Sample records for y1 adrenocortical cell

  1. Comparative CYP-dependent binding of the adrenocortical toxicants 3-methylsulfonyl-DDE and o,p'-DDD in Y-1 adrenal cells.

    PubMed

    Hermansson, Veronica; Asp, Vendela; Bergman, Ake; Bergström, Ulrika; Brandt, Ingvar

    2007-11-01

    The environmental pollutant 3-MeSO(2)-DDE [2-(3-methylsulfonyl-4-chlorophenyl)-2-(4-chlorophenyl)-1,1-dichloroethene] is an adrenocortical toxicant in mice, specifically in the glucocorticoid-producing zona fasciculata, due to a cytochrome P450 11B1 (CYP11B1)-catalysed bioactivation and formation of covalently bound protein adducts. o,p'-DDD [2-(2-chlorophenyl)-2-(4-chlorophenyl)-1,1-dichloroethane] is toxic and inhibits steroidogenesis in the human adrenal cortex after bioactivation by unidentified CYPs, but does not exert any toxic effects on the mouse adrenal. As a step towards determining in vitro/in vivo relationships for the CYP-catalysed binding and toxicity of 3-MeSO(2)-DDE and o,p'-DDD, we have investigated the irreversible protein binding of these two toxicants in the murine adrenocortical cell line Y-1. The irreversible binding of 3-MeSO(2)-DDE previously demonstrated in vivo was successfully reproduced and could be inhibited by the CYP-inhibitors etomidate, ketoconazole and metyrapone. Surprisingly, o,p'-DDD reached similar levels of binding as 3-MeSO(2)-DDE. The binding of o,p'-DDD was sensitive to etomidate and ketoconazole, but not to metyrapone. Moreover, GSH depletion increased the binding of 3-MeSO(2)-DDE, but not of o,p'-DDD, indicating an important role of GSH conjugation in the detoxification of the 3-MeSO(2)-DDE-derived reactive metabolite. In addition, the specificity of CYP11B1 in activating 3-MeSO(2)-DDE was investigated using structurally analogous compounds. None of the analogues produced histopathological lesions in the mouse adrenal in vivo following a single i.p. injection of 100 mg/kg body weight, but two of the compounds were able to decrease the irreversible binding of 3-MeSO(2)-DDE to Y-1 cells. These results indicate that the bioactivation of 3-MeSO(2)-DDE by CYP11B1 is highly structure-dependent. In conclusion, both 3-MeSO(2)-DDE and o,p'-DDD bind irreversibly to Y-1 cells despite differences in binding and adrenotoxicity in mice

  2. StAR Protein Stability in Y1 and Kin-8 Mouse Adrenocortical Cells.

    PubMed

    Clark, Barbara J; Hudson, Elizabeth A

    2015-03-04

    The steroidogenic acute regulatory protein (STAR) protein expression is required for cholesterol transport into mitochondria to initiate steroidogenesis in the adrenal and gonads. STAR is synthesized as a 37 kDa precursor protein which is targeted to the mitochondria and imported and processed to an intra-mitochondrial 30 kDa protein. Tropic hormone stimulation of the cAMP-dependent protein kinase A (PKA) signaling pathway is the major contributor to the transcriptional and post-transcriptional regulation of STAR synthesis. Many studies have focused on the mechanisms of cAMP-PKA mediated control of STAR synthesis while there are few reports on STAR degradation pathways. The objective of this study was to determine the effect of cAMP-PKA-dependent signaling on STAR protein stability. We have used the cAMP-PKA responsive Y1 mouse adrenocortical cells and the PKA-deficient Kin-8 cells to measure STAR phosphorylation and protein half-life. Western blot analysis and standard radiolabeled pulse-chase experiments were used to determine STAR phosphorylation status and protein half-life, respectively. Our data demonstrate that PKA-dependent STAR phosphorylation does not contribute to 30 kDa STAR protein stability in the mitochondria. We further show that inhibition of the 26S proteasome does not block precursor STAR phosphorylation or steroid production in Y1 cells. These data suggest STAR can maintain function and promote steroidogenesis under conditions of proteasome inhibition.

  3. StAR Protein Stability in Y1 and Kin-8 Mouse Adrenocortical Cells

    PubMed Central

    Clark, Barbara J.; Hudson, Elizabeth A.

    2015-01-01

    The steroidogenic acute regulatory protein (STAR) protein expression is required for cholesterol transport into mitochondria to initiate steroidogenesis in the adrenal and gonads. STAR is synthesized as a 37 kDa precursor protein which is targeted to the mitochondria and imported and processed to an intra-mitochondrial 30 kDa protein. Tropic hormone stimulation of the cAMP-dependent protein kinase A (PKA) signaling pathway is the major contributor to the transcriptional and post-transcriptional regulation of STAR synthesis. Many studies have focused on the mechanisms of cAMP-PKA mediated control of STAR synthesis while there are few reports on STAR degradation pathways. The objective of this study was to determine the effect of cAMP-PKA-dependent signaling on STAR protein stability. We have used the cAMP-PKA responsive Y1 mouse adrenocortical cells and the PKA-deficient Kin-8 cells to measure STAR phosphorylation and protein half-life. Western blot analysis and standard radiolabeled pulse-chase experiments were used to determine STAR phosphorylation status and protein half-life, respectively. Our data demonstrate that PKA-dependent STAR phosphorylation does not contribute to 30 kDa STAR protein stability in the mitochondria. We further show that inhibition of the 26S proteasome does not block precursor STAR phosphorylation or steroid production in Y1 cells. These data suggest STAR can maintain function and promote steroidogenesis under conditions of proteasome inhibition. PMID:25749137

  4. Characterization of differential gene expression in adrenocortical tumors harboring beta-catenin (CTNNB1) mutations.

    PubMed

    Durand, Julien; Lampron, Antoine; Mazzuco, Tania L; Chapman, Audrey; Bourdeau, Isabelle

    2011-07-01

    Mutations of β-catenin gene (CTNNB1) are frequent in adrenocortical adenomas (AA) and adrenocortical carcinomas (ACC). However, the target genes of β-catenin have not yet been identified in adrenocortical tumors. Our objective was to identify genes deregulated in adrenocortical tumors harboring CTNNB1 genetic alterations and nuclear accumulation of β-catenin. Microarray analysis identified a dataset of genes that were differently expressed between AA with CTNNB1 mutations and wild-type (WT) tumors. Within this dataset, the expression profiles of five genes were validated by real time-PCR (RT-PCR) in a cohort of 34 adrenocortical tissues (six AA and one ACC with CTNNB1 mutations, 13 AA and four ACC with WT CTNNB1, and 10 normal adrenal glands) and two human ACC cell lines. We then studied the effects of suppressing β-catenin transcriptional activity with the T-cell factor/β-catenin inhibitors PKF115-584 and PNU74654 on gene expression in H295R and SW13 cells. RT-PCR analysis confirmed the overexpression of ISM1, RALBP1, and PDE2A and the down-regulation of PHYHIP in five of six AA harboring CTNNB1 mutations compared with WT AA (n = 13) and normal adrenal glands (n = 10). RALBP1 and PDE2A overexpression was also confirmed at the protein level by Western blotting analysis in mutated tumors. ENC1 was specifically overexpressed in three of three AA harboring CTNNB1 point mutations. mRNA expression and protein levels of RALBP1, PDE2A, and ENC1 were decreased in a dose-dependent manner in H295R cells after treatment with PKF115-584 or PNU74654. This study identified candidate genes deregulated in CTNNB1-mutated adrenocortical tumors that may lead to a better understanding of the role of the Wnt-β-catenin pathway in adrenocortical tumorigenesis.

  5. The N-terminal neurotensin fragment, NT1-11, inhibits cortisol secretion by human adrenocortical cells.

    PubMed

    Sicard, Flavie; Contesse, Vincent; Lefebvre, Hervé; Ait-Ali, Djida; Gras, Marjorie; Cartier, Dorthe; Decker, Annick; Chartrel, Nicolas; Anouar, Youssef; Vaudry, Hubert; Delarue, Catherine

    2006-08-01

    Neurotensin (NT) modulates corticosteroid secretion from the mammalian adrenal gland. The objective of this study was to investigate the possible involvement of NT in the control of cortisol secretion in the human adrenal gland. In vitro studies were conducted on cultured human adrenocortical cells. This study was conducted in a university research laboratory. Adrenal explants from patients undergoing expanded nephrectomy for kidney cancer were studied. Cortisol secretion from cultured adrenocortical cells was measured. NT1-11, the N-terminal fragment of NT, dose-dependently inhibited basal and ACTH-stimulated cortisol production by human adrenocortical cells in primary culture. In contrast, NT had no influence on cortisol output at concentrations up to 10(-6) m. HPLC and RT-PCR analyses failed to detect any significant amounts of NT and NT mRNA, respectively, in adrenal extracts. Molecular and pharmacological studies were performed to determine the type of NT receptor involved in the corticostatic effect of NT1-11. RT-PCR analysis revealed the expression of NT receptor type (NTR) 3 mRNA but not NTR1 and NTR2 mRNAs in the human adrenal tissue. However, the pharmacological profile of the adrenal NT1-11 receptor was different from that of NTR3, indicating that this receptor type is not involved in the action of NT1-11 on corticosteroidogenesis. Our results indicate that NT1-11 may act as an endocrine factor to inhibit cortisol secretion through activation of a receptor distinct from the classical NTR1, NTR2, and NTR3.

  6. Osthole, a coumadin analog from Cnidium monnieri (L.) Cusson, stimulates corticosterone secretion by increasing steroidogenic enzyme expression in mouse Y1 adrenocortical tumor cells.

    PubMed

    Pan, Zhiqiang; Fang, Zhaoqin; Lu, Wenli; Liu, Xiaomei; Zhang, Yuanyuan

    2015-12-04

    Osthole is an O-methylated coumadin, which was isolated and purified from the seeds of Cnidium monnieri (L.) Cusson. Osthole is a commonly used traditional Chinese medicine to treat patients with Kidney-Yang deficiency patients, who exhibit clinical signs similar to those of glucocorticoid withdrawal. However, the mechanism of action of osthole is not fully understood. This study was designed to reveal the effects of osthole on corticosterone production in mouse Y1 cell. Mouse Y1 adrenocortical cells were used to evaluate corticosterone production, which was quantified by enzyme-linked immunosorbent assay (ELISA) kits. Cell viability was tested using the MTT assay, and the mRNA and protein expression of genes encoding steroidogenic enzymes and transcription factors was monitored by quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) and western blotting, respectively. Osthole stimulated corticosterone secretion from mouse Y1 cells in a dose- and time-dependent manner, and osthole enhanced the effect of dibutyryl-cAMP (Bu2cAMP) on corticosterone production. Further, osthole also increased StAR and CYP11B1 mRNA expression in a dose-dependent manner and enhanced the expression of transcription factors such as HSD3B1, FDX1, POR and RXRα as well as immediate early genes such as NR4A1. Moreover, osthole significantly increased SCARB1(SRB1) mRNA and StAR protein expression in the presence or absence of Bu2cAMP; these proteins are an important for the transport of the corticosteroid precursor cholesterol transport into mitochondria. Our results show that the promotion of corticosterone biosynthesis and secretion is a novel effect of osthole, suggesting that this agent can be utilized for the prevention and treatment of Kidney-Yang deficiency syndrome. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. PROFILING GENE EXPRESSION IN HUMAN H295R ADRENOCORTICAL CARCINOMA CELLS AND RAT TESTES TO IDENTIFY PATHWAYS OF TOXICITY FOR CONAZOLE FUNGICIDES

    EPA Science Inventory

    Profiling Gene Expression in Human H295R Adrenocortical Carcinoma Cells and Rat Testes to Identify Pathways of Toxicity for Conazole Fungicides
    Ren1, H., Schmid1, J., Retief2, J., Turpaz2, Y.,Zhang3, X.,Jones3, P., Newsted3, J.,Giesy3, J., Wolf1, D.,Wood1, C., Bao1, W., Dix1, ...

  8. Potent inhibitory effect of the cyclolignan picropodophyllin (PPP) on human adrenocortical carcinoma cells proliferation.

    PubMed

    Doghman, Mabrouka; Axelson, Magnus; Lalli, Enzo

    2011-01-01

    Adrenocortical carcinoma (ACC) is a very aggressive tumor with a poor prognosis. Available treatments for this type of cancer are far from being satisfactory. The IGF signalling pathway represents an important mechanism for ACT growth and constitutes a relevant therapeutic target. We investigated the effect of picropodophyllin (PPP), a member of the cyclolignan family and a new inhibitor of IGF-1R, on proliferation of human adrenocortical cell lines H295R and SW-13. PPP inhibits proliferation and induces an important accumulation in G2/M phase and apoptosis of H295R and SW-13 cells. Our data suggest that PPP may be a promising candidate for drug development for adrenocortical carcinoma.

  9. Epigenetic silencing of RASSF1A deregulates cytoskeleton and promotes malignant behavior of adrenocortical carcinoma

    PubMed Central

    2013-01-01

    Background Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with high mutational heterogeneity and a generally poor clinical outcome. Despite implicated roles of deregulated TP53, IGF-2 and Wnt signaling pathways, a clear genetic association or unique mutational link to the disease is still missing. Recent studies suggest a crucial role for epigenetic modifications in the genesis and/or progression of ACC. This study specifically evaluates the potential role of epigenetic silencing of RASSF1A, the most commonly silenced tumor suppressor gene, in adrenocortical malignancy. Results Using adrenocortical tumor and normal tissue specimens, we show a significant reduction in expression of RASSF1A mRNA and protein in ACC. Methylation-sensitive and -dependent restriction enzyme based PCR assays revealed significant DNA hypermethylation of the RASSF1A promoter, suggesting an epigenetic mechanism for RASSF1A silencing in ACC. Conversely, the RASSF1A promoter methylation profile in benign adrenocortical adenomas (ACAs) was found to be very similar to that found in normal adrenal cortex. Enforced expression of ectopic RASSF1A in the SW-13 ACC cell line reduced the overall malignant behavior of the cells, which included impairment of invasion through the basement membrane, cell motility, and solitary cell survival and growth. On the other hand, expression of RASSF1A/A133S, a loss-of-function mutant form of RASSF1A, failed to elicit similar malignancy-suppressing responses in ACC cells. Moreover, association of RASSF1A with the cytoskeleton in RASSF1A-expressing ACC cells and normal adrenal cortex suggests a role for RASSF1A in modulating microtubule dynamics in the adrenal cortex, and thereby potentially blocking malignant progression. Conclusions Downregulation of RASSF1A via promoter hypermethylation may play a role in the malignant progression of adrenocortical carcinoma possibly by abrogating differentiation-promoting RASSF1A- microtubule interactions. PMID

  10. The angiotensin II type 1 receptor-neprilysin inhibitor LCZ696 blocked aldosterone synthesis in a human adrenocortical cell line.

    PubMed

    Miura, Shin-Ichiro; Suematsu, Yasunori; Matsuo, Yoshino; Tomita, Sayo; Nakayama, Asuka; Goto, Masaki; Arimura, Tadaaki; Kuwano, Takashi; Yahiro, Eiji; Saku, Keijiro

    2016-11-01

    A recent clinical study indicated that an angiotensin II (Ang II) type 1 (AT 1 ) receptor-neprilysin inhibitor (ARNi) designated LCZ696 (sacubitril/valsartan, as combined sodium complex) was superior to enalapril at reducing the risks of death and hospitalization due to heart failure. Therefore, we investigated the possible mechanisms of the beneficial effect of LCZ696, in which the inhibition of neprilysin enhances atrial natriuretic peptide (NP) or brain NP (ANP or BNP)-evoked signals that can block Ang II/AT 1 receptor-induced aldosterone (Ald) synthesis in human adrenocortical cells. The binding affinity of valsartan+LBQ657 (active moiety of sacubitril) to the AT 1 receptor was greater than that of valsartan alone in an AT 1 receptor-expressing human embryonic kidney cell-based assay. There was no difference in the dissociation from the AT 1 receptor between valsartan+LBQ657 and valsartan alone. In Ang II-sensitized human adrenocortical cells, ANP or BNP alone, but not LBQ657 or valsartan alone, significantly decreased Ald synthesis. The level of suppression of Ald synthesis by ANP or BNP with LBQ657 was greater than that by ANP or BNP without LBQ657. The suppression of ANP was blocked by inhibitors of regulator of G-protein signaling proteins and cyclic GMP-dependent protein kinase. The inhibition of neprilysin did not change the mRNA levels of the AT 1 receptor, ANP receptor A, regulator of G-protein signaling protein, renin or 3β-hydroxysteroid dehydrogenases. In conclusion, the inhibition of neprilysin by LBQ657 enhances the NP-evoked signals that can block Ang II/AT 1 receptor-induced Ald synthesis in human adrenocortical cells.

  11. Corticotropin (ACTH) regulates alternative RNA splicing in Y1 mouse adrenocortical tumor cells.

    PubMed

    Schimmer, Bernard P; Cordova, Martha

    2015-06-15

    The stimulatory effect of ACTH on gene expression is well documented and is thought to be a major mechanism by which ACTH maintains the functional and structural integrity of the gland. Previously, we showed that ACTH regulates the accumulation of over 1200 transcripts in Y1 adrenal cells, including a cluster with functions in alternative splicing of RNA. On this basis, we postulated that some of the effects of ACTH on the transcription landscape of Y1 cells are mediated by alternative splicing. In this study, we demonstrate that ACTH regulates the alternative splicing of four transcripts - Gnas, Cd151, Dab2 and Tia1. Inasmuch as alternative splicing potentially affects transcripts from more than two-thirds of the mouse genome, we suggest that these findings are representative of a genome-wide effect of ACTH that impacts on the mRNA and protein composition of the adrenal cortex. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Novel digitalis-like factor, marinobufotoxin, isolated from cultured Y-1 cells, and its hypertensive effect in rats.

    PubMed

    Yoshika, Masamichi; Komiyama, Yutaka; Konishi, Motomi; Akizawa, Toshifumi; Kobayashi, Takahisa; Date, Mutsuhiro; Kobatake, Shinzo; Masuda, Midori; Masaki, Hiroya; Takahashi, Hakuo

    2007-01-01

    Marinobufagenin and telecinobufagin have been identified as digitalis-like factors in mammals. In toads, marinobufagenin-related compounds, such as marinobufotoxin (MBT), have been isolated in some tissues but not in mammals, and its biological action has not been elucidated. Herein, we aimed to explore the possible production and/or secretion of MBT and the biological action in rats. First, the MBT in culture supernatant of the adrenocortical-originated cell line Y-1 was analyzed by high-performance liquid chromatography and sensitive ELISA for marinobufagenin-like immunoreactivity. Moreover, the structural information was obtained by mass spectrometry. To determine the biological action, MBT (9.6 and 0.96 microg/kg per day) was intraperitoneally infused via an osmotic minipump for 1 week. Blood pressure and renal excretion of marinobufagenin-like immunoreactivity were measured. Marinobufagenin-like immunoreactivity was found in Y-1 cell culture media, and the concentration increased until 24 hours. The structural analysis suggested that marinobufagenin-like immunoreactivities were marinobufagenin and MBT, and tandem mass spectrum analysis revealed them with the specific daughter ions. The highest sensitive ELISA-positive peak of marinobufagenin-like immunoreactivity in the media was MBT. Continuous administration of MBT in rats for 1 week significantly increased systolic blood pressure and renal excretion of marinobufagenin-like immunoreactivity compared with control rats (135+/-3.0 versus 126+/-2.0 mm Hg and 1.41+/-0.286 versus 0.34+/-0.064 ng/day, respectively). These data suggest that MBT, arginine-suberoyl ester of marinobufagenin, can be a novel digitalis-like factor with hypertensive action and is secreted from the adrenocortical cells.

  13. Small-Conductance Ca2+-Activated Potassium Channels Negatively Regulate Aldosterone Secretion in Human Adrenocortical Cells.

    PubMed

    Yang, Tingting; Zhang, Hai-Liang; Liang, Qingnan; Shi, Yingtang; Mei, Yan-Ai; Barrett, Paula Q; Hu, Changlong

    2016-09-01

    Aldosterone, which plays a key role in maintaining water and electrolyte balance, is produced by zona glomerulosa cells of the adrenal cortex. Autonomous overproduction of aldosterone from zona glomerulosa cells causes primary hyperaldosteronism. Recent clinical studies have highlighted the pathological role of the KCNJ5 potassium channel in primary hyperaldosteronism. Our objective was to determine whether small-conductance Ca(2+)-activated potassium (SK) channels may also regulate aldosterone secretion in human adrenocortical cells. We found that apamin, the prototypic inhibitor of SK channels, decreased membrane voltage, raised intracellular Ca(2+) and dose dependently increased aldosterone secretion from human adrenocortical H295R cells. By contrast, 1-Ethyl-2-benzimidazolinone, an agonist of SK channels, antagonized apamin's action and decreased aldosterone secretion. Commensurate with an increase in aldosterone production, apamin increased mRNA expression of steroidogenic acute regulatory protein and aldosterone synthase that control the early and late rate-limiting steps in aldosterone biosynthesis, respectively. In addition, apamin increased angiotensin II-stimulated aldosterone secretion, whereas 1-Ethyl-2-benzimidazolinone suppressed both angiotensin II- and high K(+)-stimulated production of aldosterone in H295R cells. These findings were supported by apamin-modulation of basal and angiotensin II-stimulated aldosterone secretion from acutely prepared slices of human adrenals. We conclude that SK channel activity negatively regulates aldosterone secretion in human adrenocortical cells. Genetic association studies are necessary to determine whether mutations in SK channel subtype 2 genes may also drive aldosterone excess in primary hyperaldosteronism. © 2016 American Heart Association, Inc.

  14. Autonomic and adrenocortical reactivity and buccal cell telomere length in kindergarten children

    PubMed Central

    Kroenke, Candyce H; Epel, Elissa; Adler, Nancy; Bush, Nicole R.; Obradović, Jelena; Lin, Jue; Blackburn, Elizabeth; Stamperdahl, Juliet Lise; Boyce, W. Thomas

    2011-01-01

    Objective To examine associations between autonomic nervous system and adrenocortical reactivity to laboratory stressors and buccal cell telomere length (BTL) in children. Methods The study sample comprised 78 five- and six-year-old children from a longitudinal cohort study of kindergarten social hierarchies, biological responses to adversity, and child health. Buccal cell samples and reactivity measures were collected in the spring of the kindergarten year. BTL was measured by realtime PCR, as the telomere-to-single copy gene (T/S) ratio. Parents provided demographic information; parents and teachers reported children’s internalizing and externalizing behavior problems. Components of children’s autonomic (heart rate (HR), respiratory sinus arrhythmia (RSA), pre-ejection period (PEP)) and adrenocortical (salivary cortisol) responses were monitored during standardized laboratory challenges. We examined relations between reactivity, internalizing and externalizing behavior, and BTL, adjusted for age, race, and gender. Results Heart rate and cortisol reactivity were inversely related to BTL, PEP was positively related to BTL, and RSA was unrelated. Internalizing behaviors were also inversely related to BTL (standardized β=−0.33, p=0.004). Split at the median of reactivity parameters, children with high sympathetic activation (decreasing PEP) and high parasympathetic withdrawal (decreasing RSA) did not differ with regard to BTL. However, children with both this profile and high cortisol reactivity (N=12) had significantly shorter BTL (0.80 vs. 1.00, χ2=7.6, p=0.006), compared with other children. Conclusions Autonomic and adrenocortical reactivity in combination were associated with shorter buccal cell telomere length in children. These data suggest that psychophysiological processes may influence, and that BTL may be a useful marker of, early biological aging. PMID:21873585

  15. Autonomic and adrenocortical reactivity and buccal cell telomere length in kindergarten children.

    PubMed

    Kroenke, Candyce H; Epel, Elissa; Adler, Nancy; Bush, Nicole R; Obradovic, Jelena; Lin, Jue; Blackburn, Elizabeth; Stamperdahl, Juliet Lise; Boyce, W Thomas

    2011-09-01

    To examine associations between autonomic nervous system and adrenocortical reactivity to laboratory stressors and buccal cell telomere length (BTL) in children. The study sample comprised 78 children, aged 5 to 6 years, from a longitudinal cohort study of kindergarten social hierarchies, biologic responses to adversity, and child health. Buccal cell samples and reactivity measures were collected in the spring of the kindergarten year. BTL was measured by real-time polymerase chain reaction, as the telomere-to-single-copy gene ratio. Parents provided demographic information; parents and teachers reported children's internalizing and externalizing behavior problems. Components of children's autonomic (heart rate, respiratory sinus arrhythmia [RSA], and preejection period [PEP]) and adrenocortical (salivary cortisol) responses were monitored during standardized laboratory challenges. We examined relationships between reactivity, internalizing and externalizing behaviors, and BTL, adjusted for age, race, and sex. Heart rate and cortisol reactivity were inversely related to BTL, PEP was positively related to BTL, and RSA was unrelated to BTL. Internalizing behaviors were also inversely related to BTL (standardized β = -0.33, p = .004). Split at the median of reactivity parameters, children with high sympathetic activation (decreasing PEP), and parasympathetic withdrawal (decreasing RSA) did not differ with regard to BTL. However, children with both this profile and high cortisol reactivity (n = 12) had significantly shorter BTL (0.80 versus 1.00; χ² = 7.6, p = .006), compared with other children. The combination of autonomic and adrenocortical reactivity was associated with shorter BTL in children. These data suggest that psychophysiological processes may influence, and that BTL may be a useful marker of, early biologic aging.

  16. GLUT1 expression in pediatric adrenocortical tumors: a promising candidate to predict clinical behavior.

    PubMed

    Pinheiro, Céline; Granja, Sara; Longatto-Filho, Adhemar; Faria, André M; Fragoso, Maria C B V; Lovisolo, Silvana M; Bonatelli, Murilo; Costa, Ricardo F A; Lerário, Antonio M; Almeida, Madson Q; Baltazar, Fátima; Zerbini, Maria C N

    2017-09-08

    Discrimination between benign and malignant tumors is a challenging process in pediatric adrenocortical tumors. New insights in the metabolic profile of pediatric adrenocortical tumors may contribute to this distinction, predict prognosis, as well as identify new molecular targets for therapy. The aim of this work is to characterize the expression of the metabolism-related proteins MCT1, MCT2, MCT4, CD147, CD44, GLUT1 and CAIX in a series of pediatric adrenocortical tumors. A total of 50 pediatric patients presenting adrenocortical tumors, including 41 clinically benign and 9 clinically malignant tumors, were included. Protein expression was evaluated using immunohistochemistry in samples arranged in tissue microarrays. The immunohistochemical analysis showed a significant increase in plasma membrane expression of GLUT1 in malignant lesions, when compared to benign lesions ( p =0.004), being the expression of this protein associated with shorter overall and disease-free survival ( p =0.004 and p =0.001, respectively). Although significant differences were not observed for proteins other than GLUT1, MCT1, MCT4 and CD147 were highly expressed in pediatric adrenocortical neoplasias (around 90%). GLUT1 expression was differentially expressed in pediatric adrenocortical tumors, with higher expression in clinically malignant tumors, and associated with shorter survival, suggesting a metabolic remodeling towards a hyperglycolytic phenotype in this malignancy.

  17. Nicotine-induced stimulation of steroidogenesis in adrenocortical cells of the cat.

    PubMed Central

    Rubin, R P; Warner, W

    1975-01-01

    1. The effect of nicotine on steroid production and release from trypsin-dispersed cat adrenocortical cells was investigated. 2. Nicotine, like adrenocorticotrophin (ACTH), elicited a dose-dependent increase in steroidogenesis, which depended upon the presence of calcium in the medium. 3. Augmented steroid production evoked by submaximal concentrations of ACTH monobutyryl cyclic adenosine 3',5'-monophosphate (AMP), or prostaglandin E2 was further enhanced by steroidogenic concentrations of nicotine. 4. These results are discussed in relation to the possible mode of action of nicotine on cortical cells and to the potential consequences of smoking during stress. PMID:165845

  18. Cooperative transforming activities of ras, myc, and src viral oncogenes in nonestablished rat adrenocortical cells.

    PubMed Central

    MacAuley, A; Pawson, T

    1988-01-01

    Early-passage rat adrenocortical cells were infected with Kirsten murine sarcoma virus and MMCV mouse myc virus, two retroviruses carrying the v-Ki-ras and v-myc oncogenes, respectively. Efficient morphological transformation required coinfection with the two viruses, was dependent on the presence of high serum concentrations, and was not immediately accompanied by growth in soft agar. The doubly infected cells coordinately acquired the capacity for anchorage- and serum-independent growth during passage in culture. The appearance of such highly transformed cells was correlated with the emergence of a dominant clone, as suggested by an analysis of retrovirus integration sites. These results indicate that the concerted expression of v-Ki-ras and v-myc could induce rapid morphological transformation of nonestablished adrenocortical cells but that an additional genetic or epigenetic event was required to permit full transformation by these two oncogenes. In contrast, v-src, introduced by retrovirus infection in conjunction with v-myc, rapidly induced serum- and anchorage-independent growth. Therefore, the p60v-src protein-tyrosine kinase, unlike p21v-ras, is apparently not restricted in the induction of a highly transformed phenotype in adrenocortical cells. This system provides an in vitro model for the progressive transformation of epithelial cells by dominantly acting oncogenes. Images PMID:2846881

  19. Assessment of cytologic evaluation of preputial epithelial cells as a diagnostic test for detection of adrenocortical disease in castrated ferrets.

    PubMed

    Protain, Holly J; Kutzler, Michelle A; Valentine, Beth A

    2009-05-01

    To determine whether results of cytologic evaluation of preputial epithelial cells correspond to results of a serum endocrine hormone assay and clinical signs associated with adrenocortical disease in castrated ferrets. 13 clinically normal ferrets and 8 ferrets with signs of adrenocortical disease. Blood and preputial lavage samples were collected from each ferret. Serum samples were submitted to the University of Tennessee Veterinary Diagnostic Laboratory for performance of an endocrine hormone assay. Differential epithelial cell counts were performed on preputial lavage samples to determine the percentage of cornified cells. Results of cytologic evaluation were compared with results of the endocrine hormone assay and clinical status of ferrets. The percentage of cornified preputial epithelial cells was not significantly correlated with serum 17B-estradiol or androstenedione concentration but was significantly correlated with serum 17-hydroxyprogesterone concentration (r = 0.60). The percentage of cornified preputial epithelial cells was higher in ferrets with clinical signs of adrenocortical disease (mean +/- SD, 71.3 +/- 16.9%) than in clinically normal ferrets (55.5 +/- 19.0%). Cornification of preputial epithelial cells was correlated with an increase in serum 17-hydroxyprogesterone concentration as well as clinical signs of adrenocortical disease in castrated ferrets. Additional investigation is needed to elucidate the mechanism of preputial epithelial cell cornification in castrated ferrets.

  20. Carboetomidate: A Pyrrole Analogue of Etomidate Designed Not To Suppress Adrenocortical Function

    PubMed Central

    Cotten, Joseph F.; Forman, Stuart A.; Laha, Joydev K.; Cuny, Gregory D.; Husain, S. Shaukat; Miller, Keith W.; Nguyen, Hieu H.; Kelly, Elizabeth W.; Stewart, Deirdre; Liu, Aiping; Raines, Douglas E.

    2010-01-01

    Background Etomidate is a sedative-hypnotic that is often used in critically ill patients because it provides superior hemodynamic stability. However it also binds with high affinity to 11β-hydroxylase, potently suppressing synthesis of steroids by the adrenal gland that are necessary for survival. We report the results of studies to define the pharmacology of (R)-ethyl 1-(1-phenylethyl)-1H-pyrrole-2-carboxylate (carboetomidate), a pyrrole analogue of etomidate specifically designed not to bind with high affinity to 11β-hydroxylase. Methods The hypnotic potency of carboetomidate was defined in tadpoles and rats using loss of righting reflex assays. Its ability to enhance wild-type α1β2γ2L and etomidate-insensitive mutant α1β2(M286W)γ2L human γ-aminobutyric acid type A receptor activities was assessed using electrophysiological techniques. Its potency for inhibiting in vitro cortisol synthesis was defined using a human adrenocortical cell assay. Its effects on in vivo hemodynamic and adrenocortical function were defined in rats. Results Carboetomidate was a potent hypnotic in tadpoles and rats. It increased currents mediated by wild-type, but not etomidate-insensitive mutant γ-aminobutyric acid type A receptors. Carboetomidate was three orders of magnitude less potent an inhibitor of in vitro cortisol synthesis by adrenocortical cells than was etomidate. In rats, carboetomidate caused minimal hemodynamic changes and did not suppress adrenocortical function at hypnotic doses. Conclusions Carboetomidate is an etomidate analogue that retains many of etomidate’s beneficial properties, but is dramatically less potent as an inhibitor of adrenocortical steroid synthesis. Carboetomidate is a promising new sedative-hypnotic for potential use in critically ill patients in whom adrenocortical suppression is undesirable. PMID:20179500

  1. A Case of Cushing's Syndrome with Multiple Adrenocortical Adenomas Composed of Compact Cells and Clear Cells.

    PubMed

    Asakawa, Masahiro; Yoshimoto, Takanobu; Ota, Mitsutane; Numasawa, Mitsuyuki; Sasahara, Yuriko; Takeuchi, Takato; Nakano, Yujiro; Oohara, Norihiko; Murakami, Masanori; Bouchi, Ryotaro; Minami, Isao; Tsuchiya, Kyoichiro; Hashimoto, Koshi; Izumiyama, Hajime; Kawamura, Naoko; Kihara, Kazunori; Negi, Mariko; Akashi, Takumi; Eishi, Yoshinobu; Sasano, Hironobu; Ogawa, Yoshihiro

    2016-06-01

    A 58-year-old woman was referred to our hospital for Cushingoid features and diagnosed as adrenal Cushing's syndrome due to a right adrenocortical mass (60 × 55 mm). The mass was composed of three different tumors; the first one was homogeneously lipid-poor neoplasm measuring 20 × 13 mm located at the most dorsal region, the second one was heterogeneous and lipid-rich tumor containing multiple foci of calcification measuring 50 × 32 mm located at the central region, and the last one was heterogeneous harboring dilated and tortuous vessels and lipid-poor one measuring 35 × 18 mm at the most ventral region of the adrenal gland. A right adrenalectomy was subsequently performed by open surgery. Macroscopic and microscopic analyses revealed that all three tumors were adrenocortical adenomas; the first one represents a pigmented adrenocortical adenoma, the second one adrenocortical adenoma associated with degeneration, and the third one adrenocortical adenoma harboring extensive degeneration. Immunohistochemical analysis of the steroidogenic enzymes also revealed that all of the tumors had the capacity of synthesizing cortisol. This is a very rare case of Cushing's syndrome caused by multiple adrenocortical adenomas including a pigmented adenoma. Immunohistochemical analysis of steroidogenic enzymes contributed to understanding of steroidogenesis in each of these three different adrenocortical adenomas in this case.

  2. Adrenocortical Carcinoma—Health Professional Version

    Cancer.gov

    Adrenocortical carcinoma is also called cancer of the adrenal cortex. A tumor of the adrenal cortex may be functioning or nonfunctioning. Most adrenocortical tumors are functioning. Find evidence-based information on adrenocortical carcinoma including treatment and research.

  3. Effects of chromium(III) picolinate on cortisol and DHEAs secretion in H295R human adrenocortical cells.

    PubMed

    Kim, Beob G; Adams, Julye M; Jackson, Brian A; Lindemann, Merlin D

    2010-02-01

    Dietary chromium(III) picolinate (CrPic) effects on circulating steroid hormones have been reported in various experimental animals. However, direct effects of CrPic on adrenocortical steroidogenesis are uncertain. Therefore, the objective was to determine the effects of CrPic on cortisol and dehydroepiandrosterone sulfate (DHEAs) secretion from H295R cells. In experiment 1, a 24-h exposure to CrPic (0 to 200 microM) had both linear (p < 0.001) and quadratic (p < 0.001) effects on cortisol secretion from forskolin-stimulated cells with the highest cortisol secretion at 0.1 microM of CrPic and the lowest at 200 microM of CrPic. In experiment 2, a 48-h exposure to CrPic (200 microM) decreased cortisol (p < 0.07) release from forskolin-stimulated cells during a 24-h collection period. In experiment 3, a 48-h exposure to CrPic (100 microM) decreased cortisol (p < 0.05) and DHEAs (p < 0.01) from forskolin-stimulated cells during a 24-h sampling period. In experiment 4, a 24-h exposure to forskolin followed by a 24-h exposure to both forskolin and CrPic (100 and 200 microM) decreased both cortisol and DHEAs secretion (p < 0.01). This study suggests that at high concentrations, CrPic inhibits aspects of steroidogenesis in agonist-stimulated adrenocortical cells.

  4. Challenges in surgical pathology of adrenocortical tumours.

    PubMed

    Erickson, Lori A

    2018-01-01

    Adrenocortical carcinomas are rare tumours that can be diagnostically challenging. Numerous multiparametric scoring systems and diagnostic algorithms have been proposed to differentiate adrenocortical adenoma from adrenocortical carcinoma. Adrenocortical neoplasms must also be differentiated from other primary adrenal tumours, such as phaeochromocytoma and unusual primary adrenal tumours, as well as metastases to the adrenal gland. Myxoid, oncocytic and sarcomatoid variants of adrenocortical tumours must be recognized so that they are not confused with other tumours. The diagnostic criteria for oncocytic adrenocortical carcinoma are different from those for conventional adrenocortical carcinomas. Adrenocortical neoplasms in children are particularly challenging to diagnose, as histological features of malignancy in adrenocortical neoplasms in adults may not be associated with aggressive disease in the tumours of children. Recent histological and immunohistochemical studies and more comprehensive and integrated genomic characterizations continue to advance our understanding of the tumorigenesis of these aggressive neoplasms, and may provide additional diagnostic and prognostic utility and guide the development of therapeutic targets. © 2017 John Wiley & Sons Ltd.

  5. Analysis of histological and immunohistochemical patterns of benign and malignant adrenocortical tumors by computerized morphometry.

    PubMed

    Dalino Ciaramella, Paolo; Vertemati, Maurizio; Petrella, Duccio; Bonacina, Edgardo; Grossrubatscher, Erika; Duregon, Eleonora; Volante, Marco; Papotti, Mauro; Loli, Paola

    2017-07-01

    Diagnosis of benign and purely localized malignant adrenocortical lesions is still a complex issue. Moreover, histology-based diagnosis may suffer of a moment of subjectivity due to inter- and intra-individual variations. The aim of the present study was to assess, by computerized morphometry, the morphological features in benign and malignant adrenocortical neoplasms. Eleven adrenocortical adenomas (ACA) were compared with 18 adrenocortical cancers (ACC). All specimens were stained with H&E, cellular proliferation marker Ki-67 and reticulin. We generated a morphometric model based on the analysis of volume fractions occupied by Ki-67 positive and negative cells (nuclei and cytoplasm), vascular and inflammatory compartment; we also analyzed the surface fraction occupied by reticulin. We compared the quantitative data of Ki-67 obtained by morphometry with the quantification resulting from pathologist's visual reading. The volume fraction of Ki-67 positive cells in ACCs was higher than in ACAs. The volume fraction of nuclei in unit volume and the nuclear/cytoplasmic ratio in both Ki-67 negative cells and Ki-67 positive cells were prominent in ACCs. The surface fraction of reticulin was considerably lower in ACCs. Our computerized morphometric model is simple, reproducible and can be used by the pathologist in the histological workup of adrenocortical tumors to achieve precise and reader-independent quantification of several morphological characteristics of adrenocortical tumors. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. High-throughput screening of chemical effects on steroidogenesis using H295R human adrenocortical carcinoma cells

    EPA Science Inventory

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2,060 chemical samples...

  7. Adrenocortical Carcinoma—Patient Version

    Cancer.gov

    Adrenocortical carcinoma is a rare cancer which forms in the cortex (outer layer) of an adrenal gland. There are two adrenal glands. One sits on top of each kidney. Start here to find information on adrenocortical carcinoma treatment and research.

  8. Transcription factor GATA-4 is a marker of anaplasia in adrenocortical neoplasms of the domestic ferret (Mustela putorius furo).

    PubMed

    Peterson, R A; Kiupel, M; Bielinska, M; Kiiveri, S; Heikinheimo, M; Capen, C C; Wilson, D B

    2004-07-01

    Adrenocortical neoplasms are a common cause of morbidity in neutered ferrets. Recently we showed that gonadectomized DBA/2J mice develop adrenocortical tumors that express transcription factor GATA-4. Therefore, we screened archival specimens of adrenocortical neoplasms from neutered ferrets to determine whether GATA-4 could be used as a tumor marker in this species. Nuclear immunoreactivity for GATA-4 was evident in 19/22 (86%) of ferret adrenocortical carcinomas and was prominent in areas exhibiting myxoid differentiation. Normal adrenocortical cells lacked GATA-4 expression. Two other markers of adrenocortical tumors in gonadectomized mice, inhibin-alpha and luteinizing hormone receptor, were coexpressed with GATA-4 in some of the ferret tumors. No GATA-4 expression was observed in three cases of nodular hyperplasia, but patches of anaplastic cells expressing GATA-4 were evident in 7/14 (50%) of tumors classified as adenomas. We conclude that GATA-4 can function as a marker of anaplasia in ferret adrenocortical tumors.

  9. Effects of ToxCast Phase I Chemicals on Steroidogenesis in H295R Human Adrenocortical Carcinoma cells (SOT)

    EPA Science Inventory

    Steroid hormones are essential for proper development and reproduction. Disruption of steroidogenesis by environmental toxicants results in altered hormone levels causing adverse reproductive and developmental effects. H295R human adrenocortical carcinoma cells were used to evalu...

  10. Disorganized Steroidogenesis in Adrenocortical Carcinoma, a Case Study.

    PubMed

    Uchida, Toyoyoshi; Nishimoto, Koshiro; Fukumura, Yuki; Asahina, Miki; Goto, Hiromasa; Kawano, Yui; Shimizu, Fumitaka; Tsujimura, Akira; Seki, Tsugio; Mukai, Kuniaki; Kabe, Yasuaki; Suematsu, Makoto; Gomez-Sanchez, Celso E; Yao, Takashi; Horie, Shigeo; Watada, Hirotaka

    2017-03-01

    Most adrenocortical carcinomas (ACCs) produce excessive amounts of steroid hormones including aldosterone, cortisol, and steroid precursors. However, aldosterone- and cortisol-producing cells in ACCs have not yet been immunohistochemically described. We present a case of ACC causing mild primary aldosteronism and subclinical Cushing's syndrome. Removal of the tumor cured both conditions. In order to examine the expression patterns of the steroidogenic enzymes responsible for adrenocortical hormone production, 10 tumor portions were immunohistochemically analyzed for aldosterone synthase (CYP11B2), 11β-hydroxylase (CYP11B1, cortisol-synthesizing enzyme), 3β-hydroxysteroid dehydrogenase (3βHSD, upstream enzyme for both CYP11B2 and CYP11B1), and 17α-hydroxylase/C17-20 lyase (CYP17, upstream enzyme for CYP11B1, but not for CYP11B1). CYP11B2, CYP11B1, and 3βHSD were expressed sporadically, and their expression patterns varied significantly among the different tumor portions examined. The expression of these enzymes was random and not associated with each other. CYP17 was expressed throughout the tumor, even in CYP11B2-positive cells. Small tumor cell populations were aldosterone- or cortisol-producing cells, as judged by 3βHSD coinciding with either CYP11B2 or CYP11B1, respectively. These results suggest that the tumor produced limited amounts of aldosterone and cortisol due to the lack of the coordinated expression of steroidogenic enzymes, which led to mild clinical expression in this case. We delineated the expression patterns of steroidogenic enzymes in ACC. The coordinated expression of steroidogenic enzymes in normal and adenoma cells was disturbed in ACC cells, resulting in the inefficient production of steroid hormones in relation to the large tumor volume.

  11. Involvement of PI3K/Akt and p38 MAPK in the induction of COX-2 expression by bacterial lipopolysaccharide in murine adrenocortical cells.

    PubMed

    Mercau, M E; Astort, F; Giordanino, E F; Martinez Calejman, C; Sanchez, R; Caldareri, L; Repetto, E M; Coso, O A; Cymeryng, C B

    2014-03-25

    Previous studies from our laboratory demonstrated the involvement of COX-2 in the stimulation of steroid production by LPS in murine adrenocortical Y1 cells, as well as in the adrenal cortex of male Wistar rats. In this paper we analyzed signaling pathways involved in the induction of this key regulatory enzyme in adrenocortical cells and demonstrated that LPS triggers an increase in COX-2 mRNA levels by mechanisms involving the stimulation of reactive oxygen species (ROS) generation and the activation of p38 MAPK and Akt, in addition to the previously demonstrated increase in NFκB activity. In this sense we showed that: (1) inhibition of p38 MAPK or PI3K/Akt (pharmacological or molecular) prevented the increase in COX-2 protein levels by LPS, (2) LPS induced p38 MAPK and Akt phosphorylation, (3) antioxidant treatment blocked the effect of LPS on p38 MAPK phosphorylation and in COX-2 protein levels, (4) PI3K inhibition with LY294002 prevented p38 MAPK phosphorylation and, (5) the activity of an NFκB reporter was decreased by p38 MAPK or PI3K inhibition. These results suggest that activation of both p38 MAPK and PI3K/Akt pathways promote the stimulation of NFκB activity and that PI3K/Akt activity might regulate both p38 MAPK and NFκB signaling pathways. In summary, in this study we showed that in adrenal cells, LPS induces COX-2 expression by activating p38 MAPK and PI3K/Akt signaling pathways and that both pathways converge in the modulation of NFκB transcriptional activity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Adjuvant mitotane treatment for adrenocortical carcinoma.

    PubMed

    Terzolo, Massimo; Angeli, Alberto; Fassnacht, Martin; Daffara, Fulvia; Tauchmanova, Libuse; Conton, Pier Antonio; Rossetto, Ruth; Buci, Lisa; Sperone, Paola; Grossrubatscher, Erika; Reimondo, Giuseppe; Bollito, Enrico; Papotti, Mauro; Saeger, Wolfgang; Hahner, Stefanie; Koschker, Ann-Cathrin; Arvat, Emanuela; Ambrosi, Bruno; Loli, Paola; Lombardi, Gaetano; Mannelli, Massimo; Bruzzi, Paolo; Mantero, Franco; Allolio, Bruno; Dogliotti, Luigi; Berruti, Alfredo

    2007-06-07

    Adrenocortical carcinoma is a rare neoplasm characterized by a high risk of recurrence after radical resection. Whether the use of mitotane is beneficial as an adjuvant treatment has been controversial. Our aim was to evaluate the efficacy of adjuvant mitotane in prolonging recurrence-free survival. We performed a retrospective analysis involving 177 patients with adrenocortical cancer who had undergone radical surgery at 8 centers in Italy and 47 centers in Germany between 1985 and 2005. Adjuvant mitotane was administered to 47 Italian patients after radical surgery (mitotane group), whereas 55 Italian patients and 75 German patients (control groups 1 and 2, respectively) did not receive adjuvant treatment after surgery. Baseline features in the mitotane group and the control group from Italy were similar; the German patients were significantly older (P=0.03) and had more stage I or II adrenocortical carcinomas (P=0.02) than did patients in the mitotane group. Recurrence-free survival was significantly prolonged in the mitotane group, as compared with the two control groups (median recurrence-free survival, 42 months, as compared with 10 months in control group 1 and 25 months in control group 2). Hazard ratios for recurrence were 2.91 (95% confidence interval [CI], 1.77 to 4.78; P<0.001) and 1.97 (95% CI, 1.21 to 3.20; P=0.005), respectively. Multivariate analysis indicated that mitotane treatment had a significant advantage for recurrence-free survival. Adverse events associated with mitotane were mainly of grade 1 or 2, but temporary dose reduction was needed in 13% of patients. Adjuvant mitotane may prolong recurrence-free survival in patients with radically resected adrenocortical carcinoma. Copyright 2007 Massachusetts Medical Society.

  13. Cerebellin in the rat adrenal gland: gene expression and effects of CER and [des-Ser1]CER on the secretion and growth of cultured adrenocortical cells.

    PubMed

    Rucinski, Marcin; Albertin, Giovanna; Spinazzi, Raffaella; Ziolkowska, Agnieszka; Nussdorfer, Gastone G; Malendowicz, Ludwick K

    2005-03-01

    Cerebellin (CER) is a regulatory peptide, originally isolated from rat cerebellum, which derives from the cleavage of precerebellin (Cbln), three types of which (Cbln1-3) have been identified in humans and rats. CER is also expressed in several extra-cerebellar tissues, including adrenal gland, and evidence has been provided that CER exerts a modulatory action on human and rat adrenal gland. Hence, we have investigated the expression of Cbln1-3 mRNAs and CER protein-immunoreactivity (IR) in the various zones of rat adrenal glands, and the effects of CER and its metabolite [des-Ser(1)]CER (des-CER) on the secretion and growth of cultured rat adrenocortical cells. Reverse transcription-polymerase chain reaction showed high and low expression of Cbln2 mRNA in zona glomerulosa (ZG) and zona fasciculata-reticularis, respectively. Cbln1 was not expressed, and Cbln3 mRNA was detected only in ZG. No Cbln expression was found in adrenal medulla. Immunocytochemistry demonstrated the presence of CER-IR exclusively in the adrenal cortex, the reaction being more intense in ZG. As expected, ACTH (10(-8) M) markedly enhanced corticosterone secretion and lowered proliferation rate of cultured adrenocortical cells. CER was ineffective, while des-CER exerted an ACTH-like effect, but only at the lowest concentration (10(-10) M). Taken together, these findings allow us to conclude that CER is expressed in rat adrenal cortex, and to suggest that CER conversion to des-CER by endopeptidases is needed for CER to exert its autocrine-paracrine regulatory functions.

  14. Cooperation of hTERT, SV40 T Antigen and Oncogenic Ras in Tumorigenesis: A Cell Transplantation Model Using Bovine Adrenocortical Cells1

    PubMed Central

    Thomas, Michael; Suwa, Tetsuya; Yang, Lianqing; Zhao, Lifang; Hawks, Christina L; Hornsby, Peter J

    2002-01-01

    Abstract Expression of TERT, the reverse transcriptase component of telomerase, is necessary to convert normal human cells to cancer cells. Despite this, “telomerization” by hTERT does not appear to alter the normal properties of cells. In a cell transplantation model in which bovine adrenocortical cells form vascularized tissue structures beneath the kidney capsule in scid mice, telomerization does not perturb the functional tissue-forming capacity of the cells. This cell transplantation model was used to study the cooperation of hTERT with SV40 T antigen (SV40 TAg) and oncogenic Ras in tumorigenesis. Only cells expressing all three genes were tumorigenic; this required large T, but not small t, antigen. These cells produced a continuously expanding tissue mass; they were invasive with respect to adjacent organs and eventually destroyed the kidney. Cells expressing only hTERT or only Ras produced minimally altered tissues. In contrast, SV40 TAg alone produced noninvasive nodules beneath the kidney capsule that had high proliferation rates balanced by high rates of apoptosis. The use of cell transplantation techniques in a cell type that is able to form tissue structures with or without full neoplastic conversion allows the phenotypes produced by individual cooperating oncogenes to be observed. PMID:12407443

  15. Ionic dependence of adrenal steroidogenesis and ACTH-induced changes in the membrane potential of adrenocortical cells

    PubMed Central

    Matthews, E. K.; Saffran, M.

    1973-01-01

    1. The effects of changes of ionic environment upon corticosteroid production by rabbit adrenal glands have been investigated in vitro using a superfusion technique and on-line steroid analysis by an automated fluorescence method. In some experiments micro-electrode recordings of adrenocortical transmembrane potentials were made concomitantly with measurement of steroid output. 2. Adrenocorticotrophic hormone (ACTH), 10 m-u./ml., induced a sevenfold increase in corticosteroid production rate in normal Krebs solution. 3. The steroidogenic response to ACTH was not impaired after omission of [K]o for 1 hr but was inhibited following exposure to K+-free medium for 3 hr. Increase of [K]o tenfold to 47 mM increased the basal but not the ACTH-stimulated output of corticosteroid whereas raising [K]o twentyfold to 94 mM enhanced both the basal and ACTH-stimulated steroid production rate. In K+-free solution the adrenocortical cells hyperpolarized from - 67 to - 86 mV; subsequently on addition of ACTH they depolarized. Reintroduction of K+ restored the membrane potential. 4. Omission of Ca2+ partially depolarized the cells but only affected the steroidogenic response to ACTH in the presence of EDTA. A threefold increase of [Ca]o, to 7·68 mM, had no effect on either membrane potentials or steroid formation, but increasing [Ca]o tenfold to 25·6 mM partially blocked ACTH action. Increasing [Mg]o twentyfold to 22·6 mM had little effect on ACTH-stimulated corticosteroid output and Sr 2·56 mM, in substitution for Ca2+, supported ACTH action, but La, 0·25 mM, completely blocked the steroidogenic effect of ACTH. 5. Replacement of NaCl, 118 mM by choline chloride, 118 mM, was without effect on ACTH-induced steroidogenesis, whereas LiCl, 118 mM, reduced it by 50%. NaF, 1 and 10 mM, inhibited ACTH-induced steroidogenesis by approximately 60%. 6. Nupercaine, 10-4 M, inhibited the steroid response to ACTH with no effect upon membrane potentials: increasing the nupercaine

  16. DNA methylation profiling identifies global methylation differences and markers of adrenocortical tumors.

    PubMed

    Rechache, Nesrin S; Wang, Yonghong; Stevenson, Holly S; Killian, J Keith; Edelman, Daniel C; Merino, Maria; Zhang, Lisa; Nilubol, Naris; Stratakis, Constantine A; Meltzer, Paul S; Kebebew, Electron

    2012-06-01

    It is not known whether there are any DNA methylation alterations in adrenocortical tumors. The objective of the study was to determine the methylation profile of normal adrenal cortex and benign and malignant adrenocortical tumors. Genome-wide methylation status of CpG regions were determined in normal (n = 19), benign (n = 48), primary malignant (n = 8), and metastatic malignant (n = 12) adrenocortical tissue samples. An integrated analysis of genome-wide methylation and mRNA expression in benign vs. malignant adrenocortical tissue samples was also performed. Methylation profiling revealed the following: 1) that methylation patterns were distinctly different and could distinguish normal, benign, primary malignant, and metastatic tissue samples; 2) that malignant samples have global hypomethylation; and 3) that the methylation of CpG regions are different in benign adrenocortical tumors by functional status. Normal compared with benign samples had the least amount of methylation differences, whereas normal compared with primary and metastatic adrenocortical carcinoma samples had the greatest variability in methylation (adjusted P ≤ 0.01). Of 215 down-regulated genes (≥2-fold, adjusted P ≤ 0.05) in malignant primary adrenocortical tumor samples, 52 of these genes were also hypermethylated. Malignant adrenocortical tumors are globally hypomethylated as compared with normal and benign tumors. Methylation profile differences may accurately distinguish between primary benign and malignant adrenocortical tumors. Several differentially methylated sites are associated with genes known to be dysregulated in malignant adrenocortical tumors.

  17. Species-specific sensitivity to selenium-induced impairment of cortisol secretion in adrenocortical cells of rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, L.L., E-mail: lana.miller@uleth.ca; Hontela, A.

    Species differences in physiological and biochemical attributes exist even among closely related species and may underlie species-specific sensitivity to toxicants. Rainbow trout (RT) are more sensitive than brook trout (BT) to the teratogenic effects of selenium (Se), but it is not known whether all tissues exhibit this pattern of vulnerability. In this study, primary cultures of RT and BT adrenocortical cells were exposed to selenite (Na{sub 2}SO{sub 3}) and selenomethionine (Se-Met) to compare cell viability and ACTH-stimulated cortisol secretion in the two fish species. Cortisol, the primary stress hormone in fish, facilitates maintenance of homeostasis when fish are exposed tomore » stressors, including toxicants. Cell viability was not affected by Se, but selenite impaired cortisol secretion, while Se-Met did not (RT and BT EC{sub 50} > 2000 mg/L). RT cells were more sensitive (EC{sub 50} = 8.7 mg/L) to selenite than BT cells (EC{sub 50} = 90.4 mg/L). To identify the targets where Se disrupts cortisol synthesis, selenite-impaired RT and BT cells were stimulated with ACTH, dbcAMP, OH-cholesterol, and pregnenolone. Selenite acted at different steps in the cortisol biosynthesis pathway in RT and BT cells, confirming a species-specific toxicity mechanism. To test the hypothesis that oxidative stress mediates Se-induced toxicity, selenite-impaired RT cells were exposed to NAC, BSO and antioxidants (DETCA, ATA, Vit A, and Vit E). Inhibition of SOD by DETCA enhanced selenite-induced cortisol impairment, indicating that oxidative stress plays a role in Se toxicity; however, modifying GSH content of the cells did not have an effect. The results of this study, with two closely related salmonids, provided additional evidence for species-specific differences in sensitivity to Se which should be considered when setting thresholds and water quality guidelines. - Research Highlights: > We investigated species-specific sensitivity to Se in trout adrenocortical cells

  18. Adrenocortical tumours: high CT attenuation value correlates with eosinophilia but does not discriminate lipid-poor adenomas from malignancy.

    PubMed

    Pennanen, Mirkka; Raade, Merja; Louhimo, Johanna; Sane, Timo; Heiskanen, Ilkka; Arola, Johanna; Haglund, Caj

    2013-12-01

    Characterisation of adrenal tumours is an important clinical problem. Unenhanced CT is the primary imaging modality to assess the nature of these lesions. To study the correlation between unenhanced CT attenuation value and the specific histopathology, as well as the proportion of lipid-poor eosinophilic cells in adrenocortical tumours. We studied retrospectively primary adrenocortical tumours that had been operated on at Helsinki University Central Hospital between 2002 and 2008. Of 171 tumours, 79 had appropriate preoperative CT scans and were included in the study. We evaluated the unenhanced CT attenuation values (Hounsfield units, HU) of these tumours and determined their histopathological diagnosis by the Weiss scoring system. We also assessed the proportion of lipid-poor eosinophilic cells for each tumour. Unenhanced CT attenuation value (HU) in adrenocortical tumours correlated well with the proportion of lipid-poor eosinophilic cells (rs=0.750, p<0.001). HU and Weiss score also had a correlation (rs=0.582, p<0.001). Unenhanced CT attenuation value correlates well with the percentage of lipid-poor eosinophilic cells, but unenhanced CT attenuation value fails to differentiate between benign lipid-poor adenomas and malignant adrenocortical tumours. All adrenocortical tumours with unenhanced CT attenuation value ≤10 HU are histologically benign lipid-rich tumours.

  19. The effect of types I and III interferons on adrenocortical cells and its possible implications for autoimmune Addison's disease.

    PubMed

    Hellesen, A; Edvardsen, K; Breivik, L; Husebye, E S; Bratland, E

    2014-06-01

    Autoimmune Addison's disease (AAD) is caused by selective destruction of the hormone-producing cells of the adrenal cortex. As yet, little is known about the potential role played by environmental factors in this process. Type I and/or type III interferons (IFNs) are signature responses to virus infections, and have also been implicated in the pathogenesis of autoimmune endocrine disorders such as type 1 diabetes and autoimmune thyroiditis. Transient development of AAD and exacerbation of established or subclinical disease, as well as the induction of autoantibodies associated with AAD, have been reported following therapeutic administration of type I IFNs. We therefore hypothesize that exposure to such IFNs could render the adrenal cortex susceptible to autoimmune attack in genetically predisposed individuals. In this study, we investigated possible immunopathological effects of type I and type III IFNs on adrenocortical cells in relation to AAD. Both types I and III IFNs exerted significant cytotoxicity on NCI-H295R adrenocortical carcinoma cells and potentiated IFN-γ- and polyinosine-polycytidylic acid [poly (I : C)]-induced chemokine secretion. Furthermore, we observed increased expression of human leucocyte antigen (HLA) class I molecules and up-regulation of 21-hydroxylase, the primary antigenic target in AAD. We propose that these combined effects could serve to initiate or aggravate an ongoing autoimmune response against the adrenal cortex in AAD. © 2014 British Society for Immunology.

  20. The effect of types I and III interferons on adrenocortical cells and its possible implications for autoimmune Addison's disease

    PubMed Central

    Hellesen, A; Edvardsen, K; Breivik, L; Husebye, E S; Bratland, E

    2014-01-01

    Autoimmune Addison's disease (AAD) is caused by selective destruction of the hormone-producing cells of the adrenal cortex. As yet, little is known about the potential role played by environmental factors in this process. Type I and/or type III interferons (IFNs) are signature responses to virus infections, and have also been implicated in the pathogenesis of autoimmune endocrine disorders such as type 1 diabetes and autoimmune thyroiditis. Transient development of AAD and exacerbation of established or subclinical disease, as well as the induction of autoantibodies associated with AAD, have been reported following therapeutic administration of type I IFNs. We therefore hypothesize that exposure to such IFNs could render the adrenal cortex susceptible to autoimmune attack in genetically predisposed individuals. In this study, we investigated possible immunopathological effects of type I and type III IFNs on adrenocortical cells in relation to AAD. Both types I and III IFNs exerted significant cytotoxicity on NCI-H295R adrenocortical carcinoma cells and potentiated IFN-γ-and polyinosine-polycytidylic acid [poly (I : C)]-induced chemokine secretion. Furthermore, we observed increased expression of human leucocyte antigen (HLA) class I molecules and up-regulation of 21-hydroxylase, the primary antigenic target in AAD. We propose that these combined effects could serve to initiate or aggravate an ongoing autoimmune response against the adrenal cortex in AAD. PMID:24666275

  1. GPER-independent inhibition of adrenocortical cancer growth by G-1 involves ROS/Egr-1/BAX pathway.

    PubMed

    Casaburi, Ivan; Avena, Paola; De Luca, Arianna; Sirianni, Rosa; Rago, Vittoria; Chimento, Adele; Trotta, Francesca; Campana, Carmela; Rainey, William E; Pezzi, Vincenzo

    2017-12-29

    We previously demonstrated that treatment of the H295R adrenocortical cancer cell line with the non-steroidal, high-affinity GPER (G protein-coupled estrogen receptor 1) agonist G-1 reduced tumor growth in vitro and in vivo through a GPER independent action. Moreover, we observed that G-1 treatment induces cell-cycle arrest and apoptosis following a sustained ERK1/2 activation. However, the precise mechanisms causing these effects were not clarified. Starting from our preliminary published results, we performed a microarray study that clearly evidenced a strong and significative up-regulation of EGR-1 gene in H295R cells treated for 24h with micromolar concentration of G-1. The microarray findings were confirmed by RT-PCR and Western-blot analysis as well as by immunofluorescence that revealed a strong nuclear staining for EGR-1 after G-1 treatment. EGR-1 is a point of convergence of many intracellular signaling cascades that control tumor cell growth and proliferation as well as others that relate to cell death machinery. Here we found that the increased Egr-1 expression was a consequence of G-1-mediated ROS-dependent ERK activation that were promptly reversed by the presence of the antioxidant n-acetyl-cysteine. Finally, we observed that silencing EGR-1 gene expression reversed the main effects induced by G-1 in ACC cells, including upregulation of the negative regulator of cell cycle, p21 Waf1/Cip1 and the positive regulator of mitochondrial apoptotic pathway, BAX, as well as the cell growth inhibition. The identified ROS/MAPK/Egr-1/BAX pathway as a potential off-target effect of the G-1 could be useful in implementing the pharmacological approach for ACC therapy.

  2. PCP4: a regulator of aldosterone synthesis in human adrenocortical tissues

    PubMed Central

    Felizola, Saulo J. A.; Nakamura, Yasuhiro; Ono, Yoshikiyo; Kitamura, Kanako; Kikuchi, Kumi; Onodera, Yoshiaki; Ise, Kazue; Takase, Kei; Sugawara, Akira; Hattangady, Namita; Rainey, William E.; Satoh, Fumitoshi; Sasano, Hironobu

    2014-01-01

    Purkinje cell protein 4 (PCP4) is a calmodulin (CaM) binding protein that accelerates calcium association and dissociation with CaM. It has been previously detected in aldosterone-producing adenomas (APA) but details on its expression and function in adrenocortical tissues have remained unknown. Therefore, we performed the immunohistochemical analysis of PCP4 in the following tissues: normal adrenal (NA; n=15), APA (n=15), cortisol producing adenomas (CPA; n=15) and idiopathic hyperaldosteronism cases (IHA; n=5). APA samples (n=45) were also submitted to quantitative RT-PCR (qPCR) of PCP4, CYP11B1, and CYP11B2, as well as DNA sequencing for KCNJ5 mutations. Transient transfection analysis using PCP4 siRNA was also performed in H295R adrenocortical carcinoma cells, following ELISA analysis, and CYP11B2 luciferase assays were also performed after PCP4 vector transfection in order to study the regulation of PCP4 protein expression. In our findings, PCP4 immunoreactivity was predominantly detected in APA and in the zona glomerulosa (ZG) of NA and IHA. In APA, the mRNA levels of PCP4 were significantly correlated with those of CYP11B2 (P<0.0001) and were significantly higher in cases with KCNJ5 mutation than wild-type (P=0.005). Following PCP4 vector transfection, CYP11B2 luciferase reporter activity was significantly higher than controls in the presence of angiotensin-II. Knockdown of PCP4 resulted in a significant decrease in CYP11B2 mRNA levels (P=0.012) and aldosterone production (P=0.011). Our results indicate that PCP4 is a regulator of aldosterone production in normal, hyperplastic and neoplastic human adrenocortical cells. PMID:24403568

  3. Adrenocortical Gap Junctions and Their Functions

    PubMed Central

    Bell, Cheryl L.; Murray, Sandra A.

    2016-01-01

    Adrenal cortical steroidogenesis and proliferation are thought to be modulated by gap junction-mediated direct cell–cell communication of regulatory molecules between cells. Such communication is regulated by the number of gap junction channels between contacting cells, the rate at which information flows between these channels, and the rate of channel turnover. Knowledge of the factors regulating gap junction-mediated communication and the turnover process are critical to an understanding of adrenal cortical cell functions, including development, hormonal response to adrenocorticotropin, and neoplastic dedifferentiation. Here, we review what is known about gap junctions in the adrenal gland, with particular attention to their role in adrenocortical cell steroidogenesis and proliferation. Information and insight gained from electrophysiological, molecular biological, and imaging (immunocytochemical, freeze fracture, transmission electron microscopic, and live cell) techniques will be provided. PMID:27445985

  4. Update in adrenocortical carcinoma.

    PubMed

    Fassnacht, Martin; Kroiss, Matthias; Allolio, Bruno

    2013-12-01

    Adrenocortical carcinoma (ACC) is an orphan malignancy that has attracted increasing attention during the last decade. Here we provide an update on advances in the field since our last review published in this journal in 2006. The Wnt/β-catenin pathway and IGF-2 signaling have been confirmed as frequently altered signaling pathways in ACC, but recent data suggest that they are probably not sufficient for malignant transformation. Thus, major players in the pathogenesis are still unknown. For diagnostic workup, comprehensive hormonal assessment and detailed imaging are required because in most ACCs, evidence for autonomous steroid secretion can be found and computed tomography or magnetic resonance imaging (if necessary, combined with functional imaging) can differentiate benign from malignant adrenocortical tumors. Surgery is potentially curative in localized tumors. Thus, we recommend a complete resection including lymphadenectomy by an expert surgeon. The pathology report should demonstrate the adrenocortical origin of the lesion (eg, by steroidogenic factor 1 staining) and provide Weiss score, resection status, and quantitation of the proliferation marker Ki67 to guide further treatment. Even after complete surgery, recurrence is frequent and adjuvant mitotane treatment improves outcome, but uncertainty exists as to whether all patients benefit from this therapy. In advanced ACC, mitotane is still the standard of care. Based on the FIRM-ACT trial, mitotane plus etoposide, doxorubicin, and cisplatin is now the established first-line cytotoxic therapy. However, most patients will experience progress and require salvage therapies. Thus, new treatment concepts are urgently needed. The ongoing international efforts including comprehensive "-omic approaches" and next-generation sequencing will improve our understanding of the pathogenesis and hopefully lead to better therapies.

  5. ACTH-independent macronodular adrenocortical hyperplasia reveals prevalent aberrant in vivo and in vitro responses to hormonal stimuli and coupling of arginine-vasopressin type 1a receptor to 11β-hydroxylase

    PubMed Central

    2013-01-01

    Background Adrenal Cushing’s syndrome caused by ACTH-independent macronodular adrenocortical hyperplasia (AIMAH) can be accompanied by aberrant responses to hormonal stimuli. We investigated the prevalence of adrenocortical reactions to these stimuli in a large cohort of AIMAH patients, both in vivo and in vitro. Methods In vivo cortisol responses to hormonal stimuli were studied in 35 patients with ACTH-independent bilateral adrenal enlargement and (sub-)clinical hypercortisolism. In vitro, the effects of these stimuli on cortisol secretion and steroidogenic enzyme mRNA expression were evaluated in cultured AIMAH and other adrenocortical cells. Arginine-vasopressin (AVP) receptor mRNA levels were determined in the adrenal tissues. Results Positive serum cortisol responses to stimuli were detected in 27/35 AIMAH patients tested, with multiple responses within individual patients occurring for up to four stimuli. AVP and metoclopramide were the most prevalent hormonal stimuli triggering positive responses in vivo. Catecholamines induced short-term cortisol production more often in AIMAH cultures compared to other adrenal cells. Short- and long-term incubation with AVP increased cortisol secretion in cultures of AIMAH cells. AVP also increased steroidogenic enzyme mRNA expression, among which an aberrant induction of CYP11B1. AVP type 1a receptor was the only AVPR expressed and levels were high in the AIMAH tissues. AVPR1A expression was related to the AVP-induced stimulation of CYP11B1. Conclusions Multiple hormonal signals can simultaneously induce hypercortisolism in AIMAH. AVP is the most prevalent eutopic signal and expression of its type 1a receptor was aberrantly linked to CYP11B1 expression. PMID:24034279

  6. Retinoblastoma protein (pRB) was significantly phosphorylated through a Ras-to-MAPK pathway in mutant K-ras stably transfected human adrenocortical cells.

    PubMed

    Chen, Y-F; Chiu, H-H; Wu, C-H; Wang, J-Y; Chen, F-M; Tzou, W-H; Shin, S-J; Lin, S-R

    2003-10-01

    Our previous studies have shown that the cell proliferation rate, mRNA levels of p450scc, p450c17, and 3betaHSD, and secretion of cortisol were significantly increased in human adrenocortical cells stably transfected with mutated K-ras expression plasmid "pK568MRSV" after being inducted with IPTG. In addition, the increased level was a time-dependent manner. However, the levels of p450, p450scc, p450c17, 3betaHSD, cortisol, and cell proliferation rate were inhibited by a MEK phospholation inhibitor, PD098059. The above results prove that mutated K-ras oncogene is able to regulate tumorigenesis and steroidogenesis through a Ras-RAF-MEK-MAPK signal transduction pathway. The aim of this study was to investigate regulated factors in this pathway and also examine whether the other signal transduction pathways or other moles involved in tumorigenesis or steroidogenesis. In the first year, we analyzed gene profiles of mutant K-ras-transfected adrenocortical cells by DNA microarray to determine the gene expression related to cell cycle, signal transduction, apoptosis, tumorigenesis, steroidogenesis, and other expressed sequence tag. After being affected by the K-ras mutant, gene expression was significantly increased in some upregulated genes. Human zinc-finger protein 22 increased by 28.5 times, Osteopontin increased by 5.8 times, LIM domain Kinase 2 (LIMK2) increased by 3.3 times, Homo sapiens dual-specificity tyrosine-(Y)-phosphorylation regulated Kinase 2 (DYRK2) increased by 2.2 times, and human syntaxin 3 increased by two times. On the other hand, significant decreases in gene expression were also observed in some downregulated genes. Retinoblastoma binding protein 1 (RBBP1) decreased by four times, Homo sapiens craniofacial development protein 1 (CFDP1) decreased by 2.4 times, DAP Kinase-related apoptosis-inducing protein Kinase 1 (DRAK1) decreased by 2.3 times, SKI-interacting protein (SKIP) decreased by 2.2 times, and human poly(A)-Binding protein (PABP) decreased

  7. Noninvasive monitoring of adrenocortical activity in carnivores by fecal glucocorticoid analyses.

    PubMed

    Young, K M; Walker, S L; Lanthier, C; Waddell, W T; Monfort, S L; Brown, J L

    2004-06-01

    Measurement of glucocorticoid metabolites in feces has become an accepted method for the noninvasive evaluation of adrenocortical activity. The objective of this study was to determine if a simple cortisol enzyme immunoassay (EIA) was suitable for monitoring adrenocortical activity in a variety of carnivore species. Performance of the cortisol EIA was gauged by comparison to a corticosterone radioimmunoassay (RIA) that has been used for measuring glucocorticoid metabolites in feces of numerous species. Tests for parallelism and extraction efficiency were used to compare the cortisol EIA and corticosterone RIA across eight species of carnivores (Himalayan black bear, sloth bear, domestic cat, cheetah, clouded leopard, black-footed ferret, slender-tailed meerkat, and red wolf). The biological relevance of immunoreactive glucocorticoid metabolites in feces was established for at least one species of each Carnivora family studied with an adrenocorticotropic hormone (ACTH) challenge. High performance liquid chromatography (HPLC) analysis of fecal extracts for each species revealed (1) the presence of multiple immunoreactive glucocorticoid metabolites in feces, but (2) the two immunoassays measured different metabolites, and (3) there were differences across species in the number and polarities of metabolites identified between assay systems. ACTH challenge studies revealed increases in fecal metabolite concentrations measured by the cortisol EIA and corticosterone RIA of approximately 228-1145% and approximately 231-4150% above pre-treatment baseline, respectively, within 1-2 days of injection. Concentrations of fecal glucocorticoid metabolites measured by the cortisol EIA and corticosterone RIA during longitudinal evaluation (i.e., >50 days) of several species were significantly correlated (P<0.0025, correlation coefficient range 0.383-0.975). Adrenocortical responses to physical and psychological stressors during longitudinal evaluations varied with the type of

  8. Indomethacin-induced alterations in corticosteroid and prostaglandin release by isolated adrenocortical cells of the cat.

    PubMed Central

    Laychock, S G; Rubin, R P

    1976-01-01

    1 The effects of purported prostaglandin synthesis inhibitors on steroid and prostaglandin (E and F) release from trypsin-dispersed cat adrenocortical cells were investigated. 2 Low indomethacin concentrations potentiated adrenocorticotrophin (ACTH)-evoked prostaglandin and steroid release, whereas higher concentrations depressed both responses to ACTH. The steroidogenic response to exogenous prostaglandin E2 was not markedly altered over a wide range of indomethacin concentrations. 3 Indomethacin enhanced basal steroid release but did not enhance basal prostaglandin E or F release. 4 5,8,11,14-Eicosatetraynoic acid (ETA) elicited a concentration-dependent inhibition of ACTH-induced steroid release, but had little effect on prostaglandin E2-induced steroid release. A high concentration of ETA inhibited prostaglandin E and F release. 5 These data are discussed in relation to the concept that prostaglandins provide a critical link in ACTH-induced corticosteroidogenesis. PMID:181110

  9. Mother-child adrenocortical synchrony; Moderation by dyadic relational behavior.

    PubMed

    Pratt, Maayan; Apter-Levi, Yael; Vakart, Adam; Kanat-Maymon, Yaniv; Zagoory-Sharon, Orna; Feldman, Ruth

    2017-03-01

    Mother-child adrenocortical synchrony, the coupling of cortisol (CT) secretion in mother and child, has been associated with shared parent-child experiences and maladaptive familial contexts. Yet, few studies tested adrenocortical synchrony in diurnal CT patterns. Guided by the bio-behavioral synchrony model, we examined whether mother-child relational behavior and maternal psychopathology may moderate the degree of concordance between mother and child's diurnal CT. Ninety-seven mothers and their six-year old children participated in two groups; mothers diagnosed with major depression disorder (N=28) and non-depressed controls (N=69). Mother-child interactions were observed and coded for dyadic reciprocity and dyadic tension and diurnal cortisol was collected from mother and child over two consecutive weekend days. Concordance between maternal and child's diurnal CT was found, significant above and beyond time of measurement. Maternal depression, while associated with attenuated child diurnal CT variability, was unrelated to adrenocortical synchrony. Higher child diurnal CT production predicted a stronger linkage between maternal and child's diurnal CT, suggesting that greater child physiological stress is associated with increased susceptibility to the influences of maternal stress physiology. Mother-child reciprocity was related to lower adrenocortical synchrony. Findings suggest that higher adrenocortical synchrony is associated with greater physiological stress and less adaptive dyadic relational patterns. Results raise the possibility that diurnal adrenocortical synchrony taps a unique aspect of HPA-axis functioning whose role in the cross-generational transfer of stress physiology requires further research. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Cell-specific expression of neuropeptide Y Y1 receptor immunoreactivity in the rat basolateral amygdala.

    PubMed

    Rostkowski, Amanda B; Teppen, Tara L; Peterson, Daniel A; Urban, Janice H

    2009-11-10

    Activation of neuropeptide Y (NPY) Y1 receptors (Y1r) in the rat basolateral nuclear complex of the amygdala (BLA) produces anxiolysis and interferes with the generation of conditioned fear. NPY is important in regulating the output of the BLA, yet the cell types involved in mediating this response are currently unknown. The current studies employed multiple label immunocytochemistry to determine the distribution of Y1r-immunoreactivity (-ir) in glutamatergic pyramidal and GABAergic cell populations in the BLA using scanning laser confocal stereology. Pyramidal neurons were identified by expression of calcium-calmodulin dependent kinase II (CaMKII-ir) and functionally distinct interneuron subpopulations were distinguished by peptide (cholecystokinin, somatostatin) or calcium-binding protein (parvalbumin, calretinin) content. Throughout the BLA, Y1r-ir was predominately on soma with negligible fiber staining. The high degree of coexpression of Y1r-ir (99.9%) in CaMKII-ir cells suggests that these receptors colocalize on pyramidal cells and that NPY could influence BLA output by directly regulating the activity of these projection neurons. Additionally, Y1r-ir was also colocalized with the interneuronal markers studied. Parvalbumin-ir interneurons, which participate in feedforward inhibition of BLA pyramidal cells, represented the largest number of Y1r expressing interneurons in the BLA ( approximately 4% of the total neuronal population). The anatomical localization of NPY receptors on different cell populations within the BLA provides a testable circuit whereby NPY could modulate the activity of the BLA via actions on both projection cells and interneuronal cell populations.

  11. Primary culture system of adrenocortical cells from dogs to evaluate direct effects of chemicals on steroidogenesis.

    PubMed

    Morishita, K; Okumura, H; Ito, N; Takahashi, N

    2001-08-28

    The present study was conducted to confirm the usefulness of a primary culture system of adrenocortical cells from dogs for detecting the direct effects of the chemicals on adrenal cortex. Corticosteroid levels in the culture supernatant were measured using high-performance liquid chromatography (HPLC) following 24-h incubation with the chemicals. Ketoconazole, miconazole, metyrapone, aminoglutethimide, and 1-(o-chlorophenyl)-1-(p-chlorophenyl)-2,2-dichloroethane (o,p-DDD), which were known to inhibit cortisol production were evaluated in this system. Both viable cells and corticosteroid levels were decreased by o,p-DDD treatment. Other chemicals showed various inhibition patterns of corticosteroid levels as follows without affecting cell viability. Ketoconazole decreased total corticosteroids level by mainly due to the decreases in cortisol and 11-deoxycortisol levels. Miconazole decreased cortisol and 11-deoxycortisol levels, however, slightly increased corticosterone level. Metyrapone decreased cortisol and corticosterone levels as 11-deoxycortisol and 11-deoxycorticosterone levels were increased. Aminoglutethimide decreased total corticosteroids level by mainly decreasing cortisol, corticosterone and 11-deoxycortisol levels. These results suggested that determination of the pattern of corticosteroid levels by HPLC in this system well reflected the mode of their action on steroidogenesis. Thus, we conclude this simple system was useful to determine the direct effects of chemicals on steroidogenesis in the adrenal cortex.

  12. GLI1+ progenitor cells in the adrenal capsule of the adult mouse give rise to heterotopic gonadal-like tissue.

    PubMed

    Dörner, Julia; Martinez Rodriguez, Verena; Ziegler, Ricarda; Röhrig, Theresa; Cochran, Rebecca S; Götz, Ronni M; Levin, Mark D; Pihlajoki, Marjut; Heikinheimo, Markku; Wilson, David B

    2017-02-05

    As certain strains of mice age, hyperplastic lesions resembling gonadal tissue accumulate beneath the adrenal capsule. Gonadectomy (GDX) accelerates this heterotopic differentiation, resulting in the formation of wedge-shaped adrenocortical neoplasms that produce sex steroids. Stem/progenitor cells that reside in the adrenal capsule and retain properties of the adrenogonadal primordium are thought to be the source of this heterotopic tissue. Here, we demonstrate that GLI1 + progenitors in the adrenal capsule give rise to gonadal-like cells that accumulate in the subcapsular region. A tamoxifen-inducible Cre driver (Gli1-creER T2 ) and two reporters (R26R-lacZ, R26R-confetti) were used to track the fate of GLI1 + cells in the adrenal glands of B6D2F2 mice, a strain that develops both GDX-induced adrenocortical neoplasms and age-dependent subcapsular cell hyperplasia. In gonadectomized B6D2F2 mice GLI1 + progenitors contributed to long-lived adrenal capsule cells and to adrenocortical neoplasms that expressed Gata4 and Foxl2, two prototypical gonadal markers. Pdgfra, a gene expressed in adrenocortical stromal cells, was upregulated in the GDX-induced neoplasms. In aged non-gonadectomized B6D2F2 mice GLI1 + progenitors gave rise to patches of subcapsular cell hyperplasia. Treatment with GANT61, a small-molecule GLI antagonist, attenuated the upregulation of gonadal-like markers (Gata4, Amhr2, Foxl2) in response to GDX. These findings support the premise that GLI1 + progenitor cells in the adrenal capsule of the adult mouse give rise to heterotopic tissue. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Gallium-67 uptake by a benign adrenocortical adenoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, J.A.; Naul, L.G.; Montgomery, J.L.

    1988-08-01

    A 55-yr-old man presented with an atypical relapsing meningitis and was found to have intense unilateral adrenal uptake by /sup 67/Ga imaging. Computed tomography showed a 4-cm right adrenal mass which was hypointense on the T1-weighted images and mildly hyperintense on the T2-weighted images of a magnetic resonance (MR) scan. At surgery, a coincidental benign adrenocortical adenoma was found. Because /sup 67/Ga uptake is usually associated with inflammatory or malignant lesions and malignant adrenal lesions are hyperintense on T2-weighted MR images, these findings contributed to diagnostic uncertainty in this patient. Thus, a nonhyperfunctional adrenocortical adenoma may be associated with abnormalmore » /sup 67/Ga uptake and atypical MR findings.« less

  14. Vasopressin V1 receptor in rat hippocampus is regulated by adrenocortical functions.

    PubMed

    Saito, R; Ishiharada, N; Ban, Y; Honda, K; Takano, Y; Kamiya, H

    1994-05-16

    Two subtypes of arginine vasopressin (AVP) receptors (V1 and V2) have been distinguished. In this study, we examined the characteristics of AVP binding in rat hippocampus and the effects of bilateral adrenalectomy and adrenal steroids on its [3H]AVP binding. [3H]AVP binding to rat liver and the hippocampal membranes was strongly inhibited by the V1 antagonist, OPC-21268. ADX resulted in a significant decrease in the Bmax of AVP binding in the hippocampus. Chronic treatment with aldosterone and corticosterone restored the ADX-induced reduction, but treatment with dexamethasone did not. These results suggest that the AVP V1 receptor in the hippocampus is regulated by adrenocortical neuroregulatory functions.

  15. Adrenocortical Carcinoma

    PubMed Central

    Kim, Alex C.; Sabolch, Aaron; Raymond, Victoria M.; Kandathil, Asha; Caoili, Elaine M.; Jolly, Shruti; Miller, Barbra S.; Giordano, Thomas J.

    2014-01-01

    Adrenocortical carcinoma (ACC) is a rare endocrine malignancy, often with an unfavorable prognosis. Here we summarize the knowledge about diagnosis, epidemiology, pathophysiology, and therapy of ACC. Over recent years, multidisciplinary clinics have formed and the first international treatment trials have been conducted. This review focuses on evidence gained from recent basic science and clinical research and provides perspectives from the experience of a large multidisciplinary clinic dedicated to the care of patients with ACC. PMID:24423978

  16. Regulatory functions of limbic Y1 receptors in body weight and anxiety uncovered by conditional knockout and maternal care

    PubMed Central

    Bertocchi, Ilaria; Oberto, Alessandra; Longo, Angela; Mele, Paolo; Sabetta, Marianna; Bartolomucci, Alessandro; Palanza, Paola; Sprengel, Rolf; Eva, Carola

    2011-01-01

    Neuropeptide Y (NPY) plays an important role in stress, anxiety, obesity, and energy homeostasis via activation of NPY-Y1 receptors (Y1Rs) in the brain. However, global knockout of the Npy1r gene has low or no impact on anxiety and body weight. To uncover the role of limbic Y1Rs, we generated conditional knockout mice in which the inactivation of the Npy1r gene was restricted to excitatory neurons of the forebrain, starting from juvenile stages (Npy1rrfb). Npy1rrfb mice exhibited increased anxiety and reduced body weight, less adipose tissue, and lower serum leptin levels. Npy1rrfb mutants also had a hyperactive hypothalamic–pituitary–adrenocortical axis, as indicated by higher peripheral corticosterone and higher density of NPY immunoreactive fibers and corticotropin releasing hormone immunoreactive cell bodies in the paraventricular hypothalamic nucleus. Importantly, through fostering experiments, we determined that differences in phenotype between Npy1rrfb and Npy1r2lox mice became apparent when both genotypes were raised by FVB/J but not by C57BL/6J dams, suggesting that limbic Y1Rs are key targets of maternal care-induced programming of anxiety and energy homeostasis. PMID:22084082

  17. Antiandrogenic mechanisms of pesticides in human LNCaP prostate and H295R adrenocortical carcinoma cells.

    PubMed

    Robitaille, Christina N; Rivest, Patricia; Sanderson, J Thomas

    2015-01-01

    Several pesticides suspected or known to have endocrine disrupting effects were screened for pro- or antiandrogenic properties by determining their effects on proliferation, prostatic-specific antigen (PSA) secretion and androgen receptor (AR) expression, and AR phosphorylation in androgen-dependent LNCaP human prostate cancer cells, as well as on the expression and catalytic activity of the enzyme CYP17 in H295R human adrenocortical carcinoma cells, an in vitro model of steroidogenesis. Effects on SRD5A gene expression were determined in both cell lines. Benomyl, vinclozolin, and prochloraz, but not atrazine, concentration dependently (1-30 μM) decreased dihydrotestosterone (DHT)-stimulated proliferation of LNCaP cells. All pesticides except atrazine decreased DHT-stimulated PSA secretion, AR nuclear accumulation, and AR phosphorylation on serines 81 and 213 in LNCaP cells. Benomyl and prochloraz, but not vinclozolin or atrazine, decreased levels of CYP17 gene and protein expression, as well as catalytic activity in H295R cells. In the case of prochloraz, some of these effects corresponded with cytotoxicity. H295R cells expressed AR protein and SRD5A1, but not SRD5A2 transcripts. SRD5A1 gene expression in H295R cells was increased by 10 nM DHT, whereas in LNCaP cells significant induction was observed by 0.1 nM DHT. AR protein expression in H295R cells was not increased by DHT. Vinclozolin decreased DHT-induced SRD5A1 gene expression in LNCaP, but not H295R cells, indicating a functional difference of AR between the cell lines. In conclusion, pesticides may exert antiandrogenic effects through several mechanisms that are cell type-specific, including AR antagonism and down-regulation or catalytic inhibition of androgen biosynthetic enzymes, such as CYP17 and SRD5A1. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Y-27632 Increases Sensitivity of PANC-1 Cells to EGCG in Regulating Cell Proliferation and Migration.

    PubMed

    Liu, Xing; Bi, Yongyi

    2016-10-03

    BACKGROUND The study aimed to investigate the inhibitory effect of (1R,4r)-4-((R)-1-aminoethyl)-N-(pyridin-4-yl) cyclohexanecarboxamide (Y-27632) and (-)-epigallocatechin-3-gallate (EGCG) on the proliferation and migration of PANC-1 cells. EGCG, found in green tea, has been previously shown to be one of the most abundant and powerful catechins in cancer prevention and treatment. Y-27632, a selective inhibitor of rho-associated protein kinase 1, is widely used in treating cardiovascular disease, inflammation, and cancer. MATERIAL AND METHODS PANC-1 cells, maintained in Dulbecco's Modified Eagle's Medium, were treated with dimethyl sulfoxide (control) as well as different concentrations (20, 40, 60, and 80 μg/mL) of EGCG for 48 h. In addition, PANC-1 cells were treated separately with 60 μg/mL EGCG, 20 μM Y-27632, and EGCG combined with Y-27632 (60 μg/mL EGCG + 20 μM Y-27632) for 48 h. The effect of EGCG and Y-27632 on the proliferation and migration of PANC-1 cells was evaluated using Cell Counting Kit-8 and transwell migration assays. The expression of peroxisome proliferator-activated receptor alpha (PPARα) and Caspase-3 mRNA was determined by Quantitative real-time polymerase chain reaction (RT-qPCR). RESULTS EGCG (20-80 μg/mL) inhibited cell viability in a dose-dependent manner. Y-27632 enhanced the sensitivity of PANC-1 cells to EGCG (by increasing the expression of PPARa and Caspase-3 mRNA) and suppressed cell proliferation. PANC-1 cell migration was inhibited by treatment with a combination of EGCG and Y-27632. CONCLUSIONS Y-27632 increases the sensitivity of PANC-1 cells to EGCG in regulating cell proliferation and migration, which is likely to be related to the expression of PPARa mRNA and Caspase-3 mRNA.

  19. Morphological changes in the pituitary-adrenocortical axis in natives of La Paz

    NASA Astrophysics Data System (ADS)

    Gosney, John; Heath, Donald; Williams, David; Rios-Dalenz, Jaime

    1991-03-01

    Increased activity of the hypothalamic-pituitary-adrenocortical axis is part of the response to the stress of initial exposure to hypoxia, but there is evidence to suggest that it persists after homeostatic stability has been regained and acclimatization achieved. The adrenal glands of five lifelong residents of La Paz, Bolivia, who had lived at altitudes in the range 3600 3800 m, were significantly larger than those in age-matched controls from sea level (15.3g vs 10.4g; P<0.001) and appeared hyperplastic. The pituitary glands of the highlanders were not significantly different in size from those of the controls (0.67 g vs 0.51 g), but contained larger populations of corticotrophs expressed in terms of the total cell population of their anterior lobes (25.6% vs 19.4%; P<0.001). In conjunction with other studies of this endocrine axis in man and animals exposed to a hypoxic environment, these data suggest that greater amounts of adrenocorticotrophic hormone (ACTH) are required to maintain normal adrenocortical function under such circumstances, probably as a result of hypoxic inhibition of adrenocortical sensitivity to stimulation. Physiological hyperplasia of the adrenal cortex may be common in people living at high altitude.

  20. H295R Human Adrenocortical Carcinoma Cells as a Screening Platform for Steroidogenesis (NC SOT)

    EPA Science Inventory

    Proper biosynthesis and metabolism of steroid hormones is essential for development and reproduction. Disruption of steroidogenesis by environmental toxicants results in altered hormone levels causing adverse reproductive and developmental effects. H295R human adrenocortical carc...

  1. TCGA analysis of adrenocortical carcinoma - TCGA

    Cancer.gov

    In the most comprehensive molecular characterization to date of adrenocortical carcinoma, a rare cancer of the adrenal cortex, researchers extensively analyzed 91 cases for alterations in the tumor genomes.

  2. Expression of StAR and Key Genes Regulating Cortisol Biosynthesis in Near Term Ovine Fetal Adrenocortical Cells: Effects of Long-Term Hypoxia.

    PubMed

    Vargas, Vladimir E; Myers, Dean A; Kaushal, Kanchan M; Ducsay, Charles A

    2018-02-01

    We previously demonstrated decreased expression of key genes regulating cortisol biosynthesis in long-term hypoxic (LTH) sheep fetal adrenals compared to controls. We also showed that inhibition of the extracellular signal-regulated kinases (ERKs) with the mitogen-activated protein kinase (MEK)/ERK inhibitor UO126 limited adrenocorticotropic (ACTH)-induced cortisol production in ovine fetal adrenocortical cells (FACs), suggesting a role for ERKs in cortisol synthesis. This study was designed to determine whether the previously observed decrease in LTH cytochrome P45011A1/cytochrome P450c17 (CYP11A1/CYP17) in adrenal glands was maintained in vitro, and whether ACTH alone with or without UO126 treatment had altered the expression of CYP11A1, CYP17, and steroidogenic acute regulatory protein (StAR) in control versus LTH FACs. Ewes were maintained at high altitude (3820 m) from ∼40 days of gestation (dG). At 138 to 141 dG, fetal adrenal glands were collected from LTH (n = 5) and age-matched normoxic controls (n = 6). Fetal adrenocortical cells were challenged with ACTH (10 -8 M) with or without UO126 (10 µM) for 18 hours. Media samples were collected for cortisol analysis and messenger RNA (mRNA) for CYP11A1, CYP17, and StAR was quantified by quantitative real-time polymerase chain reaction. Cortisol was higher in the LTH versus control ( P < .05). StAR mRNA was decreased in LTH versus control ( P < .05). U0126 alone had no effect on mRNA in either group. UO126 prevented the increase in CYP11A1 and CYP17 in control FACs. Basal CYP11A1 and CYP17 were not different in LTH versus control. ACTH increased CYP11A1 and CYP17 only in control FACs ( P < .05). U1026 attenuated the ACTH response indicative of a role for ERK in CYP11A1 and CYP17 expression. ACTH may require additional factors in FACs to fully regulate StAR expression.

  3. [Diagnosis and surgical treatment of adrenocortical cancer with invasion into great veins].

    PubMed

    Kharnas, S S; Ippolitov, L I; Polunin, G V; Vetshev, S P; Slobodyanik, A S; Saliba, M B; Kovalenko, A A; Lukich, K V

    2015-01-01

    To estimate immediate and remote resaults of treatment of adrenocortical cancer with invasion into great veins. It was analyzed survey and treatment results in 3 patients with adrenocortical cancer and invasion into renal veins and inferior vena cava. Radical surgery with tumoral thrombi removal from great vessels was performed in all cases. There were no complications and deaths in early postoperative period. Life expectancy after surgery was 6, 13 and over 58 months. At present time surgical intervention for adrenocortical cancer with invasion into great veins is single method to prolong patients' life.

  4. Isolation of rat adrenocortical mitochondria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solinas, Paola; Department of Medicine, Center for Mitochondrial Disease, School of Medicine, Case Western Reserve University, Cleveland, OH 44106; Fujioka, Hisashi

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer A method for isolation of adrenocortical mitochondria from the adrenal gland of rats is described. Black-Right-Pointing-Pointer The purified isolated mitochondria show excellent morphological integrity. Black-Right-Pointing-Pointer The properties of oxidative phosphorylation are excellent. Black-Right-Pointing-Pointer The method increases the opportunity of direct analysis of adrenal mitochondria from small animals. -- Abstract: This report describes a relatively simple and reliable method for isolating adrenocortical mitochondria from rats in good, reasonably pure yield. These organelles, which heretofore have been unobtainable in isolated form from small laboratory animals, are now readily accessible. A high degree of mitochondrial purity is shown by the electronmore » micrographs, as well as the structural integrity of each mitochondrion. That these organelles have retained their functional integrity is shown by their high respiratory control ratios. In general, the biochemical performance of these adrenal cortical mitochondria closely mirrors that of typical hepatic or cardiac mitochondria.« less

  5. Adrenocortical Activity and Emotion Regulation.

    ERIC Educational Resources Information Center

    Stansbury, Kathy; Gunnar, Megan R.

    1994-01-01

    This essay argues that the activity of the hypothalamic-pituitary-adrenocortical (HPA) system does not appear to be related to emotion regulation processes in children, although individual differences in emotion processes related to negative emotion temperaments appear to be associated with individual differences in HPA reactivity among normally…

  6. Regulation of Adrenocortical Steroid Hormone Production by RhoA-Diaphanous 1 Signaling and the Cytoskeleton

    PubMed Central

    Sewer, Marion B.; Li, Donghui

    2012-01-01

    The production of glucocorticoids and aldosterone in the adrenal cortex is regulated at multiple levels. Biosynthesis of these hormones is initiated when cholesterol, the substrate, enters the inner mitochondrial membrane for conversion to pregnenolone. Unlike most metabolic pathways, the biosynthesis of adrenocortical steroid hormones is unique because some of the enzymes are localized in mitochondria and others in the endoplasmic reticulum (ER). Although much is known about the factors that control the transcription and activities of the proteins that are required for steroid hormone production, the parameters that govern the exchange of substrates between the ER and mitochondria are less well understood. This short review summarizes studies that have begun to provide insight into the role of the cytoskeleton, mitochondrial transport, and the physical interaction of the ER and mitochondria in the production of adrenocortical steroid hormones. PMID:23186810

  7. Y-27632 Increases Sensitivity of PANC-1 Cells to Epigallocatechin Gallate (EGCG) in Regulating Cell Proliferation and Migration

    PubMed Central

    Liu, Xing; Bi, Yongyi

    2016-01-01

    Background The study aimed to investigate the inhibitory effect of (1R,4r)-4-((R)-1-aminoethyl)-N-(pyridin-4-yl) cyclohexanecarboxamide (Y-27632) and (−)-epigallocatechin-3-gallate (EGCG) on the proliferation and migration of PANC-1 cells. EGCG, found in green tea, has been previously shown to be one of the most abundant and powerful catechins in cancer prevention and treatment. Y-27632, a selective inhibitor of rho-associated protein kinase 1, is widely used in treating cardiovascular disease, inflammation, and cancer. Material/Methods PANC-1 cells, maintained in Dulbecco’s Modified Eagle’s Medium, were treated with dimethyl sulfoxide (control) as well as different concentrations (20, 40, 60, and 80 μg/mL) of EGCG for 48 h. In addition, PANC-1 cells were treated separately with 60 μg/mL EGCG, 20 μM Y-27632, and EGCG combined with Y-27632 (60 μg/mL EGCG + 20 μM Y-27632) for 48 h. The effect of EGCG and Y-27632 on the proliferation and migration of PANC-1 cells was evaluated using Cell Counting Kit-8 and transwell migration assays. The expression of peroxisome proliferator–activated receptor alpha (PPARα) and Caspase-3 mRNA was determined by Quantitative real-time polymerase chain reaction (RT-qPCR). Results EGCG (20–80 μg/mL) inhibited cell viability in a dose-dependent manner. Y-27632 enhanced the sensitivity of PANC-1 cells to EGCG (by increasing the expression of PPARα and Caspase-3 mRNA) and suppressed cell proliferation. PANC-1 cell migration was inhibited by treatment with a combination of EGCG and Y-27632. Conclusions Y-27632 increases the sensitivity of PANC-1 cells to EGCG in regulating cell proliferation and migration, which is likely to be related to the expression of PPARα mRNA and Caspase-3 mRNA. PMID:27694793

  8. SPHK1/sphingosine kinase 1-mediated autophagy differs between neurons and SH-SY5Y neuroblastoma cells.

    PubMed

    Moruno Manchon, Jose Felix; Uzor, Ndidi-Ese; Finkbeiner, Steven; Tsvetkov, Andrey S

    2016-08-02

    Although implicated in neurodegeneration, autophagy has been characterized mostly in yeast and mammalian non-neuronal cells. In a recent study, we sought to determine if SPHK1 (sphingosine kinase 1), implicated previously in macroautophagy/autophagy in cancer cells, regulates autophagy in neurons. SPHK1 synthesizes sphingosine-1-phosphate (S1P), a bioactive lipid involved in cell survival. In our study, we discovered that, when neuronal autophagy is pharmacologically stimulated, SPHK1 relocalizes to the endocytic and autophagic organelles. Interestingly, in non-neuronal cells stimulated with growth factors, SPHK1 translocates to the plasma membrane, where it phosphorylates sphingosine to produce S1P. Whether SPHK1 also binds to the endocytic and autophagic organelles in non-neuronal cells upon induction of autophagy has not been demonstrated. Here, we determined if the effect in neurons is operant in the SH-SY5Y neuroblastoma cell line. In both non-differentiated and differentiated SH-SY5Y cells, a short incubation of cells in amino acid-free medium stimulated the formation of SPHK1-positive puncta, as in neurons. We also found that, unlike neurons in which these puncta represent endosomes, autophagosomes, and amphisomes, in SH-SY5Y cells SPHK1 is bound only to the endosomes. In addition, a dominant negative form of SPHK1 was very toxic to SH-SY5Y cells, but cultured primary cortical neurons tolerated it significantly better. These results suggest that autophagy in neurons is regulated by mechanisms that differ, at least in part, from those in SH-SY5Y cells.

