Sample records for yag laser ablation

  1. Application of erbium: YAG laser in ocular ablation.

    PubMed

    Tsubota, K

    1990-01-01

    Recent developments in lasers have provided us the possibility of laser ocular surgery. The xenon, argon, neodymium:YAG and dye lasers have been successfully used in out-patient clinics. The excimer laser has been attracting researchers' interest in the new application of laser to cornea and lens. The erbium:YAG laser emits a 2.94-microns beam that can ablate the transparent ocular tissues such as lenses and corneas. The author has applied this laser to the cornea, lens, vitreous and other ocular tissues. The erbium:YAG laser beam was directed through a 1.5-meter-long, 200-microns-diameter fiberoptic guide. The radiant energy measured about 50 mJ at the end of the probe. The laser was emitted as a 400-microsecond pulse. Freshly enucleated rabbit eyes were used in this study. Laser burns were applied to the tissue surface at various energy settings. At minimal power, the tissues were coagulated by the erbium:YAG laser application. At a power of more than 636-954 mJ/mm2, tissue began to evaporate; the tissue loss was observed under a surgical light microscope. Corneal photoablation, lens ablation, iridotomy, trabeculotomy, cutting of the vitreous and retinal ablation were easily performed. Like the excimer laser, the erbium:YAG laser is a potential tool for ocular surgery.

  2. Nd:YAG laser ablation and acid resistance of enamel.

    PubMed

    Kwon, Yong Hoon; Kwon, Oh-Won; Kim, Hyung-Il; Kim, Kyo-Han

    2003-09-01

    The acid resistance of Nd:YAG laser-ablated enamel surfaces was studied by evaluating crystal structure, mineral distribution, and fluorescence radiance and image in the present study. For comparison, 37% phosphoric acid etching was performed. The formation of beta-tricalcium phosphate (beta-TCP) was confirmed in the laser-ablated surface. The Ca/P ratio increased after ablation due to mineral re-distribution. In contrast, the Ca/P ratio decreased after acid etching due to mineral loss. The laser-ablated enamels showed a smaller increase of fluorescence radiances and less clear laser confocal scanning microscope images than those observed in the acid-etched enamels. The former suggests a minimized mineral loss. The Nd:YAG laser irradiation will enhance the acid resistance and retard the carious progression in enamel.

  3. Pulsed Tm:YAG laser ablation of knee joint tissues

    NASA Astrophysics Data System (ADS)

    Shi, Wei-Qiang; Vari, Sandor G.; Duffy, J. T.; Miller, J. M.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1992-06-01

    We investigated the effect of a free-running 2.01 micron pulsed Tm:YAG laser on bovine knee joint tissues. Ablation rates of fresh fibrocartilage, hyaline cartilage, and bone were measured in saline as a function of laser fluence (160 - 640 J/cm2) and fiber core size (400 and 600 microns). All tissues could be effectively ablated and the ablation rate increased linearly with the increasing fluence. Use of fibers of different core sizes, while maintaining constant energy fluence, did not result in significant difference in ablation rate. Histology analyses of the ablated tissue samples reveal average Tm:YAG radiation induced thermal damage (denatunalization) zones ranging between 130 and 540 microns, depending on the laser parameters and the tissue type.

  4. Comparison of Er:YAG and Er:YSGG laser ablation of dental hard tissues

    NASA Astrophysics Data System (ADS)

    Stock, Karl; Hibst, Raimund; Keller, Ulrich

    1997-12-01

    To compare ablation quality of Er:YAG and Er:YSGG laser the surface quality, crater shape, mass loss, and temperature development were determined using the same fiber transmission system and handpiece. Similar crater depths for both lasers but greater diameters for the Er:YAG laser were measured. Also mass loss per pulse of the Er:YAG laser exceeds that of the Er:YSGG laser. Temperature development while ablation of dentin is more pronounced for the Er:YSGG laser. The observed minor ablation quality of the Er:YSGG laser can be explained by the lower absorption coefficient of dental hard substances compared to the Er:YAG laser.

  5. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects.

    PubMed

    Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M

    2011-07-01

    The holmium:YAG (Ho:YAG) laser lithotriptor is capable of operating at high pulse energies, but efficient operation is limited to low pulse rates (∼10 Hz) during lithotripsy. On the contrary, the thulium fiber laser (TFL) is limited to low pulse energies, but can operate efficiently at high pulse rates (up to 1000 Hz). This study compares stone ablation threshold, ablation rate, and retropulsion for the two different Ho:YAG and TFL operation modes. The TFL (λ = 1908 nm) was operated with pulse energies of 5 to 35 mJ, 500-μs pulse duration, and pulse rates of 10 to 400 Hz. The Ho:YAG laser (λ = 2120 nm) was operated with pulse energies of 30 to 550 mJ, 350-μs pulse duration, and a pulse rate of 10 Hz. Laser energy was delivered through 200- and 270-μm-core optical fibers in contact mode with human calcium oxalate monohydrate (COM) stones for ablation studies and plaster-of-Paris stone phantoms for retropulsion studies. The COM stone ablation threshold for Ho:YAG and TFL measured 82.6 and 20.8 J∕cm(2), respectively. Stone retropulsion with the Ho:YAG laser linearly increased with pulse energy. Retropulsion with TFL was minimal at pulse rates less than 150 Hz, then rapidly increased at higher pulse rates. For minimal stone retropulsion, Ho:YAG operation at pulse energies less than 175 mJ at 10 Hz and TFL operation at 35 mJ at 100 Hz is recommended, with both lasers producing comparable ablation rates. Further development of a TFL operating with both high pulse energies of 100 to 200 mJ and high pulse rates of 100 to 150 Hz may also provide an alternative to the Ho:YAG laser for higher ablation rates, when retropulsion is not a primary concern.

  6. Amalgam ablation with the Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Wigdor, Harvey A.; Visuri, Steven R.; Walsh, Joseph T., Jr.

    1995-04-01

    Any laser that will be used by dentist to replace the dental drill (handpiece) must remove dental hard tissues safely. These lasers must also have the ability to ablate the restorative dental materials which are present in the teeth being treated. Prior to any laser being used to treat humans a thorough knowledge of the effects of the laser treatment on dental materials must be understood. Cores of dental amalgam were created and sliced into thin wafers for this experiment. Ablation efficiency and thermal changes were evaluated with and without water. It appears as if the Er:YAG laser can effectively ablate amalgam dental material with and without water. The water prevents the temperature from increasing much above baseline and does not reduce efficiency of ablation.

  7. Fractionated Er:YAG laser versus fully ablative Er:YAG laser for scar revision: Results of a split scar, double blinded, prospective trial.

    PubMed

    Tidwell, W James; Owen, Cindy E; Kulp-Shorten, Carol; Maity, Abhishek; McCall, Michael; Brown, Timothy S

    2016-11-01

    Ablative laser resurfacing is a common treatment for post-surgical scars. Fractional ablative laser resurfacing has been an emerging treatment option that is replacing fully ablative lasers in many applications. Data comparing fractionated and fully ablative lasers in treating post-operative scars are lacking. Twenty patients were enrolled in a split scar study following excisions from dermatologic surgery. Wounds had to be older than 8 weeks but less than 1 year. The scars were randomly divided into two halves. One half of the scar was treated with fully ablative erbium-doped yttrium aluminum garnet (Er:YAG) and the other was treated with fractionated Er:YAG. The scars were treated at monthly intervals for 3 months, then followed up at months 1 and 2 after the last treatment. POSAS was used to evaluate the scars by a panel of dermatologists blinded to the lasers in conjunction with the patients, who were also blinded. Physicians and patients both observed a superior outcome of 32.5% (P = 0.019) and 58.1% (P = 0.001), respectively, using the POSAS. There was no trend in difference in pain reported by the patient between the two lasers. Patients overwhelmingly preferred the fractionated Er:YAG laser (94%) to the fully ablative laser when asked at the end of the study. Although this study is limited by a short follow-up period, it shows a statistically significant superior outcome in fractionated Er:YAG over fully ablative Er:YAG for scar revision. It also adds quantitative values to the assessment of scar appearance when treated with fractionated lasers compared to fully ablative lasers. It was also found that the fractionated Er:YAG had increased patient satisfaction, but there was no difference in reported pain scores. These data are useful when counseling patients undergoing laser surgery. Lasers Surg. Med. 48:837-843, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Comparative study of excimer and erbium:YAG lasers for ablation of structural components of the knee

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; Shi, Wei-Qiang; van der Veen, Maurits J.; Fishbein, Michael C.; Miller, J. M.; Papaioannou, Thanassis; Grundfest, Warren S.

    1991-05-01

    This study was designed to compare the efficiency and thermal effect of a 135 ns pulsed-stretched XeCl excimer laser (308 nm) and a free-running Erbium:YAG laser (2940 nm) with 200 microsecond(s) pulse duration for ablation of knee joint structures (hyaline and fibrous cartilage, tendon and bone). The radiant exposure used for tissue ablation ranged from 2 to 15 J/cm2 for the XeCl excimer and from 33 to 120 J/cm2 for Er:YAG. The excimer and Er:YAG lasers were operated at 4 and 5 Hz respectively. The ablative laser energy was delivered to tissue through fibers. Ablation rates of soft tissues (hyaline and fibrous cartilage, tendon) varied from 8.5 to 203 micrometers /pulse for excimer and from 8.2 to 273 micrometers /pulse for Er:YAG lasers. Ablation rates of soft tissues are linearly dependent on the radiant exposure. Within the range of parameters tested all the tissues except the bone could be rapidly ablated by both lasers. Bone ablation was much less efficient, requiring 15 J/cm2 and 110 J/cm2 radiant exposure for excimer and Er:YAG lasers to ablate 9.5 and 8.2 micrometers tissue per pulse. However, excimer laser ablation produced less thermal damage in the tissues studied compared to Er:YAG at the same laser parameters. The authors conclude that both lasers are capable of efficient knee joint tissue ablation. XeCl excimer laser requires an order of magnitude less energy than Er:YAG laser for comparable tissue ablation.

  9. Next generation Er:YAG fractional ablative laser

    NASA Astrophysics Data System (ADS)

    Heinrich, A.; Vizhanyo, A.; Krammer, P.; Summer, S.; Gross, S.; Bragagna, T.; Böhler, C.

    2011-03-01

    Pantec Biosolutions AG presents a portable fractional ablative laser system based on a miniaturized diode pumped Er:YAG laser. The system can operate at repetition rates up to 500 Hz and has an incorporated beam deflection unit. It is smaller, lighter and cost efficient compared to systems based on lamp pumped Er:YAG lasers and incorporates a skin layer detection to guarantee precise control of the microporation process. The pulse parameters enable a variety of applications in dermatology and in general medicine, as demonstrated by first results on transdermal drug delivery of FSH (follicle stimulating hormone).

  10. An observation of ablation effect of soft biotissue by pulsed Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Zhang, Xianzeng; Xie, Shusen; Ye, Qing; Zhan, Zhenlin

    2007-02-01

    Because of the unique properties with regard to the absorption in organic tissue, pulsed Er:YAG laser has found most interest for various application in medicine, such as dermatology, dentistry, and cosmetic surgery. However, consensus regarding the optimal parameters for clinical use of this tool has not been reached. In this paper, the laser ablation characteristics of soft tissue by Er:YAG laser irradiation was studied. Porcine skin tissue in vitro was used in the experiment. Laser fluences ranged from 25mJ/mm2 to 200mJ/mm2, repetition rates was 5Hz, spot sizes on the tissue surface was 2mm. The ablation effects were assessed by the means of optical microscope, ablation diameters and depths were measured with reading microscope. It was shown that the ablation of soft biotissue by pulsed Er:YAG laser was a threshold process. With appropriate choice of irradiation parameters, high quality ablation with clean, sharp cuts following closely the spatial contour of the incident beam can be achieved. The curves of ablation crater diameter and depth versus laser fluence were obtained, then the ablation threshold and ablation yield were calculated subsequently, and the influence of the number of pulses fired into a crater on ablation crater depth was also discussed.

  11. Comparison of the ablation ability of nucleus pulposus after 1,064 nm Nd:YAG laser and 980 nm diode laser radiation.

    PubMed

    Yin, Jian; Han, Zhengfeng; Guo, Baofeng; Guo, Han; Zhang, Tongtong; Zeng, Yanjun; Ren, Longxi

    2015-07-01

    To compare the ablation ability of nucleus pulposus after 1,064 nm Nd:YAG laser and 980 nm diode laser radiation. Goat spine specimen (GSS) was radiated using Nd:YAG laser and 980 nm diode laser and then divided into five groups based on the final energy--200, 400, 600, 800 and 1,000 J groups. The ablation quality of nucleus pulposus after radiation was recorded. The ablation quality of GSS was greater at higher radiation energies in both lasers. When compared at the same energy level, the ablation quality of GSS was greater in 980 nm diode laser than in 1,064 nm Nd:YAG laser. Statistical significance was observed in 200 and 400 J groups (P < 0.05) and in 600, 800 and 1,000 J groups (P < 0.01). Radiation with 980 nm diode laser showed better ablation ability than 1,064 nm Nd:YAG laser.

  12. Nd:YAG 1.44 laser ablation of human cartilage

    NASA Astrophysics Data System (ADS)

    Cummings, Robert S.; Prodoehl, John A.; Rhodes, Anthony L.; Black, Johnathan D.; Sherk, Henry H.

    1993-07-01

    This study determined the effectiveness of a Neodymium:YAG 1.44 micrometers wavelength laser on human cartilage. This wavelength is strongly absorbed by water. Cadaveric meniscal fibrocartilage and articular hyaline cartilage were harvested and placed in normal saline during the study. A 600 micrometers quartz fiber was applied perpendicularly to the tissues with a force of 0.098 N. Quantitative measurements were then made of the ablation rate as a function of fluence. The laser energy was delivered at a constant repetition rate of 5 Hz., 650 microsecond(s) pulsewidth, and energy levels ranging from 0.5 joules to 2.0 joules. Following the ablation of the tissue, the specimens were fixed in formalin for histologic evaluation. The results of the study indicate that the ablation rate is 0.03 mm/mj/mm2 for hyaline cartilage and fibrocartilage. Fibrocartilage was cut at approximately the same rate as hyaline cartilage. There was a threshold fluence projected to be 987 mj/mm2 for hyaline cartilage and fibrocartilage. Our results indicate that the pulsed Nd:YAG laser operating at 1.44 micrometers has a threshold fluence above which it will ablate human cartilage, and that its ablation rate is directly proportional to fluence over the range of parameters tested. Fibrocartilage and hyaline cartilage demonstrated similar threshold fluence and ablation rates which is related to the high water content of these tissues.

  13. Er:YAG and CTH:YAG laser radiation: contact versus non-contact enamel ablation and sonic-activated bulk composite placement

    NASA Astrophysics Data System (ADS)

    Buckova, M.; Kasparova, M.; Dostalova, T.; Jelinkova, H.; Sulc, J.; Nemec, M.; Fibrich, M.; Bradna, P.; Miyagi, M.

    2013-05-01

    Laser radiation can be used for effective caries removal and cavity preparation without significant thermal effects, collateral damage of tooth structure, or patient discomfort. The aim of this study was to compare the quality of tissue after contact or non-contact Er:YAG and CTH:YAG laser radiation ablation. The second goal was to increase the sealing ability of hard dental tissues using sonic-activated bulk filling material with change in viscosity during processing. The artificial caries was prepared in intact teeth to simulate a demineralized surface and then the Er:YAG or CTH:YAG laser radiation was applied. The enamel artificial caries was gently removed by the laser radiation and sonic-activated composite fillings were inserted. A stereomicroscope and then a scanning electron microscope were used to evaluate the enamel surface. Er:YAG contact mode ablation in enamel was quick and precise; the cavity was smooth with a keyhole shaped prism and rod relief arrangement without a smear layer. The sonic-activated filling material was consistently regularly distributed; no cracks or microleakage in the enamel were observed. CTH:YAG irradiation was able to clean but not ablate the enamel surface; in contact and also in non-contact mode there was evidence of melting and fusing of the enamel.

  14. Evaluation of the cavity margins after Er:YAG laser ablation of the enamel and dentin

    NASA Astrophysics Data System (ADS)

    Dostalova, Tatjana; Krejsa, Otakar; Jelinkova, Helena; Hamal, Karel

    1994-12-01

    This study investigates the checks of cavity margin after enamel and dentin ablation. The Er:YAG laser enamel and dentin ablation can be directly connected with the danger of cracks originating in the enamel near the cavity. This study evaluates the quality of the enamel edges after Er:YAG laser preparation. The enamel and dentin of buccal surfaces were ablated by the Er:YAG laser radiation. An Erbium:YAG laser system with the energy of 200 mJ was used to generate 200 microsecond(s) long pulses of mid-infrared 2.94 micrometers light in multimode configuration. The laser was operating in a free running mode, the repetition rate being 0.5 Hz with average laser power of 100 mW. Laser radiation was focused on the tooth tissue. Water cooling was used during the procedure in order to prevent tooth tissue destruction. The time of laser preparation was 5 minutes. A cavity of class V was prepared. The teeth were immersed into 0.5% basic fuchsin and then centrifuged at 6000 rev/min for 20 minutes. The microphotographs of the margins stained with 0.5% basic fuchsin were made and then the longitudinal section of the teeth were evaluated. The micrographs of the longitudinal section were checked and measured afterwards. The effect of the investigated laser irradiation on the origin of cracks was analyzed in the scanning electron microscope. Micrographs of each tooth before and after the laser ablation were compared. Micrographs of the intact teeth after extraction present the cracks of the enamel. They depend on the pressure exerted during extraction. The influence of the laser ablation proper is it bears no signs of new cracks. The conclusions of this study demonstrate the non-invasive nature of the Er:YAG laser ablation of the hard dental tissues.

  15. Bone Ablation at 2.94 mm Using the Free-Electron Laser and Er:YAG Laser

    NASA Astrophysics Data System (ADS)

    Ivanov, Borislav; Hakimian, Arman; Peavy, G. M.; Haglund, Richard

    2002-03-01

    Bone Ablation at 2.94 microns Using the Free-Electron Laser and Er:YAG Laser in Perfluorocarbon Compounds B. Ivanov^1, A. M. Hakimian^1, G. M. Peavy^2, R. F. Haglund, Jr.1 1Department of Physics and Astronomy, W. M. Keck Foundation Free-Electron Laser Center, Vanderbilt University, Nashville, TN 37235 2Beckman Laser Institute and Medical Clinic, College of Medicine, University of California, Irvine, CA 92612 We report studies on the efficiency of mid-IR laser ablation of cow cortical bone using the Vanderbilt free-electron laser (FEL), when irrigating the ablation zone with an inert and biocompatible perfluorocarbon compounds (PFC). At 2.94 microns, the bone matrix (mainly by water) absorbs the radiation while the PFCs transmit this wavelength, dissipate heat and acoustical stress, and prevent carbonization of the bone sample. The ablation rate, as a function of laser fluence, scanning speed and the type of PFC, was investigated. The laser fluence was estimated to be 5 J/cm^2 - 100 J/cm^2 with a laser focal spot diameter of 160 microns 500 microns and a scanning speed of 40 microns/s 2960 microns/s. The ablation rate was estimated from scanning electron microscopy to be 0.5 mm/s 2.4 mm/s. Comparisons of ablation rates with the FEL and a Er:YAG laser at 2.94 microns are being evaluated.

  16. Ablation of porcine ligamentum flavum with Ho:YAG, q-switched Ho:YAG, and quadrupled Nd:YAG lasers.

    PubMed

    Johnson, Matt R; Codd, Patrick J; Hill, Westin M; Boettcher, Tara

    2015-12-01

    along the coronal plane, the surface temperature of the LF was measured with an IR camera during irradiation with the Ho:YAG laser, with and without constant saline flush. Third, the mass loss was measured over the course of 450 Ho:YAG pulses. Fourth, hole depth and temperature were measured over 30 pulses of fixed fluence from the Ho:YAG and Q-Switched Ho:YAG lasers. Fifth, the ablation rate and surface temperature were measured as a function of fluence from the Nd:YAG laser. Several LF staining and hole-depth measurement techniques were also explored. Aside from the expected absorbance peaks corresponding to the water in the LF, the most significant peaks in absorbance were located in the spectral band from 190 to 290 nm and persisted after the tissue was dehydrated. In the first experiment, using the Ho:YAG laser and with the laser-fiber in direct contact with the LF, the lowest single-pulse fluence for which LF was visibly removed was 35 J/cm(2) . Testing was conducted at 6 fluences between 35 and 354 J/cm(2) . Over this range the single-pulse hole depth was shown to be near linear (R(2)  = 0.9374, M = 1.6), ranging from 40 to 639 µm (N = 3). For the case where the laser-fiber face was displaced 1 mm from the LF surface, the lowest single-pulse fluence for which tissue was visibly removed was 72 J/cm(2) . Testing was conducted at 4 energy densities between 72 and 180 J/cm(2) . Over this range the single-pulse hole depth was shown to be near linear (R(2)  = 0.8951, M = 1.4), ranging from 31 to 220 µm (N = 3). In the second experiment, with LF in situ, constant flushing with room temperature saline was shown to drastically reduce surface temperature during exposure to Ho:YAG at 5 Hz with the laser-fiber in direct contact with the LF. Without saline, over 1 minute of treatment with a per-pulse fluence of 141 mJ/cm(2) , the average maximum surface temperature measured 110°C. With 10 cc's of saline flushed over 1

  17. Performance of Er:YAG laser ablation of hard bone under different irrigation water cooling conditions

    NASA Astrophysics Data System (ADS)

    Beltrán Bernal, Lina M.; Shayeganrad, Gholamreza; Kosa, Gabor; Zelechowski, Marek; Rauter, Georg; Friederich, Niklaus; Cattin, Philippe C.; Zam, Azhar

    2018-02-01

    The biological applicability of the Erbium-doped Yttrium Aluminum Garnet (Er:YAG) laser in surgical processes is so far limited to hard dental tissues. Using the Er:YAG laser for bone ablation is being studied since it has shown good performance for ablating dental hard tissues at the wavelength 2.94 μm, which coincides with the absorption peak of water, one of the main components of hard tissue, like teeth and bone. To obtain a decent performance of the laser in the cutting process, we aim at examining the influence of sequenced water jet irrigation on both, the ablation rate and the prevention of carbonization while performing laser ablation of bone with fixed laser parameters. An Er:YAG laser at 2.94 μm wavelength, 940 mJ energy per pulse, 400 μs pulse width, and 10 Hz repetition rate is used for the ablation of a porcine femur bone under different pulsed water jet irrigation conditions. We used micro-computed tomography (micro-CT) scans to determine the geometry of the ablated areas. In addition, scanning electron microscopy (SEM) is used for qualitative observations for the presence of carbonization and micro-fractures on the ablated surfaces. We evaluate the performance of the laser ablation process for the different water jet conditions in terms of the ablation rate, quantified by the ablated volume per second and the ablation efficiency, calculated as the ablated volume per pulse energy. We provide an optimized system for laser ablation which delivers the appropriate amount of water to the bone and consequently, the bone is ablated in the most efficient way possible without carbonization.

  18. Effect of water on dental material ablation of the Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Wigdor, Harvey A.; Visuri, Steven R.; Walsh, Joseph T., Jr.

    1994-09-01

    It is understood that if a laser is to replace the dental high speed handpiece it must be able to ablate dental materials which are present in teeth being treated with the laser. It is the intent of this paper to evaluate the effects of the Er:YAG laser on dental composite restorative material concentrating on the etch rate with and without waterspray. Composite dental material is used to form plugs of known thickness and the etch rate of the Er:YAG laser on this material is determined. The results are compared with those obtained from studies of the Er:YAG on dentin and enamel. In these studies the water reduced the efficiency of the Er:YAG laser 15 - 20% on these tissues.

  19. Water content contribution in calculus phantom ablation during Q-switched Tm:YAG laser lithotripsy.

    PubMed

    Zhang, Jian J; Rajabhandharaks, Danop; Xuan, Jason Rongwei; Wang, Hui; Chia, Ray W J; Hasenberg, Tom; Kang, Hyun Wook

    2015-01-01

    Q-switched (QS) Tm:YAG laser ablation mechanisms on urinary calculi are still unclear to researchers. Here, dependence of water content in calculus phantom on calculus ablation performance was investigated. White gypsum cement was used as a calculus phantom model. The calculus phantoms were ablated by a total 3-J laser pulse exposure (20 mJ, 100 Hz, 1.5 s) and contact mode with N=15 sample size. Ablation volume was obtained on average 0.079, 0.122, and 0.391  mm3 in dry calculus in air, wet calculus in air, and wet calculus in-water groups, respectively. There were three proposed ablation mechanisms that could explain the effect of water content in calculus phantom on calculus ablation performance, including shock wave due to laser pulse injection and bubble collapse, spallation, and microexplosion. Increased absorption coefficient of wet calculus can cause stronger spallation process compared with that caused by dry calculus; as a result, higher calculus ablation was observed in both wet calculus in air and wet calculus in water. The test result also indicates that the shock waves generated by short laser pulse under the in-water condition have great impact on the ablation volume by Tm:YAG QS laser.

  20. New application of the long-pulsed Nd-YAG laser as an ablative resurfacing tool for skin rejuvenation: a 7-year study.

    PubMed

    Alshami, Mohammad Ali

    2013-09-01

    Carbon dioxide (CO2 ) and erbium-yttrium aluminum garnet (Er-YAG) lasers are the gold standards in ablative skin resurfacing. Neodymium-doped yttrium aluminum garnet (Nd-YAG) laser is considered a nonablative skin resurfacing laser whose usage is limited due to its high cost. To assess the efficacy and safety of Nd-YAG as an ablative resurfacing laser and to compare the results with those previously published for CO2 and Erbium-YAG lasers. A total of 296 patients (251 female and 45 male) with Fitzpatrick skin types III-IV and dermatological conditions amenable to ablative skin resurfacing participated in this study. Nd-YAG laser parameters assessed were wavelength (1064 nm), pulse duration (5 ms), fluence (10 J/cm(2) ), and spot size (8-10 mm). Efficacy of Nd-YAG laser was assessed by comparing pre- and posttreatment photographs. An improvement of 30-80% was observed in treated patients. The degree of improvement correlated positively with the number of laser sessions. The most common side effect was hyperpigmentation. Other side effects were less common and mild in intensity compared with published results for gold standard ablative lasers. Not only was the Nd-YAG laser found to be as effective as Er-YAG and CO2 lasers, but treated patients also had shorter recovery and treatment times, and at lower cost. © 2013 Wiley Periodicals, Inc.

  1. Interaction thresholds in Er:YAG laser ablation of organic tissue

    NASA Astrophysics Data System (ADS)

    Lukac, Matjaz; Marincek, Marko; Poberaj, Gorazd; Grad, Ladislav; Mozina, Janez I.; Sustercic, Dusan; Funduk, Nenad; Skaleric, Uros

    1996-01-01

    Because of their unique properties with regard to the absorption in organic tissue, pulsed Er:YAG lasers are of interest for various applications in medicine, such as dentistry, dermatology, and cosmetic surgery. The relatively low thermal side effects, and surgical precision of erbium medical lasers have been attributed to the micro-explosive nature of their interaction with organic tissue. In this paper, we report on preliminary results of our study of the thresholds for tissue ablation, using an opto-acoustic technique. Two laser energy thresholds for the interaction are observed. The lower energy threshold is attributed to surface water vaporization, and the higher energy threshold to explosive ablation of thin tissue layers.

  2. Holmium:YAG and erbium:YAG laser interaction with hard and soft tissue

    NASA Astrophysics Data System (ADS)

    Charlton, Andrew; Dickinson, Mark R.; King, Terence A.; Freemont, Anthony J.

    1991-06-01

    The holmium YAG and erbium YAG lasers operating at 2.1 micrometers and 2.9 micrometers respectively, are the subject of great interest for various medical applications. The interaction of both these pulsed lasers with biological tissue involves absorption of the radiation by water leading to rapid heating and ablation, however the different absorption coefficients at these two wavelengths give rise to different ablation efficiencies and haemostatic properties for the two lasers. It is this cut/seal ratio that determines for which medical applications each of these lasers is most suited. The lasers were used to produce incisions in various tissues by translating the tissue at fixed speed beneath a focused laser beam. The laser energy density was varied between 100 and 500 J/cm2 and the lasers were operated at 2 Hz. After irradiation the tissues were fixed in formalin, processed routinely into paraffin wax, sectioned at 5 micrometers and stained with haemotoxylin and eosin. This allowed the dimensions of the incisions to be measured, as well as the depth of coagulative denatured tissue surrounding each incision. In this way the cut/seal ratio was determined for both the holmium YAG and erbium YAG laser in a range of hard and soft tissues. Results show that the latent heat of ablation for the holmium YAG laser interacting with soft tissue varies between 20-50 kJ/cm3, almost an order of magnitude larger than with the erbium YAG laser. Furthermore, the depth of coagulative necrosis with holmium YAG extends 100-400 micrometers , compared with 10-30 micrometers for erbium YAG. The two interactions clearly lead to vastly different results suggesting that the holmium YAG laser is suitable for producing lesions in highly vascular tissue where haemostasis is important, whereas the erbium YAG laser is better suited to avascular tissue requiring large depths of incision.

  3. Evaluation of corneal ablation by an optical parametric oscillator (OPO) at 2.94 μm and an Er:YAG laser and comparison to ablation by a 193-nm excimer laser

    NASA Astrophysics Data System (ADS)

    Telfair, William B.; Hoffman, Hanna J.; Nordquist, Robert E.; Eiferman, Richard A.

    1998-06-01

    Purpose: This study first evaluated the corneal ablation characteristics of (1) an Nd:YAG pumped OPO (Optical Parametric Oscillator) at 2.94 microns and (2) a short pulse Er:YAG laser. Secondly, it compared the histopathology and surface quality of these ablations with (3) a 193 nm excimer laser. Finally, the healing characteristics over 4 months of cat eyes treated with the OPO were evaluated. Methods: Custom designed Nd:YAG/OPO and Er:YAG lasers were integrated with a new scanning delivery system to perform PRK myopic correction procedures. After initial ablation studies to determine ablation thresholds and rates, human cadaver eyes and in-vivo cat eyes were treated with (1) a 6.0 mm Dia, 30 micron deep PTK ablation and (2) a 6.0 mm Dia, -5.0 Diopter PRK ablation. Cadaver eyes were also treated with a 5.0 mm Dia, -5.0 Diopter LASIK ablation. Finally, cats were treated with the OPO in a 4 month healing study. Results: Ablation thresholds below 100 mJ/cm2 and ablation rates comparable to the excimer were demonstrated for both infrared systems. Light Microscopy (LM) showed no thermal damage for low fluence treatments, but noticeable thermal damage at higher fluences. SEM and TEM revealed morphologically similar surfaces for low fluence OPO and excimer samples with a smooth base and no evidence of collagen shrinkage. The Er:YAG and higher fluence OPO treated samples revealed more damage along with visible collagen coagulation and shrinkage in some cases. Healing was remarkably unremarkable. All eyes had a mild healing response with no stromal haze and showed topographic flattening. LM demonstrated nothing except a moderate increase in keratocyte activity in the upper third of the stroma. TEM confirmed this along with irregular basement membranes. Conclusions: A non- thermal ablation process called photospallation is demonstrated for the first time using short pulse infrared lasers yielding damage zones comparable to the excimer and healing which is also comparable to

  4. Holmium:YAG laser lithotripsy: A dominant photothermal ablative mechanism with chemical decomposition of urinary calculi.

    PubMed

    Chan, K F; Vassar, G J; Pfefer, T J; Teichman, J M; Glickman, R D; Weintraub, S T; Welch, A J

    1999-01-01

    Evidence is presented that the fragmentation process of long-pulse Holmium:YAG (Ho:YAG) lithotripsy is governed by photothermal decomposition of the calculi rather than photomechanical or photoacoustical mechanisms as is widely thought. The clinical Ho:YAG laser lithotriptor (2.12 microm, 250 micros) operates in the free-running mode, producing pulse durations much longer than the time required for a sound wave to propagate beyond the optical penetration depth of this wavelength in water. Hence, it is unlikely that shock waves are produced during bubble formation. In addition, the vapor bubble induced by this laser is not spherical. Thus the magnitude of the pressure wave produced at cavitation collapse does not contribute significantly to lithotripsy. A fast-flash photography setup was used to capture the dynamics of urinary calculus fragmentation at various delay times following the onset of the Ho:YAG laser pulse. These images were concurrently correlated with pressure measurements obtained with a piezoelectric polyvinylidene-fluoride needle-hydrophone. Stone mass-loss measurements for ablation of urinary calculi (1) in air (dehydrated and hydrated) and in water, and (2) at pre-cooled and at room temperatures were compared. Chemical and composition analyses were performed on the ablation products of several types of Ho:YAG laser irradiated urinary calculi, including calcium oxalate monohydrate (COM), calcium hydrogen phosphate dihydrate (CHPD), magnesium ammonium phosphate hexahydrate (MAPH), cystine, and uric acid calculi. When the optical fiber was placed perpendicularly in contact with the surface of the target, fast-flash photography provided visual evidence that ablation occurred approximately 50 micros after the initiation of the Ho:YAG laser pulse (250-350 micros duration; 375-400 mJ per pulse), long before the collapse of the cavitation bubble. The measured peak acoustical pressure upon cavitation collapse was negligible (< 2 bars), indicating that

  5. Femtosecond laser irradiation on Nd:YAG crystal: Surface ablation and high-spatial-frequency nanograting

    NASA Astrophysics Data System (ADS)

    Ren, Yingying; Zhang, Limu; Romero, Carolina; Vázquez de Aldana, Javier R.; Chen, Feng

    2018-05-01

    In this work, we systematically study the surface modifications of femtosecond (fs) laser irradiated Nd:YAG crystal in stationary focusing case (i.e., the beam focused on the target in the steady focusing geometry) or dynamic scanning case (i.e., focused fs-laser beam scanning over the target material). Micro-sized structures (e.g. micro-craters or lines) are experimentally produced in a large scale of parameters in terms of pulse energy as well as (effective) pulse number. Surface ablation of Nd:YAG surface under both processing cases are investigated, involving the morphological evolution, parameter dependence, the ablation threshold fluences and the incubation factors. Meanwhile, under specific irradiation conditions, periodic surface structures with high-spatial-frequency (<λ/2) can be generated. The obtained period is as short as 157 nm in this work. Investigations on the evolution of nanograting formation and fluence dependence of period are performed. The experimental results obtained under different cases and the comparison between them reveal that incubation effect plays an important role not only in the ablation of Nd:YAG surface but also in the processes of nanograting formation.

  6. High peak power Q-switched Er:YAG laser with two polarizers and its ablation performance for hard dental tissues.

    PubMed

    Yang, Jingwei; Wang, Li; Wu, Xianyou; Cheng, Tingqing; Jiang, Haihe

    2014-06-30

    An electro-optically Q-switched high-energy Er:YAG laser with two polarizers is proposed. By using two Al(2)O(3) polarizing plates and a LiNbO(3) crystal with Brewster angle, the polarization efficiency is significantly improved. As a result, 226 mJ pulse energy with 62 ns pulse width is achieved at the repetition rate of 3 Hz, the corresponding peak power is 3.6 MW. To our knowledge, such a high peak power has not been reported in literature. With our designed laser, in-vitro teeth were irradiated under Q-switched and free-running modes. Results of a laser ablation experiment on hard dental tissue with the high-peak-power laser demonstrates that the Q-switched Er:YAG laser has higher ablation precision and less thermal damage than the free-running Er:YAG laser.

  7. Ablation by-products of dental materials from the Er:YAG laser and the dental handpiece

    NASA Astrophysics Data System (ADS)

    Wigdor, Harvey A.; Visuri, Steven R.; Walsh, Joseph T., Jr.

    1995-05-01

    Recently there has been much interest in lasers and their potential use to replace the dental drill. The research has been directed towards vital dental tissues. It must be understood that any laser to be used in dentistry which will replace the dental drill must also ablate and remove existing dental materials. Some concern exists about the ablation products when the Er:YAG laser is used to ablate dental materials. It is incumbent on the professionals using these lasers to understand the materials being produced by these lasers and protect themselves and their patients from possible toxic products. It is the intent of this paper to evaluate the products produced by the ablation of both dental amalgam and composite dental restorative materials and compare them with those produced by the traditional dental handpiece (drill).

  8. Use of the holmium:YAG laser for percutaneous photothermal ablation of cervical invertebral disks in dogs

    NASA Astrophysics Data System (ADS)

    Rochat, Mark; Henry, George A.; Campbell, Gregory A.; Stair, Ernest L.; Bartels, Kenneth E.; Dickey, Tom

    1999-06-01

    Holmium:YAG laser ablation of thoracolumbar disks in dogs has been shown to be an effective alternative to standard surgical fenestration techniques. Our hypothesis was the Holmium:YAG laser could be equally effective and safe when used to ablate cervical intervertebral disks. Six normal chondrodystrophoid breed dogs were used. A sterile, cleaved, 320 micrometers , low-OH quartz optical fiber was inserted into each needle and the laser activated for 40 s at 2 W mean power and a 15 Hz pulse repetition rate for a total of 80 J. Dogs were observed in pain, neurological deficits, or other complications for 24 weeks. At 24 weeks, dogs were euthanatized and cervical disks collected and placed in 10 percent neutral buffered formalin. Disks were decalcified, sectioned at 5 micrometers , and stained with H and E. No problems were encountered during the procedure except occasional difficulties passing the needle by the shoulder to enter the C6-7 disk space. No complications, including neurologic deficits or pain were observe during the 24 weeks. Histologic examination revealed varying degrees of necrosis and defects created in the nucleus pulposus by laser irradiation. In some instances there was evidence of mild adjacent annular and bony thermal injury. On the basis of these result, the Ho:YAG laser appears to be a safe and efficacious method for ablation of canine cervical disks.

  9. CTE:YAG laser applications in dentistry

    NASA Astrophysics Data System (ADS)

    Shori, Ramesh K.; Fried, Daniel; Featherstone, John D. B.; Kokta, Milan R.; Duhn, Clifford W.

    1998-04-01

    The suitability of CTE:YAG laser radiation was investigated for caries preventive laser treatments and caries ablation. Although, CTE:YAG laser radiation at 2.69 micrometer is less highly absorbed by dental hard tissues than other erbium laser wavelengths, namely 2.79 and 2.94 micrometer, it can readily be transmitted through a conventional low hydroxyl fiber with minimal loss. These studies show that reasonable ablation rates and efficiencies are obtainable with both free running (200 microseconds) and Q-switched (100 ns) laser pulses on both dentin and enamel with the application of a relatively thick layer of water to the tissue surface. The water served to remove tissue char and debris from the ablation site leaving a clean crater. However, mechanical forces produced during the energetic ablative process resulted in peripheral mechanical damage to the tissue. Surface dissolution studies on enamel indicated that CTE:YAG radiation inhibited surface dissolution by organic acid by 60 - 70% compared to unirradiated controls, albeit, at fluences an order of magnitude higher than those required for CO2 laser radiation. This layer system may be suitable for dental hard tissue applications if mechanical damage can be mitigated. This work was supported by NIH/NIDR Grants R29DE12091 and R01DE09958.

  10. Retinotomy using an erbium:YAG laser on human autopsy eyes

    NASA Astrophysics Data System (ADS)

    Ellsworth, Lansing G.; Kramer, Theresa R.; Noecker, Robert J.; Snyder, Robert W.; Yarborough, J. Michael

    1994-06-01

    Mid-IR lasers that operate near the absorption peak of water have a short penetration depth in ocular tissues. Ablation of tissue can be accomplished with minimal coagulative damage to underlying structures. We used an erbium:YAG laser equipped with a contact probe to create retinotomy sites in the human retina of eye bank eyes. An erbium:YAG laser (2.94 micrometers ) equipped with an infrared transmitting glass fiber and a sapphire tip (400 micrometers ) was used to directly ablate the surface of the retina. We administered both single and multiple pulses to the macula and peripheral retina using energy levels from 4 to 16 mJ per pulse. The retinas were then examined histopathologically to evaluate the extent of ablation and coagulative damage. Single pulses at low energy levels were noted to cause ablative damage to the nerve fiber layer and ganglion cell layer without a notable coagulative effect. The mean ablation depth at lower energy levels was less than the mean ablation depth at higher energy levels. Extensive laser application produced disruption of the retinal pigment epithelium, choroid and sclera. the erbium:YAG laser equipped with a contact probe is an effective means of creating retinotomies in human autopsy eyes. When used in the single pulse mode at lower energy levels, the erbium:YAG laser appears capable of removing superficial retinal layers without damaging deeper structures.

  11. Use of the holmium:YAG laser in urology.

    PubMed

    Johnson, D E; Cromeens, D M; Price, R E

    1992-01-01

    The tissue effects of a holmium:YAG (Ho:YAG) laser operating at a wavelength of 2.1 mu with a maximum power of 15 watts (W) and 10 different energy-pulse settings was systematically evaluated on kidney, bladder, prostate, ureteral, and vasal tissue in the dog. In addition, various urologic surgical procedures (partial nephrectomy, transurethral laser incision of the prostate, and laser-assisted vasovasostomy) were performed in the dog, and a laparoscopic pelvic lymph node dissection was carried out in a pig. Although the Ho:YAG laser has a strong affinity for water, precise tissue ablation was achieved in both the contact and non-contact mode when used endoscopically in a fluid medium to ablate prostatic and vesical tissue. Using the usual parameters for tissue destruction (blanching without charring), the depth of thermal injury in the bladder and ureter was kept superficial. In performing partial nephrectomies, a 2-fold reduction in the zone of coagulative necrosis was demonstrated compared to the use of the continuous wave Neodymium:YAG laser (Nd:YAG). When used through the laparoscope, the Ho:YAG laser provided precise cutting and, combined with electrocautery, allowed the dissection to proceed quickly and smoothly. Hemostatic control was adequate in all surgical procedures. Although the results of these investigations are preliminary, our initial experience with the Ho:YAG laser has been favorable and warrants further investigations.

  12. Ablative dual-phase Erbium:YAG laser treatment of atrophy-related vaginal symptoms in post-menopausal breast cancer survivors omitting hormonal treatment.

    PubMed

    Mothes, A R; Runnebaum, M; Runnebaum, I B

    2018-05-01

    First evaluation of dual-phase vaginal Er:YAG laser to omit hormonal treatment for atrophy-related symptoms in post-menopausal breast cancer survivors following prolapse surgery. Patients with a history of breast cancer at the time of surgery for pelvic organ prolapse were offered non-hormonal vaginal Er:YAG laser treatment when complaining of atrophy-related genitourinary syndrome of menopause. A single 10-min course of dual-phase protocol of pulsed Er:YAG laser (2940 nm, fractional ablative and thermal mode, fluence according to tissue thickness). Follow-up included subjective satisfaction, vaginal pH, vaginal health index (VHI), and complications after 6 weeks. A total of 16 breast cancer survivors (age 71 years, SD 7) had been seeking treatment for pelvic floor symptoms related to vaginal atrophy at follow-up visits after prolapse surgery. All ablative vaginal Er:YAG laser outpatient procedures were successfully completed, all patients returned to daily activities without a need for analgetic medication. Evaluation was performed after 8.3 (SD 2.5) weeks. Pre-laser VHI scored 16 (SD 4.6) and post-laser VHI 20 (SD 3) with p = 0.01. Patients were satisfied in 94% (n = 15) regarding symptom relief. Breast cancer survivors with atrophy-related complaints after pelvic floor surgery may benefit from vaginal application of this innovative dual protocol of Er:YAG laser technology as a non-hormonal treatment approach.

  13. A study of phase explosion of metal using high power Nd:YAG laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoh, Jack J.; Lee, H. H.; Choi, J. H.

    2007-12-12

    The interaction of high-power pulsed-laser beam with metal targets in air from 1.06 {mu}m, 5 ns, 3 J/pulse max, Nd:YAG pulsed laser is investigated together with hydrodynamic theories of laser-supported detonation (LSD) wave and multi-material reactive Euler equations. The high speed blast wave generated by the laser ablation of metal reaches maximum velocity of several thousand meters per second. The apparently similar flow conditions to those of reactive shock wave allow one to apply the equations of motion for energetic materials and to understand the explosive behavior of metal vaporization upon laser ablation. The characteristic time at which planar tomore » spherical wave transition occurs is confirmed at low (20 mJ/pulse) to higher (200 mJ/pulse) beam intensities. The flow structure behind the leading shock wave during the early planar shock state is confirmed by the high-resolution multi-material hydrocode originally developed for shock compression of condensed matter.« less

  14. Endoluminal non-contact soft tissue ablation using fiber-based Er:YAG laser delivery

    NASA Astrophysics Data System (ADS)

    Kundrat, Dennis; Fuchs, Alexander; Schoob, Andreas; Kahrs, Lüder A.; Ortmaier, Tobias

    2016-03-01

    The introduction of Er:YAG lasers for soft and hard tissue ablation has proven promising results over the last decades due to strong absorption at 2.94 μm wavelength by water molecules. An extension to endoluminal applications demands laser delivery without mirror arms due to dimensional constraints. Therefore, fiber-based solutions are advanced to provide exible access while keeping space requirements to a minimum. Conventional fiber-based treatments aim at laser-tissue interactions in contact mode. However, this procedure is associated with disadvantages such as advancing decrease in power delivery due to particle coverage of the fiber tip, tissue carbonization, and obstructed observation of the ablation progress. The objective of this work is to overcome aforementioned limitations with a customized fiber-based module for non-contact robot-assisted endoluminal surgery and its associated experimental evaluation. Up to the authors knowledge, this approach has not been presented in the context of laser surgery at 2.94 μm wavelength. The preliminary system design is composed of a 3D Er:YAG laser processing unit enabling automatic laser to fiber coupling, a GeO2 solid core fiber, and a customized module combining collimation and focusing unit (focal length of 20 mm, outer diameter of 8 mm). The performance is evaluated with studies on tissue substitutes (agar-agar) as well as porcine samples that are analysed by optical coherence tomography measurements. Cuts (depths up to 3mm) with minimal carbonization have been achieved under adequate moistening and sample movement (1.5mms-1). Furthermore, an early cadaver study is presented. Future work aims at module miniaturization and integration into an endoluminal robot for scanning and focus adaptation.

  15. Efficacy of removal of cariogenic bacteria and carious dentin by ablation using different modes of Er:YAG lasers

    PubMed Central

    Baraba, A.; Kqiku, L.; Gabrić, D.; Verzak, Ž.; Hanscho, K.; Miletić, I.

    2018-01-01

    The primary objective of this in vitro study was to evaluate the efficiency of removal of cariogenic bacteria and carious dentin by ablation using two lasers: fluorescence-feedback controlled (FFC) Er:YAG laser and different pulses of Er:YAG laser based on variable square pulse technology (VSPt). The secondary objective was to measure the temperature during laser ablation of carious tissue. Seventy-two extracted human molars were used in this study. Sixty teeth with carious dentin were randomly divided into four experimental groups according to the treatment for caries removal: group 1: 400 µs (FFC group); group 2: super short pulse (SSP group, 50 µs pulse); group 3: medium short pulse (MSP group, 100 µs pulse); group 4: short pulse (SP group, 300 µs pulse) and one positive control group with no treatment. Twelve teeth without carious lesion were used as a negative control group. After caries removal, swabs were taken with cotton pellets and real-time PCR analysis was performed. During caries ablation, a thermal infrared camera was used to measure the temperature changes. In all experimental groups, specimens were free of bacterial contamination after the treatment. In the SSP, MSP and SP groups, temperatures measured during caries ablation were significantly higher compared to temperatures in the FFC group (P<0.001). In this in vitro study, laser treatment for removal of carious dentin and cariogenic bacteria was an efficient treatment modality without causing excessive temperatures that might adversely affect pulp vitality. PMID:29340524

  16. Efficacy of removal of cariogenic bacteria and carious dentin by ablation using different modes of Er:YAG lasers.

    PubMed

    Baraba, A; Kqiku, L; Gabrić, D; Verzak, Ž; Hanscho, K; Miletić, I

    2018-01-11

    The primary objective of this in vitro study was to evaluate the efficiency of removal of cariogenic bacteria and carious dentin by ablation using two lasers: fluorescence-feedback controlled (FFC) Er:YAG laser and different pulses of Er:YAG laser based on variable square pulse technology (VSPt). The secondary objective was to measure the temperature during laser ablation of carious tissue. Seventy-two extracted human molars were used in this study. Sixty teeth with carious dentin were randomly divided into four experimental groups according to the treatment for caries removal: group 1: 400 µs (FFC group); group 2: super short pulse (SSP group, 50 µs pulse); group 3: medium short pulse (MSP group, 100 µs pulse); group 4: short pulse (SP group, 300 µs pulse) and one positive control group with no treatment. Twelve teeth without carious lesion were used as a negative control group. After caries removal, swabs were taken with cotton pellets and real-time PCR analysis was performed. During caries ablation, a thermal infrared camera was used to measure the temperature changes. In all experimental groups, specimens were free of bacterial contamination after the treatment. In the SSP, MSP and SP groups, temperatures measured during caries ablation were significantly higher compared to temperatures in the FFC group (P<0.001). In this in vitro study, laser treatment for removal of carious dentin and cariogenic bacteria was an efficient treatment modality without causing excessive temperatures that might adversely affect pulp vitality.

  17. Influence of water content on the ablation of skin with a 532 nm nanosecond Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Kim, Soogeun; Eom, Tae Joong; Jeong, Sungho

    2015-01-01

    This work reports that the ablation volume and rate of porcine skin changed significantly with the change of skin water content. Under the same laser irradiation conditions (532 nm Nd:YAG laser, pulse width=11.5 ns, pulse energy=1.54 J, beam radius=0.54 mm), the ablation volume dropped by a factor of 4 as the skin water content decreased from 40 wt. % (native) to 19 wt. % with a change in the ablation rate below and above around 25 wt. %. Based on the ablation characteristics observed by in situ shadowgraph images and the calculated tissue temperatures, it is considered that an explosive rupture by rapid volumetric vaporization of water is responsible for the ablation of the high water content of skin, whereas thermal disintegration of directly irradiated surface layer is responsible for the low water content of skin.

  18. Infrared thermal measurements of laser soft tissue ablation as a function of air/water coolant for Nd:YAG and diode lasers

    NASA Astrophysics Data System (ADS)

    Gekelman, Diana; Yamamoto, Andrew; Oto, Marvin G.; White, Joel M.

    2003-06-01

    The purpose of this investigation was to measure the maximum temperature at the Nd:YAG and Diode lasers fiberoptic tips as a function of air/water coolant, during soft tissue ablation in pig jaws. A pulsed Nd:YAG laser (1064nm) and a Diode laser (800-830 nm) were used varying parameters of power, conditioning or not of the fiber tip, under 4 settings of air/water coolant. The maximum temperature at the fiber tip was measured using an infra-red camera and the interaction of the fiber with the porcine soft tissue was evaluated. A two-factor ANOVA was used for statistical analysis (p<=0.05). Nd:YAG laser interaction with soft tissues produced temperatures levels directly proportional to power increase, but the conditioning of the fiber tip did not influence the temperature rise. On the other hand, conditioning of the fiber tip did influence the temperature rise for Diode laser. The addition of air/water coolant, for both lasers, did not promote temperature rise consistent with cutting and coagulation of porcine soft tissue. Laser parameters affect the fiberoptic surface temperature, and the addition of air/water coolant significantly lowered surface temperature on the fiberoptic tip for all lasers and parameters tested.

  19. Er:YAG laser-assisted hair transplantation in cicatricial alopecia.

    PubMed

    Podda, M; Spieth, K; Kaufmann, R

    2000-11-01

    Autologous hair transplantation and its combination with flap or reduction procedures is a common surgical approach to cover defects in cicatricial alopecias. Due to the poor recipient conditions present in scar tissue, it is crucial to minimize the trauma exerted on implantation holes in order to achieve good transplantation results. We sought to evaluate the "cold"-ablative properties of the Er:YAG laser for the generation of recipient holes in cicatricial alopecia. Patients with cicatricial alopecia of diverse etiology were treated with Er:YAG laser-assisted hair transplantation. Mini- or micrografts were inserted into recipient holes ablated with a pulse energy of 900-1200 mJ and a spot size of 1.0-1.6 mm. A fluence of 80-120 J/cm2 and 8-12 pulses gave an almost ideal combination of minimal thermal damage and tissue ablation down to the subcutis. With an apparent mini- and micrograft survival of 95% we achieved good cosmetic results after two to five transplant sessions in all patients. The Er:YAG laser is a novel effective tool to ablate recipient holes for autologous hair transplantation in cicatricial alopecia.

  20. Femtosecond laser lithotripsy: feasibility and ablation mechanism.

    PubMed

    Qiu, Jinze; Teichman, Joel M H; Wang, Tianyi; Neev, Joseph; Glickman, Randolph D; Chan, Kin Foong; Milner, Thomas E

    2010-01-01

    Light emitted from a femtosecond laser is capable of plasma-induced ablation of various materials. We tested the feasibility of utilizing femtosecond-pulsed laser radiation (lambda=800 nm, 140 fs, 0.9 mJ/pulse) for ablation of urinary calculi. Ablation craters were observed in human calculi of greater than 90% calcium oxalate monohydrate (COM), cystine (CYST), or magnesium ammonium phosphate hexahydrate (MAPH). Largest crater volumes were achieved on CYST stones, among the most difficult stones to fragment using Holmium:YAG (Ho:YAG) lithotripsy. Diameter of debris was characterized using optical microscopy and found to be less than 20 microm, substantially smaller than that produced by long-pulsed Ho:YAG ablation. Stone retropulsion, monitored by a high-speed camera system with a spatial resolution of 15 microm, was negligible for stones with mass as small as 0.06 g. Peak shock wave pressures were less than 2 bars, measured by a polyvinylidene fluoride (PVDF) needle hydrophone. Ablation dynamics were visualized and characterized with pump-probe imaging and fast flash photography and correlated to shock wave pressures. Because femtosecond-pulsed laser ablates urinary calculi of soft and hard compositions, with micron-sized debris, negligible stone retropulsion, and small shock wave pressures, we conclude that the approach is a promising candidate technique for lithotripsy.

  1. Fractional versus ablative erbium:yttrium-aluminum-garnet laser resurfacing for facial rejuvenation: an objective evaluation.

