con el flujo de agua subterránea, la conductividad hidráulica, biogeoquímica intersticial, tamaño de los poros, y vínculos hidrológicos con acuíferos adyacentes y ecosistemas superficiales. La ecología del agua subterránea ha evolucionado a partir de una ciencia que describe la biota subterránea única hasta alcanzar la forma actual que enfatiza estudios multidisciplinarios que integran hidrogeología y ecología. Este enfoque multidisciplinario busca clarificar la función de los ecosistemas de agua subterránea y sus roles en el mantenimiento de la calidad de agua superficialy subterránea. En ecotonos de agua superficial y de acuíferos, los gradientes geoquímicos y biopelículas microbiales median trans formaciones de calidad de agua. La fauna subsuperficial (estigofauna) se alimenta de biopeliculas, altera el tamaño de los poros intersticiales mediante su movimiento, y transporta físicamente material a través del ambiente de aguas subterráneas. Además, los cambios en sus poblaciones aportan señales de decadencia de calidad de agua. La mejor integración de ecología de aguas subterráneas, biogeoquímica, e hidrogeología incrementará significativamente nuestro entendimiento de ecosistemas subterráneos, especialmente en términos de bioremediación de aguas subterráneas contaminadas, mantenimiento o mejoramiento de calidad de agua superficial en ecosistemas dependientes de agua subterránea, y protección mejorada de habitats de agua subterránea durante la extracción de recursos naturales. Sobretodo, esto conducirá a un mejor entendimiento de las implicaciones de la hidrología de aguas subterráneas y geología del acuífero, de las distribuciones de fauna subsuperficial y microbiota, procesos ecológicos tal como ciclado de carbono, y gestión sostenible de aguas subterráneas.
NASA Astrophysics Data System (ADS)
Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena
2018-06-01
Thermal perturbation in the subsurface produced in an open-loop groundwater heat pump (GWHP) plant is a complex transport phenomenon affected by several factors, including the exploited aquifer's hydrogeological and thermal characteristics, well construction features, and the temporal dynamics of the plant's groundwater abstraction and reinjection system. Hydraulic conductivity has a major influence on heat transport because plume propagation, which occurs primarily through advection, tends to degrade following conductive heat transport and convection within moving water. Hydraulic conductivity is, in turn, influenced by water reinjection because the dynamic viscosity of groundwater varies with temperature. This paper reports on a computational analysis conducted using FEFLOW software to quantify how the thermal-affected zone (TAZ) is influenced by the variation in dynamic viscosity due to reinjected groundwater in a well-doublet scheme. The modeling results demonstrate non-negligible groundwater dynamic-viscosity variation that affects thermal plume propagation in the aquifer. This influence on TAZ calculation was enhanced for aquifers with high intrinsic permeability and/or substantial temperature differences between abstracted and post-heat-pump-reinjected groundwater.
NASA Astrophysics Data System (ADS)
Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena
2018-01-01
Thermal perturbation in the subsurface produced in an open-loop groundwater heat pump (GWHP) plant is a complex transport phenomenon affected by several factors, including the exploited aquifer's hydrogeological and thermal characteristics, well construction features, and the temporal dynamics of the plant's groundwater abstraction and reinjection system. Hydraulic conductivity has a major influence on heat transport because plume propagation, which occurs primarily through advection, tends to degrade following conductive heat transport and convection within moving water. Hydraulic conductivity is, in turn, influenced by water reinjection because the dynamic viscosity of groundwater varies with temperature. This paper reports on a computational analysis conducted using FEFLOW software to quantify how the thermal-affected zone (TAZ) is influenced by the variation in dynamic viscosity due to reinjected groundwater in a well-doublet scheme. The modeling results demonstrate non-negligible groundwater dynamic-viscosity variation that affects thermal plume propagation in the aquifer. This influence on TAZ calculation was enhanced for aquifers with high intrinsic permeability and/or substantial temperature differences between abstracted and post-heat-pump-reinjected groundwater.
Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat.
Berg, M; Tran, H C; Nguyen, T C; Pham, H V; Schertenleib, R; Giger, W
2001-07-01
This is the first publication on arsenic contamination of the Red River alluvial tract in the city of Hanoi and in the surrounding rural districts. Due to naturally occurring organic matter in the sediments, the groundwaters are anoxic and rich in iron. With an average arsenic concentration of 159 micrograms/L, the contamination levels varied from 1 to 3050 micrograms/L in rural groundwater samples from private small-scale tubewells. In a highly affected rural area, the groundwater used directly as drinking water had an average concentration of 430 micrograms/L. Analysis of raw groundwater pumped from the lower aquifer for the Hanoi water supply yielded arsenic levels of 240-320 micrograms/L in three of eight treatment plants and 37-82 micrograms/L in another five plants. Aeration and sand filtration that are applied in the treatment plants for iron removal lowered the arsenic concentrations to levels of 25-91 micrograms/L, but 50% remained above the Vietnamese Standard of 50 micrograms/L. Extracts of sediment samples from five bore cores showed a correlation of arsenic and iron contents (r2 = 0.700, n = 64). The arsenic in the sediments may be associated with iron oxyhydroxides and released to the groundwater by reductive dissolution of iron. Oxidation of sulfide phases could also release arsenic to the groundwater, but sulfur concentrations in sediments were below 1 mg/g. The high arsenic concentrations found in the tubewells (48% above 50 micrograms/L and 20% above 150 micrograms/L) indicate that several million people consuming untreated groundwater might be at a considerable risk of chronic arsenic poisoning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seigler, R.S.; Luttrell, L.J.
Aircraft hazards were evaluated to determine the total annual probability of an aircraft crash occurring at any structure located on the US Department of Energy (DOE) reservation in Oak Ridge, Tennessee. This report documents the use of an accepted methodology for calculating the probability of an aircraft crash as applied to the three Oak Ridge plant sites including the adjoining facilities. Based on the data contained herein, the evaluation concluded that the probability of an aircraft crash occurrence at a single facility is generally considered ``not credible`` as defined in DOE/OR-901. Additionally, reevaluation of probabilities would be necessary if significantmore » changes were made to local air traffic. The probability of an aircraft crash could increase as a result of the opening of any new airport or heliport in the vicinity; a greater volume of air traffic from McGhee Tyson airport in Knoxville, should the airport status change from feeder airport to hub airport; the rerouting of commercial and/or military flights at the McGhee Tyson airport; and finally, a change in direction or the addition of a federal airway. At one time, DOE planned to establish a zone of prohibited airspace over the Y-12 plant; if the plans are enacted in the future, the probability of an aircraft crash at the Y-12 plant could decrease. Pilots since have been voluntarily requested not to fly below 3000 feet over the Y-12 plant. Also, the Federal Aviation Administration plans to reroute air traffic in the spring of 1993 on federal airway V16. However, the section of V16 which traverses the three plant sites and five adjoining facilities will not be altered. If this plan is implemented, the air traffic over the Oak Ridge facilities would not be affected significantly, and the probability of an aircraft crash as determined herein would be unchanged.« less
1988-11-01
revri if necenary and iIenitif by block number) FIELO GROUP SUS-GROUP Installation Restoration Program , Groundwater ,P& Soils. Surface water ...qoulkhave been affected by the Site 3 flight line storm drainage outfall. Groundwater quali y samples were collected from the Site 4 water supply well No...monitoring. o Groundwater from the Site 4 water well No. 10 contains no VOCs. Because it remains unclear whether levels of THMs previously measured
NASA Astrophysics Data System (ADS)
Sharma, A.; Lunkad, S.
2007-12-01
The Green Revolution enabled the small state of Haryna to become the wheat granary of India - though occupying 1.3% of geographical area of India, it accounts for 13% of wheat, and 3% of quality rice production in India. Haryana paid a heavy price for the impressive agricultural development - one-third of the irrigated land is salinity affected, water level declined by 3-12 m, and excessive nitrate levels in the groundwater (114-1800 mg/l) have rendered the groundwater non-potable in many areas. Groundwater in the arid western Haryana has become mostly saline ( TDS > 4000 mg/l). Improper canal irrigation has raised the water table by 3.0 -9.0 m in some areas, causing water logging over 2346 km2 of land. One possible way to arrest the degradation of groundwater and soil, is to switch to dryland farming. This would involve change in the irrigation method as well as proper selection and rotation of food crops like barley, sorghum, maize, different types of beans (pulses) and oil seeds like mustard, groundnut, etc and restricted use of chemical fertilizers and pesticides. Dryland farming could go hand in hand with the plantation of fruit trees, grasses and medicinal plants suitable to this agro- climatic zone, and animal husbandry. The same considerations hold good to eastern Rajasthan as well.
Shizuma, Kiyoshi; Fujikawa, Yoko; Kurihara, Momo; Sakurai, Yushi
2018-03-01
The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident on March 11, 2011, caused severe radioactive contamination in Fukushima Prefecture. In order to clarify the safety of drinking water, we have conducted radiocesium monitoring of public tap water and groundwater in Minami-Soma City, which is 10-40 km north of the nuclear power plant. The source of tap water for Minami-Soma City is groundwater, which is treated by rapid filtration before distribution in two of the three treatment plants. The tap water was collected from six stations during 2012-2016 and groundwater was collected from 11 stations with wells between 5 and 100 m deep during 2014-2016. Radiocesium contamination of groundwater has been considered unlikely in Japan because of the small vertical migration velocity of radiocesium in Japanese soil. However, radiocesium was detected in public tap water after 2012, and the maximum 137 Cs concentration of 292 mBq L -1 was observed in 2013. In all the well water, radiocesium was detected between 2014 and 2015, at concentrations similar to those observed in tap water in the same period. In tap water and groundwater, radiocesium was decreased to below the detection limit in 2016 except for four stations. Radiocesium concentration in shallow water reached a maximum between 2013 and 2015, 2-4 years after the FDNPP accident, and then decreased. The results are interpreted that dissolved 137 Cs migrated in the soil and reached aquifers of various depth. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1999-05-28
Badger Army Ammunition Plant (BAAP) is located in Sauk County, Wisconsin, near the city of Baraboo. Over a 33 year period, until 1975, the plant operated intermittently to produce propellants for cannon, rocket, and small arms ammunition. Past industrial activities at this site have resulted in surface soil and groundwater contamination by organic and inorganic chemicals. A groundwater contamination plume originating from the Propellant Burning Ground extends beyond the plant's southern boundary. In April 1990, chloroform and/or carbon tetrachloride were found at concentrations above the Wisconsin Division of Health completed a public health assessment for the BAAP. The report documentedmore » the evaluation of investigations of environmental conditions and environmentally-related activities taking place at Badger. The Division concluded that people exposed to groundwater contaminants had a slight increased risk of developing cancer.« less
Pradhan, Jatindra Kumar; Kumar, Sudhir
2014-01-01
Nowadays, e-waste is a major source of environmental problems and opportunities due to presence of hazardous elements and precious metals. This study was aimed to evaluate the pollution risk of heavy metal contamination by informal recycling of e-waste. Environmental risk assessment was determined using multivariate statistical analysis, index of geoaccumulation, enrichment factor, contamination factor, degree of contamination and pollution load index by analysing heavy metals in surface soils, plants and groundwater samples collected from and around informal recycling workshops in Mandoli industrial area, Delhi, India. Concentrations of heavy metals like As (17.08 mg/kg), Cd (1.29 mg/kg), Cu (115.50 mg/kg), Pb (2,645.31 mg/kg), Se (12.67 mg/kg) and Zn (776.84 mg/kg) were higher in surface soils of e-waste recycling areas compared to those in reference site. Level exceeded the values suggested by the US Environmental Protection Agency (EPA). High accumulations of heavy metals were also observed in the native plant samples (Cynodon dactylon) of e-waste recycling areas. The groundwater samples collected form recycling area had high heavy metal concentrations as compared to permissible limit of Indian Standards and maximum allowable limit of WHO guidelines for drinking water. Multivariate analysis and risk assessment studies based on total metal content explains the clear-cut differences among sampling sites and a strong evidence of heavy metal pollution because of informal recycling of e-waste. This study put forward that prolonged informal recycling of e-waste may accumulate high concentration of heavy metals in surface soils, plants and groundwater, which will be a matter of concern for both environmental and occupational hazards. This warrants an immediate need of remedial measures to reduce the heavy metal contamination of e-waste recycling sites.
Iriel, Analia; Lagorio, M Gabriela; Fernández Cirelli, Alicia
2015-11-01
Arsenic (V) uptake from groundwater by using Vallisneria gigantea plants was studied using batch experiments. Reflectance and fluorescence of intact plants were investigated and changes in photophysical properties following arsenic absorption were reported. Good correlations have been found between arsenic concentration in groundwater and parameters derived from reflectance and fluorescence measurements. This system reached its equilibrium after seven days when the removal quantities were strongly dependent on the initial arsenic concentration. Interestingly, Vallisneria plants were able to accumulate from 100 to 600 mg As kg(-1) in roots and fronds although the translocation factors were low (0.6-1.6). Kinetic data for biosorption process followed a first-order law. At low arsenic concentrations the uptake in plants was governed by diffusion aspects. Langmuir, Freundlich and Dubinin-Radushkevich models were applied and results demonstrated that arsenic uptake was better described by the Langmuir model. As a final remark we concluded that a plant of this species should be able to remove 1mg As per week. Copyright © 2015 Elsevier Ltd. All rights reserved.
Berger, David L.; Mayers, C. Justin; Garcia, C. Amanda; Buto, Susan G.; Huntington, Jena M.
2016-07-29
The pre-development, steady state, groundwater budget for the Diamond Valley flow system was estimated at about 70,000 acre-ft/yr of inflow and outflow. During years 2011–12, inflow components of groundwater recharge from precipitation and subsurface inflow from adjacent basins totaled 70,000 acre-ft/yr for the DVFS, whereas outflow components included 64,000 acre-ft/yr of groundwater evapotranspiration and 69,000 acre-ft/yr of net groundwater withdrawals, or net pumpage. Spring discharge in northern Diamond Valley declined about 6,000 acre-ft/yr between pre-development time and years 2011–12. Assuming net groundwater withdrawals minus spring flow decline is equivalent to the storage change, the 2011–12 summation of inflow and storage change was balanced with outflow at about 133,000 acre-ft/yr.
Water Source Utilization of Hammock and Pine Rockland Plant Communities in the Everglades, USA.
NASA Astrophysics Data System (ADS)
Saha, A. K.; Sternberg, L.; Miralles-Wilhelm, F.
2007-12-01
South Florida has a mosaic of plant communities resulting from topographical differences, spatially varying hydroperiods and fire. The only plant communities not flooded in the wet season are hardwood hammocks and often pine rocklands. Natural fires burn off litter accumulated in pine rocklands, with the exception of organic matter in sinkholes in the limestone bedrock. This relative lack of soil is thought to constrain pineland plants in the Everglades to depend upon groundwater that is typically low in nutrients. In contrast, adjoining hardwood hammocks have accumulated an organic soil layer that traps rainwater and nutrients. Plants in hammocks may be able to utilize this water and thereby access nutrients present in the litter. Hammocks are thus viewed as localized areas of high nutrients and instances of vegetation feedback upon the oligotrophic everglades landscape enabling establishment and survival of flood-intolerant tropical hardwood species. This study examines water source use and couples it to foliar nutrient concentrations of plants found in hammocks and pinelands. We examined the δ2H and δ18O of stem waters in plants in Everglades National Park and compared those with the δ2H and δ18O of potential water sources. In the wet season hammock plants accessed both groundwater and water in the surface organic soil layer while in the dry season they relied more on groundwater. A similar seasonal shift was observed in pineland plants; however groundwater constituted a much higher proportion of total water uptake throughout the year under observation. Concomitant with differential water utilization by hammock and pineland plant communities, we observed hammock plants having a significantly higher annual mean foliar N and P concentration than pineland plants. Most hammock species are intolerant of flooded soils and are thus constrained by the high water table in the wet season, yet access the lowered groundwater table in the dry season due to drying up of surface soilwater. This dependence on a relatively narrow seasonal range of water table depth has important implications for South Florida water resource management that can affect these ecologically important upland communities in the Everglades. Being the only emergent areas in the wet season, hammocks provide habitat for a wide range of flora and fauna.
Tracing the Origin of Radioactivity in Groundwater from the Negev, Israel
NASA Astrophysics Data System (ADS)
Vengosh, A.; Pery, N.; Paytan, A.; Haquin, G.; Enhanany, S.; Pankratov, I.
2004-12-01
In normal groundwater conditions natural radionuclides are typically retained on the aquifer matrix and their activity in the groundwater is low. Radium is exceptional since the ratio between adsorbed and dissolved radium depends the ionic strength of the solution. Under high salinity radium is rapidly desorbed and accumulates in the liquid phase. Here we report the results of a geochemical study that investigates the origin of radioactivity in brackish to saline groundwater from the Negev and Arava Valley, Israel. We use the Ra isotope quartet (226Ra-half life 1600 y, 228Ra - 5.6 y, 224Ra - 3.6 d, 223Ra - 11.4 d) to discriminate between radioactivity derived from a thorium source (high 228Ra/226Ra and 224Ra/223Ra ratios) found in groundwater flowing in the Nubian Sandstone aquifer and an uranium source (low 228Ra/226Ra and 224Ra/223Ra ratios) in groundwater flowing in carbonate (Upper Cretaceous) aquifer. We show that the activity of 226Ra in groundwater from the carbonate aquifer is positively correlated with that of the salinity. In the Nubian Sandstone aquifer, however, no such correlation was found. Instead, we observed an inverse correlation between 228Ra activity and sulfate and a positive correlation with barium contents. Given the high H2S content of the ground water, we hypothesized that sulfate reduction process triggers radium leaching to the water, probably due to barite dissolution and anoxic conditions in the aquifer. These findings indicate that high radioactivity can also be found even in low-saline groundwater and that the isotopic ratios of radium are sensitive tracers for the water-rock interactions and thus reconstructing the flow paths in different aquifer matrix (i.e., carbonate versus sandstone).
Two LNG plants slated for Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, R.F.; Phannenstiel, L.L.
1975-06-09
Two large LNG plants are in the planning stage for Indonesia. The Badak field in East Kalimantan, Borneo, will have a 450 million ft/sup 3//day plant with a projected 20-y life. Gas will be liquefied in a 2-train plant employing the propane-MCR process, then stored in double-wall tanks having a total capacity of 2.4 million bbl. Arun field in North Sumatra will have an LNG plant capable of liquefying 1.2 billion ft/sup 3//day of gas in 6 trains, also using the propane-MCR process. LNG storage capacity at Arun will total 3.2 million bbl.
Ground water and vegetation in two peat bogs in northern Minnesota
Roger R. Bay
1967-01-01
Plant cover and water quality of bog waters are related to the surrounding ground-water flow systems in two bogs--one perched above and isolated from the regional ground-water system, the other nonperched and continuous with the regional system. The nonperched bog has higher pH, higher specific conductivity, and greater variety in plant cover than the perched bog....
Adhikari, K; Pal, S; Chakraborty, B; Mukherjee, S N; Gangopadhyay, A
2014-10-01
The movement of contaminants through soil imparts a variety of geo-environmental problem inclusive of lithospheric pollution. Near-surface aquifers are often vulnerable to contamination from surface source if overlying soil possesses poor resilience or contaminant attenuation capacity. The prediction of contaminant transport through soil is urged to protect groundwater from sources of pollutants. Using field simulation through column experiments and mathematical modeling like HYDRUS-1D, assessment of soil resilience and movement of contaminants through the subsurface to reach aquifers can be predicted. An outfall site of effluents of a coke oven plant comprising of alarming concentration of phenol (4-12.2 mg/L) have been considered for studying groundwater condition and quality, in situ soil characterization, and effluent characterization. Hydrogeological feature suggests the presence of near-surface aquifers at the effluent discharge site. Analysis of groundwater of nearby locality reveals the phenol concentration (0.11-0.75 mg/L) exceeded the prescribed limit of WHO specification (0.002 mg/L). The in situ soil, used in column experiment, possess higher saturated hydraulic conductivity (KS = 5.25 × 10(-4) cm/s). The soil containing 47 % silt, 11 % clay, and 1.54% organic carbon content was found to be a poor absorber of phenol (24 mg/kg). The linear phenol adsorption isotherm model showed the best fit (R(2) = 0.977, RMSE = 1.057) to the test results. Column experiments revealed that the phenol removal percent and the length of the mass transfer zone increased with increasing bed heights. The overall phenol adsorption efficiency was found to be 42-49%. Breakthrough curves (BTCs) predicted by HYDRUS-1D model appears to be close fitting with the BTCs derived from the column experiments. The phenol BTC predicted by the HYDRUS-1D model for 1.2 m depth subsurface soil, i.e., up to the depth of groundwater in the study area, showed that the exhaustion point was reached within 12 days of elapsed time. This clearly demonstrated poor attenuation capacity of the soil to retard migration of phenol to the groundwater from the surface outfall site. Suitable liner, based on these data, may be designed to inhibit subsurface transport of phenol and thereby to protect precious groundwater from contamination.
Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics
Ilstedt, U.; Bargués Tobella, A.; Bazié, H. R.; Bayala, J.; Verbeeten, E.; Nyberg, G.; Sanou, J.; Benegas, L.; Murdiyarso, D.; Laudon, H.; Sheil, D.; Malmer, A.
2016-01-01
Water scarcity contributes to the poverty of around one-third of the world’s people. Despite many benefits, tree planting in dry regions is often discouraged by concerns that trees reduce water availability. Yet relevant studies from the tropics are scarce, and the impacts of intermediate tree cover remain unexplored. We developed and tested an optimum tree cover theory in which groundwater recharge is maximized at an intermediate tree density. Below this optimal tree density the benefits from any additional trees on water percolation exceed their extra water use, leading to increased groundwater recharge, while above the optimum the opposite occurs. Our results, based on groundwater budgets calibrated with measurements of drainage and transpiration in a cultivated woodland in West Africa, demonstrate that groundwater recharge was maximised at intermediate tree densities. In contrast to the prevailing view, we therefore find that moderate tree cover can increase groundwater recharge, and that tree planting and various tree management options can improve groundwater resources. We evaluate the necessary conditions for these results to hold and suggest that they are likely to be common in the seasonally dry tropics, offering potential for widespread tree establishment and increased benefits for hundreds of millions of people. PMID:26908158
Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics
NASA Astrophysics Data System (ADS)
Ilstedt, U.; Bargués Tobella, A.; Bazié, H. R.; Bayala, J.; Verbeeten, E.; Nyberg, G.; Sanou, J.; Benegas, L.; Murdiyarso, D.; Laudon, H.; Sheil, D.; Malmer, A.
2016-02-01
Water scarcity contributes to the poverty of around one-third of the world’s people. Despite many benefits, tree planting in dry regions is often discouraged by concerns that trees reduce water availability. Yet relevant studies from the tropics are scarce, and the impacts of intermediate tree cover remain unexplored. We developed and tested an optimum tree cover theory in which groundwater recharge is maximized at an intermediate tree density. Below this optimal tree density the benefits from any additional trees on water percolation exceed their extra water use, leading to increased groundwater recharge, while above the optimum the opposite occurs. Our results, based on groundwater budgets calibrated with measurements of drainage and transpiration in a cultivated woodland in West Africa, demonstrate that groundwater recharge was maximised at intermediate tree densities. In contrast to the prevailing view, we therefore find that moderate tree cover can increase groundwater recharge, and that tree planting and various tree management options can improve groundwater resources. We evaluate the necessary conditions for these results to hold and suggest that they are likely to be common in the seasonally dry tropics, offering potential for widespread tree establishment and increased benefits for hundreds of millions of people.
Relation of streams, lakes, and wetlands to groundwater flow systems
NASA Astrophysics Data System (ADS)
Winter, Thomas C.
Surface-water bodies are integral parts of groundwater flow systems. Groundwater interacts with surface water in nearly all landscapes, ranging from small streams, lakes, and wetlands in headwater areas to major river valleys and seacoasts. Although it generally is assumed that topographically high areas are groundwater recharge areas and topographically low areas are groundwater discharge areas, this is true primarily for regional flow systems. The superposition of local flow systems associated with surface-water bodies on this regional framework results in complex interactions between groundwater and surface water in all landscapes, regardless of regional topographic position. Hydrologic processes associated with the surface-water bodies themselves, such as seasonally high surface-water levels and evaporation and transpiration of groundwater from around the perimeter of surface-water bodies, are a major cause of the complex and seasonally dynamic groundwater flow fields associated with surface water. These processes have been documented at research sites in glacial, dune, coastal, mantled karst, and riverine terrains. Résumé Les eaux de surface sont parties intégrantes des systèmes aquifères. Les eaux souterraines interagissent avec les eaux de surface dans presque tous les types d'environnements, depuis les petits ruisseaux, les lacs et les zones humides jusqu'aux bassins versants des vallées des grands fleuves et aux lignes de côte. Il est en général admis que les zones topographiquement hautes sont des lieux de recharge des aquifères et les zones basses des lieux de décharge, ce qui est le cas des grands systèmes aquifères régionaux. La superposition de systèmes locaux, associés à des eaux de surface, à l'organisation régionale d'écoulements souterrains résulte d'interactions complexes entre les eaux souterraines et les eaux de surface dans tous les environnements, quelle que soit la situation topographique régionale. Les processus hydrologiques associés aux eaux de surface elles-mêmes, tels que des niveaux d'eau de surface saisonnièrement hauts et l'évaporation et la transpiration de l'eau souterraine à la périphérie des eaux de surface, sont les causes essentielles de la dynamique complexe et saisonnière des nappes associées aux eaux de surface. Ces processus ont été mis en évidence sur des sites de recherche dans des formations glaciaires, dunaires, littorales, fluviales et de karst couvert. Resumen Los cuerpos de aguas superficiales son partes integrales de los sistemas de flujo subterráneo. El agua subterránea interactúa con la superficial en prácticamente todo tipo de paisajes, desde pequeños torrentes, lagos y humedales, hasta grandes valles fluviales y costas. Aunque se suele asumir que las áreas topográficamente elevadas son zonas de recarga de aguas subterráneas, mientras las áreas topográficamente más bajas lo son de descarga, esto es cierto básicamente para los sistemas de flujo regional. Al superponer los sistemas de flujo local, asociados a los cuerpos de agua superficial, a las condiciones regionales, resultan interacciones complejas, y esto ocurre independientemente de su posición topográfica. Los procesos hidrológicos asociados con los propios cuerpos de agua superficial, como los niveles superficiales máximos estacionales y la evapotranspiración de agua subterránea en los perímetros de cuerpos superficiales, son una de las principales causas de la complejidad y de las variaciones dinámicas de las interacciones entre aguas subterráneas y superficiales. Estos procesos se han documentado en distintas zonas investigadas, incluyendo depósitos glaciares, dunas, áreas costeras, karsts y terrazas fluviales.
Investigation of radionuclides and anthropic tracer migration in groundwater at the Chernobyl site
NASA Astrophysics Data System (ADS)
Le Gal La Salle, Corinnne; Simonucci, Caroline; Roux, Céline; Bugai, Dmitry; Aquilina, Luc; Fourré, Elise; Jean-Baptiste, Philippe; Labasque, Thierry; Michelot, Jean-Luc; Fifield, Keith; Team Aster Team; Van Meir, Nathalie; Kashparov, Valeriy; Diez, Olivier; Bassot, Sylvain; Lancelot, Joel
2013-04-01
Following the reactor 4 explosion of the Chernobyl Nuclear Power Plant (ChNPP), at least 1019 Bq of radionuclides (RN) were released in the environment. In order to protect workers and prevent further atmospheric RN dispersion in the area adjacent to the ChNPP, contaminated wastes including fuel particles, topsoil layer and forest remains were buried in approximately 800 shallow trenches in the sand formation in the Red Forest waste dump site [1]. No containment measures were taken, and since then RN have leaked to the unsaturated zone and to the groundwater. Since 1999, migration of RN in the vicinity of the trench 22 at Red Forest site has been investigated within the frame of the EPIC program carried out by IRSN in collaboration with UIAR and IGS [2, 3]. A plume of 90Sr was shown downgradient from the trench 22 with activites reaching 3750 Bq/L [2]. In 2008, further studies were initiated through the TRASSE research group, based on a collaboration between IRSN and CNRS. These programs aim at combining groundwater dating with RN migration monitoring studies in order to constrain RN transport models [3]. Groundwater residence time was investigated based on 3H/He and CFC. Both tracers led to ages ranging from modern (1-3 y) at 2 m depth below the groundwater table to significantly higher apparent ages of 50-60 y at 27 m below the groundwater table [3]. 36Cl/Cl ratios 2 to 4 orders of magnitude higher than the theoretical natural ratio are measured in groundwater. Similarly, SF6 shows concentrations as high as 1200 pptv while natural concentrations are in the order of 6-7 pptv. Based on apparent groundwater ages, both contaminations are linked to the Chernobyl explosion. Hence those tracers show excellent potential to constrain conservative and reactive transport, respectively. In contrast, 238U/235U ratio down gradient from trench 22 remains similar to the natural ratio. This suggests that either most of the U contained in the trench is in a non soluble form, associated with U-Zr matrix fuel particles [5] and/or that migration of U is limited due to redox processes and/or microbial activity. The above described experience of post-Chernobyl studies shows that a combined analysis of radionuclides, natural and anthropogenic tracers provides an efficient research tool to better understand and quantify contaminant transport processes in the geo-sphere. Similar approaches can be applied to the study transport of RN in the subsurface, issued from both, diffuse (contaminated watersheds) and point (damaged NPP and fuel storage units) radioactive sources produced by the Fukushima accident. References [1] Dzhepo S. P., Skalskyy A., 2002, In Chernobyl disaster and groundwater, Shestopalov, V., Ed. A.A. Balkema: Lisse, pp 25-70. [2] Dewiere L., Bugai D. et al., 2004, J. Environ. Radioactiv., 74, (1-3), 139-150. [3] Van Meir N., Bugaï, et al., 2009, in: Oughton, D.H., Kashparov, V. (Eds.), Radioactive Particles in the Environment. Springer Science+Business Media B.V., pp.197-208. [4] Le Gal La Salle C., Aquilina L., et al., 2012, Appl. Geochem., 27 1304-1319. [5] Kashparov V.A., Ahamdach N., et. al., 2004, J. Environ. Radioactiv., 72, 335-353.
Aly, Amal H; Edrada-Ebel, Ruangelie; Wray, Victor; Müller, Werner E G; Kozytska, Svitlana; Hentschel, Ute; Proksch, Peter; Ebel, Rainer
2008-05-01
Extracts of cultures grown in liquid or on solid rice media of the fungal endophyte Ampelomyces sp. isolated from the medicinal plant Urospermum picroides exhibited considerable cytotoxic activity when tested in vitro against L5178Y cells. Chromatographic separation yielded 14 natural products that were unequivocally identified based on their 1H and 13C NMR as well as mass spectra and comparison with previously published data. Six compounds (2, 4, 5, 7, 9 and 11) were natural products. Both fungal extracts differed considerably in their secondary metabolites. The extract obtained from liquid cultures afforded a pyrone (2) and sulfated anthraquinones (7 and 9) along with the known compounds 1, 3, 6 and 8. When grown on solid rice medium the fungus yielded three compounds 4, 5 and 11 in addition to several known metabolites including 6, 8, 10, 12, 13 and 14. Compounds 4, 8 and 10 showed the strongest cytotoxic activity against L5178Y cells with EC50 values ranging from 0.2-7.3microg/ml. Furthermore, 8 and 10 displayed antimicrobial activity against the Gram-positive pathogens, Staphylococcus aureus, S. epidermidis and Enterococcus faecalis at minimal inhibitory concentrations (MIC) of 12.5microg/ml and 12.5-25microg/ml, respectively. Interestingly, 6 and 8 were also identified as constituents of an extract derived from a healthy plant sample of the host plant U. picroides thereby indicating that the production of bioactive natural products by the endophyte proceeds also under in situ conditions within the host plant.
Malina, Grzegorz
2004-12-15
The environmental problems related to the former chemical plant in Tarnowskie Gory, with respect to the Quaternary and Triassic groundwater as main receptors, are described and the eco-toxicological impact is discussed. The historical use of that site included industrial mining of ores (Ag, Pb, Zn) and use of Ba, B, Sr, Al, Cu during production of pigment. The majority of used and produced substances were toxic or hazardous. The applied technologies resulted in generation of waste which were mostly dumped without any elementary protection principles. Hydrodynamic modelling showed potential hazard to water-intakes. The variations of spatial distributions of selected contaminants within the Triassic carbonate series indicate that the chemical waste dumped in vicinity of the plant are the sources of groundwater contamination of boron. The results of soil and groundwater monitoring at the constructed landfill show significant contamination, mainly due to leaching from dumped waste, but also from infiltration of non-operating underground installations, and spills of toxic substances during the plant operation. The Quaternary aquifers are heavily contaminated due to the leaching out of chemical compounds from dumping sites. This is hazardous to the Triassic reservoirs--the main sources of potable water for the region. The characteristics of the key contaminants (As, B, Ba and Sr) are provided, including their transport, fate and toxicity. The spatial and temporal distribution of contaminants in groundwater is presented, and observed trends of groundwater quality decrease, mainly with respect to the Triassic aquifers, are discussed. The groundwater risk assessment being developed for the Tarnowskie Gory site should consider the present situation, and provide an approach towards evaluation and assessment of the required remediation measures.
Numerical model for the uptake of groundwater contaminants by phreatophytes
Widdowson, M.A.; El-Sayed, A.; Landmeyer, J.E.
2008-01-01
Conventional solute transport models do not adequately account for the effects of phreatophytic plant systems on contaminant concentrations in shallow groundwater systems. A numerical model was developed and tested to simulate threedimensional reactive solute transport in a heterogeneous porous medium. Advective-dispersive transport is coupled to biodegradation, sorption, and plantbased attenuation processes including plant uptake and sorption by plant roots. The latter effects are a function of the physical-chemical properties of the individual solutes and plant species. Models for plant uptake were tested and evaluated using the experimental data collected at a field site comprised of hybrid poplar trees. A non-linear equilibrium isotherm model best represented site conditions.
Determining Sludge Fertilization Rates for Forests from Nitrate-N in Leachate and Groundwater
D.G. Brockway; D.H. Urie
1983-01-01
Municipal and papermill wastewater sludges were applied to conifer and hardwood forests growing on sand soils (Entic Haplorthods, Spodle Udipsamments, and Alfic Haplothods), in northwestern Lower Michigan where annual precipitation averages 765 mm/y.To investigate the impact of sludge on nitrate-N concentrations in soil water and groundwater.During the first growing...
Tracing nuclear elements released by Fukushima Nuclear Power Plant accident
NASA Astrophysics Data System (ADS)
Tsujimura, M.; Onda, Y.; Abe, Y.; Hada, M.; Pun, I.
2011-12-01
Radioactive contamination has been detected in Fukushima and the neighboring regions due to the nuclear accident at Fukushima Daiichi Nuclear Power Plant (NPP) following the earthquake and tsunami occurred on 11th March 2011. The small experimental catchments have been established in Yamakiya district, Kawamata Town, Fukushima Prefecture, located approximately 35 km west from the Fukushima NPP. The tritium (3H) concentration and stable isotopic compositions of deuterium and oxygen-18 have been determined on the water samples of precipitation, soil water at the depths of 10 to 30 cm, groundwater at the depths of 5 m to 50 m, spring water and stream water taken at the watersheds in the recharge and discharge zones from the view point of the groundwater flow system. The tritium concentration of the rain water fell just a few days after the earthquake showed a value of approximately 17 Tritium Unit (T.U.), whereas the average concentration of the tritium in the precipitation was less than 5 T.U. before the Fukushima accident. The spring water in the recharge zone showed a relatively high tritium concentration of approximately 12 T.U., whereas that of the discharge zone showed less than 5 T.U. Thus, the artificial tritium was apparently injected in the groundwater flow system due to the Fukushima NPP accident, whereas that has not reached at the discharge zone yet. The monitoring of the nuclear elements is now on going from the view points of the hydrological cycles and the drinking water security.
James M. Vose; Wayne T. Swank; Gregory J. Harvey; Barton D. Clinton; Christine Sobek
2000-01-01
Plants that remediate groundwater pollutants may offer a feasible alternative to the traditional and more expensive practices. Because its success depends on water use, this approach requires a complete understanding of species-specific transpiration patterns. The objectives of this study were (1) to quantify tree and stand-level transpiration in two age classes (whips...
Christensen, Allen H.
2005-01-01
Historically, the U.S. Air Force Plant 42 has relied on ground water as the primary source of water owing, in large part, to the scarcity of surface water in the region. Groundwater withdrawal for municipal, industrial, and agricultural use has affected ground-water levels at U.S. Air Force Plant 42, and vicinity. A study to document changes in groundwater gradients and to present historical water-level data was completed by the U.S. Geological Survey in cooperation with the U.S. Air Force. This report presents historical water-level data, hydrographs, and generalized seasonal water-level and water-level contours for September?October 2000 and March?April 2001. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water flow systems, and consequently water availability. During September?October 2000 and March?April 2001 the U.S. Geological Survey and other agencies made a total of 102 water-level measurements, 46 during September?October 2000 and 56 during March?April 2001. These data document recent conditions and, when compared with historical data, document changes in ground-water levels. Two water-level contour maps were drawn: the first depicts water-level conditions for September?October 2000 map and the second depicts water-level conditions for March?April 2001 map. In general, the water-level contour maps show water-level depressions formed as result of ground-water withdrawal. One hundred sixteen long-term hydrographs, using water-level data from 1915 through 2000, were constructed to show water-level trends in the area. The hydrographs indicate that water-level decline occurred throughout the study area, with the greatest declines south of U.S. Air Force Plant 42.
NASA Astrophysics Data System (ADS)
Vengosh, A.; Pery, N.; Paytan, A.; Haquin, G.; Elhanani, S.; Pankratov, I.
2006-05-01
Many aquifer systems are composed of multiple rock types. Previous attempts to evaluate the specific aquifer rocks that control the groundwater chemistry and possible flow paths within these multiple lithological systems have used major ion chemistry and isotopic tracers (e.g., strontium isotopes). Here we propose an additional isotopic proxy that is based on the distribution of radium isotopes in groundwater. Radium has four radioactive isotopes that are part of the decay chains of uranium-238, thorium-232, and uranium-235. The abundance of radium isotope quartet (226Ra-half life 1600 y; 228Ra-5.6 y; 224Ra-3.6 d; 223Ra-11.4 d) in groundwater reflects the Th/U ratios in the rocks. Investigation of groundwater from the Negev, Israel, enabled us to discriminate between groundwaters flowing in the Lower Cretaceous Nubian Sandstone and the Upper Cretaceous Judea Group carbonate aquifers. Groundwater flowing in the sandstone aquifer has distinguishably high 228Ra/226Ra and 224Ra/223Ra ratios due to the high Th/U ratio in sandstone. In contrast, the predominance of uranium in carbonate rocks results in low 228Ra/226Ra and 224Ra/223Ra ratios in the associated groundwater. We show that the radium activity in groundwater in the two-aquifer systems is correlated with temperature, dissolved oxygen, and salinity. The increase of radium activity is also associated with changes in the isotopic ratios; 228Ra/226Ra ratios increase and decrease in the sandstone and carbonate aquifers, respectively. Given that the dissolution of radium isotopes depends on their decay constants, the use of the four radium isotopes with different decay constants enabled us to distinguish between dissolution (higher abundance of the long-lived isotopes) and recoil (predominance of the short-lived isotopes) processes. In spite of these isotopic fractionations, the radium isotopic discrimination between carbonate and sandstone aquifers is significant.
Urbanization and the groundwater budget, metropolitan Seoul area, Korea
NASA Astrophysics Data System (ADS)
Kim, Yoon-Young; Lee, Kang-Kun; Sung, Ig Hwan
2001-07-01
The city of Seoul is home to more than 10 million people in an area of 605 km2. Groundwater is ed for public water supply and industrial use, and to drain underground facilities and construction sites. Though most tap water is supplied from the Han River, the quantity and quality of groundwater is of great concern to Seoul's citizens, because the use of groundwater for drinking water is continuously increasing. This study identifies the major factors affecting the urban water budget and quality of groundwater in the Seoul area and estimates the urban water budget. These factors include leakage from the municipal water-supply system and sewer systems, precipitation infiltration, water-level fluctuations of the Han River, the subway pumping system, and domestic pumping. The balance between groundwater recharge and discharge is near equilibrium. However, the quality of groundwater and ability to control contaminant fluxes are impeded by sewage infiltration, abandoned landfills, waste dumps, and abandoned wells. Résumé. La ville de Séoul possède une population de plus de 10 millions d'habitants, pour une superficie de 605 km2. Les eaux souterraines sont pompées pour l'eau potable et pour les usages industriels, ainsi que pour drainer les équipements souterrains et les sites en construction. Bien que l'essentiel de l'eau potable provienne de la rivière Han, la quantité et la qualité de l'eau souterraine présentent un grand intérêt pour les habitants de Séoul, parce qu'on utilise de plus en plus l'eau souterraine pour l'eau potable. Cette étude identifie les facteurs principaux qui affectent la qualité de l'eau souterraine dans la région de Séoul et fait l'estimation du bilan d'eau urbaine. Les principaux facteurs affectant le bilan d'eau urbaine et la qualité de l'eau souterraine sont les fuites du réseau d'adduction et du réseau d'égouts, l'infiltration des eaux de précipitation, les fluctuations du niveau de la rivière Han, le réseau de pompage du métro et les pompages privés. Le bilan entre la recharge de la nappe et sa décharge est proche de l'équilibre. Cependant, les infiltrations d'eaux usées, les décharges abandonnées, les décharges d'ordures et les puits abandonnés portent atteinte à la qualité de l'eau souterraine et à la capacité de contrôler les flux de contaminants. Resumen. La ciudad de Seúl tiene más de 10 millones de habitantes en un área de 605 km2. Se bombea aguas subterráneas para abastecimiento urbano y para usos industriales, así como para el drenaje de instalaciones subterráneas y de solares en construcción. Aunque la mayor parte del agua de boca procede del río Han, los ciudadanos de Seúl están muy concienciados por la cantidad y calidad de las aguas subterráneas, ya que su explotación para uso de boca está experimentando un continuo incremento. El presente estudio identifica los factores que más afectan a la calidad de las aguas subterráneas en el área de Seúl y hace una estimación del balance de agua en el territorio urbano. Entre los factores principales que afectan al balance y a la calidad de las aguas subterráneas, se incluye el lixiviado de la red municipal de suministro y de la red de alcantarillado, la infiltración de agua de lluvia, las fluctuaciones del nivel del río Han, el sistema de bombeo del metro y los bombeos domésticos. El balance entre la recarga y la descarga en el acuífero está próximo al equilibrio. Sin embargo, la calidad de las aguas subterráneas y la capacidad de controlar los flujos de contaminación están amenazadas por la infiltración de aguas residuales, vertederos abandonados, depósitos de residuos y pozos abanadonados.
Influence of a Municipal Waste Landfill on the Spatial Distribution of Mercury in the Environment
Gworek, Barbara; Dmuchowski, Wojciech; Gozdowski, Dariusz; Koda, Eugeniusz; Osiecka, Renata; Borzyszkowski, Jan
2015-01-01
The study investigations were focused on assessing the influence of a 35-year-old municipal waste landfill on environmental mercury pollution. The total Hg content was determined in the soil profile, groundwater, and the plants (Solidago virgaurea and Poaceae sp.) in the landfill area. Environmental pollution near the landfill was relatively low. The topsoil layer, groundwater and the leaves of Solidago virgaurea and Poaceae sp. contained 19–271 μg kg-1, 0.36–3.01 μg l-1, 19–66 μg kg-1 and 8–29 μg kg-1 of Hg, respectively. The total Hg content in the soil decreased with the depth. The results are presented as pollution maps of the landfill area based on the total Hg content in the soil, groundwater and plants. Statistical analysis revealed the lack of correlation between the total Hg content in the soil and plants, but a relationship between the total concentration of Hg in groundwater and soil was shown. The landfill is not a direct source of pollution in the area. The type of land morphology did not influence the pollution level. Construction of bentonite cut-off wall bypassing MSW landfill reduces the risk of mercury release into ground-water environment. PMID:26176607
Influence of a Municipal Waste Landfill on the Spatial Distribution of Mercury in the Environment.
Gworek, Barbara; Dmuchowski, Wojciech; Gozdowski, Dariusz; Koda, Eugeniusz; Osiecka, Renata; Borzyszkowski, Jan
2015-01-01
The study investigations were focused on assessing the influence of a 35-year-old municipal waste landfill on environmental mercury pollution. The total Hg content was determined in the soil profile, groundwater, and the plants (Solidago virgaurea and Poaceae sp.) in the landfill area. Environmental pollution near the landfill was relatively low. The topsoil layer, groundwater and the leaves of Solidago virgaurea and Poaceae sp. contained 19-271 μg kg-1, 0.36-3.01 μg l-1, 19-66 μg kg-1 and 8-29 μg kg-1 of Hg, respectively. The total Hg content in the soil decreased with the depth. The results are presented as pollution maps of the landfill area based on the total Hg content in the soil, groundwater and plants. Statistical analysis revealed the lack of correlation between the total Hg content in the soil and plants, but a relationship between the total concentration of Hg in groundwater and soil was shown. The landfill is not a direct source of pollution in the area. The type of land morphology did not influence the pollution level. Construction of bentonite cut-off wall bypassing MSW landfill reduces the risk of mercury release into ground-water environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wujcik, W.J.; Lowe, W.L.; Marks, P.J.
1992-08-01
Manufacturing activities at Army Ammunition Plants (AAPs) result in the production of organic wastewaters that contain both explosive residues and other organic chemicals. As a result of past waste practices at such plants, explosive residues may leach through the soil and contaminate groundwater. Two pilot studies were performed to evaluate the use of granular activated carbon (GAC) to treat groundwater contaminated with explosives at Badger AAP and Milan AAP. An additional goal of the Badger AAP study was to examine the potential discharge of explosives 2,4-DNT and 2,6-DNT from a packed column air stripper used to remove volatile organic compoundsmore » from groundwater. A laboratory method was developed for the BAAP study to permit lower detection levels for 2,4-DNT and 2,6-DNT (0.46[mu]g/L and 0.017 [mu]g/L, respectively). The studies concluded that removal of explosives from groundwater using continuous flow GAC is feasible. 14 refs., 10 figs., 11 tabs.« less
Hydrology of a nuclear-processing plant site, Rocky Flats, Jefferson County, Colorado
Hurr, R. Theodore
1976-01-01
Accidental releases of contaminants resulting from the operation of the U.S. Energy Research and Development Administration's nuclear-processing and recovery plant located on Rocky Flats will move at different rates through -different parts of the hydrologic system. Rates of movement are dependent upon the magnitude of the accidental release and the hydrologic conditions at the time of the release. For example, during wet periods, a contaminant resulting from a 5,000-gallon (19,000-1itre) release on the land surface would enter the ground-water system in about 2 to 12 hours. Ground-water flow in the Rocky Flats Alluvium might move the contaminant eastward at a rate of about 3 to 11 feet (0.9 to 3.4 metres) per day, if it remains dissolved. Maximum time to a point of discharge would be about 3 years; minimum time could be a few days. A contaminant entering a stream would then move at a rate of about 60 feet (18 metres) per minute under pool-and-riffle conditions. The rate of movement might be about 420 feet (128 metres) per minute under open-channel-flow conditions following intense thunderstorms.
Lee, Minhee; Yang, Minjune
2010-01-15
The uranium removal efficiencies of rhizofiltration in the remediation of groundwater were investigated in lab-scale experiments. Sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) were cultivated and an artificially uranium contaminated solution and three genuine groundwater samples were used in the experiments. More than 80% of the initial uranium in solution and genuine groundwater, respectively, was removed within 24h by using sunflower and the residual uranium concentration of the treated water was lower than 30 microg/L (USEPA drinking water limit). For bean, the uranium removal efficiency of the rhizofiltration was roughly 60-80%. The maximum uranium removal via rhizofiltration for the two plant cultivars occurred at pH 3-5 of solution and their uranium removal efficiencies exceeded 90%. The lab-scale continuous rhizofiltration clean-up system delivered over 99% uranium removal efficiency, and the results of SEM and EDS analyses indicated that most uranium accumulated in the roots of plants. The present results suggested that the uranium removal capacity of two plants evaluated in the clean-up system was about 25mg/kg of wet plant mass. Notably, the removal capacity of the root parts only was more than 500 mg/kg.
Evaluation of Phytoremediation for Management of Chlorinated Solvents in Soil and Groundwater
This document is intended to aid regulators, site owners, consultants, neighbors, and other stakeholders in understanding the proper application of planted systems to remediate groundwater contaminated with halogenated solvents.
NASA Astrophysics Data System (ADS)
Jørgensen, Niels; Banoeng-Yakubo, Bruce
2001-03-01
Analyses of environmental isotopes (18O, 2H, and 87Sr/86Sr) are applied to groundwater studies with emphasis on saline groundwater in aquifers in the Keta Basin, Ghana. The 87Sr/86Sr ratios of groundwater and surface water of the Keta Basin primarily reflect the geology and the mineralogical composition of the formations in the catchments and recharge areas. The isotopic compositions of 18O and 2H of deep groundwater have small variations and plot close to the global meteoric water line. Shallow groundwater and surface water have considerably larger variations in isotopic compositions, which reflect evaporation and preservation of seasonal fluctuations. A significant excess of chloride in shallow groundwater in comparison to the calculated evaporation loss is the result of a combination of evaporation and marine sources. Groundwaters from deep wells and dug wells in near-coastal aquifers are characterized by relatively high chloride contents, and the significance of marine influence is evidenced by well-defined mixing lines for strontium isotopes, and hydrogen and oxygen stable isotopes, with isotopic compositions of seawater as one end member. The results derived from environmental isotopes in this study demonstrate that a multi-isotope approach is a useful tool to identify the origin and sources of saline groundwater. Résumé. L'analyse des isotopes du milieu (18O, 2H, et 87Sr/86Sr) a été mise en œuvre pour des études hydrogéologiques portant sur des eaux souterraines salées des aquifères du bassin de Keta (Ghana). Les rapports isotopiques 87Sr/86Sr de l'eau souterraine et de l'eau de surface du bassin de Keta reflètent principalement la géologie et la composition minéralogique des formations des bassins d'alimentation et des zones de recharge. Les compositions isotopiques en 18O et en 2H des eaux souterraines profondes présentent de faibles variations et se placent près de la droite des eaux météoriques mondiales. Les eaux des nappes peu profondes et les eaux de surface subissent des variations beaucoup plus fortes de leurs compositions isotopiques, dues à l'évaporation et aux fluctuations saisonnières. Un excès significatif en chlorures dans les eaux souterraines peu profondes, compte tenu de l'évaporation calculée, résulte à la fois de l'évaporation et d'apports marins. Les eaux souterraines de forages profonds et de puits dans les aquifères proches de la côte sont caractérisées par des concentrations relativement élevées en chlorure; une influence marine significative est mise en évidence par des droites de mélange bien définies pour les isotopes du strontium et les isotopes stables de l'oxygène et de l'hydrogène, avec les compositions de l'eau de mer pour l'un des termes du mélange. Les résultats fournis par les isotopes du milieu dans cette étude montrent qu'une approche multi-isotopique est un outil pertinent pour identifier l'origine et les sources d'eaux souterraines salées. Resumen. Se ha aplicado el análisis de los isótopos ambientales (18O, 2H y 87Sr/86Sr) al estudio de las aguas subterráneas en la Cuenca de Keta (Ghana), haciendo énfasis en acuíferos salinizados. Las proporciones de 87Sr/86Sr en las aguas subterráneas y superficiales de la Cuenca de Keta reflejan, fundamentalmente, la geología y la composición mineralógica de las formaciones dominantes en las zonas de captación y de recarga. La composición isotópica de las aguas subterráneas profundas presenta variaciones pequeñas en 18O y 2H y se acerca a la línea meteórica mundial. Las aguas subterráneas someras y las superficiales presentan variaciones considerablemente mayores en la composición isotópica, hecho que refleja la evaporación y las fluctuaciones estacionales. Como resultado de la combinación entre evaporación e influencia marina, se observa un exceso significativo de cloruros en las aguas subterráneas someras en comparación con las pérdidas por evaporación. Las aguas subterráneas de pozos profundos y de pozos excavados en acuíferos cercanos a la costa se caracterizan por sus contenidos relativamente altos de cloruros. La influencia marina se evidencia por las líneas de mezcla bien definidas por los isótopos del estroncio y los isótopos estables del hidrógeno y oxígeno, mientras que la composición isotópica del agua marina se comporta como punto extremo de dichas líneas. Los resultados obtenidos en este trabajo a partir de los isótopos ambientales demuestran que el enfoque multi-isotópico es una herramienta útil para identificar el origen y las fuentes de aguas subterráneas salinas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-09-01
The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologiesmore » identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 2 has been divided into five sections: Characterization, Decontamination, Dismantlement, Robotics/Automation, and Waste Management. Each section contains logical breakdowns of the Y-12 D and D problems by subject area and identifies technologies that can be reasonably applied to each D and D challenge.« less
Underground storage tank management plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-09-01
The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective actionmore » is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.« less
NASA Astrophysics Data System (ADS)
Schürch, Marc; Vuataz, François-D.
2000-09-01
Source, type, and quantity of various components of groundwater, as well as their spatial and temporal variations were determined by different hydrochemical methods in the alluvial aquifer of the upper Rhone River valley, Bois de Finges, Wallis Canton, Switzerland. The methods used are hydrochemical modeling, stable-isotope analysis, and chemical analysis of surface water and groundwater. Sampling during high- and low-water periods determined the spatial distribution of the water chemistry, whereas monthly sampling over three years provided a basis for understanding seasonal variability. The physico-chemical parameters of the groundwater have spatial and seasonal variations. The groundwater chemical composition of the Rhone alluvial aquifer indicates a mixing of weakly mineralized Rhone River water and SO4-rich water entering from the south side of the valley. Temporal changes in groundwater chemistry and in groundwater levels reflect the seasonal variations of the different contributors to groundwater recharge. The Rhone River recharges the alluvial aquifer only during the summer high-water period. Résumé. Origine, type et quantité de nombreux composants d'eau de l'aquifère alluvial dans la vallée supérieure du Rhône, Bois de Finges, Valais, Suisse, ainsi que leurs variations spatiales et temporelles ont été déterminés par différentes méthodes hydrochimiques. Les méthodes utilisées sont la modélisation hydrochimique, les isotopes stables, ainsi que l'échantillonnage en période de hautes eaux et de basses eaux pour étudier la distribution spatiale de la composition chimique, alors qu'un échantillonnage mensuel pendant trois ans sert à comprendre les processus de la variabilité saisonnière. Les paramètres physico-chimiques des eaux souterraines montrent des variations spatiales et saisonnières. La composition chimique de l'aquifère alluvial du Rhône indique un mélange entre une eau peu minéralisée venant du Rhône et une eau sulfatée s'écoulant du versant sud. La modification temporelle des paramètres chimiques des eaux souterraines et de la piézométrie reflètent les variations saisonnières des apports d'eau de la nappe souterraine. En période de hautes eaux durant l'été, seul le Rhône recharge l'aquifère alluvial. Resumen. Se ha determinado el origen, tipo y cantidad de diversos elementos de las aguas subterráneas en el acuífero aluvial del valle superior del río Ródano (Bois de Finges, Cantón de Wallis, Suiza), así como sus variaciones espaciales y temporales, mediante métodos hidroquímicos. Entre las herramientas utilizadas, se incluye la modelación hidroquímica, el análisis de isótopos estables y el análisis químico de aguas superficiales y subterráneas. El muestreo en épocas de estiaje y lluvias sirvió para determinar la distribución espacial de la química del agua, mientras que la variabilidad estacional fue caracterizada por medio de muestreos mensuales durante un período de tres años. Los parámetros físicoquímicos de las aguas subterráneas muestran variaciones espaciales y estacionales. La composición química de las aguas subterráneas del acuífero aluvial del río Ródano indica que hay mezcla entre las aguas débilmente mineralizadas del río y las aguas cargadas en sulfato (SO4-2) que proceden de la parte meridional de valle. Los cambios temporales en la química de las aguas subterráneas y en los niveles piezométricos reflejan las variaciones estacionales de las diferentes contribuciones de la recarga. El río Ródano recarga al acuífero aluvial únicamente durante el período estival, cuando el caudal es elevado.