  9. Highly efficient focus formation by Rous sarcoma virus on adenovirus type 12 E1A-transformed rat 3Y1 cells.

    PubMed Central

    Shiroki, K; Hamaguchi, M; Kawai, S

    1992-01-01

    When rat 3Y1 cells were infected with Rous sarcoma virus (RSV) variant SR-RSV-D(H), many 3Y1 cells acquired a stable provirus but only few of them formed transformed foci. In contrast, 12E1AY cells (3Y1 cells expressing the adenovirus type 12 [Ad12] E1A protein) formed transformed foci upon RSV infection with the same high frequency as did chicken embryo fibroblast cells. This enhancement of focus-forming efficiency was specifically observed in 3Y1 cells expressing Ad12 E1A protein but was not observed in 3Y1 cells expressing simian virus 40 T, c-myc, p53, c-fos, or v-fos protein. This enhancement was not evident in 5E1AY cells (3Y1 cells expressing the Ad5 E1A protein). Judging from the experiment using Ad12-Ad5 hybird E1A DNAs, the N-terminal half of the Ad12 E1A protein was responsible for this enhancement. The promoter activity of the RSV long terminal repeat measured by pLTR-CAT did not correlate to the efficiency of focus formation by RSV in these 3Y1 cells. Moreover, RSV containing the neo gene instead of the src gene produced G418-resistant cells equally efficiently among 3Y1, E1AY, and chicken embryo fibroblast cells. These results suggest that the enhancement of focus formation by RSV is not due to the increased expression of the src gene by the E1A protein. src mRNA and src protein were lower in RSV-transformed E1AY (RSVE1AY) cells than in RSV-transformed 3Y1 (RSV3Y1) cells. The phosphotyrosine-containing proteins were also less abundant in RSVE1AY cells than in RSV3Y1 cells, suggesting that E1AY cells require a lower threshold dose of p60v-src for transformation than do 3Y1 cells. E1AY cells were found to be more sensitive to lysis by detergents. The results suggest that the enhancement is due to changes in membrane structures in E1AY cells. Images PMID:1310757

  10. Adrenocortical stress responses influence an invasive vertebrate's fitness in an extreme environment

    PubMed Central

    Jessop, Tim S.; Letnic, Mike; Webb, Jonathan K.; Dempster, Tim

    2013-01-01

    Continued range expansion into physiologically challenging environments requires invasive species to maintain adaptive phenotypic performance. The adrenocortical stress response, governed in part by glucocorticoid hormones, influences physiological and behavioural responses of vertebrates to environmental stressors. However, any adaptive role of this response in invasive populations that are expanding into extreme environments is currently unclear. We experimentally manipulated the adrenocortical stress response of invasive cane toads (Rhinella marina) to investigate its effect on phenotypic performance and fitness at the species' range front in the Tanami Desert, Australia. Here, toads are vulnerable to overheating and dehydration during the annual hot–dry season and display elevated plasma corticosterone levels indicative of severe environmental stress. By comparing unmanipulated control toads with toads whose adrenocortical stress response was manipulated to increase acute physiological stress responsiveness, we found that control toads had significantly reduced daily evaporative water loss and higher survival relative to the experimental animals. The adrenocortical stress response hence appears essential in facilitating complex phenotypic performance and setting fitness trajectories of individuals from invasive species during range expansion. PMID:23945686

  11. Gonadectomy-related adrenocortical tumors in ferrets demonstrate increased expression of androgen and estrogen synthesizing enzymes together with high inhibin expression.

    PubMed

    de Jong, M K; ten Asbroek, E E M; Sleiderink, A J; Conley, A J; Mol, J A; Schoemaker, N J

    2014-07-01

    The 2 objectives of this study were to (1) measure by quantitative polymerase chain reaction the expression of genes involved in steroid and inhibin synthesis in adrenocortical tumors of gonadectomized ferrets and (2) localize by immunohistochemistry several proteins that are key to adrenal steroidogenesis. Relative to the control adrenals, expression of the messenger RNAs encoding StAR (steroidogenic acute regulatory protein; P = 0.039), CYP11A (P = 0.019), CYP21 (P = 0.01), and 3β-HSD (P = 0.004), all involved in the synthesis of mineralocorticoids and glucocorticoids, were decreased in the adrenocortical tumors. In contrast, expression of cytochrome B5 (CytB5; P = 0.0001) and aromatase (P = 0.003), involved in androgen and estrogen synthesis, and both inhibin α-subunit (P = 0.002) and βB-subunit (P = 0.001) were upregulated. In tumors, immunostaining of CYP21 was low, whereas staining of Cyp17 and CytB5, necessary for androgen synthesis, was present. It is concluded that ferret adrenocortical tumors express genes for androgen production. In addition, the expression of aromatase and inhibin suggests an even more gonadal differentiation, which is reminiscent to the fact that both gonads and adrenals are derived from a common urogenital primordial cell. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Defect Structures of La1 - y Sr y F3 - y , La1 - y Ba y F3 - y , and Nd1 - y Ca y F3 - y ( y = 0.05, 0.10) Nonstoichiometric Tysonite Phases

    NASA Astrophysics Data System (ADS)

    Chernaya, T. S.; Verin, I. A.; Khrykina, O. N.; Bolotina, N. B.

    2018-01-01

    Characteristic features of defect structures of La1 - y Sr y F3 - y , La1 - y Ba y F3 - y , and Nd1 - y Ca y F3 - y ( y = 0.05, 0.10) nonstoichiometric phases of different compositions are determined from X-ray diffraction data. Interest in subtle details of their structure is determined by the possibility of ion transport over fluorine vacancies and by a strong compositional dependence of the ionic conductivity. The La0.95Sr0.05F2.95, La0.95Ba0.05F2.95, and Nd0.95Ca0.05F2.95 phases, as well as the La0.9Ba0.1F2.9 phase, crystallize as β-LaF3 (sp. gr. P3̅c1, Z = 6). The La0.9Sr0.1F2.9 and Nd0.9Ca0.1F2.9 phases lose their superstructure and are described by a cell whose volume is three times smaller (sp. gr. P63/ mmc, Z = 2). Defects of crystal structure R1 - y M y F3 - y are not exhausted by vacancies in fluorine positions. All crystals with a "large" cell are twinned according to the merohedral twin law. The majority of atomic positions in models with a "small" cell are split by group symmetry elements and are occupied statistically.

  13. Pregnane Glycosides Interfere With Steroidogenic Enzymes to Down-Regulate Corticosteroid Production in Human Adrenocortical H295R Cells

    PubMed Central

    KOMARNYTSKY, SLAVKO; ESPOSITO, DEBORA; POULEV, ALEXANDER; RASKIN, ILYA

    2013-01-01

    A group of bioactive steroidal glycosides (pregnanes) with anorectic activity in animals was isolated from several genera of milkweeds including Hoodia and Asclepias. In this study, we investigated the effects, structure-activity relationships, and mechanism of action of pregnane glycosides on steroidogenesis in human adrenocortical H295R cells. Administration of pregnane glycosides for 24 h suppressed the basal and forskolin-stimulated release of androstenedione, corticosterone, and cortisone from H295R cells. The conversion of progesterone to 11-deoxycorticosterone and 17-hydroxyprogesterone to either androstenedione or 11-deoxycortisol was most strongly affected, with 12-cinnamoyl-, benzoyl-, and tigloyl-containing pregnanes showing the highest activity. Incubation of pregnane glycosides for 24 h had no effect on mRNA transcripts of CYP11A1, CYP21A1, CYP11B1 cytochrome enzymes and steroidogenic acute regulatory protein (StaR) protein, yet resulted in twofold decrease in HSD3B1 mRNA levels. At the same time, pregnane glycosides had no effect on the CYP1, 2, or 3 drug and steroid metabolism enzymes and showed weak Na+/K+ ATPase and glucocorticoid receptor binding. Taken together, these data suggest that pregnane glycosides specifically suppress steroidogenesis through strong inhibition of 11β-hydroxylase and steroid 17-alpha-monooxygenase, and weak inhibition of cytochrome P450 side chain cleavage enzyme and 21β-hydroxylase, but not 3β-hydroxysteroid dehydrogenase/isomerase. PMID:23065845

  14. Progression to Adrenocortical Tumorigenesis in Mice and Humans through Insulin-Like Growth Factor 2 and β-Catenin

    PubMed Central

    Heaton, Joanne H.; Wood, Michelle A.; Kim, Alex C.; Lima, Lorena O.; Barlaskar, Ferdous M.; Almeida, Madson Q.; Fragoso, Maria C.B.V.; Kuick, Rork; Lerario, Antonio M.; Simon, Derek P.; Soares, Ibere C.; Starnes, Elisabeth; Thomas, Dafydd G.; Latronico, Ana C.; Giordano, Thomas J.; Hammer, Gary D.

    2013-01-01

    Dysregulation of the WNT and insulin-like growth factor 2 (IGF2) signaling pathways has been implicated in sporadic and syndromic forms of adrenocortical carcinoma (ACC). Abnormal β-catenin staining and CTNNB1 mutations are reported to be common in both adrenocortical adenoma and ACC, whereas elevated IGF2 expression is associated primarily with ACC. To better understand the contribution of these pathways in the tumorigenesis of ACC, we examined clinicopathological and molecular data and used mouse models. Evaluation of adrenal tumors from 118 adult patients demonstrated an increase in CTNNB1 mutations and abnormal β-catenin accumulation in both adrenocortical adenoma and ACC. In ACC, these features were adversely associated with survival. Mice with stabilized β-catenin exhibited a temporal progression of increased adrenocortical hyperplasia, with subsequent microscopic and macroscopic adenoma formation. Elevated Igf2 expression alone did not cause hyperplasia. With the combination of stabilized β-catenin and elevated Igf2 expression, adrenal glands were larger, displayed earlier onset of hyperplasia, and developed more frequent macroscopic adenomas (as well as one carcinoma). Our results are consistent with a model in which dysregulation of one pathway may result in adrenal hyperplasia, but accumulation of a second or multiple alterations is necessary for tumorigenesis. PMID:22800756

  15. Combined transcriptome studies identify AFF3 as a mediator of the oncogenic effects of β-catenin in adrenocortical carcinoma

    PubMed Central

    Lefèvre, L; Omeiri, H; Drougat, L; Hantel, C; Giraud, M; Val, P; Rodriguez, S; Perlemoine, K; Blugeon, C; Beuschlein, F; de Reyniès, A; Rizk-Rabin, M; Bertherat, J; Ragazzon, B

    2015-01-01

    Adrenocortical cancer (ACC) is a very aggressive tumor, and genomics studies demonstrate that the most frequent alterations of driver genes in these cancers activate the Wnt/β-catenin signaling pathway. However, the adrenal-specific targets of oncogenic β-catenin-mediating tumorigenesis have not being established. A combined transcriptomic analysis from two series of human tumors and the human ACC cell line H295R harboring a spontaneous β-catenin activating mutation was done to identify the Wnt/β-catenin targets. Seven genes were consistently identified in the three studies. Among these genes, we found that AFF3 mediates the oncogenic effects of β-catenin in ACC. The Wnt response element site located at nucleotide position −1408 of the AFF3 transcriptional start sites (TSS) mediates the regulation by the Wnt/β-catenin signaling pathway. AFF3 silencing decreases cell proliferation and increases apoptosis in the ACC cell line H295R. AFF3 is located in nuclear speckles, which play an important role in RNA splicing. AFF3 overexpression in adrenocortical cells interferes with the organization and/or biogenesis of these nuclear speckles and alters the distribution of CDK9 and cyclin T1 such that they accumulate at the sites of AFF3/speckles. We demonstrate that AFF3 is a new target of Wnt/β-catenin pathway involved in ACC, acting on transcription and RNA splicing. PMID:26214578

  16. Adrenocortical Carcinoma Treatment (PDQ®)—Patient Version

    Cancer.gov

    Adrenocortical carcinoma (also called ACC or adrenal cancer) treatment usually involves surgery and may include radiation therapy and chemotherapy. Learn about risk factors, symptoms, diagnosis, prognosis, and treatment for newly diagnosed and recurrent ACC in this expert-reviewed summary.

  17. Supportive behaviors in adolescent romantic relationships moderate adrenocortical attunement.

    PubMed

    Ha, Thao; Yeung, Ellen Wanheung; Rogers, Adam A; Poulsen, Franklin O; Kornienko, Olga; Granger, Douglas A

    2016-12-01

    This study investigated dyadic adrenocortical attunement within adolescent romantic relationships. An ethnically diverse sample (42% Latino) of adolescent heterosexual dating couples (N=91 dyads, Mage=16.5 years, SD=0.99) donated eight saliva samples (later assayed for cortisol) over the course of a 3-h laboratory session. Supportive behaviors were coded during a conflict and jealousy interaction task from video recordings, and participants completed pre-and-post task questionnaires. Parallel process latent growth models revealed a strong positive association between the couples' cortisol intercept, indicating that couples show attunement in initial levels of cortisol. Further, observed supportive behavior moderated the strength of the association between dyadic cortisol slopes. The results imply that low levels of supportive behavior predicted stronger adrenocortical attunement in the change in cortisol levels over time between adolescent romantic partners. These findings indicate that even early romantic relationships exhibit coordination of physiological activity. Findings raise the possibility that adrenocortical attunement may be a dyadic pathway through which the proximal social context of early romantic relationships is translated into risk or resilience in health and behavior. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Death of adrenocortical cells during murine acute T. cruzi infection is not associated with TNF-R1 signaling but mostly with the type II pathway of Fas-mediated apoptosis.

    PubMed

    Pérez, Ana R; Lambertucci, Flavia; González, Florencia B; Roggero, Eduardo A; Bottasso, Oscar A; de Meis, Juliana; Ronco, Maria T; Villar, Silvina R

    2017-10-01

    Earlier studies from our laboratory demonstrated that acute experimental Trypanosoma cruzi infection promotes an intense inflammation along with a sepsis-like dysregulated adrenal response characterized by normal levels of ACTH with raised glucocorticoid secretion. Inflammation was also known to result in adrenal cell apoptosis, which in turn may influence HPA axis uncoupling. To explore factors and pathways which may be involved in the apoptosis of adrenal cells, together with its impact on the functionality of the gland, we carried out a series of studies in mice lacking death receptors, such as TNF-R1 (C57BL/6- Tnfrsf1a tm1Imx or TNF-R1 -/- ) or Fas ligand (C57BL/6 Fas-deficient lpr mice), undergoing acute T. cruzi infection. Here we demonstrate that the late hypercorticosterolism seen in C57BL/6 mice during acute T. cruzi infection coexists with and hyperplasia and hypertrophy of zona fasciculata, paralleled by increased number of apoptotic cells. Apoptosis seems to be mediated mainly by the type II pathway of Fas-mediated apoptosis, which engages the mitochondrial pathway of apoptosis triggering the cytochrome c release to increase caspase-3 activation. Fas-induced apoptosis of adrenocortical cells is also related with an exacerbated production of intra-adrenal cytokines that probably maintain the late supply of adrenal hormones during host response. Present results shed light on the molecular mechanisms dealing with these phenomena which are crucial not only for the development of interventions attempting to avoid adrenal dysfunction, but also for its wide occurrence in other infectious-based critical illnesses. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Co-secretion of aldosterone and cortisol by an adrenocortical carcinoma.

    PubMed

    Kurtulmus, Neslihan; Yarman, Sema; Azizlerli, Halil; Kapran, Yersu

    2004-01-01

    We report a rare case of adrenocortical carcinoma. A 26-year-old woman presented with hypokalemia and hypertension due to hyperaldosteronism. She had no signs of Cushing's syndrome. Endocrinological data showed excess of aldosterone production and nonsupressible cortisol production on 2 mg of dexamethasone. Magnetic resonance imaging showed left adrenal tumor. Transabdominal left adrenalectomy was performed and histopathological diagnosis was adrenocortical carcinoma. Her blood pressure and hypokalemia returned to normal after adrenalectomy. There is no recurrence after 36 months. We want to emphasis the importance of adrenal tests before the operation even if there are no signs of excess cortisol production.

  20. Ectopic expression of the gastric inhibitory polypeptide receptor gene is a sufficient genetic event to induce benign adrenocortical tumor in a xenotransplantation model.

    PubMed

    Mazzuco, Tania L; Chabre, Olivier; Sturm, Nathalie; Feige, Jean-Jacques; Thomas, Michaël

    2006-02-01

    Aberrant expression of ectopic G protein-coupled receptors (GPCRs) in adrenal cortex tissue has been observed in several cases of ACTH-independent macronodular adrenal hyperplasias and adenomas associated with Cushing's syndrome. Although there is clear clinical evidence for the implication of these ectopic receptors in abnormal regulation of cortisol production, whether this aberrant GPCR expression is the cause or the consequence of the development of an adrenal hyperplasia is still an open question. To answer it, we genetically engineered primary bovine adrenocortical cells to have them express the gastric inhibitory polypeptide receptor. After transplantation of these modified cells under the renal capsule of adrenalectomized immunodeficient mice, tissues formed had their functional and histological characteristics analyzed. We observed the formation of an enlarged and hyperproliferative adenomatous adrenocortical tissue that secreted cortisol in a gastric inhibitory polypeptide-dependent manner and induced a mild Cushing's syndrome with hyperglycemia. Moreover, we show that tumor development was ACTH independent. Thus, a single genetic event, inappropriate expression of a nonmutated GPCR gene, is sufficient to initiate the complete phenotypic alterations that ultimately lead to the formation of a benign adrenocortical tumor.

  1. Marital Conflict Predicts Mother-to-Infant Adrenocortical Transmission.

    PubMed

    Hibel, Leah C; Mercado, Evelyn

    2017-12-21

    Employing an experimental design, mother-to-infant transmission of stress was examined. Mothers (N = 117) were randomized to either have a positive or conflictual discussion with their marital partners, after which infants (age = 6 months) participated in a fear and frustration task. Saliva samples were collected to assess maternal cortisol responses to the discussion and infant cortisol responses to the challenge task. Results indicate maternal cortisol reactivity and recovery to the conflict (but not positive) discussion predicted infant cortisol reactivity to the infant challenge. Mothers' positive affect during the discussion buffered, and intrusion during the free-play potentiated, mother-to-infant adrenocortical transmission. These findings advance our understanding of the social and contextual regulation of adrenocortical activity in early childhood. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  2. Adrenocortical Carcinoma Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Adrenocortical carcinoma (ACC or adrenal cancer) treatment is usually radical open complete resection and may include chemotherapy and radiation. Get detailed information about the prognosis and treatment of newly diagnosed and recurrent ACC in this comprehensive summary for clinicians.

  3. Nationwide analysis of adrenocortical carcinoma reveals higher perioperative morbidity in functional tumors.

    PubMed

    Parikh, Punam P; Rubio, Gustavo A; Farra, Josefina C; Lew, John I

    2017-08-25

    Current adrenalectomy outcomes for functional adrenocortical carcinoma (ACC) remain unclear. This study examines nationwide in-hospital post-adrenalectomy outcomes for ACC. A retrospective analysis of the Nationwide Inpatient Sample database (2006-2011) to identify unilateral adrenalectomy patients for functional or nonfunctional ACC was performed. Patient demographics, comorbidities and postoperative outcomes were evaluated by t-test, Chi-square and multivariate regression. Of 2199 patients who underwent adrenalectomy, 87% had nonfunctional and 13% had functional ACC (86% hypercortisolism, 16% hyperaldosteronism, 4% hyperandrogenism). Functional ACC patients had significantly more comorbidities, and experienced certain postoperative complications more frequently including wound issues, adrenocortical insufficiency and acute kidney injury with longer hospital stay compared to nonfunctional ACC (P < 0.01). On multivariate analysis, functional ACC was an independent prognosticator for wound complications (28.1, 95%CI 4.59-176.6). Patients with functional ACC manifest significant comorbidities with certain in-hospital complications. Such high-risk patients require appropriate preoperative medical optimization prior to adrenalectomy. Patients with functional adrenocortical carcinoma (ACC) have significant preoperative comorbidities and experience higher rates of certain postoperative complications including wound complications, hematoma formation, adrenal insufficiency, pulmonary embolism and acute kidney injury. Functional ACC patients also necessitate longer hospitalizations. These patients should undergo appropriate preoperative counseling in preparation for adrenalectomy. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Influence of lesions of the limbic-hypothalamic system on adrenocortical responses to daily repeated heat exposures in rabbits.

    PubMed

    Seto, K; Kaba, H; Saito, H; Edashige, N; Kawakami, M

    1983-07-01

    The effects of lesions in the basal medial hypothalamus and limbic structure upon the responses of adrenocorticoids formation in adrenal slices of rabbits to daily repeated heat exposures has been investigated. (1) The adrenocortical responses to heat exposure on the 1st day were decreased by lesions in the periventricular arcuate nucleus (ARC), ventromedial hypothalamus (VMH), stria terminalis (ST) and dorsal fornix (FX). (2) There were no effects of heat exposure on the 10th day upon the adrenocorticoid formation in either the sham-lesioned rabbits or the rabbits with the lesions of ARC, VMH and ST. (3) In rabbits with the FX lesions, the adrenocorticoids formation was significantly increased by heat exposure on the 10th day. (4) These results suggested that the basal medial hypothalamus, amygdala (AMYG)-ST system and dorsal hippocampus (HPC)-FX system participated in the mechanisms of adrenocortical responses to heat exposure on the 1st day, but only the HPC-FX system played some roles in complete disappearance process of adrenocortical responses to heat exposure by repetition of exposures.

  5. Imaging of adrenal masses with emphasis on adrenocortical tumors.

    PubMed

    Sundin, Anders

    2012-01-01

    Because of the more widespread and frequent use of cross-sectional techniques, mainly computed tomography (CT), an increasing number of adrenal tumors are detected as incidental findings ("incidentalomas"). These incidentaloma patients are much more frequent than those undergoing imaging because of symptoms related to adrenal disease. CT and magnetic resonance imaging (MRI) are in most patients sufficient for characterization and follow-up of the incidentaloma. In a minor portion of patients, biochemical screening reveals a functional tumor and further diagnostic work-up and therapy need to be performed according to the type of hormonal overproduction. In oncological patients, especially when the morphological imaging criteria indicate an adrenal metastasis, biopsy of the lesion should be considered after pheochromocytoma is ruled out biochemically. In the minority of patients in whom CT and MRI fail to characterize the tumor and when time is of essence, functional imaging mainly by positron emission tomography (PET) is available using various tracers. The most used PET tracer, [(18)F]fluoro-deoxy-glucose ((18)FDG), is able to differentiate benign from malignant adrenal tumors in many patients. (11)C-metomidate ((11)C-MTO) is a more specialized PET tracer that binds to the 11-beta-hydroxylase enzyme in the adrenal cortex and thus makes it possible to differ adrenal tumors (benign adrenocortical adenoma and adrenocortical cancer) from those of non-adrenocortical origin.

  6. Alpha lipoic acid selectively inhibits proliferation and adhesion to fibronectin of v-H-ras-transformed 3Y1 cells.

    PubMed

    Yamasaki, Masao; Iwase, Masahiro; Kawano, Kazuo; Sakakibara, Yoichi; Suiko, Masahito; Nishiyama, Kazuo

    2012-05-01

    Here, we focused on the effects of racemic α-lipoic acid on proliferation and adhesion properties of 3Y1 rat fibroblasts and the v-H-ras-transformed derivative, HR-3Y1-2 cells. Racemic α-lipoic acid inhibited proliferation of HR-3Y1-2 but not 3Y1 cells at 0.3 and 1.0 mM. R-(+)-α-lipoic acid also inhibited proliferation of HR-3Y1-2 cells equivalent to that of racemic α-lipoic acid. In addition, racemic α-lipoic acid decreased intracellular reactive oxygen species levels in HR-3Y1 cells but not 3Y1 cells. Next, we evaluated the effects of racemic α-lipoic acid on cell adhesion to fibronectin. The results indicated that racemic α-lipoic acid decreased adhesive ability of HR-3Y1-2 cells to fibronectin-coated plates. As blocking antibody experiment revealed that β1-integrin plays a key role in cell adhesion in this experimental system, the effects of racemic α-lipoic acid on the expression of β1-integrin were examined. The results indicated that racemic α-lipoic acid selectively downregulated the expression of cell surface β1-integrin expression in HR-3Y1-2 cells. Intriguingly, exogenous hydrogen peroxide upregulated cell surface β1-integrin expression in 3Y1 cells. Taken together, these data suggest that reduction of intracellular reactive oxygen species levels by α-lipoic acid could be an effective means of ameliorating abnormal growth and adhesive properties in v-H-ras transformed cells.

  7. Surface and bulk effects of K in Cu 1-xK xIn 1-yGa ySe 2 solar cells

    DOE PAGES

    Muzzillo, Christopher P.; Anderson, Timothy J.

    2017-12-29

    Two strategies for enhancing photovoltaic (PV) performance in chalcopyrite solar cells were investigated: Cu 1-xK xIn 1-yGa ySe 2 absorbers with low K content (K/(K+Cu), or x ~ 0.07) distributed throughout the bulk, and CuIn 1-yGa ySe 2 absorbers with KIn 1-yGa ySe 2 grown on their surfaces. Distributing K throughout the bulk absorbers improved power conversion efficiency, open-circuit voltage (VOC) and fill factor (FF) for Ga/(Ga+In) of 0, 0.3 and 0.5. Surface KIn 1-yGa ySe 2 and bulk x ~ 0.07 Cu 1-xK xIn 1-yGa ySe 2 films with Ga/(Ga+In), or y of 0.3 and 0.5 also had improvedmore » efficiency, VOC, and FF, relative to CuIn 1-yGa ySe 2 baselines. On the other hand, y ~ 1 absorbers did not benefit from K introduction. Similar to Cu 1-xK xInSe 2, the formation of Cu 1-xK xGaSe 2 alloys was favored at low temperatures and high Na supply by the substrate, relative to the formation of mixed-phase CuGaSe 2 + KGaSe 2. KIn 1-yGa ySe 2 alloys were grown for the first time, as evidenced by X-ray diffraction and ultraviolet/visible spectroscopy. For all Ga/(Ga+In) compositions, the surface KIn 1-yGa ySe 2 absorbers had superior PV performance in buffered and buffer-free devices. However, the bulk x ~ 0.07 absorbers only outperformed the baselines in buffered devices. The data demonstrate that KIn 1-yGa ySe 2 passivates the surface of CuIn 1-yGa ySe 2 to increase efficiency, VOC, and FF, while bulk Cu 1-xK xIn 1-yGa ySe 2 absorbers with x ~ 0.07 enhance efficiency, VOC, and FF by some other mechanism.« less

  8. Surface and bulk effects of K in Cu 1-xK xIn 1-yGa ySe 2 solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzillo, Christopher P.; Anderson, Timothy J.

    Two strategies for enhancing photovoltaic (PV) performance in chalcopyrite solar cells were investigated: Cu 1-xK xIn 1-yGa ySe 2 absorbers with low K content (K/(K+Cu), or x ~ 0.07) distributed throughout the bulk, and CuIn 1-yGa ySe 2 absorbers with KIn 1-yGa ySe 2 grown on their surfaces. Distributing K throughout the bulk absorbers improved power conversion efficiency, open-circuit voltage (VOC) and fill factor (FF) for Ga/(Ga+In) of 0, 0.3 and 0.5. Surface KIn 1-yGa ySe 2 and bulk x ~ 0.07 Cu 1-xK xIn 1-yGa ySe 2 films with Ga/(Ga+In), or y of 0.3 and 0.5 also had improvedmore » efficiency, VOC, and FF, relative to CuIn 1-yGa ySe 2 baselines. On the other hand, y ~ 1 absorbers did not benefit from K introduction. Similar to Cu 1-xK xInSe 2, the formation of Cu 1-xK xGaSe 2 alloys was favored at low temperatures and high Na supply by the substrate, relative to the formation of mixed-phase CuGaSe 2 + KGaSe 2. KIn 1-yGa ySe 2 alloys were grown for the first time, as evidenced by X-ray diffraction and ultraviolet/visible spectroscopy. For all Ga/(Ga+In) compositions, the surface KIn 1-yGa ySe 2 absorbers had superior PV performance in buffered and buffer-free devices. However, the bulk x ~ 0.07 absorbers only outperformed the baselines in buffered devices. The data demonstrate that KIn 1-yGa ySe 2 passivates the surface of CuIn 1-yGa ySe 2 to increase efficiency, VOC, and FF, while bulk Cu 1-xK xIn 1-yGa ySe 2 absorbers with x ~ 0.07 enhance efficiency, VOC, and FF by some other mechanism.« less

  9. The aurora kinase inhibitor VX-680 shows anti-cancer effects in primary metastatic cells and the SW13 cell line.

    PubMed

    Pezzani, Raffaele; Rubin, Beatrice; Bertazza, Loris; Redaelli, Marco; Barollo, Susi; Monticelli, Halenya; Baldini, Enke; Mian, Caterina; Mucignat, Carla; Scaroni, Carla; Mantero, Franco; Ulisse, Salvatore; Iacobone, Maurizio; Boscaro, Marco

    2016-10-01

    New therapeutic targets are needed to fight cancer. Aurora kinases (AK) were recently identified as vital key regulators of cell mitosis and have consequently been investigated as therapeutic targets in preclinical and clinical studies. Aurora kinase inhibitors (AKI) have been studied in many cancer types, but their potential capacity to limit or delay metastases has rarely been considered, and never in adrenal tissue. Given the lack of an effective pharmacological therapy for adrenal metastasis and adrenocortical carcinoma, we assessed AKI (VX-680, SNS314, ZM447439) in 2 cell lines (H295R and SW13 cells), 3 cell cultures of primary adrenocortical metastases (from lung cancer), and 4 primary adrenocortical tumor cell cultures. We also tested reversan, which is a P-gp inhibitor (a fundamental efflux pump that can extrude drugs), and we measured AK expression levels in 66 adrenocortical tumor tissue samples. Biomolecular and cellular tests were performed (such as MTT, thymidine assay, Wright's staining, cell cycle and apoptosis analysis, Western blot, qRT-PCR, and mutation analysis). Our results are the first to document AK overexpression in adrenocortical carcinoma as well as in H295R and SW13 cell lines, thus proving the efficacy of AKI against adrenal metastases and in the SW13 cancer cell model. We also demonstrated that reversan and AKI Vx-680 are useless in the H295R cell model, and therefore should not be considered as potential treatments for ACC. Serine/threonine AK inhibition, essentially with VX-680, could be a promising, specific therapeutic tool for eradicating metastases in adrenocortical tissue.

  10. Adrenocortical carcinoma, an unusual cause of secondary hypertension.

    PubMed

    Veron Esquivel, Daniel; Batiz, Fernando; Farias Vega, Alfonso; Carrillo Gonzalez, Perla A

    2016-12-07

    We present the case of a female patient aged 39 years who was admitted to our hospital due to hypertension, severe hypokalaemia and metabolic alkalosis; physical examination was remarkable for plethoric moon face, centripetal obesity and bilateral lower extremity oedema. She was admitted for intravenous potassium replacement and further assessment of hypertension and associated clinical findings. Laboratory testing showed increased levels of aldosterone, renin, cortisol, testosterone and androstenedione. An abdominal CT revealed a large mass in the right adrenal gland with hepatic involvement. The patient was started on antihypertensive medications and underwent laparoscopic surgery for mass and liver biopsy. The pathological diagnosis was adrenocortical carcinoma with liver metastasis. Hyperaldosteronism is a cause of secondary hypertension and its diagnosis is usually benign. Adrenocortical carcinoma is a rare condition and aldosterone secreting tumours are even rarer; associated hypertension usually improves after tumour resection, but with the presence of metastasis, blood pressure control is difficult. 2016 BMJ Publishing Group Ltd.

  11. Increased adrenocortical response to adrenocorticotropic hormone (ACTH) in sport horses with equine glandular gastric disease (EGGD).

    PubMed

    Scheidegger, M D; Gerber, V; Bruckmaier, R M; van der Kolk, J H; Burger, D; Ramseyer, A

    2017-10-01

    This study tested the hypothesis that adrenocortical function would be altered in horses with equine gastric ulcer syndrome (EGUS). Twenty-six sport horses competing at national or international levels in eventing (n=15) or endurance (n=11) were subjected to a gastroscopic examination and an adrenocorticotropic hormone (ACTH) stimulation test. Salivary cortisol concentrations were measured before (baseline) and after (30, 60, 90, 120 and 150min) IV ACTH injection (1μg/kg bodyweight). Within EGUS, two distinct diseases, equine squamous gastric disease (ESGD) and equine glandular gastric disease (EGGD), can be distinguished. ESGD was diagnosed in 8/11 (73%; 95% confidence intervals [95%CI], 43-92%) endurance horses and 5/15 (33%; 95% CI, 14-58%) eventing horses. EGGD was observed in 9/11 (82%; 95% CI, 53-96%) endurance horses and 9/15 (60%; 95% CI, 35-81%) eventing horses. The presence or severity of ESGD was unrelated to the presence or severity of EGGD. ACTH stimulation induced a larger increase in cortisol concentration in horses with moderate EGGD than in horses with mild EGGD. Cortisol concentration during the entire sampling period (total increase in cortisol concentration during the entire sampling period [dAUC], 31.1±6.4ng/mL) and the highest measured concentration at a single time point (maximal increase in cortisol concentration [dMAX], 10.3±2.3ng/mL) were increased (P=0.005 and P=0.038, respectively), indicating that horses with glandular gastric disease exhibited increased adrenocortical responses to ACTH stimulation. These results suggest that EGGD might be associated with an enhanced adrenocortical sensitivity. Further investigations are warranted to confirm the association between adrenocortical sensitivity and EGGD and to elucidate the pathophysiological mechanisms involved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The role of mothers’ and fathers’ adrenocortical reactivity in spillover between interparental conflict and parenting practices

    PubMed Central

    Sturge-Apple, Melissa L.; Davies, Patrick T.; Cicchetti, Dante; Cummings, E. Mark

    2010-01-01

    Guided by the affective spillover hypothesis, the present study examined the mediational role of parental adrenocortical reactivity to interparental conflict in explaining associations between interparental conflict and subsequent changes in mothers’ and fathers’ parenting practices over a 2 year period in a sample of 202 parents and their six year old children. Results of autoregressive, path models indicated that marital withdrawal was associated with increases in adrenocortical reactivity to conflict for mothers but not fathers. Furthermore, elevated adrenocortical reactivity in turn predicted greater psychologically controlling parenting practices and inconsistent discipline over time for mothers, but was not associated with changes in maternal warmth. Implications for clinicians and therapists working with maritally distressed parents and families are discussed. PMID:19364215

  13. Pitfalls in the diagnosis of adrenocortical tumors: a lesson from 300 consultation cases.

    PubMed

    Duregon, Eleonora; Volante, Marco; Bollito, Enrico; Goia, Margherita; Buttigliero, Consuelo; Zaggia, Barbara; Berruti, Alfredo; Scagliotti, Giorgio Vittorio; Papotti, Mauro

    2015-12-01

    The correct pathologic classification of adrenocortical carcinoma (ACC) is relevant to establish an early therapeutic strategy of this rare malignancy. The aim of the study was to assess the most frequent pitfalls in ACC diagnosis reviewing a large consecutive series of 300 cases with an original diagnosis or a clinical suspect of ACC, which were sent in consultation to our institution between 2004 and 2014. A major disagreement that significantly modified the clinical management of patients was recorded in 26 cases (9%). The most common pitfall (10 cases) was to distinguish ACC from pheochromocytoma and vice versa. Seven other cases diagnosed as ACC were reclassified as metastases from other primaries and primary adrenal soft tissue tumors (including 3 angiosarcomas). Finally, 5 adrenocortical adenomas were reclassified into carcinomas, and 4 ACCs were converted into adenomas. Minor disagreements were mostly related to the identification of ACC variants (up to 32% of cases of adrenocortical tumors in the present series). Moreover, more than 50% of ACC cases lacked Ki-67. In conclusion, our results indicate that, in the presence of a histologically suspected ACC, a special attention should be devoted to exclude metastatic and soft tissue tumors and pheochromocytoma (in this latter case with special reference to the oncocytic variant of adrenocortical tumors). Moreover, pathologists should be aware of the major role of Ki-67 in determining prognosis and in selecting patients to the most appropriate treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. High-Throughput Screening of Chemical Effects on Steroidogenesis Using H295R Human Adrenocortical Carcinoma Cells

    PubMed Central

    Toole, Colleen M.; Filer, Dayne L.; Lewis, Kenneth C.; Martin, Matthew T.

    2016-01-01

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2060 chemical samples on steroidogenesis via high-performance liquid chromatography followed by tandem mass spectrometry quantification of 10 steroid hormones, including progestagens, glucocorticoids, androgens, and estrogens. The study employed a 3 stage screening strategy. The first stage established the maximum tolerated concentration (MTC; ≥ 70% viability) per sample. The second stage quantified changes in hormone levels at the MTC whereas the third stage performed concentration-response (CR) on a subset of samples. At all stages, cells were prestimulated with 10 µM forskolin for 48 h to induce steroidogenesis followed by chemical treatment for 48 h. Of the 2060 chemical samples evaluated, 524 samples were selected for 6-point CR screening, based in part on significantly altering at least 4 hormones at the MTC. CR screening identified 232 chemical samples with concentration-dependent effects on 17β-estradiol and/or testosterone, with 411 chemical samples showing an effect on at least one hormone across the steroidogenesis pathway. Clustering of the concentration-dependent chemical-mediated steroid hormone effects grouped chemical samples into 5 distinct profiles generally representing putative mechanisms of action, including CYP17A1 and HSD3B inhibition. A distinct pattern was observed between imidazole and triazole fungicides suggesting potentially distinct mechanisms of action. From a chemical testing and prioritization perspective, this assay platform provides a robust model for high-throughput screening of chemicals for effects on steroidogenesis. PMID:26781511

  15. Cell-specific expression of calcineurin immunoreactivity within the rat basolateral amygdala complex and colocalization with the neuropeptide Y Y1 receptor.

    PubMed

    Leitermann, Randy J; Sajdyk, Tammy J; Urban, Janice H

    2012-10-01

    Neuropeptide Y (NPY) produces potent anxiolytic effects via activation of NPY Y1 receptors (Y1r) within the basolateral amygdaloid complex (BLA). The role of NPY in the BLA was recently expanded to include the ability to produce stress resilience and long-lasting reductions in anxiety-like behavior. These persistent behavioral effects are dependent upon activity of the protein phosphatase, calcineurin (CaN), which has long been associated with shaping long-term synaptic signaling. Furthermore, NPY-induced reductions in anxiety-like behavior persist months after intra-BLA delivery, which together indicate a form of neuronal plasticity had likely occurred. To define a site of action for NPY-induced CaN signaling within the BLA, we employed multi-label immunohistochemistry to determine which cell types express CaN and if CaN colocalizes with the Y1r. We have previously reported that both major neuronal cell populations in the BLA, pyramidal projection neurons and GABAergic interneurons, express the Y1r. Therefore, this current study evaluated CaN immunoreactivity in these cell types, along with Y1r immunoreactivity. Antibodies against calcium-calmodulin kinase II (CaMKII) and GABA were used to identify pyramidal neurons and GABAergic interneurons, respectively. A large population of CaN immunoreactive cells displayed Y1r immunoreactivity (90%). Nearly all (98%) pyramidal neurons displayed CaN immunoreactivity, while only a small percentage of interneurons (10%) contained CaN immunoreactivity. Overall, these anatomical findings provide a model whereby NPY could directly regulate CaN activity in the BLA via activation of the Y1r on CaN-expressing, pyramidal neurons. Importantly, they support BLA pyramidal neurons as prime targets for neuronal plasticity associated with the long-term reductions in anxiety-like behavior produced by NPY injections into the BLA. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. SLC12A7 alters adrenocortical carcinoma cell adhesion properties to promote an aggressive invasive behavior.

    PubMed

    Brown, Taylor C; Murtha, Timothy D; Rubinstein, Jill C; Korah, Reju; Carling, Tobias

    2018-06-08

    Altered expression of Solute Carrier Family 12 Member 7 (SLC12A7) is implicated to promote malignant behavior in multiple cancer types through an incompletely understood mechanism. Recent studies have shown recurrent gene amplifications and overexpression of SLC12A7 in adrenocortical carcinoma (ACC). The potential mechanistic effect(s) of SLC12A7 amplifications in portending an aggressive behavior in ACC has not been previously studied and is investigated here using two established ACC cell lines, SW-13 and NCI-H295R. SW-13 cells, which express negligible amounts of SLC12A7, were enforced to express SLC12A7 constitutively, while RNAi gene silencing was performed in NCI-H295R cells, which have robust endogenous expression of SLC12A7. In vitro studies tested the outcomes of experimental alterations in SLC12A7 expression on malignant characteristics, including cell viability, growth, colony formation potential, motility, invasive capacity, adhesion and detachment kinetics, and cell membrane organization. Further, potential alterations in transcription regulation downstream to induced SLC12A7 overexpression was explored using targeted transcription factor expression arrays. Enforced SLC12A7 overexpression in SW-13 cells robustly promoted motility and invasive characteristics (p < 0.05) without significantly altering cell viability, growth, or colony formation potential. SLC12A7 overexpression also significantly increased rates of cellular attachment and detachment turnover (p < 0.05), potentially propelled by increased filopodia formation and/or Ezrin interaction. In contrast, RNAi gene silencing of SLC12A7 stymied cell attachment strength as well as migration and invasion capacity in NCI-H295R cells. Transcription factor expression analysis identified multiple signally pathways potentially affected by SLC12A7 overexpression, including osmotic stress, bone morphogenetic protein, and Hippo signaling pathways. Amplification of SLC12A7 observed in ACCs is shown

  17. High-throughput screening of chemical effects on steroidogenesis using H295R human adrenocortical carcinoma cells

    EPA Pesticide Factsheets

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2060 chemical samples on steroidogenesis via high-performance liquid chromatography followed by tandem mass spectrometry quantification of 10 steroid hormones, including progestagens, glucocorticoids, androgens, and estrogens. The study employed a 3 stage screening strategy. The first stage established the maximum tolerated concentration (MTC; ? 70% viability) per sample. The second stage quantified changes in hormone levels at the MTC whereas the third stage performed concentration-response (CR) on a subset of samples. At all stages, cells were prestimulated with 10 00b5M forskolin for 48??h to induce steroidogenesis followed by chemical treatment for 48??h. Of the 2060 chemical samples evaluated, 524 samples were selected for 6-point CR screening, based in part on significantly altering at least 4 hormones at the MTC. CR screening identified 232 chemical samples with concentration-dependent effects on 1703b2-estradiol and/or testosterone, with 411 chemical samples showing an effect on at least one hormone across the steroidogenesis pathway. Clustering of the concentration-dependent chemical-mediated steroid hormone effects grouped chemical samples into 5 distinct profiles generally representing putative mec

  18. shRNA-Mediated Silencing of Y-Box Binding Protein-1 (YB-1) Suppresses Growth of Neuroblastoma Cell SH-SY5Y In Vitro and In Vivo

    PubMed Central

    Wang, Hong; Sun, Ruowen; Gu, Min; Li, Shuang; Zhang, Bin; Chi, Zuofei; Hao, Liangchun

    2015-01-01

    Y-box binding protein-1 (YB-1), a member of cold-shock protein superfamily, has been demonstrated to be associated with tumor malignancy, and is proposed as a prognostic marker in multiple carcinomas. However, the role of YB-1 in neuroblastoma has not been well studied. To investigate the functional role of YB-1 in neuroblastoma, we established a YB-1-silenced neuroblastoma cell strain by inhibiting YB-1 expression using a shRNA knockdown approach. YB-1-silenced neuroblastoma SH-SY5Y cells exhibited a pronounced reduction in cell proliferation and an increased rate of apoptosis in vitro and in vivo xenograft tumor model. At molecular level, YB-1 silencing resulted in downregulation of Cyclin A, Cyclin D1 and Bcl-2, as well as upregulated levels of Bax, cleaved caspase-3 and cleaved PARP-1. We further demonstrated that YB-1 transcriptionally regulated Cyclin D1 expression by chromatin-immunoprecipitation and luciferase reporter assays. In addition, xenograft tumors derived from neuroblastoma SH-SY5Y cell line were treated with YB-1 shRNA plasmids by intra-tumor injection, and YB-1 targeting effectively inhibited tumor growth and induced cell death. In summary, our findings suggest that YB-1 plays a critical role in neuroblastoma development, and it may serve as a potential target for neuroblastoma therapy. PMID:25993060

  19. Germline PRKACA amplification leads to Cushing syndrome caused by 3 adrenocortical pathologic phenotypes.

    PubMed

    Carney, J Aidan; Lyssikatos, Charalampos; Lodish, Maya B; Stratakis, Constantine A

    2015-01-01

    We describe the pathology of 5 patients with germline PRKACA copy number gain and Cushing syndrome: 4 males and 1 female, aged 2 to 43 years, including a mother and son. Imaging showed normal or slightly enlarged adrenal glands in 4 patients and a unilateral mass in the fifth. Biochemically, the patients had corticotropin-independent hypercortisolism. Four underwent bilateral adrenalectomy; unilateral adrenalectomy was performed in the patient with the adrenal mass. Pathologically, 3 patients, including the 1 with the tumor (adenoma), had primary pigmented nodular adrenocortical disease with extranodular cortical atrophy and mild intracapsular and extracapsular extension of cortical cells. The other 2 patients had cortical hyperplasia and prominent capsular and extracapsular micronodular cortical hyperplasia. Immunoperoxidase staining revealed differences for synaptophysin, inhibin-A, and Ki-67 (nuclei) in the atrophic cortices (patients 1, 2, and 3) and hyperplastic cortices (patients 4 and 5) and for Ki-67 (nuclei) and vimentin in the extracortical nodules in the 2 groups of patients. β-Catenin stained the cell membrane, cytoplasm, and nuclei of the adenoma. The patients were well at follow-up (1-23 years); 24-hour urinary cortisol excretion was elevated in the patient who had unilateral adrenalectomy. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. High-Throughput Screening of Chemical Effects on Steroidogenesis Using H295R Human Adrenocortical Carcinoma Cells.

    PubMed

    Karmaus, Agnes L; Toole, Colleen M; Filer, Dayne L; Lewis, Kenneth C; Martin, Matthew T

    2016-04-01

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2060 chemical samples on steroidogenesis via high-performance liquid chromatography followed by tandem mass spectrometry quantification of 10 steroid hormones, including progestagens, glucocorticoids, androgens, and estrogens. The study employed a 3 stage screening strategy. The first stage established the maximum tolerated concentration (MTC; ≥ 70% viability) per sample. The second stage quantified changes in hormone levels at the MTC whereas the third stage performed concentration-response (CR) on a subset of samples. At all stages, cells were prestimulated with 10 µM forskolin for 48 h to induce steroidogenesis followed by chemical treatment for 48 h. Of the 2060 chemical samples evaluated, 524 samples were selected for 6-point CR screening, based in part on significantly altering at least 4 hormones at the MTC. CR screening identified 232 chemical samples with concentration-dependent effects on 17β-estradiol and/or testosterone, with 411 chemical samples showing an effect on at least one hormone across the steroidogenesis pathway. Clustering of the concentration-dependent chemical-mediated steroid hormone effects grouped chemical samples into 5 distinct profiles generally representing putative mechanisms of action, including CYP17A1 and HSD3B inhibition. A distinct pattern was observed between imidazole and triazole fungicides suggesting potentially distinct mechanisms of action. From a chemical testing and prioritization perspective, this assay platform provides a robust model for high-throughput screening of chemicals for effects on steroidogenesis. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology.

  1. First Case Report of a Sporadic Adrenocortical Carcinoma With Gastric Metastasis and a Synchronous Gastrointestinal Stromal Tumor of the Stomach.

    PubMed

    Kovecsi, Attila; Jung, Ioan; Bara, Tivadar; Bara, Tivadar; Azamfirei, Leonard; Kovacs, Zsolt; Gurzu, Simona

    2015-09-01

    Adrenocortical carcinoma is a rare tumor with high aggresivity that can associate systemic metastases. A 71-year-old man was hospitalized for gastric cancer. The abdominal computed tomography also revealed a tumor above the right kidney. Total gastrectomy and right adrenalectomy were performed. The encapsulated tumor of the adrenal gland weighed 560 grams and presented diffuse tumor architecture under microscope, with capsular, sinusoidal, and vascular invasion. The large tumor cells had a polygonal shape, with slight basophilic, eosinophilic, or vacuolated cytoplasm, pleomorphic nuclei, and a high mitotic rate. In the stomach, the protruded tumor was covered by normal mucosa; under microscope, the tumor cells were observed only in the submucosal layer. In primary adrenal tumor and gastric metastasis the tumor cells were marked by vimentin, inhibin, synaptophysin, neuron-specific enolase, and calretinin. Based on these criteria, the diagnosis of adrenocortical carcinoma (ACC) with gastric metastasis and no lymph node metastases was established. A synchronous 10 × 10-mm-sized gastrointestinal stromal tumor (GIST) of the stomach, without mitoses, was also identified. So far, as we know, this is the 15th case of ever reported synchronous/metachronous sporadic ACCs; the ACC-related gastric metastases either synchronous ACC and GIST, has not been reported in the literature previously.

  2. Adrenocortical adenoma and carcinoma: histopathological and molecular comparative analysis.

    PubMed

    Stojadinovic, Alexander; Brennan, Murray F; Hoos, Axel; Omeroglu, Atilla; Leung, Denis H Y; Dudas, Maria E; Nissan, Aviram; Cordon-Cardo, Carlos; Ghossein, Ronald A

    2003-08-01

    We compared histomorphological features and molecular expression profiles of adrenocortical adenomas (ACAd) and carcinomas (ACCa). A critical histopathological review (mean, 11 slides per patient) was conducted of 37 ACAd and 67 ACCa. Paraffin-embedded tissue cores of ACAd (n = 33) and ACCa (n = 38) were arrayed in triplicate on tissue microarrays. Expression profiles of p53, mdm-2, p21, Bcl-2, cyclin D1, p27, and Ki-67 were investigated by immunohistochemistry and correlated with histopathology and patient outcome using standard statistical methodology. Median follow-up period was 5 years. Tumor necrosis, atypical mitoses, and >1 mitosis per 50 high-power fields were factors that were highly specific for ACCa (P <.001). Number (0 to 4) of unfavorable markers [Ki-67 (+), p21 (+), p27 (+), mdm-2(-)] expressed was significantly associated with mitotic activity and morphologic index (i.e., number of adverse morphologic features) and highly predictive of malignancy (P <.001). Ki-67 overexpression occurred in 0 ACAd and 36% ACCa (P <.001) and was significantly associated with mitotic rate and unfavorable morphologic index (P <.001). Tumor necrosis, atypical mitoses, >5 mitoses per 50 high-power fields, sinusoidal invasion, histologic index of >5, and presence of more than two unfavorable molecular markers were associated significantly with metastasis in ACCa. Well-established histopathologic criteria and Ki-67 can specifically distinguish ACCAd from ACCa. Tumor cell proliferation (Ki-67) correlates with mitotic activity and morphologic index. Tumor morphology is a better predictor of metastatic risk in ACCa than current immunohistochemistry-detected cell cycle regulatory and proliferation-associated proteins.

  3. Adrenocortical neoplasia: evolving concepts in tumorigenesis with an emphasis on adrenal cortical carcinoma variants.

    PubMed

    de Krijger, Ronald R; Papathomas, Thomas G

    2012-01-01

    Adrenocortical carcinoma (ACC) is a rare, heterogeneous malignancy with a poor prognosis. According to WHO classification 2004, ACC variants include oncocytic ACCs, myxoid ACCs and ACCs with sarcomatous areas. Herein, we provide a comprehensive review of these rare subtypes of adrenocortical malignancy and emphasize their clinicopathological features with the aim of elucidating aspects of diagnostic categorization, differential diagnostics and biological behavior. The issue of current terminology, applied to biphasic tumors with pleomorphic, sarcomatous or sarcomatoid elements arising in adrenal cortex, is also discussed. We additionally present emerging evidence concerning the adrenal cortical tumorigenesis and the putative adenoma-carcinoma sequence as well.

  4. Actinobacillus actinomycetemcomitans Y4 capsular polysaccharide induces IL-1β mRNA expression through the JNK pathway in differentiated THP-1 cells

    PubMed Central

    Iwata, T; Mitani, A; Ishihara, Y; Tanaka, S; Yamamoto, G; Kikuchi, T; Naganawa, T; Matsumura, Y; Suga, T; Koide, M; Sobue, T; Suzuki, T; Noguchi, T

    2005-01-01

    Capsular polysaccharide from Actinobacillus actinomycetemcomitans Y4 (Y4 CP) induces bone resorption in a mouse organ culture system and osteoclast formation in mouse bone marrow cultures, as reported in previous studies. We also found that Y4 CP inhibits the release of interleukin (IL)-6 and IL-8 from human gingival fibroblast (HGF). Thus Y4 CP induces various responses in localized tissue and leads to the secretion of several cytokines. However, the effects of Y4 CP on human monocytes/macrophages are still unclear. In this study, THP-1 cells, which are a human monocytic cell line, were stimulated with Y4 CP, and we measured gene expression in inflammatory cytokine and signal transduction pathways. IL-1β and tumour necrosis factor (TNF)-α mRNA were induced from Y4 CP-treated THP-1 cells. IL-1β mRNA expression was increased according to the dose of Y4 CP, and in a time-dependent manner. IL-1β mRNA expression induced by Y4 CP (100 µg/ml) was approximately 7- to 10-fold greater than that in the control by real-time PCR analysis. Furthermore, neither PD98059, a specific inhibitor of extracellular signal-regulated kinase nor SB203580, a specific inhibitor of p38 kinase prevented the IL-1β expression induced by Y4 CP. However, JNK Inhibitor II, a specific inhibitor of c-Jun N-terminal kinase (JNK) prevented the IL-1β mRNA expression induced by Y4 CP in a concentration-dependent manner. These results indicate that Y4 CP-mediated JNK pathways play an important role in the regulation of IL-1β mRNA. Therefore, Y4 CP-transduced signals for IL-1β induction in the antibacterial action of macrophages may provide a therapeutic strategy for periodontitis. PMID:15996190

  5. Up-regulation of Cav3.1 expression in SH-SY5Y cells induced by lidocaine hydrochloride.

    PubMed

    Gong, Qin; Wen, Xianjie; Li, Heng; He, Jian; Wang, Yunhua; Wu, Huiping; Wang, Hanbing; Wang, Xiaoping

    2018-01-12

    Neurotoxicity induced by the local anaesthetics has aroused concern. A previous study has shown that an overload of intracellular calcium was involved in the neurotoxic effect. Cav3.1 is one of the low-voltage-activated (LVA) calcium channels which play a key point to regulate the intracellular calcium ion level. This study aimed to investigate the changes of the Cav3.1 expression in the SH-SY5Y cells treated with lidocaine hydrochloride. The SH-SY5Y cells were treated with different concentrations of lidocaine hydrochloride(1 mM, 5 mM and 10 mM, namely L1 group, L5 group and L10 group) and different exposure times (1 h,12 h and 24 h), respectively. Cell viability, Cav3.1 protein and mRNA expression were detected. The results showed that cell viability decreased and Cav3.1 mRNA and protein expression increased with the concentration (from 1 mM to 10 mM) of the lidocaine hydrochloride and exposure time (from 1 h to 24 h) to the SH-SY5Y cell line increased. Those data showed that lidocaine hydrochloride induced SH-SY5Y cell toxicity and up-regulated Cav3.1mRNA and protein expression.

  6. MPP+ induces necrostatin-1- and ferrostatin-1-sensitive necrotic death of neuronal SH-SY5Y cells.

    PubMed

    Ito, Keisuke; Eguchi, Yutaka; Imagawa, Yusuke; Akai, Shuji; Mochizuki, Hideki; Tsujimoto, Yoshihide

    2017-01-01

    Regulation of cell death is potentially a powerful treatment modality for intractable diseases such as neurodegenerative diseases. Although there have been many reports about the possible involvement of various types of cell death in neurodegenerative diseases, it is still unclear exactly how neurons die in patients with these diseases, thus treatment strategies based on cell death regulation have not been established yet. To obtain some insight into the mechanisms of cell death involved in neurodegenerative diseases, we studied the effect of 1-methyl-4-phenylpyridinium (MPP+) on the human neuroblastoma cell line SH-SY5Y (a widely used model of Parkinson's disease). We found that MPP+ predominantly induced non-apoptotic death of neuronally differentiated SH-SY5Y cells. This cell death was strongly inhibited by necrostatin-1 (Nec-1), a necroptosis inhibitor, and by an indole-containing compound (3,3'-diindolylmethane: DIM). However, it occurred independently of receptor-interacting serine/threonine-protein kinase 1/3 (RIP1/RIP3), indicating that this form of cell death was not necroptosis. MPP+-induced cell death was also inhibited by several inhibitors of ferroptosis, including ferrostatin-1 (Fer-1). Although MPP+-induced death and ferroptosis shared some features, such as occurrence of lipid peroxidation and inhibition by Fer-1, MPP+-induced death seemed to be distinct from ferroptosis because MPP+-induced death (but not ferroptosis) was inhibited by Nec-1, was independent of p53, and was accompanied by ATP depletion and mitochondrial swelling. Further investigation of MPP+-induced non-apoptotic cell death may be useful for understanding the mechanisms of neuronal loss and for treatment of neurodegenerative diseases such as Parkinson's disease.

  7. MPP+ induces necrostatin-1- and ferrostatin-1-sensitive necrotic death of neuronal SH-SY5Y cells

    PubMed Central

    Ito, Keisuke; Eguchi, Yutaka; Imagawa, Yusuke; Akai, Shuji; Mochizuki, Hideki; Tsujimoto, Yoshihide

    2017-01-01

    Regulation of cell death is potentially a powerful treatment modality for intractable diseases such as neurodegenerative diseases. Although there have been many reports about the possible involvement of various types of cell death in neurodegenerative diseases, it is still unclear exactly how neurons die in patients with these diseases, thus treatment strategies based on cell death regulation have not been established yet. To obtain some insight into the mechanisms of cell death involved in neurodegenerative diseases, we studied the effect of 1-methyl-4-phenylpyridinium (MPP+) on the human neuroblastoma cell line SH-SY5Y (a widely used model of Parkinson’s disease). We found that MPP+ predominantly induced non-apoptotic death of neuronally differentiated SH-SY5Y cells. This cell death was strongly inhibited by necrostatin-1 (Nec-1), a necroptosis inhibitor, and by an indole-containing compound (3,3′-diindolylmethane: DIM). However, it occurred independently of receptor-interacting serine/threonine-protein kinase 1/3 (RIP1/RIP3), indicating that this form of cell death was not necroptosis. MPP+-induced cell death was also inhibited by several inhibitors of ferroptosis, including ferrostatin-1 (Fer-1). Although MPP+-induced death and ferroptosis shared some features, such as occurrence of lipid peroxidation and inhibition by Fer-1, MPP+-induced death seemed to be distinct from ferroptosis because MPP+-induced death (but not ferroptosis) was inhibited by Nec-1, was independent of p53, and was accompanied by ATP depletion and mitochondrial swelling. Further investigation of MPP+-induced non-apoptotic cell death may be useful for understanding the mechanisms of neuronal loss and for treatment of neurodegenerative diseases such as Parkinson’s disease. PMID:28250973

  8. Role of CREB on heme oxygenase-1 induction in adrenal cells: involvement of the PI3K pathway.

    PubMed

    Astort, F; Repetto, E M; Rocha-Viegas, L; Mercau, M E; Puch, S Sanchez; Finkielstein, C V; Pecci, A; Cymeryng, C B

    2016-08-01

    In addition to the well-known function of ACTH as the main regulator of adrenal steroidogenesis, we have previously demonstrated its effect on the transcriptional stimulation of HO-1 expression, a component of the cellular antioxidant defense system. In agreement, we hereby demonstrate that, in adrenocortical Y1 cells, HO-1 induction correlates with a significant prevention of the generation of reactive oxygen species induced by H2O2/Fe(2+) ACTH/cAMP-dependent activation of redox-imbalanced related factors such as NRF2 or NFκB and the participation of MAPKs in this mechanism was, however, discarded based on results with specific inhibitors and reporter plasmids. We suggest the involvement of CREB in HO-1 induction by ACTH/cAMP, as transfection of cells with a dominant-negative isoform of CREB (DN-CREB-M1) decreased, while overexpression of CREB increased HO-1 protein levels. Sequence screening of the murine HO-1 promoter revealed CRE-like sites located at -146 and -37 of the transcription start site and ChIP studies indicated that this region recruits phosphorylated CREB (pCREB) upon cAMP stimulation in Y1 cells. In agreement, H89 (PKA inhibitor) or cotransfection with DN-CREB-M1 prevented the 8Br-cAMP-dependent increase in luciferase activity in cells transfected with pHO-1[-295/+74].LUC. ACTH and cAMP treatment induced the activation of the PI3K/Akt signaling pathway in a PKA-independent mechanism. Inhibition of this pathway prevented the cAMP-dependent increase in HO-1 protein levels and luciferase activity in cells transfected with pHO-1[-295/+74].LUC. Finally, here we show a crosstalk between the cAMP/PKA and PI3K pathways that affects the binding of p-CREB to its cognate element in the murine promoter of the Hmox1 gene. © 2016 Society for Endocrinology.

  9. ULTRASTRUCTURE, STEROIDOGENIC POTENTIAL, AND ENERGY METABOLISM OF THE SNELL ADRENOCORTICAL CARCINOMA 494

    PubMed Central

    Kimmel, G. L.; Péron, F. G.; Haksar, A.; Bedigian, E.; Robidoux, W. F.; Lin, M. T.

    1974-01-01

    Electron microscope studies were carried out with the adrenocortical carcinoma 494 and normal adrenal cortex tissue. The mitochondria of the tumor cells showed marked differences when compared with mitochondria from fasciculata cells of the normal adrenal cortex. These differences were primarily related to mitochondrial number and crista structure. Corticosterone production in isolated tumor cells was extremely low and neither ACTH nor dibutyryl cyclic AMP had any stimulatory effect. Normal adrenal cells showed at least a tenfold increase under identical conditions. In the presence of corticosteroid precursors the amount of corticosterone produced by the tumor cells was much less than that produced by normal cells. The results indicate a reduced capacity for 11β-hydroxylation in the tumor mitochondria and a possible reduced capacity for biosynthetic steps before the 11β-hydroxylation reaction. Glycolysis in isolated tumor cells was also lower than in normal cells. Isolated tumor mitochondria oxidized succinate normally with a good degree of coupling with phosphorylation. However, unlike normal adrenal mitochondria, the tumor mitochondria showed little or no oxygen uptake with other Krebs cycle substrates. These data suggest that the tumor mitochondria may be lacking in the flavoprotein dehydrogenases responsible for the oxidation of NADH and NADPH, although other components of the respiratory chain may be intact. PMID:4366105

  10. Transcription factor FOXO1 promotes cell migration toward exogenous ATP via controlling P2Y1 receptor expression in lymphatic endothelial cells.

    PubMed

    Niimi, Kenta; Ueda, Mizuha; Fukumoto, Moe; Kohara, Misaki; Sawano, Toshinori; Tsuchihashi, Ryo; Shibata, Satoshi; Inagaki, Shinobu; Furuyama, Tatsuo

    2017-08-05

    Sprouting migration of lymphatic endothelial cell (LEC) is a pivotal step in lymphangiogenic process. However, its molecular mechanism remains unclear including effective migratory attractants. Meanwhile, forkhead transcription factor FOXO1 highly expresses in LEC nuclei, but its significance in LEC migratory activity has not been researched. In this study, we investigated function of FOXO1 transcription factor associated with LEC migration toward exogenous ATP which has recently gathered attentions as a cell migratory attractant. The transwell membrane assay indicated that LECs migrated toward exogenous ATP, which was impaired by FOXO1 knockdown. RT-PCR analysis showed that P2Y1, a purinergic receptor, expression was markedly reduced by FOXO1 knockdown in LECs. Moreover, P2Y1 blockage impaired LEC migration toward exogenous ATP. Western blot analysis revealed that Akt phosphorylation contributed to FOXO1-dependent LEC migration toward exogenous ATP and its blockage affected LEC migratory activity. Furthermore, luciferase reporter assay and ChIP assay suggested that FOXO1 directly bound to a conserved binding site in P2RY1 promoter and regulated its activity. These results indicated that FOXO1 serves a pivotal role in LEC migration toward exogenous ATP via direct transcriptional regulation of P2Y1 receptor. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Chylous ascites after resection of giant adrenocortical carcinoma.

    PubMed

    Habibi, Mani; Karakoyun, Rojbin; Demirci, Erkan; Alikanoglu, Arsenal Sezgin

    2016-12-01

    Postoperative chylous ascites (PCA) is a rare clinical state that occurs during abdominal surgery. Despite its rarity, the need to diagnose and treat PCA is increasing in importance with the increased number of wide resections and lymph node dissections being performed and the serious consequences of treatment. Here we describe the PCA complications we observed after resection for treating a case of giant adrenocortical carcinoma and we have the brief review of the PCA complication.

  12. Chylous ascites after resection of giant adrenocortical carcinoma

    PubMed Central

    Karakoyun, Rojbin; Demirci, Erkan; Alikanoglu, Arsenal Sezgin

    2016-01-01

    Postoperative chylous ascites (PCA) is a rare clinical state that occurs during abdominal surgery. Despite its rarity, the need to diagnose and treat PCA is increasing in importance with the increased number of wide resections and lymph node dissections being performed and the serious consequences of treatment. Here we describe the PCA complications we observed after resection for treating a case of giant adrenocortical carcinoma and we have the brief review of the PCA complication. PMID:28149812

  13. The reticulin algorithm for adrenocortical tumor diagnosis: a multicentric validation study on 245 unpublished cases.

    PubMed

    Duregon, Eleonora; Fassina, Ambrogio; Volante, Marco; Nesi, Gabriella; Santi, Raffaella; Gatti, Gaia; Cappellesso, Rocco; Dalino Ciaramella, Paolo; Ventura, Laura; Gambacorta, Marcello; Dei Tos, Angelo Paolo; Loli, Paola; Mannelli, Massimo; Mantero, Franco; Berruti, Alfredo; Terzolo, Massimo; Papotti, Mauro

    2013-09-01

    The pathologic diagnosis of adrenocortical carcinoma (ACC) still needs to be improved, because the renowned Weiss Score (WS) system has a poor reproducibility of some parameters and is difficult to apply in borderline cases and in ACC variants. The "reticulin algorithm" (RA) defines malignancy through an altered reticulin framework associated with 1 of the 3 following parameter: necrosis, high mitotic rate, and vascular invasion. This study aimed at validating the interobserver reproducibility of reticulin stain evaluation in an unpublished series of 245 adrenocortical tumors (61 adenomas and 184 carcinomas) from 5 Italian centers, classified according to the WS. Eight pathologists reviewed all reticulin-stained slides. After training, a second round of evaluation on discordant cases was performed 10 weeks later. The RA reclassified 67 cases (27%) as adenomas, including 44 with no reticulin alterations and 23 with an altered reticulin framework but lacking the subsequent parameters of the triad. The other 178 cases (73%) were carcinomas according to the above-mentioned criteria. A complete (8/8 pathologists) interobserver agreement was reached in 75% of cases (κ=0.702), irrespective of case derivation, pathologists' experience, and histologic variants, and was further improved when only those cases with high WS and clinically malignant behavior were considered. After the training, the overall agreement increased to 86%. We conclude that reticulin staining is a reliable technique and an easy-to-interpret system in adrenocortical tumors; moreover, it has a high interobserver reproducibility, which supports the notion of using such a method in the proposed 2-step RA approach for ACC diagnosis.

  14. Neuropeptide Y Y1 receptors meditate targeted delivery of anticancer drug with encapsulated nanoparticles to breast cancer cells with high selectivity and its potential for breast cancer therapy.

    PubMed

    Li, Juan; Shen, Zheyu; Ma, Xuehua; Ren, Wenzhi; Xiang, Lingchao; Gong, An; Xia, Tian; Guo, Junming; Wu, Aiguo

    2015-03-11

    By enabling nanoparticle-based drug delivery system to actively target cancer cells with high selectivity, active targeted molecules have attracted great attention in the application of nanoparticles for anticancer drug delivery. However, the clinical application of most active targeted molecules in breast cancer therapy is limited, due to the low expression of their receptors in breast tumors or coexpression in the normal and tumor breast tissues. Here, a neuropeptide Y Y1 receptors ligand PNBL-NPY, as a novel targeted molecule, is conjugated with anticancer drug doxorubicin encapsulating albumin nanoparticles to investigate the effect of Y1 receptors on the delivery of drug-loaded nanoparticles to breast cancer cells and its potential for breast cancer therapy. The PNBL-NPY can actively recognize and bind to the Y1 receptors that are significantly overexpressed on the surface of the breast cancer cells, and the drug-loaded nanoparticles are delivered directly into the cancer cells through internalization. This system is highly selective and able to distinguish the breast cancer cells from the normal cells, due to normal breast cells that express Y2 receptors only. It is anticipated that this study may provide a guidance in the development of Y1 receptor-based nanoparticulate drug delivery system for a safer and more efficient breast cancer therapy.

  15. Noninvasive monitoring of adrenocortical function in captive jaguars (Panthera onca).

    PubMed

    Conforti, Valéria A; Morato, Ronaldo G; Augusto, Anderson M; de Oliveira e Sousa, Lúcio; de Avila, David M; Brown, Janine L; Reeves, Jerry J

    2012-01-01

    Jaguars are threatened with extinction throughout their range. A sustainable captive population can serve as a hedge against extinction, but only if they are healthy and reproduce. Understanding how jaguars respond to stressors may help improve the captive environment and enhance their wellbeing. Thus, our objectives were to: (1) conduct an adrenocorticotrophic hormone (ACTH) challenge to validate a cortisol radioimmunoassay (RIA) for noninvasive monitoring of adrenocortical function in jaguars; (2) investigate the relationship between fecal corticoid (FCM) and androgen metabolite (FAM) concentrations in males during the ACTH challenge; and (3) establish a range of physiological concentrations of FCMs for the proposed protocol. Seven jaguars (3 M, 4 F) received 500 IU/animal of ACTH. Pre- and post-ACTH fecal samples were assayed for corticoid (M and F) and androgen metabolites (M) by RIA. Concentrations of FCMs increased (P80.01) after ACTH injection (pre-ACTH: 0.90 ± 0.12 µg/g dry feces; post-ACTH: 2.55 ± 0.25 µg/g). Considering pre- and post-ACTH samples, FCM concentrations were higher (P80.01) in males (2.15 ± 0.20 µg/g) than in females (1.30 ± 0.20 µg/g), but the magnitude of the response to ACTH was comparable (P>0.05) between genders. After ACTH injection, FAMs increased in two (of 3) males; in one male, FCMs and FAMs were positively correlated (0.60; P80.01). Excretion of FCMs was assessed in 16 jaguars (7 M, 9 F) and found to be highly variable (range, 80.11-1.56 µg/g). In conclusion, this study presents a cortisol RIA for monitoring adrenocortical function in jaguars noninvasively. © 2011 Wiley Periodicals, Inc.

  16. Effect of KCNJ5 Mutations on Gene Expression in Aldosterone-Producing Adenomas and Adrenocortical Cells

    PubMed Central

    Monticone, Silvia; Hattangady, Namita G.; Nishimoto, Koshiro; Mantero, Franco; Rubin, Beatrice; Cicala, Maria Verena; Pezzani, Raffaele; Auchus, Richard J.; Ghayee, Hans K.; Shibata, Hirotaka; Kurihara, Isao; Williams, Tracy A.; Giri, Judith G.; Bollag, Roni J.; Edwards, Michael A.; Isales, Carlos M.

    2012-01-01

    Context: Primary aldosteronism is a heterogeneous disease that includes both sporadic and familial forms. A point mutation in the KCNJ5 gene is responsible for familial hyperaldosteronism type III. Somatic mutations in KCNJ5 also occur in sporadic aldosterone producing adenomas (APA). Objective: The objective of the study was to define the effect of the KCNJ5 mutations on gene expression and aldosterone production using APA tissue and human adrenocortical cells. Methods: A microarray analysis was used to compare the transcriptome profiles of female-derived APA samples with and without KCNJ5 mutations and HAC15 adrenal cells overexpressing either mutated or wild-type KCNJ5. Real-time PCR validated a set of differentially expressed genes. Immunohistochemical staining localized the KCNJ5 expression in normal adrenals and APA. Results: We report a 38% (18 of 47) prevalence of KCNJ5 mutations in APA. KCNJ5 immunostaining was highest in the zona glomerulosa of NA and heterogeneous in APA tissue, and KCNJ5 mRNA was 4-fold higher in APA compared with normal adrenals (P < 0.05). APA with and without KCNJ5 mutations displayed slightly different gene expression patterns, notably the aldosterone synthase gene (CYP11B2) was more highly expressed in APA with KCNJ5 mutations. Overexpression of KCNJ5 mutations in HAC15 increased aldosterone production and altered expression of 36 genes by greater than 2.5-fold (P < 0.05). Real-time PCR confirmed increases in CYP11B2 and its transcriptional regulator, NR4A2. Conclusions: KCNJ5 mutations are prevalent in APA, and our data suggest that these mutations increase expression of CYP11B2 and NR4A2, thus increasing aldosterone production. PMID:22628608

  17. P2Y2 Receptor and EGFR Cooperate to Promote Prostate Cancer Cell Invasion via ERK1/2 Pathway.

    PubMed

    Li, Wei-Hua; Qiu, Ying; Zhang, Hong-Quan; Tian, Xin-Xia; Fang, Wei-Gang

    2015-01-01

    As one member of G protein-coupled P2Y receptors, P2Y2 receptor can be equally activated by extracellular ATP and UTP. Our previous studies have proved that activation of P2Y2 receptor by extracellular ATP could promote prostate cancer cell invasion and metastasis in vitro and in vivo via regulating the expressions of some epithelial-mesenchymal transition/invasion-related genes (including IL-8, E-cadherin, Snail and Claudin-1), and the most significant change in expression of IL-8 was observed after P2Y2 receptor activation. However, the signaling pathway downstream of P2Y2 receptor and the role of IL-8 in P2Y2-mediated prostate cancer cell invasion remain unclear. Here, we found that extracellular ATP/UTP induced activation of EGFR and ERK1/2. After knockdown of P2Y2 receptor, the ATP -stimulated phosphorylation of EGFR and ERK1/2 was significantly suppressed. Further experiments showed that inactivation of EGFR and ERK1/2 attenuated ATP-induced invasion and migration, and suppressed ATP-mediated IL-8 production. In addition, knockdown of IL-8 inhibited ATP-mediated invasion and migration of prostate cancer cells. These findings suggest that P2Y2 receptor and EGFR cooperate to upregulate IL-8 production via ERK1/2 pathway, thereby promoting prostate cancer cell invasion and migration. Thus blocking of the P2Y2-EGFR-ERK1/2 pathway may provide effective therapeutic interventions for prostate cancer.

  18. Neuropeptide Y stimulates retinal neural cell proliferation--involvement of nitric oxide.

    PubMed

    Alvaro, Ana Rita; Martins, João; Araújo, Inês M; Rosmaninho-Salgado, Joana; Ambrósio, António F; Cavadas, Cláudia

    2008-06-01

    Neuropeptide Y (NPY) is a 36 amino acid peptide widely present in the CNS, including the retina. Previous studies have demonstrated that NPY promotes cell proliferation of rat post-natal hippocampal and olfactory epithelium precursor cells. The aim of this work was to investigate the role of NPY on cell proliferation of rat retinal neural cells. For this purpose, primary retinal cell cultures expressing NPY, and NPY Y(1), Y(2), Y(4) and Y(5) receptors [Alvaro et al., (2007) Neurochem. Int., 50, 757] were used. NPY (10-1000 nM) stimulated cell proliferation through the activation of NPY Y(1), Y(2) and Y(5) receptors. NPY also increased the number of proliferating neuronal progenitor cells (BrdU(+)/nestin(+) cells). The intracellular mechanisms coupled to NPY receptors activation that mediate the increase in cell proliferation were also investigated. The stimulatory effect of NPY on cell proliferation was reduced by L-nitroarginine-methyl-esther (L-NAME; 500 microM), a nitric oxide synthase inhibitor, 1H-[1,2,4]oxadiazolo-[4, 3-a]quinoxalin-1-one (ODQ; 20 microM), a soluble guanylyl cyclase inhibitor or U0126 (1 microM), an inhibitor of the extracellular signal-regulated kinase 1/2 (ERK 1/2). In conclusion, NPY stimulates retinal neural cell proliferation, and this effect is mediated through nitric oxide-cyclic GMP and ERK 1/2 pathways.

  19. Differential expression of microRNA-675, microRNA-139-3p and microRNA-335 in benign and malignant adrenocortical tumours

    PubMed Central

    Helwig, J; Bertram, S; Sheu, S Y; Suttorp, A C; Seggewiß, J; Willscher, E; Walz, M K; Worm, K; Schmid, K W

    2011-01-01

    Background For the clinical management of adrenocortical neoplasms it is crucial to correctly distinguish between benign and malignant tumours. Even histomorphologically based scoring systems do not allow precise separation in single lesions, thus novel parameters are desired which offer a more accurate differentiation. The tremendous potential of microRNAs (miRNAs) as diagnostic biomarkers in surgical pathology has recently been shown in a broad variety of tumours. Methods In order to elucidate the diagnostic impact of miRNA expression in adrenocortical neoplasms, a cohort of 20 adrenocortical specimens including normal adrenal tissue (n=4), adrenocortical adenomas (ACAs) (n=9), adrenocortical carcinomas (ACCs) (n=4) and metastases (n=3) was analysed using TaqMan low density arrays to identify specific miRNA profiles in order to distinguish between benign and malignant adrenocortical lesions. Results were validated in a validation cohort (n=16). Results Concerning the differential diagnosis of ACAs and ACCs, 159 out of 667 miRNAs were up- and 89 were down-regulated in ACAs. Using real-time PCR analysis of three of the most significantly expressed single key miRNAs allowed separation of ACAs from ACCs. ACCs exhibited significantly lower levels of miR-139-3p (up to 8.49-fold, p<0.001), miR-675 (up to 23.25-fold, p<0.001) and miR-335 (up to 5.25-fold, p<0.001). A validation cohort of 16 specimen with known Weiss score showed up-regulation of miR-335 and miR-675 in the majority of cases with probable malignant course, although overlapping values exist. Conclusion miRNA profiling of miR-675 and miR-335 helps in discriminating ACCs from ACAs. miRNA analysis may indicate malignant behaviour in cases with indeterminate malignant potential. PMID:21471143

  20. FGF1 protects neuroblastoma SH-SY5Y cells from p53-dependent apoptosis through an intracrine pathway regulated by FGF1 phosphorylation

    PubMed Central

    Pirou, Caroline; Montazer-Torbati, Fatemeh; Jah, Nadège; Delmas, Elisabeth; Lasbleiz, Christelle; Mignotte, Bernard; Renaud, Flore

    2017-01-01

    Neuroblastoma, a sympathetic nervous system tumor, accounts for 15% of cancer deaths in children. In contrast to most human tumors, p53 is rarely mutated in human primary neuroblastoma, suggesting impaired p53 activation in neuroblastoma. Various studies have shown correlations between fgf1 expression levels and both prognosis severity and tumor chemoresistance. As we previously showed that fibroblast growth factor 1 (FGF1) inhibited p53-dependent apoptosis in neuron-like PC12 cells, we initiated the study of the interaction between the FGF1 and p53 pathways in neuroblastoma. We focused on the activity of either extracellular FGF1 by adding recombinant rFGF1 in media, or of intracellular FGF1 by overexpression in human SH-SY5Y and mouse N2a neuroblastoma cell lines. In both cell lines, the genotoxic drug etoposide induced a classical mitochondrial p53-dependent apoptosis. FGF1 was able to inhibit p53-dependent apoptosis upstream of mitochondrial events in SH-SY5Y cells by both extracellular and intracellular pathways. Both rFGF1 addition and etoposide treatment increased fgf1 expression in SH-SY5Y cells. Conversely, rFGF1 or overexpressed FGF1 had no effect on p53-dependent apoptosis and fgf1 expression in neuroblastoma N2a cells. Using different FGF1 mutants (that is, FGF1K132E, FGF1S130A and FGF1S130D), we further showed that the C-terminal domain and phosphorylation of FGF1 regulate its intracrine anti-apoptotic activity in neuroblastoma SH-SY5Y cells. This study provides the first evidence for a role of an intracrine growth factor pathway on p53-dependent apoptosis in neuroblastoma, and could lead to the identification of key regulators involved in neuroblastoma tumor progression and chemoresistance. PMID:29048426

  1. Steroidogenesis in the yellow corpuscles (adrenocortical homolog) in a holostean fish, the bowfin, Amia calva L.

    PubMed

    Butler, D G; Youson, J H

    1986-07-01

    Yellow corpuscles from the ventral surface of the anterior kidney in bowfins (Amia calva L.) converted [7-3H]pregnenolone to radioactive 11-deoxycortisol, cortisol, and corticosterone in vitro. Aldosterone was not detected. Cortisol was the predominant steroid at the end of a 3-hr incubation period (20 degrees C). These experiments are the first to demonstrate steroidogenesis in holostean yellow bodies and they are the first incubations with pure adrenocortical tissue, free of head kidney, in any bony fish. White corpuscles of Stannius located along the total length of the kidneys were incubated under identical conditions but adrenocortical steroids were not found.

  2. PilY1 Promotes Legionella pneumophila Infection of Human Lung Tissue Explants and Contributes to Bacterial Adhesion, Host Cell Invasion, and Twitching Motility.

    PubMed

    Hoppe, Julia; Ünal, Can M; Thiem, Stefanie; Grimpe, Louisa; Goldmann, Torsten; Gaßler, Nikolaus; Richter, Matthias; Shevchuk, Olga; Steinert, Michael

    2017-01-01

    Legionnaires' disease is an acute fibrinopurulent pneumonia. During infection Legionella pneumophila adheres to the alveolar lining and replicates intracellularly within recruited macrophages. Here we provide a sequence and domain composition analysis of the L. pneumophila PilY1 protein, which has a high homology to PilY1 of Pseudomonas aeruginosa . PilY1 proteins of both pathogens contain a von Willebrand factor A (vWFa) and a C-terminal PilY domain. Using cellular fractionation, we assigned the L. pneumophila PilY1 as an outer membrane protein that is only expressed during the transmissive stationary growth phase. PilY1 contributes to infection of human lung tissue explants (HLTEs). A detailed analysis using THP-1 macrophages and A549 lung epithelial cells revealed that this contribution is due to multiple effects depending on host cell type. Deletion of PilY1 resulted in a lower replication rate in THP-1 macrophages but not in A549 cells. Further on, adhesion to THP-1 macrophages and A549 epithelial cells was decreased. Additionally, the invasion into non-phagocytic A549 epithelial cells was drastically reduced when PilY1 was absent. Complementation variants of a PilY1-negative mutant revealed that the C-terminal PilY domain is essential for restoring the wild type phenotype in adhesion, while the putatively mechanosensitive vWFa domain facilitates invasion into non-phagocytic cells. Since PilY1 also promotes twitching motility of L. pneumophila , we discuss the putative contribution of this newly described virulence factor for bacterial dissemination within infected lung tissue.

  3. Adrenocortical Carcinoma in Children: A Clinicopathological Analysis of 41 Patients at the Mayo Clinic from 1950 to 2017.

    PubMed

    Gupta, Nidhi; Rivera, Michael; Novotny, Paul; Rodriguez, Vilmarie; Bancos, Irina; Lteif, Aida

    2018-05-25

    Adrenocortical carcinoma (ACC) is an aggressive childhood cancer. Limited evidence exists on a definite histopathological criterion to differentiate ACC from adrenocortical adenoma. The aim of this study was to investigate the clinicopathological data of children with ACC, identify prognostic factors, and validate a histopathological criterion to differentiate ACC from adrenocortical adenoma. This retrospective cohort included 41 children, followed at the Mayo Clinic from 1950 to 2017 (onset of symptoms ≤21 years). Outcomes of interest were: alive with no evidence of disease, alive with evidence of disease, and dead of disease. Median age at onset of symptoms was 15.7 years (n = 41; range, 0.2-21 years). Female:male ratio was 3.6: 1. Mixed symptomatology (> 1 hormone abnormality) was the most common presentation (54%, n = 22). Sixty-six percent of patients (n = 27 out of 41) underwent total adrenalectomy. Metastatic disease was more common in children aged > 12 years (p = 0.002 compared to < 4 years). The most common sites of metastases were the liver and lungs. Overall 2-year and 5-year survival rates were 61% (95% CI 45-77) and 46% (95% CI 30-62), respectively. Metastasis at the time of diagnosis was independently associated with poor prognosis (risk ratio 13.7%; 95% CI 3.9-87.7). Weiss criteria (29%) and modified Weiss criteria (33%) were less accurate in younger patients (< 12 years), compared to the Wieneke index (100%). The presence of metastases was an independent prognostic factor. The Wieneke index was the most accurate in predicting clinical outcomes in younger children. © 2018 S. Karger AG, Basel.

  4. Upregulation of IRS1 Enhances IGF1 Response in Y537S and D538G ESR1 Mutant Breast Cancer Cells.

    PubMed

    Li, Zheqi; Levine, Kevin M; Bahreini, Amir; Wang, Peilu; Chu, David; Park, Ben Ho; Oesterreich, Steffi; Lee, Adrian V

    2018-01-01

    Increased evidence suggests that somatic mutations in the ligand-binding domain of estrogen receptor [ER (ERα/ESR1)] are critical mediators of endocrine-resistant breast cancer progression. Insulinlike growth factor-1 (IGF1) is an essential regulator of breast development and tumorigenesis and also has a role in endocrine resistance. A recent study showed enhanced crosstalk between IGF1 and ERα in ESR1 mutant cells, but detailed mechanisms are incompletely understood. Using genome-edited MCF-7 and T47D cell lines harboring Y537S and D538G ESR1 mutations, we characterized altered IGF1 signaling. RNA sequencing revealed upregulation of multiple genes in the IGF1 pathway, including insulin receptor substrate-1 (IRS1), consistent in both Y537S and D538G ESR1 mutant cell line models. Higher IRS1 expression was confirmed by quantitative reverse transcription polymerase chain reaction and immunoblotting. ESR1 mutant cells also showed increased levels of IGF-regulated genes, reflected by activation of an IGF signature. IGF1 showed increased sensitivity and potency in growth stimulation of ESR1 mutant cells. Analysis of downstream signaling revealed the phosphoinositide 3-kinase (PI3K)-Akt axis as a major pathway mediating the enhanced IGF1 response in ESR1 mutant cells. Decreasing IRS1 expression by small interfering RNA diminished the increased sensitivity to IGF1. Combination treatment with inhibitors against IGF1 receptor (IGF1R; OSI-906) and ER (fulvestrant) showed synergistic growth inhibition in ESR1 mutant cells, particularly at lower effective concentrations. Our study supports a critical role of enhanced IGF1 signaling in ESR1 mutant cell lines, pointing toward a potential for cotargeting IGF1R and ERα in endocrine-resistant breast tumors with mutant ESR1. Copyright © 2018 Endocrine Society.

  5. Tissue kallikrein induces SH-SY5Y cell proliferation via epidermal growth factor receptor and extracellular signal-regulated kinase1/2 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhengyu; Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437; Yang, Qi

    2014-03-28

    Highlights: • TK promotes EGFR phosphorylation in SH-SY5Y cells. • TK activates ERK1/2 and p38 phosphorylation in SH-SY5Y cells. • TK mediates SH-SY5Y cell proliferation via EGFR and ERK1/2 pathway. - Abstract: Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depletedmore » of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.« less

  6. Phase conversion from hexagonal CuS(y)Se(1-y) to cubic Cu(2-x)S(y)Se(1-y): composition variation, morphology evolution, optical tuning, and solar cell applications.

    PubMed

    Xu, Jun; Yang, Xia; Yang, Qingdan; Zhang, Wenjun; Lee, Chun-Sing

    2014-09-24

    In this work, we report a simple and low-temperature approach for the controllable synthesis of ternary Cu-S-Se alloys featuring tunable crystal structures, compositions, morphologies, and optical properties. Hexagonal CuS(y)Se(1-y) nanoplates and face centered cubic (fcc) Cu(2-x)S(y)Se(1-y) single-crystal-like stacked nanoplate assemblies are synthesized, and their phase conversion mechanism is well investigated. It is found that both copper content and chalcogen composition (S/Se atomic ratio) of the Cu-S-Se alloys are tunable during the phase conversion process. Formation of the unique single-crystal-like stacked nanoplate assemblies is resulted from oriented stacking coupled with the Ostwald ripening effect. Remarkably, optical tuning for continuous red shifts of both the band-gap absorption and the near-infrared localized surface plasmon resonance are achieved. Furthermore, the novel Cu-S-Se alloys are utilized for the first time as highly efficient counter electrodes (CEs) in quantum dot sensitized solar cells (QDSSCs), showing outstanding electrocatalytic activity for polysulfide electrolyte regeneration and yielding a 135% enhancement in power conversion efficiency (PCE) as compared to the noble metal Pt counter electrode.

  7. Cell signaling pathways in the adrenal cortex: Links to stem/progenitor biology and neoplasia.

    PubMed

    Penny, Morgan K; Finco, Isabella; Hammer, Gary D

    2017-04-15

    The adrenal cortex is a dynamic tissue responsible for the synthesis of steroid hormones, including mineralocorticoids, glucocorticoids, and androgens in humans. Advances have been made in understanding the role of adrenocortical stem/progenitor cell populations in cortex homeostasis and self-renewal. Recently, large molecular profiling studies of adrenocortical carcinoma (ACC) have given insights into proteins and signaling pathways involved in normal tissue homeostasis that become dysregulated in cancer. These data provide an impetus to examine the cellular pathways implicated in adrenocortical disease and study connections, or lack thereof, between adrenal homeostasis and tumorigenesis, with a particular focus on stem and progenitor cell pathways. In this review, we discuss evidence for stem/progenitor cells in the adrenal cortex, proteins and signaling pathways that may regulate these cells, and the role these proteins play in pathologic and neoplastic conditions. In turn, we also examine common perturbations in adrenocortical tumors (ACT) and how these proteins and pathways may be involved in adrenal homeostasis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Does IGF-1 play a role in the etiopathogenesis of non-functioning adrenocortical adenoma?

    PubMed

    Bahadir, C T; Ecemis, G C; Atmaca, H

    2018-03-14

    The aim of this study was to investigate the possible association of insulin-like growth factor-1 (IGF-1) with the pathogenesis of non-functioning adrenocortical adenomas (NFAs). This study included 50 female patients (mean age 54 years) with NFAs, 55 patients (mean age 48 years; 20 male, 35 female) with acromegaly and 38 female control subjects (mean age 58 years). Body mass index (BMI) and waist circumference (WC) of the subjects were recorded and blood samples for IGF-1 were taken. Insulin resistance was calculated using the homeostatic model assessment (HOMA) score. Since most of the acromegaly patients had been using medicine that could have effected insulin resistance, HOMA scores were calculated only in patients with NFAs and the controls. Computerized tomography or magnetic resonance imaging was taken of the acromegalics and controls to detect adrenal mass frequency. The mean age was similar among the groups. As expected, the serum IGF-1 levels were significantly higher in patients with acromegaly than in patients with NFAs and the controls (p < 0.001). Although BMI, WC, and serum IGF-1 levels were significantly higher (p < 0.001) in patients with NFAs, the HOMA scores were similar between patients with NFAs and control groups. Although none of the control subjects had adrenal masses, NFAs were detected in 14 (25%) out of 55 acromegalic patients. Higher serum IGF-1 levels in patients with NFAs compared to the control group and an increased prevalence of NFAs in acromegaly patients compared to control subjects and the general population suggest an association of IGF-1 with the etiopathogenesis of NFA.

  9. PINK1/Parkin-mediated mitophagy alleviates chlorpyrifos-induced apoptosis in SH-SY5Y cells.

    PubMed

    Dai, Hongmei; Deng, Yuanying; Zhang, Jie; Han, Hailong; Zhao, Mingyi; Li, Ying; Zhang, Chen; Tian, Jing; Bing, Guoying; Zhao, Lingling

    2015-08-06

    Chlorpyrifos (CPF) is one of the most widely used organophosphorous insecticides. There are links between CPF exposure and neurological disorders. Mitochondrial damage has been implicated to play a key role in CPF-induced neurotoxicity. Mitophagy, the selective autophagic elimination of mitochondria, is an important mitochondrial quality control mechanism. However, the role of mitophagy in CPF-induced neurotoxicity remains unclear. In this study, CPF-caused mitochondrial damage, role and mechanism of mitophagy on CPF-induced neuroapoptosis were extensively studied by using SH-SY5Y cells. We showed that CPF treatment caused mitochondrial fragmentation, excessive ROS generation and mitochondrial depolarization, thus led to cell apoptosis. Moreover, CPF treatment also resulted in increased colocalizaton of mitochondria with LC3, decreased levels of mitochondrial proteins, PINK1 stabilization and mitochondrial accumulation of Parkin. These data suggested that CPF treatment induced PINK1/Parkin-mediated mitophagy in SH-SY5Y cells. Furthermore, knockdown of Parkin dramatically increased CPF-induced neuroapoptosis. On the other hand, overexpression of Parkin markedly alleviated CPF-induced SH-SY5Y cell apoptosis. Together, these findings implicate a protective role of PINK1/Parkin-mediated mitophagy against neuroapoptosis and that enhancing mitophagy provides a potential therapeutic strategy for CPF-induced neurological disorders. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. [125I]-GR231118: a high affinity radioligand to investigate neuropeptide Y Y1 and Y4 receptors

    PubMed Central

    Dumont, Yvan; Quirion, Rémi

    2000-01-01

    GR231118 (also known as 1229U91 and GW1229), a purported Y1 antagonist and Y4 agonist was radiolabelled using the chloramine T method. [125I]-GR231118 binding reached equilibrium within 10 min at room temperature and remained stable for at least 4 h. Saturation binding experiments showed that [125I]-GR231118 binds with very high affinity (Kd of 0.09–0.24 nM) in transfected HEK293 cells with the rat Y1 and Y4 receptor cDNA and in rat brain membrane homogenates. No specific binding sites could be detected in HEK293 cells transfected with the rat Y2 or Y5 receptor cDNA demonstrating the absence of significant affinity of GR231118 for these two receptor classes. Competition binding experiments revealed that specific [125I]-GR231118 binding in rat brain homogenates is most similar to that observed in HEK293 cells transfected with the rat Y1, but not rat Y4, receptor cDNA. Autoradiographic studies demonstrated that [125I]-GR231118 binding sites were fully inhibited by the Y1 antagonist BIBO3304 in most areas of the rat brain. Interestingly, high percentage of [125I]-GR231118/BIBO3304-insensitive binding sites were detected in few areas. These [125I]-GR231118/BIBO3304-insensitive binding sites likely represent labelling to the Y4 receptor subtype. In summary, [125I]-GR231118 is a new radiolabelled probe to investigate the Y1 and Y4 receptors; its major advantage being its high affinity. Using highly selective Y1 antagonists such as BIBO3304 or BIBP3226 it is possible to block the binding of [125I]-GR231118 to the Y1 receptor allowing for the characterization and visualization of the purported Y4 subtype. PMID:10694200

  11. The Relations between Bullying Exposures in Middle Childhood, Anxiety, and Adrenocortical Activity

    ERIC Educational Resources Information Center

    Carney, JoLynn V.; Hazler, Richard J.; Oh, Insoo; Hibel, Leah C.; Granger, Douglas A.