    PubMed

    El-Domyati, Moetaz; Abd-El-Raheem, Talal; Abdel-Wahab, Hossam; Medhat, Walid; Hosam, Wael; El-Fakahany, Hasan; Al Anwer, Mustafa

    2013-01-01

    Laser is one of the main tools for skin resurfacing. Erbium:yttrium-aluminum-garnet (Er:YAG) was the second ablative laser, after carbon dioxide, emitting wavelength of 2940 nm. Fractional laser resurfacing has been developed to overcome the drawbacks of ablative lasers. We aimed to objectively evaluate the histopathological and immunohistochemical effects of Er:YAG 2940-nm laser for facial rejuvenation (multiple sessions of fractional vs single session of ablative Er:YAG laser). Facial resurfacing with single-session ablative Er:YAG laser was performed on 6 volunteers. Another 6 were resurfaced using fractional Er:YAG laser (4 sessions). Histopathological (hematoxylin-eosin, orcein, Masson trichrome, and picrosirius red stains) and immunohistochemical assessment for skin biopsy specimens were done before laser resurfacing and after 1 and 6 months. Histometry for epidermal thickness and quantitative assessment for neocollagen formation; collagen I, III, and VII; elastin; and tropoelastin were done for all skin biopsy specimens. Both lasers resulted in increased epidermal thickness. Dermal collagen showed increased neocollagen formation with increased concentration of collagen types I, III, and VII. Dermal elastic tissue studies revealed decreased elastin whereas tropoelastin concentration increased after laser resurfacing. Neither laser showed significant difference between their effects clinically and on dermal collagen. Changes in epidermal thickness, elastin, and tropoelastin were significantly more marked after ablative laser. The small number of patients is a limitation, yet the results show significant improvement. Multiple sessions of fractional laser have comparable effects to a single session of ablative Er:YAG laser on dermal collagen but ablative laser has more effect on elastic tissue and epidermis. Copyright © 2012 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  2. Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd:YAG laser ablation

    NASA Astrophysics Data System (ADS)

    McCann, Ronán; Bagga, Komal; Groarke, Robert; Stalcup, Apryll; Vázquez, Mercedes; Brabazon, Dermot

    2016-11-01

    This paper presents a method for fabrication of microchannels on cyclic olefin polymer films that have application in the field of microfluidics and chemical sensing. Continuous microchannels were fabricated on 188-μm-thick cyclic olefin polymer substrates using a picosecond pulsed 1064 nm Nd:YAG laser. The effect of laser fluence on the microchannel morphology and dimensions was analysed via scanning electron microscopy and optical profilometry. Single laser passes were found to produce v-shaped microchannels with depths ranging from 12 μm to 47 μm and widths from 44 μm to 154 μm. The ablation rate during processing was lower than predicted theoretically. Multiple laser passes were applied to examine the ability for finer control over microchannel morphology with channel depths ranging from 22 μm to 77 μm and channel widths from 59 μm to 155 μm. For up to five repeat passes, acceptable reproducibility was found in the produced microchannel morphology. Infrared spectroscopy revealed oxidation and dehydrogenation of the polymer surface following laser ablation. These results were compared to other work conducted on cyclic olefin polymers.

  3. Numerical Response Surfaces of Volume of Ablation and Retropulsion Amplitude by Settings of Ho:YAG Laser Lithotripter

    PubMed Central

    Rutherford, Jonathan; Solomon, Metasebya; Cheng, Brian; Xuan, Jason R.; Gong, Jason; Yu, Honggang; Xia, Michael L. D.; Yang, Xirong; Hasenberg, Thomas; Curran, Sean

    2018-01-01

    Objectives Although laser lithotripsy is now the preferred treatment option for urolithiasis due to shorter operation time and a better stone-free rate, the optimal laser settings for URS (ureteroscopic lithotripsy) for less operation time remain unclear. The aim of this study was to look for quantitative responses of calculus ablation and retropulsion by performing operator-independent experiments to determine the best fit versus the pulse energy, pulse width, and the number of pulses. Methods A lab-built Ho:YAG laser was used as the laser pulse source, with a pulse energy from 0.2 J up to 3.0 J and a pulse width of 150 μs up to 1000 μs. The retropulsion was monitored using a high-speed camera, and the laser-induced craters were evaluated with a 3-D digital microscope. The best fit to the experimental data is done by a design of experiment software. Results The numerical formulas for the response surfaces of ablation speed and retropulsion amplitude are generated. Conclusions The longer the pulse, the less the ablation or retropulsion, while the longer pulse makes the ablation decrease faster than the retropulsion. The best quadratic fit of the response surface for the volume of ablation varied nonlinearly with pulse duration and pulse number. PMID:29707187

  4. Ablative fractional lasers (CO(2) and Er:YAG): a randomized controlled double-blind split-face trial of the treatment of peri-orbital rhytides.

    PubMed

    Karsai, Syrus; Czarnecka, Agnieszka; Jünger, Michael; Raulin, Christian

    2010-02-01

    Ablative fractional lasers were introduced for treating facial rhytides in an attempt to achieve results comparable to traditional ablative resurfacing but with fewer side effects. However, there is conflicting evidence on how well this goal has generally been achieved as well as on the comparative value of fractional CO(2) and Er:YAG lasers. The present study compares these modalities in a randomized controlled double-blind split-face study design. Twenty-eight patients were enrolled and completed the entire study. Patients were randomly assigned to receive a single treatment on each side of the peri-orbital region, one with a fractional CO(2) and one with a fractional Er:YAG laser. The evaluation included the profilometric measurement of wrinkle depth, the Fitzpatrick wrinkle score (both before and 3 months after treatment) as well as the assessment of side effects and patient satisfaction (1, 3, 6 days and 3 months after treatment). Both modalities showed a roughly equivalent effect. Wrinkle depth and Fitzpatrick score were reduced by approximately 20% and 10%, respectively, with no appreciable difference between lasers. Side effects and discomfort were slightly more pronounced after Er:YAG treatment in the first few days, but in the later course there were more complaints following CO(2) laser treatment. Patient satisfaction was fair and the majority of patients would have undergone the treatment again without a clear preference for either method. According to the present study, a single ablative fractional treatment session has an appreciable yet limited effect on peri-orbital rhytides. When fractional CO(2) and Er:YAG lasers are used in such a manner that there are comparable post-operative healing periods, comparable cosmetic improvement occurs. Multiple sessions may be required for full effect, which cancels out the proposed advantage of fractional methods, that is, fewer side effects and less down time.

  5. Photoablation of the cornea with a Q-switched Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Lubatschowski, Holger; Hetzel, U.; Kermani, Omid; Ziolek, Carsten; Drommer, Wolfgang; Ertmer, Wolfgang

    1997-12-01

    In this study the ablation characteristics and the wound healing process of rabbit cornea irradiated with a Q- switched Er:YAG laser was evaluated. The laser, emitting at 2.94 micrometers wavelength, has a pulse width of 100 ns. The spot size on the corneal surface was 1 mm in diameter at a fluence of 750 mJ/cm2. The laser beam was applied by a `flying spot' mode, performing refractive ablations of -7 to -8 dpt. As a biological model, the corneas of 9 rabbits were irradiated. The post-treatment follow-up was as long as 39 days. The treated corneas were investigated by light and electron microscopy. The wound healing on rabbit cornea of the Q-switched Er:YAG laser radiation in corneal tissue processing resembles to what is known from ArF- excimer laser application. To shorten the pulse width by means of Q-switching is one major key to the successful application of the Er:YAG laser for PRK.

  6. Soft-tissue applications of the holmium:YAG laser in urology

    NASA Astrophysics Data System (ADS)

    Denstedt, John D.; Razvi, Hassan A.; Chun, Samuel S.; Sales, Jack L.

    1995-05-01

    The ideal surgical laser for the treatment of soft tissue pathology should possess both ablative and hemostatic abilities. As well, for use in urologic conditions the laser must also be suitable for endoscopic use. The Holmium:YAG laser possesses these qualities and in preliminary clinical use has demonstrated a variety of potential urologic applications. In this study we review our initial experience with the Holmium:YAG laser over a 18 month period. A total of 51 patients underwent 53 procedures for a variety of soft tissue conditions including: bladder tumor ablation (25), incision of ureteral stricture (15), incision of urethral stricture (6), treatment of ureteropelvic junction obstruction (3), incision of bladder neck contracture (2), and ablation of a ureteral tumor (2). Satisfactory hemostasis was achieved in all cases. Procedures were considered successful (no further intervention being required to treat the condition) in 81% of the cases. Two patients with dense bladder neck contractures required electroincision under the same anesthetic for completion of the procedure. A single complication, that of urinary extravasation following incision of a urethral stricture resolved with conservative management. In summary, the Holmium:YAG laser has demonstrated safety and proficiency in the treatment of a variety of urologic soft tissue conditions.

  7. CO2 and Er:YAG laser interaction with grass tissues

    NASA Astrophysics Data System (ADS)

    Kim, Jaehun; Ki, Hyungson

    2013-01-01

    Plant leaves are multi-component optical materials consisting of water, pigments, and dry matter, among which water is the predominant constituent. In this article, we investigate laser interaction with grass using CO2 and Er:YAG lasers theoretically and experimentally, especially targeting water in grass tissues. We have first studied the optical properties of light absorbing constituents of grass theoretically, and then have identified interaction regimes and constructed interaction maps through a systematic experiment. Using the interaction maps, we have studied how interaction regimes change as process parameters are varied. This study reveals some interesting findings concerning carbonization and ablation mechanisms, the effect of laser beam diameter, and the ablation efficiency and quality of CO2 and Er:YAG lasers.

  8. Ho:YAG laser arthroscopy of the knee

    NASA Astrophysics Data System (ADS)

    Sisto, Domenick J.; Blazina, Martin E.; Hirsh, Linda C.

    1994-09-01

    The HO:YAG laser is a near-contact laser with a capacity to ablate or cut tissues. The ablation function allows the surgeon to remove meniscal tissue, lyse and resect adhesions, melt loose bodies, and dissolve inflamed synovium. The cutting function of the laser is utilized to perform a lateral release or resect torn menisci. The laser can also be utilized to drill holes in Grade IV chondromalacic lesions to initiate a healing response. The laser has been embraced by orthopaedic surgeons because of its shape and versatility. The tip is only 2 mm wide and can be delivered into the tight posterior compartments of the knee with no damaging contact with the articular surfaces. The laser coagulates as it works and bleeding is minimized. The laser can function both as a cutting and ablating tool. The laser can also drill holes into subchondral bone to, hopefully, initiate a healing response.

  9. Gingival melanin depigmentation by Er:YAG laser: A literature review.

    PubMed

    Pavlic, Verica; Brkic, Zlata; Marin, Sasa; Cicmil, Smiljka; Gojkov-Vukelic, Mirjana; Aoki, Akira

    2018-04-01

    Laser ablation is recently suggested as a most effective and reliable technique for depigmentation of melanin hyperpigmented gingiva. To date, different lasers have been used for gingival depigmentation (CO 2 , diode, Nd:YAG, Er:YAG and Er,Cr:YSGG lasers). The use of Er:YAG laser for depigmentation of melanin hyperpigmented gingiva has gained increasing importance in recent years. The purpose of this study was to report removal of gingival melanin pigmentation using an Er:YAG laser in a literature review. The main outcomes, such as improvement of signs (clinical parameters of bleeding, erythema, swelling and wound healing), symptoms (pain) and melanin recurrence/repigmentation were measured. The literature demonstrated that depigmentation of gingival melanin pigmentation can be performed safely and effectively by Er:YAG laser resulting in healing and an esthetically significant improvement of gingival discoloration. Thus, Er:YAG laser seems to be safe and useful in melanin depigmentation procedure. However, the main issue in giving the final conclusion of the optimal Er:YAG laser use in melanin depigmentation is that, to date, studies are offering completely discrepant Er:YAG laser procedure protocols (complex settings of laser parameters), and different criteria for the assessment of depigmentation and repigmentation (recurrence), thus hampering the comparison of the results. Therefore, further studies are necessary to give an optimal recommendation on the use of Er:YAG laser in gingival melanin hyperpigmentation.

  10. Temperature changes in the pulp chamber during dentin ablation with Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Zhang, Xianzeng; Zhao, Haibin; Zhan, Zhenlin; Guo, Wenqing; Xie, Shusen

    2012-12-01

    To examine the temperature changes in the pulp chamber during cavity preparation in dentin with the Er:YAG laser (2940 nm), a total 20 intact premolars teeth were divided into 4 groups for dentin ablation with different radiant exposures at 4Hz and 8Hz with and without water spray. A K-type thermocouple was used to monitor the temperature changes in pulp chamber during laser treatment. The total time of irradiation was 70 sec. the water spray rate was 3 mL/min. It showed that maximum temperature rise increases with the increasing of radiant exposure and pulse repetition rate and the additional water cooling during laser ablation can significantly reduce the temperature rise in pulp chamber which will benefit to avoid or reduce thermal damage to tooth structure and dental pulp. The highest rise of temperature in the pulp was achieved with 20 J/cm2 and 8 Hz (19.83°C ). For all sample without water spray, the rise of temperature was exceed 5 °C . In contrast, with water spray, the temperature rise in the pulp can be firmly controlled under 1°C. The results also indicated that ablation rate and efficiency can be enhanced by increasing the incident radiant exposure and pulse repetition rate, which simultaneously producing more heat accumulation in dental tissue and causing thermal damage to dental tissue. By applying an additional water spray, thermal damage can be significantly reduced in clinical application.

  11. Cutting and skin-ablative properties of pulsed mid-infrared laser surgery.

    PubMed

    Kaufmann, R; Hartmann, A; Hibst, R

    1994-02-01

    Pulsed mid-infrared lasers allow a precise removal of soft tissues with only minimal thermal damage. To study the potential dermatosurgical usefulness of currently available systems at different wavelengths (2010-nm Thulium:YAG laser, 2100-nm Holmium:YAG laser, 2790-nm Erbium:YSGG laser, and 2940-nm Erbium:YAG laser) in vivo on pig skin. Immediate effects and wound healing of superficial laser-abrasions and incisions were compared with those of identical control lesions produced by dermabrasion, scalpel incisions, or laser surgery performed by a 1060-nm Nd:YAG and a 1060-nm CO2 laser (continuous and superpulsed mode). Best efficiency and least thermal injury was found for the pulsed Erbium:YAG laser, leading to ablative and incisional lesions comparable to those obtained by dermabrasion or superficial scalpel incisions, respectively. In contrast to other mid-infrared lasers tested, the 2940-nm Erbium:YAG laser thus provides a potential instrument for future applications in skin surgery, especially when aiming at a careful ablative removal of delicate superficial lesions with maximum sparing of adjacent tissue structures. However, in the purely incisional application mode pulsed mid-infrared lasers, though of potential usefulness in microsurgical indications (eg, surgery of the cornea), do not offer a suggestive alternative to simple scalpel surgery of the skin.

  12. Potential applications of Erbium:YAG laser in periodontics.

    PubMed

    Ishikawa, Isao; Aoki, Akira; Takasaki, Aristeo Atsushi

    2004-08-01

    Since lasers were introduced for the treatment of oral diseases, there has been considerable advancement in technology. As a result, numerous laser systems are currently available for oral use. Neodymium:Yttrium-Aluminum:Garnet (Nd:YAG), carbon dioxide (CO(2)) laser and the semiconductor Diode lasers have already been approved by the US Food and Drug Administration for soft tissue treatment in oral cavity. The Erbium:YAG (Er:YAG) laser was approved in 1997 for hard tissue treatment in dentistry and recent studies have reported positive results. This suggests that the Er:YAG laser system is a promising apparatus, which will be able to revolutionize and improve dental practice, in particular periodontal treatment. In this mini-review, we would like to describe the positive characteristics of the Er:YAG laser which indicate its potential as a new treatment modality in periodontics. Recent findings are summarized briefly to evaluate the potential of the Er:YAG laser for clinical application in periodontics. The Er:YAG laser possesses suitable characteristics for oral soft and hard tissue ablation. Recently, it has been applied for effective elimination of granulation tissue, gingival melanin pigmentation and gingival discoloration. Contouring and cutting of bone with minimal damage and even or faster healing can also be performed with this laser. In addition, irradiation with the Er:YAG laser has a bactericidal effect with reduction of lipopolysaccharide, high ability of plaque and calculus removal, with the effect limited to a very thin layer of the surface and is effective for implant maintenance. The Er:YAG laser seems to be an effective tool for periodontal therapy, however, further clinical and basic investigations are required to confirm its clinical application. Copyright Blackwell Munksgaard, 2004

  13. Er:YAG laser for dentistry: basics, actual questions, and perspectives

    NASA Astrophysics Data System (ADS)

    Hibst, Raimund; Keller, Ulrich

    1994-12-01

    In recent years the dental use of the Er:YAG has found increasing interest. Most of the papers published so far concentrate on in vitro studies on cavity preparation, including the determination of ablation rates, measurements of temperature increase, microscopical analysis, and studies on the effect of water spray. The results are qualitatively in agreement and reveal a combination of high ablation efficiency and small side effects superior to other laser systems. Quantitative results, however, e.g., on ablation threshold or crater depths, sometimes differ. Some of these differences now can be explained and related to laser parameters or experimental conditions. Besides increasing the understanding on laser tissue interaction, the actual research enlarges the potential applications of the Er:YAG laser, such as for condition of enamel or dentin surfaces to enhance the bonding of composites. With the use of fibers, additional perspectives are given in periodontics and endodontics, e.g., for concrement removal or root canal preparation or sterilization.

  14. Analysis of erythema after Er:YAG laser skin resurfacing.

    PubMed

    Ko, Na Young; Ahn, Hyo-Hyun; Kim, Soo-Nam; Kye, Young-Chul

    2007-11-01

    Postoperative erythema can be expected to occur in every patient after laser resurfacing, and pigmentary disturbances may be related to the intensity and the duration of erythema. This study was undertaken to assess the clinical features of erythema, the factors that influence its duration, and the relation between the duration of erythema and the incidence of hyperpigmentation and hypopigmentation in skin of Asian persons after Er:YAG laser resurfacing. A total of 218 patients (skin phototypes III to V) were recruited and treated with a short-pulsed Er:YAG laser, a variable-pulsed Er:YAG laser, or a dual-mode Er:YAG laser for skin resurfacing. Clinical assessments were performed retrospectively using medical charts and serial photographs. Postoperative erythema was observed in all patients after Er:YAG laser resurfacing with a mean duration of 4.72 months. In 98.2% of patients, erythema faded completely within 12 months. Postinflammatory hyperpigmentation was observed in 38.1% of patients after Er:YAG laser resurfacing. Skin phototype, level of ablation, and depth of thermal damage caused by a long-pulsed laser appear to be important factors that affect the duration of erythema. Moreover, prolonged erythema was related to the risk of postinflammatory hyperpigmentation.

  15. Minimally invasive scoliosis treatment with a Ho:YAG laser

    NASA Astrophysics Data System (ADS)

    Rumpf, Christian G.; Lang, Robert D.; Goetz, Marcus H.

    2000-11-01

    Today most surgical treatment of spinal deformations is concentrated on invasive mechanical techniques with long operation times and major effects on the patient's mobility. The proposed minimally invasive technique using laser light for tissue ablation offers a possibility of gentle scoliosis treatment. It is thought that an early removal of the epiphysial growth zone on the convex side over several vertebrae results in a straightening of the spine. In a first evaluation, four different laser systems including argon ion, Nd:YAG (Q-switched), Nd:YAG (cw), and Ho:YAG laser were compared with respect to thermal damage to adjacent tissue, ablation rates, efficiency and laser handling. For in-vivo investigation, fresh lamb spine was used. Comparison showed that the Ho:YAG laser is the most appropriate laser for the given goal, providing efficient photoablation with moderate thermal effects on the adjacent tissue. In a second step the proposed minimally invasive operation technique was performed in in-vivo experiments on young foxhounds using 3D- thoracoscopic operation techniques. During these operations temperature mapping was done using fiber-optic fluorescent probes. After 12 months of normal growth the animals were sacrificed and x-ray as well as MRI was performed on the spine. First results show a positive effect of scoliotic growth in two cases. Being able to produce a scoliosis by hemiepiphysiodesis on the vertebra, It is thought that this technique is successful for a straightening of the spine on patients with scoliosis.

  16. Primary investigations on the potential of a novel diode pumped Er:YAG laser system for middle ear surgery

    NASA Astrophysics Data System (ADS)

    Stock, Karl; Wurm, Holger; Hausladen, Florian

    2016-02-01

    Flashlamp pumped Er:YAG lasers are successfully used clinically for both precise soft and hard tissue ablation. Since several years a novel diode pumped Er:YAG laser system (Pantec Engineering AG) is available, with mean laser power up to 40 W and pulse repetition rate up to 1 kHz. The aim of the study was to investigate the suitability of the laser system specifically for stapedotomy. Firstly an experimental setup was realized with a beam focusing unit and a computer controlled translation stage to move the samples (slices of porcine bone) with a defined velocity while irradiation with various laser parameters. A microphone was positioned in a defined distance to the ablation point and the resulting acoustic signal of the ablation process was recorded. For comparison, measurements were also performed with a flash lamp pumped Er:YAG laser system. After irradiation the resulting ablation quality and efficacy were determined using light microscopy. Using a high speed camera and "Töpler-Schlierentechnik" the cavitation bubble in water after perforation of a bone slice was investigated. The results show efficient bone ablation using the diode pumped Er:YAG laser system. Also a decrease of the sound level and of the cavitation bubble volume was observed with decreasing pulse duration. Higher repetition rates lead to a slightly increase of thermal side effects but have no influence on the ablation efficiency. In conclusion, these first experiments demonstrate the high potential of the diode pumped Er:YAG laser system for use in middle ear surgery.

  17. High efficient bone ablation with diode pumped Erbium and Thulium lasers including different delivery fibers: a comparative in vitro study

    NASA Astrophysics Data System (ADS)

    Stock, Karl; Hausladen, Florian; Stegmayer, Thomas; Wurm, Holger

    2018-02-01

    Er:YAG lasers (3μm) allow efficient bone ablation caused by the strong absorption in water. Unfortunately, there are only a few and comparable expensive fiber materials for this wavelength available which are suitable for high laser power. The bone ablation efficiency of the Tm:YAG laser is minor (2μm) but inexpensive silica fibers can be used. The aim of this study was to investigate the bone ablation, using novel diode pumped high power Er:YAG (laser power 40W) and Tm:YAG laser system (60W) and adaptive fiber delivery systems. Expected advantage of these lasers is the longer lifetime of the fibers because of the high repetition rate and low pulse energy compared to the flash lamp pumped laser systems. The bare fiber output ends of a sapphire fiber (Er:YAG laser) and of a silica fiber (Tm:YAG laser) were attached under water and a water filled container including the fixed sample (bovine bone slices) was moved by a computer controlled translation stage. In a second set-up we provided a focusing unit and appropriate water spray unit. The generated cut kerfs were analyzed by light microcopy and laser scanning microscopy. The results show that with the diode pumped Er:YAG laser and sapphire fiber a particular high efficient bone ablation (> 0.16mm2/J) is possible both with bare fiber under water and focusing unit with water spray. The higher power of the Tm:YAG laser also results in high ablation rates but causes enlarged thermal damages. In conclusion, this study demonstrates that efficient bone ablation is possible with both diode pumped laser systems. In terms of efficiency the Er:YAG laser is outstanding. The Tm:YAG laser also allows fast bone ablation, provided that the thermal impact is limited by effective cooling and high movement velocity of the laser spot, for example by using an automatic scanner.

  18. Molecular effects of fractional ablative erbium:YAG laser treatment with multiple stacked pulses on standardized human three-dimensional organotypic skin models.

    PubMed

    Schmitt, Laurenz; Amann, P M; Marquardt, Y; Heise, R; Czaja, K; Gerber, P A; Steiner, T; Hölzle, F; Baron, Jens Malte

    2017-05-01

    The molecular changes in gene expression following ablative laser treatment of skin lesions, such as atrophic scars and UV-damaged skin, are not completely understood. A standardized in vitro model of human skin, to study the effects of laser treatment on human skin, has been recently developed. Therefore, the aim of the investigation was to examine morphological and molecular changes caused by fractional ablative erbium:YAG laser treatment on an in vitro full-thickness 3D standardized organotypic model of human skin. A fractional ablative erbium:YAG laser was used to irradiate organotypic human 3D models. Laser treatments were performed at four different settings using a variety of stacked pulses with similar cumulative total energy fluence (60 J/cm 2 ). Specimens were harvested at specified time points and real-time PCR (qRT-PCR) and microarray studies were performed. Frozen sections were examined histologically. Three days after erbium:YAG laser treatment, a significantly increased mRNA expression of matrix metalloproteinases and their inhibitors (MMP1, MMP2, MMP3, TIMP1, and TIMP2), chemokines (CXCL1, CXCL2, CXCL5, and CXCL6), and cytokines such as IL6, IL8, and IL24 could be detected. qRT-PCR studies confirmed the enhanced mRNA expression of IL6, IL8, IL24, CXCLs, and MMPs. In contrast, the mRNA expression of epidermal differentiation markers, such as keratin-associated protein 4, filaggrin, filaggrin 2, and loricrin, and antimicrobial peptides (S100A7A, S100A9, and S100A12) as well as CASP14, DSG2, IL18, and IL36β was reduced. Four different settings with similar cumulative doses have been tested (N10%, C10%, E10%, and W25%). These laser treatments resulted in different morphological changes and effects on gene regulations. Longer pulse durations (1000 μs) especially had the strongest impact on gene expression and resulted in an upregulation of genes, such as collagen-1A2, collagen-5A2, and collagen-6A2, as well as FGF2. Histologically, all treatment

  19. Comparison between Er:YAG laser and bipolar radiofrequency combined with infrared diode laser for the treatment of acne scars: Differential expression of fibrogenetic biomolecules may be associated with differences in efficacy between ablative and non-ablative laser treatment.

    PubMed

    Min, Seonguk; Park, Seon Yong; Moon, Jungyoon; Kwon, Hyuck Hoon; Yoon, Ji Young; Suh, Dae Hun

    2017-04-01

    Fractional Er:YAG minimizes the risk associated with skin ablation. Infrared diode laser and radiofrequency have suggested comparable improvements in acne scar. We compared the clinical efficacy of Er:YAG laser and bipolar radiofrequency combined with diode laser (BRDL) for the treatment of acne scars. Moreover, acute molecular changes of cytokine profile associated with wound healing have been evaluated to suggest mechanisms of improvement of acne scar. Twenty-four subjects with mild-to-moderate acne scars were treated in a split-face manner with Er:YAG and BRDL, with two treatment sessions, 4 weeks apart. Objective and subjective assessments were done at baseline, 1, 3, 7 days after each treatment and 4 weeks after last treatment. Skin biopsy specimens were obtained at baseline, 1, 3, 7, 28 days after one session of treatment for investigation of molecular profile of acute skin changes by laser treatment. Investigator's Global Assessment representing the improvement degree shows 2.1 (50%) in fractional Er:YAG and 1.2 (25%) in BRDL. Er:YAG induced the later and higher peak expression of TGFβs and collagenases, whereas BRDL induced earlier and lower expression of TGFβ and collagenases, relatively. PPARγ dropped rapidly after a peak in Er:YAG-treated side, which is associated with tissue inhibitor of metalloproteinase (TIMP) expression. We observed higher expression of TIMP after Er:YAG treatment compared with BRDL by immunohistochemistry, which may be associated with the expression of upregulation of collagen fibers. The superior efficacy of Er:YAG to BRDL in the treatment of acne scars may be associated with higher expression of collagen which is associated with differential expression of TGFβs, collagenases, PPARγ, and TIMP. Lasers Surg. Med. 49:341-347, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Low-threshold ablation of enamel and dentin using Nd:YAG laser assisted with chromophore with different pulse shapes

    NASA Astrophysics Data System (ADS)

    Bonora, Stefano; Benazzato, Paolo; Stefani, Alessandro; Villoresi, Paolo

    2004-05-01

    Neodimium laser treatment has several drawbacks when used in the hard tissue cutting, because of the low absorption of the dental tissues at its wavelength. This investigation proved that the Nd:YAG radiation is a powerful ablation tool if it is used with the dye assisted method. Several in vitro tests on enamel and dentin were accomplished changing some laser parameters to have different pulse shapes and durations from 125μs up to 1.4ms. The importance of short time high power peaks, typical of crystal lasers, in the ablation process was investigated. The pulse shapes were analyzed by their intensity in space and time profiles. A first set of results found the optimum dye concentration be used in all the following tests. Furthermore the ablation threshold for this technique was found for each different pulse shapes and durations. A low energy ablation method was found to avoid temperature increase and surface cracks formation. In vitro temperature analysis was reported comparing the differences between no dye application laser treatment and with a dye spray applied. A strong reduction of the temperature increase was found in the dye assisted method. A discussion on the general findings and their possible clinical applications is presented.

  1. Efficacy of percutaneous treatment of biliary tract calculi using the holmium:YAG laser.

    PubMed

    Hazey, J W; McCreary, M; Guy, G; Melvin, W S

    2007-07-01

    Few Western studies have focused on percutaneous techniques using percutaneous transhepatic choledochoscopy (PTHC) and holmium:yttrium-aluminum-garnet (YAG) laser to ablate biliary calculi in patients unable or unwilling to undergo endoscopic or surgical removal of the calculi. The authors report the efficacy of the holmium:YAG laser in clearing complex biliary calculi using percutaneous access techniques. This study retrospectively reviewed 13 non-Asian patients with complex secondary biliary calculi treated percutaneously using holmium:YAG laser. Percutaneous access was accomplished via left, right, or bilateral hepatic ducts and upsized for passage of a 7-Fr video choledochoscope. Lithotripsy was performed under choledochoscopic vision using a holmium:YAG laser with 200- or 365-microm fibers generating 0.6 to 1.0 joules at 8 to 15 Hz. Patients underwent treatment until stone clearance was confirmed by PTHC. Downsizing and subsequent removal of percutaneous catheters completed the treatment course. Seven men and six women with an average age of 69 years underwent treatment. All the patients had their biliary tract stones cleared successfully. Of the 13 patients, 3 were treated solely as outpatients. The average length of percutaneous access was 108 days. At this writing, one patient still has a catheter in place. The average number of holmium:YAG laser treatments required for stone clearance was 1.6, with no patients requiring more than 3 treatments. Of the 13 patients, 8 underwent a single holmium:YAG laser treatment to clear their calculi. Prior unsuccessful attempts at endoscopic removal of the calculi had been experienced by 7 of the 13 patients. Five patients underwent percutaneous access and subsequent stone removal as their sole therapy for biliary stones. Five patients were cleared of their calculi after percutaneous laser ablation of large stones and percutaneous basket retrieval of the remaining stone fragments. There was one complication of pain

  2. Effects of Er:YAG laser irradiation on human cartilage

    NASA Astrophysics Data System (ADS)

    Glinkowski, Wojciech; Brzozowska, Malgorzata; Ciszek, Bogdan; Rowinski, Jan; Strek, Wieslaw

    1996-03-01

    Irradiation of the hyaline or fibrous cartilage excised from the body of a human cadaver with Er:YAG laser beam, single pulse with a dose of 1 J, produces a crater with a depth of approximately 500 micrometers and a diameter varying from 5 to 300 micrometers. Histological examination has revealed that the laser-made craters were surrounded by a thin rim (2-10 micrometer) of charred and coagulated tissue. No damage was observed in the cartilage surrounding the rim. The presence of sharp demarcation between the tissue areas ablated by laser energy and the undamaged areas argues for the potential usefulness of the Er:YAG laser in surgery of cartilages.

  3. Effect of pulse duration on photomechanical response of soft tissue during Ho:YAG laser ablation

    NASA Astrophysics Data System (ADS)

    Jansen, E. Duco; Motamedi, Massoud; Pfefer, T. Joshua; Asshauer, Thomas; Frenz, Martin; Delacretaz, Guy P.; Abela, George S.; Welch, Ashley J.

    1995-05-01

    Mechanical injury during pulsed holmium laser ablation of tissue is caused by rapid bubble expansion and collapse or by laser-induced pressure waves. In this study the effect of pulse duration on the photomechanical response of soft tissue during holmium:YAG laser ablation has been investigated. The dynamics of laser-induced bubble formation was documented in water and in transparent polyacrylamide tissue phantoms with a water concentration of 84%. Holmium:YAG laser radiation ((lambda) equals 2.12 micrometers ) was delivered in water or tissue phantoms via an optical fiber (200 or 400 micrometers ). The laser was operated in either the Q- switched mode ((tau) p equals 500 ns, Qp equals 14 +/- 1 mJ, 200 micrometers fiber, Ho equals 446 mJ/mm2) or the free-running mode ((tau) p equals 100 - 1100 microsecond(s) , Qp equals 200 +/- 5 mJ, 400 micrometers fiber, Ho equals 1592 mJ/mm2). Bubble formation was documented using a fast flash photography setup while simultaneously a PVDP needle hydrophone (40 ns risetime), recorded pressures. The effect of the pulse duration on the photomechanical response of soft biological tissue was evaluated by delivering 5 pulses of 800 mJ to the intimal side of porcine aorta in vitro, followed by histologic evaluation. It was observed that, as the pulse duration was increased the bubble shape changed from almost spherical for Q-switched pulses to a more elongated, cylindrical shape for the longer pulse durations. The bubble expansion velocity was larger for shorter pulse durations. A thermo- elastic expansion wave was measured only during Q-switched pulse delivery. All pulses that induced bubble formation generated pressure waves upon collapse of the bubble in water as well as in the gel. The amplitude of the pressure wave depended strongly on the size and geometry of the laser-induced bubble. The important findings of this study were (1) the magnitude of collapse pressure wave decreased as laser pulse duration increased, and (2

  4. Femtosecond laser ablation of the stapes

    NASA Astrophysics Data System (ADS)

    McCaughey, Ryan G.; Sun, Hui; Rothholtz, Vanessa S.; Juhasz, Tibor; Wong, Brian J. F.

    2009-03-01

    A femtosecond laser, normally used for LASIK eye surgery, is used to perforate cadaveric human stapes. The thermal side effects of bone ablation are measured with a thermocouple in an inner ear model and are found to be within acceptable limits for inner ear surgery. Stress and acoustic events, recorded with piezoelectric film and a microphone, respectively, are found to be negligible. Optical microscopy, scanning electron microscopy, and optical coherence tomography are used to confirm the precision of the ablation craters and lack of damage to the surrounding tissue. Ablation is compared to that from an Er:YAG laser, the current laser of choice for stapedotomy, and is found to be superior. Ultra-short-pulsed lasers offer a precise and efficient ablation of the stapes, with minimal thermal and negligible mechanical and acoustic damage. They are, therefore, ideal for stapedotomy operations.

  5. Laser ablation system, and method of decontaminating surfaces

    DOEpatents

    Ferguson, Russell L.; Edelson, Martin C.; Pang, Ho-ming

    1998-07-14

    A laser ablation system comprising a laser head providing a laser output; a flexible fiber optic cable optically coupled to the laser output and transmitting laser light; an output optics assembly including a nozzle through which laser light passes; an exhaust tube in communication with the nozzle; and a blower generating a vacuum on the exhaust tube. A method of decontaminating a surface comprising the following steps: providing an acousto-optic, Q-switched Nd:YAG laser light ablation system having a fiber optically coupled output optics assembly; and operating the laser light ablation system to produce an irradiance greater than 1.times.10.sup.7 W/cm.sup.2, and a pulse width between 80 and 170 ns.

  6. Heat effect of pulsed Er:YAG laser radiation

    NASA Astrophysics Data System (ADS)

    Hibst, Raimund; Keller, Ulrich

    1990-06-01

    Pulsed Er:YAG laser radiation has been found to be effective for dental enamel and dentin removal. Damage to the surrounding hard tissue is little, but before testing the Er:YAG laser clinically for the preparation of cavities, possible effects on the soft tissue of the pulp must be known. In order to estimate pulp damage , temperature rise in dentin caused by the laser radiation was measured by a thermocouple. Additionally, temperature distributions were observed by means of a thermal imaging system. The heat effect of a single Er:YAG laser pulse is little and limited to the vicinity of the impact side. Because heat energy is added with each additional pulse , the temperature distribution depends not only on the radiant energy, but also on the number of pulses and the repetition rate. Both irradiation conditions can be found , making irreversible pulp damage either likely or unlikely. The experimental observations can be explained qualitatively by a simple model of the ablation process.

  7. Energy output reduction and surface alteration of quartz and sapphire tips following Er:YAG laser contact irradiation for tooth enamel ablation.

    PubMed

    Eguro, Toru; Aoki, Akira; Maeda, Toru; Takasaki, Aristeo Atsushi; Hasegawa, Mitsuru; Ogawa, Masaaki; Suzuki, Takanori; Yonemoto, Kazuaki; Ishikawa, Isao; Izumi, Yuichi; Katsuumi, Ichiroh

    2009-10-01

    Despite the recent increase in application of Er:YAG laser for various dental treatments, limited information is available regarding the contact tips. This study examined the changes in energy output and surface condition of quartz and sapphire contact tips after Er:YAG laser contact irradiation for tooth enamel ablation. Ten sets of unused quartz or sapphire contact tips were employed for contact irradiation to sound enamel of extracted teeth. The teeth were irradiated with Er:YAG laser at approximately 75 J/cm(2)/pulse and 20 Hz under water spray for 60 minutes. The energy output was measured before and every 5 minutes after irradiation, and the changes in morphology and chemical composition of the contact surface were analyzed. The energy output significantly decreased with time in both tips. The energy output from the sapphire tips was generally higher on average than that of the quartz. The contact surfaces of all the used quartz tips were concave and irregular. Most of the sapphire tips also appeared rough with crater formation and fractures, except for a few tips in which a high energy output and the original smooth surface were maintained. Spots of melted tooth substances were seen attached to the surface of both tips. In contact enamel ablation, the sapphire tip appeared to be more resistant than the quartz tip. The quartz tips showed similar patterns of energy reduction and surface alteration, whereas the sapphire tips revealed a wider and more characteristic variation among tips. Lasers Surg. Med. 41:595-604, 2009. (c) 2009 Wiley-Liss, Inc.

  8. Advances in bone surgery: the Er:YAG laser in oral surgery and implant dentistry

    PubMed Central

    Stübinger, Stefan

    2010-01-01

    The erbium-doped yttrium aluminium garnet (Er:YAG) laser has emerged as a possible alternative to conventional methods of bone ablation because of its wavelength of 2.94 μm, which coincides with the absorption peak of water. Over the last decades in several experimental and clinical studies, the widespread initial assumption that light amplification for stimulated emission of radiation (laser) osteotomy inevitably provokes profound tissue damage and delayed wound healing has been refuted. In addition, the supposed disadvantage of prolonged osteotomy times could be overcome by modern short-pulsed Er:YAG laser systems. Currently, the limiting factors for a routine application of lasers for bone ablation are mainly technical drawbacks such as missing depth control and a difficult and safe guidance of the laser beam. This article gives a short overview of the development process and current possibilities of noncontact Er:YAG laser osteotomy in oral and implant surgery. PMID:23662082

  9. The influence of the Q-switched and free-running Er:YAG laser beam characteristics on the ablation of root canal dentine

    NASA Astrophysics Data System (ADS)

    Papagiakoumou, Eirini; Papadopoulos, Dimitrios N.; Khabbaz, Marouan G.; Makropoulou, Mersini I.; Serafetinides, Alexander A.

    2004-06-01

    Laser based dental treatment is attractive to many researchers. Lasers in the 3 μm region, as the Er:YAG, are suitable especially for endodontic applications. In this study a pulsed free-running and Q-switched laser was used for the ablation experiments of root canal dentine. The laser beam was either directly focused on the dental tissue or delivered to it through an infrared fiber. For different spatial beam distributions, energies, number of pulses and both laser operations the quality characteristics (crater's shape formation, ablation efficiency and surface characteristics modification) were evaluated using scanning electron microscopy (SEM). The craters produced, generally, reflect the relevant beam profile. Inhomogeneous spatial beam profiles and short pulse duration result in cracks formation and lower tissue removal efficiency, while longer pulse durations cause hard dentine fusion. Any beam profile modification, due to laser characteristics variations and the specific delivering system properties, is directly reflected in the ablation crater shape and the tissue removal efficiency. Therefore, the laser parameters, as fluence, pulse repetition rate and number of pulses, have to be carefully adjusted in relation to the desirable result.

  10. Tunable, diode side-pumped Er: YAG laser

    DOEpatents

    Hamilton, Charles E.; Furu, Laurence H.

    1997-01-01

    A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 .mu.m, and is tunable over a 6 nm range near about 2.936 .mu.m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 .mu.m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 .mu.m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems.

  11. Tunable, diode side-pumped Er:YAG laser

    DOEpatents

    Hamilton, C.E.; Furu, L.H.

    1997-04-22

    A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 {micro}m, and is tunable over a 6 nm range near about 2.936 {micro}m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 {micro}m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 {micro}m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems. 4 figs.

  12. Basic studies on laser-assisted phacoemulsification using diode-pumped Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Hausladen, Florian; Wurm, Holger; Stock, Karl

    2016-03-01

    The aim of this study was to determine the potential of a novel diode-pumped Er:YAG laser for phacoemulsification in basic experimental investigations. An appropriate experimental setup was created, including a translation stage for sample movement, a sample holder, a water spray for sample humidification and a surgical microscope with a CCD camera for video documentation. The analysis of the laser cuts and histological sections was done by light microscopy. As samples porcine eye lenses hardened by formalin were used. In ablation experiments with different spot diameters and radiant powers and a constant repetition rate νr = 200 Hz the maximum ablation depths of (4.346 +/- 0.044) mm have reached at (Ø = 480 μm, Φ = 24.15 W) with a maximum extend of thermal damage of (0.165 +/- 0.030) mm. The average ablation efficiency is 0.241 mm3/J. With a spot diameter of 308 μm the maximum ablation depth is (4.238 +/- 0.040) mm at 24.65 W with a mean ablation efficiency of 0.293 mm3/J. The extend of the thermally damaged region is (0.171 +/- 0.024) mm at this laser power. Using a sapphire cylinder with a diameter of 412 μm (length 38.5 mm) in direct tissue contact with water spray for sample humidification the ablation depth reaches (1.017 +/- 0.074) mm at 4.93 W and (1.840 +/- 0.092) mm at 9.87 W with a mean efficiency of 0.261 mm3/J. A thermal damage zone of (0.064 +/-0.024) mm at 9.87 W was measured. Additionally, at this high power, a progressive contamination and destruction of the cylinder end facet was observed. In conclusion, the investigations show that the diode-pumped Er:YAG laser has considerable potential for cataract surgery.

  13. Er:YAG laser debonding of porcelain veneers

    NASA Astrophysics Data System (ADS)

    Buu, Natalie; Morford, Cynthia; Finzen, Frederick; Sharma, Arun; Rechmann, Peter

    2010-02-01

    The removal of porcelain veneers using Er:YAG lasers has not been previously described in the scientific literature. This study was designed to systematically investigate the efficacy of an Er:YAG laser on veneer debonding without damaging the underlying tooth structure, as well as preserving a new or misplaced veneer. Initially, Fourier Transform Infrared Spectroscopy (FTIR) was used on flat porcelain veneer samples (IPS Empress Esthetic; Ivoclar Vivadent, Amherst, NY) to assess which infrared laser wavelengths are transmitted through the veneer. Additionally, FTIR spectra from a veneer bonding cement (RelyX Veneer Cement A1; 3M ESPE, St. Paul, MN) were obtained. While the veneer material showed no characteristic water absorption bands in the FTIR, the bonding cement has a broad H2O/OH absorption band coinciding with the ER:YAG laser emission wavelength. Consequently Er:YAG laser energy transmission through different veneer thicknesses was measured. The porcelain veneers transmitted 11 - 18 % of the incident Er:YAG laser energy depending on their thicknesses (Er:YAG laser: LiteTouch by Syneron; wavelength 2,940 nm, 10 Hz repetition rate, pulse duration 100 μs at 133 mJ/pulse; straight sapphire tip 1,100 μm diameter; Syneron, Yokneam, Israel). Initial signs of cement ablation occurred at approximately 1.8 - 4.0 J/cm2. This can be achieved by irradiating through the veneer with the fiber tip positioned at a distance of 3-6 mm from the veneer surface, and operating the Er:YAG laser with 133 mJ output energy. All eleven veneers bonded on extracted anterior incisor teeth were easily removed using the Er:YAG laser. The removal occurred without damaging underlying tooth structure as verified by light microscopic investigation (Incident Light Microscope Olympus B 50, Micropublisher RTV 3.3 MP, Image Pro software, Olympus). The debonding mainly occurred at the cement/veneer interface. When the samples were stored in saline solution for 5 days and/or an air-waterspray was

  14. Ablative non-fractional lasers for atrophic facial acne scars: a new modality of erbium:YAG laser resurfacing in Asians.

    PubMed

    Lee, Sang Ju; Kang, Jin Moon; Chung, Won Soon; Kim, Young Koo; Kim, Hei Sung

    2014-03-01

    Atrophic facial scars which commonly occur after inflammatory acne vulgaris can be extremely disturbing to patients both physically and psychologically. Treatment with fractional laser devices has become increasingly popular, but there has been disappointment in terms of effectiveness. The objective of this study was to assess the safety and efficacy of ablative full-face resurfacing on atrophic acne scars in the Korean population. A total of 22 patients, aged 25-44 years, underwent a new modality of resurfacing combining both short-pulsed and dual-mode erbium:yttrium-aluminum garnet (Er:YAG) laser. The patients had Fitzpatrick skin types ranging from III to V. Photographs were taken before and up to 6 months after treatment. Results were evaluated for the degree of clinical improvement and any adverse events. Degree of improvement was graded using a four-point scale: poor (1) = <25%, fair (2) = 25-50%, good (3) = 51-75%, and excellent (4) = >75%. Based on the blinded photo assessments by two independent reviewers, clinically and statistically significant mean improvement of 3.41 was observed (one-sample Wilcoxon signed rank test, P < 0.001). Complete wound healing occurred between 6 and 9 days. Erythema occurred in all patients and lasted longer than 3 months in two patients (9.1%). Postinflammatory hyperpigmentation occurred in ten patients (45.5%) and lasted longer than 3 months in one patient (4.5%). One patient experienced mild hypopigmentation (4.5%). Mild to moderate acne flare-up occurred in five patients (22.7%). No other adverse effects were observed. A new modality of Er:YAG laser resurfacing combining short-pulsed and dual-mode Er:YAG laser is a safe and very effective treatment modality for atrophic facial acne scars in Asians with darker skin tones.

  15. Pulsed laser ablation of IC packages for device failure analyses

    NASA Astrophysics Data System (ADS)

    Hong, Ming Hui; Mai, ZhiHong; Chen, G. X.; Thiam, Thomas; Song, Wen D.; Lu, Yongfeng; Soh, Chye E.; Chong, Tow Chong

    2002-06-01

    Pulsed laser ablation of mold compounds for IC packaging in air and with steam assistance is investigated. It is applied to decap IC packages and expose computer CPU dies for the device failure analyses. Compared with chemical decapping, the laser ablation has advantages of being fast speed, non- contact and dry processing. Laser ablation with the steam assistance results in higher ablation rate and wider ablated crater with much smoother surface morphology. It implies that the steam assisted laser ablation can achieve a faster and better quality laser processing. Audible acoustic wave and plasma optical signal diagnostics are also carried out to have a better understanding of the mechanisms behind. Light wavelength and laser fluence applied in the decapping are two important parameters. The 532 nm Nd:YAG laser decapping at a low laser fluence can achieve a large decapping area with a fine ablation profile. IC packages decapped by the laser ablation show good quality for the device failure analyses.

  16. A method for rapid measurement of laser ablation rate of hard dental tissue

    NASA Astrophysics Data System (ADS)

    Perhavec, T.; Gorkič, A.; Bračun, D.; Diaci, J.

    2009-06-01

    The aim of the study reported here is the development of a new method which allows rapid and accurate in-vitro measurements of three-dimensional (3D) shape of laser ablated craters in hard dental tissues and the determination of crater volume, ablation rate and speed. The method is based on the optical triangulation principle. A laser sheet projector illuminates the surface of a tooth, mounted on a linear translation stage. As the tooth is moved by the translation stage a fast digital video camera captures series of images of the illuminated surface. The images are analyzed to determine a 3D model of the surface. Custom software is employed to analyze the 3D model and to determine the volume of the ablated craters. Key characteristics of the method are discussed as well as some practical aspects pertinent to its use. The method has been employed in an in-vitro study to examine the ablation rates and speeds of the two main laser types currently employed in dentistry, Er:YAG and Er,Cr:YSGG. Ten samples of extracted human molar teeth were irradiated with laser pulse energies from 80 mJ to the maximum available energy (970 mJ with the Er:YAG, and 260 mJ with the Er,Cr:YSGG). About 2000 images of each ablated tooth surface have been acquired along a translation range of 10 mm, taking about 10 s and providing close to 1 million surface measurement points. Volumes of 170 ablated craters (half of them in dentine and the other half in enamel) were determined from this data and used to examine the ablated volume per pulse energy and ablation speed. The results show that, under the same conditions, the ablated volume per pulse energy achieved by the Er:YAG laser exceeds that of the Er,Cr:YSGG laser in almost all regimes for dentine and enamel. The maximum Er:YAG laser ablation speeds (1.2 mm 3/s in dentine and 0.7 mm 3/s in enamel) exceed those obtained by the Er,Cr:YSGG laser (0.39 mm 3/s in dentine and 0.12 mm 3/s in enamel). Since the presented method proves to be easy to

  17. Perfluorocarbon compounds: transmitting liquids for infrared laser tissue ablation

    NASA Astrophysics Data System (ADS)

    Frenz, Martin; Pratisto, Hans S.; Toth, Cynthia A.; Jansen, E. Duco; Altermatt, Hans J.; Welch, Ashley J.; Weber, Heinz P.

    1996-05-01

    One concern during IR-laser ablation of tissue under water is the mechanical injury that may be induced in tissue due to rapid bubble expansion and collapse or due to strong laser-induced pressure waves. The objective of this study was to evaluate the feasibility of using a liquid which is transparent to the IR-region of the spectrum in order to minimize these undesired mechanical side-effects. As transmitting medium perfluorocarbon liquid was used. Free- running Er:YAG and Ho:YAG laser pulses were delivered into the liquid via a 400 micrometers fiber. Bubble formation during the ablation process was recorded with fast flash photography while pressure transients were measured with a needle hydrophone. The effect of the surrounding material (air, water, perfluorooctane) on the tissue response of chicken breast was evaluated in vitro using histology. It was observed that a large bubble (up to 6 mm in diameter) was formed under perfluorooctane driven by the ablation products. This bubble, however, does not generate a pressure wave when collapsing. Although perfluorooctane only shows a weak absorption for infrared radiation, laser-induced thermal lensing in the liquid strongly decreases the radiant exposure and therefore the ablation efficiency.

  18. Skin Pretreatment With Conventional Non-Fractional Ablative Lasers Promote the Transdermal Delivery of Tranexamic Acid.

    PubMed

    Hsiao, Chien-Yu; Sung, Hsin-Ching; Hu, Sindy; Huang, Chun-Hsun

    2016-07-01

    Laser pretreatment of skin can be used to enable drugs used in dermatology to penetrate the skin to the depth necessary for their effect to take place. To compare the permeation of tranexamic acid after conventional non-fractionated ablative Er:YAG and CO2 laser pretreatment in a laser-aided transdermal delivery system. An erbium-doped yttrium aluminium garnet (Er:YAG) and a CO2 laser were used to pretreat dorsal porcine skin. Scanning electron microscopy was used to examine disruption of the skin surface. Confocal laser scanning microscopy was used to determine the depth of penetration of a reporter molecule (fluorescein isothiocyanate) into the skin. A Franz diffusion assembly was used to examine fluency-related increases in transdermal delivery of transexamic acid. Transdermal delivery of tranexamic acid increased as Er:YAG laser fluency increased. Transdermal delivery was higher when CO2 laser pretreatment was used than when Er:YAG laser pretreatment was used, but a "ceiling effect" was present and increasing the wattage did not cause a further increase in delivery. CO2 laser pretreatment also caused more extensive and deeper skin disruption than Er:YAG laser pretreatment. For conventional, non-fractionated ablative laser pretreatment, the Er:YAG laser would be an optimal choice to enhance transdermal penetration of transexamic acid.

  19. Physical and optical limitations using ArF-excimer and Er:YAG lasers for PRK

    NASA Astrophysics Data System (ADS)

    Semchishen, Vladimir A.; Mrochen, Michael; Seiler, Theo

    1998-06-01

    The Erbium:YAG laser emitting at a wavelength of 2,94 micrometer have been promised as an alternative laser for the ArF-excimer laser (193 nm) in photorefractive keratectomy (PRK). This report discusses the limitations of laser parameters such as wavelength, energy density and pulse duration for the ablation of the cornea. In addition, the melting process during ablation on the corneal surface roughness may play a role.

  20. Soft tissue effects of the THC:YAG laser on canine vocal cords.

    PubMed

    Kay, S L; Oz, M C; Haber, M; Blitzer, A; Treat, M R; Trokel, S L

    1992-09-01

    Recently, a laser based on a thulium-holmium-chromium (THC) doped Yttrium-aluminum-garnet (YAG) rod has been developed that produces light of 2.15 microns wavelength and can be transmitted through a low OH- silica fiberoptic cable. This wavelength falls on one of the peaks of the energy absorption spectrum of water. Thus, the THC:YAG laser eliminates the disadvantage of a cumbersome delivery system found in the CO2 laser while still providing precise cutting and minimal tissue injury inherent in lasers emitting light absorbed by water. We evaluated the soft tissue effects of this laser on canine vocal cords. Ablative lesions were produced by the THC:YAG laser and histologically examined on postoperative days 1, 7, and 28. Results indicate that the depth of tissue penetration is easily controlled and the healing response to tissue injury is comparable to that of the CO2 laser. The THC:YAG laser should prove to be a superior laser for use in otorhinolaryngology, especially when adapted to a flexible endoscope.

  1. Er:YAG lasers in dentistry: an overview

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; Goldin, Dan S.; Hennig, Thomas

    1998-04-01

    Aim of this presentation is to review the role of the Er:YAG laser in dentistry and to give a general overview on the work done with it up to date. A look at the development and evolution of this system is given as well as a brief introduction into the basic principles of ablation at the characteristic wavelength 2.94 micrometer. The more important research reports of the different groups all over the world are summarized and the large field of applications such as cavity preparation, caries ablation, periodontology and bacterial reduction is considered.

  2. Er:YAG laser for the surgical treatment of the carpal tunnel syndrome

    NASA Astrophysics Data System (ADS)

    Russ, Detlef; Ebinger, Thomas; Illich, Wolfgang; Steiner, Rudolf W.

    2003-10-01

    We developed a new surgical procedure to improve the recurrence rate using an Er:YAG laser as dissection tool for the carpal ligament with the objective to ablate a small amount of the carpal ligament and to denaturate its ends. The Er:YAG Laser was transmitted to the applicator via a GeO fiber. With this system we proceeded 10 carpal ligament dissections without any complications in the follow-up period. All patients were free of pain and recurrence.

  3. Holmium:YAG Laser Ablation for the Management of Lower Urinary Tract Foreign Bodies Following Incontinence Surgery: A Case Series and Systematic Review.

    PubMed

    Chan, Garson; Mamut, Adiel; Martin, Paul; Welk, Blayne

    2016-11-01

    The objective of this study was to determine the outcomes associated with the endoscopic removal of foreign bodies (such as mesh or permanent suture) in the lower urinary tract after female stress incontinence surgery with the Holmium:YAG (Ho:YAG) laser, and to systematically review the literature on this topic. A retrospective chart review of 18 consecutive women found to have mesh or suture exposure was performed. All patients underwent Ho:YAG laser ablation. A systematic review was performed to identify literature addressing the endoscopic management of mesh/suture exposure after stress incontinence surgery. Between November 2011 and February 2016, 18 women underwent Ho:YAG laser ablation of exposed mesh or suture. Presenting symptoms included lower urinary tract symptoms, pelvic pain, incontinence, or recurrent urinary tract infections. Thirteen women had a previous synthetic midurethral sling and five had a prior retropubic suspension. The median age was 58 years (interquartile range [IQR] 50-60) and median follow-up was 2 years (IQR 1-2). Four patients (22%) had residual mesh after the first procedure, requiring a repeat endoscopic procedure. Only one patient had a small amount of asymptomatic residual mesh on cystoscopy after the final procedure. Only minor postoperative complications were observed. Eight patients had stress incontinence and four underwent operative treatment for this. In our systematic review, we identified 16 case series, which described a total of 158 patients. Women most commonly presented with voiding symptoms or incontinence. Based on the synthesis of these data, repeat procedures were necessary in 16% and vesicovaginal fistula occurred in 2%. Recurrent/persistent stress incontinence was present in 20%, and of these patients, 3/4 underwent a new stress incontinence procedure. Both our case series and the systematic review of the literature demonstrated that endoscopic treatment of lower urinary tract foreign bodies after stress

  4. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.