Tsuchiya, Rimi; Orita, Makiko; Fukushima, Yoshiko; Endo, Yuukou; Yamashita, Shunichi; Takamura, Noboru
2017-01-01
Kawauchi Village, in Fukushima Prefecture, is located within a 30-km radius of the nuclear disaster site of the Fukushima Daiichi Nuclear Power Plant (FDNPP). “Sansai” (edible wild plants) in this village have been evaluated by gamma spectrometry after the residents had returned to their homes, to determine the residents’ risk of internal exposure to artificial radionuclides due to consumption of these plants. The concentrations of radiocesium (cesium-134 and cesium-137) were measured in all 364 samples collected in spring 2015. Overall, 34 (9.3%) samples exceeded the regulatory limit of 100 Bq/kg established by Japanese guidelines, 80 (22.0%) samples registered between 100 Bq/kg and 20 Bq/kg, and 250 (68.7%) registered below 20 Bq/kg (the detection limit). The internal effective doses from edible wild plants were sufficiently low (less than 1 mSv/y), at 3.5±1.2 μSv/y for males and 3.2±0.9 μSv/y for females (2.7±1.5 μSv/y for children and 3.7±0.7 μSv/y for adults in 2015). Thus, the potential internal exposure doses due to consumption of these edible wild plants were below the applicable radiological standard limits for foods. However, high radiocesium levels were confirmed in specific species, such as Eleutherococcus sciadophylloides (“Koshiabura”) and Osmunda japonica (Asian royal fern, “Zenmai”). Consequently, a need still might exist for long-term follow-up such as environmental monitoring, physical and mental support to avoid unnecessary radiation exposure and to remove anxiety about adverse health effects due to radiation. The customs of residents, especially the “satoyama” (countryside) culture of ingesting “sansai,” also require consideration in the further reconstruction of areas such as Kawauchi Village that were affected by the nuclear disaster. PMID:29240794
Tsuchiya, Rimi; Taira, Yasuyuki; Orita, Makiko; Fukushima, Yoshiko; Endo, Yuukou; Yamashita, Shunichi; Takamura, Noboru
2017-01-01
Kawauchi Village, in Fukushima Prefecture, is located within a 30-km radius of the nuclear disaster site of the Fukushima Daiichi Nuclear Power Plant (FDNPP). "Sansai" (edible wild plants) in this village have been evaluated by gamma spectrometry after the residents had returned to their homes, to determine the residents' risk of internal exposure to artificial radionuclides due to consumption of these plants. The concentrations of radiocesium (cesium-134 and cesium-137) were measured in all 364 samples collected in spring 2015. Overall, 34 (9.3%) samples exceeded the regulatory limit of 100 Bq/kg established by Japanese guidelines, 80 (22.0%) samples registered between 100 Bq/kg and 20 Bq/kg, and 250 (68.7%) registered below 20 Bq/kg (the detection limit). The internal effective doses from edible wild plants were sufficiently low (less than 1 mSv/y), at 3.5±1.2 μSv/y for males and 3.2±0.9 μSv/y for females (2.7±1.5 μSv/y for children and 3.7±0.7 μSv/y for adults in 2015). Thus, the potential internal exposure doses due to consumption of these edible wild plants were below the applicable radiological standard limits for foods. However, high radiocesium levels were confirmed in specific species, such as Eleutherococcus sciadophylloides ("Koshiabura") and Osmunda japonica (Asian royal fern, "Zenmai"). Consequently, a need still might exist for long-term follow-up such as environmental monitoring, physical and mental support to avoid unnecessary radiation exposure and to remove anxiety about adverse health effects due to radiation. The customs of residents, especially the "satoyama" (countryside) culture of ingesting "sansai," also require consideration in the further reconstruction of areas such as Kawauchi Village that were affected by the nuclear disaster.
A MHD channel study for the ETF conceptual design
NASA Technical Reports Server (NTRS)
Wang, S. Y.; Staiger, P. J.; Smith, J. M.
1981-01-01
The procedures and computations used to identify an MHD channel for a 540 mW(I) EFT-scale plant are presented. Under the assumed constraints of maximum E(x), E(y), J(y) and Beta; results show the best plant performance is obtained for active length, L is approximately 12 M, whereas in the initial ETF studies, L is approximately 16 M. As MHD channel length is reduced from 16 M, the channel enthalpy extraction falls off, slowly. This tends to reduce the MHD power output; however, the shorter channels result in lower heat losses to the MHD channel cooling water which allows for the incorporation of more low pressure boiler feedwater heaters into the system and an increase in steam plant efficiency. The net result of these changes is a net increase in the over all MHD/steam plant efficiency. In addition to the sensitivity of various channel parameters, the trade-offs between the level of oxygen enrichment and the electrical stress on the channel are also discussed.
A MHD channel study for the ETF conceptual design
NASA Astrophysics Data System (ADS)
Wang, S. Y.; Staiger, P. J.; Smith, J. M.
The procedures and computations used to identify an MHD channel for a 540 mW(I) EFT-scale plant are presented. Under the assumed constraints of maximum E(x), E(y), J(y) and Beta; results show the best plant performance is obtained for active length, L is approximately 12 M, whereas in the initial ETF studies, L is approximately 16 M. As MHD channel length is reduced from 16 M, the channel enthalpy extraction falls off, slowly. This tends to reduce the MHD power output; however, the shorter channels result in lower heat losses to the MHD channel cooling water which allows for the incorporation of more low pressure boiler feedwater heaters into the system and an increase in steam plant efficiency. The net result of these changes is a net increase in the over all MHD/steam plant efficiency. In addition to the sensitivity of various channel parameters, the trade-offs between the level of oxygen enrichment and the electrical stress on the channel are also discussed.
Clinton, B.D.; Vose, J.M.; Vroblesky, D.A.; Harvey, G.J.
2004-01-01
The use of plants to remediate polluted groundwater is becoming an attractive alternative to more expensive traditional techniques. In order to adequately assess the effectiveness of the phytoremediation treatment, a clear understanding of water-use habits by the selected plant species is essential. We examined the relative uptake of surface water (i.e., precipitation) vs. groundwater by mature Populus deltoides by applying irrigation water at a rate equivalent to a 5-cm rain event. We used stable isotopes of hydrogen (D) and oxygen (18O) to identify groundwater and surface water (irrigation water) in the xylem sap water. Pretreatment isotopic ratios of both deuterium and 18O, ranked from heaviest to lightest, were irrigation water > groundwater > xylem sap. The discrepancy in preirrigation isotopic signatures between groundwater and xylem sap suggests that in the absence of a surface source of water (i.e., between rain events) there is an unknown amount of water being extracted from sources other than groundwater (i.e., soil surface water). We examined changes in volumetric soil water content (%), total hourly sapflux rates, and trichloroethene (TCE) concentrations. Following the irrigation treatment, volumetric soil water increased by 86% and sapflux increased by as much as 61%. Isotopic signatures of the xylem sap became substantially heavier following irrigation, suggesting that the applied irrigation water was quickly taken up by the plants. TCE concentrations in the xylem sap were diluted by an average of 21% following irrigation; however, dilution was low relative to the increase in sapflux. Our results show that water use by Populus deltoides is variable. Hence, studies addressing phytoremediation effectiveness must account for the relative proportion of surface vs. groundwater uptake.
GIS-based hydrogeological databases and groundwater modelling
NASA Astrophysics Data System (ADS)
Gogu, Radu Constantin; Carabin, Guy; Hallet, Vincent; Peters, Valerie; Dassargues, Alain
2001-12-01
Reliability and validity of groundwater analysis strongly depend on the availability of large volumes of high-quality data. Putting all data into a coherent and logical structure supported by a computing environment helps ensure validity and availability and provides a powerful tool for hydrogeological studies. A hydrogeological geographic information system (GIS) database that offers facilities for groundwater-vulnerability analysis and hydrogeological modelling has been designed in Belgium for the Walloon region. Data from five river basins, chosen for their contrasting hydrogeological characteristics, have been included in the database, and a set of applications that have been developed now allow further advances. Interest is growing in the potential for integrating GIS technology and groundwater simulation models. A "loose-coupling" tool was created between the spatial-database scheme and the groundwater numerical model interface GMS (Groundwater Modelling System). Following time and spatial queries, the hydrogeological data stored in the database can be easily used within different groundwater numerical models. Résumé. La validité et la reproductibilité de l'analyse d'un aquifère dépend étroitement de la disponibilité de grandes quantités de données de très bonne qualité. Le fait de mettre toutes les données dans une structure cohérente et logique soutenue par les logiciels nécessaires aide à assurer la validité et la disponibilité et fournit un outil puissant pour les études hydrogéologiques. Une base de données pour un système d'information géographique (SIG) hydrogéologique qui offre toutes les facilités pour l'analyse de la vulnérabilité des eaux souterraines et la modélisation hydrogéologique a été établi en Belgique pour la région Wallonne. Les données de cinq bassins de rivières, choisis pour leurs caractéristiques hydrogéologiques différentes, ont été introduites dans la base de données, et un ensemble d'applications qui ont été développées permet dès maintenant de prochaines avancées. L'intérêt grandit pour le potentiel d'intégration de la technologie des SIG et les modèles de simulation des nappes. Un outil de couplage a été créé entre le schéma de base de données spatiales et l'interface GMS (GroundWater Modelling System, système de modélisation de nappe) du modèle numérique de nappe. Suivant les requêtes en fonction du temps et de l'espace, les données hydrogéologiques stockées dans la base de données peuvent être aisément utilisées dans différents modèles numériques de nappes. Resumen. La fiabilidad y validez de los análisis de aguas subterráneas dependen enormemente de la disponibilidad de muchos datos de alta calidad. Integrarlos en una estructura consistente y lógica mediante un entorno informático sirve para asegurar su validez y disponibilidad, y rrepresenta una herramienta muy potente para ulteriores estudios hidrogeológicos. Se ha diseñado en la región de Valonia (Bélgica) una base de datos hidrogeológica basada en un sistema de información geográfica (GIS), con el que se dispone de útiles para elaborar análisis de vulnerabilidad y modelos hidregeológicos. Se ha utilizado datos de cinco cuencas fluviales, elegidas por sus características hidrogeológicas contrastadas, así como un conjunto de aplicaciones desarrolladas con vistas al futuro. El interés por el potencial que ofrece la integración de la tecnología GIS y los modelos de simulación de aguas subterráneas está en auge. Se ha desarrollado un "emulador" que integra el esquema espacial de la base de datos y la interfaz GMS (GroundWater Modelling System) de modelación numérica de aguas subterráneas. A partir de búsquedas temporales y espaciales, los datos hidrogeológicos almacenados en la base de datos pueden ser utilizados fácilmente en modelos numéricos diferentes de aguas subterráneas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2003-08-06
This report presents the technical information developed since the interim record of decision (IROD) was issued in September 2000 (U.S. Department of Energy [DOE] 2000). The information was incorporated into the evaluation that was performed in selecting the preferred alternative for the Chemical Plant groundwater operable unit (GWOU) of the Weldon Spring site. The contaminants of concern (COCs) in groundwater and springs are trichloroethylene (TCE), nitrate, uranium, and nitroaromatic compounds. The preferred alternative of monitored natural attenuation (MNA) coupled with institutional controls (ICs) and contingency activities is described in the ''Proposed Plan (PP) for Final Remedial Action for the Groundwatermore » Operable Unit at the Chemical Plant Area of the Weldon Spring Site, Weldon Spring, Missouri'' (DOE 2003b).« less
USDA-ARS?s Scientific Manuscript database
Groundwater quality is often evaluated using microbial indicators. This study examines data from 12 international groundwater studies (conducted 1992–2013). Sites were chosen from 718 public drinking-water systems with a range of hydrogeological conditions. Focus was on testing the value of indicato...
Sharma, Sakshi; Kaur, Jagdeep; Nagpal, Avinash Kaur; Kaur, Inderpreet
2016-09-01
Arsenic (As) is a carcinogenic metalloid that enters food chain through food and water and poses health risk to living beings. It is important to assess the As status in the environment and risks associated with it. Hence, a risk assessment study was conducted across Ropar wetland, Punjab, India and its environs in pre-monsoon season of 2013, to estimate the risk posed to adults and children via daily consumption of As contaminated groundwater and wheat grains. Arsenic concentrations determined in groundwater, soil and wheat grain samples using atomic absorption spectrometer ranged from 2.90 to 10.56 μg L(-1), 0.06 to 0.12 mg kg(-1) and 0.03 to 0.21 mg kg(-1), respectively. Arsenic in wheat grains showed significant negative correlation with phosphate content in soil indicating a competitive uptake of arsenate and phosphate ions by plants. Principal component analysis and cluster analysis suggested that both natural and anthropogenic factors contribute to variation in As content and other variables studied in soil and groundwater samples. Total cancer risk and hazard index were higher than the USEPA safety limits of 1.00 × 10(-6) and 1, respectively, for both adults and children indicating a high risk of cancer and other health disorders. Consumption of As contaminated wheat grains was found to pose higher risk of cancer and non-cancer health disorders as compared to intake of As contaminated groundwater by both adults and children. Moreover, children were found to be more prone to cancer and other heath disorders due to As exposure via wheat grains and groundwater as compared to adults.
Schubert, Christopher E.; deVries, M. Peter; Finch, Anne J.
2010-01-01
Fire Island is a barrier island that lies south of central Long Island, N.Y. It is about 60 km (37 mi) long and 0.5 km (1/4 mi) wide and is bounded by the Great South Bay, Narrow Bay, and Moriches Bay estuaries to the north; by the Atlantic Ocean to the south; by Fire Island Inlet to the west; and by Moriches Inlet to the east (fig. 1). Fire Island National Seashore (FIIS) encompasses a 42-km (26-mi) length of Fire Island that is bordered by Robert Moses State Park to the west and Smith Point County Park to the east (fig. 2). Interspersed throughout FIIS are 17 residential beach communities that together contain about 4,100 homes. The barrier island's summer population increases 50-fold through the arrival of summer residents and vacationers. The National Park Service (NPS) has established several facilities on the island to accommodate visitors to FIIS. About 2.2 million people visit at least one of the 17 communities and (or) Smith Point County Park, the waterways surrounding Fire Island, or a FIIS facility annually (National Park Service, 2007). Combined visitation on a peak-season weekend day can be as high as 100,000 (National Park Service, 2002). Most homes and businesses in the 17 barrier-island communities discharge untreated wastewater directly to the shallow (water-table) aquifer through private septic systems and cesspools; the NPS facilities discharge wastewater to this aquifer through leach fields and cesspools. (The community of Ocean Beach (fig. 2) has a treatment plant that discharges to tidewater.) Contaminants in sewage entering the shallow groundwater move through the flow system and are ultimately discharged to adjacent marine surface waters, where they can pose a threat to coastal habitats. A contaminant of major concern is nitrogen, which is derived from fertilizers and human waste. The continuous inflow of nitrogen to surface-water bodies can lead to increased production of phytoplankton and macroalgae, which in turn can cause oxygen depletion, decreases in size of estuarine fish and shellfish communities, and loss of submerged seagrass habitat through light limitation (Valiela and others, 1992). The FIIS boundary extends roughly 1.2 km (0.8 mi) into the back-barrier estuaries of Great South Bay, Narrow Bay, and Moriches Bay (fig. 1). Within this estuarine zone are extensive areas of seagrass, shellfish, and finfish habitat, as well as intense recreational activity (Bokuniewicz and others, 1993). Management strategies for protection of these habitats require data on (1) concentrations and movement of nutrients and other human-derived contaminants that enter the groundwater system from on-site septic systems, and (2) aquifer characteristics and groundwater flow patterns. These data can then be used in three-dimensional flow models of the shallow aquifer system to predict the rates of groundwater discharge to the marine surface waters that bound Fire Island and the concentrations of nitrogen entering these water bodies from the aquifer's discharge zones. In 2004, the U.S. Geological Survey (USGS), in cooperation with the NPS, began a 3-year investigation to (1) measure groundwater levels within four local study areas at FIIS, (2) collect groundwater samples from these areas for nutrient (nitrogen) analysis, (3) develop a three-dimensional model of the hydrologic system and adjacent saltwater bodies for groundwater-flow delineation and particle tracking, and (4) apply the results of groundwater-discharge simulations to calculate the annual nitrogen loads in these discharges, particularly those entering Great South Bay, which together with the other back bays receives an estimated 80 percent of the total groundwater discharge from Fire Island. The four areas on which the investigation focused were the communities of Kismet and Robbins Rest, the NPS Visitor Center at Watch Hill, and the undeveloped Otis Pike Fire Island High Dune Wilderness (shown in panels A, B, C, and D in fig. 2); these were
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitten, C.B.; Sjostrom, K.J.
1991-04-01
Ground-water contaminants were found in ground-water monitoring wells at the existing landfill. More wells to define the horizontal and vertical extent of the contaminant plume are to be installed. Geophysical techniques (electro-magnetic induction, vertical electrical resistivity, and horizontal resistivity profiling) were used to map the extent of the contaminant plume. Using the geophysical, ground-water elevation, and geologic data, five anomalous areas south and east of the landfill were identified as locations for additional ground-water monitoring wells.
Methanogenic biodegradation of charcoal production wastes in groundwater at Kingsford, Michigan, USA
Michael, Godsy E.; Warren, E.; Westjohn, D.B.
2001-01-01
A house exploded in the City of Kingsford, Michigan USA. The explosion was caused by CH4 that leaked into the basement from the surrounding soil. Evidence suggests that biodegradation of products from the distillation and spillage at or near a former wood carbonization plant site was the major source of CH4 and CO2 in the groundwater system. The plant area is directly upgradient from deep groundwater, samples of which are green-yellow in colour, have a very strong odour of burnt wood, contain high concentrations of mononuclear aromatic and phenolic compounds, and extremely high concentrations of volatile fatty acids. The majority of the dissolved compounds in these groundwater samples have been shown, using laboratory microcosms, to be anaerobically biodegradable to CH4 and CO2. The biodegradable compounds, and the amounts of CH4 and CO2 produced in the microcosms, are consistent with observations from field samples.
Landmeyer, James E.; Effinger, Thomas N.
2016-01-01
Concentrations of benzene, toluene, naphthalene, and dissolved oxygen in groundwater at a former manufactured gas plant site near Charleston, South Carolina, USA, have been monitored since the installation of a phytoremediation system of hybrid poplar trees in 1998. Between 2000 and 2014, the concentrations of benzene, toluene, and naphthalene (BT&N) in groundwater in the planted area have decreased. For example, in the monitoring well containing the highest concentrations of BT&N, benzene concentrations decreased from 10,200 µg/L to less than 4000 µg/L, toluene concentrations decreased from 2420 µg/L to less than 20 µg/L, and naphthalene concentrations decreased from 6840 µg/L to less than 3000 µg/L. Concentrations of BT&N in groundwater in all wells were observed to be lower during the summer months relative to the winter months of a particular year during the first few years after installing the phytoremediation system, most likely due to increased transpiration and contaminant uptake by the hybrid poplar trees during the warm summer months; this pathway of uptake by trees was confirmed by the detection of benzene, toluene, and naphthalene in trees during sampling events in 2002, and later in the study in 2012. These data suggest that the phytoremediation system affects the groundwater contaminants on a seasonal basis and, over multiple years, has resulted in a cumulative decrease in dissolved-phase contaminant concentrations in groundwater. The removal of dissolved organic contaminants from the aquifer has resulted in a lower demand on dissolved oxygen supplied by recharge and, as a result, the redox status of the groundwater has changed from anoxic to oxic conditions. This study provides much needed information for water managers and other scientists on the viability of the long-term effectiveness of phytoremediation in decreasing groundwater contaminants and increasing dissolved oxygen at sites contaminated by benzene, toluene, and naphthalene.
Maupin, Molly A.
1995-01-01
Idaho leads the Nation in trout production for commercial sale. Combined mean annual discharges from 12 aquacultural facilities in the basin (1985-90) were about 787,000 acre-feet. These facilities are clustered in a reach of the Snake River between Milner Dam and King Hill where ground-water discharge is from many seeps and springs that provide sufficient quantities of good-quality water. Other facilities that release effluent to the Snake River include 13 municipal wastewater treatment plants and 3 industrial facilities.
1998-12-01
influence community respiration, photosynthesis, solubility of dissolved oxygen, redox potential, biochemical reaction rates, and ensuing treatment...Conductivity 15-8 15.1.3.5 Dissolved Oxygen Concentration 15-12 15.1.3.6 Redox Potential 15-14 15.1.3.7 pH 15-16 15.1.3.8 Nutrients and Water Quality 15-19...Average Redox Potential of Wetland Waters From June 17, 6-27 1996, to September 16, 1997 Phytoremediation Demonstration Milan AAP FIGURE NUMBER
Seasonal plant water uptake patterns in the saline southeast Everglades ecotone.
Ewe, Sharon M L; Sternberg, Leonel da S L; Childers, Daniel L
2007-07-01
The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (delta(18)O) was enriched (4.8 +/- 0.2 per thousand) in the DS relative to the WS (0.0 +/- 0.1 per thousand), but groundwater delta(18)O remained constant between seasons (DS: 2.2 +/- 0.4 per thousand; WS: 2.1 +/- 0.1 per thousand). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil-groundwater mix (delta 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on delta(18)O data, the roots of R. mangle roots were exposed to salinities of 25.4 +/- 1.4 PSU, less saline than either C. jamaicense (39.1 +/- 2.2 PSU) or S. portulacastrum (38.6 +/- 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to global sea level rise and human-induced changes in freshwater flows.
Stream and tree water sources in a coast redwood forest
NASA Astrophysics Data System (ADS)
Dymond, S.; Bladon, K. D.; McDonnell, J.; McNamara, J. P.
2017-12-01
Recent investigations in forested watersheds have shown the prevalence of "two water worlds" whereby plants access tightly bound soil waters and streamflow is sustained via mobile soil water and groundwater sources. We tested this hypothesis in a coast redwood forest at the Caspar Creek Experimental Watersheds (CCEW), California, USA. We collected water samples from different water pools (streams, groundwater, precipitation, soil, and trees) from 20 sites over 2 years for dual isotope analysis (δ18O and δD). Our results show that plants accessed deep, but tightly-bound soil waters throughout the growing season. This was true regardless of topographic position (riparian, toeslope, sideslope, shoulder, summit) of the sampled vegetation. Sap flux measurements of tree evapotranspiration (ET) also revealed no topographic variation in monthly ET rates. As the upper soil horizons dried through the growing season, the isotopic signature of the soils became increasingly depleted. Alternatively, piezometer and isotope data showed relatively stable groundwater conditions throughout the summer months; groundwater isotope data routinely plotted along the local meteoric water line. Moreover, the isotopic signature of streamflow data suggested that summer streamflow is sustained via groundwater and not interflow. Overall, our results appear to support the two water worlds hypothesis in a coast redwood forest. Our next steps are to subject the system to different levels of forest harvesting to investigate the role of disturbance on plant water use, storage selection and rainfall-runoff mechanisms.
Groundwater flow system under a rapidly urbanizing coastal city as determined by hydrogeochemistry
NASA Astrophysics Data System (ADS)
Kagabu, Makoto; Shimada, Jun; Delinom, Robert; Tsujimura, Maki; Taniguchi, Makoto
2011-01-01
In the Jakarta area (Indonesia), excessive groundwater pumping due to the rapidly increasing population has caused groundwater-related problems such as brackish water contamination in coastal areas and land subsidence. In this study, we adopted multiple hydrogeochemical techniques to demonstrate the groundwater flow system in the Jakarta area. Although almost all groundwater existing in the Jakarta basin is recharged at similar elevations, the water quality and residence time demonstrates a clear difference between the shallow and deep aquifers. Due to the rapid decrease in the groundwater potential in urban areas, we found that the seawater intrusion and the shallow and deep groundwaters are mixing, a conclusion confirmed by major ions, Br -:Cl - ratios, and chlorofluorocarbon (CFC)-12 analysis. Spring water and groundwater samples collected from the southern mountainside area show younger age characteristics with high concentrations of 14C and Ca-HCO 3 type water chemistry. We estimated the residence times of these groundwaters within 45 years under piston flow conditions by tritium analysis. Also, these groundwater ages can be limited to 20-30 years with piston flow evaluated by CFCs. Moreover, due to the magnitude of the CFC-12 concentration, we can use a pseudo age indicator in this field study, because we found a positive correlation between the major type of water chemistry and the CFC-12 concentration.
Stable-isotope geochemistry of groundwaters in the Delaware Basin of southeastern New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, S.J.; Harvey, D.M.
/sup 18/O//sup 16/O and D/H ratio measurements have been made on groundwaters sampled from the Rustler Formation (Ochoan, Permian) and related rocks in the northern Delaware Basin of southeastern New Mexico. Most confined Rustler waters at the Waste Isolation Pilot Plant (WIPP) site and to the west in Nash Draw and confined waters from the Capitan limestone constitute one population in deltaD/delta/sup 18/O space, while unconfined groundwaters inferred to originate as modern surface recharge to alluvium, sandstones in the Ogallala Formation, the near-surface Rustler in southwestern Nash Draw, and the Capitan vadose zone in the Guadalupe Mountains (Carlsbad Caverns) constitutemore » a distinctly different population; the two do not overlap. A likely explanation for this distinction is that meteoric recharge to most of the Rustler and Capitan took place in the geologic past under climatic conditions significantly different from the present. Available tritium and radiocarbon data are consistent with this hypothesis, and the apparent age of confined groundwaters is in excess of 12,000 radiocarbon years, suggesting that recharge took place under wetter conditions in the late Pleistocene. Processes governing recharge in the Delaware Basin are significantly different from those in the nearby Roswell Artesian Basin, but may be similar to those previously described for the Albuquerque (New Mexico) and Murray (South Australia) Basins. 133 refs.« less
A case study of risk assessment in contaminated site remediation in China
NASA Astrophysics Data System (ADS)
Ye, S.; Guo, J.; Wu, J.; Wang, J.; Chien, C.; Stahl, R.; Mack, E.; Grosso, N.
2013-12-01
A field site in Nanjing, China was selected for a case study of risk assessment in contaminated site remediation. This site is about 100m long and 100m wide. A chemical plant (1999-2010) at the site manufactured optical brightener PF, 2-Amino-4-methylphenol and 2-Nitro-4-methylphenol, totally three products. Soil and groundwater samples were collected and analyzed for PPL 126 (126 pollutants in the 'Priority Pollutants List' issued by US EPA). Values of the Dutch Standards were used as the screening criteria for soil and ground water. Low levels of ethylbenezene, chlorobenzene, 1,3-dichlorobenzene and 1,4- dichlorobenzene were detected in one soil sample. Concentrations above Dutch Target Value (DTV) of benzene, toluene, ethylbenzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, and/or 1,2,4-trichlorobenzene, phenol, and/or 2,4-dichlorophenol were exhibited in two groundwater samples. The ground water was especially highly impacted by bichlorobenzenes and trichlorobenzenes. The maximum concentration of impacts was 7.3 mg/L of 1,2,4-trichlorobenzene in groundwater which was 730 times higher than Dutch Intervention Values (DIV). Risk of soil and groundwater at this site was assessed according to the guidelines issued by Chinese MEP and US EPA, respectively. Finally, remedy techniques were selected according to the result of risk assessment and the characteristics of hydrogeology conditions and contaminants.
Lacombe, Pierre
1986-01-01
Seismic-refraction, electric-resistivity sounding, and electromagnetic conductivity techniques were used to determine the geohydrologic framework and extent of groundwater contamination at Picatinny Arsenal in northern New Jersey. The area studied encompasses about 4 sq mi at the southern end of the Arsenal. The bedrock surface beneath the glacial sediments was delineated by seismic-refraction techniques. Data for 12 seismic lines were collected using a 12-channel engineering seismograph. Competent bedrock crops out on both sides of the valley, but is about 290 ft below land surface in the deepest part of the topographic valley. Where the exposed bedrock surface forms steep slopes on the valley side, it remains steep below the valley fill. Likewise, gentle bedrock valley slopes have gentle subsurface slopes. The deepest part of the bedrock valley is along the southern extension of the Green Pond fault. The electric-resistivity sounding technique was used to determine the sediment types. Data were collected from four sites using the offset Wenner electrode configuration. Below the surface layer, the sediments have apparent and computed resistivity values of 120 to 170 ohm-meters. These values correspond to a saturated fine-grained sediment such as silt or interbedded sand and clay. Groundwater contamination was by electromagnetic conductivity techniques using transmitting and receiving coils separated by 32.8 ft and 12 ft. Thirteen sites have apparent conductivity values exceeding 15 millimhos/m. Of these, seven sites indicate groundwater contamination from a variety of sources including a sanitary landfill, pyrotechnic testing ground, burning area, former domestic sewage field, salt storage facility, hazardous waste disposal lagoon, sewage treatment plant, and fertilizer storage shed. Three areas underlain by clay or muck are interpreted to be free of contamination. (Author 's abstract)
Laabs, V; Leake, C; Botham, P; Melching-Kollmuß, S
2015-10-01
Non-relevant metabolites are defined in the EU regulation for plant protection product authorization and a detailed definition of non-relevant metabolites is given in an EU Commission DG Sanco (now DG SANTE - Health and Food Safety) guidance document. However, in water legislation at EU and member state level non-relevant metabolites of pesticides are either not specifically regulated or diverse threshold values are applied. Based on their inherent properties, non-relevant metabolites should be regulated based on substance-specific and toxicity-based limit values in drinking and groundwater like other anthropogenic chemicals. Yet, if a general limit value for non-relevant metabolites in drinking and groundwater is favored, an application of a Threshold of Toxicological Concern (TTC) concept for Cramer class III compounds leads to a threshold value of 4.5 μg L(-1). This general value is exemplarily shown to be protective for non-relevant metabolites, based on individual drinking water limit values derived for a set of 56 non-relevant metabolites. A consistent definition of non-relevant metabolites of plant protection products, as well as their uniform regulation in drinking and groundwater in the EU, is important to achieve legal clarity for all stakeholders and to establish planning security for development of plant protection products for the European market. Copyright © 2015 Elsevier Inc. All rights reserved.
Sullivan, Pamela L.; Engel, Victor C.; Ross, Michael S.; Price, René M.
2013-01-01
Transpiration-driven nutrient accumulation has been identified as a potential mechanism governing the creation and maintenance of wetland vegetation patterning. This process may contribute to the formation of nutrient-rich tree islands within the expansive oligotrophic marshes of the Everglades (Florida, United States). This study presents hydrogeochemical data indicating that tree root water uptake is a primary driver of groundwater ion accumulation across one of these islands. Sap flow, soil moisture, water level, water chemistry, and rainfall were measured to identify the relationships between climate, transpiration, and groundwater uptake by phreatophytes and to examine the effect this uptake has on groundwater chemistry and mineral formation in three woody plant communities of differing elevations. During the dry season, trees relied more on groundwater for transpiration, which led to a depressed water table and the advective movement of groundwater and dissolved ions, including phosphorus, from the surrounding marsh towards the centre of the island. Ion exclusion during root water uptake led to elevated concentrations of all major dissolved ions in the tree island groundwater compared with the adjacent marsh. Groundwater was predominately supersaturated with respect to aragonite and calcite in the lower-elevation woody communities, indicating the potential for soil formation. Elevated groundwater phosphorous concentrations detected in the highest-elevation woody community were associated with the leaching of inorganic sediments (i.e. hydroxyapatite) in the vadose zone. Understanding the complex feedback mechanisms regulating plant/groundwater/surface water interactions, nutrient dynamics, and potential soil formation is necessary to manage and restore patterned wetlands such as the Everglades.
King, Jeffrey N.; Davis, J. Hal
2016-05-16
The August 20, 2001, groundwater flow model simulator and the 2001 trichloroethene transport simulator were applied to a groundwater extraction and treatment system that existed in 2011. Furnished trichloroethene source areas and concentrations in the 2001 simulator were replaced with different, furnished, hypothetical source areas and concentrations. Forcing in 2001 was replaced with forcing in 2011. No trichloroethene concentrations greater than 3 µg/L were simulated as discharging to the Mississippi River during applications of the 2001 simulator to the 2011 groundwater extraction and treatment system. These applications were not intended to represent historical conditions. Differences between furnished and actual trichloroethene sources may explain differences between measurements and simulation results for the 2001 trichloroethene transport simulator. Causes of differences between furnished and actual trichloroethene sources may cause differences between hypothetical application results and the performance of the actual U.S. Department of the Navy groundwater extraction and treatment system at the Naval Industrial Reserve Ordnance Plant. Other limitations may also cause differences between application results and performance.
Koh, Dong-Chan; Plummer, Niel; Busenberg, Eurybiades; Kim, Yongje
2007-01-01
Measurements of the concentrations of dichlorodifluoromethane (CFC-12), tritium (3H), and sulfur hexafluoride (SF6) in groundwater from basaltic aquifers in Jeju Island, Korea, demonstrate a terrigenic source of SF6. Using a lumped-parameter dispersion model, groundwater was identified as young water (<15 years), old water with negligible CFC-12 and 3H, and binary mixtures of the two. Model calculations using dispersion models and binary mixing based on 3H and CFC-12 concentrations demonstrate a non-atmospheric excess of SF6 relative to CFC-12 and 3H concentrations for more than half of the samples. The non-atmospheric excess SF6 may have originated from terrigenic sources in relict volcanic fluids, which could have acquired SF6 from granites and basement rocks of the island during volcanic activity. Local excess anthropogenic sources of SF6 are unlikely. The SF6 age is biased young relative to the CFC-12 age, typically up to 20 years and as high as 30 years. This age bias is more pronounced in samples of groundwater older than 15 years. The presence of terrigenic SF6 can affect the entire dating range for groundwater in mixtures that contain a fraction of old water.
Turney, G.L.; Goerlitz, D.F.
1989-01-01
Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on site. The park soil is presently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the groundwater. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in groundwater samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where groundwater was in contact with a nonaqueous phase liquid in the soil. Concentrations in groundwater were much smaller where no nonaqueous phase liquid was present, even if the groundwater was in contact with contaminated soils. This condition is attributed to weathering processes at the site, such as dissolution, volatilization, and biodegradation. Soluble, volatile, low-molecular-weight organic compounds are preferentially dissolved from the nonaqueous phase liquid into the groundwater. Where no nonaqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain; therefore, contaminant concentrations in the groundwater are much smaller. Concentrations of organic contaminants in the soils may still remain large. Values of specific conductance were as large as 5,280 microsiemens/cm, well above a background of 242 microsiemens/cm, suggesting large concentrations of minerals in the groundwater. Trace metal concentrations, however , were generally < 0.010 mg/L, and below limits of US EPA drinking water standards. Cyanide was present in groundwater samples from throughout the park, ranging in concentration from 0.01 to 8.6 mg/L. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Ruan, Xiao; Wang, Qiang; Pan, Cun-De; Chen, Ya-Ning; Jiang, Hao
2009-06-01
The occurrence and development of riparian forests, which were mainly dominated by mesophytes species related closely with surface water. Since there was no water discharged to the lower reaches of Tarim River in the past three decade years, the riparian forests degrade severely. The groundwater table, the saline content of the groundwater, as well as the content of free proline, soluble sugars, plant endogenous hormones (abscisic acid (ABA), and cytokinins (CTK)) of the leaves and relative rates of sap flow of the Populus euphratica Oliv. (arbor species), Tamarix ramosissima Ldb. (bush species), and Apocynum venetum L. (herb species) were monitored and analyzed at the lower reaches of the Tarim River in the study area where five positions on a transect were fixed at 100 m intervals along a sampling direction from riverbank to the sand dunes before and after water release. The physiological responses and acclimation strategies of three species to variations in water and salinity stress were discussed. It was found that A. venetum population recovered to groundwater table ranging from -1.73 to -3.56 m, and when exposed to saline content of the groundwater ranging from 36.59 to 93.48 m mol/L; P. euphratica appeared to be more sensitive to the elevation of groundwater table than the A. venetum and T. ramosissima at groundwater table ranging from -5.08 to -5.80 m, and when exposed to saline content of the groundwater ranging from 42.17 to 49.55 m mol/L. T. ramosissima tended to be the best candidate species for reclamation in this hyper-arid area because it responded to groundwater table ranging from -1.73 to -7.05 m, and when exposed to saline content of the groundwater ranging from 36.59 to 93.48 m mol/L. These results explained the distribution patterns of desert vegetation in the lower reaches of the Tarim River. Understanding the relationships among ecological factors variables, physiological response and acclimation strategies of plant individuals could provide guidance to sustainable management, reclamation and development of this and similar regions.
A theory for modeling ground-water flow in heterogeneous media
Cooley, Richard L.
2004-01-01
Construction of a ground-water model for a field area is not a straightforward process. Data are virtually never complete or detailed enough to allow substitution into the model equations and direct computation of the results of interest. Formal model calibration through optimization, statistical, and geostatistical methods is being applied to an increasing extent to deal with this problem and provide for quantitative evaluation and uncertainty analysis of the model. However, these approaches are hampered by two pervasive problems: 1) nonlinearity of the solution of the model equations with respect to some of the model (or hydrogeologic) input variables (termed in this report system characteristics) and 2) detailed and generally unknown spatial variability (heterogeneity) of some of the system characteristics such as log hydraulic conductivity, specific storage, recharge and discharge, and boundary conditions. A theory is developed in this report to address these problems. The theory allows construction and analysis of a ground-water model of flow (and, by extension, transport) in heterogeneous media using a small number of lumped or smoothed system characteristics (termed parameters). The theory fully addresses both nonlinearity and heterogeneity in such a way that the parameters are not assumed to be effective values. The ground-water flow system is assumed to be adequately characterized by a set of spatially and temporally distributed discrete values, ?, of the system characteristics. This set contains both small-scale variability that cannot be described in a model and large-scale variability that can. The spatial and temporal variability in ? are accounted for by imagining ? to be generated by a stochastic process wherein ? is normally distributed, although normality is not essential. Because ? has too large a dimension to be estimated using the data normally available, for modeling purposes ? is replaced by a smoothed or lumped approximation y?. (where y is a spatial and temporal interpolation matrix). Set y?. has the same form as the expected value of ?, y 'line' ? , where 'line' ? is the set of drift parameters of the stochastic process; ?. is a best-fit vector to ?. A model function f(?), such as a computed hydraulic head or flux, is assumed to accurately represent an actual field quantity, but the same function written using y?., f(y?.), contains error from lumping or smoothing of ? using y?.. Thus, the replacement of ? by y?. yields nonzero mean model errors of the form E(f(?)-f(y?.)) throughout the model and covariances between model errors at points throughout the model. These nonzero means and covariances are evaluated through third and fifth-order accuracy, respectively, using Taylor series expansions. They can have a significant effect on construction and interpretation of a model that is calibrated by estimating ?.. Vector ?.. is estimated as 'hat' ? using weighted nonlinear least squares techniques to fit a set of model functions f(y'hat' ?) to a. corresponding set of observations of f(?), Y. These observations are assumed to be corrupted by zero-mean, normally distributed observation errors, although, as for ?, normality is not essential. An analytical approximation of the nonlinear least squares solution is obtained using Taylor series expansions and perturbation techniques that assume model and observation errors to be small. This solution is used to evaluate biases and other results to second-order accuracy in the errors. The correct weight matrix to use in the analysis is shown to be the inverse of the second-moment matrix E(Y-f(y?.))(Y-f(y?.))', but the weight matrix is assumed to be arbitrary in most developments. The best diagonal approximation is the inverse of the matrix of diagonal elements of E(Y-f(y?.))(Y-f(y?.))', and a method of estimating this diagonal matrix when it is unknown is developed using a special objective function to compute 'hat' ?. When considered to be an estimate of f
Rose, Claire E.; Coupe, Richard H.; Capel, Paul D.; Webb, Richard M.
2017-01-01
Background: Metolachlor [(RS)-2-Chloro-N-(2-ethyl-6-methyl-phenyl)-N-(1-methoxypropan-2-yl)acetamide] and two degradates (metolachlor ethane-sulfonic acid and metolachlor oxanilic acid) are commonly observed in surface and groundwater. The behavior and fate of these compounds were examined over a 12-year period in seven agricultural watersheds in the United States. They were quantified in air, rain, streams, overland flow, groundwater, soil water, subsurface drain water, and water at the stream/groundwater interface. The compounds were frequently detected in surface and groundwater associated with agricultural areas. A mass budget approach, based on all available data from the study and literature, was used to determine a percentage-wise generalized distribution and fate of applied parent metolachlor in typical agricultural environments.Results: In these watersheds, about 90% of applied metolachlor was taken up by plants or degraded, 10% volatilized, and 0.3% returned as rainfall. One percent was transported to surface water, while an equal amount infiltrated into the unsaturated zone soil water. < 0.02% reached the groundwater. Subsurface flow paths resulted in greater degradation of metolachlor because degradation reactions had more time to proceed.Conclusions: An understanding of the residence times of water in the different environmental compartments, and the important processes affecting metolachlor as it is transported along flowpaths among the environmental compartments allows for a degree of predictability of metolachlor's fate. Degradates with long half-lives can be used (in a limited capacity) as tracers of metolachlor, because of their persistence and widespread occurrence in the environment.
Climate change in safety assessment of a surface disposal facility
NASA Astrophysics Data System (ADS)
Leterme, B.
2012-04-01
The Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS) aims to develop a surface disposal facility for LILW-SL in Dessel (North-East of Belgium). Given the time scale of interest for the safety assessment (several millennia), a number of parameters in the modelling chain near field - geosphere - biosphere may be influenced by climate change. The present study discusses how potential climate change impact was accounted for the following quantities: (i) near field infiltration through the repository earth cover, (ii) partial pressure of CO2 in the water infiltrating the cover and draining the concrete, and (iii) groundwater recharge in the vicinity of the site. For these three parameters, the impact of climate change is assessed using climatic analogue stations, i.e. stations presently under climatic conditions corresponding to a given climate state. Results indicate that : (i) Using Gijon (Spain) as representative analogue station for the next millennia, infiltration at the bottom of the soil layer towards the modules of the facility is expected to increase (from 346 to 413 mm/y) under a subtropical climate. Although no colder climate is foreseen in the next 10 000 years, the approach was also tested with analogue stations for a colder climate state. Using Sisimiut (Greenland) as representative analogue station, infiltration is expected to decrease (109 mm/y). (ii) Due to changes of the partial pressure of CO2 in the soil water, cement degradation is estimated to occur more rapidly under a warmer climate. (iii) A decrease of long-term annual average groundwater recharge by 12% was simulated using Gijon representative analogue (from 314 to 276 mm), although total rainfall was higher (947 mm) in the warmer climate compared to the current temperate climate (899 mm). For a colder climate state, groundwater recharge simulated for the representative analogue Sisimiut showed a decrease by 69% compared to current climate conditions. The advantages and weaknesses of using analogue stations are also discussed.
Liu, Fuming; Yi, Shuping; Ma, Haiyi; Huang, Junyi; Tang, Yukun; Qin, Jianbo; Zhou, Wan-Huan
2017-12-20
This paper presents a demonstration of an integrated risk assessment and site investigation for groundwater contamination through a case study, in which the geologic and hydrogeological feature of the site and the blueprint of the fossil power plant (FPP) were closely analyzed. Predictions for groundwater contamination in case of accidents were performed by groundwater modeling system (GMS) and modular three-dimensional multispecies transport model (MT3DMS). Results indicate that the studied site area presents a semi-isolated hydrogeological unit with multiplicity in stratum lithology, the main aquifers at the site are consisted of the filled karst development layer with a thickness between 6.0 and 40.0 m. The poor permeability of the vadose zone at the FPP significantly restricted the infiltration of contaminants through the vadose zone to the subsurface. The limited influence of rarely isotropic porous karstified carbonate rocks on the groundwater flow system premised the simulate scenarios of plume migration. Analysis of the present groundwater chemistry manifested that that the groundwater at the site and the local area are of the HCO 3 -Ca, HCO 3 , and SO 4 -Ca types. A few of the water samples were contaminated by coliform bacteria and ammonia nitrogen as a result of the local cultivation. Prediction results indicate that the impact of normal construction and operation processes on the groundwater environment is negligible. However, groundwater may be partly contaminated within a certain period in the area of leakage from the diesel tanks, the industrial wastewater pool, and the cooling tower water tank in case of accidents. On a positive note, none of the plumes would reach the local sensitive areas for groundwater using. Finally, an anti-seepage scheme and a monitoring program are proposed to safeguard the groundwater protection. The integrated method of the site investigation and risk assessment used in this case study can facilitate the protection of groundwater for the construction of large-scale industrial project.
Stackpoole, S.M.; Kosola, K.R.; Workmaster, B.A.A.; Guldan, N.M.; Browne, B.A.; Jackson, R. D.
2011-01-01
Even though nitrogen (N) is a key nutrient for successful cranberry production, N cycling in cranberry agroecosystems is not completely understood. Prior research has focused mainly on timing and uptake of ammonium fertilizer, but the objective of our study was to evaluate the potential for additional N contributions from hydrologic inputs (flooding, irrigation, groundwater, and precipitation) and organic matter (OM). Plant biomass, soil, surface and groundwater samples were collected from five cranberry beds (cranberry production fields) on four different farms, representing both upland and lowland systems. Estimated average annual plant uptake (63.3 ?? 22.5 kg N ha-1 year-1) exceeded total average annual fertilizer inputs (39.5 ?? 11.6 kg N ha-1 year-1). Irrigation, precipitation, and floodwater N summed to an average 23 ?? 0.7 kg N ha-1 year-1, which was about 60% of fertilizer N. Leaf and stem litterfall added 5.2 ?? 1.2 and 24.1 ?? 3.0 kg N ha-1 year-1 respectively. The estimated net N mineralization rate from the buried bag technique was 5 ?? 0.2 kg N ha-1 year-1, which was nearly 15% of fertilizer N. Dissolved organic nitrogen represented a significant portion of the total N pool in both surface water and soil samples. Mixed-ion exchange resin core incubations indicated that 80% of total inorganic N from fertilizer, irrigation, precipitation, and mineralization was nitrate, and approximately 70% of recovered inorganic N from groundwater was nitrate. There was a weak but significant negative relationship between extractable soil ammonium concentrations and ericoid mycorrhizal colonization (ERM) rates (r = -0.22, P < 0.045). Growers may benefit from balancing the N inputs from hydrologic sources and OM relative to fertilizer N in order to maximize the benefits of ERM fungi in actively mediating N cycling in cranberry agroecosystems. ?? 2011 Springer Science+Business Media B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are evaluating conditions in groundwater and springs at the DOE chemical plant area and the DA ordnance works area near Weldon Spring, Missouri. The two areas are located in St. Charles County, about 48 km (30 mi) west of St. Louis. The 88-ha (217-acre) chemical plant area is chemically and radioactively contaminated as a result of uranium-processing activities conducted by the U.S. Atomic Energy Commission in the 1950s and 1960s and explosives-production activities conducted by the U.S. Army (Army) in the 1940s. The 6,974-ha (17,232-acre) ordnancemore » works area is primarily chemically contaminated as a result of trinitrotoluene (TNT) and dinitrotoluene (DNT) manufacturing activities during World War II. This baseline risk assessment (BRA) is being conducted as part of the remedial investigation/feasibility study (RUFS) required under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended. The purpose of the BRA is to evaluate potential human health and ecological impacts from contamination associated with the groundwater operable units (GWOUs) of the chemical plant area and ordnance works area. An RI/FS work plan issued jointly in 1995 by the DOE and DA (DOE 1995) analyzed existing conditions at the GWOUs. The work plan included a conceptual hydrogeological model based on data available when the report was prepared; this model indicated that the aquifer of concern is common to both areas. Hence, to optimize further data collection and interpretation efforts, the DOE and DA have decided to conduct a joint RI/BRA. Characterization data obtained from the chemical plant area wells indicate that uranium is present at levels slightly higher than background, with a few concentrations exceeding the proposed U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 20 {micro}g/L (EPA 1996c). Concentrations of other radionuclides (e.g., radium and thorium) were measured at back-ground levels and were eliminated from further consideration. Chemical contaminants identified in wells at the chemical plant area and ordnance works area include nitroaromatic compounds, metals, and inorganic anions. Trichloroethylene (TCE) and 1,2-dichloroethylene (1,2 -DCE) have been detected recently in a few wells near the raffinate pits at the chemical plant.« less
Dong, Xiaoli; Grimm, Nancy B.
2017-01-01
Nutrients in freshwater ecosystems are highly variable in space and time. Nevertheless, the variety of processes contributing to nutrient patchiness, and the wide range of spatial and temporal scales at which these processes operate, obfuscate how this spatial heterogeneity is generated. Here, we describe the spatial structure of stream nutrient concentration, quantify the relative importance of the physical template and biological processes, and detect and evaluate the role of self-organization in driving such patterns. We examined nutrient spatial patterns in Sycamore Creek, an intermittent desert stream in Arizona that experienced an ecosystem regime shift [from a gravel/algae-dominated to a vascular plant-dominated (hereafter, “wetland”) system] in 2000 when cattle grazing ceased. We conducted high-resolution nutrient surveys in surface water along a 10-km stream reach over four visits spanning 18 y (1995–2013) that represent different successional stages and prewetland stage vs. postwetland state. As expected, groundwater upwelling had a major influence on nutrient spatial patterns. However, self-organization realized by the mechanism of spatial feedbacks also was significant and intensified over ecosystem succession, as a resource (nitrogen) became increasingly limiting. By late succession, the effects of internal spatial feedbacks and groundwater upwelling were approximately equal in magnitude. Wetland establishment influenced nutrient spatial patterns only indirectly, by modifying the extent of surface water/groundwater exchange. This study illustrates that multiple mechanisms interact in a dynamic way to create spatial heterogeneity in riverine ecosystems, and provides a means to detect spatial self-organization against physical template heterogeneity as a dominant driver of spatial patterns. PMID:28559326
Dong, Xiaoli; Ruhí, Albert; Grimm, Nancy B
2017-06-13
Nutrients in freshwater ecosystems are highly variable in space and time. Nevertheless, the variety of processes contributing to nutrient patchiness, and the wide range of spatial and temporal scales at which these processes operate, obfuscate how this spatial heterogeneity is generated. Here, we describe the spatial structure of stream nutrient concentration, quantify the relative importance of the physical template and biological processes, and detect and evaluate the role of self-organization in driving such patterns. We examined nutrient spatial patterns in Sycamore Creek, an intermittent desert stream in Arizona that experienced an ecosystem regime shift [from a gravel/algae-dominated to a vascular plant-dominated (hereafter, "wetland") system] in 2000 when cattle grazing ceased. We conducted high-resolution nutrient surveys in surface water along a 10-km stream reach over four visits spanning 18 y (1995-2013) that represent different successional stages and prewetland stage vs. postwetland state. As expected, groundwater upwelling had a major influence on nutrient spatial patterns. However, self-organization realized by the mechanism of spatial feedbacks also was significant and intensified over ecosystem succession, as a resource (nitrogen) became increasingly limiting. By late succession, the effects of internal spatial feedbacks and groundwater upwelling were approximately equal in magnitude. Wetland establishment influenced nutrient spatial patterns only indirectly, by modifying the extent of surface water/groundwater exchange. This study illustrates that multiple mechanisms interact in a dynamic way to create spatial heterogeneity in riverine ecosystems, and provides a means to detect spatial self-organization against physical template heterogeneity as a dominant driver of spatial patterns.
NASA Astrophysics Data System (ADS)
Mejías, Miguel; Ballesteros, Bruno J.; Antón-Pacheco, Carmen; Domínguez, José A.; Garcia-Orellana, Jordi; Garcia-Solsona, Ester; Masqué, Pere
2012-09-01
SummaryA multiproxy approach of complementary techniques is applied to localise and quantify submarine groundwater discharge (SGD) from El Maestrazgo Jurassic aquifer, an example of widespread carbonate coastal aquifer of the Western Mediterranean Sea (Castellón, Spain). Unconventional water resources are critical in this area where highly populated resorts have been developed. The aquifer has two main features of particular interest: a karstic system with a deep saturated zone reaching 450 m and with no significant surface discharge occurring within the continental area. On the other hand, SGD can alter the condition of coastal marine environments, reducing salinities and providing nutrients that can cause eutrophication and algal blooms. The applied combined techniques make it possible to detect groundwater outflows using airborne thermal infrared (TIR) images to monitor physico-chemical anomalies in the sea and to quantify the submarine groundwater discharges by means of direct measurements and radium isotopic analyses. Three main coastal areas affected by SGD and a submarine spring located at 3 km from the coast, which seems to be associated with tectonic discontinuities, were localised. The calculated fresh SGD from Ra isotopes, 375 Mm3 y-1, is in agreement with the mean aquifer recharge obtained by hydrogeological methods, 394 Mm3 y-1.
NASA Astrophysics Data System (ADS)
Najman, Joanna; Śliwka, Ireneusz
2014-05-01
In this work we present a chromatographic method for simultaneous analysis of helium, neon and argon in groundwater from one water sample. The concentration of helium in groundwater may be a good environmental tracer for groundwater dating. Proper use of environmental tracers in hydrogeology for dating purpose, requires the knowledge of recharge temperature of the system and the so-called "Excess air". "Excess air" allows for the necessary correction of measured concentration of helium in water. Both parameters can be determined by measuring the concentration of argon and neon in groundwater. In the Department of Physicochemistry of Ecosystems from the Institute of Nuclear Physics Polish Academy of Sciences the chromatographic method for the simultaneous analysis of He, Ar and Ne from one groundwater sample for dating purposes was developed. Water samples are taken to the stainless steel vessels with a capacity of 2900 cc. Gases are extracted from water by headspace method (HS). Helium, neon and argon are analyzed on two gas chromatographs equipped with capillary and packed columns and three thermo-conductive detectors (TCD). The chromatographic method was applied to groundwater dating from areas of Podhalańska Basin, Kraków and Żarnowiec. The levels of detection LOD for each measurement systems for the tested compounds are: 1,9•10-8 cm3STP/cm3 for Ne, 3,1•10-6 cm3STP/cm3 for Ar and 1,2•10-8 cm3STP/cm3 for He. Work performed within the strategic research project "Technologies supporting the development of safe nuclear power" financed by the National Centre for Research and Development (NCBiR). Research Task "Development of methods to assure nuclear safety and radiation protection for current and future needs of nuclear power plants", contract No. SP/J/6/143339/11. This work was also supported by grant No. N N525 3488 38 from the Polish National Science Centre.
Rodellas, Valentí; Stieglitz, Thomas C; Andrisoa, Aladin; Cook, Peter G; Raimbault, Patrick; Tamborski, Joseph J; van Beek, Pieter; Radakovitch, Olivier
2018-06-16
Evaluating the sources of nutrient inputs to coastal lagoons is required to understand the functioning of these ecosystems and their vulnerability to eutrophication. Whereas terrestrial groundwater processes are increasingly recognized as relevant sources of nutrients to coastal lagoons, there are still limited studies evaluating separately nutrient fluxes driven by terrestrial groundwater discharge and lagoon water recirculation through sediments. In this study, we assess the relative significance of these sources in conveying dissolved inorganic nutrients (NO 3 - , NH 4 + and PO 4 3- ) to a coastal lagoon (La Palme lagoon; France, Mediterranean Sea) using concurrent water and radon mass balances. The recirculation of lagoon water through sediments represents a source of NH 4 + (1900-5500 mol d -1 ) and PO 4 3- (22-71 mol d -1 ), but acts as a sink of NO 3 - . Estimated karstic groundwater-driven inputs of NO 3 - , NH 4 + and PO 4 3- to the lagoon are on the order of 200-1200, 1-12 and 1.5-8.7 mol d -1 , respectively. A comparison between the main nutrient sources to the lagoon (karstic groundwater, recirculation, diffusion from sediments, inputs from a sewage treatment plant and atmospheric deposition) reveals that the recirculation of lagoon water through sediments is the main source of both dissolved inorganic nitrogen (DIN) and phosphorous (DIP) to La Palme lagoon. These results are in contrast with several studies conducted in systems influenced by terrestrial groundwater inputs, where groundwater is often assumed to be the main pathway for dissolved inorganic nutrient loads. This work highlights the important role of lagoon water recirculation through permeable sediments as a major conveyor of dissolved nutrients to coastal lagoons and, thus, the need for a sound understanding of the recirculation-driven nutrient fluxes and their ecological implications to sustainably manage lagoonal ecosystems. Copyright © 2018. Published by Elsevier B.V.
ERIC Educational Resources Information Center
Oak Ridge Associated Universities, TN. Manpower Development Div.
The Oak Ridge Associated Universities (ORAU) of Tennessee and the Nuclear Division of the Union Carbide Corporation established an industrial training program called Training and Technology (TAT) which was conducted at the Oak Ridge Y-12 plant. TAT instructors were provided by the regular work force of Union Carbide while ORAU provided the…
Emergency Planning and Community Right-to-Know Act Section 312 Tier Two report forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, R.A.
2000-02-01
The report contains forms for the chemical description, physical and health hazards, inventory volumes, and storage codes and locations for all hazardous chemicals located at the Y-12 Plant. These can be used by local emergency response teams in case of an accident.
Emergency Planning and Community Right-To-Know Act Section 312 Tier Two report forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, R.A.
2000-02-01
The report contains forms for the chemical description, physical and health hazards, inventory volumes, and storage codes and locations for all hazardous chemicals located at the Y-12 Plant. These can be used by local emergency response teams in case of an accident.