    2010-01-01

    This exploratory study investigated how exposure to bullying at school in middle childhood is associated with student anxiety levels and adrenocortical activity at a time preceding lunch when anxiety about potential bullying would potentially be higher. Ninety-one sixth-grade students (55 female and 36 male) reported being exposed one or more…

  12. Prostate-Specific Membrane Antigen Is a Potential Antiangiogenic Target in Adrenocortical Carcinoma.

    PubMed

    Crowley, Michael J P; Scognamiglio, Theresa; Liu, Yi-Fang; Kleiman, David A; Beninato, Toni; Aronova, Anna; Liu, He; Jhanwar, Yuliya S; Molina, Ana; Tagawa, Scott T; Bander, Neil H; Zarnegar, Rasa; Elemento, Olivier; Fahey, Thomas J

    2016-03-01

    Adrenocortical carcinoma (ACC) is a rare tumor type with a poor prognosis and few therapeutic options. Assess prostate-specific membrane antigen (PSMA) expression as a potential novel therapeutic target for ACC. Expression of PSMA was evaluated in benign and malignant adrenal tumors and 1 patient with metastatic ACC. This study took place at a tertiary referral center. Fifty adrenal samples were evaluated, including 16 normal adrenal glands, 16 adrenocortical adenomas, 15 primary ACC, and 3 ACC metastases. Demographics, PSMA expression levels via real-time quantitative polymerase chain reaction and immunohistochemistry and whole-body positron emission tomography-computed tomography standardized uptake values for 1 patient. qPCR demonstrated an elevated level of PSMA in ACC relative to all benign tissues (P < .05). Immunohistochemistry localized PSMA expression to the neovasculature of ACC and confirmed overexpression of PSMA in ACC relative to benign tissues both in intensity and percentage of vessels stained (78% of ACC, 0% of normal adrenal, and 3.27% of adenoma-associated neovasculature; P < .001). Those with more than 25% PSMA-positive vessels were 33 times more likely to be malignant than benign (odds ratio, P < .001). Whole-body positron emission tomography-computed tomography imaging showed targeting of anti-PSMA Zr89-J591 to 5/5 of the patient's multiple lung masses with an average measurement of 3.49 ± 1.86 cm and a standardized uptake value of 1.4 ± 0.65 relative to blood pool at 0.8 standardized uptake value. PSMA is significantly overexpressed in ACC neovasculature when compared with normal and benign adrenal tumors. PSMA expression can be used to image ACC metastases in vivo and may be considered as a potential diagnostic and therapeutic target in ACC.

  13. Comparisons among serum, egg albumin and yolk concentrations of corticosterone as biomarkers of basal and stimulated adrenocortical activity of laying hens.

    PubMed

    Cook, N J; Renema, R; Wilkinson, C; Schaefer, A L

    2009-09-01

    1. Serial blood samples from individual birds were analysed for corticosterone concentrations under basal and stimulated conditions, and matched to eggs from the same birds for comparison to albumin and yolk concentrations of corticosterone. 2. Serum corticosterone exhibited increases in response to stimulation by ACTH and Handling stress. There were no significant increases in egg albumin or yolk concentrations of corticosterone following stimulation. 3. Several significant correlations were observed between the mean and area under the curve (AUC) measurements of serum corticosterone concentrations with albumin and yolk corticosterone concentrations in eggs laid from 1 to 2 d later. 4. The results demonstrated a relationship between endogenous concentrations of serum corticosterone that reflected daily adrenocortical output with albumin and yolk corticosterone concentrations in eggs laid the following day. 5. The results do not support the concept of albumin and yolk concentrations of corticosterone as biomarkers of acute adrenocortical responses to stimulation.

  14. Fibroblast growth factor 2 restrains Ras-driven proliferation of malignant cells by triggering RhoA-mediated senescence.

    PubMed

    Costa, Erico T; Forti, Fábio L; Matos, Tatiana G F; Dermargos, Alexandre; Nakano, Fábio; Salotti, Jacqueline; Rocha, Kátia M; Asprino, Paula F; Yoshihara, Celina K; Koga, Marianna M; Armelin, Hugo A

    2008-08-01

    Fibroblast growth factor 2 (FGF2) is considered to be a bona fide oncogenic factor, although results from our group and others call this into question. Here, we report that exogenous recombinant FGF2 irreversibly inhibits proliferation by inducing senescence in Ras-dependent malignant mouse cells, but not in immortalized nontumorigenic cell lines. We report the following findings in K-Ras-dependent malignant Y1 adrenocortical cells and H-Ras V12-transformed BALB-3T3 fibroblasts: (a) FGF2 inhibits clonal growth and tumor onset in nude and immunocompetent BALB/c mice, (b) FGF2 irreversibly blocks the cell cycle, and (c) FGF2 induces the senescence-associated beta-galactosidase with no accompanying signs of apoptosis or necrosis. The tyrosine kinase inhibitor PD173074 completely protected malignant cells from FGF2. In Y1 adrenal cells, reducing the constitutively high levels of K-Ras-GTP using the dominant-negative RasN17 mutant made cells resistant to FGF2 cytotoxicity. In addition, transfection of the dominant-negative RhoA-N19 into either Y1 or 3T3-B61 malignant cell lines yielded stable clonal transfectants that were unable to activate RhoA and were resistant to the FGF2 stress response. We conclude that in Ras-dependent malignant cells, FGF2 interacts with its cognate receptors to trigger a senescence-like process involving RhoA-GTP. Surprisingly, attempts to select FGF2-resistant cells from the Y1 and 3T3-B61 cell lines yielded only rare clones that (a) had lost the overexpressed ras oncogene, (b) were dependent on FGF2 for proliferation, and (c) were poorly tumorigenic. Thus, FGF2 exerted a strong negative selection that Ras-dependent malignant cells could rarely overcome.

  15. The ZO-1–associated Y-box factor ZONAB regulates epithelial cell proliferation and cell density

    PubMed Central

    Balda, Maria S.; Garrett, Michelle D.; Matter, Karl

    2003-01-01

    Epithelial tight junctions regulate paracellular permeability, restrict apical/basolateral intramembrane diffusion of lipids, and have been proposed to participate in the control of epithelial cell proliferation and differentiation. Previously, we have identified ZO-1–associated nucleic acid binding proteins (ZONAB), a Y-box transcription factor whose nuclear localization and transcriptional activity is regulated by the tight junction–associated candidate tumor suppressor ZO-1. Now, we found that reduction of ZONAB expression using an antisense approach or by RNA interference strongly reduced proliferation of MDCK cells. Transfection of wild-type or ZONAB-binding fragments of ZO-1 reduced proliferation as well as nuclear ZONAB pools, indicating that promotion of proliferation by ZONAB requires its nuclear accumulation. Overexpression of ZONAB resulted in increased cell density in mature monolayers, and depletion of ZONAB or overexpression of ZO-1 reduced cell density. ZONAB was found to associate with cell division kinase (CDK) 4, and reduction of nuclear ZONAB levels resulted in reduced nuclear CDK4. Thus, our data indicate that tight junctions can regulate epithelial cell proliferation and cell density via a ZONAB/ZO-1–based pathway. Although this regulatory process may also involve regulation of transcription by ZONAB, our data suggest that one mechanism by which ZONAB and ZO-1 influence proliferation is by regulating the nuclear accumulation of CDK4. PMID:12566432

  16. PINK1/Parkin-mediated mitophagy play a protective role in manganese induced apoptosis in SH-SY5Y cells.

    PubMed

    Zhang, Hong-Tao; Mi, Lan; Wang, Ting; Yuan, Lan; Li, Xue-Hui; Dong, Li-Sha; Zhao, Peng; Fu, Juan-Ling; Yao, Bi-Yun; Zhou, Zong-Can

    2016-08-01

    Manganese (Mn) as an environmental risk factor of Parkinson's disease (PD) is considered to cause manganism. Mitophagy is thought to play a key role in elimination the injured mitochondria. The goal of this paper was to explore whether the PINK1/Parkin-mediated mitophagy is activated and its role in Mn-induced mitochondrial dysfunction and cell death in SH-SY5Y cells. Here, we investigated effects of MnCl2 on ROS generation, mitochondrial membrane potential (MMP/ΔΨm) and apoptosis by FACS and examined PINK1/Parkin-mediated mitophagy by western-blotting and the co-localization of mitochondria and acidic lysosomes. Further, we explore the role of mitophagy in Mn-induced apoptosis by inhibition the mitophagy by knockdown Parkin level. Results show that MnCl2 dose-dependently caused ΔΨm decrease, ROS generation and apoptosis of dopaminergic SH-SY5Y cells. Moreover, Mn could induce mitophagy and PINK1/Parkin-mediated pathway was activated in SH-SY5Y cells. Transient transfection of Parkin siRNA knockdown the expressing level of parkin inhibited Mn-induced mitophagy and aggravated apoptosis of SH-SY5Y cells. In conclusion, our study demonstrated that Mn may induce PINK1/Parkin-mediated mitophagy, which may exert significant neuro-protective effect against Mn-induced dopaminergic neuronal cells apoptosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. IGF-1 protects SH-SY5Y cells against MPP+-induced apoptosis via PI3K/PDK-1/Akt pathway.

    PubMed

    Kim, Chanyang; Park, Seungjoon

    2018-03-01

    Insulin-like growth factor (IGF)-1 is a well-known anti-apoptotic pro-survival factor and phosphatidylinositol-3-kinase (PI3K)/Akt pathway is linked to cell survival induced by IGF-1. It is also reported that Akt signaling is modulated by 3-phosphoinositide-dependent kinase-1 (PDK1). In the current study, we investigated whether the anti-apoptotic effect of IGF-1 in SH-SY5Y cells exposed to 1-methyl-4-phenylpyridinium (MPP + ) is associated with the activity of PI3K/PDK1/Akt pathway. Treatment of cells with IGF-1 inhibited MPP + -induced apoptotic cell death. IGF-1-induced activation of Akt and the protective effect of IGF-1 on MPP + -induced apoptosis were abolished by chemical inhibition of PDK1 (GSK2334470) or PI3K (LY294002). The phosphorylated levels of Akt and PDK1 were significantly suppressed after MPP + exposure, while IGF-1 treatment completely restored MPP+-induced reductions in phosphorylation. IGF-1 protected cells from MPP + insult by suppressing intracellular reactive oxygen species (ROS) production and malondialdehyde levels and increasing superoxide dismutase activity. Mitochondrial ROS levels were also increased during MPP + exposure, which were attenuated by IGF-1 treatment. In addition, IGF-1-treated cells showed increased activities of succinate dehydrogenase and citrate synthase, stabilization of mitochondrial transmembrane potential, increased ratio of Bcl-2 to Bax, prevention of cytochrome c release and inhibition of caspase-3 activation with PARP cleavage. Furthermore, the protective effects of IGF-1 on oxidative stress and mitochondrial dysfunction were attenuated when cells were preincubated with GSK2334470 or LY294002. Our data suggest that IGF-1 protects SH-SY5Y cells against MPP + -associated oxidative stress by preserving mitochondrial integrity and inhibiting mitochondrial apoptotic cascades via the activation of PI3K/PDK1/Akt pathway. © 2018 The authors.

  18. IGF-1 protects SH-SY5Y cells against MPP+-induced apoptosis via PI3K/PDK-1/Akt pathway

    PubMed Central

    Kim, Chanyang; Park, Seungjoon

    2018-01-01

    Insulin-like growth factor (IGF)-1 is a well-known anti-apoptotic pro-survival factor and phosphatidylinositol-3-kinase (PI3K)/Akt pathway is linked to cell survival induced by IGF-1. It is also reported that Akt signaling is modulated by 3-phosphoinositide-dependent kinase-1 (PDK1). In the current study, we investigated whether the anti-apoptotic effect of IGF-1 in SH-SY5Y cells exposed to 1-methyl-4-phenylpyridinium (MPP+) is associated with the activity of PI3K/PDK1/Akt pathway. Treatment of cells with IGF-1 inhibited MPP+-induced apoptotic cell death. IGF-1-induced activation of Akt and the protective effect of IGF-1 on MPP+-induced apoptosis were abolished by chemical inhibition of PDK1 (GSK2334470) or PI3K (LY294002). The phosphorylated levels of Akt and PDK1 were significantly suppressed after MPP+ exposure, while IGF-1 treatment completely restored MPP+-induced reductions in phosphorylation. IGF-1 protected cells from MPP+ insult by suppressing intracellular reactive oxygen species (ROS) production and malondialdehyde levels and increasing superoxide dismutase activity. Mitochondrial ROS levels were also increased during MPP+ exposure, which were attenuated by IGF-1 treatment. In addition, IGF-1-treated cells showed increased activities of succinate dehydrogenase and citrate synthase, stabilization of mitochondrial transmembrane potential, increased ratio of Bcl-2 to Bax, prevention of cytochrome c release and inhibition of caspase-3 activation with PARP cleavage. Furthermore, the protective effects of IGF-1 on oxidative stress and mitochondrial dysfunction were attenuated when cells were preincubated with GSK2334470 or LY294002. Our data suggest that IGF-1 protects SH-SY5Y cells against MPP+-associated oxidative stress by preserving mitochondrial integrity and inhibiting mitochondrial apoptotic cascades via the activation of PI3K/PDK1/Akt pathway. PMID:29459421

  19. The metabotropic P2Y4 receptor participates in the commitment to differentiation and cell death of human neuroblastoma SH-SY5Y cells.

    PubMed

    Cavaliere, Fabio; Nestola, Valeria; Amadio, Susanna; D'Ambrosi, Nadia; Angelini, Daniela F; Sancesario, Giuseppe; Bernardi, Giorgio; Volonté, Cinzia

    2005-02-01

    Extracellular nucleotides exert a variety of biological actions through different subtypes of P2 receptors. Here we characterized in the human neuroblastoma SH-SY5Y cells the simultaneous presence of various P2 receptors, belonging to the P2X ionotropic and P2Y metabotropic families. Western blot analysis detected the P2X1,2,4,5,6,7 and P2Y1,2,4,6, but not the P2X3 and P2Y12 receptors. We then investigated which biological effects were mediated by the P2Y4 subtype and its physiological pyrimidine agonist UTP. We found that neuronal differentiation of the SH-SY5Y cells with dibutiryl-cAMP increased the expression of the P2Y4 protein and that UTP itself was able to positively interfere with neuritogenesis. Moreover, transient transfection and activation of P2Y4 also facilitated neuritogenesis in SH-SY5Y cells, as detected by morphological phase contrast analysis and confocal examination of neurofilament proteins NFL. This was concurrent with increased transcription of immediate-early genes linked to differentiation such as cdk-5 and NeuroD6, and activity of AP-1 transcription family members such as c-fos, fos-B, and jun-D. Nevertheless, a prolonged activation of the P2Y4 receptor by UTP also induced cell death, both in naive, differentiated, and P2Y4-transfected SH-SY5Y cells, as measured by direct count of intact nuclei and cytofluorimetric analysis of damaged DNA. Taken together, our data indicate that the high expression and activation of the P2Y4 receptor participates in the neuronal differentiation and commitment to death of SH-SY5Y cells.

  20. Dynamin-related protein 1 mediates mitochondria-dependent apoptosis in chlorpyrifos-treated SH-SY5Y cells.

    PubMed

    Park, Jae Hyeon; Ko, Juyeon; Hwang, Jungwook; Koh, Hyun Chul

    2015-12-01

    Recent studies have demonstrated that dynamin-related protein 1 (Drp1), a mitochondrial fission protein, mediates mitochondria-dependent apoptosis through mitochondrial division. However, little is known about the mechanism by which Drp1 modulates apoptosis in response to chlorpyrifos (CPF)-induced toxicity. In this study, we determined that CPF-induced mitochondrial apoptosis is mediated by Drp1 translocation in SH-SY5Y human neuroblastoma cells. Our results showed that CPF treatment induced intrinsic apoptosis by activating caspase-9, caspase-3, and cytochrome c release in SH-SY5Y cells. Cytosolic Drp1 translocated to the mitochondria in CPF-treated cells and was phosphorylated at Ser616. Treating cells with CPF induced the generation of reactive oxygen species (ROS) and activation of mitogen-activated protein kinases (MAPKs). Inhibiting this ROS generation and MAPK activation abolished CPF-induced expression of phospho-Drp1. Furthermore, Drp1 was required for p53 to translocate to the mitochondria under CPF-induced oxidative stress. Treating cells with mitochondrial-division inhibitor-1 (mdivi-1), which blocks Drp1 translocation, increased the viability of CPF-treated cells by abrogating Drp1 translocation and caspase-3 activation. Specifically, pretreating cells with mdivi-1 inhibited Bax translocation to the mitochondria by blocking p53 signaling. Taken together, these data reveal a novel mechanism by which Drp1 activates mitochondrial-dependent apoptosis and indicate that inhibiting Dpr1 function can protect against CPF-induced cytotoxicity. We propose that inhibiting Drp1 is a possible therapeutic approach for pesticide-induced toxicity when hyperactivated Drp1 contributes to pathology. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  1. Effects of glucocorticoid hormones on cell proliferation in dimethylhydrazine-induced tumours in rat colon.

    PubMed

    Tutton, P J; Barkla, D H

    1981-01-01

    Adrenocortical hormones have previously been shown to influence cell proliferation in many tissues. In this report, their influence on cell proliferation in the colonic crypt epithelium and in colonic adenocarcinomata is compared. Colonic tumour cell proliferation was found to be retarded following adrenalectomy and this retardation was reversible by administration of hydrocortisone, or by administration of synthetic steroids with predominantly glucocorticoid activity. Tumour cell proliferation in adrenalectomized rats was not promoted by the mineralocorticoid hormone aldosterone. Neither adrenalectomy, nor adrenocortical hormone treatment, significantly influenced colonic crypt cell proliferation.

  2. AMBRA1-Mediated Mitophagy Counteracts Oxidative Stress and Apoptosis Induced by Neurotoxicity in Human Neuroblastoma SH-SY5Y Cells

    PubMed Central

    Di Rita, Anthea; D’Acunzo, Pasquale; Simula, Luca; Campello, Silvia; Strappazzon, Flavie; Cecconi, Francesco

    2018-01-01

    Therapeutic strategies are needed to protect dopaminergic neurons in Parkinson’s disease (PD) patients. Oxidative stress caused by dopamine may play an important role in PD pathogenesis. Selective autophagy of mitochondria (mitophagy), mainly regulated by PINK1 and PARKIN, plays an important role in the maintenance of cell homeostasis. Mutations in those genes cause accumulation of damaged mitochondria, leading to nigral degeneration and early-onset PD. AMBRA1ActA is a fusion protein specifically expressed at the mitochondria, and whose expression has been shown to induce a powerful mitophagy in mammalian cells. Most importantly, the pro-autophagy factor AMBRA1 is sufficient to restore mitophagy in fibroblasts of PD patients carrying PINK1 and PARKIN mutations. In this study, we investigated the potential neuroprotective effect of AMBRA1-induced mitophagy against 6-hydroxydopamine (6-OHDA)- and rotenone-induced cell death in human neuroblastoma SH-SY5Y cells. We demonstrated that AMBRA1ActA overexpression was sufficient to induce mitochondrial clearance in SH-SY5Y cells. We found that apoptosis induced by 6-OHDA and rotenone was reversed by AMBRA1-induced mitophagy. Finally, transfection of SH-SY5Y cells with a vector encoding AMBRA1ActA significantly reduced 6-OHDA and rotenone-induced generation of reactive oxygen species (ROS). Altogether, our results indicate that AMBRA1ActA is able to induce mitophagy in SH-SY5Y cells in order to suppress oxidative stress and apoptosis induced by both 6-OHDA and rotenone. These results strongly suggest that AMBRA1 may have promising neuroprotective properties with an important role in limiting ROS-induced dopaminergic cell death, and the utmost potential to prevent PD or other neurodegenerative diseases associated with mitochondrial oxidative stress. PMID:29755319

  3. AMBRA1-Mediated Mitophagy Counteracts Oxidative Stress and Apoptosis Induced by Neurotoxicity in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Di Rita, Anthea; D'Acunzo, Pasquale; Simula, Luca; Campello, Silvia; Strappazzon, Flavie; Cecconi, Francesco

    2018-01-01

    Therapeutic strategies are needed to protect dopaminergic neurons in Parkinson's disease (PD) patients. Oxidative stress caused by dopamine may play an important role in PD pathogenesis. Selective autophagy of mitochondria (mitophagy), mainly regulated by PINK1 and PARKIN, plays an important role in the maintenance of cell homeostasis. Mutations in those genes cause accumulation of damaged mitochondria, leading to nigral degeneration and early-onset PD. AMBRA1 ActA is a fusion protein specifically expressed at the mitochondria, and whose expression has been shown to induce a powerful mitophagy in mammalian cells. Most importantly, the pro-autophagy factor AMBRA1 is sufficient to restore mitophagy in fibroblasts of PD patients carrying PINK1 and PARKIN mutations. In this study, we investigated the potential neuroprotective effect of AMBRA1-induced mitophagy against 6-hydroxydopamine (6-OHDA)- and rotenone-induced cell death in human neuroblastoma SH-SY5Y cells. We demonstrated that AMBRA1 ActA overexpression was sufficient to induce mitochondrial clearance in SH-SY5Y cells. We found that apoptosis induced by 6-OHDA and rotenone was reversed by AMBRA1-induced mitophagy. Finally, transfection of SH-SY5Y cells with a vector encoding AMBRA1 ActA significantly reduced 6-OHDA and rotenone-induced generation of reactive oxygen species (ROS). Altogether, our results indicate that AMBRA1 ActA is able to induce mitophagy in SH-SY5Y cells in order to suppress oxidative stress and apoptosis induced by both 6-OHDA and rotenone. These results strongly suggest that AMBRA1 may have promising neuroprotective properties with an important role in limiting ROS-induced dopaminergic cell death, and the utmost potential to prevent PD or other neurodegenerative diseases associated with mitochondrial oxidative stress.

  4. The biologic role of ganglioside in neuronal differentiation--effects of GM1 ganglioside on human neuroblastoma SH-SY5Y cells.

    PubMed Central

    Lee, M. C.; Lee, W. S.; Park, C. S.; Juhng, S. W.

    1994-01-01

    Human neuroblastoma SH-SY5Y cell is a cloned cell line which has many attractive features for the study of neuronal proliferation and neurite outgrowth, because it has receptors for insulin, IGF-I and PDGF. Gangliosides are sialic acid containing glycosphingolipids which form an integral part of the plasma membrane of many mammalian cells. They inhibit cell growth mediated by tyrosine kinase receptors and ligand-stimulated tyrosine kinase activity, and autophosphorylation of EGF(epidermal growth factor) and PDGF receptors. The experiment was designed to study the effects of GM1 ganglioside on growth of human neuroblastoma SH-SY5Y cells stimulated with trophic factor in vitro. The cells were plated in Eagle's minimum essential medium without serum. The number and morphologic change of SH-SY5Y cells were evaluated in the serum free medium added GM1 ganglioside with insulin or PDGF. SH-SY5Y cells were maintained for six days in serum-free medium, and then cultured for over two weeks in serum-free medium containing either insulin or PDGF. The effect of insulin on cell proliferation developed earlier and was more potent than that of PDGF. These proliferative effects were inhibited by GM1 ganglioside, and the cells showed prominent neurites outgrowth. These findings suggest that GM1 ganglioside inhibits the cell proliferation mediated by tyrosine kinase receptors and directly induces neuritogenesis as one of the neurotrophic factors. PMID:7986393

  5. HMGB1 promotes the starvation-induced autophagic degradation of α-synuclein in SH-SY5Y cells Atg 5-dependently.

    PubMed

    Guan, Yi; Li, Yiping; Zhao, Gang; Li, Yunqian

    2018-06-01

    Impaired autophagic clearance of aggregated α-synuclein is considered as one of key mechanisms underlining Parkinson disease (PD). High-mobility group protein B1 (HMGB1) has recently been demonstrated to mediate persistent neuroinflammation and consequent progressive neurodegeneration by promoting multiple inflammatory and neurotoxic factors. In this study, we examined the influence of the overexpression of wild-type (WT) and mutant-type (MT, A53T and A30P) α-synuclein on the autophagy in neuroblastoma SH-SY5Y cells under starvation, and then investigated the regulation of endogenous HMGB1 on the α-synuclein degradation and on the starvation-induced autophagy in the α-synuclein-overexpressed SH-SY5Y cells. It was demonstrated that the overexpression of WT or MT α-synuclein significantly downregulated the starvation-induced conversion of LC3I to LC3II and autophagy protein (Atg) 5 expression, whereas markedly inhibited the starvation-downregulated mTOR in SH-SY5Y cells. On the other side, the lentivirus-mediated upregulation of endogenous HMGB1 promoted the degradation of WT or MT α-synuclein in SH-SY5Y cells autophagy-dependently via promoting Atg 5, but not mTOR, the Atg 5 knockdown downregulated the HMGB1-mediated promotion to α-synuclein degeneration. Thus, we concluded that α-synuclein inhibited the starvation-induced autophagy in neuroblastoma SH-SY5Y cells via inhibiting the mTOR/Atg 5 signaling. However, the endogenous HMGB1 promoted the autophagic degradation of α-synuclein via the Atg 5-dependent autophagy-initiation pathway, implying the protective role of endogenous HMGB1 in the neuroblastoma cells against the α-synuclein accumulation. Copyright © 2018. Published by Elsevier Inc.

  6. Lead Neurotoxicity on Human Neuroblastoma Cell Line SH-SY5Y is Mediated via Transcription Factor EGR1/Zif268 Induced Disrupted in Scherophernia-1 Activation.

    PubMed

    You, Yuanyuan; Peng, Bo; Ben, Songbin; Hou, Weijian; Sun, Liguang; Jiang, Wei

    2018-07-01

    Lead (Pb 2+ ) is a well-known type of neurotoxin and chronic exposure to Pb 2+ induces cognition dysfunction. In this work, the potential role of early growth response gene 1 (EGR1) in the linkage of Pb 2+ exposure and disrupted in scherophernia-1 (DISC1) activity was investigated. Human neuroblastoma cell line SH-SY5Y was subjected to different concentrations of lead acetate (PbAc) to determine the effect of Pb 2+ exposure on the cell viability, apoptosis, and activity of EGR1 and DISC1. Then the expression of EGR1 in SH-SY5Y cells was knocked down with specific siRNA to assess the function of EGR1 in Pb 2+ induced activation of DISC1. The interaction between EGR1 and DISC1 was further validated with dual luciferase assay, Supershift electrophoretic mobility shift assay (EMSA), and chromatin immunoprecipitation (ChIP)-PCR. Administration of PbAc decreased cell viability and induced apoptosis in SH-SY5Y cells in a dose-dependent manner. Additionally, exposure to PbAc also up-regulated expression of EGR1 and DISC1 at all concentrations. Knockdown of EGR1 blocked the effect of PbAc on SH-SY5Y cells, indicating the central role of EGR1 in the function of Pb 2+ on activity of DISC1. Based on the results of dual luciferase assay, Supershift EMSA, and ChIP-PCR, EGR1 mediated the effect of Pb 2+ on DISC1 by directly bound to the promoter region of DISC1 gene. The current study elaborated the mechanism involved in the effect of Pb 2+ exposure on expression of DISC1 for the first time: EGR1 activated by Pb 2+ substitution of zinc triggered the transcription of DISC1 gene by directly binding to its promoter.

  7. Cell-To-Cell Communication in Bilateral Macronodular Adrenal Hyperplasia Causing Hypercortisolism

    PubMed Central

    Lefebvre, Hervé; Duparc, Céline; Prévost, Gaëtan; Bertherat, Jérôme; Louiset, Estelle

    2015-01-01

    It has been well established that, in the human adrenal gland, cortisol secretion is not only controlled by circulating corticotropin but is also influenced by a wide variety of bioactive signals, including conventional neurotransmitters and neuropeptides, released within the cortex by various cell types such as chromaffin cells, neurons, cells of the immune system, adipocytes, and endothelial cells. These different types of cells are present in bilateral macronodular adrenal hyperplasia (BMAH), a rare etiology of primary adrenal Cushing’s syndrome, where they appear intermingled with adrenocortical cells in the hyperplastic cortex. In addition, the genetic events, which cause the disease, favor abnormal adrenal differentiation that results in illicit expression of paracrine regulatory factors and their receptors in adrenocortical cells. All these defects constitute the molecular basis for aberrant autocrine/paracrine regulatory mechanisms, which are likely to play a role in the pathophysiology of BMAH-associated hypercortisolism. The present review summarizes the current knowledge on this topic as well as the therapeutic perspectives offered by this new pathophysiological concept. PMID:25941513

  8. Differentiated Human SH-SY5Y Cells Provide a Reductionist Model of Herpes Simplex Virus 1 Neurotropism.

    PubMed

    Shipley, Mackenzie M; Mangold, Colleen A; Kuny, Chad V; Szpara, Moriah L

    2017-12-01

    Neuron-virus interactions that occur during herpes simplex virus (HSV) infection are not fully understood. Neurons are the site of lifelong latency and are a crucial target for long-term suppressive therapy or viral clearance. A reproducible neuronal model of human origin would facilitate studies of HSV and other neurotropic viruses. Current neuronal models in the herpesvirus field vary widely and have caveats, including incomplete differentiation, nonhuman origins, or the use of dividing cells that have neuropotential but lack neuronal morphology. In this study, we used a robust approach to differentiate human SH-SY5Y neuroblastoma cells over 2.5 weeks, producing a uniform population of mature human neuronal cells. We demonstrate that terminally differentiated SH-SY5Y cells have neuronal morphology and express proteins with subcellular localization indicative of mature neurons. These neuronal cells are able to support a productive HSV-1 infection, with kinetics and overall titers similar to those seen in undifferentiated SH-SY5Y cells and the related SK-N-SH cell line. However, terminally differentiated, neuronal SH-SY5Y cells release significantly less extracellular HSV-1 by 24 h postinfection (hpi), suggesting a unique neuronal response to viral infection. With this model, we are able to distinguish differences in neuronal spread between two strains of HSV-1. We also show expression of the antiviral protein cyclic GMP-AMP synthase (cGAS) in neuronal SH-SY5Y cells, which is the first demonstration of the presence of this protein in nonepithelial cells. These data provide a model for studying neuron-virus interactions at the single-cell level as well as via bulk biochemistry and will be advantageous for the study of neurotropic viruses in vitro IMPORTANCE Herpes simplex virus (HSV) affects millions of people worldwide, causing painful oral and genital lesions, in addition to a multitude of more severe symptoms such as eye disease, neonatal infection, and, in rare

  9. Differentiated Human SH-SY5Y Cells Provide a Reductionist Model of Herpes Simplex Virus 1 Neurotropism

    PubMed Central

    Mangold, Colleen A.; Kuny, Chad V.

    2017-01-01

    ABSTRACT Neuron-virus interactions that occur during herpes simplex virus (HSV) infection are not fully understood. Neurons are the site of lifelong latency and are a crucial target for long-term suppressive therapy or viral clearance. A reproducible neuronal model of human origin would facilitate studies of HSV and other neurotropic viruses. Current neuronal models in the herpesvirus field vary widely and have caveats, including incomplete differentiation, nonhuman origins, or the use of dividing cells that have neuropotential but lack neuronal morphology. In this study, we used a robust approach to differentiate human SH-SY5Y neuroblastoma cells over 2.5 weeks, producing a uniform population of mature human neuronal cells. We demonstrate that terminally differentiated SH-SY5Y cells have neuronal morphology and express proteins with subcellular localization indicative of mature neurons. These neuronal cells are able to support a productive HSV-1 infection, with kinetics and overall titers similar to those seen in undifferentiated SH-SY5Y cells and the related SK-N-SH cell line. However, terminally differentiated, neuronal SH-SY5Y cells release significantly less extracellular HSV-1 by 24 h postinfection (hpi), suggesting a unique neuronal response to viral infection. With this model, we are able to distinguish differences in neuronal spread between two strains of HSV-1. We also show expression of the antiviral protein cyclic GMP-AMP synthase (cGAS) in neuronal SH-SY5Y cells, which is the first demonstration of the presence of this protein in nonepithelial cells. These data provide a model for studying neuron-virus interactions at the single-cell level as well as via bulk biochemistry and will be advantageous for the study of neurotropic viruses in vitro. IMPORTANCE Herpes simplex virus (HSV) affects millions of people worldwide, causing painful oral and genital lesions, in addition to a multitude of more severe symptoms such as eye disease, neonatal infection, and

  10. Silencing of Y-box binding protein-1 by RNA interference inhibits proliferation, invasion, and metastasis, and enhances sensitivity to cisplatin through NF-κB signaling pathway in human neuroblastoma SH-SY5Y cells.

    PubMed

    Wang, Hong; Sun, Ruowen; Chi, Zuofei; Li, Shuang; Hao, Liangchun

    2017-09-01

    Y-box binding protein-1 (YB-1), a member of Y-box protein family binding DNA and RNA, has been proposed as a novel marker in multiple malignant tumors and found to be associated with tumor malignancy. Neuroblastoma is an embryonal tumor arising from neuroblast cells of the autonomic nervous system, which is the most common cancer diagnosed in infants. It has been reported that YB-1 is highly expressing in various human tumors including nasopharynx, thyroid, lung, breast, colon, ovary, and prostate cancers. This study aimed to investigate the functional role of YB-1 in neuroblastoma by silencing YB-1 using RNA interference (shRNA) in neuroblastoma SH-SY5Y cells. We found that silencing of YB-1 decreased the proliferation, migration, and invasion of SH-SY5Y cells. At molecular level, inhibition of YB-1 decreased the expression level of PCNA as well as MMP-2 in neuroblastoma SH-SY5Y cells. Also, we discovered that YB-1 silencing sensitized SH-SY5Y cells to cisplatin and promoted the apoptosis induced by cisplatin due to down-regulation of multidrug resistance (MDR) 1 protein via NF-κB signaling pathway. Therefore, we consider that targeting YB-1 is promising for neuroblastoma treatment and for overcoming its cisplatin resistance in the development of new neuroblastoma therapeutic strategies.

  11. Molecular Mechanisms of Stem/Progenitor Cell Maintenance in the Adrenal Cortex

    PubMed Central

    Lerario, Antonio Marcondes; Finco, Isabella; LaPensee, Christopher; Hammer, Gary Douglas

    2017-01-01

    The adrenal cortex is characterized by three histologically and functionally distinct zones: the outermost zona glomerulosa (zG), the intermediate zona fasciculata, and the innermost zona reticularis. Important aspects of the physiology and maintenance of the adrenocortical stem/progenitor cells have emerged in the last few years. Studies have shown that the adrenocortical cells descend from a pool of progenitors that are localized in the subcapsular region of the zG. These cells continually undergo a process of centripetal displacement and differentiation, which is orchestrated by several paracrine and endocrine cues, including the pituitary-derived adrenocorticotrophic hormone, and angiotensin II. However, while several roles of the endocrine axes on adrenocortical function are well established, the mechanisms coordinating the maintenance of an undifferentiated progenitor cell pool with self-renewal capacity are poorly understood. Local factors, such as the composition of the extracellular matrix (ECM) with embedded signaling molecules, and the activity of major paracrine effectors, including ligands of the sonic hedgehog and Wnt signaling pathways, are thought to play a major role. Particularly, the composition of the ECM, which exhibits substantial differences within each of the three histologically distinct concentric zones, has been shown to influence the differentiation status of adrenocortical cells. New data from other organ systems and different experimental paradigms strongly support the conclusion that the interactions of ECM components with cell-surface receptors and secreted factors are key determinants of cell fate. In this review, we summarize established and emerging data on the paracrine and autocrine regulatory loops that regulate the biology of the progenitor cell niche and propose a role for bioengineered ECM models in further elucidating this biology in the adrenal. PMID:28386245

  12. Complexities and sequence similarities of mRNA populations of cholinergic (NS20-Y) and adrenergic (N1E-115) murine neuroblastoma cell lines.

    PubMed

    Strauss, W L

    1990-07-01

    The clonal murine neuroblastoma cell lines NS20-Y and N1E-115 have been proposed as models for examining the commitment of neural crest cells to either the cholinergic or adrenergic phenotype, respectively. The validity of this model depends in part on the extent to which these two cell lines have diverged as a result of their transformed, rather than neuronal properties. In order to quantitate differences in gene expression between NS20-Y and N1E-115 cells, the mRNA complexity of each cell type was determined. An analysis of the kinetics of hybridization of NS20-Y cell mRNA with cDNA prepared from NS20-Y cell mRNA demonstrated the presence of approximately 11,700 mRNA species assuming an average length of 1900 nucleotides. A similar analysis using mRNA isolated from N1E-115 cells and cDNA prepared from N1E-115 cell mRNA demonstrated that the adrenergic cell line expressed approximately 11,600 mRNA species. The species of mRNA expressed by each cell line were resolved into high, intermediate, and low abundance populations. In order to determine whether mRNAs were expressed by the cholinergic, but not by the adrenergic cell line, NS20-Y cDNA was hybridized to an excess of N1E-115 cell mRNA. An analysis of the solution hybridization kinetics from this procedure demonstrated that the two cell lines do not differ significantly in the nucleotide complexity of their mRNA populations. The extensive similarity between the two mRNA populations suggests that only a small number of genes are expressed differentially between the two cell lines and supports their use as models for the differentiation of cholinergic and adrenergic neurons.

  13. Emotional and Adrenocortical Regulation in Early Adolescence: Prediction by Attachment Security and Disorganization in Infancy

    ERIC Educational Resources Information Center

    Spangler, Gottfried; Zimmermann, Peter

    2014-01-01

    The aim of the present study was to examine differences in emotion expression and emotion regulation in emotion-eliciting situations in early adolescence from a bio-psycho-social perspective, specifically investigating the influence of early mother-infant attachment and attachment disorganization on behavioural and adrenocortical responses. The…

  14. Hetero-oligomerization of the P2Y11 receptor with the P2Y1 receptor controls the internalization and ligand selectivity of the P2Y11 receptor.

    PubMed

    Ecke, Denise; Hanck, Theodor; Tulapurkar, Mohan E; Schäfer, Rainer; Kassack, Matthias; Stricker, Rolf; Reiser, Georg

    2008-01-01

    Nucleotides signal through purinergic receptors such as the P2 receptors, which are subdivided into the ionotropic P2X receptors and the metabotropic P2Y receptors. The diversity of functions within the purinergic receptor family is required for the tissue-specificity of nucleotide signalling. In the present study, hetero-oligomerization between two metabotropic P2Y receptor subtypes is established. These receptors, P2Y1 and P2Y11, were found to associate together when co-expressed in HEK293 cells. This association was detected by co-pull-down, immunoprecipitation and FRET (fluorescence resonance energy transfer) experiments. We found a striking functional consequence of the interaction between the P2Y11 receptor and the P2Y1 receptor where this interaction promotes agonist-induced internalization of the P2Y11 receptor. This is remarkable because the P2Y11 receptor by itself is not able to undergo endocytosis. Co-internalization of these receptors was also seen in 1321N1 astrocytoma cells co-expressing both P2Y11 and P2Y1 receptors, upon stimulation with ATP or the P2Y1 receptor-specific agonist 2-MeS-ADP. 1321N1 astrocytoma cells do not express endogenous P2Y receptors. Moreover, in HEK293 cells, the P2Y11 receptor was found to functionally associate with endogenous P2Y1 receptors. Treatment of HEK293 cells with siRNA (small interfering RNA) directed against the P2Y1 receptor diminished the agonist-induced endocytosis of the heterologously expressed GFP-P2Y11 receptor. Pharmacological characteristics of the P2Y11 receptor expressed in HEK293 cells were determined by recording Ca2+ responses after nucleotide stimulation. This analysis revealed a ligand specificity which was different from the agonist profile established in cells expressing the P2Y11 receptor as the only metabotropic nucleotide receptor. Thus the hetero-oligomerization of the P2Y1 and P2Y11 receptors allows novel functions of the P2Y11 receptor in response to extracellular nucleotides.

  15. ROCK inhibitor Y-27632 enhances the survivability of dissociated buffalo (Bubalus bubalis) embryonic stem cell-like cells.

    PubMed

    Sharma, Ruchi; George, Aman; Chauhan, Manmohan S; Singla, Suresh; Manik, Radhey S; Palta, Prabhat

    2013-01-01

    This study investigated the effects of supplementation of culture medium with 10 μM Y-27632, a specific inhibitor of Rho kinase activity, for 6 days on self-renewal of buffalo embryonic stem (ES) cell-like cells at Passage 50-80. Y-27632 increased mean colony area (P<0.05) although it did not improve their survival. It decreased OCT4 expression (P<0.05), increased NANOG expression (P<0.05), but had no effect on SOX2 expression. It also increased expression of anti-apoptotic gene BCL-2 (P<0.05) and decreased that of pro-apoptotic genes BAX and BID (P<0.05). It increased plating efficiency of single-cell suspensions of ES cells (P<0.05). Following vitrification, the presence of Y-27632 in the vitrification solution or thawing medium or both did not improve ES cell colony survival. However, following seeding of clumps of ES cells transfected with pAcGFP1N1 carrying green fluorescent protein (GFP), Y-27632 increased colony formation rate (P<0.01). ES cell colonies that formed in all Y-27632-supplemented groups were confirmed for expression of pluripotency markers alkaline phosphatase, SSEA-4 and TRA-1-60, and for their ability to generate embryoid bodies containing cells that expressed markers of ectoderm, mesoderm and endoderm. In conclusion, Y-27632 improves survival of buffalo ES cells under unfavourable conditions such as enzymatic dissociation to single cells or antibiotic-assisted selection after transfection, without compromising their pluripotency.

  16. Environmental enrichment affects adrenocortical stress responses in the endangered black-footed ferret

    USGS Publications Warehouse

    Poessel, S.A.; Biggins, D.E.; Santymire, R.M.; Livieri, T.M.; Crooks, K.R.; Angeloni, L.

    2011-01-01

    Potential stressors of wildlife living in captivity, such as artificial living conditions and frequent human contact, may lead to a higher occurrence of disease and reduced reproductive function. One successful method used by wildlife managers to improve general well-being is the provision of environmental enrichment, which is the practice of providing animals under managed care with environmental stimuli. The black-footed ferret (Mustela nigripes) is a highly-endangered carnivore species that was rescued from extinction by removal of the last remaining individuals from the wild to begin an ex situ breeding program. Our goal was to examine the effect of environmental enrichment on adrenocortical activity in ferrets by monitoring fecal glucocorticoid metabolites (FGM). Results demonstrated that enrichment lowered FGM in juvenile male ferrets, while increasing it in adult females; enrichment had no effect on FGM in juvenile females and adult males. These results correspond with our findings that juvenile males interacted more with the enrichment items than did adult females. However, we did not detect an impact of FGM on the incidence of disease or on the ability of ferrets to become reproductive during the following breeding season. We conclude that an environmental enrichment program could benefit captive juvenile male ferrets by reducing adrenocortical activity. ?? 2011 Elsevier Inc.

  17. Environmental enrichment affects adrenocortical stress responses in the endangered black-footed ferret.

    PubMed

    Poessel, Sharon A; Biggins, Dean E; Santymire, Rachel M; Livieri, Travis M; Crooks, Kevin R; Angeloni, Lisa

    2011-07-01

    Potential stressors of wildlife living in captivity, such as artificial living conditions and frequent human contact, may lead to a higher occurrence of disease and reduced reproductive function. One successful method used by wildlife managers to improve general well-being is the provision of environmental enrichment, which is the practice of providing animals under managed care with environmental stimuli. The black-footed ferret (Mustela nigripes) is a highly-endangered carnivore species that was rescued from extinction by removal of the last remaining individuals from the wild to begin an ex situ breeding program. Our goal was to examine the effect of environmental enrichment on adrenocortical activity in ferrets by monitoring fecal glucocorticoid metabolites (FGM). Results demonstrated that enrichment lowered FGM in juvenile male ferrets, while increasing it in adult females; enrichment had no effect on FGM in juvenile females and adult males. These results correspond with our findings that juvenile males interacted more with the enrichment items than did adult females. However, we did not detect an impact of FGM on the incidence of disease or on the ability of ferrets to become reproductive during the following breeding season. We conclude that an environmental enrichment program could benefit captive juvenile male ferrets by reducing adrenocortical activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. An Interdisciplinary Approach for Designing Kinetic Models of the Ras/MAPK Signaling Pathway.

    PubMed

    Reis, Marcelo S; Noël, Vincent; Dias, Matheus H; Albuquerque, Layra L; Guimarães, Amanda S; Wu, Lulu; Barrera, Junior; Armelin, Hugo A

    2017-01-01

    We present in this article a methodology for designing kinetic models of molecular signaling networks, which was exemplarily applied for modeling one of the Ras/MAPK signaling pathways in the mouse Y1 adrenocortical cell line. The methodology is interdisciplinary, that is, it was developed in a way that both dry and wet lab teams worked together along the whole modeling process.

  19. Update on the management of unusual neuroendocrine tumors: pheochromocytoma and paraganglioma, medullary thyroid cancer and adrenocortical carcinoma.

    PubMed

    Strosberg, Jonathan R

    2013-02-01

    Pheochromocytomas, paragangliomas, and medullary thyroid carcinomas (MTCs) originate in cells that share a common neuroectodermal origin. Like other neuroendocrine neoplasms, they are characterized by a propensity to secrete amines (epinephrine and norepinephrine) and peptide hormones (calcitonin). Improved understanding of underlying molecular pathways, such as mutations of the RET (rearranged during transfection) proto-oncogene, has led to new rational targeted therapies. Adrenocortical carcinomas (ACCs) originate in the steroid hormone-producing adrenal cortex. While tumors of the adrenal cortex are not, strictly speaking, part the "diffuse neuroendocrine system," they are often included in neuroendocrine tumor guidelines due to their orphan status. In this update on management of unusual neuroendocrine tumors, we review the biology and treatment of these rare neoplasms. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. The involvement of Eag1 potassium channels and miR-34a in rotenone-induced death of dopaminergic SH-SY5Y cells

    PubMed Central

    Horst, Camila Hillesheim; Titze-De-Almeida, Ricardo; Titze-De-Almeida, Simoneide Souza

    2017-01-01

    The loss of dopaminergic neurons and the resultant motor impairment are hallmarks of Parkinson's disease. The SH-SY5Y cell line is a model of dopaminergic neurons, and allows for the study of dopaminergic neuronal injury. Previous studies have revealed changes in Ether à go-go 1 (Eag1) potassium channel expression during p53-induced SH-SY5Y apoptosis, and the regulatory involvement of microRNA-34a (miR-34a) was demonstrated. In the present study, the involvement of Eag1 and miR-34a in rotenone-induced SH-SY5Y cell injury was investigated. Rotenone is a neurotoxin, which is often used to generate models of Parkinson's disease, since it causes the death of nigrostriatal neurons by inducing intracellular aggregation of alpha synuclein and ubiquitin. In the present study, rotenone resulted in a dose-dependent decrease in cell viability, as revealed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and trypan blue cell counting assays. In addition, Eag1 was demonstrated to be constitutively expressed by SH-SY5Y cells, and involved in cell viability. Suppression of Eag1 with astemizole resulted in a dose-dependent decrease in cell viability, as revealed by MTT assay. Astemizole also enhanced the severity of rotenone-induced injury in SH-SY5Y cells. RNA interference against Eag1, using synthetic small interfering RNAs (siRNAs), corroborated this finding, as siRNAs potentiated rotenone-induced injury. Eag1-targeted siRNAs (kv10.1-3 or EAG1hum_287) resulted in a statistically significant 16.4–23.5% increase in vulnerability to rotenone. An increased number of apoptotic nuclei were observed in cells transfected with EAG1hum_287. Notably, this siRNA intensified rotenone-induced apoptosis, as revealed by an increase in caspase 3/7 activity. Conversely, a miR-34a inhibitor was demonstrated to exert neuroprotective effects. The viability of cells exposed to rotenone for 24 or 48 h and treated with miR-34a inhibitor was restored by 8.4–8.8%. In conclusion

  1. Regulation of P2Y1 receptor traffic by sorting Nexin 1 is retromer independent.

    PubMed

    Nisar, Shaista; Kelly, Eamonn; Cullen, Pete J; Mundell, Stuart J

    2010-04-01

    The activity and traffic of G-protein coupled receptors (GPCRs) is tightly controlled. Recent work from our laboratory has shown that P2Y(1) and P2Y(12) responsiveness is rapidly and reversibly modulated in human platelets and that the underlying mechanism requires receptor trafficking as an essential part of this process. However, little is known about the molecular mechanisms underlying P2Y receptor traffic. Sorting nexin 1 (SNX1) has been shown to regulate the endosomal sorting of cell surface receptors either to lysosomes where they are downregulated or back to the cell surface. These functions may in part be due to interactions of SNX1 with the mammalian retromer complex. In this study, we investigated the role of SNX1 in P2Y receptor trafficking. We show that P2Y(1) receptors recycle via a slow recycling pathway that is regulated by SNX1, whereas P2Y(12) receptors return to the cell surface via a rapid route that is SNX1 independent. SNX1 inhibition caused a dramatic increase in the rate of P2Y(1) receptor recycling, whereas inhibition of Vps26 and Vps35 known to be present in retromer had no effect, indicating that SNX1 regulation of P2Y(1) receptor recycling is retromer independent. In addition, inhibition of SNX4, 6 and 17 proteins did not affect P2Y(1) receptor recycling. SNX1 has also been implicated in GPCR degradation; however, we provide evidence that P2Y receptor degradation is SNX1 independent. These data describe a novel function of SNX1 in the regulation of P2Y(1) receptor recycling and suggest that SNX1 plays multiple roles in endocytic trafficking of GPCRs.

  2. Non-Invasive Measurement of Adrenocortical Activity in Blue-Fronted Parrots (Amazona aestiva, Linnaeus, 1758)

    PubMed Central

    Ferreira, João C. P.; Fujihara, Caroline J.; Fruhvald, Erika; Trevisol, Eduardo; Destro, Flavia C.; Teixeira, Carlos R.; Pantoja, José C. F.; Schmidt, Elizabeth M. S.; Palme, Rupert

    2015-01-01

    Parrots kept in zoos and private households often develop psychological and behavioural disorders. Despite knowing that such disorders have a multifactorial aetiology and that chronic stress is involved, little is known about their development mainly due to a poor understanding of the parrots’ physiology and the lack of validated methods to measure stress in these species. In birds, blood corticosterone concentrations provide information about adrenocortical activity. However, blood sampling techniques are difficult, highly invasive and inappropriate to investigate stressful situations and welfare conditions. Thus, a non-invasive method to measure steroid hormones is critically needed. Aiming to perform a physiological validation of a cortisone enzyme immunoassay (EIA) to measure glucocorticoid metabolites (GCM) in droppings of 24 Blue-fronted parrots (Amazona aestiva), two experiments were designed. During the experiments all droppings were collected at 3-h intervals. Initially, birds were sampled for 24 h (experiment 1) and one week later assigned to four different treatments (experiment 2): Control (undisturbed), Saline (0.2 mL of 0.9% NaCl IM), Dexamethasone (1 mg/kg IM) and Adrenocorticotropic hormone (ACTH; 25 IU IM). Treatments (always one week apart) were applied to all animals in a cross-over study design. A daily rhythm pattern in GCM excretion was detected but there were no sex differences (first experiment). Saline and dexamethasone treatments had no effect on GCM (not different from control concentrations). Following ACTH injection, GCM concentration increased about 13.1-fold (median) at the peak (after 3–9 h), and then dropped to pre-treatment concentrations. By a successful physiological validation, we demonstrated the suitability of the cortisone EIA to non-invasively monitor increased adrenocortical activity, and thus, stress in the Blue-fronted parrot. This method opens up new perspectives for investigating the connection between behavioural

  3. Non-Invasive Measurement of Adrenocortical Activity in Blue-Fronted Parrots (Amazona aestiva, Linnaeus, 1758).

    PubMed

    Ferreira, João C P; Fujihara, Caroline J; Fruhvald, Erika; Trevisol, Eduardo; Destro, Flavia C; Teixeira, Carlos R; Pantoja, José C F; Schmidt, Elizabeth M S; Palme, Rupert

    2015-01-01

    Parrots kept in zoos and private households often develop psychological and behavioural disorders. Despite knowing that such disorders have a multifactorial aetiology and that chronic stress is involved, little is known about their development mainly due to a poor understanding of the parrots' physiology and the lack of validated methods to measure stress in these species. In birds, blood corticosterone concentrations provide information about adrenocortical activity. However, blood sampling techniques are difficult, highly invasive and inappropriate to investigate stressful situations and welfare conditions. Thus, a non-invasive method to measure steroid hormones is critically needed. Aiming to perform a physiological validation of a cortisone enzyme immunoassay (EIA) to measure glucocorticoid metabolites (GCM) in droppings of 24 Blue-fronted parrots (Amazona aestiva), two experiments were designed. During the experiments all droppings were collected at 3-h intervals. Initially, birds were sampled for 24 h (experiment 1) and one week later assigned to four different treatments (experiment 2): Control (undisturbed), Saline (0.2 mL of 0.9% NaCl IM), Dexamethasone (1 mg/kg IM) and Adrenocorticotropic hormone (ACTH; 25 IU IM). Treatments (always one week apart) were applied to all animals in a cross-over study design. A daily rhythm pattern in GCM excretion was detected but there were no sex differences (first experiment). Saline and dexamethasone treatments had no effect on GCM (not different from control concentrations). Following ACTH injection, GCM concentration increased about 13.1-fold (median) at the peak (after 3-9 h), and then dropped to pre-treatment concentrations. By a successful physiological validation, we demonstrated the suitability of the cortisone EIA to non-invasively monitor increased adrenocortical activity, and thus, stress in the Blue-fronted parrot. This method opens up new perspectives for investigating the connection between behavioural

  4. Laparoscopic Finding of Ectopic Adrenocortical Tissue in a 2-Year-Old Boy with Vanishing Testis.

    PubMed

    Marte, Antonio

    2018-01-01

    Ectopic adrenocortical tissue (EAT) along the spermatic cord is an unusual condition in children. The author reports on a 2-year-old boy with impalpable testis. On laparoscopy, EAT was detected along the hypotrophic spermatic vessels and excised. These remnants should be removed to prevent hormone production or malignant transformation.

  5. Fluoride induces apoptosis via inhibiting SIRT1 activity to activate mitochondrial p53 pathway in human neuroblastoma SH-SY5Y cells.

    PubMed

    Tu, Wei; Zhang, Qian; Liu, Yin; Han, Lianyong; Wang, Qin; Chen, Panpan; Zhang, Shun; Wang, Aiguo; Zhou, Xue

    2018-05-15

    There has been a great concern about the neurotoxicity of fluoride since it can pass through the blood-brain barrier and accumulate in the brain. It has been suggested that apoptosis plays a vital role in neurotoxicity of fluoride. However, whether p53-mediated apoptotic pathway is involved is still unclear. Our results showed that apoptosis was induced after treatment with 40 and 60 mg/L of NaF for 24 h in human neuroblastoma SH-SY5Y cells. Exposure to 60 mg/L of NaF for 24 h significantly upregulated the levels of p53 and apoptosis-related proteins including PUMA, cytochrome c (cyto c), cleaved caspase-3 and cleaved PARP, whereas downregulated Bcl-2 in SH-SY5Y cells. Meanwhile, fluoride increased p53 nuclear translocation, cyto c release from mitochondria to cytoplasm and mitochondrial translocation of Bax in SH-SY5Y cells. Fluoride-induced increases of apoptotic rates and apoptosis-related protein levels were significantly attenuated by inhibiting p53 transcriptional activity with pifithrin-α. In addition, fluoride inhibited the deacetylase activity of SIRT1 and increased p53 (acetyl K382) level in SH-SY5Y cells. Apoptosis and upregulation of cleaved caspase-3, cleaved PARP and p53 (acetyl K382) induced by fluoride could be ameliorated by SIRT1 overexpression or its activator resveratrol in SH-SY5Y cells. Taken together, our study demonstrates that fluoride induces apoptosis by inhibiting the deacetylase activity of SIRT1 to activate mitochondrial p53 pathway in SH-SY5Y cells, which depends on p53 transcriptional activity. Thus, SIRT1 may be a promising target to protect against neurotoxicity induced by fluoride. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Influence of E. coli endotoxin on ACTH induced adrenal cell steroidogenesis.

    PubMed

    Garcia, R; Viloria, M D; Municio, A M

    1985-03-01

    The effect of endotoxin (lipopolysaccharide from E. coli) on isolated adrenocortical cells was examined. Lipopolysaccharide decreased the ACTH-induced steroidogenesis. This effect was shown by all corticotropin concentrations studied, and the longer the incubation time, the higher the effect produced. The rate of decrease of ACTH-induced steroidogenesis was dependent on the concentration of lipopolysaccharide in the medium. Binding of [125I]ACTH to adrenocortical cells was modified by lipopolysaccharide; this modification was related to a decrease of the ACTH-induced steroidogenesis. This effect supports the hypothesis of a direct interaction between lipopolysaccharide and the cell membrane with a concomitant distortion of the cell surface affecting the ACTH receptor sites of their environment. [14C]Lipopolysaccharide binds to isolated adrenocortical cells. Binding specificity was investigated by competitive experiments in the presence of various types of endotoxins, polypeptide hormones and proteins. Unlabelled lipopolysaccharide from the same bacterial strain and isolated under identical conditions than the labelled lipopolysaccharide exerted the strongest inhibitory activity. Unlabelled lipopolysaccharide of various strains different from that originating the labelled lipopolysaccharide exerted the less displacement. It would imply a certain kind of specificity but the decrease in the binding of lipopolysaccharide produced by ACTH and glucagon suggests the existence of non-specific interactions between lipopolysaccharide and cell membrane.

  7. Efficacy of dexamethasone suppression test during the diagnosis of primary pigmented nodular adrenocortical disease in Chinese adrenocorticotropic hormone-independent Cushing syndrome.

    PubMed

    Chen, Shi; Li, Ran; Lu, Lin; Duan, Lian; Zhang, Xuebin; Tong, Anli; Pan, Hui; Zhu, Huijuan; Lu, Zhaolin

    2018-01-01

    To evaluate the cut-off value of the ratio of 24 h urinary free cortisol (24 h UFC) levels post-dexamethasone to prior-dexamethasone in dexamethasone suppression test (DST) during the diagnosis of primary pigmented nodular adrenocortical disease in Chinese adrenocorticotropic hormone-independent Cushing syndrome. Retrospective study. The patients diagnosed with primary pigmented nodular adrenocortical disease (PPNAD, n = 25), bilateral macronodular adrenal hyperplasia (BMAH, n = 27), and adrenocortical adenoma (ADA, n = 84) were admitted to the Peking Union Medical College Hospital from 2001 to 2016. Serum cortisol, adrenocorticotropic hormone (ACTH), and 24 h UFC were measured before and after low-dose dexamethasone suppression test (LDDST) and high-dose dexamethasone suppression test (HDDST). After LDDST and HDDST, 24 h UFC elevated in patients with PPNAD (paired t-test, P = 0.007 and P = 0.001), while it remained unchanged in the BMAH group (paired t-test, P = 0.471 and P = 0.414) and decreased in the ADA group (paired t-test, P = 0.002 and P = 0.004). The 24 h UFC level after LDDST was higher in PPNAD and BMAH as compared to ADA (P < 0.017), while no significant difference was observed between PPNAD and BMAH. After HDDST, 24 h UFC was higher in patients with PPNAD as compared to that of ADA and BMAH (P < 0.017). The cut-off value of 24 h UFC (Post-L-Dex)/(Pre-L-Dex) was 1.16 with 64.0% sensitivity and 77.9% specificity, and the cut-off value of 24 h UFC (Post-H-Dex)/(Pre-H-Dex) was 1.08 with 84.0% sensitivity and 75.6% specificity. The ratio of post-dexamethasone to prior-dexamethasone had a unique advantage in distinguishing PPNAD from BMAH and ADA.

  8. The thermal expansion of (Fe1-y Ni y )Si.

    PubMed

    Hunt, Simon A; Wann, Elizabeth T H; Dobson, David P; Vočadlo, Lindunka; Wood, Ian G

    2017-08-23

    We have measured the thermal expansion of (Fe 1-y Ni y )Si for y  =  0, 0.1 and 0.2, between 40 and 1273 K. Above ~700 K the unit-cell volumes of the samples decrease approximately linearly with increasing Ni content. Below ~200 K the unit-cell volume of FeSi falls to a value between that of (Fe 0.9 Ni 0.1 )Si and (Fe 0.8 Ni 0.2 )Si. We attribute this extra contraction of the FeSi, which is a narrow band-gap semiconductor, to the depopulation of the conduction band at low temperatures; in the two alloys the additional electrons introduced by the substitution of Ni lead to the conduction band always being populated. We have fit the unit-cell volume data with a Debye internal energy model of thermal expansion and an additional volume term, above 800 K, to take account of the volumetric changes associated with changes in the composition of the sample. Using the thermophysical parameters of the fit we have estimated the band gap in FeSi to be 21(1) meV and the unit-cell volume change in FeSi associated with the depopulation of the conduction band to be 0.066(35) Å 3 /unit-cell.

  9. Constitutive neuropeptide Y Y4 receptor expression in human colonic adenocarcinoma cell lines

    PubMed Central

    Cox, Helen M; Tough, Iain R; Zandvliet, Dorothea W J; Holliday, Nicholas D

    2001-01-01

    Three human adenocarcinoma cell lines, Colony-24 (Col-24), Col-6 and Col-1 have been studied as confluent epithelial layers able to transport ions vectorially in response to basolateral vasoactive intestinal polypeptide (VIP) and pancreatic polypeptides (PP). Different species PP stimulated responses in Col-24 with Y4-like pharmacology. Bovine (b)PP, human (h)PP and porcine (p)PP were equipotent (EC50 values 3.0 – 5.0 nM) while rat (r)PP, avian (a)PP and [Leu31, Pro34]PYY (Pro34PYY) were significantly less potent. PYY was inactive. The PP pharmacology in Col-1 was comparable with Col-24. However, Col-6 cells were different; pPP had an EC50 intermediate (22.0 nM) between that of bPP (3.0 nM) and hPP (173.2 nM), with aPP and rPP being at least a further fold less potent. Deamidation of Tyr36 in bPP (by O-methylation or hydroxylation) or removal of the residue resulted in significant loss of activity in Col-24. GR231118 (1 μM) had no PP-like effects. In Col-24 and Col-1, GR231118 significantly attenuated bPP (30 nM) or hPP (100 nM) responses, but it did not alter bPP responses in Col-6. BIBP3226 and GR231118 both inhibited Y1-mediated responses which were only present in Col-6. RT – PCR analysis confirmed the presence of hY4 receptor mRNA in Col-24 and Col-1 epithelia but a barely visible hY4 product was observed in Col-6 and we suggest that an atypical Y4 receptor is expressed in this cell line. PMID:11156595

  10. Laparoscopic Finding of Ectopic Adrenocortical Tissue in a 2-Year-Old Boy with Vanishing Testis

    PubMed Central

    Marte, Antonio

    2018-01-01

    Ectopic adrenocortical tissue (EAT) along the spermatic cord is an unusual condition in children. The author reports on a 2-year-old boy with impalpable testis. On laparoscopy, EAT was detected along the hypotrophic spermatic vessels and excised. These remnants should be removed to prevent hormone production or malignant transformation. PMID:29326864

  11. Baicalin protects against thrombin induced cell injury in SH-SY5Y cells

    PubMed Central

    Ju, Xiao-Ning; Mu, Wei-Na; Liu, Yuan-Tao; Wang, Mei-Hong; Kong, Feng; Sun, Chao; Zhou, Qing-Bo

    2015-01-01

    Baicalin, an extract from the dried root of Scutellaria baicalensis Georgi, was shown to be neuroprotective. However, the precise mechanisms are incompletely known. In this study, we determined the effect of baicalin on thrombin induced cell injury in SH-SY5Y cells, and explored the possible mechanisms. SH-SY5Y cells was treated with thrombin alone or pre-treated with baicalin (5, 10, 20 μM) for 2 h followed by thrombin treatment. Cells without thrombin and baicalin treatment were used as controls. Cell viability was detected by MTT assay. Cell apoptosis was analyzed by flow cytometry. Real-time PCR was performed to determine the mRNA expression of protease-activated receptor-1 (PAR-1). Western blotting was conducted to determine the protein expression of PAR-1, Caspase-3 and NF-κB. Baicalin reduced cell death following thrombin treatment in a dose-dependent manner, with concomitant inhibition of NF-κB activation and suppression of PAR-1 expression. In addition, baicalin reduced Caspase-3 expression. The above findings indicated that baicalin prevents against cell injury after thrombin stimulation possibly through inhibition of PAR-1 expression and NF-κB activation. PMID:26823714

  12. Diadenosine polyphosphates as antagonists of the endogenous P2Y1 receptor in rat brain capillary endothelial cells of the B7 and B10 clones

    PubMed Central

    Vigne, Paul; Breittmayer, Jean Philippe; Frelin, Christian

    2000-01-01

    Diadenosine polyphosphates (ApnAs, n=2–7) are considered as stress mediators in the cardiovascular system. They act both via identified P2 purinoceptors and via yet to be characterized receptors. This study analyses the actions of ApnAs in clones of rat brain capillary endothelial cells that express P2Y1 receptors (B10 cells) or both P2Y1 and P2Y2 receptors (B7 cells).B10 cells responded to Ap3A with rises in intracellular Ca2+ concentration ([Ca2+]i). This response was prevented by adenosine-3′-phosphate-5′-phosphate, an antagonist of P2Y1 receptors. It was largely suppressed by a treatment with apyrase VII or with creatine phosphokinase/creatine phosphate to degrade contaminating ADP.ApnAs inhibited ADP induced increases in [Ca2+]i mediated by P2Y1 receptors by shifting ADP concentration-response curves to larger concentrations. Apparent Ki values were estimated to be 6 μM for Ap4A, 10 μM for Ap5A and 47 μM for Ap6A. Ap2A and Ap3A were much less active.ApnAs were neither agonists nor antagonists of the endogenous P2Y2 receptor in B7 cells.ApnAs are neither agonists nor antagonists of the Gi-coupled, ADP receptor in B10 cells.The results suggest that most actions of ApnAs in B7 and B10 cells can be accounted for by endogenous P2Y1 receptors. Ap4A, Ap5A and Ap6A are specific antagonists of endogenous Ca2+-coupled P2Y1 receptors. PMID:10742308

  13. The Contingency of Cocaine Administration Accounts for Structural and Functional Medial Prefrontal Deficits and Increased Adrenocortical Activation

    PubMed Central

    Anderson, Rachel M.; Cosme, Caitlin V.; Glanz, Ryan M.; Miller, Mary C.; Romig-Martin, Sara A.; LaLumiere, Ryan T.

    2015-01-01

    The prelimbic region (PL) of the medial prefrontal cortex (mPFC) is implicated in the relapse of drug-seeking behavior. Optimal mPFC functioning relies on synaptic connections involving dendritic spines in pyramidal neurons, whereas prefrontal dysfunction resulting from elevated glucocorticoids, stress, aging, and mental illness are each linked to decreased apical dendritic branching and spine density in pyramidal neurons in these cortical fields. The fact that cocaine use induces activation of the stress-responsive hypothalamo-pituitary-adrenal axis raises the possibility that cocaine-related impairments in mPFC functioning may be manifested by similar changes in neuronal architecture in mPFC. Nevertheless, previous studies have generally identified increases, rather than decreases, in structural plasticity in mPFC after cocaine self-administration. Here, we use 3D imaging and analysis of dendritic spine morphometry to show that chronic cocaine self-administration leads to mild decreases of apical dendritic branching, prominent dendritic spine attrition in PL pyramidal neurons, and working memory deficits. Importantly, these impairments were largely accounted for in groups of rats that self-administered cocaine compared with yoked-cocaine- and saline-matched counterparts. Follow-up experiments failed to demonstrate any effects of either experimenter-administered cocaine or food self-administration on structural alterations in PL neurons. Finally, we verified that the cocaine self-administration group was distinguished by more protracted increases in adrenocortical activity compared with yoked-cocaine- and saline-matched controls. These studies suggest a mechanism whereby increased adrenocortical activity resulting from chronic cocaine self-administration may contribute to regressive prefrontal structural and functional plasticity. SIGNIFICANCE STATEMENT Stress, aging, and mental illness are each linked to decreased prefrontal plasticity. Here, we show that chronic

  14. The Adrenocortical Response of Greater Sage Grouse (Centrocercus urophasianus) to Capture, ACTH Injection, and Confinement, as Measured in Fecal Samples

    PubMed Central

    Jankowski, M. D.; Wittwer, D. J.; Heisey, D. M.; Franson, J. C.; Hofmeister, E. K.

    2009-01-01

    Investigators of wildlife populations often utilize demographic indicators to understand the relationship between habitat characteristics and population viability. Assessments of corticosterone may enable earlier detection of populations at risk of decline because physiological adjustments to habitat disturbance occur before reproductive diminutions. Noninvasive methods to accomplish these assesments are important in species of concern, such as the greater sage grouse (GRSG). Therefore, we validated a radioimmunoassay that measures immunoreactive corticosterone metabolites (ICM) in fecal samples and used it to characterize the adrenocortical response of 15 GRSG exposed to capture, intravenous injection of 50 IU/kg adrenocorticotrophic hormone (ACTH) or saline, and 22 h of confinement. Those animals injected with ACTH exhibited a more sustained (P = 0.0139) and less variable (P = 0.0012) response than those injected with saline, indicating different levels of adrenocortical activity. We also found that potential field-collection protocols of fecal samples did not alter ICM concentrations: samples held at 4°C for up to 16 h contained similar levels of ICM as those frozen (−20°C) immediately. This study demonstrates a multiphasic adrenocortical response that varied with the level of stimulation and indicates that the assay used to measure this phenomenon is applicable for studies of wild GRSG. PMID:19199814

  15. The adrenocortical response of greater sage grouse (Centrocercus urophasianus) to capture, ACTH injection, and confinement, as measured in fecal samples

    USGS Publications Warehouse

    Jankowski, M.D.; Wittwer, D.J.; Heisey, D.M.; Franson, J. Christian; Hofmeister, Erik K.

    2009-01-01

    Investigators of wildlife populations often utilize demographic indicators to understand the relationship between habitat characteristics and population viability. Assessments of corticosterone may enable earlier detection of populations at risk of decline because physiological adjustments to habitat disturbance occur before reproductive diminutions. Noninvasive methods to accomplish these assesments are important in species of concern, such as the greater sage grouse (GRSG). Therefore, we validated a radioimmunoassay that measures immunoreactive corticosterone metabolites (ICM) in fecal samples and used it to characterize the adrenocortical response of 15 GRSG exposed to capture, intravenous injection of 50 IU/kg adrenocorticotrophic hormone (ACTH) or saline, and 22 h of confinement. Those animals injected with ACTH exhibited a more sustained (P = 0.0139) and less variable (P = 0.0012) response than those injected with saline, indicating different levels of adrenocortical activity. We also found that potential field-collection protocols of fecal samples did not alter ICM concentrations: samples held at 4??C for up to 16 h contained similar levels of ICM as those frozen (-20??C) immediately. This study demonstrates a multiphasic adrenocortical response that varied with the level of stimulation and indicates that the assay used to measure this phenomenon is applicable for studies of wild GRSG. ?? 2009 by The University of Chicago. All rights reserved.

  16. Adrenocortical nuclear progesterone-binding protein: Identification by photoaffinity labeling and evidence for deoxyribonucleic acid binding and stimulation by adrenocorticotropin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demura, T.; Driscoll, W.J.; Lee, Y.C.

    1991-01-01

    Nuclei of the guinea pig adrenal cortex contain a protein that specifically binds progesterone and that, biochemically, is clearly distinct from the classical progesterone receptor. The adrenocortical nuclear progesterone-binding protein has now been purified more than 2000-fold by steroid-affinity chromatography with a 75% yield. The purified protein preparation demonstrated three major bands on sodium dodecyl sulfate-polyacrylamide gel of 79K, 74K, and 50K. To determine which of the three might represent the progesterone-binding protein, steroid photoaffinity labeling was performed which resulted in the specific and exclusive labeling of a 50K band. Thus, the adrenocortical nuclear progesterone-binding protein appears to be distinctmore » from the classical progesterone receptor not only biochemically, but also on the basis of molecular size. To test whether the adrenocortical nuclear progesterone-binding protein can be hormonally stimulated, guinea pigs were treated with ACTH. The chronic administration of ACTH caused a 4- to 6-fold increase in the specific progesterone binding capacity without a change in the binding affinity. There appeared to be no significant difference in nuclear progesterone binding between the zona fasciculata and zona reticularis. This finding suggests a mediating role for the progesterone-binding protein in ACTH action. In addition, the nuclear progesterone-binding protein bound to nonspecific DNA sequences, further suggesting a possible transcriptional regulatory role.« less

  17. Specificity protein 1 regulates topoisomerase IIβ expression in SH-SY5Y cells during neuronal differentiation.

    PubMed

    Guo, Hui; Cao, Cuili; Chi, Xueqian; Zhao, Junxia; Liu, Xia; Zhou, Najing; Han, Shuo; Yan, Yongxin; Wang, Yanling; Xu, Yannan; Yan, Yunli; Cui, Huixian; Sun, Hongxia

    2014-10-01

    Topoisomerase IIβ (top IIβ) is a nuclear enzyme with an essential role in neural development. The regulation of top IIβ gene expression during neural differentiation is poorly understood. Functional analysis of top IIβ gene structure displayed a GC box sequence in its transcription promoter, which binds the nuclear transcription factor specificity protein 1 (Sp1). Sp1 regulates gene expression via multiple mechanisms and is essential for early embryonic development. This study seeks to determine whether Sp1 regulates top IIβ gene expression during neuronal differentiation. For this purpose, human neuroblastoma SH-SY5Y cells were induced to neuronal differentiation in the presence of all-trans retinoic acid (RA) for 5 days. After incubation with 10 μM RA for 3-5 days, a majority of the cells exited the cell cycle to become postmitotic neurons, characterized by the presence of longer neurite outgrowths and expression of the neuronal marker microtubule-associated protein-2 (MAP2). Elevated Sp1 and top IIβ mRNA and protein levels were detected and found to be positively correlated with the differentiation stage. Chromatin immunoprecipitation assay demonstrated an increased recruitment of Sp1 to the top IIβ promoter after RA treatment. Mithramycin A, a compound that interferes with Sp1 binding to GC-rich DNA sequences, downregulated the expression of top IIβ, resulting in reduced expression of MAP2 and decreased neurite length compared with the control group. Our results indicate that Sp1 regulates top IIβ expression by binding to the GC box of the gene promoter during neuronal differentiation in SH-SY5Y cells. © 2014 Wiley Periodicals, Inc.

  18. Neuropeptide Y inhibits cholangiocarcinoma cell growth and invasion

    PubMed Central

    DeMorrow, Sharon; Onori, Paolo; Venter, Julie; Invernizzi, Pietro; Frampton, Gabriel; White, Mellanie; Franchitto, Antonio; Kopriva, Shelley; Bernuzzi, Francesca; Francis, Heather; Coufal, Monique; Glaser, Shannon; Fava, Giammarco; Meng, Fanyin; Alvaro, Domenico; Carpino, Guido; Gaudio, Eugenio

    2011-01-01

    No information exists on the role of neuropeptide Y (NPY) in cholangiocarcinoma growth. Therefore, we evaluated the expression and secretion of NPY and its subsequent effects on cholangiocarcinoma growth and invasion. Cholangiocarcinoma cell lines and nonmalignant cholangiocytes were used to assess NPY mRNA expression and protein secretion. NPY expression was assessed by immunohistochemistry in human liver biopsies. Cell proliferation and migration were evaluated in vitro by MTS assays and matrigel invasion chambers, respectively, after treatment with NPY or a neutralizing NPY antibody. The effect of NPY or NPY depletion on tumor growth was assessed in vivo after treatment with NPY or the neutralizing NPY antibody in a xenograft model of cholangiocarcinoma. NPY secretion was upregulated in cholangiocarcinoma compared with normal cholangiocytes. Administration of exogenous NPY decreased proliferation and cell invasion in all cholangiocarcinoma cell lines studied and reduced tumor cell growth in vivo. In vitro, the effects of NPY on proliferation were blocked by specific inhibitors for NPY receptor Y2, but not Y1 or Y5, and were associated with an increase in intracellular d-myo-inositol 1,4,5-trisphosphate and PKCα activation. Blocking of NPY activity using a neutralizing antibody promoted cholangiocarcinoma growth in vitro and in vivo and increased the invasiveness of cholangiocarcinoma in vitro. Increased NPY immunoreactivity in human tumor tissue occurred predominantly in the center of the tumor, with less expression toward the invasion front of the tumor. We demonstrated that NPY expression is upregulated in cholangiocarcinoma, which exerts local control on tumor cell proliferation and invasion. Modulation of NPY secretion may be important for the management of cholangiocarcinoma. PMID:21270292

  19. Assessment of adrenocortical activity by non-invasive measurement of faecal cortisol metabolites in dromedary camels (Camelus dromedarius).

    PubMed

    Sid-Ahmed, Omer-Elfaroug; Sanhouri, Ahmed; Elwaseela, Badr-Eldin; Fadllalah, Imad; Mohammed, Galal-Eldin Elazhari; Möstl, Erich

    2013-08-01

    The aim of this study was to determine whether glucocorticoid production could be monitored non-invasively in dromedary camels by measuring faecal cortisol metabolites (FCMs). Five Sudanese dromedaries, two males and three females, were injected with a synthetic adrenocorticotropic hormone (ACTH) analogue. Blood samples were collected pre- and post-ACTH injection. Faeces were sampled after spontaneous defecation for five consecutive days (2 days before and 3 days after ACTH injection). Baseline plasma cortisol values ranged from 0.6 to 10.8 ng/ml in males and from 1.1 to 16.6 ng/ml in females, while peak values after ACTH injection were 10.9-41.9 in males and 10-42.2 ng/ml in females. Peak blood cortisol values were reached between 1.5 and 2.0 h after ACTH injection. The concentration of FCMs increased after ACTH injection in the faeces of both sexes, although steroid levels peaked earlier in males [24 h; (286.7-2,559.7 ng/g faeces)] than in females [36-48 h; (1,182.6-5,169.1 ng/g faeces)], reflecting increases of 3.1-8.3- and 4.3-8-fold above baseline levels. To detect chromatographic patterns of immunoreactive FCMs, faecal samples with high FCM concentrations from both sexes were pooled and subjected to reverse phase high performance liquid chromatography (RP-HPLC). RP-HPLC analysis revealed sex differences in the polarity of FCMs, with females showing more polar FCMs than males. We concluded that stimulation of adrenocortical activity by ACTH injection resulted in a measurable increase in blood cortisol that was reliably paralleled by increases in FCM levels. Thus, measurement of FCMs is a powerful tool for monitoring the adrenocortical responses of dromedaries to stressors in field conditions.

  20. LRSAM1 Depletion Affects Neuroblastoma SH-SY5Y Cell Growth and Morphology: The LRSAM1 c.2047-1G>A Loss-of-Function Variant Fails to Rescue The Phenotype.

    PubMed

    Minaidou, Anna; Nicolaou, Paschalis; Christodoulou, Kyproula

    2018-10-01

    Deleterious variants in LRSAM1, a RING finger ubiquitin ligase which is also known as TSG101-associated ligase (TAL), have recently been associated with Charcot-Marie-Tooth disease type 2P (CMT2P). The mechanism by which mutant LRSAM1 contributes to the development of neuropathy is currently unclear. The aim of this study was to induce LRSAM1 deficiency in a neuronal cell model, observe its effect on cell growth and morphology and attempt to rescue the phenotype with ancestral and mutant LRSAM1 transfections. In this experimental study, we investigated the effect of LRSAM1 downregulation on neuroblastoma SH-SY5Y cells by siRNA technology where cells were transfected with siRNA against LRSAM1. The effects on the expression levels of TSG101, the only currently known LRSAM1 interacting molecule, were also examined. An equal dosage of ancestral or mutant LRSAM1 construct was transfected in LRSAM1-downregulated cells to investigate its effect on the phenotype of the cells and whether cell proliferation and morphology could be rescued. A significant reduction in TSG101 levels was observed with the downregulation of LRSAM1. In addition, LRSAM1 knockdown significantly decreased the growth rate of SH-SY5Y cells which is caused by a decrease in cell proliferation. An effect on cell morphology was also observed. Furthermore, we overexpressed the ancestral and the c.2047-1G>A mutant LRSAM1 in knocked down cells. Ancestral LRSAM1 recovered cell proliferation and partly the morphology, however, the c.2047-1G>A mutant did not recover cell proliferation and further aggravated the observed changes in cell morphology. Our findings suggest that depletion of LRSAM1 affects neuroblastoma cells growth and morphology and that overexpression of the c.2047-1G>A mutant form, unlike the ancestral LRSAM1, fails to rescue the phenotype. Copyright© by Royan Institute. All rights reserved.

  1. Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells?

    PubMed Central

    Pickard, Gary E.; So, Kwok-Fai; Pu, Mingliang

    2015-01-01

    Retinal ganglion Y (alpha) cells are found in retinas ranging from frogs to mice to primates. The highly conserved nature of the large, fast conducting retinal Y cell is a testament to its fundamental task, although precisely what this task is remained ill-defined. The recent discovery that Y-alpha retinal ganglion cells send axon collaterals to the serotonergic dorsal raphe nucleus (DRN) in addition to the lateral geniculate nucleus (LGN), medial interlaminar nucleus (MIN), pretectum and the superior colliculus (SC) has offered new insights into the important survival tasks performed by these cells with highly branched axons. We propose that in addition to its role in visual perception, the Y-alpha retinal ganglion cell provides concurrent signals via axon collaterals to the DRN, the major source of serotonergic afferents to the forebrain, to dramatically inhibit 5-HT activity during orientation or alerting/escape responses, which dis-facilitates ongoing tonic motor activity while dis-inhibiting sensory information processing throughout the visual system. The new data provide a fresh view of these evolutionarily old retinal ganglion cells. PMID:26363667

  2. In vitro characterization of CD133lo cancer stem cells in Retinoblastoma Y79 cell line.

    PubMed

    Nair, Rohini M; Balla, Murali Ms; Khan, Imran; Kalathur, Ravi Kiran Reddy; Kondaiah, Paturu; Vemuganti, Geeta K

    2017-11-21

    Retinoblastoma (Rb), the most common childhood intraocular malignant tumor, is reported to have cancer stem cells (CSCs) similar to other tumors. Our previous investigation in primary tumors identified the small sized cells with low CD133 (Prominin-1) and high CD44 (Hyaluronic acid receptor) expression to be putative Rb CSCs using flow cytometry (FSC lo /SSC lo /CD133 lo /CD44 hi ). With this preliminary data, we have now utilized a comprehensive approach of in vitro characterization of Y79 Rb cell line following CSC enrichment using CD133 surface marker and subsequent validation to confirm the functional properties of CSCs. The cultured Rb Y79 cells were evaluated for surface markers by flow cytometry and CD133 sorted cells (CD133 lo /CD133 hi ) were compared for CSC characteristics by size/percentage, cell cycle assay, colony formation assay, differentiation, Matrigel transwell invasion assay, cytotoxicity assay, gene expression using microarray and validation by semi-quantitative PCR. Rb Y79 cell line shared the profile (CD133, CD90, CXCR4 and ABCB1) of primary tumors except for CD44 expression. The CD133 lo cells (16.1 ± 0.2%) were FSC lo /SSC lo , predominantly within the G0/G1 phase, formed larger and higher number of colonies with ability to differentiate to CD133 hi cells, exhibited increased invasive potential in a matrigel transwell assay (p < 0.05) and were resistant to Carboplatin treatment (p < 0.001) as compared to CD133 hi cells. The CD133 lo cells showed higher expression of several embryonic stem cell genes (HOXB2, HOXA9, SALL1, NANOG, OCT4, LEFTY), stem cells/progenitor genes (MSI2, BMI1, PROX1, ABCB1, ABCB5, ABCG2), and metastasis related gene- MACC1, when compared to the CD133 hi cells. This study validates the observation from our earlier primary tumor study that CSC properties in Rb Y79 cell line are endowed within the CD133 lo population, evident by their characteristics- i.e. small sized, dormant in nature, increased colony forming

  3. Effects of centrifugation on gonadal and adrenocortical steroids in rats

    NASA Technical Reports Server (NTRS)

    Kakihana, R.; Butte, J. C.

    1980-01-01

    Many endocrine systems are sensitive to external changes in the environment. Both the pituitary adrenal and pituitary gonadal systems are affected by stress including centrifugation stress. The effect of centrifugation on the pituitary gonadal and pituitary adrenocortical systems was examined by measuring the gonadal and adrenal steroids in the plasma and brain following different duration and intensity of centrifugation stress in rats. Two studies were completed and the results are presented. The second study was carried out to describe the developmental changes of brain, plasma and testicular testosterone and dihydrotestosterone in Sprague Dawley rats so that the effect of centrifugation stress on the pituitary gonadal syatem could be better evaluated in future studies.

  4. C282Y-HFE Gene Variant Affects Cholesterol Metabolism in Human Neuroblastoma Cells

    PubMed Central

    Ali-Rahmani, Fatima; Huang, Michael A.; Schengrund, C.-L.; Connor, James R.; Lee, Sang Y.

    2014-01-01

    Although disruptions in the maintenance of iron and cholesterol metabolism have been implicated in several cancers, the association between variants in the HFE gene that is associated with cellular iron uptake and cholesterol metabolism has not been studied. The C282Y-HFE variant is a risk factor for different cancers, is known to affect sphingolipid metabolism, and to result in increased cellular iron uptake. The effect of this variant on cholesterol metabolism and its possible relevance to cancer phenotype was investigated using wild type (WT) and C282Y-HFE transfected human neuroblastoma SH-SY5Y cells. Expression of C282Y-HFE in SH-SY5Y cells resulted in a significant increase in total cholesterol as well as increased transcription of a number of genes involved in its metabolism compared to cells expressing WT-HFE. The marked increase in expression of NPC1L1 relative to that of most other genes, was accompanied by a significant increase in expression of NPC1, a protein that functions in cholesterol uptake by cells. Because inhibitors of cholesterol metabolism have been proposed to be beneficial for treating certain cancers, their effect on the viability of C282Y-HFE neuroblastoma cells was ascertained. C282Y-HFE cells were significantly more sensitive than WT-HFE cells to U18666A, an inhibitor of desmosterol Δ24-reductase the enzyme catalyzing the last step in cholesterol biosynthesis. This was not seen for simvastatin, ezetimibe, or a sphingosine kinase inhibitor. These studies indicate that cancers presenting in carriers of the C282Y-HFE allele might be responsive to treatment designed to selectively reduce cholesterol content in their tumor cells. PMID:24533143

  5. C282Y-HFE gene variant affects cholesterol metabolism in human neuroblastoma cells.

    PubMed

    Ali-Rahmani, Fatima; Huang, Michael A; Schengrund, C-L; Connor, James R; Lee, Sang Y

    2014-01-01

    Although disruptions in the maintenance of iron and cholesterol metabolism have been implicated in several cancers, the association between variants in the HFE gene that is associated with cellular iron uptake and cholesterol metabolism has not been studied. The C282Y-HFE variant is a risk factor for different cancers, is known to affect sphingolipid metabolism, and to result in increased cellular iron uptake. The effect of this variant on cholesterol metabolism and its possible relevance to cancer phenotype was investigated using wild type (WT) and C282Y-HFE transfected human neuroblastoma SH-SY5Y cells. Expression of C282Y-HFE in SH-SY5Y cells resulted in a significant increase in total cholesterol as well as increased transcription of a number of genes involved in its metabolism compared to cells expressing WT-HFE. The marked increase in expression of NPC1L1 relative to that of most other genes, was accompanied by a significant increase in expression of NPC1, a protein that functions in cholesterol uptake by cells. Because inhibitors of cholesterol metabolism have been proposed to be beneficial for treating certain cancers, their effect on the viability of C282Y-HFE neuroblastoma cells was ascertained. C282Y-HFE cells were significantly more sensitive than WT-HFE cells to U18666A, an inhibitor of desmosterol Δ24-reductase the enzyme catalyzing the last step in cholesterol biosynthesis. This was not seen for simvastatin, ezetimibe, or a sphingosine kinase inhibitor. These studies indicate that cancers presenting in carriers of the C282Y-HFE allele might be responsive to treatment designed to selectively reduce cholesterol content in their tumor cells.

  6. Minimum infusion rate and adrenocortical function after continuous infusion of the novel etomidate analog ET-26-HCl in rats.

    PubMed

    Jiang, Junli; Wang, Bin; Zhu, Zhaoqiong; Yang, Jun; Liu, Jin; Zhang, Wensheng

    2017-01-01

    Because etomidate induces prolonged adrenal suppression, even following a single bolus, its use as an infused anesthetic is limited. Our previous study indicated that a single administration of the novel etomidate analog methoxyethyletomidate hydrochloride (ET-26-HCl) shows little suppression of adrenocortical function. The aims of the present study were to (1) determine the minimum infusion rate of ET-26-HCl and compare it with those for etomidate and cyclopropyl-methoxycarbonylmetomidate (CPMM), a rapidly metabolized etomidate analog that is currently in clinical trials and (2) to evaluate adrenocortical function after a continuous infusion of ET-26-HCl as part of a broader study investigating whether this etomidate analog is suitable for long infusion in the maintenance of anesthesia. The up-and-down method was used to determine the minimum infusion rates for ET-26-HCl, etomidate and CPMM. Sprague-Dawley rats ( n  = 32) were then randomly divided into four groups: etomidate, ET-26-HCl, CPMM, and vehicle control. Rats in each group were infused for 60 min with one of the drugs at its predetermined minimum infusion rate. Blood samples were drawn initially and then every 30 min after drug infusion to determine the adrenocorticotropic hormone-stimulated concentration of serum corticosterone as a measure of adrenocortical function. The minimum infusion rates for etomidate, ET-26-HCl and CPMM were 0.29, 0.62, and 0.95 mg/kg/min, respectively. Compared with controls, etomidate decreased serum corticosterone, as expected, whereas serum corticosterone concentrations following infusion with the etomidate analogs ET-26-HCl or CPMM were not significantly different from those in the control group. The corticosterone concentrations tended to be reduced for the first hour following ET-26-HCl infusion (as compared to vehicle infusion); however, this reduction did not reach statistical significance. Thus, further studies are warranted examining the practicability of using ET

  7. If It Goes up, Must It Come Down? Chronic Stress and the Hypothalamic-Pituitary Adrenocortical Axis in Humans

    ERIC Educational Resources Information Center

    Miller, Gregory E.; Chen, Edith; Zhou, Eric S.

    2007-01-01

    The notion that chronic stress fosters disease by activating the hypothalamic-pituitary adrenocortical (HPA) axis is featured prominently in many theories. The research linking chronic stress and HPA function is contradictory, however, with some studies reporting increased activation, and others reporting the opposite. This meta-analysis showed…

  8. Role of Endocrine Gland-Derived Vascular Endothelial Growth Factor (EG-VEGF) and Its Receptors in Adrenocortical Tumors.

    PubMed

    Heck, Dorothee; Wortmann, Sebastian; Kraus, Luitgard; Ronchi, Cristina L; Sinnott, Richard O; Fassnacht, Martin; Sbiera, Silviu

    2015-12-01

    Angiogenesis is essential for tumor growth and metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor predominantly expressed in steroidogenic organs like the adrenal gland, ovary, testes, and placenta. EG-VEGF has antiapoptotic, mitogenic, and chemoattractive properties mediated via the two G protein-coupled receptors prokineticin receptor 1 (PKR1) and prokineticin receptor 2 (PKR2). We investigated the expression of EG-VEGF and its receptors in a large number of normal adrenal glands (NAG), adrenocortical adenomas (ACA), and carcinomas (ACC) using real-time PCR (NAG, n = 12; ACA, n = 24; and ACC, n = 30) and immunohistochemistry (NAG, n = 9; ACA, n = 23; and ACC, n = 163) and evaluated its impact on patients' survival. EG-VEGF, PKR1, and PKR2 mRNA and protein are expressed in NAG and the vast majority of ACA and ACC samples. The mean EG-VEGF mRNA expression was significantly lower in ACC (606.5 ± 77.1 copies) compared to NAG (4,043 ± 1,111) and cortisol-producing adenomas (CPA) (4,433 ± 2,378) (p < 0.01 and p < 0.05, respectively). However, cytoplasmic and nuclear EG-VEGF protein expression was either significantly higher or similar in ACC (H score 2.4 ± 0.05, p < 0.05 and 1.7 ± 0.08, n.s., respectively) compared to NAG (1.8 ± 0.14 and 1.7 ± 0.2). Nuclear protein expression of either EG-VEGF or PKR1 or both is predictive for a higher mortality compared to patients without nuclear expression (hazard ratio (HR) = 5.15; 95% confidence interval (CI) = 1.24-21.36, n = 100, p = 0.02 independent of age, sex, and tumor stage). These findings suggest that EG-VEGF and its receptor PKR1 might play a role in the pathogenesis of adrenocortical tumors and could serve as prognostic markers for this rare malignant disease.

  9. SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson's disease.

    PubMed

    Xie, Hong-rong; Hu, Lin-sen; Li, Guo-yi

    2010-04-20

    To evaluate the human neuroblastoma SH-SY5Y cell line as an in vitro model of dopaminergic (DAergic) neurons for Parkinson's disease (PD) research and to determine the effect of differentiation on this cell model. The data of this review were selected from the original reports and reviews related to SH-SY5Y cells published in Chinese and foreign journals (Pubmed 1973 to 2009). After searching the literature, 60 articles were selected to address this review. The SH-SY5Y cell line has become a popular cell model for PD research because this cell line posses many characteristics of DAergic neurons. For example, these cells express tyrosine hydroxylase and dopamine-beta-hydroxylase, as well as the dopamine transporter. Moreover, this cell line can be differentiated into a functionally mature neuronal phenotype in the presence of various agents. Upon differentiation, SH-SY5Y cells stop proliferating and a constant cell number is subsequently maintained. However, different differentiating agents induce different neuronal phenotypes and biochemical changes. For example, retinoic acid induces differentiation toward a cholinergic neuronal phenotype and increases the susceptibility of SH-SY5Y cells to neurotoxins and neuroprotective agents, whereas treatment with retinoic acid followed by phorbol ester 12-O-tetradecanoylphorbol-13-acetate results in a DAergic neuronal phenotype and decreases the susceptibility of cells to neurotoxins and neuroprotective agents. Some differentiating agents also alter kinetics of 1-methyl-4-phenyl-pyridinium (MPP(+)) uptake, making SH-SY5Y cells more similar to primary mesencephalic neurons. Differentiated and undifferentiated SH-SY5Y cells have been widely used as a cell model of DAergic neurons for PD research. Some differentiating agents afford SH-SY5Y cells with more potential for studying neurotoxicity and neuroprotection and are thus more relevant to experimental PD research.

  10. Involvement of neuropeptide Y Y1 receptors in the regulation of neuroendocrine corticotropin-releasing hormone neuronal activity.

    PubMed

    Dimitrov, Eugene L; DeJoseph, M Regina; Brownfield, Mark S; Urban, Janice H

    2007-08-01

    The neuroendocrine parvocellular CRH neurons in the paraventricular nucleus (PVN) of the hypothalamus are the main integrators of neural inputs that initiate hypothalamic-pituitary-adrenal (HPA) axis activation. Neuropeptide Y (NPY) expression is prominent within the PVN, and previous reports indicated that NPY stimulates CRH mRNA levels. The purpose of these studies was to examine the participation of NPY receptors in HPA axis activation and determine whether neuroendocrine CRH neurons express NPY receptor immunoreactivity. Infusion of 0.5 nmol NPY into the third ventricle increased plasma corticosterone levels in conscious rats, with the peak of hormone levels occurring 30 min after injection. This increase was prevented by pretreatment with the Y1 receptor antagonist BIBP3226. Immunohistochemistry showed that CRH-immunoreactive neurons coexpressed Y1 receptor immunoreactivity (Y1r-ir) in the PVN, and a majority of these neurons (88.8%) were neuroendocrine as determined by ip injections of FluoroGold. Bilateral infusion of the Y1/Y5 agonist, [leu(31)pro(34)]NPY (110 pmol), into the PVN increased c-Fos and phosphorylated cAMP response element-binding protein expression and elevated plasma corticosterone levels. Increased expression of c-Fos and phosphorylated cAMP response element-binding protein was observed in populations of CRH/Y1r-ir cells. The current findings present a comprehensive study of NPY Y1 receptor distribution and activation with respect to CRH neurons in the PVN. The expression of NPY Y1r-ir by neuroendocrine CRH cells suggests that alterations in NPY release and subsequent activation of NPY Y1 receptors plays an important role in the regulation of the HPA.

  11. Host Range Factor 1 from Lymantria dispar Nucleopolyhedrovirus (NPV) Is an Essential Viral Factor Required for Productive Infection of NPVs in IPLB-Ld652Y Cells Derived from L. dispar

    PubMed Central

    Ishikawa, Hiroki; Ikeda, Motoko; Felipe Alves, Cristiano A.; Thiem, Suzanne M.; Kobayashi, Michihiro

    2004-01-01

    Host range factor 1 (HRF-1) of Lymantria dispar multinucleocapsid nucleopolyhedrovirus promotes Autographa californica MNPV replication in nonpermissive Ld652Y cells derived from L. dispar. Here we demonstrate that restricted Hyphantria cunea NPV replication in Ld652Y cells was not due to apoptosis but was likely due to global protein synthesis arrest that could be restored by HRF-1. Our data also showed that HRF-1 promoted the production of progeny virions for two other baculoviruses, Bombyx mori NPV and Spodoptera exigua MNPV, whose replication in Ld652Y cells is limited to replication of viral DNA without successful production of infectious progeny virions. Thus, HRF-1 is an essential viral factor required for productive infection of NPVs in Ld652Y cells. PMID:15507661

  12. Host range factor 1 from Lymantria dispar Nucleopolyhedrovirus (NPV) is an essential viral factor required for productive infection of NPVs in IPLB-Ld652Y cells derived from L. dispar.

    PubMed

    Ishikawa, Hiroki; Ikeda, Motoko; Alves, Cristiano A Felipe; Thiem, Suzanne M; Kobayashi, Michihiro

    2004-11-01

    Host range factor 1 (HRF-1) of Lymantria dispar multinucleocapsid nucleopolyhedrovirus promotes Autographa californica MNPV replication in nonpermissive Ld652Y cells derived from L. dispar. Here we demonstrate that restricted Hyphantria cunea NPV replication in Ld652Y cells was not due to apoptosis but was likely due to global protein synthesis arrest that could be restored by HRF-1. Our data also showed that HRF-1 promoted the production of progeny virions for two other baculoviruses, Bombyx mori NPV and Spodoptera exigua MNPV, whose replication in Ld652Y cells is limited to replication of viral DNA without successful production of infectious progeny virions. Thus, HRF-1 is an essential viral factor required for productive infection of NPVs in Ld652Y cells.

  13. Synergistic effects of adenosine A1 and P2Y receptor stimulation on calcium mobilization and PKC translocation in DDT1 MF-2 cells.