    PubMed

    Al-Hadeethi, Y; Al-Jedani, S; Razvi, M A N; Saeed, A; Abdel-Daiem, A M; Ansari, M Shahnawaze; Babkair, Saeed S; Salah, Numan A; Al-Mujtaba, A

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased.

  5. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation

    PubMed Central

    Abdel-Daiem, A. M.; Ansari, M. Shahnawaze; Babkair, Saeed S.; Salah, Numan A.; Al-Mujtaba, A.

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased. PMID:27228169

  6. Treatment of hyperplastic inferior nasal turbinates by means of a Ho:YAG laser

    NASA Astrophysics Data System (ADS)

    Sroka, Ronald; Leunig, Andreas; Janda, P.; Rosler, P.; Grevers, G.; Baumgartner, Reinhold

    1999-06-01

    Although the successful use of the Ho:YAG laser in nasal turbinate surgery had been reported no clinical study had been performed to assess the clinical outcome in longterm. By means of a pulsed Ho:YAG laser emitting at λ=2080nm (1J/pulse, 3-8 Hz) 57 patients suffering from nasal obstruction due to allergic rhinitis and vasomotoric rhinitis were treated under local anesthesia. The study was conducted by standardized questionnaire, photo documentation, allergy test, mucocilliar test, rhinomanometry, radiology and histology. Within 2 weeks after laser treatment a significant improvement of nasal airflow correlating to the extent of the ablated turbinate tissue could be determined. This effect lasted up until 1 year post treatment resulting in an improved quality of life in more than 80 percent of the patients. Side effects like nasal dryness and pain were rare (<4%), no immediate complications were observed. The total treatment time takes 3-8 min and nasal packing was not necessary after the laser procedure. In conclusion Ho:YAG laser treatment can be performed as an outpatient procedure under local anesthesia with excellent ablation of soft tissue in a short treatment time with promising results.

  7. Development and performance characteristics of flash lamp pumped Yb:YAG, Cr:Tm:Ho:YAG, Er:Tm:Ho:YLF laser sources and investigation of their potential biological applications

    NASA Astrophysics Data System (ADS)

    Karadimitriou, N.; Klinkenberg, B.; Papadopoulos, D. N.; Serafetinides, A. A.

    2007-07-01

    Laser ablation for the formation of apodized patterns on intraocular lenses, as an alternative of the conventional injection molding, has been proved to be a very promising new technique. For the precise lenses ablation, the use of suitable laser wavelength and pulse duration, resulting in a small optical penetration depth in the lens and in confinement of the energy deposition in a small volume, as well as the reduced thermal damage to the surrounding tissue, is essential. Mid-infrared laser wavelengths, at which the organic biological simulators absorption coefficient is large, meet well the above conditions. Towards the complete understanding of the intraocular lens ablation procedure and therefore the choice of the optimum laser beam characteristics for the most accurate, efficient and safe surgical application, the comparative study of various mid-infrared laser sources is of great interest. In this work we investigate the potential of the development of three different mid-infrared laser sources, namely the Yb:YAG, the Cr:Tm:Ho:YAG and the Er:Tm:Ho:YLF laser, operating at 1029 nm, 2060 nm and 2080 nm respectively and their ability in forming patterns on biomaterials. Pumping was achieved with conventional Xe flash lamps in a double elliptical pump chamber. A properly designed Pulse-Forming- Network capable of delivering energy up to 800 J, in variable lamp illumination durations is used. Several hundreds of mJoules were achieved from the Yb:YAG laser oscillator and several Joules from the Ho:YAG and Ho:YLF laser oscillators. Free running and Q-switched laser operation studies and preliminary experiments on laser and biomaterials (biopolymers and animal tissues) interactions will be reported.

  8. Comparison between laser-induced photoemissions and phototransmission of hard tissues using fibre-coupled Nd:YAG and Er(3+)-doped fibre lasers.

    PubMed

    El-Sherif, Ashraf Fathy

    2012-07-01

    During pulsed laser irradiation of dental enamel, laser-induced photoemissions result from the laser-tissue interaction through mechanisms including fluorescence and plasma formation. Fluorescence induced by non-ablative laser light interaction has been used in tissue diagnosis, but the photoemission signal accompanying higher power ablative processes may also be used to provide real-time monitoring of the laser-tissue interaction. The spectral characteristics of the photoemission signals from normal and carious tooth enamel induced by two different pulsed lasers were examined. The radiation sources compared were a high-power extra-long Q-switched Nd:YAG laser operating at a wavelength of 1,066 nm giving pulses (with pulse durations in the range 200-250 μs) in the near infrared and a free-running Er(3+)-doped ZBLAN fibre laser operating at a wavelength near 3 μm with similar pulse durations in the mid-infrared region. The photoemission spectra produced during pulsed laser irradiation of enamel samples were recorded using a high-resolution spectrometer with a CCD array detector that enabled an optical resolution as high as 0.02 nm (FWHM). The spectral and time-dependence of the laser-induced photoemission due to thermal emission and plasma formation were detected during pulsed laser irradiation of hard tissues and were used to distinguish between normal and carious teeth. The use of these effects to distinguish between hard and soft biological tissues during photothermal ablation with a pulsed Nd:YAG laser or an Er fibre laser appears feasible. The real-time spectrally resolved phototransmission spectrum produced during pulsed Nd:YAG laser irradiation of human tooth enamel samples was recorded, with a (normalized) relative transmission coefficient of 1 (100%) for normal teeth and 0.6 (60%) for the carious teeth. The photoemission signal accompanying ablative events may also be used to provide real-time monitoring of the laser-tissue interaction.

  9. SPF-RR sequential photothermal fractional resurfacing and remodeling with the variable pulse Er:YAG laser and scanner-assisted Nd:YAG laser.

    PubMed

    Marini, Leonardo

    2009-12-01

    treatment. Erythema and edema were evaluated on a 0-3 point scale (0=No clinical signs; 3=Severe Clinical signs) at 7, 15 and 30 days. Improvements were determined by blind evaluation of photographs before, at 4 weeks, and at 8 weeks following treatments. Patient satisfaction was also evaluated on a 0-4 point scale (0=No satisfaction; 4=Excellent perceived improvement, 76-100%). At the 30-day follow-up, participants had clinically detectable improvements of facial telangiectasias (1-25%), lentigines (25-50%), diffuse dyspigmentation (25-75%), fine lines (25-75%), and skin texture (25-75%). Clinical improvements were maintained at the 60-day follow-up, demonstrating the prolonged photothermally induced biological effect on skin function and texture. All volunteers confirmed their willingness to undergo the same procedure again to maintain and possibly improve their clinical results. Further clinical evaluations at 4 and 6 months will therefore be needed to identify a suitably convenient interval between two consecutive procedures. The present study demonstrates objective and subjective improvements in fine lines, skin texture and dyspigmentation of facial skin after one sequential non-ablative and ablative laser treatment combining two different laser sources (Nd:YAG laser + Er:YAG laser).

  10. Characterization of calcium phosphate coatings deposited by Nd:YAG laser ablation at 355 nm: influence of thickness.

    PubMed

    Fernández-Pradas, J M; Clèries, L; Sardin, G; Morenza, J L

    2002-05-01

    Calcium phosphate coatings were deposited by pulsed laser ablation with a radiation of 355 nm from a Nd:YAG laser. All the coatings were obtained at the same conditions, but deposition was stopped after different number of pulses to get coatings with different thickness. The influence of thickness in the structural and mechanical properties of the coatings was investigated. Coatings structure was characterised by scanning electron microscopy, grazing incidence X-ray diffractometry and Raman spectroscopy. The mechanical properties were evaluated by scratch test. The morphology of the coatings is dominated by the presence of droplets. The coatings are composed mainly of hydroxyapatite, alpha tricalcium phosphate and amorphous calcium phosphate. Thinner coatings withstand higher loads of failure in the scratch test.

  11. Transendoscopic Nd:YAG ablation of cystic lesions in 27 large animals: 1986-1995

    NASA Astrophysics Data System (ADS)

    Tate, Lloyd P.

    1997-05-01

    Hospital medical surgery records and laser logs were examined to determine the population of large animals presented to the College of Veterinary Medicine treated by laser and conventional means for cystic lesions. Cystic lesions were most frequently found in 2 anatomical locations: endometrial cysts and upper respiratory cysts. The majority of endometrial cysts were considered to be acquired, whereas the most frequently encountered upper respiratory cysts were believed to be congenital due to the fact they were most frequently seen in young animals. Nine mares, totaling 42 endometrial cysts, were presented to the Veterinary Teaching Hospital (VTH), all of which had been treated by transendoscopic Nd:YAG laser ablation. Eighteen of the respiratory cysts in the same time period were presented to the VTH, of which 10 received conventional surgery and 8 were laser photoablated. Respiratory cysts treated by conventional surgery were generally found in locations inaccessible to visualization by transendoscopic technique, and thus required a surgical approach under general anesthesia. All mares with endometrial cysts were presented with a history of conception failure. After laser ablation, a majority of the mares were able to carry a foal to term and none represented with recurrence of endometrial cysts. Horses that presented with upper respiratory cysts also did not experience recurrence of cysts; although several horses, 1 treated by laser ablation and 4 treated by conventional surgery for frontal and/or maxillary sinus cysts, had transitory sinusitis. Transendoscopic Nd:YAG photoablation of cysts appears to be a very satisfactory means of treating this particular form of lesion in large animals with minimal complications and it can be performed with the animal in a standing position as an outpatient.

  12. Three-frequency Nd:YAG laser for dental treatment

    NASA Astrophysics Data System (ADS)

    Kadlecová, Martina; Dostálová, Tat'jana; Jelínková, Helena; Němec, Michal; Å ulc, Jan; Fibrich, Martin; Bradna, Pavel; Nejezchleb, Karel; Kapitch, Nickalai; Å koda, Václav

    2018-02-01

    In the last decade, lasers found a number of indications in dentistry. However, there is still one problem: the narrow spectrum of usefulness for individual radiation wavelengths. The aim of our study is to demonstrate the use of a compact three-frequency pulsed Nd-YAG laser for more than one treatment, namely disinfection, coagulation, selective ablation, and soft tissue removal. The laser wavelengths and the maximal energies achieved were the following: 1.06 um, 1.32 um, 1.44 um and 830 mJ, 425 mJ, and 200 mJ, respectively. It has been found that all of the investigated wavelengths exhibit disinfection properties. Moreover, radiation of 1.06 um wavelength removes soft tissue and exhibits also coagulation properties. Radiation of 1.44 um is most useful for selective ablation of initial caries and disinfection, and 1.32 um radiation can be used for precise ablation when higher energy is applied.

  13. Primary investigations on the potential of a novel diode pumped Er:YAG laser system for bone surgery

    NASA Astrophysics Data System (ADS)

    Stock, Karl; Diebolder, Rolf; Hausladen, Florian; Wurm, Holger; Lorenz, Swetlana; Hibst, Raimund

    2013-03-01

    Flashlamp pumped Er:YAG-lasers are successfully clinically used for both precise soft and hard tissue ablation. As an alternative, actually a novel diode pumped Er:YAG laser system (Pantec Engineering AG) becomes available, with mean laser power up to 15W and pulse repetition rate up to 1kHz. The aim of the presented study is to investigate the effect of this laser system on bone tissue at various irradiation parameters, particular at repetition rates exceeding 100 Hz. For reproducible experiments, firstly an appropriate experimental set-up was realized with a beam delivery and focusing unit, a computer controlled stepper unit with sample holder, and a shutter unit. It allowed to move the sample (1mm- 3mm sawed slices of pig bone) with a defined velocity while irradiation by various laser parameters. A water spray served to moisten the sample surfaces. After irradiation the grooves were analyzed by light microscopy and laser scanning microscopy regarding to the ablation quality, the groove geometry, the ablation efficacy, and the thermal effects. The resulting grooves are slightly cone shaped (groove depth up to 3mm, width about 200μm) with sharp edges at the surface. At 1W, 200Hz, 5mm/s sample movement and with water irrigation the measured ablation speed Δz/Δt is 10.8 mm/s. The ablation depth per pulse is 54μm. In conclusion, these first experiments demonstrate that the diode pumped Er:YAG laser system is an efficient tool for use in bone surgery.

  14. Evaluation of erbium:YAG and holmium:YAG laser radiation and dental hard tissue

    NASA Astrophysics Data System (ADS)

    Attrill, David Cameron

    Lasers have become increasingly established in medicine as effective alternatives or adjuncts to conventional techniques. In dentistry, several clinical laser systems have been developed and marketed, but their applications have been limited to soft tissue surgery. To date, no laser has been capable of effectively cutting or modifying the highly mineralised dental tissues of enamel and dentine. The aim of this study was to evaluate two new laser systems for use in dentistry through a series of in vitro experiments. Both generic erbium and holmium lasers have theoretically superior operating characteristics over currently established lasers for applications with dental hard tissues. The two lasers investigated in this study were pulsed Er:YAG (lambda=2.94) a.m. and Cr-Tm-Ho:YAG (lambda=2.1mu.m). Both operated with a macropulse duration of approximately 200lambdas, at pulse repetition rates of 2-8Hz and mean pulse energies up to 230mJ. Radiation was focused using CaF[2] lenses (f=50-120mm). The lasers could be operated with or without the addition of a surface water film at the interaction site. Tissue removal efficiency was expressed as a latent heat of ablation (LHA, kJ/cm[3]) using a modification of the technique described by Charlton et al. (1990). The mean LHA's for the Er:YAG laser were 6.24kJ/cm[3] and 22.99kJ/cm[3] with dentine and enamel respectively without water, and 10.07kJ/cm[3] and 18.73kJ/cm[3] for dentine and enamel with water. The Cr-Tm-Ho:YAG laser was unable to effectively remove enamel at the fluences and pulse energies available; the mean LHA's for the Cr-Tm- Ho:YAG laser with dentine were 82.79kJ/cm3 and 57.57kJ/cm3 with and without water respectively. The Cr-Tm-Ho;YAG was approximately 8-9 times less efficient for tissue removal than the Er:YAG system. Er:YAG tissue removal with water was characterised by clean "surgical" cuts, comparable in histological appearance to those obtained using conventional instrumentation. Some thermal disruption

  15. Nd:YAG laser therapy for rectal and vaginal venous malformations.

    PubMed

    Gurien, Lori A; Jackson, Richard J; Kiser, Michelle M; Richter, Gresham T

    2017-08-01

    Limited therapeutic options exist for rectal and vaginal venous malformations (VM). We describe our center's experience using Nd:YAG laser for targeted ablation of abnormal veins to treat mucosally involved pelvic VM. Records of patients undergoing non-contact Nd:YAG laser therapy of pelvic VM at a tertiary children's hospital were reviewed. Symptoms, operative findings and details, complications, and outcomes were evaluated. Nine patients (age 0-24) underwent Nd:YAG laser therapy of rectal and/or vaginal VM. Rectal bleeding was present in all patients and vaginal bleeding in all females (n = 5). 5/7 patients had extensive pelvic involvement on MRI. Typical settings were 30 (rectum) and 20-25 W (vagina), with 0.5-1.0 s pulse duration. Patients underwent the same-day discharge. Treatment intervals ranged from 14 to 180 (average = 56) weeks, with 6.1-year mean follow-up. Five patients experienced symptom relief with a single treatment. Serial treatments managed recurrent bleeding successfully in all patients, with complete resolution of vaginal lesions in 40% of cases. No complications occurred. Nd:YAG laser treatment of rectal and vaginal VM results in substantial improvement and symptom control, with low complication risk. Given the high morbidity of surgical resection, Nd:YAG laser treatment of pelvic VM should be considered as first line therapy.

  16. An Er:YAG laser bone cutting manipulator for precise rotational acetabular osteotomy.

    PubMed

    Kim, D; Owada, H; Hata, N; Dohi, T

    2004-01-01

    Rotational acetabular osteotomy (RAO) has an important advantage in that surgical bony defects are reconstructed with a patients' own tissue. We propose a surgical robot for the RAO using Er:YAG laser irradiating mounted on iliac bone to operate RAO precisely and to reduce recovery and trauma. A water-cooling Er:YAG laser (30 J/cm/sup 2/, l=2.94 mum, 20 Hz, 200 msec) that used optical fiber was operated 4-8 irradiation-overlapping ratio. We kept the distance between the laser and the bone at 0.25 mm using force sensor and spring to maintain effective ablation. Swine scapulae were ablated and performance was evaluated. The manipulator was operated mounting on iliac bone to get a filed position whereby resulting in precise bone cutting. The precision of the manipulator was within 0.3 mm and the efficiency of laser bone ablations per unit time optimized to 0.21 mm/sup 3//secW at the overlapping ratio of the irradiation area was 0.8, meaning a given ablated area was irradiated five times. The troughs showed m charring at this condition and the temperature of the surface was raised to 41.3 degrees C and it lasted only 5 seconds. We are sure that this research will be applied to orthopedics in the near future.

  17. Analysis of Depth of Ablation,Thermal Damage, Wound Healing, and Wound Contraction With Erbium YAG Laser in a Yorkshire Pig Model.

    PubMed

    Alsaad, Salman M S; Ross, E Victor; Smith, Wiley J; DeRienzo, Damian P

    2015-11-01

    The erbium YAG laser is commonly used for skin resurfacing. It is known that varying the pulse duration can influence residual thermal damage and wound healing. Our study used a porcine model to evaluate a broad range of settings in a comparison of depth of ablation, depth of residual thermal damage (RTD), and wound contraction employing both a full coverage and fractional hand piece with an erbium YAG laser. The laser delivered an ablative pulse followed by a heating pulse of variable duration using either the full coverage or fractional hand piece. Pulse durations for specific coagulation depths were selected based on existing heat transfer models. The bilateral flanks of a single Yorkshire pig were irradiated. There were 14 treatment groups. 3 sites were treated per group for a total of 42 sites. Two of the 3 sites were for observational assessments and the 3rd site served as a reservoir for biopsies. Biopsy specimens were collected on days 0, 1, 3, 7, 14, and 28. Bleeding, erythema, wound healing, and wound contraction (in the fractional hand piece groups) were assessed. Wound healing is faster for fractional laser skin resurfacing compared with traditional contiguous resurfacing as demonstrated by textural changes and degree of erythema. The laser operator can be confident that the depth of ablation displayed on this system accurately reflects what is occurring in vivo for both confluent and fractional modes. Likewise, the measured degree of coagulation was consistent with panel display settings for the confluent mode. However, the degree of coagulation, as measured by the thickness of residual thermal damage, did not vary significantly between the fractional groups. In other words, the pulse duration of the second (heating) pulse did not impact the degree of coagulation in the fractional mode. There was a 2.3% wound contraction between some groups and a 6.5% wound contraction between other groups. A two way analysis of variance found a statistically

  18. Carbon dioxide laser versus erbium:YAG laser in treatment of epidermal verrucous nevus: a comparative randomized clinical study.

    PubMed

    Osman, Mai Abdel Raouf; Kassab, Ahmed Nazmi

    2017-08-01

    A verrucous epidermal nevus (VEN) is a skin disorder that has been treated using different treatment modalities with varying results. Ablative lasers such as carbon dioxide laser (CO 2 ) and erbium:yttrium-aluminum-garnet (Er:YAG) laser have been considered as the gold standard for the treatment of epidermal nevi. To evaluate and compare the efficacy, postoperative wound healing and side effects of pulsed CO 2 laser and Er:YAG laser for the treatment of verrucous epidermal nevi. Twenty patients with localized VEN were randomly divided into two groups. Group 1 was administered CO 2 laser and group 2 underwent Er:YAG laser treatment. A blinded physician evaluated the photographs and dermoscopic photomicrographs for the efficacy and possible side effects. All patients received one treatment session and were followed up over a 6-month period. Both lasers induced noticeable clinical improvement, but there were no significant differences between two lasers in treatment response, patient satisfaction, duration of erythema and side effects. The average time to re-epithelialization was 13.5 days with CO 2 and 7.9 days with Er:YAG laser (p< .0005). No scarring was observed in Er:YAG laser group and no lesional recurrence was detected in CO 2 laser group since treatment. Apart from re-epithelialization, both lasers showed equivalent outcomes with respect to treatment response, patient satisfaction, side effects and complications.

  19. Pulse Q-switched Nd:YAG laser ablation grown cinnamon nanomorphologies: Influence of different liquid medium

    NASA Astrophysics Data System (ADS)

    Salim, Ali Aqeel; Bidin, Noriah

    2017-12-01

    Broad range of biomedical applications demands accurate synthesis and characterization of various nanoparticles. We report the characterization of cinnamon nanoparticles (CNPs) grown via simple pulsed laser ablation in liquid (PLAL). The influence of different liquid media (olive oil, ethanol, and citric acid each of volume 4 ml) on the growth morphology, structure and optical properties of CNPs is determined. Q-switched 1064-Nd: YAG laser of 10 ns pulse duration, 1 Hz repetition rate, 532 nm s harmonic generation and laser fluence of 6.37 J/cm2 is used to irradiate the cinnamon targets immersed in those liquids. Samples are characterized using TEM, HRTEM, SAED, FTIR, UV-Vis and Photoluminescence measurements. TEM images revealed the nucleation of CNPs of average size 18.36 nm (in olive oil), 21.48 nm (in ethanol), and 29.56 nm (in citric acid). Morphology of CNPs is demonstrated to be sensitive to the liquid medium. Our simple and innovative method may constitute a basis to produce CNPs of desired size distribution potential for the development of nanobiomedicine.

  20. Nanosecond laser-metal ablation at different ambient conditions

    NASA Astrophysics Data System (ADS)

    Elsied, Ahmed M.; Dieffenbach, Payson C.; Diwakar, Prasoon K.; Hassanein, Ahmed

    2018-05-01

    Ablation of metals under different ambient conditions and laser fluences, was investigated through series of experiments. A 1064 nm, 6 ns Nd:YAG laser was used to ablate 1 mm thick metal targets with laser energy ranging from 2 mJ to 300 mJ. The experiments were designed to study the effect of material properties, laser fluence, ambient gas, and ambient pressure on laser-metal ablation. The first experiment was conducted under vacuum to study the effect of laser fluence and material properties on metal ablation, using a wide range of laser fluences (2 J/cm2 up to 300 J/cm2) and two different targets, Al and W. The second experiment was conducted at atmospheric pressure using two different ambient gases air and argon, to understand the effect of ambient gas on laser-metal ablation process. The third experiment was conducted at two different pressures (10 Torr and 760 Torr) using the same ambient gas to investigate the effect of ambient pressure on laser-metal ablation. To compare the different ablation processes, the amount of mass ablated, ablation depth, crater profile and melt formation were measured using White Light Profilometer (WLP). The experimental results show that at low laser fluence: the ablated mass, ablation depth, and height of molten layer follow a logarithmic function of the incident laser fluence. While, at high laser fluence they follow a linear function. This dependence on laser fluence was found to be independent on ambient conditions and irradiated material. The effect of ambient pressure was more pronounced than the effect of ambient gas type. Plasma shielding effect was found to be very pronounced in the presence of ambient gas and led to significant reduction in the total mass ablation.

  1. The use of ablative lasers in the treatment of facial melasma.

    PubMed

    Morais, Orlando Oliveira de; Lemos, Érica Freitas Lima; Sousa, Márcia Carolline dos Santos; Gomes, Ciro Martins; Costa, Izelda Maria Carvalho; Paula, Carmen Déa Ribeiro de

    2013-01-01

    Melasma represents a pigmentary disorder that is difficult to treat. This study aims to broadly review the use of ablative lasers (Er:YAG and CO2) in the treatment of melasma, presenting the level of evidence of studies published to date. A total of 75 patients were enrolled in four case series studies (n=39), one controlled clinical trial (n=6) and one randomized controlled clinical trial (n=30). Studies on the Er:YAG laser showed better results with the use of short square-shaped pulses, which determined low rates of post-inflammatory hyperpigmentation and long-lasting maintenance of results. Likewise, studies on the CO2 laser proved the benefits of short pulse duration along with low-density energy. Post-treatment maintenance with the use of antipigmenting creams was necessary and effective to sustain long-term results. Ablative lasers may represent another useful and effective tool against melasma. Postinflammatory hyperpigmentation and difficulty in sustaining long-term results still represent the main limitations to a broader use of ablative lasers. Based on actual evidence, the use of this technology should be restricted to patients with recalcitrant disease. Further studies will help establish optimal laser parameters and treatment regimens.

  2. The use of ablative lasers in the treatment of facial melasma*

    PubMed Central

    de Morais, Orlando Oliveira; Lemos, Érica Freitas Lima; Sousa, Márcia Carolline dos Santos; Gomes, Ciro Martins; Costa, Izelda Maria Carvalho; de Paula, Carmen Déa Ribeiro

    2013-01-01

    Melasma represents a pigmentary disorder that is difficult to treat. This study aims to broadly review the use of ablative lasers (Er:YAG and CO2) in the treatment of melasma, presenting the level of evidence of studies published to date. A total of 75 patients were enrolled in four case series studies (n=39), one controlled clinical trial (n=6) and one randomized controlled clinical trial (n=30). Studies on the Er:YAG laser showed better results with the use of short square-shaped pulses, which determined low rates of post-inflammatory hyperpigmentation and long-lasting maintenance of results. Likewise, studies on the CO2 laser proved the benefits of short pulse duration along with low-density energy. Post-treatment maintenance with the use of antipigmenting creams was necessary and effective to sustain long-term results. Ablative lasers may represent another useful and effective tool against melasma. Postinflammatory hyperpigmentation and difficulty in sustaining long-term results still represent the main limitations to a broader use of ablative lasers. Based on actual evidence, the use of this technology should be restricted to patients with recalcitrant disease. Further studies will help establish optimal laser parameters and treatment regimens. PMID:23739704

  3. Confocal microscopy to guide laser ablation of basal cell carinoma: a preliminary feasibility study

    NASA Astrophysics Data System (ADS)

    Larson, Bjorg A.; Sierra, Heidy; Chen, Jason; Rajadhyaksha, Milind

    2013-03-01

    Laser ablation may be a promising method for removal of skin lesions, with the potential for better cosmetic outcomes and reduced scarring and infection. An obstacle to implementing laser ablation is that the treatment leaves no tissue for histopathological analysis. Pre-operative and intra-operative mapping of BCCs using confocal microscopy may guide the ablation of the tumor until all tumor is removed. We demonstrate preliminary feasibility of confocal microscopy to guide laser ablation of BCCs in freshly excised tissue from Mohs surgery. A 2940 nm Er:YAG laser provides efficient ablation of tumor with reduced thermal damage to the surrounding tissue.

  4. Non-ablative Er:YAG laser therapy effect on stress urinary incontinence related to quality of life and sexual function: A randomized controlled trial.

    PubMed

    Blaganje, Mija; Šćepanović, Darija; Žgur, Lidija; Verdenik, Ivan; Pajk, Franja; Lukanović, Adolf

    2018-05-01

    Stress urinary incontinence (SUI) is a common complaint in women after childbirth. It affects their quality of life and sexual satisfaction and is one of the major reasons for gynaecological surgery. There is a need for effective non-invasive treatment alternatives. The aim of this study was to evaluate the efficacy and safety of non-ablative Er:YAG laser therapy in the treatment of SUI and improvement of sexual gratification in parous women. 114 premenopausal parous women with SUI were randomized in two groups of 57 women; a laser intervention group and sham group. Both groups were treated according to the IncontiLase ® clinical treatment protocol for SUI with non-ablative thermal-only Er:YAG laser, except that there was no energy output when treating the sham group. Patients were blinded to the allocation. At baseline and 3 months after treatment patients were clinically examined, answered questionnaires for SUI severity and sexual function assessment and their pelvic floor muscle (PFM) function was assessed with perineometry. Validated International Consultation on Incontinence Questionnaire - Urinary Incontinence Short Form (ICIQ-UI SF) was used as the primary outcome measure. The Pelvic Organ Prolapse Urinary Incontinence Sexual Questionnaire short form (PISQ-12) and The Female Sexual Function Index (FSFI) were used to assess the sexual function. Patients were monitored for discomfort and side-effects during treatment and follow-up period. 3 months after treatment the ICIQ-UI SF (p < 0.001), PISQ-12 (p = 0.014) and FSFI (p = 0.025) scores were significantly more improved in the laser group than in the sham control group. All perineometry variables improved in the laser group after treatment; duration and maximum pressure had statistically significantly better improvement than the sham group, whereas average pressure did not. 21% of laser treated patients were dry (ICIQ-UI SF = 0) at follow up compared to only 4% of the sham control patients

  5. Optical and structural properties of Bi-based nanoparticles prepared via pulsed Nd:YAG laser ablation in organic liquids

    NASA Astrophysics Data System (ADS)

    Dadashi, S.; Poursalehi, R.; Delavari, H.

    2018-06-01

    Colloidal Bi/Bi2O3 and single phase Bi nanoparticles were synthesized by pulsed Nd:YAG laser ablation of metallic bismuth target in different organic liquids. In this research, the structural characteristic, optical properties, and colloidal stability of Bi and Bi/Bi2O3 nanoparticles have been studied. Furthermore, the mechanism of nanoparticles formation in liquid media by laser ablation of Bi-based nanoparticles was proposed in different liquid environments based on their chemical nature. X-ray diffraction, scanning electron microscopy and optical extinction spectroscopy indicate the formation of pure Bi and Bi/Bi2O3 nanoparticles with mean size of 32, 43 and 54 nm in methanol, ethanol, and EMK, respectively, which indicate a mixture of different phases including rhombohedra crystal structure of Bi, monoclinic α-Bi2O3, and tetragonal β-Bi2O3. Finally, this research demonstrates the effect of the surrounding environment on characteristic properties of nanoparticles and clarifies the size, structural characteristics, and optical properties of the synthesized nanoparticles.

  6. Sub ablative Er: YAG laser irradiation on surface roughness of eroded dental enamel.

    PubMed

    Curylofo-Zotti, Fabiana Almeida; Lepri, Taísa Penazzo; Colucci, Vivian; Turssi, Cecília Pedroso; Corona, Silmara Aparecida Milori

    2015-11-01

    This study evaluated the effects of Er:YAG laser irradiation applied at varying pulse repetition rate on the surface roughness of eroded enamel. Bovine enamel slabs (n = 10) were embedded in polyester resin, ground, and polished. To erosive challenges, specimens were immersed two times per day in 20mL of concentrated orange juice (pH = 3.84) under agitation, during a two-day period. Specimens were randomly assigned to irradiation with the Er:YAG laser (focused mode, pulse energy of 60 mJ and energy density of 3.79 J/cm(2) ) operating at 1, 2, 3, or 4 Hz. The control group was left nonirradiated. Surface roughness measurements were recorded post erosion-like formation and further erosive episodes by a profilometer and observed through atomic force microscopy (AFM). Analysis of variance revealed that the control group showed the lowest surface roughness, while laser-irradiated substrates did not differ from each other following post erosion-like lesion formation. According to analysis of covariance, at further erosive episodes, the control group demonstrated lower surface roughness (P > 0.05), than any of the irradiated groups (P < 0.05). The pulse repetition rate of the Er:YAG laser did not affect roughness of dental enamel eroded. The AFM images showed that the specimens irradiated by the Er:YAG laser at 1 Hz presented a less rough surface than those irradiated at 2, 3, and 4 Hz. © 2015 Wiley Periodicals, Inc.

  7. Successful Treatment of Tattoo-Induced Pseudolymphoma with Sequential Ablative Fractional Resurfacing Followed by Q-Switched Nd: YAG 532 nm Laser

    PubMed Central

    Lucinda, Tan Siyun; Hazel, Oon Hwee Boon; Joyce, Lee Siong Siong; Hon, Chua Sze

    2013-01-01

    Decorative tattooing has been linked with a range of complications, with pseudolymphoma being unusual and challenging to manage. We report a case of tattoo-induced pseudolymphoma, who failed treatment with potent topical and intralesional steroids. She responded well to sequential treatment with ablative fractional resurfacing (AFR) followed by Q-Switched (QS) Nd:YAG 532 nm laser. Interestingly, we managed to document the clearance of her tattoo pigments after laser treatments on histology and would like to highlight the use of special stains such as the Grocott's Methenamine Silver (GMS) stain as a useful method to assess the presence of tattoo pigment in cases where dense inflammatory infiltrates are present. PMID:24470721

  8. Fractional Er:YAG laser assisting topical betamethasone solution in combination with NB-UVB for resistant non-segmental vitiligo.

    PubMed

    Yan, Ru; Yuan, Jinping; Chen, Hongqiang; Li, Yuan-Hong; Wu, Yan; Gao, Xing-Hua; Chen, Hong-Duo

    2017-09-01

    Resistant non-segmental vitiligo is difficult to be treated. Ablative erbium-YAG (Er:YAG) laser has been used in the treatment of vitiligo, but the ablation of entire epidermis frustrated the compliance of patients. The purpose of this study is to investigate the effects of fractional Er:YAG laser followed by topical betamethasone and narrow band ultraviolet B (NB-UVB) therapy in the treatment of resistant non-segmental vitiligo. The vitiligo lesions of each enrolled patient were divided into four treatment parts, which were all irradiated with NB-UVB. Three parts were, respectively, treated with low, medium, or high energy of Er:YAG laser, followed by topical betamethasone solution application. A control part was spared with laser treatment and topical betamethasone. The treatment period lasted 6 months. The efficacy was assessed by two blinded dermatologists. Treatment protocol with high energy of 1800 mJ/P of fractional Er:YAG laser followed by topical betamethasone solution and in combination with NB-UVB made 60% patients achieve marked to excellent improvement in white patches. The protocol with medium energy of 1200 mJ/P of laser assisted approximate 36% patients achieve such improvement. The two protocols, respectively, showed better efficacies than NB-UVB only protocol. However, fractional Er:YAG laser at low energy of 600 mJ/P did not provide such contributions to the treatment of vitiligo. The fractional Er:YAG laser in combination with topical betamethasone solution and NB-UVB was suitable for resistant non-segmental vitiligo. The energy of laser was preferred to be set at relatively high level.

  9. 12 mJ Yb:YAG/Cr:YAG microchip laser

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyang; Tokita, Shigeki; Kawanaka, Junji

    2018-02-01

    By cryogenically cooling the Yb:YAG/Cr:YAG medium, one can break through the damage limit of Yb:YAG/Cr:YAG passively Q-switched microchip lasers at room temperature and thus achieve a shorter minimum pulse duration. In the proof of principle experiment we carried out, a 160.6 ps pulse duration was obtained. To the best of our knowledge, this is the first realization of sub-200 ps pulse operation for an Yb:YAG/Cr:YAG microchip laser

  10. Erbium:YAG laser contouring of the nasal dorsum: a preliminary investigation

    NASA Astrophysics Data System (ADS)

    Truong, Mai T.; Majaron, Boris; Pandoh, Nidhi S.; Wong, Brian J.

    2001-05-01

    In conventional aesthetic rhinoplasty operations, manual or powered rasps are used to reduce the osseo-cartilagenous nasal dorsum. This tactile method requires palpation of the instrument and the dorsum during surgery to estimate the degree of volume reduction, and often requires forceful manipulation of the dorsum which may illicit pain during surgery and contribute to post-operative edema and echymosis. In this preliminary study, we investigated the use of the Erbium:YAG laser ((lambda) equals294 micrometers ) to reduce bone and cartilage using ex-vivo porcine nasal dorsum and human cadaveric tissues. The short pulsed length and high absorption of this laser in biologic tissues results in minimization of thermal injury which are ideal for non- contact optical contouring of osseous and cartilagenous tissues in the face. Two Erbium:YAG lasers were used to ablate fresh porcine nasal bone and compared for their use. One Erbium:YAG laser, the Fidelis Laser, Fontana Medical Lasers, Ljubljana, Slovenija with variable pulse repetition rates (2 to 50 Hz), pulse energy (80 to 1000 mJ), and pulse duration (100, 300, 750 and 1000 microsecond(s) ) was used and compared to the Ultrafine Erbium:YAG laser, Coherent Inc., Santa Clara California, with variable pulse repetition rate (2 to 10 Hz), pulse energy (2-16 J/cm2), and spot diameter (2-6 mm). Only laser parameters approximating the conditions for thermal confinement were evaluated.

  11. Experimental investigation of the laser ablation process on wood surfaces

    NASA Astrophysics Data System (ADS)

    Panzner, M.; Wiedemann, G.; Henneberg, K.; Fischer, R.; Wittke, Th.; Dietsch, R.

    1998-05-01

    Processing of wood by conventional mechanical tools like saws or planes leaves behind a layer of squeezed wood only slightly adhering to the solid wood surface. Laser ablation of this layer could improve the durability of coatings and glued joints. For technical applications, thorough knowledge about the laser ablation process is necessary. Results of ablation experiments by excimer lasers, Nd:YAG lasers, and TEA-CO 2 lasers on surfaces of different wood types and cut orientations are shown. The process of ablation was observed by a high-speed camera system and optical spectroscopy. The influence of the experimental parameters are demonstrated by SEM images and measurement of the ablation rate depending on energy density. Thermal effects like melting and also carbonizing of cellulose were found for IR- and also UV-laser wavelengths. Damage of the wood surface after laser ablation was weaker for excimer lasers and CO 2-TEA lasers. This can be explained by the high absorption of wood in the ultraviolet and middle infrared spectral range. As an additional result, this technique provides an easy way for preparing wood surfaces with excellently conserved cellular structure.

  12. US-guided application of Nd:YAG laser in porcine pancreatic tissue: an ex vivo study and numerical simulation.

    PubMed

    Di Matteo, Francesco; Martino, Margareth; Rea, Roberta; Pandolfi, Monica; Panzera, Francesco; Stigliano, Egidio; Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio; Pacella, Claudio Maurizio; Breschi, Luca; Perrone, Giuseppe; Coppola, Roberto; Costamagna, Guido

    2013-11-01

    Laser ablation (LA) with a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser is a minimally invasive approach able to achieve a high rate of complete tissue necrosis. In a previous study we described the feasibility of EUS-guided Nd:YAG pancreas LA performed in vivo in a porcine model. To establish the best laser setting of Nd:YAG lasers for pancreatic tissue ablation. A secondary aim was to investigate the prediction capability of a mathematical model on ablation volume. Ex vivo animal study. Hospital animal laboratory. Explanted pancreatic glands from 60 healthy farm pigs. Laser output powers (OP) of 1.5, 3, 6, 10, 15, and 20 W were supplied. Ten trials for each OP were performed under US guidance on ex vivo healthy porcine pancreatic tissue. Ablation volume (Va) and central carbonization volume (Vc) were measured on histologic specimens as the sum of the lesion areas multiplied by the thickness of each slide. The theoretical model of the laser-tissue interaction was based on the Pennes equation. A circumscribed ablation zone was observed in all histologic specimens. Va values grow with the increase of the OP up to 10 W and reach a plateau between 10 and 20 W. The trend of Vc values rises constantly until 20 W. The theoretical model shows a good agreement with experimental Va and Vc for OP between 1.5 and 10 W. Ex vivo study. Volumes recorded suggest that the best laser OP could be the lowest one to obtain similar Va with smaller Vc in order to avoid the risk of thermal injury to the surrounding tissue. The good agreement between the two models demonstrates the prediction capability of the theoretical model on laser-induced ablation volume in an ex vivo animal model and supports its potential use for estimating the ablation size at different laser OPs. Copyright © 2013 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  13. Morphological alterations of periodontal pocket epithelium following Nd:YAG laser irradiation.

    PubMed

    Ting, Chun-Chan; Fukuda, Mitsuo; Watanabe, Tomohisa; Sanaoka, Atsushi; Mitani, Akio; Noguchi, Toshihide

    2014-12-01

    The purpose of this in vivo study was to examine morphologic alterations in the periodontal pocket epithelium with presence or absence of clinical inflammation following the use of the Neodymium: Yttrium-Aluminum-Garnet (Nd:YAG) laser irradiation. Subgingival Nd:YAG laser irradiation has been proposed as an alternative technique for treatment of chronic periodontitis. Several published studies have reported the clinical outcomes of such treatment. Twenty patients, diagnosed with moderate chronic periodontitis, were selected for the study. A total of 32 sites was identified and divided into a control (n=18) and laser-treated test groups (n=14). Probing depth (PD) and bleeding on probing (BOP) were recorded for all sites. Test sites were irradiated with an Nd:YAG laser using parameters of 2 W, 200 mJ pulse energy, and 10 pps delivered through a 320 μm diameter tip. Total laser treatment time ranged from 1 to 2 min. Following treatment, all specimens were harvested via biopsy and processed for scanning electron microscopy (SEM) and histologic examination. Control group specimens, depending upon initial PD, exhibited either a relatively smooth and intact epithelium with little desquamation (PD≤3 mm), or increasing degrees of epithelial desquamation and leukocytic infiltration at a PD of ≥4 mm. In the laser-treated test group, the specimens with PD≤3 mm that were BOP negative (-) exhibited a thin layer of epithelium that was disrupted. In the specimens with initial PD of ≥4 mm, complete removal of the epithelium whose extent and degree were increasing, was observed in the inflamed portion, while epithelium remained in the uninflamed portion. The SEM and histologic findings demonstrated the feasibility of ablating pocket epithelium with an Nd:YAG laser irradiation using parameters of 2 W of power (200 mJ, 10 pps). Furthermore, the presence or absence of clinical inflammation appeared to have an impact on the degree of laser

  14. Er:YAG laser-induced changes in skin in vivo and transdermal drug delivery

    NASA Astrophysics Data System (ADS)

    Flock, Stephen T.; Stern, Tom; Lehman, Paul; Dinehart, Scott; Franz, Tom; Liu, George; Stern, Scott J.

    1997-05-01

    It has been shown that laser ablation of stratum corneum, in vitro, can result in an increased uptake of topically applied pharmaceuticals. We have performed measurements of drug permeation, using an in vitro model of human skin, that involves a portable Er:YAG laser used to ablate the stratum corneum. For the first time, this method of drug administration was tested in vivo in human volunteers, whereby a hydrocortisone blanching assay was used to assess the efficiency of the procedure. The results show that this is a safe and efficient way to ablate stratum corneum for the purpose of enhanced transcutaneous drug administration.

  15. Influence of ablation wavelength and time on optical properties of laser ablated carbon dots

    NASA Astrophysics Data System (ADS)

    Isnaeni, Hanna, M. Yusrul; Pambudi, A. A.; Murdaka, F. H.

    2017-01-01

    Carbon dots, which are unique and applicable materials, have been produced using many techniques. In this work, we have fabricated carbon dots made of coconut fiber using laser ablation technique. The purpose of this work is to evaluate two ablation parameters, which are ablation wavelength and ablation time. We used pulsed laser from Nd:YAG laser with emit wavelength at 355 nm, 532 nm and 1064 nm. We varied ablation time one hour and two hours. Photoluminescence and time-resolved photoluminescence setup were used to study the optical properties of fabricated carbon dots. In general, fabricated carbon dots emit bluish green color emission upon excitation by blue laser. We found that carbon dots fabricated using 1064 nm laser produced the highest carbon dots emission among other samples. The peak wavelength of carbon dots emission is between 495 nm until 505 nm, which gives bluish green color emission. Two hours fabricated carbon dots gave four times higher emission than one hour fabricated carbon dot. More emission intensity of carbon dots means more carbon dots nanoparticles were fabricated during laser ablation process. In addition, we also measured electron dynamics of carbon dots using time-resolved photoluminescence. We found that sample with higher emission has longer electron decay time. Our finding gives optimum condition of carbon dots fabrication from coconut fiber using laser ablation technique. Moreover, fabricated carbon dots are non-toxic nanoparticles that can be applied for health, bio-tagging and medical applications.

  16. Holmium:YAG surgical lasers.

    PubMed

    1995-03-01

    "Holmium:YAG (Ho:YAG)" is the shorthand name for a family of solid-state lasers that use the doping element holmium in a laser crystal (e.g., YAG [yttrium-aluminum-garnet]) and that emit energy at approximately 2.1 microns. This wavelength is relatively new to medicine and has been used in laser surgery for only about the last six years. Like the carbon dioxide (CO2) laser when it was first used clinically, the Ho:YAG laser is poised for rapid and wide-spread use. Ho:YAG lasers, like CO2 lasers, offer precise cutting with minimal damage to adjacent tissue; however, unlike CO2 lasers, they also offer fiberoptic delivery (which is ideal for endoscopic use) and the ability to treat tissue in a liquid-filled environment (e.g., saline, blood). The initial specialty for which the Ho:YAG laser was used was arthroscopic surgery, especially diskectomy. Today, it is effectively used in many surgical specialties, including general surgery, urology, laparoscopy, neurosurgery, lithotripsy, angioplasty, orthopedic surgery (which includes procedures such as meniscectomy, bone sculpting [may also be performed in plastic surgery], and some experimental surgery, such as cartilage shrinking to tighten loose joints), and dentistry. Because of its broad range of potential applications, it has been called the "Swiss Army Knife" of lasers. High-powered Ho:YAG lasers, which enable surgeons to work more quickly and cut more smoothly, have been made available only within the last three years (units offering > 20 W) to 18 months (units offering > 60 W). Because of this rapid increase, high-powered units are still relatively expensive, and it is not yet clear whether maximum power outputs will continue to increase or whether the cost of higher-power units will begin to come down. Although low-power and high-power Ho:YAG lasers can be used for the same procedures, their different ranges of possible clinical techniques make them better suited to different applications: low-power units are

  17. Assessment of Er:YAG laser for cavity preparation in primary and permanent teeth: a scanning electron microscopy and thermographic study.

    PubMed

    Al-Batayneh, Ola B; Seow, W Kim; Walsh, Laurence J

    2014-01-01

    Most studies of cavity preparation using Er:YAG lasers have employed permanent teeth. This study's purpose was to compare the cutting efficiency of an Er:YAG laser versus diamond burs in primary and permanent teeth in order to measure thermal effects on the pulp and evaluate lased surfaces using scanning electron microscopy (SEM). A total of 80 primary and permanent teeth were used. Crater depths and mass loss were measured after delivering laser pulses at varying energies onto sound or carious enamel or dentin using the Key-3 laser. Control samples were cut using diamond burs in an air turbine handpiece. Thermal changes were measured using miniature thermocouples placed into the pulp chamber. Lased surfaces were evaluated using SEM. Laser ablation crater-like defects were deeper in dentin than enamel at the same pulse energy. Greater ablation rates for dentin and enamel and significantly more efficient removal of carious tooth structure by laser was present in primary teeth. Temperature rises in the pulp did not exceed the 5.5 degrees Celsius threshold in any teeth during laser ablation. The Er:YAG laser is an efficient device for cavity preparations in primary teeth, with no unacceptable increases in temperature detected in this model.

  18. Preclinical investigations of articular cartilage ablation with femtosecond and pulsed infrared lasers as an alternative to microfracture surgery

    NASA Astrophysics Data System (ADS)

    Su, Erica; Sun, Hui; Juhasz, Tibor; Wong, Brian J. F.

    2014-09-01

    Microfracture surgery is a bone marrow stimulation technique for treating cartilage defects and injuries in the knee. Current methods rely on surgical skill and instrumentation. This study investigates the potential use of laser technology as an alternate means to create the microfracture holes. Lasers investigated in this study include an erbium:YAG laser (λ=2.94 μm), titanium:sapphire femtosecond laser system (λ=1700 nm), and Nd:glass femtosecond laser (λ=1053 nm). Bovine samples were ablated at fluences of 8 to 18 J/cm2 with the erbium:YAG laser, at a power of 300±15 mW with the titanium:sapphire femtosecond system, and at an energy of 3 μJ/pulse with the Nd:glass laser. Samples were digitally photographed and histological sections were taken for analysis. The erbium:YAG laser is capable of fast and efficient ablation; specimen treated with fluences of 12 and 18 J/cm2 experienced significant amounts of bone removal and minimal carbonization with saline hydration. The femtosecond laser systems successfully removed cartilage but not clinically significant amounts of bone. Precise tissue removal was possible but not to substantial depths due to limitations of the systems. With additional studies and development, the use of femtosecond laser systems to ablate bone may be achieved at clinically valuable ablation rates.

  19. Preclinical investigations of articular cartilage ablation with femtosecond and pulsed infrared lasers as an alternative to microfracture surgery.

    PubMed

    Su, Erica; Sun, Hui; Juhasz, Tibor; Wong, Brian J F

    2014-09-01

    Microfracture surgery is a bone marrow stimulation technique for treating cartilage defects and injuriesin the knee. Current methods rely on surgical skill and instrumentation. This study investigates the potential useof laser technology as an alternate means to create the microfracture holes. Lasers investigated in this study include an erbium:YAG laser (λ = 2.94 μm), titanium:sapphire femtosecond laser system (λ = 1700 nm), and Nd:glass femtosecond laser (λ = 1053 nm). Bovine samples were ablated at fluences of 8 to 18 J∕cm2 with the erbium:YAG laser, at a power of 300 ± 15 mW with the titanium:sapphire femtosecond system, and at an energy of 3 μJ∕pulse with the Nd:glass laser. Samples were digitally photographed and histological sections were taken for analysis. The erbium:YAG laser is capable of fast and efficient ablation; specimen treated with fluences of 12 and 18 J∕cm2 experienced significant amounts of bone removal and minimal carbonization with saline hydration. The femtosecond laser systems successfully removed cartilage but not clinically significant amounts of bone. Precise tissue removal was possible but not to substantial depths due to limitations of the systems. With additional studies and development, the use of femtosecond laser systems to ablate bone may be achieved at clinically valuable ablation rates.

  20. Time-dependent preparation of gelatin-stabilized silver nanoparticles by pulsed Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Darroudi, Majid; Ahmad, M. B.; Zamiri, Reza; Abdullah, A. H.; Ibrahim, N. A.; Sadrolhosseini, A. R.

    2011-03-01

    Colloidal silver nanoparticles (Ag-NPs) were successfully prepared using a nanosecond pulsed Nd:YAG laser, λ = 1064 nm, with laser fluence of approximately about 360 mJ/pulse, in an aqueous gelatin solution. In this work, gelatin was used as a stabilizer, and the size and optical absorption properties of samples were studied as a function of the laser ablation times. The results from the UV-vis spectroscopy demonstrated that the mean diameter of Ag-NPs decrease as the laser ablation time increases. The Ag-NPs have mean diameters ranging from approximately 10 nm to 16 nm. Compared with other preparation methods, this work is clean, rapid, and simple to use.

  1. Histologic comparison of the CO2 laser and Nd:YAG with and without water/air surface cooling on tooth root structure

    NASA Astrophysics Data System (ADS)

    Cobb, Charles M.; Spencer, Paulette; McCollum, Mark H.

    1995-05-01

    Specimens consisted of 18 extracted single rooted teeth unaffected by periodontal disease. After debriding roots, specimens were randomly divided into 4 treatment groups and subjected to a single pass, at varying energy densities, of a CO2, Nd:YAG, and Nd:YAG with air/water surface cooling (Nd:YAG-C). The rate of exposure was controlled at 4 mm/sec. Approximate energy densities were: CO2, 138, 206, 275, and 344 J/cm2; Nd:YAG, 114, 171, 229, and 286 J/cm2; Nd:YAG-C, 286, 343, 514, and 571 J/cm2. The CO2 laser was used both in continuous and pulsed beam modes (20 Hz, 0.01 sec pulse length and 0.8 mm dia spot size) whereas the Nd:YAG and Nd:YAG-C were preset at 50 Hz, 0.08 sec pulse length and 0.6 mm dia spot size. Specimen examination by SEM revealed, for all lasers, a direct correlation between increasing energy densities and depth of tissue ablation and width of tissue damage. However, to achieve the same relative dept of tissue ablation, the Nd:YAG-C required higher energy densities than either the CO2 or Nd:YAG lasers. The Nd:YAG-C generated a cavitation with sharply defined margins. Furthermore, regardless of energy density, and in contrast with other laser types, areas treated with the Nd:YAG-C did not exhibit collateral zones of heat damaged surface tissue.

  2. Sensor-based laser ablation for tissue specific cutting: an experimental study.

    PubMed

    Rupprecht, Stephan; Tangermann-Gerk, Katja; Wiltfang, Joerg; Neukam, Friedrich Wilhelm; Schlegel, Andreas

    2004-01-01

    The interaction of laser light and tissue causes measurable phenomenons. These phenomenons can be quantified and used to control the laser drilling within a feedback system. Ten halves of dissected minipig jaws were treated with an Er:YAG laser system controlled via a feedback system. Sensor outputs were recorded and analyzed while osteotomy was done. The relative depth of laser ablation was calculated by 3D computed tomography and evaluated histologically. The detected signals caused by the laser-tissue interaction changed their character in a dramatic way after passing the cortical bone layer. The radiological evaluation of 98 laser-ablated holes in the ten halves showed no deeper ablation beyond the cortical layer (mean values: 97.8%). Histologically, no physical damage to the alveolar nerve bundle was proved. The feedback system to control the laser drilling was working exactly for cortical ablation of the bone based on the evaluation of detected and quantified phenomenon related to the laser-tissue interaction.

  3. Multiple minimally invasive Erbium:YAG laser mini-peels for skin rejuvenation: An objective assessment

    PubMed Central

    El-Domyati, Moetaz; El-Ammawi, Tarek S.; Medhat, Walid; Moawad, Osama; Mahoney, Mỹ G.; Uitto, Jouni

    2012-01-01

    Summary Background As the demand for minimally invasive rejuvenation is increasing, micro-peel resurfacing using Erbium:Yttrium Aluminium Garnet (Er:YAG ) laser 2940 nm has been reported for the treatment of photoaged skin without ablation of the epidermis. However, little is known about the efficacy and underlying histologic changes associated with this type of treatment. Aims The purpose of this study is to evaluate the clinical effect and objectively quantify the histological changes in response to multiple sessions of Er:YAG laser 2940 nm mini-peels. Patients and methods Six female volunteers of Fitzpatrick skin type III-IV and Glogau’s class I-III wrinkles were subjected to six microresurfacing peels at 2-week intervals using Er:YAG 2940 nm laser at sub-ablative fluences of 2 - 3 J/cm2 to treat periorbital rhytides. Quantitative evaluation of collagen types I, III and VII, newly synthesized collagen, total elastin and tropoelastin was performed by histochemistry and immunohistochemistry coupled with computerized morphometric analysis at base line, end of treatment, and three months post treatment. Results Compared to the base line, evaluation of volunteers revealed obvious clinical improvement in response to Er:YAG mini-peels. Collagen types I, III, and VII, as well as newly synthesized collagen, together with tropoelastin showed a statistically significant increase in response to treatment, while the mean level of total elastin was significantly decreased in response to treatment. However, this was followed by regression of improvement at 3 months post treatment, but was still better than baseline. Conclusions The present study revealed that multiple Er:YAG mini-peels is a promising treatment option for photoaging as it reverses the signs of photoaged skin with little downtime and side effects. However, to maintain the short term improvement achieved after treatment, continued Er:YAG 2940 nm laser mini-peels is required. PMID:22672276

  4. Selective removal of natural caries lesions from dentin and tooth occlusal surfaces using a diode-pumped Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Jew, Jamison; Chan, Kenneth H.; Darling, Cynthia L.; Fried, Daniel

    2017-02-01

    Selective removal of caries lesions with high precision is best accomplished using lasers operating at high pulse repetition rates utilizing small spot sizes. Conventional flash-lamp pumped Er:YAG lasers are poorly suited for this purpose, but new diode-pumped solid-state (DPSS) Er:YAG lasers have become available operating at high pulse repetition rates. Microradiography was used to determine the mineral content of the demineralized dentin of 200-μm thick sections with natural caries lesions prior to laser ablation. The purpose of this study was to explore the use of a DPSS Er:YAG laser for the selective removal of demineralized dentin and natural occlusal lesions on extracted teeth.