Occurrence of 222Rn in irrigation water from Wadi Al-Rummah Qassim province, Saudi Arabia
NASA Astrophysics Data System (ADS)
El-Taher, Atef; Alashrah, Saleh
2015-08-01
Naturally accruing radioactive materials in the environment have received attention since they may be present in high level and pose risk to human health. The present work deals with measuring of 222Rn in irrigation water samples from Wadi Al-Rummah, Qassim province, in central of Saudi Arabia. 222Rn concentrations were measured by RAD7. It was found that the concentration of 222Rn ranged from 2.1 ± 1.2 to 7.2 ± 1.5 BqL-1. These values are below 11.1 BqL-1 the maximum contamination level recommended from the U.S. Environmental Protection Agency. The calculated annual effective dose (AED) ranging from 7.5 to 26.1 µSv/y. It was evident that the total annual effective dose resulting from radon in irrigation groundwater in Wadi Al-Rummah in Qassim area were significantly lower than the recommended limit 1 mSv/y for the public.
Watras, C.J.; Read, J.S.; Holman, K.D.; Liu, Z.; Song, Y.-Y.; Watras, A.J.; Morgan, S.; Stanley, E.H.
2014-01-01
We report a unique hydrologic time-series which indicates that water levels in lakes and aquifers across the upper Great Lakes region of North America have been dominated by a climatically-driven, near-decadal oscillation for at least 70 years. The historical oscillation (~13y) is remarkably consistent among small seepage lakes, groundwater tables and the two largest Laurentian Great Lakes despite substantial differences in hydrology. Hydrologic analyses indicate that the oscillation has been governed primarily by changes in the net atmospheric flux of water (P-E) and stage-dependent outflow. The oscillation is hypothetically connected to large-scale atmospheric circulation patterns originating in the mid-latitude North Pacific that support the flux of moisture into the region from the Gulf of Mexico. Recent data indicate an apparent change in the historical oscillation characterized by a ~12y downward trend beginning in 1998. Record low water levels region-wide may mark the onset of a new hydroclimatic regime.
Occurrence of {sup 222}Rn in irrigation water from Wadi Al-Rummah Qassim province, Saudi Arabia
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Taher, Atef; Alashrah, Saleh
Naturally accruing radioactive materials in the environment have received attention since they may be present in high level and pose risk to human health. The present work deals with measuring of {sup 222}Rn in irrigation water samples from Wadi Al-Rummah, Qassim province, in central of Saudi Arabia. {sup 222}Rn concentrations were measured by RAD7. It was found that the concentration of {sup 222}Rn ranged from 2.1 ± 1.2 to 7.2 ± 1.5 BqL{sup −1}. These values are below 11.1 BqL{sup −1} the maximum contamination level recommended from the U.S. Environmental Protection Agency. The calculated annual effective dose (AED) ranging frommore » 7.5 to 26.1 µSv/y. It was evident that the total annual effective dose resulting from radon in irrigation groundwater in Wadi Al-Rummah in Qassim area were significantly lower than the recommended limit 1 mSv/y for the public.« less
Arienzo, Michele; Allocca, Vincenzo; Manna, Ferdinando; Trifuoggi, Marco; Ferrara, Luciano
2015-12-01
A vertical engineered barrier (VEB) coupled with a water treatment plant was surveyed in the framework of a vast remedial action at the brownfield site of the former ILVA of Bagnoli steel making facility located in western Naples, Italy. The VEB was put in place to minimize contaminant migration from the brownfield site toward the sea at the shorelines sites of Bagnoli and Coroglio. The efficiency of the VEB was monitored through 12 piezometers, 8 at the Bagnoli shoreline and 4 at the Coroglio shoreline. Concentrations of inorganic and organic pollutants were examined in upstream and downstream groundwater relative to the VEB. The mean levels of Al, As, Fe, and Mn largely exceeded the legal limits, 10-15-fold, whereas that of Hg was up to 3-fold the rules. The VEB decreased the outlet concentrations only at certain specific location of the barrier, four times for Al, 6-fold for Hg, and by 20% for Mn with means largely exceeding the rules. At the other sites, the downstream water showed marked increases of the pollutants up to 3-fold. Outstanding levels of the hydrocarbons > 12 were detected in the inlet water with means of some hundred times the limits at both sites. Likewise most of screened inorganic pollutants, the downstream water showed marked increases of the hydrocarbons up to ~113%. The treatment plant was very effective, with removal efficiencies >80% for As, Al, Fe, and Mn. The study evidenced the need to put alternative groundwater remedial actions.
NASA Astrophysics Data System (ADS)
Bajjali, William; Al-Hadidi, Kheir; Ismail, Ma'mmon
2017-03-01
Groundwater in the northeastern Amman-Zarqa basin is an important source of water for irrigation. The quality and quantity of water has deteriorated due to mismanagement and misunderstanding of the hydrogeological system. Overexploitation of groundwater resources upstream of the Khirbet Al-Samra wastewater treatment plant (KSWTP) has lowered the water table 43 m since the beginning of groundwater development in 1968. Heavy pumping of groundwater downstream of KSWTP has not dropped the water level due to constant recharge from the Zarqa river bed. The water level of groundwater is rising continuously at a rate of 20 cm per year since building the KSWTP in 1985. Groundwater salinity has also shifted the quality of the aquifer from fresh to brackish. Continual irrigation from the groundwater upstream of KSWTP dissolves accumulated salt from the soil formed by evaporation, and the contaminated water infiltrates back to the aquifer, thereby increasing both salt and nitrate concentrations. The intense irrigation from the reclaimed water downstream of KSWTP and leakage of treated wastewater from the Zarqa River to the shallow groundwater is a secondary source of salt and nitrates. The isotopic composition of groundwater varies over a wide range and is associated with the meteoric water line affected by Mediterranean Sea air moisture. The isotopic composition of groundwater is represented by evaporation line (EL) with a low slope of 3.6. The enrichment of groundwater in δ18O and δD is attributed mainly to the two processes of evaporation before infiltration of return flow and mixing of different types of water in KSWTP originating from different aquifers. The EL starts from a location more depleted than the weighted mean value of the Amman rainfall station on the Eastern Meteoric Water Line indicating that the recharge took place under the climate regime prevailing today in Jordan and the recharge of the groundwater originates from a greater elevation than that of the Amman station. Elevated high tritium levels observed in wells in close proximity to a regional fault system signify local recharge and short residence time. The Khaldyia dam is a local source for groundwater recharge.
FY97 Environmental Technology Division Annual Report.
1997-12-01
Stripping System at Letterkenny Army Depot ......... 83 Peroxone Treatment of Explosives-Contaminated Groundwater ........ 84 Phytoremediation in Hawaii...86 Phytoremediation of Explosives in Groundwater Using Constructed Wetlands .................................. 88... Phytoremediation of Lead in Soil ............................... 91 Plant Uptake and Weathering Studies on Composted Explosives-Contaminated Soil
PHYTOTECHNOLOGIES IN THE UNITED STATES: GROWING SOLUTIONS TO ENVIRONMENTAL CHALLENGES
Phytotechnology may be defined as the use of plants to contain, sequester, remove, or degrade organic and inorganic contaminants in soils, sediments, surface water, and groundwater. Mechanisms employed by the plant community may include transpiration (phytovolatilization), plant...
NASA Astrophysics Data System (ADS)
Stella, J. C.
2017-12-01
In many water-limited regions, human water use in conjunction with increased climate variability threaten the sustainability of groundwater-dependent plant communities and the ecosystems that depend on them (GDEs). Identifying and delineating vulnerable GDEs and determining critical functional thresholds for their foundational species has proved challenging, but recent research across several disciplines shows great promise for reducing scientific uncertainty and increasing applicability to ecosystem and groundwater management. Combining interdisciplinary approaches provides insights into indicators that may serve as early indicators of ecosystem decline, or alternatively demonstrate lags in responses depending on scale or sensitivity, or that even may decouple over time (Fig. 1). At the plant scale, miniaturization of plant sap flow sensors and tensiometers allow for non-destructive, continual measurements of plant water status in response to environmental stressors. Novel applications of proven tree-ring and stable isotope methods provide multi-decadal chronologies of radial growth, physiological function (using d13C ratios) and source water use (using d18O ratios) in response to annual variation in climate and subsurface water availability to plant roots. At a landscape scale, integration of disparate geospatial data such as hyperspectral imagery and LiDAR, as well as novel spectral mixing analysis promote the development of novel water stress indices such as vegetation greenness and non-photosynthetic (i.e., dead) vegetation (Fig. 2), as well as change detection using time series (Fig. 3). Furthermore, increases in data resolution across numerous data types can increasingly differentiate individual plant species, including sensitive taxa that serve as early warning indicators of ecosystem impairment. Combining and cross-calibrating these approaches provide insight into the full range of GDE response to environmental change, including increased climate drought and variability, human groundwater extraction and flow regulation. We review the range of emerging water stress indicators at multiple scales, and illustrate their application and integration in current projects in semi-arid ecosystems of the U.S. Southwest and in southern Europe.
Quantitative assessment of desertification in south of Iran using MEDALUS method.
Sepehr, A; Hassanli, A M; Ekhtesasi, M R; Jamali, J B
2007-11-01
The main aim of this study was the quantitative assessment of desertification process in the case study area of the Fidoye-Garmosht plain (Southern Iran). Based on the MEDALUS approach and the characteristics of study area a regional model developed using GIS. Six main factors or indicators of desertification including: soil, climate, erosion, plant cover, groundwater and management were considered for evaluation. Then several sub-indicators affecting the quality of each main indicator were identified. Based on the MEDALUS approach, each sub-indicator was quantified according to its quality and given a weighting of between 1.0 and 2.0. ArcGIS 9 was used to analyze and prepare the layers of quality maps using the geometric mean to integrate the individual sub-indicator maps. In turn the geometric mean of all six quality maps was used to generate a single desertification status map. Results showed that 12% of the area is classified as very severe, 81% as severe and 7% as moderately affected by desertification. In addition the plant cover and groundwater indicators were the most important factors affecting desertification process in the study area. The model developed may be used to assess desertification process and distinguish the areas sensitive to desertification in the study region and in regions with the similar characteristics.
Haugh, Connor J.
2016-08-10
The Mississippi Embayment Regional Aquifer Study groundwater-flow model was used to simulate the potential effects of future groundwater withdrawals at the proposed Allen combined-cycle combustion turbine plant in Shelby County, Tennessee. The scenario used in the simulation consisted of a 30-year average withdrawal period followed by a 30-day maximum withdrawal period. Effects of withdrawals at the Allen plant site on the Mississippi embayment aquifer system were evaluated by comparing the difference in simulated water levels in the aquifers at the end of the 30-year average withdrawal period and at the end of the scenario to a base case without the Allen combined-cycle combustion turbine plant withdrawals. Simulated potentiometric surface declines in the Memphis aquifer at the Allen plant site were about 7 feet at the end of the 30-year average withdrawal period and 11 feet at the end of the scenario. The affected area of the Memphis aquifer at the Allen plant site as delineated by the 4-foot potentiometric surface-decline contour was 2,590 acres at the end of the 30-year average withdrawal period and 11,380 acres at the end of the scenario. Simulated declines in the underlying Fort Pillow aquifer and overlying shallow aquifer were both less than 1 foot at the end of the 30-year average withdrawal period and the end of the scenario.
Groundwater for urban water supplies in northern China - An overview
NASA Astrophysics Data System (ADS)
Zaisheng, Han
Groundwater plays an important role for urban and industrial water supply in northern China. More than 1000 groundwater wellfields have been explored and installed. Groundwater provides about half the total quantity of the urban water supply. Complete regulations and methods for the exploration of groundwater have been established in the P.R. China. Substantial over-exploitation of groundwater has created environmental problems in some cities. Some safeguarding measures for groundwater-resource protection have been undertaken. Résumé Les eaux souterraines jouent un rôle important dans l'approvisionnement en eau des agglomérations et des industries du nord de la Chine. Les explorations ont conduit à mettre en place plus de 1000 champs de puits captant des eaux souterraines. Les eaux souterraines satisfont environ la moitié des besoins en eau des villes. Une réglementation complète et des méthodes d'exploration des eaux souterraines ont étéétablies en République Populaire de Chine. Une surexploitation très nette est à l'origine de problèmes environnementaux dans certaines villes. Des mesures ont été prises pour protéger la ressource en eau souterraine. Resumen El agua subterránea desempeña un papel importante en el suministro de agua para uso doméstico e industrial en la China septentrional. Se han explorado y puesto en marcha más de 1000 campos de explotación de aguas subterráneas, que proporcionan cerca de la mitad del total del suministro urbano. En la República Popular de China se han definido totalmente la legislación y la metodología para realizar estas explotaciones. La gran sobreexplotación en algunas ciudades ha creado algunos problemas medioambientales. Como consecuencia, se han llevado a cabo algunas medidas de protección de los recursos de aguas subterráneas.
Removal of organic matter from a variety of water matrices by UV photolysis and UV/H2O2 method.
Vilhunen, Sari; Vilve, Miia; Vepsäläinen, Mikko; Sillanpää, Mika
2010-07-15
A re-circulated flow-through photoreactor was used to evaluate the ultraviolet (UV) photolysis and UV/H(2)O(2) oxidation process in the purification of three different water matrices. Chemically coagulated and electrocoagulated surface water, groundwater contaminated with creosote wood preservative and 1,2-dichloroethane (DCE) containing washing water from the plant manufacturing tailor-made ion-exchange resins were used as sample waters. The organic constituents of creosote consist mainly of harmful polycyclic aromatic hydrocarbons (PAH) whereas 1,2-DCE is a toxic volatile organic compound (VOC). Besides analyzing the specific target compounds, total organic carbon (TOC) analysis and measurement of change in UV absorbance at 254 nm (UV(254)) were performed. Initial TOC, UV(254) and pH varied significantly among treated waters. Initial H(2)O(2) concentrations 0-200 mg/l were used. The UV/H(2)O(2) treatment was efficient in removing the hazardous target pollutants (PAHs and 1,2-DCE) and natural organic matter (NOM). In addition, high removal efficiency for TOC was achieved for coagulated waters and groundwater. Also, the efficiency of direct photolysis in UV(254) removal was significant except in the treatment of 1,2-DCE containing washing water. Overall, UV(254) and TOC removal rates were high, except in case of washing water, and the target pollutants were efficiently decomposed with the UV/H(2)O(2) method. 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stein, Shaked; Russak, Amos; Sivan, Orit; Yechieli, Yospeh; Oren, Yoram; Kasher, Roni
2015-04-01
In arid countries with access to marine water seawater desalination is becoming an important water source in order to deal with the water scarcity and population growth. Seawater reverse osmosis (RO) facilities use open seawater intake, which requires pretreatment processes to remove particles in order to avoid fouling of the RO membrane. In small and medium size desalination facilities, an alternative water source can be saline groundwater in coastal aquifers. Using saline groundwater from boreholes near the shore as feed water may have the advantage of natural filtration and low organic content. It will also reduce operation costs of pretreatment. Another advantage of using groundwater is its availability in highly populated areas, where planning of large RO desalination plants is difficult and expensive due to real-estate prices. Pumping saline groundwater underneath the freshwater-seawater interface (FSI) might shift the interface towards the sea, thus rehabilitating the fresh water reservoirs in the aquifer. In this research, we tested the potential use of saline groundwater in the coastal aquifer of Israel as feed water for desalination using field work and desalination experiments. Specifically, we sampled the groundwater from a pumping well 100 m from the shore of Tel-Aviv and sea water from the desalination plant in Ashqelon, Israel. We used an RO cross flow system in a pilot plant in order to compare between the two water types in terms of permeate flux, permeate flux decline, salt rejection of the membrane and the fouling on the membrane. The feed, brine and fresh desalinated water from the outlet of the desalination system were chemically analyzed and compared. Field measurements of dissolved oxygen, temperature, pH and salinity were also conducted in situ. Additionally, SDI (silt density index), which is an important index for desalination, and total organic carbon that has a key role in organic fouling and development of biofouling, were measured and compared. The results have shown that using saline groundwater underneath the FSI as a resource for RO desalination process is beneficial in terms of fluxes: the flux reduction in the seawater desalination was 16% of the initial flux, while the flux reduction with the saline groundwater was only 9%. The SDI and total organic carbon were lower in saline groundwater than in seawater, which support the flux results. Therefore, using saline groundwater as feed water for desalination may be advantageous because of lower operational costs and reduced applied pressure needed and energy usage.
Under NPDES draft permit number CO-0035033, the U.S. General Services Administration is authorized to discharge from its Downing Reservoir Groundwater Treatment Plant to McIntyre Gulch entering Lakewood Gulch, tributary to the South Platte River.
Fester, Thomas
2013-01-01
Arbuscular mycorrhizal fungi (AMF), which are present in most natural environments, have demonstrated capacity to promote biodegradation of organic pollutants in the greenhouse. However, it is not certain whether AMF can spontaneously establish in phytoremediation systems constructed to decontaminate groundwater, because of the unusual conditions during the construction and operation of such systems. To assess this possibility, root samples from a wetland constructed for the phytoremediation of groundwater contaminated with benzene, methyl tert-butyl ether and ammonia were analysed. Substantial AMF colonization was observed in plant roots sampled close to the inlet of a basin filled with fine gravel and planted with Phragmites australis. In addition, analysis of a fragment of the nuclear large ribosomal subunit, amplified by nested PCR, revealed the presence of AMF molecular operational taxonomic units closely related to Funneliformis mosseae and Rhizophagus irregularis in the samples. These findings demonstrate the capacity of generalist AMF strains to establish spontaneously, rapidly and extensively in groundwater bioremediation technical installations. PMID:22846140
Water-use patterns of woody species in pineland and hammock communities of South Florida
Ewe, S.M.L.; da Silveira Lobo Sternberg, Leonel; Sternberg, L.; Busch, D.E.
1999-01-01
Rockland pine forests of south Florida dominated by Pinus elliottii var. densa characteristically have poor soil development in relation to neighboring hardwood hammocks. This has led to the hypothesis that Everglades hammock trees are more reliant on soil moisture derived from local precipitation whereas pineland plants must depend more on groundwater linked to broader regional hydrologic patterns. Because soil moisture sources are likely to vary more than groundwater sources, we hypothesized that hammock plants would exhibit correspondingly higher levels of dry season water stress. This was examined by measuring predawn water potentials, and by analyzing water uptake in representative hammock and pineland woody species using stable isotopes of plant water and that of potential sources during wet and dry seasons. Two species typical of each of the two communities were selected; a fifth species which was found in both communities, Lysiloma latisiliqua Benth., was also analyzed. Water content of soils in both communities decreased from wet to dry season. Consistent with our hypothesis, the change in predawn water potentials between the wet and dry season was less in pineland species than that of hammock species. Water potential changes in L. latisiliqua in both communities resembled that of hammock species more than pineland plants. Isotopic data showed that pineland species rely proportionately more on groundwater than hammock species. Nevertheless, unlike hammock species in the Florida Keys, mainland hammock species utilized a substantial amount of groundwater during the dry season.
The AMTEX Partnership{trademark} mid year report, fiscal year 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-03-01
The AMTEX Partnership{trademark} is a collaborative research and development program among the US Integrated Textile Complex (ITC), the US Department of Energy (DOE), the DOE national laboratories, other federal agencies and laboratories, and universities. The goal of AMTEX is to strengthen the competitiveness of this vital industry, thereby preserving and creating US jobs. Three AMTEX projects funded in FY 1997 are Diamond Activated Manufacturing Architecture (DAMA), Computer-Aided Fabric Evaluation (CAFE), and Textile Resource Conservation (TReC). The five sites involved in AMTEX work are Sandia National Laboratory (SNL), Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), the Oak Ridgemore » Y-12 Plant, and the Oak Ridge National Laboratory (ORNL) (the latter is funded through Y-12).« less
Production of a Suitable Antibody and an Enzyme Immunoassay Kit for the Field Detection of T-2 Toxin
1983-10-25
Known to naturally occur on plants including food products. £> These trichothecenes are highly toxic to eukaryotic cells and are anong the most...Activities and Detection of Naturally O* Occurring 12,13-Epoxy-9-Trichothecenes," Clin. Tbxicol., 5, pp. 495-515. E* 3. Y. Ueno, M. Makajima, K. Sakei, K...North-Holland, N.Y. -13- i 6. S. V. Pathre, C. J. Mirocha (1977) Assay Methods for Trichothecenes and J; Review of Their Natural Occurence in: J. V
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wujcik, W.J.; Lowe, W.L.; Marks, P.J.
1989-08-01
The United States Army operates explosives manufacturing plants to produce various forms of explosives used in military ordnance. Manufacturing activities at such plants result in the production of organic wastewaters that contain both explosive residues and other organic chemicals. Several treatment technologies have been developed to treat these wastewaters for final discharge. Past waste handling practices at explosives manufacturing plants commonly included the use of the unlined lagoons or pits for containing process wastewaters. As a result of these past practices, some explosives residues may leach through the soil and contaminated groundwater. Therefore, the treatment of contaminated groundwater may bemore » required.« less
NASA Astrophysics Data System (ADS)
Lo Russo, S.; Taddia, G.; Gnavi, L.
2012-04-01
KEY WORDS: Open-loop ground water heat pump; Feflow; Low-enthalpy; Thermal Affected Zone; Turin; Italy The increasing diffusion of low-enthalpy geothermal open-loop Groundwater Heat Pumps (GWHP) providing buildings air conditioning requires a careful assessment of the overall effects on groundwater system, especially in the urban areas where several plants can be close together and interfere. One of the fundamental aspects in the realization of an open loop low-enthalpy geothermal system is therefore the capacity to forecast the effects of thermal alteration produced in the ground, induced by the geothermal system itself. The impact on the groundwater temperature in the surrounding area of the re-injection well (Thermal Affected Zone - TAZ) is directly linked to the aquifer properties. The transient dynamic of groundwater discharge and temperature variations should be also considered to assess the subsurface environmental effects of the plant. The experimental groundwater heat pump system used in this study is installed at the "Politecnico di Torino" (NW Italy, Piedmont Region). This plant provides summer cooling needs for the university buildings. This system is composed by a pumping well, a downgradient injection well and a control piezometer. The system is constantly monitored by multiparameter probes measuring the dynamic of groundwater temperature. A finite element subsurface flow and transport simulator (FEFLOW) was used to investigate the thermal aquifer alteration. Simulations were continuously performed during May-October 2010 (cooling period). The numerical simulation of the heat transport in the aquifer was solved with transient conditions. The simulation was performed by considering only the heat transfer within the saturated aquifer, without any heat dispersion above or below the saturated zone due to the lack of detailed information regarding the unsaturated zone. Model results were compared with experimental temperature data derived from groundwater monitoring in the surrounding area of the injection well. Such analysis showed that the measured values differ slightly from the simulated values. That small difference is probably due to the simplification assumptions in the modelling. This hypothesis is still under investigation.
Browns Ferry Nuclear Plant low-level radwaste storage facility ground-water pathway analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boggs, J.M.
1982-10-01
The proposed low-level radwaste storage facility (LLRWSF) at Browns Ferry Nuclear Plant is underlain by soils having low hydraulic conductivity and high sorptive capacity which greatly reduce the risks associated with a potential contaminant excursion. A conservative ground-water pathway accident analysis using flow and solute transport modeling techniques indicates that without interdiction the concentrations of the five radionuclides of concern (Sr-90, Cs-137, Cs-134, Co-60, and Mn-54) would be well below 10 CFR Part 20 criteria at downgradient receptors. These receptors include a possible future private water well located near the eastern site boundary and Wheeler Reservoir. Routine ground-water monitoring ismore » not recommended at the LLRWSF except in the unlikely event of an accident.« less
NASA Astrophysics Data System (ADS)
Mukherji, Aditi; Shah, Tushaar
2005-03-01
Groundwater is crucial for the livelihoods and food security of millions of people, and yet, knowledge formation in the field of groundwater has remained asymmetrical. While, scientific knowledge in the discipline (hydrology and hydrogeology) has advanced remarkably, relatively little is known about the socio-economic impacts and institutions that govern groundwater use. This paper therefore has two objectives. The first is to provide a balanced view of the plus and the down side of groundwater use, especially in agriculture. In doing so, examples are drawn from countries such as India, Pakistan, Bangladesh, China, Spain and Mexico—all of which make very intensive use of groundwater. Second, institutions and policies that influence groundwater use are analyzed in order to understand how groundwater is governed in these countries and whether successful models of governance could be replicated elsewhere. Finally, the authors argue that there is a need for a paradigm shift in the way groundwater is presently perceived and managed—from management to governance mode. In this attempt, a number of instruments such as direct regulation, indirect policy levers, livelihood adaptation and people's participation will have to be deployed simultaneously in a quest for better governance. L'eau souterraine est cruciale pour la survie et la sécurité alimentaire de plusieurs millions de personnes mais cependant la foramtion en matière d'eaux souterraines reste asymmétrique. Alors que la connaissance scientifique dans la discipline (hydrologie et hydrogéologie) a avancée de manière remarquable, on connaît peu de choses sur les impacts socio-économiques et les institutions qui gouvernent l'utilisation des eaux souterraines. Cet article a par conséquent deux objectifs. Le premier est d'assurer un point de vue balancé entre le côté positif et le côté négatif de l'utilisation de l'eau souterraine, spécialement en agriculture. De cette manière, des exemples d'utilisation intensive des eaux souterraines sont présentés, provenant de pays tels que l'Inde, le Pakistan, le Bangladesh, la Chîne, l'Espagne et le Mexique. En second lieu, les institutions et les politiques qui influencent l' utilisation de l'eau souterraine sont analysées de telle manière à comprendre comment l'eau souterraine est gérée dans ces pays et comment les modèles de gestion présentant un certain succès pourraient être répliqués ailleurs. Finalement, les auteurs arguent qu'il existe un besoin pour un changement de paradigme dans le sens où l'eau souterraine est actuellement perçue et gérée du mode administratif au mode gouvernemental. Dans cette démarche un certain nombre d'instruments comme la régulation directe, les leviers politiques indirectes, l'adaptation vitale et la participation populaire devront être déployées simultanément dans la quête d'une meilleure gestion. El agua subterránea es crítica para la subsistencia y para la salubridad de la comida de millones de personas. Sin embargo, la formación de conocimientos en el campo de aguas subterráneas ha permanecido asimétrico. Mientras que el concocimiento científico en la disciplina (hidrología e hidrogeología) ha avanzado increíblemente, se conoce relativemente poco sobre los impactos socio-económicos y las instituciones que controlan el uso del agua subterránea. Este artículotiene dos objetivos. El primero es presenter una visión balanceada de los aspectos positivos y negativos concernientes al uso de agua subterránea, especialmente en la agricultura. Con este objetivo se presentan ejemplos de la India, Pakistán, Bangladesh, China, España y México ya que todos estos países hacen uso intensivo del agua subterránea. El segundo objetivo es el análisis de las instituciones y políticas que influyen en el uso del agua subterránea con el fin de entender cómo se gobierna el agua subterránea en estos países y si los modelos exitosos que pueden ser replicados en otros lugares. Finalmente los autores proponen que existe la necesidad de cambiar el paradigma en lo referente a la percepción y al manejo del agua subterránea desde su administración hasta su gobierno. En este intento, con el objeto de alcanzar un mejor gobierno, se debe implementar un número de instrumentos simultáneamente i.e la regulación directa, la política indirecta, la adaptación de las actividades de subsistencia y la participación de los usarios.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-23
... new ``y'' pipe intake off the existing 10-inch diameter water supply pipeline; (2) a new 12-foot-long... water supply pipeline; and (5) appurtenant facilities. The proposed project would have an estimated... 22 kW Orchard City Water Treatment Plant Hydroelectric Project would utilize Orchard City's water...
Underground storage tank management plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-09-01
The Underground Storage Tank (UST) Program at the Oak Ridge Y-12 Plant was established to locate UST systems at the facility and to ensure that all operating UST systems are free of leaks. UST systems have been removed or upgraded in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance. With the closure of a significant portion of the USTs, the continuing mission of the UST Management Program is to manage the remaining active UST systems and continue corrective actions in a safe regulatory compliant manner. This Program outlines the compliance issues that must be addressed, reviewsmore » the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Program provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. The plan is divided into three major sections: (1) regulatory requirements, (2) active UST sites, and (3) out-of-service UST sites. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Program, and the procedures and guidance for compliance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-03-01
This document outlines the activities necessary to conduct a Remedial Investigation (RI) of the Chestnut Ridge Security Pits (CRSP) at the Oak Ridge Y-12 Plant. The CRSP, also designated Chestnut Ridge Operable Unit (OU) 1, is one of four OUs along Chestnut Ridge on the Oak Ridge Reservation (ORR). The purpose of the RI is to collect data to (1) evaluate the nature and extent of known and suspected contaminants, (2) support an Ecological Risk Assessment (ERA) and a Human Health Risk Assessment (HHRA), (3) support the feasibility study in the development and analysis of remedial alternatives, and (4) ultimately,more » develop a Record of Decision (ROD) for the site. This chapter summarizes the regulatory background of environmental investigation on the ORR and the approach currently being followed and provides an overview of the RI to be conducted at the CRSP. Subsequent chapters provide details on site history, sampling activities, procedures and methods, quality assurance (QA), health and safety, and waste management related to the RI.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-12-01
This decision document presents the selected remedial action for Site 10 (the Site) Groundwater at the Allegany Ballistics Laboratory (ABL), Rocket Center, West Virginia. The major components of the selected remedy are: Institutional controls, including land use restrictions imposed through appropriate administrative mechanisms to prevent groundwater use; Groundwater pumping from a minimum of three extraction wells to capture the hot spot of the VOC contaminant plume; Installation of a pipeline to transport groundwater from Site 10 to the Site 1 treatment plant; Discharge to the North Branch Potomac River; and Groundwater monitoring on a timely basis, quarterly to semi-annually, willmore » evaluate groundwater quality, contaminant migration, and degradation for inclusion in the 5-year site reviews.« less
NASA Astrophysics Data System (ADS)
Taufiq, Ahmad; Hosono, Takahiro; Ide, Kiyoshi; Kagabu, Makoto; Iskandar, Irwan; Effendi, Agus J.; Hutasoit, Lambok M.; Shimada, Jun
2017-12-01
In the Bandung basin, Indonesia, excessive groundwater pumping caused by rapid increases in industrialization and population growth has caused subsurface environmental problems, such as excessive groundwater drawdown and land subsidence. In this study, multiple hydrogeochemical techniques and numerical modeling have been applied to evaluate the recharge processes and groundwater age (rejuvenation). Although all the groundwater in the Bandung basin is recharged at the same elevation at the periphery of the basin, the water type and residence time of the shallow and deep groundwater could be clearly differentiated. However, there was significant groundwater drawdown in all the depression areas and there is evidence of groundwater mixing between the shallow and deep groundwater. The groundwater mixing was traced from the high dichlorodifluoromethane (CFC-12) concentrations in some deep groundwater samples and by estimating the rejuvenation ratio (R) in some representative observation wells. The magnitude of CFC-12 concentration, as an indicator of young groundwater, showed a good correlation with R, determined using 14C activity in samples taken between 2008 and 2012. These correlations were confirmed with the estimation of vertical downward flux from shallower to deeper aquifers using numerical modeling. Furthermore, the change in vertical flux is affected by the change in groundwater pumping. Since the 1970s, the vertical flux increased significantly and reached approximately 15% of the total pumping amount during the 2000s, as it compensated the groundwater pumping. This study clearly revealed the processes of groundwater impact caused by excessive groundwater pumping using a combination of hydrogeochemical methods and modeling.
NASA Astrophysics Data System (ADS)
Taufiq, Ahmad; Hosono, Takahiro; Ide, Kiyoshi; Kagabu, Makoto; Iskandar, Irwan; Effendi, Agus J.; Hutasoit, Lambok M.; Shimada, Jun
2018-06-01
In the Bandung basin, Indonesia, excessive groundwater pumping caused by rapid increases in industrialization and population growth has caused subsurface environmental problems, such as excessive groundwater drawdown and land subsidence. In this study, multiple hydrogeochemical techniques and numerical modeling have been applied to evaluate the recharge processes and groundwater age (rejuvenation). Although all the groundwater in the Bandung basin is recharged at the same elevation at the periphery of the basin, the water type and residence time of the shallow and deep groundwater could be clearly differentiated. However, there was significant groundwater drawdown in all the depression areas and there is evidence of groundwater mixing between the shallow and deep groundwater. The groundwater mixing was traced from the high dichlorodifluoromethane (CFC-12) concentrations in some deep groundwater samples and by estimating the rejuvenation ratio ( R) in some representative observation wells. The magnitude of CFC-12 concentration, as an indicator of young groundwater, showed a good correlation with R, determined using 14C activity in samples taken between 2008 and 2012. These correlations were confirmed with the estimation of vertical downward flux from shallower to deeper aquifers using numerical modeling. Furthermore, the change in vertical flux is affected by the change in groundwater pumping. Since the 1970s, the vertical flux increased significantly and reached approximately 15% of the total pumping amount during the 2000s, as it compensated the groundwater pumping. This study clearly revealed the processes of groundwater impact caused by excessive groundwater pumping using a combination of hydrogeochemical methods and modeling.
Groundwater subsidies and penalties to corn yield
NASA Astrophysics Data System (ADS)
Zipper, S. C.; Booth, E.; Loheide, S. P.
2013-12-01
Proper water management is critical to closing yield gaps (observed yield below potential yield) as global populations continue to expand. However, the impacts of shallow groundwater on crop production and surface processes are poorly understood. The presence of groundwater within or just below the root zone has the potential to cause (via oxygen stress in poorly drained soils) or eliminate (via water supply in dry regions) yield gaps. The additional water use by a plant in the presence of shallow groundwater, compared to free drainage conditions, is called the groundwater subsidy; the depth at which the groundwater subsidy is greatest is the optimal depth to groundwater (DTGW). In wet years or under very shallow water table conditions, the groundwater subsidy is likely to be negative due to increased oxygen stress, and can be thought of as a groundwater penalty. Understanding the spatial dynamics of groundwater subsidies/penalties and how they interact with weather is critical to making sustainable agricultural and land-use decisions under a range of potential climates. Here, we examine patterns of groundwater subsidies and penalties in two commercial cornfields in the Yahara River Watershed, an urbanizing agricultural watershed in south-central Wisconsin. Water table levels are generally rising in the region due to a long-term trend of increasing precipitation over the last several decades. Biophysical indicators tracked throughout both the 2012 and 2013 growing seasons show a strong response to variable groundwater levels on a field scale. Sections of the field with optimal DTGW exhibit consistently higher stomatal conductance rates, taller canopies and higher leaf area index, higher ET rates, and higher pollination success rates. Patterns in these biophysical lines of evidence allow us to pinpoint specific periods within the growing season that plants were experiencing either oxygen or water stress. Most importantly, groundwater subsidies and penalties are directly related to year-end yield. During 2012 (a drier-than-normal growing season) corn in parts of the field with shallow groundwater had significantly higher yields than the rest of the field, indicating that groundwater can provide significant yield benefits during drought. In contrast, during 2013 (a wetter-than-normal growing season) areas with the shallowest groundwater experienced total yield losses due to early-season groundwater flooding and oxygen stress. This demonstrates that the optimal DTGW for agricultural production is variable and depends on growing season weather conditions. The presence or absence of shallow groundwater is an important and dynamic feature of many agroecosystems, and should be considered when making both field- and watershed-scale management decisions.
NASA Astrophysics Data System (ADS)
McCraven, S.; Zhou, Q.; Garcia, J.; Gasca, M.; Johnson, T.
2007-12-01
N-Nitrosodimethylamine (NDMA) is an emerging contaminant in groundwater, because of its aqueous miscibility, exceptional animal toxicity, and human carcinogenicity. NDMA detections in groundwater have been tracked to either decomposition of unsymmetrical dimethylhydrazine (UDMH) used in rocket fuel facilities or chlorine disinfection in wastewater reclamation plants. Laboratory experiments on both unsaturated and saturated soil samples have demonstrated that NDMA can be biodegraded by microbial activity, under both aerobic and anaerobic conditions. However, very limited direct evidence for its biodegradation has been found from the field in saturated groundwater. Our research aimed to evaluate photolysis and biodegradation of NDMA occurring along the full travel path - from wastewater reclamation plant effluent, through rivers and spreading grounds, to groundwater. For this evaluation, we established an extensive monitoring network to characterize NDMA concentrations at effluent discharge points, surface water stations, and groundwater monitoring and production wells, during the operation of the Montebello Forebay Groundwater Recharge facilities in Los Angeles County, California. Field monitoring for NDMA has been conducted for more than six years, including 32 months of relatively lower NDMA concentrations in effluent, 43 months of elevated NDMA effluent concentrations, and 7 months with significantly reduced NDMA effluent concentrations. The NDMA effluent concentration increase and significant concentration decrease were caused by changes in treatment processes. The NDMA sampling data imply that significant biodegradation occurred in groundwater, accounting for a 90% mass reduction of NDMA over the six-year monitoring period. In addition, the occurrence of a discrete well monitored effluent release during the study period allowed critical analysis of the fate of NDMA in a well- characterized, localized groundwater flow subsystem. The data indicate that 80% of the recharged NDMA mass was biodegraded in groundwater with the remaining mass pumped out by extraction wells. To reproduce the observation data, a groundwater flow and transport model was developed and calibrated against groundwater elevation and NDMA concentration data. The calibrated half-life of NDMA in groundwater is 69 days, which is consistent with the values obtained through laboratory incubation using soil samples from the Montebello Forebay Spreading Grounds. Given the photolysis of NDMA in surface water and biodegradation in groundwater observed during this study, reclaimed wastewater with limited NDMA concentrations can be safely used for groundwater recharge under the study area conditions.
Report of official foreign travel to France, June 7--20, 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.D. Mason
2000-07-11
The Department of Energy (DOE) has moved rapidly toward electronic production, management, and dissemination of scientific and technical information. The World-Wide Web (WWW) has become a primary means of information dissemination. Electronic commerce (EC) is becoming the preferred means of procurement. DOE, like other government agencies, depends on and encourages the use of international standards in data communications. Like most government agencies, DOE has expressed a preference for openly developed standards over proprietary designs promoted as ``standards'' by vendors. In particular, there is a preference for standards developed by organizations such as the International Organization for Standardization (ISO) and themore » American National Standards Institute (ANSI) that use open, public processes to develop their standards. Among the most widely adopted international standards is the Standard Generalized Markup Language (SGML, ISO 8879:1986, FIPS 152), to which DOE long ago made a commitment. Besides the official commitment, which has resulted in several specialized projects, DOE makes heavy use of coding derived from SGML: Most documents on the WWW are coded in HTML (Hypertext Markup Language), which is an application of SGML. The World-Wide Web Consortium (W3C), with the backing of major software houses like Adobe, IBM, Microsoft, Netscape, Oracle, and Sun, is promoting XML (eXtensible Markup Language), a class of SGML applications, for the future of the WWW and the basis for EC. In support of DOE's use of these standards, the authors has served since 1985 as Chairman of the international committee responsible for SGML and related standards, ISO/IEC JTC1/SC34 (SC34) and its predecessor organizations. During his June 2000 trip, he chaired the spring 2000 meeting of SC34 in Paris, France. He also attended a major conference on the use of SGML and XML and led a meeting of the International SGML/XML Users' Group (ISUG). In addition to the widespread use of the WWW among DOE's plants and facilities in Oak Ridge and among DOE sites across the nation, there are several SGML-based projects at the Oak Ridge Y-12 Plant. The local project team developed an SGML-based publications system that has been used for several major reports at the Y-12 Plant and Oak Ridge National Laboratory (ORNL). SGML is a component of the Weapons Records Archiving and Preservation (WRAP) project at the Y-12 Plant and is the format for catalog metadata chosen for weapons records by the Nuclear Weapons Information Group (NWIG). The Ferret system for automated classification analysis will use XML to structure its knowledge base. Supporting standards development allows DOE and the Y-12 plant the opportunity both to provide input into the process and to benefit from contact with some of the leading experts in the subject matter. Oak Ridge has been for some years the location to which other DOE sites turn for expertise in SGML and related topics.« less
Assessment of the impact of sea-level rise due to climate change on coastal groundwater discharge.
Masciopinto, Costantino; Liso, Isabella Serena
2016-11-01
An assessment of sea intrusion into coastal aquifers as a consequence of local sea-level rise (LSLR) due to climate change was carried out at Murgia and Salento in southern Italy. The interpolation of sea-level measurements at three tide-gauge stations was performed during the period of 2000 to 2014. The best fit of measurements shows an increasing rate of LSLR ranging from 4.4mm/y to 8.8mm/y, which will result in a maximum LSLR of approximately 2m during the 22nd century. The local rate of sea-level rise matches recent 21st and 22nd century projections of mean global sea-level rise determined by other researchers, which include increased melting rates of the Greenland and Antarctic ice sheets, the effect of ocean thermal expansion, the melting of glaciers and ice caps, and changes in the quantity of stored land water. Subsequently, Ghyben-Herzberg's equation for the freshwater/saltwater interface was rewritten in order to determine the decrease in groundwater discharge due to the maximum LSLR. Groundwater flow simulations and ArcGIS elaborations of digital elevation models of the coast provided input data for the Ghyben-Herzberg calculation under the assumption of head-controlled systems. The progression of seawater intrusion due to LSLR suggests an impressive depletion of available groundwater discharge during the 22nd century, perhaps as much as 16.1% of current groundwater pumping for potable water in Salento. Copyright © 2016 Elsevier B.V. All rights reserved.
Degradation rates of CFC-11, CFC-12 and CFC-113 in anoxic shallow aquifers of Araihazar, Bangladesh.
Horneman, A; Stute, M; Schlosser, P; Smethie, W; Santella, N; Ho, D T; Mailloux, B; Gorman, E; Zheng, Y; van Geen, A
2008-04-04
Chlorofluorocarbons CFC-11 (CCl(3)F), CFC-12 (CCl(2)F(2)), and CFC-113 (CCl(2)F-CClF(2)) are used in hydrology as transient tracers under the assumption of conservative behavior in the unsaturated and saturated soil zones. However, laboratory and field studies have shown that these compounds are not stable under anaerobic conditions. To determine the degradation rates of CFCs in a tropical environment, atmospheric air, unsaturated zone soil gas, and anoxic groundwater samples were collected in Araihazar upazila, Bangladesh. Observed CFC concentrations in both soil gas and groundwater were significantly below those expected from atmospheric levels. The CFC deficits in the unsaturated zone can be explained by gas exchange with groundwater undersaturated in CFCs. The CFC deficits observed in (3)H/(3)He dated groundwater were used to estimate degradation rates in the saturated zone. The results show that CFCs are degraded to the point where practically no (<5%) CFC-11, CFC-12, or CFC-113 remains in groundwater with (3)H/(3)He ages above 10 yr. In groundwater sampled at our site CFC-11 and CFC-12 appear to degrade at similar rates with estimated degradation rates ranging from approximately 0.25 yr(-1) to approximately 6 yr(-1). Degradation rates increased as a function of reducing conditions. This indicates that CFC dating of groundwater in regions of humid tropical climate has to be carried out with great caution.
12. Photocopy of drawing dated May 26, 1902, on file, ...
12. Photocopy of drawing dated May 26, 1902, on file, City of New York Department of Ports, International Trade, and Commerce. ERECTION DIAGRAM/44TH ST. PIER - S. BROOKLYN - N.Y./WATER FRONT IMPROVEMENTS FOR THE BUSH COMPANY LT'D. American Bridge Company, Brooklyn Plant, Drawing No. 1431, Order No. A1343, Sheet No. 5. - Bush Terminal Company, Pier 5, Opposite end of Forty-first Street on Upper New York Bay, Brooklyn, Kings County, NY
Barnes, Kimberlee K.; Kolpin, Dana W.; Focazio, Michael J.; Furlong, Edward T.; Meyer, Michael T.; Zaugg, Steven D.; Haack, Sheridan K.; Barber, Larry B.; Thurman, E. Michael
2008-01-01
The five most frequently detected compounds in samples collected from ambient ground-water sites are N,N-diethyltoluamide (35 percent, insect repellant), bisphenol A (30 percent, plasticizer), tri(2-chloroethy) phosphate (30 percent, fire retardant), sulfamethoxazole (23 percent, veterinary and human antibiotic), and 4-octylphenol monoethoxylate (19 percent, detergent metabolite). The five most frequently detected organic wastewater contaminants in samples of untreated drinking water from surface-water sources are cholesterol (59 percent, natural sterol), metolachlor (53 percent, herbicide), cotinine (51 percent, nicotine metabolite), β-sitosterol (37 percent, natural plant sterol), and 1,7-dimethylxanthine (27 percent, caffeine metabolite). The five most frequently detected organic wastewater contaminants in samples of untreated drinking water from ground-water sources are tetrachloroethylene (24 percent, solvent), carbamazepine (20 percent, pharmaceutical), bisphenol A (20 percent, plasticizer), 1,7-dimethylxanthine (16 percent, caffeine metabolite), and tri(2-chloroethyl) phosphate (12 percent, fire retardant).
1992-03-01
I I 3 TABLE 15. SUMMARY OF THE WATER QUALITY DURING THE OLD O-FIELD GROUNDWATER PILOT SCALE TOXICITY TESTS - UNTREATED GROUNDWATER ( FRESHWATER ...SUBJECT TERMS (Coftinut on reverse of necessary and identity by block number) FIELD IGROUP SUB-GROUP Groundwater , aquatic , to*’teltyi- daphnia,--Daphnia...FATHEAD MINNOWS AND DAPHNIDS ........................................... 30 12. SUMMARY OF THE WATER QUALITY DURING THE OLD O-FIELD GROUNDWATER BENCH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolidis, N.R.
1988-01-01
In order to plan for the restoration of native wetland plant communities at a 105 ha mined peatbog in southeastern Wisconsin, studies of the hydrogeology and of the ecology of an invading exotic shrub species, fen buckthorn (Rhamnus frangula) were undertaken. A network of shallow wells, piezometers, and surface water gages were monitored monthly between September 1985 and September 1987 to delineate lateral and vertical directions of groundwater flow, fluctuations and depths of water table, and groundwater flow rates. Results indicate that groundwater recharge occurred in the active mining area and groundwater discharge occurred in most of the other areasmore » of the site. Summer depth to water table was more than 50cm in some areas suggesting that water levels should be raised to crease favorable sedge meadow habitat. In order to test the proposal of installing water control berms in the drainage ditches to raise water levels at the site, a groundwater flow model was constructed for low flow conditions which typically occur in late summer. The results of the steady state simulations indicated that water levels will be raised an average of approximately 12 cm. This values is at least 40 cm less than the proposed increases in the mined areas. Although the increase in water table elevation would enhance soil moisture conditions, other alternatives such as landscaping and natural modifications may also raise water levels and therefore need to be investigated. The rates of aboveground growth of fen buckthorn stems were estimated for the 1986 and 1987 growing season using regression equations based on measurements of biomass and stem diameter.« less
Carbon isotope fractionation during microbial methane oxidation
NASA Astrophysics Data System (ADS)
Barker, James F.; Fritz, Peter
1981-09-01
Methane, a common trace constituent of groundwaters, occasionally makes up more than 20% of the total carbon in groundwaters1,2. In aerobic environments CH4-rich waters can enable microbial food chain supporting a mixed culture of bacteria with methane oxidation as the primary energy source to develop3. Such processes may influence the isotopic composition of the residual methane and because 13C/12C analyses have been used to characterize the genesis of methanes found in different environments, an understanding of the magnitude of such effects is necessary. In addition, carbon dioxide produced by the methane-utilizing bacteria can be added to the inorganic carbon pool of affected groundwaters. We found carbon dioxide experimentally produced by methane-utilizing bacteria to be enriched in 12C by 5.0-29.6‰, relative to the residual methane. Where methane-bearing groundwaters discharged into aerobic environments microbial methane oxidation occurred, with the residual methane becoming progressively enriched in 13C. Various models have been proposed to explain the 13C/12C and 14C content of the dissolved inorganic carbon (DIC) of groundwaters in terms of additions or losses during flow in the subsurface4,5. The knowledge of both stable carbon isotope ratios in various pools and the magnitude of carbon isotope fractionation during various processes allows geochemists to use the 13C/12C ratio of the DIC along with water chemistry to estimate corrected 14C groundwater ages4,5. We show here that a knowledge of the carbon isotope fractionation between CH4 and CO2 during microbial methane-utilization could modify such models for application to groundwaters affected by microbial methane oxidation.
Legind, Charlotte N.; Rein, Arno; Serre, Jeanne; Brochier, Violaine; Haudin, Claire-Sophie; Cambier, Philippe; Houot, Sabine; Trapp, Stefan
2012-01-01
The water budget of soil, the uptake in plants and the leaching to groundwater of cadmium (Cd) and lead (Pb) were simulated simultaneously using a physiological plant uptake model and a tipping buckets water and solute transport model for soil. Simulations were compared to results from a ten-year experimental field study, where four organic amendments were applied every second year. Predicted concentrations slightly decreased (Cd) or stagnated (Pb) in control soils, but increased in amended soils by about 10% (Cd) and 6% to 18% (Pb). Estimated plant uptake was lower in amended plots, due to an increase of Kd (dry soil to water partition coefficient). Predicted concentrations in plants were close to measured levels in plant residues (straw), but higher than measured concentrations in grains. Initially, Pb was mainly predicted to deposit from air into plants (82% in 1998); the next years, uptake from soil became dominating (30% from air in 2006), because of decreasing levels in air. For Cd, predicted uptake from air into plants was negligible (1–5%). PMID:23056555
HEAT AND MASS TRANSFER IN THE VADOSE ZONE WITH PLANT ROOTS. (R825414)
The vadose zone is the intermediate medium between the atmosphere and groundwater. The modeling of the processes taking place in the vadose zone needs different approaches to those needed for groundwater transport problems because of the marked changes in envi...
Passive Biobarrier for Treating Co-Mingled Perchlorate and RDX in Groundwater at an Active Range
2016-12-31
GAC (Parette et al., 2005), 2. ZVI PRBs, and 3. Mulch biowall. Additional technologies, including in situ chemical oxidation using permanganate ...contaminated groundwater with permanganate at the Nebraska Ordnance Plant. Ground Water Monitoring & Remediation 30:96-106. 2. Bell, C. F. 1996
USDA-ARS?s Scientific Manuscript database
Although there exist numerous research studies in the literature on greenhouse gas emission and groundwater pollution potentials of soils amended with plant-based biochar made from traditional dry pyrolysis (hereafter referred as pyrochar), a very few such studies exist for hydrochar made from hydro...
Einsiedl, Florian; Radke, Michael; Maloszewski, Piotr
2010-09-20
The occurrence of two pharmaceuticals, ibuprofen and diclofenac, in a vulnerable karst groundwater system was investigated. The hydrogeology of the karst system was identified by collecting (3)H samples in groundwater over 27years and by performing tracer tests. The isotopes and tracer data were interpreted by mathematical modeling to estimate the mean transit time of water and to characterize the hydrogeological flow paths in the groundwater system. By this approach, a mean (3)H transit time of 4.6 years for the fissured-porous karst aquifer was determined, whereas the fast flowing water in the conduit system showed a mean transit time of days. Both pharmaceuticals which infiltrated along sinkholes and small streams into the karst system were detected in concentrations of up to approximately 1 microg/L in effluent water of the wastewater treatment plants. Diclofenac was present in most samples collected from four springs discharging the karst groundwater to the rivers Altmühl and Anlauter in concentrations between 3.6 and 15.4 ng/L. In contrast, ibuprofen was rarely detected in groundwater. The results of this study suggest that both pharmaceuticals move into the fractured system of the karst system and go into storage. Thus dilution processes are the dominant control on the concentrations of both pharmaceuticals in the fractured system, whereas biodegradation is likely less important. Copyright (c) 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dean, J. F.; Webb, J. A.; Jacobsen, G. E.; Chisari, R.; Dresel, P. E.
2014-08-01
Despite the fact that there are many studies that consider the impacts of plantation forestry on water resources, and others that explore the spatial heterogeneity of groundwater recharge in dry regions, there is little marriage of the two subjects in forestry management guidelines and legislation. Here we carry out an in-depth analysis of the groundwater and surface water regime in a low rainfall, high evapotranspiration paired catchment study to examine the impact of reforestation, using water table fluctuations and chloride mass balance methods to estimate groundwater recharge. Recharge estimations using the chloride mass balance method were shown to be more likely representative of groundwater recharge regimes prior to the planting of the trees, and most likely prior to widespread land clearance by European settlers. These estimations were complicated by large amounts of recharge occurring as a result of runoff and streamflow in the lower parts of the catchment. Water table fluctuation method estimations of recharge verified that groundwater recharge occurs predominantly in the lowland areas of the study catchment. This leads to the conclusion that spatial variations in recharge are important considerations for locating tree plantations with respect to conserving water resources for downstream users. For dry regions, this means planting trees in the upland parts of the catchments, as recharge is shown to occur predominantly in the lowland areas.
Pouliot, Rémy; Rochefort, Line; Graf, Martha D
2012-08-01
Fen plant growth in peat contaminated with groundwater discharges of oil sands process water (OSPW) was assessed in a greenhouse over two growing seasons. Three treatments (non-diluted OSPW, diluted OSPW and rainwater) were tested on five vascular plants and four mosses. All vascular plants tested can grow in salinity and naphthenic acids levels currently produced by oil sands activity in northwestern Canada. No stress sign was observed after both seasons. Because of plant characteristics, Carex species (C. atherodes and C. utriculata) and Triglochin maritima would be more useful for rapidly restoring vegetation and creating a new peat-accumulating system. Groundwater discharge of OSPW proved detrimental to mosses under dry conditions and ensuring adequate water levels would be crucial in fen creation following oil sands exploitation. Campylium stellatum would be the best choice to grow in contaminated areas and Bryum pseudotriquetrum might be interesting as it has spontaneously regenerated in all treatments. Copyright © 2012 Elsevier Ltd. All rights reserved.
Balkhair, Khaled S.
2015-01-01
Increasing lack of potable water in arid countries leads to the use of treated wastewater for crop production. However, the use of inappropriate irrigation practices could result in a serious contamination risk to plants, soils, and groundwater with sewage water. This research was initiated in view to the increasing danger of vegetable crops and groundwater contamination with pathogenic bacteria due to wastewater land application. The research was designed to study: (1) the effect of treated wastewater irrigation on the yield and microbial contamination of the radish plant under field conditions; (2) contamination of the agricultural soil profile with fecal coliform bacteria. Effluent from a domestic wastewater treatment plant (100%) in Jeddah city, Saudi Arabia, was diluted to 80% and 40% with the groundwater of the experimental site constituting three different water qualities plus groundwater as control. Radish plant was grown in two consecutive seasons under two drip irrigation systems and four irrigation water qualities. Upon harvesting, plant weight per ha, total bacterial, fecal coliform, fecal streptococci were detected per 100 g of dry matter and compared with the control. The soil profile was also sampled at an equal distance of 3 cm from soil surface for fecal coliform detection. The results indicated that the yield increased significantly under the subsurface irrigation system and the control water quality compared to surface irrigation system and other water qualities. There was a considerable drop in the count of all bacteria species under the subsurface irrigation system compared to surface irrigation. The bacterial count/g of the plant shoot system increased as the percentage of wastewater in the irrigation water increased. Most of the fecal coliform bacteria were deposited in the first few centimeters below the column inlet and the profile exponentially decreased with increasing depth. PMID:26858571
Geochemistry and the understanding of ground-water systems
NASA Astrophysics Data System (ADS)
Glynn, Pierre D.; Plummer, L. Niel
2005-03-01
Geochemistry has contributed significantly to the understanding of ground-water systems over the last 50 years. Historic advances include development of the hydrochemical facies concept, application of equilibrium theory, investigation of redox processes, and radiocarbon dating. Other hydrochemical concepts, tools, and techniques have helped elucidate mechanisms of flow and transport in ground-water systems, and have helped unlock an archive of paleoenvironmental information. Hydrochemical and isotopic information can be used to interpret the origin and mode of ground-water recharge, refine estimates of time scales of recharge and ground-water flow, decipher reactive processes, provide paleohydrological information, and calibrate ground-water flow models. Progress needs to be made in obtaining representative samples. Improvements are needed in the interpretation of the information obtained, and in the construction and interpretation of numerical models utilizing hydrochemical data. The best approach will ensure an optimized iterative process between field data collection and analysis, interpretation, and the application of forward, inverse, and statistical modeling tools. Advances are anticipated from microbiological investigations, the characterization of natural organics, isotopic fingerprinting, applications of dissolved gas measurements, and the fields of reaction kinetics and coupled processes. A thermodynamic perspective is offered that could facilitate the comparison and understanding of the multiple physical, chemical, and biological processes affecting ground-water systems. La géochimie a contribué de façon importante à la compréhension des systèmes d'eaux souterraines pendant les 50 dernières années. Les avancées ont portées sur le développement du concept des faciès hydrochimiques, sur l'application de la théorie des équilibres, l'étude des processus d'oxydoréduction, et sur la datation au radiocarbone. D'autres concepts, outils et techniques, ont aidé à l' élucidation des élucider les mécanismes d'écoulement et de transport dans les systèmes d'eaux souterraines, et à la compréhension des archives informations paléo-environnementales. Les informations hydrochimiques et isotopiques peuvent être utilisées pour interpréter l'origine et le mode de recharge des eaux souterraines, affiner l'estimation des temps de recharge et d' écoulements, déchiffrer les processus de réaction, apporter une meilleure information paléohydrogéologique et calibrer les modèles d'écoulement des eaux souterraines. Beaucoup de progrès ont besoin d'être réalisés pour obtenir des échantillons représentatifs. Des améliorations sont nécessaires dans l'interprétation des informations obtenues, et dans la construction et l'interprétation de modèles numériques utilisant des données hydrochimiques. La meilleure approches arsurément un processus itératif optimisé entre la collection de données de terrain et l'analyse, l'interprétation, et l'application d'outils de modélisation statistique, inverse et direct. Des avancées sont anticipées par les dans le demeine des études microbiologiques, dans la caractérisation des matières organiques naturelles, le marquage isotopique, les mesures de gaz dissous, les réactions cinétiques la compréhension des couplages. Une perspectives thermodynamique pourraient faciliter la comparaison et la compréhension des multiples processus physiques, chimiques et biologiques qui affectent les systèmes hydrogéologiques. La geoquímica ha contribuido significativamente al entendimiento de los sistemas de aguas subterráneas durante los últimos 50 años. Entre los avances históricos puede incluirse el desarrollo del concento de facies hidroquímicas, la aplicación de la teoría de equilibrio, investigación de los procesos oxidación-reducción, y datación con radiocarbono. Otros conceptos, herramientas y técnicas hidroquímicas han ayudado a esclarecer los mecanismos de flujo y transporte en sistemas de agua subterránea, y han ayudado a descifrar un archivo de información paleoambiental. Información hidroquímica e isotópica puede utilizarse para interpretar el origen y modo de recarga de agua subterránea, descifrar procesos reactivos, aportar información paleohidrológica, y calibrar modelos de flujo de agua subterránea. Necesita avanzarse en la obtención de muestras representativas. Se necesitan mejoras en la interpretación de la información obtenida y en la construcción e interpretación de modelos numéricos que utilizan datos hidroquímicos. El mejor enfoque asegurará un proceso iterativo optimizado entre toma y análisis de datos de campo, interpretación, y la aplicación de herramientas de modelizado estadísticas, directas, e inversas. Se anticipan avancesa partir de investigaciones microbiológicas, la caracterización de orgánicos naturales, caracterización isotópica, aplicaciones de mediciones de gas disuelto, y los campos de cinética de reacción y procesos acoplados. Se ofrece una perspectiva termodinámica que podría facilitar la comparación y entendimiento de los múltiples procesos físicos, químicos, y biológicos que afectan sistemas de aguas subterráneas.