    PubMed

    Fredholm, Bertil B; Assender, Jean W; Irenius, Eva; Kodama, Noriko; Saito, Naoaki

    2003-06-01

    1. The effect of adenosine analogues and of nucleotides, alone or in combination, on intracellular calcium, accumulation of inositol (1,4,5) trisphosphate (InsP3), and on activation of protein kinase C (PKC) was studied in DDT1 MF2 cells derived from a Syrian hamster myosarcoma. These cells were found to express mRNA for A1 and some as yet unidentified P2Y receptor(s). 2. Activation of either receptor type stimulated the production of InsP3 and raised intracellular calcium in DDT1 MF2 cells. Similarly, the A1 selective agonist N6-cyclopentyladenosine (CPA) increased PKC-dependent phosphorylation of the substrate MBP(4-14) and induced a PKC translocation to the plasma membrane as determined using [3H]-phorbol dibutyrate (PDBu) binding in DDT1 MF-2 cells. However, neither adenosine nor CPA induced a significant translocation of transiently transfected gamma-PKC-GFP from the cytosol to the cell membrane. In contrast to adenosine analogues, ATP and UTP also caused a rapid but transient translocation of gamma-PKC-GFP and activation of PKC. 3. Doses of the A1 agonist CPA and of ATP or UTP per se caused barely detectable increases in intracellular Ca2+ but when combined, they caused an almost maximal stimulation. Similarly, adenosine (0.6 microM) and UTP (or ATP, 2.5 microM), which per se caused no detectable translocation of either gamma- or epsilon-PKC-GFP, caused when combined a very clear-cut translocation of both PKC subforms, albeit with different time courses. These results show that simultaneous activation of P2Y and adenosine A1 receptors synergistically increases Ca2+ transients and translocation of PKC in DDT1 MF-2 cells. Since adenosine is rapidly formed by breakdown of extracellular ATP, such interactions may be biologically important.

  14. Mitotane treatment in patients with adrenocortical cancer causes central hypothyroidism.

    PubMed

    Russo, Marco; Scollo, Claudia; Pellegriti, Gabriella; Cotta, Oana Ruxandra; Squatrito, Sebastiano; Frasca, Francesco; Cannavò, Salvatore; Gullo, Damiano

    2016-04-01

    Mitotane, a steroidogenesis inhibitor with adrenolytic properties used to treat adrenocortical cancer (ACC), can affect thyroid function. A reduction of FT4 levels with normal FT3 and TSH has been described in these patients. Using an in vitro murine model, the secretory capacity of thyrotrophic cells has been shown to be inhibited by mitotane. To investigate the pathogenesis of thyroid abnormalities in mitotane-treated patients with ACC. In five female patients with ACC (median age 47; range 31-65) treated with mitotane (dosage 1·5 g/day; 1·0-3·0), we analysed the pattern of TSH and thyroid function index (FT4, FT3 and FT3/FT4 ratio) compared to an age- and gender-matched control group. The in vivo secretory activity of the thyrotrophic cells was evaluated using a standard TRH test (200 μg), and the response was compared to both a group of age-matched female controls (n = 10) and central hypothyroid patients (n = 10). Basal TSH (median 1·54 mU/l; range 1·20-2·17) was normal and scattered around our median reference value, FT3 levels (median 3·80 pmol/l; 3·30-4·29) were normal but below the median reference value of 4·37 pmol/l and FT4 levels were below the normal range in all patients (median 8·40 pmol/l; 7·6-9·9). FT3/FT4 ratio was in the upper range in 4 patients and higher than normal in one patient. A blunted TSH response to TRH was observed in mitotane-treated patients. ΔTSH (absolute TSH response, peak TSH minus basal TSH) was 3·65 (range 3·53-5·26), 12·37 (range 7·55-19·97) and 1·32 mU/l (range 0·52-4·66) in mitotane-treated patients, controls and central hypothyroid patients, respectively. PRL secretion was normal. Mitotane-treated patients with ACC showed low FT4, normal FT3 and TSH and impaired TSH response to TRH, characteristic of central hypothyroidism. Furthermore, the elevated FT3/FT4 ratio of these subjects reflects an enhanced T4 to T3 conversion rate, a compensatory mechanism characteristic of thyroid function changes

  15. Identification of 6H1 as a P2Y purinoceptor: P2Y5.

    PubMed

    Webb, T E; Kaplan, M G; Barnard, E A

    1996-02-06

    We have determined the identity of the orphan G-protein coupled receptor cDNA, 6H1, present in activated chicken T cells, as a subtype of P2Y purinoceptor. This identification is based on first on the degree of sequence identity shared with recently cloned members of the P2Y receptor family and second on the pharmacological profile. Upon transient expression in COS-7 cells the 6H1 receptor bound the radiolabel [35S]dATP alpha S specifically and with high affinity (Kd, 10 nM). This specific binding could be competitively displaced by a range of ligands active at P2 purinoceptors, with ATP being the most active (K (i)), 116 nM). Such competition studies have established the following rank order of activity: ATP ADP 2-methylthioATP alpha, beta-methylene ATP, UTP, thus confirming 6H1 as a member of the growing family of P2Y purinoceptors. As the fifth receptor of this type to be identified we suggest that it be named P2Y5.

  16. Cushing Syndrome in Carney Complex: Clinical, Pathologic, and Molecular Genetic Findings in the 17 Affected Mayo Clinic Patients.

    PubMed

    Lowe, Kathleen M; Young, William F; Lyssikatos, Charalampos; Stratakis, Constantine A; Carney, J Aidan

    2017-02-01

    Carney complex (CNC) is a rare dominantly inherited multiorgan tumoral disorder that includes Cushing syndrome (CS). To establish the Mayo Clinic experience with the CS component, including its clinical, laboratory, and pathologic findings, we performed a retrospective search of the patient and pathologic databases of Mayo Clinic in Rochester, MN, for patients with CNC and clinical or laboratory findings of CS. Thirty-seven patients with CNC were identified. Twenty-nine had clinical, pathologic, or laboratory evidence of an adrenocortical disorder. Seventeen had classic CS; 15 underwent bilateral, subtotal, or partial unilateral adrenalectomy, and 2 had no treatment. Pathologically, the glands were normal sized or slightly enlarged with multiple small (1 to 4 mm), brown, black, and yellow micronodules (primary pigmented nodular adrenocortical disease; PPNAD). Three glands each had a mass: a 2 cm adenoma, a 1.5 cm macronodule, and an unencapsulated 1.8 cm myelolipoma. Fourteen of the patients were alive at follow-up, and 3 were deceased; 2 of the latter had PPNAD at autopsy, and the third had PPNAD at surgery. Twelve patients without clinical features of classic CS had abnormal adrenocortical testing results; none developed classic CS during follow-up (mean, 10 y). Autopsy findings in 1 showed bilateral vacuolated cell cortical hyperplasia.

  17. Cadmium inhibits neurite outgrowth in differentiating human SH-SY5Y neuroblastoma cells.

    PubMed

    Pak, Eun Joo; Son, Gi Dong; Yoo, Byung Sun

    2014-01-01

    Cadmium, a highly ubiquitous heavy metal, is well known to induce neurotoxicity. However, the underlying mechanism of cadmium-mediated neurotoxicity remains unclear. We have studied cadmium inhibition of neurite outgrowth using human SH-SY5Y neuroblastoma cells induced to differentiate by all-trans-retinoic acid (RA). Cadmium, at a concentration of 3 μmol/L, had no significant effect on the viability of differentiating SH-SY5Y cells. However, the neurite outgrowth of the differentiating SH-SY5Y cells 48 hours after cadmium treatment (1-3 μmol/L cadmium) was significantly inhibited in a dose-dependent manner. Treatment of RA-stimulated differentiating SH-SY5Y cells with 1 to 3 μmol/L cadmium resulted in decreased level of cross-reactivities with 43-kDa growth-associated protein (GAP-43) in a dose-dependent manner. The reactive oxygen species (ROS) scavenger, NAC (N-acetyl-l-cysteine), recovered the expression of GAP-43 in cadmium-treated cells. The results indicate that cadmium is able to inhibit neurite outgrowth of differentiating SH-SY5Y cells and that this effect might result from ROS generation by cadmium. © The Author(s) 2014.

  18. Adrenocortical carcinoma with inferior vena cava, left renal vein and right atrium tumor thrombus extension

    PubMed Central

    Annamaria, Pronio; Silvia, Piroli; Bernardo, Ciamberlano; Alessandro, De Luca; Antonino, Marullo; Antonio, Barretta; Giuseppe, Mazzesi; Massimo, Rossi; Montesani, Chiara

    2015-01-01

    Introduction Adrenocortical carcinoma (ACC) is a rare, but highly aggressive type of tumor with an annual incidence of 1–2 cases per million. The prognosis is poor with a five-year overall survival rate of ∼35%. The poor prognosis may be related to the advanced stage at which the majority of ACCs are detected. Complete surgical resection remains the most effective treatment. Presentation of the case A 51-year-old female patient with recent onset of dyspepsia, ascites and peripheral edema was referred to our institution. Computed tomography (CT) and Magnetic Resonance Imaging (MRI) displayed a 8 cm Ø right adrenal mass. Moreover a tumor thrombus jutted out into the IVC, left renal vein and right atrium. An echocardiographic evaluation confirmed the presence of the tumor thrombus in the right atrium. The patient underwent adrenalectomy with removal of its intravascular extension with the assistance of cardiopulmonary bypass and hypothermia. Discussion ACC is a rare malignancy and ACC with tumor thrombus extension is a rare presentation. Patients can present with a variety of sign and symptoms, depending on the extent of the tumor. CT scan of chest and abdomen represents the gold standard in ACC staging while magnetic resonance imaging (MRI) is preferred for tumor thrombus characterization. Complete surgical resection with a negative margin, R0 resection, is the only curative option for localized disease. Kidney sparing surgery should be performed when possible. Conclusion We present a rare case of Adrenocortical carcinoma with tumor thrombus extending into the IVC and right atrium. Complete resection with negative margins represents the best therapeutic chance for these patients. PMID:26355237

  19. Adrenocortical carcinoma with inferior vena cava, left renal vein and right atrium tumor thrombus extension.

    PubMed

    Annamaria, Pronio; Silvia, Piroli; Bernardo, Ciamberlano; Alessandro, De Luca; Antonino, Marullo; Antonio, Barretta; Giuseppe, Mazzesi; Massimo, Rossi; Montesani, Chiara

    2015-01-01

    Adrenocortical carcinoma (ACC) is a rare, but highly aggressive type of tumor with an annual incidence of 1-2 cases per million. The prognosis is poor with a five-year overall survival rate of ∼35%. The poor prognosis may be related to the advanced stage at which the majority of ACCs are detected. Complete surgical resection remains the most effective treatment. A 51-year-old female patient with recent onset of dyspepsia, ascites and peripheral edema was referred to our institution. Computed tomography (CT) and Magnetic Resonance Imaging (MRI) displayed a 8cm Ø right adrenal mass. Moreover a tumor thrombus jutted out into the IVC, left renal vein and right atrium. An echocardiographic evaluation confirmed the presence of the tumor thrombus in the right atrium. The patient underwent adrenalectomy with removal of its intravascular extension with the assistance of cardiopulmonary bypass and hypothermia. ACC is a rare malignancy and ACC with tumor thrombus extension is a rare presentation. Patients can present with a variety of sign and symptoms, depending on the extent of the tumor. CT scan of chest and abdomen represents the gold standard in ACC staging while magnetic resonance imaging (MRI) is preferred for tumor thrombus characterization. Complete surgical resection with a negative margin, R0 resection, is the only curative option for localized disease. Kidney sparing surgery should be performed when possible. We present a rare case of Adrenocortical carcinoma with tumor thrombus extending into the IVC and right atrium. Complete resection with negative margins represents the best therapeutic chance for these patients. Copyright © 2015. Published by Elsevier Ltd.

  20. Mitochondrial Effects of PGC-1alpha Silencing in MPP+ Treated Human SH-SY5Y Neuroblastoma Cells

    PubMed Central

    Ye, Qinyong; Chen, Chun; Si, Erwang; Cai, Yousheng; Wang, Juhua; Huang, Wanling; Li, Dongzhu; Wang, Yingqing; Chen, Xiaochun

    2017-01-01

    The dopaminergic neuron degeneration and loss that occurs in Parkinson’s disease (PD) has been tightly linked to mitochondrial dysfunction. Although the aged-related cause of the mitochondrial defect observed in PD patients remains unclear, nuclear genes are of potential importance to mitochondrial function. Human peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC-1α) is a multi-functional transcription factor that tightly regulates mitochondrial biogenesis and oxidative capacity. The goal of the present study was to explore the potential pathogenic effects of interference by the PGC-1α gene on N-methyl-4-phenylpyridinium ion (MPP+)-induced SH-SY5Y cells. We utilized RNA interference (RNAi) technology to probe the pathogenic consequences of inhibiting PGC-1α in the SH-SY5Y cell line. Remarkably, a reduction in PGC-1α resulted in the reduction of mitochondrial membrane potential, intracellular ATP content and intracellular H2O2 generation, leading to the translocation of cytochrome c (cyt c) to the cytoplasm in the MPP+-induced PD cell model. The expression of related proteins in the signaling pathway (e.g., estrogen-related receptor α (ERRα), nuclear respiratory factor 1 (NRF-1), NRF-2 and Peroxisome proliferator-activated receptor γ (PPARγ)) also decreased. Our finding indicates that small interfering RNA (siRNA) interference targeting the PGC-1α gene could inhibit the function of mitochondria in several capacities and that the PGC-1α gene may modulate mitochondrial function by regulating the expression of ERRα, NRF-1, NRF-2 and PPARγ. Thus, PGC-1α can be considered a potential therapeutic target for PD. PMID:28611589

  1. Surgical resection of synchronously metastatic adrenocortical cancer.

    PubMed

    Dy, Benzon M; Strajina, Veljko; Cayo, Ashley K; Richards, Melanie L; Farley, David R; Grant, Clive S; Harmsen, William S; Evans, Doug B; Grubbs, Elizabeth G; Bible, Keith C; Young, William F; Perrier, Nancy D; Que, Florencia G; Nagorney, David M; Lee, Jeffrey E; Thompson, Geoffrey B

    2015-01-01

    Metastatic adrenocortical carcinoma (ACC) is rapidly fatal, with few options for treatment. Patients with metachronous recurrence may benefit from surgical resection. The survival benefit in patients with hematogenous metastasis at initial presentation is unknown. A review of all patients undergoing surgery (European Network for the Study of Adrenal Tumors) stage IV ACC between January 2000 and December 2012 from two referral centers was performed. Kaplan-Meier estimates were analyzed for disease-free and overall survival (OS). We identified 27 patients undergoing surgery for stage IV ACC. Metastases were present in the lung (19), liver (11), and brain (1). A complete resection (R0) was achieved in 11 patients. The median OS was improved in patients undergoing R0 versus R2 resection (860 vs. 390 days; p = 0.02). The 1- and 2-year OS was also improved in patients undergoing R0 versus R2 resection (69.9 %, 46.9 % vs. 53.0 %, 22.1 %; p = 0.02). Patients undergoing neoadjuvant therapy (eight patients) had a trend towards improved survival at 1, 2, and 5 years versus no neoadjuvant therapy (18 patients) [83.3 %, 62.5 %, 41.7 % vs. 56.8 %, 26.6 %, 8.9 %; p = 0.1]. Adjuvant therapy was associated with improved recurrence-free survival at 6 months and 1 year (67 %, 33 % vs. 40 %, 20 %; p = 0.04) but not improved OS (p = 0.63). Sex (p = 0.13), age (p = 0.95), and location of metastasis (lung, p = 0.51; liver, p = 0.67) did not correlate with OS after operative intervention. Symptoms of hormonal excess improved in 86 % of patients. Operative intervention, especially when an R0 resection can be achieved, following systemic therapy may improve outcomes, including OS, in select patients with stage IV ACC. Response to neoadjuvant chemotherapy may be of use in defining which patients may benefit from surgical intervention. Adjuvant therapy was associated with decreased recurrence but did not improve OS.

  2. Glutathione transferase-M2-2 secreted from glioblastoma cell protects SH-SY5Y cells from aminochrome neurotoxicity.

    PubMed

    Cuevas, Carlos; Huenchuguala, Sandro; Muñoz, Patricia; Villa, Monica; Paris, Irmgard; Mannervik, Bengt; Segura-Aguilar, Juan

    2015-04-01

    U373MG cells are able to take up aminochrome that induces glutathione transferase M2-2 (GSTM2) expression in a concentration-dependent manner where 100 µM aminochrome increases GSTM2 expression by 2.1-fold (P < 0.001) at 3 h. The uptake of (3)H-aminochrome into U373MG cells was significantly reduced in the presence of 2 µM nomifensine (P < 0.001) 100 µM imipramine (P < 0.001) and 50 mM dopamine (P < 0.001). Interestingly, U373MG cells excrete GSTM2 into the conditioned medium and the excretion was significantly increased (2.7-fold; P < 0.001) when the cells were pretreated with 50 µM aminochrome for 3 h. The U373MG-conditioned medium containing GSTM2 protects SH-SY5Y cells incubated with 10 µM aminochrome. The significant protection provided by U373MG-conditioned medium in SH-SY5Y cells incubated with aminochrome was dependent on GSTM2 internalization into SH-SY5Y cells as evidenced by (i) uptake of (14)C-GSTM2 released from U373MG cells into SH-SY5Y cells, a process inhibited by anti-GSTM2 antiserum; (ii) lack of protection of U373MG-conditioned medium in the presence of anti-GSTM2 antiserum on SH-SY5Y cells treated with aminochrome; and (iii) lack of protection of conditioned medium from U373MGsiGST6 that expresses an siRNA directed against GSTM2 on SH-SY5Y cells treated with aminochrome. In conclusion, our results demonstrated that U373MG cells protect SH-SY5Y cells against aminochrome neurotoxicity by releasing GSTM2 into the conditioned medium and subsequent internalization of GSTM2 into SH-SY5Y cells. These results suggest a new mechanism of protection of dopaminergic neurons mediated by astrocytes by releasing GSTM2 into the intersynaptic space and subsequent internalization into dopaminergic neuron in order to protect these cells against aminochrome neurotoxicity.

  3. Irreversible blockade of sigma-1 receptors by haloperidol and its metabolites in guinea pig brain and SH-SY5Y human neuroblastoma cells.

    PubMed

    Cobos, Enrique J; del Pozo, Esperanza; Baeyens, José M

    2007-08-01

    We evaluated the effect of haloperidol (HP) and its metabolites on [(3)H](+)-pentazocine binding to sigma(1) receptors in SH-SY5Y human neuroblastoma cells and guinea pig brain P(1), P(2) and P(3) subcellular fractions. Three days after a single i.p. injection in guinea pigs of HP (but not of other sigma(1) antagonists or (-)-sulpiride), [(3)H](+)-pentazocine binding to brain membranes was markedly decreased. Recovery of sigma(1) receptor density to steady state after HP-induced inactivation required more than 30 days. HP-metabolite II (reduced HP, 4-(4-chlorophenyl)-alpha-(4-fluorophenyl)-4-hydroxy-1-piperidinebutanol), but not HP-metabolite I (4-(4-chlorophenyl)-4-hydroxypiperidine), irreversibly blocked sigma(1) receptors in guinea pig brain homogenate and P(2) fraction in vitro. We found similar results in SH-SY5Y cells, which suggests that this process may also take place in humans. HP irreversibly inactivated sigma(1) receptors when it was incubated with brain homogenate and SH-SY5Y cells, but not when incubated with P(2) fraction membranes, which suggests that HP is metabolized to inactivate sigma(1) receptors. Menadione, an inhibitor of the ketone reductase activity that leads to the production of HP-metabolite II, completely prevented HP-induced inactivation of sigma(1) receptors in brain homogenates. These results suggest that HP may irreversibly inactivate sigma(1) receptors in guinea pig and human cells, probably after metabolism to reduced HP.

  4. Insidious adrenocortical insufficiency underlies neuroendocrine dysregulation in TIF-2 deficient mice.

    PubMed

    Patchev, Alexandre V; Fischer, Dieter; Wolf, Siegmund S; Herkenham, Miles; Götz, Franziska; Gehin, Martine; Chambon, Pierre; Patchev, Vladimir K; Almeida, Osborne F X

    2007-01-01

    The transcription-intermediary-factor-2 (TIF-2) is a coactivator of the glucocorticoid receptor (GR), and its disruption would be expected to influence glucocorticoid-mediated control of the hypothalamo-pituitary-adrenal (HPA) axis. Here, we show that its targeted deletion in mice is associated with altered expression of several glucocorticoid-dependent components of HPA regulation (e.g., corticotropin-releasing hormone, vasopressin, ACTH, glucocorticoid receptors), suggestive of hyperactivity under basal conditions. At the same time, TIF-2(-/-) mice display significantly lower basal corticosterone levels and a sluggish and blunted initial secretory response to brief emotional and prolonged physical stress. Subsequent analysis revealed this discrepancy to result from pronounced aberrations in the structure and function of the adrenal gland, including the cytoarchitectural organization of the zona fasciculata and basal and stress-induced expression of key elements of steroid hormone synthesis, such as the steroidogenic acute regulatory (StAR) protein and 3beta-hydroxysteroid dehydrogenase (3beta-HSD). In addition, altered expression levels of two nuclear receptors, DAX-1 and steroidogenic factor 1 (SF-1), in the adrenal cortex strengthen the view that TIF-2 deletion disrupts adrenocortical development and steroid biosynthesis. Thus, hyperactivity of the hypothalamo-pituitary unit is ascribed to insidious adrenal insufficiency and impaired glucocorticoid feedback.

  5. Clinical and Genetic Heterogeneity, Overlap with Other Tumor Syndromes, and Atypical Glucocorticoid Hormone Secretion in Adrenocorticotropin-Independent Macronodular Adrenal Hyperplasia Compared with Other Adrenocortical Tumors

    PubMed Central

    Hsiao, Hui-Pin; Kirschner, Lawrence S.; Bourdeau, Isabelle; Keil, Margaret F.; Boikos, Sosipatros A.; Verma, Somya; Robinson-White, Audrey J.; Nesterova, Maria; Lacroix, André; Stratakis, Constantine A.

    2009-01-01

    Objective: ACTH-independent macronodular adrenal hyperplasia (AIMAH) is often associated with subclinical cortisol secretion or atypical Cushing’s syndrome (CS). We characterized a large series of patients of AIMAH and compared them with patients with other adrenocortical tumors. Design and Patients: We recruited 82 subjects with: 1) AIMAH (n = 16); 2) adrenocortical cortisol-producing adenoma with CS (n = 15); 3) aldosterone-producing adenoma (n = 19); and 4) single adenomas with clinically nonsignificant cortisol secretion (n = 32). Methods: Urinary free cortisol (UFC) and 17-hydroxycorticosteroid (17OHS) were collected at baseline and during dexamethasone testing; aberrant receptor responses was also sought by clinical testing and confirmed molecularly. Peripheral and/or tumor DNA was sequenced for candidate genes. Results: AIMAH patients had the highest 17OHS excretion, even when UFCs were within or close to the normal range. Aberrant receptor expression was highly prevalent. Histology showed at least two subtypes of AIMAH. For three patients with AIMAH, there was family history of CS; germline mutations were identified in three other patients in the genes for menin (one), fumarate hydratase (one), and adenomatosis polyposis coli (APC) (one); a PDE11A gene variant was found in another. One patient had a GNAS mutation in adrenal nodules only. There were no mutations in any of the tested genes in the patients of the other groups. Conclusions: AIMAH is a clinically and genetically heterogeneous disorder that can be associated with various genetic defects and aberrant hormone receptors. It is frequently associated with atypical CS and increased 17OHS; UFCs and other measures of adrenocortical activity can be misleadingly normal. PMID:19509103

  6. The effect of a maternal history of childhood abuse on adrenocortical attunement in mothers and their toddlers.

    PubMed

    Fuchs, Anna; Moehler, Eva; Resch, Franz; Kaess, Michael

    2017-07-01

    We investigated circadian mother-child adrenocortical attunement in the context of a maternal history of childhood abuse (HoA). Mothers were screened after birth using the Childhood Trauma Questionnaire. Women reporting moderate or severe abuse formed the HoA group (n = 37; HoAG) and were compared with a non-maltreated comparison group (n = 45; CG). Three years later, cortisol awakening response (CAR) and diurnal slope (DSL) were assessed. Mother-child interaction was coded using the Emotional Availability Scales at 12 months of age. For the CAR, we found adrenocortical attunement only in the HoAG (2-way interaction: p = .004), particularly if mothers scored low on structuring (3-way interaction: p = .042) and children scored low on responsiveness (3-way interaction: p = .044). DSL-attunement was dependent on maternal sensitivity (3-way interaction: p = .012) and child involvement (3-way interaction: p = .012). In the context of a maternal HoA, it seems possible for mother-child-dyads to show less optimal interactional quality but be stronger attuned to each other biologically. © 2017 Wiley Periodicals, Inc.

  7. Adrenocortical reserves in hyperthyroidism.

    PubMed

    Agbaht, Kemal; Gullu, Sevim

    2014-02-01

    Explicit data regarding the changes in adrenocortical reserves during hyperthyroidism do not exist. We aimed to document the capability (response) of adrenal gland to secrete cortisol and DHEA-S during hyperthyroidism compared to euthyroidism, and to describe factors associated with these responses. A standard-dose (0.25 mg/i.v.) ACTH stimulation test was performed to the same patients before hyperthyroidism treatment, and after attainment of euthyroidism. Baseline cortisol (Cor(0)), DHEA-S (DHEA-S(0)), cortisol binding globulin (CBG), ACTH, calculated free cortisol (by Coolen's equation = CFC), free cortisol index (FCI), 60-min cortisol (Cor(60)), and DHEA-S (DHEA-S(60)), delta cortisol (ΔCor), delta DHEA-S (ΔDHEA-S) responses were evaluated. Forty-one patients [22 females, 49.5 ± 15.2 years old, 32 Graves disease, nine toxic nodular goiter] had similar Cor(0), DHEA-S(0), CFC, FCI, and DHEA-S(60) in hyperthyroid and euthyroid states. Cor(60), ΔCor, and ΔDHEA-S were lower in hyperthyroidism. In four (10 %) patients the peak ACTH-stimulated cortisol values were lower than 18 μg/dL. When the test repeated after attainment of euthyroidism, all of the patients had normal cortisol response. Regression analysis demonstrated an independent association of Cor(60) with free T3 in hyperthyroidism. However, the predictors of CFC, FCI, and DHEA-S levels were serum creatinine levels in hyperthyroidism, and both creatinine and transaminase levels in euthyroidism. ACTH-stimulated peak cortisol, delta cortisol, and delta DHEA-S levels are decreased during hyperthyroidism, probably due to increased turnover. Since about 10 % of the subjects with hyperthyroidism are at risk for adrenal insufficiency, clinicians dealing with Graves' disease should be alert to the possibility of adrenal insufficiency during hyperthyroid stage.

  8. [Role of necroptosis in aluminum induced SH-SY5Y cell death].

    PubMed

    Niu, Qiao; Zhang, Qin-li; Zheng, Jin-ping; Liu, Cheng-yun; Wang, Liang

    2009-02-01

    To study whether necroptosis exists or not in neural cell death induced by aluminum. SH-SY5Y cells were treated with 4 mmol/L AlCl(3) x 6H(2)O The cell viability was determined with CCK-8 kit after treated with Nec-1 at different dosages (0, 30, 60, 90 micromol/L). Mitochondria membrane potential (MMP), content of reactive oxygen species (ROS), and apoptotic rate/necrotic rates were measured with cytometry. Nec-1 ameliorated the necrotic-like cell morphology, the cell viability were 0.28 +/- 0.05, 0.58 +/- 0.03, 0.68 +/- 0.04, and 1.03 +/- 0.17, there were significant differences between the Nec-1 treated groups and that of controls (t values were 3.25, 3.36, 4.56; P < 0.05). After Nec-1 treatment, the necrotic rates were 16.46% +/- 0.54%, 10.40% +/- 0.64%, 5.43% +/- 0.68%, and 6.28% +/- 0.35%, there were significant differences between the Nec-1 treated cells and that of controls (t values were 3.62, 7.32, 6.96; P < 0.05); while the apoptotic rates were 8.68 +/- 0.36, 7.66 +/- 0.53, 5.68 +/- 0.41, and 4.13 +/- 0.41, there was no significant difference among the groups (F = 6.33, P = 0.11). Cytometry had shown the increased cell MMPs after Nec-1 treatment, which were 67.54 +/- 6.36, 49.42 +/- 5.96, 84.79 +/- 6.86, and 95.51 +/- 7.01, there were significant differences as comparing MMPs of the middle and high dosage of Nec-1 treated cells with those of controls (t values were 3.21, 4.01; P < 0.05); while ROS contents in the Nec-1 treated SH-SY5Y cells were 54.07 +/- 3.32, 52.79 +/- 2.36, 54.68 +/- 1.91, and 59.23 +/- 2.96, there was no significant difference among the groups (F = 5.26, P = 0.19). Nec-1, as a specific inhibitor of necroptosis, might effectively block the cell death pathway induced by aluminum, it indicates that necroptosis should be one of the major causes of the SH-SY5Y cell toxicity induced by aluminum, and necroptosis also plays an important role in aluminum induced SH-SY5Y cell death.

  9. Differential expression of the multidrug resistance 1 (MDR1) protein in prostate cancer cells is independent from anticancer drug treatment and Y box binding protein 1 (YB-1) activity.

    PubMed

    Saupe, Madeleine; Rauschenberger, Lisa; Preuß, Melanie; Oswald, Stefan; Fussek, Sebastian; Zimmermann, Uwe; Walther, Reinhard; Knabbe, Cornelius; Burchardt, Martin; Stope, Matthias B

    2015-10-01

    The development of a drug-resistant phenotype is the major challenge during treatment of castration-resistant prostate cancer (PC). In solid cancer entities, one of the major contributors to chemoresistance is the multidrug resistance 1 (MDR1) protein. Believed to be involved in the induction of MDR1 expression is the presence of anticancer drugs as well as the Y box binding protein 1 (YB-1). Basal as well as drug-induced expression of MDR1 in established PC cell lines was assessed by Western blotting and mass spectrometry. Subsequently, the influence of YB-1 on MDR1 expression was examined via transient overexpression of YB-1. While LNCaP and PC-3 cells showed no detectable amounts of MDR1, the resistance factor was found to be expressed in 22Rv1 cells. Despite this difference, all three cell lines demonstrated similar growth behavior in the presence of the first-line chemotherapeutic agent docetaxel. Incubation of 22Rv1 cells with docetaxel, cabazitaxel, and abiraterone did not significantly alter MDR1 expression levels. Furthermore, overexpression of the MDR1 controlling factor YB-1 showed no impact on MDR1 expression levels. MDR1 was detectable in the PC cell line 22Rv1. However, this study suggests that MDR1 is of less importance for drug resistance in PC cells than in other types of solid cancer. Furthermore, in contrast to YB-1 properties in other malignancies, MDR1 regulation through YB-1 seems to be unlikely.

  10. Ferulic Acid Regulates the Nrf2/Heme Oxygenase-1 System and Counteracts Trimethyltin-Induced Neuronal Damage in the Human Neuroblastoma Cell Line SH-SY5Y

    PubMed Central

    Catino, Stefania; Paciello, Fabiola; Miceli, Fiorella; Rolesi, Rolando; Troiani, Diana; Calabrese, Vittorio; Santangelo, Rosaria; Mancuso, Cesare

    2016-01-01

    Over the past years, several lines of evidence have pointed out the efficacy of ferulic acid (FA) in counteracting oxidative stress elicited by β-amyloid or free radical initiators, based on the ability of this natural antioxidant to up-regulate the heme oxygenase-1 (HO-1) and biliverdin reductase (BVR) system. However, scarce results can be found in literature regarding the cytoprotective effects of FA in case of damage caused by neurotoxicants. The aim of this work is to investigate the mechanisms through which FA exerts neuroprotection in SH-SY5Y neuroblastoma cells exposed to the neurotoxin trimethyltin (TMT). FA (1–10 μM for 6 h) dose-dependently increased both basal and TMT (10 μM for 24 h)-induced HO-1 expression in SH-SY5Y cells by fostering the nuclear translocation of the transcriptional activator Nrf2. In particular, the co-treatment of FA (10 μM) with TMT was also responsible for the nuclear translocation of HO-1 in an attempt to further increase cell stress response in SH-SY5Y cells. In addition to HO-1, FA (1–10 μM for 6 h) dose-dependently increased the basal expression of BVR. The antioxidant and neuroprotective features of FA, through the increase of HO activity, were supported by the evidence that FA inhibited TMT (10 μM)-induced lipid peroxidation (evaluated by detecting 4-hydroxy-nonenal) and DNA fragmentation in SH-SY5Y cells and that this antioxidant effect was reversed by the HO inhibitor Zinc-protoporphyrin-IX (5 μM). Among the by-products of the HO/BVR system, carbon monoxide (CORM-2, 50 nM) and bilirubin (BR, 50 nM) significantly inhibited TMT-induced superoxide anion formation in SH-SY5Y cells. All together, these results corroborate the neuroprotective effect of FA through the up-regulation of the HO-1/BVR system, via carbon monoxide and BR formation, and provide the first evidence on the role of HO-1/Nrf2 axis in FA-related enhancement of cell stress response in human neurons. PMID:26779023

  11. Subtype specific internalization of P2Y1 and P2Y2 receptors induced by novel adenosine 5′-O-(1-boranotriphosphate) derivatives

    PubMed Central

    Tulapurkar, M E; Laubinger, W; Nahum, V; Fischer, B; Reiser, G

    2004-01-01

    P2Y-nucleotide receptors represent important targets for drug development. The lack of stable and receptor specific agonists, however, has prevented successful therapeutic applications. A novel series of P-boronated ATP derivatives (ATP-α-B) were synthesized by substitution of a nonbridging O at Pα with a BH3 group. This introduces a chiral center, thus resulting in diastereoisomers. In addition, at C2 of the adenine ring a further substitution was made (Cl- or methylthio-). The pairs of diastereoisomers were denoted here as A and B isomers. Here, we tested the receptor subtype specificity of these analogs on HEK 293 cells stably expressing rat P2Y1 and rat P2Y2 receptors, respectively, both attached to the fluorescent marker protein GFP (rP2Y1-GFP, rP2Y2-GFP). We investigated agonist-induced receptor endocytosis, [Ca2+]i rise and arachidonic acid (AA) release. Agonist-induced endocytosis of rP2Y1-GFP was more pronounced for the A isomers than the corresponding B counterparts for all ATP-α-B analogs. Both 2-MeS-substituted diastereoisomers induced a greater degree of agonist-induced receptor endocytosis as compared to the 2-Cl-substituted derivatives. Endocytosis results are in accordance with the potency to induce Ca2+ release by these compounds in HEK 293 cells stably transfected with rP2Y1. In case of rP2Y2-GFP, the borano-nucleotides were very weak agonists in comparison to UTP and ATP in terms of Ca2+ release, AA release and in inducing receptor endocytosis. The different ATP-α-B derivatives and also the diastereoisomers were equally ineffective. Thus, the new agonists may be considered as potent and highly specific agonist drug candidates for P2Y1 receptors. The difference in activity of the ATP analogs at P2Y receptors could be used as a tool to investigate structural differences between P2Y receptor subtypes. PMID:15197109

  12. Control of Co content and SOFC cathode performance in Y1-ySr2+yCu3-xCoxO7+δ

    NASA Astrophysics Data System (ADS)

    Šimo, F.; Payne, J. L.; Demont, A.; Sayers, R.; Li, Ming; Collins, C. M.; Pitcher, M. J.; Claridge, J. B.; Rosseinsky, M. J.

    2014-11-01

    The electrochemical performance of the layered perovskite YSr2Cu3-xCoxO7+δ, a potential solid oxide fuel cell (SOFC) cathode, is improved by increasing the Co content from x = 1.00 to a maximum of x = 1.30. Single phase samples with x > 1.00 are obtained by tuning the Y/Sr ratio, yielding the composition Y1-ySr2+yCu3-xCoxO7+δ (where y ≤ 0.05). The high temperature structure of Y0.95Sr2.05Cu1.7Co1.3O7+δ at 740 °C is characterised by powder neutron diffraction and the potential of this Co-enriched material as a SOFC cathode is investigated by combining AC impedance spectroscopy, four-probe DC conductivity and powder XRD measurements to determine its electrochemical properties along with its thermal stability and compatibility with a range of commercially available electrolytes. The material is shown to be compatible with doped ceria electrolytes at 900 °C.

  13. Identification of a Cyanine-Dye Labeled Peptidic Ligand for Y1R and Y4R, Based upon the Neuropeptide Y C-Terminal Analogue, BVD-15.

    PubMed

    Liu, Mengjie; Richardson, Rachel R; Mountford, Simon J; Zhang, Lei; Tempone, Matheus H; Herzog, Herbert; Holliday, Nicholas D; Thompson, Philip E

    2016-09-21

    Traceable truncated Neuropeptide Y (NPY) analogues with Y1 receptor (Y1R) affinity and selectivity are highly desirable tools in studying receptor location, regulation, and biological functions. A range of fluorescently labeled analogues of a reported Y1R/Y4R preferring ligand BVD-15 have been prepared and evaluated using high content imaging techniques. One peptide, [Lys(2)(sCy5), Arg(4)]BVD-15, was characterized as an Y1R antagonist with a pKD of 7.2 measured by saturation analysis using fluorescent imaging. The peptide showed 8-fold lower affinity for Y4R (pKD = 6.2) and was a partial agonist at this receptor. The suitability of [Lys(2)(sCy5), Arg(4)]BVD-15 for Y1R and Y4R competition binding experiments was also demonstrated in intact cells. The nature of the label was shown to be critical with replacement of sCy5 by the more hydrophobic Cy5.5 resulting in a switch from Y1R antagonist to Y1R partial agonist.

  14. Preparation and properties of Ba xSr 1- xCo yFe 1- yO 3- δ cathode material for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhao, Hailei; Shen, Wei; Zhu, Zhiming; Li, Xue; Wang, Zhifeng

    Ba xSr 1- xCo yFe 1- yO 3- δ (BSCF) materials with perovskite structure were synthesized via solid-state reaction. Their structural characteristics, electrical-conduction behavior and cathode performance were investigated. Compared to A-site elements, B-site elements show a wide solid-solution range in BSCF. The electrical-conduction behavior of BSCF obeys the small polaron-hopping mechanism. An increase of Ba or Co content in the BSCF samples results in a decrease of electrical conductivity, which is mainly attributable to the preferential existence of B 3+ rather than B 4+ in Ba- or Co-rich samples. At the same time, this leads to increases in the lattice parameter a and the number of oxygen vacancies. BSCF samples with high Ba content show a high structural stability (high oxygen-loss temperature). Ba 0.6Sr 0.4Co 0.8Fe 0.2O 3- δ and Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ materials present good thermal-cycling stability of the electrical conductivity. Compared with Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ, Ba 0.6Sr 0.4Co 0.8Fe 0.2O 3- δ exhibits a better cathode performance in a Ce 0.8Gd 0.2O 2- δ (GDC)-supported half cell. The cell performance can be improved by introducing a certain amount of GDC electrolyte into the BSCF cathode material.

  15. Virilizing adrenocortical carcinoma advancing to central precocious puberty after surgery.

    PubMed

    Kim, Min Sun; Yang, Eu Jeen; Cho, Dong Hyu; Hwang, Pyung Han; Lee, Dae-Yeol

    2015-05-01

    Adrenocortical carcinoma (ACC) in pediatric and adolescent patients is rare, and it is associated with various clinical symptoms. We introduce the case of an 8-year-old boy with ACC who presented with peripheral precocious puberty at his first visit. He displayed penis enlargement with pubic hair and facial acne. His serum adrenal androgen levels were elevated, and abdominal computed tomography revealed a right suprarenal mass. After complete surgical resection, the histological diagnosis was ACC. Two months after surgical removal of the mass, he subsequently developed central precocious puberty. He was treated with a gonadotropin-releasing hormone agonist to delay further pubertal progression. In patients with functioning ACC and surgical removal, clinical follow-up and hormonal marker examination for the secondary effects of excessive hormone secretion may be a useful option at least every 2 or 3 months after surgery.

  16. Simulation calculations of efficiencies and silicon consumption for CH3NH3PbI3-x-y Br x Cl y /crystalline silicon tandem solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Lili; Xie, Ziang; Tian, Fuyang; Qin, Guogang

    2017-04-01

    Much attention has been paid to two-subcell tandem solar cells (TSCs) with crystalline silicon (c-Si) as the bottom cell (TSC-Si). Previous works have pointed out that the optimal band gap, E g, of the top cell material for a TSC-Si is around 1.75 eV. With a tunable E g and better stability than MAPbI3 (MA  =  CH3NH3), MAPbI3-x-y Br x Cl y is a promising candidate for the top cell material of a TSC-Si. In this work, calculations concerning the E g, refractive index and extinction coefficient of MAPbI3-x-y Br x Cl y are performed using first-principles calculations including the spin-orbit coupling (SOC) effect. MAPbI3-x-y Br x Cl y with five sets of x and y, which have a E g around 1.75 eV, are obtained. On this basis, absorption of the perovskite top cell is calculated applying the Lambert-Beer model (LBM) and the transfer matrix model (TMM), respectively. Considering the Auger recombination in the c-Si bottom cell and radiation coupling between the two subcells, the efficiencies for MAPbI3-x-y Br x Cl y /c-Si TSCs with the five sets of x and y are calculated. Among them, the MAPbI2.375Br0.5Cl0.125/c-Si TSC achieves the highest efficiency of 35.1% with a 440 nm thick top cell and 50 µm thick c-Si when applying the LBM. When applying the TMM, the highest efficiency of 32.5% is predicted with a 580 nm thick MAPbI2.375Br0.5Cl0.125 top cell and 50 µm thick c-Si. Compared with the limiting efficiency of 27.1% for a 190 µm thick c-Si single junction solar cell (SC), the MAPbI2.375Br0.5Cl0.125/c-Si TSC shows a superior performance of high efficiency and low c-Si consumption.

  17. Non-invasive assessment of adrenocortical function in captive Nile crocodiles (Crocodylus niloticus).

    PubMed

    Ganswindt, Stefanie B; Myburgh, Jan G; Cameron, Elissa Z; Ganswindt, Andre

    2014-11-01

    The occurrence of stress-inducing factors in captive crocodilians is a concern, since chronic stress can negatively affect animal health and reproduction, and hence production. Monitoring stress in wild crocodiles could also be beneficial for assessing the state of health in populations which are potentially threatened by environmental pollution. In both cases, a non-invasive approach to assess adrenocortical function as a measure of stress would be preferable, as animals are not disturbed during sample collection, and therefore sampling is feedback-free. So far, however, such a non-invasive method has not been established for any crocodilian species. As an initial step, we therefore examined the suitability of two enzyme-immunoassays, detecting faecal glucocorticoid metabolites (FGMs) with a 11β,21-diol-20-one and 5β-3α-ol-11-one structure, respectively, for monitoring stress-related physiological responses in captive Nile crocodiles (Crocodylus niloticus). An adrenocorticotropic hormone (ACTH) challenge was performed on 10 sub-adult crocodiles, resulting in an overall increase in serum corticosterone levels of 272% above the pre-injection levels 5h post-injection. Saline-treated control animals (n=8) showed an overall increase of 156% in serum corticosterone levels 5h post-administration. Faecal samples pre- and post-injection could be obtained from three of the six individually housed crocodiles, resulting in FGM concentrations 136-380% above pre-injection levels, always detected in the first sample collected post-treatment (7-15 days post-injection). FGM concentrations seem comparatively stable at ambient temperatures for up to 72 h post-defaecation. In conclusion, non-invasive hormone monitoring can be used for assessing adrenocortical function in captive Nile crocodiles based on FGM analysis. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Involvement of cyclin D and p27 in cell proliferation mediated by ROCK inhibitors Y-27632 and Y-39983 during corneal endothelium wound healing.

    PubMed

    Okumura, Naoki; Nakano, Shinichiro; Kay, EunDuck P; Numata, Ryohei; Ota, Aya; Sowa, Yoshihiro; Sakai, Toshiyuki; Ueno, Morio; Kinoshita, Shigeru; Koizumi, Noriko

    2014-01-15

    To investigate the molecular mechanism of Rho-associated kinase (ROCK) inhibitors Y-27632 and Y-39983 on corneal endothelial cell (CEC) proliferation and their wound-healing effect. The expression of G1 proteins of the cell cycle and expression of phosphorylated Akt in monkey CECs (MCECs) treated with Y-27632 were determined by Western blotting. The effect of Y-39983 on the proliferation of MCECs and human CECs (HCECs) was evaluated by both Ki67 staining and incorporation of BrdU. As an in vivo study, Y-39983 was topically instilled in a corneal-endothelial partially injured rabbit model, and CEC proliferation was then evaluated. Investigation of the molecular mechanism of Y-27632 on CEC proliferation revealed that Y-27632 facilitated degradation of p27Kip1 (p27), and promoted the expression of cyclin D. When CECs were stimulated with Y-27632, a 1.7-fold increase in the activation of Akt was seen in comparison to the control after 1 hour. The presence of LY294002, the PI 3-kinase inhibitor, sustained the level of p27. When the efficacy of Y-39983 on cell proliferation was measured in a rabbit model, Y-39983 eye-drop instillation demonstrated rapid wound healing in a concentration range of 0.095 to 0.95 mM, whereas Y-27632 demonstrated rapid wound healing in a concentration range of 3 to 10 mM. These findings show that ROCK inhibitors employ both cyclin D and p27 via PI 3-kinase signaling to promote CEC proliferation, and that Y-39983 may be a more potent agent than Y-27632 for facilitating corneal endothelium wound healing.

  19. Characterization of the OmyY1 region on the rainbow trout Y chromosome

    USGS Publications Warehouse

    Phillips, Ruth B.; DeKoning, Jenefer J.; Brunelli, Joseph P.; Faber-Hammond, Joshua J.; Hansen, John D.; Christensen, Kris A.; Renn, Suzy C.P.; Thorgaard, Gary H.

    2013-01-01

    We characterized the male-specific region on the Y chromosome of rainbow trout, which contains both sdY (the sex-determining gene) and the male-specific genetic marker, OmyY1. Several clones containing the OmyY1 marker were screened from a BAC library from a YY clonal line and found to be part of an 800 kb BAC contig. Using fluorescence in situ hybridization (FISH), these clones were localized to the end of the short arm of the Y chromosome in rainbow trout, with an additional signal on the end of the X chromosome in many cells. We sequenced a minimum tiling path of these clones using Illumina and 454 pyrosequencing. The region is rich in transposons and rDNA, but also appears to contain several single-copy protein-coding genes. Most of these genes are also found on the X chromosome; and in several cases sex-specific SNPs in these genes were identified between the male (YY) and female (XX) homozygous clonal lines. Additional genes were identified by hybridization of the BACs to the cGRASP salmonid 4x44K oligo microarray. By BLASTn evaluations using hypothetical transcripts of OmyY1-linked candidate genes as query against several EST databases, we conclude at least 12 of these candidate genes are likely functional, and expressed.

  20. Optimization of Monocrystalline MgxCd1-xTe/MgyCd1-yTe Double-Heterostructure Solar Cells

    NASA Astrophysics Data System (ADS)

    Becker, Jacob J.

    Polycrystalline CdS/CdTe solar cells continue to dominate the thin-film photovoltaics industry with an achieved record efficiency of over 22% demonstrated by First Solar, yet monocrystalline CdTe devices have received considerably less attention over the years. Monocrystalline CdTe double-heterostructure solar cells show great promise with respect to addressing the problem of low Voc with the passing of the 1 V benchmark. Rapid progress has been made in driving the efficiency in these devices ever closer to the record presently held by polycrystalline thin-films. This achievement is primarily due to the utilization of a remote p-n heterojunction in which the heavily doped contact materials, which are so problematic in terms of increasing non-radiative recombination inside the absorber, are moved outside of the CdTe double heterostructure with two MgyCd1-yTe barrier layers to provide confinement and passivation at the CdTe surfaces. Using this design, the pursuit and demonstration of efficiencies beyond 20% in CdTe solar cells is reported through the study and optimization of the structure barriers, contacts layers, and optical design. Further development of a wider bandgap MgxCd1-xTe solar cell based on the same design is included with the intention of applying this knowledge to the development of a tandem solar cell constructed on a silicon subcell. The exploration of different hole-contact materials--ZnTe, CuZnS, and a-Si:H--and their optimization is presented throughout the work. Devices utilizing a-Si:H hole contacts exhibit open-circuit voltages of up to 1.11 V, a maximum total-area efficiency of 18.5% measured under AM1.5G, and an active-area efficiency of 20.3% for CdTe absorber based devices. The achievement of voltages beyond 1.1V while still maintaining relatively high fill factors with no rollover, either before or after open-circuit, is a promising indicator that this approach can result in devices surpassing the 22% record set by polycrystalline

  1. Improving cell therapy – experiments using transplanted telomerase-immortalized cells in immunodeficient mice

    PubMed Central

    Huang, Qin; Chen, Meizhen; Liang, Sitai; Acha, Victor; Liu, Dan; Yuan, Furong; Hawks, Christina L.; Hornsby, Peter J.

    2007-01-01

    Cell therapy is the use of stem cells and other types of cells in various therapies for age-related diseases. Two issues that must be addressed before cell therapy could be used routinely in medicine are improved efficacy of the transplanted cells and demonstrated long-term safety. Desirable genetic modifications that could be made to cells to be used for cell therapy include immortalization with hTERT (human telomerase reverse transcriptase). We have used a model for cell therapy in which transplantation of adrenocortical cells restores glucocorticoid and mineralocorticoid hormone levels in adrenalectomized immunodeficient mice. In this model, clones of cells that had been immortalized with hTERT were shown to be able to replace the function of the animals'adrenal glands by forming vascularized tissue structures when cells were transplanted beneath the capsule of the kidney. hTERT-modified cells showed no tendency for neoplastic changes. Moreover, a series of experiments showed that hTERT does not cooperate with known oncoproteins in tumorigenesis either in adrenocortical cells or in human fibroblasts. Nevertheless, hTERT was required for tumorigenesis when cells were implanted subcutaneously rather than in the subrenal capsule space. Changes in gene expression make hTERT-modified cells more robust. Understanding these changes is important so as to be able to separately control immortalization and other desirable properties of cells that could be used in cell therapy. Alternatively, desirable properties of transplants might be provided by co-transplanted mesenchymal cells: mesenchymal cell-assisted cell therapy. For both hTERT modification and mesenchymal cell-assisted cell therapy, genomics approaches will be needed to define what genetic modifications are desirable and safe in cells used in cell therapy. PMID:17123586

  2. Inhibition and induction of aromatase (CYP19) activity by brominated flame retardants in H295R human adrenocortical carcinoma cells.

    PubMed

    Cantón, Rocío F; Sanderson, J Thomas; Letcher, Robert J; Bergman, Ake; van den Berg, Martin

    2005-12-01

    Brominated flame retardants (BFRs) are persistent and ubiquitous chemicals in the environment, and they are found at increasing levels in tissues of wildlife and humans. Previous in vitro studies with the BFR class of polybrominated diphenyl ethers (BDEs) have shown endocrine-disrupting properties. Our study assessed the potential effects of nineteen BDEs, five hydroxylated BDEs (OH-BDEs), one methoxylated BDE (CH(3)O-BDE), tetrabromobisphenol-A (TBBPA), its dibromopropane ether derivative (TBBPA-DBPE), and the brominated phenols/anisols 2,4,6-tribromophenol (TBP), 4-bromophenol (4BP) and 2,4,6-tribromoanisole (TBA) on the catalytic activity of the steroidogenic enzyme aromatase (CYP19) in H295R human adrenocortical carcinoma cells. Effects were studied in the concentration range from 0.5 to 7.5 microM; exposures were for 24 h. Both 6-OH-BDE47 and 6-OH-BDE99 showed an inhibitory effect on aromatase activity at concentrations >2.5 microM and >5 microM, respectively. However, 6-OH-BDE47 also caused a statistically significant increase in cytotoxicity (based on mitochondrial MTT reduction and lactate dehydrogenase-leakage [LDH]) at concentrations >2.5 microM that could explain in part the apparent inhibitory effect on aromatase activity. Compared to 6-OH-BDE47, the methoxy analog (6-CH(3)O-BDE47) did not elicit a cytotoxic effect, whereas significant inhibition of aromatase remained. TBP caused a concentration-dependent induction of aromatase activity between 0.5 and 7.5 microM (with a maximum of 3.8-fold induction at 7.5 microM). This induction was not observed when a OH- group replaced the CH(3)O- group or when bromine atoms adjacent to this OH- group were absent. These in vitro results provide a basis for studies of more detailed structure-activity relationships between these brominated compounds and the modulation of aromatase activity.

  3. Tetramethylpyrazine induces SH-SY5Y cell differentiation toward the neuronal phenotype through activation of the PI3K/Akt/Sp1/TopoIIβ pathway.

    PubMed

    Yan, Yong-Xin; Zhao, Jun-Xia; Han, Shuo; Zhou, Na-Jing; Jia, Zhi-Qiang; Yao, Sheng-Jie; Cao, Cui-Li; Wang, Yan-Ling; Xu, Yan-Nan; Zhao, Juan; Yan, Yun-Li; Cui, Hui-Xian

    2015-12-01

    Tetramethylpyrazine (TMP) is an active compound extracted from the traditional Chinese medicinal herb Chuanxiong. Previously, we have shown that TMP induces human SH-SY5Y neuroblastoma cell differentiation toward the neuronal phenotype by targeting topoisomeraseIIβ (TopoIIβ), a protein implicated in neural development. In the present study, we aimed to elucidate whether the transcriptional factors specificity protein 1 (Sp1) and nuclear factor Y (NF-Y), in addition to the upstream signaling pathways ERK1/2 and PI3K/Akt, are involved in modulating TopoIIβ expression in the neuronal differentiation process. We demonstrated that SH-SY5Y cells treated with TMP (80μM) terminally differentiated into neurons, characterized by increased neuronal markers, tubulin βIII and microtubule associated protein 2 (MAP2), and increased neurite outgrowth, with no negative effect on cell survival. TMP also increased the expression of TopoIIβ, which was accompanied by increased expression of Sp1 in the differentiated neuron-like cells, whereas NF-Y protein levels remained unchanged following the differentiation progression. We also found that the phosphorylation level of Akt, but not ERK1/2, was significantly increased as a result of TMP stimulation. Furthermore, as established by chromatin immunoprecipitation (ChIP) assay, activation of the PI3K/Akt pathway increased Sp1 binding to the promoter of the TopoIIβ gene. Blockage of PI3K/Akt was shown to lead to subsequent inhibition of TopoIIβ expression and neuronal differentiation. Collectively, the results indicate that the PI3K/Akt/Sp1/TopoIIβ signaling pathway is necessary for TMP-induced neuronal differentiation. Our findings offer mechanistic insights into understanding the upstream regulation of TopoIIβ in neuronal differentiation, and suggest potential applications of TMP both in neuroscience research and clinical practice to treat relevant diseases of the nervous system. Copyright © 2015 Elsevier GmbH. All rights

  4. Paracrine Maturation and Migration of SH-SY5Y Cells by Dental Pulp Stem Cells.

    PubMed

    Gervois, P; Wolfs, E; Dillen, Y; Hilkens, P; Ratajczak, J; Driesen, R B; Vangansewinkel, T; Bronckaers, A; Brône, B; Struys, T; Lambrichts, I

    2017-06-01

    Neurological disorders are characterized by neurodegeneration and/or loss of neuronal function, which cannot be adequately repaired by the host. Therefore, there is need for novel treatment options such as cell-based therapies that aim to salvage or reconstitute the lost tissue or that stimulate host repair. The present study aimed to evaluate the paracrine effects of human dental pulp stem cells (hDPSCs) on the migration and neural maturation of human SH-SY5Y neuroblastoma cells. The hDPSC secretome had a significant chemoattractive effect on SH-SY5Y cells as shown by a transwell assay. To evaluate neural maturation, SH-SY5Y cells were first induced toward neuronal cells, after which they were exposed to the hDPSC secretome. In addition, SH-SY5Y cells subjected to the hDPSC secretome showed increased neuritogenesis compared with nonexposed cells. Maturated cells were shown to increase immune reactivity for neuronal markers compared with controls. Ultrastructurally, retinoic acid (RA) signaling and subsequent exposure to the hDPSC secretome induced a gradual rise in metabolic activity and neuronal features such as multivesicular bodies and cytoskeletal elements associated with cellular communication. In addition, electrophysiological recordings of differentiating cells demonstrated a transition toward a neuronal electrophysiological profile based on the maximum tetrodotoxin (TTX)-sensitive, Na + current. Moreover, conditioned medium (CM)-hDPSC-maturated SH-SY5Y cells developed distinct features including, Cd 2+ -sensitive currents, which suggests that CM-hDPSC-maturated SH-SY5Y acquired voltage-gated Ca 2+ channels. The results reported in this study demonstrate the potential of hDPSCs to support differentiation and recruitment of cells with neuronal precursor characteristics in a paracrine manner. Moreover, this in vitro experimental design showed that the widely used SH-SY5Y cell line can improve and simplify the preclinical in vitro research on the molecular

  5. Transient adrenocortical insufficiency of prematurity and systemic hypotension in very low birthweight infants

    PubMed Central

    Ng, P; Lee, C; Lam, C; Ma, K; Fok, T; Chan, I; Wong, E

    2004-01-01

    Objectives: A proportion of preterm, very low birthweight (VLBW, < 1500 g) infants may show inadequate adrenal response to stress in the immediate postnatal period. The human corticotrophin releasing hormone (hCRH) stimulation test was used to: (a) determine the relation between pituitary-adrenal response and systemic blood pressure in these infants; (b) characterise the endocrinological features of transient adrenocortical insufficiency of prematurity (TAP). Study design: A total of 226 hCRH tests were performed on 137 VLBW infants on day 7 and 14 of life in a tertiary neonatal centre. Results: Basal, peak, and incremental rise in serum cortisol (ΔCort0–30) on day 7 were associated significantly with the lowest systolic, mean, and diastolic blood pressures recorded during the first two weeks of life (r > 0.25, p < 0.005). These cortisol concentrations also correlated significantly but negatively with the maximum and total cumulative dose of dopamine (r > -0.22, p < 0.02), dobutamine (r > -0.18, p < 0.04), and adrenaline (r > -0.26, p < 0.004), total volume of crystalloid (r > -0.22, p < 0.02), and duration of inotrope treatment (r > -0.25, p < 0.006). Multivariate regression analysis of significant factors showed that the lowest systolic, mean, and diastolic blood pressures remained independently associated with serum cortisol (basal, peak, and ΔCort0–30) on day 7. Hypotensive infants requiring inotropes (group 2) were significantly less mature and more sick than infants with normal blood pressure (group 1). The areas under the ACTH response curves were significantly greater in group 2 than in group 1, on both day 7 (p = 0.004) and day 14 (p = 0.004). In contrast, the area under the cortisol response curve was significantly greater in group 1 than in group 2 on day 7 (p = 0.001), but there was no significant difference between the two groups on day 14. In addition, serum cortisol at the 50th centile in hypotensive infants had high specificity and positive

  6. Calneuron 1 Increased Ca2+ in the Endoplasmic Reticulum and Aldosterone Production in Aldosterone-Producing Adenoma.

    PubMed

    Kobuke, Kazuhiro; Oki, Kenji; Gomez-Sanchez, Celso E; Gomez-Sanchez, Elise P; Ohno, Haruya; Itcho, Kiyotaka; Yoshii, Yoko; Yoneda, Masayasu; Hattori, Noboru

    2018-01-01

    Aldosterone production is initiated by angiotensin II stimulation and activation of intracellular Ca 2+ signaling. In aldosterone-producing adenoma (APA) cells, the activation of intracellular Ca 2+ signaling is independent of the renin-angiotensin-aldosterone systems. The purpose of our study was to clarify molecular mechanisms of aldosterone production related to Ca 2+ signaling. Transcriptome analysis revealed that the CALN1 gene encoding calneuron 1 had the strongest correlation with CYP11B2 (aldosterone synthase) among genes encoding Ca 2+ -binding proteins in APA. CALN1 modulation and synthetic or fluorescent compounds were used for functional studies in human adrenocortical carcinoma (HAC15) cells. CALN1 expression was 4.4-fold higher in APAs than nonfunctioning adrenocortical adenomas. CALN1 expression colocalized with CYP11B2 expression as investigated using immunohistochemistry in APA and zona glomerulosa of male rats fed by a low-salt diet. CALN1 expression was detected in the endoplasmic reticulum (ER) by using GFP-fused CALN1, CellLight ER-RFP, and the corresponding antibodies. CALN1 -overexpressing HAC15 cells showed increased Ca 2+ in the ER and cytosol fluorescence-based studies. Aldosterone production was potentiated in HAC15 cells by CALN1 expression, and dose-responsive inhibition with TMB-8 showed that CALN1-mediated Ca 2+ storage in ER involved sarcoendoplasmic reticulum calcium transport ATPase. The silencing of CALN1 decreased Ca 2+ in ER, and abrogated angiotensin II- or KCNJ5 T158A-mediated aldosterone production in HAC15 cells. Increased CALN1 expression in APA was associated with elevated Ca 2+ storage in ER and aldosterone overproduction. Suppression of CALN1 expression prevented angiotensin II- or KCNJ5 T158A-mediated aldosterone production in HAC15 cells, suggesting that CALN1 is a potential therapeutic target for excess aldosterone production. © 2017 American Heart Association, Inc.

  7. Prostate-Specific Membrane Antigen Expression in Adrenocortical Carcinoma on 68Ga-Prostate-Specific Membrane Antigen PET/CT.

    PubMed

    Arora, Saurabh; Damle, Nishikant Avinash; Aggarwal, Sameer; Passah, Averilicia; Behera, Abhishek; Arora, Geetanjali; Bal, Chandrasekhar; Tripathi, Madhavi

    2018-06-01

    We present here a case of metastatic adrenocortical carcinoma with bilateral lung nodules. The patient had been treated with mitotane therapy initially and then was later referred for chemotherapy. There was progression of disease noted on the F-FDG PET/CT. Ga prostate-specific membrane antigen (PSMA) PET/CT was planned to explore the possibility of future treatment with Lu-DKFZ-PSMA-617. It revealed peripheral increased uptake of Ga-HBED-CC-PSMA equal to liver uptake.

  8. Interparental Aggression and Infant Patterns of Adrenocortical and Behavioral Stress Responses

    PubMed Central

    Towe-Goodman, Nissa R.; Stifter, Cynthia A.; Mills-Koonce, W. Roger; Granger, Douglas A.

    2011-01-01

    Drawing on emotional security theory, this study examined linkages between interparental aggression, infant self-regulatory behaviors, and patterns of physiological and behavioral stress responses in a diverse sample of 735 infants residing in predominately low-income, nonmetropolitan communities. Latent profile analysis revealed four classes of adrenocortical and behavioral stress response patterns at 7-months of age, using assessments of behavioral and cortisol reactivity to an emotion eliciting challenge, as well as global ratings of the child’s negative affect and basal cortisol levels. The addition of covariates within the latent profile model suggested that children with more violence in the home and who used less caregiver-oriented regulation strategies were more likely to exhibit a pattern of high cortisol reactivity with moderate signs of distress rather than the average stress response, suggesting possible patterns of adaptation in violent households. PMID:22127795

  9. Cytochrome P450 2D6 enzyme neuroprotects against 1-methyl-4-phenylpyridinium toxicity in SH-SY5Y neuronal cells

    PubMed Central

    Mann, Amandeep; Tyndale, Rachel F.

    2016-01-01

    Cytochrome P450 (CYP) 2D6 is an enzyme that is expressed in liver and brain. It can inactivate neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1,2,3,4-tetrahydroisoquinoline and β-carbolines. Genetically slow CYP2D6 metabolizers are at higher risk for developing Parkinson’s disease, a risk that increases with exposure to pesticides. The goal of this study was to investigate the neuroprotective role of CYP2D6 in an in-vitro neurotoxicity model. SH-SY5Y human neuroblastoma cells express CYP2D6 as determined by western blotting, immunocytochemistry and enzymatic activity. CYP2D6 metabolized 3-[2-(N,N-diethyl-N-methylammonium)ethyl]-7-methoxy-4-methylcoumarin and the CYP2D6-specific inhibitor quinidine (1 μM) blocked 96 ± 1% of this metabolism, indicating that CYP2D6 is functional in this cell line. Treatment of cells with CYP2D6 inhibitors (quinidine, propanolol, metoprolol or timolol) at varying concentrations significantly increased the neurotoxicity caused by 1-methyl-4-phenylpyridinium (MPP+) at 10 and 25 μM by between 9 ± 1 and 22 ± 5% (P < 0.01). We found that CYP3A is also expressed in SH-SY5Y cells and inhibiting CYP3A with ketoconazole significantly increased the cell death caused by 10 and 25 μM of MPP+ by between 8 ± 1 and 30 ± 3% (P < 0.001). Inhibiting both CYP2D6 and CYP3A showed an additive effect on MPP+ neurotoxicity. These data further support a possible role for CYP2D6 in neuroprotection from Parkinson’s disease-causing neurotoxins, especially in the human brain where expression of CYP2D6 is high in some regions (e.g. substantia nigra). PMID:20345925

  10. Adrenocortical Expression Profiling of Cattle with Distinct Juvenile Temperament Types.

    PubMed

    Friedrich, Juliane; Brand, Bodo; Graunke, Katharina Luise; Langbein, Jan; Schwerin, Manfred; Ponsuksili, Siriluck

    2017-01-01

    Temperament affects ease of handling, animal welfare, and economically important production traits in cattle. The use of gene expression profiles as molecular traits provides a novel means of gaining insight into behavioural genetics. In this study, differences in adrenocortical expression profiles between 60 F 2 cows (Charolais × German Holstein) of distinct temperament types were analysed. The cows were assessed in a novel-human test at an age of 90 days. Most of the adrenal cortex transcripts which were differentially expressed (FDR <0.05) were found between temperament types of 'fearful/neophobic-alert' and all other temperament types. These transcripts belong to several biological functions like NRF2-mediated oxidative stress response, Glucocorticoid Receptor Signalling and Complement System. Overall, the present study provides new insight into transcriptional differences in the adrenal cortex between cows of distinct temperament types. Genetic regulations of such molecular traits facilitate uncovering positional and functional gene candidates for temperament type in cattle.

  11. (+/-)-3-[4-(2-dimethylamino-1-methylethoxy)-phenyl]-1H-pyrazolo[3,4- B]pyridine-1-acetic acid (Y-25510) stimulates production of IL-1 beta and IL-6 at the level of messenger RNA expression in cultured human monocytes.

    PubMed

    Kusuhara, H; Komatsu, H; Hisadome, M; Ikeda, Y

    1996-12-01

    (+/-)-3-[4-(2-Dimethylamino-1-methylethoxy)phenyl]-1H-pyrazolo[3, 4-b]pyridine-1-acetic acid (Y-25510) stimulated the mRNA expression for interleukin-1 beta (IL-1 beta), and enhanced the expression induced by lipopolysaccharide (LPS) in cultured human peripheral blood mononuclear cells (PBMC) and THP-1 cells, a cell-line derived from human monocytic leukemia. Y-25510 also stimulated the mRNA expression for IL-6 in both types of the cells, however, the stimulation required the presence of LPS. In THP-1 cells, the stimulation of IL-1 beta mRNA expression by Y-25510 was suppressed by cycloheximide, an inhibitor of protein synthesis. This phenomenon indicates that the stimulation requires de norv protein synthesis. In contrast, the stimulation of mRNA expression for IL-6 by Y-25510 was not suppressed by cycloheximide but suppressed by N alpha-p-tosyl-L-phenylalanine chloromethyl ketone (TPCK), an inhibitor of nuclear transcription factor-kappa B (NF-kappa B) activation, in the presence of LPS, suggesting that the stimulation requires NF-kappa activation. These results demonstrate that Y-25510 stimulates the mRNA expression for IL-1 beta and IL-6 by different mechanisms. Dexamethasone suppressed the LPS-induced expression of mRNA for IL-1 beta and IL-6 in THP-1 cells, whereas the drug never suppressed the mRNA expression for these cytokines in the presence of Y-25510. The result indicates that Y-25510 stimulates the mRNA expression for IL-1 beta and IL-6 by different mechanisms from those of LPS.

  12. Mechanistic Computational Model of Steroidgenesis in H295R Cells: Role of (Oxysterols and Cell Proliferation to Improve Predictability of Biochemical Response to Endocrine Active Chemical-Metyrapone

    EPA Science Inventory

    The human adrenocortical carcinoma cell line H295R is being used as an in vitro steroidogenesis screening assay to assess the impact of endocrine active chemicals (EACs) capable of altering steroid biosynthesis. To enhance the interpretation and quantitative application of measur...

  13. Adrenocortical and adrenomedullary homologs in eight species of adult and developing teleosts: morphology, histology, and immunohistochemistry.

    PubMed

    Grassi Milano, E; Basari, F; Chimenti, C

    1997-12-01

    Morphology, histology, and immunohistochemistry of the adrenocortical and adrenomedullary homologs (adrenal glands) of the following developing and adult teleosts were examined: Salmoniformes-Oncorhynchus mykiss (rainbow trout), Salmo trutta fario (brown trout), Coregonus lavaretus (white fish); Cyprinodontiformes-Gambusia affinis (mosquito fish). Perciformes-Dicentrarchus labrax (sea bass), Sparus aurata (sea bream), Diplodus sargus (white bream), Oblada melanura (saddled bream). The anatomical relationships of the gland with the renal system and venous vessels were also noted. In adults of all species steroidogenic and catecholaminergic chromaffin cells were found in the head kidney, which is pronephric in origin and subsequently transformed into a hematopoietic lymphatic organ. In Perciformes, chromaffin cells are distributed around the anterior and posterior cardinal veins and ducts of Cuvier; in Salmoniformes, around the posterior cardinal veins and in the hematopoietic tissue; and in G. affinis, around the ducts of Cuvier and posterior cardinal veins, while a few are visible also around the sinus venosus. In Perciformes and Salmoniformes, numerous chromaffin cells are also present in the posterior kidney, derived from the opisthonephros, in contact with the caudal vein. Steroidogenic cells are always confined to the head kidney. During development chromaffin and steroidogenic cells appear early after hatching in the pronephric kidney, at the level of the ducts of Cuvier and of the cephalic part of the posterior cardinal veins. Later, chromaffin cells in Perciformes reach the anterior cardinal veins, and subsequently, in both Perciformes and Salmoniformes, they reach the developing posterior kidney. Their localization along the posterior kidney is still in progress about 4 months after hatching and is completed about a year after hatching. These findings support the concept that the structure of the adrenal gland in teleosts is intermediate between that of the

  14. Optimising parameters for the differentiation of SH-SY5Y cells to study cell adhesion and cell migration.

    PubMed

    Dwane, Susan; Durack, Edel; Kiely, Patrick A

    2013-09-11

    Cell migration is a fundamental biological process and has an important role in the developing brain by regulating a highly specific pattern of connections between nerve cells. Cell migration is required for axonal guidance and neurite outgrowth and involves a series of highly co-ordinated and overlapping signalling pathways. The non-receptor tyrosine kinase, Focal Adhesion Kinase (FAK) has an essential role in development and is the most highly expressed kinase in the developing CNS. FAK activity is essential for neuronal cell adhesion and migration. The objective of this study was to optimise a protocol for the differentiation of the neuroblastoma cell line, SH-SY5Y. We determined the optimal extracellular matrix proteins and growth factor combinations required for the optimal differentiation of SH-SY5Y cells into neuronal-like cells and determined those conditions that induce the expression of FAK. It was confirmed that the cells were morphologically and biochemically differentiated when compared to undifferentiated cells. This is in direct contrast to commonly used differentiation methods that induce morphological differentiation but not biochemical differentiation. We conclude that we have optimised a protocol for the differentiation of SH-SY5Y cells that results in a cell population that is both morphologically and biochemically distinct from undifferentiated SH-SY5Y cells and has a distinct adhesion and spreading pattern and display extensive neurite outgrowth. This protocol will provide a neuronal model system for studying FAK activity during cell adhesion and migration events.

  15. NF546 [4,4'-(carbonylbis(imino-3,1-phenylene-carbonylimino-3,1-(4-methyl-phenylene)-carbonylimino))-bis(1,3-xylene-alpha,alpha'-diphosphonic acid) tetrasodium salt] is a non-nucleotide P2Y11 agonist and stimulates release of interleukin-8 from human monocyte-derived dendritic cells.

    PubMed

    Meis, Sabine; Hamacher, Alexandra; Hongwiset, Darunee; Marzian, Claudia; Wiese, Michael; Eckstein, Niels; Royer, Hans-Dieter; Communi, Didier; Boeynaems, Jean-Marie; Hausmann, Ralf; Schmalzing, Günther; Kassack, Matthias U

    2010-01-01

    The G protein-coupled P2Y(11) receptor is involved in immune system modulation. In-depth physiological evaluation is hampered, however, by a lack of selective and potent ligands. By screening a library of sulfonic and phosphonic acid derivatives at P2Y(11) receptors recombinantly expressed in human 1321N1 astrocytoma cells (calcium and cAMP assays), the selective non-nucleotide P2Y(11) agonist NF546 [4,4'-(carbonylbis(imino-3,1-phenylene-carbonylimino-3,1-(4-methyl-phenylene)carbonylimino))-bis(1,3-xylene-alpha,alpha'-diphosphonic acid) tetrasodium salt] was identified. NF546 had a pEC(50) of 6.27 and is relatively selective for P2Y(11) over P2Y(1), P2Y(2), P2Y(4), P2Y(6), P2Y(12), P2X(1), P2X(2), and P2X(2)-X(3). Adenosine-5'-O-(3-thio)triphosphate (ATPgammaS), a nonhydrolyzable analog of the physiological P2Y(11) agonist ATP, and NF546 use a common binding site as suggested by molecular modeling studies and their competitive behavior toward the nanomolar potency antagonist NF340 [4,4'-(carbonylbis(imino-3,1-(4-methyl-phenylene)carbonylimino))bis(naphthalene-2,6-disulfonic acid) tetrasodium salt] in Schild analysis. The pA(2) of NF340 was 8.02 against ATPgammaS and 8.04 against NF546 (calcium assays). NF546 was further tested for P2Y(11)-mediated effects in monocyte-derived dendritic cells. Similarly to ATPgammaS, NF546 led to thrombospondin-1 secretion and inhibition of lipopolysaccharide-stimulated interleukin-12 release, whereas NF340 inhibited these effects. Further, for the first time, it was shown that ATPgammaS or NF546 stimulation promotes interleukin 8 (IL-8) release from dendritic cells, which could be inhibited by NF340. In conclusion, we have described the first selective, non-nucleotide agonist NF546 for P2Y(11) receptors in both recombinant and physiological expression systems and could show a P2Y(11)-stimulated IL-8 release, further supporting the immunomodulatory role of P2Y(11) receptors.

  16. On Positive Solutions for the Rational Difference Equation Systems x n+1 = A/x n y n (2), and y n+1 = By n /x n-1 y n-1.

    PubMed

    Ma, Hui-Li; Feng, Hui

    2014-01-01

    Our aim in this paper is to investigate the behavior of positive solutions for the following systems of rational difference equations: x n+1 = A/x n y n (2), and y n+1 = By n /x n-1 y n-1, n = 0,1,…, where x -1, x 0, y -1, and y 0 are positive real numbers and A and B are positive constants.

  17. Modulation of tyrosine hydroxylase expression by melatonin in human SH-SY5Y neuroblastoma cells.

    PubMed

    McMillan, Catherine R; Sharma, Rohita; Ottenhof, Tom; Niles, Lennard P

    2007-06-04

    We have previously reported in vivo preservation of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, following treatment with physiological doses of melatonin, in a 6-hydroxydopamine model of Parkinson's disease. Based on these findings, we postulated that melatonin would similarly modulate the expression of TH in vitro. Therefore, using human SH-SY5Y neuroblastoma cells which can differentiate into dopaminergic neurons following treatment with retinoic acid, we first examined whether these cells express melatonin receptors. Subsequently, the physiological dose-dependent effects of melatonin on TH expression were examined in both undifferentiated and differentiated cells. The novel detection of the G protein-coupled melatonin MT(1) receptor in SH-SY5Y cells by RT-PCR was confirmed by sequencing and Western blotting. In addition, following treatment of SH-SY5Y cells with melatonin (0.1-100 nM) for 24h, Western analysis revealed a significant increase in TH protein levels. A biphasic response, with significant increases in TH protein at 0.5 and 1 nM melatonin and a reversal at higher doses was seen in undifferentiated cells; whereas in differentiated cells, melatonin was effective at doses of 1 and 100 nM. These findings suggest a physiological role for melatonin in modulating TH expression, possibly via the MT(1) receptor.

  18. Microencapsulation Of Living Cells

    NASA Technical Reports Server (NTRS)

    Chang, Manchium; Kendall, James M.; Wang, Taylor G.

    1989-01-01

    In experimental technique, living cells and other biological materials encapsulated within submillimeter-diameter liquid-filled spheres. Sphere material biocompatible, tough, and compliant. Semipermeable, permitting relatively small molecules to move into and out of sphere core but preventing passage of large molecules. New technique promises to make such spherical capsules at high rates and in uniform, controllable sizes. Capsules injected into patient through ordinary hypodermic needle. Promising application for technique in treatment of diabetes. Also used to encapsulate pituitary cells and thyroid hormone adrenocortical cells for treatment of other hormonal disorders, to encapsulate other secreting cells for transplantation, and to package variety of pharmaceutical products and agricultural chemicals for controlled release.

  19. The antidepressant effects of running and escitalopram are associated with levels of hippocampal NPY and Y1 receptor but not cell proliferation in a rat model of depression.

    PubMed

    Bjørnebekk, Astrid; Mathé, Aleksander A; Brené, Stefan

    2010-07-01

    One hypothesis of depression is that it is caused by reduced neuronal plasticity including hippocampal neurogenesis. In this study, we compared the effects of three long-term antidepressant treatments: escitalopram, voluntary running, and their combination on hippocampal cell proliferation, NPY and the NPY-Y1 receptor mRNAs, targets assumed to be important for hippocampal plasticity and mood disorders. An animal model of depression, the Flinders Sensitive Line (FSL) rat, was used and female rats were chosen because the majority of the depressed population is females. We investigated if these treatments were correlated to immobility, swimming, and climbing behaviors, which are associated with an overall, serotonergic-like and noradrenergic-like antidepressant response, in the Porsolt swim test (PST). Interestingly, while escitalopram, running and their combination increased the number of hippocampal BrdU immunoreactive cells, the antidepressant-like effect was only detected in the running group and the group with access both to running wheel and escitalopram. Hippocampal NPY mRNA and the NPY-Y1 receptor mRNA were elevated by running and the combined treatment. Moreover, correlations were detected between NPY mRNA levels and climbing and cell proliferation and NPY-Y1 receptor mRNA levels and swimming. Our results suggest that increased cell proliferation is not necessarily associated with an antidepressant effect. However, treatments that were associated with an antidepressant-like effect did regulate hippocampal levels of mRNAs encoding NPY and/or the NPY-Y1 receptor and support the notion that NPY can stimulate cell proliferation and induce an antidepressant-like response. Copyright 2009 Wiley-Liss, Inc.

  20. Optimising parameters for the differentiation of SH-SY5Y cells to study cell adhesion and cell migration

    PubMed Central

    2013-01-01

    Background Cell migration is a fundamental biological process and has an important role in the developing brain by regulating a highly specific pattern of connections between nerve cells. Cell migration is required for axonal guidance and neurite outgrowth and involves a series of highly co-ordinated and overlapping signalling pathways. The non-receptor tyrosine kinase, Focal Adhesion Kinase (FAK) has an essential role in development and is the most highly expressed kinase in the developing CNS. FAK activity is essential for neuronal cell adhesion and migration. Results The objective of this study was to optimise a protocol for the differentiation of the neuroblastoma cell line, SH-SY5Y. We determined the optimal extracellular matrix proteins and growth factor combinations required for the optimal differentiation of SH-SY5Y cells into neuronal-like cells and determined those conditions that induce the expression of FAK. It was confirmed that the cells were morphologically and biochemically differentiated when compared to undifferentiated cells. This is in direct contrast to commonly used differentiation methods that induce morphological differentiation but not biochemical differentiation. Conclusions We conclude that we have optimised a protocol for the differentiation of SH-SY5Y cells that results in a cell population that is both morphologically and biochemically distinct from undifferentiated SH-SY5Y cells and has a distinct adhesion and spreading pattern and display extensive neurite outgrowth. This protocol will provide a neuronal model system for studying FAK activity during cell adhesion and migration events. PMID:24025096

  1. Sulforaphane Attenuated the Pro-Inflammatory State Induced by Hydrogen Peroxide in SH-SY5Y Cells Through the Nrf2/HO-1 Signaling Pathway.

    PubMed

    de Oliveira, Marcos Roberto; Brasil, Flávia Bittencourt; Fürstenau, Cristina Ribas

    2018-02-23

    Sulforaphane (SFN), an isothiocyanate obtained from cruciferous vegetables, exerts antioxidant, antiapoptotic, and antitumor activities in different cell types. Moreover, SFN has been viewed as an anti-inflammatory agent. Nonetheless, the mechanism underlying the ability of SFN in modulating the immune response in mammalian cells is not completely understood yet. Therefore, we investigated here whether and how SFN would be effective in preventing inflammation induced by a pro-oxidant agent (hydrogen peroxide, H 2 O 2 ) in the human neuroblastoma SH-SY5Y cells. The cells were treated with SFN at 5 μM for 30 min before a challenge with H 2 O 2 for an additional 24 h. Pretreatment with SFN reduced the secretion of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well as decreased the levels of cyclooxygenase-2 (COX-2) in H 2 O 2 -treated cells. SFN also decreased the activity of the transcription factor nuclear factor-κB (NF-κB) and the immunocontent of the p65 NF-κB subunit in the cell nucleus. The inhibition of heme oxygenase-1 (HO-1) by ZnPP-IX at 10 μM or the silencing of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor by small interfering RNA targeting Nrf2 attenuated the anti-inflammatory and cytoprotective effects induced by SFN. Therefore, SFN exerted an anti-inflammatory effect in H 2 O 2 -challenged SH-SY5Y cells by a mechanism dependent on the Nrf2/HO-1 signaling pathway.

  2. Multiple roles of Pseudomonas aeruginosa TBCF10839 PilY1 in motility, transport and infection

    PubMed Central

    Bohn, Yu-Sing Tammy; Brandes, Gudrun; Rakhimova, Elza; Horatzek, Sonja; Salunkhe, Prabhakar; Munder, Antje; van Barneveld, Andrea; Jordan, Doris; Bredenbruch, Florian; Häußler, Susanne; Riedel, Kathrin; Eberl, Leo; Jensen, Peter Østrup; Bjarnsholt, Thomas; Moser, Claus; Hoiby, Niels; Tümmler, Burkhard; Wiehlmann, Lutz

    2008-01-01

    Polymorphonuclear neutrophils are the most important mammalian host defence cells against infections with Pseudomonas aeruginosa. Screening of a signature tagged mutagenesis library of the non-piliated P. aeruginosa strain TBCF10839 uncovered that transposon inactivation of its pilY1 gene rendered the bacterium more resistant against killing by neutrophils than the wild type and any other of the more than 3000 tested mutants. Inactivation of pilY1 led to the loss of twitching motility in twitching-proficient wild-type PA14 and PAO1 strains, predisposed to autolysis and impaired the secretion of quinolones and pyocyanin, but on the other hand promoted growth in stationary phase and bacterial survival in murine airway infection models. The PilY1 population consisted of a major full-length and a minor shorter PilY1* isoform. PilY1* was detectable in small extracellular quinolone-positive aggregates, but not in the pilus. P. aeruginosa PilY1 is not an adhesin on the pilus tip, but assists in pilus biogenesis, twitching motility, secretion of secondary metabolites and in the control of cell density in the bacterial population. PMID:19054330

  3. Prenatal Maternal Stress Predicts Methylation of Genes Regulating the Hypothalamic-Pituitary-Adrenocortical System in Mothers and Newborns in the Democratic Republic of Congo

    ERIC Educational Resources Information Center

    Kertes, Darlene A.; Kamin, Hayley S.; Hughes, David A.; Rodney, Nicole C.; Bhatt, Samarth; Mulligan, Connie J.

    2016-01-01

    Exposure to stress early in life permanently shapes activity of the hypothalamic-pituitary-adrenocortical (HPA) axis and the brain. Prenatally, glucocorticoids pass through the placenta to the fetus with postnatal impacts on brain development, birth weight (BW), and HPA axis functioning. Little is known about the biological mechanisms by which…

  4. PAS Kinase Promotes Cell Survival and Growth Through Activation of Rho1

    PubMed Central

    Cardon, Caleb M.; Beck, Thomas; Hall, Michael N.; Rutter, Jared

    2014-01-01

    In Saccharomyces cerevisiae, phosphorylation of Ugp1 by either of the yeast PASK family protein kinases (yPASK), Psk1 or Psk2, directs this metabolic enzyme to deliver glucose to the periphery for synthesis of the cell wall. However, we isolated PSK1 and PSK2 in a high-copy suppressor screen of a temperature-sensitive mutant of target of rapamycin 2 (TOR2). Posttranslational activation of yPASK, either by cell integrity stress or by growth on nonfermentative carbon sources, also suppressed the growth defect resulting from tor2 mutation. Although suppression of the tor2 mutant growth phenotype by activation of the kinase activity of yPASK required phosphorylation of the metabolic enzyme Ugp1 on serine 11, this resulted in the formation of a complex that induced Rho1 activation, rather than required the glucose partitioning function of Ugp1. In addition to phosphorylated Ugp1, this complex contained Rom2, a Rho1 guanine nucleotide exchange factor, and Ssd1, an mRNA-binding protein. Activation of yPASK-dependent Ugp1 phosphorylation, therefore, enables two processes that are required for cell growth and stress resistance: synthesis of the cell wall through partitioning glucose to the periphery and the formation of the signaling complex with Rom2 and Ssd1 to promote Rho1-dependent polarized cell growth. This complex may integrate metabolic and signaling responses required for cell growth and survival in suboptimal conditions. PMID:22296835

  5. As-Deposited (La1-xSrx)(Ga1-y-zMgyCoz)O3-(x+y+z)/2 Crystallized Thin Films Prepared by Pulsed Laser Deposition for Application to Solid Oxide Fuel Cell Electrolyte

    NASA Astrophysics Data System (ADS)

    Mitsugi, Fumiaki; Kanazawa, Seiji; Ohkubo, Toshikazu; Nomoto, Yukiharu; Ishihara, Tatsumi; Takita, Yusaku

    2004-01-01

    Doped lanthanum gallate (La1-xSrx)(Ga1-y-zMgyCoz)O3-(x+y+z)/2 (LSGMCO) perovskite oxide films were deposited on a quartz glass, LaAlO3 single-crystal substrate and porous anode electrode of a solid oxide fuel cell (SOFC) by pulsed laser deposition. It was necessary to increase the substrate temperature up to 800°C for a crystallization of the LSGMCO films. The film deposited on the LaAlO3 single-crystal substrate grew along the c-axis. The as-deposited LSGMCO thick film fabricated on the porous substrate at 800°C and at an oxygen pressure of 20Pa was formed from polycrystal columns and showed a high conductivity of 0.7S/cm at a measurement temperature of 800°C. The activation energies were 0.72 eV at 600-800°C and 1.05 eV at 400-600°C.

  6. Nonlinear structure-composition relationships in the Ge 1-ySn y/Si(100) (y<0.15) system

    DOE PAGES

    Beeler, R.; Roucka, R.; Chizmeshya, A. V. G.; ...

    2011-07-26

    The compositional dependence of the cubic lattice parameter in Ge 1-ySn y alloys has been revisited. Large 1000-atom supercell ab initio simulations confirm earlier theoretical predictions that indicate a positive quadratic deviation from Vegard's law, albeit with a somewhat smaller bowing coefficient, θ = 0.047 Å, than found from 64-atom cell simulations (θ = 0.063 Å). On the other hand, measurements from an extensive set of alloy samples with compositions y < 0.15 reveal a negative deviation from Vegard's law. The discrepancy with earlier experimental data, which supported the theoretical results, is traced back to an unexpected compositional dependence ofmore » the residual strain after growth on Si substrates. The experimental bowing parameter for the relaxed lattice constant of the alloys is found to be θ = -0.066 Å. Possible reasons for the disagreement between theory and experiment are discussed in detail.« less

  7. Guanidine-acylguanidine bioisosteric approach in the design of radioligands: synthesis of a tritium-labeled N(G)-propionylargininamide ([3H]-UR-MK114) as a highly potent and selective neuropeptide Y Y1 receptor antagonist.

    PubMed

    Keller, Max; Pop, Nathalie; Hutzler, Christoph; Beck-Sickinger, Annette G; Bernhardt, Günther; Buschauer, Armin

    2008-12-25

    Synthesis and characterization of (R)-N(alpha)-(2,2-diphenylacetyl)-N-(4-hydroxybenzyl)-N(omega)-([2,3-(3)H]-propanoyl)argininamide ([(3)H]-UR-MK114), an easily accessible tritium-labeled NPY Y(1) receptor (Y(1)R) antagonist (K(B): 0.8 nM, calcium assay, HEL cells) derived from the (R)-argininamide BIBP 3226, is reported. The radioligand binds with high affinity (K(D), saturation: 1.2 nM, kinetic experiments: 1.1 nM, SK-N-MC cells) and selectivity for Y(1)R over Y(2), Y(4), and Y(5) receptors. The title compound is a useful pharmacological tool for the determination of Y(1)R ligand affinities, quantification of Y(1)R binding sites, and autoradiography.

  8. The Weiss score and beyond--histopathology for adrenocortical carcinoma.

    PubMed

    Papotti, Mauro; Libè, Rossella; Duregon, Eleonora; Volante, Marco; Bertherat, Jerome; Tissier, Frederique

    2011-12-01

    The pathological diagnosis of adrenocortical carcinoma (ACC) is still challenging for its rarity and the presence of special variants (pediatric, oncocytic, myxoid, and sarcomatoid). It is based on the recognition at light microscopy of at least three among nine morphological parameters, according to the Weiss scoring system, which has been introduced 27 years ago and nowadays is the most widely employed. Nevertheless, the diagnostic performance of this system is very high but does not reach a sensitivity and specificity of 100%, its diagnostic applicability is potentially low among non-expert pathologists, and a group of borderline cases with only one or two criteria exist of uncertain behavior. Moreover, it is scarcely reproducible in the ACC morphological variants. In fact, specifically for the pure oncocytic neoplasms that seem to have a better prognosis in comparison to the conventional ACCs, a modified system (the Lin-Weiss-Bisceglia) has been proposed. With the aim to simplify the ACC diagnosis, 2 years ago, the "reticulin" diagnostic algorithm has been proposed, based on the observation that the tumoral reticulin framework (highlighted by reticulin silver-based histochemical staining) is consistently disrupted in malignant cases but only in a small subset of benign cases. Following this algorithm, in the presence of reticulin alterations, malignancy is further defined through the identification of at least one of the following parameters: necrosis, high mitotic rate, and venous invasion. As a complement to the morphological approach, some immunohistochemical markers (such as steroidogenic factor 1) have been proposed as diagnostic and prognostic adjuncts but still lack wide clinical validation.

  9. Bacopa monnieri protects SH-SY5Y cells against tert-Butyl hydroperoxide-induced cell death via the ERK and PI3K pathways

    PubMed Central

    Petcharat, Kanoktip; Singh, Meharvan; Ingkaninan, Kornkanok; Attarat, Jongrak; Yasothornsrikul, Sukkid

    2017-01-01

    Objective Oxidative stress plays an important role in the pathological processes of various neurodegenerative diseases. Bacopa monnieri (BM) has a potent antioxidant property. Therefore, the purpose of this study was to evaluate the neuroprotective potential of BM against SH-SY5Y neuroblastoma cell death induced by the pro-oxidant insult, tert-Butyl hydroperoxide (TBHP), and to identify possible mechanisms related to its neuroprotective action. Methods The neuroprotective effect of BM was evaluated by the degree of protection against TBHP-induced cell death in human SH-SY5Y cells that was measured by calcein-AM assay. ERK1/2 and Akt phosphorylation was evaluated by immunoblotting. Results We found that BM exhibited protection against TBHP-mediated cytotoxicity. The neuroprotective effect of BM was abolished in the presence of either ERK1/2 or PI3K inhibitors. In addition, western blotting with anti-phospho-ERK1/2 and anti-phospho-Akt antibodies showed that BM increased both ERK1/2 and Akt phosphorylation. Conclusion These results suggest that BM by activation of ERK/MAPK and PI3K/Akt signaling pathways protects SH-SY5Y cells from TBHP-induced cell death. PMID:29152617

  10. Bacopa monnieri protects SH-SY5Y cells against tert-Butyl hydroperoxide-induced cell death via the ERK and PI3K pathways.

    PubMed

    Petcharat, Kanoktip; Singh, Meharvan; Ingkaninan, Kornkanok; Attarat, Jongrak; Yasothornsrikul, Sukkid

    2015-01-01

    Oxidative stress plays an important role in the pathological processes of various neurodegenerative diseases. Bacopa monnieri (BM) has a potent antioxidant property. Therefore, the purpose of this study was to evaluate the neuroprotective potential of BM against SH-SY5Y neuroblastoma cell death induced by the pro-oxidant insult, tert -Butyl hydroperoxide (TBHP), and to identify possible mechanisms related to its neuroprotective action. The neuroprotective effect of BM was evaluated by the degree of protection against TBHP-induced cell death in human SH-SY5Y cells that was measured by calcein-AM assay. ERK1/2 and Akt phosphorylation was evaluated by immunoblotting. We found that BM exhibited protection against TBHP-mediated cytotoxicity. The neuroprotective effect of BM was abolished in the presence of either ERK1/2 or PI3K inhibitors. In addition, western blotting with anti-phospho-ERK1/2 and anti-phospho-Akt antibodies showed that BM increased both ERK1/2 and Akt phosphorylation. These results suggest that BM by activation of ERK/MAPK and PI3K/Akt signaling pathways protects SH-SY5Y cells from TBHP-induced cell death.

  11. Y-doping TiO2 nanorod arrays for efficient perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Deng, Xinlian; Wang, Yanqing; Cui, Zhendong; Li, Long; Shi, Chengwu

    2018-05-01

    To improve the electron transportation in TiO2 nanorod arrays and charge separation in the interface of TiO2/perovskite, Y-doping TiO2 nanorod arrays with the length of 200 nm, diameter of 11 nm and areal density of 1050 μm-2 were successfully prepared by the hydrothermal method and the influence of Y/Ti molar ratios of 0%, 3%, 5% in the hydrothermal grown solutions on the growth of TiO2 nanorod arrays was investigated. The results revealed that the appropriate Y/Ti molar ratios can increase the areal density of the corresponding TiO2 nanorod arrays and improve the charge separation in the interface of the TiO2/perovskite. The Y-doping TiO2 nanorod array perovskite solar cells with the Y/Ti molar ratio of 3% exhibited a photoelectric conversion efficiency (PCE) of 18.11% along with an open-circuit voltage (Voc) of 1.06 V, short-circuit photocurrent density (Jsc) of 22.50 mA cm-2 and fill factor (FF) of 76.16%, while the un-doping TiO2 nanorod array perovskite solar cells gave a PCE of 16.42% along with Voc of 1.04 V, Jsc of 21.66 mA cm-2 and FF of 72.97%.

  12. Magnesium effects on CdSe self-assembled quantum dot formation on Zn xCd yMg 1-x-ySe layers

    NASA Astrophysics Data System (ADS)

    Noemi Perez-Paz, M.; Lu, Hong; Shen, Aidong; Jean Mary, F.; Akins, Daniel; Tamargo, Maria C.

    2006-09-01

    Optical and morphological studies are used to investigate the effects of chemical composition and, in particular, the magnesium content of the Zn xCd yMg 1-x-ySe barrier layers on the size, density and uniformity of CdSe self-assembled quantum dots (QDs). A reduction of the uncapped QD size, as well as a blue shift of the capped QD photoluminescence peak position by increasing Mg concentration in the Zn xCd yMg 1-x-ySe barrier has been demonstrated by changing the Mg cell temperature during growth. In addition, a more uniform and more densely packed QD layer has been observed with an increase of the MgSe fraction in the Zn xCd yMg 1-x-ySe barrier layer using three-dimensional topographic atomic force microscopy images of the surface of uncapped QDs. Results point to Mg as a chemical factor that induces QD formation, either by increasing the density of atomic steps or/and by changing the energy of the Zn xCd yMg 1-x-ySe surface.

  13. Role of the metabotropic P2Y(4) receptor during hypoglycemia: cross talk with the ionotropic NMDAR1 receptor.

    PubMed

    Cavaliere, Fabio; Amadio, Susanna; Angelini, Daniela F; Sancesario, Giuseppe; Bernardi, Giorgio; Volonté, Cinzia

    2004-10-15

    It is well established that both extracellular ATP and glutamate exert a critical role during metabolic impairment, that several P2 receptor subunits are directly involved in this action and that a strong relationship exists between glutamatergic and purinergic signals. Therefore, here we studied the molecular behavior of the purinergic metabotropic P2Y(4) and the glutamatergic ionotropic NMDAR1 receptors during hypoglycemic cell death. We find that these proteins are oppositely modulated during glucose starvation (P2Y(4) is induced, whereas NMDAR1 is inhibited) and that both P2 and NMDA antagonists can restore basal protein expression levels. Moreover, double immunofluorescence experiments with confocal laser microscopy reveal co-localization at the membrane level between the P2Y(4) and NMDAR1 receptors, in both homologous (cerebellar granule neurons) and heterologous (Hek-293) cellular systems. This is furthermore confirmed by co-immunoprecipitation experiments. Finally, when we express the P2Y(4) receptor in the heterologous SH-SY5Y neuronal cell line, hypoglycemia then causes severe cell death and simultaneous downregulation of the NMDAR1 protein. In summary, our work establishes a potential molecular interplay between P2Y(4) and NMDAR1 receptors during glucose deprivation and the causative role of the P2Y(4) during cell death.