  5. Laser ablation of dental calculus at 400 nm using a Ti:sapphire laser

    NASA Astrophysics Data System (ADS)

    Schoenly, Joshua E.; Seka, Wolf; Rechmann, Peter

    2009-02-01

    A Nd:YAG laser-pumped, frequency-doubled Ti:sapphire laser is used for selective ablation of calculus. The laser provides <=25 mJ at 400 nm (60-ns pulse width, 10-Hz repetition rate). The laser is coupled into an optical multimode fiber coiled around a 4-in.-diam drum to generate a top-hat output intensity profile. With coaxial water cooling, this is ideal for efficient, selective calculus removal. This is in stark contrast with tightly focused Gaussian beams that are energetically inefficient and lead to irreproducible results. Calculus is well ablated at high fluences >=2J/cm2 stalling occurs below this fluence because of photobleaching. Healthy hard tissue is not removed at fluences <=3 J/cm2.

  6. Transmission of Er:YAG laser through different dental ceramics.

    PubMed

    Sari, Tugrul; Tuncel, Ilkin; Usumez, Aslihan; Gutknecht, Norbert

    2014-01-01

    The aim of this study was to determine the erbium-doped yttrium aluminum garnet (Er:YAG) laser transmission ratio through different dental ceramics with different thicknesses. Laser debonding procedure of adhesively luted all-ceramic restorations is based on the transmission of laser energy through the ceramic and the ablation of resin cement, because of the transmitted laser energy. Five different dental ceramics were evaluated in this study: sintered zirconium-oxide core ceramic, monolithic zirconium-oxide ceramic, feldspathic ceramic, leucite-reinforced glass ceramic, and lithium disilicate-reinforced glass ceramic. Two ceramic discs with different thicknesses (0.5 and 1 mm) were fabricated for each group. Ceramic discs were placed between the sensor membrane of the laser power meter and the tip of the contact handpiece of an Er:YAG laser device with the aid of a custom- made acrylic holder. The transmission ratio of Er:YAG laser energy (500 mJ, 2 Hz, 1 W, 1000 μs) through different ceramic discs was measured with the power meter. Ten measurements were made for each group and the results were analyzed with two way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests. The highest transmission ratio was determined for lithium disilicate-reinforced ceramic with 0.5 mm thickness (88%) and the lowest was determined for feldspathic ceramic with 1 mm thickness (44%). The differences among the different ceramics and between the different thicknesses were significant (p<0.05). Ceramic type and thickness should be taken into consideration to adjust the laser irradiation parameters during laser debonding of adhesively luted all-ceramic restorations.

  7. Moderate high power 1 to 20μs and kHz Ho:YAG thin disk laser pulses for laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Renz, Günther

    2015-02-01

    An acousto-optically or self-oscillation pulsed thin disk Ho:YAG laser system at 2.1 μm with an average power in the 10 W range will be presented for laser lithotripsy. In the case of cw operation the thin disk Ho:YAG is either pumped with InP diode stacks or with a thulium fiber laser which leads to a laser output power of 20 W at an optical-to-optical efficiency of 30%. For the gain switched mode of operation a modulated Tm-fiber laser is used to produce self-oscillation pulses. A favored pulse lengths for uric acid stone ablation is known to be at a few μs pulse duration which can be delivered by the thin disk laser technology. In the state of the art laser lithotripter, stone material is typically ablated with 250 to 750 μs pulses at 5 to 10 Hz and with pulse energies up to a few Joule. The ablation mechanism is performed in this case by vaporization into stone dust and fragmentation. With the thin disk laser technology, 1 to 20 μs-laser pulses with a repetition rate of a few kHz and with pulse energies in the mJ-range are available. The ablation mechanism is in this case due to a local heating of the stone material with a decomposition of the crystalline structure into calcium carbonate powder which can be handled by the human body. As a joint process to this thermal effect, imploding water vapor bubbles between the fiber end and the stone material produce sporadic shock waves which help clear out the stone dust and biological material.

  8. Nd:YAG and CO2 laser therapy of oral mucosal lesions.

    PubMed

    White, J M; Chaudhry, S I; Kudler, J J; Sekandari, N; Schoelch, M L; Silverman, S

    1998-12-01

    Experiences gained in the management of oral mucosal lesions by CO2 and Nd:YAG laser therapy in an outpatient clinic treated over an 80-year period are described. Lasers have indications for use in dentistry for incision, excision, and coagulation of intraoral soft tissue. Advances in laser technology have provided delivery systems for site-specific delivery of laser energy with short interaction items on tissue to be ablated. This study retrospectively evaluates a series of clinical case studies. Sixty-four patients with a variety of benign oral soft tissue lesions were treated by laser excision. Thirty-five patients were treated by a pulsed fiberoptic delivered Nd:YAG contact laser, and 29 by a continuous free-beam CO2 non-contact laser. The largest group of lesions treated were leukoplakia (39 cases). Other lesions excised and biopsied were lichen planus, squamous papilloma, pyogenic granuloma, focal melanosis, nonhealing traumatic ulceration, hemangioma, and lymphangioma. All patients were followed postoperatively (mean 6.8 months, range 1-36 months). Laser excision was well tolerated by patients with no intraoperative or postoperative adverse effects. All patients healed postsurgically with no loss of function. CO2 and Nd:YAG lasers are successful surgical options when performing excision of benign intraoral lesions. Advantages of laser therapy include minimal postoperative pain, conservative site-specific minimally invasive surgeries, and elimination of need for sutures.

  9. Myocardium tissue ablation with high-peak-power nanosecond 1,064- and 532-nm pulsed lasers: influence of laser-induced plasma.

    PubMed

    Ogura, Makoto; Sato, Shunichi; Ishihara, Miya; Kawauchi, Satoko; Arai, Tunenori; Matsui, Takemi; Kurita, Akira; Kikuchi, Makoto; Ashida, Hiroshi; Obara, Minoru

    2002-01-01

    We investigated the mechanism and characteristics of porcine myocardium tissue ablation in vitro with nanosecond 1,064- and 532-nm pulsed lasers at laser intensities up to approximately 5.0 GW/cm(2). Particular attention was paid to study the influence of the laser-induced plasma on the ablation characteristics. The applicability of these two lasers to transmyocardial laser revascularization (TMLR) was discussed. Porcine myocardium tissue samples were irradiated with 1,064- and 532-nm, Q-switched Nd:YAG laser pulses, and the ablation depths were measured. The temporal profiles of the laser-induced optical emissions were measured with a biplanar phototube. For the ablated tissue samples, histological analysis was performed with an optical microscope and a polarization microscope. The ablation efficiency at 1,064 nm was higher than that at 532 nm. The ablation threshold at 1,064 nm (approximately 0.8 GW/cm(2)) was lower than that at 532 nm (approximately 1.6 GW/cm(2)), in spite of the lower absorption coefficient being expected at 1,064 nm. For the 1,064-nm laser-ablated tissues, thermal damage was very limited, while damage presumably caused by the mechanical effect was observed in most of the cases. For the 1,064-nm laser ablation, the ablation threshold was equal to the threshold of the laser-induced optical emission (approximately 0.8 GW/cm(2)), while for the 532-nm laser ablation, the optical emission threshold ( approximately 2.4 GW/cm(2)) was higher than the ablation threshold. We considered that for the 1,064-nm laser ablation, the tissue removal was achieved through a photodisruption process at laser intensities of > approximately 0.8 GW/cm(2). At laser intensities of > 3.0 GW/cm(2), however, the ablation efficiency decreased; this can be attributed to the absorption of incoming laser pulses by the plasma. For the 532-nm laser ablation, the tissue removal was achieved through a photothermal process at laser intensities of > approximately 1.6 GW/cm(2). At

  10. Microchip laser based on Yb:YAG/V:YAG monolith crystal

    NASA Astrophysics Data System (ADS)

    Nejezchleb, Karel; Šulc, Jan; Jelínková, Helena; Škoda, Václav

    2016-03-01

    V:YAG crystal was investigated as a passive Q-switch of longitudinally diode-pumped microchip laser, emitting radiation at wavelength 1030.5 nm. This laser was based on diffusion bonded monolith crystal (diameter 3 mm) which combines in one piece an active laser part (Yb:YAG crystal, 10 at.% Yb/Y, 3 mm long) and saturable absorber (V:YAG crystal, 2 mm long, initial transmission 86 % @ 1031 nm). The microchip resonator consisted of dielectric mirrors directly deposited on the monolith surfaces (pump mirror HT @ 968 nm and HR @ 1031 nm on Yb:YAG part, output coupler with reflection 55 % @ 1031 nm on the V:YAG part). For longitudinal CW pumping of Yb:YAG part, a fibre coupled (core diameter 100 μm, NA = 0.22, emission @ 968 nm) laser diode was used. The laser threshold was 3.8W. The laser slope efficiency for output mean in respect to incident pumping was 16 %. The linearly polarized generated transversal intensity beam profile was close to the fundamental Gaussian mode. The generated pulse length, stable and mostly independent on pumping power, was equal to 1.3 ns (FWHM). The single pulse energy was increasing with the pumping power and for the maximum pumping 9.7W it was 78 μJ which corresponds to the pulse peak-power 56 kW. The maximum Yb:YAG/V:YAG microchip laser mean output power of 1W was reached without observable thermal roll-over. The corresponding Q-switched pulses repetition rate was 13.1 kHz.

  11. Preclinical investigations of articular cartilage ablation with femtosecond and pulsed infrared lasers as an alternative to microfracture surgery

    PubMed Central

    Su, Erica; Sun, Hui; Juhasz, Tibor; Wong, Brian J. F.

    2014-01-01

    Abstract. Microfracture surgery is a bone marrow stimulation technique for treating cartilage defects and injuries in the knee. Current methods rely on surgical skill and instrumentation. This study investigates the potential use of laser technology as an alternate means to create the microfracture holes. Lasers investigated in this study include an erbium:YAG laser (λ=2.94  μm), titanium:sapphire femtosecond laser system (λ=1700  nm), and Nd:glass femtosecond laser (λ=1053  nm). Bovine samples were ablated at fluences of 8 to 18  J/cm2 with the erbium:YAG laser, at a power of 300±15  mW with the titanium:sapphire femtosecond system, and at an energy of 3  μJ/pulse with the Nd:glass laser. Samples were digitally photographed and histological sections were taken for analysis. The erbium:YAG laser is capable of fast and efficient ablation; specimen treated with fluences of 12 and 18  J/cm2 experienced significant amounts of bone removal and minimal carbonization with saline hydration. The femtosecond laser systems successfully removed cartilage but not clinically significant amounts of bone. Precise tissue removal was possible but not to substantial depths due to limitations of the systems. With additional studies and development, the use of femtosecond laser systems to ablate bone may be achieved at clinically valuable ablation rates. PMID:25200394

  12. Residual heat deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 microm.

    PubMed

    Fried, D; Ragadio, J; Champion, A

    2001-01-01

    The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth. Excessive heat deposition or accumulation may result in unacceptable damage to the pulp. The objective of this study was to measure the residual heat deposition during the laser ablation of dental enamel at those IR laser wavelengths well suited for the removal of dental caries. Optimal laser ablation systems minimize the residual heat deposition in the tooth by efficiently transferring the deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in dental enamel was measured at laser wavelengths of 2.79, 2.94, 9.6, and 10.6 microm and pulse widths of 150 nsec -150 microsec using bovine block "calorimeters." Water droplets were applied to the surface before ablation with 150 microsec Er:YAG laser pulses to determine the influence of an optically thick water layer on reducing heat deposition. The residual heat was at a minimum for fluences well above the ablation threshold where measured values ranged from 25-70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual heat were measured for short (< 20 micros) CO(2) laser pulses at 9.6 microm and for Q-switched erbium laser pulses at 2.79 and 2.94 microm. Droplets of water applied to the surface before ablation significantly reduced the residual heat deposition during ablation with 150 microsec Er:YAG laser pulses. Residual heat deposition can be markedly reduced by using CO(2) laser pulses of less than 20 microsec duration and shorter Q-switched Er:YAG and Er:YSGG laser pulses for enamel ablation. Copyright 2001 Wiley-Liss, Inc.

  13. Free-beam and contact laser soft-tissue ablation in urology.

    PubMed

    Tan, Andrew H H; Gilling, Peter J

    2003-10-01

    The ablation of tissue by laser has several applications in urology. Most of the published research has been concerned with the treatment of benign prostatic hyperplasia (BPH). Other applications studied include superficial upper- and lower-tract transitional-cell carcinoma, urethral and ureteral strictures, ureteropelvic junction stenosis, and posterior urethral valves. The attraction of laser ablation for the treatment of BPH lies with the decreased morbidity in comparison with standard transurethral electrocautery resection of the prostate and the ability to remove tissue immediately and therefore allow a more rapid progression to catheter removal and early voiding. The three main laser wavelengths used in urology for tissue ablation are the neodymium:yttrium-aluminum-garnet when used with contact tips or high-density power settings, the potassium-titanyl-phosphate, and the holmium:YAG. This article reviews the published literature on the use of these laser wavelengths in soft-tissue ablation, focusing on the treatment of BPH.

  14. Hard tooth tissue removal by short and long Er:YAG or Er,Cr:YSGG mid-infrared laser radiation

    NASA Astrophysics Data System (ADS)

    Jelínková, H.; Dostálová, T.; Remeš, M.; Šulc, J.; Němec, M.; Fibrich, M.

    2017-02-01

    Hard dental tissue removal by laser radiation is an alternative treatment to conventional dental-drilling procedures. The advantages of this therapy are fast and localized treatment of hard dental tissue and painlessness. The most effective systems for those purposes are Er-lasers generating radiation at wavelengths of around 3 μm. The aim of this study was qualitative and quantitative examination of human dentin and ivory tissue removal by pulsed free-running (FR) and Q-switched (QSW) Er:YAG and Er,Cr:YSGG laser radiations. From the obtained results it follows that generally Er:YAG laser has lower threshold for the tissue removal in both FR and QSW regimes. Furthermore, the FR Er:YAG and Er,Cr:YSGG radiation can be effective for both dentin and ivory ablation and can prepare smooth cavities without side effects. The QSW regime is useful preferably for precise ablation of a starting tooth defect and for the part of the tooth very close to the gum. This regime is excellent for micro-preparation or for tooth treatment of children.

  15. Re{sup 3+} : YAG laser ceramics: synthesis, optical properties and laser characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagayev, S N; Vatnik, S M; Vedin, I A

    2015-05-31

    Highly transparent yttrium aluminium garnet ceramics doped with holmium or ytterbium or neodymium are synthesised. The ceramics were made of a mixture of nanopowders synthesised by laser ablation. The structural and spectral characteristics of ceramics are studied. In the samples with holmium Ho{sup 3+} and neodymium Nd{sup 3+} ions, lasing was achieved with a slope efficiency of 40% and 35.3%, respectively; the maximum laser power exceeded 4 W. The internal absorption and scattering losses for 1% Nd : YAG ceramics are estimated to be 1.6 × 10{sup -2} cm{sup -1}. (extreme light fields and their applications)

  16. Ablative fractional laser treatment for hypertrophic scars: comparison between Er:YAG and CO2 fractional lasers.

    PubMed

    Choi, Jae Eun; Oh, Ga Na; Kim, Jong Yeob; Seo, Soo Hong; Ahn, Hyo Hyun; Kye, Young Chul

    2014-08-01

    Nonablative fractional photothermolysis has been reported to show early promise in the treatment of hypertrophic scars, but there are few reports on ablative fractional photothermolysis for the treatment of hypertrophic scars. To evaluate and compare the efficacy and safety of Er:YAG fractional laser (EYFL) and CO2 fractional laser (CO2FL) for treatment of hypertrophic scars. Thirteen patients with hypertrophic scars were treated with 2,940 nm EYFL, and ten were treated with 10,600 nm CO2FL. An independent physician evaluator assessed the treatment outcomes using Vancouver scar scale (VSS) and 5-point grading scale (grade 0, no improvement; grade 1, 1-25%; grade 2, 26-50%; grade 3, 51-75%; grade 4, 76-100% improvement). Patients are queried about their subjective satisfaction with the treatment outcomes. After the final treatment, average percentage changes of VSS were 28.2% for EYFL and 49.8% for CO2FL. Improvement was evident in terms of pliability, while insignificant in terms of vascularity and pigmentation. Based on physician's global assessment, mean grade of 1.8 for EYFL and 2.7 for CO2FL was achieved. Patient's subjective satisfaction scores paralleled the physician's objective evaluation. CO2FL is a potentially effective and safe modality for the treatment of hypertrophic scars, particularly in terms of pliability.

  17. Liquid-assisted laser ablation of advanced ceramics and glass-ceramic materials

    NASA Astrophysics Data System (ADS)

    Garcia-Giron, A.; Sola, D.; Peña, J. I.

    2016-02-01

    In this work, results obtained by laser ablation of advanced ceramics and glass-ceramic materials assisted by liquids are reported. A Q-switched Nd:YAG laser at its fundamental wavelength of 1064 nm with pulse-width in the nanosecond range was used to machine the materials, which were immersed in water and ethylene glycol. Variation in geometrical parameters, morphology, and ablation yields were studied by using the same laser working conditions. It was observed that machined depth and removed volume depended on the thermal, optical, and mechanical features of the processed materials as well as on the properties of the surrounding medium in which the laser processing was carried out. Variation in ablation yields was studied in function of the liquid used to assist the laser process and related to refractive index and viscosity. Material features and working conditions were also related to the obtained results in order to correlate ablation parameters with respect to the hardness of the processed materials.

  18. Laser Ablation of Dental Calculus Around 400 nm Using a Ti:Sapphire Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenly, J.; Seka, W.; Rechmann, P.

    2009-10-19

    A Nd:YAG laser-pumped, frequency-doubled Ti:sapphire laser is used for selective ablation of calculus. The laser provides ≤25 mJ at 400 nm (60-ns pulse width, 10-Hz repetition rate). The laser is coupled into an optical multimode fiber coiled around a 4-in.-diam drum to generate a top-hat output intensity profile. With coaxial water cooling, this is ideal for efficient, selective calculus removal. This is in stark contrast with tightly focused Gaussian beams that are energetically inefficient and lead to irreproducible results. Calculus is well ablated at high fluences ≥2 J/cm^2; stalling occurs below this fluence because of photobleaching. Healthy hard tissue ismore » not removed at fluences ≤3 J/cm^2.« less

  19. Clinical development of holmium:YAG laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Kabalin, John N.

    1996-05-01

    Holmium:YAG (Ho:YAG) laser vaporization and resection of the prostate offers advantages in immediate tissue removal compared to the Neodymium:YAG (Nd:YAG) laser. Ongoing development of appropriate operative techniques and Ho:YAG laser delivery systems suitable for endoscopic prostate surgery, including side-firing optical delivery fibers, have facilitated this approach. We performed Ho:YAG laser prostatectomy in 20 human subjects, including 2 men treated immediately prior to radical prostatectomy to assess Ho:YAG laser effects in the prostate. A total of 18 men were treated in an initial clinical trial of Ho:YAG prostatectomy. Estimated excess hyperplastic prostate tissue averaged 24 g (range 5 - 50 g). A mean of 129 kj Ho:YAG laser energy was delivered, combined with a mean of 11 kj Nd:YAG energy to provide supplemental coagulation for hemostasis. We have observed no significant perioperative or late complications. No significant intraoperative changes in hematocrit or serum electrolytes were documented. In addition to providing acute removal of obstructing prostate tissue, Ho:YAG laser resection allowed tissue specimen to be obtained for histologic examination. A total of 16 of 18 patients (90%) underwent successful removal of their urinary catheter and voiding trial within 24 hours following surgery. Immediate improvement in voiding, comparable to classic transurethral electrocautery resection of the prostate (TURP), was reported by all patients. Ho:YAG laser resection of the prostate appears to be a viable surgical technique associated with minimal morbidity and immediate improvement in voiding.

  20. In-vitro ablation of fibrocartilage by XeCl excimer laser

    NASA Astrophysics Data System (ADS)

    Buchelt, Martin; Papaioannou, Thanassis; Fishbein, Michael C.; Peters, Werner; Beeder, Clain; Grundfest, Warren S.

    1991-07-01

    A 308 nm excimer laser was employed for ablation of human fibrocartilage. Experiments were conducted in vitro. The tissue response was investigated with respect to dosimetry (ablation rate versus radiant exposure) and thermal effect (thermographic analysis). Irradiation was performed via a 600 um fiber, with radiant exposures ranging between 20mj/mm2 and 80mj/mm2, at 20Hz. The ablation rates were found to range from 3um/pulse to 80um/pulse depending on the radiant exposure and/or the applied pressure on the delivery system. Thermographic analysis, during ablation, revealed maximum average temperatures of about 65 degree(s)C. Similar measurements performed, for the purpose of comparison, with a CW Nd:YAG and a CW CO2 laser showed higher values, of the order of 200 degree(s)C.

  1. Comparison of Q-switched Nd: YAG laser and fractional carbon dioxide laser for the treatment of solar lentigines in Asians.

    PubMed

    Vachiramon, Vasanop; Panmanee, Wikanda; Techapichetvanich, Thanya; Chanprapaph, Kumutnart

    2016-04-01

    Solar lentigines are benign pigmented lesions that occur mostly on sun-exposed areas. Q-switched and ablative lasers are effective for removing these lesions but the high incidence of postinflammatory hyperpigmentation raises concern in darker skin types. The objective of this study is to compare the efficacy and degree of postinflammatory hyperpigmentation with the Q-switched Nd:YAG and fractional carbon dioxide (CO2 ) laser for treatment of solar lentigines in Asians. Twenty-five Thai patients (skin phototype III-IV) with at least two lesions of solar lentigines on upper extremities were enrolled in this study. Two lesions were randomly selected for the treatment with a single session of Q-switched Nd:YAG or fractional CO2 laser. Outcomes were evaluated using physician grading scale, colorimeter, and patient self-assessment at 6 and 12 weeks after treatment. Side effects were recorded. A total of 532 nm Q-switched Nd:YAG laser showed significant improvement of pigmentation over fractional CO2 laser at 6th and 12th week by both colorimeter assessment and physician grading scale (P < 0.05). No significant difference in postinflammatory hyperpigmentation from both lasers was observed. In terms of patient self-assessment, 80% of the patients treated with 532 nm Q-switched Nd:YAG laser had excellent results compared to 8% in fractional CO2 laser group. However, fractional CO2 laser treatment had faster healing time and less pain score compared to Q-switched Nd:YAG laser. Q-switched Nd:YAG is superior to fractional CO2 laser for treatment of solar lentigines but requires longer healing time and produces more pain. The incidence of postinflammatory hyperpigmentation was not significantly different with both lasers. Further studies are needed to obtain the proper parameter and the treatment frequency of fractional CO2 laser in solar lentigines. © 2016 Wiley Periodicals, Inc.

  2. Significant skin-tightening by closure of fractional ablative laser holes.

    PubMed

    Russe, Elisabeth; Purschke, Martin; Limpiangkanan, Wikunda; Farinelli, William A; Wang, Ying; Doukas, Apostolos G; Sakamoto, Fernanda H; Wechselberger, Gottfried; Anderson, Richard Rox

    2018-01-01

    Ablative fractional laser treatment uses thousands of very small laser beam wounds to damage a fraction of the skin, which stimulates tissue remodeling. Each open micro-wound heals without scarring, but the amount of skin tightening achieved is limited. This animal study was performed to test the hypothesis that immediate temporary closure of fractional laser wounds could increase skin tightening after fractional ablative laser treatment. Four adult swine were used for the study; 98 square test sites (3 × 3 cm) were tattooed on the abdomen and flanks of each pig. An ablative fractional Erbium:YAG laser (Sciton Profile, Sciton Inc, Palo Alto, CA) was used to treat the test areas. A laser micro-spot fluence of 375 J/cm 2 was delivered in 150-250 microseconds pulses, resulting in an array of ablation channels extending 1.5 mm deep into the skin, with a spot size of 250 µm, with 10% treatment density. Immediately following laser exposure the resulting holes were closed using a stretched elastic adhesive dressing, which, when applied, recoiled and compressed the diameter of the ablation holes. The compressive dressings were removed after 7 days. This procedure was compared to removing the same amount of skin (10%) mechanically by specially designed 19 gauge coring needles, as well as to the same laser and coring methods without compression closure. Area and shape of test sites were measured by digital photography before and 28 days after treatment. Data analysis included compensation for animal growth, as measured by increase in the area of the untreated control sites. All treated and control sites healed within a week, without scarring evident at 28 days. Laser treatment combined with compressive wound closure caused significant shrinkage at 28 days compared with untreated control sites. The treated skin area was reduced by 11.5% (P = 0.0001). Needle coring with wound closure produced similar, significant shrinkage (8%, P < 0.0021), whereas laser

  3. 12  mJ Yb:YAG/Cr:YAG microchip laser.

    PubMed

    Guo, Xiaoyang; Tokita, Shigeki; Kawanaka, Junji

    2018-02-01

    We have developed a quasi-continuous wave diode end-pumped cryogenically cooled Yb:YAG/Cr:YAG passively Q-switched microchip laser. A maximum energy of 12.1 mJ with 3.7 MW of peak power was obtained. To the best of our knowledge, this is the highest energy and peak power obtained by an Yb:YAG/Cr:YAG microchip laser so far.

  4. Cutaneous resurfacing with CO2 and erbium: YAG lasers: preoperative, intraoperative, and postoperative considerations.

    PubMed

    Alster, T S

    1999-02-01

    The development and integration of pulsed and scanned CO2 and erbium:YAG laser systems into mainstream surgical practice over the past years has revolutionized cutaneous resurfacing. These lasers are capable of delivering to skin high peak fluences to effect controlled tissue vaporization, while leaving an acceptably narrow zone of residual thermal damage. The inherent technological differences that exist between the two distant laser systems in terms of ablation depths, degree of thermal coagulation, and postoperative side-effects and complications guide patient selection and management. This article reviews the basic principles of CO2 and erbium:YAG laser resurfacing, including preoperative, intraoperative, and postoperative patient considerations. Side-effects and complications encountered after laser resurfacing are discussed with specific guidelines provided on their appropriate management. Anticipated future developments and cutting-edge research endeavors in cutaneous laser resurfacing are also briefly outlined.

  5. Emission intensity modulation of radio-frequency helium glow-discharge emission source by laser ablation.

    PubMed

    Matsuta, Hideyuki; Naeem, Tariq M; Wagatsuma, Kazuaki

    2003-06-01

    A novel emission excitation source comprising a high repetition rate diode-pumped Q-switched Nd:YAG laser and a Grimm-style glow-discharge lamp is described. Laser-ablated atoms are introduced into the He glow discharge plasma, which then give emission signals. By using phase-sensitive detection with a lock-in amplifier, the emission signal modulated by the pulsed laser can be detected selectively. It is possible to estimate only the emission intensity of sample atoms ablated by laser irradiation with little interference from the other species in the plasma.

  6. Tissue effects of Ho:YAG laser with varying fluences and pulse widths

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; van der Veen, Maurits J.; Pergadia, Vani R.; Shi, Wei-Qiang; Duffy, J. T.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1994-02-01

    We investigated the effect of varying fluence and pulse width on the ablation rate and consequent thermal damage of the Ho:YAG (2.130 micrometers ) laser. The rate of ablation on fresh bovine knee joint tissues, fibrous cartilage, hyaline cartilage, and bone in saline was determined after varying the fluence (160 - 640 J/cm2) and pulse width (150, 250, 450 microsecond(s) ec, FWHM) at a repetition rate of 2 Hz. A 400/440 micrometers fiber was used. The ablation rate increased linearly with the fluence. In fibrocartilage, different pulse durations generated significant changes in the ablation rates, but showed minor effects on hyaline cartilage and bone. The heat of ablation for all three tissue types decreased after lengthening the pulse.

  7. Near-IR imaging of erbium laser ablation with a water spray

    NASA Astrophysics Data System (ADS)

    Darling, Cynthia L.; Maffei, Marie E.; Fried, William A.; Fried, Daniel

    2008-02-01

    Near-IR (NIR) imaging can be used to view the formation of ablation craters during laser ablation since the enamel of the tooth is almost completely transparent near 1310-nm1. Laser ablation craters can be monitored under varying irradiation conditions to assess peripheral thermal and transient-stress induced damage, measure the rate and efficiency of ablation and provide insight into the ablation mechanism. There are fundamental differences in the mechanism of enamel ablation using erbium lasers versus carbon dioxide laser systems due to the nature of the primary absorber and it is necessary to have water present on the tooth surface for efficient ablation at erbium laser wavelengths. In this study, sound human tooth sections of approximately 2-3-mm thickness were irradiated by free running and Q-switched Er:YAG & Er:YSGG lasers under varying conditions with and without a water spray. The incision area in the interior of each sample was imaged using a tungsten-halogen lamp with a band-pass filter centered at 1310-nm combined with an InGaAs area camera with a NIR zoom microscope. Obvious differences in the crater evolution were observed between CO2 and erbium lasers. Ablation stalled after a few laser pulses without a water spray as anticipated. Efficient ablation was re-initiated by resuming the water spray. Micro-fractures were continuously produced apparently driven along prism lines during multi-pulse ablation. These fractures or fissures appeared to merge together as the crater evolved to form the leading edge of the ablation crater. These observations support the proposed thermo-mechanical mechanisms of erbium laser involving the strong mechanical forces generated by selective absorption by water.

  8. Efficacy of long pulse Nd:YAG laser versus fractional Er:YAG laser in the treatment of hand wrinkles.

    PubMed

    Robati, Reza M; Asadi, Elmira; Shafiee, Anoosh; Namazi, Nastaran; Talebi, Atefeh

    2018-04-01

    There are different modalities for hand rejuvenation. Fractional Er:YAG laser and long pulse Nd:YAG laser were introduced for treating hand wrinkles. We plan to compare fractional Er:YAG laser and long pulse Nd:YAG laser in a randomized controlled double-blind design with multiple sessions and larger sample size in comparison with previous studies. Thirty-three participants with hand wrinkles entered this study. They were randomly allocated to undergo three monthly laser treatments on each hand, one with a fractional Er:YAG laser and the other with a long pulse Nd:YAG laser. The evaluations included assessment of clinical improvement determined by two independent dermatologists not enrolled in the treatment along with measuring skin biomechanical property of hands using a sensitive biometrologic device with the assessment of cutaneous resonance running time (CRRT). Moreover, potential side effects and patients' satisfaction have been documented at baseline, 1 month after each treatment, and 3 months after the final treatment session. Clinical evaluation revealed both modalities significantly reduce hand wrinkles (p value < 0.05), with no significant difference between two lasers. Mean CRRT values also decreased significantly after the laser treatment compared to those of the baseline in both laser groups. There was no serious persistent side effect after both laser treatments. Both fractional Er:YAG and long pulse Nd:YAG lasers show substantial clinical improvement of hand skin wrinkles with no serious side effects. However, combination treatment by these lasers along with the other modalities such as fat transfer could lead to better outcomes in hand rejuvenation. IRCT2016032020468N4.

  9. Influence of temperature on Yb:YAG/Cr:YAG microchip laser operation

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Eisenschreiber, Jan; Jelínková, Helena; Nejezchleb, Karel; Å koda, Václav

    2017-02-01

    The goal of this work was an investigation of the temperature influence (in range from 80 up to 320 K) on the laser properties of Yb:YAG/Cr:YAG Q-switched diode-pumped microchip laser. This laser was based on monolith crystal (diameter 3mm) which combines in one piece an active laser part (Yb:YAG crystal, 10 at.% Yb/Y, 3mm long) and saturable absorber (Cr:YAG crystal, 1.36mm long, initial transmission 90% @ 1031 nm). The laser resonator pump mirror (HT for pump radiation, HR for generated radiation) was directly deposited on the Yb:YAG monolith part. The output coupler with reflection 55% for the generated wavelength was placed on the Cr:YAG part. The microchip laser was placed in the temperature controlled cupreous holder inside vacuum chamber of the liquid nitrogen cryostat. For Yb:YAG part longitudinal pulsed pumping (pumping pulse length 2.5 ms, rep-rate 20 Hz, power amplitude 21W) a fibre coupled (core diameter 400 μm, NA= 0:22) laser diode, operating at wavelength 933 nm, was used. The microchip laser mean output power, pulse duration, repetition rate, emission wavelength, and laser beam profile were measured in dependence on temperature. The generated pulse length was in range from 2.2 ns to 1.1 ns (FWHM) with the minimum at 230 K. The single pulse energy was peaking (0.4 mJ) at 180 K. The highest peak power (325 kW) was obtained at 220 K. The highest pulse repetition rate (38 kHz) and output mean power (370mW) was reached for temperature 80 K.

  10. Aggregation effect on absorbance spectrum of laser ablated gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Isnaeni; Irmaniar; Herbani, Y.

    2017-04-01

    Plasmon of gold nanoparticles is one of the hot topics nowadays due to various possible applications. The application is determined by plasmon peak in absorbance spectrum. We have fabricated gold nanoparticles using laser ablation technique and studied the influence of CTAB (Cetyl trimethylammonium bromide) effect on the optical characterization of fabricated gold nanoparticles. We ablated a gold plate using NdYAG pulsed laser at 1064 nm wavelength, 10 Hz pulse frequency at low energy density. We found there are two distinctive plasmon peaks, i.e., primary and secondary peaks, where the secondary peak is the main interests of this work. Our simulation results have revealed that the secondary plasmon peak is affected by random aggregation of gold nanoparticles. Our research leads to good techniques on fabrication of colloidal gold nanoparticles in aqueous solution using laser ablation technique.

  11. Enhanced performance of Cr,Yb:YAG microchip laser by bonding Yb:YAG crystal.

    PubMed

    Cheng, Ying; Dong, Jun; Ren, Yingying

    2012-10-22

    Highly efficient, laser-diode pumped Yb:YAG/Cr,Yb:YAG self-Q-switched microchip lasers by bonding Yb:YAG crystal have been demonstrated for the first time to our best knowledge. The effect of transmission of output coupler (T(oc)) on the enhanced performance of Yb:YAG/Cr,Yb:YAG microchip lasers has been investigated and found that the best laser performance was achieved with T(oc) = 50%. Slope efficiency of over 38% was achieved. Average output power of 0.8 W was obtained at absorbed pump power of 2.5 W; corresponding optical-to-optical efficiency of 32% was obtained. Laser pulses with pulse width of 1.68 ns, pulse energy of 12.4 μJ, and peak power of 7.4 kW were obtained. The lasers oscillated in multi-longitudinal modes. The wide separation of longitudinal modes was attributed to the mode selection by combined etalon effect of Cr,Yb:YAG, Yb:YAG thin plates and output coupler. Stable periodical pulse trains at different pump power levels have been observed owing to the longitudinal modes coupling and competition.

  12. PRK by Er:YAG laser: in-vitro studies and first in-vivo experiences

    NASA Astrophysics Data System (ADS)

    Steiner, Rudolf W.; Leiacker, Richard; Russ, Detlef; Seiler, Theo

    1996-01-01

    Photorefractive keratectomy (PRK) is usually performed by an excimer laser at 193 nm wavelength. Ablatio of corneal tissue is, however, not only possible in the UV region of the optical spectrum but also in the IR where water is an excellent absorber. Therefore, an Er:YAG laser was used at 2.94 micrometer wavelength as an alternative laser light source to perform in vitro studies of corneal ablation and also first clinical experiments to correct myopia of patients with blind eyes.

  13. Facial microcirculatory and biomechanical skin properties after single high energy (Er):YAG laser application.

    PubMed

    Medved, Fabian; Wurm, Antonia; Held, Manuel

    2017-12-01

    Owing to skin aging and the growing demand for skin rejuvenation, minimal invasive aesthetic treatments such as laser procedures are increasingly coming into focus. However, until now, little has been known about the objective effects of these procedures with respect to skin microcirculation or changes in skin elasticity. Facial skin rejuvenation was performed on 32 volunteers using ablative Erbium: YAG laser. Skin microcirculation and skin elasticity have then been evaluated objectively. Microcirculation (flow, SO 2 , velocity, and rHB) has been analyzed before and directly after the laser session by using the O2C device. Skin elasticity has been evaluated by using the Cutometer device (Uf, Ua, Ur, and Ue) before and directly after the laser treatment, as well as 1 week and then 1, 3, and 6 months post treatment. Further, the outcome for the volunteers regarding their satisfactory level after laser treatment was evaluated. Twenty volunteers were available for a complete follow-up. Microcirculation displayed statistically significant increase in all values to 2 mm depth. The biomechanical skin parameter of firmness of skin displayed statistically significant improvement in superficial skin layer after 6 months. Concerning microcirculation and skin elasticity the ablative Erbium: YAG laser treatment revealed similar effects on the skin like a superficial burn injury. In contrast to the determined skin elasticity parameters, firmness of skin objectively revealed a skin tightening effect after 6 months. Along with the important epidermal effect, the suitability of ablative laser treatment for skin rejuvenation has been proved in a long-term follow-up. Lasers Surg. Med. 49:891-898, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Successful Nd:Yag Laser Photocoagulation Of Arrhythmogenic Myocardium: Potential Limitations Of Current Optical Delivery Systems.

    NASA Astrophysics Data System (ADS)

    Svenson, Robert H.; Marroum, Marie-Claire; Frank, Frank; Selle, Jay G.; Gallagher, John J.; Bou-Saba, George; Seifert, Kathleen T.; Linder, Kathy; Tatsis, George P.

    1987-04-01

    Canine myocardial lesions of predictable dimensions can be achieved with Nd:YAG laser photocoagulation. These lesions are well demarcated from surrounding normal tissue and heal with homogeneous scar formation. Intraoperative Nd:YAG laser photocoagulation successfully ablated 52 of 55 ventricular tachycardias in 17 patients. Histologic examination of tissues from these arrhythmogenic areas showed differences from lesions produced on canine epicardium. Lesions from the human cases were less predictable and not well circumscribed. These differences are felt to be due to optical inhomogeneities present in diseased, scarred human myocardium, geometric irregularities of the endocardial surface, anatomical constraints on tissue-fiber distance, and the angle of incidence of the beam with the tissue. Modifications of current delivery systems may overcome some of these limitations. Ablation of ventricular tachycardia arising deeper than 4.0 to 6.0 mm. from the irradiated surface may require interstitial probes coupled to the fiberoptic.

  15. Operation of Ho:YAG ultrafast laser inscribed waveguide lasers.

    PubMed

    McDaniel, Sean; Thorburn, Fiona; Lancaster, Adam; Stites, Ronald; Cook, Gary; Kar, Ajoy

    2017-04-20

    We report fabrication and operation of multi-watt level waveguide lasers utilizing holmium-doped yttrium aluminum garnet (Ho:YAG). The waveguides were fabricated using ultrafast laser inscription, which relies on a chirped pulse ytterbium fiber laser to create depressed cladding structures inside the material. A variety of waveguides were created inside the Ho:YAG samples. We demonstrate output powers of ∼2  W from both a single-mode 50 μm waveguide laser and a multimode 80 μm waveguide laser. In addition, laser action from a co-doped Yb:Ho:YAG sample under in-band pumping conditions was demonstrated.

  16. Efficient bone cutting with the novel diode pumped Er:YAG laser system: in vitro investigation and optimization of the treatment parameters

    NASA Astrophysics Data System (ADS)

    Stock, Karl; Diebolder, Rolf; Hausladen, Florian; Hibst, Raimund

    2014-03-01

    It is well known that flashlamp pumped Er:YAG lasers allow efficient bone ablation due to strong absorption at 3μm by water. Preliminary experiments revealed also a newly developed diode pumped Er:YAG laser system (Pantec Engineering AG) to be an efficient tool for use for bone surgery. The aim of the present in vitro study is the investigation of a new power increased version of the laser system with higher pulse energy and optimization of the treatment set-up to get high cutting quality, efficiency, and ablation depth. Optical simulations were performed to achieve various focus diameters and homogeneous beam profile. An appropriate experimental set-up with two different focusing units, a computer controlled linear stage with sample holder, and a shutter unit was realized. By this we are able to move the sample (slices of pig bone) with a defined velocity during the irradiation. Cutting was performed under appropriate water spray by moving the sample back and forth. After each path the ablation depth was measured and the focal plane was tracked to the actual bottom of the groove. Finally, the cuts were analyzed by light microcopy regarding the ablation quality and geometry, and thermal effects. In summary, the results show that with carefully adapted irradiation parameters narrow and deep cuts (ablation depth > 6mm, aspect ratio approx. 20) are possible without carbonization. In conclusion, these in vitro investigations demonstrate that high efficient bone cutting is possible with the diode pumped Er:YAG laser system using appropriate treatment set-up and parameters.

  17. Optimization of a novel Tm fiber laser lithotripter in terms of stone ablation efficiency and retropulsion reduction

    NASA Astrophysics Data System (ADS)

    Yaroslavsky, Ilya; Vinnichenko, Victoria; McNeill, Tyler; Novoseltseva, Anna; Perchuk, Igor; Vybornov, Alexander; Altshuler, Gregory; Gapontsev, Valentin

    2018-02-01

    Recently, a Thulium (Tm) fiber laser operating at a wavelength of 1940 nm and peak power up to 500 W has been introduced as a promising energy source for laser lithotripsy. Direct comparative studies have demonstrated considerable advantages of Tm fiber laser over the current industry-standard 2100 nm Holmium:YAG (Ho:YAG) device in terms of ablation rate and retropulsion effects. In this work, we investigated avenues of further improving stone ablation efficiency and reducing retropulsion. Specifically, the roles of temporal pulse structure and fiber tip preparation were studied in detail. Experiments were conducted on Bego stone phantoms in an aqueous environment using a computerized 2D stage for controlled scanning of the fiber over the stone surface. High-resolution 3D-enabled optical microscopy was employed to assess both fiber tip damage and stone ablation rate. Retropulsion effects were quantified using a high-speed video camera. Fiber burn back was evaluated as well. Fiber performance could be preserved during prolonged (up to 15 min) procedures when the fiber tip was adequately prepared. Furthermore, the results were compared with available literature for similar experiments performed with the Ho:YAG laser. The data obtained provide an important foundation for optimizing clinical performance of Tm fiber systems for lithotripsy.

  18. Preparation of starch stabilized silver nanoparticles with spatial self-phase modulation properties by laser ablation technique

    NASA Astrophysics Data System (ADS)

    Zamiri, Reza; Azmi, B. Z.; Darroudi, Majid; Sadrolhosseini, Amir R.; Husin, M. S.; Zaidan, A. W.; Mahdi, M. A.

    2011-01-01

    Silver nanoparticles inside the starch solution have been successfully fabricated by laser ablation of a silver plate immersed in starch solution. The ablation has been done using a Q-switched Nd:YAG laser at 10 Hz repetition rate. The starch solution allows for the formation of silver nanoparticles with uniform particle diameters and well dispersed. The ablation was performed at different time durations to study the influence of the laser ablation time on efficiency of particle formation and sizes. The Spatial Self-phase modulation phenomena which can determine the nonlinear optical property of the samples were also investigated for starch solutions containing silver nanoparticles.

  19. Effects of different black mediators on the shear strength of orthodontic bracket to the enamel treated with Nd-Yag laser

    NASA Astrophysics Data System (ADS)

    Huang, Shun-Te; Lin, I.-Shueng; Tsai, Chi-Cheng

    1995-04-01

    The Nd:YAG laser has ablation, crack, and crater effects on the dental enamel through black mediators which are very similar to the acid etching effects of phosphoric acid. This study was designed for searching how the different black mediators influence the shear strengths of the brackets bound to the enamel surfaces which were treated with the Nd:YAG laser. 90 bovine enamels divided into 5 groups were painted with 5 kinds of black mediators including Chinese ink, oil ink, black ball pen, water ink and black transfer paper. The enamel surfaces painted with black mediators were then radiated by Nd:YAG laser (ADL; American Dental Laser 300dl, power: 20 pps, 87.5 mj). Orthodontic brackets were bonded to the radiated surfaces. Then the shear strengths of the brackets to the enamels were measured by Instron. The results showed that the Chinese ink group and oil ink group has the strongest shear strength, ball pen group and water ink group showed the second strength, and the transfer paper group has the lowest shear strength. In addition, scanning electronic microscope also was used to observe the topographic changes of the enamel surfaces induced by the laser ablation.

  20. Nd-YAG Laser Treatment for Tracheobronchial Obstruction

    PubMed Central

    Lee, Yu-Chin; Chiang, Kuo-Hwa

    1996-01-01

    The Nd-YAG laser has good tissue penetration and coagulation effects thus has become an important weapon for photoresection of tracheobronchial obstructive lesions since 1980. Treatment of benign lesions including benign tumors and scar tissues using the Nd-YAG laser has good results. In the treatment of malignant tumors however, it has a lower effectivity rate when compared to benign lesions. From July 1984 to September 1995, a total of 65 patients were treated with Nd-YAG laser for tracheobronchial obstruction. There were 32 (49%) malignant tumors and 33 (51%) benign lesions. 116 resections were performed in 48 patients using the non-contact Nd-YAG laser (MBB, Medilas 2) before 1992. Thereafter, another 41 resections were performed in 17 cases using contact Nd-YAG laser (SLT, CL-X). The overall effectivity rate was 60%. The effectivity rate for benign lesions was 81.3% and 39.4% for malignant tumor. The effectivity rate between non-contact and contact Nd-YAG laser was not significantly different. PMID:18493424

  1. Nd-YAG Laser Treatment for Tracheobronchial Obstruction.

    PubMed

    Perng, R P; Lee, Y C; Chiang, K H

    1996-01-01

    The Nd-YAG laser has good tissue penetration and coagulation effects thus has become an important weapon for photoresection of tracheobronchial obstructive lesions since 1980.Treatment of benign lesions including benign tumors and scar tissues using the Nd-YAG laser has good results. In the treatment of malignant tumors however, it has a lower effectivity rate when compared to benign lesions. From July 1984 to September 1995, a total of 65 patients were treated with Nd-YAG laser for tracheobronchial obstruction. There were 32 (49%) malignant tumors and 33 (51%) benign lesions. 116 resections were performed in 48 patients using the non-contact Nd-YAG laser (MBB, Medilas 2) before 1992. Thereafter, another 41 resections were performed in 17 cases using contact Nd-YAG laser (SLT, CL-X). The overall effectivity rate was 60%. The effectivity rate for benign lesions was 81.3% and 39.4% for malignant tumor. The effectivity rate between non-contact and contact Nd-YAG laser was not significantly different.

  2. Fibre optic sensors for temperature and pressure monitoring in laser ablation: experiments on ex-vivo animal model

    NASA Astrophysics Data System (ADS)

    Tosi, Daniele; Saccomandi, Paola; Schena, Emiliano; Duraibabu, Dinesh B.; Poeggel, Sven; Adilzhan, Abzal; Aliakhmet, Kamilla; Silvestri, Sergio; Leen, Gabriel; Lewis, Elfed

    2016-05-01

    Optical fibre sensors have been applied to perform biophysical measurement in ex-vivo laser ablation (LA), on pancreas animal phantom. Experiments have been performed using Fibre Bragg Grating (FBG) arrays for spatially resolved temperature detection, and an all-glass Extrinsic Fabry-Perot Interferometer (EFPI) for pressure measurement. Results using a Nd:YAG laser source as ablation device, are presented and discussed.

  3. Endoscopic-assisted disruption of urinary calculi using a holmium:YAG laser in standing horses.

    PubMed

    Judy, Carter E; Galuppo, Larry D

    2002-01-01

    To describe a technique for endoscope-assisted disruption and removal of urinary calculi using a holmium:YAG laser in sedated, standing horses. Retrospective study. Six horses with urinary calculi. A holmium:YAG laser was used to disrupt naturally occurring urinary calculi in horses (4 geldings, 1 stallion, 1 mare). Ischial urethrotomy was performed in male horses to provide a portal for the endoscope and laser fiber. Calculus fragments were removed by a combination of lavage, transendoscopic basket snare removal, forceps, and digital manipulation. Ischial urethrotomies healed by second intention. Follow-up was obtained by recheck examination and telephone interview of owners. No major operative or postoperative complications occurred. Two calculi (1 stallion and 1 mare) were fragmented by a combination of laser ablation and manual disruption with a lithotrite. Postoperative dysuria occurred in the mare, but resolved after 1 month. Mean (+/- SD) follow-up was 306 +/- 149 days; no other complications were reported. Calcium carbonate urinary calculi (up to 15 cm in diameter) in horses can be effectively fragmented with a holmium:YAG laser. It is not known if this technique would be completely effective for larger calculi or extremely dense calculi. Calculus disruption by an endoscopically assisted holmium:YAG laser offers a minimally invasive method that can be performed in standing horses and that minimizes patient risk. Copyright 2002 by The American College of Veterinary Surgeons

  4. Comparison of Q-switched Nd:YAG laser alone versus its combination with ultrapulse CO2 laser for the treatment of black tattoo.

    PubMed

    Vanarase, Mithila; Gautam, Ram Krishan; Arora, Pooja; Bajaj, Sonali; Meena, Neha; Khurana, Ananta

    2017-10-01

    Q-switched lasers are conventionally used for the treatment of black tattoo. However, they require multiple sittings, and the response may be slow due to competing epidermal pigment in dark skin. To compare the efficacy of Q-switched Nd:YAG laser alone with its combination with ultrapulse CO 2 for the removal of black tattoo. Sixty patients with black tattoo were randomized into two groups viz., group A and group B. Group A was treated with QS Nd:YAG laser (1064 nm) alone, and group B received combination of ablative ultrapulse CO 2 followed by fixed-dose QS Nd:YAG laser (1064 nm), at 6-week interval for a maximum of 6 sittings. After each sitting, 3 independent physicians noted percentage of improvement that was evaluated using visual analogue scale (VAS) and grading system for tattoo ink lightening (TIL). Combination laser (group B) showed statistically significant improvement in mean VAS score in the last 2 noted visits as compared to 1st session (p < 0.007, p < 0.001) and TIL mean score in last three noted visits as compared to 1st session (p < 0.008, p < 0.020, and p < 0.004). There was no statistically significant difference in the side effect profile of both the groups. For refractory professional tattoos, combination of ultrapulse CO 2 laser and QS Nd:YAG laser is superior to QS Nd:YAG laser alone.

  5. Influence of pulse repetition rate on temperature rise and working time during composite filling removal with the Er:YAG laser.

    PubMed

    Correa-Afonso, Alessandra M; Pécora, Jesus Djalma; Palma-Dibb, Regina G

    2008-06-01

    The purpose of this study was to assess the efficacy of Er:YAG laser energy for composite resin removal and the influence of pulse repetition rate on the thermal alterations occurring during laser ablation. Composite resin filling was placed in cavities (1.0 mm deep) prepared in bovine teeth and the specimens were randomly assigned to five groups according to the technique used for composite filling removal. In group I (controls), the restorations were removed using a high-speed diamond bur. In the other groups, the composite fillings were removed using an Er:YAG laser with different pulse repetition rates: group 2-2 Hz; group 3-4 Hz; group 4-6 Hz; and group 5-10 Hz. The time required for complete removal of the restorative material and the temperature changes were recorded. Temperature rise during composite resin removal with the Er:YAG laser occurred in the substrate underneath the restoration and was directly proportional to the increase in pulse repetition rate. None of the groups had a temperature increase during composite filling removal of more than 5.6 degrees C, which is considered the critical point above which irreversible thermal damage to the pulp may result. Regarding the time for composite filling removal, all the laser-ablated groups (except for group 5 [10 Hz]) required more time than the control group for complete elimination of the material from the cavity walls. Under the tested conditions, Er:YAG laser irradiation was efficient for composite resin ablation and did not cause a temperature increase above the limit considered safe for the pulp. Among the tested pulse repetition rates, 6 Hz produced minimal temperature change compared to the control group (high-speed bur), and allowed composite filling removal within a time period that is acceptable for clinical conditions.

  6. Laser heating and ablation at high repetition rate in thermal confinement regime

    NASA Astrophysics Data System (ADS)

    Brygo, François; Semerok, A.; Oltra, R.; Weulersse, J.-M.; Fomichev, S.

    2006-09-01

    Laser heating and ablation of materials with low absorption and thermal conductivity (paint and cement) were under experimental and theoretical investigations. The experiments were made with a high repetition rate Q-switched Nd:YAG laser (10 kHz, 90 ns pulse duration and λ = 532 nm). High repetition rate laser heating resulted in pulse per pulse heat accumulation. A theoretical model of laser heating was developed and demonstrated a good agreement between the experimental temperatures measured with the infrared pyrometer and the calculated ones. With the fixed wavelength and laser pulse duration, the ablation threshold fluence of paint was found to depend on the repetition rate and the number of applied pulses. With a high repetition rate, the threshold fluence decreased significantly when the number of applied pulses was increasing. The experimentally obtained thresholds were well described by the developed theoretical model. Some specific features of paint heating and ablation with high repetition rate lasers are discussed.

  7. Preparation of silver nanoparticles in virgin coconut oil using laser ablation.

    PubMed

    Zamiri, Reza; Azmi, B Z; Sadrolhosseini, Amir Reza; Ahangar, Hossein Abbastabar; Zaidan, A W; Mahdi, M A

    2011-01-07

    Laser ablation of a silver plate immersed in virgin coconut oil was carried out for fabrication of silver nanoparticles. A Nd:YAG laser at wavelengths of 1064 nm was used for ablation of the plate at different times. The virgin coconut oil allowed formation of nanoparticles with well-dispersed, uniform particle diameters that were stable for a reasonable length of time. The particle sizes and volume fraction of nanoparticles inside the solutions obtained at 15, 30, 45 min ablation times were 4.84, 5.18, 6.33 nm and 1.0 × 10(-8), 1.6 × 10(-8), 2.4 × 10(-8), respectively. The presented method for preparation of silver nanoparticles in virgin coconut oil is environmentally friendly and may be considered a green method.

  8. Efficient, frequency-stable laser-diode-pumped Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Zhou, B.; Kane, T. J.; Dixon, G. J.; Byer, R. L.

    1985-01-01

    One of the main goals of the study was to demonstrate a low-power efficient Nd:YAG laser oscillator for applications in remote coherent Doppler anemometry. An electrical-to-optical slope efficiency of 6.5 percent has been achieved by using commercially available CW laser diodes of up to 100 mW to pump monolithic Nd:YAG rod lasers. The observed Nd:YAG oscillation threshold is at 2.3 mW of laser-diode output power, i.e., a small fraction of the rated output power. The highest Nd:YAG CW output power reached is 4.4 mW at an overall electrical-to-optical efficiency of 1.5 percent. The frequency jitter is less than 10 kHz in 0.3 s.

  9. Experimental removal of subgingival calculus with the Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Keller, Ulrich; Hibst, Raimund

    1996-01-01

    The purpose of this study was to evaluate the effects of the Er:YAG laser removal of subgingival calculi in periodontal treatment and to describe laser-induced cementum surface alterations. Freshly extracted human teeth with adherent plaques and mineralized calculi were laser treated using modified quartz fiber tips in direct contact to the root surface. For the fiber tip tested, the ablation threshold was 6.5 mJ. An effective removal of calculi was possible with 50 mJ resp. 150 mJ for a triple fiber. For the latter, a mass loss with a mean of about 5.1. mg/min was achieved. Histologic examinations of the cementum surface showed smoothed appearance alternately with rough depressions of the fiber tips, which can be discussed as a good precondition for periodontal tissue regeneration. Maximum temperature increase of 1.4 K was reached in the pulp, if an additional water irrigation was applied to the root surface. From these results it can be concluded that with the Er:YAG laser an effective removal of subgingival calculi can be performed without thermal risk for the pulp.