Effect of flagellates on free-living bacterial abundance in an organically contaminated aquifer
Kinner, N.E.; Harvey, R.W.; Kazmierkiewicz-Tabaka, M.
1997-01-01
Little is known about the role of protists in the saturated subsurface. Porous media microcosms containing bacteria and protists, were used to determine whether flagellates from an organically contaminated aquifer could substantively affect the number of free- living bacteria (FLB). When flagellates were present, the 3-40% maximum breakthrough of fluorescent y labelled FLB injected into the microcosms was much lower than the 60-130% observed for killed controls Grazing and clearance rates (3-27 FLB flag-1 h-1 and 12-23 nI flag-1 h-1, respectively) calculated from the data were in the range reported for flagellates in other aqueous environments. The data provide evidence that flagellate bacterivory is an important control on groundwater FLB populations.
Origin of hexavalent chromium in groundwater: The example of Sarigkiol Basin, Northern Greece.
Kazakis, N; Kantiranis, N; Kalaitzidou, K; Kaprara, E; Mitrakas, M; Frei, R; Vargemezis, G; Tsourlos, P; Zouboulis, A; Filippidis, A
2017-09-01
Hexavalent chromium constitutes a serious deterioration factor for the groundwater quality of several regions around the world. High concentrations of this contaminant have been also reported in the groundwater of the Sarigkiol hydrological basin (near Kozani city, NW Greece). Specific interest was paid to this particular study area due to the co-existence here of two important factors both expected to contribute to Cr(VI) presence and groundwater pollution; namely the area's exposed ophiolitic rocks and its substantial fly ash deposits originating from the local lignite burning power plant. Accordingly, detailed geochemical, mineralogical, hydro-chemical, geophysical and hydrogeological studies were performed on the rocks, soils, sediments and water resources of this basin. Cr(VI) concentrations varied in the different aquifers, with the highest concentration (up to 120μgL -1 ) recorded in the groundwater of the unconfined porous aquifer situated near the temporary fly ash disposal site. Recharge of the porous aquifer is related mainly to precipitation infiltration and occasional surface run-off. Nevertheless, a hydraulic connection between the porous and neighboring karst aquifers could not be delineated. Therefore, the presence of Cr(VI) in the groundwater of this area is thought to originate from both the ophiolitic rock weathering products in the soils, and the local leaching of Cr(VI) from the diffused fly ash located in the area surrounding the lignite power plant. This conclusion was corroborated by factor analysis, and the strongly positively fractionated Cr isotopes (δ 53 Cr up to 0.83‰) recorded in groundwater, an ash leachate, and the bulk fly ash. An anthropogenic source of Cr(VI) that possibly influences groundwater quality is especially apparent in the eastern part of the Sarigkiol basin. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The U.S. Department of Energy Office of Legacy Management is evaluating groundwater flow and contaminant transport at a former uranium mill site near Tuba City, Arizona. We estimated effects of temporal and spatial variability in evapotranspiration (ET) on recharge and discharge within a groundwater model domain (GMD) as part of this evaluation. We used remote sensing algorithms and precipitation (PPT) data to estimate ET and the ET/PPT ratios within the 3531 hectare GMD. For the period from 2000 to 2012, ET and PPT were nearly balanced (129 millimeters per year [mm yr -1] and 130 mm yr -1, respectively; ET/PPTmore » = 0.99). However, seasonal and annual variability in ET and PPT were out of phase, and spatial variability in vegetation differentiated discharge and recharge areas within the GMD. Half of ET occurred during spring and early summer when PPT was low, and about 70% of PPT arriving in fall and winter was discharged as plant transpiration in the spring and summer period. Vegetation type and health had a significant effect on the site water balance. Plant cover and ET were significantly higher (1) during years of lighter compared to years of heavier grazing pressure, and (2) on rangeland protected from grazing compared to rangeland grazed by livestock. Heavy grazing increased groundwater recharge (PPT > ET over the 13-year period). Groundwater discharge (ET > PPT over the 13-year period) was highest in riparian phreatophyte communities but insignificant in desert phreatophyte communities impacted by heavy grazing. Grazing management in desert upland and phreatophyte communities may result in reduced groundwater recharge, increased groundwater discharge, and could be used to influence local groundwater flow.« less
Silica biogeochemical cycle in temperate ecosystems of the Pampean Plain, Argentina
NASA Astrophysics Data System (ADS)
Osterrieth, Margarita; Borrelli, Natalia; Alvarez, María Fernanda; Fernández Honaine, Mariana
2015-11-01
Silicophytoliths were produced in the plant communities of the Pampean Plain during the Quaternary. The biogeochemistry of silicon is scarcely known in continental environments of Argentina. The aim of this work is to present a synthesis of: the plant production and the presence of silicophytoliths in soils with grasses, and its relationship with silica content in soil solution, soil matrix and groundwaters in temperate ecosystems of the Pampean Plain, Argentina. We quantified the content of silicophytoliths in representative grasses and soils of the area. Mineralochemical determinations of the soils' matrix were made. The concentration of silica was determined in soil solution and groundwaters. The silicophytoliths assemblages in plants let to differenciate subfamilies within Poaceae. In soils, silicophytoliths represent 40-5% of the total components, conforming a stock of 59-72 × 103 kg/ha in A horizons. The concentration of SiO2 in soil solution increases with depth (453-1243 μmol/L) in relation with plant communities, their nutritional requirements and root development. The average concentration of silica in groundwaters is 840 umol/L. In the studied soils, inorganic minerals and volcanic shards show no features of weathering. About 10-40% of silicophytoliths were taxonomically unidentified because of their weathering degrees. The matrix of the aggregates is made up by microaggregates composed of carbon and silicon. The weathering of silicophytoliths is a process that contributes to the formation of amorphous silica-rich matrix of the aggregates. So, silicophytoliths could play an important role in the silica cycle being a sink and source of Si in soils and enriching soil solutions and groundwaters.
HYDROLOGICAL IMPACTS OF WOODY PLANT ENCROACHMENT IN ARID AND SEMIARID GRASSLANDS
Woody plants may be able to access deeper groundwater for year-round transpiration and thus consume more water than grasses, affecting recharge, soil moisture and runoff. Amount of water available to plants from precipitation is determined in part by nfiltration rates into...
In Situ Biological Treatment Test at Kelly Air Force Base. Volume 3. Appendices.
1987-07-01
175 B-12 Results of Groundwater Acidity Monitoring. . . . . . . . 176 B-13 Results of Groundwater Alkalinity Monitoring . . . . . . 177 B- 14 ...Oichloroethylene 499 Vinyl chloride 850 1.2-cis dichloroethylene Pam jupe Table A-I. Results of 5/23/85 Groundwater Sampling (Continued) 14 aqualab inc. 9909...Sample No. : 08/134621 Matrix: NATURAL WATER Parameter Result Units CC SPECIAL SCAN 1400 ug/L Client I.D.: 14 ERG Sample No.: 08/134622 Matrix
Hu, Youcai; Qu, Jing; Liu, Yuanyan; Yu, Shishan; Li, Jianbei; Zhang, Jinlan; Du, Dan
2010-01-01
The mass fragmentation patterns of stilbene glycosides isolated from the genus Lysidice were investigated by negative ion electrospray ionization tandem mass spectrometry, and the influence of collision energy on their fragmentation behavior is discussed. It is found that the presence of the Y(0)(-) and B(0)(-) ions in the MS(2) spectra is characteristic for 1-->6 linked diglycosyl stilbenes, while the Y(0)(-), Y(1)(-), and Z(1)(-) ions are representative ions of 1-->2 linked diglycosyl stilbenes. These results indicate that ESI-MS(n) in the negative ion mode can be used to differentiate 1-->6 and 1-->2 linked diglycosyl stilbenes. Based on the fragmentation rules, 9 new trace constituents were identified or tentatively characterized in a fraction of Lysidice brevicalyx by using HPLC/HRMS and HPLC-DAD/ESI-MS(n). The results of the present study can assist in on-line structural identification of analogous constituents and targeted isolation of novel compounds from crude plant extracts.
NASA Astrophysics Data System (ADS)
Genereux, D. P.; Osburn, C. L.; Nagy, L.; Oberbauer, S. F.; Rojas-Jiménez, L. D.
2013-12-01
Field studies of watershed carbon (C) fluxes and budgets are critical for understanding the C cycle, but the role of deep regional groundwater is poorly known and field examples are lacking. Discharge of regional groundwater has a major effect on C concentrations and fluxes in a lowland Costa Rican rainforest, observable through chemical, isotopic, and flux signals in groundwater, surface water, and air, and driven largely by the elevated dissolved inorganic C (DIC) in regional groundwater. Comparing two watersheds with different inputs of high-DIC regional groundwater (the Taconazo with none and the Arboleda with about 40% of stream discharge due to regional groundwater), the Arboleda has a higher stream DIC concentration (factor of ~12) and stream export of DIC (factor of ~70). Stream δ13C-DIC is higher in the Arboleda, -4.4‰ vs. -22.4‰, due to the influence of regional groundwater. A major question is the fate of old DIC discharged to streams by regional groundwater (i.e., uptake via in-stream photosynthesis vs. export by stream discharge or stream degassing). Particulate organic C (POC) δ13C values and C:N ratios were similar in the two streams and typical of soil organic matter from terrestrial C3 plants, suggesting little incorporation of DIC from regional groundwater into POC in the Arboleda stream (i.e., little algal production from old DIC). This finding is consistent with the large DIC export for the Arboleda. DIC from regional groundwater experiences little to no within-watershed sequestration, and thus augments the C flux out of the watershed with stream flow and, based on preliminary estimates, the degassing flux from the stream. Also, in air collected above the two streams in the early morning before daytime mixing of the canopy air, we found higher CO2 concentrations and δ13C-CO2 above the Arboleda compared to the Taconazo, consistent with an enhanced flux of isotopically-heavy CO2 from the Arboleda stream. Dissolved organic matter (DOM) also differs between the two watersheds. Slope ratio, a property of the light absorbance by DOM, was higher in the Arboleda than in the Taconazo, consistent with the DOM from regional groundwater being lower in molecular mass and/or weakly-aromatic (perhaps more degraded after its long subsurface residence time, ~3000 yr). Preliminary data suggest older DOM from regional groundwater is less bioavailable in rainforest streams. Regional groundwater inputs may alter watershed export of DOC (the C in DOM) in two ways: additional input of DOM to the watershed, and input of DOM that is more likely to experience hydrologic export from the watershed. Correct interpretation of the C source/sink status of this ecosystem from field data requires accounting for the role of regional groundwater. The widespread occurrence of two key factors (regional interbasin groundwater flow, and elevated dissolved C in regional groundwater) suggests regional groundwater may affect C fluxes and budgets at many sites.
Containment of fertilizers and pesticides at retail operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broder, M.F.
1990-06-28
Environmental protection has become as important to the fertilizer retailer as the products and services he offers. Emphasis on environmental protection at the dealer level is largely in response to state regulations designed to protect groundwater. The national Clean Water Act of 1987 gave states the lead in developing groundwater protection strategies. Several states have adopted new or stronger regulations and others are moving to do so. Fertilizer dealers need to keep up with these regulations and promote groundwater protection. This paper describes several containment systems for fertilizers and pesticides to help dealers decide how to modify their plants tomore » protect groundwater.« less
Ecotoxicity assessment of artificial groundwater recharge with reclaimed water: a pilot-scale study.
Zhang, Xue; Zhao, Xuan
2013-11-01
A demonstration of artificial groundwater recharge with tertiary effluent was evaluated using a set of bioassays (acute toxicity to Daphnia, genotoxicity, estrogenic and antiestrogenic toxicity). Around 95 % genotoxicity and 53 % antiestrogenicity were removed from the feed water by ozonation, whereas significant reduction of acute toxicity to Daphnia magna was achieved during a 3 days vadose soil treatment. The toxicity was further removed to the same level as the local groundwater during a 20 days aquifer soil treatment. The pilot study has shown that ozonation and soil treatments can improve the quality of municipal wastewater treatment plant effluents for possible groundwater recharge purposes.
Li, Shuhuan; Wang, Jie; Gao, Nanxiong; Liu, Lizhu; Chen, Yahua
2017-04-01
The plant-growth-promoting rhizobacterium (PGPR) Y4-4 was isolated from plant rhizosphere soil and identified as Pantoea sp. by 16S rRNA sequence analysis. The effects of strain Y4-4 on alfalfa grown in heavy-metals-contaminated soil was investigated using a pot experiment. In a Cu-rich environment, the shoot dry mass and total dry mass of plants inoculated with strain Y4-4 increased by 22.6% and 21%, and Cu accumulation increased by 15%. In a Pb-Zn-rich environment, the shoot dry mass and total dry mass of plants inoculated with strain Y4-4 increased by 23.4% and 22%, and Zn accumulation increased by 30.3%. In addition, the salt tolerance and biomass of wheat seedlings could be improved by applying strain Y4-4 mixed with plant residue as a result of the Cu-rich plant residues providing copper nutrition to wheat. This study offers an efficient PGPR with strong salt tolerance and a safe strategy for the post-treatment of plant residue.
Managing Groundwater Radioactive Contamination at the Daiichi Nuclear Plant
Marui, Atsunao; Gallardo, Adrian H.
2015-01-01
The Great East Japan Earthquake and tsunami of March 2011 severely damaged three reactors at the Fukushima Daiichi nuclear power station, leading to a major release of radiation into the environment. Groundwater flow through these crippled reactors continues to be one of the main causes of contamination and associated transport of radionuclides into the Pacific Ocean. In this context, a number of strategies are being implemented to manage radioactive pollution of the water resources at the nuclear plant site. Along with water treatment and purification, it is critical to restrict the groundwater flow to and from the reactors. Thus, the devised strategies combine walls containment, bores abstraction, infiltration control, and the use of tanks for the temporary storage of contaminated waters. While some of these techniques have been previously applied in other environments, they have never been tested at such a large scale. Therefore, their effectiveness remains to be seen. The present manuscript presents an overview of the methods being currently implemented to manage groundwater contamination and to mitigate the impact of hydrological pathways in the dispersion of radionuclides at Fukushima. PMID:26197330
Managing Groundwater Radioactive Contamination at the Daiichi Nuclear Plant.
Marui, Atsunao; Gallardo, Adrian H
2015-07-21
The Great East Japan Earthquake and tsunami of March 2011 severely damaged three reactors at the Fukushima Daiichi nuclear power station, leading to a major release of radiation into the environment. Groundwater flow through these crippled reactors continues to be one of the main causes of contamination and associated transport of radionuclides into the Pacific Ocean. In this context, a number of strategies are being implemented to manage radioactive pollution of the water resources at the nuclear plant site. Along with water treatment and purification, it is critical to restrict the groundwater flow to and from the reactors. Thus, the devised strategies combine walls containment, bores abstraction, infiltration control, and the use of tanks for the temporary storage of contaminated waters. While some of these techniques have been previously applied in other environments, they have never been tested at such a large scale. Therefore, their effectiveness remains to be seen. The present manuscript presents an overview of the methods being currently implemented to manage groundwater contamination and to mitigate the impact of hydrological pathways in the dispersion of radionuclides at Fukushima.
NASA Astrophysics Data System (ADS)
Falta, R. W.
2004-05-01
Ethylene dibromide (EDB) is a synthetic organic chemical that was produced in large amounts for use as a leaded gasoline additive and pesticide. The chlorinated solvent 1,2-dichlorethane (1,2-DCA) is widely used in the chemical industry, and was also added to leaded gasoline. EDB and 1,2-DCA are classified as probable human carcinogens by the United States Environmental Protection Agency (EPA), and EDB's use as a pesticide was suspended in 1984. The current EPA maximum contaminant level (MCL) for EDB in drinking water is 0.05 ug/l, and the MCL for 1,2-DCA is 5 ug/l. EDB has proven to be both mobile and persistent in groundwater, and contamination of groundwater by EDB was documented in several states beginning in the early 1980s. The majority of this contamination is attributed to agricultural uses of EDB, however approximately 90 percent of the EDB produced was used as a leaded gasoline additive, and it was present in virtually all leaded gasoline sold in the US. 1,2-DCA is commonly found as a groundwater contaminant, and it is both mobile and persistent. Past site investigations and remediation efforts at underground storage tank sites contaminated by leaded gasoline have rarely addressed the potential for EDB or 1,2-DCA contamination. However, the concentrations of EDB and 1,2-DCA in leaded gasoline were high enough to produce groundwater concentrations of thousands of ug/l. For this reason, there is a substantial likelihood that undetected EDB and 1,2-DCA plumes above the MCL may exist at many sites where leaded gasoline leaked or spilled. An initial review of field data from underground storage tank sites in two states suggests that this problem is widespread.
Guleryuz, Gurcan; Gucel, Salih; Ozturk, Munir
2010-07-01
Interrelations exist in the terrestrial ecosystems between the plant type and characteristics of nutrient uptake. Annual net nitrogen mineralization in soils of different plant communities in the high altitude zone of Spil mountain located in the Mediterranean phytogeographical region of Turkey was investigated throughout one year by field incubation method. Seasonal fluctuations resulting from field incubation were markedly higher in autumn and spring than summer. These are mainly associated with the changes in soil moisture being at minimum in the Mediterranean summer. A significant correlation was developed between the net Nitrate (kg NO3(-)-N ha week(-1)) production and soil water content (p<0.05; r = 0.316 in soil of 0-5 cm; r = 0.312 in soil of 5-15 cm). The results showed that the annual productivity of nitrogen mineralization shows different values depending on communities. Annual net ammonium (NH4(+)-N) production in the soils of each community was negatively estimated. However annual net nitrate (NO3(-)-N) production (0-15 cm) was higher in grassland (27.8 kg ha y(-1)) and shrub (25.0 kg ha y(-1)) than forest (12.4 kg ha y(-1)) community. While annual net N(min) values were close to each other in grassland (14.5 kg ha y(-1)) and shrub (14.1 kg ha y(-1)), but negative in forest community (-3.6 kg ha y(-1)). The reasons for these differences are discussed.
Komor, S.C.
1994-01-01
Savage Fen is a wetlands complex at the base of north-facing bluffs in the Minnesota River Valley. The complex includes 27.8 hectares of calcareous fen that host rare calciphile plants whose populations are declining in Minnesota. Water and sediment compositions in the calcareous fen were studied to gain a better understanding of the hydrologie System that sustains the rare vegetation. Groundwater in the fen is a calcium-magnesium-bicarbonate type with circumneutral pH values. The groundwater composition is the resuit of interactions among water, dissolved and gaseous carbon species, carbonates, and ion exchangers. Shallow groundwater is distinguished from deep groundwater by smaller concentrations of chloride, sulfate, magnesium, and sodium, and larger concentrations of calcium, bicarbonate, hydrogen sulfide, and ammonium. Magnesian calcite is the prevalent carbonate in unconsolidated sedimentary fill beneath the fen and is an important source and sink for dissolved calcium, magnesium, and inorganic carbon. Calcite concentrations just below the water table are small because aerobic and anaerobic oxidation of organic matter increase the partial pressure of carbon dioxide (PCO2), decrease pH, and cause calcite to dissolve. Thick calcite accumulations just above the water table, in the root zone of calciphile plants, result from water table fluctuations and attendant changes in PCO2. Groundwater beneath Savage Fen recharges in lakes and ponds south of the fen and upwells to the surface within the fen. Water at the water table is a mixture of upwelling groundwater and water near the surface that flows downslope from higher elevations in the fen. Changes in oxygen and hydrogen isotope compositions of shallow groundwater indicate that the proportion of upwelling groundwater in shallow groundwater decreases downgradient in the calcareous fen. Encroachment of reed grasses into the calcareous fen may reflect human-caused disturbances in the recharge area.
Preinvestigation evaluation of corrective measure technologies for the Badger Army Ammunition Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benioff, P.A.; Tsai, S.Y.
1989-02-01
This report briefly describes and evaluates the suitability of corrective measure technologies for possible use at the solid waste management units (SWMUs) at the Badger Army Ammunition Plant (BAAP), near Baraboo, Wisconsin. Corrective measure technologies considered for contaminated soils include excavation plus on- or off-site disposal in landfills or by incineration, use of solidification or stabilization methods, and in-situ methods such as bioreclamation and chemical or physical methods. Technologies considered for treatment of contaminated groundwater include groundwater pumping followed by discharge or treatment by air stripping and use of subsurface barriers. 5 refs., 1 tab.
NASA Astrophysics Data System (ADS)
Bichler, Andrea; Muellegger, Christian; Hofmann, Thilo
2014-05-01
In shallow or unconfined aquifers the infiltration of contaminated river water might be a major threat to groundwater quality. Thus, the identification of possible contamination sources in coupled surface- and groundwater systems is of paramount importance to ensure water quality. Micropollutants like artificial sweeteners are promising markers for domestic waste water in natural water bodies. Compounds, such as artificial sweeteners, might enter the aquatic environment via discharge of waste water treatment plants, leaky sewer systems or septic tanks and are ubiquitously found in waste water receiving waters. The hereby presented field study aims at the (1) identification of contamination sources and (2) delineation of infiltration zones in a connected river-aquifer system. River bank filtrate in the groundwater body was assessed qualitatively and quantitatively using a combined approach of hydrochemical analysis and artificial sweeteners (acesulfame ACE) as waste water markers. The investigated aquifer lies within a mesoscale alpine head water catchment and is used for drinking water production. It is hypothesized that a large proportion of the groundwater flux originates from bank filtrate of a nearby losing stream. Water sampling campaigns in March and July 2012 confirmed the occurrence of artificial sweeteners at the investigated site. The municipal waste water treatment plant was identified as point-source for ACE in the river network. In the aquifer ACE was present in more than 80% of the monitoring wells. In addition, water samples were classified according to their hydrochemical composition, identifying two predominant types of water in the aquifer: (1) groundwater influenced by bank filtrate and (2) groundwater originating from local recharge. In combination with ACE concentrations a third type of water could be discriminated: (3) groundwater influence by bank filtrate but infiltrated prior to the waste water treatment plant. Moreover, the presence of ACE at elevated concentrations in aquifer zones dominated by local recharge indicated another point-source of domestic waste water. The combined analysis of ACE and conventional hydrochemical data proved to be useful to identify different sources of waste water. It is shown that the combination of physicochemical parameters and artificial sweeteners allow for a clear delineation of infiltration areas in the investigated aquifer system.
Ben Daniel, Bat-Hen; Cattan, Esther; Wachtel, Chaim; Avrahami, Dorit; Glick, Yair; Malichy, Asaf; Gerber, Doron; Miller, Gad
2016-08-01
To appropriately acclimate to environmental stresses, plants have to rapidly activate a specific transcriptional program. Yet, the identity and function of many of the transcriptional regulators that mediate early responses to abiotic stress stimuli is still unknown. In this work we employed the promoter of the multi-stress-responsive zinc-finger protein Zat12 in yeast one-hybrid (Y1H) screens to identify early abiotic stress-responsive transcriptional regulators. Analysis of Zat12 promoter fragments fused to luciferase underlined an approximately 200 bp fragment responsive to NaCl and to reactive oxygen species (ROS). Using these segments and others as baits against Y1H control or stress Arabidopsis prey libraries, we identified 15 potential Zat12 transcriptional regulators. Among the prominent proteins identified were known transcription factors including bZIP29 and ANAC91 as well as unknown function proteins such as a homolog of the human USB1, a U6 small nuclear RNA (snRNA) processing protein, and dormancy/auxin-associated family protein 2 (DRM2). Altered expression of Zat12 during high light stress in the knockout mutants further indicated the involvement of these proteins in the regulation of Zat12. Using a state of the art microfluidic approach we showed that AtUSB1 and DRM2 can specifically bind dsDNA and were able to identify the preferred DNA-binding motif of all four proteins. Overall, the proteins identified in this work provide an important start point for charting the earliest signaling network of Zat12 and of other genes required for acclimation to abiotic stresses. © 2016 Scandinavian Plant Physiology Society.
[VC and DCE in groundwater and drainage channel water].
Ackermann, A
2004-12-01
In an area used merely for gardening in a downland moor, which is partly transformed to an industrial estate, accidentally a contamination of a drainage channel with VOC's - predominantly chloroethylene (vinyl chloride [VC]) and 1.2-cis-dichloroethylene (DCE) - was found. The ascending ground water leaks into the drainage channels. The dissolved harmful substances (water solubility of VC is 1.6 g/l) can reach the radix range of plants and fruit bosks and can theoretically be incorporated with the water influx. Additionally the water from the drainage channels can be used to water the crops. Six gardens and a housing were involved. In the groundwater of the mainly concerned region max. 5,000 microg/l VOC's (quite predominantly VC and DCE) was measured from 147 samples. In the drainage channel water max. 2,500 microg/l was measured from 52 samples (limit value according to the drinking water ordinance is 10 microg/l). In the sediment of the channel with approximately 60,000 microg/kg VOC was found in dry matter (6 samples). We describe, how the consumer protection dept. dealt with this unexpected situation and what measures were taken. The impact on human health by the contaminated ground and channel water or by means of contaminated plants are determined for tree fruits, potatoes, bulbs and carrots. The soil air was contaminated, but in buildings no harmful compounds were detectioned.
Godsy, E. Michael; Goerlitz, Donald; Grbic-Galic, Dunja
1992-01-01
Wastes from a wood preserving plant in Pensacola, Florida have contaminated the near-surface sand-and-gravel aquifer with creosote-derived compounds and pentachlorophenol. Contamination resulted from the discharge of plant waste waters to and subsequent seepage from unlined surface impoundments that were in direct hydraulic contact with the ground water. Two distinct phases resulted when the creosote and water mixed: a denser than water hydrocarbon phase that moved vertically downward, and an organic-rich aqueous phase that moved laterally with the ground-water flow. The aqueous phase is enriched in organic acids, phenolic compounds, single- and double-ring nitrogen, sulfur, and oxygen containing compounds, and single- and double-ring aromatic hydrocarbons. The ground water is devoid of dissolved O2, is 60-70% saturated with CH4 and contains H2S. Field analyses document a greater decrease in concentration of organic fatty acids, benzoic acid, phenol, 2-, 3-, 4-methylphenol, quinoline, isoquinoline, 1(2H)-quinolinone, and 2(1H)-isoquinolinone during downgradient movement in the aquifer than could be explained by dilution and/or dispersion. Laboratory microcosm studies have shown that within the study region, this effect can be attributed to microbial degradation to CH4 and CO2. A small but active methanogenic population was found on sediment materials taken from highly contaminated parts of the aquifer.
Groundwater response to reforestation in the Darling Range of Western Australia
NASA Astrophysics Data System (ADS)
Bell, R. W.; Schofield, N. J.; Loh, I. C.; Bari, M. A.
1990-11-01
Replacement of deep-rooted perennial vegetation with annual crops and pastures has led to rising groundwater tables and transport of previously stored salts to streams in southwest Western Australia. Trials to determine the potential of various reforestation strategies to reverse this process by lowering the groundwater table were commenced in 1976-1981. Results are reported from six experimental sites for the period 1979-1986. Despite the mean annual rainfall of the experimental period being 10% below the 1926-1986 mean, groundwater levels under pasture rose by up to 1.2m. The change in groundwater levels beneath reforestation ranged from a 0.6-m increase to a 3-m decrease relative to the ground surface. Groundwater levels under reforestation in all cases decreased relative to groundwater levels under pasture. The magnitude of this reduction was shown to increase with the proportion of cleared area reforested and with the crown cover of the reforestation. The salinity of the water table decreased by 12% under reforestation and by 32% under pasture over the period 1979-1986.
Xie, Xianjun; Wang, Yanxin; Su, Chunli; Duan, Mengyu
2013-02-01
To better understand the effects of recharge and discharge on the hydrogeochemistry of high levels of arsenic (As) and fluoride (F) in groundwater, environmental isotopic composition (delta2H and delta18O) and chloride (Cl) concentrations were analyzed in 29 groundwater samples collected from the Datong Basin. High arsenic groundwater samples (As > 50 micog/L) were found to be enriched in lighter isotopic composition that ranged from -92 to -78 per thousand for deuterium (delta2H) and from -12.5 to -9.9 per thousand for oxygen-18 (delta18O). High F-containing groundwater (F > 1 mg/L) was relatively enriched in heavier isotopic composition and varied from -90 to -57 per thousand and from -12.2 to -6.7 per thousand for delta2H and delta18O, respectively. High chloride concentrations and delta18O values were primarily measured in groundwater samples from the northern and southwestern portions of the study area, indicating the effect of evaporation on groundwater. The observation of relatively homogenized and low delta18O values and chloride concentrations in groundwater samples from central part of the Datong Basin might be a result of fast recharge by irrigation returns, which suggests that irrigation using arsenic-contaminated groundwater affected the occurrence of high arsenic-containing groundwater in the basin.
Katz, Brian G.; Lee, Terrie M.; Plummer, Niel; Busenberg, Eurybiades
1995-01-01
Leakage from sinkhole lakes significantly influences recharge to the Upper Floridan aquifer in poorly confined sediments in northern Florida. Environmental isotopes (oxygen 18, deuterium, and tritium), chlorofluorocarbons (CFCs: CFC-11, CCl3F; CFC-12, CCl2F2; and CFC-113, C2Cl3F3), and solute tracers were used to investigate groundwater flow patterns near Lake Barco, a seepage lake in a mantled karst setting in northern Florida. Stable isotope data indicated that the groundwater downgradient from the lake contained 11–67% lake water leakage, with a limit of detection of lake water in groundwater of 4.3%. The mixing fractions of lake water leakage, which passed through organic-rich sediments in the lake bottom, were directly proportional to the observed methane concentrations and increased with depth in the groundwater flow system. In aerobic groundwater upgradient from Lake Barco, CFC-modeled recharge dates ranged from 1987 near the water table to the mid 1970s for water collected at a depth of 30 m below the water table. CFC-modeled recharge dates (based on CFC-12) for anaerobic groundwater downgradient from the lake ranged from the late 1950s to the mid 1970s and were consistent with tritium data. CFC-modeled recharge dates based on CFC-11 indicated preferential microbial degradation in anoxic waters. Vertical hydraulic conductivities, calculated using CFC-12 modeled recharge dates and Darcy's law, were 0.17, 0.033, and 0.019 m/d for the surficial aquifer, intermediate confining unit, and lake sediments, respectively. These conductivities agreed closely with those used in the calibration of a three-dimensional groundwater flow model for transient and steady state flow conditions.
NASA Astrophysics Data System (ADS)
Katz, Brian G.; Lee, Terrie M.; Plummer, L. Niel; Busenberg, Eurybiades
1995-06-01
Leakage from sinkhole lakes significantly influences recharge to the Upper Floridan aquifer in poorly confined sediments in northern Florida. Environmental isotopes (oxygen 18, deuterium, and tritium), chlorofluorocarbons (CFCs: CFC-11, CCl3F; CFC-12, CCl2F2; and CFC-113, C2Cl3F3), and solute tracers were used to investigate groundwater flow patterns near Lake Barco, a seepage lake in a mantled karst setting in northern Florida. Stable isotope data indicated that the groundwater downgradient from the lake contained 11-67% lake water leakage, with a limit of detection of lake water in groundwater of 4.3%. The mixing fractions of lake water leakage, which passed through organic-rich sediments in the lake bottom, were directly proportional to the observed methane concentrations and increased with depth in the groundwater flow system. In aerobic groundwater upgradient from Lake Barco, CFC-modeled recharge dates ranged from 1987 near the water table to the mid 1970s for water collected at a depth of 30 m below the water table. CFC-modeled recharge dates (based on CFC-12) for anaerobic groundwater downgradient from the lake ranged from the late 1950s to the mid 1970s and were consistent with tritium data. CFC-modeled recharge dates based on CFC-11 indicated preferential microbial degradation in anoxic waters. Vertical hydraulic conductivities, calculated using CFC-12 modeled recharge dates and Darcy's law, were 0.17, 0.033, and 0.019 m/d for the surficial aquifer, intermediate confining unit, and lake sediments, respectively. These conductivities agreed closely with those used in the calibration of a three-dimensional groundwater flow model for transient and steady state flow conditions.
Modelling of groundwater-vegetation interactions in a tidal marsh
NASA Astrophysics Data System (ADS)
Xin, Pei; Kong, Jun; Li, Ling; Barry, D. A.
2013-07-01
Wetting and drying due to tidal fluctuations affect soil conditions and hence plant growth in tidal marshes. Here, a coupled one-dimensional model was developed to simulate interacting groundwater flow and plant growth in these wetlands. The simulation results revealed three characteristic zones of soil conditions for plant growth along a cross-creek section subjected to the combined influences of spring-neap tides and evapotranspiration: (1) a near-creek zone affected by semi-diurnal tides over the whole spring-neap cycle, where the soil is well aerated although the plant growth could be slightly limited by the local water content dropping periodically below the wilting point on the ebb tide; (2) a less well-drained zone where drainage occurs only during neap tides (for which the daily inundation is absent) and plant growth is aeration-limited; and (3) an interior zone where evapotranspiration determines the soil-water saturation. Plant growth dynamics, which depend on these soil conditions, lead to spatial biomass distributions that are consistent with the characteristic zonation. The simulations shed light on the feedback mechanism for groundwater-vegetation interactions in the marsh system. It was demonstrated that the growth of pioneer plants can improve the soil aeration condition as a result of transpiration. The strength of this feedback varies spatially in accordance with the three characteristic zones of soil-water saturation. However, the development of another species in the marsh system is likely to be more complicated than suggested by the "positive feedback" mechanism proposed previously, due to the influence of inter-species competition. The feedback effects are generally more complex, involving both plant growth enhancement and inhibition depending on the combined influence of the intra- and inter-species competition, the ecosystem's carrying capacity and plant transpiration. These findings demonstrate the interplay of ecological and hydrological processes in tidal marshes, and provide guidance for future research, including field investigations that aim to establish the principle relationship between marsh morphology and plant zonation.
Global patterns of groundwater table depth.
Fan, Y; Li, H; Miguez-Macho, G
2013-02-22
Shallow groundwater affects terrestrial ecosystems by sustaining river base-flow and root-zone soil water in the absence of rain, but little is known about the global patterns of water table depth and where it provides vital support for land ecosystems. We present global observations of water table depth compiled from government archives and literature, and fill in data gaps and infer patterns and processes using a groundwater model forced by modern climate, terrain, and sea level. Patterns in water table depth explain patterns in wetlands at the global scale and vegetation gradients at regional and local scales. Overall, shallow groundwater influences 22 to 32% of global land area, including ~15% as groundwater-fed surface water features and 7 to 17% with the water table or its capillary fringe within plant rooting depths.
Elemental transport and distribution in soils amended with incinerated sewage sludge.
Paramasivam, S; Sajwan, K S; Alva, A K; VanClief, D; Hostler, K H
2003-05-01
Sewage sludge (SS) is the major solid waste of sewage and wastewater treatment plants in cities around the world. Even though treated effluent water from wastewater treatment plants are utilized for irrigation, disposal of sewage sludge is becoming a serious problem. This is due to its high content of certain heavy metals still posing threat of accumulation in plants and groundwater contamination when it is used as soil amendment or disposed in landfills. Water treatment plants incinerate the dewatered activated sewage sludge (ISS) and dissolve the ash in water to store in ash ponds for long-term storage (WISS). A study was undertaken to evaluate the transport and leaching potential of various elements and their distribution within soil columns amended with various rates of ISS. Results of this study indicates that ISS from wastewater treatment plants can be used as soil amendment on agricultural lands at low to medium rates (< or = 100 Mg ha(-1)) without causing potential loading of metals into groundwater.
Pan, Hong-Wei; Lei, Hong-Jun; He, Xiao-Song; Xi, Bei-Dou; Han, Yu-Ping; Xu, Qi-Gong
2017-04-01
To study the influence of long-term pesticide application on the distribution of organochlorine pesticides (OCPs) in the soil-groundwater system, 19 soil samples and 19 groundwater samples were collected from agricultural area with long-term pesticide application history in Northern China. Results showed that the composition of OCPs changed significantly from soil to groundwater. For example, ∑DDT, ∑HCH, and ∑heptachlor had high levels in the soil and low levels in the groundwater; in contrast, endrin had low level in the soil and high level in the groundwater. Further study showed that OCP distribution in the soil was significantly influenced by its residue time, soil organic carbon level, and small soil particle contents (i.d. <0.0002 mm). Correlation analysis also indicates that the distribution of OCPs in the groundwater was closely related to the levels of OCPs in the soil layer, which may act as a pollution source.
Using Groundwater physiochemical properties for assessing potential earthquake precursor
NASA Astrophysics Data System (ADS)
Inbar, Nimrod; Reuveni, Yuval; Anker, Yaakov; Guttman, Joseph
2017-04-01
Worldwide studies reports pre-seismic, co-seismic and post-seismic reaction of groundwater to earthquakes. The unique hydrological and geological situation in Israel resulted in relatively deep water wells which are located close to seismically active tectonic plate boundary. Moreover, the Israeli experience show that anomalies may occurs 60-90 minutes prior to the seismic event (Guttman et al., 2005; Anker et al., 2016). Here, we try to assess the possible connection between changes in physiochemical parameters of groundwater and earthquakes along the Dead Sea Transform (DST) region. A designated network of monitoring stations was installed in MEKOROT abandoned deep water wells, continuously measuring water table, conductivity and temperature at a sampling rate of 1 minute. Preliminary analysis compares changes in the measured parameters with rain events, tidal effects and earthquake occurrences of all measured magnitudes (>2.5Md) at monitoring area surroundings. The acquired data set over one year recorded simultaneous abrupt changes in several wells which seems disconnected from standard hydrological occurrences such as precipitation, abstraction or tidal effects. At this stage, our research aims to determine and rationalize a baseline for "normal response" of the measured parameters to external occurrences while isolating those cases in which "deviations" from that base line is recorded. We apply several analysis techniques both in time and frequency domain with the measured signal as well as statistical analysis of several measured earthquake parameters, which indicate potential correlations between earthquakes occurrences and the measured signal. We show that at least in one seismic event (5.1 Md) a potential precursor may have been recorded. Reference: Anker, Y., N. Inbar, A. Y. Dror, Y. Reuveni, J. Guttman, A. Flexer, (2016). Groundwater response to ground movements, as a tool for earthquakes monitoring and a possible precursor. 8th International Conference on Urban Planning and Transportation. Guttman, J., Flexer, A. & Yellin-Dror, A. (2005). Water level changes in wells - a predictor for earthquakes? IAHS Publ. Vol. 303, pp. 1-5.
Low, Dennis J.; Goode, Daniel J.; Risser, Dennis W.
2000-01-01
Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Gettysburg, Pa., is used as drinking water and for industrial and commercial supply. In 1983, ground water at the Gettysburg Elevator Plant was found by the Pennsylvania Department of Environmental Resources to be contaminated with trichloroethene, 1,1,1-trichloroethane, and other synthetic organic compounds. As part of the U.S. Environmental Protection Agency?s Comprehensive Environmental Response, Compensation, and Liability Act, 1980 process, a Remedial Investigation was completed in July 1991, a method of site remediation was issued in the Record of Decision dated June 1992, and a Final Design Report was completed in May 1997. In cooperation with the U.S. Environmental Protection Agency in the hydrogeologic assessment of the site remediation, the U.S. Geological Survey began a study in 1997 to determine the effects of the onsite and offsite extraction wells on ground-water flow and contaminant migration from the Gettysburg Elevator Plant. This determination is based on hydrologic and geophysical data collected from 1991 to 1998 and on results of numerical model simulations of the local ground-water flow-system. The Gettysburg Elevator Site is underlain by red, green, gray, and black shales of the Heidlersburg Member of the Gettysburg Formation. Correlation of natural-gamma logs indicates the sedimentary rock strike about N. 23 degrees E. and dip about 23 degrees NW. Depth to bedrock onsite commonly is about 6 feet but offsite may be as deep as 40 feet. The ground-water system consists of two zones?a thin, shallow zone composed of soil, clay, and highly weathered bedrock and a thicker, nonweathered or fractured bedrock zone. The shallow zone overlies the bedrock zone and truncates the dipping beds parallel to land surface. Diabase dikes are barriers to ground-water flow in the bedrock zone. The ground-water system is generally confined or semi-confined, even at shallow depths. Depth to water can range from flowing at land surface to more than 71 feet below land surface. Potentiometric maps based on measured water levels at the Gettysburg Elevator Plant indicate ground water flows from west to east, towards Rock Creek. Multiple-well aquifer tests indicate the system is heterogeneous and flow is primarily in dipping beds that contain discrete secondary openings separated by less permeable beds. Water levels in wells open to the pumped bed, as projected along the dipping stratigraphy, are drawn down more than water levels in wells not open to the pumped bed. Ground-water flow was simulated for steady-state conditions prior to pumping and long-term average pumping conditions. The three-dimensional numerical flow model (MODFLOW) was calibrated by use of a parameter estimation program (MODFLOWP). Steady-state conditions were assumed for the calibration period of 1996. An effective areal recharge rate of 7 inches was used in model calibration. The calibrated flow model was used to evaluate the effectiveness of the current onsite and offsite extraction well system. The simulation results generally indicate that the extraction system effectively captures much of the ground-water recharge at the Gettysburg Elevator Plant and, hence, contaminated ground-water migrating from the site. Some of the extraction wells pump at low rates and have very small contributing areas. Results indicate some areal recharge onsite will move to offsite extraction wells.
Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics
NASA Astrophysics Data System (ADS)
Wong, Min Hao; Giraldo, Juan P.; Kwak, Seon-Yeong; Koman, Volodymyr B.; Sinclair, Rosalie; Lew, Tedrick Thomas Salim; Bisker, Gili; Liu, Pingwei; Strano, Michael S.
2017-02-01
Plant nanobionics aims to embed non-native functions to plants by interfacing them with specifically designed nanoparticles. Here, we demonstrate that living spinach plants (Spinacia oleracea) can be engineered to serve as self-powered pre-concentrators and autosamplers of analytes in ambient groundwater and as infrared communication platforms that can send information to a smartphone. The plants employ a pair of near-infrared fluorescent nanosensors--single-walled carbon nanotubes (SWCNTs) conjugated to the peptide Bombolitin II to recognize nitroaromatics via infrared fluorescent emission, and polyvinyl-alcohol functionalized SWCNTs that act as an invariant reference signal--embedded within the plant leaf mesophyll. As contaminant nitroaromatics are transported up the roots and stem into leaf tissues, they accumulate in the mesophyll, resulting in relative changes in emission intensity. The real-time monitoring of embedded SWCNT sensors also allows residence times in the roots, stems and leaves to be estimated, calculated to be 8.3 min (combined residence times of root and stem) and 1.9 min mm-1 leaf, respectively. These results demonstrate the ability of living, wild-type plants to function as chemical monitors of groundwater and communication devices to external electronics at standoff distances.
Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics.
Wong, Min Hao; Giraldo, Juan P; Kwak, Seon-Yeong; Koman, Volodymyr B; Sinclair, Rosalie; Lew, Tedrick Thomas Salim; Bisker, Gili; Liu, Pingwei; Strano, Michael S
2017-02-01
Plant nanobionics aims to embed non-native functions to plants by interfacing them with specifically designed nanoparticles. Here, we demonstrate that living spinach plants (Spinacia oleracea) can be engineered to serve as self-powered pre-concentrators and autosamplers of analytes in ambient groundwater and as infrared communication platforms that can send information to a smartphone. The plants employ a pair of near-infrared fluorescent nanosensors-single-walled carbon nanotubes (SWCNTs) conjugated to the peptide Bombolitin II to recognize nitroaromatics via infrared fluorescent emission, and polyvinyl-alcohol functionalized SWCNTs that act as an invariant reference signal-embedded within the plant leaf mesophyll. As contaminant nitroaromatics are transported up the roots and stem into leaf tissues, they accumulate in the mesophyll, resulting in relative changes in emission intensity. The real-time monitoring of embedded SWCNT sensors also allows residence times in the roots, stems and leaves to be estimated, calculated to be 8.3 min (combined residence times of root and stem) and 1.9 min mm -1 leaf, respectively. These results demonstrate the ability of living, wild-type plants to function as chemical monitors of groundwater and communication devices to external electronics at standoff distances.
Kumar, Deepak; Singh, Anshuman; Jha, Rishi Kumar
2018-04-21
Investigation of presence of Uranium (U) in groundwater/drinking water is an active are of research due to its chemical and radiological toxicity as well as long-term health effects. The current study had the objective of estimating U as a naturally occurring radioactive element in groundwater samples and assessment of ingestion dose, when groundwater is the source of drinking water. The random sampling method was chosen for the collection of samples based on population density. The estimation of U was done using LED fluorimeter. Statistical tools were applied to analyze the data and its spatial distribution. The U concentrations in three blocks of urban Patna were well below the permissible limits suggested by different health agencies of the world. A correlation test was performed to analyze the association of U with other physiochemical parameters of water samples. It was found that the sulfate, chloride, calcium, hardness, alkalinity, TDS, salinity, and ORP were positively correlated, whereas fluoride, phosphate, magnesium, dissolved oxygen, and pH were negatively correlated with U concentrations. The ingestion dose due to U, occurring in groundwater, was found to vary from 0.2-27.0 μSv y -1 with a mean of 4.2 μSv y - 1 , which was well below the recommended limit of 0.1 mSv (WHO WHO Chron 38:104-108, 2012).Therefore, the water in this region is fit for drinking purposes.
The ability of different aerobic groundwater microorganisms to cometabolically degrade trichloroethylene (TCE), 1,2-cis-dichloroethylene (c-DCE), and 1,2-trans-dichloroethylene (t-DCE) was evaluated both in groundwater-fed microcosms and in situ in a shallow aquifer. Microcosms a...
USDA-ARS?s Scientific Manuscript database
Availability of soil water is critical for plant growth and development. In shallow groundwater conditions, this availability may vary with the depth to the restrictive layer that is found beneath groundwater. The restrictive layer is not flat, and the presence of the relief of this layer leads to t...
NASA Astrophysics Data System (ADS)
Tamborski, J. J.; Cochran, J. K.; Bokuniewicz, H. J.
2017-12-01
Bottom-waters in Smithtown Bay (Long Island Sound, NY) are subject to hypoxic conditions every summer despite limited nutrient inputs from waste-water and riverine sources, while modeling estimates of groundwater inputs are thought to be insignificant. Terrestrial and marine fluxes of submarine groundwater discharge (SGD) were quantified to Smithtown Bay using mass balances of 222Rn, 224Ra, 226Ra and 228Ra during the spring and summer of 2014/2015, in order to track this seasonal transition period. Intertidal pore waters from a coastal bluff (terrestrial SGD) and from a barrier beach (marine SGD) displayed substantial differences in N concentrations and sources, traced using a multi-isotope approach (222Rn, Ra, δ15N-NO3-, δ18O-NO3-). NO3- in terrestrial SGD did not display any seasonality and was derived from residential septic systems and fertilizer. Marine SGD N concentrations varied month-to-month because of mixing between oxic seawater and hypoxic saline pore waters; N concentrations were greatest during the summer, when NO3- was derived from the remineralization of organic matter. Short-lived 222Rn and 224Ra SGD fluxes were used to determine remineralized N loads along tidal recirculation flow paths, while long-lived 228Ra was used to trace inputs of anthropogenic N in terrestrial SGD. 228Ra-derived terrestrial N load estimates were between 20 and 55% lower than 224Ra-derived estimates (excluding spring 2014); 228Ra may be a more appropriate tracer of terrestrial SGD N loads. Terrestrial SGD NO3- (derived from 228Ra) to Smithtown Bay varied from (1.40-12.8) ∗ 106 mol N y-1, with comparable marine SGD NO3- fluxes of (1.70-6.79) ∗ 106 mol N y-1 derived from 222Rn and 224Ra. Remineralized N loads were greater during the summer compared with spring, and these may be an important driver toward the onset of seasonal hypoxic conditions in Smithtown Bay and western Long Island Sound. Seawater recirculation through the coastal aquifer can rival the N load from terrestrial SGD from a heavily polluted aquifer.
N2 Fluxes From Amazon Cropland Are a Significant Component of Watershed N Budgets.
NASA Astrophysics Data System (ADS)
Fox, R. J.; Neill, C.; Macedo, M.; Davidson, E. A.; Lefebvre, P.; Jankowski, K.; Maracahipes-Santos, L.
2017-12-01
Amazon tropical rainforests have experienced significant deforestation and conversion to cropland. Recently, cropping has intensified to include higher application rates of N fertilizer, typically in a soybean-corn rotation. Our previous work in Mato Grosso, Brazil, suggests that the addition of N fertilizer (80 Kg N ha-1 yr-1) has not increased N2O fluxes from soils or elevated dissolved N concentrations in streams or groundwater. Here, we investigate whether N fertilizer is converted to N2 in groundwater. We collected samples during January and October 2016 from streams and well transects across riparian forest buffers bordering cropland or within intact riparian forests. Samples were collected using a positive pressure pump and analyzed using Membrane Inlet Mass Spectrometry (MIMS) for N2, Ar, and O2 and gas chromatography for N2O and CH4. N2 concentrations in excess of solubility (based on Ar) were measured at nearly all locations in January and ranged from -15 to 220 in cropland and -2 to 93 µmol N2-N L-1 in intact forest. N2 concentrations were generally lower in October and ranged from -0.9 to 95 in cropland and -0.6 to 52 µmol N2-N L-1 in intact forest. Higher N2 concentrations accumulated at lower dissolved oxygen concentrations and at the borders between cropland and riparian forest. N2O concentrations were significantly lower than N2 concentrations on both dates and ranged between 0.01 and 0.33 µmol N2O-N L-1. Preliminary estimates suggest that N2 losses from cropland ranged from 10 to 20 kg N ha-1 y-1 and losses from forests ranged from 2 to 12 kg N ha-1 y-1. High concentrations of N2 in groundwater have been found in and around agricultural fields in temperate regions, but direct N2 measurements in tropical agricultural regions have not been previously documented. These results suggest that N2 fluxes from tropical cropland receiving modest amounts of N fertilizer could be substantial.
Vertical groundwater flow estimated from the bomb pulse of 36Cl and tritiogenic 3He
NASA Astrophysics Data System (ADS)
Mahara, Y.; Ohta, T.
2011-12-01
The boring well was approximately excavated to 400 m depth from the ground surface on the tableland in the Central Shimokita Peninsula, Japan. Collecting pore-water, some fresh boring cores were sampled on the site during the excavation of borehole. Samples of groundwater were collected by using the sampling device with the water inflating packer system to protect various contaminations, after excavating the borehole. The atmospheric maximum concentration in bomb pulse in the northern hemisphere was reported to observe in 1955 for 36Cl and in 1963 for 3H, respectively. Since the half-life of 36Cl is much longer than 3H, the decay loss of 36Cl was negligible small for a short time until sampling groundwater in 2001 and 2003. On the other hand, the half-life of 3H is very short compared with that of 36Cl. Most of 3H was converted into the tritiogenic 3He in groundwater for the past 38 years after rainwater infiltrating toward the groundwater table. Profiles of dissolved 4He concentration, tritiogenic 3He and 36Cl/Cl ratio were observed in groundwater of the borehole. The total dissolved 4He concentration ranged from 5.8×10-8 at the ground surface to 7.5×10-8 ccSTP/g at the depth of 200 m below the ground surface and it was almost equilibrated with the atmospheric 4He in pore-water (Fig. 1). The bomb pulses of tritiogenic 3He and 36Cl were left from the depth of 101 m below the ground surface to the depth of 132 m, respectively (Figs. 2 and 3). There was a slight difference in the location between the bomb pulse of 36Cl and that of tritiogenic 3He. The downward flow velocity of groundwater were simply estimated to be 2.8 m/y from the marked position of bomb pulse in the profile of 36Cl/Cl ratio and to be 2.7 m/y from the position of the bomb pulse peak of tritiogenic 3He, separately. These two rough estimations were good agreed with each other. The estimation suggests that the vertical flow of groundwater on the tableland is approximated with the downward piston flow with small diffusion without turbulence.
State of Flood Related Modeling Along Middle Rio Grande: Report Documentary 2007-2008 Work
2010-07-01
Chile Peppers 3%Miscellaneous Vegetables2 4%Grain 4%Corn 35%Pasture Grass 53% Alfalfa PERCENTAGE OF TOTAL ACRES PLANTEDCROP 1 Chermak et al...Cottonwood/Willow/( Alfalfa ) Dense Saltcedar (~200 gal/plant-yr) Bowen Ratio Energy Balance -500 0 500 1000 E n e r g y F l u x ( W m - 2 ) 0 12 0
Applying Separations Science to Waste Problems.
1998-01-01
inert cathode. Centrifugal Contactor for Processing Liquid Radioactive Waste We have developed an annular centrifugal contactor for use in liquid...radioactive waste. The CMT-designed centrifugal contactor has several advantages over other solvent-extraction equipment currently in use. It requires less...Y-12 Plant, Savannah River Site, and Oak Ridge National Laboratory. The benefits that make the centrifugal contactor the equipment of choice in the
Hydrologic regulation of plant rooting depth.
Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G; Jackson, Robert B; Otero-Casal, Carlos
2017-10-03
Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∼1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.
Hydrologic regulation of plant rooting depth
NASA Astrophysics Data System (ADS)
Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G.; Jackson, Robert B.; Otero-Casal, Carlos
2017-10-01
Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (˜1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.
NASA Astrophysics Data System (ADS)
Cordalis, D.; Michel, R.; Williams, M.; Wireman, M.
2003-12-01
Acid mine drainage (AMD) affects many streams throughout the western United States. Understanding flow dynamics and sources within a fractured rock setting is necessary in outlining a potential remediation strategy for AMD. Radiogenic and stable isotopes of water were used in the Mary Murphy Mine, Chalk Creek, Colorado, in order to characterize flowpaths and sourcewaters. By delineating the sources of the mine water, groundwater, and event water, we may be able to target remediation techniques for individual contamination sources. Moreover, results from this research provide insights into groundwater flow systems in mountain environments of the Colorado Rockies. Tritium, a cosmogenic isotope of hydrogen, has a half-life 12.43y and is useful for studying hydrologic processes at the decadal time scale and can be used as an effective tracer when traditional chemical tracers are non-conservative. Hydrometric information showed that discharge from the mine adit exhibited a hydrograph characteristic of snowmelt runoff. However, mixing models using stable water isotopes (D and 18O) found less than 7% of the mine's peak discharge was from snowmelt, suggesting a regional groundwater dominated system. Mine interior samples fell into two characteristic groupings: either from the extreme north side of the drift which contained most of the zinc contamination, and all other locations. The waters from the north drift, MVN-3 and MVN-4, had lower 18O values, -17.62 per mil and -17.17 per mil, respectively, than did any of the other locations, suggesting a seasonal snowmelt input. However, the tritium values associated with MVN-3 and MVN-4 suggest at least some mixing, with values of 13.4 TU and 12.5 TU, respectively. Surface water samples from Chalk Creek show average tritium values of 11.1 TU, and 18O values of -14.87 per mil. Groundwater samples were captured using monitoring wells, and plotted according to the depth of screening. Alluvial wells carried a seasonal signal similar to the surface water as expected; 11.6 TU and -15.15 per mil averages for tritium and 18O. In contrast, bedrock wells showed a longer residence time and snowmelt recharge. The combination of radiogenic and stable isotopes within and near the Mary Murphy Mine may provide a useful tool for studying interactions between groundwaters and surfacewaters in a fractured rock setting. Remediation techniques can be directed more appropriately, and cost effectively, by the characterization of flowpaths within the mine as well.