  14. Y-box-binding protein-1 (YB-1) promotes cell proliferation, adhesion and drug resistance in diffuse large B-cell lymphoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Xiaobing; Wu, Yaxun; Wang, Yuchan

    YB-1 is a multifunctional protein, which has been shown to correlate with resistance to treatment of various tumor types. This study investigated the expression and biologic function of YB-1 in diffuse large B-cell lymphoma (DLBCL). Immunohistochemical analysis showed that the expression statuses of YB-1 and pYB-1{sup S102} were reversely correlated with the clinical outcomes of DLBCL patients. In addition, we found that YB-1 could promote the proliferation of DLBCL cells by accelerating the G1/S transition. Ectopic expression of YB-1 could markedly increase the expression of cell cycle regulators cyclin D1 and cyclin E. Furthermore, we found that adhesion of DLBCLmore » cells to fibronectin (FN) could increase YB-1 phosphorylation at Ser102 and pYB-1{sup S102} nuclear translocation. In addition, overexpression of YB-1 could increase the adhesion of DLBCL cells to FN. Intriguingly, we found that YB-1 overexpression could confer drug resistance through cell-adhesion dependent and independent mechanisms in DLBCL. Silencing of YB-1 could sensitize DLBCL cells to mitoxantrone and overcome cell adhesion-mediated drug resistance (CAM-DR) phenotype in an AKT-dependent manner. - Highlights: • The expression statuses of YB-1 and pYB-1{sup S102} are reversely correlated with outcomes of DLBCL patients. • YB-1 promotes cell proliferation by accelerating G1/S transition in DLBCL. • YB-1 confers drug resistance to mitoxantrone in DLBCL.« less

  15. Emodin Decreases Hepatic Hypoxia-Inducible Factor-1[Formula: see text] by Inhibiting its Biosynthesis.

    PubMed

    Ma, Feifei; Hu, Lijuan; Yu, Ming; Wang, Feng

    2016-01-01

    Hypoxia-inducible factor-1 (HIF-1) is an [Formula: see text] dimeric transcription factor. Because HIF-1[Formula: see text] is instable with oxygen, HIF-1 is scarce in normal mammalian cells. However, HIF-1[Formula: see text] is expressed in pathological conditions such as cancer and obesity. Inhibiting HIF-1[Formula: see text] may be of therapeutic value for these pathologies. Here, we investigated whether emodin, derived from the herb of Rheum palmatum L, which is also known as Chinese rhubarb, and is native to China, regulates HIF-1[Formula: see text] expression. Male C57BL/6 mice without or with diet-induced obesity were treated with emodin for two weeks, while control mice were treated with vehicle. HIF-1[Formula: see text] expression was determined by Western blot. We found that emodin inhibited obesity-induced HIF-1[Formula: see text] expression in liver and skeletal muscle but did not regulate HIF-1[Formula: see text] expression in the kidneys or in intra-abdominal fat. In vitro, emodin inhibited HIF-1[Formula: see text] expression in human HepG2 hepatic cells and Y1 adrenocortical cells. Further, we investigated the mechanisms of HIF-1[Formula: see text] expression in emodin-treated HepG2 cells. First, we found that HIF-1[Formula: see text] had normal stability in the presence of emodin. Thus, emodin did not decrease HIF-1[Formula: see text] by stimulating its degradation. Importantly, emodin decreased the activity of the signaling pathways that led to HIF-1[Formula: see text] biosynthesis. Interestingly, emodin increased HIF-1[Formula: see text] mRNA in HepG2 cells. This may be a result of feedback in response to the emodin-induced decrease in the protein of HIF-1[Formula: see text]. In conclusion, emodin decreases hepatic HIF-1[Formula: see text] by inhibiting its biosynthesis.

  16. The Role of the Pituitary-Adrenocortical Axis System in the Regulation of Secretion of Digestive Glands of Wrestlers during Sports and Postsports Ontogenesis

    ERIC Educational Resources Information Center

    Panov, Sergei F.; Panova, Irina P.; Volunskaya, Elena V.; Chebotarev, Andrei V.

    2016-01-01

    According to many researchers its necessary to research a hormonal profile in order to determine mechanisms of regulation of functions of the digestive conveyor during sports activities. In the paper the results of the carried out research on studying of a role of pituitary-adrenocortical axis system of adaptive reactions in activities of the…

  17. Mechanotransductive Regulation of Gap-Junction Activity Between MLO-Y4 Osteocyte-Like and MC3T3-E1 Osteoblast-Like Cells in Three-Dimensional Co-Culture.

    NASA Technical Reports Server (NTRS)

    Juran, C. M.; Blaber, E. A.; Almeida, E. A. C.

    2016-01-01

    Cell and animal studies conducted onboard the International Space Station and formerly on Shuttle flights have provided groundbreaking data illuminating the deleterious biological response of bone to mechanical unloading. However the intercellular communicative mechanisms associated with the regulation of bone synthesis and bone resorption cells are still largely unknown. Connexin-43 (CX43), a gap junction protein, is hypothesized to play a significant role in osteoblast and osteocyte signaling. The purpose of this investigation was to evaluate within a novel three-dimensional microenvironment how the osteocyte-osteoblast gap-junction expression changes when cultures are exposed to exaggerated mechanical load. MLO-Y4 osteocyte-like cells were cultured on a 3D-Biotek polystyrene insert and placed in direct contact with an MC3T3-E1 pre-osteoblast co-cultured monolayer and exposed to 48 h of mechanical stimulation (pulsatile fluid flow (PFF) or monolayer cyclic stretch (MCS)) then evaluated for viability, proliferation, metabolism, and CX43 expression. Mono-cultured MLO-Y4 and MC3T3-E1 control experiments were conducted under PFF and MCS stimulation to observe how strain application stimuli (PFF cell membrane shear or MCS cell focal adhesion/attachment loading) initiates different signaling pathways or downstream regulatory controls. TotalLive cell count, viability and metabolic reduction (Trypan Blue, LIVEDead and Alamar Blue analysis respectively) indicate that mechanical activation of MC3T3-E1 cells inhibits proliferation while maintaining an average 1.04E4 reductioncell metabolic rate, *p0.05 n4. MLO-Y4s in monolayer culture increase in number when exposed to MCS loading but the percent of live cells within the population is low (46.3 total count, *p0.05 n4), these results may indicate an apoptotic signaling cascade. PFF stimulation of the three-dimensional co-cultures elicits a universal increase in CX43 in MLO-Y4 and MC3T3-E1 cells, illustrated by

  18. Criteria for distinguishing normal and subnormal adrenocortical function using the Synacthen test

    PubMed Central

    Greig, W. R.; Boyle, J. A.; Maxwell, J. D.; Lindsay, R. M.; Browning, Margaret C. K.

    1969-01-01

    The Synacthen test consists of the measurement of plasma corticosteroid concentrations by a fluorimetric method before (basal) and 30 min after a single intramuscular administration of 250 μg of tetracosactrin (Synacthen), a synthetic polypeptide with ACTH activity equivalent to that of natural corticotrophin. In a control group of forty-five subjects the basal plasma corticosteroid level was not lower than 6 μg/100 ml (a lower limit of 5 μg/100 ml is accepted in the afternoon and evening), the increment was not less than 7 μg/100 ml and the plasma corticosteroid concentration after Synacthen was not less than 18 μg/100 ml. From these results the ‘6 (5), 7, 18’ rule was formulated and any patient who failed to satisfy at least two of these criteria was considered to have adrenocortical insufficiency. The results of the Synacthen test were assessed in forty-six patients who had received long-term steroid therapy, and in fifteen patients with suspected or proven pituitary failure or Addison's disease. Using the ‘6 (5), 7, 18’ rule patients who satisfied two or more of the criteria were considered as having normal adrenal function, while patients who failed to satisfy these criteria were diagnosed as having adrenal insufficiency. This separation of patients into those with normal and subnormal adrenal function on the basis of the Synacthen test results was found to be reliable as the same division was obtained when the corticotrophin infusion test was performed on groups of the same patients. The Synacthen test was also carried out in a group of eighty ill patients who did not appear clinically to have endocrine disease and it was considered that the criteria previously determined for distinguishing between a normal and subnormal response to Synacthen were also applicable to this group of patients. It is suggested that using these criteria the Synacthen test is a simple and reliable screening procedure for the detection or exclusion of adrenocortical

  19. P2Y(2)R activation by nucleotides released from oxLDL-treated endothelial cells (ECs) mediates the interaction between ECs and immune cells through RAGE expression and reactive oxygen species production.

    PubMed

    Eun, So Young; Park, Sang Won; Lee, Jae Heun; Chang, Ki Churl; Kim, Hye Jung

    2014-04-01

    Lipoprotein oxidation, inflammation, and immune responses involving the vascular endothelium and immune cells contribute to the pathogenesis of atherosclerosis. In an atherosclerotic animal model, P2Y2 receptor (P2Y2R) upregulation and stimulation were previously shown to induce intimal hyperplasia and increased intimal monocyte infiltration. Thus, we investigated the role of P2Y2R in oxidized low-density lipoprotein (oxLDL)-mediated oxidative stress and the subsequent interaction between endothelial cells (ECs) and immune cells. The treatment of human ECs with oxLDL caused the rapid release of ATP (maximum after 5 min). ECs treated with oxLDL or the P2Y2R agonists ATP/UTP for 1h exhibited significant reactive oxygen species (ROS) production, but this effect was not observed in P2Y2R siRNA-transfected ECs. In addition, oxLDL and ATP/UTP both induced RAGE expression, which was P2Y2R dependent. Oxidized LDL- and ATP/UTP-mediated ROS production was diminished in RAGE siRNA-transfected ECs, suggesting that RAGE is an important mediator in P2Y2R-mediated ROS production. Treatment with oxLDL for 24h induced P2Y2R expression in the human monocyte cell line THP-1 and increased THP-1 cell migration toward ECs. The addition of apyrase, an enzyme that hydrolyzes nucleotides, or diphenyleneiodonium (DPI), a well-known inhibitor of NADPH oxidase, significantly inhibited the increase in cell migration caused by oxLDL. P2Y2R siRNA-transfected THP-1 cells did not migrate in response to oxLDL or ATP/UTP treatment, indicating a critical role for P2Y2R and nucleotide release in oxLDL-induced monocyte migration. Last, oxLDL and ATP/UTP effectively increased ICAM-1 and VCAM-1 expression and the subsequent binding of THP-1 cells to ECs, which was inhibited by pretreatment with DPI or by siRNA against P2Y2R or RAGE, suggesting that P2Y2R is an important mediator in oxLDL-mediated monocyte adhesion to ECs through the regulation of ROS-dependent adhesion molecule expression in ECs. Taken

  20. Y-27632, a ROCK Inhibitor, Promoted Limbal Epithelial Cell Proliferation and Corneal Wound Healing.

    PubMed

    Sun, Chi-Chin; Chiu, Hsiao-Ting; Lin, Yi-Fang; Lee, Kuo-Ying; Pang, Jong-Hwei Su

    2015-01-01

    Transplantation of ex vivo cultured limbal epithelial cells is proven effective in restoring limbal stem cell deficiency. The present study aimed to investigate the promoting effect of Y-27632 on limbal epithelial cell proliferation. Limbal explants isolated from human donor eyes were expanded three weeks on culture dishes and outgrowth of epithelial cells was subsequently subcultured for in vitro experiments. In the presence of Y-27632, the ex vivo limbal outgrowth was accelerated, particularly the cells with epithelial cell-like morphology. Y-27632 dose-dependently promoted the proliferation of in vitro cultured human limbal epithelial cells as examined by phase contrast microscopy and luminescent cell-viability assay 30 hours after the treatment. The colony forming efficacy determined 7 days after the treatment was enhanced by Y-27632 also in a dose-dependent manner. The number of p63- or Ki67-positive cells was dose-dependently increased in Y-27632-treated cultures as detected by immunofluorescent staining and western blotanalysis. Cell cycle analysis by flow cytometric method revealed an increase in S-phase proliferating cells. The epithelial woundclosure rate was shown to be faster in experimental group received topical treatment withY-27632 than the sham control using a rat corneal wounding model. These resultsdemonstrate that Y-27632 can promote both the ex vivo and in vitro proliferation oflimbal epithelial cell proliferation. The in vivo enhanced epithelial wound healingfurther implies that the Y-27632 may act as a new strategy for treating limbal stem cell deficiency.

  1. Surgical management and clinical prognosis of adrenocortical carcinoma.

    PubMed

    Dong, Dexin; Li, Hanzhong; Yan, Weigang; Ji, Zhigang; Mao, Quanzong

    2012-01-01

    To study the relationship between surgical management and prognosis of adrenocortical carcinoma (ACC) in order to guide the surgical management of ACC. Clinical data of 45 cases of ACC treated in our hospital were retrospectively analyzed. The 45 cases included 3 cases in stage I, 12 cases in stage II, 7 cases in stage III, and 23 cases in stage IV. 17 cases underwent complete excision, 14 cases underwent palliative excision, 8 cases had non-operative treatment and 6 cases gave up treatment. All patients were followed up from 2 to 141 months. The average survival time of 31 patients with surgery was 32.46 months, and the average survival time of 14 patients without surgery was 4.75 months. There were statistically significant differences between the two groups (p < 0.01). There were no statistically significant differences between the two groups in survival time in stage III and stage IV (p > 0.05). Surgery is considered to be the only method to cure ACC. For ACC in stage I and II, tumor resection is the most effective treatment, and second surgical operation is recommended for local recurrence. For ACC in stage III, extensive surgical operation is recommended, and for ACC in stage IV, surgical operation has no effect on the prognosis. Copyright © 2012 S. Karger AG, Basel.

  2. Transduced Tat-DJ-1 Protein Protects against Oxidative Stress-Induced SH-SY5Y Cell Death and Parkinson Disease in a Mouse Model

    PubMed Central

    Jeong, Hoon Jae; Kim, Dae Won; Woo, Su Jung; Kim, Hye Ri; Kim, So Mi; Jo, Hyo Sang; Park, Meeyoung; Kim, Duk-Soo; Kwon, Oh-Shin; Hwang, In Koo; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2012-01-01

    Parkinson’s disease (PD) is a well known neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compact (SN). Although the exact mechanism remains unclear, oxidative stress plays a critical role in the pathogenesis of PD. DJ-1 is a multifunctional protein, a potent antioxidant and chaperone, the loss of function of which is linked to the autosomal recessive early onset of PD. Therefore, we investigated the protective effects of DJ-1 protein against SH-SY5Y cells and in a PD mouse model using a cell permeable Tat-DJ-1 protein. Tat-DJ-1 protein rapidly transduced into the cells and showed a protective effect on 6-hydroxydopamine (6-OHDA)-induced neuronal cell death by reducing the reactive oxygen species (ROS). In addition, we found that Tat-DJ-1 protein protects against dopaminergic neuronal cell death in 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP)-induced PD mouse models. These results suggest that Tat-DJ-1 protein provides a potential therapeutic strategy for against ROS related human diseases including PD. PMID:22526393

  3. NEFM (Neurofilament Medium) Polypeptide, a Marker for Zona Glomerulosa Cells in Human Adrenal, Inhibits D1R (Dopamine D1 Receptor)-Mediated Secretion of Aldosterone.

    PubMed

    Maniero, Carmela; Garg, Sumedha; Zhao, Wanfeng; Johnson, Timothy Isaac; Zhou, Junhua; Gurnell, Mark; Brown, Morris J

    2017-08-01

    Heterogeneity among aldosterone-producing adenomas (APAs) has been highlighted by the discovery of somatic mutations. KCNJ5 mutations predominate in large zona fasciculata (ZF)-like APAs; mutations in CACNA1D , ATP1A1, ATP2B3 , and CTNNB1 are more likely to be found in small zona glomerulosa (ZG)-like APAs. Microarray comparison of KCNJ5 mutant versus wild-type APAs revealed significant differences in transcriptomes. NEFM , encoding a neurofilament subunit which is a D1R (dopamine D1 receptor)-interacting protein, was 4-fold upregulated in ZG-like versus ZF-like APAs and 14-fold more highly expressed in normal ZG versus ZF. Immunohistochemistry confirmed selective expression of NEFM (neurofilament medium) polypeptide in ZG and in ZG-like APAs. Silencing NEFM in adrenocortical H295R cells increased basal aldosterone secretion and cell proliferation; silencing also amplified aldosterone stimulation by the D1R agonist, fenoldopam, and inhibition by the D1R antagonist, SCH23390. NEFM coimmunoprecipitated with D1R, and its expression was stimulated by fenoldopam. Immunohistochemistry for D1R was mainly intracellular in ZG-like APAs but membranous in ZF-like APAs. Aldosterone secretion in response to fenoldopam in primary cells from ZF-like APAs was higher than in cells from ZG-like APAs. Transfection of mutant KCNJ5 caused a large reduction in NEFM expression in H295R cells. We conclude that NEFM is a negative regulator of aldosterone production and cell proliferation, in part by facilitating D1R internalization from the plasma membrane. Downregulation of NEFM in ZF-like APAs may contribute to a D1R/D2R imbalance underlying variable pharmacological responses to dopaminergic drugs among patients with APAs. Finally, taken together, our data point to the possibility that ZF-like APAs are in fact ZG in origin. © 2017 American Heart Association, Inc.

  4. Y-cell receptive field and collicular projection of parasol ganglion cells in macaque monkey retina

    PubMed Central

    Crook, Joanna D.; Peterson, Beth B.; Packer, Orin S.; Robinson, Farrel R.; Troy, John B.; Dacey, Dennis M.

    2009-01-01

    The distinctive parasol ganglion cell of the primate retina transmits a transient, spectrally non-opponent signal to the magnocellular layers of the lateral geniculate nucleus (LGN). Parasol cells show well-recognized parallels with the alpha-Y cell of other mammals, yet two key alpha-Y cell properties, a collateral projection to the superior colliculus and nonlinear spatial summation, have not been clearly established for parasol cells. Here we show by retrograde photodynamic staining that parasol cells project to the superior colliculus. Photostained dendritic trees formed characteristic spatial mosaics and afforded unequivocal identification of the parasol cells among diverse collicular-projecting cell types. Loose-patch recordings were used to demonstrate for all parasol cells a distinct Y-cell receptive field ‘signature’ marked by a non-linear mechanism that responded to contrast-reversing gratings at twice the stimulus temporal frequency (second Fourier harmonic, F2) independent of stimulus spatial phase. The F2 component showed high contrast gain and temporal sensitivity and appeared to originate from a region coextensive with that of the linear receptive field center. The F2 spatial frequency response peaked well beyond the resolution limit of the linear receptive field center, showing a Gaussian center radius of ~15 μm. Blocking inner retinal inhibition elevated the F2 response, suggesting that amacrine circuitry does not generate this non-linearity. Our data are consistent with a pooled-subunit model of the parasol-Y cell receptive field in which summation from an array of transient, partially rectifying cone bipolar cells accounts for both linear and non-linear components of the receptive field. PMID:18971470

  5. Spray-Pyrolyzed Three-Dimensional CuInS2 Solar Cells on Nanocrystalline-Titania Electrodes with Chemical-Bath-Deposited Inx(OH)ySz Buffer Layers

    NASA Astrophysics Data System (ADS)

    Nguyen, Duy-Cuong; Mikami, Yuki; Tsujimoto, Kazuki; Ryo, Toshihiro; Ito, Seigo

    2012-10-01

    Three-dimensional (3D) compound solar cells with the structure of ySz/porous TiO2/compact TiO2/florin-doped tin-oxide-coated glass plates> have been fabricated by spray pyrolysis deposition of CuInS2 and chemical-bath deposition of Inx(OH)ySz for the light absorber and buffer layer, respectively. The effect of deposition and annealing conditions of Inx(OH)ySz on the photovoltaic properties of 3D CuInS2 solar cells was investigated. Inx(OH)ySz annealed in air ambient showed a better cell performance than those annealed in nitrogen ambient and without annealing. The improvement of the performance of cells with Inx(OH)ySz buffer layers annealed in air ambient is due to the increase in oxide concentration in the buffer layers [confirmed by X-ray photoelectron spectroscopy (XPS) measurement]. Among cells with Inx(OH)ySz buffer layers deposited for 1, 1.5, 1.75, and 2 h, that with Inx(OH)ySz deposited for 1.75 h showed the best cell performance. The best cell performance was observed for Inx(OH)ySz deposited for 1.75 h with annealing at 300 °C for 30 min in air ambient, and cell parameters were 22 mA cm-2 short-circuit photocurrent density, 0.41 V open-circuit voltage, 0.35 fill factor, and 3.2% conversion efficiency.

  6. SrZrO 3 Formation at the Interlayer/Electrolyte Interface during (La 1-xSr x) 1-δCo 1-yFe yO 3 Cathode Sintering

    DOE PAGES

    Lu, Zigui; Darvish, Shadi; Hardy, John; ...

    2017-07-19

    This work probes the formation of SrZrO 3 at the SDC/YSZ interface (Sm doped ceria, SDC; Y stabilized zirconia, YSZ) during (La 1-xSr x) 1-δCo1 -yFe yO 3 (LSCF) cathode sintering. SEM/EDS and grazing incidence X-ray diffraction results of annealed LSCF and YSZ samples reveal that even without physical contact between LSCF and YSZ, SrZrO 3 was formed on the surface of YSZ, preferentially at the grain boundaries. It was suspected that the SrZrO 3 formation is due to the Sr-containing gas species diffused through the pores of the SDC layer and reacted with the YSZ electrolyte. Computational thermodynamics wasmore » adopted to predict the gas species formed in air during sintering by using the La-Sr-Co-Fe-O-H thermodynamic database. Sr(OH) 2 is identified as the dominant Sr-containing gas species under the experimental conditions. In addition, it was found that A-site deficiency in LSCF could effectively suppress the SrZrO 3 formation while a dense and pore-free SDC interlayer is required to totally block the SrZrO 3 formation. As a result, cell performance was significantly improved for a cell with a dense SDC interlayer fabricated by pulsed laser deposition, due to elimination of SrZrO 3 formation and therefore reduced interfacial resistance.« less

  7. SrZrO 3 Formation at the Interlayer/Electrolyte Interface during (La 1-xSr x) 1-δCo 1-yFe yO 3 Cathode Sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zigui; Darvish, Shadi; Hardy, John

    This work probes the formation of SrZrO 3 at the SDC/YSZ interface (Sm doped ceria, SDC; Y stabilized zirconia, YSZ) during (La 1-xSr x) 1-δCo1 -yFe yO 3 (LSCF) cathode sintering. SEM/EDS and grazing incidence X-ray diffraction results of annealed LSCF and YSZ samples reveal that even without physical contact between LSCF and YSZ, SrZrO 3 was formed on the surface of YSZ, preferentially at the grain boundaries. It was suspected that the SrZrO 3 formation is due to the Sr-containing gas species diffused through the pores of the SDC layer and reacted with the YSZ electrolyte. Computational thermodynamics wasmore » adopted to predict the gas species formed in air during sintering by using the La-Sr-Co-Fe-O-H thermodynamic database. Sr(OH) 2 is identified as the dominant Sr-containing gas species under the experimental conditions. In addition, it was found that A-site deficiency in LSCF could effectively suppress the SrZrO 3 formation while a dense and pore-free SDC interlayer is required to totally block the SrZrO 3 formation. As a result, cell performance was significantly improved for a cell with a dense SDC interlayer fabricated by pulsed laser deposition, due to elimination of SrZrO 3 formation and therefore reduced interfacial resistance.« less

  8. Dibutyryl cyclic AMP induces differentiation of human neuroblastoma SH-SY5Y cells into a noradrenergic phenotype.

    PubMed

    Kume, Toshiaki; Kawato, Yuka; Osakada, Fumitaka; Izumi, Yasuhiko; Katsuki, Hiroshi; Nakagawa, Takayuki; Kaneko, Shuji; Niidome, Tetsuhiro; Takada-Takatori, Yuki; Akaike, Akinori

    2008-10-10

    Dibutyryl cyclic AMP (dbcAMP) and retinoic acid (RA) have been demonstrated to be the inducers of morphological differentiation in SH-SY5Y cells, a human catecholaminergic neuroblastoma cell line. However, it remains unclear whether morphologically differentiated SH-SY5Y cells by these compounds acquire catecholaminergic properties. We focused on the alteration of tyrosine hydroxylase (TH) expression and intracellular content of noradrenaline (NA) as the indicators of functional differentiation. Three days treatment with dbcAMP (1mM) and RA (10microM) induced morphological changes and an increase of TH-positive cells using immunocytochemical analysis in SH-SY5Y cells. The percentage of TH-expressing cells in dbcAMP (1mM) treatment was larger than that in RA (10microM) treatment. In addition, dbcAMP increased intracellular NA content, whereas RA did not. The dbcAMP-induced increase in TH-expressing cells is partially inhibited by KT5720, a protein kinase A (PKA) inhibitor. We also investigated the effect of butyrate on SH-SY5Y cells, because dbcAMP is enzymatically degraded by intracellular esterase, thereby resulting in the formation of butyrate. Butyrate induced the increase of NA content at lower concentrations than dbcAMP, although the increase in TH-expressing cells by butyrate was smaller than that by dbcAMP. The dbcAMP (1mM)- and butyrate (0.3mM)-induced increase in NA content was completely suppressed by alpha-methyl-p-tyrosine (1mM), an inhibitor of TH. These results suggest that dbcAMP induces differentiation into the noradrenergic phenotype through both PKA activation and butyrate.

  9. Cyclic estrous-like behavior in a spayed cat associated with excessive sex-hormone production by an adrenocortical carcinoma.

    PubMed

    Meler, Erika N; Scott-Moncrieff, J Catharine; Peter, Augustine T; Bennett, Sara; Ramos-Vara, Jose; Salisbury, S Kathleen; Naughton, James F

    2011-06-01

    A 15-year-old, spayed female domestic shorthair cat was evaluated for 1-year duration of cyclic intermittent estrous behavior. Diagnostic testing performed before referral, including baseline progesterone concentration, human chorionic gonadotropin (hCG) hormone stimulation test and surgical exploratory laparotomy, had remained inconclusive for a remnant ovary. Evaluation of sex hormones before and after adrenocorticotropic hormone (ACTH) administration revealed increased basal concentrations of androstenedione, estradiol, progesterone, and 17α-hydroxyprogesterone and normal ACTH-stimulated hormone concentrations. Enlargement of the right adrenal gland was identified by abdominal ultrasound. The cat underwent an adrenalectomy and histopathology of the excised adrenal gland was consistent with an adrenocortical carcinoma. Clinical signs resolved immediately following surgery, and most hormone concentrations declined to within or below the reference interval (RI) by 2 months after surgery. Copyright © 2011 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.

  10. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guida, Natascia; Laudati, Giusy; Anzilotti, Serenella

    Resveratrol (3,5,4′-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our resultsmore » revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway. - Highlights: • Resveratrol via SIRT1/c-Jun downregulates REST mRNA and protein in SH-SY5Y cells. • Non-dioxin-like (NDL) PCB-95 is

  11. Drp-1 dependent mitochondrial fragmentation and protective autophagy in dopaminergic SH-SY5Y cells overexpressing alpha-synuclein.

    PubMed

    Martinez, Jimena Hebe; Alaimo, Agustina; Gorojod, Roxana Mayra; Porte Alcon, Soledad; Fuentes, Federico; Coluccio Leskow, Federico; Kotler, Mónica Lidia

    2018-04-01

    Parkinson's disease is a neurodegenerative movement disorder caused by the loss of dopaminergic neurons from substantia nigra. It is characterized by the accumulation of aggregated α-synuclein as the major component of the Lewy bodies. Additional common features of this disease are the mitochondrial dysfunction and the activation/inhibition of autophagy both events associated to the intracellular accumulation of α-synuclein. The mechanism by which these events contribute to neural degeneration remains unknown. In the present work we investigated the effect of α-synuclein on mitochondrial dynamics and autophagy/mitophagy in SH-SY5Y cells, an in vitro model of Parkinson disease. We demonstrated that overexpression of wild type α-synuclein causes moderated toxicity, ROS generation and mitochondrial dysfunction. In addition, α-synuclein induces the mitochondrial fragmentation on a Drp-1-dependent fashion. Overexpression of the fusion protein Opa-1 prevented both mitochondrial fragmentation and cytotoxicity. On the other hand, cells expressing α-synuclein showed activated autophagy and particularly mitophagy. Employing a genetic strategy we demonstrated that autophagy is triggered in order to protect cells from α-synuclein-induced cell death. Our results clarify the role of Opa-1 and Drp-1 in mitochondrial dynamics and cell survival, a controversial α-synuclein research issue. The findings presented point to the relevance of mitochondrial homeostasis and autophagy in the pathogenesis of PD. Better understanding of the molecular interaction between these processes could give rise to novel therapeutic methods for PD prevention and amelioration. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Validation of a Fecal Glucocorticoid Assay to Assess Adrenocortical Activity in Meerkats Using Physiological and Biological Stimuli

    PubMed Central

    Heistermann, Michael; Santema, Peter; Dantzer, Ben; Mausbach, Jelena; Ganswindt, Andre; Manser, Marta B.

    2016-01-01

    In mammals, glucocorticoid (i.e. GC) levels have been associated with specific life-history stages and transitions, reproductive strategies, and a plethora of behaviors. Assessment of adrenocortical activity via measurement of glucocorticoid metabolites in feces (FGCM) has greatly facilitated data collection from wild animals, due to its non-invasive nature, and thus has become an established tool in behavioral ecology and conservation biology. The aim of our study was to validate a fecal glucocorticoid assay for assessing adrenocortical activity in meerkats (Suricata suricatta), by comparing the suitability of three GC enzyme immunoassays (corticosterone, 11β-hydroxyetiocholanolone and 11oxo-etiocholanolone) in detecting FGCM increases in adult males and females following a pharmacological challenge with adrenocorticotropic hormone (ACTH) and biological stimuli. In addition, we investigated the time course characterizing FGCM excretion, the effect of age, sex and time of day on FGCM levels and assessed the potential effects of soil contamination (sand) on FGCM patterns. Our results show that the group specific 11β-hydroxyetiocholanolone assay was most sensitive to FGCM alterations, detecting significant and most distinctive elevations in FGCM levels around 25 h after ACTH administration. We found no age and sex differences in basal FGCM or on peak response levels to ACTH, but a marked diurnal pattern, with FGCM levels being substantially higher in the morning than later during the day. Soil contamination did not significantly affect FGCM patterns. Our results emphasize the importance of conducting assay validations to characterize species-specific endocrine excretion patterns, a crucial step to all animal endocrinology studies using a non-invasive approach. PMID:27077741

  13. The C1 domain-targeted isophthalate derivative HMI-1b11 promotes neurite outgrowth and GAP-43 expression through PKCα activation in SH-SY5Y cells.

    PubMed

    Talman, Virpi; Amadio, Marialaura; Osera, Cecilia; Sorvari, Salla; Boije Af Gennäs, Gustav; Yli-Kauhaluoma, Jari; Rossi, Daniela; Govoni, Stefano; Collina, Simona; Ekokoski, Elina; Tuominen, Raimo K; Pascale, Alessia

    2013-07-01

    Protein kinase C (PKC) is a family of serine/threonine phosphotransferases ubiquitously expressed and involved in multiple cellular functions, such as proliferation, apoptosis and differentiation. The C1 domain of PKC represents an attractive drug target, especially for developing PKC activators. Dialkyl 5-(hydroxymethyl)isophthalates are a novel group of synthetic C1 domain ligands that exhibit antiproliferative effect in HeLa cervical carcinoma cells. Here we selected two isophthalates, HMI-1a3 and HMI-1b11, and characterized their effects in the human neuroblastoma cell line SH-SY5Y. Both of the active isophthalates exhibited significant antiproliferative and differentiation-inducing effects. Since HMI-1b11 did not impair cell survival even at the highest concentration tested (20μM), and supported neurite growth and differentiation of SH-SY5Y cells, we focused on studying its downstream signaling cascades and effects on gene expression. Consistently, genome-wide gene expression microarray and gene set enrichment analysis indicated that HMI-1b11 (10μM) induced changes in genes mainly related to cell differentiation. In particular, further studies revealed that HMI-1b11 exposure induced up-regulation of GAP-43, a marker for neurite sprouting and neuronal differentiation. These effects were induced by a 7-min HMI-1b11 treatment and specifically depended on PKCα activation, since pretreatment with the selective inhibitor Gö6976 abolished the up-regulation of GAP-43 protein observed at 12h. In parallel, we found that a 7-min exposure to HMI-1b11 induced PKCα accumulation to the cytoskeleton, an effect that was again prevented by pretreatment with Gö6976. Despite similar binding affinities to PKC, the isophthalates had different effects on PKC-dependent ERK1/2 signaling: HMI-1a3-induced ERK1/2 phosphorylation was transient, while HMI-1b11 induced a rapid but prolonged ERK1/2 phosphorylation. Overall our data are in accordance with previous studies showing that

  14. Adrenocortical response in rats subjected to a stress of restraint by immobilization whether accompanied by hypothermia or not

    NASA Technical Reports Server (NTRS)

    Buchel, L.; Prioux-Guyonneau, M.; Libian, L.

    1980-01-01

    The restraint associated with hypothermia which increases the adrenal activity in rats was investigated. In rats with nomothermia or light hypothermia, the plasma and adrenal corticosterone levels increase at least threefold whatever the duration of restraint. Their return to normal values depends on the duration of the restraint. Exposure to cold produces in free rats a light hypothermia with an increase of the plasma and adrenal corticosterone levels, and in restraint animals an important hypothermia which does not potentiate the stimulation of adrenocortical activity induced by the restraint alone.

  15. Melatonin pre-treatment mitigates SHSY-5Y cells against oxaliplatin induced mitochondrial stress and apoptotic cell death

    PubMed Central

    Choudhury, Arnab; Kar, Sudeshna; Tabassum, Heena

    2017-01-01

    Oxaliplatin (Oxa) treatment to SH-SY5Y human neuroblastoma cells has been shown by previous studies to induce oxidative stress, which in turn modulates intracellular signaling cascades resulting in cell death. While this phenomenon of Oxa-induced neurotoxicity is known, the underlying mechanisms involved in this cell death cascade must be clarified. Moreover, there is still little known regarding the roles of neuronal mitochondria and cytosolic compartments in mediating Oxa-induced neurotoxicity. With a better grasp of the mechanisms driving neurotoxicity in Oxa-treated SH-SY5Y cells, we can then identify certain pathways to target in protecting against neurotoxic cell damage. Therefore, the purpose of this study was to determine whether one such agent, melatonin (Mel), could confer protection against Oxa-induced neurotoxicity in SH-SY5Y cells. Results from the present study found Oxa to significantly reduce SH-SY5Y cell viability in a dose-dependent manner. Alternatively, we found Mel pre-treatment to SH-SY5Y cells to attenuate Oxa-induced toxicity, resulting in a markedly increased cell viability. Mel exerted its protective effects by regulating reactive oxygen species (ROS) production and reducing superoxide radicals inside Oxa-exposed. In addition, we observed pre-treatment with Mel to rescue Oxa-treated cells by protecting mitochondria. As Oxa-treatment alone decreases mitochondrial membrane potential (Δψm), resulting in an altered Bcl-2/Bax ratio and release of sequestered cytochrome c, so Mel was shown to inhibit these pathways. Mel was also found to inhibit proteolytic activation of caspase 3, inactivation of Poly (ADP Ribose) polymerase, and DNA damage, thereby allowing SH-SY5Y cells to resist apoptotic cell death. Collectively, our results suggest a role for melatonin in reducing Oxa induced neurotoxicity. Further studies exploring melatonin’s protective effects may prove successful in eliciting pathways to further alter the neurotoxic pathways of

  16. Cytotoxicity induced by cypermethrin in Human Neuroblastoma Cell Line SH-SY5Y.

    PubMed

    Raszewski, Grzegorz; Lemieszek, Marta Kinga; Łukawski, Krzysztof

    2016-01-01

    The purpose of this study was to evaluate the cytotoxic potential of Cypermethrin (CM) on cultured human Neuroblastoma SH-SY5Y cells. SH-SY5Y cells were treated with CM at 0-200µM for 24, 48, and 72 h, in vitro. It was found that CM induced the cell death of Neuroblastoma cells in a dose- and time-dependent manner, as shown by LDH assays. Next, some aspects of the process of cell death triggered by CM in the human SH-SY5Y cell line were investigated. It was revealed that the pan-caspase inhibitor Q-VD-OPh, sensitizes SH-SY5Y cells to necroptosis caused by CM. Furthermore, signal transduction inhibitors PD98059, SL-327, SB202190, SP600125 failed to attenuate the effect of the pesticide. Finally, it was shown that inhibition of TNF-a by Pomalidomide (PLD) caused statistically significant reduction in CM-induced cytotoxicity. Overall, the data obtained suggest that CM induces neurotoxicity in SH-SY5Y cells by necroptosis.

  17. Electrochemical performance of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrolyte based proton-conducting SOFC solid oxide fuel cell with layered perovskite PrBaCo2O5+δ cathode

    NASA Astrophysics Data System (ADS)

    Ding, Hanping; Xie, Yuanyuan; Xue, Xingjian

    2011-03-01

    BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) exhibits adequate protonic conductivity as well as sufficient chemical and thermal stability over a wide range of SOFC operating conditions, while layered perovskite PrBaCo2O5+δ (PBCO) has advanced electrochemical properties. This research fully takes advantage of these advanced properties and develops a novel protonic ceramic membrane fuel cell (PCMFC) of Ni-BZCYYb|BZCYYb|PBCO. The performance of the button cell was tested under intermediate-temperature range from 600 to 700 °C with humified H2 (∼3% H2O) as fuel and ambient air as oxidant. The results show that the open circuit potential of 0.983 V and the maximal power density of 490 mW cm-2 were achieved at 700 °C. By co-doping barium zirconate-cerate with Y and Yb, the conductivity of electrolyte was significantly improved. The polarization processes of the button cell were characterized using the complicated electrochemical impedance spectroscopy technique. The results indicate that the polarization resistances contributed from both charge migration processes and mass transfer processes increase with decreasing cell voltage loads. However the polarization resistance induced by mass transfer processes is negligible in the studied button cell.

  18. Abnormal regulation of adenosine 3′,5′-monophosphate and corticosterone formation in an adrenocortical carcinoma

    PubMed Central

    Ney, R. L.; Hochella, N. J.; Grahame-Smith, D. G.; Dexter, R. N.; Butcher, R. W.

    1969-01-01

    A spontaneously occurring rat adrenocortical carcinoma which produces corticosterone was maintained by transplantation. The carcinoma appeared to utilize corticosterone biosynthetic steps similar to those of the normal adrenal, but the tumor produced only about 1-10% as much corticosterone per unit tissue weight as nontumorous adrenal glands. The tumor demonstrated little or no increase in corticosterone production in response to adrenocorticotropic hormone (ACTH) either in vivo or in vitro. In normal adrenals, ACTH increases the activity of adenyl cyclase which catalyzes the conversion of adenosine triphosphate (ATP) to adenosine-3′,5′-monophosphate (cyclic AMP), the latter then serving as an intracellular regulator of steroidogenesis. ACTH failed to increase cyclic AMP levels in the tumor in vivo or in slices in vitro, conditions under which there were 50- and 20-fold increases in nontumorous adrenals. However, in homogenates fortified with exogenous ATP, adenyl cyclase activity was comparable in the tumor and adrenals, and cyclic AMP formation was increased 3-fold by ACTH in each. As measured in homogenates, the tumor did not possess a greater ability to destroy cyclic AMP than did normal adrenals. Although ATP levels in the carcinoma were found to be considerably lower than those in normal adrenals, it was not clear that this finding can explain the inability of ACTH to increase cyclic AMP levels in intact tumor cells. While the failure to normally influence cyclic AMP levels in the carcinoma cells could be an important factor in the lack of a steroid response to ACTH, several lines of evidence suggest that the tumor possesses one or more additional abnormalities in the regulation of steroidogenesis. First, in the absence of ACTH stimulation, the tissue concentrations of cyclic AMP were comparable in the tumor and in nontumorous adrenals, but these cyclic AMP levels were associated with a lower level of steroidogenesis in the tumor. Second, tumor slices

  19. Synaptology of physiologically identified ganglion cells in the cat retina: a comparison of retinal X- and Y-cells.

    PubMed

    Weber, A J; Stanford, L R

    1994-05-15

    It has long been known that a number of functionally different types of ganglion cells exist in the cat retina, and that each responds differently to visual stimulation. To determine whether the characteristic response properties of different retinal ganglion cell types might reflect differences in the number and distribution of their bipolar and amacrine cell inputs, we compared the percentages and distributions of the synaptic inputs from bipolar and amacrine cells to the entire dendritic arbors of physiologically characterized retinal X- and Y-cells. Sixty-two percent of the synaptic input to the Y-cell was from amacrine cell terminals, while the X-cells received approximately equal amounts of input from amacrine and bipolar cells. We found no significant difference in the distributions of bipolar or amacrine cell inputs to X- and Y-cells, or ON-center and OFF-center cells, either as a function of dendritic branch order or distance from the origin of the dendritic arbor. While, on the basis of these data, we cannot exclude the possibility that the difference in the proportion of bipolar and amacrine cell input contributes to the functional differences between X- and Y-cells, the magnitude of this difference, and the similarity in the distributions of the input from the two afferent cell types, suggest that mechanisms other than a simple predominance of input from amacrine or bipolar cells underlie the differences in their response properties. More likely, perhaps, is that the specific response features of X- and Y-cells originate in differences in the visual responses of the bipolar and amacrine cells that provide their input, or in the complex synaptic arrangements found among amacrine and bipolar cell terminals and the dendrites of specific types of retinal ganglion cells.

  20. Spinodal decomposition regions of InxGa1-xSbyAszN1-y-z, InxGa1-xSbyPzN1-y-z and InxGa1-xAsyPzN1-y-z alloys

    NASA Astrophysics Data System (ADS)

    Elyukhin, Vyacheslav A.

    2017-07-01

    Considerable interest in highly mismatched semiconductor alloys as materials for device applications has recently been shown. However, the spinodal instability can be a serious obstacle to their use. Here, the spinodal decomposition regions of dilute nitride InxGa1-xSbyAszN1-y-z, InxGa1-xSbyPzN1-y-z and InxGa1-xAsyPzN1-y-z quinary alloys lattice matched to III-V compounds are studied from 0 °C to 1000 °C. The alloys contain six types of chemical bonds corresponding to the constituent compounds, and rearrangement of atoms changes the bonds between them. Therefore, a size and location of the spinodal decomposition regions depend on the enthalpies of constituent compounds, internal strain energy, coherency strain energy and entropy. Among the considered alloys, InxGa1-xSbyAszN1-y-z lattice matched to InAs, InxGa1-xSbyPzN1-y-z lattice matched to GaP and InP and InxGa1-xAsyPzN1-y-z lattice matched to GaAs and InP are most suitable for device applications.

  1. Chiral effects in adrenocorticolytic action of o,p'-DDD (mitotane) in human adrenal cells.

    PubMed

    Asp, V; Cantillana, T; Bergman, A; Brandt, I

    2010-03-01

    Adrenocortical carcinoma (ACC) is a rare malignant disease with poor prognosis. The main pharmacological choice, o,p'-DDD (mitotane), produces severe adverse effects. Since o,p'-DDD is a chiral molecule and stereoisomers frequently possess different pharmacokinetic and/or pharmacodynamic properties, we isolated the two o,p'-DDD enantiomers, (R)-(+)-o,p'-DDD and (S)-(-)-o,p'-DDD, and determined their absolute structures. The effects of each enantiomer on cell viability and on cortisol and dehydroepiandrosterone (DHEA) secretion in the human adrenocortical cell line H295R were assessed. We also assayed the o,p'-DDD racemate and the m,p'- and p,p'-isomers. The results show small but statistically significant differences in activity of the o,p'-DDD enantiomers for all parameters tested. The three DDD isomers were equally potent in decreasing cell viability, but p,p'-DDD affected hormone secretion slightly less than the o,p'- and m,p'-isomers. The small chiral differences in direct effects on target cells alone do not warrant single enantiomer administration, but might reach importance in conjunction with possible stereochemical effects on pharmacokinetic processes in vivo.

  2. Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030

    PubMed Central

    Lin, L; Liu, Y; Li, H; Li, P-K; Fuchs, J; Shibata, H; Iwabuchi, Y; Lin, J

    2011-01-01

    Background: Persistent activation of signal transducers and activators of transcription 3 (STAT3) is commonly detected in many types of cancer, including colon cancer. To date, whether STAT3 is activated and the effects of STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, in colon cancer stem cells are still unknown. Methods: Flow cytometry was used to isolate colon cancer stem cells, which are characterised by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulations (ALDH+/CD133+). The levels of STAT3 phosphorylation and the effects of STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, that targets STAT3 in colon cancer stem cells were examined. Results: Our results observed that ALDH+/CD133+ colon cancer cells expressed higher levels of phosphorylated STAT3 than ALDH-negative/CD133-negative colon cancer cells, suggesting that STAT3 is activated in colon cancer stem cells. GO-Y030 and curcumin inhibited STAT3 phosphorylation, cell viability, tumoursphere formation in colon cancer stem cells. GO-Y030 also reduced STAT3 downstream target gene expression and induced apoptosis in colon cancer stem cells. Furthermore, GO-Y030 suppressed tumour growth of cancer stem cells from both SW480 and HCT-116 colon cancer cell lines in the mouse model. Conclusion: Our results indicate that STAT3 is a novel therapeutic target in colon cancer stem cells, and inhibition of activated STAT3 in cancer stem cells by GO-Y030 may offer an effective treatment for colorectal cancer. PMID:21694723

  3. Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030.

    PubMed

    Lin, L; Liu, Y; Li, H; Li, P-K; Fuchs, J; Shibata, H; Iwabuchi, Y; Lin, J

    2011-07-12

    Persistent activation of signal transducers and activators of transcription 3 (STAT3) is commonly detected in many types of cancer, including colon cancer. To date, whether STAT3 is activated and the effects of STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, in colon cancer stem cells are still unknown. Flow cytometry was used to isolate colon cancer stem cells, which are characterised by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulations (ALDH(+)/CD133(+)). The levels of STAT3 phosphorylation and the effects of STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, that targets STAT3 in colon cancer stem cells were examined. Our results observed that ALDH(+)/CD133(+) colon cancer cells expressed higher levels of phosphorylated STAT3 than ALDH-negative/CD133-negative colon cancer cells, suggesting that STAT3 is activated in colon cancer stem cells. GO-Y030 and curcumin inhibited STAT3 phosphorylation, cell viability, tumoursphere formation in colon cancer stem cells. GO-Y030 also reduced STAT3 downstream target gene expression and induced apoptosis in colon cancer stem cells. Furthermore, GO-Y030 suppressed tumour growth of cancer stem cells from both SW480 and HCT-116 colon cancer cell lines in the mouse model. Our results indicate that STAT3 is a novel therapeutic target in colon cancer stem cells, and inhibition of activated STAT3 in cancer stem cells by GO-Y030 may offer an effective treatment for colorectal cancer.

  4. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology.

    PubMed

    Kovalevich, Jane; Langford, Dianne

    2013-01-01

    The use of primary mammalian neurons derived from embryonic central nervous system tissue is limited by the fact that once terminally differentiated into mature neurons, the cells can no longer be propagated. Transformed neuronal-like cell lines can be used in vitro to overcome this limitation. However, several caveats exist when utilizing cells derived from malignant tumors. In this context, the popular SH-SY5Y neuroblastoma cell line and its use in in vitro systems is described. Originally derived from a metastatic bone tumor biopsy, SH-SY5Y (ATCC(®) CRL-2266™) cells are a subline of the parental line SK-N-SH (ATCC(®) HTB-11™). SK-N-SH were subcloned three times; first to SH-SY, then to SH-SY5, and finally to SH-SY5Y. SH-SY5Y were deposited to the ATCC(®) in 1970 by June L. Biedler.Three important characteristics of SH-SY5Y cells should be considered when using these cells in in vitro studies. First, cultures include both adherent and floating cells, both types of which are viable. Few studies address the biological significance of the adherent versus floating phenotypes, but most reported studies utilize adherent populations and discard the floating cells during media changes. Second, early studies by Biedler's group indicated that the parental differentiated SK-N-SH cells contained two morphologically distinct phenotypes: neuroblast-like cells and epithelial-like cells (Ross et al., J Nat Cancer Inst 71:741-747, 1983). These two phenotypes may correspond to the "N" and "S" types described in later studies in SH-SY5Y by Encinas et al. (J Neurochem 75:991-1003, 2000). Cells with neuroblast-like morphology are positive for tyrosine hydroxylase (TH) and dopamine-β-hydroxylase characteristic of catecholaminergic neurons, whereas the epithelial-like counterpart cells lacked these enzymatic activities (Ross et al., J Nat Cancer Inst 71:741-747, 1983). Third, SH-SY5Y cells can be differentiated to a more mature neuron-like phenotype that is characterized by

  5. Effects of ROCK inhibitor Y-27632 on cell fusion through a microslit.

    PubMed

    Wada, Ken-Ichi; Hosokawa, Kazuo; Ito, Yoshihiro; Maeda, Mizuo

    2015-11-01

    We previously reported a direct cytoplasmic transfer method using a microfluidic device, in which cell fusion was induced through a microslit (slit-through-fusion) by the Sendai virus envelope (HVJ-E) to prevent nuclear mixing. However, the method was impractical due to low efficiency of slit-through-fusion formation and insufficient prevention of nuclear mixing. The purpose of this study was to establish an efficient method for inducing slit-through-fusion without nuclear mixing. We hypothesized that modulation of cytoskeletal component can decrease nuclear migration through the microslit considering its functions. Here we report that supplementation with Y-27632, a specific ROCK inhibitor, significantly enhances cell fusion induction and prevention of nuclear mixing. Supplementation with Y-27632 increased the formation of slit-through-fusion efficiency by more than twofold. Disruption of F-actin by Y-27632 prevented nuclear migration between fused cells through the microslit. These two effects of Y-27632 led to promotion of the slit-through-fusion without nuclear mixing with a 16.5-fold higher frequency compared to our previous method (i.e., cell fusion induction by HVJ-E without supplementation with Y-27632). We also confirmed that mitochondria were successfully transferred to the fusion partner under conditions of Y-27632 supplementation. These findings demonstrate the practicality of our cell fusion system in producing direct cytoplasmic transfer between live cells. © 2015 Wiley Periodicals, Inc.

  6. Crystal structure and electrical conductivity of lanthanum-calcium chromites-titanates La 1-xCa xCr 1-yTi yO 3-δ ( x=0-1, y=0-1)

    NASA Astrophysics Data System (ADS)

    Vashook, V.; Vasylechko, L.; Zosel, J.; Gruner, W.; Ullmann, H.; Guth, U.

    2004-10-01

    Five series of perovskite-type compounds in the system La1-xCaxCr1-yTiyO3 with the nominal compositions y = 0 , x = 0 - 0.5 ; y = 0.2 , x = 0.2 - 0.8 ; y = 0.5 , x = 0.5 - 1.0 ; y = 0.8 , x = 0.6 - 1.0 and y = 1 , x = 0.8 - 1 were synthesized by a ceramic technique in air (final heating 1350 °C). On the basis of the X-ray analysis of the samples with (Ca/Ti)⩾1, the phase diagram of the CaTiO3-LaCrIIIO3-CaCrIVO3 quasi-ternary system was constructed. Extended solid solution with a wide homogeneity range is formed in the quasi-ternary system CaCrIVO3-CaTiO3-LaCrIIIO3. The solid solution La(1-x‧-y)Ca(x‧+y)CrIVx‧CrIII(1-x‧-y)TiyO3 exists by up to 0.6-0.7 mol fractions of CaCrIVO3 (x‧ < 0.6 - 0.7) at the experimental conditions. The crystal structure of the compounds is orthorhombic in the space group Pbnm at room temperature. The lattice parameters and the average interatomic distances of the samples within the solid solution ranges decrease uniformly with increasing Ca content. Outside the quasi-ternary system, the nominal compositions La0.1Ca0.9TiO3, La0.2Ca0.8TiO3, La0.4Ca0.6Cr0.2Ti0.8O3 and La0.3Ca0.7Cr0.2Ti0.8O3 in the system La1-xCaxCr1-yTiyO3 were found as single phases with an orthorhombic structure. In the temperature range between 850 and 1000 °C, the synthesized single-phase compositions are stable at pO2=6×10-16-0.21×105 Pa. Oxygen stoichiometry and electrical conductivity of the separate compounds were investigated as functions of temperature and oxygen partial pressure. The chemical stability of these oxides with respect to oxygen release during thermal dissociation decreases with increasing Ca-content. At 900 °C and oxygen partial pressure 1×10-15-0.21×105 Pa, the compounds with x > y (acceptor doped) are p-type semiconductors and those with x < y (donor doped) and x = y are n-type semiconductors. The type and level of electrical conductivity are functions of the concentration ratios of cations occupying the B-sites of the perovskite

  7. Adrenocortical responses to offspring-directed threats in two open-nesting birds.

    PubMed

    Butler, Luke K; Bisson, Isabelle-Anne; Hayden, Timothy J; Wikelski, Martin; Romero, L Michael

    2009-07-01

    Dependent young are often easy targets for predators, so for many parent vertebrates, responding to offspring-directed threats is a fundamental part of reproduction. We tested the parental adrenocortical response of the endangered black-capped vireo (Vireo atricapilla) and the common white-eyed vireo (V. griseus) to acute and chronic threats to their offspring. Like many open-nesting birds, our study species experience high offspring mortality. Parents responded behaviorally to a predator decoy or human 1-2m from their nests, but, in contrast to similar studies of cavity-nesting birds, neither these acute threats nor chronic offspring-directed threats altered plasma corticosterone concentrations of parents. Although parents in this study showed no corticosterone response to offspring-directed threats, they always increased corticosterone concentrations in response to capture. To explain these results, we propose that parents perceive their risk of nest-associated death differently depending on nest type, with cavity-nesting adults perceiving greater risk to themselves than open-nesters that can readily detect and escape from offspring-directed threats. Our results agree with previous studies suggesting that the hypothalamic-pituitary-adrenal axis, a major physiological mechanism for coping with threats to survival, probably plays no role in coping with threats to offspring when risks to parents and offspring are not correlated. We extend that paradigm by demonstrating that nest style may influence how adults perceive the correlation between offspring-directed and self-directed threats.

  8. New Defective Brannerite-Type Vanadates. I. Synthesis and Study of Mn 1- x- yφ xNa yV 2-2 x-yMo 2 x+yO 6 Solid Solutions

    NASA Astrophysics Data System (ADS)

    Masłowska, Bogna; Ziółkowski, Jacek

    1994-05-01

    MnV 2O 6 of the brannerite-type structure (below 540°C) doped with MoO 3 and Na 2O forms isomorphous solid solutions MnNaφ = Mn 1- x-yφ xNa yV 2-2 x-yMo 2 x+ yO 6 (φ cation vacancy in the original Mn position), belonging to the pseudoternary MnV 2O 6-NaVMoO 6-MoO 3 system. Particular cases are MnNa = Mn 1- yNa y V 2- yMo yO 6 ( x = 0), Mnφ = Mn 1- xφ xV 2-2 xMo 2 xO 6 ( y = 0), and Naφ = Na 1- xφ xV 1- xMo 1+ xO 6 ( x + y = 1). MnV 2O 6 and NaVMoO 6 show miscibility in the entire composition range (MnNa). The opposite boundary of MnNaφ passes through the (100 x, 100 y) points (45, 0), (33, 30), and (30, 70). The phase diagram of the pseudobinary MnV 2O 6-NaVMoO 6 system (determined with DTA) shows (i) a narrow double-lens-type solidus-liquidus gap at high values of y , (ii) two peritectic meltings at lower y (yielding the high temperature β-MnNa and Mn 2V 2O 7), and (iii) little area of β-MnNa. Lattice parameters of MnNa (determined with X-ray diffraction) reveal small deviations from Vegard's law. As the ionic radii of both dopants (Na + and Mo 6+) are, respectively, larger than those of mother ions (Mn 2+ and V 5+), the unit cell increases in all directions with rising y along the MnNa series of solid solutions. However, due to the anisotropy of the structure, parameter c is strongly sensitive to Na/Mn substitution, b is ruled by Mo/V, and a is weakly influenced by Mo/V. Close analogy to the behavior of the previously studied MnV 2O 6-LiVMoO 6-MoO 6 system is discussed.

  9. The recombination velocity at III-V compound heterojunctions with applications to Al (x) Ga(1-x)As-GaAs(1-y)Sb(y)

    NASA Technical Reports Server (NTRS)

    Kim, J. S.

    1978-01-01

    Interface recombination velocity in AlxGa1-xAs-GaAs and A10.85 Ga0.15As-GaAs1-ySby heterojunction systems was studied as a function of lattice mismatch. The results are applied to the design of highly efficient III-V heterojunction solar cells. A horizontal liquid-phase epitaxial growth system was used to prepare p-p-p and p-p-n double heterojunction test samples with specified values of x and y. Samples were grown at each composition, with different GaAs and GaAsSb layer thicknesses. A method was developed to obtain the lattice mismatch and lattice constants in mixed single crystals grown on (100) and (111)B oriented GaAs substrates.

  10. Opioid agonists binding and responses in SH-SY5Y cells

    NASA Technical Reports Server (NTRS)

    Costa, E. M.; Hoffmann, B. B.; Loew, G. H.

    1992-01-01

    SH-SY5Y (human neuroblastoma) cultured cells, known to have mu-opioid receptors, have been used to assess and compare the ability of eight representative mu-selective compounds from diverse opioid families to recognize and activate these receptors. A wide range of receptor affinities spanning a factor of 10,000 was found between the highest affinity fentanyl analogs (Ki = 0.1nM) and the lowest affinity analog, meperidine (Ki = 1 microM). A similar range was found for inhibition of PGE1-stimulated cAMP accumulation with a rank order of activities that closely paralleled binding affinities. Maximum inhibition of cAMP accumulation by each compound was about 80%. Maximum stimulation of GTPase activity (approximately 50%) was also similar for all compounds except the lowest affinity meperidine. Both effects were naloxone reversible. These results provide further evidence that mu-receptors are coupled to inhibition of adenylate cyclase and that the SH-SY5Y cell line is a good system for assessment of mu-agonists functional responses.

  11. Rho kinase inhibitor Y-27632 and Accutase dramatically increase mouse embryonic stem cell derivation.

    PubMed

    Zhang, Peng; Wu, Xinglong; Hu, Chunchao; Wang, Pengbo; Li, Xiangyun

    2012-01-01

    Although it has been 30 yr since the development of derivation methods for mouse embryonic stem (ES) cells, the biology of derivation of ES cells is poorly understood and the efficiency varies dramatically between cell lines. Recently, the Rho kinase inhibitor Y-27632 and the cell dissociation reagent Accutase were reported to significantly inhibit apoptosis of human ES cells during passaging. Therefore, in the current study, C57BL/6×129/Sv mouse blastocysts were used to evaluate the effect of the combination of the two reagents instead of using the conventional 129 line in mouse ES cell derivation. The data presented in this study suggests that the combination of Y-27632 and Accutase significantly increases the efficiency of mouse ES cell derivation; furthermore, no negative side effects were observed with Y-27632 and Accutase treatment. The newly established ES cell lines retain stable karyotype, surface markers expression, formed teratomas, and contributed to viable chimeras and germline transmission by tetraploid complementation assay. In addition, Y-27632 improved embryoid body formation of ES cells. During ES cell microinjection, Y-27632 prevented the formation of dissociation-induced cell blebs and facilitates the selection and the capture of intact cells. The methods presented in this study clearly demonstrate that inhibition of Rho kinase with Y-27632 and Accutase dissociation improve the derivation efficiently and reproducibility of mouse ES cell generation which is essential for reducing variability in the results obtained from different cell lines.

  12. Kv3.4 is modulated by HIF-1α to protect SH-SY5Y cells against oxidative stress-induced neural cell death.

    PubMed

    Song, Min Seok; Ryu, Pan Dong; Lee, So Yeong

    2017-05-18

    The Kv3.4 channel is characterized by fast inactivation and sensitivity to oxidation. However, the physiological role of Kv3.4 as an oxidation-sensitive channel has yet to be investigated. Here, we demonstrate that Kv3.4 plays a pivotal role in oxidative stress-related neural cell damage as an oxidation-sensitive channel and that HIF-1α down-regulates Kv3.4 function, providing neuroprotection. MPP + and CoCl 2 are reactive oxygen species (ROS)-generating reagents that induce oxidative stress. However, only CoCl 2 decreases the expression and function of Kv3.4. HIF-1α, which accumulates in response to CoCl 2 treatment, is a key factor in Kv3.4 regulation. In particular, mitochondrial Kv3.4 was more sensitive to CoCl 2 . Blocking Kv3.4 function using BDS-II, a Kv3.4-specific inhibitor, protected SH-SY5Y cells against MPP + -induced neural cell death. Kv3.4 inhibition blocked MPP + -induced cytochrome c release from the mitochondrial intermembrane space to the cytosol and mitochondrial membrane potential depolarization, which are characteristic features of apoptosis. Our results highlight Kv3.4 as a possible new therapeutic paradigm for oxidative stress-related diseases, including Parkinson's disease.

  13. Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jae Hyeon; Hanyang Biomedical Research Institute, Seoul; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul

    Recent studies have shown that up-regulation of autophagy may be a tractable therapeutic intervention for clearing disease-causing proteins, including α-synuclein, ubiquitin, and other misfolded or aggregated proteins in pesticide-induced neurodegeneration. In a previous study, we reported that chlorpyrifos (CPF)-induced mitochondria-dependent apoptosis is mediated through reactive oxygen species in SH-SY5Y cells. In this study, we explored a novel pharmacotherapeutic approach to prevent CPF neurotoxicity involving the regulation of autophagy. We investigated the modulation of CPF-induced apoptosis according to autophagy regulation. We found that CPF induced apoptosis in SH-SY5Y cells, as demonstrated by the activation of caspase-3 and nuclear condensation. In addition,more » we observed that cells treated with CPF underwent autophagic cell death by monitoring the expression of LC3-II and p62. Pretreatment with the autophagy inducer rapamycin significantly enhanced the cell viability of CPF-exposed cells, and the enhancement of cell viability was partially due to alleviation of CPF-induced apoptosis via a decrease in levels of cleaved caspase-3. Specifically, rapamycin pretreatment decreased Bax and increased Bcl-2 expression in mitochondria. In addition, rapamycin significantly decreased cytochrome c release in from mitochondria into the cytosol. However, pretreatment of cells with the autophagy inhibitor, 3-methyladenine (3MA), remarkably increased CPF toxicity in these cells; this with correlated with increased expression of Bax and decreased expression of Bcl-2 in mitochondria. Our results suggest that CPF-induced cytotoxicity is modified by autophagy regulation and that rapamycin protects against CPF-induced apoptosis by enhancing autophagy. Pharmacologic induction of autophagy by rapamycin may be a useful treatment strategy in neurodegenerative disorders. - Highlights: ► Chlorpyrifos (CPF) is cytotoxic to SH-SY5Y cells ► CPF-induced cytotoxicity is

  14. Carnosic Acid Induces Anti-Inflammatory Effects in Paraquat-Treated SH-SY5Y Cells Through a Mechanism Involving a Crosstalk Between the Nrf2/HO-1 Axis and NF-κB.

    PubMed

    de Oliveira, Marcos Roberto; de Souza, Izabel Cristina Custódio; Fürstenau, Cristina Ribas

    2018-01-01

    Carnosic acid (CA) is a phenolic diterpene obtained from Rosmarinus officinalis L. and has demonstrated cytoprotective properties in several experimental models. CA exerts antioxidant effects by upregulating the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which controls the expression of antioxidant and phase II detoxification enzymes. Heme oxygenase-1 (HO-1) expression is modulated by Nrf2 and has been demonstrated as part of the mechanism underlying the CA-induced cytoprotection. Nonetheless, it remains to be studied whether and how HO-1 would mediate CA-elicited anti-inflammatory effects. Therefore, we have investigated here whether and how CA would prevent paraquat (PQ)-induced inflammation-related alterations in human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were pretreated for 12 h with CA at 1 μM before exposure to PQ for further 24 h. CA suppressed the PQ-induced alterations on the levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2) through a mechanism involving the activation of the Nrf2/HO-1 axis. Furthermore, we observed a crosstalk between the Nrf2/HO-1 signaling pathway and the activation of the nuclear factor-κB (NF-κB) transcription factor, since administration of ZnPP IX (specific inhibitor of HO-1) or Nrf2 knockdown using small interfering RNA (siRNA) abolished the anti-inflammatory effects induced by CA. Moreover, administration of SN50 (specific inhibitor of NF-κB) inhibited the PQ-induced inflammation-related effects in SH-SY5Y cells. Therefore, CA exerted anti-inflammatory effects in SH-SY5Y cells through an Nrf2/HO-1 axis-dependent manner associated with downregulation of NF-κB.

  15. Considerations for the Use of SH-SY5Y Neuroblastoma Cells in Neurobiology

    PubMed Central

    Kovalevich, Jane; Langford, Dianne

    2016-01-01

    The use of primary mammalian neurons derived from embryonic central nervous system tissue is limited by the fact that once terminally differentiated into mature neurons, the cells can no longer be propagated. Transformed neuronal-like cell lines can be used in vitro to overcome this limitation. However, several caveats exist when utilizing cells derived from malignant tumors. In this context, the popular SH-SY5Y neuroblastoma cell line and its use in in vitro systems is described. Originally derived from a metastatic bone tumor biopsy, SH-SY5Y (ATCC® CRL-2266™) cells are a subline of the parental line SK-N-SH (ATCC® HTB-11™). SK-N-SH were subcloned three times; first to SH-SY, then to SH-SY5, and finally to SH-SY5Y. SH-SY5Y were deposited to the ATCC® in 1970 by June L. Biedler. Three important characteristics of SH-SY5Y cells should be considered when using these cells in in vitro studies. First, cultures include both adherent and floating cells, both types of which are viable. Few studies address the biological significance of the adherent versus floating phenotypes, but most reported studies utilize adherent populations and discard the floating cells during media changes. Second, early studies by Biedler’s group indicated that the parental differentiated SK-N-SH cells contained two morphologically distinct phenotypes: neuroblast-like cells and epithelial-like cells (Ross et al., J Nat Cancer Inst 71:741–747, 1983). These two phenotypes may correspond to the “N” and “S” types described in later studies in SH-SY5Y by Encinas et al. (J Neurochem 75:991–1003, 2000). Cells with neuroblast-like morphology are positive for tyrosine hydroxylase (TH) and dopamine-β-hydroxylase characteristic of catecholaminergic neurons, whereas the epithelial-like counterpart cells lacked these enzymatic activities (Ross et al., J Nat Cancer Inst 71:741–747, 1983). Third, SH-SY5Y cells can be differentiated to a more mature neuron-like phenotype that is

  16. Stress integration after acute and chronic predator stress: differential activation of central stress circuitry and sensitization of the hypothalamo-pituitary-adrenocortical axis.

    PubMed

    Figueiredo, Helmer F; Bodie, Bryan L; Tauchi, Miyuki; Dolgas, C Mark; Herman, James P

    2003-12-01

    Predator exposure is a naturalistic stressor of high ethological relevance. In the current study, our group examined central and peripheral integration of stress responses in rats after acute or repeated exposure to a natural predator (cat). Acute cat exposure rapidly induced hypothalamo-pituitary-adrenocortical (HPA) axis activation and paraventricular nucleus (PVN) CRH mRNA production. Repeated daily cat exposure (7 and 14 d) also up-regulated PVN mRNA CRH expression, but did not result in frank adrenocortical hyperactivity. Unlike other chronic homotypic stress regimens, repeated cat exposure facilitated corticosterone secretion after the 6th or 13th day of exposure. Notably, ACTH secretion and central amygdaloid nucleus CRH mRNA expression were enhanced in animals that were preexposed to the holding chamber relative to chamber-naive rats, suggesting that contextual cues can sensitize subsequent responses to a fearful stimulus. Analysis of c-fos activation was then used to identify brain circuits activated by acute predator stress. Cat exposure elicited a pattern of central c-fos activation that differed substantially from that after either restraint or hypoxia. Predator-specific c-fos mRNA induction was observed in several brain regions comprising the hypothetical brain defense circuit (bed nucleus of the stria terminalis, medial region of the ventromedial nucleus, and dorsal premammillary nucleus). Surprisingly, acute cat exposure did not induce c-fos expression in the PVN. In summary, the data indicate that 1) predation stress invokes a unique stress circuitry that promotes homotypic sensitization of the HPA axis, and 2) familiarization of animals to testing environments can prime central stress pathways to respond robustly to novel threats.

  17. Baicalein antagonizes rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to Parkinsonism.

    PubMed

    Song, Ju-Xian; Choi, Mandy Yuen-Man; Wong, Kavin Chun-Kit; Chung, Winkie Wing-Yan; Sze, Stephen Cho-Wing; Ng, Tzi-Bun; Zhang, Kalin Yan-Bo

    2012-01-21

    Two active compounds, baicalein and its glycoside baicalin were found in the dried root of Scutellaria baicalensis Georgi, and reported to be neuroprotective in vitro and in vivo. This study aims to evaluate the protective effects of baicalein on the rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to parkinsonism. Cell viability and cytotoxicity were determined by MTT assay. The degree of nuclear apoptosis was evaluated with a fluorescent DNA-binding probe Hoechst 33258. The production of reactive oxidative species (ROS) and loss of mitochondrial membrane potential (ΔΨm) were determined by fluorescent staining with DCFH-DA and Rhodanmine 123, respectively. The expression of Bax, Bcl-2, cleaved caspase-3 and phosphorylated ERK1/2 was determined by the Western blots. Baicalein significantly increased viability and decreased rotenone-induced death of SH-SY5Y cells in a dose-dependent manner. Pre- and subsequent co-treatment with baicalein preserved the cell morphology and attenuated the nuclear apoptotic characteristics triggered by rotenone. Baicalein antagonized rotenone-induced overproduction of ROS, loss of ΔΨm, the increased expression of Bax, cleaved caspase-3 and phosphorylated ERK1/2 and the decreased expression of Bcl-2. The antioxidative effect, mitochondrial protection and modulation of anti-and pro-apoptotic proteins are related to the neuroprotective effects of baicalein against rotenone induced cell death in SH-SY5Y cells.

  18. Decreased heat tolerance is associated with hypothalamo-pituitary-adrenocortical axis impairment.

    PubMed

    Michel, V; Peinnequin, A; Alonso, A; Buguet, A; Cespuglio, R; Canini, F

    2007-06-29

    When rats are exposed to heat, they adapt themselves to the stressor with a wide inter-individual variability. Such differences in heat tolerance may be related to particularities in the hypothalamo-pituitary-adrenocortical (HPA) axis activation. To further this hypothesis, 80 rats instrumented with a telemetric device for abdominal temperature (Tabd) measurement were separated into two groups. Sixty-eight rats were exposed during 90 min at an ambient temperature of 40 degrees C, and 12 rats to an ambient temperature of 22 degrees C. Heat-exposed rats were then divided into three groups using the a posteriori k-means clustering method according to their Tabd level at the end of heat exposure. Heat tolerant rats (Tol, n=30) exhibiting the lowest Tabd showed a slight dehydration, a moderate triglyceride mobilization, but the highest plasma adrenocorticotropic-hormone (ACTH) and corticosterone levels. Conversely, heat exhausted rats (HE, n=14) presented the highest Tabd, a higher degree of dehydration, a greater metabolic imbalance with the lowest plasma triglyceride level and the highest lactate concentration, as well as a lowest plasma corticosterone and ACTH levels. The fact that the proopiomelanocortin (POMC) mRNA content within the pituitary was low despite of a high c-fos mRNA level is also relevant. Current inflammatory processes in HE rats were underlined by lower inhibitory factor kappaBalpha (IkappaBalpha) mRNA and higher tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) mRNA. In conclusion, data show that intolerance to heat exposure is associated to an HPA axis impairment, possibly related to changes occurring in the IkappaBalpha and TNF-alpha mRNA levels.

  19. Correlation between electrical and mechanical properties in La1-xSrxGa1-yMgyO3-δ ceramics used as electrolytes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Morales, M.; Roa, J. J.; Perez-Falcón, J. M.; Moure, A.; Tartaj, J.; Espiell, F.; Segarra, M.

    2014-01-01

    The relation between the electrical and the mechanical properties in Sr and Mg doped LaGaO3 ceramics, which can be used as electrolyte for solid oxide fuel cells, was investigated in terms of hardness and ionic conductivity. For this purpose, ceramic materials corresponding to the compositions of La1-xSrxGa1-yMgyO3-δ (LSGM), with x = 0.1 and y = 0.2, and x = 0.15 and y = 0.2, were prepared. LSGM powders synthesized by the ethylene glycol complex solution method were shaped into disks by isostatic pressing method. The variation in the microstructure of samples was achieved by varying the sintering temperature between 1300 and 1450 °C. While the effect of the different microstructures on the electrical properties of the LSGM electrolytes was determined by impedance spectroscopy, the influence of the hardness was extracted by instrumented indentation technique. The results showed a linear correlation between the hardness and total ionic conductivity within the temperature range of 500-660 °C, thus indicating that both properties were strongly influenced on the relative density and purity of the samples. It has a potential practical implication: by measuring the LSGM hardness at room temperature, one can achieve an approach to the ionic conductivity within the studied temperature range.

  20. Insulating and metallic spin glass in K xFe 2-δ-yNi ySe 2 (0.06 ≤ y1.44 ) single crystals

    DOE PAGES

    Ryu, Hyejin; Abeykoon, Milinda; Wang, Kefeng; ...

    2015-05-04

    We report electron doping effects by Ni in K xFe 2-δ-yNi ySe₂ (0.06 ≤ y1.44) single crystal alloys. A rich ground state phase diagram is observed. Thus, a small amount of Ni (~ 4%) suppressed superconductivity below 1.8 K, inducing insulating spin glass magnetic ground state for higher Ni content. With further Ni substitution, metallic resistivity is restored. For high Ni concentration in the lattice the unit cell symmetry is high symmetry I4/ mmm with no phase separation whereas both I4/ m + I4/ mmm space groups were detected in the phase separated crystals when concentration of Nimore » < Fe. The absence of superconductivity coincides with the absence of crystalline Fe vacancy order.« less

  1. A PLC-γ1-independent, RasGRP1-ERK dependent pathway drives lymphoproliferative disease in LAT-Y136F mutant mice

    PubMed Central

    Kortum, Robert L.; Rouquette-Jazdanian, Alexandre K.; Miyaji, Michihiko; Merrill, Robert K.; Markegard, Evan; Pinski, John M.; Wesselink, Amelia; Nath, Nandan N.; Alexander, Clayton P.; Li, Wenmei; Kedei, Noemi; Roose, Jeroen P.; Blumberg, Peter M.; Samelson, Lawrence E.; Sommers, Connie L.

    2012-01-01

    Mice expressing a germline mutation in the PLC-γ1 binding site of LAT (linker for activation of T cells) show progressive lymphoproliferation and ultimately die at 4–6 months of age. The hyper-activated T cells in these mice show defective TCR-induced calcium flux, but enhanced Ras/ERK activation that is critical for disease progression. Despite the loss of LAT-dependent PLC-γ1 binding and activation, genetic analysis revealed RasGRP1, and not Sos1 or Sos2, to be the major RasGEF responsible for ERK activation and the lymphoproliferative phenotype in these mice. Analysis of isolated CD4+ T cells from LAT-Y136F mice showed altered proximal TCR-dependent kinase signaling, which activated a Zap70- and LAT-independent pathway. Moreover, LAT-Y136F T cells showed ERK activation that was dependent on Lck and/or Fyn, PKCθ, and RasGRP1. These data demonstrate a novel route to Ras activation in vivo in a pathological setting. PMID:23209318

  2. Curcumin Rescues a PINK1 Knock Down SH-SY5Y Cellular Model of Parkinson's Disease from Mitochondrial Dysfunction and Cell Death.

    PubMed

    van der Merwe, Celia; van Dyk, Hayley Christy; Engelbrecht, Lize; van der Westhuizen, Francois Hendrikus; Kinnear, Craig; Loos, Ben; Bardien, Soraya

    2017-05-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterised by the loss of dopaminergic neurons in the substantia nigra. Mutations in the PINK1 gene result in an autosomal recessive form of early-onset PD. PINK1 plays a vital role in mitochondrial quality control via the removal of dysfunctional mitochondria. The aim of the present study was to create a cellular model of PD using siRNA-mediated knock down of PINK1 in SH-SY5Y neuroblastoma cells The possible protective effects of curcumin, known for its many beneficial properties including antioxidant and anti-inflammatory effects, was tested on this model in the presence and absence of paraquat, an additional stressor. PINK1 siRNA and control cells were separated into four treatment groups: (i) untreated, (ii) treated with paraquat, (iii) pre-treated with curcumin then treated with paraquat, or (iv) treated with curcumin. Various parameters of cellular and mitochondrial function were then measured. The PINK1 siRNA cells exhibited significantly decreased cell viability, mitochondrial membrane potential (MMP), mitochondrial respiration and ATP production, and increased apoptosis. Paraquat-treated cells exhibited decreased cell viability, increased apoptosis, a more fragmented mitochondrial network and decreased MMP. Curcumin pre-treatment followed by paraquat exposure rescued cell viability and increased MMP and mitochondrial respiration in control cells, and significantly decreased apoptosis and increased MMP and maximal respiration in PINK1 siRNA cells. These results highlight a protective effect of curcumin against mitochondrial dysfunction and apoptosis in PINK1-deficient and paraquat-exposed cells. More studies are warranted to further elucidate the potential neuroprotective properties of curcumin.

  3. Neurotoxicity Induced by Bupivacaine via T-Type Calcium Channels in SH-SY5Y Cells

    PubMed Central

    Wen, Xianjie; Xu, Shiyuan; Liu, Hongzhen; Zhang, Quinguo; Liang, Hua; Yang, Chenxiang; Wang, Hanbing

    2013-01-01

    There is concern regarding neurotoxicity induced by the use of local anesthetics. A previous study showed that an overload of intracellular calcium is involved in the neurotoxic effect of some anesthetics. T-type calcium channels, which lower the threshold of action potentials, can regulate the influx of calcium ions. We hypothesized that T-type calcium channels are involved in bupivacaine-induced neurotoxicity. In this study, we first investigated the effects of different concentrations of bupivacaine on SH-SY5Y cell viability, and established a cell injury model with 1 mM bupivacaine. The cell viability of SH-SY5Y cells was measured following treatment with 1 mM bupivacaine and/or different dosages (10, 50, or 100 µM) of NNC 55-0396 dihydrochloride, an antagonist of T-type calcium channels for 24 h. In addition, we monitored the release of lactate dehydrogenase, cytosolic Ca2+ ([Ca2+]i), cell apoptosis and caspase-3 expression. SH-SY5Y cells pretreated with different dosages (10, 50, or 100 µM) of NNC 55-0396 dihydrochloride improved cell viability, reduced lactate dehydrogenase release, inhibited apoptosis, and reduced caspase-3 expression following bupivacaine exposure. However, the protective effect of NNC 55-0396 dihydrochloride plateaued. Overall, our results suggest that T-type calcium channels may be involved in bupivacaine neurotoxicity. However, identification of the specific subtype of T calcium channels involved requires further investigation. PMID:23658789

  4. Low-Temperature Synthesis, Structural Characterization, and Electrochemistry of Ni-Rich Spinel-like LiNi 2–y Mn y O 4 (0.4 ≤ y1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kan, Wang Hay; Huq, Ashfia; Manthiram, Arumugam

    The thermal conversion of chemically delithiated layered Li 0.5Ni 1-yMn yO 2 (0.2 ≤ y ≤ 0.5) into spinel-like LiNi 2-yMn yO 4 (0.4 ≤ y1) has been systematically investigated. The formed spinel-like phases are metastable and cannot be accessed by a conventional high-temperature solid-state method. The layered-to-spinel transformation mechanism has been studied by the Rietveld refinement of in situ neutron diffraction as a function of temperature (25–300 °C). In particular, the ionic diffusion of Li and M ions is quantified at different temperatures. Electrochemistry of the metastable spinel-like phases obtained has been studied in lithium-ion cells. Amore » bond valence sum map has been performed to understand the ionic diffusion of lithium ions in the Ni-rich layered, spinel, and rock-salt structures. The study can aid the understanding of the possible phases that could be formed during the cycling of Ni-rich layered oxide cathodes.« less

  5. Low-Temperature Synthesis, Structural Characterization, and Electrochemistry of Ni-Rich Spinel-like LiNi 2–yMn yO 4 (0.4 ≤ y1)

    DOE PAGES

    Kan, Wang Hay; Huq, Ashfia; Manthiram, Arumugam

    2015-10-28

    The thermal conversion of chemically delithiated layered Li 0.5Ni 1yMn yO 2 (0.2 ≤ y ≤ 0.5) into spinel-like LiNi 2–yMn yO 4 (0.4 ≤ y1) has been systematically investigated in this paper. The formed spinel-like phases are metastable and cannot be accessed by a conventional high-temperature solid-state method. The layered-to-spinel transformation mechanism has been studied by the Rietveld refinement of in situ neutron diffraction as a function of temperature (25–300 °C). In particular, the ionic diffusion of Li and M ions is quantified at different temperatures. Electrochemistry of the metastable spinel-like phases obtained has been studied inmore » lithium-ion cells. A bond valence sum map has been performed to understand the ionic diffusion of lithium ions in the Ni-rich layered, spinel, and rock-salt structures. Finally, the study can aid the understanding of the possible phases that could be formed during the cycling of Ni-rich layered oxide cathodes.« less

  6. Low-Temperature Synthesis, Structural Characterization, and Electrochemistry of Ni-Rich Spinel-like LiNi 2–yMn yO 4 (0.4 ≤ y1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kan, Wang Hay; Huq, Ashfia; Manthiram, Arumugam

    The thermal conversion of chemically delithiated layered Li 0.5Ni 1yMn yO 2 (0.2 ≤ y ≤ 0.5) into spinel-like LiNi 2–yMn yO 4 (0.4 ≤ y1) has been systematically investigated in this paper. The formed spinel-like phases are metastable and cannot be accessed by a conventional high-temperature solid-state method. The layered-to-spinel transformation mechanism has been studied by the Rietveld refinement of in situ neutron diffraction as a function of temperature (25–300 °C). In particular, the ionic diffusion of Li and M ions is quantified at different temperatures. Electrochemistry of the metastable spinel-like phases obtained has been studied inmore » lithium-ion cells. A bond valence sum map has been performed to understand the ionic diffusion of lithium ions in the Ni-rich layered, spinel, and rock-salt structures. Finally, the study can aid the understanding of the possible phases that could be formed during the cycling of Ni-rich layered oxide cathodes.« less

  7. Interactions between nutrition and immunity in anorexia nervosa: a 1-y follow-up study.

    PubMed

    Marcos, A; Varela, P; Toro, O; López-Vidriero, I; Nova, E; Madruga, D; Casas, J; Morandé, G

    1997-08-01

    Nutritional status and immunocompetence were evaluated in 15 patients suffering from anorexia nervosa in comparison with a control group (n = 15). After 1 y, data from six phases of the study were evaluated: immediately after admittance to the hospital (AN1), after 1 mo (AN2), after 2 mo (AN3), after 3 mo (AN4), after 6 mo (AN5), and after 1 y, (AN6). Patients recovered weight from AN4 until AN6 although, according to body mass index values, all patients had low weights during the 1-y follow-up. Likewise, leukocyte and lymphocyte values were borderline and lower in patients in all phases tested than in control subjects. All lymphocyte subpopulations were lower in AN1 and AN2 patients (inpatients) than in control subjects, except for CD19 cells, which remained unmodified. There seemed to be a recovery of lymphocyte subsets after hospitalization in AN3 and AN4 patients (outpatients), except for CD57, which remained below control values. However, there was a global decrease of the lymphocyte subsets in AN5 and AN6. Ratios of CD4 to CD8 cells were not altered but the ratio of CD2 to CD19 cells was lower in all phases except AN6. Moreover, cell-mediated immune function was impaired and none of the patients showed normal responses. Thus, despite the slight weight increase found in AN4, AN5, and AN6 and the apparent cell subset recovery after hospitalization, these results suggest a greatly depleted nutritional status that remained during the whole year in all patients.

  8. A new method to effectively and rapidly generate neurons from SH-SY5Y cells.

    PubMed

    Yang, HongNa; Wang, Jing; Sun, JinHua; Liu, XiaoDun; Duan, Wei-Ming; Qu, TingYu

    2016-01-01

    It is well known that neurons differentiated from SH-SY5Y cells can serve as cell models for neuroscience research; i.e., neurotoxicity and tolerance to morphine in vitro. To differentiate SH-SY5Y cells into neurons, RA (retinoic acid) is commonly used to produce the inductive effect. However, the percentage of neuronal cells produced from SH-SY5Y cells is low, either from the use of RA treatment alone or from the combined application of RA and other chemicals. In the current study, we used CM-hNSCs (conditioned medium of human neural stem cells) as the combinational inducer with RA to prompt neuronal differentiation of SH-SY5Y cells. We found that neuronal differentiation was improved and that neurons were greatly increased in the differentiated SH-SY5Y cells using a combined treatment of CM-hNSCs and RA compared to RA treatment alone. The neuronal percentage was higher than 80% (about 88%) on the 3rd day and about 91% on the 7th day examined after a combined treatment with CM-hNSCs and RA. Cell maturation and neurite growth of these neuronal cells were also improved. In addition, the use of CM-hNSCs inhibited the apoptosis of RA-treated SH-SY5Y cells in culture. We are the first to report the use of CM-hNSCs in combination with RA to induce neuronal differentiation of RA-treated SH-SY5Y cells. Our method can rapidly and effectively promote the neuronal production of SH-SY5Y cells in culture conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. [Preparation and spectral characterization of CdS(y)Te(1-y) thin films].

    PubMed

    Li, Wei; Feng, Liang-Huan; Wu, Li-Li; Zhang, Jing-Quan; Li, Bing; Lei, Zhi; Cai, Ya-Ping; Zheng, Jia-Gui; Cai, Wei; Zhang, Dong-Min

    2008-03-01

    CdS(y)Te(1-y) (0 < or = y < or = 1) polycrystalline thin films were prepared on glass substrates by co-evaporation of powders of CdTe and CdS. For the characterization of the structure and composition of the CdS(y)Te(1-y) thin films the X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS) were used. The results indicate that the values of sulfur content y detected and controlled by the quartz wafer detector show good agreement with the EDS results. The films were found to be cubic for x < 0. 3, and hexagonal for x > or = 0.3. The 20-50 nm of grain sizes for CdS(y)Te(1-y) thin films were calculated using a method of XRD analysis. Finally, the optical properties of CdS(y)Te(1-y) thin films were characterized by UV-Vis-NIR spectroscopy alone. According to a method from Swanepoel, together with the first-order Sellmeier model, the thickness, of d-535 nm, energy gap of E(g)-1.41 eV, absorption coefficient, alpha(lambda) and refractive index, n(lambda) of CdS(0.22) Te(0.78) thin films were determined from the transmittance at normal incidence of light in the wavelength range 300-2 500 nm. The results also indicate that the CdS(y)Te(1-y) thin films with any composition (0 < or = y < or = 1) can be prepared by co-evaporation, and the method to characterize the optical properties of CdS(y)Te(1-y) thin films can be implemented for other semiconductor thin films.

  10. Composite Adrenocortical Carcinoma and Neuroblastoma in an Infant With a TP53 Germline Mutation: A Case Report and Literature Review.

    PubMed

    Tang, Yue-Jia; Yu, Ting-Ting; Ma, Jing; Zhou, Ying; Xu, Min; Gao, Yi-Jin

    2018-05-09

    Li-Fraumeni syndrome is a kind of hereditary cancer predisposition syndromes, and is caused by TP53 gene mutation. Adrenocortical carcinoma (ACC) is commonly described as the most closely related tumor with this disease. Here, we present a case of a male infant with composite ACC and neuroblastoma who inherited a TP53 gene mutation from his mother, a 20-year-old carrier without any tumor to date. This TP53 gene mutation may be pathogenic and lead to composite malignancies of ACC and neuroblastoma.

  11. Insulin-like Growth Factor-I Mediates Neuroprotection in Proteasome Inhibition-Induced Cytotoxicity in SH-SY5Y Cells

    PubMed Central

    Cheng, Benxu; Maffi, Shivani Kaushal; Martinez, Alex Anthony; Acosta, Yolanda P Villarreal; Morales, Liza D; Roberts, James L

    2011-01-01

    The proteasome is an enzyme complex responsible for targeted intracellular proteolysis. Alterations in proteasome-mediated protein clearance have been implicated in the pathogenesis of aging, Alzheimer's disease (AD) and Parkinson's disease (PD). In such diseases, proteasome inhibition may contribute to formation of abnormal protein aggregates, which in turn activate intracellular unfolded protein responses that cause oxidative stress and apoptosis. In this study, we investigated the protective effect of Insulin-like Growth Factor-I (IGF-1) for neural SH-SY5Y cells treated with the proteasomal inhibitor, Epoxomicin, In SH-SY5Y cells, Epoxomicin treatment results in accumulation of intracellular ubiquitinated proteins and cytochrome c release from damaged mitochondria, leading to cell death, in Epoxomicin time- and dose-dependent manner. In cells treated with small amounts of IGF-1, the same dosages of Epoxomicin reduced both mitochondrial damage (cytochrome c release) and reduced caspase-3 activation and PARP cleavage, both of which are markers of apoptosis. Notably, however, IGF-1-treated SH-SY5Y cells still contained ubiquitinated protein aggregates. This result indicates that IGF-1 blocks the downstream apoptotic consequences of Epoxomicin treatment leading to decreased proteasome function. Clues as to the mechanism for this protective effect come from (a) increased AKT phosphorylation observed in IGF-1-protected cells, vs. cells exposed to Epoxomicin without IGF-1, and (b) reduction of IGF-1 protection by pretreatment of the cells with LY294002 (an inhibitor of PI3-kinase). Together these findings suggest that activation of PI3/AKT pathways by IGF-1 is involved in IGF-1 neuroprotection against apoptosis following proteasome inhibition. PMID:21545837

  12. Neuroprotective Effect of Arctigenin via Upregulation of P-CREB in Mouse Primary Neurons and Human SH-SY5Y Neuroblastoma Cells

    PubMed Central

    Zhang, Nan; Wen, Qingping; Ren, Lu; Liang, Wenbo; Xia, Yang; Zhang, Xiaodan; Zhao, Dan; Sun, Dong; Hu, Yv; Hao, Haiguang; Yan, Yaping; Zhang, Guangxian; Yang, Jingxian; Kang, Tingguo

    2013-01-01

    Arctigenin (Arc) has been shown to act on scopolamine-induced memory deficit mice and to provide a neuroprotective effect on cultured cortical neurons from glutamate-induced neurodegeneration through mechanisms not completely defined. Here, we investigated the neuroprotective effect of Arc on H89-induced cell damage and its potential mechanisms in mouse cortical neurons and human SH-SY5Y neuroblastoma cells. We found that Arc prevented cell viability loss induced by H89 in human SH-SY5Y cells. Moreover, Arc reduced intracellular beta amyloid (Aβ) production induced by H89 in neurons and human SH-SY5Y cells, and Arc also inhibited the presenilin 1(PS1) protein level in neurons. In addition, neural apoptosis in both types of cells, inhibition of neurite outgrowth in human SH-SY5Y cells and reduction of synaptic marker synaptophysin (SYN) expression in neurons were also observed after H89 exposure. All these effects induced by H89 were markedly reversed by Arc treatment. Arc also significantly attenuated downregulation of the phosphorylation of CREB (p-CREB) induced by H89, which may contribute to the neuroprotective effects of Arc. These results demonstrated that Arc exerted the ability to protect neurons and SH-SY5Y cells against H89-induced cell injury via upregulation of p-CREB. PMID:24025424

  13. Identification of amino acids important for binding of Clostridium perfringens epsilon toxin to host cells and to HAVCR1.

    PubMed

    Ivie, Susan E; McClain, Mark S

    2012-09-25

    Clostridium perfringens epsilon toxin belongs to the aerolysin-like family of pore-forming toxins and is one of the most potent bacterial toxins known. The epsilon toxin causes fatal enterotoxemia in sheep, goats, and possibly humans. Evidence indicates that the toxin binds to protein receptors including hepatitis A virus cellular receptor 1 (HAVCR1), but the region of the toxin responsible for cell binding has not been identified. In the present study, we identify amino acids within the epsilon toxin important for this cell interaction. Site-specific mutagenesis was used to investigate the role of a surface-accessible cluster of aromatic amino acids, and purified mutant proteins were tested in a series of cell-culture assays to assess cytotoxic activity and cell binding. When added to cells, four mutant proteins (Etx-Y29E, Etx-Y30E, Etx-Y36E and Etx-Y196E) were severely impaired in their ability to not only kill host cells, but also in their ability to permeabilize the plasma membrane. Circular dichroism spectroscopy and thermal stability studies revealed that the wild-type and mutant proteins were similarly folded. Additional experiments revealed that these mutant proteins were defective in binding to host cells and to HAVCR1. These data indicate that an amino acid motif including Y29, Y30, Y36, and Y196 is important for the ability of epsilon toxin to interact with cells and HAVCR1.

  14. Identification of amino acids important for binding of Clostridium perfringens epsilon toxin to host cells and to HAVCR1

    PubMed Central

    Ivie, Susan E.; McClain, Mark S.

    2012-01-01

    Clostridium perfringens epsilon toxin belongs to the aerolysin-like family of pore-forming toxins and is one of the most potent bacterial toxins known. The epsilon toxin causes fatal enterotoxemia in sheep, goats, and possibly humans. Evidence indicates that the toxin binds to protein receptors including hepatitis A virus cellular receptor 1 (HAVCR1), but the region of the toxin responsible for cell binding has not been identified. In the present study, we identify amino acids within the epsilon toxin important for this cell interaction. Site-specific mutagenesis was used to investigate the role of a surface-accessible cluster of aromatic amino acids, and purified mutant proteins were tested in a series of cell-culture assays to assess cytotoxic activity and cell binding. When added to cells, four mutant proteins (Etx-Y29E, Etx-Y30E, Etx-Y36E and Etx-Y196E) were severely impaired in their ability to not only kill host cells, but also in their ability to permeabilize the plasma membrane. Circular dichroism spectroscopy and thermal stability studies revealed that the wild-type and mutant proteins were similarly folded. Additional experiments revealed that these mutant proteins were defective in binding to host cells and to HAVCR1. These data indicate that an amino acid motif including Y29, Y30, Y36, and Y196 is important for the ability of epsilon toxin to interact with cells and HAVCR1. PMID:22938730

  15. Neuropeptide Y rapidly enhances [Ca2+]i transients and Ca2+ sparks in adult rat ventricular myocytes through Y1 receptor and PLC activation.

    PubMed

    Heredia, María del Puy; Delgado, Carmen; Pereira, Laetitia; Perrier, Romain; Richard, Sylvain; Vassort, Guy; Bénitah, Jean-Pierre; Gómez, Ana María

    2005-01-01

    Neuropeptide Y (NPY) is the most abundant peptide in the mammalian heart, but its cardiac actions are not fully understood. Here we investigate the effect of NPY in intracellular Ca2+ release, using isolated rat cardiac myocytes and confocal microscopy. Cardiac myocytes were field-stimulated at 1 Hz. The evoked [Ca2+]i transient was of higher amplitude and of faster decay in the presence of 100 nM NPY. Cell contraction was also increased by NPY. We analyzed the occurrence of Ca2+ sparks and their characteristics after NPY application. NPY significantly increased Ca2+ sparks frequency in quiescent cells. The Ca2+ spark amplitude was enhanced by NPY but the other characteristics of Ca2+ sparks were not significantly altered. Because cardiac myocytes express both Y1 and Y2 NPY receptors, we repeated the experiments in the presence of the receptor blockers, BIBP3226 and BIIE0246. We found that Y1 NPY receptor blockade completely inhibited NPY effects on [Ca2+]i transient. PTX-sensitive G-proteins and/or phospholypase C (PLC) have been invoked to mediate NPY effects in other cell types. We tested these two hypotheses. In PTX-treated myocytes NPY was still effective, which suggests that the observed NPY actions are not mediated by PTX-sensitive G-proteins. In contrast, the increase in [Ca2+]i transient by NPY was completely inhibited by the PLC inhibitor U73122. In conclusion, we find that NPY has a positive inotropic effect in isolated rat cardiac myocytes, which involves increase in Ca2+ release after activation of Y1 NPY receptor and subsequent stimulation of PLC.

  16. Nonlinear Y-Like Receptive Fields in the Early Visual Cortex: An Intermediate Stage for Building Cue-Invariant Receptive Fields from Subcortical Y Cells.