  10. Laser-diode pumped 40-W Yb:YAG ceramic laser.

    PubMed

    Hao, Qiang; Li, Wenxue; Pan, Haifeng; Zhang, Xiaoyi; Jiang, Benxue; Pan, Yubai; Zeng, Heping

    2009-09-28

    We demonstrated a high-power continuous-wave (CW) polycrystalline Yb:YAG ceramic laser pumped by fiber-pigtailed laser diode at 968 nm with 400 mum fiber core. The Yb:YAG ceramic laser performance was compared for different Yb(3+) ion concentrations in the ceramics by using a conventional end-pump laser cavity consisting of two flat mirrors with output couplers of different transmissions. A CW laser output of 40 W average power with M(2) factor of 5.8 was obtained with 5 mol% Yb concentration under 120 W incident pump power. This is to the best of our knowledge the highest output power in end-pumped bulk Yb:YAG ceramic laser.

  11. Morphology of Er:YAG-laser-treated root surfaces

    NASA Astrophysics Data System (ADS)

    Keller, Ulrich; Stock, Karl; Hibst, Raimund

    1997-12-01

    From previous studies it could be demonstrated that an efficient ablation of dental calculus is possible using an Er:YAG laser with a special contact fiber tip. After improving of the design and the efficiency of light transmission of the contact tip laser treated tooth root surfaces were investigated due to morphological changes in comparison to conventional root scaling and planing. Surface modifications were observed histologically under the light microscope and by means of a Scanning Electron Microscope. During laser treatment the intrapulpal temperature increase was measured. The results show that the improved contact tip a microstructured surface can be generated, which shows no signs of thermal effects even when a laser pulse repetition rate of 15 Hz was used. Temperature increase was limited to 4 K at a repetition rate of 10 Hz and to 5.5 K at a repetition rate of 15 Hz.

  12. Versatility of erbium YAG laser: from fractional skin rejuvenation to full-field skin resurfacing.

    PubMed

    Holcomb, J David

    2011-05-01

    For the laser surgeon, the Er-YAG laser is an invaluable tool that delivers unsurpassed ablation efficiency, and with appropriate functionality (quasi long-pulse feature) provides sufficient tissue coagulation to remodel deep rhytids. As such, the 2940-nm wavelength is well suited for routine laser skin rejuvenation in full-field, fractional, and point-beam modes with additional benefits, including applicability to diverse skin types, short healing times, and a low likelihood of energy-related complications. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Highly efficient nonthermal ablation of bone under bulk water with a frequency-doubled Nd:YVO4 picosecond laser

    NASA Astrophysics Data System (ADS)

    Tulea, C.; Caron, J.; Wahab, H.; Gehlich, N.; Hoefer, M.; Esser, D.; Jungbluth, B.; Lenenbach, A.; Noll, R.

    2013-03-01

    Several laser systems in the infrared wavelength range, such as Nd:YAG, Er:YAG or CO2 lasers are used for efficient ablation of bone tissue. Here the application of short pulses in coaction with a thin water film results in reduced thermal side effects. Nonetheless up to now there is no laser-process for bone cutting in a clinical environment due to lack of ablation efficiency. Investigations of laser ablation rates of bone tissue using a rinsing system and concerning bleedings have not been reported yet. In our study we investigated the ablation rates of bovine cortical bone tissue, placed 1.5 cm deep in water under laminar flow conditions, using a short pulsed (25 ps), frequency doubled (532 nm) Nd:YVO4 laser with pulse energies of 1 mJ at 20 kHz repetition rate. The enhancement of the ablation rate due to debris removal by an additional water flow from a well-directed blast pipe as well as the negative effect of the admixture of bovine serum albumin to the water were examined. Optical Coherence Tomography (OCT) was used to measure the ablated volume. An experimental study of the depth dependence of the ablation rate confirms a simplified theoretical prediction regarding Beer-Lambert law, Fresnel reflection and a Gaussian beam profile. Conducting precise incisions with widths less than 1.5 mm the maximum ablation rate was found to be 0.2 mm3/s. At depths lower than 100 μm, while the maximum depth was 3.5 mm.

  14. [Development and medical application of Er-YAG laser].

    PubMed

    Okamoto, Y; Kobayashi, A; Awazu, A; Ogino, H; Ban, T

    1993-09-01

    Result of developments of Er-YAG laser and its delivery system were reported. Er-YAG laser's wavelength is 2.94 microns, the beam absorption rate by water is higher than other laser beam. Er-YAG laser has repeated pulse oscillation, pulse width is 400 mu, sec, the repeat frequency is between 5 to 10 pulse per second. The mean power is 4 W maximum, 10 pps. The fibers of laser are made of zirconium-F-glass. We carried out a study on the possible application of the Er-YAG laser on the rabbit arteries and myocardium and human arteries were examined in vitro. Very clear cuts were observed on the histological examination. There were no evidence of thermal damage, no carbonization on the sharp cutting surface. Experimental result showed that Er-YAG lasers had good potential for angioplastic laser.

  15. SEM analysis of enamel surface treated by Er:YAG laser: influence of irradiation distance.

    PubMed

    Souza-Gabriel, A E; Chinelatti, M A; Borsatto, M C; Pécora, J D; Palma-Dibb, R G; Corona, S A M

    2008-07-01

    Depending on the distance of laser tip to dental surface a specific morphological pattern should be expected. However, there have been limited reports that correlate the Er:YAG irradiation distance with dental morphology. To assess the influence of Er:YAG laser irradiation distance on enamel morphology, by means of scanning electron microscopy (SEM). Sixty human third molars were employed to obtain discs (approximately =1 mm thick) that were randomly assigned to six groups (n=10). Five groups received Er:YAG laser irradiation (80 mJ/2 Hz) for 20 s, according to the irradiation distance: 11, 12, 14, 16, or 17 mm and the control group was treated with 37% phosphoric acid for 15 s. The laser-irradiated discs were bisected. One hemi-disc was separated for superficial analysis without subsequent acid etching, and the other one, received the phosphoric acid for 15 s. Samples were prepared for SEM. Laser irradiation at 11 and 12 mm provided an evident ablation of enamel, with evident fissures and some fused areas. At 14, 16 and 17 mm the superficial topography was flatter than in the other distances. The subsequent acid etching on the lased-surface partially removed the disorganized tissue. Er:YAG laser in defocused mode promoted slight morphological alterations and seems more suitable for enamel conditioning than focused irradiation. The application of phosphoric acid on lased-enamel surface, regardless of the irradiation distance, decreased the superficial irregularities.

  16. Ceramic planar waveguide laser of non-aqueous tape casting fabricated YAG/Yb:YAG/YAG

    PubMed Central

    Wang, Chao; Li, Wenxue; Yang, Chao; Bai, Dongbi; Li, Jiang; Ge, Lin; Pan, Yubai; Zeng, Heping

    2016-01-01

    Ceramic YAG/Yb:YAG/YAG planar waveguide lasers were realized on continuous-wave and mode-locked operations. The straight waveguide, fabricated by non-aqueous tape casting and solid state reactive sintering, enabled highly efficient diode-pumped waveguide continuous-wave laser with the slope efficiency of 66% and average output power of more than 3 W. The influence of the waveguide structure on the wavelength tunability was also experimentally investiccgated with a dispersive prism. Passively mode-locked operation of the ceramic waveguide laser was achieved by using a semiconductor saturable absorber mirror (SESAM), output 2.95 ps pulses with maximum power of 385 mW at the central wavelength of 1030 nm. PMID:27535577

  17. Laser-Ablation (U-Th)/He Geochronology

    NASA Astrophysics Data System (ADS)

    Hodges, K.; Boyce, J.

    2003-12-01

    Over the past decade, ultraviolet laser microprobes have revolutionized the field of 40Ar/39Ar geochronology. They provide unprecedented information about Ar isotopic zoning in natural crystals, permit high-resolution characterization of Ar diffusion profiles produced during laboratory experiments, and enable targeted dating of multiple generations of minerals in thin section. We have modified the analytical protocols used for 40Ar/39Ar laser microanalysis for use in (U-Th)/He geochronologic studies. Part of the success of the 40Ar/39Ar laser microprobe stems from fact that measurements of Ar isotopic ratios alone are sufficient for the calculation of a date. In contrast, the (U-Th)/He method requires separate analysis of U+Th and 4He. Our method employs two separate laser microprobes for this process. A target mineral grain is placed in an ultrahigh vacuum chamber fitted with a window of appropriate composition to transmit ultraviolet radiation. A focused ArF (193 nm) excimer laser is used to ablate tapered cylindrical pits on the surface of the target. The liberated material is scrubbed with a series of getters in a fashion similar to that used for 40Ar/39Ar geochronology, and the 4He abundance is determined using a quadrupole mass spectrometer with well-calibrated sensitivity. A key requirement for calculation of the 4He abundance in the target is a precise knowledge of the volume of the ablation pit. This is the principal reason why we employ the ArF excimer for 4He analysis rather than a less-expensive frequency-multiplied Nd-YAG laser; the excimer creates tapered cylindrical pits with extremely reproducible and easily characterized geometry. After 4He analysis, U and Th are measured on the same sample surface using the more familiar technique of laser-ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Our early experiments have been done using a frequency-quintupled Nd-YAG microprobe (213nm), While the need to analyze U+Th and He in separate

  18. Partial ablation of stratum corneum by UV (193-nm) or IR (2.94-μm) pulsed lasers to enhance transdermal drug delivery rate

    NASA Astrophysics Data System (ADS)

    Fujiwara, Ai; Hinokitani, Toshihiro; Goto, Kenichi; Arai, Tsunenori

    2004-07-01

    To develop the noninvasive transdermal drug delivery system, pulsed lasers (argon-fluoride excimer laser (ArF laser) and erbium:yittrium aluminum garnet laser (Er:YAG laser)) were used to partially ablate the stratum corneum (SC), the upper layer of the skin. Because of the barrier function of the SC to drug permeation, the number of drugs especially macromolecules used in transdermal drug delivery system without skin irritation has been limited. Ultrastructural changes on the SC surface of ablated Yucatan micropig skin in vitro were observed with Environmental Scanning Electron Microscope. The result indicated that the structural changes varied according to each laser sources and irradiation conditions (laser fluences and numbers of pulses). Many granular structures of about 2 μm in diameter were observed in the ablated sites on ArF laser with lower fluence exposure (30 mJ/cm2, 200 pulses), and plane structures in the sites with higher fluence exposure (80 mJ/cm2, 80 pulses). In contrast, the ablation of Er:YAG laser created some pores of about 20 μm across on the surface of the SC. Under the irradiation condition of partial ablation, the skin permeability of macromolecule compound was enhanced. This partial SC ablation by pulsed laser could be possible candidate of the noninvasive transdermal drug delivery system with good physiological conditions of skin.

  19. Application of the holmium:YAG laser for prostatectomy.

    PubMed

    Kabalin, J N; Gilling, P J; Fraundorfer, M R

    1998-02-01

    The authors review the current knowledge regarding the application of the Holmium: YAG laser for prostatectomy. Conventional surgical therapies for benign prostatic hyperplasia (BPH) are effective but associated with relatively high morbidity. Laser prostatectomy, using either Neodymium:YAG or potassium-titanyl-phosphate lasers, has emerged as a new and much safer operative approach to relieve symptoms of benign prostatic hyperplasia. However, these laser wavelengths possess key disadvantages that have limited their acceptability and dissemination in everyday urologic practice. THE authors review their own extensive experience in the development of clinical application of Holmium: YAG laser technology for prostatectomy, as well as the published reports in the current medical literature now dealing with this subject. In multiple clinical trials, Holmium:YAG laser resection of the prostate has proven efficacious in relieving symptomatic BPH. Both objective urodynamic measures of voiding outcomes and symptomatic improvement have been shown to be equivalent to standard electrocautery resection of the prostate. At the same time, these studies have demonstrated the superior safety and hemostasis of Holmium:YAG laser prostatectomy compared to electrocautery resection, similar to prior laser prostatectomy procedure. Unlike prior forms of laser prostatectomy, Holmium:YAG laser resection of the prostate acutely removes all obstructing prostate tissue, so that the postoperative catheterization requirement is typically only overnight and improvement in voiding is immediate. Current operative techniques and the latest technological developments to facilitate Holmium:YAG laser prostatectomy are described. Holmium: YAG laser prostatectomy combines the best features of prior laser prostatectomy technologies, including minimal complications and morbidity, with the efficacy and immediacy of voiding outcomes associated with conventional electrocautery resection of the prostate.

  20. Metal and polymer melt jet formation by the high-power laser ablation

    NASA Astrophysics Data System (ADS)

    Yoh, Jack J.; Gojani, Ardian B.

    2010-02-01

    The laser-induced metal and polymer melt jets are studied experimentally. Two classes of physical phenomena of interest are: first, the process of explosive phase change of laser induced surface ablation and second, the hydrodynamic jetting of liquid melts ejected from a beamed spot. We focus on the dynamic link between these two distinct physical phenomena in a framework of forming and patterning of metallic and polymer jets using a high-power Nd:YAG laser. The microexplosion of ablative spot on a target first forms a pocket of hot liquid melt and then it is followed by a sudden volume change of gas-liquid mixture leading to a pressure-induced spray jet ejection into surrounding medium.

  1. Laboratory and clinical experience with neodymium:YAG laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Kabalin, John N.

    1996-05-01

    Since 1991, we have undertaken extensive laboratory and clinical studies of the Neodymium:YAG (Nd:YAG) laser for surgical treatment of bladder outlet obstruction due to prostatic enlargement or benign prostatic hyperplasia (BPH). Side-firing optical fibers which emit a divergent, relatively low energy density Nd:YAG laser beam produce coagulation necrosis of obstructing periurethral prostate tissue, followed by gradual dissolution and slough in the urinary stream. Laser-tissue interactions and Nd:YAG laser dosimetry for prostatectomy have been studied in canine and human prostate model systems, enhancing clinical application. Ongoing studies examine comparative Nd:YAG laser dosimetry for various beam configurations produced by available side-firing optical fibers and continue to refine operative technique. We have documented clinical outcomes of Nd:YAG laser prostatectomy in 230 consecutive patients treated with the UrolaseTM side-firing optical fiber. Nd:YAG laser coagulation the prostate produces a remarkably low acute morbidity profile, with no significant bleeding or fluid absorption. No postoperative incontinence has been produced. Serial assessments of voiding outcomes over more than 3 years of followup show objective and symptomatic improvement following Nd:YAG laser prostatectomy which is comparable to older but more morbid electrosurgical approaches. Nd:YAG laser prostatectomy is a safe, efficacious, durable and cost-effective treatment for BPH.

  2. Preparation of silver nanoparticles in virgin coconut oil using laser ablation

    PubMed Central

    Zamiri, Reza; Azmi, B Z; Sadrolhosseini, Amir Reza; Ahangar, Hossein Abbastabar; Zaidan, A W; Mahdi, M A

    2011-01-01

    Laser ablation of a silver plate immersed in virgin coconut oil was carried out for fabrication of silver nanoparticles. A Nd:YAG laser at wavelengths of 1064 nm was used for ablation of the plate at different times. The virgin coconut oil allowed formation of nanoparticles with well-dispersed, uniform particle diameters that were stable for a reasonable length of time. The particle sizes and volume fraction of nanoparticles inside the solutions obtained at 15, 30, 45 min ablation times were 4.84, 5.18, 6.33 nm and 1.0 × 10−8, 1.6 × 10−8, 2.4 × 10−8, respectively. The presented method for preparation of silver nanoparticles in virgin coconut oil is environmentally friendly and may be considered a green method. PMID:21289983

  3. Preparation of CuO nanoparticles by laser ablation in liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdulateef, Sinan A., E-mail: sinan1974@yahoo.com; MatJafri, M. Z.; Omar, A. F., E-mail: thinker-academy@yahoo.com

    2016-07-06

    Colloidal Cu nanoparticles (NPs) were synthesized by pulsed Nd:YAG laser ablation in acetone. Cu NPs were converted into CuO. The size and optical properties of these NPs were characterized using an UV/Vis spectrophotometer, transmission electron microscopy, and X-ray diffraction. Cu NPs were spherical, and their mean diameter in acetone was 8 nm–10 nm. Optical extinction immediately after the ablation showed surface Plasmon resonance peaks at 602 nm. The color of Cu NPs in acetone was green and stable even after a long time.

  4. UV solid state laser ablation of intraocular lenses

    NASA Astrophysics Data System (ADS)

    Apostolopoulos, A.; Lagiou, D. P.; Evangelatos, Ch.; Spyratou, E.; Bacharis, C.; Makropoulou, M.; Serafetinides, A. A.

    2013-06-01

    Commercially available intraocular lenses (IOLs) are manufactured from silicone and acrylic, both rigid (e.g. PMMA) and foldable (hydrophobic or hydrophilic acrylic biomaterials), behaving different mechanical and optical properties. Recently, the use of apodizing technology to design new diffractive-refractive multifocals improved the refractive outcome of these intraocular lenses, providing good distant and near vision. There is also a major ongoing effort to refine laser refractive surgery to correct other defects besides conventional refractive errors. Using phakic IOLs to treat high myopia potentially provides better predictability and optical quality than corneal-based refractive surgery. The aim of this work was to investigate the effect of laser ablation on IOL surface shaping, by drilling circular arrays of holes, with a homemade motorized rotation stage, and scattered holes on the polymer surface. In material science, the most popular lasers used for polymer machining are the UV lasers, and, therefore, we tried in this work the 3rd and the 5th harmonic of a Q-switched Nd:YAG laser (λ=355 nm and λ=213 nm respectively). The morphology of the ablated IOL surface was examined with a scanning electron microscope (SEM, Fei - Innova Nanoscope) at various laser parameters. Quantitative measurements were performed with a contact profilometer (Dektak-150), in which a mechanical stylus scanned across the surface of gold-coated IOLs (after SEM imaging) to measure variations in surface height and, finally, the ablation rates were also mathematically simulated for depicting the possible laser ablation mechanism(s). The experimental results and the theoretical modelling of UV laser interaction with polymeric IOLs are discussed in relation with the physical (optical, mechanical and thermal) properties of the material, in addition to laser radiation parameters (laser energy fluence, number of pulses). The qualitative aspects of laser ablation at λ=213 nm reveal a

  5. The Mixed Processing Models Development Of Thermal Fracture And Laser Ablation On Glass Substrate

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Cheng; Wu, Wen-Hong; Tseng, Shih-Feng; Hwang, Chi-Hung

    2011-01-01

    As the industries of cell phone and LCD TV were vigorously flourishing and the manufacturing requirements for LCD glass substrate were getting higher, the thermal fracture cutting technology (TFCT) has progressively become the main technology for LCD glass substrate cutting. Due to using laser as the heat source, the TFCT has many advantages, such as uniform heating, small heat effect zone, and high cutting speed, smooth cutting surface and low residual stress, etc. Moreover, a general laser ablation processing or traditional diamond wheel cutting does not have the last two advantages. The article presents a mixed processing of glass substrate, which consists of TFCT and laser ablation mechanisms, and how to enhance the cutting speed with little ablation laser energy. In this study, a 10W Nd:YAG laser and a 40W CO2 laser are used as the heat source of TFCT and laser ablation processing, respectively. The result indicates that the speed of the mixed processing is more than twice the speed of TFCT. Furthermore, after the mixed processing, the residual stresses in the glass substrates are also smaller.

  6. Light and scanning electron microscope investigations comparing calculus removal using an Er:YAG laser and a frequency-doubled alexandrite laser

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; Hennig, Thomas; Sadegh, Hamid M. M.; Goldin, Dan S.

    1997-05-01

    With respect to lasers emitting within the mid-IR spectral domain fiber applicators are being developed. Intended is the use of these lasers in periodontal therapy and their application inside the gingival pocket. Aim of the study presented here is to compare the effect of an Er:YAG laser on dental calculus with the results following irradiation with a frequency doubled Alexandrite laser. The surface of freshly extracted wisdom teeth and of extracted teeth suffering from severe periodontitis were irradiated with both laser wavelengths using a standardized application protocol. Calculus on the enamel surface, at the enamel cementum junction and on the root surface was irradiated. For light microscope investigations undecalcified histological sections were prepared after treatment. For the scanning electron microscope teeth were dried in alcohol and sputtered with gold. Investigations revealed that with both laser systems calculus can be removed. Using the frequency doubled Alexandrite laser selective removal of calculus is possible while engaging the Er:YAG laser even at lowest energies necessary for calculus removal healthy cementum is ablated without control.

  7. Highly efficient solar-pumped Nd:YAG laser.

    PubMed

    Liang, Dawei; Almeida, Joana

    2011-12-19

    The recent progress in solar-pumped laser with Fresnel lens and Cr:Nd:YAG ceramic medium has revitalized solar laser researches, revealing a promising future for renewable reduction of magnesium from magnesium oxide. Here we show a big advance in solar laser collection efficiency by utilizing an economical Fresnel lens and a most widely used Nd:YAG single-crystal rod. The incoming solar radiation from the sun is focused by a 0.9 m diameter Fresnel lens. A dielectric totally internally reflecting secondary concentrator is employed to couple the concentrated solar radiation from the focal zone to a 4 mm diameter Nd:YAG rod within a conical pumping cavity. 12.3 W cw laser power is produced, corresponding to 19.3 W/m(2) collection efficiency, which is 2.9 times larger than the previous results with Nd:YAG single-crystal medium. Record-high slope efficiency of 3.9% is also registered. Laser beam quality is considerably improved by pumping a 3 mm diameter Nd:YAG rod.

  8. Q-switched Nd:YAG/V:YAG microchip 1338 nm laser for laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    Q-switched microchip laser emitting radiation at wavelength 1338nm was tested as a radiation source for laser induced breakdown spectroscopy (LIBS). This laser used sandwich crystal which combined in one piece the cooling part (undoped YAG crystal 4mm long), the active laser part (Nd:YAG crystal 12mm long), and the saturable absorber (V:YAG crystal 0.7mm long). The diameter of this crystal was 5 mm. The microchip resonator consisted of dielectric mirrors directly deposited on the monolith crystal surfaces. The pump mirror (HT @ 808 nm, HR @ 1.3 ¹m) was placed on the undoped YAG part. The output coupler (R = 90% @ 1338 nm) was placed on the V:YAG part. The fibre-coupled 808nm pumping laser diode was operating in pulsed regime (rep. rate 250 Hz, pulse width 300 ¹s, pulse energy 6 mJ). Using this pumping, stable and high reproducible Q-switched pulses were generated at wavelength 1338 nm. Pulse length was 6.2 ns (FWHM) and the mean output power was 33mW. The single pulse energy and peak power was 0.13mJ and 21kW, respectively. Laser was operating in fundamental TEM00 mode. The laser radiation was focused on a tested sample using single plano-convex lens (focal length 75 mm). The focal spot radius was 40 ¹m. The corresponding peak-power density was 0.83GW/cm2. The laser induced break-down was successfully reached and corresponding laser-induced plasma spectra were recorded for set of metallic elements (Cu, Ag, Au, In, Zn, Al, Fe, Ni, Cr) and alloys (Sn-Pb solder, duralumin, stainless-steel, brass). To record the spectra, StellarNet BLACK-Comet concave grating CCD-based spectrometer was used without any special collimation optics. Thanks to used laser wavelength far from the detector sensitivity, no special filtering was needed to overcome the CCD dazzling. The constructed laser could significantly improve repletion-rate of up-to-date LIBS devices.

  9. Laser reduction of specific microorganisms in the periodontal pocket using Er:YAG and Nd:YAG lasers: a randomized controlled clinical study.

    PubMed

    Grzech-Leśniak, K; Sculean, A; Gašpirc, Boris

    2018-05-15

    The objective of this study was to evaluate the microbiological and clinical outcomes following nonsurgical treatment by either scaling and root planing, combination of Nd:YAG and Er:YAG lasers, or by Er:YAG laser treatment alone. The study involved 60 patients with generalized chronic periodontitis, randomly assigned into one of three treatment groups of 20 patients. The first group received scaling and root planing by hand instruments (SRP group), the second group received Er:YAG laser treatment alone (Er group), and the third group received combined treatment with Nd:YAG and Er:YAG lasers (NdErNd group). Microbiological samples, taken from the periodontal pockets at baseline and 6 months after treatments, were assessed with PET Plus tests. The combined NdErNd laser (93.0%), followed closely by Er:YAG laser (84.9%), treatment resulted in the highest reduction of all bacteria count after 6 months, whereas SRP (46.2%) failed to reduce Treponema denticola, Peptostreptococcus micros, and Capnocytophaga gingivalis. Full-mouth plaque and bleeding on probing scores dropped after 6 months and were the lowest in both laser groups. The combination of NdErNd resulted in higher probing pocket depth reduction and gain of clinical attachment level (1.99 ± 0.23 mm) compared to SRP (0.86 ± 0.13 mm) or Er:YAG laser alone (0.93 ± 0.20 mm) in 4-6 mm-deep pockets. Within their limits, the present results provide support for the combination of Nd:YAG and Er:YAG lasers to additionally improve the microbiological and clinical outcomes of nonsurgical periodontal therapy in patients with moderate to severe chronic periodontitis.

  10. Efficacy and safety of fractional CO2 laser versus fractional Er:YAG laser in the treatment of facial skin wrinkles.

    PubMed

    Robati, Reza M; Asadi, Elmira

    2017-02-01

    Ablative fractional lasers were introduced for treating facial rhytides. Few studies have compared fractional CO 2 and Er:YAG lasers on cutaneous photodamages by a split trial. The aim of the present study was to compare these modalities in a randomized controlled double-blind split-face design with multiple sessions and larger sample size compared to previous studies done before. Forty patients with facial wrinkles were enrolled. Patients were randomly assigned to receive three monthly treatments on each side of the face, one with a fractional CO 2 and one with a fractional Er:YAG laser. The evaluations included investigating clinical outcome determined by two independent dermatologists not enrolled in the treatment along with measuring skin biomechanical property of cheeks using a sensitive biometrologic device with the assessment of cutaneous resonance running time (CRRT). Moreover, possible side effects and patients' satisfaction have been recorded at baseline, 1 month after each treatment, and 3 months after the last treatment session. Clinical assessment showed both modalities significantly reduce facial wrinkles (p value < 0.05), with no appreciable difference between two lasers. Mean CRRT values also decreased significantly after the laser treatment compared to the baseline in both laser groups. There was no serious long-standing adverse effect after both laser treatments, but the discomfort was more pronounced by the participants after CO 2 laser treatment. According to the present study, both fractional CO 2 and fractional Er:YAG lasers show considerable clinical improvement of facial skin wrinkles with no serious adverse effects, but post-treatment discomfort seems to be lower with Er:YAG laser.

  11. Parameters in fractional laser assisted delivery of topical anesthetics: Role of laser type and laser settings.

    PubMed

    Meesters, Arne A; Nieboer, Marilin J; Kezic, Sanja; de Rie, Menno A; Wolkerstorfer, Albert

    2018-05-07

    Efficacy of topical anesthetics can be enhanced by pretreatment of the skin with ablative fractional lasers. However, little is known about the role of parameters such as laser modality and laser density settings in this technique. Aims of this study were to compare the efficacy of pretreatment with two different ablative fractional laser modalities, a CO 2 laser and an Er:YAG laser, and to assess the role of laser density in ablative fractional laser assisted topical anesthesia. In each of 15 healthy subjects, four 10 × 10 mm test regions on the back were randomized to pretreatment (70-75 μm ablation depth) with CO 2 laser at 5% density, CO 2 laser at 15% density, Er:YAG laser at 5% density or Er:YAG laser at 15% density. Articaine hydrochloride 40 mg/ml + epinephrine 10 μg/ml solution was applied under occlusion to all four test regions. After 15 minutes, a pass with the CO 2 laser (1,500 μm ablation depth) was administered as pain stimulus to each test region. A reference pain stimulus was given on unanesthetized skin. The main outcome parameter, pain, was scored on a 0-10 visual analogue scale (VAS) after each pain stimulus. Median VAS scores were 1.50 [CO 2 5%], 0.50 [CO 2 15%], 1.50 [Er:YAG 5%], 0.43 [Er:YAG 15%], and 4.50 [unanesthetized reference]. VAS scores for all pretreated test regions were significantly lower compared to the untreated reference region (P < 0.01). We found no significant difference in VAS scores between the CO 2 and the Er:YAG laser pretreated regions. However, VAS scores were significantly lower at 15% density compared to 5% density for both for the CO 2 laser (P < 0.05) and the Er:YAG laser (P < 0.01). Pretreatment with the CO 2 laser was considered slightly more painful than pretreatment with Er:YAG laser by the subjects. Fractional laser assisted topical anesthesia is effective even with very low energy settings and an occlusion time of only 15 minutes. Both the CO 2 laser and the Er:YAG laser can

  12. The effect of laser ablation parameters on optical limiting properties of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Gursoy, Irmak; Yaglioglu, Halime Gul

    2017-09-01

    This paper presents the effect of laser ablation parameters on optical limiting properties of silver nanoparticles. The current applications of lasers such as range finding, guidance, detection, illumination and designation have increased the potential of damaging optical imaging systems or eyes temporary or permanently. The applications of lasers introduce risks for sensors or eyes, when laser power is higher than damage threshold of the detection system. There are some ways to protect these systems such as neutral density (nd) filters, shutters, etc. However, these limiters reduce the total amount of light that gets into the system. Also, response time of these limiters may not be fast enough to prevent damage and cause precipitation in performance due to deprivation of transmission or contrast. Therefore, optical limiting filters are needed that is transparent for low laser intensities and limit or block the high laser intensities. Metal nanoparticles are good candidates for such optical limiting filters for ns pulsed lasers or CW lasers due to their high damage thresholds. In this study we investigated the optical limiting performances of silver nanoparticles produced by laser ablation technique. A high purity silver target immersed in pure water was ablated with a Nd:YAG nanosecond laser at 532 nm. The effect of altering laser power and ablation time on laser ablation efficiency of nanoparticles was investigated experimentally and optimum values were specified. Open aperture Zscan experiment was used to investigate the effect of laser ablation parameters on the optical limiting performances of silver nanoparticles in pure water. It was found that longer ablation time decreases the optical limiting threshold. These results are useful for silver nanoparticles solutions to obtain high performance optical limiters.

  13. Morphological effects of nanosecond- and femtosecond-pulsed laser ablation on human middle ear ossicles

    NASA Astrophysics Data System (ADS)

    Ilgner, Justus F.; Wehner, Martin; Lorenzen, Johann; Bovi, Manfred; Westhofen, Martin

    2004-07-01

    Introduction: Since the early 1980's, a considerable number of different laser systems have been introduced into reconstructive middle ear surgery. Depending on the ablation mode, however, pressure transients or thermal load to inner ear structures continue to be subject to discussion. Material and methods: We examined single spot ablations by a nanosecond-pulsed, frequency-tripled Nd:YAG-Laser (355 nm, beam diameter 10 μm, pulse rate 2 kHz, power 250 mW) on isolated human mallei. In a second set-up, a similar system (355 nm, beam diameter 20 μm, pulse rate 10 kHz, power 160-1500 mW) was coupled to a scanner to examine the morphology of bone surface ablation over an area of 1mm2. A third set-up employed a femtosecond-pulsed CrLiSAF-Oscillator (850 nm, pulse duration 100 fs, pulse energy 40μJ, beam diameter 36 μm, pulse rate 1 kHz) to compare these results with the former and with those obtained from a commercially available Er:YAG laser for ear surgery (Zeiss ORL E, 2940 nm, single pulse, energy 10-25 mJ). Results: In set-up 1 and 2, thermal effects in terms of marginal carbonization were visible in all single spot ablations of 1 s and longer. With ablations of 0.5 seconds, precise cutting margins with preservation of surrounding tissue could be observed. Cooling with saline solution resulted in no carbonization at 1500 mW and a scan speed of 500 mm/s. Set-up 3 equally showed no carbonization, although scanning times were longer and ablation less pronounced. Conclusion: Ultrashort pulsed laser systems could potentially aid further refinement of reconstructive microsurgery of the middle ear.

  14. First collaborative experience with thulium laser ablation of localized upper urinary tract urothelial tumors using retrograde intra-renal surgery.

    PubMed

    Defidio, Lorenzo; De Dominicis, Mauro; Di Gianfrancesco, Luca; Fuchs, Gerhard; Patel, Anup

    2011-09-01

    Thulium laser ablation (TLA) outcomes with blinded performance evaluation after retrograde intra-renal surgical (RIRS) treatment of upper urinary tract transitional cell carcinomas (UUT-TCC). A UUT-TCC patient cohort undergoing RIRS-TLA by an international endoscopic surgical collaboration in a European center (April 2005-July 2009), underwent outcomes evaluation. All 4 surgeons were blinded and independently scored both TLA and Holmium:YAG laser ablation performance aspects annually using a Likert scoring system (0-10). All patients (n = 59, median age 66 years, 9 with solitary kidney) had complete UUT inspection. Presenting lesion(s) were intra-renal (n = 30, 51%), ureteral (n = 13, 22%), and combined (n = 16, 27%). Single-stage TLA sufficed in 81.4% (tumors < 1.5 cm). Significant recurrence free survival differences occurred according to primary tumor size >/< 1.5 cm and multi-focality, but location made no difference. Median Likert scores were i) fiber-tip stability --5.5/8.75, p = 0.016; ii) reduced bleeding--5/8.5, p = 0.004; iii)fiber-tip precision--5.5/8.5, p = 0.003; iv) mucosal perforation reduction--3.5/7.5, p = 0.001; v) ablation efficiency tumors < 1.5 cm--6/9, p = 0.017; tumors > 1.5 cm--6.75/6.75, p = 1, and vi) overall efficiency--6/7.5, p = 0.09, for Holmium:YAG and TLA, respectively. The Thulium laser delivered non-inferior recurrence free survival to RIRS-UUT-TCC Holmium:YAG laser ablation, but better median parameter performance scores in fiber-tip stability, precision, reduced bleeding and mucosal perforation reduction in expert ratings. Despite improved photothermal coagulation, and endo-visualization for tumors < 1.5 cm, both ablation and overall efficiency remained challenging for larger tumors with both existing laser technologies.

  15. Analysis of radiation parameters to control the effects of Nd:YAG laser surgery on gastric malignancies

    NASA Astrophysics Data System (ADS)

    Pelayo-Fernández, M. L.; Fanjul-Vélez, F.; Salas-García, I.; Hernández-González, A.; Arce-Diego, J. L.

    2015-07-01

    Endoscopic laser surgery provides an advantageous alternative to Argon Plasma Coagulation, endoscopic tweezers or electro-ablation in gastroenterology that facilitates a selective ablation of stomach tumors with an additional hemostatic effect in the surrounding tissue. This coagulation effect can also be employed for the treatment of gastric ulcers. It is mandatory to control the laser parameters regardless of the desired effect, either cancerous tissue ablation or coagulation to prevent ulcerous bleeding, in order to avoid stomach wall perforation or an insufficient therapeutic outcome. Dosimetric models constitute an attractive tool to determine the proper light dose in order to offer a customized therapy planning that optimizes the treatment results. In this work, a model for Nd:YAG laser surgery is applied to predict both the coagulation zone in gastric ulcers and the removal in adenocarcinomas under different laser setups. Results show clear differences in the effective zone of the gastric malignancy affected by both coagulation and ablation. Therefore the current model could be employed in the clinical practice to plan the optimal laser beam parameters to treat a certain type of pathologic stomach tissue with variable morphology and without risk of perforation or undertreated parts.

  16. Comparison of transcatheter laser and direct-current shock ablation of endocardium near tricuspid anulus

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Zhen; Wang, Shi-Wen; Li, Junheng

    1993-03-01

    Forty to eighty percent of the patients with accessory pathways (APs) manifest themselves by tachyarrhythmias. Many of these patients needed either life-long medical therapy or surgery. In order to avoid the discomfort and expenses in surgical procedures, closed chest percutaneous catheter ablation of APs became a potentially desirable therapeutic approach. Many investigations indicated that ablation of right APs by transcatheter direct current (dc) shock could cause life-threatening arrhythmias, right coronary arterical (RCA) spasm, etc. With the development of transcatheter laser technique, it has been used in drug-incurable arrhythmias. The results show that laser ablation is much safer than surgery and electric shock therapy. The purpose of this study is to explore the effectiveness, advantages, and complications with transcatheter Nd:YAG laser and dc shock in the ablation of right atrioventricular accessory pathways in the atrium near the tricuspid annulus (TA) in 20 dogs.

  17. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    NASA Astrophysics Data System (ADS)

    Peña-Díaz, M.; Ponce, L.; Arronte, M.; Flores, T.

    2007-04-01

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  18. Comparison of acoustic shock waves generated by micro and nanosecond lasers for a smart laser surgery system

    NASA Astrophysics Data System (ADS)

    Nguendon Kenhagho, Hervé K.; Rauter, Georg; Guzman, Raphael; C. Cattin, Philippe; Zam, Azhar

    2018-02-01

    Characterization of acoustic shock wave will guarantee efficient tissue differentiation as feedback to reduce the probability of undesirable damaging (i.e. cutting) of tissues in laser surgery applications. We ablated hard (bone) and soft (muscle) tissues using a nanosecond pulsed Nd:YAG laser at 532 nm and a microsecond pulsed Er:YAG laser at 2.94 μm. When the intense short ns-pulsed laser is applied to material, the energy gain causes locally a plasma at the ablated spot that expands and propagates as an acoustic shock wave with a rarefaction wave behind the shock front. However, when using a μs-pulsed Er:YAG laser for material ablation, the acoustic shock wave is generated during the explosion of the ablated material. We measured and compared the emitted acoustic shock wave generated by a ns-pulsed Nd:YAG laser and a μs-pulsed Er:YAG laser measured by a calibrated microphone. As the acoustic shock wave attenuates as it propagates through air, the distance between ablation spots and a calibrated microphone was at 5 cm. We present the measurements on the propagation characteristics of the laser generated acoustic shock wave by measuring the arrival time-of-flight with a calibrated microphone and the energy-dependent evolution of acoustic parameters such as peak-topeak pressure, the ratio of the peak-to-peak pressures for the laser induced breakdown in air, the ablated muscle and the bone, and the spectral energy.

  19. Pump beam waist-dependent pulse energy generation in Nd:YAG/Cr4+:YAG passively Q-switched microchip laser

    NASA Astrophysics Data System (ADS)

    Li, Chao-yu; Dong, Jun

    2016-08-01

    The incident pump beam waist-dependent pulse energy generation in Nd:YAG/Cr4+:YAG composite crystal passively Q-switched microchip laser has been investigated experimentally and theoretically by moving the Nd:YAG/Cr4+:YAG composite crystal along the pump beam direction. Highest pulse energy of 0.4 mJ has been generated when the Nd:YAG/Cr4+:YAG composite crystal is moved about 6 mm away from the focused pump beam waist. Laser pulses with pulse width of 1.7 ns and peak power of over 235 kW have been achieved. The theoretically calculated effective laser beam area at different positions of Nd:YAG/Cr4+:YAG composite crystal along the pump beam direction is in good agreement with the experimental results. The highest peak power can be generated by adjusting the pump beam waist incident on the Nd:YAG/Cr4+:YAG composite crystal to optimize the effective laser beam area in passively Q-switched microchip laser.

  20. Experimental erbium: YAG laser photoablation of trabecular meshwork in rabbits: an in-vivo study.

    PubMed

    Dietlein, T S; Jacobi, P C; Schröder, R; Krieglstein, G K

    1997-05-01

    Photoablative laser trabecular surgery has been proposed as an outflow-enhancing treatment for open-angle glaucoma. The aim of the study was to investigate the time course of repair response following low-thermal Erbium: YAG laser trabecular ablation. In 20 anaesthetized rabbits gonioscopically controlled ab-interno photoablation of the ligamenta pectinata and underlying trabecular meshwork (TM) was performed with a single-pulsed (200 microseconds) Erbium: YAG (2.94 microns) laser. The right eye received 12-15 single laser pulses (2 mJ) delivered through an articulated zirconium fluoride fiberoptic and a 200 microns (core diameter) quartz fiber tip, the left unoperated eye served as control. At time intervals of 30 minutes, 2, 10, 30, and 60 days after laser treatment, eyes were processed for light- and scanning electron microscopy. The applied energy density of 6-4 J cm-2 resulted in visible dissection of the ligamenta pectinata and reproducible microperforations of the TM exposing scleral tissue accompanied by blood reflux from the aqueous plexus. The initial ablation zones measured 154 +/- 36 microns in depth and 45 +/- 6 microns in width. Collateral thermal damage zones were 22 +/- 8 microns. At two days post-operative, ablation craters were still blood- and fibrin-filled. The inner surface of the craters were covered with granulocytes. No cellular infiltration of the collateral thermal damage zone was observed. At 10 days post-operative, progressive fibroblastic proliferation was observed, resulting in dense scar tissue formation with anterior synechiae, proliferating capillaries and loss of intertrabecular spaces inside the range of former laser treatment at 60 days post-operative. Trabecular microperforations were closed 60 days after laser treatment in all rabbits. IOP in treated and contralateral eyes did not significantly change its level during whole period of observation. Low-thermal infrared laser energy with minimal thermal damage to collateral

  1. A comparison of the effects of Nd:YAG and Ho:YAG laser irradiation on dentine and enamel.

    PubMed

    Cernavin, I

    1995-04-01

    This preliminary study was undertaken to investigate the effects of Nd:YAG and Ho:YAG lasers on enamel and dentine of extracted teeth. The Ho:YAG laser (spot size 250 microns, energy density 4160 J/cm2) produced a cleaner puncture in dentine with less melting of the surrounding tissue than did the Nd:YAG laser (spot size 20 microns), energy density 50,000 J/cm2), which produced considerable melting and recrystallization of dentine and was more difficult to control. It was possible to cut enamel and dentine with both lasers, but considerable melted and recrystallized enamel was produced. From the limited observations of this study it appears that the Ho:YAG laser is more suitable for cutting both enamel and dentine than the Nd:YAG laser. More work needs to be done to ascertain the effect on enamel and dentine of modification of the parameters of both lasers.

  2. SPECIAL ISSUE DEVOTED TO THE 25th ANNIVERSARY OF THE A.M. PROKHOROV GENERAL PHYSICS INSTITUTE: High-speed ablation of ultradeep channels by a phase-conjugate dynamically controlled passively Q-switched Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Basiev, T. T.; Garnov, S. V.; Klimentov, S. M.; Pivovarov, P. A.; Gavrilov, A. V.; Smetanin, S. N.; Solokhin, S. A.; Fedin, A. V.

    2007-10-01

    Parameters of high-speed ablation of ultradeep channels by controlled pulse trains from a single-mode phase-conjugate dynamic cavity Nd:YAG laser emitting 20-200-ns, 70-250-mJ pulses at a pulse repetition rate in a train of 40-250 kHz are studied. The optimal parameters of ablation are found, for which a long-lived region of a hot rarefied gas was maintained in the ultradeep channel, which suppressed the shielding action of the surface plasma. The control of the lasing process during ablation optimises not only the heating and plasma formation, but also the removal of the processed material in the pause between laser pulses. Adaptive regulation of lasing parameters during ablation made it possible to obtain ultradeep channels of length 8-27 mm and diameters 80-300 μm of the input and output holes in metals (aluminium, steel and Inconel 718 nickel superalloy) and ultrahard ceramics (Al2O3, AlN, SiC).

  3. Scanning electron microscopy investigation of PMMA removal by laser irradiation (Er:YAG) in comparison with an ultrasonic system and curettage in hip joint revision arthroplasty.

    PubMed

    Birnbaum, Klaus; Gutknecht, Norbert

    2010-07-01

    The cement often left in the femur socket during hip joint revision arthroplasty is usually removed by curettage. Another method for removing the cement is to use an ultrasonic system, and yet another alternative may be to use a laser system. The aim of these investigations was to determine the pulse rate and pulse energy of the Er:YAG laser for sufficient cement ablation. We also compared the results obtained using the laser with those obtained using an ultrasonic device or curettage by histological and scanning electron microscopy (SEM) investigation of the border zone between the polymethyl methacrylate (PMMA) and unfixed specimens of femoral bone. Therefore we prepared 30 unfixed human femur stems after hip joint replacement and prepared ten sagittal sections from each femur stem (in total 300 sections). Of these 300 specimens, 180 were treated with the Er:YAG laser, 60 with the ultrasonic system and 60 by curettage. The high pulse energy of 500 mJ and a pulse rate of 4 Hz provided the highest PMMA ablation rate, although the boundary surface between PMMA and femoral bone was not as fine-grained as found in samples treated at 15 Hz and 250 mJ. However, the treatment time for the same cement ablation rate with the latter settings was twice that at 4 Hz and 500 mJ. Compared to the boundary surfaces treated with the ultrasonic device or curettage, the laser-treated samples had a more distinct undifferentiated boundary surface between PMMA and femoral bone. After development of the Er:YAG-laser to provide higher pulse energies, it may in the future be an additional efficient method for the removal of PMMA in revision arthroplasty. The Er:YAG laser should be combined with an endoscopic and a rinsing suction system so that PMMA can be removed from the femoral shaft under direct vision.

  4. Thulium-yttrium-aluminium-garnet (Tm:YAG) laser treatment of penile cancer: oncological results, functional outcomes, and quality of life.

    PubMed

    Musi, Gennaro; Russo, Andrea; Conti, Andrea; Mistretta, Francesco A; Di Trapani, Ettore; Luzzago, Stefano; Bianchi, Roberto; Renne, Giuseppe; Ramoni, Stefano; Ferro, Matteo; Matei, Deliu Victor; Cusini, Marco; Carmignani, Luca; de Cobelli, Ottavio

    2018-02-01

    To evaluate the oncological and functional outcomes of patients diagnosed with penile cancer undergoing conservative treatment through thulium-yttrium-aluminium-garnet (Tm:YAG) laser ablation. Twenty-six patients with a penile lesion underwent ablation with a RevoLix 200 W continuous-wave laser. The procedure was carried out with a pen-like laser hand piece, using a 360 μm laser fiber and 15-20 W of power. Median (IQR) follow-up time was 24 (15-30) months. Recurrence rate and post-operative sexual function were assessed. Median age at surgery was 61 years. Median (inter quartile range) size of the lesions was 15 [10-20] mm. Overall, 11 (47.8%) and 12 (52.2%) at the final pathology presented in situ and invasive squamous cell carcinoma (SCC), respectively. The final pathological stage was pTis, pT1a, pT2, and pT3 in 11 (47.8%), 7 (30.4%), 3 (13.0%), and 2 (8.7%) patients, respectively. Moreover, four (17.4%) patients had a recurrence of which three (13.0%) and one (4.3%) patients developed an invasive or in situ recurrence, respectively. After treatment 6 (26.1%) patients reported a conserved penile sensitivity, while 13 (56.5%) and 4 (17.4%) patients experienced a better or worse sensitivity after ablation, respectively. Post-treatment sexual activity was achieved within the first month after laser ablation in 82.6% of the patients. Early stage penile carcinomas can be effectively treated with an organ preservation strategy. Tm:YAG conservative laser treatment is easy, safe and offers good functional outcome, with a minor impact on patient's quality of life.

  5. Single laser based pump-probe technique to study plasma shielding during nanosecond laser ablation of copper thin films

    NASA Astrophysics Data System (ADS)

    Nammi, Srinagalakshmi; Vasa, Nilesh J.; Gurusamy, Balaganesan; Mathur, Anil C.

    2017-09-01

    A plasma shielding phenomenon and its influence on micromachining is studied experimentally and theoretically for laser wavelengths of 355 nm, 532 nm and 1064 nm. A time resolved pump-probe technique is proposed and demonstrated by splitting a single nanosecond Nd3+:YAG laser into an ablation laser (pump laser) and a probe laser to understand the influence of plasma shielding on laser ablation of copper (Cu) clad on polyimide thin films. The proposed nanosecond pump-probe technique allows simultaneous measurement of the absorption characteristics of plasma produced during Cu film ablation by the pump laser. Experimental measurements of the probe intensity distinctly show that the absorption by the ablated plume increases with increase in the pump intensity, as a result of plasma shielding. Theoretical estimation of the intensity of the transmitted pump beam based on the thermo-temporal modeling is in qualitative agreement with the pump-probe based experimental measurements. The theoretical estimate of the depth attained for a single pulse with high pump intensity value on a Cu thin film is limited by the plasma shielding of the incident laser beam, similar to that observed experimentally. Further, the depth of micro-channels produced shows a similar trend for all three wavelengths, however, the channel depth achieved is lesser at the wavelength of 1064 nm.

  6. The possibility of clinical application of the solid state lasers: Nd:YAG, Ho:YAG, and Er:YAG in otolaryngology - head and neck surgery

    NASA Astrophysics Data System (ADS)

    Tomaszewska, M.; Kukwa, A.; Tulibacki, M.; Wójtowicz, P.; Olędzka, I.; Jeżewska, E.

    2007-02-01

    The purpose of this study was to summarize our experiences in clinical application of Nd:YAG, Ho:YAG and Er:YAG in otolaryngology- head and neck surgery. Choosing the laser type and parameters for the particular procedures was based on our previous research on tissue effects of those lasers. During the period of 1993-2006 we performed 3988 surgical procedures with the Nd:YAG laser. Over 87% of those were made for the nasal cavity pathologies as polyps, hyperplasia of inferior nasal turbinate, granulation tissue, postoperative adhesions, vascular malformations, under the local anesthesia conditions. In our experience Nd:YAG laser gives the possibility of good clinical control and low risk of side effects for disorders of high recurrence and frequent interventions necessity, as nasal polyps or respiratory papillomatosis. Nd:YAG assisted uvulopalatoplasty gives an interesting alternative for surgical procedures for snoring and slight/mild OSA-recognized patients. Due to its good hemostatic properties, it is a perfect tool for removal of the chemodectoma from meddle ear. During the period of 1995-2006 we performed 229 surgical procedures with the Ho:YAG laser, mostly for larynx pathologies (adhesion and scar tissue removal). In our experience Ho:YAG laser can serve as a precise laser knife for both soft and bony tissue. The ER:YAG laser still remain under clinical trial. Since 2001 year we performed 24 procedures of removing stone deposits from salivary glands. We believe it may become a promising method to cope with sialolithiasis which allows for glandule function preservation. All of the laser types mentioned above, can be easily coupled with endoscopes, what makes them available for all of the head and necklocalized disorders.

  7. Improvement of thermal management in the composite Yb:YAG/YAG thin-disk laser

    NASA Astrophysics Data System (ADS)

    Kuznetsov, I. I.; Mukhin, I. B.; Palashov, O. V.

    2016-04-01

    To improve the thermal management in the composite Yb:YAG/YAG thin-disk laser a new design of laser head is developed. Thermal-induced phase distortions, small signal gain and lasing in the upgraded laser head are investigated and compared with previously published results. A substantial decrease of the thermal lens optical power and phase aberrations and increase of the laser slope efficiency are observed. A continuous-wave laser with 440 W average power and 44% slope efficiency is constructed.

  8. Shear test of composite bonded to dentin: Er:YAG laser versus dental handpiece preparations

    NASA Astrophysics Data System (ADS)

    Visuri, Steven R.; Gilbert, Jeremy L.; Walsh, Joseph T., Jr.; Wigdor, Harvey A.

    1995-05-01

    The erbium:YAG laser coupled with a cooling stream of water appears to be an effective means of removing dental hard tissues. However, before the procedure is deemed clinically viable, there are several important issues of safety and efficacy that need to be explored. In this study we investigated the surface that remains following laser ablation of dentin and compared the results to the use of a dental handpiece. Specifically, we studied the effect the laser radiation had on the bonding of composite to dentin. The crowns of extracted human molars were removed revealing the underlying dentin. An additional thickness of material was removed with either a dental handpiece or an Er:YAG laser by raster scanning the samples under a fixed handpiece or laser. Comparable surface roughnesses were achieved. A cylinder of composite was bonded onto the prepared surfaces following the manufacturer's directions. The dentin-composite bond was then shear stressed to failure on a universal testing apparatus and the maximum load recorded. Preliminary results indicated that laser irradiated samples had improved bond strengths. SEM photographs of the surfaces were also taken to compare the two methods of tooth preparation.

  9. Effects of pulsed mid-IR lasers on bovine knee joint tissues

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; Shi, Wei-Qiang; Pergadia, Vani R.; Duffy, J. T.; Miller, J. M.; van der Veen, Maurits J.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1993-07-01

    We investigated the effect of varying Tm:YAG (2.014 micrometers ) and Ho:YAG (2.130 micrometers ) laser parameters on ablation rate and consequent thermal damage. Mid-infrared wavelengths are strongly absorbed by most biological tissues due to the tissue's high water content. The ablation rate of fresh bovine knee joint tissues (fibrous cartilage, hyaline cartilage, and bone) in saline was assessed as a function of radiant exposure (160 - 950 J/cm2), at pulse widths of 200 microsecond(s) ec for Tm:YAG and 250 microsecond(s) ec for Ho:YAG and a repetition rate of 2 Hz. All tissues used in this study could be efficiently ablated using two micron lasers. The mechanism of action is likely related to the formation and collapse of cavitation bubbles, associated with mid-infrared lasers. We concluded that the Tm:YAG and Ho:YAG lasers are capable of effective knee joint tissue ablation.

  10. Second-harmonic generation of ZnO nanoparticles synthesized by laser ablation of solids in liquids

    NASA Astrophysics Data System (ADS)

    Rocha-Mendoza, Israel; Camacho-López, Santiago; Luna-Palacios, Yryx Y.; Esqueda-Barrón, Yasmín; Camacho-López, Miguel A.; Camacho-López, Marco; Aguilar, Guillermo

    2018-02-01

    We report the synthesis of small zinc oxide nanoparticles (ZnO NPs) based colloidal suspensions and the study of second-harmonic generation from aggregated ZnO NPs deposited on glass substrates. The colloidal suspensions were obtained using the laser ablation of solids in liquids technique, ablating a Zn solid target immersed in acetone as the liquid medium, with ns-laser pulses (1064 nm) of a Nd-YAG laser. The per pulse laser fluence, the laser repetition rate frequency and the ablation time were kept constant. The absorption evolution of the obtained suspensions was optically characterized through absorption spectroscopy until stabilization. Raman spectroscopy, SEM and HRTEM were used to provide evidence of the ZnO NPs structure. HRTEM results showed that 5-8 nm spheroids ZnO NPs were obtained. Strong second-harmonic signal is obtained from random ZnO monocrystalline NPs and from aggregated ZnO NPs, suggesting that the high efficiency of the nonlinear process may not depend on the NPs size or aggregation state.

  11. Laser antisepsis of Phorphyromonas gingivalis in vitro with dental lasers

    NASA Astrophysics Data System (ADS)

    Harris, David M.

    2004-05-01

    It has been shown that both pulsed Nd:YAG (1064nm) and continuous diode (810nm) dental lasers kill pathogenic bacteria (laser antisepsis), but a quantitative method for determining clinical dosimetry does not exist. The purpose of this study was to develop a method to quantify the efficacy of ablation of Porphyromonas gingivalis (Pg) in vitro for two different lasers. The ablation thresholds for the two lasers were compared in the following manner. The energy density was measured as a function of distance from the output of the fiber-optic delivery system. Pg cultures were grown on blood agar plates under standard anaerobic conditions. Blood agar provides an approximation of gingival tissue for the wavelengths tested in having hemoglobin as a primary absorber. Single pulses (Nd:YAG: 100- Œs diode: 100-msec) of laser energy were delivered to Pg colonies and the energy density was increased until the appearance of a small plume was observed coincident with a laser pulse. The energy density at this point defines the ablation threshold. Ablation thresholds to a single pulse were determined for both Pg and for blood agar alone. The large difference in ablation thresholds between the pigmented pathogen and the host matrix for pulsed-Nd:YAG represented a significant therapeutic ratio and Pg was ablated without visible effect on the blood agar. Near threshold the 810-nm diode laser destroyed both the pathogen and the gel. Clinically, the pulsed Nd:YAG may selectively destroy pigmented pathogens leaving the surrounding tissue intact. The 810-nm diode laser may not demonstrate this selectivity due to its longer pulse length and greater absorption by hemoglobin.