NASA Astrophysics Data System (ADS)
Jobbagy, E. G.; Nosetto, M. D.; Santoni, C. S.; Jackson, R. B.
2007-05-01
Although most ecosystems display a one-way connection with groundwater based on the regulation of deep water drainage (recharge), this link can become reciprocal when the saturated zone is shallow and plants take up groundwater (discharge). In what context is the reciprocal link most likely? How is it affected by land use changes? Has it consequences on salt and carbon cycling? We examine these questions across a precipitation gradient in the Pampas and Espinal of Argentina focusing on three vegetation change situations (mean annual rainfall): afforestation of humid (900-1300 mm) and subhumid grassland (700-900 mm/yr of rainfall), annual cultivation of subhumid grasslands (700-800 mm/yr), and annual cultivation of semiarid forests (500-700 mm). Humid and subhumid grasslands have shallow (< 5 m deep) groundwater tables that are poorly consumed by grasses but highly used by planted trees, as evidenced by satellite canopy temperatures, soil moisture and water table level records, and sapflow measurements. Groundwater contributions enhance carbon uptake in plantations compared to grasslands as suggested by aboveground biomass measurements and satellite vegetation indexes from sites with and without access to groundwater. Where rainfall is <1100 mm, grassland afforestation switches water fluxes to groundwater from positive (net recharge) to negative (net discharge) causing a salt accumulation process in soils and groundwater that is ultimately limited by the tolerance to salinity of tree species. Cultivation with corn and soybean can lead to groundwater consumption in the driest belt of subhumid grassland. Up to five-fold yield increases in lowlands vs. uplands during the driest years indicate a dramatic impact of groundwater use on carbon uptake and groundwater salinization suggests a recharge-to- discharge switch. In dry forests groundwater is not accessible (> 15 m deep) and recharge under natural conditions is null. The establishment of crops, however, triggers the onset of recharge, as evidenced by vadose zones getting wetter and leached of atmospheric chloride. Cropping may cause water table raises leading to a two-way coupling of ecosystems and groundwater in the future, as it has been documented for similar settings in Australia and the Sahel. In the Pampas land use change interacts with groundwater consumption leading to higher carbon uptake (humid and subhumid grasslands) and salt accumulation (subhumid grasslands). In the Espinal (semiarid forest) land use change currently involves a one-way effect on groundwater recharge that may switch to a reciprocal connection if regional water table raises occur. Neglecting the role of groundwater in flat sedimentary plains can obscure our understanding of carbon and salt cycling and curtail our attempts to sustain soil and water resources under changing land uses.
Mashburn, Shana L.; Smith, S. Jerrod
2007-01-01
The U.S. Geological Survey, in cooperation with the Absentee Shawnee Tribe of Oklahoma, began a reconnaissance study of a site in Pottawatomie County, Oklahoma, in 2005 by testing soil, shallow ground water, and plant material for the presence of trace elements and semivolatile organic compounds. Chemical analysis of plant material at the site was investigated as a preliminary tool to determine the extent of contamination at the site. Thirty soil samples were collected from 15 soil cores during October 2005 and analyzed for trace elements and semivolatile organic compounds. Five small-diameter, polyvinyl-chloride-cased wells were installed and ground-water samples were collected during December 2005 and May 2006 and analyzed for trace elements and semivolatile organic compounds. Thirty Johnsongrass samples and 16 Coralberry samples were collected during September 2005 and analyzed for 53 constituents, including trace elements. Results of the soil, ground-water, and plant data indicate that the areas of trace element and semivolatile organic compound contamination are located in the shallow (A-horizon) soils near the threading barn. Most of the trace-element concentrations in the soils on the study site were either similar to or less than trace-element concentrations in background soils. Several trace elements and semivolatile organic compounds exceeded the U.S. Environmental Protection Agency, Region 6, Human Health Medium-Specific Screening Levels 2007 for Tap Water, Residential Soils, Industrial Indoor Soils, and Industrial Outdoor Soils. There was little or no correlation between the plant and soil sample concentrations and the plant and ground-water concentrations based on the current sample size and study design. The lack of correlation between trace-element concentrations in plants and soils, and plants and ground water indicate that plant sampling was not useful as a preliminary tool to assess contamination at the study site.
Bergeron, M.P.; Bugliosi, E.F.
1988-01-01
Two adjacent burial areas were excavated in a clay-rich till at a radioactive waste disposal site near West Valley in Cattaraugus County, N.Y.: (1) which contains mainly low-level radioactive wastes generated onsite by a nuclear fuel reprocessing plant, has been in operation since 1966; and (2) which contains commercial low-level radioactive wastes, was operated during 1963-75. Groundwater below the upper 3 meters of till generally moves downward through a 20- to 30-meter thick sequence of tills underlain by lacustrine and kame-delta deposits of fine sand and silt. Groundwater in the weathered, upper 3 meters of till can move laterally for several meters before either moving downward into the kame-delta deposits or discharging to the land surface. A two-dimensional finite-element model that simulates two vertical sections was used to evaluate hydrologic factors that control groundwater flow in the till. Conditions observed during March 1983 were reproduced accurately in steady-state simulations that used four isotropic units of differing hydraulic conductivity to represent two fractured and weathered till units near land surfaces, an intermediate group of isolated till zones that contain significant amounts of fine sand and silt, and a sequence of till units at depths that have been consolidated by overburden pressure. Recharge rates used in the best-fit simulation ranged from 1.4 cm/yr along smooth, sloping or compacted surfaces to 3.8 cm/yr near swampy areas. Values of hydraulic conductivity and infiltration used in the calibrated best-fit model were nearly identical to values used in a previous model analysis of the nearby commercial-waste burial area. Results of the model simulations of a burial pit assumed to be filled with water indicate that water near the bottom of the burial pit would migrate laterally in the shallow, weathered till for 5 to 6 meters before moving downward into the unweathered till, and water near the top of the pit would move laterally less than 20 meters before moving downward into the unweathered till. These results indicate that subsurface migration of radionuclides in groundwater to points of discharge to land surface is unlikely as long as the water level does not rise into the reworked cover material. (Author 's abstract)
Environmental impacts on the hydrology of ephemeral streams and alluvial aquifers
NASA Astrophysics Data System (ADS)
Kuells, C.; Marx, V.; Bittner, A.; Ellmies, R.; Seely, M.
2009-04-01
In arid and semi-arid regions alluvial groundwater resources of ephemeral streams are highly important for water supplies and ecosystems. Recent projects have studied processes of indirect recharge in situ and in detail (Dahan et al., 2008; Klaus et al., 2008). Still, little is known about the vulnerability of these aquifers to environmental impacts like surface dam constructions, land-use changes and climatic conditions as well as the time and type of response to such external impacts. With a catchment size of about 30.000 km² the Swakop River in Namibia is the largest of the country's twelve major ephemeral streams draining westwards into the Atlantic Ocean. The alluvial groundwater resources have been affected by the construction of two major surface water dams in the upper catchment as well as by abstractions for rural water supply, farming and mining downstream of the constructed dams (referred to as lower catchment). The determination of environmental impacts in the Swakop River catchment is difficult due to scarce hydrometric and water quality data. In order to obtain a better understanding of the hydrological system under changing environmental conditions a spatially distributed environmental tracer approach was applied. A longitudinal profile of groundwater samples was taken within a field study along the alluvial aquifer of the Swakop River. The samples were analysed for stable isotopes (18O, 2H), major ions and trace elements as well as for the residence time indicators CFC and SF6. The combined application of groundwater residence time analysis, stable isotope measurements and hydrochemical characterisation was used in order to associate a time scale with groundwater quality data. This method provides dated information on recharge and water quality before and after dam construction and can be used to detect environmental impacts on the hydrological system. CFC-12 analysis resulted in recharge years ranging from 1950 (0.01 pmol/l) to 1992 (1.4 pmol/l). Seven of 14 groundwater samples represent mainly groundwater recharged before or between the construction of surface water dams (1970 and 1978), the remaining samples represent groundwater recharge after dam construction. The groundwater residence time is generally short (recharge mainly after 1980) in the upper catchment and much higher (recharge mainly before 1980 and before dam construction) in the lower part of the catchment. Combining the age and isotope information shows how the surface water dams modified the pattern of groundwater recharge. The lower catchment has been partly cut off from the upper part in terms of indirect groundwater recharge by floods which means that most large floods originating in the headwaters of the Swakop River do not reach the lower alluvial aquifer anymore. The relationship between groundwater age and groundwater constituents helped to define baselines of hydrological properties (origin of water, recharge altitude) and of hydrochemical composition prior to the construction of dams (and other anthropogenic impacts). The well defined relationship between groundwater age and altitude of the river further helps to assess how fast different segments will be affected by these environmental impacts. References Dahan, O., Tatarsky, B., Enzel, Y., Kuells, C., Seely, M., Benito, G. (2008) Dynamics of Flood Water Infiltration and Ground Water Recharge in Hyperarid Desert. Ground Water, Vol. 46, 3. (6-2008), pp. 450-461. Klaus, J., Kuells, C., Dahan, O. (2008): Evaluating the recharge mechanism of the Lower Kuiseb Dune Area using mixing cell modeling and residence time data. Journal of Hydrology, v. 358, p. 304-316.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, J. E.; Vu, A. K.; Esser, B. K.
2010-08-20
The Groundwater Ambient Monitoring and Assessment (GAMA) Program is a comprehensive groundwater quality monitoring program managed by the California State Water Resources Control Board (SWRCB). The GAMA Special Studies project provides analyses and interpretation of constituents of concern that allow assessment of current groundwater conditions. In addition, the Special Studies project develops analyses that will enhance the monitoring and assessment effort by focusing on specific constituents of concern and water quality parameters, such as disinfection byproducts (DBP), wastewater indicators, and redox conditions, as it relates to irrigation and groundwater management. This study developed a robust analytical method for the quantitationmore » of CBZ, OXC, CBZ-E, CBZ-DiOH, and CBZ-10-OH in wastewater treatement plant (WWTP) effluent and in groundwater in the parts per trillion range.« less
NASA Astrophysics Data System (ADS)
Elmore, Andrew James
The conversion of large natural basins to managed watersheds for the purpose of providing water to urban centers has had a negative impact on semiarid ecosystems, worldwide. We view semiarid plant communities as being adapted to short, regular periods of drought. However, human induced changes in the water balance often remove these systems from the range of natural variability that has been historically established. This thesis explores vegetation changes over a 13-yr period for Owens Valley, in eastern California. Using remotely sensed measurements of vegetation cover, an extensive vegetation survey, field data and observations, precipitation records, and data on water table depth, I identify the key modes of response of xeric, phreatophytic, and exotic Great Basin plant communities. Three specific advancements were reached as a result of this work. (1) A change classification technique was developed that was used to separate regions of land-cover that were dependent on precipitation from regions dependent on groundwater. This technique utilized Spectral Mixture Analysis of annually acquired Landsat Thematic Mapper remote sensing data, to retrieve regional estimates of percent vegetation cover. (2) A threshold response related to depth-to-water dependence was identified for phreatophytic Alkali Meadow communities. Plant communities that were subject to groundwater depths below this threshold exhibited greater invasion by precipitation sensitive plants. (3) The floristic differences between previously cultivated and uncultivated land were found to account for an increased sensitivity of plant communities to precipitation variability. Through (2) and (3), two human influences (groundwater decline and previous land cultivation) were shown to alter land cover such that the land became more sensitive to precipitation change. Climate change predictions include a component of increased climate variability for the western United States; therefore, these results place serious doubt on the sustainability of human activities in this region. The results from this work broadly cover topics from remote sensing techniques to the ecology of Great Basin plant communities and are applicable wherever large regions of land are being managed in an era of changing environmental conditions.
Wagner, Florian B; Nielsen, Peter Borch; Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen
2018-04-01
Drinking water treatment plants based on groundwater may suffer from incomplete ammonium removal, which deteriorates drinking water quality and constrains water utilities in the operation of their plants. Ammonium is normally removed through nitrification in biological granular media filters, and recent studies have demonstrated that dosing of copper can stimulate the removal of ammonium. Here, we investigated if copper dosing could generically improve ammonium removal of biofilters, at treatment plants with different characteristics. Copper was dosed at ≤1.5 μg Cu/L to biofilters at 10 groundwater treatment plants, all of which had displayed several years of incomplete nitrification. Plants exceeded the Danish national water quality standard of 0.05 mg NH 4 + /L by a factor of 2-12. Within only 2-3 weeks of dosing, ammonium removal rates increased significantly (up to 150%). Nitrification was fully established, with ammonium effluent concentrations of <0.01 mg NH 4 + -N/L at most plants, regardless of the differences in raw water chemistry, ammonium loading rates, filter design and operation, or treatment plant configuration. However, for filters without primary filtration, it took longer time to reach complete ammonium removal than for filters receiving prefiltered water, likely due to sorption of copper to iron oxides, at plants without prefiltration. With complete ammonium removal, we subjected two plants to short-term loading rate upshifts, to examine the filters' ability to cope with loading rate variations. After 2 months of dosing and an average loading rate of 1.0 g NH 4 + -N/m 3 filter material/h, the loading rate was upshifted by 50%. Yet, a filter managed to completely remove all the influent ammonium, showing that with copper dosing the filter had extra capacity to remove ammonium even beyond its normal loading rates. Depth sampling revealed that the ammonium removal rate of the filter's upper 10 cm increased more than 7-fold from 0.67 to 4.90 g NH 4 + -N/m 3 /h, and that nitrite produced from increased ammonium oxidation was completely oxidized further to nitrate. Hence, no problems with nitrite accumulation or breakthrough occurred. Overall, copper dosing generically enhanced nitrification efficiency and allowed a range of quite different plants to meet water quality standards, even at increased loading rates. The capacity increase is highly relevant in practice, as it makes filters more robust towards sudden ammonium loading rate variations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Teh, Su Yean; Turtora, Michael; DeAngelis, Donald L.; Jiang Jiang,; Pearlstine, Leonard G.; Smith, Thomas; Koh, Hock Lye
2015-01-01
Global climate change poses challenges to areas such as low-lying coastal zones, where sea level rise (SLR) and storm-surge overwash events can have long-term effects on vegetation and on soil and groundwater salinities, posing risks of habitat loss critical to native species. An early warning system is urgently needed to predict and prepare for the consequences of these climate-related impacts on both the short-term dynamics of salinity in the soil and groundwater and the long-term effects on vegetation. For this purpose, the U.S. Geological Survey’s spatially explicit model of vegetation community dynamics along coastal salinity gradients (MANHAM) is integrated into the USGS groundwater model (SUTRA) to create a coupled hydrology–salinity–vegetation model, MANTRA. In MANTRA, the uptake of water by plants is modeled as a fluid mass sink term. Groundwater salinity, water saturation and vegetation biomass determine the water available for plant transpiration. Formulations and assumptions used in the coupled model are presented. MANTRA is calibrated with salinity data and vegetation pattern for a coastal area of Florida Everglades vulnerable to storm surges. A possible regime shift at that site is investigated by simulating the vegetation responses to climate variability and disturbances, including SLR and storm surges based on empirical information.
RIPGIS-NET: a GIS tool for riparian groundwater evapotranspiration in MODFLOW.
Ajami, Hoori; Maddock, Thomas; Meixner, Thomas; Hogan, James F; Guertin, D Phillip
2012-01-01
RIPGIS-NET, an Environmental System Research Institute (ESRI's) ArcGIS 9.2/9.3 custom application, was developed to derive parameters and visualize results of spatially explicit riparian groundwater evapotranspiration (ETg), evapotranspiration from saturated zone, in groundwater flow models for ecohydrology, riparian ecosystem management, and stream restoration. Specifically RIPGIS-NET works with riparian evapotranspiration (RIP-ET), a modeling package that works with the MODFLOW groundwater flow model. RIP-ET improves ETg simulations by using a set of eco-physiologically based ETg curves for plant functional subgroups (PFSGs), and separates ground evaporation and plant transpiration processes from the water table. The RIPGIS-NET program was developed in Visual Basic 2005, .NET framework 2.0, and runs in ArcMap 9.2 and 9.3 applications. RIPGIS-NET, a pre- and post-processor for RIP-ET, incorporates spatial variability of riparian vegetation and land surface elevation into ETg estimation in MODFLOW groundwater models. RIPGIS-NET derives RIP-ET input parameters including PFSG evapotranspiration curve parameters, fractional coverage areas of each PFSG in a MODFLOW cell, and average surface elevation per riparian vegetation polygon using a digital elevation model. RIPGIS-NET also provides visualization tools for modelers to create head maps, depth to water table (DTWT) maps, and plot DTWT for a PFSG in a polygon in the Geographic Information System based on MODFLOW simulation results. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Külls, Christoph; Nunes, Alice; Köbel-Batista, Melanie; Branquinho, Cristina; Bianconi, Nadja; Costantini, Eduardo
2014-05-01
Measures for monitoring desertification and soil degradation require a thorough understanding of soil physical properties and of the water balance in order to guide restoration efforts (Costantini et al. 2009). It is hypothesized that long term restoration success on degraded land depends on a series of interacting factors such as exposition, soil type, soil hydrology including lateral flow on hill-slope catenae. Recently, new soil water isotope measurement techniques have been developed (Garvelmann et al. 2012) that provide much faster and reliable stable water isotope profiles in soils. This technique yield information on groundwater recharge, soil water balance and on the origin of water available for plants, which in combination with conservative chemical tracers (chloride) can be validated. A multidisciplinary study including ecologists, soil physicists and hydrologists of the COST Action Desert Restoration Hub was carried out on four semi-arid sites in Portugal. A comparative characterization of soil physical parameters, soil water isotope and chloride profiles was performed in order to estimate pedoclimate, soil aridity, soil water balance and groundwater recharge. In combination with soil physical data a comprehensive and cross-validated characterization of pedoclimate and soil aridity was obtained. These indicators were then integrated and related to plant cover. The long-term rainfall of the four sites ranges from 512 to 638 mm, whereas air temperature is from 15.8 to 17.0°C. The De Martonne index of aridity spans from 19.3 to 24.6, pointing to semiarid to moderately arid climatic conditions. The long-term average number of days when the first 0.50 m of soil is dry ranges from 110 to 134, while the mean annual soil temperature at 0.50 m spans from 15.8 and 19.1°C. The studied profiles show different hydrological characteristics, in particular, the estimated hydraulic conductivity ranges from 0.1-1 to 10-100 µm/s. Three out of four profiles show a marked decrease in water permeability at 0.04, 0.20, or 0.40 m depth. Soil isotope profiles indicated that percolation beneath the root zone and groundwater recharge ranges from 21.7 mm/y to 29.7 mm/y. The recharge rate was positively related to mean annual rainfall and soil organic matter, and interestingly, increased with aridity and desertification. The difference between mean annual rainfall and percolation was positively related to plant cover and in inverse proportion to the aridity index. Our results highlight the importance of combining different methods of site characterization by soil physics, soil water isotopes and soil water chemistry (chloride) with vegetation data, providing a more specific analysis of ecohydrological conditions and their relation to ecosystem functioning and recovery potential. The field protocol applied can provide relevant information for guiding restoration strategies. Costantini, E. A. C., Urbano, F., Aramini, G., Barbetti, R., Bellino, F., Bocci, M., & Tascone, F. (2009). Rationale and methods for compiling an atlas of desertification in Italy. Land Degradation & Development, 20(3), 261-276. Garvelmann, J., Külls, C., & Weiler, M. (2012). A porewater-based stable isotope approach for the investigation of subsurface hydrological processes. Hydrology and Earth System Sciences, 16(2), 631-640.
Xiaobo Zhou; Matthew J. Helmers; Heidi Asbjornsen; Randy Kolka; Mark D. Tomer
2010-01-01
Many croplands planted to perennial grasses under the Conservation Reserve Program are being returned to crop production, and with potential consequences for water quality. The objective of this study was to quantify the impact of grassland-to-cropland conversion on nitrate-nitrogen (NO3-N) concentrations in soil and shallow groundwater and to...
Groundwater availability mediates the ecosystem effects of an invasion of Prosopis pallida
Bruce D. Dudley; Flint Hughes; Rebecca Ostertag
2014-01-01
Groundwater levels in arid environments are dropping worldwide due to human extraction, and precipitation events are predicted to become rarer and more intense in many arid areas with global climate change. These changes will likely alter both primary productivity and plantâsoil nutrient cycles. To better understand the nature of such alterations, we examined effects...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korte, N.; Muck, M.; Kearl, P.
1998-08-01
This report describes the field-scale demonstration performed as part of the project, In Situ Treatment of Mixed Contaminants in Groundwater. This project was a 3{1/2} year effort comprised of laboratory work performed at Oak Ridge National Laboratory and fieldwork performed at the US Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS). The overall goal of the project was to evaluate in situ treatment of groundwater using horizontal recirculation coupled with treatment modules. Specifically, horizontal recirculation was tested because of its application to thin, interbedded aquifer zones. Mixed contaminants were targeted because of their prominence at DOE sites and becausemore » they cannot be treated with conventional methods. The project involved several research elements, including treatment process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and full-scale testing at a contaminated site. This report presents the results of the work at the contaminated site, X-701B at PORTS. Groundwater contamination at X-701B consists of trichloroethene (TCE) (concentrations up to 1800 mg/L) and technetium-998 (Tc{sup 99}) (activities up to 926 pCi/L).« less
Integrated Hydrological Modeling for Water Resources Management of Heeia Coastal Wetland in Hawaii
NASA Astrophysics Data System (ADS)
Ghazal, Kariem A.
The integrated hydrological models are an important tools that can be used to assess the water resources availability and sustainability for food security and ecological health of the coastal regions. In addition, such models are useful in assessing the current and future water budget under different conditions of climate and land use changes. This study addresses the Heeia Wetlands Restoration whereby different scenarios were developed to assess the effects of land cover change (LU), climate change (CL), and sea level rise (SLR) on the water balance components (WBCs), fresh water submarine groundwater discharge (FSGD), seawater intrusion, dissolved silicate (DSi) fluxes, and heat transport within the Heeia Coastal Wetland. The watershed (SWAT) model, the groundwater flow (MODFLOW) model, and the density dependent groundwater flow (SEAWAT) model were utilized in this integrated approach. The SWAT model was used to assess the impact of CL and LU on the WBCs. The LU mainly focused on the conversion of a fallow wetland covered by california grass (invasive plant) to taro field (native plant). The groundwater recharge of the SWAT model output was used as input for both the steady state and transient-MODFLOW model to study the interaction between surface water and groundwater and its effect on the FSGD within the Watershed. The SEAWAT model was used to study the seawater intrusion, DSi fluxes and cold groundwater transport under several CL, LU, and SLR scenarios. The results indicated that the baseflow was the main components of the Heeia streamflow, especially during dry season. The annual recharge, surface runoff, lateral flow and ET comprised about 34%, 6%, 15%, and 45% of the annual rainfall, respectively. The WBCs were more impacted in the late of 2080s compared to the 2050s period. To understand the comprehensive relationships between coastal hydrological processes and ecosystems, the FSGD was estimated under different scenarios of LU, CL, and SLR. The current daily average of the Heeia coastal FSGD was about 0.43 m3/d/m, but expected to decrease by about 10% by the end of 21st century due to the combined effects of various changes. The FSGD comprised 18%, 11%, and 3% of the annual baseflow, recharge, and rainfall, respectively. Moreover, the FSGD fluxes would decline more during the dry season compared to the wet season. The FSGD fluxes were about 1.5 to 3.5 times than the fresh water delivered to the Kaneohe Bay via total Heeia streamflow. The outputs of SEAWAT model indicated that the seawater intrusion was not significantly influenced by SLR, CL, and LU. The average DSi fluxes was about 48 mole per day that increased by 15% during the wet season, but decreased by16% during the dry season. The DSi fluxes were a function of the FSGD. The CL more negatively affected the DSi fluxes compared to the SLR. The respective average heat energy reduction within wetland under california grassland and taro cultivation would be 0.81and 1.12 (Kj/m3) for inflow of cold groundwater, and 4.69 and 3.13 (Kj/m3) for outflow of groundwater. The cold groundwater discharge at the shoreline was significantly mitigated the seawater temperature due to the high thermal gradient between the FSGD and seawater. Despite data scarcity, the integrated hydrological modeling approach has provided a comprehensive assessment of the water resources that can help in the management of the Heeia Coastal Wetland under various land cover and climate conditions.
78 FR 47007 - National Environmental Policy Act; Santa Susana Field Laboratory
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-02
... consultation. These include surveys for wildlife, critical habitat, rare plants, wetlands, and archaeological... the LOX Plant portion of Area I were acquired by NASA from the U.S. Air Force in the 1970s. These test... groundwater remediation within Area II and a portion of Area I (Liquid Oxygen [LOX] Plant) of SSFL (pursuant...
Vroblesky, Don A.; Casey, Clifton C.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Harrelson, Larry G.
2007-01-01
The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated natural and engineered remediation of chlorinated volatile organic compound ground-water contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina. The primary contaminants of interest are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. In general, the hydrogeology of Solid Waste Management Unit 12 consists of a surficial aquifer, composed of sand to clayey sand, overlain by dense clay that extends from about land surface to a depth of about 8 to 10 feet and substantially limits local recharge. During some months in the summer, evapotranspiration and limited local recharge result in ground-water level depressions in the forested area near wells 12MW-12S and 12MW-17S, seasonally reflecting the effects of evapotranspiration. Changes in surface-water levels following Hurricane Gaston in 2004 resulted in a substantial change in the ground-water levels at the site that, in turn, may have caused lateral shifting of the contaminant plume. Hydraulic conductivity, determined by slug tests, is higher along the axis of the plume in the downgradient part of the forests than adjacent to the plume, implying that there is some degree of lithologic control on the plume location. Hydraulic conductivity, hydraulic gradient, sulfur-hexafluoride measurements, and historical data indicate that ground-water flow rates are substantially slower in the forested area relative to upgradient areas. The ground-water contamination, consisting of chlorinated volatile organic compounds, extends eastward in the surficial aquifer from the probable source area near a former underground storage tank. Engineered remediation approaches include a permeable reactive barrier and phytoremediation. The central part of the permeable reactive barrier along the main axis of the contaminant plume appears to be actively removing contamination; however, ground-water contamination is moving around the southern end of the permeable reactive barrier. Changes in the contaminant concentrations along the path of ground-water transport reflect a complex variety of influences. Potential influences include dechlorination, sorption and desorption, transpirative removal by trees, lateral shifting of the plume, and the presence of zones of differing concentrations possibly reflecting one or more pulse releases of contamination from the source area. Near the source area at well 12MW-10S, volatile organic compound concentrations of cis-1,2-dichlorothene, vinyl chloride, 1,1-dichloroethane, and 1,1,1-trichloroethane continued an irregular decline, while tetrachloroethene and 1,1-dichloroethene showed marked fluctuations in concentration during 2005 and 2006. Volatile organic compound concentrations at well 12MW-03S continued to show decreasing concentrations with the June 2006 concentrations being the lowest yet recorded at that well for several volatile organic compounds. Concentration and delta carbon 13 data indicate that in the upgradient part of the plume, tetrachloroethene is being degraded to trichloroethene, which is being degraded to cis-1,2-dichloroethene, and cis-1,2-dichloroethene is accumulating faster than it is being depleted. Ground-water volatile organic compound concentrations also changed in some wells in the forested area in the midpart of the plume. Increasing tetrachloroethene and decreasing trichloroethene and 1,1-dichloroethene concentrations were observed at wells 12MW-05S and 12MW-29S, possibly reflecting a lateral shift in the axis of the contamination plume or an advancing contamination pulse. Substantial decreases in contamination occur in the forested area downgradient from well 12MW-05S. Probable major loss mechanisms in this area include evapotranspiration and sorption.
Amano, Hikaru; Sakamoto, Hideaki; Shiga, Norikatsu; Suzuki, Kaori
2016-06-01
A screening method for measuring (90)Sr in edible plant samples by focusing on (90)Y in equilibrium with (90)Sr is reported. (90)Y was extracted from samples with acid, co-precipitated with iron hydroxide, and precipitated with oxalic acid. The dissolved oxalate precipitate was loaded on an extraction chromatography resin, and the (90)Y-enriched eluate was analyzed by Cherenkov counting with a TDCR liquid scintillation counter. (90)Sr ((90)Y) concentration was determined in plant samples collected near the damaged Fukushima Daiichi Nuclear Power Plants with this method. Copyright © 2016 Elsevier Ltd. All rights reserved.
Y-12 PLANT NUCLEAR SAFETY HANDBOOK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wachter, J.W. ed.; Bailey, M.L.; Cagle, T.J.
1963-03-27
Information needed to solve nuclear safety problems is condensed into a reference book for use by persons familiar with the field. Included are a glossary of terms; useful tables; nuclear constants; criticality calculations; basic nuclear safety limits; solution geometries and critical values; metal critical values; criticality values for intermediate, heterogeneous, and interacting systems; miscellaneous and related information; and report number, author, and subject indexes. (C.H.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-01
Upper East Fork Poplar Creek Operable Unit 2 consists of the Abandoned Nitric Acid pipeline (ANAP). This pipeline was installed in 1951 to transport liquid wastes {approximately}4800 ft from Buildings 9212, 9215, and 9206 to the S-3 Ponds. Materials known to have been discharged through the pipeline include nitric acid, depleted and enriched uranium, various metal nitrates, salts, and lead skimmings. During the mid-1980s, sections of the pipeline were removed during various construction projects. A total of 19 locations were chosen to be investigated along the pipeline for the first phase of this Remedial Investigation. Sampling consisted of drilling downmore » to obtain a soil sample at a depth immediately below the pipeline. Additional samples were obtained deeper in the subsurface depending upon the depth of the pipeline, the depth of the water table, and the point of auger refusal. The 19 samples collected below the pipeline were analyzed by the Oak Ridge Y-12 Plant`s laboratory for metals, nitrate/nitrite, and isotopic uranium. Samples collected from three boreholes were also analyzed for volatile organic compounds because these samples produced a response with organic vapor monitoring equipment. Uranium activities in the soil samples ranged from 0.53 to 13.0 pCi/g for {sup 238}U, from 0.075 to 0.75 pCi/g for {sup 235}U, and from 0.71 to 5.0 pCi/g for {sup 238}U. Maximum total values for lead, chromium, and nickel were 75.1 mg/kg, 56.3 mg/kg, and 53.0 mg/kg, respectively. The maximum nitrate/nitrite value detected was 32.0 mg-N/kg. One sample obtained adjacent to a sewer line contained various organic compounds, at least some of which were tentatively identified as fragrance chemicals commonly associated with soaps and cleaning solutions. The results of the baseline human health risk assessment for the ANAP contaminants of potential concern show no unacceptable risks to human health.« less
Crock, J.G.; Smith, D.B.; Yager, T.J.B.; Berry, C.J.; Adams, M.G.
2011-01-01
Since late 1993, Metro Wastewater Reclamation District of Denver (Metro District), a large wastewater treatment plant in Denver, Colo., has applied Grade I, Class B biosolids to about 52,000 acres of nonirrigated farmland and rangeland near Deer Trail, Colo., U.S.A. In cooperation with the Metro District in 1993, the U.S. Geological Survey (USGS) began monitoring groundwater at part of this site. In 1999, the USGS began a more comprehensive monitoring study of the entire site to address stakeholder concerns about the potential chemical effects of biosolids applications to water, soil, and vegetation. This more comprehensive monitoring program was recently extended through the end of 2010 and is now completed. Monitoring components of the more comprehensive study include biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock groundwater, and stream-bed sediment. Streams at the site are dry most of the year, so samples of stream-bed sediment deposited after rain were used to indicate surface-water runoff effects. This report summarizes analytical results for the biosolids samples collected at the Metro District wastewater treatment plant in Denver and analyzed for 2010. In general, the objective of each component of the study was to determine whether concentrations of nine trace elements ("priority analytes") (1) were higher than regulatory limits, (2) were increasing with time, or (3) were significantly higher in biosolids-applied areas than in a similar farmed area where biosolids were not applied (background). Previous analytical results indicate that the elemental composition of biosolids from the Denver plant was consistent during 1999-2009, and this consistency continues with the samples for 2010. Total concentrations of regulated trace elements remain consistently lower than the regulatory limits for the entire monitoring period. Concentrations of none of the priority analytes appear to have increased during the 12 years of this study.
NASA Astrophysics Data System (ADS)
Kar, Sandeep; Das, Suvendu; Jean, Jiin-Shuh; Chakraborty, Sukalyan; Liu, Chia-Chuan
2013-11-01
The present study investigates the bioavailability, soil to plant transfer and health risks of arsenic (As) in the coastal part of Chianan Plain in southwestern Taiwan. Groundwater used for irrigation, surface soils from agricultural lands and locally grown foodstuffs were collected from eight locations and analyzed for As to assess the risks associated with consuming these items. The concentration of As in groundwater ranged from 13.8 to 881 μg/L, whereas surface soil showed total As content in the range of 7.92-12.7 mg/kg. The available As content in surface soil accounted for 0.06-6.71% of the total As content, and was significantly correlated with it (R2 = 0.65, p < 0.05). Among the leachable fraction, the organic matter (3.23-54.8%) and exchangeable portions of oxides (6.03-38.4%) appear to be the major binding phases of As. The average As content in fourteen studied crops and vegetables varied from 10.3 to 151 μg/kg with maximum in mustard and minimum in radish. All the plants showed considerably higher As content (21.5 ± 3.64-262 ± 36.2 μg/kg) in their roots compared to the edible parts (9.15 ± 1.44-75.8 ± 22.9 μg/kg). The bioaccumulation factor (BAF) based on total As (ranging from 0.0009 to 0.144) and available As in soil (ranging from 0.039 to 0.571) indicate that mustard, rice, amaranth and spinach are the highest accumulators of As. Although the health risk index (HRI) of the studied crops and vegetables ranged from only 0.0068-0.454, with the maximum in rice, the combined HRI indicates an alarming value of 0.88. Therefore, the possible health risks due to long-term consumption of rice and other As-rich foodstuffs could be overcome by controlling the contamination pathways in the water-soil-plant system.
NASA Astrophysics Data System (ADS)
Zhan, Y.; He, X.; Zheng, C.; Guo, Z.
2017-12-01
Due to the growing demand of food supplies and limited freshwater resources, North China Plain (NCP) is highly dependent on the groundwater resources. Groundwater overdraft has made NCP a closed hydrologic basin, where the connection between surface and groundwater has been cut off, which can lead to salt accumulation in the groundwater system. Thus it is imperative to investigate the overall salt balance in the region for sustainable utilization of groundwater resources, as well as to better understand the salt accumulating processes caused by groundwater pumping and return flow. The central plain of NCP (excluding the piedmont plain and coastal plain) is selected in the present study, where the groundwater salt content is mainly controlled by precipitation, irrigation, groundwater pumping and rock-water interaction in vertical direction; therefore, a conceptual 1-D mixing model is developed for salt balance calculation, where the salt content is expressed by the concentration of Total Dissolved Solid (TDS) in groundwater. Geological structures and regional water balance data are obtained from numerical groundwater models previously developed in the area. The simulation starts in year 1900 with a 50-year time step and groundwater vertical flow velocity starting with 2 m/y. TDS concentration is then calculated through salt input and output in each layer, with consideration of soil salt accumulation, change of precipitation, rock-water interaction etc. The results suggest that in a closed hydrologic basin, groundwater pumping and return flow will gradually increase salt content in the groundwater body from upper layers to lower layers resulting from the flushing of salt accumulated in the top soil layer. After two time steps, the model is able to reproduce the observed TDS concentration in present time with reasonable accuracy; and after six time steps, which correspond to 300 years, the whole central plain of NCP will be under the influence of high salinity, which is around 2000 mg/L of TDS. The study also suggests that in order to predict the future change of salt content in groundwater in NCP more accurately, the mechanisms of how salinity accumulates in the surface soil is the most critical factor, which requires further research.
Hydrogeology and ground-water flow in the Edwards-Trinity aquifer-system, west-central, Texas
Kuniansky, Eve L.; Ardis, Ann F.
1997-01-01
Comparison of pre- and postdevelopment water budgets for the regional model indicates that the increase in groundwater withdrawals has captured 20 percent of the water that would have naturally discharged to streams, and 30 percent of the natural discharge to springs after ground-water development. Induced recharge from streams to the ground-water system increased by 12 percent in the postdevelopment simulation compared to the predevelopment simulation.
Surface-water hydrology of the Western New York Nuclear Service Center Cattaraugus County, New York
Kappel, W.M.; Harding, W.E.
1987-01-01
Precipitation data were collected from October 1980 through September 1983 from three recording gages at the Western New York Nuclear Service Center, and surface water data were collected at three continuous-record gaging stations and one partial-record gage on streams that drain a 0.7 sq km part of the site. Seepage from springs was measured periodically during the study. The data were used to identify runoff characteristics at the waste burial ground and the reprocessing plant area, 400 meters to the north. Preliminary water budgets for April 1982 through March 1983 were calculated to aid in the development of groundwater flow models to the two areas. Nearly 80% of the measured runoff from the burial ground area was storm runoff; the remaining 20% was base flow. In contrast, only 30% of the runoff leaving the reprocessing plant area was storm runoff, and 70% was base flow. This difference is attributed to soil composition. The burial ground soil consists of clayey silty till that limits infiltration and causes most precipitation to flow to local channels as direct runoff. In contrast, the reprocessing plant area is overlain by alluvial sand and gravel that allows rapid infiltration of precipitation and subsequent steady discharge from the water table to nearby stream channels and seepage faces. Measured total annual runoff and estimated evapotranspiration from the reprocessing plant area exceeded the precipitation by 35%, which suggests that the groundwater basin is larger than the surface water basin. The additional outflow probably includes underflow from bedrock upgradient from the plant, water leakage from plant facilities, and groundwater flow from adjacent basins. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Klaas, Dua K. S. Y.; Imteaz, Monzur Alam
2017-09-01
A robust configuration of pilot points in the parameterisation step of a model is crucial to accurately obtain a satisfactory model performance. However, the recommendations provided by the majority of recent researchers on pilot-point use are considered somewhat impractical. In this study, a practical approach is proposed for using pilot-point properties (i.e. number, distance and distribution method) in the calibration step of a groundwater model. For the first time, the relative distance-area ratio ( d/ A) and head-zonation-based (HZB) method are introduced, to assign pilot points into the model domain by incorporating a user-friendly zone ratio. This study provides some insights into the trade-off between maximising and restricting the number of pilot points, and offers a relative basis for selecting the pilot-point properties and distribution method in the development of a physically based groundwater model. The grid-based (GB) method is found to perform comparably better than the HZB method in terms of model performance and computational time. When using the GB method, this study recommends a distance-area ratio of 0.05, a distance-x-grid length ratio ( d/ X grid) of 0.10, and a distance-y-grid length ratio ( d/ Y grid) of 0.20.
Drugs of abuse in urban groundwater. A case study: Barcelona.
NASA Astrophysics Data System (ADS)
Jurado, A.; Mastroianni, N.; Vazquez-Suñe, E.; Carrera, J.; Tubau, I.; Pujades, E.; Postigo, C.; Lopez de Alda, M.; Barceló, D.
2012-04-01
This study is concerned with drugs of abuse (DAs) and their metabolites in urban groundwater at field scale in relation to (1) the spatial distribution of the groundwater samples, (2) the depth of the groundwater sample, (3) the presence of DAs in recharge sources, and (4) the identification of processes affecting the fate of DAs in groundwater. To this end, urban groundwater samples were collected in the city of Barcelona and a total of 21 drugs were analyzed including cocainics, amphetamine-like compounds, opioids, lysergics and cannabinoids and the prescribed drugs benzodiazepines. Overall, the highest groundwater concentrations and the largest number of detected DAs were found in zones basically recharged by a river that receives large amounts of effluents from waste water treatment plants (WWTPs). In contrast, the urbanized areas yielded not only lower concentrations but also a much smaller number of drugs, which suggests a local origin. In fact, cocaine and its metabolite were dominant in more prosperous neighbourhoods, whereas the cheaper (MDMA) was the dominant DA in poorer districts. Concentrations of DAs estimated mainly from the waste water fraction in groundwater samples were consistently higher than the measured ones, suggesting that DAs undergo removal processes in both reducing and oxidizing conditions.
Occurrence of Mycobacteria in Water Treatment Lines and in Water Distribution Systems
Le Dantec, Corinne; Duguet, Jean-Pierre; Montiel, Antoine; Dumoutier, Nadine; Dubrou, Sylvie; Vincent, Véronique
2002-01-01
The frequency of recovery of atypical mycobacteria was estimated in two treatment plants providing drinking water to Paris, France, at some intermediate stages of treatment. The two plants use two different filtration processes, rapid and slow sand filtration. Our results suggest that slow sand filtration is more efficient for removing mycobacteria than rapid sand filtration. In addition, our results show that mycobacteria can colonize and grow on granular activated carbon and are able to enter distribution systems. We also investigated the frequency of recovery of mycobacteria in the water distribution system of Paris (outside buildings). The mycobacterial species isolated from the Paris drinking water distribution system are different from those isolated from the water leaving the treatment plants. Saprophytic mycobacteria (present in 41.3% of positive samples), potentially pathogenic mycobacteria (16.3%), and unidentifiable mycobacteria (54.8%) were isolated from 12 sites within the Paris water distribution system. Mycobacterium gordonae was preferentially recovered from treated surface water, whereas Mycobacterium nonchromogenicum was preferentially recovered from groundwater. No significant correlations were found among the presence of mycobacteria, the origin of water, and water temperature. PMID:12406720
Whaley-Martin, K J; Mailloux, B J; van Geen, A; Bostick, B C; Ahmed, K M; Choudhury, I; Slater, G F
2017-10-01
Recent studies have demonstrated that the supply of relatively young organic carbon stimulates the release of arsenic to groundwater in Bangladesh. This study explores the potential role of human and livestock waste as a significant source of this carbon in a densely populated rural area with limited sanitation. Profiles of aquifer sediment samples were analyzed for phytosterols and coprostanol to assess the relative contributions of plant-derived and human/livestock waste-derived organic carbon at two well-characterized sites in Araihazar. Coprostanol concentrations increased with depth from non-detection (<10m at Site B and <23m at Site F) to maxima of 1.3 and 0.5ng/g in aquifer sands recovered from 17m (Site B) and 26m (Site F), respectively. The commonly used sewage contamination index ([5β-coprostanol]/([5α-cholestanol]+[5β-coprostanol])) exceeds 0.7 between 12 and 19m at Site B and between 24 and 26m at Site F, indicating input of human/livestock waste to these depths. Urine/fecal input within the same depth range is supported by groundwater Cl/Br mass ratios >1000 compared to Cl/Br <500 at depths >50m. Installed tube wells in the area's study sites may act as a conduit for DOC and specifically human/livestock waste into the aquifer during flood events. The depth range of maximum input of human/livestock waste indicated by these independent markers coincides with the highest dissolved Fe (10-20mg/L) and As (200-400μg/L) concentrations in groundwater at both sites. The new findings suggest that the oxidation of human/livestock waste coupled to the reductive dissolution of iron-(oxy)-hydroxides and/or arsenate may enhance groundwater contamination with As. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Alvarez-Zaldívar, Pablo; Imfeld, Gwenaël; Maier, Uli; Centler, Florian; Thullner, Martin
2013-04-01
In recent years, the use of (constructed) wetlands has gained significant attention for the in situ remediation of groundwater contaminated with (chlorinated) organic hydrocarbons. Although many sophisticated experimental methods exist for the assessment of contaminant removal in such wetlands the understanding how changes in wetland hydrochemistry affect the removal processes is still limited. This knowledge gap might be reduced by the use of biogeochemical reactive transport models. This study presents the reactive transport simulation of a small-scale constructed wetland treated with groundwater containing cis-1,2-dichloroethene (cDCE). Simulated processes consider different cDCE biodegradation pathways and the associated carbon isotope fractionation, a set of further (bio)geochemical processes as well as the activity of the plant roots. Spatio-temporal hydrochemical and isotope data from a long-term constructed wetland experiment [1] are used to constrain the model. Simulation results for the initial oxic phase of the wetland experiment indicate carbon isotope enrichment factors typical for cometabolic DCE oxidation, which suggests that aerobic treatment of cDCE is not an optimal remediation strategy. For the later anoxic phase of the experiment model derived enrichment factors indicate reductive dechlorination pathways. This degradation is promoted at all wetland depths by a sufficient availability of electron donor and carbon sources from root exudates, which makes the anoxic treatment of groundwater in such wetlands an effective remediation strategy. In combination with the previous experimental data results from this study suggest that constructed wetlands are viable remediation means for the treatment of cDCE contaminated groundwater. Reactive transport models can improve the understanding of the factors controlling chlorinated ethenes removal, and the used model approach would also allow for an optimization of the wetland operation needed for a complete degradation of these contaminants. [1] Imfeld, G., Aragonés, C., Zeiger, S., von Eckstädt, C., Paschke, H., Trabitzsch, R., Weiss, H., and Richnow, H. (2008). Tracking in situ biodegradation of 1,2-dicholoroethenes in a model wetland. Environ. Sci. Technol., 42: 7924-7930.
GROUNDWATER PLUME CONTROL WITH PHYTOTECHNOLOGIES AT THE ARGONNE NATIONAL LABORATORY-EAST
In 1999 Argonne National Laboratory-East (ANL-E) designed and installed a series of engineered plantings consisting of a vegetative cover system and approximately 800 hybrid poplars and willows rooting at various predetermined depths. The plants were installed using various meth...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofan; Varga, Tamas; Liu, Chongxuan
Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere. X-ray Computed Tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. A combination of XCT, open-source software, and in-house developed code was used to non-invasively image a prairie dropseed (Sporobolus heterolepis) specimen, segment the root data to obtain a 3D image of the root structure, and extract quantitative information from the 3D data, respectively. Based on the explicitly-resolved root structure, pore-scale computational fluid dynamics (CFD) simulations were applied to numerically investigate the root-soil-groundwater system. The plant root conductivity, soilmore » hydraulic conductivity and transpiration rate were shown to control the groundwater distribution. Furthermore, the coupled imaging-modeling approach demonstrates a realistic platform to investigate rhizosphere flow processes and would be feasible to provide useful information linked to upscaled models.« less
Yang, Xiaofan; Varga, Tamas; Liu, Chongxuan; ...
2017-05-04
Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere. X-ray Computed Tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. A combination of XCT, open-source software, and in-house developed code was used to non-invasively image a prairie dropseed (Sporobolus heterolepis) specimen, segment the root data to obtain a 3D image of the root structure, and extract quantitative information from the 3D data, respectively. Based on the explicitly-resolved root structure, pore-scale computational fluid dynamics (CFD) simulations were applied to numerically investigate the root-soil-groundwater system. The plant root conductivity, soilmore » hydraulic conductivity and transpiration rate were shown to control the groundwater distribution. Furthermore, the coupled imaging-modeling approach demonstrates a realistic platform to investigate rhizosphere flow processes and would be feasible to provide useful information linked to upscaled models.« less
Hydrologic Regulation of Plant Rooting Depth and Vice Versa
NASA Astrophysics Data System (ADS)
Fan, Y.; Miguez-Macho, G.
2017-12-01
How deep plant roots go and why may hold the answer to several questions regarding the co-evolution of terrestrial life and its environment. In this talk we explore how plant rooting depth responds to the hydrologic plumbing system in the soil/regolith/bedrocks, and vice versa. Through analyzing 2200 root observations of >1000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients, we found strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to groundwater capillary fringe. We explore the global significance of this framework using an inverse model, and the implications to the coevolution of deep roots and the CZ in the Early-Mid Devonian when plants colonized the upland environments.
U.S. Geological Survey ground-water studies in Florida
Vecchioli, John
1988-01-01
The first groundwater study by the U.S. Geological Survey (USGS) in Florida began in 1910. In 1930, a cooperative program of study was started with the Florida Geological Survey, and in 1938, the first groundwater office of the USGS was established in Miami. In fiscal year 1987, the USGS program in Florida included 35 active groundwater studies, all of which dealt with at least one of the principal groundwater issues. The 35 active studies were divided among the issues as follows: groundwater quality management, 9 studies; groundwater availability, 12 studies; seawater intrusion, 3 studies; contamination from wastewater disposal, 6 studies; contamination from landfills and hazardous waste sites, 3 studies; and contamination from agricultural practices, 2 studies. (Lantz-PTT)
NASA Astrophysics Data System (ADS)
Wanda, Elijah M. M.; Gulula, Lewis C.; Phiri, Ambrose
Irrigation water quality is an essential component of sustainable agriculture. Irrigation water quality concerns have often been neglected over concerns of quantity in most irrigation projects in Malawi. In this study, a hydrochemical assessment of groundwater was carried out to characterize, classify groundwater and evaluate its suitability for irrigation use in Karonga and Rumphi districts, Northern Malawi. Groundwater samples were collected during wet (January-April 2011) and dry (July-September 2011) seasons from 107 shallow wells and boreholes drilled for rural water supply using standard sampling procedures. The water samples were analysed for pH, major ions, total dissolved solids and electrical conductivity (EC), using standard methods. Multivariate chemometric (such as Kruskal Wallis test), hydrographical methods (i.e. Piper diagram) and PHREEQC geochemical modelling program were used to characterise the groundwater quality. Electrical conductivity, percentage sodium ion (% Na+), residual sodium carbonate (RSC), total dissolved solids (TDS), sodium adsorption ratio (SAR), Kelly’s ratio (KR) and permeability index (PI) were used to evaluate the suitability of water for irrigation. It was established that groundwater is neutral to alkaline and mostly freshwater (TDS < 1000 mg/l) of Ca-HCO3- type. Groundwater is of low mineralisation which did not show statistically significant variations with respect to depth of shallow wells and boreholes, location and seasonality at 5% significance level. Groundwater from Karonga District was largely oversaturated with respect to both calcite and dolomite, where as that from Rumphi District was undersaturated with respect to both calcite and dolomite. However, the calculated PCO2 values suggested that the groundwater system was open to soil CO2 and that there was possibility of degassing of CO2 during flow, which could increase the pH and subsequently result in the oversaturation of calcite in both districts. Groundwater water samples were stable towards calcite and kaolinite stability field. This suggested that equilibrium of the groundwater with silicates is an important indicator of the hydrogeochemical processes behind groundwater quality in the study area. The calculated values of SAR, KR and % Na+ indicated good and permissible quality of water for irrigation uses. However, samples with doubtful RSC (6% from Karonga district), unsuitable PI (5% and 3% from Karonga and Rumphi, respectively) and a high salinity hazard (56.2% and 20.3% from Karonga and Rumphi, respectively) values restrict the suitability of the groundwater for agricultural purposes, and plants with good salt tolerance should be selected for such groundwaters. A detailed hydro-geochemical investigation and integrated water management is suggested for sustainable development of the water resources for better plant growth, long-term as well as maintaining human health in the study area.
Modeling Production Plant Forming Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhee, M; Becker, R; Couch, R
2004-09-22
Engineering has simulation tools and experience in modeling forming processes. Y-12 personnel have expressed interest in validating our tools and experience against their manufacturing process activities such as rolling, casting, and forging etc. We have demonstrated numerical capabilities in a collaborative DOE/OIT project with ALCOA that is nearing successful completion. The goal was to use ALE3D to model Alcoa's slab rolling process in order to demonstrate a computational tool that would allow Alcoa to define a rolling schedule that would minimize the probability of ingot fracture, thus reducing waste and energy consumption. It is intended to lead to long-term collaborationmore » with Y-12 and perhaps involvement with other components of the weapons production complex. Using simulations to aid in design of forming processes can: decrease time to production; reduce forming trials and associated expenses; and guide development of products with greater uniformity and less scrap.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-09-01
This report provides the input to and results of the Department of Energy (DOE) - Oak Ridge Operations (ORO) DOE Plutonium Environment, Safety and Health (ES & H) Vulnerability Assessment (VA) self-assessment performed by the Site Assessment Team (SAT) for the Oak Ridge National Laboratory (ORNL or X-10) and the Oak Ridge Y-12 Plant (Y-12) sites that are managed by Martin Marietta Energy Systems, Inc. (MMES). As initiated (March 15, 1994) by the Secretary of Energy, the objective of the VA is to identify and rank-order DOE-ES&H vulnerabilities associated for the purpose of decision making on the interim safe managementmore » and ultimate disposition of fissile materials. This assessment is directed at plutonium and other co-located transuranics in various forms.« less
NASA Astrophysics Data System (ADS)
Elgzeli, Yousef M.; Ondovčin, Tomáš; Hrkal, Zbyněk; Krásný, Jiří; Mls, Jiří
2013-06-01
Elgzeli, Y.M., Ondovčin, T., Hrkal, Z., Krasny, J. and Mls, J. 2011. Impacts of heavy groundwater pumping on hydrogeological conditions in Libya: Past and present development and future prognosis on a regional scale. Acta Geologica Polonica, 63 (2), 283-296. Warszawa. Libya, like many other regions with arid climates, suffers from inadequate water resources to cover all the needs of this rapidly developing country. Increasing amounts of water are needed to supply the population, as well as for agricultural irrigation and industrial use. As groundwater is the main water source in the country, it represents a natural resource of the highest economic and social importance. Conceptual and numerical models were implemented on a regional scale to show how the natural situation has changed following heavy groundwater abstraction during the last decades in the northwestern part of the country. The results of the numerical model indicated that the current zones of depression of the piezometric surface could have been caused by smaller withdrawn amounts than previously estimated. The differences in the assessed withdrawn groundwater volumes seem to be quite high and might have a considerable influence on the future possibilities of groundwater use in the study region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behrends, L.; Sikora, F.; Kelly, D.
1996-01-01
To demonstrate at Milan AAP in April 1996 through July 1997, the technical and economic feasibility of using phytoremediation in an artificial constructed wetlands for treatment of explosives-contaminated groundwater. Validated data on cost and effectiveness of this demonstration will be used to transfer this technology to the user community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behrends, L.; Sikora, F.; Kelly, D.
1996-01-01
To demonstrate at Milan AAP in April 1996 through July 1997, the technical and economic feasibility of using phytoremediation in an artificial, constructed wetlands for treatment of explosives-contaminated groundwater. Validated data on cost and effectiveness of this demonstration will be used to transfer this technology to the user community.
Jones, L. Elliott; Painter, Jaime A.; LaFontaine, Jacob H.; Sepúlveda, Nicasio; Sifuentes, Dorothy F.
2017-12-29
As part of the National Water Census program in the Apalachicola-Chattahoochee-Flint (ACF) River Basin, the U.S. Geological Survey evaluated the groundwater budget of the lower ACF, with particular emphasis on recharge, characterizing the spatial and temporal relation between surface water and groundwater, and groundwater pumping. To evaluate the hydrologic budget of the lower ACF River Basin, a groundwater-flow model, constructed using MODFLOW-2005, was developed for the Upper Floridan aquifer and overlying semiconfining unit for 2008–12. Model input included temporally and spatially variable specified recharge, estimated using a Precipitation-Runoff Modeling System (PRMS) model for the ACF River Basin, and pumping, partly estimated on the basis of measured agricultural pumping rates in Georgia. The model was calibrated to measured groundwater levels and base flows, which were estimated using hydrograph separation.The simulated groundwater-flow budget resulted in a small net cumulative loss of groundwater in storage during the study period. The model simulated a net loss in groundwater storage for all the subbasins as conditions became substantially drier from the beginning to the end of the study period. The model is limited by its conceptualization, the data used to represent and calibrate the model, and the mathematical representation of the system; therefore, any interpretations should be considered in light of these limitations. In spite of these limitations, the model provides insight regarding water availability in the lower ACF River Basin.
Impacts of a Rural Subdivision on Groundwater Quality: Results of Long-Term Monitoring.
Rayne, Todd W; Bradbury, Kenneth R; Krause, Jacob J
2018-03-30
A rural subdivision in south central Wisconsin was instrumented with monitoring wells and lysimeters before, during, and after its construction to examine the impacts of the unsewered subdivision on groundwater quality and quantity. Prior to construction, the 78-acre (32 ha) site was farmland. Sixteen homes were constructed beginning in 2003. Initial monitoring from 2002 to 2005 showed that groundwater beneath the site had been impacted by previous agricultural use, with nitrate-N values as high as 30 mg/L and some detections of the herbicide atrazine. Our 12-year study shows that the transition from agricultural to residential land use has changed groundwater quality in both negative and positive ways. Although groundwater elevations showed typical seasonal fluctuations each year, there were no measurable changes in groundwater levels or general flow directions during the 12-year study period. Chloride values increased in many wells, possibly as a result of road salting or water softener discharge. Nitrate concentrations varied spatially and temporally over the study period, with some initial concentrations substantially above the drinking water standard. In some wells, nitrate and atrazine levels have declined substantially since agriculture ceased. However, atrazine was still present at trace concentrations throughout the site in 2014. Wastewater tracers show there are small but detectable impacts from septic effluent on groundwater quality. Particle traces based on a groundwater flow model are consistent with the hypothesis that septic leachate has impacted groundwater quality. © 2018, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Sharma, A.; Lunkad, S. K.
