Sample records for yadernoj fiziki razrabotka

  1. Bibliography of Soviet Material on Internal Waves, Number 4, January-May 1975

    DTIC Science & Technology

    1975-06-06

    kinemalo^ rafii h Zhurnal neorganicho skoy khimii Zhurnal prikladnoy khimii Zhurnal prikladnoy mekhanik, | tekhmchcskoy Zhurnal prikladnoy spoktroskopii Zhurnal tckhnicheskoy fiziki Zavodskaya laboratoriya

  2. USSR Report, Physics and Mathematics

    DTIC Science & Technology

    1985-08-20

    TEKHNICHESKIY FIZIKI, No 6(148), Nov-Dec 84) 80 Thermodynamic Potential of Quark -Antiquark Plasma in Constant Chromomagnetic Field CSh. S. Agayev... QUARK -ANTIQUARK PLASMA IN CONSTANT CHROMOMAGNETIC FIELD Tomsk IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY: FIZIKA in Russian Vol 28, No 1, Jan 85...Automation Institute; Moscow State University imeni M. V. Lomonosov [Abstract] Light-neutral quark -antiquark plasma in a constant optical magnetic

  3. Bibliography of Soviet Laser Developments, No. 21, July - September 1975

    DTIC Science & Technology

    1976-01-15

    Conference en the Physics of ^he Interaction of Optical Radiation -A/ith Condensed \\!edia, Leningrad, 12-15 November 1974. Summaries of the reports...tekhmki), 210. Institute of Physics , Siberian Branch, AN SSSR ( Institut fiziki SOAN). 211. Kalinin Polytechnic Institute (Kalininakiy...S<ale Scientif.c Research Institute of Radio (C jsudarstvennyv Nil radio), JOJ. L’vov Brancn of Msmernatical Physics of the Institute of

  4. JPRS Report, Science & Technology, USSR: Physics & Mathematics

    DTIC Science & Technology

    1987-06-17

    Manishin, G. A. Pasmanik; KVANTOVAYA ELEKTRONIKA, No 12, Dec 86) Determination of Weak Optical Absorption of Optoacoustic Method ( S . A. Vinokurov...Gorbunov, A. S . Kaminskiy; ZHURNAL EKSPERIMENTALNOY I TEORETICHESKOY FIZIKI, No 3(9),- -’"’ Sep 86) , ’.. 󈧐 ■ ■ \\ - b - Dependence of...Kokurin, N. Ye. Kuzmenko, et al.; KVANTOVAYA ELEKTRONIKA, No 12, Dec 86) 17 Kinematic Mode Locking in Continuous-Wave YAG:Nd3 Ring Laser (L. S

  5. Bibliography of Soviet Laser Developments Number 54, July-August 1981.

    DTIC Science & Technology

    1982-12-01

    441. Kotyuk, A.F., A.P. Romashkov, and N.Sh. Khaykin (0). Production of a metrologic control system for measuring pulse power. IT, no. 8, 1981, 30-31...Possibility of recording the bas!ic characteristics of a wave process by a laser strain gauge . Sb 17, 30-34. 474. Dubovoy, A.P., and V.M. Sinel’nikov (0...Yu.S. Nechayev (560). Metrological features of a laser device with a single-mirror deflecting unit. Institut fiziki vysokoy energiy. Serpukhov

  6. Nonlocal operators, parabolic-type equations, and ultrametric random walks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacón-Cortes, L. F., E-mail: fchaconc@math.cinvestav.edu.mx; Zúñiga-Galindo, W. A., E-mail: wazuniga@math.cinvestav.edu.mx

    2013-11-15

    In this article, we introduce a new type of nonlocal operators and study the Cauchy problem for certain parabolic-type pseudodifferential equations naturally associated to these operators. Some of these equations are the p-adic master equations of certain models of complex systems introduced by Avetisov, V. A. and Bikulov, A. Kh., “On the ultrametricity of the fluctuation dynamicmobility of protein molecules,” Proc. Steklov Inst. Math. 265(1), 75–81 (2009) [Tr. Mat. Inst. Steklova 265, 82–89 (2009) (Izbrannye Voprosy Matematicheskoy Fiziki i p-adicheskogo Analiza) (in Russian)]; Avetisov, V. A., Bikulov, A. Kh., and Zubarev, A. P., “First passage time distribution and the numbermore » of returns for ultrametric random walks,” J. Phys. A 42(8), 085003 (2009); Avetisov, V. A., Bikulov, A. Kh., and Osipov, V. A., “p-adic models of ultrametric diffusion in the conformational dynamics of macromolecules,” Proc. Steklov Inst. Math. 245(2), 48–57 (2004) [Tr. Mat. Inst. Steklova 245, 55–64 (2004) (Izbrannye Voprosy Matematicheskoy Fiziki i p-adicheskogo Analiza) (in Russian)]; Avetisov, V. A., Bikulov, A. Kh., and Osipov, V. A., “p-adic description of characteristic relaxation in complex systems,” J. Phys. A 36(15), 4239–4246 (2003); Avetisov, V. A., Bikulov, A. H., Kozyrev, S. V., and Osipov, V. A., “p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes,” J. Phys. A 35(2), 177–189 (2002); Avetisov, V. A., Bikulov, A. Kh., and Kozyrev, S. V., “Description of logarithmic relaxation by a model of a hierarchical random walk,” Dokl. Akad. Nauk 368(2), 164–167 (1999) (in Russian). The fundamental solutions of these parabolic-type equations are transition functions of random walks on the n-dimensional vector space over the field of p-adic numbers. We study some properties of these random walks, including the first passage time.« less

  7. Modeling and Laboratory Investigations of Radiative Shocks

    NASA Astrophysics Data System (ADS)

    Grun, Jacob; Laming, J. Martin; Manka, Charles; Moore, Christopher; Jones, Ted; Tam, Daniel

    2001-10-01

    Supernova remnants are often inhomogeneous, with knots or clumps of material expanding in ambient plasma. This structure may be initiated by hydrodynamic instabilities occurring during the explosion, but it may plausibly be amplified by instabilities of the expanding shocks such as, for example, corrugation instabilities described by D’yakov in 1954, Vishniac in 1983, and observed in the laboratory by Grun et al. in 1991. Shock instability can occur when radiation lowers the effective adiabatic index of the gas. In view of the difficulty of modeling radiation in non-equilibrium plasmas, and the dependence of shock instabilities on such radiation, we are performing a laboratory experiment to study radiative shocks. The shocks are generated in a miniature, laser-driven shock tube. The gas density inside the tube at any instant in time is measured using time and space-resolved interferometry, and the emission spectrum of the gas is measured with time-resolved spectroscopy. We simulate the experiment with a 1D code that models time dependent post-shock ionization and non-equilibrium radiative cooling. S. P. D’yakov, Zhurnal Eksperimentalnoi Teoreticheskoi Fiziki 27, 288 (1954); see also section 90 in L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann 1987); E.T. Vishniac, Astrophys. J. 236, 880 (1983); J. Grun, et al., Phys. Rev. Lett., 66, 2738 (1991)