  12. YAG Laser Vitreolysis vs Sham YAG Vitreolysis for Symptomatic Vitreous Floaters: A Randomized Clinical Trial.

    PubMed

    Shah, Chirag P; Heier, Jeffrey S

    2017-09-01

    Vitreous floaters are common and can worsen visual quality. YAG vitreolysis is an untested treatment for floaters. To evaluate YAG laser vitreolysis vs sham vitreolysis for symptomatic Weiss ring floaters from posterior vitreous detachment. This single-center, masked, sham-controlled randomized clinical trial was performed from March 25, 2015, to August 3, 2016, in 52 eyes of 52 patients (36 cases and 16 controls) treated at a private ophthalmology practice. Patients were randomly assigned to YAG laser vitreolysis or sham YAG (control). Primary 6-month outcomes were subjective change measured from 0% to 100% using a 10-point visual disturbance score, a 5-level qualitative scale, and National Eye Institute Visual Functioning Questionnaire 25 (NEI VFQ-25). Secondary outcomes included objective change assessed by masked grading of color fundus photography and Early Treatment Diabetic Retinopathy Study best-corrected visual acuity. Fifty-two patients (52 eyes; 17 men and 35 women; 51 white and 1 Asian) with symptomatic Weiss rings were enrolled in the study (mean [SD] age, 61.4 [8.0] years for the YAG laser group and 61.1 [6.6] years for the sham group). The YAG laser group reported greater symptomatic improvement (54%) than controls (9%) (difference, 45%; 95% CI, 25%-64%; P < .001). In the YAG laser group, the 10-point visual disturbance score improved by 3.2 vs 0.1 in the sham group (difference, -3.0; 95% CI, -4.3 to -1.7; P < .001). A total of 19 patients (53%) in the YAG laser group reported significantly or completely improved symptoms vs 0 individuals in the sham group (difference, 53%; 95% CI, 36%-69%, P < .001). Compared with sham, NEI VFQ-25 revealed improved general vision (difference, 16.3; 95% CI, 0.9-31.7; P = .04), peripheral vision (difference, 11.6; 95% CI, 0.8-22.4; P = .04), role difficulties (difference, 17.3; 95% CI, 8.0-26.6; P < .001), and dependency (difference, 5.6; 95% CI, 0.5-10.8; P = .03) among the YAG laser group

  13. Morphological and ultrastructural comparative analysis of bone tissue after Er:YAG laser and surgical drill osteotomy.

    PubMed

    Panduric, Dragana Gabric; Juric, Ivona Bago; Music, Svetozar; Molčanov, Krešimir; Sušic, Mato; Anic, Ivica

    2014-07-01

    The purpose of this study was to analyze morphological, chemical, and crystallographic changes of bone tissue after osteotomy performed with an erbium:yttrium-aluminium-garnet (Er:YAG) laser and a low speed pilot drill. Bone blocks were prepared from porcine ribs, and on each block, two tunnel preparations were performed using the Er:YAG laser (pulse energy: 1000 mJ, pulse duration: 300 μs, pulse repetition rate: 20 Hz) or the low-speed surgical pilot drill. The morphological changes of the cortical and the spongious surface of the tunnel preparations were analyzed under the field emission scanning electron microscopy (FE-SEM) at low and high resolution. The distribution and the level of chemical elements in the treated surfaces were evaluated by qualitative and semiquantitative energy dispersive x-ray analysis (SEM-EDX). Diffraction x-ray analysis was used to detect any differences and thermally induced modifications of hydroxyapatite crystals. FE-SEM revealed sharp edges of the Er:YAG preparations, with empty intertrabecular spaces and no signs of carbonization. In the drill group, the surface of the preparations was smooth, completely covered with smear layer and microcracks, and with hairy-like irregularities on the edges. SEM-EDX analysis did not reveal any differences in the number of specific chemical elements between the laser and the drill group. There were no thermally induced modifications of hydroxyapatite crystal structure in the bone tissue in either group. The Er:YAG laser ablation did not cause any chemical or crystallographic changes of the bone tissue. Compared with the drill, Er:YAG laser created well-defined edges of the preparations, and cortical bone had no smear layer.

  14. The role of laser wavelength on plasma generation and expansion of ablation plumes in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussein, A. E.; Department of Physics, McGill University, Montreal, Quebec H3A 0G4; Diwakar, P. K.

    2013-04-14

    We investigated the role of excitation laser wavelength on plasma generation and the expansion and confinement of ablation plumes at early times (0-500 ns) in the presence of atmospheric pressure. Fundamental, second, and fourth harmonic radiation from Nd:YAG laser was focused on Al target to produce plasma. Shadowgraphy, fast photography, and optical emission spectroscopy were employed to analyze the plasma plumes, and white light interferometry was used to characterize the laser ablation craters. Our results indicated that excitation wavelength plays a crucial role in laser-target and laser-plasma coupling, which in turn affects plasma plume morphology and radiation emission. Fast photographymore » and shadowgraphy images showed that plasmas generated by 1064 nm are more cylindrical compared to plasmas generated by shorter wavelengths, indicating the role of inverse bremsstrahlung absorption at longer laser wavelength excitation. Electron density estimates using Stark broadening showed higher densities for shorter wavelength laser generated plasmas, demonstrating the significance of absorption caused by photoionization. Crater depth analysis showed that ablated mass is significantly higher for UV wavelengths compared to IR laser radiation. In this experimental study, the use of multiple diagnostic tools provided a comprehensive picture of the differing roles of laser absorption mechanisms during ablation.« less

  15. The effect of pre-operative topical anaesthetic cream on the ablative width and coagulative depth of ablative fractional resurfacing laser.

    PubMed

    Punyaratabandhu, Preawphan; Wanitphakdeedecha, Rungsima; Pattanaprichakul, Penvadee; Sitthinamsuwan, Panitta; Phothong, Weeranut; Eimpunth, Sasima; Lohsiriwat, Visnu; Manuskiatti, Woraphong

    2017-02-01

    Topical anaesthetic cream (TAC) is commonly used as a pre-treatment of ablative fractional resurfacing (AFR) laser. Most of anaesthetic cream contains distilled water as major component. Therefore, pre-operative TAC may interfere the photothermal reaction in the skin treated with fractional carbon-dioxide (FCO 2 ) laser and fractional erbium-doped yttrium aluminium garnet (FEr:YAG) laser. The objective of the study was to compare the ablative width (AW) and coagulative depth (CD) of AFR laser with and without pre-treatment with TAC. Four Thai females who underwent abdominoplasty were included in the study. The excised skin of each subject was divided into four areas. TAC (eutectic mixture of local anaesthesia; EMLA) with 1-h occlusion was applied only on the first and second areas. The first and third areas were treated with FCO 2 at 15 mj and 5% density. The second and fourth areas were treated with FEr:YAG at 28 J/cm 2 and 5% density. Six biopsied specimens were obtained from each area. A total of 96 specimens (24 specimens from each area) were collected from four patients and examined randomly by two dermatopathologists. The ablative width and coagulative depth from each specimen were determined. In FCO 2 -treated specimens, the mean AW of the specimens that were pre-treated with TAC and control was 174.86 ± 24.57 and 188.52 ± 41.32 μm. The mean CD of the specimens that were pre-treated with TAC and control was 594.96 ± 111.72 and 520.03 ± 147.40 μm. There were no significant differences in AW and CD between both groups (p = 0.53 and p = 0.15). In FEr:YAG-treated specimens, the mean AW of the specimens that were pre-treated with TAC and control was 381.11 ± 48.02 and 423.65 ± 60.16 μm. The mean CD of the specimens that were pre-treated with TAC and control was 86.03 ± 29.44 and 71.59 ± 18.99 μm. There were no significant differences in AW and CD between both groups (p = 0.16 and p = 0.24). The pre

  16. Lasers in clinical urology: state of the art and new horizons.

    PubMed

    Marks, Andrew J; Teichman, Joel M H

    2007-06-01

    We present an overview of current and emerging lasers for Urology. We begin with an overview of the Holmium:YAG laser. The Ho:YAG laser is the gold standard lithotripsy modality for endoscopic lithotripsy, and compares favorably to standard electrocautery transurethral resection of the prostate for benign prostatic hyperplasia (BPH). Available laser technologies currently being studied include the frequency doubled double-pulse Nd:Yag (FREDDY) and high-powered potassium-titanyl-phosphate (KTP) lasers. The FREDDY laser presents an affordable and safe option for intracorporeal lithotripsy, but it does not fragment all stone compositions, and does not have soft tissue applications. The high power KTP laser shows promise in the ablative treatment of BPH. Initial experiments with the Erbium:YAG laser show it has improved efficiency of lithotripsy and more precise ablative and incisional properties compared to Ho:YAG, but the lack of adequate optical fibers limits its use in Urology. Thulium:YAG fiber lasers have also demonstrated tissue ablative and incision properties comparable to Ho:YAG. Lastly, compact size, portability, and low maintenance schedules of fiber lasers may allow them to shape the way lasers are used by urologists in the future.

  17. The influence of dentin demineralization on morphological features of cavities using Er:YAG laser.

    PubMed

    Melo, Mary A S; Lima, Juliana P M; Passos, Vanara F; Rodrigues, Lidiany K A

    2015-01-01

    The purpose of this study was to evaluate the influence of erbium-doped: yttrium-aluminum-garnet (Er:YAG) laser parameters and different degrees of demineralization on morphological features, diameter, and depth of prepared cavities. Minimally invasive dentin caries removal has been recommended. Ablation of deep caries lesions using Er:YAG laser should preserve remaining demineralized dentin; however, the influence of the degree of mineralization of this substrate had not been entirely described. A randomized, factorial design was used to study the effects of two factors. Laser parameter was tested at two levels (250 mJ/4 Hz vs. 200 mJ/2 Hz) and degree of demineralization was tested at four levels (control, two-four-eight cycles). Twelve slabs of human dentin were divided into four groups according to the number of cycles induced by pH-cycling: G1, zero cycles; G2, two cycles, G3, four cycles, and G4, eight cycles. An Er:YAG laser was used at an output energy of 250 mJ/4 Hz and 200 mJ/2 Hz for all groups, for 10 sec at 12 mm distance focus/object. Circumference and depth of the cavities were measured on scanning electron microscopy (SEM) images using image analysis software. The mean values were subjected to two way analysis of variance (ANOVA) and Tukey tests. When using 250 mJ/4 Hz, the mean values of circumferential area increased significantly in relation to control (503.54 μm(2)) with increasing demineralization level (eight cycles) (555.45 μm(2)). Regardless of the demineralization level, there was also significant statistical difference in the studied measurements of the cavities when 250 mJ/4 Hz and 200 mJ/2 Hz were used. SEM also showed that laser cavity preparations left no smear layer, and the dentinal tubules were clear. The circumferential area and depth measurements were affected by laser parameter and demineralization level (eight cycles). Energy level output represents a relevant factor for increased circumferential area and depth measurements

  18. Fiber-delivered mid-infrared (6-7) laser ablation of retinal tissue under perfluorodecalin

    NASA Astrophysics Data System (ADS)

    Mackanos, Mark A.; Joos, Karen M.; Jansen, E. Duco

    2003-07-01

    The Er:YAG laser (l=2.94mm) is an effective tool in vitreo-retinal surgery. Pulsed mid-infrared (l=6.45 mm) radiation from the Free Electron Laser has been touted as a potentially superior cutting tool. To date, use of this laser has been limited to applications in an air environment. The goal of this study was: 1) determine feasibility of fiberoptic delivery of 6.45mm using silverhalide fibers (d=700mm); 2) use infrared transparent vitreous substitute (perfluorodecalin) to allow non-contact ablation of the retina at 6.45mm. Fiber damage threshold=7.8J/cm2 (0.54GW/cm2) while transmission loss=0.54dB/m, allowing supra-ablative radiant exposures to the target. FTIR measurements of perfluorodecalin at 6.45mm yielded ma=3mm-1. Pump-probe imaging of ablation of a tissue-phantom through perfluorodecalin showed feasibility of non-contact ablation at l=6.45mm. Ablation of the retinal membranes of enucleated pig eyes was carried out under perfluorodecalin (5 Hz, 1.3 J/cm2). Each eye was cut along its equator to expose the retina. Vitreous was replaced by perfluorodecalin and laser radiation was delivered to the retina via the silverhalide fiber. The eye was rotated (at 2 rpm) using a stepper motor (0.9o/step) to create an ablation circle around the central axis of the retina (50% spot-to-spot overlap). Histological analysis of ablation yield and collateral damage will be presented. We have shown that using l=6.45mm delivered via silver halide fibers through perfluorodecalin allowed non-contact laser ablation. Remote structures are shielded, as the radiant exposure falls below the ablation threshold owing non-negligible absorption of perfluorodecalin at 6.45mm. This may optimize efficacy and safety of laser-based vitreoretinal surgery.

  19. Actively Q-switched laser with novel Nd:YAG/YAG polygonal active-mirror

    NASA Astrophysics Data System (ADS)

    Lang, Ye; Chen, Yanzhong; Ge, Wenqi; He, Jianguo; Zhang, Hongbo; Liao, Lifen; Xin, Jianguo; Zhang, Jian; Fan, Zhongwei

    2018-03-01

    In this work, we demonstrate an efficient actively Q-switched laser based on a novel crystal Nd:YAG/YAG polygonal active mirror. A passively cooled crystal Nd:YAG/YAG polygonal active mirror with an end pump scheme was used as the gain medium. For the overlap between the TEM00 laser mode and large gain profile, a cavity was carefully designed with a large fundamental mode volume. With a maximum absorbed power of 3.1 W, a 685 mW average output power with a pulse repetition of 5 kHz was attained, and the corresponding optical-optical and slope efficiency were 22.1% and 27.7%, respectively. The pulse width was 133.9 ns. The beam quality (M 2) was 1.561 in the horizontal direction and 1.261 in the vertical direction.

  20. Cryogenic Yb: YAG Thin-Disk Laser

    DTIC Science & Technology

    2016-09-09

    AFRL-RD-PS- TP-2016-0004 AFRL-RD-PS- TP-2016-0004 CRYOGENIC Yb: YAG THINN-DISK LASER N . Vretenar, et al. 19 August 2011 Technical Paper...Cryogenic Yb: YAG Thin-Disk Laser 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) * N . Vretenar, R. Carson, ***T. Lucas, T. Newell, W.P. Latham...Thin-Disk Laser N . Vretenar,1 T. Carson,2 T. Lucas,3T. Newell,2 W. P. Latham,2 and P. Peterson,3 H. Bostanci,4 J. J. Lindauer4, B. A. Saarloos,4

  1. Endoscopic and interstitial Nd:YAG laser therapy to control duodenal and periampullary carcinoma

    NASA Astrophysics Data System (ADS)

    Barr, Hugh; Fowler, Aiden L.

    1996-12-01

    Duodenal and periampullary cancer present with jaundice, bleeding and obstruction. Many patients are unsuitable for radical surgery. Endoscopic palliation of jaundice can be achieved using endoscopic sphincterotomy or stent insertion. However, the problems of bleeding and obstruction can be difficult to manage. Ten patients were treated using superficial Nd:YAG laser ablation and lower power interstitial laser therapy. After initial outpatient endoscopic therapy, treatment was repeated at 4 monthly intervals to prevent recurrent symptoms. Bleeding was controlled in all patients and only one patient developed obstructive symptoms between treatment sessions. This responded to further endoscopic laser therapy. The median survival was 21 months. Laser treated patients were compared with a historical series of 22 patients treated with endoscopic sphincterotomy or stent insertion. The complication rate was less in patients treated with the laser.

  2. Stone Retropulsion with Ho: YAG and Tm: YAG Lasers: A Clinical Practice-Oriented Experimental Study.

    PubMed

    Kamal, Wissam; Kallidonis, Panagiotis; Koukiou, Georgia; Amanatides, Lefteris; Panagopoulos, Vasileios; Ntasiotis, Pantelis; Liatsikos, Evangelos

    2016-11-01

    To compare the retropulsion of stones with the use of holmium: yttrium aluminum garnet (Ho: YAG) laser and thulium: yttrium aluminum garnet (Tm: YAG) laser in settings that could be used in clinical practice. The experimental configuration included a glass tube set in a water bath filled with physiologic saline. Plaster of Paris stones were inserted in the tube. Tm: YAG and Ho: YAG laser systems were used along with a high-speed slow-motion camera. The lasers were activated with different settings. The displacement of the stone was measured according to a custom-made algorithm. Ho: YAG: the retropulsion of stones was the lowest with the energy setting of 0.5 J and the frequency of 20 Hz with long pulse duration. The highest retropulsion was observed in the case of 3 J, 5 Hz, and short pulse. Tm: YAG: the retropulsion of stones was the lowest with the energy setting of 1 J and the frequency of 10 Hz with either long or short pulse duration. Practically, there was no retropulsion at all. The highest retropulsion was observed in the case of 8 J, 5 Hz, and short pulse. Ho: YAG laser has a linear increase in stone retropulsion with increased pulse energy. On the other hand, the retropulsion rate was kept to the minimum with Tm: YAG as much as the energy level of 8 J. The activation of lasers with short pulse resulted in further displacement of the stone. Lower frequency with the same power setting seemed to result in further stone retropulsion. Higher power with the same frequency setting resulted in further displacement of the stone.

  3. Fast and automatic depth control of iterative bone ablation based on optical coherence tomography data

    NASA Astrophysics Data System (ADS)

    Fuchs, Alexander; Pengel, Steffen; Bergmeier, Jan; Kahrs, Lüder A.; Ortmaier, Tobias

    2015-07-01

    Laser surgery is an established clinical procedure in dental applications, soft tissue ablation, and ophthalmology. The presented experimental set-up for closed-loop control of laser bone ablation addresses a feedback system and enables safe ablation towards anatomical structures that usually would have high risk of damage. This study is based on combined working volumes of optical coherence tomography (OCT) and Er:YAG cutting laser. High level of automation in fast image data processing and tissue treatment enables reproducible results and shortens the time in the operating room. For registration of the two coordinate systems a cross-like incision is ablated with the Er:YAG laser and segmented with OCT in three distances. The resulting Er:YAG coordinate system is reconstructed. A parameter list defines multiple sets of laser parameters including discrete and specific ablation rates as ablation model. The control algorithm uses this model to plan corrective laser paths for each set of laser parameters and dynamically adapts the distance of the laser focus. With this iterative control cycle consisting of image processing, path planning, ablation, and moistening of tissue the target geometry and desired depth are approximated until no further corrective laser paths can be set. The achieved depth stays within the tolerances of the parameter set with the smallest ablation rate. Specimen trials with fresh porcine bone have been conducted to prove the functionality of the developed concept. Flat bottom surfaces and sharp edges of the outline without visual signs of thermal damage verify the feasibility of automated, OCT controlled laser bone ablation with minimal process time.

  4. Lamp pumped Nd:YAG laser. Space-qualifiable Nd:YAG laser for optical communications

    NASA Technical Reports Server (NTRS)

    Ward, K. B.

    1973-01-01

    Results are given of a program concerned with the design, fabrication, and evaluation of alkali pump lamps for eventual use in a space qualified Nd:YAG laser system. The study included evaluation of 2mm through 6mm bore devices. Primary emphasis was placed upon the optimization of the 4mm bore lamp and later on the 6mm bore lamp. As part of this effort, reference was made to the Sylvania work concerned with the theoretical modeling of the Nd:YAG laser. With the knowledge gained, a projection of laser performance was made based upon realistic lamp parameters which should easily be achieved during following developmental efforts. Measurements were made on the lamp performance both in and out of the cavity configuration. One significant observation was that for a constant vapor pressure device, the spectral and fluorescent output did not vary for vacuum or argon environment. Therefore, the laser can be operated in an inert environment (eg. argon) with no degradation in output. Laser output of 3.26 watts at 430 watts input was obtained for an optimized 4mm bore lamp.

  5. OCT analysis of microneedle and Er:YAG surface ablation for enhanced transdermal delivery of hyperosmotic agents for optical skin clearing

    NASA Astrophysics Data System (ADS)

    Stumpp, Oliver F.; Welch, A. J.; Gill, Harvinder S.; Prausnitz, Mark R.

    2004-07-01

    The purpose of this study is to investigate the feasibility of using microneedles in comparison to Er:YAG skin surface laser ablation as a means to modify the epidermis of in-vitro hamster skin to facilitate delivery of topically applied hyper-osmotics such as glycerol into the skin to achieve optical skin clearing. This allows to temporarily reduce scattering of light in otherwise turbid tissues with potential applications pertaining to non-invasive optical imaging techniques such as optical coherence tomography (OCT) or therapeutic applications like laser blood vessel coagulation to treat port wine stains in skin. A portable, battery powered Er:YAG laser (Lasette) manufactured by Cell Robotics Inc. was used to produce holes in the stratum corneum and epidermis using individual 400 μs pulses causing localized ablation. Following each laser pulse the tissue was mechanically translated by 1 mm before another pulse was delivered. As an alternative method to the use of an expensive laser source requiring some kind of light scanning mechanism to treat larger skin areas efficiently, microneedles were investigated. They do not require an energy supply, are also pain-free and can be manufactured into arrays allowing treatment of larger skin areas. A single application forms micron scale holes in the stratum corneum through which topically applied skin clearing agents such as glycerol can penetrate into the tissue. In this feasibility study individual microneedles were used to manually induce holes in the skin each spaced approximately 1 mm apart from the other. Upon such epidermal modification by either technique, glycerol was then applied to the tissue surface and amplitude OCT measurements monitored changes of the optical properties of the tissue over time. Due to the geometry of the microneedle used in this study the cross sectional area of each hole in the epidermis was about 68% smaller than the comparable ablation site caused by an individual laser pulse. Results

  6. Cluster formation in laser-induced ablation and evaporation of solids observed by laser ionization time-of-flight mass spectrometry and scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Tench, R. J.; Balooch, M.; Bernardez, L.; Allen, Mike J.; Siekhaus, W. J.; Olander, D. R.; Wang, W.

    1990-04-01

    Laser ionization time-of-flight mass analysis (LIMA) used pulses (5ns) of a frequency-quadrupled Nd-YAG laser (266 nm) focused onto spots of 4 to 100 microns diameter to ablate material, and a reflectron time of flight tube to mass-analyze the plume. The observed mass spectra for Si, Pt, SiC, and UO 2 varied in the distribution of ablation products among atoms, molecules and clusters, depending on laser power density and target material. Cleaved surfaces of highly oriented pyrolytic graphite (HOPG) positioned at room temperature either 10 cm away from materials ablated at 10(exp -5) Torr by 1 to 3 excimer laser (308 nm) pulses of 20 ns duration or 1 m away from materials vaporized at 10(exp -8) Torr by 10 Nd-Glass laser pulses of 1 ms duration were analyzed by Scanning Tunneling Microscopy (STM) in air with angstrom resolution. Clusters up to 30 A in diameter were observed.

  7. Femtosecond laser ablation of dentin and enamel: relationship between laser fluence and ablation efficiency.

    PubMed

    Chen, Hu; Liu, Jing; Li, Hong; Ge, Wenqi; Sun, Yuchun; Wang, Yong; Lü, Peijun

    2015-02-01

    The objective was to study the relationship between laser fluence and ablation efficiency of a femtosecond laser with a Gaussian-shaped pulse used to ablate dentin and enamel for prosthodontic tooth preparation. A diode-pumped thin-disk femtosecond laser with wavelength of 1025 nm and pulse width of 400 fs was used for the ablation of dentin and enamel. The laser spot was guided in a line on the dentin and enamel surfaces to form a groove-shaped ablation zone under a series of laser pulse energies. The width and volume of the ablated line were measured under a three-dimensional confocal microscope to calculate the ablation efficiency. Ablation efficiency for dentin reached a maximum value of 0.020 mm3∕J when the laser fluence was set at 6.51 J∕cm2. For enamel, the maximum ablation efficiency was 0.009 mm3∕J at a fluence of 7.59 J∕cm2.Ablation efficiency of the femtosecond laser on dentin and enamel is closely related to the laser fluence and may reach a maximum when the laser fluence is set to an appropriate value. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)

  8. Skin pre-ablation and laser assisted microjet injection for deep tissue penetration.

    PubMed

    Jang, Hun-Jae; Yeo, Seonggu; Yoh, Jack J

    2017-04-01

    For conventional needless injection, there still remain many unresolved issues such as the potential for cross-contamination, poor reliability of targeted delivery dose, and significantly painstaking procedures. As an alternative, the use of microjets generated with Er:YAG laser for delivering small doses with controlled penetration depths has been reported. In this study, a new system with two stages is evaluated for effective transdermal drug delivery. First, the skin is pre-ablated to eliminate the hard outer layer and second, laser-driven microjet penetrates the relatively weaker and freshly exposed epidermis. Each stage of operation shares a single Er:YAG laser that is suitable for skin ablation as well as for the generation of a microjet. In this study, pig skin is selected for quantification of the injection depth based on the two-stage procedure, namely pre-ablation and microjet injection. The three types of pre-ablation devised here consists of bulk ablation, fractional ablation, and fractional-rotational ablation. The number of laser pulses are 12, 18, and 24 for each ablation type. For fractional-rotational ablation, the fractional beams are rotated by 11.25° at each pulse. The drug permeation in the skin is evaluated using tissue marking dyes. The depth of penetration is quantified by a cross sectional view of the single spot injections. Multi-spot injections are also carried out to control the dose and spread of the drug. The benefits of a pre-ablation procedure prior to the actual microjet injection to the penetration is verified. The four possible combinations of injection are (a) microjet only; (b) bulk ablation and microjet injection; (c) fractional ablation and microjet injection; and (d) fractional-rotational ablation and microjet injection. Accordingly, the total depth increases with injection time for all cases. In particular, the total depth of penetration attained via fractional pre-ablation increased by 8 ∼ 11% and that of fractional

  9. Temporal evolution of liquid-assisted hard bio-tissue ablation with infrared pulsed lasers under a liquid environment

    NASA Astrophysics Data System (ADS)

    Chen, Faner; Li, Qiang; Hua, Mingxin; Zhan, Zhenlin; Xie, Shusen; Zhang, Xianzeng

    2016-10-01

    Liquid-assisted hard biotissue ablation with the pulsed lasers takes advantages in precision and compatibility than mechanical tools in traditional surgery. The objective of this study was to monitor the dynamic process of the cavitation bubble evolution induced by Ho:YAG laser under water and identify the opening time of channel formation between the fiber tip to the target tissue surface. A free-running Ho:YAG laser was used in the experiment. The wavelength was 2.1 μm with a pulse duration of 350 us and pulse energy varied from 500 mJ to 2000 mJ. The high-speed camera (PCO. dimax, Germany, PCO) applied to monitor the whole ablation process was setting at a frame rate of 52000 frames/s. The results showed that the cavitation bubble induced by laser energy experienced an oscillation process including occurrence, expansion, contraction and subsequent collapse. A channel connected the fiber tip and target tissue surface was formed during the dynamic process which allowed the following pulse energy transmitted through the channel with a relative low absorption and directly interacted with the target tissue. The beginning time of channel formation, as well as the duration of channel opening, as functions of incident laser energy were also presented. A micro-explosion was observed near the tissue surface during the bubble collapse, which may contribute to produce a clean cut, reduce the thermal injury and improve the morphology of ablation crater.

  10. Yb:YAG Lasers for Space Based Remote Sensing

    NASA Technical Reports Server (NTRS)

    Ewing, J.J.; Fan, T. Y.

    1998-01-01

    Diode pumped solid state lasers will play a prominent role in future remote sensing missions because of their intrinsic high efficiency and low mass. Applications including altimetry, cloud and aerosol measurement, wind velocity measurement by both coherent and incoherent methods, and species measurements, with appropriate frequency converters, all will benefit from a diode pumped primary laser. To date the "gold standard" diode pumped Nd laser has been the laser of choice for most of these concepts. This paper discusses an alternate 1 micron laser, the YB:YAG laser, and its potential relevance for lidar applications. Conceptual design analysis and, to the extent possible at the time of the conference, preliminary experimental data on the performance of a bread board YB:YAG oscillator will be presented. The paper centers on application of YB:YAG for altimetry, but extension to other applications will be discussed.

  11. Non-ablative scar revision using a long pulsed frequency doubled Nd:YAG laser.

    PubMed

    Cassuto, Daniel; Emanuelli, Guglielmo

    2003-12-01

    Unsightly scars often are the only reminder of a previous surgical or traumatic wound. Surgical or ablative scar revision is sought by patients, sometimes unnecessarily. When the aesthetic drawback is mainly a result of hypervascularity or hyperpigmentation, these problems can be specifically targeted with a wavelength that is well absorbed by the two above mentioned chromophores. Some degree of epidermal tightening can also be achieved, which is sometimes useful in slightly atrophic scars. The average improvement after 2-3 sessions was 81% (75%-100%) clearance, as judged by an independent observer who reviewed pre- and post-treatment photographs. No undesired effects were reported. All our patients were satisfied and required no further treatment. Selective photothermolysis by means of a long pulsed frequency doubled Nd:YAG laser (DioLite 532, IRIDEX Corporation, Mountain View, CA, USA) was used to eliminate the unsightly vascular and pigmented components of 23 mature scars (scars older than 2 years) in 22 consecutive patients. Energy densities of 17-22 j/cm2 were used with a 500 micron spot, or 65-90 j/cm2 with a 200 micron spot. overall scar clearance averaged 81% after 2.4 treatments. Facial scars showed the best clearance averaging 94% after 2 treatments. Inframammary scars were the most difficult to clear averaging 46%. Postoperative undesired effects were immediate erythema and swelling that subsided within 2-10 hours and microcrusting on 19/22 (88%) patients that resolved within one week. No other temporary or permanent undesired effects such as purpura, hypo- or hyperpigmentation were noticed, even in patients with darker skin types.

  12. Production of microscale particles from fish bone by gas flow assisted laser ablation

    NASA Astrophysics Data System (ADS)

    Boutinguiza, M.; Lusquiños, F.; Comesaña, R.; Riveiro, A.; Quintero, F.; Pou, J.

    2007-12-01

    Recycled wastes from fish and seafood can constitute a source of precursor material for different applications in the biomedical field such as bone fillers or precursor material for bioceramic coatings to improve the osteointegration of metallic implants. In this work, fish bones have been used directly as target in a laser ablation system. A pulsed Nd:YAG laser was used to ablate the fish bone material and a transverse air flow was used to extract the ablated material out of the interaction zone. The particles collected at a filter were in the micro and nanoscale range. The morphology as well as the composition of the obtained particles were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results reveal that the composition of the analyzed particles is similar to that of the inorganic part of the fish bone.

  13. Influence of peak power in ablation rate of dental hard tissues: mathematical model

    NASA Astrophysics Data System (ADS)

    Colojoara, Carmen; Gabay, Shimon; van der Meulen, Freerk W.; van Gemert, Martin J. C.

    1996-12-01

    Pulsed Er:YAG and CO2 lasers should be suitable instruments for dentin and enamel ablation because both tissues have absorption peaks for radiation at 2.9 and 9.6 micrometers wavelengths. This is the context of our research that emphasizes the way in which the diameter and the depth of the crater made in enamel and dentin with the laser Er:YAG and CO2 is influenced in quantity and quality. Freshly extracted human third molar were used for this experiment. The laser source is Er:YAG Kavo Key dental model 1240 and CO2 Laser Sonics LS 860. The dimensions of the obtained craters were measured using the optical microscopy method. The obtained results were modelled experimentally with programs: GRAPHER and STATGRAPHICS. After the mathematical processing to the results what we obtain is relevant regarding the influence of the key parameters in the efficiency of the ablation according to the type of laser. On the whole, from our research results that both lasers ablate efficiently the dentin when the laser energy is between 200 and 300 mJ.

  14. Electrically Tunable Nd:YAG waveguide laser based on Graphene

    PubMed Central

    Ma, Linan; Tan, Yang; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2016-01-01

    We demonstrate a tunable hybrid Graphene-Nd:YAG cladding waveguide laser exploiting the electro-optic and the Joule heating effects of Graphene. A cladding Nd:YAG waveguide was fabricated by the ion irradiation. The multi-layer graphene were transferred onto the waveguide surface as the saturable absorber to get the Q-switched pulsed laser oscillation in the waveguide. Composing with appropriate electrodes, graphene based capacitance and heater were formed on the surface of the Nd:YAG waveguide. Through electrical control of graphene, the state of the hybrid waveguide laser was turned on or off. And the laser operation of the hybrid waveguide was electrically tuned between the continuous wave laser and the nanosecond pulsed laser. PMID:27833114

  15. Clinical comparison of potassium-titanyl-phosphate (KTP) versus neodymium:YAG (Nd:YAG) laser treatment for lower extremity telangiectases.

    PubMed

    Ozden, Müge Güler; Bahçivan, Muzaffer; Aydin, Fatma; Şentürk, Nilgün; Bek, Yüksel; Cantürk, Tayyar; Turanli, Ahmet Yaşar

    2011-06-01

    The Nd:YAG laser has been considered the gold standard of treatment for leg veins, but pain and side effects have fueled physicians to use treatment alternatives. To compare the clinical efficacy of the long-pulsed 1064-nm Nd:YAG laser with KTP laser irradiation in the treatment of leg telangiectasia. A series of 16 patients with size-matched superficial telangiectases of the lower extremities were randomly assigned to receive three consecutive monthly treatments with the long-pulsed 1064-nm Nd:YAG on one leg and 532-nm KTP laser irradiation on the other. For the 16 patients who completed the study, 64 leg vein sites were treated. Average clinical improvement scores were 1.94 and 1.25 for the KTP laser-treated leg and 3.38 and 3.50 for the Nd:YAG laser-treated leg with thin (≤ 1 mm) and large (1-3 mm) vessels, respectively. After the third treatment session, average improvement scores of 2.44, 1.31 and 3.75, 3.23 were given for the KTP and Nd:YAG laser-treated sides, respectively. Both the 1064-nm Nd:YAG and KTP lasers are effective in the treatment of lower extremity telangiectases. However, the KTP laser has very low efficacy with vessels larger than 1 mm and should not be elected when treating such vessels.

  16. Real time determination of the laser ablated mass by means of electric field-perturbation measurement

    NASA Astrophysics Data System (ADS)

    Pacheco, P.; Álvarez, J.; Sarmiento, R.; Bredice, F.; Sánchez-Aké, C.; Villagrán-Muniz, M.; Palleschi, V.

    2018-04-01

    A Nd:YAG ns-pulsed laser was used to ablate Al, Cd and Zn targets, which were placed between the plates of a planar charged capacitor. The plasma generates a transient redistribution of the electrical charges on the plates that can be measured as a voltage drop across a resistor connected to the ground plate. This signal is proportional to the capacitor applied voltage, the distance between the plates and the total number of ions produced in the ablation process which in turn is related to the laser energy and the ablated mass. After a series of pulses, the targets were weighed on a thermogravimetric balance to measure the ablated mass. Our results show that the electrical signal measured on the resistor is univocally related to the ablated mass from the target. Therefore, after a proper calibration depending on the material and the experimental geometry, the electrical signal can be used for real time quantitative measurement of the ablated mass in pulsed laser generated plasma experiments. The experiments were repeated on an aluminum target, with and without the presence of the external electric field in order to determine the possible influence of the applied electric field on the ablated mass.

  17. Comparison of diode laser and Er:YAG lasers in the treatment of ankyloglossia.

    PubMed

    Aras, Mutan Hamdi; Göregen, Mustafa; Güngörmüş, Metin; Akgül, Hayati Murat

    2010-04-01

    The purpose of this study was to compare the tolerance of lingual frenectomy with regard to a local anesthesia requirement and comparison of postsurgical discomfort experienced by patients operated on with both diode and erbium:yttrium-aluminium-garnet (Er:YAG) lasers. Ankyloglossia, commonly known as tongue-tie, is a congenital oral anomaly characterized by a short lingual frenulum. A short lingual frenulum may contribute to feeding, speech, and mechanical tongue problems. Sixteen referred patients with tongue mobility complaints were included in this study. A GaAlAs laser device with a continuous wavelength of 808 nm was used in the diode group. Frenulums were incised by applying 2 W of laser power. The Er:YAG laser device with a continuous wavelength of 2940 nm was used in the Er:YAG group. Frenulums were incised by applying 1 W of laser power. The acceptability of the lingual frenectomy without local anesthesia and the degree of the postsurgical discomfort were evaluated. Although the majority of patients (six) could be operated on without local anesthesia in the Er:YAG group, all patients could not be operated on without local anesthetic agent in the diode group. There were no differences between the two groups with regard to pain, chewing, and speaking on the first or seventh day after surgery, whereas patients had more pain in the Er:YAG group than in the diode group the first 3 h after surgery. The results indicate that only the Er:YAG laser can be used for lingual frenectomy without local anesthesia, and there was no difference between the two groups regarding the degree of the postsurgical discomfort except in the first 3 h. In conclusion, these results indicate that the Er:YAG laser is more advantageous than the diode laser in minor soft-tissue surgery because it can be performed without local anesthesia and with only topical anesthesia.

  18. Recycling of pneumatic scrap tyre into nano-crumb rubber by pulsed laser ablation in different pH media

    NASA Astrophysics Data System (ADS)

    Ezaan Khamsan, Nur; Bidin, Noriah; Islam, Shumaila; Daud, Suzairi; Krishnan, Ganesan; Bakar, Mohamad Aizat A.; Naqiuddin Razali, Muhamad; Khamis, Jamil

    2018-05-01

    Nano crumb rubber from scrap tyre is synthesized via 1064 nm pulsed Nd:YAG laser ablation in three different pH media i.e. DI-water (pH∼6.45), D-limonene (pH∼3.47) and NaOH solution (pH∼13.41). Field Emission Scanning Electron Microscope (FESEM) results show spherical morphology of crumb rubber with high degree of aggregation in DI-water and in D-limonene. However, dispersion of crumb rubbers is observed in NaOH solution. The smallest particles size is obtained in NaOH solution within the range of 10.9 nm – 74.3 nm. Energy-dispersive X-ray spectroscopy (EDX) and FTIR analysis confirmed the elements distribution and chemical bonding of rubber with DI-water, D-limonene and NaOH solution. The experimental findings shows that pulsed Nd:YAG laser ablation has potential for fabricating nano-crumb rubber in liquid media.

  19. Simple synthetic route for hydroxyapatite colloidal nanoparticles via a Nd:YAG laser ablation in liquid medium

    NASA Astrophysics Data System (ADS)

    Mhin, Sung Wook; Ryu, Jeong Ho; Kim, Kang Min; Park, Gyeong Seon; Ryu, Han Wool; Shim, Kwang Bo; Sasaki, Takeshi; Koshizaki, Naoto

    2009-08-01

    Pulsed laser ablation (PLA) in liquid medium was successfully employed to synthesize hydroxyapatite (HAp) colloidal nanoparticles. The crystalline phase, particle morphology, size distribution and microstructure of the HAp nanoparticles were investigated in detail. The obtained HAp nanoparticles had spherical shape with sizes ranging from 5 to 20 nm. The laser ablation and the nanoparticle forming process were studied in terms of the explosive ejection mechanism by investigating the change of the surface morphology on target. The stoichiometry and bonding properties were studied by using XPS, FT-IR and Raman spectroscopy. A molar ratio of Ca/P of the prepared HAp nanoparticles was more stoichiometric than the value reported in the case of ablation in vacuum.

  20. Film analysis employing subtarget effect using 355 nm Nd-YAG laser-induced plasma at low pressure

    NASA Astrophysics Data System (ADS)

    Hedwig, Rinda; Budi, Wahyu Setia; Abdulmadjid, Syahrun Nur; Pardede, Marincan; Suliyanti, Maria Margaretha; Lie, Tjung Jie; Kurniawan, Davy Putra; Kurniawan, Koo Hendrik; Kagawa, Kiichiro; Tjia, May On

    2006-12-01

    The applicability of spectrochemical analysis for liquid and powder samples of minute amount in the form of thin film was investigated using ultraviolet Nd-YAG laser (355 nm) and low-pressure ambient air. A variety of organic samples such as commercial black ink usually used for stamp pad, ginseng extract, human blood, liquid milk and ginseng powder was prepared as film deposited on the surface of an appropriate hard substrate such as copper plate or glass slide. It was demonstrated that in all cases studied, good quality spectra were obtained with very low background and free from undesirable contamination by the substrate elements, featuring ppm or even sub-ppm sensitivity and worthy of application for quantitative analysis of organic samples. The proper preparation of the films was found to be crucial in achieving the high quality spectra. It was further shown that much inferior results were obtained when the atmospheric-pressure (101 kPa) operating condition of laser-induced breakdown spectroscopy or the fundamental wavelength of the Nd-YAG laser was employed due to the excessive or improper laser ablation process.

  1. The choice: Welding with CO2 or Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Leong, Keng H.

    The recent commercial availability of multi-kilowatt Nd:YAG lasers has opened new avenues for rapid laser processing as well as intensified the competition (cost effectiveness) between CO2 and Nd:YAG laser systems. Vendors offering Nd:YAG laser systems may claim lower operating costs (than CO2) and fiberoptic beam delivery flexibility while CO2 systems vendors may emphasize lower capital cost and well established processing requirements and experience. The capital and operating costs of a laser system are impacted by demand and supply economics and technological advances. Frequently the total cost of a workcell using a laser for processing has to be considered rather than the laser system alone. Consequently it is not very practical to approach the selection of a laser system based on its capital cost and estimated operating cost only. This presentation describes a more pragmatic approach to aid the user in the selection of the optimal multi-kilowatt laser system for a particular processing requirement with emphasis on welding. CO2 laser systems are well established on the factory floor. Consequently, emphasis is given to the comparative application of Nd:YAG lasers, process requirements and performance. Requirements for the laser welding of different metals are examined in the context of hardware (laser system and beam delivery) selection and examples of welding speeds that can be achieved using CO2 and Nd:YAG lasers are examined.

  2. Recolonization of laser-ablated bacterial biofilm.

    PubMed

    Nandakumar, Kanavillil; Obika, Hideki; Utsumi, Akihiro; Toshihiko, Ooie; Yano, Tetsuo

    2004-01-20

    The recolonization of laser-ablated bacterial monoculture biofilm was studied in the laboratory by using a flow-cytometer system. The marine biofilm-forming bacterium Pseudoalteromonas carrageenovora was used to develop biofilms on titanium coupons. Upon exposure to a low-power pulsed irradiation from an Nd:YAG laser, the coupons with biofilm were significantly reduced both in terms of total viable count (TVC) and area cover. The energy density used for a pulse of 5 ns was 0.1 J/cm(2) and the durations of irradiation exposure were 5 and 10 min. When placed in a flow of dilute ZoBell marine broth medium (10%) the laser-destructed bacterial film in a flow-cytometer showed significant recovery over a period of time. The flow of medium was regulated at 3.2 ml/min. The increase in area cover and TVC, however, was significantly less than that observed for nonirradiated control (t-test, P< 0.05). The coupons were observed for biofilm area cover and TVC at different intervals (3, 6, and 9 h) after irradiation. While the biofilm in the control coupon at the end of 9 h of exposure showed 95.6 +/- 4.1% cover, the 5- and 10-min irradiated samples after 9 h showed 60.3 +/- 6.5 and 37.4 +/- 12.1% area cover, respectively. The reduced rate of recolonization compared to control was thought be due to the lethal and sublethal impacts of laser irradiation on bacteria. This observation thus provided data on the online recolonization speed of biofilm, which is important when considering pulsed laser irradiation as an ablating technique of biofilm formation and removal in natural systems. Copyright 2003 Wiley Periodicals, Inc.

  3. OCDR guided laser ablation device

    DOEpatents

    Dasilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A guided laser ablation device. The device includes a mulitmode laser ablation fiber that is surrounded by one or more single mode optical fibers that are used to image in the vicinity of the laser ablation area to prevent tissue damage. The laser ablation device is combined with an optical coherence domain reflectometry (OCDR) unit and with a control unit which initializes the OCDR unit and a high power laser of the ablation device. Data from the OCDR unit is analyzed by the control unit and used to control the high power laser. The OCDR images up to about 3 mm ahead of the ablation surface to enable a user to see sensitive tissue such as a nerve or artery before damaging it by the laser.

  4. Studies of LA-ICP-MS on quartz glasses at different wavelengths of a Nd:YAG laser.

    PubMed

    Becker, J S; Tenzler, D

    2001-07-01

    The capability of LA-ICP-MS for determination of trace impurities in transparent quartz glasses was investigated. Due to low or completely lacking absorption of laser radiation, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) proves difficult on transparent solids, and in particular the quantification of measurement results is problematic in these circumstances. Quartz glass reference materials of various compositions were studied by using a Nd:YAG laser system with focused laser radiation of wavelengths of 1064 nm, 532 nm and 266 nm, and an ICP-QMS (Elan 6000, Perkin Elmer). The influence of ICP and laser ablation conditions in the analysis of quartz glasses of different compositions was investigated, with the laser power density in the region of interaction between laser radiation and solid surface determining the ablation process. The trace element concentration was determined via calibration curves recorded with the aid of quartz glass reference materials. Under optimized measuring conditions the correlation coefficients of the calibration curves are in the range of 0.9-1. The relative sensitivity factors of the trace elements determined in the quartz glass matrix are 0.1-10 for most of the trace elements studied by LA-ICP-MS. The detection limits of the trace elements in quartz glass are in the low ng/g to pg/g range.

  5. Suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding.

    PubMed

    Huss, Rafael; Wilhelm, Ralf; Kolleck, Christian; Neumann, Jörg; Kracht, Dietmar

    2010-06-07

    The onset of parasitic oscillations limits the extraction efficiency and therefore energy scaling of Q-switched lasers. A solid-state laser was end pumped with a fiber-coupled diode laser and operated in q-cw as well as in passively Q-switched operation. For Q-switched operation, we demonstrate the suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding.

  6. Synthesis of SiC nanoparticles by SHG 532 nm Nd:YAG laser ablation of silicon in ethanol

    NASA Astrophysics Data System (ADS)

    Khashan, Khawla S.; Ismail, Raid A.; Mahdi, Rana O.

    2018-06-01

    In this work, colloidal spherical nanoparticles NPs of silicon carbide SiC have been synthesized using second harmonic generation 532 nm Nd:YAG laser ablation of silicon target dipped in ethanol solution at various laser fluences (1.5-5) J/cm2. X-Ray diffraction XRD, scanning electron microscopy SEM, transmission electron microscope TEM, Fourier transformed infrared spectroscopy FT-IR, Raman spectroscopy, photoluminescence PL spectroscopy, and UV-Vis absorption were employed to examine the structural, chemical and optical properties of SiC NPs. XRD results showed that all synthesised SiC nanoparticles are crystalline in nature and have hexagonal structure with preferred orientation along (103) plane. Raman investigation showed three characteristic peaks 764,786 and 954 cm-1, which are indexing to transverse optic TO phonon mode and longitudinal optic LO phonon mode of 4H-SiC structure. The optical absorption data showed that the values of optical energy gap of SiC nanoparticles prepared at 1.5 J/cm2 was 3.6 eV and was 3.85 eV for SiC synthesised at 5 J/cm2. SEM investigations confirmed that the nanoparticles synthesised at 5 J/cm2 are agglomerated to form larger particles. TEM measurements showed that SiC particles prepared at 1.5 J/cm2 have spherical shape with average size of 25 nm, while the particles prepared at 5 J/cm2 have an average size of 55 nm.

  7. 21 CFR 886.4392 - Nd:YAG laser for posterior capsulotomy and peripheral iridotomy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nd:YAG laser for posterior capsulotomy and...:YAG laser for posterior capsulotomy and peripheral iridotomy. (a) Identification. The Nd:YAG laser for... laser intended for disruption of the posterior capsule or the iris via optical breakdown. The Nd:YAG...

  8. 21 CFR 886.4392 - Nd:YAG laser for posterior capsulotomy and peripheral iridotomy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nd:YAG laser for posterior capsulotomy and...:YAG laser for posterior capsulotomy and peripheral iridotomy. (a) Identification. The Nd:YAG laser for... laser intended for disruption of the posterior capsule or the iris via optical breakdown. The Nd:YAG...

  9. 21 CFR 886.4392 - Nd:YAG laser for posterior capsulotomy and peripheral iridotomy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nd:YAG laser for posterior capsulotomy and...:YAG laser for posterior capsulotomy and peripheral iridotomy. (a) Identification. The Nd:YAG laser for... laser intended for disruption of the posterior capsule or the iris via optical breakdown. The Nd:YAG...

  10. 21 CFR 886.4392 - Nd:YAG laser for posterior capsulotomy and peripheral iridotomy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nd:YAG laser for posterior capsulotomy and...:YAG laser for posterior capsulotomy and peripheral iridotomy. (a) Identification. The Nd:YAG laser for... laser intended for disruption of the posterior capsule or the iris via optical breakdown. The Nd:YAG...

  11. Study and development of 22 kW peak power fiber coupled short pulse Nd:YAG laser for cleaning applications

    NASA Astrophysics Data System (ADS)

    Choubey, Ambar; Vishwakarma, S. C.; Vachhani, D. M.; Singh, Ravindra; Misra, Pushkar; Jain, R. K.; Arya, R.; Upadhyaya, B. N.; Oak, S. M.

    2014-11-01

    Free running short pulse Nd:YAG laser of microsecond pulse duration and high peak power has a unique capability to ablate material from the surface without heat propagation into the bulk. Applications of short pulse Nd:YAG lasers include cleaning and restoration of marble, stones, and a variety of metals for conservation. A study on the development of high peak power short pulses from Nd:YAG laser along with its cleaning and conservation applications has been performed. A pulse energy of 1.25 J with 55 μs pulse duration and a maximum peak power of 22 kW has been achieved. Laser beam has an M2 value of ~28 and a pulse-to-pulse stability of ±2.5%. A lower value of M2 means a better beam quality of the laser in multimode operation. A top hat spatial profile of the laser beam was achieved at the exit end of 200 μm core diameter optical fiber, which is desirable for uniform cleaning. This laser system has been evaluated for efficient cleaning of surface contaminations on marble, zircaloy, and inconel materials for conservation with cleaning efficiency as high as 98%. Laser's cleaning quality and efficiency have been analysed by using a microscope, a scanning electron microscope (SEM), and X-ray photon spectroscopy (XPS) measurements.

  12. Healing of rat mouth mucosa after irradiation with CO2, Nd:YAG, and CO2-Nd:YAG combination lasers.

    PubMed

    Luomanen, M; Rauhamaa-Mäkinen, R; Meurman, J H; Kosloff, T; Tiitta, O

    1994-08-01

    The healing process of wounds made by a combination laser was studied in 90 rats. The laser system enabled both separate and combined use of CO2 and Nd:YAG laser irradiations. The laser wounds and the control excision wounds made by alligator forceps appeared on both sides of the tongue. Specimens from the wound sites were taken immediately, 6 h, and 1, 2, 4, 7, 11, 21, 28, and 42 days after surgery. The wound-healing process was studied by macroscopic evaluation before preparing the specimens for light microscopy. Some differences were noted in the wound-healing process among the three groups into which the experimental animals were divided. Tissue coagulation damage was most extensive in the Nd:YAG laser sites, where it was observed in its full extent 4 days after surgery. Epithelial cells were seen to begin to proliferate in all the wounds 6 h after surgery. Re-epithelialization was completed by between 7 (CO2) and 21 days (Nd:YAG) at all the wound sites. The inflammatory cell infiltration was more prominent in the Nd:YAG and the CO2-Nd:YAG combination laser wounds than in the CO2 and excision wounds during healing. Tissue regeneration occurred faster with less contraction in the combination CO2-Nd:YAG wounds than in Nd:YAG wounds. The best macroscopic healing result was seen in the CO2 wound sites. The combination laser was effective both at cutting and at coagulating tissue. Combining the CO2 and Nd:YAG laser irradiation into one beam resulted in a greater incision depth than what could have been expected from using the two lasers separately.

  13. A Fluorescence-Guided Laser Ablation System for Removal of Residual Cancer in a Mouse Model of Soft Tissue Sarcoma.

    PubMed

    Lazarides, Alexander L; Whitley, Melodi J; Strasfeld, David B; Cardona, Diana M; Ferrer, Jorge M; Mueller, Jenna L; Fu, Henry L; Bartholf DeWitt, Suzanne; Brigman, Brian E; Ramanujam, Nimmi; Kirsch, David G; Eward, William C

    2016-01-01

    The treatment of soft tissue sarcoma (STS) generally involves tumor excision with a wide margin. Although advances in fluorescence imaging make real-time detection of cancer possible, removal is limited by the precision of the human eye and hand. Here, we describe a novel pulsed Nd:YAG laser ablation system that, when used in conjunction with a previously described molecular imaging system, can identify and ablate cancer in vivo. Mice with primary STS were injected with the protease-activatable probe LUM015 to label tumors. Resected tissues from the mice were then imaged and treated with the laser using the paired fluorescence-imaging/ laser ablation device, generating ablation clefts with sub-millimeter precision and minimal underlying tissue damage. Laser ablation was guided by fluorescence to target tumor tissues, avoiding normal structures. The selective ablation of tumor implants in vivo improved recurrence-free survival after tumor resection in a cohort of 14 mice compared to 12 mice that received no ablative therapy. This prototype system has the potential to be modified so that it can be used during surgery to improve recurrence-free survival in patients with cancer.

  14. Er:YAG laser dentistry in special needs patients

    PubMed Central

    Fornaini, Carlo; Clini, Fabio; Fontana, Matteo; Cella, Luigi; Oppici, Aldo

    2015-01-01

    Objective: Between a quarter and a third of adults with intellectual disability is estimated to have dental anxiety. Unpleasant stimuli, such as the injection of local anaesthesia or the noise and vibration of rotary instruments, may provoke anxiety and subsequent low compliance until the opposition to the treatment. The use of Er:YAG laser in conservative dentistry had a great development in these last years thank to new devices and also to their advantages when compared to the conventional instruments. The aim of this clinical study was to show the advantages of the Er:YAG laser in the conservative treatment of Special Care patients. Methods: Four cases are here described to show the Er:YAG laser use in our Unit on special needs patients. Results and conclusions: Based on the experience gained on conservative laser-assisted treatments performed in a time of 5 years at our Dentistry, Special Needs and Maxillo-Facial Surgery Unit we may affirm that Er:YAG laser may be considered as a good way to improve the cooperation, to reduce anxiety related to rotating instruments and to reach better results with equal or shorter operating times. PMID:26557733

  15. Injection-seeded operation of a Q-switched Cr,Tm,Ho:YAG laser

    NASA Technical Reports Server (NTRS)

    Henderson, Sammy W.; Hale, Charley P.; Magee, James R.

    1991-01-01

    Single-frequency Tm,Ho:YAG lasers operating near 2 microns are attractive sources for several applications including eye-safe laser radar (lidar) and pumping of AgGaSe2 parametric oscillators for efficient generation of longer wavelengths. As part of a program to develop a coherent lidar system using Tm,Ho:YAG lasers, a diode laser-pumped tunable CW single-longitudinal-mode (SLM) Cr:Tm:Ho:YAG laser and a flashlamp-pumped single-transverse-mode Q-switched Cr,Tm,Ho:YAG laser were developed. The CW laser was used to injection-seed the flashlamp-pumped laser, resulting in SLM Q-switched output. Operational characteristics of the CW and Q-switched lasers and injection-seeding results are reported.