2008-05-01
In Haryana, one of the wheat granaries of India where water resources have depleted to a critical level (1050 m3 /year/person), groundwater alone has 53% share in the irrigation, the remaining 47% comes from canal system of glacier-fed rivers, viz., Yamuna and Satluj originating from Himalayas. The Green Revolution (1971-1990, intensive phase) enabled this small state to become an agro-economic state in northern alluvial plains of India. Though occupying 1.3 % geographical area and containing 2% of the population of India, it produces country's 13% wheat and about 3% quality rice besides other cereals, oil seeds, sugarcane and cotton. However, Haryana paid a heavy price for the impressive agricultural development- one-third of the irrigated land is salinity affected, water level declined by 3-12 m in twelve of its nineteen districts and excessive nitrate levels in the groundwater (114-1800 mg/l) have rendered the groundwater non-potable in many areas. Groundwater in the arid western Haryana is mostly saline (TDS > 4000 mg/l) and irrational canal irrigation has paradoxically raised the water-table by 3-9m in seven districts causing waterlogging over 2346 km2 land of which 251 km2 is fully waterlogged. In the land use pattern 131,000 ha prime cultivable land (about 3% of the total) has been lost to urbanization jeopardizing the FOOD SECURITY. One possible way to arrest the degradation of groundwater and soil, is to switch to dryland farming. This would involve change in the irrigation method as well as proper selection and rotation of food crops like barley, sorghum, maize, different types of beans (pulses) and oil seeds like groundnut, sunflower, mustard, etc. and restricted use of chemical fertilizers and pesticides. Dryland farming could go hand in hand with the plantation of fruit trees, grasses and medicinal plants suitable to this agro-climatic zone, and animal husbandry. The same considerations also hold good to the adjoining eastern Rajasthan.
NASA Astrophysics Data System (ADS)
Custodio, Emilio; Llamas, M.-Ramón; Villarroya, Fermín
Spain is a relatively large European country (ca. 500,000km2) with extensive semiarid areas in which there exists a large number of good aquifers. In some areas, these aquifers are intensively developed and are the most important sources of fresh water. Nevertheless, groundwater development and protection has rarely been duly considered by the Spanish Water Administration, despite the pressure to remedy this situation by various groups of experts, some of them members of the Water Administration. The Spanish Committee of the International Association of Hydrogeologists (IAH) has been very active during the last decade in promoting activities to spread groundwater science, technology, and management in Spain and outside, mostly in Latin America, and in trying to orient water policy toward issues of groundwater. These activities include mainly the organization of technical and scientific meetings on current topics such as groundwater in the new Water Act, overexploitation, groundwater in water-resources planning, groundwater pollution, natural-recharge estimation and others. The impact of these activities on the recent water policy of Spain seems significant, and the experience gained may be applicable to other countries. Résumé L'Espagne est un pays européen assez étendu (500,000km2 environ), où existent des zones semi-arides possédant de nombreux aquifères intéressants. Dans certaines régions, ces aquifères sont intensivement exploités et constituent les sources essentielles d'eau douce. Cependant, l'exploitation et la protection des eaux souterraines ont rarement été prises en compte de façon correcte par l'Administration Espagnole de l'Eau, malgré les pressions exercées pour remédier à la situation par différents groupes d'experts, dont certains sont membres de l'Administration de l'Eau. Le Comité Espagnol de l'Association Internationale des Hydrogéologues (AIH) a été particulièrement actif au cours de ces dix dernières années pour promouvoir des activités de diffusion des sciences, de la technologie et de la gestion de l'eau en Espagne et à l'étranger, surtout en Amérique latine, et pour tenter d'orienter la politique de l'eau à l'égard des eaux souterraines. Ces activités incluent principalement l'organisation de réunions techniques et scientifiques sur des sujets classiques tels que l'eau souterraine dans la nouvelle Loi sur l'Eau, la surexploitation, l'eau souterraine dans la gestion des ressources en eau, la pollution de l'eau souterraine, l'estimation des écoulements naturels, entre autres. Les retombées de ces activités sur la récente politique de l'eau en Espagne paraissent significatives et l'expérience acquise peut être appliquée à d'autres pays. Resumen España es un país relativamente grande (unos 500,000km2) con áreas extensas en las que existe un elevado número de buenos acuíferos. En algunas zonas estos acuíferos son intensamente aprovechados y constituyen el recurso más importante de agua dulce. Sin embargo, el aprovechamiento y la protección de las aguas subterráneas pocas veces han sido debidamente considerados por la Administración hidráulica española, a pesar de la presión ejercida por distintos grupos y por algunos miembros responsables de la propia Administración hidráulica para corregir esta situación. Durante el último decenio el Comité Español de la Asociación Internacional de Hidrogeólogos (AIH) ha sido muy activo en promover reuniones para difundir la ciencia, la tecnología y la adecuada gestión del agua subterránea en España y en el extranjero, especialmente en Ibero-América. También ha intentado que los temas referentes al agua subterránea tuviesen la oportuna consideración en la política hidrológica general. Estas actividades han consistido principalmente en la organización de reuniones científicas y técnicas sobre temas actuales tales como el agua subterránea en la planificación hidrológica, contaminación del agua subterránea, estimación de la recarga natural y otros. El impacto de estas actividades en la reciente política hidráulica española parece significativo. La experiencia general puede ser aplicable a otros países.
Enhancing Readiness Through Environmental Quality Technology
1996-05-01
mercury . Up coming technologies for heavy metal soil contamination include phytoremediation and electrokinetics. Plants have also been shown to uptake... phytoremediation could be that process. Many plants have been found that have a nitroreductase enzyme. These plants can degrade explosive contaminants. This... phytoremediation in a wetland environment for explosive contaminated groundwater. But, this could be transferred directly to soils if proven successful
NASA Astrophysics Data System (ADS)
Bockgård, Niclas; Rodhe, Allan; Olsson, K. A.
The concentrations of chlorofluorocarbons (CFC-11, CFC-12, and CFC-113) and tritium were determined in groundwater in fractured crystalline bedrock at Finnsjön, Sweden. The specific goal was to investigate the accuracy of CFC dating in such an environment, taking potential degradation and mixing of water into consideration. The water was sampled to a depth of 42 m in three boreholes along an 800-m transect, from a recharge area to a local discharge area. The CFC-113 concentration was at the detection limit in most samples. The apparent recharge date obtained from CFC-11 was earlier than from CFC-12 for all samples, with a difference of over 20 years for some samples. The difference was probably caused by degradation of CFC-11. The CFC-12 dating of the samples ranged from before 1945 to 1975, with the exception of a sample from the water table, which had a present-day concentration. Conclusions about flow paths or groundwater velocity could not be drawn from the CFCs. The comparison between CFC-12 and tritium concentrations showed that most samples could be unmixed or mixtures of waters with different ages, and the binary mixtures that matched the measured concentrations were determined. The mixing model approach can be extended with additional tracers. Précision de la datation au CFC dans un aquifère rocheux-fracturé: données d'un site du sud de la Suède. Les concentrations en chlorofluorocarbones (CFC-11, CFC-12, CFC-113) et entritium ont été déterminées dans l'eau souterraine d'un massif fracturé à Finnsjön en Suède. Le but de cette étude est de mieux cerner la précision de la méthode de datation au CFC dans ce type d'environnement hydrogéologique, tout en considérant d'éventuels phénomènes de dégradation et de mélange d'eaux. L'eau a été échantillonnée à une profondeur de 42 mètres dans trois forages alignés sur 800 mètres entre une zone de recharge et une zone de déversement. Les concentrations en CFC-113 sont dans la plupart des échantillons à la limite de détection. Pour tous les échantillons, la date de la recharge établie avec le CFC-11 est antérieure à la date établie avec le CFC-12. La différence entre les deux dates peut dépasser 20 ans et s'explique-probablement-par la dégradation du CFC-11. Les dates de recharge de la nappe mesurées au CFC-12 sont comprises entre 1945 et 1975, excepté pour un échantillon qui possède une concentration actuelle. Il n'est pas possible de tirer des conclusions concernant la direction des écoulements et la vitesse de l'eau souterraine. La comparaison entre CFC-12 et tritium montre que des échantillons pourraient être soit le résultat du mélange d'eaux d'âges différents, soit des échantillons non-mélangés. Dans le cas d'un mélange binaire, les rapports du mélange composant la concentration mesurée sont déterminés. L'approche par modèle de mélange peut être étendue à des traceurs additionnels. Precisión en la datación de aguas subterráneas utilizando CFC en un acuífero de rocas cristalinas: datos provenientes de un sitio al sur de Suecia. Se determinaron las concentraciones de clorofluorucarbonos (CFC-11, CFC-12, y CFC-113) y de tritio en aguas subterráneas alojadas en rocas cristalinas fracturadas de Finnsjön, Suecia. El objetivo específico consistió en investigar la precisión de la datación de aguas subterráneas con CFC en este tipo de ambiente, tomando en consideración la degradación potencial y la mezcla de agua. Las muestras de agua se tomaron a una profundidad de 42 m en tres pozos ubicados a lo largo de una línea de 800 m transversal a una zona de recarga y de zona de descarga local. En la mayoría de las muestras se encontró que la concentración de CFC-113 estuvo en el límite de detección. La edad que se estimó en todas las muestras para la recarga aparente en base a CFC-11 fue más joven que la edad proveniente de CFC-12, con una diferencia de más de 20 años para algunas muestras. Esta diferencia fue causada probablemente por la degradación del CFC-11. La datación CFC-12 de las muestras varió de antes de 1945 a 1975, con la excepción de una muestra tomada en el nivel freático, la cual presentó concentración actual. No fue posible obtener conclusiones acerca de las trayectorias de flujo o la velocidad de agua subterránea a partir de los CFCs. La comparación entre las concentraciones de CFC-12 y tritio mostró que la mayoría de las muestras pueden tener composición sencilla o bien consistir de mezclas de aguas de diferentes edades. Esta comparación también permitió determinar las mezclas binarias que corresponden a las concentraciones medidas. Pueden utilizarse trazadores adicionales para ampliar el modelo de mezclas propuesto.
Microbial degradation of chloroethenes in groundwater systems
NASA Astrophysics Data System (ADS)
Bradley, Paul M.
The chloroethenes, tetrachloroethene (PCE) and trichloroethene (TCE) are among the most common contaminants detected in groundwater systems. As recently as 1980, the consensus was that chloroethene compounds were not significantly biodegradable in groundwater. Consequently, efforts to remediate chloroethene-contaminated groundwater were limited to largely unsuccessful pump-and-treat attempts. Subsequent investigation revealed that under reducing conditions, aquifer microorganisms can reductively dechlorinate PCE and TCE to the less chlorinated daughter products dichloroethene (DCE) and vinyl chloride (VC). Although recent laboratory studies conducted with halorespiring microorganisms suggest that complete reduction to ethene is possible, in the majority of groundwater systems reductive dechlorination apparently stops at DCE or VC. However, recent investigations conducted with aquifer and stream-bed sediments have demonstrated that microbial oxidation of these reduced daughter products can be significant under anaerobic redox conditions. The combination of reductive dechlorination of PCE and TCE under anaerobic conditions followed by anaerobic microbial oxidation of DCE and VC provides a possible microbial pathway for complete degradation of chloroethene contaminants in groundwater systems. Résumé Les chloroéthanes, tétrachloroéthane (PCE) et trichloroéthane (TCE) sont parmi les polluants les plus communs trouvés dans les aquifères. Depuis les années 1980, on considère que les chloroéthanes ne sont pas significativement biodégradables dans les aquifères. Par conséquent, les efforts pour dépolluer les nappes contaminées par des chloroéthanes se sont limités à des tentatives de pompage-traitement globalement sans succès. Des travaux ultérieurs ont montré que dans des conditions réductrices, des micro-organismes présents dans les aquifères peuvent, par réduction, dégrader les PCE et TCE en composés moins chlorés, comme le dichloréthane (DCE) et le chlorure de vinyl (VC). Bien que des études de laboratoire réalisées avec des micro-organismes adaptés aux composés halogénés montrent que la réduction complète en éthane est possible, dans la plupart des nappes la réaction de déchloration par réduction s'arrête apparemment au DCE et au VC. Cependant, des recherches récentes menées sur des sédiments d'un aquifère et d'alluvions ont démontré que l'oxydation microbienne de ces descendants réduits peut se produire de manière significative dans des conditions de redox anérobies. La déchloration par réduction de PCE et de TCE dans des conditions anérobies suivie par une oxydation microbienne anérobie des DCE et VC fournit une piste microbienne possible pour obtenir une dégradation complète des chloroéthanes polluants dans les aquifères. Resumen Los cloroetanos (tetracloroetano PCE y tricloroetano TCE) son contaminantes muy habituales en los acuíferos. Hasta 1980 se consideraba que los cloroetanos no eran biodegradables y, por tanto, los métodos de rehabilitación en acuíferos contaminados con cloroetanos se limitaban al pump-and-treat, generalmente con poco éxito. Posteriormente se vio que, en condiciones reductoras, algunos microorganismos pueden reducir PCE y TCE a unos subproductos menos clorados, como el dicloroetano (DCE) y el cloruro de vinilo (VC). Aunque estudios de laboratorio recientes sugieren que la reducción completa a etano es posible, en la mayoría de los sistemas acuíferos la decloración suele detenerse en los DCE o VC. Sin embargo, investigaciones más recientes en acuíferos y sedimentos fluviales demuestran que la oxidación microbiana de estos subproductos puede ser importante bajo condiciones redox anaerobias. La combinación de la reducción de PCE y TCE en condiciones anaerobias seguida de la oxidación microbiana anaerobia de DCE y VC proporciona un método potencial para la degradación total de los cloroetanos en los sistemas acuíferos.
76 FR 9630 - Notice of Public Hearing and Commission Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-18
... Township, Perry County, Pa. Application for groundwater withdrawal of up to 0.465 mgd from Well PW-5. 2... County, Pa. Application for groundwater withdrawal of up to 1.210 mgd from Well 1. 12. Project Sponsor..., Pa. Application for groundwater withdrawal of up to 0.055 mgd from Well MP- 1. 13. Project Sponsor...
Leighton, David A.; Fio, John L.
1995-01-01
An evaluation was made of an existing monitoring program in the Panoche Water District for 1986-93. The Panoche Water District is an agricultural area located in the western San Joaquin Valley of California. Because irrigation drainage from this area has high concentrations of dissolved solids and selenium, management strategies have been developed to improve the quality of drainwater discharge. The purpose of the Panoche Water District's monitoring program is to assess the effects of water- and land-use practices on local ground water and drain flow from the district. Drainflow from the district consists of the discharge from 50 separate on-farm underground tile-drainage systems. The Panoche Water District maintains information on water deliveries, planned and actual crop types, and planned and actual acreages planted each year. In addition, the water district monitors ground-water and drainage-system discharges using a variety of data-collection methods. A total of 62 observation well sites are used to monitor ground-water level and quality. A total of 42 sites were monitored for drainflow quantity, and drain flow quality samples were collected from the outlets of each of the 50 drainage systems. However, these data were collected inconsistently and (or) intermittently during the period studied. All data obtained from the water district were compiled and stored in a geographic information system database. Water delivered for irrigation by the Panoche Water District is a mix of imported water and local ground water pumped directly into delivery canals. Although delivered water is a mix, information on the proportion of water from the two sources is not reported. Also, individual growers pump directly to their crops unknown quantities of ground water, the total of which could be greater than 60 percent of total applications during years when water district deliveries are greatly reduced (for example, the years during and following a drought). To evaluate the effects of irrigation on ground-water and drainflow quality, data on the combined chemical characteristics and the volume of water applied to crops are needed as part of the district's monitoring program. For example, without these data, this study could estimate only the effects of irrigation on ground-water recharge for 1986 (60.4 106 m3/y), 1987 (74.2 106 m3/y), and 1988 (56.0 106 m3/y) in the Panoche Water District water years when the amount of ground water pumped by individual growers was probably small. Water-level data show a significant decline of the water table in the upslope, undrained parts of the study area, and little or no significant change in the down slope, drained parts of the study area. Pumping from productions wells, most of which are located in the upslope part of the study area, may have contributed to the decline of the water table in the upslope area. The quantities of drainflow, dissolved solids, and selenium discharged from the study area decreased during the study period. However, drainflow, dissolved solids, and selenium discharged from individual on-farm drainage systems did not decrease. These data also illustrate the need for consistent and regular monitoring of the factors that affect drainage in the western San Joaquin Valley.
317/319 Phytoremediation site monitoring report - 2009 growing season : final report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negri, C .N.; Benda, P. L.; Gopalakrishnan, G.
2010-02-10
In 1999, Argonne National Laboratory (Argonne) designed and installed a series of engineered plantings consisting of a vegetative cover system and approximately 800 hybrid poplars and willows rooting at various predetermined depths. The plants were installed using various methods including Applied Natural Science's TreeWell{reg_sign} system. The goal of the installation was to protect downgradient surface and groundwater by intercepting the contaminated groundwater with the tree roots, removing moisture from the upgradient soil area, reducing water infiltration, preventing soil erosion, degrading and/or transpiring the residual volatile organic compounds (VOCs), and removing tritium from the subsoil and groundwater. This report presents themore » results of the monitoring activities conducted by Argonne's Energy Systems (ES) Division in the growing season of 2009. Monitoring of the planted trees began soon after the trees were installed in 1999 and has been conducted every summer since then. As the trees grew and consolidated their growth into the contaminated soil and groundwater, their exposure to the contaminants was progressively shown through tissue sampling. During the 2009 sampling campaign, VOC concentrations found in the French Drain area were in general consistent with or slightly lower than the 2008 results. Additionally, closely repeated, stand wide analyses showed contaminant fluctuations that may indicate short-term contaminant depletion in the area of interest of roots. This data will be useful to determine short-term removal rate by the trees. As in previous years, levels in the Hydraulic Control Area were close to background levels except for a few exceptions.« less
A cytogenetic view of sex chromosome evolution in plants.
Armstrong, S J; Filatov, D A
2008-01-01
The recent origin of sex chromosomes in plant species provides an opportunity to study the early stages of sex chromosome evolution. This review focuses on the cytogenetic aspects of the analysis of sex chromosome evolution in plants and in particular, on the best-studied case, the sex chromosomes in Silene latifolia. We discuss the emerging picture of sex chromosome evolution in plants and the further work that is required to gain better understanding of the similarities and differences between the trends in animal and plant sex chromosome evolution. Similar to mammals, suppression of recombination between the X and Y in S. latifolia species has occurred in several steps, however there is little evidence that inversions on the S. latifolia Y chromosome have played a role in cessation of X/Y recombination. Secondly, in S. latifolia there is a lack of evidence for genetic degeneration of the Y chromosome, unlike the events documented in mammalian sex chromosomes. The insufficient number of genes isolated from this and other plant sex chromosomes does not allow us to generalize whether the trends revealed on S. latifolia Y chromosome are general for other dioecious plants. Isolation of more plant sex-linked genes and their cytogenetic mapping with fluorescent in situ hybridisation (FISH) will ultimately lead to a much better understanding of the processes driving sex chromosome evolution in plants. 2008 S. Karger AG, Basel
Groundwater mining of bedrock aquifers in the Denver Basin - Past, present, and future
Moore, J.E.; Raynolds, R.G.; Barkmann, P.E.
2004-01-01
The Denver Basin bedrock aquifer system is an important source of water for municipal and agricultural uses in the Denver and Colorado Springs metropolitan areas. The Denver area is one of the fastest growing areas in the United States with a population of 1.2 million in 1960 that has increased to over 2.4 million by 2000. This rapid population growth has produced a corresponding increase in demand for potable water. Historically, the Denver area has relied on surface water, however, in the past 10 years new housing and recreation developments have begun to rely on groundwater from the bedrock aquifers as the surface water is fully appropriated and in short supply. The Denver Basin bedrock aquifer system consists of Tertiary and Cretaceous age sedimentary rocks known as the Dawson, Denver, Arapahoe and Laramie-Fox Hills Aquifers. The number of bedrock wells has increased from 12,000 in 1985 to 33,700 in 2001 and the withdrawal of groundwater has caused water level declines of 76 m. Water level declines for the past 10 years have ranged from 3 to 12 m per year. The groundwater supplies were once thought to last 100 years but there is concern that the groundwater supplies may be essentially depleted in 10 to 15 years in areas on the west side of the basin. Extensive development of the aquifer system has occurred in the last 25 years especially near the center of the basin in Douglas and El Paso Counties where rapid urban growth continues and surface water is lacking. Groundwater is being mined from the aquifer system because the discharge by wells exceeds the rate of recharge. Concern is mounting that increased groundwater withdrawal will cause water level declines, increased costs to withdraw groundwater, reduced well yield, and reduced groundwater storage. As the long-term sustainability of the groundwater resource is in doubt, water managers believe that the life of the Denver Basin aquifers can be extended with artificial recharge, water reuse, restrictions on lawn watering, well permit restrictions and conservation measures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machado, J.; Campos, A.
Toxic cyanobacterial blooms are recognized as an emerging environmental threat worldwide. Although microcystin-LR is the most frequently documented cyanotoxin, studies on cylindrospermopsin have been increasing due to the invasive nature of cylindrospermopsin-producing cyanobacteria. The number of studies regarding the effects of cyanotoxins on agricultural plants has increased in recent years, and it has been suggested that the presence of microcystin-LR and cylindrospermopsin in irrigation water may cause toxic effects in edible plants. The uptake of these cyanotoxins by agricultural plants has been shown to induce morphological and physiological changes that lead to a potential loss of productivity. There is alsomore » evidence that edible terrestrial plants can bioaccumulate cyanotoxins in their tissues in a concentration dependent-manner. Moreover, the number of consecutive cycles of watering and planting in addition to the potential persistence of microcystin-LR and cylindrospermopsin in the environment are likely to result in groundwater contamination. The use of cyanotoxin-contaminated water for agricultural purposes may therefore represent a threat to both food security and food safety. However, the deleterious effects of cyanotoxins on agricultural plants and public health seem to be dependent on the concentrations studied, which in most cases are non-environmentally relevant. Interestingly, at ecologically relevant concentrations, the productivity and nutritional quality of some agricultural plants seem not to be impaired and may even be enhanced. However, studies assessing if the potential tolerance of agricultural plants to these concentrations can result in cyanotoxin and allergen accumulation in the edible tissues are lacking. This review combines the most current information available regarding this topic with a realistic assessment of the impact of cyanobacterial toxins on agricultural plants, groundwater quality and public health. - Highlights: • Deleterious effects of MC-LR/CYN on agricultural plants are concentration-dependent. • Toxic effects of MC-LR and CYN at ecological conditions are scarce. • The bioaccumulation of MC-LR/CYN in vegetables is time- and concentration-dependent. • The persistence of MC-LR/CYN on soil systems can result in groundwater contamination. • A realistic assessment of the impact of MC-LR/CYN on agricultural plants was made.« less
Quantifying Potential Groundwater Recharge In South Texas
NASA Astrophysics Data System (ADS)
Basant, S.; Zhou, Y.; Leite, P. A.; Wilcox, B. P.
2015-12-01
Groundwater in South Texas is heavily relied on for human consumption and irrigation for food crops. Like most of the south west US, woody encroachment has altered the grassland ecosystems here too. While brush removal has been widely implemented in Texas with the objective of increasing groundwater recharge, the linkage between vegetation and groundwater recharge in South Texas is still unclear. Studies have been conducted to understand plant-root-water dynamics at the scale of plants. However, little work has been done to quantify the changes in soil water and deep percolation at the landscape scale. Modeling water flow through soil profiles can provide an estimate of the total water flowing into deep percolation. These models are especially powerful with parameterized and calibrated with long term soil water data. In this study we parameterize the HYDRUS soil water model using long term soil water data collected in Jim Wells County in South Texas. Soil water was measured at every 20 cm intervals up to a depth of 200 cm. The parameterized model will be used to simulate soil water dynamics under a variety of precipitation regimes ranging from well above normal to severe drought conditions. The results from the model will be compared with the changes in soil moisture profile observed in response to vegetation cover and treatments from a study in a similar. Comparative studies like this can be used to build new and strengthen existing hypotheses regarding deep percolation and the role of soil texture and vegetation in groundwater recharge.
Voltaggio, M; Spadoni, M; Sacchi, E; Sanam, R; Pujari, P R; Labhasetwar, P K
2015-06-15
The impact on local water resources due to fly ash produced in the Koradi and Khaperkheda thermal power plants (district of Nagpur, Maharashtra - India) and disposed in large ponds at the surface was assessed through the study of environmental variation of ratios of stable and unstable isotopes. Analyses of oxygen and hydrogen isotopes suggest scarce interaction between the water temporarily stored in the ponds and the groundwater in the study area. Data also highlight that the high salinity of groundwater measured in the polluted wells is not due to evaporation, but to subsequent infiltration of stream waters draining from the ponds to the local aquifer. (87)Sr/(86)Sr values, when associated with Sr/Ca ratios, demonstrate the dominant role of waste waters coming from tens of brick kilns surrounding the pond sulfate pollution. Uranium isotopic analyses clearly show evidence of the interaction between groundwater and aquifer rocks, and confirm again the low influence of ash ponds. A new conceptual model based on the study of the isotopes of radium is also proposed and used to estimate residence times of groundwater in the area. This model highlights that high salinity cannot be in any case attributed to a prolonged water-rock interaction, but is due to the influence of untreated waste water of domestic or brick kiln origin on the shallow and vulnerable aquifers. Copyright © 2015 Elsevier B.V. All rights reserved.
Nichols, William D.
1993-01-01
Evapotranspiration from bare soil and phreatophytes is a principal mechanism of groundwater discharge in arid and semiarid regions of the midwestern and western United States including the Great Basin. The imbalance between independent estimates of groundwater recharge from precipitation and of groundwater discharge based on estimates of groundwater evapotranspiration leads to large uncertainties in groundwater budgets. Few studies have addressed this problem. Energy budget micrometeorological field studies were conducted in a stand of sparse-canopy greasewood growing in an area of shallow groundwater in the western Great Basin during the summer of 1989. The data were used to calculate above-canopy fluxes of sensible and latent heat using the energy budget-Bowen ratio method. The calculated energy budget fluxes were used, with soil surface and plant canopy temperature measurements, to calibrate and apply a two-component, energy-combination model that partitions the energy and heat fluxes between bare soil and the canopy. This permitted the separation of evaporation from the soil and transpiration from greasewood. The calibrated model was used to estimate daily transpiration of groundwater by greasewood growing in an area with a depth to water of about 2 m. The daily rate of groundwater discharge by transpiration during July and August was estimated to be 2.4 mm. A period of 100 days for groundwater discharge at this rate was assumed to estimate an annual discharge of groundwater of 24 cm at the study site.
Effects of Groundwater Development on Uranium: Central Valley, California, USA
Jurgens, Bryant C.; Fram, Miranda S.; Belitz, Kenneth; Burow, Karen R.; Landon, Matthew K.
2009-01-01
Uranium (U) concentrations in groundwater in several parts of the eastern San Joaquin Valley, California, have exceeded federal and state drinking water standards during the last 20 years. The San Joaquin Valley is located within the Central Valley of California and is one of the most productive agricultural areas in the world. Increased irrigation and pumping associated with agricultural and urban development during the last 100 years have changed the chemistry and magnitude of groundwater recharge, and increased the rate of downward groundwater movement. Strong correlations between U and bicarbonate suggest that U is leached from shallow sediments by high bicarbonate water, consistent with findings of previous work in Modesto, California. Summer irrigation of crops in agricultural areas and, to lesser extent, of landscape plants and grasses in urban areas, has increased Pco2 concentrations in the soil zone and caused higher temperature and salinity of groundwater recharge. Coupled with groundwater pumping, this process, as evidenced by increasing bicarbonate concentrations in groundwater over the last 100 years, has caused shallow, young groundwater with high U concentrations to migrate to deeper parts of the groundwater system that are tapped by public-supply wells. Continued downward migration of U-affected groundwater and expansion of urban centers into agricultural areas will likely be associated with increased U concentrations in public-supply wells. The results from this study illustrate the potential longterm effects of groundwater development and irrigation-supported agriculture on water quality in arid and semiarid regions around the world.
U.S. Geological Survey ground-water studies in Missouri
Smith, B.J.
1993-01-01
The activities of the USGS Water Resources Division in Missouri are conducted by scientists, technicians, and support staff in offices in Rolla, Olivette, and Independence. During 1992, the USGS had cooperative or cost-sharing agreements with about 30 Federal, State, and local agencies involving 20 hydrologic investigations in Missouri; 12 of these investigations included studies of groundwater quantity and quality. Several examples of groundwater studies by the USGS that address specific groundwater issues in Missouri include the occurrence of pesticides, groundwater flow and quality in the Missouri River alluvium near Kansas City, groundwater flow in claypan soils, radioactive- and nitroaromatic-compound contami- nation at Weldon Spring, and hydrologic monitoring of a wetland complex. (USGS)
NASA Astrophysics Data System (ADS)
Wood, W. W.; Wood, W. W.
2001-05-01
Evaluation of ground-water supply in arid areas requires estimation of annual recharge. Traditional physical-based hydrologic estimates of ground-water recharge result in large uncertainties when applied in arid, mountainous environments because of infrequent, intense rainfall events, destruction of water-measuring structures associated with those events, and consequent short periods of hydrologic records. To avoid these problems and reduce the uncertainty of recharge estimates, a chloride mass-balance (CMB) approach was used to provide a time-integrated estimate. Seven basins exhibiting dry-stream beds (wadis) in the Asir and Hijaz Mountains, western Saudi Arabia, were selected to evaluate the method. Precipitation among the basins ranged from less than 70 mm/y to nearly 320 mm/y. Rain collected from 35 locations in these basins averaged 2.0 mg/L chloride. Ground water from 140 locations in the wadi alluvium averaged 200 mg/L chloride. This chloride concentration ratio of precipitation to ground water suggests that on average, approximately 1 percent of the rainfall is recharged, while the remainder is lost to evaporation. Ground-water recharge from precipitation in individual basins ranged from less than 1 to nearly 4 percent and was directly proportional to total precipitation. Independent calculations of recharge using Darcy's Law were consistent with these findings and are within the range typically found in other arid areas of the world. Development of ground water has lowered the water level beneath the wadis and provided more storage thus minimizing chloride loss from the basin by river discharge. Any loss of chloride from the basin results in an overestimate of the recharge flux by the chloride-mass balance approach. In well-constrained systems recharge in arid, mountainous areas where the mass of chloride entering and leaving the basin is known or can be reasonably estimated, the CMB approach provides a rapid, inexpensive method for estimating time-integrated ground-water recharge.
Soil, Water, Plants and Preferred Flow in All Directions: A Biosphere-2 Experiment
NASA Astrophysics Data System (ADS)
McDonnell, J.; Evaristo, J. A.; Kim, M.; Van Haren, J. L. M.; Pangle, L. A.; Harman, C. J.; Troch, P. A. A.
2016-12-01
Measuring, understanding and predicting preferential flow in the critical zone is impossibly difficult, but we must try. While past work has focused on specific features of preferential flow pathways and model parameterizations, the resultant effect of preferential flow is often difficult to detect because we do not know the boundary conditions of our flow domain. Here we take a holistic view of preferential flow at the ecosystem level. We present new results from the tropical rainforest biome at Biosphere 2. We test the null hypothesis that the ecohydrological system is well mixed and that water forming groundwater recharge and plant transpiration is from a common pool. Our specific research question is what is the nature of preferential flow and partitioning of groundwater recharge, soil water recharge, and transpiration water after rainfall events? We performed a 10-week drought experiment and then added 66 mm of labelled rainfall with 152‰ deuterium (D), distributed over four events (mean 16.5 mm per event). This was followed by a total of 87 mm of rainfall (-60‰ D) distributed over 13 events that were spaced every 2-3 days. Our results show that flow in all ecohydrological domains (soil water, groundwater recharge and plant transpiration) was preferential. With known boundary conditions, we found that groundwater recharge was 3-8 times younger ( 8 days) than transpired water (range 24-64 days). The "age" of transpired water showed strong dependence on species and was intimately linked to driving force (difference between soil matric potential and midday leaf water potential). These results suggest that preferential flow in the critical zone is one whereby transpiration is strongly species-dependent, and groundwater recharge is controlled by inherent subsurface heterogeneity. The marked difference in the ages associated with these two fluxes supports the concept of ecohydrological separation—in this case, in a `time-based' context.
Spadoni, M; Voltaggio, M; Sacchi, E; Sanam, R; Pujari, P R; Padmakar, C; Labhasetwar, P K; Wate, S R
2014-05-01
An increasing amount of fly ash from thermal power plants is produced in India every year. Its disposal is generally done in ponds after it is mixed together in suitable proportion of water to form a slurry. Fly ash from Koradi and Khaperkheda thermal power plants (Nagpur, Maharashtra) is commonly disposed in an area characterized by the presence of many small villages where the population uses the groundwater for drinking and domestic purposes. Here, the groundwater locally exceeds the concentration limits recommended by the Bureau of Indian Standards (BIS, 2005) and by the World Health Organization (WHO, 2008) for Mg(2+), Ca(2+), NO3(-), SO4(2-), Total Dissolved Solids (TDS) and for some minor elements like As, Mo, V and U. A new geological map of the study area has been prepared to understand the possible water-rock interactions. An extensive geochemical survey of groundwater, stream water and fly ash was also carried out to clarify the possible origin of the pollutants by discriminating between geogenic and anthropogenic sources and to assess the influence of the ash ponds on water quality. The analytical results suggest that a large part of the sulfates in the groundwater of the villages of Masada, Khairi and Kawatha originate from the infiltration of industrial water from tens of factories that mix fly ash with relatively high quantities of gypsum and lime for the production of bricks. In addition, the interaction with the relatively U-rich Gondwana units, like Talchir formation, is probably the cause of the high concentration of this element. Results showed how the relatively high concentrations of Mo, As, B and F in circulating waters are linked to the leaching from fly ash, also pointing out a direct spatial correlation between the concentration of fluorides in the groundwater and their closeness to the ash ponds. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jacobs, Katharine L.; Holway, James M.
Substantial progress has been made within central Arizona in moving towards a more sustainable water future, particularly in transitioning the urban demand from a primarily nonrenewable groundwater-based supply to increasing dependence on the Colorado River, Salt River and effluent. Management efforts include a wide range of regulatory and voluntary programs which have had mixed success. The Department of Water Resources has learned a number of key lessons throughout the years, and this paper attempts to establish the water management context and identify those lessons for the benefit of others who may want to evaluate alternative approaches to groundwater management. Themes to be discussed include evaluating water management approaches in a public policy context, the effectiveness of alternative management approaches and the relative merits of regulatory vs. nonregulatory efforts, and the importance of high-quality data in making management decisions. De nets progrès ont été faits dans le centre de l'Arizona pour aller vers une gestion plus durable de l'eau, en particulier en reportant la demande urbaine d'une alimentation basée sur l'eau souterraine primitivement non renouvelable sur une dépendance croissante des rivières Colorado et Salt et des effluents. Les efforts de gestion portent sur une large gamme de programmes de réglementation et d'actions volontaires qui ont réussi. Le Département des Ressources en Eau a appris un certain nombre de leçons clés au cours des années cet article tente d'établir le contexte de gestion de l'eau et d'identifier ces leçons pour le bénéfice de ceux qui cherchent à évaluer des approches alternatives de gestion de l'eau souterraine. Les thèmes à discuter portent sur l'évaluation des approches de gestion de l'eau dans un contexte de politique publique, l'efficacité d'approches alternatives de gestion et les mérites relatifs d'efforts de réglementation par rapport à une absence de réglementation, et l'importance de données de haute qualité dans la prise de décisions de gestion. Resumen Se ha logrado un progreso substancial en el centro de Arizona para conseguir un futuro más sustentable del agua, particularmente al trasladar la demanda urbana desde un suministro basado principalmente en aguas subterráneas no renovables hacia una mayor dependencia de las aguas superficiales de los ríos Colorado y Salado y de los efluentes de aguas depuradas. Los esfuerzos de gestión incluyen un amplio rango de programas legales y voluntarios que han tenido un éxito combinado. El Departamento de Recursos Hídricos ha aprendido diversas lecciones clave a lo largo de los años, y este artículo intenta establecer el contexto de la gestión del agua e identificar lo averiguado para beneficio de terceros que quieran evaluar enfoques alternativos para gestionar las aguas subterráneas. Entre los temas tratados, destaca la evaluación de los enfoques de gestión del agua en un contexto político público, la efectividad de enfoques alternativos de gestión y los méritos relativos de los esfuerzos regulativos y no regulativos, y la importancia de los datos de alta calidad para la toma de decisiones de gestión. Groundwater use in many areas of Arizona greatly exceeds the natural replenishment of the aquifer, so although a portion of the groundwater use is renewable, the majority is not.
Exploring the under-investigated “microbial dark matter” of drinking water treatment plants
Bruno, Antonia; Sandionigi, Anna; Rizzi, Ermanno; Bernasconi, Marzia; Vicario, Saverio; Galimberti, Andrea; Cocuzza, Clementina; Labra, Massimo; Casiraghi, Maurizio
2017-01-01
Scientists recently reported the unexpected detection of unknown or poorly studied bacterial diversity in groundwater. The ability to uncover this neglected biodiversity mainly derives from technical improvements, and the term “microbial dark matter” was used to group taxa poorly investigated and not necessarily monophyletic. We focused on such under-investigated microbial dark matter of drinking water treatment plant from groundwater, across carbon filters, to post-chlorination. We tackled this topic using an integrated approach where the efficacy of stringent water filtration (10000 MWCO) in recovering even the smallest environmental microorganisms was coupled with high-throughput DNA sequencing to depict an informative spectrum of the neglected microbial diversity. Our results revealed that the composition of bacterial communities varies across the plant system: Parcubacteria (OD1) superphylum is found mainly in treated water, while groundwater has the highest heterogeneity, encompassing non-OD1 candidate phyla (Microgenomates, Saccharibacteria, Dependentiae, OP3, OP1, BRC1, WS3). Carbon filters probably act as substrate for microorganism growth and contribute to seeding water downstream, since chlorination does not modify the incoming bacterial community. New questions arise about the role of microbial dark matter in drinking water. Indeed, our results suggest that these bacteria might play a central role in the microbial dynamics of drinking water. PMID:28290543
Exploring the under-investigated "microbial dark matter" of drinking water treatment plants.
Bruno, Antonia; Sandionigi, Anna; Rizzi, Ermanno; Bernasconi, Marzia; Vicario, Saverio; Galimberti, Andrea; Cocuzza, Clementina; Labra, Massimo; Casiraghi, Maurizio
2017-03-14
Scientists recently reported the unexpected detection of unknown or poorly studied bacterial diversity in groundwater. The ability to uncover this neglected biodiversity mainly derives from technical improvements, and the term "microbial dark matter" was used to group taxa poorly investigated and not necessarily monophyletic. We focused on such under-investigated microbial dark matter of drinking water treatment plant from groundwater, across carbon filters, to post-chlorination. We tackled this topic using an integrated approach where the efficacy of stringent water filtration (10000 MWCO) in recovering even the smallest environmental microorganisms was coupled with high-throughput DNA sequencing to depict an informative spectrum of the neglected microbial diversity. Our results revealed that the composition of bacterial communities varies across the plant system: Parcubacteria (OD1) superphylum is found mainly in treated water, while groundwater has the highest heterogeneity, encompassing non-OD1 candidate phyla (Microgenomates, Saccharibacteria, Dependentiae, OP3, OP1, BRC1, WS3). Carbon filters probably act as substrate for microorganism growth and contribute to seeding water downstream, since chlorination does not modify the incoming bacterial community. New questions arise about the role of microbial dark matter in drinking water. Indeed, our results suggest that these bacteria might play a central role in the microbial dynamics of drinking water.
Hydrologic regulation of plant rooting depth
Miguez-Macho, Gonzalo; Jobbágy, Esteban G.; Jackson, Robert B.; Otero-Casal, Carlos
2017-01-01
Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∼1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant–water feedback pathway that may be critical to understanding plant-mediated global change. PMID:28923923
Pinto, Edgar; Fidalgo, Fernanda; Teixeira, Jorge; Aguiar, Ana A; Ferreira, Isabel M P L V O
2014-04-01
The variation of nitrate reductase (NR), glutamine synthetase (GS) and N content in lettuce was evaluated at 5 stages of lettuce growth. Soil physicochemical properties and its N content were also assessed to elucidate the soil-to-plant transfer of inorganic N and potential leaching to groundwater. A decrease of NR activity and an increase of NO3(-) and N-Kjeldahl content in lettuces were observed during plant growth, whereas GS activity and NH4(+) increased during the first few weeks of lettuce growth and then decreased. Although the temporal variation was similar in lettuces grown in different soils, quantitative differences were observed, indicating that high NO3(-) content in soil caused a higher NO3(-) accumulation in lettuce despite the higher NR activity during the initial stage of plant growth. Higher levels of NO3(-) and NH4(+) were correlated with higher levels of N-Kjeldahl in lettuce suggesting a positive effect of these N species in the biosynthesis of organic forms of N. Soil physicochemical properties influenced the mobility of inorganic N within the groundwater-soil-plant system. Sandy soils with low OM content allowed NO3(-) leaching, which was confirmed by higher NO3(-) levels in groundwater. Therefore, lettuces grown in those soils presented lower N content and the inputs of N to the environment were higher. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
18 CFR 806.12 - Constant-rate aquifer testing.
Code of Federal Regulations, 2014 CFR
2014-04-01
... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in accordance... groundwater availability analysis to determine the availability of water during a 1-in-10-year recurrence...
18 CFR 806.12 - Constant-rate aquifer testing.
Code of Federal Regulations, 2012 CFR
2012-04-01
... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in accordance... groundwater availability analysis to determine the availability of water during a 1-in-10-year recurrence...
18 CFR 806.12 - Constant-rate aquifer testing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in accordance... groundwater availability analysis to determine the availability of water during a 1-in-10-year recurrence...
18 CFR 806.12 - Constant-rate aquifer testing.
Code of Federal Regulations, 2013 CFR
2013-04-01
... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in accordance... groundwater availability analysis to determine the availability of water during a 1-in-10-year recurrence...
Harkness, Jennifer S; Darrah, Thomas H; Moore, Myles T; Whyte, Colin J; Mathewson, Paul D; Cook, Tyson; Vengosh, Avner
2017-11-07
Molybdenum (Mo) is an essential trace nutrient but has negative health effects at high concentrations. Groundwater typically has low Mo (<2 μg/L), and elevated levels are associated with anthropogenic contamination, although geogenic sources have also been reported. Coal combustion residues (CCRs) are enriched in Mo, and thus present a potential anthropogenic contamination source. Here, we use diagnostic geochemical tracers combined with groundwater residence time indicators to investigate the sources of Mo in drinking-water wells from shallow aquifers in a region of widespread CCR disposal in southeastern Wisconsin. Samples from drinking-water wells were collected in areas near and away from known CCR disposal sites, and analyzed for Mo and inorganic geochemistry indicators, including boron and strontium isotope ratios, along with groundwater tritium-helium and radiogenic 4 He in-growth age-dating techniques. Mo concentrations ranged from <1 to 149 μg/L. Concentrations exceeding the U.S. Environmental Protection Agency health advisory of 40 μg/L were found in deeper, older groundwater (mean residence time >300 y). The B (δ 11 B = 22.9 ± 3.5‰) and Sr ( 87 Sr/ 86 Sr = 0.70923 ± 0.00024) isotope ratios were not consistent with the expected isotope fingerprints of CCRs, but rather mimic the compositions of local lithologies. The isotope signatures combined with mean groundwater residence times of more than 300 years for groundwater with high Mo concentrations support a geogenic source of Mo to the groundwater, rather than CCR-induced contamination. This study demonstrates the utility of a multi-isotope approach to distinguish between fossil fuel-related and natural sources of groundwater contamination.
Survey of rural, private wells. Statistical design
Mehnert, Edward; Schock, Susan C.; ,
1991-01-01
Half of Illinois' 38 million acres were planted in corn and soybeans in 1988. On the 19 million acres planted in corn and soybeans, approximately 1 million tons of nitrogen fertilizer and 50 million pounds of pesticides were applied. Because groundwater is the water supply for over 90 percent of rural Illinois, the occurrence of agricultural chemicals in groundwater in Illinois is of interest to the agricultural community, the public, and regulatory agencies. The occurrence of agricultural chemicals in groundwater is well documented. However, the extent of this contamination still needs to be defined. This can be done by randomly sampling wells across a geographic area. Key elements of a random, water-well sampling program for regional groundwater quality include the overall statistical design of the program, definition of the sample population, selection of wells to be sampled, and analysis of survey results. These elements must be consistent with the purpose for conducting the program; otherwise, the program will not provide the desired information. The need to carefully design and conduct a sampling program becomes readily apparent when one considers the high cost of collecting and analyzing a sample. For a random sampling program conducted in Illinois, the key elements, as well as the limitations imposed by available information, are described.
Sabol, M.A.; Turney, G.L.; Ryals, G.N.
1988-01-01
Gas Works Park, in Seattle, Washington, is located at the site of an abandon gasification plant on Lake Union. Wastes deposited during 50 years of plant operations (1906-1956) have extended the shore line 100 ft and left the park soil contaminated with a number of hazardous material. Soil contaminants include polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls, pesticides, volatile organic compounds, cyanide, and metals. PAHs and metals have been detected in Lake Union sediments. Maximum total PAH concentrations exceeded 100 million micrograms/kilogram in some places in the soils of the park at 6-inch depths and in some lake sediments. Other contaminants present are much lower in concentrations. The park is on glacial drift overlain by gasification waste materials and clean fill. Waste materials include sand and gravels, mixed with lampblack, oil, bricks, and other industrial wastes. Groundwater flows through the soils and waste toward Lake Union. Vertical groundwater movement is uncertain, but is assumed to be upward near Lake Union. Concentrations of most soil contaminants are probably low in the groundwater and in Lake Union due to the low solubilities and high sorptive characteristics of these contaminants. However, no water quality data are available to confirm this premise. (USGS)
The aftermath of the Fukushima nuclear accident: Measures to contain groundwater contamination.
Gallardo, Adrian H; Marui, Atsunao
2016-03-15
Several measures are being implemented to control groundwater contamination at the Fukushima Daiichi Nuclear Plant. This paper presents an overview of work undertaken to contain the spread of radionuclides, and to mitigate releases to the ocean via hydrological pathways. As a first response, contaminated water is being held in tanks while awaiting treatment. Limited storage capacity and the risk of leakage make the measure unsustainable in the long term. Thus, an impervious barrier has been combined with a drain system to minimize the discharge of groundwater offshore. Caesium in seawater at the plant port has largely dropped, although some elevated concentrations are occasionally recorded. Moreover, a dissimilar decline of the radioactivity in fish could indicate additional sources of radionuclides intake. An underground frozen shield is also being constructed around the reactors. This structure would reduce inflows to the reactors and limit the interaction between fresh and contaminated waters. Additional strategies include groundwater abstraction and paving of surfaces to lower water levels and further restrict the mobilisation of radionuclides. Technical difficulties and public distrust pose an unprecedented challenge to the site remediation. Nevertheless, the knowledge acquired during the initial work offers opportunities for better planning and more rigorous decisions in the future. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Huming; Radunz, Alfons; He, Ping; Schmid, Georg H
2002-01-01
Cultivation of the climbing plant Dioscorea zingiberensis at a light intensity of 100 microE. m(-2) sec(-1) yields three different phenotypes. Most of the plants grow as green phenotype (DzW). Two further forms differ in their leaf shape and leaf color. Whereas one type exhibits a more pointed leaf shape in the upper part of the plant with leaves appearing yellow-green with white stripes or hatchings (DzY), the other type shows a more round leaf shape with an intensive yellow-green color (DzT). These three plant types differ in their diosgenin content not only in their rhizomes but also in the chloroplasts. In the rhizomes the diosgenin content in the green form is 0.4%, in the DzY-form 0.6% and in the DzT-form even 1.3% of the dry weight. Furthermore, even in chloroplasts of the green DzW-form and of the DzY-form the presence of diosgenin was demonstrated. It occurs there as the epimeric form yamogenin. The DzT-form contains no yamogenin in its chloroplasts. Besides this, these plant forms differ in their chlorophyll and carotenoid content and in their fatty acid composition. Carotenoids increase from 1.3% of total lipids in the green phenotype to 3.3% in the DzY- and to 4.2% in the DzT-form. This increase refers to beta-carotene as well as to lutein and neoxanthin. The chlorophyll content in the green type is 8.1% and lower in the DzY-form with 7%. The highest chlorophyll content is found in the DzT-form with 12%. Fatty acids in the DzY-form and in the DzT-form have a more unsaturated character than in the green phenotype. The content of the monoenoic acid trans-hexadecenoic acid is considerably lower in both phenotypes when compared to the green phenotype. In both phenotypes the quantity of fatty acids with 16 carbon atoms is reduced, whereas fatty acids with 18 carbon atoms occur in higher concentration. Cultivation of the green phenotype (DzW) at the three light intensities of 10, 100 and 270 microE x m(-2) x sec(-1) leads to changes of the diosgenin content in rhizomes, to an increase of leaf dry weight, to a reduction of the grana structure in chloroplasts and therewith to a decrease of the chlorophyll content. The total lipid content is highest under the cultivation at 100 microE x m(-2) x sec(-1) and reduced by 30% at 10 and 270 microE x m(-2) x sec(-1). Carotenoids, however, are highest in shaded plants (10 microE x m(-2) x sec(-1)) and plants grown under high light conditions of 270 microE x m(-2) x sec(-1). At 100 microE x m(-2) x sec(-1) a decrease of saturated fatty acids is observed in comparison to plants grown under shaded conditions.
NASA Astrophysics Data System (ADS)
Kaown, Dugin; Koh, Eun-Hee; Mayer, Bernhard; Kim, Heejung; Park, Dong Kyu; Park, Byeong-Hak; Lee, Kang-Kun
2018-01-01
The extent of denitrification in a small agricultural area near a river in Yangpyeong, South Korea, was determined using multiple isotopes, groundwater age, and physicochemical data for groundwater. The shallow groundwater at one monitoring site had high concentrations of NO3-N (74-83 mg L-1). The δ15N-NO3 values for groundwater in the study area ranged between +9.1 and +24.6‰ in June 2014 and +12.2 to +21.6‰ in October 2014. High δ15N-NO3 values (+10.7 to +12.5‰) in both sampling periods indicated that the high concentrations of nitrate in the groundwater originated from application of organic fertilizers and manure. In the northern part of the study area, some groundwater samples showed elevated δ15N-NO3 and δ18O-NO3 values, which suggest that nitrate was removed from the groundwater via denitrification, with N isotope enrichment factors ranging between -4.8 and -7.9‰ and O isotope enrichment factors varying between -3.8 and -4.9‰. Similar δD and δ18O values of the surface water and groundwater in the south appear to indicate that groundwater in that area was affected by surface-water infiltration. The mean residence times (MRTs) of groundwater showed younger ages in the south (10-20 years) than in the north (20-30 years). Hence, it was concluded that denitrification processes under anaerobic conditions with longer groundwater MRT in the northern part of the study area removed considerable amounts of nitrate. This study demonstrates that multi-isotope data combined with physicochemical data and age-dating information can be effectively applied to characterize nitrate contaminant sources and attenuation processes.
Classroom Activities to Make Aquifers Transparent
NASA Astrophysics Data System (ADS)
Coughlin, J. P.; Mays, D. C.
2016-12-01
Many studies have shown that in-class hands-on activities help K-12 students gain a deeper conceptual understanding for the subject matter. With funding from the National Science Foundation, the University of Colorado Denver is working to increase the availability of groundwater-related hands-on activities in TeachEngineering, a peer-reviewed online database of searchable lesson plans for use by K-12 teachers and other educators. In this presentation, we would like to present and solicit feedback on groundwater-related hands-on demonstrations such as quicksand, infiltration into porous pavement, or using refractive index matching to render transparent porous media that allow lasers to measure flow within model groundwater aquifers.
Holloway, Owen G.; Waddell, Jonathan P.
2008-01-01
A borehole straddle packer was developed and tested by the U.S. Geological Survey to characterize the vertical distribution of contaminants, head, and hydraulic properties in open-borehole wells as part of an ongoing investigation of ground-water contamination at U.S. Air Force Plant 6 (AFP6) in Marietta, Georgia. To better understand contaminant fate and transport in a crystalline bedrock setting and to support remedial activities at AFP6, numerous wells have been constructed that include long open-hole intervals in the crystalline bedrock. These wells can include several discontinuities that produce water, which may contain contaminants. Because of the complexity of ground-water flow and contaminant movement in the crystalline bedrock, it is important to characterize the hydraulic and water-quality characteristics of discrete intervals in these wells. The straddle packer facilitates ground-water sampling and hydraulic testing of discrete intervals, and delivery of fluids including tracer suites and remedial agents into these discontinuities. The straddle packer consists of two inflatable packers, a dual-pump system, a pressure-sensing system, and an aqueous injection system. Tests were conducted to assess the accuracy of the pressure-sensing systems, and water samples were collected for analysis of volatile organic compound (VOCs) concentrations. Pressure-transducer readings matched computed water-column height, with a coefficient of determination of greater than 0.99. The straddle packer incorporates both an air-driven piston pump and a variable-frequency, electronic, submersible pump. Only slight differences were observed between VOC concentrations in samples collected using the two different types of sampling pumps during two sampling events in July and August 2005. A test conducted to assess the effect of stagnation on VOC concentrations in water trapped in the system's pump-tubing reel showed that concentrations were not affected. A comparison was conducted to assess differences between three water-sampling methods - collecting samples from the well by pumping a packer-isolated zone using a submersible pump, by using a grab sampler, and by using a passive diffusion sampler. Concentrations of tetrachloroethylene, trichloroethylene and 1,2-dichloropropane were greatest for samples collected using the submersible pump in the packed-isolated interval, suggesting that the straddle packer yielded the least dilute sample.
Water flow and solute transport in floating fen root mats
NASA Astrophysics Data System (ADS)
Stofberg, Sija F.; EATM van der Zee, Sjoerd
2015-04-01
Floating fens are valuable wetlands, found in North-Western Europe, that are formed by floating root mats when old turf ponds are colonized by plants. These terrestrialization ecosystems are known for their biodiversity and the presence of rare plant species, and the root mats reveal different vegetation zones at a small scale. The vegetation zones are a result of strong gradients in abiotic conditions, including groundwater dynamics, nutrients and pH. To prevent irreversible drought effects such as land subsidence and mineralization of peat, water management involves import of water from elsewhere to maintain constant surface water levels. Imported water may have elevated levels of salinity during dry summers, and salt exposure may threaten the vegetation. To assess the risk of exposure of the rare plant species to salinity, the hydrology of such root mats must be understood. Physical properties of root mats have scarcely been investigated. We have measured soil characteristics, hydraulic conductivity, vertical root mat movement and groundwater dynamics in a floating root mat in the nature reserve Nieuwkoopse Plassen, in the Netherlands. The root mat mostly consists of roots and organic material, in which the soil has a high saturated water content, and strongly varies in its stage of decomposition. We have found a distinct negative correlation between degree of decomposition and hydraulic conductivity, similar to observations for bogs in the literature. Our results show that the relatively young, thin edge of the root mat that colonizes the surface water has a high hydraulic conductivity and floats in the surface water, resulting in very small groundwater fluctuations within the root mat. The older part of the root mat, that is connected to the deeper peat layers is hydrologically more isolated and the material has a lower conductivity. Here, the groundwater fluctuates strongly with atmospheric forcing. The zones of hydraulic properties and vegetation, appear to be very similar and likely functionally related. Our experimental field data were used for modelling water flow and solute transport in floating fens, using HYDRUS 2D. Fluctuations of surface water and root mat, as well as geometry and unsaturated zone parameters can have a major influence on groundwater fluctuations and the exchange between rain and surface water and the water in the root mats. In combination with the duration of salt pulses in surface water, and sensitivity of fen plants to salinity (Stofberg et al. 2014, submitted), risks for rare plants can be anticipated.