    PubMed

    Gharat, Amol; Baker, Curtis L

    2017-01-25

    Many of the neurons in early visual cortex are selective for the orientation of boundaries defined by first-order cues (luminance) as well as second-order cues (contrast, texture). The neural circuit mechanism underlying this selectivity is still unclear, but some studies have proposed that it emerges from spatial nonlinearities of subcortical Y cells. To understand how inputs from the Y-cell pathway might be pooled to generate cue-invariant receptive fields, we recorded visual responses from single neurons in cat Area 18 using linear multielectrode arrays. We measured responses to drifting and contrast-reversing luminance gratings as well as contrast modulation gratings. We found that a large fraction of these neurons have nonoriented responses to gratings, similar to those of subcortical Y cells: they respond at the second harmonic (F2) to high-spatial frequency contrast-reversing gratings and at the first harmonic (F1) to low-spatial frequency drifting gratings ("Y-cell signature"). For a given neuron, spatial frequency tuning for linear (F1) and nonlinear (F2) responses is quite distinct, similar to orientation-selective cue-invariant neurons. Also, these neurons respond to contrast modulation gratings with selectivity for the carrier (texture) spatial frequency and, in some cases, orientation. Their receptive field properties suggest that they could serve as building blocks for orientation-selective cue-invariant neurons. We propose a circuit model that combines ON- and OFF-center cortical Y-like cells in an unbalanced push-pull manner to generate orientation-selective, cue-invariant receptive fields. A significant fraction of neurons in early visual cortex have specialized receptive fields that allow them to selectively respond to the orientation of boundaries that are invariant to the cue (luminance, contrast, texture, motion) that defines them. However, the neural mechanism to construct such versatile receptive fields remains unclear. Using multielectrode

  17. Role of ACTH in the Interactive/Paracrine Regulation of Adrenal Steroid Secretion in Physiological and Pathophysiological Conditions

    PubMed Central

    Lefebvre, Hervé; Thomas, Michaël; Duparc, Céline; Bertherat, Jérôme; Louiset, Estelle

    2016-01-01

    In the normal human adrenal gland, steroid secretion is regulated by a complex network of autocrine/paracrine interactions involving bioactive signals released by endothelial cells, nerve terminals, chromaffin cells, immunocompetent cells, and adrenocortical cells themselves. ACTH can be locally produced by medullary chromaffin cells and is, therefore, a major mediator of the corticomedullary functional interplay. Plasma ACTH also triggers the release of angiogenic and vasoactive agents from adrenocortical cells and adrenal mast cells and, thus, indirectly regulates steroid production through modulation of the adrenal blood flow. Adrenocortical neoplasms associated with steroid hypersecretion exhibit molecular and cellular defects that tend to reinforce the influence of paracrine regulatory loops on corticosteroidogenesis. Especially, ACTH has been found to be abnormally synthesized in bilateral macronodular adrenal hyperplasia responsible for hypercortisolism. In these tissues, ACTH is detected in a subpopulation of adrenocortical cells that express gonadal markers. This observation suggests that ectopic production of ACTH may result from impaired embryogenesis leading to abnormal maturation of the adrenogonadal primordium. Globally, the current literature indicates that ACTH is a major player in the autocrine/paracrine processes occurring in the adrenal gland in both physiological and pathological conditions. PMID:27489549

  18. Structural basis of ligand binding modes at the neuropeptide Y Y1 receptor.

    PubMed

    Yang, Zhenlin; Han, Shuo; Keller, Max; Kaiser, Anette; Bender, Brian J; Bosse, Mathias; Burkert, Kerstin; Kögler, Lisa M; Wifling, David; Bernhardt, Guenther; Plank, Nicole; Littmann, Timo; Schmidt, Peter; Yi, Cuiying; Li, Beibei; Ye, Sheng; Zhang, Rongguang; Xu, Bo; Larhammar, Dan; Stevens, Raymond C; Huster, Daniel; Meiler, Jens; Zhao, Qiang; Beck-Sickinger, Annette G; Buschauer, Armin; Wu, Beili

    2018-04-01

    Neuropeptide Y (NPY) receptors belong to the G-protein-coupled receptor superfamily and have important roles in food intake, anxiety and cancer biology 1,2 . The NPY-Y receptor system has emerged as one of the most complex networks with three peptide ligands (NPY, peptide YY and pancreatic polypeptide) binding to four receptors in most mammals, namely the Y 1 , Y 2 , Y 4 and Y 5 receptors, with different affinity and selectivity 3 . NPY is the most powerful stimulant of food intake and this effect is primarily mediated by the Y 1 receptor (Y 1 R) 4 . A number of peptides and small-molecule compounds have been characterized as Y 1 R antagonists and have shown clinical potential in the treatment of obesity 4 , tumour 1 and bone loss 5 . However, their clinical usage has been hampered by low potency and selectivity, poor brain penetration ability or lack of oral bioavailability 6 . Here we report crystal structures of the human Y 1 R bound to the two selective antagonists UR-MK299 and BMS-193885 at 2.7 and 3.0 Å resolution, respectively. The structures combined with mutagenesis studies reveal the binding modes of Y 1 R to several structurally diverse antagonists and the determinants of ligand selectivity. The Y 1 R structure and molecular docking of the endogenous agonist NPY, together with nuclear magnetic resonance, photo-crosslinking and functional studies, provide insights into the binding behaviour of the agonist and for the first time, to our knowledge, determine the interaction of its N terminus with the receptor. These insights into Y 1 R can enable structure-based drug discovery that targets NPY receptors.

  19. Fucosylation of LAMP-1 and LAMP-2 by FUT1 correlates with lysosomal positioning and autophagic flux of breast cancer cells.

    PubMed

    Tan, Keng-Poo; Ho, Ming-Yi; Cho, Huan-Chieh; Yu, John; Hung, Jung-Tung; Yu, Alice Lin-Tsing

    2016-08-25

    Alpha1,2-fucosyltransferases, FUT1 and FUT2, which transfer fucoses onto the terminal galactose of N-acetyl-lactosamine via α1,2-linkage have been shown to be highly expressed in various types of cancers. A few studies have shown the involvement of FUT1 substrates in tumor cell proliferation and migration. Lysosome-associated membrane protein 1, LAMP-1, has been reported to carry alpha1,2-fucosylated Lewis Y (LeY) antigens in breast cancer cells, however, the biological functions of LeY on LAMP-1 remain largely unknown. Whether or not its family member, LAMP-2, displays similar modifications and functions as LAMP-1 has not yet been addressed. In this study, we have presented evidence supporting that both LAMP-1 and 2 are substrates for FUT1, but not FUT2. We have also demonstrated the presence of H2 and LeY antigens on LAMP-1 by a targeted nanoLC-MS(3) and the decreased levels of fucosylation on LAMP-2 by MALDI-TOF analysis upon FUT1 knockdown. In addition, we found that the expression of LeY was substantial in less invasive ER+/PR+/HER- breast cancer cells (MCF-7 and T47D) but negligible in highly invasive triple-negative MDA-MB-231 cells, of which LeY levels were correlated with the levels of LeY carried by LAMP-1 and 2. Intriguingly, we also observed a striking change in the subcellular localization of lysosomes upon FUT1 knockdown from peripheral distribution of LAMP-1 and 2 to a preferential perinuclear accumulation. Besides that, knockdown of FUT1 led to an increased rate of autophagic flux along with diminished activity of mammalian target of rapamycin complex 1 (mTORC1) and enhanced autophagosome-lysosome fusion. This may be associated with the predominantly perinuclear distribution of lysosomes mediated by FUT1 knockdown as lysosomal positioning has been reported to regulate mTOR activity and autophagy. Taken together, our results suggest that downregulation of FUT1, which leads to the perinuclear localization of LAMP-1 and 2, is correlated with increased

  20. Fucosylation of LAMP-1 and LAMP-2 by FUT1 correlates with lysosomal positioning and autophagic flux of breast cancer cells

    PubMed Central

    Tan, Keng-Poo; Ho, Ming-Yi; Cho, Huan-Chieh; Yu, John; Hung, Jung-Tung; Yu, Alice Lin-Tsing

    2016-01-01

    Alpha1,2-fucosyltransferases, FUT1 and FUT2, which transfer fucoses onto the terminal galactose of N-acetyl-lactosamine via α1,2-linkage have been shown to be highly expressed in various types of cancers. A few studies have shown the involvement of FUT1 substrates in tumor cell proliferation and migration. Lysosome-associated membrane protein 1, LAMP-1, has been reported to carry alpha1,2-fucosylated Lewis Y (LeY) antigens in breast cancer cells, however, the biological functions of LeY on LAMP-1 remain largely unknown. Whether or not its family member, LAMP-2, displays similar modifications and functions as LAMP-1 has not yet been addressed. In this study, we have presented evidence supporting that both LAMP-1 and 2 are substrates for FUT1, but not FUT2. We have also demonstrated the presence of H2 and LeY antigens on LAMP-1 by a targeted nanoLC-MS3 and the decreased levels of fucosylation on LAMP-2 by MALDI-TOF analysis upon FUT1 knockdown. In addition, we found that the expression of LeY was substantial in less invasive ER+/PR+/HER− breast cancer cells (MCF-7 and T47D) but negligible in highly invasive triple-negative MDA-MB-231 cells, of which LeY levels were correlated with the levels of LeY carried by LAMP-1 and 2. Intriguingly, we also observed a striking change in the subcellular localization of lysosomes upon FUT1 knockdown from peripheral distribution of LAMP-1 and 2 to a preferential perinuclear accumulation. Besides that, knockdown of FUT1 led to an increased rate of autophagic flux along with diminished activity of mammalian target of rapamycin complex 1 (mTORC1) and enhanced autophagosome–lysosome fusion. This may be associated with the predominantly perinuclear distribution of lysosomes mediated by FUT1 knockdown as lysosomal positioning has been reported to regulate mTOR activity and autophagy. Taken together, our results suggest that downregulation of FUT1, which leads to the perinuclear localization of LAMP-1 and 2, is correlated with

  1. Long-Term Outcomes of Adjuvant Mitotane Therapy in Patients With Radically Resected Adrenocortical Carcinoma.

    PubMed

    Berruti, Alfredo; Grisanti, Salvatore; Pulzer, Alina; Claps, Mélanie; Daffara, Fulvia; Loli, Paola; Mannelli, Massimo; Boscaro, Marco; Arvat, Emanuela; Tiberio, Guido; Hahner, Stefanie; Zaggia, Barbara; Porpiglia, Francesco; Volante, Marco; Fassnacht, Martin; Terzolo, Massimo

    2017-04-01

    In 2007, a retrospective case-control study provided evidence that adjuvant mitotane prolongs recurrence-free survival (RFS) in patients with radically resected adrenocortical carcinoma (ACC). We aimed to confirm the prognostic role of adjuvant mitotane in the same series after 9 additional years of follow-up. One hundred sixty-two ACC patients who did not recur or die after a landmark period of 3 months were considered. Forty-seven patients were enrolled in four Italian centers where adjuvant mitotane was routinely recommended (mitotane group), 45 patients in four Italian centers where no adjuvant strategy was undertaken (control group 1), and 70 German patients left untreated after surgery (control group 2). The primary aim was RFS, the secondary was overall survival. An increased risk of recurrence was found in both control cohorts [group 1: hazard ratio (HR) = 2.98; 95% confidence interval (CI), 1.75 to 5.09; P < 0.0001; group 2: HR = 2.61; 95% CI, 1.56 to 4.36; P < 0.0001] compared with the mitotane group. The risk of death was higher in control group 1 (HR = 2.03; 95% CI, 1.17 to 3.51; P = 0.011) but not in control group 2 (HR = 1.60; 95% CI, 0.94 to 2.74; P = 0.083), which had better prognostic factors and more aggressive treatment of recurrences than control group 1. The benefit of adjuvant mitotane on RFS was observed regardless of the hormone secretory status. Adjuvant mitotane is associated with prolonged RFS, without any apparent influence by the tumor secretory status. The retrospective nature of the study is a major limitation. Copyright © 2017 by the Endocrine Society

  2. Computational Model of Steroidogenesis in Human H295R Cells to Predict Biochemical Response to Endocrine Active Chemicals: Model Development for Metyrapone

    EPA Science Inventory

    BACKGROUND: An in vitro steroidogenesis assay using the human adrenocortical carcinoma cells H295R is being evaluated as a possible toxicity screening approach to detect and assess the impact of endocrine active chemicals (EAC) capable of altering steroid biosynthesis. Interpreta...

  3. Baicalein antagonizes rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to Parkinsonism

    PubMed Central

    2012-01-01

    Background Two active compounds, baicalein and its glycoside baicalin were found in the dried root of Scutellaria baicalensis Georgi, and reported to be neuroprotective in vitro and in vivo. This study aims to evaluate the protective effects of baicalein on the rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to parkinsonism. Methods Cell viability and cytotoxicity were determined by MTT assay. The degree of nuclear apoptosis was evaluated with a fluorescent DNA-binding probe Hoechst 33258. The production of reactive oxidative species (ROS) and loss of mitochondrial membrane potential (ΔΨm) were determined by fluorescent staining with DCFH-DA and Rhodanmine 123, respectively. The expression of Bax, Bcl-2, cleaved caspase-3 and phosphorylated ERK1/2 was determined by the Western blots. Results Baicalein significantly increased viability and decreased rotenone-induced death of SH-SY5Y cells in a dose-dependent manner. Pre- and subsequent co-treatment with baicalein preserved the cell morphology and attenuated the nuclear apoptotic characteristics triggered by rotenone. Baicalein antagonized rotenone-induced overproduction of ROS, loss of ΔΨm, the increased expression of Bax, cleaved caspase-3 and phosphorylated ERK1/2 and the decreased expression of Bcl-2. Conclusion The antioxidative effect, mitochondrial protection and modulation of anti-and pro-apoptotic proteins are related to the neuroprotective effects of baicalein against rotenone induced cell death in SH-SY5Y cells. PMID:22264378

  4. Acrylamide affects proliferation and differentiation of the neural progenitor cell line C17.2 and the neuroblastoma cell line SH-SY5Y.

    PubMed

    Attoff, K; Kertika, D; Lundqvist, J; Oredsson, S; Forsby, A

    2016-09-01

    Acrylamide is a well-known neurotoxic compound and people get exposed to the compound by food consumption and environmental pollutants. Since acrylamide crosses the placenta barrier, the fetus is also being exposed resulting in a risk for developmental neurotoxicity. In this study, the neural progenitor cell line C17.2 and the neuroblastoma cell line SH-SY5Y were used to study proliferation and differentiation as alerting indicators for developmental neurotoxicity. For both cell lines, acrylamide reduced the number of viable cells by reducing proliferation and inducing cell death in undifferentiated cells. Acrylamide concentrations starting at 10fM attenuated the differentiation process in SH-SY5Y cells by sustaining cell proliferation and neurite outgrowth was reduced at concentrations from 10pM. Acrylamide significantly reduced the number of neurons starting at 1μM and altered the ratio between the different phenotypes in differentiating C17.2 cell cultures. Ten micromolar of acrylamide also reduced the expression of the neuronal and astrocyte biomarkers. Although the neurotoxic concentrations in the femtomolar range seem to be specific for the SH-SY5Y cell line, the fact that micromolar concentrations of acrylamide seem to attenuate the differentiation process in both cell lines raises the interest to further investigations on the possible developmental neurotoxicity of acrylamide. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Neuroblastoma SH-SY5Y cell-derived exosomes stimulate dendrite-like outgrowths and modify the differentiation of A375 melanoma cells.

    PubMed

    Park, Seyeon; Ahn, Eun Sook; Kim, Yunjoo

    2015-04-01

    The identification of small vesicles released by many cell types as tools of intercellular communication is proposed. Here, we identify SH-SY5Y neuroblastoma-derived exosomes comprised of major histocompatibility complex II (MHC II), Hsp90 and flotillin-1. Our data also suggest that, when applied extracellularly, exosomes released from neuronal cells stimulate dendrite-like outgrowth and melanogenesis of A375 melanoma cells through the mitogen-activated protein kinase (MAP kinase), extracellular signal-regulated kinase 1 (ERK1) activation. These results suggest a modification of differentiation of melanocyte by the treatment of neuronal cell exosomes. Since exosomes from neuronal cells have the capacity to affect melanoma cells, they could be generally implicated in intercellular communication between different types of cells. © 2014 International Federation for Cell Biology.

  6. Residual adrenal function in autoimmune Addison's disease: improvement after tetracosactide (ACTH1-24) treatment.

    PubMed

    Gan, Earn H; MacArthur, Katie; Mitchell, Anna L; Hughes, Beverly A; Perros, Petros; Ball, Stephen G; James, R Andrew; Quinton, Richard; Chen, Shu; Furmaniak, Jadwiga; Arlt, Wiebke; Pearce, Simon H S

    2014-01-01

    Despite lifelong steroid hormone replacement, there is excess morbidity and mortality associated with autoimmune Addison's disease. In health, adrenocortical cells undergo continuous self-renewal from a population of subcapsular progenitor cells, under the influence of ACTH, suggesting a therapeutic possibility. We aimed to determine whether tetracosactide (synthetic ACTH1-24) could revive adrenal steroidogenic function in autoimmune Addison's disease. Thirteen patients (aged 16-65 y) with established autoimmune Addison's disease for more than 1 year were recruited at the Newcastle University Clinical Research Facility. The intervention included a 20-week study of regular sc tetracosactide (ACTH1-24) therapy. Serum and urine corticosteroids were measured during medication withdrawal at baseline and every 5 weeks during the study. Serum cortisol levels remained less than 100 nmol/L in 11 of 13 participants throughout the study. However, two women achieved peak serum cortisol concentrations greater than 400 nmol/L after 10 and 29 weeks of tetracosactide therapy, respectively, allowing withdrawal of corticosteroid replacement. Concurrently, urine glucocorticoid and mineralocorticoid metabolite excretion increased from subnormal to above the median of healthy controls. One of these responders remains well with improving peak serum cortisol (672 nmol/L) 28 months after stopping all treatments. The other responder showed a gradual reduction in serum cortisol and aldosterone over time, and steroid therapy was recommenced after a 28-week period without glucocorticoid replacement. This is the first study to demonstrate that established autoimmune Addison's disease is amenable to a regenerative medicine therapy approach.

  7. Surgery in adrenocortical carcinoma: Importance of national cooperation and centralized surgery.

    PubMed

    Hermsen, Ilse G C; Kerkhofs, Thomas M A; den Butter, Gijsbert; Kievit, Job; van Eijck, Casper H J; Nieveen van Dijkum, Els J M; Haak, Harm R

    2012-07-01

    The low incidence rate of adrenocortical carcinoma (ACC) requires a multidisciplinary approach in which surgery plays an essential role because complete resection of the primary tumor is the only chance of cure. To improve patient care, insight into operative results within the ACC population is essential. In 2007, a Dutch Adrenal Network Registry was created covering care and outcome of patients treated for ACC in the Netherlands since 1965. Using this database, we performed a study (1) to gain insight into surgical performance in the Netherlands and (2) to compare operative data with international literature. Data on patients treated from 1965 until January 2008 were studied. The following data were collected: age, gender, functionality of the tumor, stage at diagnosis, operative procedure, completeness of surgery, disease recurrence, adjuvant mitotane therapy, and recurrence-free and overall survival (OS). A total of 175 patients were studied, of whom 149 underwent surgery. Patients with complete resection had significantly longer OS times than patients with incomplete resection (P = .010). Patients operated on in a Dutch Adrenal Network center had significantly longer duration of OS in both univariate (P = .011) and multivariate analysis (P = .014). A significantly greater OS was observed for operated stage IV patients compared with nonoperated patients (P = .002). Our data suggest the relevance of national cooperation and centralized surgery in ACC. For selected patients with stage IV disease, surgery can be beneficial in extending survival. On the basis of the retrospective analysis, operative ACC in the Netherlands can and will be improved. Copyright © 2012. Published by Mosby, Inc.

  8. Novelty-induced emotional arousal modulates cannabinoid effects on recognition memory and adrenocortical activity.

    PubMed

    Campolongo, Patrizia; Morena, Maria; Scaccianoce, Sergio; Trezza, Viviana; Chiarotti, Flavia; Schelling, Gustav; Cuomo, Vincenzo; Roozendaal, Benno

    2013-06-01

    Although it is well established that cannabinoid drugs can influence cognitive performance, the findings-describing both enhancing and impairing effects-have been ambiguous. Here, we investigated the effects of posttraining systemic administration of the synthetic cannabinoid agonist WIN55,212-2 (0.1, 0.3, or 1.0 mg/kg) on short- and long-term retention of object recognition memory under two conditions that differed in their training-associated arousal level. In male Sprague-Dawley rats that were not previously habituated to the experimental context, WIN55,212-2 administered immediately after a 3-min training trial, biphasically impaired retention performance at a 1-h interval. In contrast, WIN55,212-2 enhanced 1-h retention of rats that had received extensive prior habituation to the experimental context. Interestingly, immediate posttraining administration of WIN55,212-2 to non-habituated rats, in doses that impaired 1-h retention, enhanced object recognition performance at a 24-h interval. Posttraining WIN55,212-2 administration to habituated rats did not significantly affect 24-h retention. In light of intimate interactions between cannabinoids and the hypothalamic-pituitary-adrenal axis, we further investigated whether cannabinoid administration might differently influence training-induced glucocorticoid activity in rats in these two habituation conditions. WIN55,212-2 administered after object recognition training elevated plasma corticosterone levels in non-habituated rats whereas it decreased corticosterone levels in habituated rats. Most importantly, following pretreatment with the corticosterone-synthesis inhibitor metyrapone, WIN55,212-2 effects on 1- and 24-h retention of non-habituated rats became similar to those seen in the low-aroused habituated animals, indicating that cannabinoid-induced regulation of adrenocortical activity contributes to the environmentally sensitive effects of systemically administered cannabinoids on short- and long

  9. Novelty-Induced Emotional Arousal Modulates Cannabinoid Effects on Recognition Memory and Adrenocortical Activity

    PubMed Central

    Campolongo, Patrizia; Morena, Maria; Scaccianoce, Sergio; Trezza, Viviana; Chiarotti, Flavia; Schelling, Gustav; Cuomo, Vincenzo; Roozendaal, Benno

    2013-01-01

    Although it is well established that cannabinoid drugs can influence cognitive performance, the findings—describing both enhancing and impairing effects—have been ambiguous. Here, we investigated the effects of posttraining systemic administration of the synthetic cannabinoid agonist WIN55,212-2 (0.1, 0.3, or 1.0 mg/kg) on short- and long-term retention of object recognition memory under two conditions that differed in their training-associated arousal level. In male Sprague-Dawley rats that were not previously habituated to the experimental context, WIN55,212-2 administered immediately after a 3-min training trial, biphasically impaired retention performance at a 1-h interval. In contrast, WIN55,212-2 enhanced 1-h retention of rats that had received extensive prior habituation to the experimental context. Interestingly, immediate posttraining administration of WIN55,212-2 to non-habituated rats, in doses that impaired 1-h retention, enhanced object recognition performance at a 24-h interval. Posttraining WIN55,212-2 administration to habituated rats did not significantly affect 24-h retention. In light of intimate interactions between cannabinoids and the hypothalamic–pituitary–adrenal axis, we further investigated whether cannabinoid administration might differently influence training-induced glucocorticoid activity in rats in these two habituation conditions. WIN55,212-2 administered after object recognition training elevated plasma corticosterone levels in non-habituated rats whereas it decreased corticosterone levels in habituated rats. Most importantly, following pretreatment with the corticosterone-synthesis inhibitor metyrapone, WIN55,212-2 effects on 1- and 24-h retention of non-habituated rats became similar to those seen in the low-aroused habituated animals, indicating that cannabinoid-induced regulation of adrenocortical activity contributes to the environmentally sensitive effects of systemically administered cannabinoids on short- and long

  10. The Many Faces of Primary Aldosteronism and Cushing Syndrome: A Reflection of Adrenocortical Tumor Heterogeneity.

    PubMed

    Mete, Ozgur; Duan, Kai

    2018-01-01

    Adrenal cortical tumors constitute a heterogeneous group of neoplasms with distinct clinical, morphological, and molecular features. Recent discoveries of specific genotype-phenotype correlations in adrenal cortical adenomas have transformed our understanding of their respective endocrine syndromes. Indeed, a proportion of patients with primary aldosteronism are now known to harbor adrenal cortical adenomas with heterogeneous molecular alterations ( KCNJ5, ATP1A1, ATP2B3 , and CACNA1D ) involving the calcium/calmodulin kinase signaling pathway. Several lines of evidence suggest that KCNJ5 -mutant aldosterone-producing adenomas have distinct clinicopathological phenotype compared to those harboring ATP1A1, ATP2B3 , and CACNA1D mutations. Benign adrenal cortical tumors presenting with Cushing syndrome often have diverse mutations ( PRKACA, PRKAR1A, GNAS, PDE11A , and PDE8B ) involving the cyclic AMP signaling pathway. In addition to cortisol-producing adenomas, bilateral micronodular adrenocortical disease and primary bilateral macronodular adrenal hyperplasia (PBMAH) have also expanded the spectrum of benign neoplasms causing adrenal Cushing disease. The recent discovery of inactivating ARMC5 germline mutations in PBMAH has challenged the old belief that this disorder is mainly a sporadic disease. Emerging evidence suggests that PBMAH harbors multiple distinct clonal proliferations, reflecting the heterogeneous genomic landscape of this disease. Although most solitary adrenal cortical tumors are sporadic, there is an increasing recognition that inherited susceptibility syndromes may also play a role in their pathogenesis. This review highlights the molecular and morphological heterogeneity of benign adrenal cortical neoplasms, reflected in the diverse presentations of primary aldosteronism and adrenal Cushing syndrome.

  11. Endothelial cell-derived exosomes protect SH-SY5Y nerve cells against ischemia/reperfusion injury.

    PubMed

    Xiao, Bing; Chai, Yi; Lv, Shigang; Ye, Minhua; Wu, Miaojing; Xie, Liyuan; Fan, Yanghua; Zhu, Xingen; Gao, Ziyun

    2017-10-01

    Cerebral ischemia is a leading cause of death and disability. A previous study indicated that remote ischemic postconditioning (RIP) in the treatment of cerebral ischemia reduces ischemia/reperfusion (I/R) injury. However, the underlying mechanism is not well understood. In the present study, the authors hypothesized that the protective effect of RIP on neurological damage is mediated by exosomes that are released by endothelial cells in femoral arteries. To test this, right middle cerebral artery occlusion/reperfusion with RIP was performed in rats. In addition, an I/R injury cell model was tested that included human umbilical vein endothelial cells (HUVECs) and SH-SY5Y cells. Both the in vivo and in vitro models were examined for injury. Markers of exosomes (CD63, HSP70 and TSG101) were assessed by immunohistochemistry, western blot analysis and flow cytometry. Exosomes were extracted from both animal serum and HUVEC culture medium and identified by electron microscopy. They investigated the role of endothelial cell-derived exosomes in the proliferation, apoptosis, cell cycle, migration and invasion of I/R-injured SH-SY5Y cells. In addition, apoptosis-related molecules caspase-3, Bax and Bcl-2 were detected. RIP was determined to increase the number of exosomes and the expression levels of CD63, HSP70 and TSG101 in plasma, but not in brain hippocampal tissue. The size of exosomes released after I/R in HUVECs was similar to the size of exosomes released in rats subjected to RIP. Endothelial cell-derived exosomes partly suppressed the I/R-induced cell cycle arrest and apoptosis, and inhibited cell proliferation, migration and invasion in SH-SY5Y nerve cells. Endothelial cell-derived exosomes directly protect nerve cells against I/R injury, and are responsible for the protective role of RIP in I/R.

  12. State of the art knowledge in adrenocortical and behavioral responses to environmental challenges in a threatened South American ratite: Implications to in situ and ex-situ conservation.

    PubMed

    Luis, Navarro Joaquín; Lèche, Alvina; Costa, Natalia S Della; Cortez, Marilina Vera; Marin, Raúl H; Martella, Mónica B

    2018-04-12

    The Greater Rhea (Rhea americana) is an endemic ratite to South America, whose wild populations have undergone a remarkable decrease due to habitat degradation and fragmentation by the expansion of the agricultural frontier, poaching and predation by dogs. Anthropogenic perturbations in wild environments, as well as the management in captivity, can generate different stress responses in this species, thus, the monitoring of adrenocortical and behavioral activities are considered primary assessment tools with both conservation and welfare implications. In this review we analyze and integrate the different measurements of glucocorticoids (in plasma, feces, and yolk) carried out in different captive and wild populations, taking into account the diverse predictable and unpredictable conditions to which the Greater Rhea responds in each of those environments. In addition, the translocation of this bird is presented as an application of stress physiology in field ecology for conservation purposes, in which we evaluated how this species responds when it is released into a novel environment. Our results indicate that this ratite has a striking high sensitivity of the hypothalamic-pituitary-adrenal (HPA) axis compared to that of other bird species and shows a wide variety of adrenocortical responses depending on the environment in which it lives. This suggests that its HPA axis has a phenotypic plasticity that enables the rhea to cope with the environmental challenges. In this sense, we propose that one of the routes of this plasticity could be mediated by the maternal transfer of steroid hormones to the egg. Finally, we discuss the importance of integrating the monitoring of the adrenocortical response along with the environmental variables that define the life history of the species, in management and conservation programs ex-situ and in situ. Copyright © 2018. Published by Elsevier Inc.

  13. Melatonin and its precursors in Y79 human retinoblastoma cells - Effect of sodium butyrate

    NASA Technical Reports Server (NTRS)

    Deng, Mei H.; Lopez G.-Coviella, Ignacio; Lynch, Harry J.; Wurtman, Richard J.

    1991-01-01

    We studied the release of melatonin and the production of its precursors, 5-hydroxytryptophan and serotonin, in cultured Y79 human retinoblastoma cells. This biosynthetic capability was found to be dependent on cell differentiation, which was initiated by culturing Y79 cells for 7 days in dishes coated with poly-D-lysine to promote cell adhesion to the surface of the culture dishes. Differentiation was further induced by exposing the cell monolayer to sodium butyrate (3 mM) for three days. This protocol dramatically increased the release of melatonin, and the syntheses of 5-hydroxytryptophan and serotonin in response to forskolin stimulation. Exposure to dopamine or L-DOPA markedly diminished the forskolin-stimulated release of melatonin, as well as the production of 5-hydroxytryptophan and serotonin. These observations indicate that Y79 cells represent a primitive cell line which, following appropriate differentiation can display biochemical characteristics similar to those of the human retina. Moreover, serotonin synthesis and melatonin release appear to be coupled in Y79 ceils.

  14. Carnosic acid protects SH-SY5Y cells against 6-hydroxydopamine-induced cell death through upregulation of parkin pathway.

    PubMed

    Lin, Chia-Yuan; Tsai, Chia-Wen; Tsai, Chia-Wen

    2016-11-01

    Parkin is a Parkinson's disease (PD)-linked gene that plays an important role in the ubiquitin-proteasome system (UPS). This study explored whether carnosic acid (CA) from rosemary protects against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity via upregulation of parkin in vivo and in vitro. We found that the reduction in proteasomal activity by 6-OHDA was attenuated in SH-SY5Y cells pretreated with 1 μM CA. Immunoblots showed that CA reversed the induction of ubiquitinated protein and the reduction of PTEN-induced putative kinase 1 (PINK1) and parkin protein in 6-OHDA-treated SH-SY5Y cells and rats. Moreover, in a transgenic OW13 Caenorhabditis elegans model of PD that expresses human α-synuclein in muscle cells, CA reduced α-synuclein accumulation in a dose-dependent manner. In cells pretreated with the proteasome inhibitor MG132, CA no longer reversed the 6-OHDA-mediated induction of cleavage of caspase 3 and poly(ADP)-ribose polymerase and no longer reversed the suppression of proteasome activity. When parkin expression was silenced by use of small interfering RNA, the ability of CA to inhibit apoptosis and induce proteasomal activity was significantly reduced. The reduction in 6-OHDA-induced neurotoxicity by CA was associated with the induction of parkin, which in turn upregulated the UPS and then decreased cell death. Copyright © 2016. Published by Elsevier Ltd.

  15. Direct effects of phenformin on metabolism/bioenergetics and viability of SH-SY5Y neuroblastoma cells.

    PubMed

    Geoghegan, Fintan; Chadderton, Naomi; Farrar, G Jane; Zisterer, Daniela M; Porter, Richard K

    2017-11-01

    Phenformin, a member of the biguanides class of drugs, has been reported to be efficacious in cancer treatment. The focus of the current study was to establish whether there were direct effects of phenformin on the metabolism and bioenergetics of neuroblastoma SH-SY5Y cancer cells. Cell viability was assessed using the alamar blue assay, flow cytometry analysis using propidium iodide and annexin V stain and poly (ADP-ribose) polymerase analysis. Cellular and mitochondrial oxygen consumption was determined using a Seahorse Bioscience Flux analyser and an Oroboros Oxygraph respirometer. Cells were transfected using electroporation and permeabilized for in situ mitochondrial functional analysis using digitonin. Standard protocols were used for immunoblotting and proteins were separated on denaturing gels. Phenformin was effective in reducing the viability of SH-SY5Y cells, causing G 1 cell cycle arrest and inducing apoptosis. Bioenergetic analysis demonstrated that phenformin significantly decreased oxygen consumption in a dose- and time-dependent manner. The sensitivity of oxygen consumption in SH-SY5Y cells to phenformin was circumvented by the expression of NADH-quinone oxidoreductase 1, a ubiquinone oxidoreductase, suggesting that complex I may be a target of phenformin. As a result of this inhibition, adenosine monophosphate protein kinase is activated and acetyl-coenzyme A carboxylase is inhibited. To the best of our knowledge, the current study is the first to demonstrate the efficacy and underlying mechanism by which phenformin directly effects the survival of neuroblastoma cancer cells.

  16. Direct effects of phenformin on metabolism/bioenergetics and viability of SH-SY5Y neuroblastoma cells

    PubMed Central

    Geoghegan, Fintan; Chadderton, Naomi; Farrar, G. Jane; Zisterer, Daniela M.; Porter, Richard K.

    2017-01-01

    Phenformin, a member of the biguanides class of drugs, has been reported to be efficacious in cancer treatment. The focus of the current study was to establish whether there were direct effects of phenformin on the metabolism and bioenergetics of neuroblastoma SH-SY5Y cancer cells. Cell viability was assessed using the alamar blue assay, flow cytometry analysis using propidium iodide and annexin V stain and poly (ADP-ribose) polymerase analysis. Cellular and mitochondrial oxygen consumption was determined using a Seahorse Bioscience Flux analyser and an Oroboros Oxygraph respirometer. Cells were transfected using electroporation and permeabilized for in situ mitochondrial functional analysis using digitonin. Standard protocols were used for immunoblotting and proteins were separated on denaturing gels. Phenformin was effective in reducing the viability of SH-SY5Y cells, causing G1 cell cycle arrest and inducing apoptosis. Bioenergetic analysis demonstrated that phenformin significantly decreased oxygen consumption in a dose- and time-dependent manner. The sensitivity of oxygen consumption in SH-SY5Y cells to phenformin was circumvented by the expression of NADH-quinone oxidoreductase 1, a ubiquinone oxidoreductase, suggesting that complex I may be a target of phenformin. As a result of this inhibition, adenosine monophosphate protein kinase is activated and acetyl-coenzyme A carboxylase is inhibited. To the best of our knowledge, the current study is the first to demonstrate the efficacy and underlying mechanism by which phenformin directly effects the survival of neuroblastoma cancer cells. PMID:29113281

  17. Caffeine enhances the speed of the recovery of the hypothalamo-pituitary-adrenocortical axis after chronic prednisolone administration in the rat.

    PubMed

    Marzouk, H F; Zuyderwijk, J; Uitterlinden, P; van Koetsveld, P; Blijd, J J; Abou-Hashim, E M; el-Kannishy, M H; de Jong, F H; Lamberts, S W

    1991-11-01

    Chronic administration of corticosteroids results in a suppression of the hypothalamo-pituitary-adrenocortical (HPA) axis. The time course of the recovery of the HPA axis depends on the dose and duration of corticosteroid administration. We investigated the recovery of the HPA axis after 14 days of prednisolone administration to rats at a dose of 2.0 mg/rat/day via the drinking water (188 mumol/l). The in vitro corticosterone production by dispersed adrenal cells in response to increasing concentrations of ACTH had recovered 3 days after stopping prednisolone administration. In parallel the initially suppressed plasma corticosterone concentrations had recovered after 3 days, while the pituitary ACTH content had recovered after 5 days. We investigated the possibility to enhance the speed of the recovery of the HPA axis by the simultaneous administration of two drugs with known CRF-stimulating activity via the drinking water. Caffeine in a dose of 100 mg/kg body weight enhanced the recovery of the prednisolone-suppressed HPA axis significantly. One day after the end of prednisolone administration a significant increase in the adrenal weight, in the corticosterone production by dispersed adrenal cells, as well as in the plasma corticosterone concentrations, and in the pituitary ACTH content was observed in the caffeine-treated rats. Chlorimipramine (20 mg/kg body weight), on the other hand, did not influence the prednisolone-mediated suppression of the HPA axis.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Differentiating pheochromocytoma from lipid-poor adrenocortical adenoma by CT texture analysis: feasibility study.

    PubMed

    Zhang, Gu-Mu-Yang; Shi, Bing; Sun, Hao; Jin, Zheng-Yu; Xue, Hua-Dan

    2017-09-01

    To investigate the feasibility of using CT texture analysis (CTTA) to differentiate pheochromocytoma from lipid-poor adrenocortical adenoma (lp-ACA). Ninety-eight pheochromocytomas and 66 lp-ACAs were included in this retrospective study. CTTA was performed on unenhanced and enhanced images. Receiver operating characteristic (ROC) analysis was performed, and the area under the ROC curve (AUC) was calculated for texture parameters that were significantly different for the objective. Diagnostic accuracies were evaluated using the cutoff values of texture parameters with the highest AUCs. Compared to lp-ACAs, pheochromocytomas had significantly higher mean gray-level intensity (Mean), entropy, and mean of positive pixels (MPP), but lower skewness and kurtosis on unenhanced images (P < 0.001). On enhanced images, these texture-quantifiers followed a similar trend where Mean, entropy, and MPP were higher, but skewness and kurtosis were lower in pheochromocytomas. Standard deviation (SD) was also significantly higher in pheochromocytomas on enhanced images. Mean and MPP quantified from no filtration on unenhanced CT images yielded the highest AUC of 0.86 ± 0.03 (95% CI 0.81-0.91) at a cutoff value of 34.0 for Mean and MPP, respectively (sensitivity = 79.6%, specificity = 83.3%, accuracy = 81.1%). It was feasible to use CTTA to differentiate pheochromocytoma from lp-ACA.

  19. Phytochemical Ginkgolide B Attenuates Amyloid-β1-42 Induced Oxidative Damage and Altered Cellular Responses in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Gill, Iqbal; Kaur, Sukhchain; Kaur, Navrattan; Dhiman, Monisha; Mantha, Anil K

    2017-01-01

    Oxidative stress is an upsurge in reactive oxygen/nitrogen species (ROS/RNS), which aggravates damage to cellular components viz. lipids, proteins, and nucleic acids resulting in impaired cellular functions and neurological pathologies including Alzheimer's disease (AD). In the present study, we have examined amyloid-β (Aβ)-induced oxidative stress responses, a major cause for AD, in the undifferentiated and differentiated human neuroblastoma SH-SY5Y cells. Aβ1-42-induced oxidative damage was evaluated on lipids by lipid peroxidation; proteins by protein carbonyls; antioxidant status by SOD and GSH enzyme activities; and DNA and RNA damage levels by evaluating the number of AP sites and 8-OHG base damages produced. In addition, the neuro-protective role of the phytochemical ginkgolide B (GB) in countering Aβ1-42-induced oxidative stress was assessed. We report that the differentiated cells are highly vulnerable to Aβ1-42-induced oxidative stress events as exerted by the deposition of Aβ in AD. Results of the current study suggest that the pre-treatment of GB, followed by Aβ1-42 treatment for 24 h, displayed neuro-protective potential, which countered Aβ1-42-induced oxidative stress responses in both undifferentiated and differentiated SH-SY5Y neuronal cells by: 1) hampering production of ROS and RNS; 2) reducing lipid peroxidation; 3) decreasing protein carbonyl content; 4) restoring antioxidant activities of SOD and GSH enzymes; and 5) maintaining genome integrity by reducing the oxidative DNA and RNA base damages. In conclusion, Aβ1-42 induces oxidative damage to the cellular biomolecules, which are associated with AD pathology, and are protected by the pre-treatment of GB against Aβ-toxicity. Taken together, this study advocates for phytochemical-based therapeutic interventions against AD.

  20. High-pressure synthesis and electrochemical behavior of layered (1-a)LiNi{sub 1-y}Al{sub y}O{sub 2}.aLi[Li{sub 1/3}Ni{sub 2/3}]O{sub 2} oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinova, E.; Zhecheva, E.; Stoyanova, R.

    Layered (1-a)LiNi{sub 1-y}Al{sub y}O{sub 2}.aLi[Li{sub 1/3}Ni{sub 2/3}]O{sub 2} oxides, 0=1-y}Al{sub y}O{sub 2}-layer starts at a precursor composition Li/(Ni+Al)>1.2. While pure NiO{sub 2}-layersmore » are able to incorporate under high-pressure up to 1/3Li, the appearance of Al in the NiO{sub 2}-layers hinders Li{sup +} dissolution (Li<(1-y)/3). In addition, with increasing Al content there is a strong cationic mixing between the layers. High-frequency EPR of Ni{sup 3+} indicates that the structural interaction of LiAl{sub y}Ni{sub 1-y}O{sub 2} with Li[Li{sub 1/3}Ni{sub 2/3}]O{sub 2} proceeds via the formation of domains comprising different amount of Ni{sup 3+} ions. The use of Li{sub 1.08}Al{sub 0.09}Ni{sub 0.83}O{sub 2} as a cathode material in a lithium ion cells displays a first irreversible Li extraction at 4.8V, after which a reversible lithium insertion/extraction between 3.0 and 4.5V is observed on further cycling.« less

  1. New red Y 0.85Bi 0.1Eu 0.05V 1-yM yO 4 (M=Nb, P) phosphors for light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Wang, Yuhua; Sun, Yunkui; Zhang, Jiachi; Ci, Zhipeng; Zhang, Zhiya; Wang, Lei

    2008-06-01

    The Y 0.85Bi 0.1Eu 0.05V 1-yM yO 4 (M=Nb, P) as new near-ultraviolet excited phosphors were synthesized and their luminescence properties under 365 nm excitation were investigated in detail. It indicated that by doping small amount of P 5+ into V 5+ sites, the excitation intensity of charge transfer (CT) band of Bi-O (330-400 nm) was greatly improved. By substituting Nb 5+ for V 5+, both the CT bands of Bi-O and Eu-O (240-320 nm) were significantly enhanced. As a result, the emission intensity of Y 0.85Bi 0.1Eu 0.05V 1-yM yO 4 (M=Nb, P) could be improved about 90% by doping 5 mol% P 5+ and 110% by doping 5 mol% Nb 5+. Comparing with the commercial Y 2O 2S:Eu 3+ phosphors, the Y 0.85Bi 0.1Eu 0.05V 0.95M 0.05O 4 (M=Nb, P) phosphors exhibited excellent color purity and much higher brightness. The results showed that these Y 0.85Bi 0.1Eu 0.05V 1-yM yO 4 (M=Nb, P) phosphors could be considered as promising red phosphors for application in LED.

  2. The low-dose (1 microg) cosyntropin test (LDT) for primary adrenocortical insufficiency: Defining the normal cortisol response and report on first patients with Addison disease confirmed with LDT.

    PubMed

    Pura, M; Kreze, A; Kentos, P; Vanuga, P

    2010-03-01

    The validity of low-dose 1 microg cosyntropin test (LDT) is reported mainly for the assessment of secondary adrenocortical insufficiency (AI). Likewise the hypothalamic-pituitary disorders, early diagnosis of the initial or partial stages of primary AI has an important role. The aim of study was to: 1) establish the normal cut-off level at which the stimulated plasma cortisol (FP) in LDT excludes primary AI; 2) compare the results in elderly subjects to those in younger ones; 3) compare the results between normal and obese subjects; and 4) verify the established cut-off values on the sample of patients suspected to have primary AI. 110 subjects (99 women and 11 men, aged 19-80 years, mean 46.2+/-16.1 years, without suspicion for impairment of the hypothalamo-pituitary-adrenal axis were recruited to undergo the LDT in standard conditions. Control group consists of 30 patients (22 women and 8 men, aged 7-58 years, mean 38.4+/-10.6 years) evaluated in whom for suspicion of primary AI as suggested by LDT was confirmed by supplemental investigations (elevated ACTH levels, positive autoantibodies against 21-hydroxylase, mutational analysis of corresponding genes). The mean peak FP level at 30 min (FP (30)) of the subjects was 675+/-85 nmol/L (95% CI=659 to 691 nmol/L), thus reference values expressed as mean+/-2 SD were 505-845 nmol/L. There was a significant negative correlation between basal FP values (FP (0)) (434+/-105 nmol/L) and the absolute FP incremental (FP (Delta)) response varying from 52 to 553 nmol/L (median 230 nmol/L) (r=-0.71; P<0.001). FP (30) was higher in elderly subjects (n=27) in comparison to younger subjects (n=25) (689+/-88 nmol/L vs. 642+/-63 nmol/L, u=2.11, P<0.05) due to higher FP (Delta) (274+/-116 nmol/L vs. 175+/-112 nmol/L; u=4.02, P<0.01) ; FP (30) levels in obese subjects (n=27) did not differ from those with normal BMI (n=33) (694+/-100 nmol/L vs. 667+/-65 nmol/L, u=1.31, P>0.05). We did not find any correlation between body weight or

  3. Electronic structure of Pr{sub 1{minus}x}Y{sub x}Ba{sub 2}Cu{sub 3}O{sub y} (x=0, 0.5, and 1.0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakinuma, K.; Fueki, K.

    1997-08-01

    In order to elucidate the reason why PrBa{sub 2}Cu{sub 3}O{sub y}is not a superconductor, we examined the Pr valence and measured the oxygen nonstoichiometry and the conductivity at temperatures up to 1200 K for three kinds of oxides, PrBa{sub 2}Cu{sub 3}O{sub y}, (Pr{sub 0.5}Y{sub 0.5})Ba{sub 2}Cu{sub 3}O{sub y}, and YBa{sub 2}Cu{sub 3}O{sub y}. The valence of Pr was found to be +3. Any difference was not found in oxygen nonstoichiometry and conductivity among three kinds of oxides. We analyzed the data of oxygen nonstoichiometry on the basis of defect thermodynamics and calculated the numbers of Cu{sup +}, Cu{sup 2+}, andmore » Cu{sup 3+} ions in the unit cell as a function of y. The number of Cu{sup 3+} ions (the amount of holes) was found to be proportional to ({Delta}y){sup 1.6}({Delta}y=y{minus}6.0), whereas the conductivity was found to be proportional to ({Delta}y){sup 3.2} in these oxides. We interpreted the remarkable increase of {sigma} with {Delta}y as an evidence of the increase of both mobility and hole concentration with {Delta}y. At high temperatures, we detected the conductivity minimum {sigma}{sub min} which was found in the log{sub 10}{sigma}{minus}log{sub 10}P{sub O{sub 2}} plot at constant temperatures. From the slope of the Arrhenius plot for {sigma}{sub min}, the band gap was determined to be 1.21, 1.32, and 1.37 eV for PrBa{sub 2}Cu{sub 3}O{sub y}, (Pr{sub 0.5}Y{sub 0.5})Ba{sub 2}Cu{sub 3}O{sub y} and YBa{sub 2}Cu{sub 3}O{sub y}, respectively. We determined the conductivity of the same oxygen content as a function of temperature from 4.2 to 1200 K. The energy gap {Delta}E between the acceptor level and the top of the valence band was calculated from the slope of the Arrhenius plot for conductivity. {Delta}E for superconducting YBa{sub 2}Cu{sub 3}O{sub y} and (Pr{sub 0.5}Y{sub 0.5})Ba{sub 2}Cu{sub 3}O{sub y} were zero at 300 K but that for nonsuperconducting PrBa{sub 2}Cu{sub 3}O{sub y} was 20 meV at 100 K even for y=6.93. (Abstract

  4. Screening of cancer tissue arrays identifies CXCR4 on adrenocortical carcinoma: correlates with expression and quantification on metastases using 64Cu-plerixafor PET.

    PubMed

    Weiss, Ido D; Huff, Lyn M; Evbuomwan, Moses O; Xu, Xin; Dang, Hong Duc; Velez, Daniel S; Singh, Satya P; Zhang, Hongwei H; Gardina, Paul J; Lee, Jae-Ho; Lindenberg, Liza; Myers, Timothy G; Paik, Chang H; Schrump, David S; Pittaluga, Stefania; Choyke, Peter L; Fojo, Tito; Farber, Joshua M

    2017-09-26

    Expression of the chemokine receptor CXCR4 by many cancers correlates with aggressive clinical behavior. As part of the initial studies in a project whose goal was to quantify CXCR4 expression on cancers non-invasively, we examined CXCR4 expression in cancer samples by immunohistochemistry using a validated anti-CXCR4 antibody. Among solid tumors, we found expression of CXCR4 on significant percentages of major types of kidney, lung, and pancreatic adenocarcinomas, and, notably, on metastases of clear cell renal cell carcinoma and squamous cell carcinoma of the lung. We found particularly high expression of CXCR4 on adrenocortical cancer (ACC) metastases. Microarrays of ACC metastases revealed correlations between expression of CXCR4 and other chemokine system genes, particularly CXCR7/ACKR3 , which encodes an atypical chemokine receptor that shares a ligand, CXCL12, with CXCR4. A first-in-human study using 64 Cu-plerixafor for PET in an ACC patient prior to resection of metastases showed heterogeneity among metastatic nodules and good correlations among PET SUVs, CXCR4 staining, and CXCR4 mRNA. Additionally, we were able to show that CXCR4 expression correlated with the rates of growth of the pulmonary lesions in this patient. Further studies are needed to understand better the role of CXCR4 in ACC and whether targeting it may be beneficial. In this regard, non-invasive methods for assessing CXCR4 expression, such as PET using 64 Cu-plerixafor, should be important investigative tools.

  5. Emodin Inhibits ATP-Induced Proliferation and Migration by Suppressing P2Y Receptors in Human Lung Adenocarcinoma Cells.

    PubMed

    Wang, Xia; Li, Long; Guan, Ruijuan; Zhu, Danian; Song, Nana; Shen, Linlin

    2017-01-01

    Extracellular ATP performs multiple important functions via activation of P2 receptors on the cell surface. P2Y receptors play critical roles in ATP evoked response in human lung adenocarcinoma cells (A549 cells). Emodin is an anthraquinone derivative originally isolated from Chinese rhubarb, possesses anticancer properties. In this study we examined the inhibiting effects of emodin on proliferation, migration and epithelial-mesenchymal transition (EMT) by suppressing P2Y receptors-dependent Ca2+ increase and nuclear factor-κB (NF-KB) signaling in A549 cells. A549 cells were pretreated with emodin before stimulation with ATP for the indicated time. Then, intracellular Ca2+ concentration ([Ca2+]i) was measured by Fluo-8/AM staining. Cell proliferation and cell cycle progression were tested by CCK8 assay and flow cytometry In addition, wound healing and western blot were performed to determine cell migration and related protein levels (Bcl-2, Bax, claudin-1, NF-κB). Emodin blunted ATP/UTP-induced increase of [Ca2+]i and cell proliferation concentration-dependently Meanwhile, it decreased ATP-induced cells accumulation in the S phase. Furthermore, emodin altered protein abundance of Bcl-2, Bax and claudin-1 and attenuated EMT caused by ATP. Such ATP-induced cellular reactions were also inhibited by a nonselective P2Y receptors antagonist, suramin, in a similar way to emodin. Besides, emodin could inhibit activation of NF-κB, thus suppressed ATP-induced proliferation, migration and EMT. Our results demonstrated that emodin inhibits ATP-induced proliferation, migration, EMT by suppressing P2Y receptors-mediated [Ca2+]i increase and NF-κB signaling in A549 cells. © 2017 The Author(s). Published by S. Karger AG, Basel.

  6. Gemcitabine-Based Chemotherapy in Adrenocortical Carcinoma: A Multicenter Study of Efficacy and Predictive Factors.

    PubMed

    Henning, Judith E K; Deutschbein, Timo; Altieri, Barbara; Steinhauer, Sonja; Kircher, Stefan; Sbiera, Silviu; Wild, Vanessa; Schlötelburg, Wiebke; Kroiss, Matthias; Perotti, Paola; Rosenwald, Andreas; Berruti, Alfredo; Fassnacht, Martin; Ronchi, Cristina L

    2017-11-01

    Adrenocortical carcinoma (ACC) is rare and confers an unfavorable prognosis in advanced stages. Other than combination chemotherapy with cisplatin, etoposide, doxorubicin, and mitotane, the second- and third-line regimens are not well-established. Gemcitabine (GEM)-based chemotherapy was suggested in a phase 2 clinical trial with 28 patients. In other solid tumors, human equilibrative nucleoside transporter type 1 (hENT1) and/or ribonucleotide reductase catalytic subunit M1 (RRM1) expression have been associated with resistance to GEM. To assess the efficacy of GEM-based chemotherapy in ACC in a real-world setting and the predictive role of molecular parameters. Retrospective multicenter study. Referral centers of university hospitals. A total of 145 patients with advanced ACC were treated with GEM-based chemotherapy (132 with concomitant capecitabine). Formalin-fixed paraffin-embedded tumor material was available for 70 patients for immunohistochemistry. The main outcome measures were progression-free survival (PFS) and an objective response to GEM-based chemotherapy. The secondary objective was the predictive role of hENT1 and RRM1. The median PFS for the patient population was 12 weeks (range, 1 to 94). A partial response or stable disease was achieved in 4.9% and 25.0% of cases, with a median duration of 26.8 weeks. Treatment was generally well tolerated, with adverse events of grade 3 or 4 occurring in 11.0% of cases. No substantial effect of hENT1 and/or RRM1 expression was observed in response to GEM-based chemotherapy. GEM-based chemotherapy is a well-tolerated, but modestly active, regimen against advanced ACC. No reliable molecular predictive factors could be identified. Owing to the scarce alternative therapeutic options, GEM-based chemotherapy remains an important option for salvage treatment for advanced ACC. Copyright © 2017 Endocrine Society

  7. Synthesis, Rietveld refinements, Infrared and Raman spectroscopy studies of the sodium diphosphate NaCryFe1-yP2O7 (0 ≤ y1)

    NASA Astrophysics Data System (ADS)

    Bih, H.; Saadoune, I.; Bih, L.; Mansori, M.; ToufiK, H.; Fuess, H.; Ehrenberg, H.

    2016-01-01

    In the present study we report on the synthesis and crystal structure studies of NaCryFe1-yP2O7 sodium diphosphate solid solution (0 ≤ y1). The X-ray diffraction shows that these compounds are isostructural with NaFeP2O7 and NaCrP2O7 (space group P21/c (C2h5) Z = 4). The Rietveld refinements based on the XRD patterns show the existence of a continuous solid solution over the whole composition range (0 ≤ y1). A continuous evolution of the monoclinic unit cell parameters was obtained. The transition metal ions (Cr3+ and/or Fe3+) connect the diphosphate anions forming a three-dimensional network with cages filled by Na+ cations. IR and Raman spectra have been interpreted using factor group analysis. A small shift of the band frequencies is observed when Fe is substituted by Cr. The POP bridge angles are determined from Lazarev's relation and agree well with those deduced from the crystal structure refinement.

  8. Empowering human cardiac progenitor cells by P2Y14 nucleotide receptor overexpression.

    PubMed

    Khalafalla, Farid G; Kayani, Waqas; Kassab, Arwa; Ilves, Kelli; Monsanto, Megan M; Alvarez, Roberto; Chavarria, Monica; Norman, Benjamin; Dembitsky, Walter P; Sussman, Mark A

    2017-12-01

    Autologous cardiac progenitor cell (CPC) therapy is a promising approach for treatment of heart failure (HF). There is an unmet need to identify inherent deficits in aged/diseased human CPCs (hCPCs) derived from HF patients in the attempts to augment their regenerative capacity prior to use in the clinical setting. Here we report significant functional correlations between phenotypic properties of hCPCs isolated from cardiac biopsies of HF patients, clinical parameters of patients and expression of the P2Y 14 purinergic receptor (P2Y 14 R), a crucial detector for extracellular UDP-sugars released during injury/stress. P2Y 14 R is downregulated in hCPCs derived from HF patients with lower ejection fraction or diagnosed with diabetes. Augmenting P2Y 14 R expression levels in aged/diseased hCPCs antagonizes senescence and improves functional responses. This study introduces purinergic signalling modulation as a potential strategy to rejuvenate and improve phenotypic characteristics of aged/functionally compromised hCPCs prior to transplantation in HF patients. Autologous cardiac progenitor cell therapy is a promising alternative approach to current inefficient therapies for heart failure (HF). However, ex vivo expansion and pharmacological/genetic modification of human cardiac progenitor cells (hCPCs) are necessary interventions to rejuvenate aged/diseased cells and improve their regenerative capacities. This study was designed to assess the potential of improving hCPC functional capacity by targeting the P2Y 14 purinergic receptor (P2Y 14 R), which has been previously reported to induce regenerative and anti-senescence responses in a variety of experimental models. c-Kit + hCPCs were isolated from cardiac biopsies of multiple HF patients undergoing left ventricular assist device implantation surgery. Significant correlations existed between the expression of P2Y 14 R in hCPCs and clinical parameters of HF patients. P2Y 14 R was downregulated in hCPCs derived from

  9. [Preparation and activity detection of chicken egg yolk IgY antibody against human papillomavirus 16 type L1 main capsid protein].

    PubMed

    Yang, Jun; Zhang, Ming-juan; Qiang, Lei; Su, Bao-shan; Wang, Yi-li; Si, Lü-sheng

    2008-03-01

    To prepare highly specific chicken egg yolk IgY antibody against human papillomavirus 16 type L1 main capsid protein (HPV16L1) for detection of HPV16L1. Purified HPV16L1 protein was used to immunize the hens, from which the eggs were collected since one week after the first immunization. The egg yolk was separated and the IgY antibody purified by PEG-6000 method. The bioactivity of the antibody was tested using enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry was performed to detect the HPV16L1 in the CHO cells transfected with the recombinant pcDNA-EGFP-HPV16L1 plasmid (containing EGFP-HPV16L1 fusion gene) for assessing the specific affinity of IgY to HPV16L1. After 3 immunizations of the hens, the titer of the purified IgY antibody against HPV16L1 from the egg yolk reached 1:10240. The IgY bound specifically to the EGFP-HPV16L1 protein expressed in the transfected CHO cells. High titer IgY can be prepared by immunization of the hens with HPV16L1 protein, and the prepared IgY can be used for HPV16L1 detection at the cellular level.

  10. ROS Production via P2Y1-PKC-NOX2 Is Triggered by Extracellular ATP after Electrical Stimulation of Skeletal Muscle Cells.

    PubMed

    Díaz-Vegas, Alexis; Campos, Cristian A; Contreras-Ferrat, Ariel; Casas, Mariana; Buvinic, Sonja; Jaimovich, Enrique; Espinosa, Alejandra

    2015-01-01

    During exercise, skeletal muscle produces reactive oxygen species (ROS) via NADPH oxidase (NOX2) while inducing cellular adaptations associated with contractile activity. The signals involved in this mechanism are still a matter of study. ATP is released from skeletal muscle during electrical stimulation and can autocrinely signal through purinergic receptors; we searched for an influence of this signal in ROS production. The aim of this work was to characterize ROS production induced by electrical stimulation and extracellular ATP. ROS production was measured using two alternative probes; chloromethyl-2,7- dichlorodihydrofluorescein diacetate or electroporation to express the hydrogen peroxide-sensitive protein Hyper. Electrical stimulation (ES) triggered a transient ROS increase in muscle fibers which was mimicked by extracellular ATP and was prevented by both carbenoxolone and suramin; antagonists of pannexin channel and purinergic receptors respectively. In addition, transient ROS increase was prevented by apyrase, an ecto-nucleotidase. MRS2365, a P2Y1 receptor agonist, induced a large signal while UTPyS (P2Y2 agonist) elicited a much smaller signal, similar to the one seen when using ATP plus MRS2179, an antagonist of P2Y1. Protein kinase C (PKC) inhibitors also blocked ES-induced ROS production. Our results indicate that physiological levels of electrical stimulation induce ROS production in skeletal muscle cells through release of extracellular ATP and activation of P2Y1 receptors. Use of selective NOX2 and PKC inhibitors suggests that ROS production induced by ES or extracellular ATP is mediated by NOX2 activated by PKC.

  11. ROS Production via P2Y1-PKC-NOX2 Is Triggered by Extracellular ATP after Electrical Stimulation of Skeletal Muscle Cells

    PubMed Central

    Díaz-Vegas, Alexis; Campos, Cristian A.; Contreras-Ferrat, Ariel; Casas, Mariana; Buvinic, Sonja; Jaimovich, Enrique; Espinosa, Alejandra

    2015-01-01

    During exercise, skeletal muscle produces reactive oxygen species (ROS) via NADPH oxidase (NOX2) while inducing cellular adaptations associated with contractile activity. The signals involved in this mechanism are still a matter of study. ATP is released from skeletal muscle during electrical stimulation and can autocrinely signal through purinergic receptors; we searched for an influence of this signal in ROS production. The aim of this work was to characterize ROS production induced by electrical stimulation and extracellular ATP. ROS production was measured using two alternative probes; chloromethyl-2,7- dichlorodihydrofluorescein diacetate or electroporation to express the hydrogen peroxide-sensitive protein Hyper. Electrical stimulation (ES) triggered a transient ROS increase in muscle fibers which was mimicked by extracellular ATP and was prevented by both carbenoxolone and suramin; antagonists of pannexin channel and purinergic receptors respectively. In addition, transient ROS increase was prevented by apyrase, an ecto-nucleotidase. MRS2365, a P2Y1 receptor agonist, induced a large signal while UTPyS (P2Y2 agonist) elicited a much smaller signal, similar to the one seen when using ATP plus MRS2179, an antagonist of P2Y1. Protein kinase C (PKC) inhibitors also blocked ES-induced ROS production. Our results indicate that physiological levels of electrical stimulation induce ROS production in skeletal muscle cells through release of extracellular ATP and activation of P2Y1 receptors. Use of selective NOX2 and PKC inhibitors suggests that ROS production induced by ES or extracellular ATP is mediated by NOX2 activated by PKC. PMID:26053483

  12. Human neuroblastoma SH-SY5Y cells show increased resistance to hyperthermic stress after differentiation, associated with elevated levels of Hsp72.

    PubMed

    Cheng, Lesley; Smith, Danielle J; Anderson, Robin L; Nagley, Phillip

    2011-01-01

    Terminally differentiated neurones in the central nervous system need to be protected from stress. We ask here whether differentiation of progenitor cells to neurones is accompanied by up-regulation of Hsp72, with acquisition of enhanced thermotolerance. Human neuroblastoma SH-SY5Y cells were propagated in an undifferentiated form and subsequently differentiated into neurone-like cells. Thermotolerance tests were carried out by exposure of cells to various temperatures, monitoring nuclear morphology as index of cell death. Abundance of Hsp72 was measured in cell lysates by western immunoblotting. The differentiation of SH-SY5Y cells was accompanied by increased expression of Hsp72. Further, in both cell states, exposure to mild hyperthermic stress (43°C for 30 min) increased Hsp72 expression. After differentiation, SH-SY5Y cells were more resistant to hyperthermic stress compared to their undifferentiated state, correlating with levels of Hsp72. Stable exogenous expression of Hsp72 in SH-SY5Y cells (transfected line 5YHSP72.1, containing mildly elevated levels of Hsp72), led to enhanced resistance to hyperthermic stress. Hsp72 was found to be inducible in undifferentiated 5YHSP72.1 cells; such heat-treated cells displayed enhanced thermotolerance. Treatment of cells with KNK437, a suppressor of Hsp72 induction, resulted in acute thermosensitisation of all cell types tested here. Hsp72 has a major role in the enhanced hyperthermic resistance acquired during neuronal differentiation of SH-SY5Y cells. These findings model the requirement in intact organisms for highly differentiated neurones to be specially protected against thermal stress.

  13. Caveolin-1 Confers Resistance of Hepatoma Cells to Anoikis by Activating IGF-1 Pathway.

    PubMed

    Tang, Wenqing; Feng, Xuemei; Zhang, Si; Ren, Zhenggang; Liu, Yinkun; Yang, Biwei; lv, Bei; Cai, Yu; Xia, Jinglin; Ge, Ningling

    2015-01-01

    Anoikis resistance is a prerequisite for hepatocellular carcinoma (HCC) metastasis. The role of Caveolin-1 (CAV1) in anoikis resistance of HCC remains unclear. The oncogenic effect of CAV1 on anchor-independent growth and anoikis resistance was investigated by overexpression and knockdown of CAV1 in hepatoma cells. IGF-1 pathway and its downstream signals were detected by immunoblot analysis. Caveolae invagination and IGF-1R internalization was studied by electron microscopy and (125)I-IGF1 internalization assay, respectively. The role of IGF-1R and tyrosine-14 residue (Y-14) of CAV1 was explored by deletion experiment and mutation experiment, respectively. The correlation of CAV1 and IGF-1R was further examined by immunochemical analysis in 120 HCC specimens. CAV1 could promote anchor-independent growth and anoikis resistance in hepatoma cells. CAV1-overexpression increased the expression of IGF-1R and subsequently activated PI3K/Akt and RAF/MEK/ERK pathway, while CAV1 knockdown showed the opposite effect. The mechanism study revealed that CAV1 facilitated caveolae invagination and (125)I-IGF1 internalization. IGF-1R deletion or Y-14 mutation reversed CAV1 mediated anchor-independent growth and anoikis resistance. In addition, CAV1 expression was positively related to IGF-1R expression in human HCC tissues. CAV1 confers resistance of hepatoma cells to anoikis by activating IGF-1 pathway, providing a potential therapeutic target for HCC metastasis. © 2015 S. Karger AG, Basel.

  14. [Effects of parabolic flight on redox status in SH-SY5Y cells].

    PubMed

    Bi, Lei; Qu, Li-Na; Huang, Zeng-Ming; Wang, Chun-Yan; Li, Qi; Tan, Ying-Jun; Li, Ying-Hui

    2009-10-25

    Space flight is known to produce a number of neurological disturbances. The etiology is unknown, but it may involve increased oxidative stress. A line of experimental evidence indicates that space flight may disrupt antioxidant defense system and result in increased oxidative stress. In vitro studies found that abundant of NO was produced in rat pheochromocytoma (PC12) cells, SHSY5Y neuroblastoma cells, and protein nitration was increased in PC12 cells within a simulated microgravity rotating wall bioreactor high aspect ratio vessel system or clinostat system. In the present study, we observed the change of redox status in SH-SY5Y cells after parabolic flight, and studied the effects of key redox molecule, thioredoxin (TRX), during the altered gravity. SH-SY5Y cells were divided into four groups: control cells, control cells transfected with TRX, flight cells and flight cells transfected with TRX. The expression levels of 3-nitrotyrosine (3-NT), inducible nitric oxide synthase (iNOS), TRX and thioredoxin reductase (TRXR) were observed by immunocytochemical method. It was shown that after parabolic flight, the staining of 3-NT and TRX were enhanced, while the expression level of TRXR was down-regulated compared with control. As for flight cells transfected with TRX, the staining of 3-NT and iNOS were weakened compared with flight cells. These results obtained suggest that altered gravity may increase protein nitration, down-regulate TRXR and elicit oxidative stress in SH-SY5Y cells, while TRX transfection could partly protect cells against oxidative stress induced by parabolic flight.

  15. The human endonuclease III enzyme is a relevant target to potentiate cisplatin cytotoxicity in Y-box-binding protein-1 overexpressing tumor cells.

    PubMed

    Guay, David; Garand, Chantal; Reddy, Shanti; Schmutte, Chris; Lebel, Michel

    2008-04-01

    Y-box-binding protein-1 (YB-1) is a multifunctional protein involved in the regulation of transcription, translation, and mRNA splicing. In recent years, several laboratories have demonstrated that YB-1 is directly involved in the cellular response to genotoxic stress. Importantly, YB-1 is increased in tumor cell lines resistant to cisplatin, and the level of nuclear expression of YB-1 is predictive of drug resistance and patient outcome in breast tumors, ovarian cancers, and synovial sarcomas. YB-1 binds to several DNA repair enzymes in vitro including human endonuclease III (hNTH1). Human NTH1 is a bifunctional DNA glycosylase/apurinic/apyrimidinic lyase involved in base excision repair. In this study, we show that YB-1 binds specifically to the auto-inhibitory domain of hNTH1, providing a mechanism by which YB-1 stimulates hNTH1 activity. Indeed, YB-1 strongly stimulates in vitro the activity of hNTH1 toward DNA duplex probes containing oxidized bases, lesions prone to be present in cisplatin treated cells. We also observed an increase in YB-1/hNTH1 complex formation in the mammary adenocarcinoma MCF7 cell line treated with UV light and cisplatin. Such an increase was not observed with mitomycin C or the topoisomerase I inhibitor camptothecin. Accordingly, antisense RNAs against either YB-1 or hNTH1 increased cellular sensitivity to UV and cisplatin but not to mitomycin C. An antisense RNA against YB-1 increased camptothecin sensitivity. In contrast, an antisense against hNTH1 did not. Finally, siRNA against hNTH1 re-established cytotoxicity in otherwise cisplatin-resistant YB-1 overexpressing MCF7 cells. These data indicate that hNTH1 is a relevant target to potentiate cisplatin cytotoxicity in YB-1 overexpressing tumor cells.

  16. Docosahexaenoic acid induces ERK1/2 activation and neuritogenesis via intracellular reactive oxygen species production in human neuroblastoma SH-SY5Y cells.

    PubMed

    Wu, Haitao; Ichikawa, Sanae; Tani, Chiharu; Zhu, Beiwei; Tada, Mikiro; Shimoishi, Yasuaki; Murata, Yoshiyuki; Nakamura, Yoshimasa

    2009-01-01

    Docosahexaenoic acid (22: 6n-3; DHA) is a long chain polyunsaturated fatty acid that exists highly enriched in fish oil, and it is one of the low molecular weight food chemicals which can pass a blood brain barrier. A preliminary survey of several fatty acids for expression of growth-associated protein-43 (GAP-43), a marker of axonal growth, identified DHA as one of the most potent inducers. The human neuroblastoma SH-SY5Y cells exposed to DHA showed significant and dose-dependent increases in the percentage of cells with longer neurites. To elucidate signaling mechanisms involved in DHA-enhanced basal neuritogenesis, we examined the role of extracellular signal-regulated kinase (ERK)1/2 and intracellular reactive oxygen species (ROS) production using SH-SY5Y cells. From immunoblotting experiments, we observed that DHA induced the ROS production, protein tyrosine phosphatase inhibition, mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) phosphorylation, and sequentially ERK1/2 phosphorylation, the last of which was significantly reduced by MEK inhibitor U0126. Both antioxidants and MEK inhibitor affected DHA-induced GAP-43 expression, whereas the specific PI3K inhibitor LY294002 did not. We found that total protein tyrosine phosphatase activity was also downregulated by DHA treatment, which was counteracted by antioxidant pretreatment. These results suggest that the ROS-dependent ERK pathway, rather than PI3K, plays an important role during DHA-enhanced neurite outgrowth.

  17. ROCK inhibition with Y27632 promotes the proliferation and cell cycle progression of cultured astrocyte from spinal cord.

    PubMed

    Yu, Zhiyuan; Liu, Miao; Fu, Peicai; Xie, Minjie; Wang, Wei; Luo, Xiang

    2012-12-01

    Rho-associated Kinase (ROCK) has been identified as an important regulator of proliferation and cell cycle progression in a number of cell types. Although its effects on astrocyte proliferation have not been well characterized, ROCK has been reported to play important roles in gap junction formation, morphology, and migration of astrocytes. In the present study, our aim was to investigate the effect of ROCK inhibition by [(+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride] (Y27632) on proliferation and DNA synthesis in cultured astrocytes from rat spinal cord and the possible mechanism involved. Western blots showed that treatment of astrocytes with Y27632 increased their expression of cyclin D1, CDK4, and cyclin E, thereby causing cell cycle progression. Furthermore, Y27632-induced astrocyte proliferation was mediated through the extracellular-signal-regulated kinase signaling cascade. These results indicate the importance of ROCK in astrocyte proliferation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Study of Stark Effect in n-doped 1.55 μm InN0.92yP1-1.92yBiy/InP MQWs

    NASA Astrophysics Data System (ADS)

    Bilel, C.; Chakir, K.; Rebey, A.; Alrowaili, Z. A.

    2018-05-01

    The effect of an applied electric field on electronic band structure and optical absorption properties of n-doped InN0.92y P1-1.92y Bi y /InP multiple quantum wells (MQWs) was theoretically studied using a self-consistent calculation combined with the 16-band anti-crossing model. The incorporation of N and Bi atoms into an InP host matrix leads to rapid reduction of the band gap energy covering a large infrared range. The optimization of the well parameters, such as the well/barrier widths, N/Bi compositions and doping density, allowed us to obtain InN0.92y P1-1.92y Bi y /InP MQWs operating at the wavelength 1.55 μm. Application of the electric field causes a red-shift of the fundamental transition energy T 1 accompanied by a significant change in the spatial distribution of confined electron density. The Stark effect on the absorption coefficient of n-doped InN0.92y P1-1.92y Bi y /InP MQWs was investigated. The Bi composition of these MQWs was adjusted for each electric field value in order to maintain the wavelength emission at 1.55 μm.

  19. The M sub 1 muscarinic receptor and its second messenger coupling in human neuroblastoma cells and transfected murine fibroblast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Lin.

    1989-01-01

    The data of this study indicate that pirenzepine (PZ)-high affinity muscarinic receptors (mAChRs) are coupled to the hydrolysis of inositol lipids and not to the adenylate cyclase system in human neuroblastoma SH-SY5Y cells. The maximal carbachol(CCh)-stimulated ({sup 3}H)IP{sub 1} accumulation in the SH-SY5Y cells was decreased in the presence of 1{mu}g/ml pertussis toxin, suggesting that a pertussis toxin sensitive G-protein may be involved in the coupling. Several cell clones which express only M{sub 1} mAChR were generated by transfecting the murine fibroblast B82 cells with the cloned rat genomic m{sub 1} gene. The transfected B82 cells (cTB10) showed specific ({supmore » 3}H)(-)QNB binding activity. The mAChRs in these cells are of the M{sub 1} type defined by their high affinity for PZ and low affinity for AF-DX 116 and coupled to hydrolysis of inositol lipids, possibly via a pertussis toxin sensitive G protein. The relationship between the M{sub 1} mAChR density and the receptor-mediated hydrolysis of inositol lipids was studied in 7 clones. The M{sub 1} mAChR densities in these cells characterized by ({sup 3}H)(-)MQNB binding ranged from 12 fmol/10{sup 6} cells in LK3-1 cells to 260 fmol/10{sup 6} cells in the LK3-8 cells.« less

  20. Retinoic acid downregulates Rae1 leading to APC(Cdh1) activation and neuroblastoma SH-SY5Y differentiation.

    PubMed

    Cuende, J; Moreno, S; Bolaños, J P; Almeida, A

    2008-05-22

    In neuroblastoma cells, retinoic acid induces cell cycle arrest and differentiation through degradation of the F-box protein, Skp2, and stabilization of cyclin-dependent kinase inhibitor, p27. However, the mechanism responsible for retinoic acid-mediated Skp2 destabilization is unknown. Since Skp2 is degraded by anaphase-promoting complex (APC)(Cdh1), here we studied whether retinoic acid promotes differentiation of human SH-SY5Y neuroblastoma cells by modulating Cdh1. We found that retinoic acid induced the nuclear accumulation of Cdh1 that paralleled Skp2 destabilization and p27 accumulation. The mRNA and protein abundance of Rae1-a nuclear export factor that limits APC(Cdh1) activity in mitosis-decreased upon retinoic acid-induced inhibition of neuroblastoma cell proliferation. Furthermore, either Rae1 overexpression or Cdh1 inhibition promoted Skp2 accumulation, p27 destabilization and prevented retinoic acid-induced cell cycle arrest and differentiation. Conversely, inhibition of Rae1 accelerated retinoic acid-induced differentiation. Thus, retinoic acid downregulates Rae1, hence facilitating APC(Cdh1)-mediated Skp2 degradation leading to the arrest of cell cycle progression and neuroblastoma differentiation.

  1. Bacillus subtilis Mutants with Knockouts of the Genes Encoding Ribonucleases RNase Y and RNase J1 Are Viable, with Major Defects in Cell Morphology, Sporulation, and Competence

    PubMed Central

    Figaro, Sabine; Durand, Sylvain; Gilet, Laetitia; Cayet, Nadège; Sachse, Martin

    2013-01-01

    The genes encoding the ribonucleases RNase J1 and RNase Y have long been considered essential for Bacillus subtilis cell viability, even before there was concrete knowledge of their function as two of the most important enzymes for RNA turnover in this organism. Here we show that this characterization is incorrect and that ΔrnjA and Δrny mutants are both viable. As expected, both strains grow relatively slowly, with doubling times in the hour range in rich medium. Knockout mutants have major defects in their sporulation and competence development programs. Both mutants are hypersensitive to a wide range of antibiotics and have dramatic alterations to their cell morphologies, suggestive of cell envelope defects. Indeed, RNase Y mutants are significantly smaller in diameter than wild-type strains and have a very disordered peptidoglycan layer. Strains lacking RNase J1 form long filaments in tight spirals, reminiscent of mutants of the actin-like proteins (Mre) involved in cell shape determination. Finally, we combined the rnjA and rny mutations with mutations in other components of the degradation machinery and show that many of these strains are also viable. The implications for the two known RNA degradation pathways of B. subtilis are discussed. PMID:23504012

  2. Ubiquitous LEA29Y Expression Blocks T Cell Co-Stimulation but Permits Sexual Reproduction in Genetically Modified Pigs.

    PubMed

    Bähr, Andrea; Käser, Tobias; Kemter, Elisabeth; Gerner, Wilhelm; Kurome, Mayuko; Baars, Wiebke; Herbach, Nadja; Witter, Kirsti; Wünsch, Annegret; Talker, Stephanie C; Kessler, Barbara; Nagashima, Hiroshi; Saalmüller, Armin; Schwinzer, Reinhard; Wolf, Eckhard; Klymiuk, Nikolai

    2016-01-01

    We have successfully established and characterized a genetically modified pig line with ubiquitous expression of LEA29Y, a human CTLA4-Ig derivate. LEA29Y binds human B7.1/CD80 and B7.2/CD86 with high affinity and is thus a potent inhibitor of T cell co-stimulation via this pathway. We have characterized the expression pattern and the biological function of the transgene as well as its impact on the porcine immune system and have evaluated the potential of these transgenic pigs to propagate via assisted breeding methods. The analysis of LEA29Y expression in serum and multiple organs of CAG-LEA transgenic pigs revealed that these animals produce a biologically active transgenic product at a considerable level. They present with an immune system affected by transgene expression, but can be maintained until sexual maturity and propagated by assisted reproduction techniques. Based on previous experience with pancreatic islets expressing LEA29Y, tissues from CAG-LEA29Y transgenic pigs should be protected against rejection by human T cells. Furthermore, their immune-compromised phenotype makes CAG-LEA29Y transgenic pigs an interesting large animal model for testing human cell therapies and will provide an important tool for further clarifying the LEA29Y mode of action.

  3. Minireview: Hair Cortisol: A Novel Biomarker of Hypothalamic-Pituitary-Adrenocortical Activity

    PubMed Central

    Novak, Melinda A.

    2012-01-01

    Activity of the hypothalamic-pituitary-adrenocortical (HPA) axis is commonly assessed by measuring glucocorticoids such as cortisol (CORT). For many years, CORT was obtained primarily from blood plasma or urine, whereas later approaches added saliva and feces for noninvasive monitoring of HPA functioning. Despite the value of all these sample matrices for answering many research questions, they remain limited in the temporal range of assessment. Plasma and saliva are point samples that vary as a function of circadian rhythmicity and are susceptible to confounding by environmental disturbances. Even urine and feces generally assess HPA activity over a period of only 24 h or less. We and others have recently developed and validated methods for measuring the concentration of CORT in the body hair of animals (e.g. rhesus monkeys) and scalp hair of humans. CORT is constantly deposited in the growing hair shaft, as a consequence of which such deposition can serve as a biomarker of integrated HPA activity over weeks and months instead of minutes or hours. Since the advent of this methodological advance, hair CORT has already been used as an index of chronic HPA activity and stress in human clinical and nonclinical populations, in a variety of laboratory-housed and wild-living animal species, and in archival specimens that are many decades or even centuries old. Moreover, because human hair is known to grow at an average rate of about 1 cm/month, several studies suggest that CORT levels in hair segments that differ in proximity to the scalp can, under certain conditions, be used as a retrospective calendar of HPA activity during specific time periods preceding sample collection. PMID:22778226

  4. Neutron investigation of Nd 2- x- yCe xLa yCuO 4 (0 ⩽ x ⩽ 0.2; y = 0.5, 1)

    NASA Astrophysics Data System (ADS)

    Gutmann, M.; Allenspach, P.; Fauth, F.; Furrer, A.; Zolliker, M.; Rosenkranz, S.; Eccleston, R. S.

    1997-02-01

    We present neutron diffraction and crystal field (CF) spectroscopy results obtained for the electron-doped superconductor precursor material Nd 2- x- yCe xLa yCuO 4 (0 ⩽ x ⩽ 0.2; y = 0.5, 1). Samples were prepared via a sol-gel methods. The lattice constants as a function of Ce-doping show the well-known behavior common to this class of compounds, i.e. the a parameter increases while the c parameter decreases with increasing Ce amount. The presence of La expands the unit cell in all directions compared to the mother compound Nd 2CuO 4 while preserving the T‧-structure for the above mentioned range. The CF spectra clearly show the presence of electronic inhomogeneities associated with electron doping from Ce 4+ on one Cu-site in the CuO 2-planes.

  5. Phase formation in the (1-y)BiFeO{sub 3}-yBiScO{sub 3} system under ambient and high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salak, A.N., E-mail: salak@ua.pt; Khalyavin, D.D., E-mail: dmitry.khalyavin@stfc.ac.uk; Pushkarev, A.V.

    Formation and thermal stability of perovskite phases in the BiFe{sub 1-y}Sc{sub y}O{sub 3} system (0≤y≤0.70) were studied. When the iron-to-scandium substitution rate does not exceed about 15 at%, the single-phase perovskite ceramics with the rhombohedral R3c symmetry (as that of the parent compound, BiFeO{sub 3}) can be prepared from the stoichiometric mixture of the respective oxides at ambient pressure. Thermal treatment of the oxide mixtures with a higher content of scandium results in formation of two main phases, namely a BiFeO{sub 3}-like R3c phase and a cubic (I23) sillenite-type phase based on γ-Bi{sub 2}O{sub 3}. Single-phase perovskite ceramics of themore » BiFe{sub 1-y}Sc{sub y}O{sub 3} composition were synthesized under high pressure from the thermally treated oxide mixtures. When y is between 0 and 0.25 the high-pressure prepared phase is the rhombohedral R3c with the √2a{sub p}×√2a{sub p}×2√3a{sub p} superstructure (a{sub p} ~ 4 Å is the pseudocubic perovskite unit-cell parameter). The orthorhombic Pnma phase (√2a{sub p}×4a{sub p}×2√2a{sub p}) was obtained in the range of 0.30≤y≤0.60, while the monoclinic C2/c phase (√6a{sub p}×√2a{sub p}×√6a{sub p}) is formed when y=0.70. The normalized unit-cell volume drops at the crossover from the rhombohedral to the orthorhombic composition range. The perovskite BiFe{sub 1-y}Sc{sub y}O{sub 3} phases prepared under high pressure are metastable regardless of their symmetry. At ambient pressure, the phases with the compositions in the ranges of 0.20≤y≤0.25, 0.30≤y<0.50 and 0.50≤y≤0.70 start to decompose above 970, 920 and 870 K, respectively. - Graphical abstract: Formation of perovskite phases in the BiFe{sub 1-y}Sc{sub y}O{sub 3} system when y≥0.15 requires application of pressure of several GPa. The phases formed under high pressure: R3c (0.20≤y≤0.25), Pnma (0.30≤y≤0.60) and C2/c (y≥0.70) are metastable. - Highlights: • Maximal Fe-to-Sc substitution rate

  6. Crosstalk between MLO-Y4 osteocytes and C2C12 muscle cells is mediated by the Wnt/β-catenin pathway.

    PubMed

    Huang, Jian; Romero-Suarez, Sandra; Lara, Nuria; Mo, Chenglin; Kaja, Simon; Brotto, Leticia; Dallas, Sarah L; Johnson, Mark L; Jähn, Katharina; Bonewald, Lynda F; Brotto, Marco

    2017-10-01

    We examined the effects of osteocyte secreted factors on myogenesis and muscle function. MLO-Y4 osteocyte-like cell conditioned media (CM) (10%) increased ex vivo soleus muscle contractile force by ~25%. MLO-Y4 and primary osteocyte CM (1-10%) stimulated myogenic differentiation of C2C12 myoblasts, but 10% osteoblast CMs did not enhance C2C12 cell differentiation. Since WNT3a and WNT1 are secreted by osteocytes, and the expression level of Wnt3a is increased in MLO-Y4 cells by fluid flow shear stress, both were compared, showing WNT3a more potent than WNT1 in inducing myogenesis. Treatment of C2C12 myoblasts with WNT3a at concentrations as low as 0.5ng/mL mirrored the effects of both primary osteocyte and MLO-Y4 CM by inducing nuclear translocation of β-catenin with myogenic differentiation, suggesting that Wnts might be potential factors secreted by osteocytes that signal to muscle cells. Knocking down Wnt3a in MLO-Y4 osteocytes inhibited the effect of CM on C2C12 myogenic differentiation. Sclerostin (100ng/mL) inhibited both the effects of MLO-Y4 CM and WNT3a on C2C12 cell differentiation. RT-PCR array results supported the activation of the Wnt/β-catenin pathway by MLO-Y4 CM and WNT3a. These results were confirmed by qPCR showing up-regulation of myogenic markers and two Wnt/β-catenin downstream genes, Numb and Flh1 . We postulated that MLO-Y4 CM/WNT3a could modulate intracellular calcium homeostasis as the trigger mechanism for the enhanced myogenesis and contractile force. MLO-Y4 CM and WNT3a increased caffeine-induced Ca 2+ release from the sarcoplasmic reticulum (SR) of C2C12 myotubes and the expression of genes directly associated with intracellular Ca 2+ signaling and homeostasis. Together, these data show that in vitro and ex vivo , osteocytes can stimulate myogenesis and enhance muscle contractile function and suggest that Wnts could be mediators of bone to muscle signaling, likely via modulation of intracellular Ca 2+ signaling and the Wnt

  7. Hydrogen peroxide toxicity induces Ras signaling in human neuroblastoma SH-SY5Y cultured cells.

    PubMed

    Chetsawang, Jirapa; Govitrapong, Piyarat; Chetsawang, Banthit

    2010-01-01

    It has been reported that overproduction of reactive oxygen species occurs after brain injury and mediates neuronal cells degeneration. In the present study, we examined the role of Ras signaling on hydrogen peroxide-induced neuronal cells degeneration in dopaminergic neuroblastoma SH-SY5Y cells. Hydrogen peroxide significantly reduced cell viability in SH-SY5Y cultured cells. An inhibitor of the enzyme that catalyzes the farnesylation of Ras proteins, FTI-277, and a competitive inhibitor of GTP-binding proteins, GDP-beta-S significantly decreased hydrogen peroxide-induced reduction in cell viability in SH-SY5Y cultured cells. The results of this study might indicate that a Ras-dependent signaling pathway plays a role in hydrogen peroxide-induced toxicity in neuronal cells.

  8. Effect of ellagic acid on proliferation, cell adhesion and apoptosis in SH-SY5Y human neuroblastoma cells.

    PubMed

    Fjaeraa, Christina; Nånberg, Eewa

    2009-05-01

    Ellagic acid, a polyphenolic compound found in berries, fruits and nuts, has been shown to possess growth-inhibiting and apoptosis promoting activities in cancer cell lines in vitro. The objective of this study was to investigate the effect of ellagic acid in human neuroblastoma SH-SY5Y cells. In cultures of SH-SY5Y cells incubated with ellagic acid, time- and concentration-dependent inhibitory effects on cell number were demonstrated. Ellagic acid induced cell detachment, decreased cell viability and induced apoptosis as measured by DNA strand breaks. Ellagic acid-induced alterations in cell cycle were also observed. Simultaneous treatment with all-trans retinoic acid did not rescue the cells from ellagic acid effects. Furthermore, the results suggested that pre-treatment with all-trans retinoic acid to induce differentiation and cell cycle arrest did not rescue the cells from ellagic acid-induced cell death.

  9. Neuroprotective effects of glyceryl nonivamide against microglia-like cells and 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y human dopaminergic neuroblastoma cells.

    PubMed

    Lin, Yi-Chin; Uang, Hao-Wei; Lin, Rong-Jyh; Chen, Ing-Jun; Lo, Yi-Ching

    2007-12-01

    Glyceryl nonivamide (GLNVA), a vanilloid receptor (VR) agonist, has been reported to have calcitonin gene-related peptide-associated vasodilatation and to prevent subarachnoid hemorrhage-induced cerebral vasospasm. In this study, we investigated the neuroprotective effects of GLNVA on activated microglia-like cell mediated- and proparkinsonian neurotoxin 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells. In coculture conditions, we used lipopolysaccharide (LPS)-stimulated BV-2 cells as a model of activated microglia. LPS-induced neuronal death was significantly inhibited by diphenylene iodonium (DPI), an inhibitor of NADPH oxidase. However, capsazepine, the selective VR1 antagonist, did not block the neuroprotective effects of GLNVA. GLNVA reduced LPS-activated microglia-mediated neuronal death, but it lacked protection in DPI-pretreated cultures. GLNVA also decreased LPS activated microglia induced overexpression of neuronal nitric-oxide synthase (nNOS) and glycoprotein 91 phagocyte oxidase (gp91(phox)) on SH-SY5Y cells. Pretreatment of BV-2 cells with GLNVA diminished LPS-induced nitric oxide production, overexpression of inducible nitric-oxide synthase (iNOS), and gp91(phox) and intracellular reactive oxygen species (iROS). GLNVA also reduced cyclooxygenase (COX)-2 expression, inhibitor of nuclear factor (NF)-kappaB (IkappaB)alpha/IkappaBbeta degradation, NF-kappaB activation, and the overproduction of tumor necrosis factor-alpha, interleukin (IL)-1beta, and prostaglandin E2 in BV-2 cells. However, GLNVA augmented anti-inflammatory cytokine IL-10 production on LPS-stimulated BV-2 cells. Furthermore, in 6-OHDA-treated SH-SY5Y cells, GLNVA rescued the changes in condensed nuclear and apoptotic bodies, prevented the decrease in mitochondrial membrane potential, and reduced cells death. GLNVA also suppressed accumulation of iROS and up-regulated heme oxygenase-1 expression. 6-OHDA-induced overexpression of nNOS, i

  10. A simulation study to improve the efficiency of ZnO1-xSx/Cu2ZnSn (Sy, Se1-y)4 solar cells by composition-ratio control

    NASA Astrophysics Data System (ADS)

    Sharbati, S.; Norouzzadeh, E.; Mohammadi, S.

    2018-04-01

    This work investigates the impact of the conduction-band offset (CBO) and valence band offset (VBO) on the performance of Zn (O, S)/Cu2ZnSn (S, Se)4 solar cells by numerical simulations. The band gap alignment at the buffer-CZTS layer interface are controlled by the sulfur-to-oxygen and sulfur-to-selenium ratios. The simulation results show that the high sulfur content in the Zn (O, S) layer makes a big offset in the conduction band and high oxygen content in the in the Zn (O, S) layer eventuates in large valence band offset, that descends Cu2ZnSn (S, Se)4 solar cell performance. We established an initial device model based on an experimental device with world record efficiencies of 12.6%. This study shows that most suitable heterojunction for ZnO1-xSx/Cu2ZnSn (Sy, Se1-y)4 solar cells is when sulfur content ranging 19%-50% in the Zn (O, S) and 30%-50% in the CZTSSe. The efficiency of Cu2ZnSn (S, Se)4 solar cells will be achieved to 14.3%.

  11. Melatonin and its precursors in Y79 human retinoblastoma cells: Effect of sodium butyrate

    NASA Technical Reports Server (NTRS)

    Deng, Mei Hua; Coviella, Ignacio Lopez G.; Lynch, Harry J.; Wurtman, Richard J.

    1991-01-01

    The release of melatonin and the production of its precursors, S-hydroxytryptophan and serotonin, in cultured Y79 human retinoblastoma cells were studied. This biosynthetic capability was found to be dependent on cell differentiation, which was initiated by culturing Y79 cells for 7 days in dishes coated with poly-D-lysine to promote cell adhesion to the surface of the culture dishes. Differentiation was further induced by exposing the cell monolayer to sodium butyrate (3 mM) for 3 days. This protocol dramatically increased the release of melatonin, and the syntheses of 5-hydroxytryptophan and serotonin in response to forskolin stimulation. Exposure to dopamine (10 micro-M) or L-DOPA (100 micro-M) markedly diminished the forskolin-stimulated release of melatonin, as well as the production of 5-hydroxytryptophan and serotonin. These observations indicate that Y79 cells represent a primitive cell line which, following appropriate differentiation (e.g. treatment with sodium butyrate) can display biochemical characteristics similar to those of the human retina. Moreover, serotonin synthesis and melatonin release appear to be coupled in Y79 cells. The inhibition of melatonin release by dopamine supports the hypothesis that in these cells, melatonin and dopamine are components of a retinal feedback loop.

  12. [MAPK signaling pathways involved in aluminum-induced apoptosis and necroptosis in SH-SY5Y cells].

    PubMed

    Jia, Xiaofang; Zhang, Qinli; Niu, Qiao

    2014-11-01

    To explore the role of MAPK signaling pathway in apoptosis and necroptosis induced by aluminum in SH-SY5Y cells. To imitate neural cell death induced by aluminium, AlCl3 x 6H2O (4 mmol/L) was used to treat SH-SY5Y cells. Necrostatin-1 (Nec-1,60 μmol/L), the specific inhibitor for necroptosis, and zVAD-fmk (20 μmol/L), the specific inhibitor for apoptosis, were added into cultures for inhibiting the occurrence of necroptosis and apoptosis. CCK-8 was performed to measure cell viability, flow cytometry was used to test the difference of apoptosis rate and necrosis rate between groups, and western-blot was used to detect the change of MAPK protein. Compared with blank control group, solvent control group, Nec-1 control group and zVAD-fmk control group, cell viabiligy of Al(3+) exposed group, Al(3+) plus Nec-1 group and Al(3+) plus zVAD-fmk group decreaced (P < 0.05). Compared with Al(3+) exposed group, cell viability of Al(3+) plus Nec-1 group and Al(3+) plus zVAD-fmk group increased (P < 0.05). Necrotic rate and apoptotic rate in Al(3+) exposed group, Al(3+) plus Nec-1 group and Al(3+) plus zVAD-fmk group obviously increased compared with blank control group, solvent control group, Nec-1 control group and zVAD-fmk control group (P < 0.05). Compared with Al(3+) exposed group, necrotic and apaptotic rate of Al(3+) plus zVAD-fmk group and Al(3+) plus Nec-1 group were statistically significant decreased (P < 0.05). Compared with blank control group, solvent control group, Nec-1 control group and zVAD-fmk control group, expression of p-p38 in Al(3+) exposed group, Al(3+) plus Nec-1 group and Al(3+) plus zVAD-fmk group increased obviously (P < 0.05), and expression of p-ERK decreased significantly (P < 0.05). Compared with Al(3+) exposed group, expression of p-p38 decreased (P < 0.05), but p-ERK increased in Al(3+) plus Nec-1 group (P < 0.05). The ERK and p38 MAPK signaling pathways are involved in aluminum-induced necroptosis in SH-SY5Y cells, but only ERK signaling

  13. Kindergarten stressors and cumulative adrenocortical activation: the "first straws" of allostatic load?

    PubMed

    Bush, Nicole R; Obradović, Jelena; Adler, Nancy; Boyce, W Thomas

    2011-11-01

    Using an ethnically diverse longitudinal sample of 338 kindergarten children, this study examined the effects of cumulative contextual stressors on children's developing hypothalamic-pituitary-adrenocortical (HPA) axis regulation as an early life indicator of allostatic load. Chronic HPA axis regulation was assessed using cumulative, multiday measures of cortisol in both the fall and spring seasons of the kindergarten year. Hierarchical linear regression analyses revealed that contextual stressors related to ethnic minority status, socioeconomic status, and family adversity each uniquely predicted children's daily HPA activity and that some of those associations were curvilinear in conformation. Results showed that the quadratic, U-shaped influences of family socioeconomic status and family adversity operate in different directions to predict children's HPA axis regulation. Results further suggested that these associations differ for White and ethnic minority children. In total, this study revealed that early childhood experiences contribute to shifts in one of the principal neurobiological systems thought to generate allostatic load, confirming the importance of early prevention and intervention efforts. Moreover, findings suggested that analyses of allostatic load and developmental theories accounting for its accrual would benefit from an inclusion of curvilinear associations in tested predictive models.

  14. Epidermal growth factor increases cortisol production and type II 3 beta-hydroxysteroid dehydrogenase/Delta(5)-Delta(4)-isomerase expression in human adrenocortical carcinoma cells: evidence for a Stat5-dependent mechanism.

    PubMed

    Feltus, F Alex; Kovacs, William J; Nicholson, Wendell; Silva, Corrine M; Nagdas, Subir K; Ducharme, Nicole A; Melner, Michael H

    2003-05-01

    We tested the ability of epidermal growth factor (EGF) to regulate a key enzyme in the adrenal synthesis of glucocorticoids: human type II 3beta-hydroxysteroid dehydrogenase/Delta(5)-Delta(4)-isomerase (3 beta HSD). EGF treatment (25 ng/ml) of human adrenocortical carcinoma cells (H295R) resulted in a 5-fold increase in cortisol production and a corresponding 2-fold increase in 3 beta HSD mRNA. Experiments were performed to determine whether EGF is acting through a previously identified signal transducer and activator of transcription 5 (Stat5)-responsive element located from -110 to -118 in the human type II 3 beta HSD promoter. A Stat5 expression construct was cotransfected with a 3 beta HSD-chloramphenol acetyltransferase (CAT) reporter construct comprised of nucleotides -301-->+45 of the human type II 3 beta HSD promoter linked to the CAT reporter gene sequence. The addition of EGF at doses as low as 10 ng/ml resulted in an 11- to 15-fold increase in CAT activity. The introduction of 3-bp point mutations into critical nucleotides in the Stat5 response element obviated the EGF response. Either Stat5a or Stat5b isoforms induced CAT reporter expression upon treatment with EGF. These results demonstrate the ability of EGF to regulate the expression of a critical enzyme (3 beta HSD) in the production of cortisol and suggest a molecular mechanism by which this regulation occurs.

  15. Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line

    PubMed Central

    Shipley, Mackenzie M.; Mangold, Colleen A.; Szpara, Moriah L.

    2016-01-01

    Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblastoma cell lines including rat B35 and mouse Neuro-2A cells, rat PC12 cells, and short-term slice cultures. While many researchers rely on these models, they lack a human component and observed experimental effects could be exclusive to the respective species and may not occur identically in humans. Additionally, although these cells are neurons, they may have unstable karyotypes, making their use problematic for studies of gene expression and reproducible studies of cell signaling. It is therefore important to develop more consistent models of human neurological disease. The following procedure describes an easy-to-follow, reproducible method to obtain homogenous and viable human neuronal cultures, by differentiating the chromosomally stable human neuroblastoma cell line, SH-SY5Y. This method integrates several previously described methods1-4 and is based on sequential removal of serum from media. The timeline includes gradual serum-starvation, with introduction of extracellular matrix proteins and neurotrophic factors. This allows neurons to differentiate, while epithelial cells are selected against, resulting in a homogeneous neuronal culture. Representative results demonstrate the successful differentiation of SH-SY5Y neuroblastoma cells from an initial epithelial-like cell phenotype into a more expansive and branched neuronal phenotype. This protocol offers a reliable way to generate homogeneous populations of neuronal cultures that can be used for subsequent biochemical and molecular analyses, which provides researchers with a more accurate translational model of human infection and disease. PMID:26967710

  16. Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line.