  16. Combination of CO2 and Q-switched Nd:YAG lasers is more effective than Q-switched Nd:YAG laser alone for eyebrow tattoo removal.

    PubMed

    Radmanesh, Mohammad; Rafiei, Zohreh

    2015-04-01

    The eyebrow tattoo removal using Q-switched lasers is usually prolonged. Other modalities may be required to enhance the efficacy and shorten the treatment course. To compare the efficacy of Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) laser alone versus combination of Q-switched Nd:YAG and Ultrapulse CO2 lasers for eyebrow tattoo removal after a single session. After local anesthesia, the right eyebrow of 20 patients was treated with Ultrapulse CO2 laser with the parameters of 4 J/cm(2) and 3.2 J/cm(2) for the first and the second passes. Both eyebrows were then treated with 1064-nm and 532-nm Q-switched Nd:YAG laser. The spot size and pulse duration were 3 mm and 5 nanoseconds for both wavelengths, and the fluence was 7 J/cm(2) for 1064 nm and 3 J/cm (2) for 532 nm. The side treated with combination of Q-switched Nd:YAG and CO2 lasers improved 75-100% in 6 of 20 patients versus only 1 of 20 in the side treated with Q-switched Nd:YAG alone. Similarly, the right side in 13 of 20 patients showed more than 50% improvement with combination therapy versus the left side (the monotherapy side), where only 6 of 20 cases showed more than 50% improvement. The Mann-Whitney test was 2.85 for the right side and 1.95 for the left side (P value = 0.007). Using Ultra pulse CO2 laser enhances the efficacy of Q-switched Nd:YAG laser in eyebrow tattoo removal.

  17. Effect of CO2, Nd:YAG and Er:YAG Lasers on Microtensile Bond Strength of Composite to Bleached-Enamel.

    PubMed

    Basir, Mahshid Mohammadi; Rezvani, Mohammad Bagher; Chiniforush, Nasim; Moradi, Zohreh

    2016-01-01

    Tooth restoration immediately after bleaching is challenging due to the potential problems in achieving adequate bond strength. The aim of this study was to evaluate the effect of surface treatment with ER:YAG, ND:YAG, CO2 lasers and 10% sodium ascorbate solution on immediate microtensile bond strength of composite resin to recently bleached enamel. Ninety sound molar teeth were randomly divided into three main groups (n:30) : NB (without bleaching), HB (bleached with 38% carbamide peroxide) and OB (bleached with Heydent bleaching gel assisted by diode laser). Each group was divided into five subgroups (n:6) : Si (without surface treatment), Er (Er:YAG laser), CO2 (CO2 laser), Nd (Nd:YAG laser) and As (Immersion in 10% sodium ascorbate solution). The bonding system was then applied and composite build-ups were constructed. The teeth were sectioned by low speed saw to obtain enamel- resin sticks and submitted to microtensile bond testing. Statistical analyses were done using two- way ANOVA, Tukey and Tamhane tests. µTBS of bleached teeth irradiated with ND:YAG laser was not significantly different from NB-Nd group. Microtensile bond strength of OB-Er group was higher than NB-Er and HB-Er groups. The mean µTBS of HB-CO2 group was higher than NB-CO2 group; the average µTBS of HB-As and OB-As groups was also higher than NB-As group. Use of Nd:YAG, CO2 lasers and 10% sodium ascorbate solution could improve the bond strength in home-bleached specimens. Application of ND:YAG laser on nonbleached specimens and Er:YAG laser on office-bleached specimens led to the highest µTBS in comparison to other surface treatments in each main group.

  18. Acute and chronic response of articular cartilage to Ho:YAG laser irradiation

    NASA Astrophysics Data System (ADS)

    Trauner, Kenneth B.; Nishioka, Norman S.; Flotte, Thomas J.; Patel, Dinesh K.

    1992-06-01

    A Ho:YAG laser system operating at a wavelength of 2.1 microns has recently been introduced for use in arthroscopic surgery. The acceptability of this new tool will be determined not only by its ability to resect tissue, but also by its long term effects on articular surfaces. In order to investigate these issues further, we performed two studies to evaluate the acute and chronic effects of the laser on cartilaginous tissue. We evaluated the acute, in vitro effects of 2.1 micron laser irradiation on articular and fibrocartilage. This included the measurement of ablation efficiency, ablation threshold and thermal damage in both meniscus and articular cartilage. To document the chronic effects on articular cartilage in vivo, we next performed a ten week healing study. Eight sheep weighing 30 - 40 kg underwent bilateral arthrotomy procedures. Multiple full thickness and partial thickness defects were created. Animals were sacrificed at 0, 2, 4, and 10 weeks. The healing study demonstrated: (1) no healing of full or partial thickness defects at 10 weeks with hyaline cartilage; (2) fibrocartilaginous granulation tissue filling full thickness defects at two and four weeks, but no longer evident at ten weeks; (3) chondrocyte necrosis extending to greater than 900 microns distal to ablation craters at four weeks with no evidence of repair at later dates; and (4) chondrocyte hyperplasia at the borders of the damage zone at two weeks but no longer evident at later sacrifice dates.

  19. Fabrication of Ta nanoparticles induced by nanosecond laser ablation in ethanol: the study of laser fluence effects

    NASA Astrophysics Data System (ADS)

    Azadi Kenari, Fariba; Moniri, Samira; Hantehzadeh, Mohammad Reza; Dorranian, Davoud; Ghoranneviss, Mahmood

    2018-05-01

    Tantalum nanoparticles (Ta NPs) were synthesized in ethanol solution by ablation with a 1064 nm Nd:YAG laser. Prepared NPs were investigated by UV-visible absorption spectroscopy, Transmission electron microscopy, X-ray diffraction and Photoluminescence measurement. The average sizes of NPs were calculated to be in the range of 12-18 nm. From the UV-visible studies, the plasmon peak position of Ta NPs was observed in the spectral range of 206-208 nm. The XRD spectra clearly showed the crystalline structure of NPs and various peaks of Ta and Ta2O5. Moreover, the UV region in the PL spectrum included the free exciton and the bound exciton emission correlated with the defect concentration. In fact, the laser ablation in the organic and inorganic solvents is a strong technique to obtain some NPs with particular structures, which are impossible to produce by conventional methods.

  20. Water flow on erbium:yttrium-aluminum-garnet laser irradiation: effects on dental tissues.

    PubMed

    Colucci, Vivian; do Amaral, Flávia Lucisano Botelho; Pécora, Jesus Djalma; Palma-Dibb, Regina Guenka; Corona, Silmara Aparecida Milori

    2009-09-01

    Since lasers were introduced in dentistry, there has been considerable advancement in technology. Several wavelengths have been investigated as substitutes for high-speed air turbine. Owing to its high absorbability in water and hydroxyapatite, the erbium:yttrium-aluminum-garnet (Er:YAG) laser has been of great interest among dental practitioners and scientists. In spite of its great potential for hard tissue ablation, Er:YAG laser effectiveness and safety is directly related to an adequate setting of the working patterns. It is assumed that the ablation rate is influenced by certain conditions, such as water content of the target tissue, and laser parameters. It has been shown that Er:YAG irradiation with water coolant attenuates temperature rise and, hence, minimizes the risk of thermally induced pulp injury. It also increases ablation efficiency and enhances adhesion to the lased dental tissue. The aim of this review was to obtain insights into the ablation process and to discuss the effects of water flow on dental tissue ablation using Er:YAG laser.

  1. Yb:YAG disc for high energy laser systems

    NASA Astrophysics Data System (ADS)

    Nejezchleb, Karel; Kubát, Jan; Å ulc, Jan; Jelínková, Helena

    2017-02-01

    Large Yb:YAG crystals were grown using of new improved technology enabling to produce YAG crystals without central growth defect. The crystals diameter reached 115-120mm and their central part was used for manufacturing of discs with the diameter larger than 55 mm. Both sides of this discs were polished and coated. Doping concentration of Yb3+ ions in Yb:YAG crystals was measured using of X-ray fluorescence spectrometry. Absorption coefficient of Yb:YAG was measured for different doping concentration of Yb3+ ions. Fluorescence decay time of Yb:YAG was measured at temperatures of 300K and 80 K. We found the fluorescence decay time of the values of 0.95-1 ms at both temperatures stable and independent on the Yb3+ doping concentration in the range of 1-10 at.% Yb/Y demonstrating high chemical purity of grown crystals. Optical homogeneity as measured using of Fizeau double pass interferometer at 633nm resulted with PV values lower than 0.15 λ on clear aperture of 35 mm. Polished surfaces were ideally parallel with the wedge lower than 2 arcsec. Uniformity of laser properties of Yb:YAG was verified by scanning of the disc as active media in plan-convex pulsed laser resonator pumped by semiconductor diode (wavelength 969 nm, pumping beam diameter 100 μm). It was confirmed, that newly developed technology allows to manufacture very large high quality Yb:YAG discs suitable for high power lasers and amplifiers.

  2. ND:YAG laser for preretinal hemorrhage in diabetic retinopathy.

    PubMed

    Karagiannis, Dimitrios; Kontadakis, Georgios A; Flanagan, Declan

    2018-06-01

    To present fundus images of a case with severe preretinal hemorrhage in diabetic retinopathy that was treated with posterior hyaloidotomy with an Nd:YAG laser. A 35-year-old diabetic patient presented with sudden painless loss of vision due to severe preretinal hemorrhage over the macular area and high risk proliferative diabetic retinopathy. Her visual acuity was counting fingers. Posterior hyaloid face was treated with Nd:YAG laser (posterior hyaloidotomy). Panretinal laser photocoagulation was first performed to control the proliferative diabetic retinopathy. Blood drained inferiorly into the vitreous cavity with clearance of the premacular area. Prompt treatment with Panretinal laser photocoagulation followed by posterior hyaloidotomy with the YAG laser is a viable option in order to avoid further proliferative diabetic retinopathy complications and vision loss. The current image clearly depicts treatment efficacy.

  3. Pulsed Nd:YAG laser beam drilling: A review

    NASA Astrophysics Data System (ADS)

    Gautam, Girish Dutt; Pandey, Arun Kumar

    2018-03-01

    Laser beam drilling (LBD) is one of non contact type unconventional machining process that are employed in machining of stiff and high-strength materials, high strength temperature resistance materials such as; metal alloys, ceramics, composites and superalloys. Most of these materials are difficult-to-machine by using conventional machining methods. Also, the complex and precise holes may not be obtained by using the conventional machining processes which may be obtained by using unconventional machining processes. The laser beam drilling in one of the most important unconventional machining process that may be used for the machining of these materials with satisfactorily. In this paper, the attention is focused on the experimental and theoretical investigations on the pulsed Nd:YAG laser drilling of different categories of materials such as ferrous materials, non-ferrous materials, superalloys, composites and Ceramics. Moreover, the review has been emphasized by the use of pulsed Nd:YAG laser drilling of different materials in order to enhance productivity of this process without adverse effects on the drilled holes quality characteristics. Finally, the review is concluded with the possible scope in the area of pulsed Nd:YAG laser drilling. This review work may be very useful to the subsequent researchers in order to give an insight in the area of pulsed Nd:YAG laser drilling of different materials and research gaps available in this area.

  4. Laser ablation of iron-rich black films from exposed granite surfaces

    NASA Astrophysics Data System (ADS)

    Delgado Rodrigues, J.; Costa, D.; Mascalchi, M.; Osticioli, I.; Siano, S.

    2014-10-01

    Here, we investigated the potential of laser removal of iron-rich dark films from weathered granite substrates, which represents a very difficult conservation problem because of the polymineralic nature of the stone and of its complex deterioration mechanisms. As often occurs, biotite was the most critical component because of its high optical absorption, low melting temperature, and pronounced cleavage, which required a careful control of the photothermal and photomechanical effects to optimize the selective ablation of the mentioned unwanted dark film. Different pulse durations and wavelengths Nd:YAG lasers were tested and optimal irradiation conditions were determined through thorough analytical characterisations. Besides addressing a specific conservation problem, the present work provides information of general valence in laser uncovering of encrusted granite.

  5. Time-of-flight spectroscopy characterization of the plasma plume from a laser-ablated potassium titanyl phosphate crystal

    NASA Astrophysics Data System (ADS)

    Ying, Minju; Wang, XiaoXiao; Cheng, Wei; Liao, Bin; Zhang, Xu

    2015-06-01

    Optical emission spectra of the plasma produced by 1.06-μm Nd:YAG laser irradiation of a potassium titanyl phosphate (KTP) crystal were recorded and analyzed in a time- and spatially resolved manner. The composition and evolution of the plasma plume were studied in low vacuum conditions. Emission lines associated with Ti(I), Ti(II) and K(I) were identified in the plasma. The delay times of emission peaks for the ablated species were investigated as a function of the observation distance from the target surface, and the velocities of these species were derived accordingly. Two emission peaks corresponding to a fast and a slow component of ablated Ti(I) were observed by optical time-of-flight spectroscopy. The origins of the two peaks and a possible mechanism for the laser ablation are discussed.

  6. Ignition of an automobile engine by high-peak power Nd:YAG/Cr⁴⁺:YAG laser-spark devices.

    PubMed

    Pavel, Nicolaie; Dascalu, Traian; Salamu, Gabriela; Dinca, Mihai; Boicea, Niculae; Birtas, Adrian

    2015-12-28

    Laser sparks that were built with high-peak power passively Q-switched Nd:YAG/Cr(4+):YAG lasers have been used to operate a Renault automobile engine. The design of such a laser spark igniter is discussed. The Nd:YAG/Cr(4+):YAG laser delivered pulses with energy of 4 mJ and 0.8-ns duration, corresponding to pulse peak power of 5 MW. The coefficients of variability of maximum pressure (COV(Pmax)) and of indicated mean effective pressure (COV(IMEP)) and specific emissions like hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NO(x)) and carbon dioxide (CO2) were measured at various engine speeds and high loads. Improved engine stability in terms of COV(Pmax) and COV(Pmax) and decreased emissions of CO and HC were obtained for the engine that was run by laser sparks in comparison with classical ignition by electrical spark plugs.

  7. FT-Raman spectroscopic characterization of enamel surfaces irradiated with Nd:YAG and Er:YAG lasers

    PubMed Central

    Shahabi, Sima; Fekrazad, Reza; Johari, Maryam; Chiniforoush, Nasim; Rezaei, Yashar

    2016-01-01

    Background. Despite recent advances in dental caries prevention, caries is common and remains a serious health problem. Laser irradiation is one of the most common methods in preventive measures in recent years. Raman spectroscopy technique is utilized to study the microcrystalline structure of dental enamel. In this study, FT-Raman spectroscopy was used to evaluate chemical changes in enamel structure irradiated with Nd:YAG and Er:YAG lasers. Methods. We used 15 freshly-extracted, non-carious, human molars that were treated as follows: No treatment was carried out in group A (control group); Group B was irradiated with Er:YAG laser for 10 seconds under air and water spray; and Group C was irradiated with Nd:YAG laser for 10 seconds under air and water spray. After treatment, the samples were analyzed by FT-Raman spectroscopy. Results. The carbonate content evaluation with regard to the integrated area under the curve (1065/960 cm–1) exhibited a significant reduction in its ratio in groups B and C. The organic content (2935/960 cm-1) area exhibited a significant decrease after laser irradiation in group B and C. Conclusion. The results showed that the mineral and organic matrices of enamel structure were affected by laser irradiation; therefore, it might be a suitable method for caries prevention. PMID:28096945

  8. Investigations of YAG:Er(3+),Yb(3+) and YAG:Co(2+) Crystals for Laser Applications

    DTIC Science & Technology

    2001-01-01

    incident laser radiation wavelength of 1535 nm obtained for YAG:Co2÷ sample of initial transmission of 24.9%. As it can be seen from the presented...longitudinally pumped microlasers generating at 1535 tnm made of YAG:Er3 + ,Ylb3 + were carried out. A schematic of the laser cavity is shown in Fig. 4. The...I 17, Bellingham, Washington, 1995. 3. R. Fluck, U. Keller, E. Gini, H. Melchior, Eyesafe pulsed microchip laser , OSA TOPS Advanced Solid State

  9. Seeing laser scalpel: a novel monolithic high-power diode pumped Tm:YAG laser system at 2.02 μm with double-clad fiber combined OCT

    NASA Astrophysics Data System (ADS)

    Messner, Manuel; Heinrich, Arne; Hagen, Clemens; Unterrainer, Karl

    2017-02-01

    We report on a novel monolithic high-power diode pumped Tm:YAG laser at 2.02 μm. The pulsed laser generates average output power and pulse energy of beyond 90W and 900mJ in 400 μs pulses, respectively. This wavelength allows usage of standard fused silica fibers and optics, a price competitive solution for minimally-invasive endoscopic surgery. Recent developments in double-clad fiber combiners enable a rugged delivery system for the laser and the OCT ideal for a seeing laser scalpel. This gives the possibility to detect in-depth underlying tissue not yet ablated by the laser in a 2D or 3D fashion with micrometer resolution.

  10. 21 CFR 886.4392 - Nd:YAG laser for posterior capsulotomy and peripheral iridotomy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Parameters: Device must emit a laser beam with the following parameters: wavelength = 1064 nanometers; spot... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nd:YAG laser for posterior capsulotomy and...:YAG laser for posterior capsulotomy and peripheral iridotomy. (a) Identification. The Nd:YAG laser for...

  11. Fractional ablative erbium YAG laser: histological characterization of relationships between laser settings and micropore dimensions.

    PubMed

    Taudorf, Elisabeth H; Haak, Christina S; Erlendsson, Andrés M; Philipsen, Peter A; Anderson, R Rox; Paasch, Uwe; Haedersdal, Merete

    2014-04-01

    Treatment of a variety of skin disorders with ablative fractional lasers (AFXL) is driving the development of portable AFXLs. This study measures micropore dimensions produced by a small 2,940 nm AFXL using a variety of stacked pulses, and determines a model correlating laser parameters with tissue effects. Ex vivo pig skin was exposed to a miniaturized 2,940 nm AFXL, spot size 225 µm, density 5%, power levels 1.15-2.22 W, pulse durations 50-225 microseconds, pulse repetition rates 100-500 Hz, and 2, 20, or 50 stacked pulses, resulting in pulse energies of 2.3-12.8 mJ/microbeam and total energy levels of 4.6-640 mJ/microchannel. Histological endpoints were ablation depth (AD), coagulation zone (CZ) and ablation width (AW). Data were logarithmically transformed if required prior to linear regression analyses. Results for histological endpoints were combined in a mathematical model. In 138 sections from 91 biopsies, AD ranged from 16 to a maximum of 1,348 µm and increased linearly with the logarithm of total energy delivered by stacked pulses, but also depended on variations in power, pulse duration, pulse repetition rate, and pulse energy (r(2)  = 0.54-0.85, P < 0.0001). Microchannels deeper than 500 µm were created only by the highest pulse energy of 12.8 mJ/microbeam. Pulse stacking increased AD, and enlarged CZ and AW. CZ varied from 0 to 205 µm and increased linearly with total energy (r(2)  = 0.56-0.75, P < 0.0001). AW ranged from 106 to 422 µm and increased linearly with the logarithm of number of stacked pulses (r(2)  = 0.53-0.61, P < 0.001). The mathematical model estimated micropores of specific ADs with an associated range of CZs and AWs, for example, 300 µm ADs were associated with CZs from 27 to 73 µm and AWs from 190 to 347 µm. Pulse stacking with a small, low power 2,940 nm AFXL created reproducible shallow to deep micropores, and influenced micropore configuration. Mathematical modeling

  12. Review of Laser Ablation Process for Single Wall Carbon Nanotube Production

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2003-01-01

    Different types of lasers are now routinely used to prepare single wall carbon nanotubes (SWCNTs). The original method developed by researchers at Rice University utilized a "double pulse laser oven" process. A graphite target containing about 1 atomic percent of metal catalysts is ablated inside a 1473K oven using laser pulses (10 ns pulse width) in slow flowing argon. Two YAG lasers with a green pulse (532 nm) followed by an IR pulse (1064 nm) with a 50 ns delay are used for ablation. This set up produced single wall carbon nanotube material with about 70% purity having a diameter distribution peaked around 1.4 nm. The impurities consist of fullerenes, metal catalyst clusters (10 to 100 nm diameter) and amorphous carbon. The rate of production with the initial set up was about 60 mg per hour with 10Hz laser systems. Several researchers have used variations of the lasers to improve the rate, consistency and study effects of different process parameters on the quality and quantity of SWCNTs. These variations include one to three YAG laser systems (Green, Green and IR), different pulse widths (nano to microseconds as well as continuous) and different laser wavelengths (Alexandrite, CO, CO2, free electron lasers in the near to far infrared). It is noted that yield from the single laser (Green or IR) systems is only a fraction of the two laser systems. The yield seemed to scale up with the repetition rate of the laser systems (10 to 60 Hz) and depended on the beam uniformity and quality of the laser pulses. The shift to longer wavelength lasers (free electron, CO and CO2) did not improve the quality, but increased the rate of production because these lasers are either continuous (CW) or high repetition rate pulses (kHz to MHz). The average power and the peak power of the lasers seem to influence the yields. Very high peak powers (MegaWatts per square centimeter) are noted to increase ablation of bigger particles with reduced yields of SWCNTs. Increased average powers

  13. Efficacy of Erbium:YAG laser treatment compared to topical estriol treatment for symptoms of genitourinary syndrome of menopause.

    PubMed

    Gaspar, Adrian; Brandi, Hugo; Gomez, Valentin; Luque, Daniel

    2017-02-01

    The objective of this prospective comparative cohort study was to establish the effectiveness and safety of Erbium:YAG (Er:YAG) laser treatment for genitourinary syndrome of menopause and to compare it with an established topical estriol treatment. Fifty patients with genitourinary syndrome of menopause were divided into two groups. The estriol group received a treatment of 0.5 mg estriol ovules for 8 weeks and the laser group was first treated for 2 weeks with 0.5 mg estriol ovules 3 times per week to hydrate the mucosa and then received three sessions with 2,940 nm Er:YAG laser in non-ablative mode. Biopsies were taken before and at 1, 3, 6, and 12 months post-treatment. Maturation index, maturation value and pH where recorded up to 12-months post-treatment, while the VAS analysis of symptoms was recorded up to 18 months post-treatment. Statistically significant (P < 0.05), reduction of all assessed symptoms was observed in the laser group at all follow-ups up to 18 months post-treatment. Significant improvement in maturation value and a decrease of pH in the laser group was detected up to 12 months after treatment. The improvement in all endpoints was more pronounced and longer lasting in the laser group. Histological examination showed changes in the tropism of the vaginal mucosa and also angiogenesis, congestion, and restructuring of the lamina propria in the laser group. Side effects were minimal and of transient nature in both groups, affecting 4% of patients in the laser group and 12% of patients in the estriol group. Our results show that Er:YAG laser treatment successfully relieves symptoms of genitourinary syndrome of menopause and that the results are more pronounced and longer lasting compared to topical estriol treatment. Lasers Surg. Med. 49:160-168, 2017. © 2016 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc. © 2016 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.

  14. Ablation mass features in multi-pulses femtosecond laser ablate molybdenum target

    NASA Astrophysics Data System (ADS)

    Zhao, Dongye; Gierse, Niels; Wegner, Julian; Pretzler, Georg; Oelmann, Jannis; Brezinsek, Sebastijan; Liang, Yunfeng; Neubauer, Olaf; Rasinski, Marcin; Linsmeier, Christian; Ding, Hongbin

    2018-03-01

    In this study, the ablation mass features related to reflectivity of bulk Molybdenum (Mo) were investigated by a Ti: Sa 6 fs laser pulse at central wavelength 790 nm. The ablated mass removal was determined using Confocal Microscopy (CM) technique. The surface reflectivity was calibrated and measured by a Lambda 950 spectrophotometer as well as a CCD camera during laser ablation. The ablation mass loss per pulse increase with the increasing of laser shots, meanwhile the surface reflectivity decrease. The multi-pulses (100 shots) ablation threshold of Mo was determined to be 0.15 J/cm2. The incubation coefficient was estimated as 0.835. The reflectivity change of the Mo target surface following multi-pulses laser ablation were studied as a function of laser ablation shots at various laser fluences from 1.07 J/cm2 to 36.23 J/cm2. The results of measured reflectivity indicate that surface reflectivity of Mo target has a significant decline in the first 3-laser pulses at the various fluences. These results are important for developing a quantitative analysis model for laser induced ablation and laser induced breakdown spectroscopy for the first wall diagnosis of EAST tokamak.

  15. Dependence of Nd:YAG laser derusting and passivation of iron artifacts on pulse duration

    NASA Astrophysics Data System (ADS)

    Osticioli, Iacopo; Siano, Salvatore

    2013-11-01

    In this work laser derusting and passivation process of iron objects of conservation interest were investigated. In particular, the effects induced by laser irradiation of three lasers with different temporal emission regimes were studied, exhibiting very different behavior. Nd:YAG(1064 nm) laser systems were employed in the experiments: a Q-Switching laser with pulse duration of 8 ns, a Long Q-Switching laser with pulse duration of 120 ns and a Short Free Running pulse duration in a range of 40-120 μs. These lasers are commonly used in conservation. Lasers treatments were applied on iron samples subjected to natural weathering in outdoor conditions for about five years. Moreover some experiments were also performed on metallic parts of an original chandelier from the seventies as well as on a deeply corroded Roman sword. Results obtained reveals that longer pulse duration leads to phase changes on the rust layer and a homogeneous black-grayish coating is formed on the surface (identified as magnetite) after treatment. Whereas, QS laser pulses are capable to induce ablation of the corrosion layer exposing the pure metal underneath. Finally, LQS interaction includes deep ablation with localized micro-melting of the metal surface and partial transformation of the residual mineral areas was observed. The irradiation results were characterized through optical and BS- ESEM along with Raman spectroscopy, which allowed a clear phenomenological differentiation among the three operating regimes and provided information on their optimal exploitation in restoration of iron artifacts.

  16. Synthesis of bimetallic nanostructures by nanosecond laser ablation of multicomponent thin films in water

    NASA Astrophysics Data System (ADS)

    Nikov, R. G.; Nedyalkov, N. N.; Atanasov, P. A.; Karashanova, D. B.

    2018-03-01

    The paper presents results on nanosecond laser ablation of thin films immersed in a liquid. The thin films were prepared by consecutive deposition of layers of different metals by thermal evaporation (first layer) and classical on-axis pulsed laser deposition (second layer); Ni/Au, Ag/Au and Ni/Ag thin films were thus deposited on glass substrates. The as-prepared films were then placed at the bottom of a glass vessel filled with double distilled water and irradiated by nanosecond laser pulses delivered by a Nd:YAG laser system at λ = 355 nm. This resulted in the formation of colloids of the thin films’ material. We also compared the processes of ablation of a bulk target and a thin film in the liquid by irradiating a Au target and a Au thin film by the same laser wavelength and fluence (λ = 355 nm, F = 5 J/cm2). The optical properties of the colloids were evaluated by optical transmittance measurements in the UV– VIS spectral range. Transmission electron microscopy was employed to estimate the particles’ size distribution.

  17. Acoustic transient generation in pulsed holmium laser ablation under water

    NASA Astrophysics Data System (ADS)

    Asshauer, Thomas; Rink, Klaus; Delacretaz, Guy P.; Salathe, Rene-Paul; Gerber, Bruno E.; Frenz, Martin; Pratisto, Hans; Ith, Michael; Romano, Valerio; Weber, Heinz P.

    1994-08-01

    In this study the role of acoustical transients during pulsed holmium laser ablation is addressed. For this the collapse of cavitation bubbles generated by 2.12 micrometers Cr:Tm:Ho:YAG laser pulses delivered via a fiber in water is investigated. Multiple consecutive collapses of a single bubble generating acoustic transients are documented. Pulse durations are varied from 130 - 230 microsecond(s) and pulse energies from 20 - 800 mJ. Fiber diameters of 400 and 600 micrometers are used. The bubble collapse behavior is observed by time resolved fast flash photography with 1 microsecond(s) strobe lamp or 5 ns 1064 nm Nd:YAG laser illumination. A PVDF needle probe transducer is used to observe acoustic transients and measure their pressure amplitudes. Under certain conditions, at the end of the collapse phase the bubbles emit spherical acoustic transients of up to several hundred bars amplitude. After the first collapse up to two rebounds leading to further acoustic transient emissions are observed. Bubbles generated near a solid surface under water are attracted towards the surface during their development. The final phase of the collapse generating the acoustic transients takes place directly on the surface, exposing it to maximum pressure amplitudes. Our results indicate a possible mechanism of unwanted tissue damage during holmium laser application in a liquid environment as in arthroscopy or angioplasty that may set limits to the choice of laser pulse duration and energies.

  18. Efficacy of Erbium:YAG laser treatment compared to topical estriol treatment for symptoms of genitourinary syndrome of menopause

    PubMed Central

    Brandi, Hugo; Gomez, Valentin; Luque, Daniel

    2016-01-01

    Objectives The objective of this prospective comparative cohort study was to establish the effectiveness and safety of Erbium:YAG (Er:YAG) laser treatment for genitourinary syndrome of menopause and to compare it with an established topical estriol treatment. Methods Fifty patients with genitourinary syndrome of menopause were divided into two groups. The estriol group received a treatment of 0.5 mg estriol ovules for 8 weeks and the laser group was first treated for 2 weeks with 0.5 mg estriol ovules 3 times per week to hydrate the mucosa and then received three sessions with 2,940 nm Er:YAG laser in non‐ablative mode. Biopsies were taken before and at 1, 3, 6, and 12 months post‐treatment. Maturation index, maturation value and pH where recorded up to 12‐months post‐treatment, while the VAS analysis of symptoms was recorded up to 18 months post‐treatment. Results Statistically significant (P < 0.05), reduction of all assessed symptoms was observed in the laser group at all follow‐ups up to 18 months post‐treatment. Significant improvement in maturation value and a decrease of pH in the laser group was detected up to 12 months after treatment. The improvement in all endpoints was more pronounced and longer lasting in the laser group. Histological examination showed changes in the tropism of the vaginal mucosa and also angiogenesis, congestion, and restructuring of the lamina propria in the laser group. Side effects were minimal and of transient nature in both groups, affecting 4% of patients in the laser group and 12% of patients in the estriol group. Conclusions Our results show that Er:YAG laser treatment successfully relieves symptoms of genitourinary syndrome of menopause and that the results are more pronounced and longer lasting compared to topical estriol treatment. Lasers Surg. Med. 49:160–168, 2017. © 2016 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc. PMID:27546524

  19. Nd:YAG laser system for ophthalmic microsurgery

    NASA Astrophysics Data System (ADS)

    Savastru, Dan; Ristici, Esofina; Dragu, T.; Cotirlan, C.; Miclos, Sorin; Mustata, Marina

    2005-04-01

    The Nd:YAG solid state laser can be used in ophthalmologic microsurgery because of its specific wavelength of 1064 nm, which has the property to penetrate the transparent medium of the eye. We design a specific ophthalmic system, containing a Q-switch Nd:YAG laser, an optical stereomicroscope and an aiming system. This laser-stereomicroscope system is used for eye examination and for microsurgical proceedings like posterior capsulotomy and pupilar membranectomy. We had to design an optical scheme of the laser to settle the radiation route. In order to cover the medical domain of the energies, we calibrate eleven attenuation filters using ratiometric method. For a correct position of the place where the laser pulse strikes, we used an original system consisting of two red laser diodes mounted on each side of the binocular One of the advantages of this laser system is taht the output energies can be varied widely (0.8-15 mJ), making a great numbers of applications in clinical ophthalmology possible.

  20. The regeneration of thermal wound on mice skin (Mus Musculus) after Q-Switch Nd: YAG laser irradiation for cancer therapy candidate

    NASA Astrophysics Data System (ADS)

    Apsari, R.; Nahdliyatun, E.; Winarni, D.

    2017-09-01

    The aims of this study are to investigate the regeneration of mice skin tissue (Mus Musculus) irradiated by Q-Switch Nd: YAG laser and morphological change due to Q-Switch Nd: YAG laser irradiation compared to conventional heating (hairdryer). The 2-3 month of twenty-seven mice were used for experimental animals. Mice were incised in the dorsum by the damage effect of laser energy dose (therapeutic dose) of 29.5 J/cm2 with 10 seconds of exposure time, 10 Hz of repetition rate, and 100 pulses of the given single pulse energy. The mice skin tissue was injuried by hairdryer to get burned effect. Mice were divided into three groups, Group I (control) were not treated by anything, Group II were treated by Q-Switch Nd: YAG laser irradiation and sacrificed on (0, 1, 3, 5) days, and Group III were treated by hairdryer then sacrificed on (0, 1, 3, 5) days. Pathology examination showed that the energy of 29,5 J/cm2 dose produced the hole effect (ablation) through the hypodermic layer caused by optical breakdown and collagen coagulation. Thus, the 60 °C temperature of burn showed coagulation necrosis because piknosis discovered in the injured area. The regeneration process showed that the mice skin tissue's ability to regenerate was irradiated by fast laser because of the focus of Q-Switch Nd: YAG laser. It was showed by the scab releases on third day and completely reepithelialization formation on the fifth day. The collagen fibers distribution was same as normal skin tissue on day 5 and so did angiogenesis. Therefore, Q-Switch Nd: YAG laser can be applied for problems of dermatology medical therapies, especially melasma, nevus of ota and tatto therapy. For skin cancer therapy application, energy dose of unregenerated skin tissue is chosen because the death expected effect is permanent.

  1. Shear Bond Strength of Composite and Ceromer Superstructures to Direct Laser Sintered and Ni-Cr-Based Infrastructures Treated with KTP, Nd:YAG, and Er:YAG Lasers: An Experimental Study.

    PubMed

    Gorler, Oguzhan; Hubbezoglu, Ihsan; Ulgey, Melih; Zan, Recai; Guner, Kubra

    2018-04-01

    The aim of this study was to examine the shear bond strength (SBS) of ceromer and nanohybrid composite to direct laser sintered (DLS) Cr-Co and Ni-Cr-based metal infrastructures treated with erbium-doped yttrium aluminum garnet (Er:YAG), neodymium-doped yttrium aluminum garnet (Nd:YAG), and potassium titanyl phosphate (KTP) laser modalities in in vitro settings. Experimental specimens had four sets (n = 32) including two DLS infrastructures with ceromer and nanohybrid composite superstructures and two Ni-Cr-based infrastructures with ceromer and nanohybrid composite superstructures. Of each infrastructure set, the specimens randomized into four treatment modalities (n = 8): no treatment (controls) and Er:YAG, Nd:YAG, and KTP lasers. The infrastructures were prepared in the final dimensions of 7 × 3 mm. Ceromer and nanohybrid composite was applied to the infrastructures after their surface treatments according to randomization. The SBS of specimens was measured to test the efficacy of surface treatments. Representative scanning electron microscopy (SEM) images after laser treatments were obtained. Overall, in current experimental settings, Nd:YAG, KTP, and Er:YAG lasers, in order of efficacy, are effective to improve the bonding of ceromer and nanohybrid composite to the DLS and Ni-Cr-based infrastructures (p < 0.05). Nd:YAG laser is more effective in the DLS/ceromer infrastructures (p < 0.05). KTP laser, as second more effective preparation, is more effective in the DLS/ceromer infrastructures (p < 0.05). SEM findings presented moderate accordance with these findings. The results of this study supported the bonding of ceromer and nanohybrid composite superstructures to the DLS and Ni-Cr-based infrastructures suggesting that laser modalities, in order of success, Nd:YAG, KTP, and Er:YAG, are effective to increase bonding of these structures.

  2. Investigation of the wavelength dependence of laser stratigraphy on Cu and Ni coatings using LIBS compared to a pure thermal ablation model

    NASA Astrophysics Data System (ADS)

    Paulis, Evgeniya; Pacher, Ulrich; Weimerskirch, Morris J. J.; Nagy, Tristan O.; Kautek, Wolfgang

    2017-12-01

    In this study, galvanic coatings of Cu and Ni, typically applied in industrial standard routines, were investigated. Ablation experiments were carried out using the first two harmonic wavelengths of a pulsed Nd:YAG laser and the resulting plasma spectra were analysed using a linear Pearson correlation method. For both wavelengths the absorption/ablation behaviour as well as laser-induced breakdown spectroscopy (LIBS) depth profiles were studied varying laser fluences between 4.3-17.2 J/cm^2 at 532 nm and 2.9-11.7 J/cm^2 at 1064 nm. The LIBS-stratigrams were compared with energy-dispersive X-ray spectroscopy of cross-sections. The ablation rates were calculated and compared to theoretical values originating from a thermal ablation model. Generally, higher ablation rates were obtained with 532 nm light for both materials. The light-plasma interaction is suggested as possible cause of the lower ablation rates in the infrared regime. Neither clear evidence of the pure thermal ablation, nor correlation with optical properties of investigated materials was obtained.

  3. Kidney stone ablation times and peak saline temperatures during Holmium:YAG and Thulium fiber laser lithotripsy, in vitro, in a ureteral model

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2015-02-01

    Using a validated in vitro ureter model for laser lithotripsy, the performance of an experimental Thulium fiber laser (TFL) was studied and compared to clinical gold standard Holmium:YAG laser. The Holmium laser (λ = 2120 nm) was operated with standard parameters of 600 mJ, 350 μs, 6 Hz, and 270-μm-core optical fiber. TFL (λ = 1908 nm) was operated with 35 mJ, 500 μs, 150-500 Hz, and 100-μm-core fiber. Urinary stones (60% calcium oxalate monohydrate / 40% calcium phosphate), of uniform mass and diameter (4-5 mm) were laser ablated with fibers through a flexible video-ureteroscope under saline irrigation with flow rates of 22.7 ml/min and 13.7 ml/min for the TFL and Holmium laser, respectively. The temperature 3 mm from tube's center and 1 mm above mesh sieve was measured by a thermocouple and recorded during experiments. Total laser and operation times were recorded once all stone fragments passed through a 1.5-mm sieve. Holmium laser time measured 167 +/- 41 s (n = 12). TFL times measured 111 +/- 49 s, 39 +/- 11 s, and 23 +/- 4 s, for pulse rates of 150, 300, and 500 Hz (n = 12 each). Mean peak saline irrigation temperatures reached 24 +/- 1 °C for Holmium, and 33 +/- 3 °C, 33 +/- 7 °C, and 39 +/- 6 °C, for TFL at pulse rates of 150, 300, and 500 Hz. To avoid thermal buildup and provide a sufficient safety margin, TFL lithotripsy should be performed with pulse rates below 500 Hz and/or increased saline irrigation rates. The TFL rapidly fragmented kidney stones due in part to its high pulse rate, high power density, high average power, and reduced stone retropulsion, and may provide a clinical alternative to the conventional Holmium laser for lithotripsy.

  4. Er:YAG and Nd:YAG laser in treatment of patients with contraindications of conventional dental and maxillofacial surgery

    NASA Astrophysics Data System (ADS)

    Smucler, Roman; Mazanek, Jiri

    2000-03-01

    In clinical praxis we must treat patients with some relative or absolute contraindications every day. Need of hospitalization, antibiotics, hemostyptics and complex examinations makes dentoalveolar and maxillofacial surgery in those cases quite expensive. Combination of Nd:YAG and Er:YAG laser gives us new possibilities. We can help some untreatable patients or transfer care from hospital to dental office. We have been trying to solve contraindications for laser therapy five years. In the center of our work are disorders of blood coagulation, immunity and metabolism. Nd:YAG laser is very useful in coagulation and vaporization of dental gum hypertrophies, benign and malign tumors in case of chronic anticoagulation therapy and immunosupress / in combination for example- after heart transplantation /. Special chapter is the care of patients with disseminated tumors. Er:YAG laser large solve big lesions because of minimal invasivity of course but for small benign tumors are recidives is ideal. Better and quicker healing make new standard of patients' cooperation. Generally fashionable and more comfortable laser treatment minimize need of general anesthesia. After five years we use complex laser therapy in our routine. Aim of our new work is to find ideal combination of cutting lasers to minimize classical complications of laser surgery / carbonization, long and secondary healing /.

  5. Over 0.5 MW green laser from sub-nanosecond giant pulsed microchip laser

    NASA Astrophysics Data System (ADS)

    Zheng, Lihe; Taira, Takunori

    2016-03-01

    A sub-nanosecond green laser with laser head sized 35 × 35 × 35 mm3 was developed from a giant pulsed microchip laser for laser processing on organic superconducting transistor with a flexible substrate. A composite monolithic Y3Al5O12 (YAG) /Nd:YAG/Cr4+:YAG/YAG crystal was designed for generating giant pulsed 1064 nm laser. A fibercoupled 30 W laser diode centered at 808 nm was used with pump pulse duration of 245 μs. The 532 nm green laser was obtained from a LiB3O5 (LBO) crystal with output energy of 150 μJ and pulse duration of 268 ps. The sub-nanosecond green laser is interesting for 2-D ablation patterns.

  6. Scanning electron microscope comparative surface evaluation of glazed-lithium disilicate ceramics under different irradiation settings of Nd:YAG and Er:YAG lasers.

    PubMed

    Viskic, Josko; Jokic, Drazen; Jakovljevic, Suzana; Bergman, Lana; Ortolan, Sladana Milardovic; Mestrovic, Senka; Mehulic, Ketij

    2018-01-01

    To evaluate the surface of glazed lithium disilicate dental ceramics after irradiation under different irradiation settings of Nd:YAG and Er:YAG lasers using a scanning electron microscope (SEM). Three glazed-press lithium disilicate ceramic discs were treated with HF, Er:YAG, and Nd:YAG, respectively. The laser-setting variables tested were laser mode, repetition rate (Hz), power (W), time of exposure (seconds), and laser energy (mJ). Sixteen different variable settings were tested for each laser type, and all the samples were analyzed by SEM at 500× and 1000× magnification. Surface analysis of the HF-treated sample showed a typical surface texture with a homogenously rough pattern and exposed ceramic crystals. Er:YAG showed no effect on the surface under any irradiation setting. The surface of Nd:YAG-irradiated samples showed cracking, melting, and resolidifying of the ceramic glaze. These changes became more pronounced as the power increased. At the highest power setting (2.25 W), craters on the surface with large areas of melted or resolidified glaze surrounded by globules were visible. However, there was little to no exposure of ceramic crystals or visible regular surface roughening. Neither Er:YAG nor Nd:YAG dental lasers exhibited adequate surface modification for bonding of orthodontic brackets on glazed lithium disilicate ceramics compared with the control treated with 9.5% HF.

  7. Passive Q switching of a solar-pumped Nd:YAG laser.

    PubMed

    Lando, M; Shimony, Y; Noter, Y; Benmair, R M; Yogev, A

    2000-04-20

    Passive Q switching is a preferable choice for switching the Q factor of a solar-pumped laser because it requires neither a driver nor an electrical power supply. The superior thermal characteristics and durability of Cr(4+):YAG single crystals as passive Q switches for lamp and diode-pumped high-power lasers has been demonstrated. Here we report on an average power of 37 W and a switching efficiency of 80% obtained by use of a solar-pumped Nd:YAG laser Q switched by a Cr(4+):YAG saturable absorber. Concentration of the pumping solar energy on the laser crystal was obtained with a three-stage concentrator, composed of 12 heliostats, a three-dimensional compound parabolic concentrator (CPC) and a two-dimensional CPC. The water-cooled passive Q switch also served as the laser rear mirror. Repetition rates of as much as 50 kHz, at pulse durations between 190 and 310 ns (FWHM) were achieved. From the experimental results, the saturated single-pass power absorption of the Cr(4+):YAG device was estimated as 3 ? 1%.

  8. Efficient Q-switched Tm:YAG ceramic slab laser.

    PubMed

    Zhang, Shuaiyi; Wang, Mingjian; Xu, Lin; Wang, Yan; Tang, Yulong; Cheng, Xiaojin; Chen, Weibiao; Xu, Jianqiu; Jiang, Benxue; Pan, Yubai

    2011-01-17

    Characteristics of Tm:YAG ceramic for high efficient 2-μm lasers are analyzed. Efficient diode end-pumped continuous-wave and Q-switched Tm:YAG ceramic lasers are demonstrated. At the absorbed pump power of 53.2W, the maximum continuous wave (cw) output power of 17.2 W around 2016 nm was obtained with the output transmission of 5%. The optical conversion efficiency is 32.3%, corresponding to a slope efficiency of 36.5%. For Q-switched operation, the shortest width of 69 ns was achieved with the pulse repetition frequency of 500 Hz and single pulse energy of 20.4 mJ, which indicates excellent energy storage capability of the Tm:YAG ceramic.

  9. Laser radiation at various wavelengths for decompression of intervertebral disk. Experimental observations on human autopsy specimens.

    PubMed

    Choy, D S; Altman, P A; Case, R B; Trokel, S L

    1991-06-01

    The interaction of laser radiation with the nucleus pulposus from autopsy specimens of human intervertebral disks was evaluated at different wavelengths (193 nm, 488 nm & 514 nm, 1064 nm, 1318 nm, 2150 nm, 2940 nm, and 10600 nm). A significant correlation of linear least squares fit of the mass ablated as a function of incident energy was found for all lasers used except the Excimer at 193 nm. The 2940-nm Erbium:YAG laser was most efficient in terms of mass of disk ablated per joule in the limited lower range where this wavelength was observed. At higher energy levels, the CO2 laser in the pulsed mode was most efficient. However, the Nd:YAG 1064-nm and 1318-nm lasers are currently best suited for percutaneous laser disk decompression because of the availability of usable waveguides. Carbonization of tissue with the more penetrating Nd:YAG 1064-nm laser increases the efficiency of tissue ablation and makes it comparable to the Nd:YAG 1318-nm laser.

  10. Diode pumped Nd:YAG laser development

    NASA Technical Reports Server (NTRS)

    Reno, C. W.; Herzog, D. G.

    1976-01-01

    A low power Nd:YAG laser was constructed which employs GaAs injection lasers as a pump source. Power outputs of 125 mW TEM CW with the rod at 250 K and the pump at 180 K were achieved for 45 W input power to the pump source. Operation of the laser, with array and laser at a common heat sink temperature of 250 K, was inhibited by difficulties in constructing long-life GaAs LOC laser arrays. Tests verified pumping with output power of 20 to 30 mW with rod and pump at 250 K. Although life tests with single LOC GaAs diodes were somewhat encouraging (with single diodes operating as long as 9000 hours without degradation), failures of single diodes in arrays continue to occur, and 50 percent power is lost in a few hundred hours at 1 percent duty factor. Because of the large recent advances in the state of the art of CW room temperature AlGaAs diodes, their demonstrated lifetimes of greater than 5,000 hours, and their inherent advantages for this task, it is recommended that these sources be used for further CW YAG injection laser pumping work.

  11. 885-nm Pumped Ceramic Nd:YAG Master Oscillator Power Amplifier Laser System

    NASA Technical Reports Server (NTRS)

    Yu, Anthony

    2012-01-01

    The performance of a traditional diode pumped solid-state laser that is typically pumped with 808-nm laser diode array (LDA) and crystalline Nd:YAG was improved by using 885-nm LDAs and ceramic Nd:YAG. The advantage is lower quantum defect, which will improve the thermal loading on laser gain medium, resulting in a higher-performance laser. The use of ceramic Nd:YAG allows a higher Nd dopant level that will make up the lower absorption at the 885-nm wavelength on Nd:YAG. When compared to traditional 808-nm pump, 885-nm diodes will have 30% less thermal load (or wasted heat) and will thus see a similar percentage improvement in the overall laser efficiency. In order to provide a more efficient laser system for future flight missions that require the use of low-repetition- rate (laser pulses, laser diodes such as the 885-nm LDA were used for pumping the Nd:YAG laser crystal. This pumping scheme has many potential advantages for improved reliability, efficiency, thermal management, contamination control, and mechanical flexibility. The advantages of using 885-nm pump diodes in Nd:YAG laser systems are numerous. The epitaxial structures of these 885-nm diodes are aluminum-free. There is a significant reduction in the thermal load generated from the Stokes shift or quantum defects. A Stokes shift is the energetic difference between the pump and laser photons. Pumping at a wavelength band closer to the lasing wavelength can reduce the thermal load by .30% compared to traditional pumping at 808 nm, and increase the optical- to-optical efficiency by the same factor. The slope efficiency is expected to increase with a reduction in the thermal load. The typical crystalline Nd:YAG can be difficult to produce with doping level >1% Nd. To make certain that the absorption at 885 nm is on the same par as the 808-nm diode, the Nd:YAG material needs to be doped with higher concentration of Nd. Ceramic Nd:YAG is the only material that can be tailored

  12. Improving the efficiency of an Er:YAG laser on enamel and dentin.

    PubMed

    Rizcalla, Nicolas; Bader, Carl; Bortolotto, Tissiana; Krejci, Ivo

    2012-02-01

    To evaluate the influence of air pressure, water flow rate, and pulse frequency on the removal speed of enamel and dentin as well as on their surface morphology. Twenty-four bovine incisors were horizontally cut in slices. Each sample was mounted on an experimental assembly, allowing precise orientation. Eighteen cavities were prepared, nine in enamel and nine in dentin. Specific parameters for frequency, water flow rate, and air pressure were applied for each experimental group. Three groups were randomly formed according to the air pressure settings. Cavity depth was measured using a digital micrometer gauge, and surface morphology was checked by means of scanning electron microscopy. Data was analyzed with ANOVA and Duncan post hoc test. Irradiation at 25 Hz for enamel and 30 Hz for dentin provided the best ablation rates within this study, but efficiency decreased if the frequency was raised further. Greater tissue ablation was found with water flow rate set to low and dropped with higher values. Air pressure was found to have an interaction with the other settings, since ablation rates varied with different air pressure values. Fine-tuning of all parameters to get a good ablation rate with minimum surface damage seems to be key in achieving optimal efficiency for cavity preparation with an Er:YAG laser.

  13. Detachable microsphere scalpel tips for potential use in ophthalmic surgery with the erbium:YAG laser.

    PubMed

    Hutchens, Thomas C; Darafsheh, Arash; Fardad, Amir; Antoszyk, Andrew N; Ying, Howard S; Astratov, Vasily N; Fried, Nathaniel M

    2014-01-01

    Vitreoretinal surgery is performed using mechanical dissection that sometimes results in iatrogenic complications, including vitreous hemorrhage, retinal breaks, incomplete membrane delamination, retinal distortion, microscopic damage, etc. An ultraprecise laser probe would be an ideal tool for cutting away pathologic membranes; however, the depth of surgery should be precisely controlled to protect the sensitive underlying retina. The ultraprecise surgical microprobe formed by chains of dielectric spheres for use with the erbium:YAG laser source (λ=2940  nm), with extremely short optical penetration depth in tissue, was optimized. Numerical modeling demonstrated a potential advantage of five-sphere focusing chains of sapphire spheres with index n=1.71 for ablating the tissue with self-limited depth around 10 to 20 μm. Novel detachable microsphere scalpel tips formed by chains of 300 μm sapphire (or ruby) spheres were tested on ophthalmic tissues, ex vivo. Detachable scalpel tips could allow for reusability of expensive mid-infrared trunk fibers between procedures, and offer more surgical customization by interchanging various scalpel tip configurations. An innovative method for aiming beam integration into the microsphere scalpel to improve the illumination of the surgical site was also shown. Single Er:YAG pulses of 0.2 mJ and 75-μs duration produced ablation craters in cornea epithelium for one, three, and five sphere structures with the latter generating the smallest crater depth (10 μm) with the least amount of thermal damage depth (30 μm). Detachable microsphere laser scalpel tips may allow surgeons better precision and safety compared to mechanical scalpels when operating on delicate or sensitive areas like the retina.

  14. Nd:YAG development for spaceborne laser ranging system

    NASA Technical Reports Server (NTRS)

    Harper, L. L.; Logan, K. E.; Williams, R. H.; Stevens, D. A.

    1979-01-01

    The results of the development of a unique modelocked laser device to be utilized in future NASA space-based, ultraprecision laser ranger systems are summarized. The engineering breadboard constructed proved the feasibility of the pump-pulsed, actively modelocked, PTM Q-switched Nd:YAG laser concept for the generation of subnanosecond pulses suitable for ultra-precision ranging. The laser breadboard also included a double-pass Nd:YAG amplifier and provision for a Type II KD*P frequency doubler. The specific technical accomplishment was the generation of single 150 psec, 20-mJ pulses at 10 pps at a wavelength of 1.064 micrometers with 25 dB suppression of pre-and post-pulses.

  15. Treatment of patients with OSAS using Nd-YAG laser

    NASA Astrophysics Data System (ADS)

    Kukwa, Andrzej; Tulibacki, Marek P.; Zajac, Andrzej; Dudziec, Katarzyna

    2000-06-01

    The authors present their clinical experience regarding the possibilities of application of Nd:YAG and Ho:YAG lasers for the treatment of disorders in the are of the upper respiratory tract. The patients with symptoms of Obstructive Sleep Aphnoe Syndrom need a various operations techniques. Lasers techniques makes it possible to perform a number of procedures in local anesthesia which considerably improves the economic effectiveness of the treatment. The surgeries performed using laser beam enabled very good effect of treatment.

  16. Treatment of melasma with low fluence, large spot size, 1064-nm Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) laser for the treatment of melasma in Fitzpatrick skin types II-IV.

    PubMed

    Brown, Alia S; Hussain, Mussarat; Goldberg, David J

    2011-12-01

    Melasma is a common condition affecting over six million American women. Treatment of dermal or combined melasma is difficult and does not respond well to conventional topical therapies. Various light sources have been used recently in the treatment of melasma including fractionated ablative and non-ablative lasers as well as intense pulse light. We report the use of low fluence, large spot size Q-switched, Nd:Yag laser for the treatment of melasma in skin types II-IV.

  17. Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition.

    PubMed

    Pavel, Nicolaie; Tsunekane, Masaki; Taira, Takunori

    2011-05-09

    A passively Q-switched Nd:YAG/Cr(4+):YAG micro-laser with three-beam output was realized. A single active laser source made of a composite, all-ceramics Nd:YAG/Cr(4+):YAG monolithic cavity was pumped by three independent lines. At 5 Hz repetition rate, each line delivered laser pulses with ~2.4 mJ energy and 2.8-MW peak power. The M(2) factor of a laser beam was 3.7, and stable air breakdowns were realized. The increase of pump repetition rate up to 100 Hz improved the laser pulse energy by 6% and required ~6% increase of the pump pulse energy. Pulse timing of the laser-array beams can by adjusted by less than 5% tuning of an individual line pump energy, and therefore simultaneous multi-point ignition is possible. This kind of laser can be used for multi-point ignition of an automobile engine. © 2011 Optical Society of America

  18. Composite Yb:YAG/SiC-prism thin disk laser.

    PubMed

    Newburgh, G A; Michael, A; Dubinskii, M

    2010-08-02

    We report the first demonstration of a Yb:YAG thin disk laser wherein the gain medium is intracavity face-cooled through bonding to an optical quality SiC prism. Due to the particular design of the composite bonded Yb:YAG/SiC-prism gain element, the laser beam impinges on all refractive index interfaces inside the laser cavity at Brewster's angles. The laser beam undergoes total internal reflection (TIR) at the bottom of the Yb(10%):YAG thin disk layer in a V-bounce cavity configuration. Through the use of TIR and Brewster's angles, no optical coatings, either anti-reflective (AR) or highly reflective (HR), are required inside the laser cavity. In this first demonstration, the 936.5-nm diode pumped laser performed with approximately 38% slope efficiency at 12 W of quasi-CW (Q-CW) output power at 1030 nm with a beam quality measured at M(2) = 1.5. This demonstration opens up a viable path toward novel thin disk laser designs with efficient double-sided room-temperature heatsinking via materials with the thermal conductivity of copper on both sides of the disk.