Ahkola, Heidi; Tuominen, Sirkku; Karlsson, Sanja; Perkola, Noora; Huttula, Timo; Saraperä, Sami; Artimo, Aki; Korpiharju, Taina; Äystö, Lauri; Fjäder, Päivi; Assmuth, Timo; Rosendahl, Kirsi; Nysten, Taina
2017-12-01
Anthropogenic chemicals in surface water and groundwater cause concern especially when the water is used in drinking water production. Due to their continuous release or spill-over at waste water treatment plants, active pharmaceutical ingredients (APIs) are constantly present in aquatic environment and despite their low concentrations, APIs can still cause effects on the organisms. In the present study, Chemcatcher passive sampling was applied in surface water, surface water intake site, and groundwater observation wells to estimate whether the selected APIs are able to end up in drinking water supply through an artificial groundwater recharge system. The API concentrations measured in conventional wastewater, surface water, and groundwater grab samples were assessed with the results obtained with passive samplers. Out of the 25 APIs studied with passive sampling, four were observed in groundwater and 21 in surface water. This suggests that many anthropogenic APIs released to waste water proceed downstream and can be detectable in groundwater recharge. Chemcatcher passive samplers have previously been used in monitoring several harmful chemicals in surface and wastewaters, but the path of chemicals to groundwater has not been studied. This study provides novel information on the suitability of the Chemcatcher passive samplers for detecting APIs in groundwater wells.
NASA Astrophysics Data System (ADS)
Dötschel, Christian; Meyer, Tammo; Schafmeister, Maria-Theresia; Weise, Stephan M.
2014-05-01
Freshwater bodies on islands serve as precious drinking water supply. The delicate equilibrium between ocean and groundwater with respect to salinity in the coastal dune zone of Hiddensee Island preserves a unique plant diversity in the dune valley heath. Scope of the investigation is to understand the seasonal dynamic of groundwater flow in the freshwater lense by means of geochemical and isotopic analyses. The Island Hiddensee is situated off the western coast of Germany's biggest island Rügen in the Baltic Sea. It extends about 20 km in N-S direction with an average width of a few hundred, at maximum 2 km. The average salinity of the Baltic Sea is about 14 permil, however, at the island of Hiddensee a salinity of app. 9 permil, i.e. brackish water quality is observed. Two piezometer transects (North NT and South ST), each of 500 m length and eight shallow wells were constructed app. 1 km apart from each other in the dunes, perpendicular to the coastline. During two sampling campaigns in July 2012 and April 2013 the isotopes δ2H, δ18O, tritium and δ13CTIC were measured. In 2013 selected hydrochemical variables, e.g. sulphate and nitrate were determined. Additional hydraulic head measurements were performed in November 2012. The investigated phreatic aquifer is about 7 to 8 m thick and consists of medium sand. The aquifer bottom is built by low permeable till silty, clayey sediments and mud. The ground level forms moderate dunes and valleys with heights between 1 and 3 m a.s.l.. The depth to groundwater varies spatially and seasonally between 1.77 m (August 2012) and -0.12 m (April 2013). The hydraulic gradient predominantly slopes westwards towards the sea (1.7 to 2.5 permil), however, the groundwater divide shifts up to 450 m towards the coast (November 2012). Depending on the hydraulic gradient and hydraulic conductivity, respectively, the average flow velocity was determined as 8 to20 cm/d. The groundwater samples of the southern transect (ST) don't show any evidence for seawater influence, however, the northern transect (NT) shows decreasing chloride concentrations with increasing distance from the coast, which indicates minor seawater contribution of less than 1 percent. The tritium content of both sampling campaigns suggests groundwater ages of less than 6 years. Although based on two campaigns only, even seasonal fluctuations can be implied. These fluctuations are further substantiated by δ2H- and δ18O-variations, which are surprisingly pronounced considering the small extent of the investigation area. Sulphate concentrations in at NT are distinctively higher (3.8 to 8.6 mg/L) than those at ST (0.8 to 3.5 mg/L), except for one piezometer close to the groundwater divide which shows a sulphate concentration of 13 mg/L. A close correlation between sulphate and δ13C of TIC at NT suggests small scale biogeochemical processes. This finding is further supported by similar spatial distribution of nitrate. The first results suggest a surprisingly high spatial and seasonal variability of hydrogeochemical processes which in turn may significantly affect the plant diversity and its equilibrium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.; Environmental Science Division
In 1992-1993, Argonne National Laboratory investigated potential carbon tetrachloride contamination that might be linked to the former grain storage facility operated by the Commodity Credit Corporation (CCC) of the U.S. Department of Agriculture (USDA) at Utica, Nebraska. These initial studies identified carbon tetrachloride in a plume of contaminated groundwater, extending approximately 3,500 ft southeastward from the former CCC/USDA facility, within a shallow upper aquifer that had been used previously as a municipal water source by the town (Figure 1.1). A deeper aquifer used as the current municipal water source was found to be free of carbon tetrachloride contamination. Although themore » shallow aquifer was no longer being used as a source of drinking water at Utica, additional studies indicated that the carbon tetrachloride could pose an unacceptable health threat to potential future residents who might install private wells along the expected downgradient migration pathway of the plume. On the basis of these findings, corrective action was recommended to decrease the carbon tetrachloride concentrations in the upper aquifer to acceptable levels (Argonne 1993a,b, 1995). Initial discussions with the Utica village board indicated that any restoration strategies involving nonbeneficial discharge of treated groundwater in the immediate vicinity of Utica would be unacceptable to the town. To address this concern, the CCC/USDA and Argonne, in cooperation with multiple federal and state regulatory and environmental agencies (Table 1.1) proposed a treatment strategy for the Utica groundwater employing groundwater extraction coupled with the seasonal use of agricultural spray irrigation equipment to simultaneously (1) remove carbon tetrachloride from the groundwater (by volatilization to the atmosphere) and (2) discharge the treated groundwater to enhance the development of wetlands in the North Lake Basin Wildlife Management Area, just north of the town (Argonne 2000). To develop this treatment approach, additional groundwater sampling was conducted to update the distribution of carbon tetrachloride in groundwater identified in the preliminary studies in 1992-1993. In March 1998, detailed mapping of the carbon tetrachloride plume was performed by using the Argonne cone penetrometer (CPT) vehicle to collect groundwater samples for analyses for volatile organic compounds (VOCs) at 13 locations (PS01-PS09, PS12, PS16, PS17, PS19; Figure 1.2). The samples were collected in vertical profiles through the aquifer, at 10-ft intervals. The results of this 1998 study (Table 1.2) demonstrated that the three-dimensional distribution of carbon tetrachloride in the aquifer is complex, with multiple 'hot spots' occurring in the plume at various depths and distances along its length (Argonne 2000). In October 2002, the CCC/USDA requested that Argonne perform targeted groundwater sampling at Utica to document the migration of the carbon tetrachloride plume since the 1998 sampling event. In February 2003, vertical-profile groundwater sampling for VOCs analyses was conducted at 8 selected locations (PS01, PS04-PS07, PS12, PS19, PS20; Figure 1.2 and Table 1.3). The lateral and vertical configuration of the carbon tetrachloride plume, as identified in the 2003 study (Argonne 2003), is illustrated in Figures 1.3-1.7. On the basis of the 2003 groundwater sampling results, a remedial system employing four extraction wells (GWEX 1-GWEX 4), with groundwater treatment by spray irrigation and conventional air stripping, was implemented at Utica, with the concurrence of the CCC/USDA and the agencies identified in Table 1.1. The principal components of the Utica system (shown in Figure 1.8) are described briefly in Section 1.2. Operation of well GWEX4 and the associated air stripper began on October 29, 2004, and routine operation of wells GWEX1-GWEX3 and the spray irrigation treatment units began on November 22, 2004.« less
NASA Astrophysics Data System (ADS)
Booth, E. G.; Zipper, S. C.; Loheide, S. P.; Kucharik, C. J.
2012-12-01
Groundwater recharge is typically viewed as a beneficial ecosystem service as it relates to replenishing groundwater supplies for human use and groundwater-dependent ecosystems that have been diminished due to pumping. However, groundwater flooding - a condition caused by increased groundwater recharge - can cause damages to infrastructure and agricultural crops as elevated water tables lead to surface flooding and oxygen stress for unadapted plants such as corn. The Yahara River watershed - an urbanizing, agricultural watershed in south-central Wisconsin - is an exemplar for such disparate views of recharge. The basin has experienced a significantly increasing trend in annual precipitation since 1930 and groundwater flooding has been especially pervasive in the last decade in the northern rural part of the basin. Agricultural productivity has declined in areas affected by groundwater flooding. At the same time, the expansion of the Madison metropolitan area has led to increased groundwater pumping, more variable baseflows, and likely decreased flow to urban wetlands. Infiltration practices on new developments are required through local municipal ordinances to promote groundwater recharge in urban areas and help offset the effects of pumping. A comprehensive analysis of ecosystem services - which includes provisioning services such as freshwater supply and crop production and regulating services such as flood regulation - must take into account the differential impacts of recharge.
Yamamoto, K; Oda, Y; Haseda, A; Fujito, S; Mikami, T; Onodera, Y
2014-01-01
Spinach (Spinacia oleracea L.) is widely known to be dioecious. However, monoecious plants can also occur in this species. Sex expression in dioecious spinach plants is controlled by a single gene pair termed X and Y. Our previous study showed that a single, incompletely dominant gene, which controls the monoecious condition in spinach line 03–336, should be allelic or linked to X/Y. Here, we developed 19 AFLP markers closely linked to the monoecious gene. The AFLP markers were mapped to a 38.2-cM chromosomal region that included the monoecious gene, which is bracketed between flanking markers with a distance of 7.1 cM. The four AFLP markers developed in our studies were converted into sequence-characterized amplified region (SCAR) markers, which are linked to both the monoecious gene and Y and are common to both populations segregating for the genes. Linkage analysis using the SCAR markers suggested that the monoecious gene (M) and Y are located in different intervals, between different marker pairs. Analysis of populations segregating for both M and Y also directly demonstrates linkage of the genes at a distance of ∼12 cM. The data presented in this study may be useful for breeding dioecious and highly male monoecious lines utilized as the pollen parents for hybrid seed production, as well as for studies of the evolutionary history of sexual systems in this species, and can provide a molecular basis for positional cloning of the sex-determining genes. PMID:24169648
Zhang, Bo; Gao, Xiaopeng; Li, Lei; Lu, Yan; Shareef, Muhammad; Huang, Caibian; Liu, Guojun; Gui, Dongwei; Zeng, Fanjiang
2018-01-01
Ecological stoichiometry is an important aspect in the analysis of the changes in ecological system composition, structure, and function and understanding of plant adaptation in habitats. Leaf carbon (C), nitrogen (N), and phosphorus (P) concentrations in desert phreatophytes can be affected by different depths of groundwater through its effect on the adsorption and utilization of nutrient and plant biomass. We examined the biomass, soil organic C, available (mineral) N, and available P, and leaf C, N, and P concentrations of Alhagi sparsifolia grown at varying groundwater depths of 2.5, 4.5, and 11.0 m in 2015 and 2016 growing seasons in a desert-oasis ecotone in northwest China. The biomass of A. sparsifolia and the C, N, and P concentrations in soil and A. sparsifolia showed different responses to various groundwater depths. The leaf P concentration of A. sparsifolia was lower at 4.5 m than at 2.5 and 11.0 m likely because of a biomass dilution effect. By contrast, leaf C and N concentrations were generally unaffected by groundwater depth, thereby confirming that C and N accumulations in A. sparsifolia were predominantly determined by C fixation through the photosynthesis and biological fixation of atmospheric N 2 , respectively. Soil C, N, and P concentrations at 4.5 m were significantly lower than those at 11.0 m. Leaf P concentration was significantly and positively correlated with soil N concentration at all of the groundwater depths. The C:N and C:P mass ratios of A. sparsifolia at 4.5 m were higher than those at the other groundwater depths, suggesting a defensive life history strategy. Conversely, A. sparsifolia likely adopted a competitive strategy at 2.5 and 11.0 m as indicated by the low C:N and C:P mass ratios. To our knowledge, this study is the first to elucidate the variation in the C, N, and P stoichiometry of a desert phreatophyte at different groundwater depths in an arid ecosystem.
Zhang, Bo; Gao, Xiaopeng; Li, Lei; Lu, Yan; Shareef, Muhammad; Huang, Caibian; Liu, Guojun; Gui, Dongwei; Zeng, Fanjiang
2018-01-01
Ecological stoichiometry is an important aspect in the analysis of the changes in ecological system composition, structure, and function and understanding of plant adaptation in habitats. Leaf carbon (C), nitrogen (N), and phosphorus (P) concentrations in desert phreatophytes can be affected by different depths of groundwater through its effect on the adsorption and utilization of nutrient and plant biomass. We examined the biomass, soil organic C, available (mineral) N, and available P, and leaf C, N, and P concentrations of Alhagi sparsifolia grown at varying groundwater depths of 2.5, 4.5, and 11.0 m in 2015 and 2016 growing seasons in a desert-oasis ecotone in northwest China. The biomass of A. sparsifolia and the C, N, and P concentrations in soil and A. sparsifolia showed different responses to various groundwater depths. The leaf P concentration of A. sparsifolia was lower at 4.5 m than at 2.5 and 11.0 m likely because of a biomass dilution effect. By contrast, leaf C and N concentrations were generally unaffected by groundwater depth, thereby confirming that C and N accumulations in A. sparsifolia were predominantly determined by C fixation through the photosynthesis and biological fixation of atmospheric N2, respectively. Soil C, N, and P concentrations at 4.5 m were significantly lower than those at 11.0 m. Leaf P concentration was significantly and positively correlated with soil N concentration at all of the groundwater depths. The C:N and C:P mass ratios of A. sparsifolia at 4.5 m were higher than those at the other groundwater depths, suggesting a defensive life history strategy. Conversely, A. sparsifolia likely adopted a competitive strategy at 2.5 and 11.0 m as indicated by the low C:N and C:P mass ratios. To our knowledge, this study is the first to elucidate the variation in the C, N, and P stoichiometry of a desert phreatophyte at different groundwater depths in an arid ecosystem. PMID:29599794
NASA Astrophysics Data System (ADS)
Richter, Doreen; Massmann, Gudrun; Taute, Thomas; Duennbier, Uwe
2009-05-01
The drinking water production of a drinking water treatment plant in Berlin is affected by ambient contaminated groundwater. The three organic compounds para-toluenesulfonamide (p-TSA), ortho-toluenesulfonamide (o-TSA) and benzenesulfonamide (BSA) were identified in the catchment area of this plant. The groundwater pollution is a result of former sewage farm irrigation in the area, operating for almost 70 years until the 1980s. The distribution of the sulfonamides in the anoxic groundwater was investigated, and a large number of observation and production wells were sampled for this purpose. The contaminant plume is 25 m * 3000 m * 2000 m (depth, length, width) in size. The high concentrations of p-TSA, o-TSA and BSA in the groundwater show that the sulfonamides persist over decades in an anoxic aquifer environment. Groundwater quality assessment revealed that elevated concentrations of the analytes can be expected in the abstraction well galleries in the future. Therefore, sulfonamides should periodically be monitored in the drinking water (maximum allowed concentration of 0.30 µg/L of p-TSA and for o-TSA and BSA, a limit of 0.10 µg/L for unknown substances applies). Because of the widespread application and the persistence of the sulfonamides under anoxic conditions, our local investigations suggest that the substances may generally be present in groundwater under the influence of sewage irrigation. Incubation experiments were conducted under in situ hydrostatic pressure to study the behaviour of these trace organic compounds under different redox conditions (oxic and anoxic). Groundwater sampling equipment was either sterilised or not sterilised in order to distinguish between microbiological processes occurring in the aquifer and those representing sampling and storage artefacts (incubation experiments). Results showed that the addition of oxygen to the anoxic groundwater facilitates p-TSA and o-TSA degradation. Hence, while the substances are persistent under anoxic conditions, they are more degradable in the presence of oxygen. Results also illustrate that maintaining anoxic conditions or applying appropriate preservation techniques is necessary to ensure accurate analysis.
Ground-Water Recharge in Minnesota
Delin, G.N.; Falteisek, J.D.
2007-01-01
'Ground-water recharge' broadly describes the addition of water to the ground-water system. Most water recharging the ground-water system moves relatively rapidly to surface-water bodies and sustains streamflow, lake levels, and wetlands. Over the long term, recharge is generally balanced by discharge to surface waters, to plants, and to deeper parts of the ground-water system. However, this balance can be altered locally as a result of pumping, impervious surfaces, land use, or climate changes that could result in increased or decreased recharge. * Recharge rates to unconfined aquifers in Minnesota typically are about 20-25 percent of precipitation. * Ground-water recharge is least (0-2 inches per year) in the western and northwestern parts of the State and increases to greater than 6 inches per year in the central and eastern parts of the State. * Water-level measurement frequency is important in estimating recharge. Measurements made less frequently than about once per week resulted in as much as a 48 percent underestimation of recharge compared with estimates based on an hourly measurement frequency. * High-quality, long-term, continuous hydrologic and climatic data are important in estimating recharge rates.
Can Canals Effectively Replace Groundwater Irrigation in Over-exploited Regions in India?
NASA Astrophysics Data System (ADS)
Jain, M.; Fishman, R.; Mondal, P.; Galford, G. L.; Bhattarai, N.; Naeem, S.; DeFries, R. S.
2017-12-01
We use high-resolution data on irrigation and cropping intensity across India to empirically estimate the impacts of losing access to groundwater irrigation in regions with critically exploited aquifers. India is the largest consumer of groundwater globally and is facing severe groundwater depletion. Canals are being promoted as an alternate irrigation source, yet few studies have quantified the effects that this transition may have on agricultural production. Our results suggest that farmers will be 50% less likely to plant a winter crop, have 20% less cropped area, and have cropped areas that are increasingly sensitive to rainfall variability when switching to canal irrigation. We estimate that national winter cropped area will decrease by approximately 13% if farmers lose access to groundwater irrigation in critically over-exploited regions, and 6% if farmers in these regions switch to canal irrigation. These results suggest that groundwater and canal irrigation are not substitutable, and farmers may have to switch to less water intensive crops or improve water use efficiency to maintain current levels of production in the future.
NASA Astrophysics Data System (ADS)
Marohn, C.; Distel, A.; Dercon, G.; Wahyunto; Tomlinson, R.; Noordwijk, M. v.; Cadisch, G.
2012-09-01
The Indian Ocean tsunami of December 2004 had far reaching consequences for agriculture in Aceh province, Indonesia, and particularly in Aceh Barat district, 150 km from the seaquake epicentre. In this study, the spatial distribution and temporal dynamics of soil and groundwater salinity and their impact on tree crops were monitored in Aceh Barat from 2006 to 2008. On 48 sampling points along ten transects, covering 40 km of coastline, soil and groundwater salinity were measured and related to mortality and yield depression of the locally most important tree crops. Given a yearly rainfall of over 3000 mm, initial groundwater salinity declined rapidly from over 10 to less than 2 mS cm-1 within two years. On the other hand, seasonal dynamics of the groundwater table in combination with intrusion of saline water into the groundwater body led to recurring elevated salinity, sufficient to affect crops. Tree mortality and yield depression in the flooded area varied considerably between tree species. Damage to coconut (65% trees damaged) was related to tsunami run-up height, while rubber (50% trees damaged) was mainly affected by groundwater salinity. Coconut yields (-35% in average) were constrained by groundwater Ca2+ and Mg2+, while rubber yields (-65% on average) were related to groundwater chloride, pH and soil sodium. These findings have implications on planting deep-rooted tree crops as growth will be constrained by ongoing oscillations of the groundwater table and salinity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, Makoto; Mori, Shigeo; Yamada, Ikuya, E-mail: i-yamada@21c.osakafu-u.ac.jp
Magnetic properties of the quadruple perovskite solid solutions Ca{sub 1–x}Y{sub x}Cu{sub 3}Fe{sub 4}O{sub 12} and Y{sub 1–y}Ce{sub y}Cu{sub 3}Fe{sub 4}O{sub 12} are investigated. Ca{sub 1–x}Y{sub x}Cu{sub 3}Fe{sub 4}O{sub 12} shows continuous increase in the ferromagnetic transition temperature as x increases. Y{sub 1–y}Ce{sub y}Cu{sub 3}Fe{sub 4}O{sub 12} exhibits a ferromagnetic-antiferromagnetic transition in the vicinity of y = 0.5. These observations demonstrate the electron doping effect on magnetic properties of charge-disproportionated ACu{sub 3}Fe{sub 4}O{sub 12} phases.
The role of a conserved tyrosine residue in high-potential iron sulfur proteins.
Iwagami, S. G.; Creagh, A. L.; Haynes, C. A.; Borsari, M.; Felli, I. C.; Piccioli, M.; Eltis, L. D.
1995-01-01
Conserved tyrosine-12 of Ectothiorhodospira halophila high-potential iron sulphur protein (HiPIP) iso-I was substituted with phenylalanine (Y12F), histidine (Y12H), tryptophan (Y12W), isoleucine (Y12I), and alanine (Y12A). Variants Y12A and Y12I were expressed to reasonable levels in cells grown at lower temperatures, but decomposed during purification. Variants Y12F, Y12H, and Y12W were substantially destabilized with respect to the recombinant wild-type HiPIP (rcWT) as determined by differential scanning calorimetry over a pH range of 7.0-11.0. Characterization of the Y12F variant by NMR indicates that the principal structural differences between this variant and the rcWT HiPIP result from the loss of the two hydrogen bonds of the Tyr-12 hydroxyl group with Asn-14 O delta 1 and Lys-59 NH, respectively. The effect of the loss of the latter interaction is propagated through the Lys-59/Val-58 peptide bond, thereby perturbing Gly-46. The delta delta GDapp of Y12F of 2.3 kcal/mol with respect to rcWT HiPIP (25 degrees C, pH 7.0) is entirely consistent with the contribution of these two hydrogen bonds to the stability of the latter. CD measurements show that Tyr-12 influences several electronic transitions within the cluster. The midpoint reduction potentials of variants Y12F, Y12H, and Y12W were 17, 19, and 22 mV (20 mM MOPS, 0.2 M sodium chloride, pH 6.98, 25 degrees C), respectively, higher than that of rcWT HiPIP. The current results indicate that, although conserved Tyr-12 modulates the properties of the cluster, its principle function is to stabilize the HiPIP through hydrogen bonds involving its hydroxyl group and electrostatic interactions involving its aromatic ring. PMID:8580847
Berger, David L.; Maurer, Douglas K.; Lopes, Thomas J.; Halford, Keith J.
2004-01-01
The Dry Valley Hydrographic Area is being considered as a potential source area for additional water supplies for the Reno-Sparks area, which is about 25 miles south of Dry Valley. Current estimates of annual ground-water recharge to Dry Valley have a considerable range. In undeveloped valleys, such as Dry Valley, long-term ground-water discharge can be assumed the same as long-term ground-water recharge. Because estimating ground-water discharge has more certainty than estimating ground-water recharge from precipitation, the U.S. Geological Survey, in cooperation with Washoe County, began a three-year study to re-evaluate the ground-water resources by estimating natural ground-water discharge and characterize ground-water quality in Dry Valley. In Dry Valley, natural ground-water discharge occurs as subsurface outflow and by ground-water evapotranspiration. The amount of subsurface outflow from the upper part of Dry Valley to Winnemucca and Honey Lake Valleys likely is small. Subsurface outflow from Dry Valley westward to Long Valley, California was estimated using Darcy's Law. Analysis of two aquifer tests show the transmissivity of poorly sorted sediments near the western side of Dry Valley is 1,200 to 1,500 square feet per day. The width of unconsolidated sediments is about 4,000 feet between exposures of tuffaceous deposits along the State line, and decreases to about 1,500 feet (0.5 mile) west of the State line. The hydraulic gradient east and west of the State line ranges from 0.003 to 0.005 foot per foot. Using these values, subsurface outflow to Long Valley is estimated to be 50 to 250 acre-feet per year. Areas of ground-water evapotranspiration were field mapped and partitioned into zones of plant cover using relations derived from Landsat imagery acquired July 8, 2002. Evapotranspiration rates for each plant-cover zone were multiplied by the corresponding area and summed to estimate annual ground-water evapotranspiration. About 640 to 790 acre-feet per year of ground water is lost to evapotranspiration in Dry Valley. Combining subsurface-outflow estimates with ground-water evapotranspiration estimates, total natural ground-water discharge from Dry Valley ranges from a minimum of about 700 acre-feet to a maximum of about 1,000 acre-feet annually. Water quality in Dry Valley generally is good and primary drinking-water standards were not exceeded in any samples collected. The secondary standard for manganese was exceeded in three ground-water samples. One spring sample and two surface-water samples exceeded the secondary standard for pH. Dry Valley has two primary types of water chemistry that are distinguishable by cation ratios and related to the two volcanic-rock units that make up much of the surrounding mountains. In addition, two secondary types of water chemistry appear to have evolved by evaporation of the primary water types. Ground water near the State line appears to be an equal mixture of the two primary water chemistries and has as an isotopic characteristic similar to evaporated surface water.
Field Scale Groundwater Nitrate Loading Model for the Central Valley, California, 1945-Current
NASA Astrophysics Data System (ADS)
Harter, T.; Dzurella, K.; Bell, A.; Kourakos, G.
2015-12-01
Anthropogenic groundwater nitrate contamination in the Central Valley aquifer system, California, is widespread, with over 40% of domestic wells in some counties exceeding drinking water standards. Sources of groundwater nitrate include leaky municipal wastewater systems, municipal wastewater recharge, onsite wastewater treatment (septic) systems, atmospheric nitrogen deposition, animal farming, application of organic waste materials (sludge, biosolids, animal manure) to agricultural lands, and synthetic fertilizer. At the site or field scale, nitrogen inputs to the landscape are balanced by plant nitrogen uptake and harvest, atmospheric nitrogen losses, surface runoff of nitrogen, soil nitrogen storage changes, and leaching to groundwater. Irrigated agriculture is a dominant player in the Central Valley nitrogen cycle: The largest nitrogen fluxes are synthetic fertilizer and animal manure applications to cropland, crop nitrogen uptake, and groundwater nitrogen losses. We construct a historic field/parcel scale groundwater nitrogen loading model distinguishing urban and residential areas, individual animal farming areas, leaky wastewater lagoons, and approximately 50 different categories of agricultural crops. For non-agricultural landuses, groundwater nitrate loading is based on reported leaching values, animal population, and human population. For cropland, groundwater nitrate loading is computed from mass balance, taking into account diverse and historically changing management practices between different crops. Groundwater nitrate loading is estimated for 1945 to current. Significant increases in groundwater nitrate loading are associated with the expansion of synthetic fertilizer use in the 1950s to 1970s. Nitrate loading from synthetic fertilizer use has stagnated over the past 20 years due to improvements in nutrient use efficiency. However, an unbroken 60 year exponential increase in dairy production until the late 2000s has significantly impacted the nitrogen imbalance and is a significant threat to future groundwater quality in the Central Valley system. The model provides the basis for evaluating future planning scenarios to develop and assess long-term solutions for sustainable groundwater quality management.Anthropogenic groundwater nitrate contamination in the Central Valley aquifer system, California, is widespread, with over 40% of domestic wells in some counties exceeding drinking water standards. Sources of groundwater nitrate include leaky municipal wastewater systems, municipal wastewater recharge, onsite wastewater treatment (septic) systems, atmospheric nitrogen deposition, animal farming, application of organic waste materials (sludge, biosolids, animal manure) to agricultural lands, and synthetic fertilizer. At the site or field scale, nitrogen inputs to the landscape are balanced by plant nitrogen uptake and harvest, atmospheric nitrogen losses, surface runoff of nitrogen, soil nitrogen storage changes, and leaching to groundwater. Irrigated agriculture is a dominant player in the Central Valley nitrogen cycle: The largest nitrogen fluxes are synthetic fertilizer and animal manure applications to cropland, crop nitrogen uptake, and groundwater nitrogen losses. We construct a historic field/parcel scale groundwater nitrogen loading model distringuishing urban and residential areas, individual animal farming areas, leaky wastewater lagoons, and approximately 50 different categories of agricultural crops. For non-agricultural landuses, groundwater nitrate loading is based on reported leaching values, animal population, and human population. For cropland, groundwater nitrate loading is computed from mass balance, taking into account diverse and historically changing management practices between different crops. Groundwater nitrate loading is estimated for 1945 to current. Significant increases in groundwater nitrate loading are associated with the expansion of synthetic fertilizer use in the 1950s to 1970s. Nitrate loading from synthetic fertilizer use has stagnated over the past 20 years due to improvements in nutrient use efficiency. However, an unbroken 60 year exponential increase in dairy production until the late 2000s has significantly impacted the nitrogen imbalance and is a significant threat to future groundwater quality in the Central Valley system. The model provides the basis for evaluating future planning scenarios to develop and assess long-term solutions for sustainable groundwater quality management.
Ecological risks of DOE`s programmatic environmental restoration alternatives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-06-01
This report assesses the ecological risks of the Department of Energy`s (DOE) Environmental Restoration Program. The assessment is programmatic in that it is directed at evaluation of the broad programmatic alternatives outlined in the DOE Implementation Plan. It attempts to (1) characterize the ecological resources present on DOE facilities, (2) describe the occurrence and importance of ecologically significant contamination at major DOE facilities, (3) evaluate the adverse ecological impacts of habitat disturbance caused by remedial activities, and (4) determine whether one or another of the programmatic alternatives is clearly ecologically superior to the others. The assessment focuses on six representativemore » facilities: the Idaho National Engineering Laboratory (INEL); the Fernald Environmental Management Project (FEMP); the Oak Ridge Reservation (ORR), including the Oak Ridge National Laboratory (ORNL), Y-12 plant, and K-25 plant; the Rocky Flats Plant; the Hanford Reservation; and the Portsmouth Gaseous Diffusion Plant.« less
NASA Astrophysics Data System (ADS)
Wörman, A.; Lindström, G.; Riml, J.
2017-05-01
Although the potential energy of surface water is a small part of Earth's energy budget, this highly variable physical property is a key component in the terrestrial hydrologic cycle empowering geomorphological and hydrological processes throughout the hydrosphere. By downscaling of the daily hydrometeorological data acquired in Sweden over the last half-century this study quantifies the spatial and temporal distribution of the dominating energy components in terrestrial hydrology, including the frictional resistance in surface water and groundwater as well as hydropower. The energy consumed in groundwater circulation was found to be 34.6 TWh/y or a heat production of approximately 13% of the geothermal heat flux. Significant climate driven, periodic fluctuations in the power of runoff, stream flows and groundwater circulation were revealed that have not previously been documented. We found that the runoff power ranged from 173 to 260 TWh/y even when averaged over the entire surface of Sweden in a five-year moving window. We separated short-term fluctuations in runoff due to precipitation filtered through the watershed from longer-term seasonal and climate driven modes. Strong climate driven correlations between the power of runoff and climate indices, wind and solar intensity were found over periods of 3.6 and 8 years. The high covariance that we found between the potential energy of surface water and wind energy implies significant challenges for the combination of these renewable energy sources.
NASA Astrophysics Data System (ADS)
Foster, Stephen; Garduno, Hector; Evans, Richard; Olson, Doug; Tian, Yuan; Zhang, Weizhen; Han, Zaisheng
The Quaternary Aquifer of the North China Plain is one of the world's largest aquifer systems and supports an enormous exploitation of groundwater, which has reaped large socio-economic benefits in terms of grain production, farming employment and rural poverty alleviation, together with urban and industrial water-supply provision. Both population and economic activity have grown markedly in the past 25 years. Much of this has been heavily dependent upon groundwater resource development, which has encountered increasing difficulties in recent years primarily as a result of aquifer depletion and related phenomena. This paper focuses upon the hydrogeologic and socio-economic diagnosis of these groundwater resource issues, and identifies strategies to improve groundwater resource sustainability. L'aquifère Quaternaire de la Plaine du Nord de la Chine est l'un des plus grands systèmes aquifères du monde; il permet une exploitation énorme d'eau souterraine, qui a permis des très importants bénéfices socio-économiques en terme de production de céréales, d'emplois ruraux et de réduction de la pauvreté rurale, en même temps que l'approvisionnement en eau potable et pour l'industrie. La population comme l'activité économique ont remarquablement augmenté au cours de ces 25 dernières années. Elles ont été sous la forte dépendance du développement de la ressource en eau souterraine, qui a rencontré des difficultés croissantes ces dernières années, du fait du rabattement de l'aquifère et des phénomènes associés. Cet article est consacré aux diagnostiques hydrogéologique et socio-économique des retombées de cette ressource en eau souterraine; il identifie les stratégies pour améliorer la pérennité des ressources en eau souterraine. El acuífero cuaternario de la Llanura Septentrional de China es uno de los mayores sistemas acuíferos del mundo y soporta una enorme explotación de su agua subterránea, las cuales han originado grandes beneficios socioeconómicos en términos de producción de grano, empleo en agricultura y mitigación de la pobreza rural, además de proveer agua para abastecimiento urbano e industria. Tanto la población como la actividad económica han crecido mucho en los últimos 25 años con una gran dependencia de las aguas subterráneas, que ha encontrado dificultades recientes por la explotación intensiva del acuífero y fenómenos relacionados. Este artículo se centra en la diagnosis hidrogeológica y socioeconómica de los problemas relacionados con las aguas subterráneas e identifica estrategias para mejorar la sustentabilidad de este recurco.
Plan for a groundwater monitoring network in Taiwan
NASA Astrophysics Data System (ADS)
Hsu, Shiang-Kueen
In Taiwan, rapid economic growth, rising standards of living, and an altered societal structure have in recent years put severe demands on water supplies. Because of its stable quantity and quality, groundwater has long been a reliable source of water for domestic, agricultural, and industrial users, but the establishment of a management program that integrates groundwater and surface-water use has been hampered by the lack of groundwater data. In 1992, the Department of Water Resources (DWR) initiated a program entitled "Groundwater Monitoring Network Plan in Taiwan." Under this program, basic groundwater data, including water-level and water-quality data, are being collected, and a reliable database is being established for the purpose of managing total water resources. This paper introduces the goals, implementation stages, and scope of that plan. The plan calls for constructing 517 hydrogeologic survey stations and 990 groundwater monitoring wells within 17 years. Under this program, water-level fluctuations are continuously monitored, whereas water-quality samples are taken for analysis only at the initial drilling stage and, subsequently, at the time when a monitoring well is being serviced. In 1996, the DWR and the Water Resources Planning Commission were merged to form today's Water Resources Bureau. Résumé A Taïwan, l'expansion économique rapide, l'amélioration des conditions de vie et la transformation de la structure sociale ont provoqué, ces dernières années, une très forte demande en eau. Du fait de sa constance en qualité et en quantité, l'eau souterraine a longtemps été considérée comme une ressource en eau sûre pour les usages domestiques, agricoles et industriels. Mais la mise en place d'un programme de gestion intégrant les utilisations d'eaux souterraines et de surface a été gênée par l'absence de données sur les eaux souterraines. En 1992, le Département des Ressources en Eau a lancé le programme "Plan pour un réseau de suivi des eaux souterraines à Taïwan". D'après ce programme, les données de base concernant les eaux souterraines, comprenant les mesures de niveau et les données de qualité, ont été acquises ; une base de données sûre est en cours d'élaboration, dans le but de gérer l'ensemble des ressources en eau. Cet article présente les buts, les stades de développement et une vue d'ensemble de ce plan. Le plan impose la mise en place de 517 stations de mesures hydrogéologiques et de 990 piézomètres en 17 ans. Selon ce programme, les variations du niveau des nappes doivent être suivies en continu, tandis que des échantillons pour la qualité de l'eau seront prélevés pour analyses uniquement au cours de la phase de foration, puis au moment de la mise en service des piézomètres. En 1996, le Département des Ressources en Eau et la Commission de Planification des Ressources en Eau ont été réunis pour former l'actuel Bureau des Ressources en Eau. Resumen En Taiwan, el rápido crecimiento económico, el aumento en el nivel de vida y los cambios sociales en los últimos años han resultado en un aumento en la demanda de agua. Por su estabilidad en términos de cantidad y calidad, las aguas subterráneas han sido durante años la fuente de agua para usos domésticos, agrícolas e industriales. En los últimos años, sin embargo, el establecimiento de un programa de gestión conjunta de aguas superficiales y subterráneas se ha visto comprometido por la falta de datos correspondientes a estas últimas. En 1992, el Departamento de Recursos de Agua (DWR) inició un programa titulado "Plan de Red de Control de Aguas Subterráneas en Taiwan". Bajo este programa, se están recogiendo datos básicos, incluyendo niveles piezométricos y datos de calidad, y se está construyendo una base de datos con el propósito de gestionar los recursos de agua totales. Este artículo presenta el marco, los objetivos y el estado de implantación del plan, que pretende la construcción de 517 estaciones de medida hidrogeológicas y 990 pozos de observación durante un periodo de 17 años. Bajo este programa, los niveles de agua se miden continuamente, mientras que las muestras para análisis de calidad se toman sólo durante la perforación y cuando el pozo está en servicio. En 1996, el DWR y la Comisión de Planificación de los Recursos de Agua se unieron para formar la actual Oficina de Recursos de Agua.5
Mitra, Saubhik; Karmakar, Amarnath; Mukherjee, Abhishek; Barik, Anandamay
2017-07-01
Larvae and adults of Altica cyanea (Weber) (Coleoptera: Chrysomelidae) feed on the rice-field weed Ludwigia octovalvis (Jacq.) Raven (Onagraceae), commonly known as willow primrose, which is considered a biocontrol agent of the weed. Volatile organic compounds from undamaged plants, plants after 4, 12, and 36 h of continuous feeding by A. cyanea larvae or adult females and after mechanical damaging were identified by GC-MS and GC-FID analyses. Twenty nine compounds were identified from undamaged plants. 2Z-Penten-1-ol, geraniol, and 1-tridecanol were present in all plants damaged by larvae. In contrast, feeding by adults caused the release of 2Z-penten-1-ol only after 12 and 36 h; whereas geraniol and 1-tridecanol appeared only after 36 h. Farnesyl acetone was detected after 12 and 36 h of feeding by larvae and after 36 h of feeding by adults. Farnesene was detected after 36 h of feeding by larvae and adults. Linalool was unique after 36 h of feeding by larvae. In Y-shaped glass tube olfactometer bioassays, A. cyanea females were attracted to volatiles after 36 h of feeding by larvae or adults compared to volatiles released by undamaged plants. The insects were attracted to five synthetic compounds: 3-hexanol, α-pinene, linalool oxide, geraniol, and phytol. Synthetic blends were more attractive than individual compounds. Compared to undamaged plants, volatiles released by plants, damaged by conspecific individuals, were more attractive to A. cyanea females, due to elevated emissions of 3-hexanol, α-pinene, linalool oxide, geraniol, and phytol.
NASA Astrophysics Data System (ADS)
Onda, Yuichi; Tsujimura, Maki; Tabuchi, Hidekazu
2004-03-01
Hydrological monitoring was conducted in high-relief watersheds in the Japan Alps to investigate the relationship between hillslope hydrological processes and landform evolution in steep granite and shale mountains. In the Koshibu watershed, underlain by Mesozoic shale, the drainage density and frequency was significantly lower than in the Yotagiri watershed underlain by granite. Drainage micro-morphology analysis showed that hillslopes in the watersheds K1 and K6 (Koshibu basin) are mostly combinations of talus and bedrock exposures. In contrast, watershed Y1 (Yotagiri basin) is composed of several zero-order streams with hollows. Infinite slope stability analysis indicates that the regolith shear strength in the K6 watershed (Koshibu basin) is lower than that of the Y1 hillslope, but groundwater levels were higher in the Y1 hillslope than in the K6 hillslope during storm events. These data suggest that, although the shear strength of the soil is stronger in the Yotagiri watershed, the slopes are unstable because of the groundwater conditions, whereas deep-seated landslides may occur episodically in the Koshibu watershed associated with extreme storms and very high antecedent soil moisture. These differences would strongly contribute to the different observed hillslope processes and drainage characteristics.
White, W.N.
1932-01-01
Fluctuations of water levels in wells, if critically studied, may give much information as to the occurrence, movement, and quantity of available ground water. In some localities the ground-water level has been observed to decline during the day and to rise at night, the decline beginning at about the same hour every morning and the rise at about the same hour every night. This daily decline is due to the withdrawal of ground water from the zone of saturation by plants, and the rise at night is due to upward movement of water under slight artesian pressure from permeable beds of sand and gravel at some depth beneath the water table.
Foster, Adam L.; Katz, Brian G.; Meyer, Michael T.
2012-01-01
An increased demand for fresh groundwater resources in South Florida has prompted Miami-Dade County to expand its water reclamation program and actively pursue reuse plans for aquifer recharge, irrigation, and wetland rehydration. The U.S. Geological Survey, in cooperation with the Miami-Dade Water and Sewer Department (WASD) and the Miami-Dade Department of Environmental Resources Management (DERM), initiated a study in 2008 to assess the presence of selected pharmaceuticals and other organic wastewater compounds in the influent and effluent at three regional wastewater-treatment plants (WWTPs) operated by the WASD and at one WWTP operated by the City of Homestead, Florida (HSWWTP).
Who is eating up the world's aquifers? Unsustainable irrigation embedded in global food trade.
NASA Astrophysics Data System (ADS)
Dalin, C.; Wada, Y.; Kastner, T.; Puma, M. J.
2016-12-01
Recent hydrological modelling and Earth observations have located and quantified alarming groundwater depletion over the world. This is primarily due to water withdrawals for irrigation, but the connections with their main driver, global food consumption, have not yet been explored. We provide the first quantification of groundwater depletion embedded in the world's food trade by combining unique global, crop-specific estimates of non-renewable groundwater abstraction with international food trade. We show that approximately ten percent of non-renewable groundwater irrigation use is embedded in food trade, of which two thirds are exported by Pakistan, the United States and India alone. A vast majority of the world's population lives in countries sourcing nearly all their staple crop imports from partners who deplete groundwater to produce these crops, highlighting unsustainablility of global food production and water use. Groups of countries are found particularly exposed to decreased food supply as they both produce and import food irrigated from quickly depleting aquifers. Figure caption: Embedded groundwater depletion in international trade of crop commodities in 2010 (km3/y). Large importing nations are shown in bold, italic font and large exporters in bold, underlined font. Ribbons' colors indicate the country of export. Note that, for clarity, we only display the links with a weight of at least 1% that of the largest link.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voskuil, T.L.
1993-09-01
Three underground concrete settling tanks (tanks 2101-U, 2104-U, and 2100-U) at the Y-12 Plant on the Oak Ridge Reservation in Oak Ridge, Tennessee, contained contaminated sludges contributing mercury to the Upper East Fork Poplar Creek (UEFPC). These tanks were cleaned out as an interim action under the Comprehensive Environmental Response, Compensation, and Liability Act as part of the Reduction of Mercury in Plant Effluent subproject. Cleaning out these tanks prevented the sludge that had settled in the bottom from resuspending and carrying mercury into UEFPC. Tanks 2104-U and 2100-U were returned to service and will continue to receive effluent frommore » buildings 9201-4 and 9201-5. Tank 2101-U had been abandoned and its effluent redirected to Tank 2100-U during previous activities. This interim action permanently sealed Tank 2101-U from the storm sewer system. Upon removal of materials and completion of cleanup, inspections determined that the project`s cleanup criteria had been met. The structural integrity of the tanks was also inspected, and minor cracks identified in tanks 2101-U and 2104-U were repaired. This project is considered to have been completed successfully because it met its performance objectives as addressed in the Interim Record of Decision and the work plan: to remove the waste from the three storage tanks; to ensure that the tanks were cleaned to the levels specified; to return tanks 2100-U and 2104-U to service; to isolate Tank 2101-U permanently; and to manage the wastes in an appropriate fashion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-09-01
This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bearmore » Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix G contains ecological risks for fish, benthic invertebrates, soil invertebrates, plants, small mammals, deer, and predator/scavengers (hawks and fox). This risk assessment identified significant ecological risks from chemicals in water, sediment, soil, and shallow ground water. Metals and PCBs are the primary contaminants of concern.« less
Effects of Groundwater Development on Uranium: Central Valley, California, USA
Jurgens, B.C.; Fram, M.S.; Belitz, K.; Burow, K.R.; Landon, M.K.
2010-01-01
Uranium (U) concentrations in groundwater in several parts of the eastern San Joaquin Valley, California, have exceeded federal and state drinking water standards during the last 20 years. The San Joaquin Valley is located within the Central Valley of California and is one of the most productive agricultural areas in the world. Increased irrigation and pumping associated with agricultural and urban development during the last 100 years have changed the chemistry and magnitude of groundwater recharge, and increased the rate of downward groundwater movement. Strong correlations between U and bicarbonate suggest that U is leached from shallow sediments by high bicarbonate water, consistent with findings of previous work in Modesto, California. Summer irrigation of crops in agricultural areas and, to lesser extent, of landscape plants and grasses in urban areas, has increased Pco2 concentrations in the soil zone and caused higher temperature and salinity of groundwater recharge. Coupled with groundwater pumping, this process, as evidenced by increasing bicarbonate concentrations in groundwater over the last 100 years, has caused shallow, young groundwater with high U concentrations to migrate to deeper parts of the groundwater system that are tapped by public-supply wells. Continued downward migration of U-affected groundwater and expansion of urban centers into agricultural areas will likely be associated with increased U concentrations in public-supply wells. The results from this study illustrate the potential long-term effects of groundwater development and irrigation-supported agriculture on water quality in arid and semiarid regions around the world. Journal compilation ?? 2009 National Ground Water Association. No claim to original US government works.
Observations of nearshore groundwater discharge: Kahekili Beach Park submarine springs, Maui, Hawaii
Swarzenski, Peter W.; Dulai, H.; Kroeger, K.D.; Smith, C.G.; Dimova, N.; Storlazzi, C. D.; Prouty, N.G.; Gingerich, S.B.; Glenn, C. R.
2016-01-01
Study regionThe study region encompasses the nearshore, coastal waters off west Maui, Hawaii. Here abundant groundwater—that carries with it a strong land-based fingerprint—discharges into the coastal waters and over a coral reef.Study focusCoastal groundwater discharge is a ubiquitous hydrologic feature that has been shown to impact nearshore ecosystems and material budgets. A unique combined geochemical tracer and oceanographic time-series study addressed rates and oceanic forcings of submarine groundwater discharge at a submarine spring site off west Maui, Hawaii.New hydrological insights for the regionEstimates of submarine groundwater discharge were derived for a primary vent site and surrounding coastal waters off west Maui, Hawaii using an excess 222Rn (t1/2 = 3.8 d) mass balance model. Such estimates were complemented with a novel thoron (220Rn,t1/2 = 56 s) groundwater discharge tracer application, as well as oceanographic time series and thermal infrared imagery analyses. In combination, this suite of techniques provides new insight into the connectivity of the coastal aquifer with the near-shore ocean and examines the physical drivers of submarine groundwater discharge. Lastly, submarine groundwater discharge derived constituent concentrations were tabulated and compared to surrounding seawater concentrations. Such work has implications for the management of coastal aquifers and downstream nearshore ecosystems that respond to sustained constituent loadings via this submarine route.
1986-08-05
Briefs Minister Meets With Gabon’s Bongo 81 NORTH KOREA POLITICS AND GOVERNMENT Kim Il-song Extends Thanks to Taean Machine Plant (Pyongyang...of manufacture will not be affected by the introduction of property patent rights. The law currently in force limits the terms of patent rights to 12...formulas frommte« protection. But in the revised la», they fell under the g y patents and are entitled to patent protection, "isingthe affect the
NASA Astrophysics Data System (ADS)
Jiang, Y.; Nyiraneza, J.; Murray, B. J.; Chapman, S.; Malenica, A.; Parker, B.
2017-12-01
Nitrate leaching from crop production contributes to groundwater contamination and subsequent eutrophication of the receiving surface water. A study was conducted in a 7-ha potato-grain-forages rotation field in Prince Edward Island (PEI), Canada during 2011-2016 to link potato rotation practices and groundwater quality. The field consists of fine sandy loam soil and is underlain by 7-9 m of glacial till, which overlies the regional fractured ;red-bed; sandstone aquifer. The water table is generally located in overburden close to the bedrock interface. Field treatments included one field zone taken out of production in 2011 with the remaining zones kept under a conventional potato rotation. Agronomy data including crop tissue, soil, and tile-drain water quality were collected. Hydrogeology data including multilevel monitoring of groundwater nitrate and hydraulic head and data from rock coring for nitrate distribution in overburden and bedrock matrix were also collected. A significant amount of nitrate leached below the soil profile after potato plant kill (referred to as topkill) in 2011, most of it from fertilizer N. A high level of nitrate was also detected in the till vadose zone through coring in December 2012 and through multilevel groundwater sampling from January to May 2014 in both cultivated and uncultivated field zones. Groundwater nitrate concentrations increased for about 2.5 years after the overlying potato field was removed from production. Pressure-driven uniform flow processes dominate water and nitrate transport in the vadose zone, producing an apparently instant water table response but a delayed groundwater quality response to nitrate leaching events. These data suggest that the uniform flow dominated vadose zone in agricultural landscapes can cause the accumulation of a significant amount of nitrate originated from previous farming activities, and the long travel time of this legacy nitrate in the vadose zone can result in substantially delayed responses of groundwater quality to field management adjustments. The delayed effects should also apply to the transport of other contaminants. This study also suggests that management practices should be optimized to reduce soil nitrate build-up during the non-growing season (when plant N uptake is diminishing and the soil contains excessive moisture, for example, after the potato harvest period in PEI) in order to protect groundwater quality.
Zamani, Abbas Ali; Yaftian, Mohammad Reza; Parizanganeh, Abdolhossein
2012-12-17
The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran) for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP). Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs). Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area.
2012-01-01
The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran) for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP). Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs). Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area. PMID:23369182
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, S.J.; Matter, A.
1995-01-02
Early diagenetic carbonate cements are a common feature of Quaternary alluvial conglomerates in Oman. Cements are formed in the vadose and, more commonly, phreatic zones from near-surface groundwaters. In drainage areas underlain by the Semail Ophiolite, groundwaters have Mg{sup 2+}/Ca{sup 2+} ratios greater than two, and cements are often dolomite or high-magnesium calcite in addition to low-magnesium calcite. In drainage areas underlain by limestone, groundwaters have Mg{sup 2+}/Ca{sup 2+} ratios of around one or less and cement mineralogy is nearly always low-magnesium calcite. The oxygen and carbon stable isotopic ratios of the cements vary widely, from {minus}10.6{per_thousand} to +3.0{per_thousand} PDBmore » and from {minus}10.0{per_thousand} to +0.7{per_thousand} PDB, respectively. Cement {delta}{sup 18}O values principally reflect variation in rainfall {delta}{sup 18}O over a time scale of several thousand years. Rainfall and cement {delta}{sup 18}O values probably are inversely correlated with the amount of rainfall, which is related to the frequency and intensity of the Indian Ocean monsoon. Thus, cement {delta}{sup 18}O is potentially a proxy indicator of relative rainfall and monsoon activity. For each of three sampling areas, {delta}{sup 13}C is positively correlated to {delta}{sup 18}O. Cement {delta}{sup 13}C values are also related to rainfall amount because rainfall controls the plant population. Greater plant respiration of isotopically depleted CO{sub 2} to shallow groundwaters and burial of organic material in conglomerate deposits results in lower cement {delta}{sup 13}C values compared to periods of lesser plant activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Yilin; Leung, L. Ruby; Duan, Zhuoran
The Amazon basin experienced periodic droughts in the past, and climate models projected more intense and frequent droughts in the future. How tropical forests respond to drought may depend on water availability, which is modulated by landscape heterogeneity. Using the one-dimensional ACME Land Model (ALM) and the three-dimensional ParFlow variably saturated flow model, a series of numerical experiments were performed for the Asu catchment in central Amazon to elucidate processes that influence water available for plant use and provide insights for improving Earth system models. Results from ParFlow show that topography has a dominant influence on groundwater table and runoffmore » through lateral flow. Without any representations of lateral processes, ALM simulates very different seasonal variations in groundwater table and runoff compared to ParFlow even if it is able to reproduce the long-term spatial average groundwater table of ParFlow through simple parameter calibration. In the ParFlow simulations, the groundwater table is evidently deeper and the soil saturation is lower in the plateau compared to the valley. However, even in the plateau during the dry season in the drought year of 2005, plant transpiration is not water stressed in the ParFlow simulations as the soil saturation is still sufficient to maintain a soil matric potential for the stomata to be fully open. This finding is insensitive to uncertainty in atmospheric forcing and soil parameters, but the empirical wilting formulation used in the models is an important factor that should be addressed using observations and modeling of coupled plant hydraulics-soil hydrology processes in future studies.« less
EPA Office of Water (OW): SDWIS - HUC12 Densities for Public Surface Water and Groundwater Sources
Public Water System location points, based on information from the Safe Drinking Water Act Information System (SDWIS/Federal) for a 2010 third quarter (SDWIS_2010Q3) baseline period, were applied to relate system latitude and longitude coordinates (LatLongs) to Watershed Boundary Dataset subwatershed polygons (HUC12s). This HUC12 table can be mapped through setting up appropriate table relationships on the attribute HUC_12 with the HUC12 GIS layer that is part of EPA's Reach Address Database (RAD) Version 3. At the present time, the RAD Version 3 contains HUC12 polygons for the conterminous United States (CONUS), Hawaii, Puerto Rico, and the U.S. Virgin Islands (materials for Alaska or for other territories and dependencies are not available as of February, 2010). The records in this table are based on a special QUERY created by the EPA Office of Ground Water and Drinking Water (OGWDW) from the primary SDWIS/FED information to provide a robust point representation for a PWS system. PWS points are selected based on the following prioritization: 1. If the system has a treatment plant with LatLongs and MAD codes; 2. If the system has a treatment plant with LatLongs but without MAD codes; 3. If the system has a well with LatLongs and MAD codes; 4. If the system has a well with LatLongs but without MAD codes; 5. If the system has an intake with LatLongs and MAD codes; 6. If the system has an intake with LatLongs but without MAD codes; 7. If the system has any source
The application of biosorption for production of micronutrient fertilizers based on waste biomass.
Tuhy, Łukasz; Samoraj, Mateusz; Michalak, Izabela; Chojnacka, Katarzyna
2014-10-01
In the present paper, new environmental-friendly fertilizer components were produced in biosorption process by the enrichment of the biomass with zinc, essential in plant cultivation. The obtained new preparations can be used as controlled release micronutrient fertilizers because microelements are bound to the functional groups present in the cell wall structures of the biomass. It is assumed that new fertilizing materials will be characterized by higher bioavailability, gradual release of micronutrients required by plants, and lower leaching to groundwater. The biological origin of the material used in plant fertilization results in the elimination of toxic effect towards plants and groundwater mainly caused by low biodegradability of fertilizers. Utilitarian properties of new formulations enable to reduce negative implications of fertilizers for environmental quality and influence ecological health. In this work, the utilitarian properties of materials such as peat, bark, seaweeds, seaweed post-extraction residues, and spent mushroom substrate enriched via biosorption with Zn(II) ions were examined in germination tests on Lepidium sativum. Obtained results were compared with conventional fertilizers-inorganic salt and chelate. It was shown that zinc fertilization led to biofortification of plant in these micronutrients. Moreover, the mass of plants fertilized with zinc was higher than in the control group.
A pilot-scale permeable reactive barrier filled with plant mulch was installed at Altus Air Force Base (in Oklahoma, USA) to treat trichloroethylene (TCE) contamination in ground water emanating from a landfill. The barrier was constructed in June 2002. It was 139 meters long, 7 ...
The Northern outskirts of Pavlodar were contaminated with mercury as a result of activity at the former PO "Khimprom" chemical plant. The plant produced chlorine and alkali from the 1970s into the 1990s using the electrolytic amalgam method entailing the use of massive amounts o...
The Northern outskirts of Pavlodar were contaminated with mercury as a result of activity at the former PO "Khimprom" chemical plant. The plant produced chlorine and alkali from the 1970s into the 1990s using the electrolytic amalgam method entailing the use of massive amounts o...
The Northern outskirts of Pavlodar were contaminated with mercury as a result of activity at the former PO "Khimprom" chemical plant. The plant produced chlorine and alkali from the 1970's into the 1990's using the electrolytic amalgam method entailing the use of massive amounts...
Our final international work on the biological decontamination of the mercury contamination of soils in the Northern outskirts of Pavlodar as a result of activity at the former PO “Khimprom” chemical plant is reported here. The plant produced chlorine and alkali from the 1970s i...
Ground water contaminated with TCE is commonly treated with a passive reactive barrier (PRB) constructed with zero-valence iron. The cost of iron as the reactive matrix has driven a search for less costly alternatives, and composted plant mulch has been used as an alternative re...