    PubMed

    Shipley, Mackenzie M; Mangold, Colleen A; Szpara, Moriah L

    2016-02-17

    Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblastoma cell lines including rat B35 and mouse Neuro-2A cells, rat PC12 cells, and short-term slice cultures. While many researchers rely on these models, they lack a human component and observed experimental effects could be exclusive to the respective species and may not occur identically in humans. Additionally, although these cells are neurons, they may have unstable karyotypes, making their use problematic for studies of gene expression and reproducible studies of cell signaling. It is therefore important to develop more consistent models of human neurological disease. The following procedure describes an easy-to-follow, reproducible method to obtain homogenous and viable human neuronal cultures, by differentiating the chromosomally stable human neuroblastoma cell line, SH-SY5Y. This method integrates several previously described methods(1-4) and is based on sequential removal of serum from media. The timeline includes gradual serum-starvation, with introduction of extracellular matrix proteins and neurotrophic factors. This allows neurons to differentiate, while epithelial cells are selected against, resulting in a homogeneous neuronal culture. Representative results demonstrate the successful differentiation of SH-SY5Y neuroblastoma cells from an initial epithelial-like cell phenotype into a more expansive and branched neuronal phenotype. This protocol offers a reliable way to generate homogeneous populations of neuronal cultures that can be used for subsequent biochemical and molecular analyses, which provides researchers with a more accurate translational model of human infection and disease.

  17. Endogenous peptide YY and neuropeptide Y inhibit colonic ion transport, contractility and transit differentially via Y1 and Y2 receptors

    PubMed Central

    Tough, IR; Forbes, S; Tolhurst, R; Ellis, M; Herzog, H; Bornstein, JC; Cox, HM

    2011-01-01

    BACKGROUND AND PURPOSE Peptide YY (PYY) and neuropeptide Y (NPY) activate Y receptors, targets under consideration as treatments for diarrhoea and other intestinal disorders. We investigated the gastrointestinal consequences of selective PYY or NPY ablation on mucosal ion transport, smooth muscle activity and transit using wild-type, single and double peptide knockout mice, comparing mucosal responses with those from human colon. EXPERIMENTAL APPROACH Mucosae were pretreated with a Y1 (BIBO3304) or Y2 (BIIE0246) receptor antagonist and changes in short-circuit current recorded. Colonic transit and colonic migrating motor complexes (CMMCs) were assessed in vitro and upper gastrointestinal and colonic transit measured in vivo. KEY RESULTS Y receptor antagonists revealed tonic Y1 and Y2 receptor-mediated antisecretory effects in human and wild-type mouse colon mucosae. In both, Y1 tone was epithelial while Y2 tone was neuronal. Y1 tone was reduced 90% in PYY−/− mucosa but unchanged in NPY−/− tissue. Y2 tone was partially reduced in NPY−/− or PYY−/− mucosae and abolished in tetrodotoxin-pretreated PYY−/− tissue. Y1 and Y2 tone were absent in NPYPYY−/− tissue. Colonic transit was inhibited by Y1 blockade and increased by Y2 antagonism indicating tonic Y1 excitation and Y2 inhibition respectively. Upper GI transit was increased in PYY−/− mice only. Y2 blockade reduced CMMC frequency in isolated mouse colon. CONCLUSIONS AND IMPLICATIONS Endogenous PYY and NPY induced significant mucosal antisecretory tone mediated by Y1 and Y2 receptors, via similar mechanisms in human and mouse colon mucosa. Both peptides contributed to tonic Y2-receptor-mediated inhibition of colonic transit in vitro but only PYY attenuated upper GI transit. PMID:21457230

  18. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death.

    PubMed

    Guida, Natascia; Laudati, Giusy; Anzilotti, Serenella; Secondo, Agnese; Montuori, Paolo; Di Renzo, Gianfranco; Canzoniero, Lorella M T; Formisano, Luigi

    2015-11-01

    Resveratrol (3,5,4'-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Vitamin E, γ-tocotrienol, Protects Against Buthionine Sulfoximine-Induced Cell Death by Scavenging Free Radicals in SH-SY5Y Neuroblastoma Cells.

    PubMed

    Tan, Jen-Kit; Then, Sue-Mian; Mazlan, Musalmah; Jamal, Rahman; Ngah, Wan Zurinah Wan

    2016-01-01

    The induction of reactive oxygen species (ROS) to selectively kill cancer cells is an important feature of radiotherapy and various chemotherapies. Depletion of glutathione can induce apoptosis in cancer cells or sensitize them to anticancer treatments intended to modulate ROS levels. In contrast, antioxidants protect cancer cells from oxidative stress-induced cell death by scavenging ROS. The role of exogenous antioxidants in cancer cells under oxidative insults remains controversial and unclear. This study aimed to identify protective pathways modulated by γ-tocotrienol (γT3), an isomer of vitamin E, in human neuroblastoma SH-SY5Y cells under oxidative stress. Using buthionine sulfoximine (BSO) as an inhibitor of glutathione synthesis, we found that BSO treatment reduced the viability of SH-SY5Y cells. BSO induced cell death by increasing apoptosis, decreased the level of reduced glutathione (GSH), and increased ROS levels in SH-SY5Y cells. Addition of γT3 increased the viability of BSO-treated cells, suppressed apoptosis, and decreased the ROS level induced by BSO, while the GSH level was unaffected. These results suggest that decreasing GSH levels by BSO increased ROS levels, leading to apoptosis in SH-SY5Y cells. γT3 attenuated the BSO-induced cell death by scavenging free radicals.

  20. Somatic alterations of the serine/threonine kinase LKB1 gene in squamous cell (SCC) and large cell (LCC) lung carcinoma.

    PubMed

    Strazisar, Mojca; Mlakar, Vid; Rott, Tomaz; Glavac, Damjan

    2009-05-01

    Somatic LKB1 serine/threonine kinase alterations are rare in sporadic cancers, with the exception lung adenocarcinoma, but no mutations in squamous cell or large cell primary carcinoma were discovered. We screened the LKB1 gene in 129 primary nonsmall cell lung carcinomas, adjacent healthy lung tissue, and control blood samples. Forty-five percent of nonsmall cell lung tumors harbored either intron or exon alterations. We identified R86G, F354L, Y272Y and three polymorphisms: 290+36G/T, 386+156G/T, and 862+145C/T (novel). R86G (novel) and F354L mutations were found in six squamous cell carcinomas and three large cell cancer carcinomas, but not in the adjacent healthy tissue or controls samples. The F354L mutation was found in advanced squamous cell carcinomas with elevated COX-2 expression, rare P53, and no K-RAS mutation. Results indicate that the LKB1 gene is changed in a certain proportion of nonsmall cell lung tumors, predominately in advanced squamous lung carcinoma. Inactivation of the gene takes place via the C-terminal domain and could be related to mechanisms influencing tumor initiation, differentiation, and metastasis.

  1. Modulation of chemotherapy-induced cytotoxicity in SH-SY5Y neuroblastoma cells by caffeine and chlorogenic acid.

    PubMed

    Hall, Susan; Anoopkumar-Dukie, Shailendra; Grant, Gary D; Desbrow, Ben; Lai, Richard; Arora, Devinder; Hong, Yinna

    2017-06-01

    Chemotherapy is an important treatment modality for malignancy but is limited by significant toxicity and it susceptibility to numerous drug interactions. While the interacting effects with medications are well known, there is limited evidence on the interaction with commonly consumed food and natural products. The aim of this study was to evaluate the bioactive constituents of coffee (caffeine and chlorogenic acid) on the cytotoxicity of doxorubicin, gemcitabine, and paclitaxel in vitro. Pretreatment with caffeine (100 nM and 10 μM) sensitized SH-SY5Y cells to doxorubicin-induced toxicity and increased apoptosis and sensitized PC3 cells to gemcitabine-induced toxicity. Pretreatment with 10 μM caffeine decreased total cell reactive oxygen species (ROS) production but increased mitochondrial ROS production. In contrast, caffeine (10 nM and 10 μM) protected cells against gemcitabine-induced toxicity and apoptosis. Similarly, 1 μM and 10 μM caffeine protected cells against paclitaxel-induced toxicity and mitochondrial ROS production. Chlorogenic acid had no effect on chemotherapy-induced toxicity in SH-SY5Y cells. In conclusion, this study provides preliminary evidence that caffeine, not chlorogenic acid, modulates the cytotoxicity of doxorubicin, gemcitabine, and paclitaxel in SH-SY5Y cells via different mechanisms.

  2. Biology is Destiny: A Case of Adrenocortical Carcinoma Diagnosed and Resected at Inception in a Patient Under Close Surveillance for Lung Cancer.

    PubMed

    Miron, Benjamin; Ristau, Benjamin T; Tomaszewski, Jeffrey J; Jones, Josh; Milestone, Bart; Wong, Yu-Ning; Uzzo, Robert G; Edmondson, Donna; Scott, Walter; Kutikov, Alexander

    2016-11-01

    Adrenocortical carcinoma (ACC) is a rare malignancy that is generally associated with a poor prognosis whose existence dictates the management of incidental renal masses. We report a case of ACC diagnosed and treated at its apparent inception in a patient undergoing close surveillance imaging of a prior malignancy. Despite timely detection and resection of a localized ACC this patient rapidly progressed to systemic disease. This case highlights the rapid growth kinetics of ACC and puts into perspective the challenges associated with the established treatment paradigm for patients diagnosed with an adrenal mass.

  3. BaZr 0.1Ce 0.7Y 0.1Yb 0.1O 3- δ electrolyte-based solid oxide fuel cells with cobalt-free PrBaFe 2O 5+ δ layered perovskite cathode

    NASA Astrophysics Data System (ADS)

    Ding, Hanping; Xue, Xingjian

    A new anode-supported SOFC material system Ni-BZCYYb|BZCYYb|PBFO is investigated, in which a cobalt-free layered perovskite oxide, PrBaFe 2O 5+ δ (PBFO), is synthesized and employed as a novel cathode while the synthesized BZCYYb is used as an electrolyte. The cell is fabricated by a simple dry-pressing/co-sintering process. The cell is tested and characterized under intermediate temperature range from 600 to 700 °C with humified H 2 (∼3% H 2O) as fuel, ambient air as oxidant. The results show that the open-circuit potential of 1.006 V and maximal power density of 452 mW cm -2 are achieved at 700 °C. The polarization resistance of the electrodes is 0.18 Ω cm 2 at 700 °C. Compared to BaZr 0.1Ce 0.7Y 0.1O 3- δ, the conductivity of co-doped barium zirconate-cerate BZCYYb is significantly improved. The ohmic resistance of single cell is 0.37 Ω cm 2 at 700 °C. The results indicate that the developed Ni-BZCYYb|BZCYYb|PBFO cell is a promising functional material system for SOFCs.

  4. Major prognostic role of Ki67 in localized adrenocortical carcinoma after complete resection.

    PubMed

    Beuschlein, Felix; Weigel, Jens; Saeger, Wolfgang; Kroiss, Matthias; Wild, Vanessa; Daffara, Fulvia; Libé, Rosella; Ardito, Arianna; Al Ghuzlan, Abir; Quinkler, Marcus; Oßwald, Andrea; Ronchi, Cristina L; de Krijger, Ronald; Feelders, Richard A; Waldmann, Jens; Willenberg, Holger S; Deutschbein, Timo; Stell, Anthony; Reincke, Martin; Papotti, Mauro; Baudin, Eric; Tissier, Frédérique; Haak, Harm R; Loli, Paola; Terzolo, Massimo; Allolio, Bruno; Müller, Hans-Helge; Fassnacht, Martin

    2015-03-01

    Recurrence of adrenocortical carcinoma (ACC) even after complete (R0) resection occurs frequently. The aim of this study was to identify markers with prognostic value for patients in this clinical setting. From the German ACC registry, 319 patients with the European Network for the Study of Adrenal Tumors stage I-III were identified. As an independent validation cohort, 250 patients from three European countries were included. Clinical, histological, and immunohistochemical markers were correlated with recurrence-free (RFS) and overall survival (OS). Although univariable analysis within the German cohort suggested several factors with potential prognostic power, upon multivariable adjustment only a few including age, tumor size, venous tumor thrombus (VTT), and the proliferation marker Ki67 retained significance. Among these, Ki67 provided the single best prognostic value for RFS (hazard ratio [HR] for recurrence, 1.042 per 1% increase; P < .0001) and OS (HR for death, 1.051; P < .0001) which was confirmed in the validation cohort. Accordingly, clinical outcome differed significantly between patients with Ki67 <10%, 10-19%, and ≥20% (for the German cohort: median RFS, 53.2 vs 31.6 vs 9.4 mo; median OS, 180.5 vs 113.5 vs 42.0 mo). Using the combined cohort prognostic scores including tumor size, VTT, and Ki67 were established. Although these scores discriminated slightly better between subgroups, there was no clinically meaningful advantage in comparison with Ki67 alone. This largest study on prognostic markers in localized ACC identified Ki67 as the single most important factor predicting recurrence in patients following R0 resection. Thus, evaluation of Ki67 indices should be introduced as standard grading in all pathology reports of patients with ACC.

  5. Molecular recognition of modified adenine nucleotides by the P2Y(1)-receptor. 1. A synthetic, biochemical, and NMR approach.

    PubMed

    Halbfinger, E; Major, D T; Ritzmann, M; Ubl, J; Reiser, G; Boyer, J L; Harden, K T; Fischer, B

    1999-12-30

    The remarkably high potencies of 2-thioether-adenine nucleotides regarding the activation of the P2Y(1)-receptor (P2Y(1)-R) in turkey erythrocyte membranes represent some of the largest substitution-promoted increases in potencies over that of a natural receptor ligand. This paper describes the investigation regarding the origin of the high potency of these P2Y(1)-R ligands over that of ATP. For this study, an integrated approach was employed combining the synthesis of new ATP analogues, their biochemical evaluation, and their SAR analysis involving NMR experiments and theoretical calculations. These experiments and calculations were performed to elucidate the conformation and to evaluate the electronic nature of the investigated P2Y(1)-R ligands. ATP analogues synthesized included derivatives where C2 or C8 positions were substituted with electron-donating groups such as ethers, thioethers, or amines. The compounds were tested for their potency to induce P2Y(1)-R-mediated activation of phospholipase C in turkey erythrocytes and Ca(2+) response in rat astrocytes. 8-Substituted ATP and AMP derivatives had little or no effect on phospholipase C or on calcium levels, whereas the corresponding 2-substituted ATP analogues potently increased the levels of inositol phosphates and ¿Ca(2+)(i). AMP analogues were ineffective except for 2-butylthio-AMP which induced a small Ca(2+) response. P2Y(1)-R activity of these compounds was demonstrated by testing these ligands also on NG108-15 neuroblastoma x glioma hybrid cells. NMR data together with theoretical calculations imply that steric, rather than electronic, effects play a major role in ligand binding to the P2Y(1)-R. Hydrophobic interactions and H-bonds of the C2 substituent appear to be important determinants of a P2Y(1)-R ligand affinity.

  6. Activity in mice of recombinant BCG-EgG1Y162 vaccine for Echinococcus granulosus infection.

    PubMed

    Ma, Xiumin; Zhao, Hui; Zhang, Fengbo; Zhu, Yuejie; Peng, Shanshan; Ma, Haimei; Cao, Chunbao; Xin, Yan; Yimiti, Delixiati; Wen, Hao; Ding, Jianbing

    2016-01-01

    Cystic hydatid disease is a zoonotic parasitic disease caused by Echinococcus granulosus which is distributed worldwide. The disease is difficult to treat with surgery removal is the only cure treatment. In the high endemic areas, vaccination of humans is believed a way to protect communities from the disease. In this study we vaccinated BALB/c mice with rBCG-EgG1Y162, and then detected the level of IgG and IgE specifically against the recombinant protein by ELISA, rBCG-EgG1Y162 induced strong and specific cellular and humoral immune responses. In vitro study showed that rBCG-EgG1Y162 vaccine not only promote splenocytes proliferation but also active T cell. In addition, the rBCG-EgG1Y162 induced a protection in the mice against secondary infection of Echinococcus granulosus.

  7. GPER-1 and estrogen receptor-β ligands modulate aldosterone synthesis.

    PubMed

    Caroccia, Brasilina; Seccia, Teresa M; Campos, Abril Gonzalez; Gioco, Francesca; Kuppusamy, Maniselvan; Ceolotto, Giulio; Guerzoni, Eugenia; Simonato, Francesca; Mareso, Sara; Lenzini, Livia; Fassina, Ambrogio; Rossi, Gian Paolo

    2014-11-01

    Fertile women have lower blood pressure and cardiovascular risk than age-matched men, which suggests that estrogens exert cardiovascular protective effects. However, whether 17 β-estradiol (E2) blunts aldosterone secretion, and thereby affects the gender dimorphism of blood pressure, is unknown. We therefore sought for the estrogen receptor (ER) subtypes in human adrenocortical tissues ex vivo by performing gene and protein expression studies. We also investigated the effect of E2 on aldosterone synthesis and the involved receptors through in vitro functional experiments in the adrenocortical cells HAC15. We found that in the human adrenal cortex and aldosterone-producing adenoma cells, the most expressed ERs were the ERβ and the G protein-coupled receptor-1 (GPER-1), respectively. After selective ERβ blockade, E2 (10 nmol/L) markedly increased both the expression of aldosterone synthase and the production of aldosterone (+5- to 7-fold vs baseline, P < .001). Under the same condition, the GPER-1 receptor agonist 1-[4-(6-bromo-benzo (1, 3)dioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c] quinolin-8-yl]-ethanone (G-1) (10 nmol/L) mimicked this effect, which was abrogated by cotreatment with either the GPER-1 receptor antagonist (3aS*,4R*,9bR*)-4-(6-Bro-mo-1,3-benzodioxol-5-yl)-3a,4,5,9b-3H-cyclopenta[c]quinoline (G-15), or a selective protein kinase A inhibitor 8-Bromo-2-monobutyryladenosine-3,5-cyclic mono-phosphorothioate, Rp-isomer. Silencing of the ERβ significantly raised aldosterone synthase expression and aldosterone production. Conversely, silencing of the GPER-1 lowered aldosterone synthase gene and protein expression. Moreover, it blunted the stimulatory effect of E2 on aldosterone synthase that was seen during ERβ blockade. These results support the conclusion that in humans, E2 inhibits aldosterone synthesis by acting via ERβ. Pharmacologic disinhibition of ERβ unmasks a potent secretagogue effect of E2 that involves GPER-1 and protein kinase A

  8. The effects of Rho-associated kinase inhibitor Y-27632 on primary human corneal endothelial cells propagated using a dual media approach.

    PubMed

    Peh, Gary S L; Adnan, Khadijah; George, Benjamin L; Ang, Heng-Pei; Seah, Xin-Yi; Tan, Donald T; Mehta, Jodhbir S

    2015-03-16

    The global shortage of donor corneas has garnered extensive interest in the development of graft alternatives suitable for endothelial keratoplasty using cultivated primary human corneal endothelial cells (CECs). We have recently described a dual media approach for the propagation of human CECs. In this work, we characterize the effects of a Rho-kinase inhibitor Y-27632 on the cultivation of CECs propagated using the dual media culture system. Seventy donor corneas deemed unsuitable for transplantation were procured for this study. We assessed the use of Y-27632 for its effect at each stage of the cell culture process, specifically for cell attachment, cell proliferation, and during both regular passaging and cryopreservation. Lastly, comparison of donor-matched CEC-cultures expanded with or without Y-27632 was also performed. Our results showed that Y-27632 significantly improved the attachment and proliferation of primary CECs. A non-significant pro-survival effect was detected during regular cellular passage when CECs were pre-treated with Y-27632, an effect that became more evident during cryopreservation. Our study showed that the inclusion of Y-27632 was beneficial for the propagation of primary CECs expanded via the dual media approach, and was able to increase overall cell yield by between 1.96 to 3.36 fold.

  9. SNJ-1945, a calpain inhibitor, protects SH-SY5Y cells against MPP(+) and rotenone.

    PubMed

    Knaryan, Varduhi H; Samantaray, Supriti; Park, Sookyoung; Azuma, Mitsuyoshi; Inoue, Jun; Banik, Naren L

    2014-07-01

    Complex pathophysiology of Parkinson's disease involves multiple CNS cell types. Degeneration in spinal cord neurons alongside brain has been shown to be involved in Parkinson's disease and evidenced in experimental parkinsonism. However, the mechanisms of these degenerative pathways are not well understood. To unravel these mechanisms SH-SY5Y neuroblastoma cells were differentiated into dopaminergic and cholinergic phenotypes, respectively, and used as cell culture model following exposure to two parkinsonian neurotoxicants MPP(+) and rotenone. SNJ-1945, a cell-permeable calpain inhibitor was tested for its neuroprotective efficacy. MPP(+) and rotenone dose-dependently elevated the levels of intracellular free Ca(2+) and induced a concomitant rise in the levels of active calpain. SNJ-1945 pre-treatment significantly protected cell viability and preserved cellular morphology following MPP(+) and rotenone exposure. The neurotoxicants elevated the levels of reactive oxygen species more profoundly in SH-SY5Y cells differentiated into dopaminergic phenotype, and this effect could be attenuated with SNJ-1945 pre-treatment. In contrast, significant levels of inflammatory mediators cyclooxygenase-2 (Cox-2 and cleaved p10 fragment of caspase-1) were up-regulated in the cholinergic phenotype, which could be dose-dependently attenuated by the calpain inhibitor. Overall, SNJ-1945 was efficacious against MPP(+) or rotenone-induced reactive oxygen species generation, inflammatory mediators, and proteolysis. A post-treatment regimen of SNJ-1945 was also examined in cells and partial protection was attained with calpain inhibitor administration 1-3 h after exposure to MPP(+) or rotenone. Taken together, these results indicate that calpain inhibition is a valid target for protection against parkinsonian neurotoxicants, and SNJ-1945 is an efficacious calpain inhibitor in this context. SH-SY5Y cells, differentiated as dopaminergic (TH positive) and cholinergic (ChAT positive), were

  10. Synthesis and electrochemical characterization of Li 1.05RE xCr yMn 2- x- yO 4 spinel as cathode material for rechargeable Li-battery

    NASA Astrophysics Data System (ADS)

    Xie, Yanting; Yang, Rudong; Yan, Lan; Qi, Lu; Dai, Kehua; He, Ping

    The spinel phases of Li 1.05RE xCr yMn 2- x- yO 4 (RE = Sc, Ce, Pr, Tb; 0 ≤ x ≤ 0.05; 0 ≤ y ≤ 0.1) were prepared by a soft chemical method. The structural and electrochemical properties of Li 1.05RE xCr yMn 2- x- yO 4 were investigated by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and charge-discharge experiments. Rare earth element-Sc and transition metal-Cr as co-substituents stabilize the spinel framework and improve charge-discharge performance. For Li 1.05Sc 0.01Cr 0.03Mn 1.96O 4, the capacity of the cell maintained 95% of the initial capacity at the 80th cycle. The rare earth elements of the variable valent metals such as Ce 3+/4+, Pr 3+/4+, Tb 3+/4+ with transition metal Cr 3+ as co-substituent do not stable framework of spinel or improve the cycling performance. Cyclic voltammetry (CV) were measured to provide clues for the improved cycling performance of cathode electrodes.

  11. STAT1 Activation is Enhanced by Cisplatin and Variably Affected by EGFR Inhibition in HNSCC Cells

    PubMed Central

    Schmitt, Nicole C.; Trivedi, Sumita; Ferris, Robert L.

    2015-01-01

    Cisplatin is a cytotoxic chemotherapeutic drug frequently used to treat many solid tumors, including head and neck squamous cell carcinoma (HNSCC). EGFR inhibitors have also shown efficacy as alternatives to cisplatin in some situations. However, large clinical trials have shown no added survival benefit from the use of these two drugs in combination. Possible explanations for this include overlapping downstream signaling cascades. Using in vitro studies, we tested the hypothesis that cisplatin and EGFR inhibitors rely on the activation of the tumor suppressor STAT1, characterized by its phosphorylation at serine (S727) or tyrosine (Y701) residues. Cisplatin consistently increased the levels of p-S727-STAT1, and STAT1 siRNA knockdown attenuated cisplatin-induced cell death. EGFR stimulation also activated p-S727-STAT1 and p-Y701-STAT1 in a subset of cell lines, whereas EGFR inhibitors alone decreased levels of p-S727-STAT1 and p-Y701-STAT1 in these cells. Contrary to our hypothesis, EGFR inhibitors added to cisplatin treatment caused variable effects among cell lines, with attenuation of p-S727-STAT1 and enhancement of cisplatin-induced cell death in some cells and minimal effect in other cells. Using HNSCC tumor specimens from a clinical trial of adjuvant cisplatin plus the anti-EGFR antibody panitumumab, higher intratumoral p-S727-STAT1 appeared to correlate with worse survival. Together, these results suggest that cisplatin-induced cell death is associated with STAT1 phosphorylation, and the addition of anti-EGFR therapy to cisplatin has variable effects on STAT1 and cell death in HNSCC. PMID:26141950

  12. Pharmacological characterization of nucleotide P2Y receptors on endothelial cells of the mouse aorta

    PubMed Central

    Guns, Pieter-Jan D F; Korda, András; Crauwels, Herta M; Van Assche, Tim; Robaye, Bernard; Boeynaems, Jean-Marie; Bult, Hidde

    2005-01-01

    Nucleotides regulate various effects including vascular tone. This study was aimed to characterize P2Y receptors on endothelial cells of the aorta of C57BL6 mice. Five adjacent segments (width 2 mm) of the thoracic aorta were mounted in organ baths to measure isometric force development. Nucleotides evoked complete (adenosine 5′ triphosphate (ATP), uridine 5′ triphosphate (UTP), uridine 5′ diphosphate (UDP); >90%) or partial (adenosine 5′ diphosphate (ADP)) relaxation of phenylephrine precontracted thoracic aortic rings of C57BL6 mice. Relaxation was abolished by removal of the endothelium and was strongly suppressed (>90%) by inhibitors of nitric oxide synthesis. The rank order of potency was: UDP∼UTP∼ADP>adenosine 5′-[γ-thio] triphosphate (ATPγS)>ATP, with respective pD2 values of 6.31, 6.24, 6.22, 5.82 and 5.40. These results are compatible with the presence of P2Y1 (ADP>ATP), P2Y2 or P2Y4 (ATP and UTP) and P2Y6 (UDP) receptors. P2Y4 receptors were not involved, since P2Y4-deficient mice displayed unaltered responses to ATP and UTP. The purinergic receptor antagonist suramin exerted surmountable antagonism for all agonists. Its apparent pKb for ATP (4.53±0.07) was compatible with literature, but the pKb for UTP (5.19±0.03) was significantly higher. This discrepancy suggests that UTP activates supplementary non-P2Y2 receptor subtype(s). Further, pyridoxal-phosphate-6-azophenyl-2′-4′-disulphonic acid (PPADS) showed surmountable (UTP, UDP), nonsurmountable (ADP) or no antagonism (ATP). Finally, 2′-deoxy-N6-methyladenosine3′,5′-bisphosphate (MRS2179) inhibited ADP-evoked relaxation only. Taken together, these results point to the presence of functional P2Y1 (ADP), P2Y2 (ATP, UTP) and P2Y6 (UDP) receptors on murine aorta endothelial cells. The identity of the receptor(s) mediating the action of UTP is not fully clear and other P2Y subtypes might be involved in UTP-evoked vasodilatation. PMID:15997227

  13. Acetylcholine affects osteocytic MLO-Y4 cells via acetylcholine receptors.

    PubMed

    Ma, Yuanyuan; Li, Xianxian; Fu, Jing; Li, Yue; Gao, Li; Yang, Ling; Zhang, Ping; Shen, Jiefei; Wang, Hang

    2014-03-25

    The identification of the neuronal control of bone remodeling has become one of the many significant recent advances in bone biology. Cholinergic activity has recently been shown to favor bone mass accrual by complex cellular regulatory networks. Here, we identified the gene expression of the muscarinic and nicotinic acetylcholine receptors (m- and nAChRs) in mice tibia tissue and in osteocytic MLO-Y4 cells. Acetylcholine, which is a classical neurotransmitter and an osteo-neuromediator, not only influences the mRNA expression of the AChR subunits but also significantly induces the proliferation and viability of osteocytes. Moreover, acetylcholine treatment caused the reciprocal regulation of RANKL and OPG mRNA expression, which resulted in a significant increase in the mRNA ratio of RANKL:OPG in osteocytes via acetylcholine receptors. The expression of neuropeptide Y and reelin, which are two neurogenic markers, was also modulated by acetylcholine via m- and nAChRs in MLO-Y4 cells. These results indicated that osteocytic acetylcholine receptors might be a new valuable mediator for cell functions and even for bone remodeling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Comparison of the methods for measuring the Ki-67 labeling index in adrenocortical carcinoma: manual versus digital image analysis.

    PubMed

    Yamazaki, Yuto; Nakamura, Yasuhiro; Shibahara, Yukiko; Konosu-Fukaya, Sachiko; Sato, Naomi; Kubota-Nakayama, Fumie; Oki, Yutaka; Baba, Satoshi; Midorikawa, Sanae; Morimoto, Ryo; Satoh, Fumitoshi; Sasano, Hironobu

    2016-07-01

    Adrenocortical carcinoma (ACC) is a rare, highly malignant neoplasm harboring marked histologic heterogeneity. The Ki-67 labeling index (LI) is one of the most effective diagnostic and prognostic markers in ACC. However, its assessment has by no means been standardized. Therefore, in this study, we analyzed the Ki-67 LI in 18 ACC cases both by seven pathologists using microscopes (MA; manual analysis) and with digital image analysis (DIA) and also compared the Ki-67 LI obtained by selecting "hot spots" and formulating the "average" reading of the whole tumor specimen. In addition, we performed statistical analysis of the association between Ki-67 LI and the clinical and pathologic features of individual cases. The DIA was significantly correlated with MA in hot spots but not in the average fields. The Ki-67 LI in hot spots was significantly and consistently higher than that in average areas by both MA and DIA, indicating intratumoral heterogeneity. The Ki-67 LI was significantly correlated with the Weiss criteria (eosinophilic cytoplasm, nuclear atypia, atypical mitoses, and sinusoidal invasion) by any mode of evaluation. The clinical outcome was significantly better in the patients with a Ki-67 < 10% than in those with a Ki-67 > 10% by MA in hot spots. The Ki-67 LI in hot spots measured by MA best reflected the clinical and pathologic features of ACC. Employment of DIA to obtain the Ki-67 LI in ACC requires further improvement, including correction of its overestimation of the value by counting non-tumorous cells and nuclear segmentation in areas of high cell density. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Different regulation of aryl hydrocarbon receptor-regulated genes in response to dioxin in undifferentiated and neuronally differentiated human neuroblastoma SH-SY5Y cells.

    PubMed

    Imran, Saima; Ferretti, Patrizia; Vrzal, Radim

    2015-01-01

    Some environmental pollutants derived from industrial processes have been suggested to be responsible for neurological impairment in children, especially in heavily polluted areas. Since these compounds are usually activators of aryl hydrocarbon receptor (AhR), it would be important to better understand the molecular pathways downstream of AhR leading to neural deficits. To this purpose, appropriate in vitro human neural model is much needed. Here we have investigated whether undifferentiated and neuronally differentiated human neuroblastoma cells, SH-SY5Y cells, can provide a suitable model for monitoring AhR activity induced by environmental pollutants, focusing on 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD), a known activator of AhR. Further characterization of differentiated SH-SY5Y showed an increase in AhRR (aryl hydrocarbon receptor repressor), no change in ARNT1 (AhR nuclear translocator 1), and a decrease in ARNT2 expression with differentiation; in contrast, AhR was undetectable in both undifferentiated and differentiated cells. Nonetheless, treatment of parental as well as differentiated SH-SY5Y cells with TCDD resulted in the induction of AhR-regulated genes, CYP1A1 and CYP1B1; AhRR expression was also affected, but to a much smaller extent. These results indicate that undifferentiated SH-SY5Y are less sensitive to TCDD than neuronally differentiated ones, suggesting a higher resistance of the undifferentiated tumor cells to toxic insults. They also suggest that TCDD in these cells may not act via direct activation of AhR that is undetectable in SH-SY5Y as well as in differentiated neurons. Hence, these cells do not provide an appropriate model for studying ligand-mediated activation of AhR.

  16. beta-Adrenoceptor blockers protect against staurosporine-induced apoptosis in SH-SY5Y neuroblastoma cells.

    PubMed

    Mikami, Maya; Goubaeva, Farida; Song, Joseph H; Lee, H T; Yang, Jay

    2008-07-28

    The beta-adrenoceptor blockers exhibit a well-characterized anti-apoptotic property in the heart and kidney while less is known about the effect of this class of drugs on neuronal apoptosis. We studied the effects of three beta-adrenoceptor blockers propranolol (1-(isoproplyamino)-3-(naphthalene-1-yloxy)propan-2-ol), atenolol (2-[4-[2-hydroxy-3-(1-methylethylamino)propoxyl]phenyl]ehanamide), and ICI 118551 (1-[2,3-(dihydro-7-methyl-1H-iden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol), against staurosporine-induced apoptosis in SH-SY5Y human neuroblastoma cells. Staurosporine increased caspase 3-like activity, DNA fragmentation, PARP cleavage, and the number of TUNEL positive cells consistent with the induction of apoptosis. Propranolol and ICI 118551, but not atenolol, demonstrated a concentration-dependent inhibition of caspase 3-like activity. Propranolol and ICI 118551 directly inhibited the enzymatic activity of recombinant caspase 9 while atenolol did not; however, none of the beta-adrenoceptor blockers that were examined directly blocked caspases 2 or 3 activity. In isolated mitochondria, propranolol and ICI 118551 inhibited staurosporine-induced cytochrome c release while atenolol did not. We conclude that propranolol and ICI 118551 protect SH-SY5Y cells against staurosporine-induced apoptosis through a dual action on the mitochondria and on caspase 9 in a cell type and an apoptotic paradigm where the conventional inhibitors of mitochondrial permeability transition such as cyclosporin A and bongkrekic acid demonstrate no protection.

  17. Cross-link regulation of precursor N-cadherin and FGFR1 by GDNF increases U251MG cell viability.

    PubMed

    Tang, Chuan-Xi; Gu, Yan-Xia; Liu, Xin-Feng; Tong, Shu-Yan; Ayanlaja, Abiola A; Gao, Yue; Ji, Guang-Quan; Xiong, Ye; Huang, Lin-Yan; Gao, Dian-Shuai

    2018-07-01

    Glial cell line-derived neurotrophic factor (GDNF) is considered to be involved in the development of glioma. However, uncovering the underlying mechanism of the proliferation of glioma cells is a challenging work in progress. We have identified the binding of the precursor of N-cadherin (proN-cadherin) and GDNF on the cell membrane in previous studies. In the present study, we observed increased U251 Malignant glioma (U251MG) cell viability by exogenous GDNF (50 ng/ml). We also confirmed that the high expression of the proN-cadherin was stimulated by exogenous GDNF. Concurrently, we affirmed that lower expression of proN-cadherin correlated with reduced glioma cell viability. Additionally, we observed glioma cell U251MG viability as the phosphorylation level of FGFR1 at Y653 and Y654 was increased after exogenous GDNF treatment, which led to increased interaction between proN-cadherin and FGFR1 (pY653+Y654). Our experiments presented a new mechanism adopted by GDNF supporting glioma development and indicated a possible therapeutic potential via the inhibition of proN-cadherin/FGFR1 interaction.

  18. P2Y2R activation by nucleotides released from the highly metastatic breast cancer cell contributes to pre-metastatic niche formation by mediating lysyl oxidase secretion, collagen crosslinking, and monocyte recruitment

    PubMed Central

    Joo, Young Nak; Jin, Hana; Eun, So Young; Park, Sang Won; Chang, Ki Churl; Kim, Hye Jung

    2014-01-01

    Tumor microenvironmental hypoxia induces hypoxia inducible factor-1α (HIF-1α) overexpression, leading to the release of lysyl oxidase (LOX), which crosslinks collagen at distant sites to facilitate environmental changes that allow cancer cells to easily metastasize. Our previous study showed that activation of the P2Y2 receptor (P2Y2R) by ATP released from MDA-MB-231 cells increased MDA-MB-231 cell invasion through endothelial cells. Therefore, in this study, we investigated the role of P2Y2R in breast cancer cell metastasis to distant sites. ATP or UTP released from hypoxia-treated MDA-MB-231 cells induced HIF-1α expression and LOX secretion by the activation of P2Y2R, and this phenomenon was significantly reduced in P2Y2R-depleted MDA-MB-231 cells. Furthermore, P2Y2R-mediated LOX release induced collagen crosslinking in an in vitro model. Finally, nude mice injected with MDA-MB-231 cells showed high levels of LOX secretion, crosslinked collagen and CD11b+ BMDC recruitment in the lung; however, mice that were injected with P2Y2R-depleted MDA-MB-231 cells did not exhibit these changes. These results demonstrate that P2Y2R plays an important role in activation of the HIF-1α–LOX axis, the induction of collagen crosslinking and the recruitment of CD11b+ BMDCs. Furthermore, P2Y2R activation by nucleotides recruits THP-1 monocytes, resulting in primary tumor progression and pre-metastatic niche formation. PMID:25238333

  19. The laminA/NF-Y protein complex reveals an unknown transcriptional mechanism on cell proliferation

    PubMed Central

    Mancone, Carmine; Regazzo, Giulia; Spagnuolo, Manuela; Alonzi, Tonino; Carlomosti, Fabrizio; Lucia, Maria Dell’Anna; Dell, Giulia 'Omo; Picardo, Mauro; Ciana, Paolo; Capogrossi, Maurizio C; Tripodi, Marco; Magenta, Alessandra; Giulia, Maria Rizzo; Gurtner, Aymone; Piaggio, Giulia

    2017-01-01

    Lamin A is a component of the nuclear matrix that also controls proliferation by largely unknown mechanisms. NF-Y is a ubiquitous protein involved in cell proliferation composed of three subunits (-YA -YB -YC) all required for the DNA binding and transactivation activity. To get clues on new NF-Y partner(s) we performed a mass spectrometry screening of proteins that co-precipitate with the regulatory subunit of the complex, NF-YA. By this screening we identified lamin A as a novel putative NF-Y interactor. Co-immunoprecipitation experiments and confocal analysis confirmed the interaction between the two endogenous proteins. Interestingly, this association occurs on euchromatin regions, too. ChIP experiments demonstrate lamin A enrichment in several promoter regions of cell cycle related genes in a NF-Y dependent manner. Gain and loss of function experiments reveal that lamin A counteracts NF-Y transcriptional activity. Taking advantage of a recently generated transgenic reporter mouse, called MITO-Luc, in which an NF-Y–dependent promoter controls luciferase expression, we demonstrate that lamin A counteracts NF-Y transcriptional activity not only in culture cells but also in living animals. Altogether, our data demonstrate the occurrence of lamin A/NF-Y interaction and suggest a possible role of this protein complex in regulation of NF-Y function in cell proliferation. PMID:27793050

  20. Method for measuring integrated sensitivity of solar cells and multielement photoconverters using an X-Y scanner

    NASA Astrophysics Data System (ADS)

    Naumov, V. V.; Grebenshchikov, O. A.; Zalesskii, V. B.

    2006-09-01

    We describe a method for automated measurement of the integrated sensitivity of solar cells (SCs) and multielement photoconverters (MPCs) using an experimental apparatus including a Pentium III personal computer (PC), an HP-34401A digital multimeter (DM), a stabilized radiation source (SRS), a controllable focusing system, an X-Y positioning device based on CD-RW optical disk storage devices. The method provides high accuracy in measuring the size of photosensitive areas of the solar cells and multielement photoconverters and inhomogeneities in their active regions, which makes it possible to correct the production process in the development stage and during fabrication of test prototypes for the solar cells and multielement photoconverters. The radiation power from the stabilized radiation source was ≤1 W; the ranges of the scanning steps along the X, Y coordinates were 10 100 µm, the range of the transverse cross sectional diameters of the focused radiation beam was 10 100 µm, the measurable photocurrents were 10-9 A to 2 A; scanning rate along the X, Y coordinates, ≤100 mm/sec; relative mean-square error (RMSE) for measurement of the integrated sensitivity of the solar cells, 0.2 ≤ γS int ≤ 0.9% in the ranges of measurable photocurrents 1 mA ≤ Iph ≤ 750 mA and areas 0.1 ≤ A ≤ 25 cm2 for number of measurements equal to ≤ 2· 105; instability of the radiation power (luminosity) ≤ 0.08% for 1 h or ≤ 0.4% for 8 h continuous operation; stabilized power range for the stabilized radiation source, 10-2 102 W. The software was written in Delphi 7.0.

  1. 17β-estradiol-induced regulation of the novel 5-HT1A-related transcription factors NUDR and Freud-1 in SH SY5Y cells.

    PubMed

    Adeosun, Samuel O; Albert, Paul R; Austin, Mark C; Iyo, Abiye H

    2012-05-01

    Nuclear deformed epidermal autoregulatory factor-1 (NUDR/Deaf-1) and five prime repressor element under dual repression (Freud-1) are novel transcriptional regulators of the 5-HT(1A) receptor, a receptor that has been implicated in the pathophysiology of various psychiatric illnesses. The antidepressant effect of 17β-Estradiol (17βE(2)) is purported to involve the downregulation of this receptor. We investigated the possible role of NUDR and Freud-1 in 17βE(2)-induced downregulation of the 5-HT(1A) receptor in the neuroblastoma cell line SH SY5Y. Cells were treated with 10 nM of 17βE(2) for 3 or 48 h, followed by a 24-h withdrawal period. Proteins were isolated and analyzed by western blotting. 17βE(2) treatment increased NUDR immunoreactivity while Freud-1 and the 5-HT(1A) receptor showed significant decreases. Upon withdrawal of 17βE(2), protein expression returned to control levels, except for NUDR, which remained significantly elevated in the 3-h treatment. Taken together, these data support a non-genomic downregulation of 5-HT(1A) receptor protein by 17βE(2), which does not involve NUDR and Freud-1. Rather, changes in both transcription factors seem to be compensatory/homeostatic responses to changes in 5-HT(1A) receptor induced by 17βE(2). These observations further highlight the importance of NUDR and Freud-1 in regulating 5-HT(1A) receptor expression.

  2. Differential antimutagenicity of WR-1065 added after irradiation in L5178Y cell lines

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; Horng, M. F.; Ricanati, M.; McCoy, E. C.

    1999-01-01

    The purpose of this study was to determine the antimutagenicity of WR-1065 added after irradiation of cells of cell lines differing in their ability to rejoin radiation-induced DNA double-strand breaks (DSBs). The postirradiation antimutagenicity of WR-1065 at the thymidine kinase locus was demonstrated for L5178Y (LY)-S1 cells that are deficient in repair of DNA DSBs. Less postirradiation antimutagenicity of WR-1065 was observed in LY-R16 and LY-SR1 cells, which are relatively efficient in DSB repair. Postirradiation treatment with WR-1065 had only a small stimulatory effect on DSB rejoining. A 3-h incubation of irradiated LY cells with WR-1065 caused slight changes in the distribution of cells in the phases of the cell cycle that differed between LY-S1 and LY-SR1 cells. Both LY-S1 and LY-SR1 cells were protected against the cytotoxic and mutagenic effects of radiation when WR-1065 was present 30 min before and during the irradiation. We conclude that the differential postirradiation effects of WR-1065 in the LY-S1 and LY-SR1 cells are not caused by differences in cellular uptake of the radioprotector or in its radical scavenging activity. Possible mechanisms for the postirradiation antimutagenicity of WR-1065 are discussed.

  3. Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells

    PubMed Central

    2009-01-01

    Background Nanocarrier-based antibody targeting is a promising modality in therapeutic and diagnostic oncology. Single-walled carbon nanotubes (SWNTs) exhibit two unique optical properties that can be exploited for these applications, strong Raman signal for cancer cell detection and near-infrared (NIR) absorbance for selective photothermal ablation of tumors. In the present study, we constructed a HER2 IgY-SWNT complex and demonstrated its dual functionality for both detection and selective destruction of cancer cells in an in vitro model consisting of HER2-expressing SK-BR-3 cells and HER2-negative MCF-7 cells. Methods The complex was constructed by covalently conjugating carboxylated SWNTs with anti-HER2 chicken IgY antibody, which is more specific and sensitive than mammalian IgGs. Raman signals were recorded on Raman spectrometers with a laser excitation at 785 nm. NIR irradiation was performed using a diode laser system, and cells with or without nanotube treatment were irradiated by 808 nm laser at 5 W/cm2 for 2 min. Cell viability was examined by the calcein AM/ethidium homodimer-1 (EthD-1) staining. Results Using a Raman optical microscope, we found the Raman signal collected at single-cell level from the complex-treated SK-BR-3 cells was significantly greater than that from various control cells. NIR irradiation selectively destroyed the complex-targeted breast cancer cells without harming receptor-free cells. The cell death was effectuated without the need of internalization of SWNTs by the cancer cells, a finding that has not been reported previously. Conclusion We have demonstrated that the HER2 IgY-SWNT complex specifically targeted HER2-expressing SK-BR-3 cells but not receptor-negative MCF-7 cells. The complex can be potentially used for both detection and selective photothermal ablation of receptor-positive breast cancer cells without the need of internalization by the cells. Thus, the unique intrinsic properties of SWNTs combined with high

  4. Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells.

    PubMed

    Xiao, Yan; Gao, Xiugong; Taratula, Oleh; Treado, Stephen; Urbas, Aaron; Holbrook, R David; Cavicchi, Richard E; Avedisian, C Thomas; Mitra, Somenath; Savla, Ronak; Wagner, Paul D; Srivastava, Sudhir; He, Huixin

    2009-10-02

    Nanocarrier-based antibody targeting is a promising modality in therapeutic and diagnostic oncology. Single-walled carbon nanotubes (SWNTs) exhibit two unique optical properties that can be exploited for these applications, strong Raman signal for cancer cell detection and near-infrared (NIR) absorbance for selective photothermal ablation of tumors. In the present study, we constructed a HER2 IgY-SWNT complex and demonstrated its dual functionality for both detection and selective destruction of cancer cells in an in vitro model consisting of HER2-expressing SK-BR-3 cells and HER2-negative MCF-7 cells. The complex was constructed by covalently conjugating carboxylated SWNTs with anti-HER2 chicken IgY antibody, which is more specific and sensitive than mammalian IgGs. Raman signals were recorded on Raman spectrometers with a laser excitation at 785 nm. NIR irradiation was performed using a diode laser system, and cells with or without nanotube treatment were irradiated by 808 nm laser at 5 W/cm2 for 2 min. Cell viability was examined by the calcein AM/ethidium homodimer-1 (EthD-1) staining. Using a Raman optical microscope, we found the Raman signal collected at single-cell level from the complex-treated SK-BR-3 cells was significantly greater than that from various control cells. NIR irradiation selectively destroyed the complex-targeted breast cancer cells without harming receptor-free cells. The cell death was effectuated without the need of internalization of SWNTs by the cancer cells, a finding that has not been reported previously. We have demonstrated that the HER2 IgY-SWNT complex specifically targeted HER2-expressing SK-BR-3 cells but not receptor-negative MCF-7 cells. The complex can be potentially used for both detection and selective photothermal ablation of receptor-positive breast cancer cells without the need of internalization by the cells. Thus, the unique intrinsic properties of SWNTs combined with high specificity and sensitivity of IgY antibodies

  5. In vitro and in vivo characterization of JNJ-31020028 (N-(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), a selective brain penetrant small molecule antagonist of the neuropeptide Y Y(2) receptor.

    PubMed

    Shoblock, James R; Welty, Natalie; Nepomuceno, Diane; Lord, Brian; Aluisio, Leah; Fraser, Ian; Motley, S Timothy; Sutton, Steve W; Morton, Kirsten; Galici, Ruggero; Atack, John R; Dvorak, Lisa; Swanson, Devin M; Carruthers, Nicholas I; Dvorak, Curt; Lovenberg, Timothy W; Bonaventure, Pascal

    2010-02-01

    The lack of potent, selective, brain penetrant Y(2) receptor antagonists has hampered in vivo functional studies of this receptor. Here, we report the in vitro and in vivo characterization of JNJ-31020028 (N-(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), a novel Y(2) receptor antagonist. The affinity of JNJ-31020028 was determined by inhibition of the PYY binding to human Y(2) receptors in KAN-Ts cells and rat Y(2) receptors in rat hippocampus. The functional activity was determined by inhibition of PYY-stimulated calcium responses in KAN-Ts cells expressing a chimeric G protein Gqi5 and in the rat vas deferens (a prototypical Y(2) bioassay). Ex vivo receptor occupancy was revealed by receptor autoradiography. JNJ-31020028 was tested in vivo with microdialysis, in anxiety models, and on corticosterone release. JNJ-31020028 bound with high affinity (pIC(50) = 8.07 +/- 0.05, human, and pIC(50) = 8.22 +/- 0.06, rat) and was >100-fold selective versus human Y(1), Y(4), and Y(5) receptors. JNJ-31020028 was demonstrated to be an antagonist (pK(B) = 8.04 +/- 0.13) in functional assays. JNJ-31020028 occupied Y(2) receptor binding sites (approximately 90% at 10 mg/kg) after subcutaneous administration in rats. JNJ-31020028 increased norepinephrine release in the hypothalamus, consistent with the colocalization of norepinephrine and neuropeptide Y. In a variety of anxiety models, JNJ-31020028 was found to be ineffective, although it did block stress-induced elevations in plasma corticosterone, without altering basal levels, and normalized food intake in stressed animals without affecting basal food intake. These results suggest that Y(2) receptors may not be critical for acute behaviors in rodents but may serve modulatory roles that can only be elucidated under specific situational conditions.

  6. Decreased expression of serum- and glucocorticoid-inducible kinase 1 (SGK1) promotes alpha-synuclein increase related with down-regulation of dopaminergic cell in the Substantia Nigra of chronic MPTP-induced Parkinsonism mice and in SH-SY5Y cells.

    PubMed

    Yeo, Sujung; Sung, Backil; Hong, Yeon-Mi; van den Noort, Maurits; Bosch, Peggy; Lee, Sook-Hyun; Song, Jongbeom; Park, Sang-Kyun; Lim, Sabina

    2018-06-30

    Parkinson's disease (PD) is a chronically progressive neurodegenerative disease, with its main pathological hallmarks being a dramatic loss of dopaminergic neurons predominantly in the Substantia Nigra (SN), and the formations of intracytoplasmic Lewy bodies and dystrophic neurites. Alpha-synuclein (α-syn), widely recognized as the most prominent element of the Lewy body, is one of the representative hallmarks in PD. However, the mechanisms behind the increased α-syn expression and aggregation have not yet been clarified. To examine what causes α-syn expression to increase, we analyzed the pattern of gene expression in the SN of mice intoxicated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), where down-regulation of dopaminergic cells occurred. We identified serum- and glucocorticoid-dependent kinase 1 (SGK1) as one of the genes that is evidently downregulated in chronic MPTP-intoxication. The results of Western blot analyses showed that, together with the down-regulation of dopaminergic cells, the decrease in SGK1 expression increased α-syn expression in the SN in a chronic MPTP-induced Parkinsonism mouse. For an examination of the expression correlation between SGK1 and α-syn, SH-5YSY cells were knocked down with SGK1 siRNA then, the downregulation of dopaminergic cells and the increase in the expression of α-syn were observed. These results suggest that decreased expression of SGK1 may play a critical role in increasing the expression of α-syn, which is related with dopaminergic cell death in the SN of chronic MPTP-induced Parkinsonism mice and in SH-SY5Y cells. Copyright © 2018. Published by Elsevier B.V.

  7. Indirect effects of radiation induce apoptosis and neuroinflammation in neuronal SH-SY5Y cells.

    PubMed

    Saeed, Yasmeen; Xie, Bingjie; Xu, Jin; Wang, Hailong; Hassan, Murtaza; Wang, Rui; Hong, Ma; Hong, Qing; Deng, Yulin

    2014-12-01

    Recent studies have evaluated the role of direct radiation exposure in neurodegenerative disorders; however, association among indirect effects of radiation and neurodegenerative diseases remains rarely discussed. The objective of this study was to estimate the relative risk of neurodegeneration due to direct and indirect effects of radiation. (60)Co gamma ray was used as source of direct radiation whereas irradiated cell conditioned medium (ICCM) was used to mimic the indirect effect of radiation. To determine the potency of ICCM to inhibit neuronal cells survival colony forming assay was performed. The role of ICCM to induce apoptosis in neuronal SH-SY5Y cells was estimated by TUNEL assay and Annexin V/PI assay. Level of oxidative stress and the concentration of inflammatory cytokines after exposing to direct radiation and ICCM were evaluated by ELISA method. Expression of key apoptotic protein following direct and indirect radiation exposure was investigated by western blot technique. Experimental data manifest that ICCM account loss of cell survival and increase apoptotic induction in neuronal SH-SY5Y cells that was dependent on time and dose. Moreover, ICCM stimulate significant release of inflammatory cytokines i.e., tumor necrosis factor TNF-alpha (P < 0.01), Interleukin-1 (IL-1, P < 0.001), and Interleukin-6 (IL-6, P < 0.001) in neuronal SH-SY5Y cells and elevate the level of oxidative stress (MDA, P < 0.01). Up-regulation of key apoptotic protein expression i.e., Bax, Bid, cytochrome C, caspase-8 and caspase-3 confirms the toxicity of ICCM to neuronal cells. This study provides the evidence that indirect effect of radiation can be as much damaging to neuronal cells as direct radiation exposure can be. Hence, more focused research on estimation risks of indirect effect of radiation to CNS at molecular level may help to reduce the uncertainty about cure and cause of several neurodegenerative disorders.

  8. Synchronous adrenocortical neoplasms, paragangliomas, and pheochromocytomas: syndromic considerations regarding an unusual constellation of endocrine tumors.

    PubMed

    LeBlanc, Melissa; Tabrizi, Mohsen; Kapsner, Patricia; Hanson, Joshua Anspach

    2014-12-01

    The most common clinical syndromes presenting with paragangliomas and/or pheochromocytomas as their endocrine components are multiple endocrine neoplasia type 2, neurofibromatosis, Von Hippel-Lindau syndrome, Carney-Stratakis syndrome, Carney triad, and the recently described hereditary paraganglioma syndrome. Only Carney triad is known to also present with adrenocortical adenomas, currently representing the only described syndrome in which all 3 of the aforementioned tumors are found together. In most cases, prototypical lesions of the triad such as gastrointestinal stromal tumor and pulmonary chondromas are also seen. We present a case of a young woman with synchronous paragangliomas, adrenal/extra-adrenal cortical neoplasms, and pheochromocytoma without genetic mutations for multiple endocrine neoplasia 2, Von Hippel-Lindau syndrome, neurofibromatosis, and succinate dehydrogenase. We speculate that this represents a previously undescribed presentation of Carney triad and, at the very least, indicates the need for monitoring for the development of other tumors of the triad. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Immune-endocrine interactions in the mammalian adrenal gland: facts and hypotheses.

    PubMed

    Nussdorfer, G G; Mazzocchi, G

    1998-01-01

    Several cytokines, which are the major mediators of the inflammatory responses, are well-known to stimulate the hypothalamopituitary corticotropin-releasing hormone (CRH)/adrenocorticotropic hormone (ACTH) system, thereby evoking secretory responses by the adrenal cortex. Many of these cytokines, including interleukin-1 (IL-1), IL-2, IL-6, tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (INF-gamma) are synthesized in the adrenal gland by both parenchymal cells and resident macrophages, and the release of some of them (e.g., IL-6 and TNF-alpha) is regulated by the main agonists of steroid hormone secretion (e.g., ACTH and angiotensin-II) and bacterial endotoxins. Adrenocortical and adrenomedullary cells are provided with specific receptors for IL-1, IL-2, and IL-6. IL-1 and TNF-alpha directly inhibit aldosterone secretion of zona glomerulosa cells, whereas IL-6 enhances it. IL-2, IL-3, IL-6, and INF-alpha are able to directly stimulate glucocorticoid production by zona fasciculata and zona reticularis cells, whereas IL-1 exerts an analogous effect through an indirect mechanism involving the stimulation of catecholamine release by chromaffin cells and/or the activation of the intramedullary CRH/ACTH system; again, TNF-alpha depresses glucocorticoid synthesis. IL-6 raises androgen secretion by inner adrenocortical layers. IL-1 enhances the proliferation of adrenocortical cells, and findings suggest that cytokines may control the apoptotic deletion of senescent zona reticularis cells. The relevance of the intraadrenal cytokine system in the fine-tuning of the secretion and growth of the adrenal cortex under normal conditions remains to be explored. However, indirect proof is available that local immune-endocrine interactions may play an important role in modulating adrenal responses to inflammatory and immune challenges and stresses.

  10. P2Y5 is a Gαi, Gα12/13 G protein-coupled receptor activated by lysophosphatidic acid that reduces intestinal cell adhesion

    PubMed Central

    Lee, Mike; Choi, Sungwon; Halldén, Gunnel; Yo, Sek Jin; Schichnes, Denise

    2009-01-01

    P2Y5 is a G protein-coupled receptor that binds and is activated by lysophosphatidic acid (LPA). We determined that P2Y5 transcript is expressed along the intestinal mucosa and investigated the intracellular pathways induced by P2Y5 activation, which could contribute to LPA effects on intestinal cell adhesion. P2Y5 heterologously expressed in CHO and small intestinal hBRIE 380i cells was activated by LPA resulting in an increase in intracellular calcium ([Ca2+]i) when the cells concurrently expressed GαΔ6qi5myr. P2Y5 activation also increased the phosphorylation of ERK1/2 that was sensitive to pertussis toxin. Together these indicate that P2Y5 activation by LPA induces an increase in [Ca2+]i and ERK1/2 phosphorylation through Gαi. We discovered that P2Y5 was activated by farnesyl pyrophosphate (FPP) without a detectable change in [Ca2+]i. The activation of P2Y5 by LPA or FPP induced the activity of a serum response element (SRE)-linked luciferase reporter that was inhibited by the RGS domain of p115RhoGEF, C3 exotoxin, and Y-27632, suggesting the involvement of Gα12/13, Rho GTPase, and ROCK, respectively. However, only LPA-mediated induction of SRE reporter activity was sensitive to inhibitors targeting p38 MAPK, PI3K, PLC, and PKC. In addition, only LPA transactivated the epidermal growth factor receptor, leading to an induction of ERK1/2 phosphorylation. These observations correlate with our subsequent finding that P2Y5 activation by LPA, and not FPP, reduced intestinal cell adhesion. This study elucidates a mechanism whereby LPA can act as a luminal and/or serosal cue to alter mucosal integrity. PMID:19679818

  11. Hair cortisol measurement in mitotane-treated adrenocortical cancer patients.

    PubMed

    Manenschijn, L; Quinkler, M; van Rossum, E F C

    2014-04-01

    The only approved drug for the treatment of adrenocortical cancer (ACC) is mitotane. Mitotane is adrenolytic and therefore, hydrocortisone replacement therapy is necessary. Since mitotane increases cortisol binding globulin (CBG) and induces CYP3A4 activity, high doses of hydrocortisone are thought to be required. Evaluation of hydrocortisone therapy in mitotane-treated patients has been difficult since there is no good marker to evaluate hydrocortisone therapy. Measurement of cortisol in scalp hair is a novel method that offers the opportunity to measure long-term cortisol levels. Our aim was to evaluate whether hair cortisol measurements could be useful in evaluating recent hydrocortisone treatment in mitotane-treated ACC patients. Hair cortisol levels were measured in 15 mitotane-treated ACC patients on hydrocortisone substitution and 96 healthy individuals. Cortisol levels were measured in 3 cm hair segments, corresponding to a period of 3 months. Hair cortisol levels were higher in ACC patients compared to healthy individuals (p<0.0001). Seven ACC patients (47%) had hair cortisol levels above the reference range. None of the patients had hair cortisol levels below normal. In contrast to hydrocortisone doses (β=0.03, p=0.93), hair cortisol levels were associated with BMI (β=0.53, p=0.042). There was no correlation between hair cortisol levels and hydrocortisone doses (β=0.41, p=0.13). Almost half of the ACC patients had high hair cortisol levels, suggesting long-term over-substitution of hydrocortisone in some of the patients, whereas none of the patients was under-substituted. Hair cortisol measurements might be useful in long-term monitoring hydrocortisone treatment in mitotane-treated ACC patients. © Georg Thieme Verlag KG Stuttgart · New York.

  12. A magnetic topological semimetal Sr 1-yMn 1-zSb2 (y, z < 0.10)

    DOE PAGES

    Liu, J. Y.; Hu, J.; Zhang, Qiang; ...

    2017-07-24

    Weyl (WSMs) evolve from Dirac semimetals in the presence of broken time-reversal symmetry (TRS) or space-inversion symmetry. The WSM phases in TaAs-class materials and photonic crystals are due to the loss of space-inversion symmetry. For TRS-breaking WSMs, despite numerous theoretical and experimental efforts, few examples have been reported. Here in this paper, we report a new type of magnetic semimetal Sr 1-yMn 1-zSb 2 (y, z < 0.1) with nearly massless relativistic fermion behaviour (m* = 0.04 - 0.05m 0, where m 0 is the free-electron mass). This material exhibits a ferromagnetic order for 304 K < T < 565more » K, but a canted antiferromagnetic order with a ferromagnetic component for T < 304 K. The combination of relativistic fermion behaviour and ferromagnetism in Sr 1-yMn 1-zSb2 offers a rare opportunity to investigate the interplay between relativistic fermions and spontaneous TRS breaking.« less

  13. A magnetic topological semimetal Sr 1-yMn 1-zSb2 (y, z < 0.10)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J. Y.; Hu, J.; Zhang, Qiang

    Weyl (WSMs) evolve from Dirac semimetals in the presence of broken time-reversal symmetry (TRS) or space-inversion symmetry. The WSM phases in TaAs-class materials and photonic crystals are due to the loss of space-inversion symmetry. For TRS-breaking WSMs, despite numerous theoretical and experimental efforts, few examples have been reported. Here in this paper, we report a new type of magnetic semimetal Sr 1-yMn 1-zSb 2 (y, z < 0.1) with nearly massless relativistic fermion behaviour (m* = 0.04 - 0.05m 0, where m 0 is the free-electron mass). This material exhibits a ferromagnetic order for 304 K < T < 565more » K, but a canted antiferromagnetic order with a ferromagnetic component for T < 304 K. The combination of relativistic fermion behaviour and ferromagnetism in Sr 1-yMn 1-zSb2 offers a rare opportunity to investigate the interplay between relativistic fermions and spontaneous TRS breaking.« less

  14. In Vitro Mouse and Human Serum Stability of a Heterobivalent Dual-Target Probe That Has Strong Affinity to Gastrin-Releasing Peptide and Neuropeptide Y1 Receptors on Tumor Cells.

    PubMed

    Ghosh, Arijit; Raju, Natarajan; Tweedle, Michael; Kumar, Krishan

    2017-02-01

    Receptor-targeting radiolabeled molecular probes with high affinity and specificity are useful in studying and monitoring biological processes and responses. Dual- or multiple-targeting probes, using radiolabeled metal chelates conjugated to peptides, have potential advantages over single-targeting probes as they can recognize multiple targets leading to better sensitivity for imaging and radiotherapy when target heterogeneity is present. Two natural hormone peptide receptors, gastrin-releasing peptide (GRP) and Y1, are specifically interesting as their expression is upregulated in most breast and prostate cancers. One of our goals has been to develop a dual-target probe that can bind both GRP and Y1 receptors. Consequently, a heterobivalent dual-target probe, t-BBN/BVD15-DO3A (where a GRP targeting ligand J-G-Abz4-QWAVGHLM-NH 2 and Y1 targeting ligand INP-K [ɛ-J-(α-DO3A-ɛ-DGa)-K] YRLRY-NH 2 were coupled), that recognizes both GRP and Y1 receptors was synthesized, purified, and characterized in the past. Competitive displacement cell binding assay studies with the probe demonstrated strong affinity (IC 50 values given in parentheses) for GRP receptors in T-47D cells (18 ± 0.7 nM) and for Y1 receptors in MCF7 cells (80 ± 11 nM). As a further evaluation of the heterobivalent dual-target probe t-BBN/BVD15-DO3A, the objective of this study was to determine its mouse and human serum stability at 37°C. The in vitro metabolic degradation of the dual-target probe in mouse and human serum was studied by using a 153 Gd-labeled t-BBN/BVD15-DO3A and a high-performance liquid chromatography/radioisotope detector analytical method. The half-life (t 1/2 ) of degradation of the dual-target probe in mouse serum was calculated as 7 hours and only ∼20% degradation was seen after 6 hours incubation in human serum. The slow in vitro metabolic degradation of the dual-target probe can be compared with the degradation t 1/2 of the corresponding monomeric probes, BVD15

  15. Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells.

    PubMed

    González-Polo, Rosa A; Niso-Santano, Mireia; Ortíz-Ortíz, Miguel A; Gómez-Martín, Ana; Morán, José M; García-Rubio, Lourdes; Francisco-Morcillo, Javier; Zaragoza, Concepción; Soler, Germán; Fuentes, José M

    2007-06-01

    Autophagy is a degradative mechanism involved in the recycling and turnover of cytoplasmic constituents from eukaryotic cells. This phenomenon of autophagy has been observed in neurons from patients with Parkinson's disease (PD), suggesting a functional role for autophagy in neuronal cell death. On the other hand, it has been demonstrated that exposure to pesticides can be a risk factor in the incidence of PD. In this sense, paraquat (PQ) (1,1'-dimethyl-4,4'-bipyridinium dichloride), a widely used herbicide that is structurally similar to the known dopaminergic neurotoxicant MPP(+) (1-methyl-4-phenyl-pyridine), has been suggested as a potential etiologic factor for the development of PD. The current study shows, for the first time, that low concentrations of PQ induce several characteristics of autophagy in human neuroblastoma SH-SY5Y cells. In this way, PQ induced the accumulation of autophagic vacuoles (AVs) in the cytoplasm and the recruitment of a LC3-GFP fusion protein to AVs. Furthermore, the cells treated with PQ showed an increase of the long-lived protein degradation which is blocked in the presence of the autophagy inhibitor 3-methyladenine and regulated by the mammalian target of rapamycin (mTOR) signaling. Finally, the cells succumbed to cell death with hallmarks of apoptosis such as phosphatidylserine exposure, caspase activation, and chromatin condensation. While caspase inhibition retarded cell death, autophagy inhibition accelerated the apoptotic cell death induced by PQ. Altogether, these findings show the relationship between autophagy and apoptotic cell death in human neuroblastoma cells treated with PQ.

  16. Analysis of the Contribution of Stem Cells to Breast Cancer Using Microchimerism-Based Y-Chromosome Stains and Histopathology

    DTIC Science & Technology

    2005-07-01

    stroma), if any, have originated from the body’s circulating stem cell pool, using the Y- chromosome in micro-chimeric mothers . Such a cell may present... Transplanted or chimeric Y chromosome-bearing stem cells behave as do the mothers own: proliferating, differentiating and incorporating into... Transplanted or chimeric Y chromosome-bearing stem cells behave as do the mothers own: aggregating, proliferating, and differentiating(Petersen

  17. Mass Spectral Detection of Diethoxyphospho-Tyrosine Adducts on Proteins from HEK293 Cells Using Monoclonal Antibody depY for Enrichment

    PubMed Central

    2018-01-01

    Chronic illness from exposure to organophosphorus toxicants is hypothesized to involve modification of unknown proteins. Tyrosine in proteins that have no active site serine readily reacts with organophosphorus toxicants. We developed a monoclonal antibody, depY, that specifically recognizes diethoxyphospho-tyrosine in proteins and peptides, independent of the surrounding amino acid sequence. Our goal in the current study was to identify diethoxyphosphorylated proteins in human HEK293 cell lysate treated with chlorpyrifos oxon. Cell lysates treated with chlorpyrifos oxon were recognized by depY antibody in ELISA and capillary electrophoresis based Western blot. Tryptic peptides were analyzed by liquid chromatography tandem mass spectrometry. Liquid chromatography tandem mass spectrometry identified 116 diethoxyphospho-tyrosine peptides from 73 proteins in immunopurified samples, but found only 15 diethoxyphospho-tyrosine peptides from 12 proteins when the same sample was not immunopurified on depY. The most abundant proteins in the cell lysate, histone H4, heat shock 70 kDa protein 1A/1B, heat shock protein HSP 90 β, and α-enolase, were represented by several diethoxyphospho-tyrosine peptides. It was concluded that use of immobilized depY improved the number of diethoxyphospho-tyrosine peptides identified in a complex mixture. The mass spectrometry results confirmed the specificity of depY for diethoxyphospho-tyrosine peptides independent of the context of the modified tyrosine, which means depY could be used to analyze modified proteins in any species. Use of the depY antibody could lead to an understanding of chronic illness from organophosphorus pesticide exposure. PMID:29775289

  18. [Immunogenicity of L5178Y cells modified by different reagents].

    PubMed

    Gómez-Estrada, H; López-de la Rosa, L M; Becerril-Meza, G; Arellano-Blanco, J; Fernández-Quintero, P

    1977-01-01

    Lymphoma L5178Y cells were treated with neuraminidase of Vibrio cholerae, potassium iodine, dithiotreitol (DTT), mercaptoethanol, glutaraldehyde, iodoacetamide, merthiolate, sodium periodate, urea, papaine, trypsine and EDTA, to increase immunoreaction in tumor cells. Mice were immunized with modified tumor cells every week for one month. Thereafter non modified tumor cells were transplanted to previously immunized mice. Only the immunization with neuraminidase-treated cells rejected the tumor. Although the immunization with cells treated with potassium iodine, DTT and mercaptoethanol did not reject tumor, prolonged significantly span of life. The other reactives had neither effect on tumor rejection nor on span of life.

  19. Activation of AKT1/GSK-3β/β-Catenin-TRIM11/Survivin Pathway by Novel GSK-3β Inhibitor Promotes Neuron Cell Survival: Study in Differentiated SH-SY5Y Cells in OGD Model.

    PubMed

    Darshit, B S; Ramanathan, M

    2016-12-01

    The objective of this study is to elucidate the effect of a new glycogen synthase kinase-3β (GSK-3β) inhibitor in RA differentiated SH-SY5Y cells in oxygen and glucose deprivation (OGD) model. The pathway involved in GSK-3β signaling during OGD was measured to elucidate the mechanism of action. The differentiation of SH-SY5Y into mature neuronal cells was done with retinoic acid. During differentiation, upregulation of the growth-associated protein 43 (GAP43), neurogenin1 (NGN1), neuronal differentiation 2 (NeuroD2), and tripartite motif containing 11 (TRIM11) genes were observed. Twelve hours of optimal OGD exposure resulted in the alteration of GSK-3β functions of the neuron cells. Of the five molecules selected for this study, molecule G3 showed better effect in the initial phase of the study. Hence, G3 (0.5, 1, and 5 μM) was selected for further study in the OGD model. The standard GSK-3β inhibitor, AR-A014418 (1 μM), was used for comparison. Molecules were pretreated (30 min) and cotreated during OGD exposure. GSK-3β inhibitors showed antiapoptotic activity as evidenced by reduced caspase-3 enzyme activity and increased survivin transcription, as well as improved membrane integrity, evidenced by LDH assay. The inhibitor molecules also up-regulated survival AKT1/GSK-3β/β-catenin pathway and stabilized β-catenin. Inhibition of GSK-3β maintained neuronal survival by upregulating GAP43, Ngn1, and NeuroD2 gene transcription. Further GSK-3β inhibition reduced the TRIM11 gene transcription. In conclusion, both inhibitors have been found to control apoptosis and maintain neuronal functioning and this effect might have been mediated through AKT1/GSK-3β/β-catenin-TRIM11/survivin pathway.

  20. OGG1 Involvement in High Glucose-Mediated Enhancement of Bupivacaine-Induced Oxidative DNA Damage in SH-SY5Y Cells

    PubMed Central

    Liu, Zhong-Jie; Zhao, Wei; Zhang, Qing-Guo; Li, Le; Lai, Lu-Ying; Jiang, Shan; Xu, Shi-Yuan

    2015-01-01

    Hyperglycemia can inhibit expression of the 8-oxoG-DNA glycosylase (OGG1) which is one of the key repair enzymes for DNA oxidative damage. The effect of hyperglycemia on OGG1 expression in response to local anesthetics-induced DNA damage is unknown. This study was designed to determine whether high glucose inhibits OGG1 expression and aggravates bupivacaine-induced DNA damage via reactive oxygen species (ROS). SH-SY5Y cells were cultured with or without 50 mM glucose for 8 days before they were treated with 1.5 mM bupivacaine for 24 h. OGG1 expression was measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. ROS was estimated using the redox-sensitive fluorescent dye DCFH-DA. DNA damage was investigated with immunostaining for 8-oxodG and comet assays. OGG1 expression was inhibited in cells exposed to high glucose with concomitant increase in ROS production and more severe DNA damage as compared to control culture conditions, and these changes were further exacerbated by bupivacaine. Treatment with the antioxidant N-acetyl-L-cysteine (NAC) prevented high glucose and bupivacaine mediated increase in ROS production and restored functional expression of OGG1, which lead to attenuated high glucose-mediated exacerbation of bupivacaine neurotoxicity. Our findings indicate that subjects with diabetes may experience more detrimental effects following bupivacaine use. PMID:26161242

  1. [Roles of Y box-binding protein 1 in SK-BR-3 breast cancer proliferation].

    PubMed

    Shi, Jianhong; Lü, Xinrui; Wang, Bing; Daudan, Lin; Yanan, Wang; Yuhui, Bu; Zhenfeng, Ma

    2014-09-30

    To explore the roles of Y box-binding protein 1 (YB-1) in breast cancer cell proliferation. Twenty cases of surgical removal of breast cancer tissue (diagnosed with invasive ductal carcinoma, stage II, by postoperative paraffin pathology) and normal breast tissues adjacent to carcinoma were collected during June 2013 to August 2013.Quantitative real-time PCR (qRT-PCR) was performed to detect the YB1 mRNA levels. Cultured mammary epithelial cells (HBL-100) and breast cancer cells (MCF7, MDA-MB-231 & SK-BR-3 cells) were harvested and qRT-PCR was performed to detect the YB1 mRNA levels.SK-BR-3 cells were stimulated with various concentrations of PDGF-BB and YB1 expression levels were detected by qRT-PCR. Down-regulation or over-expression of YB1 by si-YB1 or Ad-GFP-YB1 was detected in SK-BR-3 cells. And MTS cell proliferation assay kit was used to detect cell proliferation. YB1 mRNA levels were significantly higher in breast cancer tissues and MDA-MB-231 and SK-BR-3 breast cancer cell lines than that in adjacent normal breast tissues and HBL-100 mammary epithelial cells respectively (P < 0.05).YB1 expression levels increased in PDGF-BB stimulated SK-BR-3 cells in a dose-dependent manner. A down-regulation of endogenous YB1 decreases and an over-expression of exogenous YB1 promotes the proliferation activity in SK-BR-3 cells.

  2. Mutations in Nicotinamide Nucleotide Transhydrogenase (NNT) cause familial glucocorticoid deficiency

    PubMed Central

    Meimaridou, Eirini; Kowalczyk, Julia; Guasti, Leonardo; Hughes, Claire R.; Wagner, Florian; Frommolt, Peter; Nürnberg, Peter; Mann, Nicholas P.; Banerjee, Ritwik; Saka, H. Nurcin; Chapple, J. Paul; King, Peter J.; Clark, Adrian J.L.; Metherell, Louise A.

    2012-01-01

    Using targeted exome sequencing we identified mutations in NNT, an antioxidant defence gene, in patients with familial glucocorticoid deficiency. In mice with Nnt loss, higher levels of adrenocortical cell apoptosis and impaired glucocorticoid production were observed. NNT knockdown in a human adrenocortical cell line resulted in impaired redox potential and increased ROS levels. Our results suggest that NNT may have a role in ROS detoxification in human adrenal glands. PMID:22634753

  3. (90)Y-labelled anti-CD22 epratuzumab tetraxetan in adults with refractory or relapsed CD22-positive B-cell acute lymphoblastic leukaemia: a phase 1 dose-escalation study.

    PubMed

    Chevallier, Patrice; Eugene, Thomas; Robillard, Nelly; Isnard, Françoise; Nicolini, Franck; Escoffre-Barbe, Martine; Huguet, Françoise; Hunault, Mathilde; Marcais, Antoine; Gaschet, Joelle; Cherel, Michel; Guillaume, Thierry; Delaunay, Jacques; Peterlin, Pierre; Eveillard, Marion; Thomas, Xavier; Ifrah, Norbert; Lapusan, Simona; Bodet-Milin, Caroline; Barbet, Jacques; Faivre-Chauvet, Alain; Ferrer, Ludovic; Bene, Marie C; Le Houerou, Claire; Goldenberg, David M; Wegener, William A; Kraeber-Bodéré, Françoise

    2015-03-01

    Prognosis of patients with relapsed or refractory acute lymphoblastic leukaemia is poor and new treatments are needed. We aimed to assess the feasibility, tolerability, dosimetry, and efficacy of yttrium-90-labelled anti-CD22 epratuzumab tetraxetan ((90)Y-DOTA-epratuzumab) radioimmunotherapy in refractory or relapsed CD22-positive B-cell acute lymphoblastic leukaemia in a standard 3 + 3 phase 1 study. Adults (≥18 years) with relapsed or refractory B-cell acute lymphoblastic leukaemia (with CD22 expression on at least 70% of blast cells) were enrolled at six centres in France. Patients received one cycle of (90)Y-DOTA-epratuzumab on days 1 and 8 (give or take 2 days) successively at one of four dose levels: 2·5 mCi/m(2) (92·5 MBq/m(2); level 1), 5·0 mCi/m(2) (185 MBq/m(2); level 2), 7·5 mCi/m(2) (277·5 MBq/m(2); level 3), and 10·0 mCi/m(2) (370 MBq/m(2); level 4). The primary objective was to identify the maximum tolerated dose of (90)Y-DOTA-epratuzumab. We assessed safety during infusions and regularly after radioimmunotherapy over a 6-month period. Analyses included only patients who received radioimmunotherapy. The trial is closed to inclusion and is registered at ClinicalTrials.gov, NCT01354457. Between Aug 25, 2011, and June 11, 2014, 17 patients (median age 62 years; range 27-77) were treated (five at level 1, three at level 2, three at level 3, and six at level 4). Radioimmunotherapy infusion was overall well tolerated. One dose-limiting toxic effect (aplasia lasting 8 weeks) occurred at level 4, but the maximum tolerated dose was not reached. The most common grade 3-4 adverse events were pancytopenia (one patient at level 2, one at level 3, and six at level 4) and infections (three at level 1, one at level 2, and five at level 4). (90)Y-DOTA-epratuzumab radioimmunotherapy is well tolerated. We recommend the dose of 2 × 10·0 mCi/m(2) 1 week apart per cycle for phase 2 studies. Immunomedics and Direction de la Recherche Clinique of Nantes

  4. Vincristine, cisplatin, teniposide, and cyclophosphamide combination in the treatment of recurrent or metastatic adrenocortical cancer.

    PubMed

    Khan, Tanweera S; Sundin, Anders; Juhlin, Claes; Wilander, Erik; Oberg, Kjell; Eriksson, Barbro

    2004-01-01

    The efficacy and tolerability of a combination of vincristine, cisplatin, teniposide, and cyclophosphamide (OPEC) in 11 patients (median age, 45 yr) with recurrent and/or metastatic adrenocortical cancer (ACC) (seven functional and four nonfunctional) were evaluated. All patients received this regimen after the failure of streptozocin and o,p'-DDD (SO) combination therapy. The regimen comprised cyclophosphamide, 600 mg/m2, and vincristine, 1.5 mg/m2, maximum dose 2.0 mg (d 1); cisplatin, 100 mg/m2 (d 2) and teniposide, 150 mg/m2 (d 4). Cycles were repeated every 4 wk. One to eight cycles (median, six cycles) of OPEC were administered to each patient. The median duration of treatment was 6 mo. The overall 2-yr survival rate was 82% and the median survival since diagnosis was 44 mo while it was 21 mo since start of OPEC therapy. Responses were obtained in nine patients: partial response in two patients, and stable disease in seven patients. The median duration of response was 6.75 mo. A total of 60 cycles of chemotherapy were given to all patients; grade 1-2 toxicity occurred in 57 cycles, while grade 3 toxicity was observed only in two cycles, according to NCI's Common Toxicity Criteria. We conclude that the OPEC regimen may be considered in recurrent or metastatic ACC as a second-line medical treatment. However, the combination is accompanied by considerable side effects and dose modifications are necessary in order to be able to recommend the treatment. This regimen needs further evaluation compared with SO therapy preferably in a randomized multicenter trial.

  5. Ge{sub 1-y}Sn{sub y} (y = 0.01-0.10) alloys on Ge-buffered Si: Synthesis, microstructure, and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senaratne, C. L.; Kouvetakis, J.; Gallagher, J. D.

    Novel hydride chemistries are employed to deposit light-emitting Ge{sub 1-y}Sn{sub y} alloys with y ≤ 0.1 by Ultra-High Vacuum Chemical Vapor Deposition (UHV-CVD) on Ge-buffered Si wafers. The properties of the resultant materials are systematically compared with similar alloys grown directly on Si wafers. The fundamental difference between the two systems is a fivefold (and higher) decrease in lattice mismatch between film and virtual substrate, allowing direct integration of bulk-like crystals with planar surfaces and relatively low dislocation densities. For y ≤ 0.06, the CVD precursors used were digermane Ge₂H₆ and deuterated stannane SnD₄. For y ≥ 0.06, the Gemore » precursor was changed to trigermane Ge₃H₈, whose higher reactivity enabled the fabrication of supersaturated samples with the target film parameters. In all cases, the Ge wafers were produced using tetragermane Ge₄H₁₀ as the Ge source. The photoluminescence intensity from Ge{sub 1y}Sn{sub y}/Ge films is expected to increase relative to Ge{sub 1y}Sn{sub y}/Si due to the less defected interface with the virtual substrate. However, while Ge{sub 1y}Sn{sub y}/Si films are largely relaxed, a significant amount of compressive strain may be present in the Ge{sub 1y}Sn{sub y}/Ge case. This compressive strain can reduce the emission intensity by increasing the separation between the direct and indirect edges. In this context, it is shown here that the proposed CVD approach to Ge{sub 1y}Sn{sub y}/Ge makes it possible to approach film thicknesses of about 1 μm, for which the strain is mostly relaxed and the photoluminescence intensity increases by one order of magnitude relative to Ge{sub 1y}Sn{sub y}/Si films. The observed strain relaxation is shown to be consistent with predictions from strain-relaxation models first developed for the Si{sub 1–x}Ge{sub x}/Si system. The defect structure and atomic distributions in the films are studied in detail using advanced

  6. Phenotypic Characterization of Retinoic Acid Differentiated SH-SY5Y Cells by Transcriptional Profiling

    PubMed Central

    Korecka, Joanna A.; van Kesteren, Ronald E.; Blaas, Eva; Spitzer, Sonia O.; Kamstra, Jorke H.; Smit, August B.; Swaab, Dick F.; Verhaagen, Joost; Bossers, Koen

    2013-01-01

    Multiple genetic and environmental factors play a role in the development and progression of Parkinson’s disease (PD). The main neuropathological hallmark of PD is the degeneration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta. To study genetic and molecular contributors to the disease process, there is a great need for readily accessible cells with prominent DAergic features that can be used for reproducible in vitro cellular screening. Here, we investigated the molecular phenotype of retinoic acid (RA) differentiated SH-SY5Y cells using genome wide transcriptional profiling combined with gene ontology, transcription factor and molecular pathway analysis. We demonstrated that RA induces a general neuronal differentiation program in SH-SY5Y cells and that these cells develop a predominantly mature DAergic-like neurotransmitter phenotype. This phenotype is characterized by increased dopamine levels together with a substantial suppression of other neurotransmitter phenotypes, such as those for noradrenaline, acetylcholine, glutamate, serotonin and histamine. In addition, we show that RA differentiated SH-SY5Y cells express the dopamine and noradrenalin neurotransmitter transporters that are responsible for uptake of MPP(+), a well known DAergic cell toxicant. MPP(+) treatment alters mitochondrial activity according to its proposed cytotoxic effect in DAergic neurons. Taken together, RA differentiated SH-SY5Y cells have a DAergic-like phenotype, and provide a good cellular screening tool to find novel genes or compounds that affect cytotoxic processes that are associated with PD. PMID:23724009

  7. The SH-SY5Y cell line in Parkinson's disease research: a systematic review.

    PubMed

    Xicoy, Helena; Wieringa, Bé; Martens, Gerard J M

    2017-01-24

    Parkinson's disease (PD) is a devastating and highly prevalent neurodegenerative disease for which only symptomatic treatment is available. In order to develop a truly effective disease-modifying therapy, improvement of our current understanding of the molecular and cellular mechanisms underlying PD pathogenesis and progression is crucial. For this purpose, standardization of research protocols and disease models is necessary. As human dopaminergic neurons, the cells mainly affected in PD, are difficult to obtain and maintain as primary cells, current PD research is mostly performed with permanently established neuronal cell models, in particular the neuroblastoma SH-SY5Y lineage. This cell line is frequently chosen because of its human origin, catecholaminergic (though not strictly dopaminergic) neuronal properties, and ease of maintenance. However, there is no consensus on many fundamental aspects that are associated with its use, such as the effects of culture media composition and of variations in differentiation protocols. Here we present the outcome of a systematic review of scientific articles that have used SH-SY5Y cells to explore PD. We describe the cell source, culture conditions, differentiation protocols, methods/approaches used to mimic PD and the preclinical validation of the SH-SY5Y findings by employing alternative cellular and animal models. Thus, this overview may help to standardize the use of the SH-SY5Y cell line in PD research and serve as a future user's guide.

  8. Adrenal tuberculosis in Cushing's disease with bilateral macronodular adrenocortical hyperplasia.

    PubMed

    Kwon, Hyuk-Sang; Kim, Sang-Il; Yoo, Soon-Jib; Yoon, Kun-Ho; Lee, Kwang-Woo; Kang, Moon-Won; Son, Ho-Young; Kang, Sung-Koo; Cha, Bong-Yun

    2006-04-01

    Cushing's disease is a disorder of hypercortisolism caused by a pituitary micro- or macro-adenoma. Most patients with Cushing's disease have a bilateral adrenal enlargement, which depends on the duration of the disease, as a result of the long standing ACTH stimulation of both adrenal glands. However, in macronodular adrenocortical hyperplasia (MNH) that is caused by Cushing's disease, if the MNH gains autonomy, a bilateral adrenalectomy, as well as the removal of pituitary adenoma, is often essential. We encountered a patient diagnosed with Cushing's disease with bilateral adrenal tuberculosis simulating MNH. She had taken anti-tuberculosis medications one year prior to admission due to spinal tuberculosis. Sellar MRI revealed a pituitary macroadenoma, but adrenal CT showed enlargement in both adrenal glands that appeared to be MNH. A hormonal study and bilateral inferior petrosal sinus sampling revealed Cushing's disease. Therefore, she underwent trans-sphenoidal surgery of the pituitary mass. The pituitary surgery was successful and the serum cortisol returned to normal range. However, the adrenal mass rapidly enlarged after removing the pituitary tumor without showing evidence of a recurrence or adrenal autonomy of hypercortisolism. Accordingly, a laparoscopic left adrenalectomy was performed to examine the nature of the mass. The resected left adrenal gland was pathologically determined to have a lesion of tuberculosis with some part of the intact cortex. So we assumed that the cause of rapid adrenal enlargement might be due to adrenal tuberculosis. In summary, to the best of our knowledge, this is the first case of Cushing's disease coexisting with both adrenal tuberculosis simulating a bilateral MNH.

  9. Y-chromosome R-M343 African Lineages and Sickle Cell Disease reveal structured assimilation in Lebanon

    PubMed Central

    Haber, Marc; Platt, Daniel E; Khoury, Simon; Badro, Danielle A; Abboud, Miguel; Smith, Chris Tyler; Zalloua, Pierre A

    2012-01-01

    We have sought to identify signals of assimilation of African male lines in Lebanon by exploring the association of sickle cell disease in Lebanon with Y-chromosome haplogroups that are informative of the disease origin and its exclusivity to the Muslim community. A total of 732 samples were analyzed including 33 sickle cell disease patients from Lebanon genotyped for 28 binary markers and 19 short tandem repeats on the non-recombinant segment of the Y chromosome. Genetic organization was identified using populations known to have influenced the genetic structure of the Lebanese population, in addition to African populations with high incidence of sickle cell disease. Y-chromosome haplogroup R-M343 sub-lineages distinguish between sub-Saharan African and Lebanese Y chromosomes. We detected a limited penetration of sickle cell disease into Lebanese R-M343 carriers, restricted to Lebanese Muslims. We suggest that this penetration brought the sickle cell gene along with the African R-M343, probably with the Saharan caravan slave trade. PMID:20981037

  10. Y-27632, a Rho-associated protein kinase inhibitor, attenuates neuronal cell death after transient retinal ischemia.

    PubMed

    Hirata, Akira; Inatani, Masaru; Inomata, Yasuya; Yonemura, Naoko; Kawaji, Takahiro; Honjo, Megumi; Tanihara, Hidenobu

    2008-01-01

    Transient retinal ischemia induces the death of retinal neuronal cells. Postischemic damage is associated with the infiltration of leukocytes into the neural tissue through vascular endothelia. The current study aimed to investigate whether this damage was attenuated by the inhibition of Rho/ROCK (Rho kinases) signaling, recently shown to play a critical role in the transendothelial migration of leukocytes. Y-27632, a selective inhibitor of ROCK, was injected intravitreally into rat eyes with transient retinal ischemia. Cell loss of the ganglion cell layer (GCL) and thinning of the inner plexiform layer (IPL) with and without the administration of Y-27632 were evaluated by histological analysis, TUNEL assay and retrograde labeling of retinal ganglion cells (RGCs). To examine the attenuation of leukocyte infiltration in postischemic retinas with the administration of Y-27632, silver nitrate staining and immunohistochemistry using an anti-LCA antibody were performed. Cell loss of the GCL and thinning of the IPL were significantly attenuated when 100 nmol Y-27632 was administered within three hours of the induction of ischemia. TUNEL assay and retrograde labeling of RGCs showed a decreased number of apoptotic cells and an increased number of RGCs in Y-27632-injected retinas. Moreover, silver nitrate staining and immunohistochemical analysis using an anti-LCA antibody showed that Y-27632 injection dramatically inhibited leukocyte infiltration and endothelial disarrangement. Our data suggest that inhibition of Rho/ROCK signaling offers neuroprotective therapy against postischemic neural damage, by regulating leukocyte infiltration in the neural tissue.

  11. The effect of strychnine, bicuculline, and picrotoxin on X and Y cells in the cat retina

    PubMed Central

    1979-01-01

    The effect of intravenous strychnine and the GABA antagonists picrotoxin and bicuculline upon the discharge pattern of center- surround-organized cat retinal ganglion cells of X and Y type were studied. Stimuli (mostly scotopic, and some photopic) were selected such that responses from both on and off-center cells were either due to the center, due to the surround, or clearly mixed. Pre-drug control responses were obtained, and their behavior following administration of the antagonists was observed for periods up to several hours. X-cell responses were affected in a consistent manner by strychnine while being unaffected by GABA antagonists. All observed changes following strychnine were consistent with a shift in center-surround balance of X cells in favor of the center. For Y-cell responses to flashing annuli following strychnine, there was either no shift or a relatively small shift in center-surround balance. Compared to X-cell responses to flashing lights, those of Y cells were very little affected by strychnine and in most cases were unaffected. It thus appears that glycine plays a similar role in receptive field organization of X cells as does GABA in Y cells (Kirby and Enroth-Cugell, 1976. J. Gen. Physiol. 68:465-484). PMID:479822

  12. Effects of host cell sterol composition upon internalization of Yersinia pseudotuberculosis and clustered β1 integrin.

    PubMed

    Kim, JiHyun; Fukuto, Hana S; Brown, Deborah A; Bliska, James B; London, Erwin

    2018-01-26

    Yersinia pseudotuberculosis is a foodborne pathogenic bacterium that causes acute gastrointestinal illness, but its mechanisms of infection are incompletely described. We examined how host cell sterol composition affected Y. pseudotuberculosis uptake. To do this, we depleted or substituted cholesterol in human MDA-MB-231 epithelial cells with various alternative sterols. Decreasing host cell cholesterol significantly reduced pathogen internalization. When host cell cholesterol was substituted with various sterols, only desmosterol and 7-dehydrocholesterol supported internalization. This specificity was not due to sterol dependence of bacterial attachment to host cells, which was similar with all sterols studied. Because a key step in Y. pseudotuberculosis internalization is interaction of the bacterial adhesins invasin and YadA with host cell β1 integrin, we compared the sterol dependence of wildtype Y. pseudotuberculosis internalization with that of Δ inv , Δ yadA , and Δ inv Δ yadA mutant strains. YadA deletion decreased bacterial adherence to host cells, whereas invasin deletion had no effect. Nevertheless, host cell sterol substitution had a similar effect on internalization of these bacterial deletion strains as on the wildtype bacteria. The Δ inv Δ yadA double mutant adhered least to cells and so was not significantly internalized. The sterol structure dependence of Y. pseudotuberculosis internalization differed from that of endocytosis, as monitored using antibody-clustered β1 integrin and previous studies on other proteins, which had a more permissive sterol dependence. This study suggests that agents could be designed to interfere with internalization of Yersinia without disturbing endocytosis. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Overexpression of ROCK1 and ROCK2 inhibits human laryngeal squamous cell carcinoma

    PubMed Central

    Zhang, Junbo; He, Xue; Ma, Yueying; Liu, Yanli; Shi, Huaiyin; Guo, Weiwei; Liu, Liangfa

    2015-01-01

    Rho-associated coiled-coil containing protein kinase (ROCK) over-expression has been implicated in the progression of many tumor types. The aim of this study was to explore the roles of ROCK1 and ROCK2 in human laryngeal squamous cell carcinoma (LSCC). ROCK1 and ROCK2 expression levels were examined in 50 cases of human LSCC samples by immunohistochemistry. Effects of ROCK1 and ROCK2 on LSCC cell proliferation and motility were investigated in the presence of the ROCK inhibitor Y-27632. The results showed that ROCK1 expression was positively correlated with tumor size and lymph node metastasis (P < 0.05); ROCK2 positively correlated with tumor size (P < 0.05). Inhibition of ROCK1 and ROCK2 by Y-27632 significantly inhibits proliferation, migration, and invasion of LSCC cells. Our data indicate that expression of ROCK1 and ROCK2 are closely associated with tumor growth and lymph node metastasis of LSCC. Thus, these two ROCK isoforms may be useful as molecular makers for LSCC diagnosis and may be useful therapeutic targets as well. PMID:25755711

  14. Co-Inactivation of GlnR and CodY Regulators Impacts Pneumococcal Cell Wall Physiology.

    PubMed

    Johnston, Calum; Bootsma, Hester J; Aldridge, Christine; Manuse, Sylvie; Gisch, Nicolas; Schwudke, Dominik; Hermans, Peter W M; Grangeasse, Christophe; Polard, Patrice; Vollmer, Waldemar; Claverys, Jean-Pierre

    2015-01-01

    CodY, a nutritional regulator highly conserved in low G+C Gram-positive bacteria, is essential in Streptococcus pneumoniae (the pneumococcus). A published codY mutant possessed suppressing mutations inactivating the fatC and amiC genes, respectively belonging to iron (Fat/Fec) and oligopeptide (Ami) ABC permease operons, which are directly repressed by CodY. Here we analyzed two additional published codY mutants to further explore the essentiality of CodY. We show that one, in which the regulator of glutamine/glutamate metabolism glnR had been inactivated by design, had only a suppressor in fecE (a gene in the fat/fec operon), while the other possessed both fecE and amiC mutations. Independent isolation of three different fat/fec suppressors thus establishes that reduction of iron import is crucial for survival without CodY. We refer to these as primary suppressors, while inactivation of ami, which is not essential for survival of codY mutants and acquired after initial fat/fec inactivation, can be regarded as a secondary suppressor. The availability of codY- ami+ cells allowed us to establish that CodY activates competence for genetic transformation indirectly, presumably by repressing ami which is known to antagonize competence. The glnR codY fecE mutant was then found to be only partially viable on solid medium and hypersensitive to peptidoglycan (PG) targeting agents such as the antibiotic cefotaxime and the muramidase lysozyme. While analysis of PG and teichoic acid composition uncovered no alteration in the glnR codY fecE mutant compared to wildtype, electron microscopy revealed altered ultrastructure of the cell wall in the mutant, establishing that co-inactivation of GlnR and CodY regulators impacts pneumococcal cell wall physiology. In light of rising levels of resistance to PG-targeting antibiotics of natural pneumococcal isolates, GlnR and CodY constitute potential alternative therapeutic targets to combat this debilitating pathogen, as co

  15. Adjuvant helical IMRT by tomotherapy for bulky adrenocortical carcinoma operated with positive margins: a case report.

    PubMed

    Delmastro, Elena; Garibaldi, Elisabetta; Gabriele, Domenico; Bresciani, Sara; Cattari, Gabriella; Dia, Amalia Di; Manini, Claudia; Collura, Devis; Redda, Maria Grazia Ruo; Gabriele, Pietro

    2016-11-11

    Adrenocortical carcinoma (ACC) is a rare tumor in the adult. The main therapy is surgery but in some cases radiotherapy may be needed to control the disease locally. A patient with a surgically removed bulky ACC and pathologic finding of a positive margin was treated at our center by adjuvant mitotane and radiotherapy using an intensity-modulated radiation therapy (IMRT)/image-guided radiotherapy (IGRT) technique by tomotherapy. Dose prescriptions were 63 Gy on the surgical bed and 50.4 Gy on the lymphatic drainage in 28 sessions. Patient compliance was good with no evidence of acute or late toxicities. Thirty months after radiotherapy, the patient is alive without evidence of disease checked by 18F-fluorodeoxyglucose positron emission tomography/computed tomography and without any complication. In patients with adverse prognostic features, the delivery of adequate adjuvant radiotherapy doses with IMRT and daily IGRT is feasible and safe and could result in an improved outcome for patients with ACC.

  16. Electrical properties of the LaLi y Co1 - y O3 - δ (0 ≤ y ≤ 0.10) oxides

    NASA Astrophysics Data System (ADS)

    Vecherskii, S. I.; Konopel'ko, M. A.; Batalov, N. N.; Antonov, B. D.; Reznitskikh, O. G.; Yaroslavtseva, T. V.

    2017-08-01

    The effect of the Li ion concentration on the phase composition, the electrical conductivity, and the thermoelectric power of the LaLi y Co1- y O3-δ (0 ≤ y ≤ 0.1) oxides synthesized by cocrystallization has been studied. It is found that the region of the perovskite-like solid solution LaLi y Co1- y O3-δ is no higher than y = 0.037. In the temperature range 300-1020 K, lithium alloying leads to an increase in the electrical conductivity and a decrease in the positive thermoelectric power of the single-phase samples compared to LaCoO3-δ. The results are discussed using the density of states model proposed by Senarus Rodriguez and Goodenough for LaCoO3-δ and La1- x Sr x CoO3-δ and using the Mott theory of noncrystalline substances.

  17. Effect of weather conditions and presence of visitors on adrenocortical activity in captive African penguins (Spheniscus demersus).

    PubMed

    Ozella, L; Anfossi, L; Di Nardo, F; Pessani, D

    2017-02-01

    A number of potential stressors are present in captive environments and it is critically important to identify them in order to improve health and welfare in ex situ animal populations. In this study, we investigated the adrenocortical activity of a colony of African penguins hosted in an immersive zoo in Italy, with respect to the presence of visitors and local microclimatic conditions, using the non-invasive method of assessing faecal glucocorticoid metabolites (FGMs). The penguins' exhibit is a large naturalistic outdoor enclosure, which closely reproduces the natural habitat of this species. Data collection took place from the beginning of June to the end of August 2014, during the period of maximum flow of visitors. We carried out 12 sampling periods, each involving 2 consecutive days; during the first day we counted the visitors and we registered the meteorological data, and on the second day, we collected the faecal samples, which amounted to a total of 285 faecal samples. Our results showed that the number of visitors did not influence the adrenocortical activity of the African penguins. Conversely, the local microclimatic conditions did influence the physiological stress on these birds. We found that an increase of the daily mean temperature induced a significant increase in FGM concentrations, although humidity and wind speed had a moderating effect on temperature and reduced the heat-induced stress. Moreover, we calculated two climatic indices, commonly used to assess the thermal discomfort in animals, namely the THI (Temperature-Humidity Index) and WCI (Wind Chill Index), and we detected a positive relationship between their values and the FGM levels, demonstrating that these indices could be useful indicators of weather discomfort in African penguins. Our study shows that the simulating naturalistic conditions could have significant benefits for zoo animals, such as reducing the negative effect of visitors. Nevertheless, it should be taken into account

  18. The role of nitric oxide pathway in arginine transport and growth of IPEC-1 cells.

    PubMed

    Xiao, Hao; Zeng, Liming; Shao, Fangyuan; Huang, Bo; Wu, Miaomiao; Tan, Bie; Yin, Yulong

    2017-05-02

    L-Arginine itself and its metabolite-nitric oxide play great roles in intestinal physiology. However, the molecular mechanism underlying nitric oxide pathway regulating L-Arginine transport and cell growth is not yet fully understood. We report that inhibition of nitric oxide synthase (NOS) significantly induced cell apoptosis (p < 0.05), and promoted the rate of Arginine uptake and the expressions of protein for CAT-2 and y+LAT-1 (p < 0.05), while reduced protein expression of CAT-1. And NOS inhibition markedly decreased the activation of mammalian target of rapamycin (mTOR) and PI3K-Akt pathways by Arginine in the IPEC-1 cells (p < 0.05). Taken together, these data suggest that inhibition of NO pathway by L-NAME induces a negative feedback increasing of Arginine uptake and CAT-2 and y+LAT-1 protein expression, but promotes cell apoptosis which involved inhibiting the activation of mTOR and PI3K-Akt pathways.

  19. Topological phase transition of decoupling quasi-two-dimensional vortex pairs in La1- y Sm y MnO3 + δ ( y = 0.85, 1.0)

    NASA Astrophysics Data System (ADS)

    Bukhanko, F. N.; Bukhanko, A. F.

    2016-10-01

    Characteristic signs of the universal Nelson-Kosterlitz jump of the superconducting liquid density in the temperature dependences of the magnetization of La1- y Sm y MnO3 + δ samples with samarium concentrations y = 0.85 and 1.0, which are measured in magnetic fields 100 Oe ≤ H ≤ 3.5 kOe, are detected. As the temperature increases, the sample with y = 0.85 exhibits a crescent-shaped singularity in the dc magnetization curve near the critical temperature of decoupling vortex-antivortex pairs ( T KT ≡ T c ≈ 43 K), which is independent of measuring magnetic field H and is characteristic of the dissociation of 2D vortex pairs. A similar singularity is also detected in the sample with a samarium concentration y = 1.0 at a significantly lower temperature ( T KT ≈ 12 K). The obtained experimental results are explained in terms of the topological Kosterlitz-Thouless phase transition of dissociation of 2D vortex pairs in a quasi-two-dimensional weak Josephson coupling network.

  20. The 1201 superconductors Hg1-y(VO4)y(Ba, Sr)2CuO4-2y+δ: evidence for VO4 tetrahedra

    NASA Astrophysics Data System (ADS)

    Malo, S.; Hervieu, M.; Maignan, A.; Knížek, K.; Raveau, B.; Michel, C.

    1997-02-01

    A series of mercury based cuprates with nominal composition Hg1-yV(y)Ba2-xSrxCuO4+2y+δ has been prepared for x = 0, 0.25, 0.5, 0.75, 1 and 1.25. The actual solid solution limit from the EDS measurement is x = 1.1, y ranges from 0.2 to 0.35. The single crystal study coupled with high resolution electron microscopy shows for the first time the presence of VO4 tetrahedra replacing partly the mercury atoms according to the formulation Hg1-y(VO4)y(Ba,Sr)2 CuO4-2y+δ. The role of vanadium for the stabilisation of the structure and as a doping agent in the superconducting properties is discussed.

  1. Crosstalk between HIF-1 and ROCK pathways in neuronal differentiation of mesenchymal stem cells, neurospheres and in PC12 neurite outgrowth.

    PubMed

    Pacary, Emilie; Tixier, Emmanuelle; Coulet, Florence; Roussel, Simon; Petit, Edwige; Bernaudin, Myriam

    2007-07-01

    This study demonstrates that the Rho-kinase (ROCK) inhibitor, Y-27632, potentiates not only the effect of cobalt chloride (CoCl(2)) but also that of deferoxamine, another HIF-1 inducer, on mesenchymal stem cell (MSC) neuronal differentiation. HIF-1 is essential for CoCl(2)+/-Y-27632-induced MSC neuronal differentiation, since agents inhibiting HIF-1 abolish the changes of morphology and cell cycle arrest-related gene or protein expressions (p21, cyclin D1) and the increase of neuronal marker expressions (Tuj1, NSE). Y-27632 potentiates the CoCl(2)-induced decrease of cyclin D1 and nestin expressions, the increase of HIF-1 activation and EPO expression, and decreases pVHL expression. Interestingly, CoCl(2) decreases RhoA expression, an effect potentiated by Y-27632, revealing crosstalk between HIF-1 and RhoA/ROCK pathways. Moreover, we demonstrate a synergistic effect of CoCl(2) and Y-27632 on neurosphere differentiation into neurons and PC12 neurite outgrowth underlining that a co-treatment targeting both HIF-1 and ROCK pathways might be relevant to differentiate stem cells into neurons.

  2. Intracellular acidification reduces l-arginine transport via system y+L but not via system y+/CATs and nitric oxide synthase activity in human umbilical vein endothelial cells.

    PubMed

    Ramírez, Marco A; Morales, Jorge; Cornejo, Marcelo; Blanco, Elias H; Mancilla-Sierpe, Edgardo; Toledo, Fernando; Beltrán, Ana R; Sobrevia, Luis

    2018-04-01

    l-Arginine is taken up via the cationic amino acid transporters (system y + /CATs) and system y + L in human umbilical vein endothelial cells (HUVECs). l-Arginine is the substrate for endothelial NO synthase (eNOS) which is activated by intracellular alkalization, but nothing is known regarding modulation of system y + /CATs and system y + L activity, and eNOS activity by the pHi in HUVECs. We studied whether an acidic pHi modulates l-arginine transport and eNOS activity in HUVECs. Cells loaded with a pH-sensitive probe were subjected to 0.1-20 mmol/L NH 4 Cl pulse assay to generate pHi 7.13-6.55. Before pHi started to recover, l-arginine transport (0-20 or 0-1000 μmol/L, 10 s, 37 °C) in the absence or presence of 200 μmol/L N-ethylmaleimide (NEM) (system y + /CATs inhibitor) or 2 mmol/L l-leucine (systemy + L substrate) was measured. Protein abundance for eNOS and serine 1177 or threonine 495 phosphorylated eNOS was determined. The results show that intracellular acidification reduced system y + L but not system y + /CATs mediated l-arginine maximal transport capacity due to reduced maximal velocity. Acidic pHi reduced NO synthesis and eNOS serine 1177 phosphorylation. Thus, system y + L activity is downregulated by an acidic pHi, a phenomenon that may result in reduced NO synthesis in HUVECs. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. PA6 Stromal Cell Co-Culture Enhances SH-SY5Y and VSC4.1 Neuroblastoma Differentiation to Mature Phenotypes

    PubMed Central

    Ferguson, Ross; Subramanian, Vasanta

    2016-01-01

    Neuroblastoma cell lines such as SH-SY5Y have been used for modelling neurodegenerative diseases and for studying basic mechanisms in neuroscience. Since neuroblastoma cells proliferate and generally do not express markers of mature or functional neurons, we exploited a co-culture system with the stromal cell line PA6 to better induce differentiation to a more physiologically relevant status. We found that co-culture of the neuroblastoma cell lines in the presence of neural inducers such retinoic acid was able to generate a high proportion of quiescent neurons with very long neurites expressing differentiation markers. The co-culture system additionally cuts short the time taken to produce a more mature phenotype. We also show the application of this system to study proteins implicated in motor neuron disease. PMID:27391595

  4. PA6 Stromal Cell Co-Culture Enhances SH-SY5Y and VSC4.1 Neuroblastoma Differentiation to Mature Phenotypes.

    PubMed

    Ferguson, Ross; Subramanian, Vasanta

    2016-01-01

    Neuroblastoma cell lines such as SH-SY5Y have been used for modelling neurodegenerative diseases and for studying basic mechanisms in neuroscience. Since neuroblastoma cells proliferate and generally do not express markers of mature or functional neurons, we exploited a co-culture system with the stromal cell line PA6 to better induce differentiation to a more physiologically relevant status. We found that co-culture of the neuroblastoma cell lines in the presence of neural inducers such retinoic acid was able to generate a high proportion of quiescent neurons with very long neurites expressing differentiation markers. The co-culture system additionally cuts short the time taken to produce a more mature phenotype. We also show the application of this system to study proteins implicated in motor neuron disease.

  5. N-acetylaspartate (NAA) induces neuronal differentiation of SH-SY5Y neuroblastoma cell line and sensitizes it to chemotherapeutic agents

    PubMed Central

    Mazzoccoli, Carmela; Ruggieri, Vitalba; Tataranni, Tiziana; Agriesti, Francesca; Laurenzana, Ilaria; Fratello, Angelo; Capitanio, Nazzareno; Piccoli, Claudia

    2016-01-01

    Neuroblastoma is the most commonly extra-cranial solid tumor of childhood frequently diagnosed. The nervous system-specific metabolite N-acetylaspartate (NAA) is synthesized from aspartate and acetyl-CoA in neurons, it is among the most abundant metabolites present in the central nervous system (CNS) and appears to be involved in many CNS disorders. The functional significance of the high NAA concentration in the brain remains uncertain, but it confers to NAA a unique clinical significance exploited in magnetic resonance spectroscopy. In the current study, we show that treatment of SH-SY5Y neuroblastoma-derived cell line with sub-cytotoxic physiological concentrations of NAA inhibits cell growth. This effect is partly due to enhanced apoptosis, shown by decrease of the anti-apoptotic factors survivin and Bcl-xL, and partly to arrest of the cell-cycle progression, linked to enhanced expression of the cyclin-inhibitors p53, p21Cip1/Waf1 and p27Kip1. Moreover, NAA-treated SH-SY5Y cells exhibited morphological changes accompanied with increase of the neurogenic markers TH and MAP2 and down-regulation of the pluripotency markers OCT4 and CXCR4/CD184. Finally, NAA-pre-treated SH-SY5Y cells resulted more sensitive to the cytotoxic effect of the chemotherapeutic drugs Cisplatin and 5-fluorouracil. To our knowledge, this is the first study demonstrating the neuronal differentiating effects of NAA in neuroblastoma cells. NAA may be a potential preconditioning or adjuvant compound in chemotherapeutic treatment. PMID:27036033

  6. N-acetylaspartate (NAA) induces neuronal differentiation of SH-SY5Y neuroblastoma cell line and sensitizes it to chemotherapeutic agents.

    PubMed

    Mazzoccoli, Carmela; Ruggieri, Vitalba; Tataranni, Tiziana; Agriesti, Francesca; Laurenzana, Ilaria; Fratello, Angelo; Capitanio, Nazzareno; Piccoli, Claudia

    2016-05-03

    Neuroblastoma is the most commonly extra-cranial solid tumor of childhood frequently diagnosed. The nervous system-specific metabolite N-acetylaspartate (NAA) is synthesized from aspartate and acetyl-CoA in neurons, it is among the most abundant metabolites present in the central nervous system (CNS) and appears to be involved in many CNS disorders. The functional significance of the high NAA concentration in the brain remains uncertain, but it confers to NAA a unique clinical significance exploited in magnetic resonance spectroscopy. In the current study, we show that treatment of SH-SY5Y neuroblastoma-derived cell line with sub-cytotoxic physiological concentrations of NAA inhibits cell growth. This effect is partly due to enhanced apoptosis, shown by decrease of the anti-apoptotic factors survivin and Bcl-xL, and partly to arrest of the cell-cycle progression, linked to enhanced expression of the cyclin-inhibitors p53, p21Cip1/Waf1 and p27Kip1. Moreover, NAA-treated SH-SY5Y cells exhibited morphological changes accompanied with increase of the neurogenic markers TH and MAP2 and down-regulation of the pluripotency markers OCT4 and CXCR4/CD184. Finally, NAA-pre-treated SH-SY5Y cells resulted more sensitive to the cytotoxic effect of the chemotherapeutic drugs Cisplatin and 5-fluorouracil.To our knowledge, this is the first study demonstrating the neuronal differentiating effects of NAA in neuroblastoma cells. NAA may be a potential preconditioning or adjuvant compound in chemotherapeutic treatment.

  7. The optimization of Ga (1-x)Al (x)As-GaAs solar cells for air mass zero operation and a study of Ga (1-x)Al (x)As-GaAs solar cells at high temperatures, phase 1

    NASA Technical Reports Server (NTRS)

    Hovel, H. J.; Woodall, J. M.

    1976-01-01

    The three types of solar cells investigated were: (1) one consisting of a nGaAs substrate, a Zn doped pGaAs region, and a Zn doped Ga(1-x)Al(x)As layer, (2) one consisting of an nGaAs substrate, a Ge doped pGaAs region, and a pGa(1-x)Al(x)As upper layer, and (3) one consisting of an n+GaAs substrate, an nGa(1-x)Al(X)As region, a pGa(1-x)Bl(X) As region, and a pGa(1-y)Al(y)As upper layer. In all three cases, the upper alloy layer is thin and of high Al composition in order to obtain high spectral response over the widest possible range of photon energies. Spectral response, capacitance-voltage, current-voltage, diffusion length, sunlight (or the equivalent)-efficiency, and efficiency-temperature measurements were made as a function of device parameters in order to analyze and optimize the solar cell behavior.

  8. Rho kinase inhibitor Y-27632 promotes the differentiation of human bone marrow mesenchymal stem cells into keratinocyte-like cells in xeno-free conditioned medium.

    PubMed

    Li, Zhenzhen; Han, Shichao; Wang, Xingqin; Han, Fu; Zhu, Xiongxiang; Zheng, Zhao; Wang, Hongtao; Zhou, Qin; Wang, Yunchuan; Su, Linlin; Shi, Jihong; Tang, Chaowu; Hu, Dahai

    2015-03-11

    Bone marrow mesenchymal stem cells (BMSCs), which have the ability to self-renew and to differentiate into multiple cell types, have recently become a novel strategy for cell-based therapies. The differentiation of BMSCs into keratinocytes may be beneficial for patients with burns, disease, or trauma. However, the currently available cells are exposed to animal materials during their cultivation and induction. These xeno-contaminations severely limit their clinical outcomes. Previous studies have shown that the Rho kinase (ROCK) inhibitor Y-27632 can promote induction efficiency and regulate the self-renewal and differentiation of stem cells. In the present study, we attempted to establish a xeno-free system for the differentiation of BMSCs into keratinocytes and to investigate whether Y-27632 can facilitate this differentiation. BMSCs isolated from patients were cultured by using a xeno-free system and characterised by using flow cytometric analysis and adipogenic and osteogenic differentiation assays. Human primary keratinocytes were also isolated from patients. Then, the morphology, population doubling time, and β-galactosidase staining level of these cells were evaluated in the presence or absence of Y-27632 to determine the effects of Y-27632 on the state of the keratinocytes. Keratinocyte-like cells (KLCs) were detected at different time points by immunocytofluorescence analysis. Moreover, the efficiency of BMSC differentiation under different conditions was measured by quantitative real-time-polymerase chain reaction (RT-PCR) and Western blot analyses. The ROCK inhibitor Y-27632 promoted the proliferation and lifespan of human primary keratinocytes. In addition, we showed that keratinocyte-specific markers could be detected in BMSCs cultured in a xeno-free system using keratinocyte-conditioned medium (KCM) independent of the presence of Y-27632. However, the efficiency of the differentiation of BMSCs into KLCs was significantly higher in the presence of Y

  9. D-beta-hydroxybutyrate protects dopaminergic SH-SY5Y cells in a rotenone model of Parkinson's disease.

    PubMed

    Imamura, Keiko; Takeshima, Takao; Kashiwaya, Yoshihiro; Nakaso, Kazuhiro; Nakashima, Kenji

    2006-11-01

    It has been postulated that the pathogenesis of Parkinson's disease (PD) is associated with mitochondrial dysfunction. Rotenone, an inhibitor of mitochondrial complex I, provides models of PD both in vivo and in vitro. We investigated the neuroprotective effect of D-beta-hydroxybutyrate (bHB), a ketone body, against rotenone toxicity by using SH-SY5Y dopaminergic neuroblastoma cells. SH-SY5Y cells, differentiated by all-trans-retinoic acid, were exposed to rotenone at concentrations ranging from 0 to 1,000 nM. We evaluated cellular oxidation reduction by the alamarBlue assay, viability by lactate dehydrogenase (LDH) assay, and survival/death ratio by live/dead assays. Exposure to rotenone for 48 hr oxidized cells and decreased their viability and survival rate in a concentration-dependent manner. Pretreatment of cells with 8 mM bHB provided significant protection to SH-SY5Y cells. Whereas rotenone caused the loss of mitochondrial membrane potential, released cytochrome c into the cytosol, and reduced cytochrome c content in mitochondria, addition of bHB blocked this toxic effect. bHB also attenuated the rotenone-induced activation of caspase-9 and caspase-3. Administration of 0-10 mM 3-nitropropionic acid, a complex II inhibitor, also decreased the reducing power of SH-SY5Y cells measured by alamarBlue assay. Pretreatment with 8 mM bHB attenuated the decrease of alamarBlue fluorescence. These data demonstrated that bHB had a neuroprotective effect that supported the mitochondrial respiration system by reversing the inhibition of complex I or II. Ketone bodies, the alternative energy source in the mammalian brain, appear to have therapeutic potential in PD. Copyright 2006 Wiley-Liss, Inc.

  10. Short Chemical Ischemia Triggers Phosphorylation of eIF2α and Death of SH-SY5Y Cells but not Proteasome Stress and Heat Shock Protein Response in both SH-SY5Y and T98G Cells.

    PubMed

    Klacanova, Katarina; Pilchova, Ivana; Klikova, Katarina; Racay, Peter

    2016-04-01

    Both translation arrest and proteasome stress associated with accumulation of ubiquitin-conjugated protein aggregates were considered as a cause of delayed neuronal death after transient global brain ischemia; however, exact mechanisms as well as possible relationships are not fully understood. The aim of this study was to compare the effect of chemical ischemia and proteasome stress on cellular stress responses and viability of neuroblastoma SH-SY5Y and glioblastoma T98G cells. Chemical ischemia was induced by transient treatment of the cells with sodium azide in combination with 2-deoxyglucose. Proteasome stress was induced by treatment of the cells with bortezomib. Treatment of SH-SY5Y cells with sodium azide/2-deoxyglucose for 15 min was associated with cell death observed 24 h after treatment, while glioblastoma T98G cells were resistant to the same treatment. Treatment of both SH-SY5Y and T98G cells with bortezomib was associated with cell death, accumulation of ubiquitin-conjugated proteins, and increased expression of Hsp70. These typical cellular responses to proteasome stress, observed also after transient global brain ischemia, were not observed after chemical ischemia. Finally, chemical ischemia, but not proteasome stress, was in SH-SY5Y cells associated with increased phosphorylation of eIF2α, another typical cellular response triggered after transient global brain ischemia. Our results showed that short chemical ischemia of SH-SY5Y cells is not sufficient to induce both proteasome stress associated with accumulation of ubiquitin-conjugated proteins and stress response at the level of heat shock proteins despite induction of cell death and eIF2α phosphorylation.

  11. Adrenocortical Hormone Abnormalities in Men with Chronic Prostatitis/Chronic Pelvic Pain Syndrome

    PubMed Central

    Dimitrakov, Jordan; Joffe, Hylton V.; Soldin, Steven J.; Bolus, Roger; Buffington, C.A. Tony; Nickel, J Curtis

    2007-01-01

    Objectives To identify adrenocortical hormone abnormalities as indicators of endocrine dysfunction in CP/CPPS. Methods We simultaneously measured the serum concentrations of 12 steroids in CP/CPPS and control patients, using isotope dilution liquid chromatography followed by atmospheric pressure photospray ionization and tandem mass spectrometry. Results Twenty-seven CP/CPPS patients and 29 age-matched asymptomatic healthy controls were evaluated. In the mineralocorticoid pathway, progesterone was significantly higher, whereas corticosterone and aldosterone concentrations were significantly lower, in CP/CPPS than in controls. In the glucocorticoid pathway, 11-deoxycortisol was significantly lower, and cortisol concentrations were not different between patients and controls. In the sex steroid pathway, androstenedione and testosterone concentrations were significantly higher in CP/CPPS than in controls. Estradiol, dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) concentrations were not different between patients and controls. NIH-CPSI total and pain domain scores correlated positively with 17-hydroxyprogesterone and aldosterone (P<0.001) and negatively with cortisol concentrations (P<0.001). Conclusions Results suggest reduced activity of CYP21A2 (P450c21), the enzyme that converts progesterone to corticosterone, and 17-hydroxyprogesterone to 11-deoxycortisol. Furthermore, these results provide insights into the biological basis of CP/CPPS. Follow-up studies should explore the possibility that CP/CPPS patients meet the diagnostic criteria for nonclassical CAH and if hormonal findings improve or worsen in parallel with symptom severity. PMID:18308097

  12. Antimutagenicity of WR-1065 in L5178Y cells exposed to accelerated (56)Fe ions

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; Evans, T. E.; Horng, M. F.

    2002-01-01

    The ability of the aminothiol WR-1065 [N-(2-mercaptoethyl)-1,3-diaminopropane] to protect L5178Y (LY) cells against the cytotoxic and mutagenic effects of exposure to accelerated (56)Fe ions (1.08 GeV/nucleon) was determined. It was found that while WR-1065 reduced the mutagenicity in both cell lines when it was present during the irradiation, the addition of WR-1065 after the exposure had no effect on the mutagenicity of the radiation in either cell line. No marked protection against the cytotoxic effects of exposure to (56)Fe ions was provided by WR-1065 when added either during or after irradiation in either cell line. We reported previously that WR-1065 protected the LY-S1 and LY-SR1 cell lines against both the cytotoxicity and mutagenicity of X radiation when present during exposure, but that its protection when administered after exposure was limited to the mutagenic effects in the radiation-hypersensitive cell line, LY-S1. The results indicate that the mechanisms involved differ in the protection against cytotoxic compared to mutagenic effects and in the protection against damage caused by accelerated (56)Fe ions compared to X radiation.

  13. The Y-located gonadoblastoma gene TSPY amplifies its own expression through a positive feedback loop in prostate cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kido, Tatsuo; Lau, Yun-Fai Chris, E-mail: Chris.Lau@UCSF.edu

    2014-03-28

    Highlights: • Y-encoded proto-oncoprotein TSPY amplifies its expression level via a positive feedback loop. • TSPY binds to the chromatin/DNA at exon 1 of TSPY gene. • TSPY enhances the gene expression in a TSPY exon 1 sequence dependent manner. • The conserved SET/NAP-domain is essential for TSPY transactivation. • Insights on probable mechanisms on TSPY exacerbation on cancer development in men. - Abstract: The testis-specific protein Y-encoded (TSPY) is a repetitive gene located on the gonadoblastoma region of the Y chromosome, and has been considered to be the putative gene for this oncogenic locus on the male-only chromosome. Itmore » is expressed in spermatogonial cells and spermatocytes in normal human testis, but abundantly in gonadoblastoma, testicular germ cell tumors and a variety of somatic cancers, including melanoma, hepatocellular carcinoma and prostate cancer. Various studies suggest that TSPY accelerates cell proliferation and growth, and promotes tumorigenesis. In this report, we show that TSPY could bind directly to the chromatin/DNA at exon 1 of its own gene, and greatly enhance the transcriptional activities of the endogenous gene in the LNCaP prostate cancer cells. Domain mapping analyses of TSPY have localized the critical and sufficient domain to the SET/NAP-domain. These results suggest that TSPY could efficiently amplify its expression and oncogenic functions through a positive feedback loop, and contribute to the overall tumorigenic processes when it is expressed in various human cancers.« less

  14. Trajectories of maternal depressive symptoms over her child's life span: Relation to adrenocortical, cardiovascular, and emotional functioning in children

    PubMed Central

    Gump, Brooks B.; Reihman, Jacki; Stewart, Paul; Lonky, ED; Darvill, Tom; Granger, Douglas A.; Matthews, Karen A.

    2015-01-01

    Maternal depression has a number of adverse effects on children. In the present study, maternal depressive symptoms were assessed (using the Center for Epidemiological Studies Depression Scale) when their child was 3 months, 6 months, 1 year, 2 years, 4.25 years, 6 years, 7 years, 8 years, and 10 years of age. At 9.5 years of age, children's (94 females, 82 males) depressive symptoms as well as cardiovascular and cortisol levels during baseline and two psychologically stressful tasks were measured. Using multilevel modeling, maternal depressive symptom trajectories were considered in relation to their child's adrenocortical and cardiovascular responses to acute stress. Our goal was to determine maternal depressive symptom trajectories for children with elevated cardiovascular and cortisol reactivity to acute stress and elevated depressive symptoms. In general, those mothers with chronically elevated depressive symptoms over their child's life span had children with lower initial cortisol, higher cardiac output and stroke volume in response to acute stress, lower vascular resistance during acute stress tasks, and significantly more depressive symptoms at 9.5 years of age. These results are discussed in the context of established associations among hypothalamic–pituitary–adrenal axis dysregulation, depression, and cardiovascular disease. PMID:19144231

  15. SNJ-1945, a calpain inhibitor, protects SH-SY5Y cells against MPP+ and rotenone

    PubMed Central

    Knaryan, Varduhi H.; Samantaray, Supriti; Sookyoung, Park; Azuma, Mitsuyoshi; Inoue, Jun; Banik, Naren L.

    2014-01-01

    Complex pathophysiology of Parkinson’s disease (PD) involves multiple CNS cell types. Degeneration in spinal cord neurons alongside brain has been shown to be involved in PD and evidenced in experimental parkinsonism. However, the mechanisms of these degenerative pathways are not well understood. In order to unravel these mechanisms SH-SY5Y neuroblastoma cells were differentiated into dopaminergic and cholinergic phenotypes respectively and used as cell culture model following exposure to two parkinsonian neurotoxicants MPP+ and rotenone. SNJ-1945, a cell-permeable calpain inhibitor was tested for its neuroprotective efficacy. MPP+ and rotenone dose-dependently elevated the levels of intracellular free Ca2+ and induced a concomitant rise in the levels of active calpain. SNJ-1945 pre-treatment significantly protected cell viability and preserved cellular morphology following MPP+ and rotenone exposure. The neurotoxicants elevated the levels of reactive oxygen species (ROS) more profoundly in SH-SY5Y cells differentiated into dopaminergic phenotype, and this effect could be attenuated with SNJ-1945 pre-treatment. In contrast, significant levels of inflammatory mediators (cyclooxygenase-2, Cox-2 and cleaved p10 fragment of caspase-1) were upregulated in the cholinergic phenotype, which could be dose-dependently attenuated by the calpain inhibitor. Overall, SNJ-1945 was efficacious against MPP+ or rotenone-induced ROS generation, inflammatory mediators, and proteolysis. A post-treatment regimen of SNJ-1945 was also examined in cells and partial protection was attained with calpain inhibitor administration 1–3 h after exposure to MPP+ or rotenone. Taken together these results indicate that calpain inhibition is a valid target for protection against parkinsonian neurotoxicants, and SNJ-1945 is an efficacious calpain inhibitor in this context. PMID:24341912

  16. Adrenocortical carcinoma: the dawn of a new era of genomic and molecular biology analysis.

    PubMed

    Armignacco, R; Cantini, G; Canu, L; Poli, G; Ercolino, T; Mannelli, M; Luconi, M

    2018-05-01

    Over the last decade, the development of novel and high penetrance genomic approaches to analyze biological samples has provided very new insights in the comprehension of the molecular biology and genetics of tumors. The use of these techniques, consisting of exome sequencing, transcriptome, miRNome, chromosome alteration, genome, and epigenome analysis, has also been successfully applied to adrenocortical carcinoma (ACC). In fact, the analysis of large cohorts of patients allowed the stratification of ACC with different patterns of molecular alterations, associated with different outcomes, thus providing a novel molecular classification of the malignancy to be associated with the classical pathological analysis. Improving our knowledge about ACC molecular features will result not only in a better diagnostic and prognostic accuracy, but also in the identification of more specific therapeutic targets for the development of more effective pharmacological anti-cancer approaches. In particular, the specific molecular alteration profiles identified in ACC may represent targetable events by the use of already developed or newly designed drugs enabling a better and more efficacious management of the ACC patient in the context of new frontiers of personalized precision medicine.

  17. The epigenetic regulation of HIF-1α by SIRT1 in MPP{sup +} treated SH-SY5Y cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Su-Yan; Guo, Yan-Jie; Feng, Ya

    Both silent information regulator 1 (SIRT1) and hypoxia inducible factor 1 (HIF-1) have been found to play important roles in the pathophysiology of Parkinson's disease (PD). However, their mechanisms and their relationship still require further study. In the present study, we focused on the change and relationship of SIRT1 and HIF-1α in PD. PD cell models were established by using methyl-4-phenylpyridinium (MPP{sup +}), which induced inhibition of cell proliferation, cell cycle arrest and apoptosis. We found that the expression of HIF-1α and its target genes VEGFA and LDHA increased and that SIRT1 expression was inhibited in MPP{sup +} treated cells.more » With further analysis, we found that the acetylation of H3K14 combined with the HIF-1α promoter was dramatically increased in cells treated with MPP{sup +}, which resulted in the transcriptional activation of HIF-1α. Moreover, the acetylation of H3K14 and the expression of HIF-1α increased when SIRT1 was knocked down, suggesting that SIRT1 was involved in the epigenetic regulation of HIF-1α. At last, phenformin, another mitochondrial complex1 inhibitor, was used to testify that the increased HIF-1a was not due to off target effects of MPP{sup +}. Therefore, our results support a link between PD and SIRT1/HIF-1α signaling, which may serve as a clue for understanding PD.« less

  18. Nuclear accumulation of SHIP1 mutants derived from AML patients leads to increased proliferation of leukemic cells.

    PubMed

    Nalaskowski, Marcus M; Ehm, Patrick; Rehbach, Christoph; Nelson, Nina; Täger, Maike; Modest, Kathrin; Jücker, Manfred

    2018-05-28

    The inositol 5-phosphatase SHIP1 acts as negative regulator of intracellular signaling in myeloid cells and is a tumor suppressor in myeloid leukemogenesis. After relocalization from the cytoplasm to the plasma membrane SHIP1 terminates PI3-kinase mediated signaling processes. Furthermore, SHIP1 is also found in distinct puncta in the cell nucleus and nuclear SHIP1 has a pro-proliferative function. Here we report the identification of five nuclear export signals (NESs) which regulate together with the two known nuclear localization signals (NLSs) the nucleocytoplasmic shuttling of SHIP1. Mutation of NLSs reduced the nuclear import and mutation of NESs decreased the nuclear export of SHIP1 in the acute myeloid leukemia (AML) cell line UKE-1. Interestingly, four SHIP1 mutants (K210R, N508D, V684E, Q1153L) derived from AML patients showed a nuclear accumulation after expression in UKE-1 cells. In addition, overexpression of the AML patient-derived mutation N508D caused an increased proliferation rate of UKE-1 cells in comparison to wild type SHIP1. Furthermore, we identified serine and tyrosine phosphorylation as a molecular mechanism for the regulation of nucleocytoplasmic shuttling of SHIP1 where tyrosine phosphorylation of distinct residues i.e. Y864, Y914, Y1021 reduces nuclear localization, whereas serine phosphorylation at S933 enhances nuclear localization of SHIP1. In summary, our data further implicate nuclear SHIP1 in cellular signaling and suggest that enhanced accumulation of SHIP1 mutants in the nucleus may be a contributory factor of abnormally high proliferation of AML cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Seasonal changes in adrenocortical responses to acute stress in Eurasian tree sparrow (Passer montanus) on the Tibetan Plateau: comparison with house sparrow (P. domesticus) in North America and with the migratory P. domesticus in Qinghai Province.

    PubMed

    Li, Dongming; Wang, Gang; Wingfield, John C; Zhang, Zhi; Ding, Changqing; Lei, Fumin

    2008-08-01

    Seasonal modulation of the adrenocortical response to stress appears to be ubiquitous in arctic-breeding and temperate-zone-breeding birds, but has not been well investigated in alpine-breeding species at mid-latitude. We examined the adrenocortical response to acute stress (capture, handling and restraint) in populations of Eurasian tree sparrow (Passer montanus) among seasons and migratory house sparrow (P. domesticus bactrianus) in pre-breeding on the Qinghai-Xizang Plateau (the Tibetan Plateau). A population of house sparrow (Passer domesticus domesticus) was also sampled in lowland Phoenix, Arizona during breeding and wintering stages. In Eurasian tree sparrows, baseline corticosterone (CORT) does not differ among life history stages, but stress-induced CORT level (maximal CORT, total and corrected integrated CORT) is significantly higher in late breeding stage than those in early breeding and prebasic molt stages. In house sparrows, stress-induced CORT level does not differ between sites and life history stages, but baseline CORT is significantly lower in pre-breeding from Qinghai compared with those in breeding and wintering stages from Phoenix. Interestingly, both baseline CORT and maximal CORT do not differ between the populations of Eurasian tree sparrow and house sparrow in early/pre-breeding stage although tree sparrow is resident species whereas house sparrow is migratory in Qinghai. Our results suggest that the extreme environment of the Tibetan Plateau does not have significant effects on adrenocortical responses to acute stress in Eurasian tree sparrows and house sparrows, which may be a result of masking by human activities. These invasive human commensals may have a unique HPA axis response to different environments because they can take advantage of human food sources and shelter (i.e. buildings).

  20. Progranulin Deficiency Reduces CDK4/6/pRb Activation and Survival of Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    de la Encarnación, Ana; Alquézar, Carolina; Esteras, Noemí; Martín-Requero, Ángeles

    2015-12-01

    Null mutations in GRN are associated with frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). However, the influence of progranulin (PGRN) deficiency in neurodegeneration is largely unknown. In neuroblastoma cells, silencing of GRN gene causes significantly reduced cell survival after serum withdrawal. The following observations suggest that alterations of the CDK4/6/retinoblastoma protein (pRb) pathway, secondary to changes in PI3K/Akt and ERK1/2 activation induced by PGRN deficiency, are involved in the control of serum deprivation-induced apoptosis: (i) inhibiting CDK4/6 levels or their associated kinase activity by sodium butyrate or PD332991 sensitized control SH-SY5Y cells to serum deprivation-induced apoptosis without affecting survival of PGRN-deficient cells; (ii) CDK4/6/pRb seems to be downstream of the PI3K/Akt and ERK1/2 signaling pathways since their specific inhibitors, LY294002 and PD98059, were able to decrease CDK6-associated kinase activity and induce death of control SH-SY5Y cells; (iii) PGRN-deficient cells show reduced stimulation of PI3K/Akt, ERK1/2, and CDK4/6 activities compared with control cells in the absence of serum; and (iv) supplementation of recombinant human PGRN was able to rescue survival of PGRN-deficient cells. These observations highlight the important role of PGRN-mediated stimulation of the PI3K/Akt-ERK1/2/CDK4/6/pRb pathway in determining the cell fate survival/death under serum deprivation.

  1. Y-chromosome lineage determines cardiovascular organ T-cell infiltration in the stroke-prone spontaneously hypertensive rat.

    PubMed

    Khan, Shanzana I; Andrews, Karen L; Jackson, Kristy L; Memon, Basimah; Jefferis, Ann-Maree; Lee, Man K S; Diep, Henry; Wei, Zihui; Drummond, Grant R; Head, Geoffrey A; Jennings, Garry L; Murphy, Andrew J; Vinh, Antony; Sampson, Amanda K; Chin-Dusting, Jaye P F

    2018-05-01

    The essential role of the Y chromosome in male sex determination has largely overshadowed the possibility that it may exert other biologic roles. Here, we show that Y-chromosome lineage is a strong determinant of perivascular and renal T-cell infiltration in the stroke-prone spontaneously hypertensive rat, which, in turn, may influence vascular function and blood pressure (BP). We also show, for the first time to our knowledge, that augmented perivascular T-cell levels can directly instigate vascular dysfunction, and that the production of reactive oxygen species that stimulate cyclo-oxygenase underlies this. We thus provide strong evidence for the consideration of Y-chromosome lineage in the diagnosis and treatment of male hypertension, and point to the modulation of cardiovascular organ T-cell infiltration as a possible mechanism that underpins Y- chromosome regulation of BP.-Khan, S. I., Andrews, K. L., Jackson, K. L., Memon, B., Jefferis, A.-M., Lee, M. K. S., Diep, H., Wei, Z., Drummond, G. R., Head, G. A., Jennings, G. L., Murphy, A. J., Vinh, A., Sampson, A. K., Chin-Dusting, J. P. F. Y-chromosome lineage determines cardiovascular organ T-cell infiltration in the stroke-prone spontaneously hypertensive rat.

  2. DHA, EPA and their combination at various ratios differently modulated Aβ25-35-induced neurotoxicity in SH-SY5Y cells.

    PubMed

    Zhang, Yong-Ping; Brown, Richard E; Zhang, Ping-Cheng; Zhao, Yun-Tao; Ju, Xiang-Hong; Song, Cai

    2017-07-14

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have been reported to prevent neurodegenerative diseases such as Alzheimer's disease (AD) in both experimental and clinical/epidemiological studies. However, whether DHA and EPA from natural products exert similar or different neuroprotective effects and how these n-3 PUFAs target cellular and molecular mechanisms associated with neurodegenerative disease pathogenesis are unknown. In the present study, we used amyloid-β (Aβ) 25-35 -treated differentiated SH-SY5Y cells as a model of AD to compare the neuroprotective effect of DHA, EPA and their combination at various ratios. Administration of 20μM Aβ 25-35 significantly decreased SH-SY5Y cell viability, the expression of nerve growth factor (NGF), its TrkA receptor, and the level of glutathione (GSH) and increased reactive oxygen species (ROS), nitric oxide, tumor necrosis factor (TNF)-α, brain derived neurotrophic factor (BDNF) and its TrkB receptor. Aβ 25-35 also increased the Bax/Bcl-2 ratio and the expression of Caspase-3 in these cells. Compared with the Aβ group, pretreatment with DHA/EPA significantly reduced cell death, especially at ratio of 1:1 and 2:1 DHA/EPA or pure DHA. However, the most efficient ratio for reducing changes in ROS and GSH and for decreasing TNF-α appeared at ratio of 1:2 and 1:1, respectively. The ratio of 1:1, 2:1 and pure DHA resulted in significant increase in the level of NGF. Furthermore, pure DHA was the most efficient for reducing Bax/Bcl ratio and Caspase-3 expression. In conclusion, DHA, EPA and their combination differently modulated Aβ 25-35 -induced neurotoxicity in SH-SY5Y cells by exerting anti-oxidative, anti-inflammatory and neurotrophic effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Combined Leydig cell and Sertoli cell dysfunction in 46,XX males lacking the sex determining region Y gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, B.; Vordermark, J.S.; Fechner, P.Y.

    1995-07-03

    We have evaluated 3 individuals with a rare form of 46,XX sex reversal. All of them had ambiguous external genitalia and mixed wolffian and muellerian structures, indicating both Leydig cell and Sertoli cell dysfunction, similar to that of patients with true hermaphroditism. However, gonadal tissue was not ovotesticular but testicular with varying degrees of dysgenesis. SRY sequences were absent in genomic DNA from peripheral leukocytes in all 3 subjects. Y centromere sequences were also absent, indicating that testis development did not occur because of a low level mosaicism of Y-bearing cells. The subjects in this report demonstrate that there ismore » a continuum in the extent of the testis determination in SRY-negative 46,XX sex reversal, ranging from nearly normal to minimal testicular development. 20 refs.« less

  4. Testicular differentiation factor SF-1 is required for human spleen development

    PubMed Central

    Zangen, David; Kaufman, Yotam; Banne, Ehud; Weinberg-Shukron, Ariella; Abulibdeh, Abdulsalam; Garfinkel, Benjamin P.; Dweik, Dima; Kanaan, Moein; Camats, Núria; Flück, Christa; Renbaum, Paul; Levy-Lahad, Ephrat

    2014-01-01

    The transcription factor steroidogenic factor 1 (SF-1; also known as NR5A1) is a crucial mediator of both steroidogenic and nonsteroidogenic tissue differentiation. Mutations within SF1 underlie different disorders of sexual development (DSD), including sex reversal, spermatogenic failure, ovarian insufficiency, and adrenocortical deficiency. Here, we identified a recessive mutation within SF1 that resulted in a substitution of arginine to glutamine at codon 103 (R103Q) in a child with both severe 46,XY-DSD and asplenia. The R103Q mutation decreased SF-1 transactivation of TLX1, a transcription factor that has been shown to be essential for murine spleen development. Additionally, the SF1 R103Q mutation impaired activation of steroidogenic genes, without affecting synergistic SF-1 and sex-determining region Y (SRY) coactivation of the testis development gene SOX9. Together, our data provide evidence that SF-1 is required for spleen development in humans via transactivation of TLX1 and that mutations that only impair steroidogenesis, without altering the SF1/SRY transactivation of SOX9, can lead to 46,XY-DSD. PMID:24905461

  5. Tetramethylpyrazine promotes SH-SY5Y cell differentiation into neurons through epigenetic regulation of Topoisomerase IIβ.

    PubMed

    Yan, Y; Zhao, J; Cao, C; Jia, Z; Zhou, N; Han, S; Wang, Y; Xu, Y; Zhao, J; Yan, Y; Cui, H

    2014-10-10

    Tetramethylpyrazine (TMP) is an active compound extracted from the traditional Chinese medicinal herb Chuanxiong. Recently, it has been reported that TMP enhances neurogenesis, and promotes neural stem cell differentiation toward neurons. However, its molecular basis remains unknown. Topoisomerase IIβ (TopoIIβ) is a nuclear enzyme with an essential role in neuronal development. This study aimed to investigate whether TopoIIβ is involved in TMP-induced neuronal differentiation. We examined the effect of TMP on neuronal differentiation of SH-SY5Y cells. It was found that TMP inhibited cell proliferation and induced G0/G1 cell cycle arrest. TMP promoted SH-SY5Y cells to differentiate toward post-mitotic neurons characterized by long, out-branched neurites and up-regulated neuronal markers, microtubule-associated protein 2 (MAP2) and tau. Meanwhile, we demonstrated that TopoIIβ was highly expressed following TMP treatment. To unravel how TMP affects TopoIIβ expression, two chromatin active markers, acetylated histone H3 (Ac-H3) and acetylated histone H4 (Ac-H4) were examined in this study. Our data showed that the levels of Ac-H3 and Ac-H4 were positively correlated with TopoIIβ expression in the processes of neuronal differentiation. We further performed chromatin immunoprecipitation (ChIP) analysis and identified that TMP enhanced the recruitment of Ac-H3 and Ac-H4 to the TopoIIβ gene promoter region. Therefore, we concluded that TMP may stimulate neuronal differentiation of SH-SY5Y cells through epigenetic regulation of TopoIIβ. These results suggest a novel molecular mechanism underlying TMP-promoted neuronal differentiation. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Adrenocortical Response to Stress and Thyroid Hormone Status in Free-Living Nestling White Storks (Ciconia ciconia) Exposed to Heavy Metal and Arsenic Contamination

    PubMed Central

    Baos, Raquel; Blas, Julio; Bortolotti, Gary R.; Marchant, Tracy A.; Hiraldo, Fernando

    2006-01-01

    Background/Objective Endocrine parameters have proven useful in the detection of early or low-level responses to pollutants. Although most of the studies on endocrine modulation have been focused on processes involving gonadal steroids, contaminants may target other parts of the endocrine system as well. In this study we examined the adrenocortical stress response and thyroid hormone status in free-living nestling white storks (Ciconia ciconia) in relation to heavy metals (zinc, lead, copper, cadmium) and arsenic levels in blood. Methods Fieldwork was conducted in an area polluted by the Aznalcóllar mine accident (southwestern Spain) and in a reference site. We used a standardized capture, handling, and restraint protocol to determine both baseline and maximum plasma corticosterone. Circulating levels of thyroxine (T4) and triiodothyronine (T3) were also measured. Results No effects of metals or As were found on baseline corticosterone, but maximum levels of corticosterone were positively related to Pb in both locations. This relationship was stronger in single nestlings than in birds from multiple-chick broods, which suggests a greater impact of Pb on more stressed individuals. Metal pollution did not affect plasma T4 or T3 levels, although thyroid status differed with location. Conclusions Because a compromised hypothalamus–pituitary–adrenal (HPA) function can have far-reaching consequences in terms of altered behavioral and metabolic processes necessary for survival, our results suggest that birds exposed to sublethal Pb levels may be at risk through an altered adrenocortical stress response, and further support the idea that HPA axis-related end points might be useful indicators of metal exposure and potential toxicity in wild animals. PMID:17035132

  7. Morphological Differentiation Towards Neuronal Phenotype of SH-SY5Y Neuroblastoma Cells by Estradiol, Retinoic Acid and Cholesterol.

    PubMed

    Teppola, Heidi; Sarkanen, Jertta-Riina; Jalonen, Tuula O; Linne, Marja-Leena

    2016-04-01

    Human SH-SY5Y neuroblastoma cells maintain their potential for differentiation and regression in culture conditions. The induction of differentiation could serve as a strategy to inhibit cell proliferation and tumor growth. Previous studies have shown that differentiation of SH-SY5Y cells can be induced by all-trans-retinoic-acid (RA) and cholesterol (CHOL). However, signaling pathways that lead to terminal differentiation of SH-SY5Y cells are still largely unknown. The goal of this study was to examine in the RA and CHOL treated SH-SY5Y cells the additive impacts of estradiol (E2) and brain-derived neurotrophic factor (BDNF) on cell morphology, cell population growth, synaptic vesicle recycling and presence of neurofilaments. The above features indicate a higher level of neuronal differentiation. Our data show that treatment for 10 days in vitro (DIV) with RA alone or when combined with E2 (RE) or CHOL (RC), but not when combined with BDNF (RB), significantly (p < 0.01) inhibited the cell population growth. Synaptic vesicle recycling, induced by high-K(+) depolarization, was significantly increased in all treatments where RA was included (RE, RC, RB, RCB), and when all agents were added together (RCBE). Specifically, our results show for the first time that E2 treatment can alone increase synaptic vesicle recycling in SH-SY5Y cells. This work contributes to the understanding of the ways to improve suppression of neuroblastoma cells' population growth by inducing maturation and differentiation.

  8. The in vivo Therapeutic Effect of Free Wanderer Powder (逍 遙 散 xiāo yáo sǎn, Xiaoyaosan) on Mice with 4T1 Cell Induced Breast Cancer Model

    PubMed Central

    Chen, Wen-Fang; Xu, Li; Yu, Chung-Him; Ho, Chui-Kwan; Wu, Ka; Leung, Gina CW; Wong, Man-Sau

    2012-01-01

    In the present study, we investigated the therapeutic effect of a classical TCM formula, Free Wanderer Powder (逍遙散 xiāo yáo sǎn), in a breast cancer mouse model induced with estrogen-insensitive breast cancer 4T1 cells. Ovariectomized Balb/c mice (6-8 weeks) or sham mice were injected into the fourth mammary fat pad with 4T1 cells in which tumors were palpable 7 days after injection. On the eighth day, the mice were divided into 4 groups and tubefed daily with vehicle, Free Wanderer Powder (逍遙散 xiāo yáo sǎn) formula or tamoxifen for 28 days. Tumor growth inhibition and the decrease of the average tumor mass were most evident in mice treated with Free Wanderer Powder (逍遙散 xiāo yáo sǎn). Free Wanderer Powder (逍遙散 xiāo yáo sǎn) treatment significantly reduced Bcl-2 and elevated Bax and p53 protein expressions in breast cancer tumor. These results were further confirmed by immunohistochemisty. Tamoxifen could decrease spleen mass and Bcl-2 protein expression, increase the Bax protein expression as well as exert uterotrophic effects by increasing uterus index and inducing the gene expressions in the uterus. Taken together, these results show that Free Wanderer Powder (逍遙散 xiāo yáo sǎn) treatment induced apoptosis at protein level and inhibited the tumor growth in 4T1-induced ovariectomized Balb/c female mice, indicating the possibility of its future use for treatment of estrogen-insensitive breast caner. PMID:24716117

  9. Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice.

    PubMed

    Klymiuk, Nikolai; van Buerck, Lelia; Bähr, Andrea; Offers, Monika; Kessler, Barbara; Wuensch, Annegret; Kurome, Mayuko; Thormann, Michael; Lochner, Katharina; Nagashima, Hiroshi; Herbach, Nadja; Wanke, Rüdiger; Seissler, Jochen; Wolf, Eckhard

    2012-06-01

    Islet transplantation is a potential treatment for type 1 diabetes, but the shortage of donor organs limits its routine application. As potential donor animals, we generated transgenic pigs expressing LEA29Y, a high-affinity variant of the T-cell costimulation inhibitor CTLA-4Ig, under the control of the porcine insulin gene promoter. Neonatal islet cell clusters (ICCs) from INSLEA29Y transgenic (LEA-tg) pigs and wild-type controls were transplanted into streptozotocin-induced hyperglycemic NOD-scid IL2Rγ(null) mice. Cloned LEA-tg pigs are healthy and exhibit a strong β-cell-specific transgene expression. LEA-tg ICCs displayed the same potential to normalize glucose homeostasis as wild-type ICCs after transplantation. After adoptive transfer of human peripheral blood mononuclear cells, transplanted LEA-tg ICCs were completely protected from rejection, whereas reoccurrence of hyperglycemia was observed in 80% of mice transplanted with wild-type ICCs. In the current study, we provide the first proof-of-principle report on transgenic pigs with β-cell-specific expression of LEA29Y and their successful application as donors in a xenotransplantation model. This approach may represent a major step toward the development of a novel strategy for pig-to-human islet transplantation without side effects of systemic immunosuppression.

  10. Oxidative stress response in SH-SY5Y cells exposed to short-term 1800 MHz radiofrequency radiation.

    PubMed

    Marjanovic Cermak, Ana Marija; Pavicic, Ivan; Trosic, Ivancica

    2018-01-28

    The exact mechanism that could explain the effects of radiofrequency (RF) radiation exposure at non-thermal level is still unknown. Increasing evidence suggests a possible involvement of reactive oxygen species (ROS) and development of oxidative stress. To test the proposed hypothesis, human neuroblastoma cells (SH-SY5Y) were exposed to 1800 MHz short-term RF exposure for 10, 30 and 60 minutes. Electric field strength within Gigahertz Transverse Electromagnetic cell (GTEM) was 30 V m -1 and specific absorption rate (SAR) was calculated to be 1.6 W kg -1 . Cellular viability was measured by MTT assay and level of ROS was determined by fluorescent probe 2',7'-dichlorofluorescin diacetate. Concentrations of malondialdehyde and protein carbonyls were used to assess lipid and protein oxidative damage and antioxidant activity was evaluated by measuring concentrations of total glutathione (GSH). After radiation exposure, viability of irradiated cells remained within normal physiological values. Significantly higher ROS level was observed for every radiation exposure time. After 60 min of exposure, the applied radiation caused significant lipid and protein damage. The highest GSH concentration was detected after 10 minute-exposure. The results of our study showed enhanced susceptibility of SH-SY5Y cells for development of oxidative stress even after short-term RF exposure.

  11. Synthesis of [(Ca1-xSrx)2-2y](Ti2-2yLi2y)Si2yO6-y Ceramic and its Application in Efficient Plasma Decomposition of CO2

    NASA Astrophysics Data System (ADS)

    Li, Ruixing; Tang, Qing; Yin, Shu; Sato, Tsugio

    According to both the first principle and materials chemistry, a method for fabricating [(Ca1-xSrx)2-2y](Ti2-2yLi2y)Si2yO6-y ceramic was investigated. It was considered that the sintering was promoted by self-accelerated diffusion due to the formation of point defects caused by doping with Li2Si2O5. Consequently, a concept of non-stoichiometrically activated sintering, which was enhanced by point defects without the help of a grain boundary phase, was systematically studied in the Ca1-xSrxTiO3-Li2Si2O5 system. The mechanical and dielectric properties of [(Ca1-xSrx)2-2y](Ti2-2yLi2y)Si2yO6-y were greatly enhanced by adding Li2Si2O5. To improve CO2 decomposition activity, [(Ca1-xSrx)2-2y](Ti2-2yLi2y)Si2yO6-y, which possesses both high permittivity and high dielectric strength was used as a dielectric barrier to decompose CO2 by dielectric barrier discharges (DBDs) plasma without using any catalyst and auxiliary substance. It successfully generated DBDs plasma and the CO2 conversion was much higher than that using an alumina or a silica glass barrier which was widely used as the dielectric barrier in previous studies.

  12. Calcium signaling properties of a thyrotroph cell line, mouse TαT1 cells.

    PubMed

    Tomić, Melanija; Bargi-Souza, Paula; Leiva-Salcedo, Elias; Nunes, Maria Tereza; Stojilkovic, Stanko S

    2015-12-01

    TαT1 cells are mouse thyrotroph cell line frequently used for studies on thyroid-stimulating hormone beta subunit gene expression and other cellular functions. Here we have characterized calcium-signaling pathways in TαT1 cells, an issue not previously addressed in these cells and incompletely described in native thyrotrophs. TαT1 cells are excitable and fire action potentials spontaneously and in response to application of thyrotropin-releasing hormone (TRH), the native hypothalamic agonist for thyrotrophs. Spontaneous electrical activity is coupled to small amplitude fluctuations in intracellular calcium, whereas TRH stimulates both calcium mobilization from intracellular pools and calcium influx. Non-receptor-mediated depletion of intracellular pool also leads to a prominent facilitation of calcium influx. Both receptor and non-receptor stimulated calcium influx is substantially attenuated but not completely abolished by inhibition of voltage-gated calcium channels, suggesting that depletion of intracellular calcium pool in these cells provides a signal for both voltage-independent and -dependent calcium influx, the latter by facilitating the pacemaking activity. These cells also express purinergic P2Y1 receptors and their activation by extracellular ATP mimics TRH action on calcium mobilization and influx. The thyroid hormone triiodothyronine prolongs duration of TRH-induced calcium spikes during 30-min exposure. These data indicate that TαT1 cells are capable of responding to natively feed-forward TRH signaling and intrapituitary ATP signaling with acute calcium mobilization and sustained calcium influx. Amplification of TRH-induced calcium signaling by triiodothyronine further suggests the existence of a pathway for positive feedback effects of thyroid hormones probably in a non-genomic manner. Published by Elsevier Ltd.

  13. In-plane/out-of-plane disorder influence on the magnetic anisotropy of Fe{sub 1y}Mn{sub y}Pt-L1{sub 0} bulk alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuadrado, R.; Catalan Institute of Nanoscience and Nanotechnology; Liu, Kai

    2016-03-21

    The random substitution of a non-magnetic species instead of Fe atoms in FePt-L1{sub 0} bulk alloy will permit to tune the magnetic anisotropy energy of this material. We have performed by means of first principles calculations a study of Fe{sub 1y}Mn{sub y}Pt-L1{sub 0} (y = 0.0, 0.08, 0.12, 0.17, 0.22, and 0.25) bulk alloy for a fixed Pt concentration when the Mn species have ferro-/antiferromagnetic (FM,AFM) alignment at the same(different) atomic plane(s). This substitution will promote several in-plane lattice values for a fixed amount of Mn. Charge hybridization will change compared to the FePt-L1{sub 0} bulk due to this lattice variation leadingmore » to a site resolved magnetic moment modification. We demonstrate that this translates into a total magnetic anisotropy reduction for the AFM phase and an enhancement for the FM alignment. Several geometric configurations were taken into account for a fixed Mn concentration because of different possible Mn positions in the simulation cell.« less

  14. IL-17 Contributes to Cell-Mediated Defense against Pulmonary Yersinia pestis Infection1

    PubMed Central

    Lin, Jr-Shiuan; Kummer, Lawrence W.; Szaba, Frank M.; Smiley, Stephen T.

    2010-01-01

    Pneumonic plague is one of the world’s most deadly infectious diseases. The causative bacterium, Yersinia pestis, has the potential to be exploited as a biological weapon and no vaccine is available. Vaccinating B cell-deficient mice with D27-pLpxL, a live attenuated Y. pestis strain, induces cell-mediated protection against lethal pulmonary Y. pestis challenge. Here we demonstrate that prime/boost vaccination with D27-pLpxL confers better protection than prime-only vaccination. The improved survival does not result from enhanced bacterial clearance, but is associated with increased levels of IL-17 mRNA and protein in the lungs of challenged mice. The boost also increases pulmonary numbers of IL-17-producing CD4 T cells. Interestingly, the vast majority of these cells simultaneously produce canonical type 1 and type 17 cytokines; most produce IL-17 and TNFα, and many produce IL-17, TNFα and IFNγ. Neutralizing IL-17 counteracts the improved survival associated with prime/boost vaccination without significantly impacting bacterial burden. Thus, IL-17 appears to mediate the enhanced protection conferred by booster immunization. Although neutralizing IL-17 significantly reduces neutrophil recruitment to the lungs of mice challenged with Y. pestis, this impact is equally evident in mice that receive one or two immunizations with D27-pLpxL, suggesting it cannot suffice to account for the improved survival that results from booster immunization. We conclude that IL-17 plays a yet to be identified role in host defense that enhances protection against pulmonary Y. pestis challenge, and we suggest that pneumonic plague vaccines should aim to induce mixed type 1 and type 17 cellular responses. PMID:21172869

  15. Engineering of Bacteriophages Y2::dpoL1-C and Y2::luxAB for Efficient Control and Rapid Detection of the Fire Blight Pathogen, Erwinia amylovora.

    PubMed

    Born, Yannick; Fieseler, Lars; Thöny, Valentin; Leimer, Nadja; Duffy, Brion; Loessner, Martin J

    2017-06-15

    Erwinia amylovora is the causative agent of fire blight, a devastating plant disease affecting members of the Rosaceae Alternatives to antibiotics for control of fire blight symptoms and outbreaks are highly desirable, due to increasing drug resistance and tight regulatory restrictions. Moreover, the available diagnostic methods either lack sensitivity, lack speed, or are unable to discriminate between live and dead bacteria. Owing to their extreme biological specificity, bacteriophages are promising alternatives for both aims. In this study, the virulent broad-host-range E. amylovora virus Y2 was engineered to enhance its killing activity and for use as a luciferase reporter phage, respectively. Toward these aims, a depolymerase gene of E. amylovora virus L1 ( dpoL1-C ) or a bacterial luxAB fusion was introduced into the genome of Y2 by homologous recombination. The genes were placed downstream of the major capsid protein orf68 , under the control of the native promoter. The modifications did not affect viability of infectivity of the recombinant viruses. Phage Y2:: dpoL1-C demonstrated synergistic activity between the depolymerase degrading the exopolysaccharide capsule and phage infection, which greatly enhanced bacterial killing. It also significantly reduced the ability of E. amylovora to colonize the surface of detached flowers. The reporter phage Y2:: luxAB transduced bacterial luciferase into host cells and induced synthesis of large amounts of a LuxAB luciferase fusion. After the addition of aldehyde substrate, bioluminescence could be readily monitored, and this enabled rapid and specific detection of low numbers of viable bacteria, without enrichment, both in vitro and in plant material. IMPORTANCE Fire blight, caused by Erwinia amylovora , is the major threat to global pome fruit production, with high economic losses every year. Bacteriophages represent promising alternatives to not only control the disease, but also for rapid diagnostics. To enhance

  16. Engineering of Bacteriophages Y2::dpoL1-C and Y2::luxAB for Efficient Control and Rapid Detection of the Fire Blight Pathogen, Erwinia amylovora

    PubMed Central

    Born, Yannick; Fieseler, Lars; Thöny, Valentin; Leimer, Nadja; Duffy, Brion

    2017-01-01

    ABSTRACT Erwinia amylovora is the causative agent of fire blight, a devastating plant disease affecting members of the Rosaceae. Alternatives to antibiotics for control of fire blight symptoms and outbreaks are highly desirable, due to increasing drug resistance and tight regulatory restrictions. Moreover, the available diagnostic methods either lack sensitivity, lack speed, or are unable to discriminate between live and dead bacteria. Owing to their extreme biological specificity, bacteriophages are promising alternatives for both aims. In this study, the virulent broad-host-range E. amylovora virus Y2 was engineered to enhance its killing activity and for use as a luciferase reporter phage, respectively. Toward these aims, a depolymerase gene of E. amylovora virus L1 (dpoL1-C) or a bacterial luxAB fusion was introduced into the genome of Y2 by homologous recombination. The genes were placed downstream of the major capsid protein orf68, under the control of the native promoter. The modifications did not affect viability of infectivity of the recombinant viruses. Phage Y2::dpoL1-C demonstrated synergistic activity between the depolymerase degrading the exopolysaccharide capsule and phage infection, which greatly enhanced bacterial killing. It also significantly reduced the ability of E. amylovora to colonize the surface of detached flowers. The reporter phage Y2::luxAB transduced bacterial luciferase into host cells and induced synthesis of large amounts of a LuxAB luciferase fusion. After the addition of aldehyde substrate, bioluminescence could be readily monitored, and this enabled rapid and specific detection of low numbers of viable bacteria, without enrichment, both in vitro and in plant material. IMPORTANCE Fire blight, caused by Erwinia amylovora, is the major threat to global pome fruit production, with high economic losses every year. Bacteriophages represent promising alternatives to not only control the disease, but also for rapid diagnostics. To

  17. Thermoelectric properties of p-type Ag{sub 1−x}(Pb{sub 1y}Sn{sub y}){sub m}Sb{sub 1−z}Te{sub m+2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Kyunghan; Center for Nanoparticle Research, Institute for Basic Science,; Kong, Huijun

    The thermoelectric properties of Ag{sub 1−x}(Pb{sub 1y}Sn{sub y}){sub m}Sb{sub 1−z}Te{sub m+2} (4≤m≤16, −0.1≤x≤0.3, 1/3≤y≤2/3, 0.2≤z≤0.4; Lead Antimony Silver Tellurium Tin, LASTT-m) compositions were investigated in the temperature range of 300 to ~670 K. All samples crystallize in the average NaCl-type structure without any noticeable second phase and exhibit very narrow bandgaps of <0.1 eV. We studied a range of m values, silver concentrations (x), Pb/Sn ratios (y), and antimony concentrations (z) to determine their effects on the thermoelectric properties. The samples were investigated as melt grown polycrystalline ingots. Varying the Ag contents, the Pb/Sn ratios, and the Sb contents off-stoichiometrymore » allowed us to control the electrical conductivity, the Seebeck coefficient, and the thermal conductivity. The electrical conductivity tends to decrease with decreasing m values. The highest ZT of ~1.1 was achieved at ~660 K for Ag{sub 0.9}Pb{sub 5}Sn{sub 5}Sb{sub 0.8}Te{sub 12} mainly due to the very low lattice thermal conductivity of ~0.4 W/(m K) around 660 K. Also, samples with charge-balanced stoichiometries, Ag(Pb{sub 1y}Sn{sub y}){sub m}SbTe{sub m+2}, were studied and found to exhibit a lower power factor and higher lattice thermal conductivity than the Ag{sub 1−x}(Pb{sub 1y}Sn{sub y}){sub m}Sb{sub 1−z}Te{sub m+2} compositions. - Graphical abstract: The Ag{sub 1−x}(Pb{sub 1y}Sn{sub y}){sub m}Sb{sub 1−z}Te{sub m+2} system defines a complex and flexible class of tunable thermoelectric class of materials with high performance.« less

  18. Carbon monoxide derived from heme oxygenase-2 mediates reduction of methylmercury toxicity in SH-SY5Y cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyama, Takashi; Research Fellow of the Japan Society for the Promotion of Science; Shinkai, Yasuhiro

    2010-11-15

    We examined the contribution of carbon monoxide (CO), an enzymatic product of heme oxygenase (HO), to methylmercury (MeHg) cytotoxicity in SH-SY5Y cells, because this gas molecule is reported to activate Nrf2, which plays a protective role against MeHg-mediated cell damage. Exposure of SH-SY5Y cells to CO gas resulted in protection against MeHg cytotoxicity, with activation of Nrf2. Interestingly, pretreatment with tin-protoporphyrin IX, a specific inhibitor of HO, caused a reduction in basal Nrf2 activity and thus enhanced sensitivity to MeHg. No induction of isoform 1 of HO (HO-1) was seen during MeHg exposure, but constitutive expression of isoform 2 (HO-2)more » occurred, suggesting that CO produced by HO-2 is the main participant in the protection against MeHg toxicity. Studies of small interfering RNA-mediated knockdown of HO-2 in the cells supported this possibility. Our results suggest that CO gas and its producing enzyme HO-2 are key molecules in cellular protection against MeHg, presumably through basal activation of Nrf2.« less

  19. Inverse agonism at the P2Y12 receptor and ENT1 transporter blockade contribute to platelet inhibition by ticagrelor.

    PubMed

    Aungraheeta, Riyaad; Conibear, Alexandra; Butler, Mark; Kelly, Eamonn; Nylander, Sven; Mumford, Andrew; Mundell, Stuart J

    2016-12-08

    Ticagrelor is a potent antagonist of the P2Y 12 receptor (P2Y 12 R) and consequently an inhibitor of platelet activity effective in the treatment of atherothrombosis. Here, we sought to further characterize its molecular mechanism of action. Initial studies showed that ticagrelor promoted a greater inhibition of adenosine 5'-diphosphate (ADP)-induced Ca 2+ release in washed platelets vs other P2Y 12 R antagonists. This additional effect of ticagrelor beyond P2Y 12 R antagonism was in part as a consequence of ticagrelor inhibiting the equilibrative nucleoside transporter 1 (ENT1) on platelets, leading to accumulation of extracellular adenosine and activation of G s -coupled adenosine A 2A receptors. This contributed to an increase in basal cyclic adenosine monophosphate (cAMP) and vasodilator-stimulated phosphoprotein phosphorylation (VASP-P). In addition, ticagrelor increased platelet cAMP and VASP-P in the absence of ADP in an adenosine receptor-independent manner. We hypothesized that this increase originated from a direct effect on basal agonist-independent P2Y 12 R signaling, and this was validated in 1321N1 cells stably transfected with human P2Y 12 R. In these cells, ticagrelor blocked the constitutive agonist-independent activity of the P2Y 12 R, limiting basal G i -coupled signaling and thereby increasing cAMP levels. These data suggest that ticagrelor has the pharmacological profile of an inverse agonist. Based on our results showing insurmountable inhibition of ADP-induced Ca 2+ release and forskolin-induced cAMP, the mode of antagonism of ticagrelor also appears noncompetitive, at least functionally. In summary, our studies describe 2 novel modes of action of ticagrelor, inhibition of platelet ENT1 and inverse agonism at the P2Y 12 R that contribute to its effective inhibition of platelet activation. © 2016 by The American Society of Hematology.

  20. Purkinje Cell Protein 4 Expression Is Associated With DNA Methylation Status in Aldosterone-Producing Adenoma.

    PubMed

    Kobuke, Kazuhiro; Oki, Kenji; Gomez-Sanchez, Celso E; Ohno, Haruya; Itcho, Kiyotaka; Yoshii, Yoko; Yoneda, Masayasu; Hattori, Noboru

    2018-03-01

    Aldosterone production is stimulated by activation of calcium signaling in aldosterone-producing adenomas (APAs), and epigenetic factors such as DNA methylation may be associated with the expression of genes involved in aldosterone regulation. Our aim was to investigate the DNA methylation of genes related to calcium signaling cascades in APAs and the association of mutations in genes linked to APAs with DNA methylation levels. Nonfunctioning adrenocortical adenoma (n = 12) and APA (n = 35) samples were analyzed. The KCNJ5 T158A mutation was introduced into human adrenocortical cell lines (HAC15 cells) using lentiviral delivery. DNA methylation array analysis was conducted using adrenal tumor samples and HAC15 cells. The Purkinje cell protein 4 (PCP4) gene was one of the most hypomethylated in APAs. DNA methylation levels in two sites of PCP4 showed a significant inverse correlation with messenger RNA expression in adrenal tumors. Bioinformatics and multiple regression analysis revealed that CCAAT/enhancer binding protein alpha (CEBPA) may bind to the methylation site of the PCP4 promoter. According to chromatin immunoprecipitation assay, CEBPA was bound to the PCP4 hypomethylated region by chromatin immunoprecipitation assay. There were no significant differences in PCP4 methylation levels among APA genotypes. Moreover, KCNJ5 T158A did not influence PCP4 methylation levels in HAC15 cells. We showed that the PCP4 promoter was one of the most hypomethylated in APAs and that PCP4 transcription may be associated with demethylation as well as with CEBPA in APAs. KCNJ5 mutations known to result in aldosterone overproduction were not related to PCP4 methylation in either clinical or in vitro studies.

  1. Dysregulation of Aldosterone Secretion in Mast Cell-Deficient Mice.

    PubMed

    Boyer, Hadrien-Gaël; Wils, Julien; Renouf, Sylvie; Arabo, Arnaud; Duparc, Céline; Boutelet, Isabelle; Lefebvre, Hervé; Louiset, Estelle

    2017-12-01

    Resident adrenal mast cells have been shown to activate aldosterone secretion in rat and man. Especially, mast cell proliferation has been observed in adrenal tissues from patients with aldosterone-producing adrenocortical adenoma. In the present study, we show that the activity of adrenal mast cells is stimulated by low-sodium diet and correlates with aldosterone synthesis in C57BL/6 and BALB/c mice. We have also investigated the regulation of aldosterone secretion in mast cell-deficient C57BL/6 Kit W-sh/W-sh mice in comparison with wild-type C57BL/6 mice. Kit W-sh/W-sh mice submitted to normal sodium diet had basal plasma aldosterone levels similar to those observed in wild-type animals. Conversely, low-sodium diet unexpectedly induced an exaggerated aldosterone response, which seemed to result from an increase in adrenal renin and angiotensin type 1 receptor expression. Severe hyperaldosteronism was associated with an increase in systolic blood pressure and marked hypokalemia, which favored polyuria. Adrenal renin and angiotensin type 1 receptor overexpression may represent a compensatory mechanism aimed at activating aldosterone production in the absence of mast cells. Finally, C57BL/6 Kit W-sh/W-sh mice represent an unexpected animal model of primary aldosteronism, which has the particularity to be triggered by sodium restriction. © 2017 American Heart Association, Inc.

  2. Isodicentric Y mosaicism involving a 46, XX cell line: Implications for management.

    PubMed

    Hipp, Lauren E; Mohnach, Lauren H; Wei, Sainan; Thomas, Inas H; Elhassan, Maha E; Sandberg, David E; Quint, Elisabeth H; Keegan, Catherine E

    2016-01-01

    Carriers of isodicentric Y (idicY) mosaicism exhibit a wide range of clinical features, including short stature, gonadal abnormalities, and external genital anomalies. However, the phenotypic spectrum for individuals carrying an idicY and a 46, XX cell line is less clearly defined. A more complete description of the phenotype related to idicY is thus essential to guide management related to pubertal development, fertility, and gonadoblastoma risk in mosaic carriers. Findings from the evaluation of twin females with an abnormal karyotype, 48, XX, +idic(Yq) x2/47, XX, +idic(Yq)/46, XX, are presented to highlight the importance of interdisciplinary care in the management of multifaceted disorders of sex development. © 2015 Wiley Periodicals, Inc.

  3. Fuel Cell Measurements with Cathode Catalysts of Sputtered Pt3 Y Thin Films.

    PubMed

    Lindahl, Niklas; Eriksson, Björn; Grönbeck, Henrik; Lindström, Rakel Wreland; Lindbergh, Göran; Lagergren, Carina; Wickman, Björn

    2018-05-09

    Fuel cells are foreseen to have an important role in sustainable energy systems, provided that catalysts with higher activity and stability are developed. In this study, highly active sputtered thin films of platinum alloyed with yttrium (Pt 3 Y) are deposited on commercial gas diffusion layers and their performance in a proton exchange membrane fuel cell is measured. After acid pretreatment, the alloy is found to have up to 2.5 times higher specific activity than pure platinum. The performance of Pt 3 Y is much higher than that of pure Pt, even if all of the alloying element was leached out from parts of the thin metal film on the porous support. This indicates that an even higher performance is expected if the structure of the Pt 3 Y catalyst or the support could be further improved. The results show that platinum alloyed with rare earth metals can be used as highly active cathode catalyst materials, and significantly reduce the amount of platinum needed, in real fuel cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cation and Vacancy Disorder in U 1-yNd yO 2.00-X Alloys

    DOE PAGES

    Barabash, Rozaliya I.; Voit, Stewart L.; Aidhy, Dilpuneet S.; ...

    2015-09-14

    In this study, the intermixing and clustering of U/Nd, O, and vacancies were studied by both laboratory and synchrotron-based x-ray diffraction in U 1-yNd yO 2-X alloys. It was found that an increased holding time at the high experimental temperature during initial alloy preparation results in a lower disorder of the Nd distribution in the alloys. Adjustment of the oxygen concentration in the U 1-yNd yO 2-X alloys with different Nd concentrations was accompanied by the formation of vacancies on the oxygen sublattice and a nanocrystalline component. The lattice parameters in the U 1-yNd yO 2-X alloys were also foundmore » to deviate significantly from Vegard's law when the Nd concentration was high (53%) and decreased with increasing oxygen concentration. Such changes indicate the formation of large vacancy concentrations during oxygen adjustment at these high temperatures. Finally, the change in the vacancy concentration after the oxygen adjustment was estimated relative to Nd concentration and oxygen stoichiometry.« less

  5. Pancreatic Beta Cells Synthesize Neuropeptide Y and Can Rapidly Release Peptide Co-Transmitters

    PubMed Central

    Whim, Matthew D.

    2011-01-01

    Background In addition to polypeptide hormones, pancreatic endocrine cells synthesize a variety of bioactive molecules including classical transmitters and neuropeptides. While these co-transmitters are thought to play a role in regulating hormone release little is known about how their secretion is regulated. Here I investigate the synthesis and release of neuropeptide Y from pancreatic beta cells. Methodology/Principal Findings NPY appears to be an authentic co-transmitter in neonatal, but not adult, beta cells because (1) early in mouse post-natal development, many beta cells are NPY-immunoreactive whereas no staining is observed in beta cells from NPY knockout mice; (2) GFP-expressing islet cells from an NPY(GFP) transgenic mouse are insulin-ir; (3) single cell RT-PCR experiments confirm that the NPY(GFP) cells contain insulin mRNA, a marker of beta cells. The NPY-immunoreactivity previously reported in alpha and delta cells is therefore likely to be due to the presence of NPY-related peptides. INS-1 cells, a beta cell line, are also NPY-ir and contain NPY mRNA. Using the FMRFamide tagging technique, NPY secretion was monitored from INS-1 beta cells with high temporal resolution. Peptide release was evoked by brief depolarizations and was potentiated by activators of adenylate cyclase and protein kinase A. Following a transient depolarization, NPY-containing dense core granules fused with the cell membrane and discharged their contents within a few milliseconds. Conclusions These results indicate that after birth, NPY expression in pancreatic islets is restricted to neonatal beta cells. The presence of NPY suggests that peptide co-transmitters could mediate rapid paracrine or autocrine signaling within the endocrine pancreas. The FMRFamide tagging technique may be useful in studying the release of other putative islet co-transmitters in real time. PMID:21559341

  6. Stability of Cd 1–xZn xO yS 1y Quaternary Alloys Assessed with First-Principles Calculations

    DOE PAGES

    Varley, Joel B.; He, Xiaoqing; Rockett, Angus; ...

    2017-02-08

    One route to decreasing the absorption in CdS buffer layers in Cu(In,Ga)Se 2 and Cu 2ZnSn(S,Se) 4 thin-film photovoltaics is by alloying. Here we use first-principles calculations based on hybrid functionals to assess the energetics and stability of quaternary Cd, Zn, O, and S (Cd 1–xZn xO yS 1y) alloys within a regular solution model. Our results identify that full miscibility of most Cd 1–xZn xO yS 1y compositions and even binaries like Zn(O,S) is outside typical photovoltaic processing conditions. Finally, the results suggest that the tendency for phase separation of the oxysulfides may drive the nucleation of other phasesmore » such as sulfates that have been increasingly observed in oxygenated CdS and ZnS.« less

  7. Stability of Cd 1–xZn xO yS 1y Quaternary Alloys Assessed with First-Principles Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varley, Joel B.; He, Xiaoqing; Rockett, Angus

    One route to decreasing the absorption in CdS buffer layers in Cu(In,Ga)Se 2 and Cu 2ZnSn(S,Se) 4 thin-film photovoltaics is by alloying. Here we use first-principles calculations based on hybrid functionals to assess the energetics and stability of quaternary Cd, Zn, O, and S (Cd 1–xZn xO yS 1y) alloys within a regular solution model. Our results identify that full miscibility of most Cd 1–xZn xO yS 1y compositions and even binaries like Zn(O,S) is outside typical photovoltaic processing conditions. Finally, the results suggest that the tendency for phase separation of the oxysulfides may drive the nucleation of other phasesmore » such as sulfates that have been increasingly observed in oxygenated CdS and ZnS.« less

  8. Palmitic acid induces neurotoxicity and gliatoxicity in SH-SY5Y human neuroblastoma and T98G human glioblastoma cells.

    PubMed

    Ng, Yee-Wen; Say, Yee-How

    2018-01-01

    cytometry analysis revealed PA-induced increase in percentages of cells in annexin V-positive/PI-negative quadrant (early apoptosis) and subG 0 -G 1 fraction, accompanied by a decrease in G 2 -M phase cells. The PA-induced ROS production and lipid peroxidation was at greater extent in T98G as compared to that in SH-SY5Y. In conclusion, PA induces apoptosis by increasing oxidative stress in neurons and astrocytes. Taken together, the results suggest that HFD may cause neuronal and astrocytic damage, which indirectly proposes that CNS pathologies involving neuroinflammation and reactive gliosis could be prevented via the diet regimen.

  9. Single crystal growth and structural evolution across the 1st order valence transition in (Pr 1yY y) 1–xCa xCoO 3-δ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiber, N. J.; Zhang, Junjie; Zheng, Hong

    Here, praseodymium-containing cobalt perovskites, such as (Pr 1-yY y) 1-xCa xCoO 3-δ, have been argued to undergo a first-order charge shift between Pr and hybridized Co-O orbitals that leads to a metal-insulator transition at a temperature, T VT. Magnetization and x-ray absorption spectroscopy measurements on single crystals of (Pr 0.85Y 0.15) 0.7Ca 0.3CoO 3-δ grown in an IR image furnace under 40-60 bar of oxygen confirm the presence of this valence transition. Single crystal x-ray synchrotron diffraction measurements are consistent with an isomorphic phase transition at T VT. No evidence of charge ordering was revealed by the single crystal diffraction.more » Dissimilar to analytical transmission electron microscopy measurements performed on a grain from a polycrystalline sample that revealed an oxygen vacancy order-disorder transition at T VT, the present single-crystal measurements did not evidence such a transition, likely reflecting a lower density of oxygen vacancies in the high-pO 2 grown single crystals.« less

  10. Single crystal growth and structural evolution across the 1st order valence transition in (Pr 1yY y) 1–xCa xCoO 3-δ

    DOE PAGES

    Schreiber, N. J.; Zhang, Junjie; Zheng, Hong; ...

    2017-06-27

    Here, praseodymium-containing cobalt perovskites, such as (Pr 1-yY y) 1-xCa xCoO 3-δ, have been argued to undergo a first-order charge shift between Pr and hybridized Co-O orbitals that leads to a metal-insulator transition at a temperature, T VT. Magnetization and x-ray absorption spectroscopy measurements on single crystals of (Pr 0.85Y 0.15) 0.7Ca 0.3CoO 3-δ grown in an IR image furnace under 40-60 bar of oxygen confirm the presence of this valence transition. Single crystal x-ray synchrotron diffraction measurements are consistent with an isomorphic phase transition at T VT. No evidence of charge ordering was revealed by the single crystal diffraction.more » Dissimilar to analytical transmission electron microscopy measurements performed on a grain from a polycrystalline sample that revealed an oxygen vacancy order-disorder transition at T VT, the present single-crystal measurements did not evidence such a transition, likely reflecting a lower density of oxygen vacancies in the high-pO 2 grown single crystals.« less

  11. Antihypoxic effect of miR-24 in SH-SY5Y cells under hypoxia via downregulating expression of neurocan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xingyuan, E-mail: sunxingyuan@sina.com; Ren, Zhanjun; Pan, Yunzhi

    Hypoxia-induced apoptosis-related mechanisms involved in the brain damage following cerebral ischemia injury. A subset of the small noncoding microRNA (miRNAs) is regulated by tissue oxygen levels, and miR-24 was found to be activated by hypoxic conditions. However, the roles of miR-24 and its target gene in neuron are not well understood. Here, we validated miRNA-24 is down-regulated in patients with cerebral infarction. Hypoxia suppressed the expression of miR-24, but increased the expression of neurocan in both mRNA and protein levels in SH-SY5Y cells. MiR-24 mimics reduced the expression of neurocan, suppressed cell apoptosis, induced cell cycle progression and cell proliferationmore » in SH-SY5Y cells under hypoxia. By luciferase reporter assay, neurocan is validated a direct target gene of miR-24. Furthermore, knockdown of neurocan suppressed cell apoptosis, induced cell cycle progression and cell proliferation in SH-SY5Y cells under hypoxia. Taken together, miR-24 overexpression or silencing of neurocan shows an antihypoxic effect in SH-SY5Y cells. Therefore, miR-24 and neurocan play critical roles in neuron cell apoptosis and are potential therapeutic targets for ischemic brain disease. - Highlights: • miR-24 and neurocan play critical roles in neuron cell apoptosis. • miR-24 and neurocan are potential therapeutic targets for ischemic brain disease. • Antihypoxic effect of miR-24 and neurocan in SH-SY5Y cells.« less

  12. Efficient generation of biliary epithelial cells from rabbit intrahepatic bile duct by Y-27632 and Matrigel.

    PubMed

    Jin, Lifang; Ji, Shaohui; Sun, Aijing

    2013-06-01

    Efficient culture of primary biliary epithelial cells (BECs) from adult liver is useful for both experimental studies and clinical applications of tissue engineering. However, an effective culture system for long-term proliferation of adult BECs is still unachieved. Laboratory rabbit has been used in a large number of studies; however, there are no reports of BECs from normal adult rabbit. As little as 5 g of normal rabbit liver tissue were minced, digested, and then clonally cultured in medium containing FBS and ITS. Cells were characterized by cell morphology, immunoassaying, and growth rate assay. Different combination of growth factors and substrates, including Y-27632 and Matrigel, were employed to assess their effect on cell proliferation. In the primary culture, the BECs cellular sheets consisting of cuboidal cells, as well as fibroblast-like cells and other hepatic cells, emerged with time of culture. The BECs cellular sheets were then manually split into cells clumps for further characterization. The subcultured cells had typical cell morphology of cholangiocytes, expressed the specific markers of BECs, including GGT, cytokeratin (CK18), and CK19, and possessed the capacity to form duct-like structure in three-dimensional Matrigel. Y-27632 and Matrigel-treated BECs had a steady growth rate as well as colony-formation capacity. The BECs were maintained in Y-27632 and Matrigel culture system for more than 3 mo. This is the first example, to our knowledge, of the successful culture of BECs from normal adult rabbit liver. Furthermore, our results indicate that treatment of BECs with Y-27632 and Matrigel is a simple method for efficient output of BECs.

  13. Agonist and antagonist effects of diadenosine tetraphosphate, a platelet dense granule constituent, on platelet P2Y1, P2Y12 and P2X1 receptors.

    PubMed

    Chang, Hung; Yanachkov, Ivan B; Michelson, Alan D; Li, YouFu; Barnard, M R; Wright, George E; Frelinger, Andrew L

    2010-02-01

    Diadenosine 5',5'''-P(1),P(4)- tetraphosphate (Ap(4)A) is stored in platelet dense granules, but its effects on platelet function are not well understood. We examined the effects of Ap(4)A on platelet purinergic receptors P2Y(1), P2Y(12) and P2X(1). Flow cytometry was used to measure the effects of Ap(4)A in the presence or absence of ADP on: a) P2Y(12)-mediated decrease in intraplatelet phosphorylated vasodilator stimulated phosphoprotein (VASP), b) P2Y(1)-mediated increase in platelet cytosolic Ca(2+), and c) P2X(1)-mediated intraplatelet entry of extracellular Ca(2+). ADP-stimulated platelet shape change (P2Y(1)-mediated) and aggregation (P2Y(1)- and P2Y(12)-mediated) were measured optically. Ap(4)A inhibited 3 microM ADP-induced: a) platelet aggregation (IC(50) 9.8+/-2.8 microM), b) P2Y(1)-mediated shape change, c) P2Y(1)-mediated increase in platelet cytosolic Ca(2+) (IC(50) 40.8+/-12.3 microM), and d) P2Y(12)-mediated decrease in VASP phosphorylation (IC(50)>250 microM). In the absence of added ADP, Ap(4)A had agonist effects on platelet P2X(1) and P2Y(12), but not P2Y(1), receptors. Ap(4)A, a constituent of platelet dense granules, is a) an antagonist of platelet P2Y(1) and P2Y(12) receptors, where it inhibits the effects of ADP, and b) an agonist of platelet P2X(1) and P2Y(12) receptors. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Agonist and Antagonist Effects of Diadenosine Tetraphosphate, a Platelet Dense Granule Constituent, on Platelet P2Y1, P2Y12 and P2X1 Receptors

    PubMed Central

    Chang, Hung; Yanachkov, Ivan B.; Michelson, Alan D.; Li, YouFu; Barnard, M.R.; Wright, George E.; Frelinger, Andrew L.

    2010-01-01

    Introduction Diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) is stored in platelet dense granules, but its effects on platelet function are not well understood. Methods and Results We examined the effects of Ap4A on platelet purinergic receptors P2Y1, P2Y12 and P2X1. Flow cytometry was used to measure the effects of Ap4A in the presence or absence of ADP on: a) P2Y12-mediated decrease in intraplatelet phosphorylated vasodilator stimulated phosphoprotein (VASP), b) P2Y1-mediated increase in platelet cytosolic Ca2+, and c) P2X1-mediated intraplatelet entry of extracellular Ca2+. ADP-stimulated platelet shape change (P2Y1-mediated) and aggregation (P2Y1- and P2Y12-mediated) were measured optically. Ap4A inhibited 3 µM ADP-induced: a) platelet aggregation (IC50 9.8 ± 2.8 µM), b) P2Y1-mediated shape change, c) P2Y1-mediated increase in platelet cytosolic Ca2+ (IC50 40.8 ± 12.3 µM), and d) P2Y12-mediated decrease in VASP phosphorylation (IC50 >250 µM). In the absence of added ADP, Ap4A had agonist effects on platelet P2X1 and P2Y12, but not P2Y1, receptors. Conclusion Ap4A, a constituent of platelet dense granules, is a) an antagonist of platelet P2Y1 and P2Y12 receptors, where it inhibits the effects of ADP, and b) an agonist of platelet P2X1 and P2Y12 receptors. PMID:19945153

  15. Photoelectron spectroscopy and density functional theory study of TiAlO(y) (-) (y=1-3) and TiAl(2)O(y) (-) (y=2-3) clusters.

    PubMed

    Zhang, Zeng-Guang; Xu, Hong-Guang; Zhao, Yuchao; Zheng, Weijun

    2010-10-21

    Small titanium-aluminum oxide clusters, TiAlO(y) (-) (y=1-3) and TiAl(2)O(y) (-) (y=2-3), were studied by using anion photoelectron spectroscopy. The adiabatic detachment energies of TiAlO(y) (-) (y=1-3) were estimated to be 1.11±0.05, 1.70±0.08, and 2.47±0.08eV based on their photoelectron spectra; those of TiAl(2)O(2) (-) and TiAl(2)O(3) (-) were estimated to be 1.17±0.08 and 2.2±0.1eV, respectively. The structures of these clusters were determined by comparison of density functional calculations with the experimental results. The structure of TiAlO(-) is nearly linear with the O atom in the middle. That of TiAlO(2) (-) is a kite-shaped structure. TiAlO(3) (-) has a kite-shaped TiAlO(2) unit with the third O atom attaching to the Ti atom. TiAl(2)O(2) (-) has two nearly degenerate Al-O-Ti-O-Al chain structures that can be considered as cis and trans forms. TiAl(2)O(3) (-) has two low-lying isomers, kite structure and book structure. The structures of these clusters indicate that the Ti atom tends to bind to more O atoms.

  16. Adenosine triphosphate induces P2Y2 activation and interleukin-8 release in human esophageal epithelial cells.

    PubMed

    Wu, Liping; Oshima, Tadayuki; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2017-07-01

    Immune-mediated mucosal inflammation characterized by the release of interleukin (IL)-8 is associated with gastroesophageal reflux disease. ATP released by human esophageal epithelial cells (HEECs) mediates the release of cytokines through P2 nucleotide receptors that are present on various cells, including HEECs. This study characterized and identified human esophageal epithelial P2 receptors that are responsible for ATP-mediated release of IL-8 by using a human esophageal stratified squamous epithelial model. Primary HEECs were cultured with the use of an air-liquid interface (ALI) system. The ATP analogue adenosine 5'-O-3-thiotriphosphate (ATP-γ-S) was added to the basolateral compartment, and IL-8 release was measured. Involvement of the P2Y2 receptor was assessed with the use of selective and non-selective receptor antagonists and a P2Y2 receptor agonist. Expression of the P2Y2 receptor was assessed using western blotting and immunohistochemistry. Adenosine triphosphate-γ-S induced IL-8 release through the P2Y2 receptor. A P2Y2 receptor antagonist but not a P2X3 receptor antagonist or a P2Y1 receptor antagonist blocked ATP-γ-S-mediated IL-8 release. Conversely, a P2Y2 receptor agonist induced IL-8 release. Western blotting and immunohistochemistry of the P2Y2 receptor showed strong expression of the P2Y2 receptor on ALI-cultured HEECs and in human esophagus. Inhibition of extracellular signal-regulated kinase but not of protein kinase C blocked the ATP-mediated release of IL-8. ATP-γ-S induced phosphorylation of extracellular signal-regulated kinase, and a P2Y2 receptor antagonist blocked this phosphorylation. Interleukin-8 release after purinergic stimulation in ALI-cultured HEECs is mediated through P2Y2 receptor activation. ATP-induced IL-8 release maybe involved in the pathogenesis of refractory gastroesophageal reflux disease. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  17. MutY-Homolog (MYH) inhibition reduces pancreatic cancer cell growth and increases chemosensitivity

    PubMed Central

    Sharbeen, George; Youkhana, Janet; Mawson, Amanda; McCarroll, Joshua; Nunez, Andrea; Biankin, Andrew; Johns, Amber; Goldstein, David; Phillips, Phoebe

    2017-01-01

    Patients with pancreatic ductal adenocarcinoma (PC) have a poor prognosis due to metastases and chemoresistance. PC is characterized by extensive fibrosis, which creates a hypoxic microenvironment, and leads to increased chemoresistance and intracellular oxidative stress. Thus, proteins that protect against oxidative stress are potential therapeutic targets for PC. A key protein that maintains genomic integrity against oxidative damage is MutY-Homolog (MYH). No prior studies have investigated the function of MYH in PC cells. Using siRNA, we showed that knockdown of MYH in PC cells 1) reduced PC cell proliferation and increased apoptosis; 2) further decreased PC cell growth in the presence of oxidative stress and chemotherapy agents (gemcitabine, paclitaxel and vincristine); 3) reduced PC cell metastatic potential; and 4) decreased PC tumor growth in a subcutaneous mouse model in vivo. The results from this study suggest MYH may be a novel therapeutic target for PC that could potentially improve patient outcome by reducing PC cell survival, increasing the efficacy of existing drugs and reducing metastatic spread. PMID:27999205

  18. MutY-Homolog (MYH) inhibition reduces pancreatic cancer cell growth and increases chemosensitivity.

    PubMed

    Sharbeen, George; Youkhana, Janet; Mawson, Amanda; McCarroll, Joshua; Nunez, Andrea; Biankin, Andrew; Johns, Amber; Goldstein, David; Phillips, Phoebe

    2017-02-07

    Patients with pancreatic ductal adenocarcinoma (PC) have a poor prognosis due to metastases and chemoresistance. PC is characterized by extensive fibrosis, which creates a hypoxic microenvironment, and leads to increased chemoresistance and intracellular oxidative stress. Thus, proteins that protect against oxidative stress are potential therapeutic targets for PC. A key protein that maintains genomic integrity against oxidative damage is MutY-Homolog (MYH). No prior studies have investigated the function of MYH in PC cells. Using siRNA, we showed that knockdown of MYH in PC cells 1) reduced PC cell proliferation and increased apoptosis; 2) further decreased PC cell growth in the presence of oxidative stress and chemotherapy agents (gemcitabine, paclitaxel and vincristine); 3) reduced PC cell metastatic potential; and 4) decreased PC tumor growth in a subcutaneous mouse model in vivo. The results from this study suggest MYH may be a novel therapeutic target for PC that could potentially improve patient outcome by reducing PC cell survival, increasing the efficacy of existing drugs and reducing metastatic spread.

  19. Carnosic Acid Attenuates 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells by Inducing Autophagy Through an Enhanced Interaction of Parkin and Beclin1.

    PubMed

    Lin, Chia-Yuan; Tsai, Chia-Wen

    2017-05-01

    Enhanced removal of abnormal protein aggregates or injured organelles through autophagy is related to neuroprotection in Parkinson's disease. In this study, we explored whether the induction of autophagy is associated with the neuroprotection of rosemary carnosic acid (CA) against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in SH-SY5Y cells. The results indicated that cells treated with CA had increased protein levels of parkin and autophagy-related markers, including phosphatidylinositol 3-kinase p100, Beclin1, autophagy-related gene 7, and microtubule-associated protein 1 light chain 3-II, as well as enhanced formation of autophagic vacuoles. Treatment of cells with 6-OHDA decreased the levels of parkin and the autophagy markers, but CA pretreatment reversed these effects. However, wortmannin (an autophagosome formation blocker) pretreatment attenuated the effect of CA. After CA pretreatment, the induction of cleaved caspase 3, cleaved poly-ADP ribose polymerase, and nuclear condensation by 6-OHDA were alleviated. Both wortmannin and bafilomycin A1 (an autophagosome-lysosome fusion blocker) inhibited the anti-apoptosis effects of CA. Additionally, we performed immunoprecipitation with anti-parkin antibody and found that the interaction of parkin and Beclin1 protein was reduced by 6-OHDA but that this effect was reversed in cells pretreated with CA. Moreover, transfection of parkin siRNA in cells inhibited the ability of CA to alleviate 6-OHDA-decreased autophagy-related markers and nuclear condensation. In conclusion, CA protects against 6-OHDA-induced apoptosis by inducing autophagy through the interaction of parkin and Beclin1. These results provide a future strategy for use of CA in the prevention of Parkinson's disease.

  20. Endogenous Morphine in SH-SY5Y Cells and the Mouse Cerebellum

    PubMed Central

    Taleb, Omar; Kemmel, Véronique; Laux, Alexis; Miehe, Monique; Delalande, François; Roussel, Guy; Van Dorsselaer, Alain; Metz-Boutigue, Marie-Hélène; Aunis, Dominique; Goumon, Yannick

    2008-01-01

    Background Morphine, the principal active agent in opium, is not restricted to plants, but is also present in different animal tissues and cell types, including the mammalian brain. In fact, its biosynthetic pathway has been elucidated in a human neural cell line. These data suggest a role for morphine in brain physiology (e.g., neurotransmission), but this hypothesis remains a matter of debate. Recently, using the adrenal neuroendocrine chromaffin cell model, we have shown the presence of morphine-6-glucuronide (M6G) in secretory granules and their secretion products, leading us to propose that these endogenous alkaloids might represent new neuroendocrine factors. Here, we investigate the potential function of endogenous alkaloids in the central nervous system. Methodology and Principal Findings Microscopy, molecular biology, electrophysiology, and proteomic tools were applied to human neuroblastoma SH-SY5Y cells (i) to characterize morphine and M6G, and (ii) to demonstrate the presence of the UDP-glucuronyltransferase 2B7 enzyme, which is responsible for the formation of M6G from morphine. We show that morphine is secreted in response to nicotine stimulation via a Ca2+-dependent mechanism involving specific storage and release mechanisms. We also show that morphine and M6G at concentrations as low as 10−10 M are able to evoke specific naloxone-reversible membrane currents, indicating possible autocrine/paracrine regulation in SH-SY5Y cells. Microscopy and proteomic approaches were employed to detect and quantify endogenous morphine in the mouse brain. Morphine is present in the hippocampus, cortex, olfactory bulb, and cerebellum at concentration ranging from 1.45 to 7.5 pmol/g. In the cerebellum, morphine immunoreactivity is localized to GABA basket cells and their termini, which form close contacts on Purkinje cell bodies. Conclusions/Significance The presence of morphine in the brain and its localization in particular areas lead us to conclude that it has a