Lampe, David C.; Bayless, E. Randall
2013-01-01
The U.S. Geological Survey (USGS) collected data and simulated groundwater flow to increase understanding of the hydrology and the effects of drainage alterations to the water table in the vicinity of Long Lake, near Gary, Indiana. East Long Lake and West Long Lake (collectively known as Long Lake) make up one of the largest interdunal lakes within the Indiana Dunes National Lakeshore. The National Park Service is tasked with preservation and restoration of wetlands in the Indiana Dunes National Lakeshore along the southern shoreline of Lake Michigan. Urban development and engineering have modified drainage and caused changes in the distribution of open water, streams and ditches, and groundwater abundance and flow paths. A better understanding of the effects these modifications have on the hydrologic system in the area will help the National Park Service, the Gary Sanitary District (GSD), and local stakeholders manage and protect the resources within the study area.This study used hydrologic data and steady-state groundwater simulations to estimate directions of groundwater flow and the effects of various engineering controls and climatic conditions on the hydrology near Long Lake. Periods of relatively high and low groundwater levels were examined and simulated by using MODFLOW and companion software. Simulated hydrologic modifications examined the effects of (1) removing the beaver dams in US-12 ditch, (2) discontinuing seepage of water from the filtration pond east of East Long Lake, (3) discontinuing discharge from US-12 ditch to the GSD sewer system, (4) decreasing discharge from US-12 ditch to the GSD sewer system, (5) connecting East Long Lake and West Long Lake, (6) deepening County Line Road ditch, and (7) raising and lowering the water level of Lake Michigan.Results from collected hydrologic data indicate that East Long Lake functioned as an area of groundwater recharge during October 2002 and a “flow-through” lake during March 2011, with the groundwater divide south of US-12. Wetlands to the south of West Long Lake act as points of recharge to the surficial aquifer in both dry- and wet-weather conditions.Among the noteworthy results from a dry-weather groundwater flow model simulation are (1) US-12 ditch does not receive water from East Long Lake or West Long Lake, (2) the filtration pond at the east end of East Long Lake, when active, contributed approximately 10 percent of the total water entering East Long Lake, and (3) County Line Road ditch has little effect on simulated water level.Among the noteworthy results from a wet-weather groundwater flow simulation are (1) US-12 ditch does not receive water from East Long Lake or West Long Lake, (2) when the seepage from the filtration pond to the surficial aquifer is not active, sources of inflow to East Long Lake are restricted to only precipitation (46 percent of total) and inflow from the surficial aquifer (54 percent of total), and (3) County Line Road ditch bisects the groundwater divide and creates two water-table mounds south of US-12.The results from a series of model scenarios simulating certain engineering controls and changes in Lake Michigan levels include the following: (1) The simulated removal of beaver dams in US-12 ditch during a wet-weather simulation increased discharge from the ditch to the Gary Sanitary system by 13 percent. (2) Discontinuation of seepage from the filtration pond east of East Long Lake decreased discharge from US-12 ditch to the Gary Sanitary system by 2.3 percent. (3) Simulated discontinuation of discharge from the US-12 ditch to the GSD sewer system increased the area where the water table was estimated to be above the land surface beyond the inundated area in the initial wet-weather simulation. (4) Simulated modifications to the control structure at the discharge point of US-12 ditch to the GSD sewer system can decrease discharge by as much as 61 percent while increasing the simulated inundated area during dry weather and decrease discharge as much as 6 percent while increasing the simulated inundated area during wet weather. (5) Deepening of County Line Road ditch can decrease the discharge from US-12 ditch by 26 percent during dry weather and 24 percent during wet weather, as well as decrease the extent of flooded areas south and east of the filtration pond near Ogden Dunes. (7) The increase of the Lake Michigan water level to match the historical maximum can increase the discharge from US-12 ditch by 14 percent during dry weather and by 9.6 percent during wet weather. (8) The decrease of the Lake Michigan water level to match the historical minimum can decrease the discharge from US-12 ditch by 7.4 percent during dry weather and by 3.1 percent during wet weather.The results of this study can be used by water-resource managers to understand how surrounding ditches affect water levels in East and West Long Lake and in the surrounding wetlands and residential areas. The groundwater model developed in this study can be applied in the future to answer questions about how alterations to the drainage system in the area will affect water levels in East and West Long Lake and surrounding areas. The modeling methods developed in this study provide a template for other studies of groundwater flow and groundwater/surface-water interactions within the shallow surficial aquifer in northern Indiana, and in similar hydrologic settings that include surficial sand aquifers in coastal settings.
Impacts of irrigation on groundwater depletion in the North China Plain
NASA Astrophysics Data System (ADS)
Ge, Yuqi; Lei, Huimin
2017-04-01
Groundwater resources is an essential water supply for agriculture in the North China Plain (NCP) which is one of the most important food production areas in China. In the past decades, excessive groundwater-fed irrigation in this area has caused sharp decline in groundwater table. However, accurate monitoring on the net groundwater exploitation is still difficult, mainly due to a lack of complete groundwater exploitation monitoring network. This hinders an accurate evaluation of the effects of agricultural managements on shallow groundwater table. In this study, we use an existing method to estimate the net irrigation amount at the county level, and evaluate the effects of current agricultural management on groundwater depletion. We apply this method in five typical counties in the NCP to estimate annual net irrigation amount from 2002 to 2015, based on meteorological data (2002-2015) and remote sensing ET data (2002-2015) . First, an agro-hydrological model (Soil-Water-Atmosphere-Plant, SWAP) is calibrated and validated at field scale based on the measured data from flux towers. Second, the model is established at reginal scale by spatial discretization. Third, we use an optimization tool (Parameter ESTimation, PEST) to optimize the irrigation parameter in SWAP so as the simulated evapotranspiration (ET) by SWAP is closest to the remote sensing ET. We expect that the simulated irrigation amount from the optimized parameter is the estimated net irrigation amount. Finally, the contribution of agricultural management to the observed groundwater depletion is assessed by calculating the groundwater balance which considers the estimated net irrigation amount, observed lateral groundwater, rainfall recharge, deep seepage, evaporation from phreatic water and domestic water use. The study is expected to give a scientific basis for alleviating the over-exploitation of groundwater resources in the area.
NASA Astrophysics Data System (ADS)
Bailey, Ryan T.
2017-06-01
Selenium (Se) is an essential micro-nutrient for humans, but can be toxic at high levels of intake. Se deficiency and Se toxicity are linked with serious diseases, with some regions worldwide experiencing Se deficiency due to Se-poor rocks and soils and other areas dealing with Se toxicity due to the presence of Se-enriched geologic materials. In addition, Se is consumed primarily through plants that take up Se from soil and through animal products that consume these plants. Hence, the soil and groundwater system play important roles in determining the effect of Se on human health. This paper reviews current understanding of Se fate and transport in soil and groundwater systems and its relation to human health, with a focus on alluvial systems, soil systems, and the interface between alluvial systems and Cretaceous shale that release Se via oxidation processes. The review focuses first on the relation between Se and human health, followed by a summary of Se distribution in soil-aquifer systems, with an emphasis on the quantitative relationship between Se content in soil and Se concentration in underlying groundwater. The physical, chemical, and microbial processes that govern Se fate and transport in subsurface systems then are presented, followed by numerical modeling techniques used to simulate these processes in study regions and available remediation strategies for either Se-deficient or Se-toxic regions. This paper can serve as a guide to any field, laboratory or modeling study aimed at assessing Se fate and transport in groundwater systems and its relation to human health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Rajiv; Charit, Indrajit
2015-02-28
The objectives of this research were two-fold: (a) develop a methodology for microstructural optimization of alloys - genetic algorithm approach for alloy microstructural optimization using theoretical models based on fundamental micro-mechanisms, and (b) develop a new computationally designed Ni-Cr alloy for coal-fired power plant applications. The broader outcome of these objectives is expected to be creation of an integrated approach for ‘structural materials by microstructural design’. Three alloy systems were considered for computational optimization and validation, (i) Ni-20Cr (wt.%) base alloy using only solid solution strengthening, (ii) nano-Y2O3 containing Ni-20Cr-1.2Y2O3 (wt.%) alloy for dispersion strengthening and (iii) a sub-micron Al2O3more » for composite strengthening, Ni-20Cr-1.2Y2O3-5.0Al2O3 (wt.%). The specimens were synthesized by mechanical alloying and consolidated using spark plasma sintering. Detailed microstructural characterization was done along with initial mechanical properties to validate the computational prediction. A key target property is to have creep rate of 1x10-9 s-1 at 100 MPa and 800oC. The initial results were quite promising and require additional quantification of strengthening contributions from dislocation-particle attractive interaction and load transfer. The observed creep rate was in order of 10-9 s-1 for longer time creep test of Ni-20Cr -1.2Y2O3-5Al2O3, lending support to the overall approach pursued in this project.« less
Follow-on site investigation at the Manitowoc Army Reserve Center (MARC). Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-02-24
The objectives of the MARC FSI were to: Determine if the Reserve Center is the source of low-level trichloroethylene (TCE) contamination (i.e., 5 to 9 micrograms/1) detected in a nearby Ranney collector well (Collector 'B') operated by Manitowoc Public Utilities (MPU) and to determine if 1,2-dichloroethane contamination detected in MARC Well MW-6 by E. C. Jordan Co. (Jordan) has migrated off site toward Collector 'B.' TCE was not found on site in any sampled soils or groundwater. However, very low concentrations (i.e., just above certified reporting limits (CRLs)) of four VOCs were found in groundwater in the vicinity of themore » septic tank drainage field. These included 1,2-dichloroethane, 1,1-dichloroethane, 1,2-dichloroethane, and tetrachloroethylene. Only one VOC, 1,2-dichloroethane, was detected at the same well (MW-6) in both rounds of groundwater sampling. This compound is not a transformation product of TCE, nor can it be transformed to TCE by natural processes.« less
Gobelius, Laura; Lewis, Jeffrey; Ahrens, Lutz
2017-11-07
Fire training facilities and other areas suffer from serious per- and polyfluoroalkyl substance (PFAS) contamination in soil, surface water, and groundwater due to regular practices with PFAS-containing aqueous firefighting foams (AFFFs). Therefore, the uptake of 26 PFASs in plants and the contamination of soil and groundwater has been investigated at a fire training site at Stockholm Arlanda airport, Stockholm (Sweden) in 2016. Elevated ∑ 26 PFAS levels were detected in soil and groundwater ranging from 16 to 160 ng g -1 dry weight (dw) and 1200-34 000 ng L -1 , respectively. Samples from different plant species and tissues (i.e., roots, trunk/cores, twigs, leaves/needles) of the local plant community were taken, namely silver birch (Betula pendula), Norway spruce (Picea abies), bird cherry (Prunus padus), mountain ash (Sorbus aucuparia), ground elder (Aegopodium podagraria), long beechfern (Phegopteris connectilis), and wild strawberry (Fragaria vesca). The plants showed a high variability of concentrations with highest ∑ 26 PFAS concentrations in vegetative compartments with up to 97 ng g -1 wet weight (ww) and 94 ng g -1 ww in birch leaves and spruce needles, respectively. Annual ground cover plants such as long beechfern and ground elder, and bushes like bird cherry showed concentrations up to 6.9, 23, and 21 ng g -1 ww, respectively. The bioconcentration factors (BCFs; plant/soil ratios) were highest in foliage, while the total tree burden of ∑ 26 PFASs per tree was up to 11 mg for birch and 1.8 mg for spruce. Considering a shelterwood system with mixed stands of silver birch and spruce in combination with regular harvest of leaves and birch sap and an understory of ground elder, it is potentially feasible to remove 1.4 g of ∑ 26 PFASs per year and hectare from (heavily) contaminated sites. An alternative approach is the coppicing of birch trees in combination with an understory of ground elder, potentially removing 0.65 g yr -1 ha -1 of ∑ 26 PFASs, while a simple meadow with ground elder can remove 0.55 g yr -1 ha -1 ∑ 26 PFASs.
NASA Astrophysics Data System (ADS)
Edet, A. E.; Okereke, C. S.; Teme, S. C.; Esu, E. O.
The Cross River State, Nigeria, is underlain by the Precambrian-age crystalline basement complex and by rocks of Cretaceous to Tertiary age. The exploration for groundwater in this area requires a systematic technique in order to obtain optimum results, but the non-availability of funds and facilities has made it extremely difficult to carry out site investigations prior to the drilling of water wells. Therefore, the failure rate is as high as 80%. In order to delineate areas that are expected to be suitable for future groundwater development, black and white radar imagery and aerial photographs were used to define some hydrological and hydrogeological features in parts of the study area. Lineament and drainage patterns were analysed using length density and frequency. Lineament-length density ranges from 0.04-1.52 lineament frequency is 0.11-5.09 drainage-length density is 0.17-0.94, and the drainage frequency is 0.16-1.53. These range of values reflect the differences in the probability of groundwater potentials. Results were then used to delineate areas of high, medium, and low groundwater potential. Study results also indicate that correlations exist between lineament and drainage patterns, lithology, water temperature, water conductivity, well yield, transmissivity, longitudinal conductance, and the occurrence of groundwater. Résumé La géologie de l'Etat de Cross River (Nigéria) est constituée d'un socle cristallin d'âge précambrien et de roches datées du Crétacé au Tertiaire. Dans cette région, l'exploration des eaux souterraines nécessite une analyse systématique pour obtenir les meilleurs résultats ; cependant le manque de moyens a rendu particulièrement difficile les recherches de sites de forage destinés au captage de l'eau. C'est pourquoi le taux d'échec a atteint 80%. Afin de délimiter les zones susceptibles de permettre la future mise en valeur des eaux souterraines, des images radar et des photos aériennes en noir et blanc ont été utilisées pour mettre en évidence certains phénomènes hydrologiques et hydrogéologiques en certains points de la région étudiée. L'analyse des réseaux de linéaments et de drainage a porté sur la densité de leurs longueurs et sur leur fréquence. La densité de longueur des linéaments s'étend de 0,04 à 1,52 et la fréquence des linéaments de 0,11 à 5,09 ; la densité des longueurs de drainage est comprise entre 0,17 et 0,94, et la fréquence du drainage entre 0,16 et 1,53. Ces gammes de valeurs rendent compte des différences dans la probabilité des potentiels en eau souterraine. Ces résultats ont ensuite été utilisés pour délimiter les zones à potentiel en eau souterraine fort, moyen et faible. Les résultats de l'étude indiquent aussi qu'il existe des corrélations entre les réseau de linéaments et de drainage, la lithologie, la température de l'eau, la conductivité de l'eau, le rendement des puits, la transmissivité, la conductance longitudinale et la présence d'eau souterraine. Resumen Bajo el Estado de Cross River, Nigeria, subyace un complejo basal cristalino del Precámbrico, así como rocas de edad entre Cretácica y Terciaria. La exploración hidrogeológica en esta área requiere una técnica sistemàtica para poder alcanzar resultados óptimos, pero la falta de medios y de infraestructura ha hecho extremadamente difícil el poder realizar investigaciones previas a la perforación de los pozos, de manera que el porcentaje de fallos se eleva al 80%. Para poder delinear las áreas adecuadas para el posterior desarrollo hidrogeológico, se han usado imágenes de radar en blanco y negro y fotografías aéreas, con el objetivo de definir algunos rasgos hidrológicos e hidrogeológicos en partes del área de estudio. Se analizaron los esquemas de lineamiento y drenaje usando densidad y frecuencia de longitudes. La densidad de longitudes de lineamiento oscila entre 0.04-1.52 y la frecuencia entre 0.11-5.09. La densidad de longitud de drenaje oscila entre 0.17-0.94 y su frecuencia entre 0.16-1.53. Estos rangos de valores reflejan las diferencias en el grado potencial de extracción de aguas subterráneas, que se dibuja en unos mapas siguiendo la clasificación de potencial alto, medio o bajo. Los resultados del estudio indican que existen correlaciones entre los esquemas de lineamiento y drenaje, litología, temperatura y conductividad del agua, descenso en el pozo, transmisividad, conductancia longitudinal y la presencia de agua subterránea.
NASA Astrophysics Data System (ADS)
Neumann-Redlin, Christian; Huaranca Olivera, Rodolfo
2018-03-01
An area of 2000 km2 in the arid western cordillera of Bolivia was geologically and hydro-geologically surveyed for the purpose of determining locations for borehole drilling in the framework of groundwater reconnaissance. Vertical geoelectrical resistivity soundings were applied to identify areas at depth in which aquifers with a sufficient thickness of fresh groundwater can be expected. A chemical and isotopic inventory of the regionally occurring groundwater revealed the presence of meteorically-recharged fresh and thermal waters as well as highly mineralized waters from fumaroles and a deep reservoir. Due to their chemical and isotopic composition, the latter group shows influences of juvenile water. Carbon fourteen dating performed on the fresh and thermal waters indicates that they were recharged during the last pluvial phase, about 10,500 years ago. The occurrence of these fossil waters explains the discharge of up to 200 l/s from some springs in a now-arid climate with mean precipitation of 100 mm/y and essentially no groundwater recharge. Extremely low contents of tritium of about 0.1 TU confirm the 14C age determinations.
Attenuation of contaminants of coal pile leachate by interaction with subsoil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghuman, G.S.; Denham, M.E.
1996-09-01
Increased use of coal as energy source has resulted in its greater outdoor storage at electrical generation sites. Coal pile runoff (CPR) with its high concentrations of Fe, Al and sulfate leaches into subsoil and may adversely affect the quality of groundwater. During the summer, 1995, this study was conducted to determine the removal of CPR contaminants by subsoil around D-area electric plant at Savannah River Site (SRS). Groundwater samples from five monitoring wells were analyzed for physical and chemical parameters. Hydrolab Surveyor, TOC Analyzer, Dionex Ion Chromatograph and ICP-ES instruments were used for analysis. Results showed appreciable removal ofmore » CPR contaminants, sulfate, Fe, Al, Cr, Mn and Ni by the upper subsoil near the pile. The reductions in the concentrations of major contaminants in the distant wells relative to the near wells were from 12,947 to 1293 mg/L for sulfate, from 3.138 to 42 mg/L for Fe, and from 593 to 119 mg/L for Al. The study revealed the capacity of soil system to retain toxic elements of CPR leachate, which may lead to remedial actions.« less
Phytoremediation of Trichloroethylene and Perchloroethylene at the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brigmon, R.L.
Bioremediation of chlorinated solvents, both natural and accelerated, is exemplified by phytoremediation and biodegradation by rhizosphere microorganisms. Phytoremediation is the use of vegetation for the treatment of contaminated soils, sediments, and water. The potential for phytoremediation of chlorinated solvents has been demonstrated at the Savannah River Site (SRS) Miscellaneous Chemical Basin, Southern Sector of A/M Area and TNX/D-Area. Recent characterization work at the SRS has delineated widespread plumes (1-2 miles) of low concentration (40 ppb -10-ppm range) trichloroethylene (TCE) and perchloroethylene (PCE) contaminated groundwater. Phytoremediation deployments are underway for TCE and PCE phytoremediation in select SRS areas. Phytoremediation appears tomore » be an excellent technology to intercept and control plume migration. The ongoing Southern Sector treatability study is part of a multi-year field study of SRS seepline-soil systems maintained under saturated conditions. The primary focus is on determining how trees, seepline groundcover, soil microbial communities, and geochemical and surface-volatilization processes affect TCE and PCE in contaminated groundwater that flows through surface seepline areas. Therefore, FY00 represented an initial acclimation phase for soil and plant systems and will facilitate examination of seepline phyto- and bioactivity in subsequent growth season in FY01.« less
Surficial geology of Panther Lake Quadrangle, Oswego County, New York
Miller, Todd S.
1981-01-01
The location and extent of eight kinds of surficial deposits in Panther Lake quadrangle, Oswego County, N.Y., are mapped on a 7.5-minute U.S. Geological Survey topographic map. The map was compiled to indicate the lithology and potential for groundwater development at any specific location. (USGS)
2004-05-01
Advantage Nontoxic to humans and resident microbial populations Cyclodextrins are widely used in pharmaceuticals, food processing, and cosmetics ...dechlorination of tetrachloroethene by the Fenton reaction. Environ. Sci. Technol., 17 (9): 1689-1694. 25. Yin, Y., Allen, H.E., 1999: In situ chemical
Nichols, Elizabeth Guthrie; Cook, Rachel L.; Landmeyer, James E.; Atkinson, Brad; Malone, Donald R.; Shaw, George; Woods, Leilani
2014-01-01
A former bulk fuel terminal in North Carolina is a groundwater phytoremediation demonstration site where 3,250 hybrid poplars, willows, and pine trees were planted from 2006 to 2008 over approximately 579,000 L of residual gasoline, diesel, and jet fuel. Since 2011, the groundwater altitude is lower in the area with trees than outside the planted area. Soil-gas analyses showed a 95 percent mass loss for total petroleum hydrocarbons (TPH) and a 99 percent mass loss for benzene, toluene, ethylbenzene, and xylenes (BTEX). BTEX and methyl tert-butyl ether concentrations have decreased in groundwater. Interpolations of free-phase, fuel product gauging data show reduced thicknesses across the site and pooling of fuel product where poplar biomass is greatest. Isolated clusters of tree mortalities have persisted in areas with high TPH and BTEX mass. Toxicity assays showed impaired water use for willows and poplars exposed to the site's fuel product, but Populus survival was higher than the willows or pines on-site, even in a noncontaminated control area. All four Populus clones survived well at the site.
Garrison, Sanders T.; Biddanda, B.A.; Stricker, C.A.; Nold, S.C.
2011-01-01
Groundwater can be an important source of nutrients and energy to aquatic ecosystems, but quantifying the inputs and biogeochemical importance remains challenging. A series of submerged groundwater vents in northern Lake Huron were examined to determine the linkage between groundwater nutrients and aquatic food webs. We collected samples of key food-web components from groundwater vent and reference habitats and analyzed them for 13C, 15N, and 34S isotopes. Dissolved inorganic carbon (DIC) in the groundwater was depleted in 13C, while aqueous sulfate was enriched in 34S (mean differences between groundwater and reference sites were -3.9% and +12.0%, respectively). Benthic primary producers, macroinvertebrates, and benthivorous fish had significantly lower ??13C values in groundwater environments, and benthivorous fish were somewhat depleted (-2.5%) in ??34S at groundwater sites compared to reference sites. However, ??15N values were not different between groundwater and reference sites, and pelagic components of the ecosystems (plankton and planktivorous and piscivorous fish) were similar in both ??13C and ??15N. These data suggest benthic metazoan communities surrounding groundwater vents are partially linked to groundwater-derived benthic primary production, while planktivorous and piscivorous communities not directly associated with the benthos do not rely on groundwater nutrients. ?? Inter-Research 2011.
Burow, Karen R.; Stork, Sylvia V.; Dubrovsky, N.M.
1998-01-01
The occurrence of nitrate and pesticides in ground water in California's eastern San Joaquin Valley may be greatly influenced by the long history of intensive farming and irrigation and the generally permeable sediments. This study, which is part of the U.S. Geological Survey National Water-Quality Assessment Program, was done to assess the quality of the ground water and to do a preliminary evaluation of the temporal trends in nitrate and pesticides in the alluvial fans of the eastern San Joaquin Valley. Ground-water samples were collected from 30 domestic wells in 1995 (each well was sampled once during 1995). The results of the analyses of these samples were related to various physical and chemical factors in an attempt to understand the processes that control the occurrence and the concentrations of nitrate and pesticides. A preliminary evaluation of the temporal trends in the occurrence and the concentration of nitrate and pesticides was done by comparing the results of the analyses of the 1995 ground-water samples with the results of the analyses of the samples collected in 1986-87 as part of the U.S. Geological Survey Regional Aquifer-System Analysis Program. Nitrate concentrations (dissolved nitrate plus nitrite, as nitrogen) in ground water sampled in 1995 ranged from less than 0.05 to 34 milligrams per liter, with a median concentration of 4.6 milligrams per liter. Nitrate concentrations exceeded the maximum contaminant level of 10 milligrams per liter (as nitrogen) in 5 of the 30 ground-water samples (17 percent), whereas 12 of the 30 samples (40 percent) had nitrate concentrations less than 3.0 milligrams per liter. The high nitrate concentrations were associated with recently recharged, well-oxygenated ground water that has been affected by agriculture (indicated by the positive correlations between nitrate, dissolved-oxygen, tritium, and specific conductance). Twelve pesticides were detected in 21 of the 30 ground-water samples (70 percent) in 1995, although only 5 pesticides were detected in more than 10 percent of the ground-water samples. All 12 pesticides were detected at concentrations below the maximum contaminant levels, except the banned soil fumigants 1,2-dibromo-3-chloropropane (3 detections) and 1,2-dibromoethane (1 detection). Atrazine and desethyl atrazine (a transformation product of atrazine) were the most frequently detected pesticides; they were detected in 11 ground-water samples. The frequent detections of atrazine and desethyl atrazine may be related either to past applications of atrazine or to recent application on rights-of-way. Simazine was detected in 10 ground-water samples and diuron was detected in 4 ground-water samples. The detections of simazine and diuron are generally consistent with their reported applications on the crops near the wells where they were detected. 1,2,3-trichloropropane, a manufacturing by-product of 1,2-dichloropropane and 1,3- dichloropropene formulations, was detected in 4 ground-water samples. The occurrence of 1,2,3-trichloropropane, 1,2-dibromo-3-chloropropane, and 1,2-dibromoethane is probably related to past use. Similar to nitrate concentrations, pesticide occurrence was positively correlated to dissolved-oxygen concentrations, indicating that areas with high dissolved-oxygen concentrations may be vulnerable to contamination by nitrate and pesticides. High dissolved-oxygen concentrations may be associated with water that has been rapidly recharged. A comparison of the concentrations and the occurrence of nitrate and pesticides between 1986-87 and 1995 indicates that nitrate concentrations may pose a greater threat to the quality of the ground-water resource in this region than pesticides, in the context of current drinking-water standards. Nitrate concentrations were significantly higher in the 1995 ground-water samples than in the 1986-87 samples collected from the same wells. Although the number of pesticide detections in 1995 is higher than the numb
Kovacevik, Biljana; Boev, Blazo; Panova, Vesna Zajkova; Mitrev, Sasa
2016-12-05
The aim of this study was to investigate the groundwater pollution from alluvial aquifers lying under surface agriculture activities in two geologically different areas: alluvial and prolluvial. The groundwater in investigated areas is neutral to alkaline (pH 7.05-8.45), and the major dissolved ions are bicarbonate and calcium. Groundwater samples from the alluvial area are characterized by nitrate concentration above the national maximum concentration limit (MCL) at 20.5% of samples [mean value (Me) 6.31 mg/L], arsenic concentrations greater than national MCL at 35.6% of investigated samples (Me 12.12 µg/L) and elevated concentrations of iron (Me 202.37 µg/L) and manganese (Me 355.22 µg/L) at 22.7% and 81% of investigated samples, respectively. Groundwater samples from the prolluvial area did not show significantly elevated concentrations of heavy metals, but the concentration of nitrate was considerably higher (Me 65.06 mg/L). Factor analysis positively correlates As with Mn and Fe, suggesting its natural origin. Nitrate was found in positive correlation with SO 4 2- and Ni but in negative with NH 4 + , suggesting its anthropogenic origin and the relationship of these ions in the process of denitrification. The t-test analysis showed a significant difference between nitrate pollution of groundwater from alluvial and prolluvial areas. According to the chemical composition of groundwater, the process of denitrification is considered to be the main reason for the reduced presence of nitrate in the groundwater lying under alluvial deposits represented by chalk and sandstones. Denitrification in groundwater lying under prolluvial deposits represented by magmatic and metamorphic rock formations was not observed.
Paleolithic human exploitation of plant foods during the last glacial maximum in North China
Liu, Li; Bestel, Sheahan; Shi, Jinming; Song, Yanhua; Chen, Xingcan
2013-01-01
Three grinding stones from Shizitan Locality 14 (ca. 23,000–19,500 calendar years before present) in the middle Yellow River region were subjected to usewear and residue analyses to investigate human adaptation during the last glacial maximum (LGM) period, when resources were generally scarce and plant foods may have become increasingly important in the human diet. The results show that these tools were used to process various plants, including Triticeae and Paniceae grasses, Vigna beans, Dioscorea opposita yam, and Trichosanthes kirilowii snakegourd roots. Tubers were important food resources for Paleolithic hunter–gatherers, and Paniceae grasses were exploited about 12,000 y before their domestication. The long tradition of intensive exploitation of certain types of flora helped Paleolithic people understand the properties of these plants, including their medicinal uses, and eventually led to the plants' domestication. This study sheds light on the deep history of the broad spectrum subsistence strategy characteristic of late Pleistocene north China before the origins of agriculture in this region. PMID:23509257
Paleolithic human exploitation of plant foods during the last glacial maximum in North China.
Liu, Li; Bestel, Sheahan; Shi, Jinming; Song, Yanhua; Chen, Xingcan
2013-04-02
Three grinding stones from Shizitan Locality 14 (ca. 23,000-19,500 calendar years before present) in the middle Yellow River region were subjected to usewear and residue analyses to investigate human adaptation during the last glacial maximum (LGM) period, when resources were generally scarce and plant foods may have become increasingly important in the human diet. The results show that these tools were used to process various plants, including Triticeae and Paniceae grasses, Vigna beans, Dioscorea opposita yam, and Trichosanthes kirilowii snakegourd roots. Tubers were important food resources for Paleolithic hunter-gatherers, and Paniceae grasses were exploited about 12,000 y before their domestication. The long tradition of intensive exploitation of certain types of flora helped Paleolithic people understand the properties of these plants, including their medicinal uses, and eventually led to the plants' domestication. This study sheds light on the deep history of the broad spectrum subsistence strategy characteristic of late Pleistocene north China before the origins of agriculture in this region.
Bañuelos, G S; Lin, Z-Q
2005-11-01
An estimated 100,000m(3) selenium (Se)-laden drainage sediment resides in the San Luis Drain (SLD) of Central California. This greenhouse study was undertaken to evaluate the feasibility of growing salt- and boron-tolerant plant species in sediment for reduction of Se content by plant extraction. Drainage sediment was collected from the SLD and mixed with control soil (i.e., uncontaminated soil) to the following ratios (sediment:control soil) by volume: 0:3 (i.e., control soil only), 1:2 (i.e., 1/3 sediment and 2/3 control soil), 2:1 (i.e., 2/3 sediment and 1/3 control soil), and 3:0 (i.e., sediment only). Salt-tolerant plant species consisted of canola (Brassica napus var. Hyola 420), tall fescue (Festuca arundinacea var. Au Triumph), salado grass (Sporobulus airoides), and cordgrass (Spartina patens var. Flageo). Increased ratios of sediment:soil resulted in decreased dry matter production for all tested plant species; especially at ratios of sediment:soil greater than 1:2. Plant Se concentrations (mgkg(-1) DM) ranged as follows for plant species at all ratios of sediment:soil: canola (51-72), tall fescue (16-36), and cordgrass and salado grass (9-14). Total Se concentrations in the soil were at least 20% lower at postharvest compared to preplant concentrations for all plant species at each ratio of sediment:soil. In contrast, water-extractable Se concentrations in the soil were at least three times higher at postharvest than at preplant for all plant species, irrespective of the ratio of sediment:soil. Leaching of Se occurred in irrigated bare pots from each respective ratio of sediment:soil over a duration of 60 days. Based upon the downward movement of Se in bare pots of sediment:soil, it may be more prudent to leave the drainage sediment in the SLD, incorporate clean soil, and then grow low maintenance salt-tolerant plants (e.g., cordgrass, salado grass) in the concrete-lined canal. By this means, possible contamination of groundwater with soluble Se will be eliminated, while phytoremediation slowly reduces Se content in the drainage sediment.
Geochemistry of some rare earth elements in groundwater, Vierlingsbeek, The Netherlands.
Janssen, René P T; Verweij, Wilko
2003-03-01
Groundwater samples were taken from seven bore holes at depths ranging from 2 to 41m nearby drinking water pumping station Vierlingsbeek, The Netherlands and analysed for Y, La, Ce, Pr, Nd, Sm and Eu. Shale-normalized patterns were generally flat and showed that the observed rare earth elements (REE) were probably of natural origin. In the shallow groundwaters the REEs were light REE (LREE) enriched, probably caused by binding of LREEs to colloids. To improve understanding of the behaviour of the REE, two approaches were used: calculations of the speciation and a statistical approach. For the speciation calculations, complexation and precipitation reactions including inorganic and dissolved organic carbon (DOC) compounds, were taken into account. The REE speciation showed REE(3+), REE(SO(4))(+), REE(CO(3))(+) and REE(DOC) being the major species. Dissolution of pure REE precipitates and REE-enriched solid phases did not account for the observed REEs in groundwater. Regulation of REE concentrations by adsorption-desorption processes to Fe(III)(OH)(3) and Al(OH)(3) minerals, which were calculated to be present in nearly all groundwaters, is a probable explanation. The statistical approach (multiple linear regression) showed that pH is by far the most significant groundwater characteristic which contributes to the variation in REE concentrations. Also DOC, SO(4), Fe and Al contributed significantly, although to a much lesser extent, to the variation in REE concentrations. This is in line with the calculated REE-species in solution and REE-adsorption to iron and aluminium (hydr)oxides. Regression equations including only pH, were derived to predict REE concentrations in groundwater. External validation showed that these regression equations were reasonably successful to predict REE concentrations of groundwater of another drinking water pumping station in quite different region of The Netherlands.
Halon-1301, a new Groundwater Age Tracer
NASA Astrophysics Data System (ADS)
Beyer, Monique; van der Raaij, Rob; Morgenstern, Uwe; Jackson, Bethanna
2015-04-01
Groundwater dating is an important tool to assess groundwater resources in regards to direction and time scale of groundwater flow and recharge and to assess contamination risks and manage remediation. To infer groundwater age information, a combination of different environmental tracers, such as tritium and SF6, are commonly used. However ambiguous age interpretations are often faced, due to a limited set of available tracers and limitations of each tracer method when applied alone. There is a need for additional, complementary groundwater age tracers. We recently discovered that Halon-1301, a water soluble and entirely anthropogenic gaseous substance, may be a promising candidate [Beyer et al, 2014]. Halon-1301 can be determined along with SF6, SF5CF3 and CFC-12 in groundwater using a gas chromatography setup with attached electron capture detector developed by Busenberg and Plummer [2008]. Halon-1301 has not been assessed in groundwater. This study assesses the behaviour of Halon-1301 in water and its suitability as a groundwater age tracer. We determined Halon-1301 in 17 groundwater and various modern (river) waters sites located in 3 different groundwater systems in the Wellington Region, New Zealand. These waters have been previously dated with tritium, CFC-12, CFC-11 and SF6 with mean residence times ranging from 0.5 to over 100 years. The waters range from oxic to anoxic and some show evidence of CFC contamination or degradation. This allows us to assess the different properties affecting the suitability of Halon-1301 as groundwater age tracer, such as its conservativeness in water and local contamination potential. The samples are analysed for Halon-1301 and SF6simultaneously, which allows identification of issues commonly faced when using gaseous tracers such as contamination with modern air during sampling. Overall we found in the assessed groundwater samples Halon-1301 is a feasible new groundwater tracer. No sample indicated significantly elevated concentration of Halon-1301, which indicates absence of local anthropogenic or geologic sources (contamination), despite some samples showing CFC contamination. We found agreement of 71% of mean age estimates with ages inferred from tritium and SF6 within +/- 2 years, for samples where direct age comparison could be made. The remaining sites showed reduced concentrations of Halon-1301 along with reduced concentrations of CFCs. The reasons for this need to be further assessed, but are likely caused by sorption or degradation of Halon-1301. Further Halon-1301 studies are planned covering various hydrogeologic situations, land use practises, and redox conditions to evaluate the potential of Halon-1301 as groundwater tracer, and to elucidate the causes for reduced Halon-1301 concentrations. Acknowledgements Greater Wellington Regional Council, especially S. Tidswell, is thanked for support and organisation of the sampling of the groundwater wells. This study is part of a PhD supported by GNS Science as part of the Smart Aquifer Characterization program funded by the New Zealand Ministry for Science and Innovation (http://www.smart-project.info/). References Beyer, M., van der Raaij, R., Morgenstern, U., Jackson, B. (2014) Potential groundwater age tracer found: Halon-1301 (CF3Br), as previously identified as CFC-13 (CF3Cl), Water Resources Research. Busenberg, E. and Plummer, L.N. (2008) Dating groundwater with trifluoromethyl sulfurpentafluoride (SF5CF3), sulfurhexafluoride (SF6), CF3Cl (CFC-13) & CF2CL2 (CFC-12), Water Resources Research 44
NASA Astrophysics Data System (ADS)
Fang, Yilin; Leung, L. Ruby; Duan, Zhuoran; Wigmosta, Mark S.; Maxwell, Reed M.; Chambers, Jeffrey Q.; Tomasella, Javier
2017-08-01
The Amazon basin has experienced periodic droughts in the past, and intense and frequent droughts are predicted in the future. Landscape heterogeneity could play an important role in how tropical forests respond to drought by influencing water available to plants. Using the one-dimensional ACME Land Model and the three-dimensional ParFlow variably saturated flow model, numerical experiments were performed for a catchment in central Amazon to elucidate processes that influence water available for plant use and provide insights for improving Earth system models. Results from ParFlow show that topography has a dominant influence on groundwater table and runoff through lateral flow. Without any representations of lateral processes, ALM simulates very different seasonal variations in groundwater table and runoff compared to ParFlow even if it is able to reproduce the long-term spatial average groundwater table of ParFlow through simple parameter calibration. In the ParFlow simulations, even in the plateau with much deeper water table depth during the dry season in the drought year of 2005, plant transpiration is not water stressed as the soil saturation is still sufficient for the stomata to be fully open based on the empirical wilting formulation in the models. This finding is insensitive to uncertainty in atmospheric forcing and soil parameters, but the empirical wilting formulation is an important factor that should be addressed using observations and modeling of coupled plant hydraulics-soil hydrology processes in future studies. The results could be applicable to other catchments in the Amazon basin with similar seasonal variability and hydrologic regimes.
NASA Astrophysics Data System (ADS)
Moffett, K. B.; Dittmar, J.; Seyfferth, A.; Fendorf, S.; Gorelick, S.
2012-12-01
Surface and subsurface environments are linked by the biogeochemical activity in near-surface sediment and by the hydrological fluxes that mobilize its reagents and products. A particularly dynamic and interesting setting to study near-surface hydrogeochemistry is the intertidal zone. Here, the very strong tidal hydraulic forcing is often thought to dominate water and solute transport. However, we demonstrated the importance of two additional subsurface drivers: groundwater flow and plant root water uptake. A high-resolution, coupled surface water-groundwater model of an intertidal salt marsh in San Francisco Bay, CA showed that these three drivers vary over different spatial scales: tidal flooding varies over 10's of meters; groundwater flow varies over meters, particularly within channel banks; and plant root water uptake varies in 3D at the sub-meter scale. Expanding on this third driver, we investigated whether the spatial variations in soil-water-plant hydraulic interactions that occur due to vegetation zonation also cause distinct geochemical zonation in salt marsh sediment pore waters. The existence of such geochemical zonation was verified and mapped by detailed field observations of the chemical composition of sediments, pore waters, surface waters, and vegetation. The field data and the coupled hydrologic model were then further analyzed to evaluate potential causal mechanisms for the geochemical zonation, including testing the hypothesis that the vegetation affects pore water geochemistry via a positive feedback beneficial to itself. If further supported by future studies, this geochemical feedback may complement known physical ecosystem engineering mechanisms to help stabilize and organize intertidal wetlands.
Phytoremediation of explosives in groundwater using innovative wetlands-based treatment technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sikora, F.J.; Behrends, L.L.; Coonrod, H.S.
1997-12-31
Many army ammunition plants across the country have problems with groundwater contaminated with explosives. A field demonstration was initiated at the Milan Army Ammunition Plant near Milan, Tennessee early in 1996 to demonstrate the feasibility of treating contaminated groundwater with constructed wetlands. Two different systems were designed and installed. A lagoon system consisted of two cells in series with each cell having dimensions of 24 x 9.4 x 0.6 m (L x W x H). A gravel-bed system consisted of three gravel-beds operated in series with a primary anaerobic cell having dimensions of 32 x 11 x 1.4 m (Lmore » x W x H), followed by a pair of secondary cells each with dimensions of 5.5 x 11 x 1.4 m (L x W x H). The primary cell is maintained anaerobic by adding powdered milk to the water every two weeks. The secondary cells are maintained aerobic via reciprocation, whereby water is pumped back and forth from one cell to another to cause a recurrent fill and drain action. The lagoons were planted with sago pond weed, water stargrass, elodea, and parrot feather. The gravel-bed wetlands were planted with canary grass, wool grass, sweet flag, and parrot feather. Water began flowing to each of the wetland treatment systems at 19 L min{sup {minus}1} starting in June 1996. The design hydraulic retention time through each treatment system was approximately 10 days. Influent and effluent water samples were collected every 2 weeks. Intensive sampling of water interior to the wetlands occurred every 2 months.« less
NASA Astrophysics Data System (ADS)
Ohta, T.; Mahara, Y.
2010-12-01
Young groundwater dating less than 100 years is possible to be obtained from environmental radioactivity with short half life, 3H+3He, 85Kr, or chemical material, CFC-12. The 3H+3He dating method is excellent method to estimate the residence time of shallow groundwater. The one of advantage of the method is small sample volume. The 3He in groundwater is originated by 3 sources, tritiogenic He, mantle He, radiogenic He produced in rock. Especially, as the contribution of the mantle He is greater than the radiogenic and triogenic, when 3H+3He dating apply for groundwater dating on volcanic area, we have to determine ratio of 3 sources. On the other hand, as 85Kr is only originated from atmosphere, it is excellent groundwater dating tracer on volcanic area. However, as 85Kr is ultra low concentration in groundwater, 85Kr is needed to separate from large amount of ground water about 10^5 L. Young groundwater dating by these methods has both advantages and disadvantages, but the disadvantages of the individual methods can be offset by using multiple tracers. Development of a lot of groundwater dating techniques is desired. Therefore, an application of radium isotopes which is simple origin to groundwater dating on volcanic area was tried. Ra-228 and Ra-226 are progenies of Th and U, respectively. The 228Ra/226Ra in ground waters depends on the Th/U in the relevant rocks. As the 228Ra and 226Ra in shallow groundwater on volcanic area are originated from only rock, and the collection of radium isotopes from groundwater is easier than that of 85Kr, implying that it is possible to be good tracer for volcanic area. We aim that groundwater age obtain from 228Ra/226Ra in groundwater and relevant rock on volcanic area. We determined that 228Ra/226Ra observed with river waters and the relevant rocks. The method applied for Kakitagawa around Fuji Volcano, Japan. The relevant rock of Kakitagawa is Mishima lava flow. Our method compared with 3H+3He dating. The residence time of Kakitagawa river water estimated from the 228Ra/226Ra activity ratio in river water and relevant rock is from 12-20 years, and agree well with 3H+3He age, suggesting that 228Ra/226Ra of groundwater could be used as a tool of residence time estimation of groundwater on volcanic area.
Aerobic Methane Generation From Plants (AMP)? Yes, Mostly!
NASA Astrophysics Data System (ADS)
Whiticar, M. J.; Ednie, A. C.
2007-12-01
In 2006, Keppler et al. (K) published an intriguing and revolutionary idea that aerobic methane is produced in plants (AMP) and released to the atmosphere. Their initial scaling calculations estimated the amount of AMP fluxing from living plants to range from 62-236 Tg/y and 1-7 Tg/y for plant litter. Houweling et al. (2006) (H) refined this flux to ca. 85 Tg/y PIH and 125 Tg/y present day. More recently, Dueck et al. (2007) (D) challenged the claim of AMP from intact plants. Their experiments cited "...No evidence for substantial aerobic methane emission by terrestrial plants..." (max. 0.4 ng/g h-1). Due to the significance of AMP in understanding present and palaeo-atmospheric budgets (e.g., Whiticar and Schaefer, 2007), we conducted a wide range of experiments to confirm or refute the existence and magnitude of AMP. For explanation, experiments of K were time-series batch samples measured by gas chromatography on purged and ambient samples, whereas D used continuous-flow cuvettes and measured by optical PAS with time series single injections. Our longer-term experiments with corn, wheat, tomato, red cedar, chestnut, moss and lichen (3-97 h, 32 °C) used a plant chamber, flow-through system with a GYRO, an optical spectrometer that enables continuous 1 Hz CH4 measurements with a precision of ca. 1 ppbv. We conducted over 100 chamber experiments on sterilized and non-sterilized (Cs-137 radiation) samples of: 1) intact living plants (IP), 2) fresh leaves (FL) and 3) dried leaves (DL); under both 1) high and 2) low light conditions (HL, LL), and with 1) ambient CH4 (AM, ca. 1.92 ppmv) and 2) purged methane (PM, 10 and 96 ppbv) levels. Our results demonstrate that IP-AMs have CH4 flux rates of 0.74-3.48 ng/g h-1. In contrast, IP-PMs show intense CH4 uptake rates of -28.5 to -57.9 ng/g h-1 (substantially different than K's reported emissions of 12-370 ng/g h-1 values). Our FL-AM-LL have CH4 flux rates of 0.36-2.05 ng/g h-1, whereas FL-AM-HL have significant CH4 generation of 0.27 to 12.7 ng/g h-1 (substantially higher than K's max of 3 ng/g h-1). FL-PM emissions are low (ca. 1 ng/g h-1). DL CH4 release is also low ranging from LL of 0.33 to HL of 3.37 ng/g h-1. Interestingly, our Cs-irradiated FL have increasingly higher CH4 emission rates with higher radiation dosages. We do not attempt to extrapolate our AMP laboratory experiments to global scales, nor make any physiological, biochemical or mechanistic claims. However at this point our work does indeed confirm that AMP is indeed operative and significant under certain conditions. The magnitude of our small scale, laboratory, AMP emission experiments is consistent with the earlier claims of K and H. We have, to some degree, emulated the experimental designs of both K and D. We remain intrigued by the findings, yet uncertain, if not puzzled, by the process and the discrepancies between groups.
Automated Design of a High-Velocity Channel
2006-05-01
using Newton’s method. 2.2.2 Groundwater Applications Optimization methods are also very useful for solving groundwater problems. Townley et al... Townley 85] apply present computational algorithms to steady and transient models for groundwater °ow. The aquifer storage coe±cients, transmissivities...Reliability Analysis", Water Resources Research, Vol. 28, No. 12, December 1992, pp. 3269-3280. [ Townley 85] Townley , L. R. and Wilson, J. L
Qian, Hong; Zhang, Yuling; Wang, Jiali; Si, Chaoqun; Chen, Zaixing
2018-01-13
The objective of this study was to investigate a petroleum-contaminated groundwater site in northeast China. We determined the physicochemical properties of groundwater that contained total petroleum hydrocarbons (TPH) with a view to developing a scientifically robust strategy for controlling and remediating pollution of groundwater already contaminated with petroleum. Samples were collected at regular intervals and were analyzed for dissolved oxygen (DO), iron (Fe 3+ ), sulfate (SO 4 2- ), electrical conductivity (Eh), pH, hydrogen carbonate (HCO 3 - ), and enzyme activities of catalase (CAT), peroxidase (HRP), catechol 1,2-dioxygenase (C12O), and catechol 2,3-dioxygenase (C23O). We used factor analysis in SPSS to determine the main environmental characteristics of the groundwater samples. The results confirmed that the study site was slightly contaminated and that TPH levels were decreasing slightly. Some of the physicochemical variables showed regular fluctuations; DO, Fe 3+ , and SO 4 2- contents decreased gradually, while the concentrations of one of the microbial degradation products, HCO 3 - , increased. Microorganism enzyme activities decreased gradually. The microbiological community deteriorated noticeably during the natural attenuation process, so microbiological degradation of pollutants receded gradually. The HCO 3 - content increased and the pH and Eh decreased gradually. The groundwater environment tended to be reducing.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Zhang, G.; Lu, P.; Hu, B.; Zhu, C.
2017-12-01
The extent of CO2 mineralization after CO2 injection into deep saline aquifers is a result of the complex coupling of multiphase fluid flow, mass transport, and brine-mineral reactions. The effects of dissolution rate laws and groundwater flow on the long-term fate of CO2 have been seriously overlooked. To investigate these effects, we conducted multiphase (CO2 and brine) coupled reactive transport modeling of CO2 storage in two sandy formations (Utsira Sand, Norway1,2 and Mt. Simon formation, USA 3) using ToughReact and simulated a series of scenarios. The results indicated that: (1) Different dissolution rate laws for feldspars can significantly affect the amount of CO2 mineralization. Increased feldspar dissolution will promote CO2 mineral trapping through the coupling between feldspar dissolution and carbonate mineral precipitation at raised pH. The predicted amount of CO2 mineral trapping when using the principle of detailed balancing-based rate law for feldspar dissolution is about twice as much as that when using sigmoidal rate laws in the literature. (2) Mineral trapping is twice as much when regional groundwater flow is taken into consideration in long-term simulations (e.g., 10,000 years) whereas most modeling studies neglected the regional groundwater flow back and effectively simulated a batch reactor process. Under the influence of regional groundwater flow, the fresh brine from upstream continuously dissolves CO2 at the tail of CO2 plume, generating a large acidified area where large amount of CO2 mineralization takes place. The upstream replenishment of groundwater results in ˜22% mineral trapping at year 10,000, compared to ˜4% when this effect is ignored. Refs: 1Zhang, G., Lu, P., Wei, X., Zhu, C. (2016). Impacts of Mineral Reaction Kinetics and Regional Groundwater Flow on Long-Term CO2 Fate at Sleipner. Energy & Fuels, 30(5), 4159-4180. 2Zhu, C., Zhang, G., Lu, P., Meng, L., Ji, X. (2015). Benchmark modeling of the Sleipner CO2 plume: Calibration to seismic data for the uppermost layer and model sensitivity analysis. International Journal of Greenhouse Gas Control, 43, 233-246. 3Zhang, G., Lu, P., Zhang, Y., Wei, X., Zhu, C. (2015). Effects of rate law formulation on predicting CO2 sequestration in sandstone formations. International Journal of Energy Research, 39(14), 1890-1908.
Radiological Environmental Protection for PEP-II Ring High Luminosity Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, James C.; Nakao, Noriaki; /SLAC
2006-08-16
Stanford Linear Accelerator Center (SLAC) is located in northern California, USA. Radiological environmental protection is one of the main elements of the radiation protection program. One of SLAC's accelerator facilities is B-Factory, whose PEP-II accelerator ring has been operating since 1997 and is being upgraded to higher luminosity operation. Four radiological issues associated with high luminosity operation up to CY2008 are re-evaluated: (1) annual doses in IR halls, (2) annual skyshine doses at site boundaries, (3) potential radioactive air releases, and (4) potential groundwater activation. This paper presents the skyshine doses and air emission doses to the Maximally Exposed Individualmore » (MEI) at SLAC site boundaries. The normal beam loss scenarios around PEP-II ring are presented first. In CY2008, the luminosity is 2 x 10{sup 34} cm{sup -2} s{sup -1}, and the stored current is 4.0-A for low-energy ring (LER ) and 2.2-A for high-energy ring (HER). The beam losses around PEP-II ring include those near injection region in IR10 and IR8 and those at collimators (e.g., HER collimators in IR12, LER collimators in IR4 and IR6). The beam losses in IR8 and IR10 (where injection into ring occurs) are further divided into septum, BAD (beam abort dump) and TD (tune-up dump), as well as apertures. The skyshine prompt dose rate distributions as a function of distance from an IR hall at four directions were calculated using the MARS15 Monte Carlo code. For skyshine dose to the MEI, the annual dose (7200 h/y occupancy) is calculated to be 2.9 mrem/y at Sand Hill Road (from e{sup -} losses in IR12 HER collimators) and 1.2 mrem/y at Horse Track Offices near IR6 (from e{sup +} losses in IR8, IR6 and IR4). These are lower than the SLAC skyshine limit of 5 mrem/y for any single facility within SLAC. Radionuclide productions in the air at the PEP-II IR10 were calculated using MARS15. Beam losses of 9-GeV electrons were assumed in three target cases: the copper TD, septum and BAD. Energy spectra of secondary particles of photons, neutrons, protons and pions in the IR10 air region were calculated. Radionuclide yields of {sup 11}C, {sup 13}N, {sup 15}O, {sup 3}H, {sup 7}Be and {sup 41}Ar were estimated using the obtained particle energy spectra, folded with the reaction cross sections. With certain operation and ventilation conditions, the annual air emission dose to the MEI at Sand Hill Road from e{sup -} losses in IR10 is calculated to be 0.004 mrem/y (7200 h/y occupancy). The annual dose to the MEI at Horse Track Offices is 0.002 mrem/y from e{sup +} losses in IR8, 0.003 mrem/y from IR6, and 0.025 mrem/y from IR4. The doses are dominated by {sup 13}N. Therefore, the EPA annual dose limit of 10 mrem/y for SLAC and the continuous ventilation monitoring limit of 0.1 mrem/y for each release point are not exceeded.« less
NASA Astrophysics Data System (ADS)
Pérez Quezadas, Juan; Heilweil, Victor M.; Cortés Silva, Alejandra; Araguas, Luis; Salas Ortega, María del Rocío
2016-12-01
Geochemistry and environmental tracers were used to understand groundwater resources, recharge processes, and potential sources of contamination in the Rio Actopan Basin, Veracruz State, Mexico. Total dissolved solids are lower in wells and springs located in the basin uplands compared with those closer to the coast, likely associated with rock/water interaction. Geochemical results also indicate some saltwater intrusion near the coast and increased nitrate near urban centers. Stable isotopes show that precipitation is the source of recharge to the groundwater system. Interestingly, some high-elevation springs are more isotopically enriched than average annual precipitation at higher elevations, indicating preferential recharge during the drier but cooler winter months when evapotranspiration is reduced. In contrast, groundwater below 1,200 m elevation is more isotopically depleted than average precipitation, indicating recharge occurring at much higher elevation than the sampling site. Relatively cool recharge temperatures, derived from noble gas measurements at four sites (11-20 °C), also suggest higher elevation recharge. Environmental tracers indicate that groundwater residence time in the basin ranges from 12,000 years to modern. While this large range shows varying groundwater flowpaths and travel times, ages using different tracer methods (14C, 3H/3He, CFCs) were generally consistent. Comparing multiple tracers such as CFC-12 with CFC-113 indicates piston-flow to some discharge points, yet binary mixing of young and older groundwater at other points. In summary, groundwater within the Rio Actopan Basin watershed is relatively young (Holocene) and the majority of recharge occurs in the basin uplands and moves towards the coast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-07-15
The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are conducting cleanup activities at two properties--the DOE chemical plant area and the DA ordnance works area (the latter includes the training area)--located in the Weldon Spring area in St. Charles County, Missouri. These areas are on the National Priorities List (NPL), and cleanup activities at both areas are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE and DA are conducting a joint remedial investigation (RI) and baseline risk assessment (BRA) as part of the remedial investigation/feasibility studymore » (RI/FS) for the groundwater operable units for the two areas. This joint effort will optimize further data collection and interpretation efforts and facilitate overall remedial decision making since the aquifer of concern is common to both areas. A Work Plan issued jointly in 1995 by DOE and the DA discusses the results of investigations completed at the time of preparation of the report. The investigations were necessary to provide an understanding of the groundwater system beneath the chemical plant area and the ordnance works area. The Work Plan also identifies additional data requirements for verification of the evaluation presented.« less
Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination
NASA Astrophysics Data System (ADS)
Jasechko, Scott; Perrone, Debra; Befus, Kevin M.; Bayani Cardenas, M.; Ferguson, Grant; Gleeson, Tom; Luijendijk, Elco; McDonnell, Jeffrey J.; Taylor, Richard G.; Wada, Yoshihide; Kirchner, James W.
2017-06-01
The vulnerability of groundwater to contamination is closely related to its age. Groundwaters that infiltrated prior to the Holocene have been documented in many aquifers and are widely assumed to be unaffected by modern contamination. However, the global prevalence of these `fossil' groundwaters and their vulnerability to modern-era pollutants remain unclear. Here we analyse groundwater carbon isotope data (12C, 13C, 14C) from 6,455 wells around the globe. We show that fossil groundwaters comprise a large share (42-85%) of total aquifer storage in the upper 1 km of the crust, and the majority of waters pumped from wells deeper than 250 m. However, half of the wells in our study that are dominated by fossil groundwater also contain detectable levels of tritium, indicating the presence of much younger, decadal-age waters and suggesting that contemporary contaminants may be able to reach deep wells that tap fossil aquifers. We conclude that water quality risk should be considered along with sustainable use when managing fossil groundwater resources.
Alharby, Hesham F; Colmer, Timothy D; Barrett-Lennard, Edward G
2018-01-01
Water use by plants in landscapes with shallow saline groundwater may lead to the accumulation of salt in the root zone. We examined the accumulation of Na + and Cl - around the roots of the halophyte Atriplex nummularia Lindl. and the impacts of this increasing salinity for stomatal conductance, water use and growth. Plants were grown in columns filled with a sand-clay mixture and connected at the bottom to reservoirs containing 20, 200 or 400 mM NaCl. At 21 d, Na + and Cl - concentrations in the soil solution were affected by the salinity of the groundwater, height above the water table and the root fresh mass density at various soil depths (P < 0.001). However, by day 35, the groundwater salinity and height above the water table remained significant factors, but the root fresh mass density was no longer significant. Regression of data from the 200 and 400 mM NaCl treatments showed that the rate of Na + accumulation in the soil increased until the Na + concentration reached ~250 mM within the root zone; subsequent decreases in accumulation were associated with decreases in stomatal conductance. Salinization of the soil solution therefore had a feedback effect on further salinization within the root zone. © 2017 John Wiley & Sons Ltd.