  19. SnO2/Pt Thin Film Laser Ablated Gas Sensor Array

    PubMed Central

    Shahrokh Abadi, Mohammad Hadi; Hamidon, Mohd Nizar; Shaari, Abdul Halim; Abdullah, Norhafizah; Wagiran, Rahman

    2011-01-01

    A gas sensor array was developed in a 10 × 10 mm2 space using Screen Printing and Pulse Laser Ablation Deposition (PLAD) techniques. Heater, electrode, and an insulator interlayer were printed using the screen printing method on an alumina substrate, while tin oxide and platinum films, as sensing and catalyst layers, were deposited on the electrode at room temperature using the PLAD method, respectively. To ablate SnO2 and Pt targets, depositions were achieved by using a 1,064 nm Nd-YAG laser, with a power of 0.7 J/s, at different deposition times of 2, 5 and 10 min, in an atmosphere containing 0.04 mbar (4 kPa) of O2. A range of spectroscopic diffraction and real space imaging techniques, SEM, EDX, XRD, and AFM were used in order to characterize the surface morphology, structure, and composition of the films. Measurement on the array shows sensitivity to some solvent and wood smoke can be achieved with short response and recovery times. PMID:22164041

  20. Bactericidal effect of the Nd:YAG lasers in laser-supported curettage

    NASA Astrophysics Data System (ADS)

    Gutknecht, Norbert; Fischer, Julia; Conrads, Georg; Lampert, Friedrich

    1997-05-01

    In this study, the efficacy of laser-supported curettage was examined with relation to the periodontitis-reference germs. Initially, a manual subgingival curettage followed by irradiation using the Nd:YAG-laser was carried out on 18 diseased periodontia. At two further appointments with weekly intervals, only laser irradiation was performed. Prior to and upon completion of therapy, subgingival plaque samples were taken at each appointment from all the treated periodontia. These were then examined microbiologically to establish the number of prevotella intermedia. A distinct bacterial reduction as well as a decrease in recolonization was shown. In conclusion the application of the Nd:YAG laser with a 400 micron fiber and an energy setting of 2 watts, 20 pps is beneficial when used in conjunction with manual periodontal treatment because of its disinfecting effect.

  1. Power-law scaling of plasma pressure on laser-ablated tin microdroplets

    NASA Astrophysics Data System (ADS)

    Kurilovich, Dmitry; Basko, Mikhail M.; Kim, Dmitrii A.; Torretti, Francesco; Schupp, Ruben; Visschers, Jim C.; Scheers, Joris; Hoekstra, Ronnie; Ubachs, Wim; Versolato, Oscar O.

    2018-01-01

    The measurement of the propulsion of metallic microdroplets exposed to nanosecond laser pulses provides an elegant method for probing the ablation pressure in a dense laser-produced plasma. We present the measurements of the propulsion velocity over three decades in the driving Nd:YAG laser pulse energy and observe a near-perfect power law dependence. Simulations performed with the RALEF-2D radiation-hydrodynamic code are shown to be in good agreement with the power law above a specific threshold energy. The simulations highlight the importance of radiative losses which significantly modify the power of the pressure scaling. Having found a good agreement between the experiment and the simulations, we investigate the analytic origins of the obtained power law and conclude that none of the available analytic theories is directly applicable for explaining our power exponent.

  2. Pulsed Nd:YAG laser selective ablation of surface enamel caries: II. Histology and clinical trials

    NASA Astrophysics Data System (ADS)

    Harris, David M.; Goodis, Harold E.; White, Joel M.; Arcoria, Charles J.; Simon, James; Burkart, John; Yessik, Michael J.; Myers, Terry D.

    2000-03-01

    High intensity infrared light from the pulsed Nd:YAG dental laser is absorbed by pigmented carious enamel and not absorbed by normal enamel. Therefore, this system is capable of selective removal of surface enamel caries. Safety and efficacy of the clinical procedure was evaluated in two sets of clinical trials at three dental schools. Carious lesions were randomized to drill or laser treatment. Pulp vitality, surface condition, preparations and restorations were evaluated by blinded evaluators. In Study 1 surface caries were removed from 104 third molars scheduled for extraction. One week post-treatment teeth were extracted and the pulp was examined histologically. In Study 2 90 patients with 422 lesions on 376 teeth were randomized to laser or drill and followed for six months. There were no adverse events and both clinical and histological evaluations of pulp vitality showed no abnormalities. Caries were removed in all conditions. A significantly greater number of preparations in the drill groups vs. laser groups entered dentin (drill equals 11, laser equals 1, p less than 0.001). This indicates that the more conservative laser treatment removed the caries but not the sound enamel below the lesion.

  3. Dental ablation with 1064 nm, 500 ps, Diode pumped solid state laser: A preliminary study.

    PubMed

    Sozzi, Michele; Fornaini, Carlo; Cucinotta, Annamaria; Merigo, Elisabetta; Vescovi, Paolo; Selleri, Stefano

    2013-01-01

    The Er:YAG laser in conservative dentistry is. good alternative to conventional instruments. Though several studies show the advantages of these devices, some drawbacks and unsolved problems are still present, such as the cost of the device and the large dimensions of the equipment. In the present study, the effectiveness of dental surface ablation with a picosecond infrared diode-pumped solid-state (DPSS) laser was investigated. In vitro tests on extracted human teeth were carried out, with assessment of the ablation quality in the tooth and thermal increase inside the pulp chamber. A solid-state picosecond laser was used for the experiments. The samples were exposed to laser energy at 1064 nm at a frequency of 30 kHz and a 500 ps pulse width. The target teeth were cooled during exposures. The internal temperature of the pulp chamber was monitored with. thermocouple. Optical microscope images showed effective ablation with the absence of carbonisation and micro-cracks. The cooling maintained the temperature rise in the pulp chamber below the permitted 5.5°C. The main problem with the use of lasers in dentistry when teeth are the target is the heat generated in the pulp chamber of the target teeth. With lasers operating in the femtosecond mode, a better management of the internal temperature is possible, but is offset by the high cost of such devices. With the ps domain system used in the present study together with cooling using chilled water, effective and clean ablation could be achieved with a controlled thermal effect in the pulp chamber. In this preliminary study with a picosecond domain DPSS laser using water cooling for the target, effective hard tissue ablation was achieved keeping the thermal increase in the pulp within the permitted range. The results suggest that this system could be used in clinical practice with appropriate modifications.

  4. Effect of pulsed Nd:YAG on dentin morphological changes

    NASA Astrophysics Data System (ADS)

    Moriyama, Eduardo H.; Zangaro, Renato A.; Villaverde, Antonio G. J. B.; Watanabe-Sei, Ii; Munin, Egberto; Sasaki, Luis H.; Otsuka, Daniel K.; Lobo, Paulo D. d. C.; Pacheco, Marcos T. T.; Junior, Durval R.

    2002-06-01

    Infrared lasers have been used for several clinical applications in dentistry, including laser ablation, oral surgeries and dentin hypersensitivity treatment. Despite of dentin low absorption coefficient in the near infrared spectrum, Nd:YAG laser radiation ((lambda) = 1064 nm) is able to melt the human dentin surface resulting in dentin tubules closure that can suppress the symptoms of dentin hypersensitivity pathology. Objectives: This study aims to analyze, through SEM technique, the morphological changes in dentin surface after Nd:YAG laser irradiation using different parameters in energy distribution. Materials and Methods: In this study sixteen human dentin samples were submitted to Nd:YAG laser radiation using a total energy of 900mJ distributed in one, two, three or six laser pulses with energy for each pulse of 900, 450, 300 or 150 mJ respectively. All the samples were irradiated with laser pulse width of 90ms, pulse intervals of 300 ms and spot size area of 0,005 cm2. Results: SEM analysis suggests that differences in energy distribution results in morphological differences even though the same energy is used for all the samples.

  5. Surface wettability of silicon substrates enhanced by laser ablation

    NASA Astrophysics Data System (ADS)

    Tseng, Shih-Feng; Hsiao, Wen-Tse; Chen, Ming-Fei; Huang, Kuo-Cheng; Hsiao, Sheng-Yi; Lin, Yung-Sheng; Chou, Chang-Pin

    2010-11-01

    Laser-ablation techniques have been widely applied for removing material from a solid surface using a laser-beam irradiating apparatus. This paper presents a surface-texturing technique to create rough patterns on a silicon substrate using a pulsed Nd:YAG laser system. The different degrees of microstructure and surface roughness were adjusted by the laser fluence and laser pulse duration. A scanning electron microscope (SEM) and a 3D confocal laser-scanning microscope are used to measure the surface micrograph and roughness of the patterns, respectively. The contact angle variations between droplets on the textured surface were measured using an FTA 188 video contact angle analyzer. The results indicate that increasing the values of laser fluence and laser pulse duration pushes more molten slag piled around these patterns to create micro-sized craters and leads to an increase in the crater height and surface roughness. A typical example of a droplet on a laser-textured surface shows that the droplet spreads very quickly and almost disappears within 0.5167 s, compared to a contact angle of 47.9° on an untextured surface. This processing technique can also be applied to fabricating Si solar panels to increase the absorption efficiency of light.

  6. Compact conductively cooled electro-optical Q-switched Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Li, Chaoyang; Lu, Chengqiang; Li, Chuan; Zang, Yannan; Yang, Zhen; Han, Song; Li, Ye; Yang, Ning; Shi, Junfeng; Zhou, Zewu

    2017-11-01

    We report on a compact conductively cooled high-repetition-rate nanosecond Nd:YAG laser. The oscillator was an laser diode side-pumped electro-optical (EO) Q-switched Nd:YAG rod laser adopting unstable cavity with a variable reflectivity mirror. A pulse train of 142 mJ with duration of 10 ns, repetition rate of 80 Hz at 1064 nm has been achieved. Maximum pulse energy was obtained at the pump energy of 1380 mJ, corresponding to the optical-optical conversion efficiency of 10.3%. The peak power was deduced to be 14.2 MW. The near-field pattern demonstrated a nearly super Gaussian flat top profile. To our knowledge, this is the highest repetition rate operation for a conductively cooled EO Q-switched Nd:YAG rod laser.

  7. Micro-fractional ablative skin resurfacing with two novel erbium laser systems.

    PubMed

    Dierickx, Christine C; Khatri, Khalil A; Tannous, Zeina S; Childs, James J; Cohen, Richard H; Erofeev, Andrei; Tabatadze, David; Yaroslavsky, Ilya V; Altshuler, Gregory B

    2008-02-01

    Fractional ablation offers the potential benefits of full-surface ablative skin resurfacing while minimizing adverse effects. The purpose of this study was to evaluate the safety, damage profile, and efficacy of erbium fractional lasers. Histology from animal and human skin as well as clinical evaluations were conducted with erbium YAG (2,940 nm) and erbium YSGG (2,790 nm) fractional lasers varying pulse width, microbeam (microb) energy, number of passes, and stacking of pulses. Single-pulse treatment parameters from 1 to 12 mJ per 50-70 microm diameter microbeam and 0.25-5 milliseconds pulse widths produced microcolumns of ablation with border coagulation of up to 100 microm width and 450 microm depth. Stacking of pulses generated deeper microcolumns. Clinical observations and in vivo histology demonstrate rapid re-epithelization and limited adverse side effects. Facial treatments were performed in the periorbital and perioral areas using 1-8 passes of single and stacked pulses. Treatments were well-tolerated and subjects could resume their normal routine in 4 days. A statistically significant reduction in wrinkle scores at 3 months was observed for both periorbital and perioral wrinkles using blinded grading. For periorbital treatments of four passes or more, over 90% had > or =1 score wrinkle reduction (0-9 scale) and 42% had > or =2. For perioral wrinkles, over 50% had substantial improvements (> or =2). The clinical observations and histology findings demonstrate that micro-fractional ablative treatment with 2,790 and 2,940 nm erbium lasers resulted in safe and effective wrinkle reduction with minimal patient downtime. The depth and width of the ablated microcolumns and varying extent of surrounding coagulation can be controlled and used to design new treatment procedures targeted for specific indications and areas such as moderate to severe rhytides and photodamaged skin.

  8. 10-kW-class YAG laser application for heavy components

    NASA Astrophysics Data System (ADS)

    Ishide, Takashi; Tsubota, S.; Nayama, Michisuke; Shimokusu, Yoshiaki; Nagashima, Tadashi; Okimura, K.

    2000-02-01

    The authors have put the YAG laser of the kW class to practical use for repair welding of nuclear power plant steam generator heat exchanger tubes, all-position welding of pipings, etc. This paper describes following developed methods and systems of high power YAG laser processing. First, we apply the 6 kW to 10 kW YAG lasers for welding and cutting in heavy components. The beam guide systems we have used are optical fibers which core diameter is 0.6 mm to 0.8 mm and its length is 200 m as standard one. Using these system, we can get the 1 pass penetration of 15 mm to 20 mm and multi pass welding for more thick plates. Cutting of 100 mm thickness plate data also described for dismantling of nuclear power plants. In these systems we carried out the in-process monitoring by using CCD camera image processing and monitoring fiber which placed coaxial to the YAG optical lens system. In- process monitoring by the monitoring fiber, we measured the light intensity from welding area. Further, we have developed new hybrid welding with the TIG electrode at the center of lens for high power. The hybrid welding with TIG-YAG system aims lightening of welding groove allowances and welding of high quality. Through these techniques we have applied 7 kW class YAG laser for welding in the components of nuclear power plants.

  9. [The use of lasers in dermatology].

    PubMed

    Lecocq, C; Pirard, D; del Marmol, V; Berlingin, E

    2013-01-01

    Albert Einstein is undoubtedly the father of lasers. But it is not until 1964 that the first dermatological lasers were introduced. The Nd-YAG laser, the CO2 laser were developed by Kumar Patel. In a 40 year period lasers not only were diversified but have also become safer and miniaturized. This article hopes to strengthen general practionners' and specialist's knowledge of the different categories of available lasers. The most frequently used ones are ablative lasers (CO2-Erbium), vascular lasers (Nd-YAG, KTP, pulsed dye laser) and the pigment lasers (Q-Switched Nd-YAG, Alexandrite). A description of these lasers and their indications in dermatology will be discussed.

  10. Transmyocardial revascularization on canine with Ho:YAG laser - an experimental study

    NASA Astrophysics Data System (ADS)

    Bao, Xiaoqing; Zhu, Jing; Zhang, Hui-Guo

    2005-07-01

    Background and Objective: To evaluate the efficiency of transmyocardial revascularization with Ho:YAG laser and find out adequate physical parameters of the laser. Materials and Methods: 10 dogs were studied. All the samples were divided into two groups: the laser group (5 dogs) and the control group (5 dogs). Acute myocardial ischemia was induced in all the samples, and transmyocardial laser revascularization (TMLR) was only done in the laser group. We compared the difference of improvement in myocardial perfusion between the two groups with single photon emission computed tomograph (SPECT) and observed the patency of the laser channels and heat injures in the tissue adjacent to the channels with light- and electro-scope. Results: After 4 weeks, the recovery of myocardial perfusion was significantly faster in the laser group than in the control group through SPECT (P<0.05). Most of the laser channels drilled with Ho:YAG laser were filled with fibrin. There were amount of microvessels and erythrocytes inside and around the channels. Only slight heat injures were seen in the tissue adjacent to the channels. Only 20-30 watts were needed in TMLR. Conclusions: Transmyocardial revascularization with Ho:YAG laser limits infarct expansion and reduces myocardial ischemia efficiently. TMLR with Ho:YAG laser can become a new technique to treat ischemic heart disease.

  11. Use of a microsecond Er:YAG laser in laryngeal surgery reduces collateral thermal injury in comparison to superpulsed CO2 laser.

    PubMed

    Böttcher, Arne; Jowett, Nathan; Kucher, Stanislav; Reimer, Rudolph; Schumacher, Udo; Knecht, Rainald; Wöllmer, Wolfgang; Münscher, Adrian; Dalchow, Carsten V

    2014-05-01

    Despite causing significant thermocoagulative insult, use of the carbon dioxide (CO2) laser is considered gold standard in surgery for early stage larynx carcinoma. Limited attention has been paid to the use of the erbium:yttrium-aluminium-garnet (Er:YAG) laser in laryngeal surgery as a means to reduce thermal tissue injury. The objective of this study is to compare the extent of thermal injury and precision of vocal fold incisions made using microsecond Er:YAG and superpulsed CO2 lasers. In the optics laboratory ex vivo porcine vocal folds were incised using Er:YAG and CO2 lasers. Lateral epithelial and subepithelial thermal damage zones and cutting gap widths were histologically determined. Environmental scanning electron microscopy (ESEM) images were examined for signs of carbonization. Temperature rise during Er:YAG laser incisions was determined using infrared thermography (IRT). In comparison to the CO2 laser, Er:YAG laser incisions showed significantly decreased epithelial (236.44 μm) and subepithelial (72.91 μm) damage zones (p < 0.001). Cutting gaps were significantly narrower for CO2 (878.72 μm) compared to Er:YAG (1090.78 μm; p = 0.027) laser. ESEM revealed intact collagen fibres along Er:YAG laser cutting edges without obvious carbonization, in comparison to diffuse carbonization and tissue melting seen for CO2 laser incisions. IRT demonstrated absolute temperature rise below 70 °C for Er:YAG laser incisions. This study has demonstrated significantly reduced lateral thermal damage zones with wider basal cutting gaps for vocal fold incisions made using Er:YAG laser in comparison to those made using CO2 laser.

  12. Successful treatment of acne keloidalis nuchae with erbium:YAG laser: a comparative study.

    PubMed

    Gamil, Hend D; Khater, Elsayed M; Khattab, Fathia M; Khalil, Mona A

    2018-05-14

    Acne keloidalis nuchae (AKN) is a chronic inflammatory disease involving hair follicles of the neck. It is a form of keloidal scarring alopecia that is often refractory to medical or surgical management. To evaluate the efficacy of Er:YAG laser in the treatment of AKN as compared to long pulsed Nd:YAG laser. This study was conducted on 30 male patients with AKN. Their ages ranged from 19 to 47 years with a mean age of 36.87 ± 7.8 years. Patients were divided randomly into two groups of 15 patients, each receiving six sessions of either Er:YAG or long-pulsed Nd:YAG laser therapy. A statistically significant decrease in the number of papules was detected at the end of therapy in both groups, with a mean of 91.8% improvement in the Er:YAG group versus 88% in the Nd:YAG group. A significant decrease in plaques count was detected only in the Er: YAG group while a significant decrease in plaques size and consistency was recorded in both groups. The Er: YAG laser proved to be a potentially effective and safe modality both in the early and late AKN lesions.

  13. Laser-induced thermotherapy: an in-situ ablation technique for the local treatment of irresectable colorectal liver metastases

    NASA Astrophysics Data System (ADS)

    Ritz, Joerg-Peter; Isbert, Christoph M.; Roggan, Andre; Wacker, Frank; Buhr, Heinz-Johannes; Germer, Christoph-Thomas

    2000-11-01

    Laser-induced thermotherapy (LITT) is a so called in-situ- ablation technique which is used for the treatment of liver tumors. Coagulation necrosis is induced by transmitting the laser irradiation via quartz fibers directly into the tumor tissue. LITT represents similarly to surgical liver resection a local treatment form for liver metastases. The Nd-YAG laser (1064 nm) was used. The application system was placed percutaneously under open MRI control. On-line monitoring was done with MRI for evaluation of the postoperative follow-up we performed MRI-controls every 3 months. A total of 20 patients were treated. Due to the irradiation plan performed preoperatively, the treated tumors could be completely ablated by hyperthermia in all procedures. Complications were pleural effusion in 7 patients and a bile fistula and subcapsulary liver hematoma in one patient each. Local control of tumor growth can be achieved in tumors having undergone complete hyperthermic ablation. An assessment of the method regarding a prognostic benefit is not yet possible due to the short follow-up period and the small patient population.

  14. Combined pulsed dye laser and fiberoptic Nd-YAG laser for the treatment of hypertrophic port wine stain.

    PubMed

    Radmanesh, Mohammed; Radmanesh, Ramin

    2017-10-01

    The hypertrophic Port Wine Stain (PWS) is only partially and superficially treated with the Pulsed dye laser (PDL) because of its limited depth of penetration. We used combined PDL and fiberoptic 1444-nm Nd-YAG laser to treat a case with hypertrophic PWS. After tumescent anesthesia, few holes were made by a 16-gauge needle on different sides of the lesion. The fiberoptic tip of 1444-nm Nd-YAG laser was inserted within the holes and was pushed forward while triggering. In a fan pattern and by a back and forth movement, the subcutaneous and deep dermal areas were coagulated. The skin and outer mucosal surfaces were then treated by PDL. The fiberoptic system used was Accusculpt 1444-nm Nd-YAG laser (Lutronic lasers, South Korea), and the PDL used was 585 nm Nlite system (Chromogenex UK). The parameters used for PDL were fluence = 9 Joules/cm 2 and the spot size was 5 mm. The parameters used for fiberoptic 1444-nm Nd-YAG laser were: Pulse rate = 30 Hz, pulse energy = 300 mJ, power = 6 W, and the total energy = 4000 J for the whole face and mucosa. Little sign of regression and moderate purpura were detected immediately after combined fiberoptic Nd-YAG and PDL therapy. The lesion gradually regressed within 4 months with satisfactory color and volume change. Combined fiberoptic Nd-YAG laser and PDL can be used for the treatment of deeper and superficial layers of hypertrophic PWS.

  15. From Laser Desorption to Laser Ablation of Biopolymers

    NASA Astrophysics Data System (ADS)

    Franz, Hillenkamp

    1998-03-01

    For selected indications laser ablation and cutting of biological tissues is clinical practice. Preferentially lasers with emission wavelengths in the far UV and the mid IR are used, for which tissue absorption is very high. Morphologically the ablation sites look surprisingly similar for the two wavelength ranges, despite of the very different prim y putative interaction mechanisms. Ablation depth as a function of fluence follows a sigmoidal curve. Even factors below the nominal ablation threshold superficial layers of material get removed from the surface. This is the fluence range for Matrix-Assisted Laser Desorption/Ionization (MALDI). Evidence will be presented which suggest that strong similarities exist between the desorption and ablation processes both for UV- as well as for IR-wavelengths.

  16. Dependence of calculus retropulsion dynamics on fiber size and radiant exposure during Ho:YAG lithotripsy.

    PubMed

    Lee, Ho; Ryan, Robert T; Kim, Jeehyun; Choi, Bernard; Arakeri, Navanit V; Teichman, Joel M H; Welch, A J

    2004-08-01

    During pulsed laser lithotripsy, the calculus is subject to a strong recoil momentum which moves the calculus away from laser delivery and prolongs the operation. This study was designed to quantify the recoil momentum during Ho:YAG laser lithotripsy. The correlation among crater shape, debris trajectory, laser-induced bubble and recoil momentum was investigated. Calculus phantoms made from plaster of Paris were ablated with free running Ho:YAG lasers. The dynamics of recoil action of a calculus phantom was monitored by a high-speed video camera and the laser ablation craters were examined with Optical Coherent Tomography (OCT). Higher radiant exposure resulted in larger ablation volume (mass) which increased the recoil momentum. Smaller fibers produced narrow craters with a steep contoured geometry and decreased recoil momentum compared to larger fibers. In the presence of water, recoil motion of the phantom deviated from that of phantom in air. Under certain conditions, we observed the phantom rocking towards the fiber after the laser pulse. The shape of the crater is one of the major contributing factors to the diminished recoil momentum of smaller fibers. The re-entrance flow of water induced by the bubble collapse is considered to be the cause of the rocking of the phantom.

  17. Water-assisted pulsed Er:YAG laser interaction with silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jaehun; Ki, Hyungson, E-mail: hski@unist.ac.kr

    2015-07-07

    Silicon is virtually transparent to the Er:YAG laser with a wavelength of 2.94 μm. In this study, we report that moderately doped silicon (1–10 Ω cm) can be processed by a pulsed Er:YAG laser with a pulse duration of 350 μs and a peak laser intensity of 1.7 × 10{sup 5} W/cm{sup 2} by applying a thin water layer on top of silicon as a light absorbing medium. In this way, water is heated first by strongly absorbing the laser energy and then heats up the silicon wafer indirectly. As the silicon temperature rises, the free carrier concentration and therefore the absorption coefficient of silicon willmore » increase significantly, which may enable the silicon to get directly processed by the Er:YAG laser when the water is vaporized completely. We also believe that the change in surface morphology after melting could contribute to the increase in the laser beam absorptance. It was observed that 525 nm-thick p-type wafer specimens were fully penetrated after 15 laser pulses were irradiated. Bright yellow flames were observed during the process, which indicates that the silicon surface reached the melting point.« less

  18. Determination of elemental content off rocks by laser ablation inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Lichte, F.E.

    1995-01-01

    A new method of analysis for rocks and soils is presented using laser ablation inductively coupled plasma mass spectrometry. It is based on a lithium borate fusion and the free-running mode of a Nd/YAG laser. An Ar/N2 sample gas improves sensitivity 7 ?? for most elements. Sixty-three elements are characterized for the fusion, and 49 elements can be quantified. Internal standards and isotopic spikes ensure accurate results. Limits of detection are 0.01 ??g/g for many trace elements. Accuracy approaches 5% for all elements. A new quality assurance procedure is presented that uses fundamental parameters to test relative response factors for the calibration.

  19. Investigations to improve laser induced lithrotripsy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Eisel, Max; Ulaganathan, Keerthanan; Strittmatter, Frank; Pongratz, Thomas; Sroka, Ronald

    2017-02-01

    Laser lithotripsy is the preferred application for the destruction of ureteral and kidney stones. Clinically Ho:YAG lasers (λ=2.1μm) are used due to high absorption by water to induce thermomechanical ablation. This study focussed on the investigation of different laser parameters in relation to the stone dusting efficiency. The term dusting was defined when the ablated fragments were d<1mm in diameter while fragmentation is defined to pieces of d> 1mm. The discussion about fragment-size showed advantages like reduced surgery time. Experiments were performed using clinical available Ho:YAG laser energy transferred via a standard fibre (Ø: 365μm) onto phantom calculi (Bego-Stones of different hardness) in a water filled vessel. Dusting can be reached most efficient by using low energy/pulse (approx. 0.5J/pulse) and repetition rate of around 40 Hz. Higher energy/pulse showed strong repulsion and thereby increased mobility, while using lower repetition rates result in longer ablation times. With regard to the hardness of the phantoms it can be derived that on soft calculi or calculi with a very rugged surface dusting can be observed less because the stone breaks into large fragments after a short time of laser application. For hard calculi the ablation process takes a much longer time compared to soft stones. In the following will be shown that dusting and fragmentation process depends not only on the energy/pulse and repetition rate of a Ho:YAG-laser, but also there are differences between Ho:YAG-laser systems according to the dusting efficiency.

  20. Facile and fast synthesis of SnS2 nanoparticles by pulsed laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Johny, J.; Sepulveda-Guzman, S.; Krishnan, B.; Avellaneda, D.; Shaji, S.

    2018-03-01

    Nanoparticles (NPs) of tin disulfide (SnS2) were synthesized using pulsed laser ablation in liquid (PLAL) technique. Effects of different liquid media and ablation wavelengths on the morphology and optical properties of the nanoparticles were studied. Nd: YAG laser wavelengths of 532 nm and 1064 nm (frequency 10 Hz and pulse width 10 ns) were used to irradiate SnS2 target immersed in liquid for the synthesis of SnS2 nanoparticles. Here PLAL was a fast synthesis technique, the ablation was only for 30 s. Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-vis absorption spectroscopy and photoluminescence spectroscopy were used to characterize the SnS2 NPs. TEM images showed that the liquid medium and laser wavelength influence the morphology of the NPs. SAED patterns and high resolution TEM (HRTEM) images confirmed the crystallinity of the particles. XRD and XPS analyses confirmed that SnS2 NPs were having exact crystalline structure and chemical states as that of the target. Raman analysis also supported the results obtained by XRD and XPS. Optical band gaps of the nanocolloids evaluated from their UV-vis absorption spectra were 2.4-3.05 eV. SnS2 NPs were having luminescence spectra in the blue-green region irrespective of the liquid media and ablation wavelength.

  1. Bactericidal effect of Nd:YAG laser irradiation in endodontics

    NASA Astrophysics Data System (ADS)

    Aun, Carlos E.; Barberini, Alexandre F.; Camargo, Selma C. C.; Silva Kfouri, Luciana; Lorenzetti Simionato, Maria R.

    1999-05-01

    The success of endodontic therapy is based on the elimination of bacterial colonization from the endodontic system and periapical tissues. Recent studies have been showing the bactericidal effect of laser in root canal treatment. The propose of the study is to evaluate the effect of Nd:YAG laser irradiation in contaminated root canal treatment. The propose of the study is to evaluate the effect of Nd:YAG laser irradiation in contaminated root canals from upper central incisor. For the experiment 12 teeth were selected, respect at the apical third, sterilized, and 10 μm Streptococcus sanguis liquid culture were inoculated in the root canals. The laser test groups were irradiated with Nd:YAG laser at standard setting of 15Hz, 100mj and 1,5 W for 10, 20 and 30 seconds each in slow helicoidal movements from the apex to the top using a 300 micrometers fiber. After the procedure the specimens were placed in Tryptic Soy Agar, the number of colony forming units was evaluated. The experiment showed a significant reduction on viability of Streptococcus sanguis at the respective time of 20 and 30 seconds.

  2. The pulsed dye laser versus the Q-switched Nd:YAG laser in laser-induced shock-wave lithotripsy.

    PubMed

    Thomas, S; Pensel, J; Engelhardt, R; Meyer, W; Hofstetter, A G

    1988-01-01

    To date, there are two fairly well-established alternatives for laser-induced shock-wave lithotripsy in clinical practice. The Q-switched Nd:YAG laser is distinguished by the high-stone selectivity of its coupler systems. The necessity of a coupler system and its fairly small conversion rate of light energy into mechanical energy present serious drawbacks. Furthermore, the minimal outer diameter of the transmission system is 1.8 mm. The pulsed-dye laser can be used with a highly flexible and uncomplicated 200-micron fiber. However, the laser system itself is more complicated than the Q-switched Nd:YAG laser and requires a great deal of maintenance. Biological evaluation of damage caused by direct irradiation shows that both laser systems produce minor damage of different degrees. YAG laser lithotripsy with the optomechanical coupler was assessed in 31 patients with ureteral calculi. The instability and limited effectiveness of the fiber application system necessitated auxiliary lithotripsy methods in 14 cases. Dye-laser lithotripsy is currently being tested in clinical application. Further development, such as systems for blind application or electronic feedback mechanisms to limit adverse tissue effects, have yet to be optimized. Nevertheless, laser-induced shock-wave lithotripsy has the potential to become a standard procedure in the endourologic management of stone disease.

  3. Heat treatment of transparent Yb:YAG and YAG ceramics and its influence on laser performance

    NASA Astrophysics Data System (ADS)

    Fujioka, Kana; Mochida, Tetsuo; Fujimoto, Yasushi; Tokita, Shigeki; Kawanaka, Junji; Maruyama, Momoko; Sugiyama, Akira; Miyanaga, Noriaki

    2018-05-01

    Composite transparent ceramic materials are promising for improving the performance of high-average-power lasers. A combination of room-temperature bonding via surface treatment by a fast atom beam and diffusion bonding via heating, which effectively controls the ion diffusion distance near the interface, makes the laser materials suitable for a variety of oscillator/amplifier. During the heat treatment of yttrium aluminum garnet (YAG) ceramics, the Si ions in the solid solution of the sintering aid incorporated within the grains were seen to segregate at the grain boundary, resulting in an increase of scattering sites. The number density and size of the scattering sites strongly depended on the post-heating temperature rather than the heating time. Specifically, heating at 1300 °C did not affect the transmittance of the YAG ceramic, whereas both the size and number of scattering sites substantially increased with a heat treatment at 1400 °C. The laser oscillation experiment using cryogenically-cooled Yb:YAG ceramics exhibited heating temperature dependence of the slope efficiency owing to the increasing scattering loss.

  4. Laser Ablation of Biological Tissue Using Pulsed CO{sub 2} Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashishin, Yuichi; Sano, Shu; Nakayama, Takeyoshi

    2010-10-13

    Laser scalpels are currently used as a form of laser treatment. However, their ablation mechanism has not been clarified because laser excision of biological tissue occurs over a short time scale. Biological tissue ablation generates sound (laser-induced sound). This study seeks to clarify the ablation mechanism. The state of the gelatin ablation was determined using a high-speed video camera and the power reduction of a He-Ne laser beam. The aim of this study was to clarify the laser ablation mechanism by observing laser excision using the high-speed video camera and monitoring the power reduction of the He-Ne laser beam. Wemore » simulated laser excision of a biological tissue by irradiating gelatin (10 wt%) with radiation from a pulsed CO{sub 2} laser (wavelength: 10.6 {mu}m; pulse width: 80 ns). In addition, a microphone was used to measure the laser-induced sound. The first pulse caused ablation particles to be emitted in all directions; these particles were subsequently damped so that they formed a mushroom cloud. Furthermore, water was initially evaporated by laser irradiation and then tissue was ejected.« less

  5. Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm.

    PubMed

    Chang, N W H; Simakov, N; Hosken, D J; Munch, J; Ottaway, D J; Veitch, P J

    2010-06-21

    We describe an efficient Er:YAG laser that is resonantly pumped using continuous-wave (CW) laser diodes at 1470 nm. For CW lasing, it emits 6.1 W at 1645 nm with a slope efficiency of 36%, the highest efficiency reported for an Er:YAG laser that is pumped in this manner. In Q-switched operation, the laser produces diffraction-limited pulses with an average power of 2.5 W at 2 kHz PRF. To our knowledge this is the first Q-switched Er:YAG laser resonantly pumped by CW laser diodes.

  6. Optoacoustic monitoring of cutting efficiency and thermal damage during laser ablation.

    PubMed

    Bay, Erwin; Douplik, Alexandre; Razansky, Daniel

    2014-05-01

    Successful laser surgery is characterized by a precise cut and effective hemostasis with minimal collateral thermal damage to the adjacent tissues. Consequently, the surgeon needs to control several parameters, such as power, pulse repetition rate, and velocity of movements. In this study we propose utilizing optoacoustics for providing the necessary real-time feedback of cutting efficiency and collateral thermal damage. Laser ablation was performed on a bovine meat slab using a Q-switched Nd-YAG laser (532 nm, 4 kHz, 18 W). Due to the short pulse duration of 7.6 ns, the same laser has also been used for generation of optoacoustic signals. Both the shockwaves, generated due to tissue removal, as well as the normal optoacoustic responses from the surrounding tissue were detected using a single broadband piezoelectric transducer. It has been observed that the rapid reduction in the shockwave amplitude occurs as more material is being removed, indicating decrease in cutting efficiency, whereas gradual decrease in the optoacoustic signal likely corresponds to coagulation around the ablation crater. Further heating of the surrounding tissue leads to carbonization accompanied by a significant shift in the optoacoustic spectra. Our results hold promise for real-time monitoring of cutting efficiency and collateral thermal damage during laser surgery. In practice, this could eventually facilitate development of automatic cut-off mechanisms that will guarantee an optimal tradeoff between cutting and heating while avoiding severe thermal damage to the surrounding tissues.

  7. Erbium Distribution in Single Crystal YAG Fibers Grown by Laser-Heated Pedestal Growth Technique

    DTIC Science & Technology

    2015-08-28

    single crystal YAG fibers grown by laser - heated pedestal growth technique Single crystal (SC) yttrium aluminum garnet (YAG, Y3Al5O12) as a host...inserted into a SC YAG tube. This rod-in-tube was used as a preform in our laser -heated pedestal growth (LHPG) apparatus to grow a fiber with a radial...fibers grown by laser -heated pedestal growth technique Report Title Single crystal (SC) yttrium aluminum garnet (YAG, Y3Al5O12) as a host material has

  8. Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser.

    PubMed

    Lin, Taichen; Aoki, Akira; Saito, Norihito; Yumoto, Masaki; Nakajima, Sadahiro; Nagasaka, Keigo; Ichinose, Shizuko; Mizutani, Koji; Wada, Satoshi; Izumi, Yuichi

    2016-12-01

    Mid-infrared erbium: yttrium-aluminum-garnet (Er:YAG) and erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers (2.94- and 2.78-μm, respectively) are utilized for effective dental hard tissue treatment because of their high absorption in water, hydroxide ion, or both. Recently, a mid-infrared tunable, nanosecond pulsed, all-solid-state chromium-doped: cadmium-selenide (Cr:CdSe) laser system was developed, which enables laser oscillation in the broad spectral range around 2.9 μm. The purpose of this study was to evaluate the ablation of dental hard tissue by the nanosecond pulsed Cr:CdSe laser at a wavelength range of 2.76-3.00 μm. Enamel, dentin, and cementum tissue were irradiated at a spot or line at a fluence of 0-11.20 J/cm 2 /pulse (energy output: 0-2.00 mJ/pulse) with a repetition rate of 10 Hz and beam diameter of ∼150 μm on the target (pulse width ∼250 ns). After irradiation, morphological changes, ablation threshold, depth, and efficiency, and thickness of the structurally and thermally affected layer of irradiated surfaces were analyzed using stereomicroscopy, scanning electron microscopy (SEM), and light microscopy of non-decalcified histological sections. The nanosecond pulsed irradiation without water spray effectively ablated dental hard tissue with no visible thermal damage such as carbonization. The SEM analysis revealed characteristic micro-irregularities without major melting and cracks in the lased tissue. The ablation threshold of dentin was the lowest at 2.76 μm and the highest at 3.00 μm. The histological analysis revealed minimal thermal and structural changes ∼20 μm wide on the irradiated dentin surfaces with no significant differences between wavelengths. The efficiency of dentin ablation gradually increased from 3.00 to 2.76 μm, at which point the highest ablation efficiency was observed. The nanosecond pulsed Cr:CdSe laser demonstrated an effective ablation ability of hard dental tissues

  9. Nd:YAG laser for epithelial ingrowth after laser in situ keratomileusis.

    PubMed

    Mohammed, Osama Ali; Mounir, Amr; Hassan, Amin Aboali; Alsmman, Alahmady Hamad; Mostafa, Engy Mohamed

    2018-05-04

    To evaluate the efficacy of neodymium:yttrium-aluminum-garnet (Nd:YAG) laser for treatment of epithelial ingrowth after laser in situ keratomileusis (LASIK). Fifty-eight patients with epithelial ingrowth presented to Sohag refractive center, Sohag, Egypt, between January 2015 and March 2017. Only 41 patients (18 females and 23 males, mean age: 33.4 years) involving 41 eyes were indicated for treatment by Nd:YAG laser as the rest of the eyes were only under observation. Patients with epithelial ingrowth were recognized at a mean of 6 months after primary LASIK procedure (range: 2-16 months). Four eyes had undergone previous LASIK enhancements. Four eyes had the epithelial ingrowth removed by flap lift and scrapping. The mean intensity of the spots used was 0.8 mJ with variable number of shots depending on the size and density of the epithelial ingrowth area. Twenty-eight eyes showed complete regression after one session, while the rest necessitated 2-3 sessions for complete resolution. Mean follow-up period was 8 months (range 5-12 months). Epithelial ingrowth was treated successfully in all 41 eyes. The uncorrected visual acuities were 20/20, and there was no evidence of recurrent epithelial ingrowth after 6 months with no complications reported. YAG laser is a simple, effective outpatient procedure for the management of epithelial ingrowth after LASIK.

  10. Fractional laser skin resurfacing.

    PubMed

    Alexiades-Armenakas, Macrene R; Dover, Jeffrey S; Arndt, Kenneth A

    2012-11-01

    Laser skin resurfacing (LSR) has evolved over the past 2 decades from traditional ablative to fractional nonablative and fractional ablative resurfacing. Traditional ablative LSR was highly effective in reducing rhytides, photoaging, and acne scarring but was associated with significant side effects and complications. In contrast, nonablative LSR was very safe but failed to deliver consistent clinical improvement. Fractional LSR has achieved the middle ground; it combined the efficacy of traditional LSR with the safety of nonablative modalities. The first fractional laser was a nonablative erbium-doped yttrium aluminum garnet (Er:YAG) laser that produced microscopic columns of thermal injury in the epidermis and upper dermis. Heralding an entirely new concept of laser energy delivery, it delivered the laser beam in microarrays. It resulted in microscopic columns of treated tissue and intervening areas of untreated skin, which yielded rapid reepithelialization. Fractional delivery was quickly applied to ablative wavelengths such as carbon dioxide, Er:YAG, and yttrium scandium gallium garnet (2,790 nm), providing more significant clinical outcomes. Adjustable laser parameters, including power, pitch, dwell time, and spot density, allowed for precise determination of percent surface area, affected penetration depth, and clinical recovery time and efficacy. Fractional LSR has been a significant advance to the laser field, striking the balance between safety and efficacy.

  11. Environmental testing of a diode-laser-pumped Nd:YAG laser and a set of diode-laser-arrays

    NASA Technical Reports Server (NTRS)

    Hemmati, H.; Lesh, J. R.

    1989-01-01

    Results of the environmental test of a compact, rigid and lightweight diode-laser-pumped Nd:YAG laser module are discussed. All optical elements are bonded onto the module using space applicable epoxy, and two 200 mW diode laser arrays for pump sources are used to achieve 126 mW of CW output with about 7 percent electrical-to-optical conversion efficiency. This laser assembly and a set of 20 semiconductor diode laser arrays were environmentally tested by being subjected to vibrational and thermal conditions similar to those experienced during launch of the Space Shuttle, and both performed well. Nevertheless, some damage to the laser front facet in diode lasers was observed. Significant degradation was observed only on lasers which performed poorly in the life test. Improvements in the reliability of the Nd:YAG laser are suggested.

  12. Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique.

    PubMed

    Salamu, Gabriela; Jipa, Florin; Zamfirescu, Marian; Pavel, Nicolaie

    2014-03-10

    We report on realization of buried waveguides in Nd:YAG ceramic media by direct femtosecond-laser writing technique and investigate the waveguides laser emission characteristics under the pump with fiber-coupled diode lasers. Laser pulses at 1.06 μm with energy of 2.8 mJ for the pump with pulses of 13.1-mJ energy and continuous-wave output power of 0.49 W with overall optical efficiency of 0.13 were obtained from a 100-μm diameter circular cladding waveguide realized in a 0.7-at.% Nd:YAG ceramic. A circular waveguide of 50-μm diameter yielded laser pulses at 1.3 μm with 1.2-mJ energy.

  13. Effect of Nd:YAG laser on the solvent evaporation of adhesive systems.

    PubMed

    Batista, Graziela Ribeiro; Barcellos, Daphne Câmara; Rocha Gomes Torres, Carlos; Damião, Álvaro José; de Oliveira, Hueder Paulo Moisés; de Paiva Gonçalves, Sérgio Eduardo

    2015-01-01

    This study evaluated the influence of Nd:YAG laser on the evaporation degree (ED) of the solvent components in total-etch and self-etch adhesives. The ED of Gluma Comfort Bond (Heraeus-Kulzer) one-step self-etch adhesive, and Adper Single Bond 2 (3M ESPE), and XP Bond (Dentsply) total-etch adhesives was determined by weight alterations using two techniques: Control--spontaneous evaporation of the solvent for 5 min; Experimental--Nd:YAG laser irradiation for 1 min, followed by spontaneous evaporation for 4 min. The weight loss due to evaporation of the volatile components was measured at baseline and after 10 s, 20 s, 30 s, 40 s, 50 s, 60 s, 70 s, 80 s, 90 s, 100 s, 110 s, 2 min, 3 min, 4 min, and 5 min. Evaporation of solvent components significantly increased with Nd:YAG laser irradiation for all adhesives investigated. Gluma Comfort Bond showed significantly higher evaporation of solvent components than Adper Single Bond 2 and XP Bond. All the adhesives lost weight quickly during the first min of Nd:YAG laser irradiation. The application of Nd:YAG laser on adhesives before light curing had a significant effect on the evaporation of the solvent components, and the ED of Gluma Comfort Bond one-step self-etch adhesive was significantly higher than with Adper Single Bond 2 and XP Bond total-etch adhesives. The use of the Nd:YAG laser on the uncured adhesive technique can promote a greater ED of solvents, optimizing the longevity of the adhesive restorations.

  14. Thulium fiber laser ablation of kidney stones using a 50-μm-core silica optical fiber

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Hutchens, Thomas C.; Hardy, Luke A.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2015-01-01

    Our laboratory is currently studying the experimental thulium fiber laser (TFL) as a potential alternative laser lithotripter to the gold standard, clinical Holmium:YAG laser. We have previously demonstrated the efficient coupling of TFL energy into fibers as small as 100-μm-core-diameter without damage to the proximal end. Although smaller fibers have a greater tendency to degrade at the distal tip during lithotripsy, fiber diameters (≤200 μm) have been shown to increase the saline irrigation rates through the working channel of a flexible ureteroscope, to maximize the ureteroscope deflection, and to reduce the stone retropulsion during laser lithotripsy. In this study, a 50-μm-core-diameter, 85-μm-outer-diameter, low-OH silica fiber is characterized for TFL ablation of human calcium oxalate monohydrate urinary stones, ex vivo. The 50-μm-core fiber consumes approximately 30 times less cross-sectional area inside the single working channel of a ureteroscope than the standard 270-μm-core fiber currently used in the clinic. The ureteroscope working channel flow rate, including the 50-μm fiber, decreased by only 10% with no impairment of ureteroscope deflection. The fiber delivered up to 15.4±5.9 W under extreme bending (5-mm-radius) conditions. The stone ablation rate measured 70±22 μg/s for 35-mJ-pulse-energy, 500-μs-pulse-duration, and 50-Hz-pulse-rate. Stone retropulsion and fiber burnback averaged 201±336 and 3000±2600 μm, respectively, after 2 min. With further development, thulium fiber laser lithotripsy using ultra-small, 50-μm-core fibers may introduce new integration and miniaturization possibilities and potentially provide an alternative to conventional Holmium:YAG laser lithotripsy using larger fibers.

  15. NdYag Laser for Acne Keloidalis Nuchae

    ClinicalTrials.gov

    2013-03-27

    Acne Keloidalis Nuchae; NdYag Laser; AKN; Acne Keloidalis; AK; Dermatitis Papillaris Capillitii; Folliculitis Keloidalis Nuchae; Sycosis Nuchae; Acne Keloid; Keloidal Folliculitis; Lichen Keloidalis Nuchae; Folliculitis Nuchae Scleroticans; Sycosis Framboesiformis

  16. The Femtosecond Laser Ablation on Ultrafine-Grained Copper

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Ruan, Shuangchen; Guo, Dengji; Du, Chenlin; Liang, Xiong; Wu, Zhaozhi

    2018-07-01

    To investigate the effects of femtosecond laser ablation on the surface morphology and microstructure of ultrafine-grained copper, point, single-line scanning, and area scanning ablation of ultrafine-grained and coarse-grained copper were performed at room temperature. The ablation threshold gradually increased and materials processing became more difficult with decreasing grain size. In addition, the ablation depth and width of the channels formed by single-line scanning ablation gradually increased with increasing grain size for the same laser pulse energy. The microhardness of the ablated specimens was also evaluated as a function of laser pulse energy using area scanning ablation. The microhardness difference before and after ablation increased with decreasing grain size for the same laser pulse energy. In addition, the microhardness after ablation gradually decreased with increasing laser pulse energy for the ultrafine-grained specimens. However, for the coarse-grained copper specimens, no clear changes of the microhardness were observed after ablation with varying laser pulse energies. The grain sizes of the ultrafine-grained specimens were also surveyed as a function of laser pulse energy using electron backscattered diffraction (EBSD). The heat generated by laser ablation caused recrystallization and grain growth of the ultrafine-grained copper; moreover, the grain size gradually increased with increasing pulse energy. In contrast, no obvious changes in grain size were observed for the coarse-grained copper specimens with increasing pulse energy.

  17. The Femtosecond Laser Ablation on Ultrafine-Grained Copper

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Ruan, Shuangchen; Guo, Dengji; Du, Chenlin; Liang, Xiong; Wu, Zhaozhi

    2018-05-01

    To investigate the effects of femtosecond laser ablation on the surface morphology and microstructure of ultrafine-grained copper, point, single-line scanning, and area scanning ablation of ultrafine-grained and coarse-grained copper were performed at room temperature. The ablation threshold gradually increased and materials processing became more difficult with decreasing grain size. In addition, the ablation depth and width of the channels formed by single-line scanning ablation gradually increased with increasing grain size for the same laser pulse energy. The microhardness of the ablated specimens was also evaluated as a function of laser pulse energy using area scanning ablation. The microhardness difference before and after ablation increased with decreasing grain size for the same laser pulse energy. In addition, the microhardness after ablation gradually decreased with increasing laser pulse energy for the ultrafine-grained specimens. However, for the coarse-grained copper specimens, no clear changes of the microhardness were observed after ablation with varying laser pulse energies. The grain sizes of the ultrafine-grained specimens were also surveyed as a function of laser pulse energy using electron backscattered diffraction (EBSD). The heat generated by laser ablation caused recrystallization and grain growth of the ultrafine-grained copper; moreover, the grain size gradually increased with increasing pulse energy. In contrast, no obvious changes in grain size were observed for the coarse-grained copper specimens with increasing pulse energy.

  18. 15 mJ single-frequency Ho:YAG laser resonantly pumped by a 1.9 µm laser diode

    NASA Astrophysics Data System (ADS)

    Na, Q. X.; Gao, C. Q.; Wang, Q.; Zhang, Y. X.; Gao, M. W.; Ye, Q.; Li, Y.

    2016-09-01

    A 2.09 µm injection-seeded single-frequency Ho:YAG laser resonantly pumped by a 1.91 µm laser diode is demonstrated for the first time. The seed laser is a continuous wave (CW) Ho:YAG non-planar ring oscillator. 15.15 mJ single-frequency output energy is obtained from the injection-seeded Q-switched Ho:YAG laser, with a pulse repetition rate of 200 Hz and a pulse width of 109 ns. The half-width of the pulse spectrum is measured to be 4.19 MHz by using the heterodyne technique. The fluctuation of the center frequency of the single-frequency pulses is 1.52 MHz (root mean square (RMS)) in 1 h.

  19. Simulation of medical Q-switch flash-pumped Er:YAG laser

    NASA Astrophysics Data System (ADS)

    -Yan-lin, Wang; Huang-Chuyun; Yao-Yucheng; Xiaolin, Zou

    2011-01-01

    Er: YAG laser, the wavelength is 2940nm, can be absorbed strongly by water. The absorption coefficient is as high as 13000 cm-1. As the water strong absorption, Erbium laser can bring shallow penetration depth and smaller surrounding tissue injury in most soft tissue and hard tissue. At the same time, the interaction between 2940nm radiation and biological tissue saturated with water is equivalent to instantaneous heating within limited volume, thus resulting in the phenomenon of micro-explosion to removal organization. Different parameters can be set up to cut enamel, dentin, caries and soft tissue. For the development and optimization of laser system, it is a practical choice to use laser modeling to predict the influence of various parameters for laser performance. Aim at the status of low Erbium laser output power, flash-pumped Er: YAG laser performance was simulated to obtain optical output in theory. the rate equation model was obtained and used to predict the change of population densities in various manifolds and use the technology of Q-switch the simulate laser output for different design parameters and results showed that Er: YAG laser output energy can achieve the maximum average output power of 9.8W under the given parameters. The model can be used to find the potential laser systems that meet application requirements.

  20. Shock-wave propagation and cavitation bubble oscillation by Nd:YAG laser ablation of a metal in water.

    PubMed

    Chen, Xiao; Xu, Rong-Qing; Chen, Jian-Ping; Shen, Zhong-Hua; Jian, Lu; Ni, Xiao-Wu

    2004-06-01

    A highly sensitive fiber-optic sensor based on optical beam deflection is applied for investigating the propagation of a laser-induced plasma shock wave, the oscillation of a cavitation bubble diameter, and the development of a bubble-collapse-induced shock wave when a Nd:YAG laser pulse is focused upon an aluminum surface in water. By the sequence of experimental waveforms detected at different distances, the attenuation properties of the plasma shock wave and of the bubble-collapse-induced shock wave are obtained. Besides, based on characteristic signals, both the maximum and the minimum bubble radii at each oscillation cycle are determined, as are the corresponding oscillating periods.

  1. Evaluation of a commercially available passively Q-switched Nd:YAG laser with LiF: F2- saturable absorber for laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Carson, Cantwell G.; Goueguel, Christian L.; Sanghapi, Hervé; Jain, Jinesh; McIntyre, Dustin

    2016-05-01

    Interest in passively Q-switched microchip lasers as a means for miniaturization of laser-induced breakdown spectroscopy (LIBS) apparatus has rapidly grown in the last years. To explore the possibility of using a comparatively UV-vis transparent absorber, we herein present the first report on the evaluation of a commercially available flash lamp-pumped passively Q-switched Nd:YAG laser with LiF: F2- saturable absorber as an excitation source in LIBS. Quantitative measurements of barium, strontium, rubidium and lithium in granite, rhyolite, basalt and syenite whole-rock glass samples were performed. Using a gated intensified benchtop spectrometer, limits of detection of 0.97, 23, 37, and 144 ppm were obtained for Li, Sr, Rb, and Ba, respectively. Finally, we discuss the advantages of using such a laser unit for LIBS applications in terms of ablation efficiency, analytical performances, output energy, and standoff capabilities.

  2. Comparison of a novel high-power blue diode laser (λ=442 nm) with Ho:YAG (λ=2100 nm), Tm fiber (λ=1940 nm), and KTP (λ=532 nm) lasers for soft tissue ablation

    NASA Astrophysics Data System (ADS)

    Vinnichenko, Victoriya; Kovalenko, Anastasiya; Arkhipova, Valeriya; Yaroslavsky, Ilya; Altshuler, Gregory; Gapontsev, Valentin

    2018-02-01

    Three lasers were directly compared, including the Ho:YAG laser (λ = 2100 nm), Tm fiber laser (λ = 1940 nm) operating in 3 different modes (CW, regular pulse, and super pulse), and blue diode laser (λ = 442 nm) for vaporization and coagulation efficiency for treating blood-rich soft tissues, ex vivo, in a porcine kidney model at quasi-contact cutting in water. In addition, experimental results were compared with published data on performance of KTP laser (λ = 532 nm) at similar experimental settings (Power = 60 W and cutting speed = 2 mm/s). Tm fiber laser in pulsed mode and blue laser produced highest vaporization rates of 3.7 and 3.4 mm3/s, respectively. Tm fiber laser (in both CW and pulsed modes) also produced the largest coagulation zone among the laser sources tested. A carbonization zone was observed for Tm fiber laser in CW and pulsed modes, as well as for the blue diode laser. Tm fiber laser in super-pulse mode and Ho:YAG laser both resulted in irregular coagulation zones without carbonization. Comparison with known data for KTP laser revealed that tissue effects of the blue laser are similar to that of the KTP laser. These results suggest that the combination of the two lasers (Tm fiber and blue diode) in one system may achieve high cutting efficiency and optimal coagulation for hemostasis during surgical treatment. Ex vivo testing of the combined system revealed feasibility of this approach. The combination of the CW Tm fiber laser (120W) and the blue diode laser (60W) emitting through a combination tip were compared with CW 120 W Tm fiber laser alone and 120 W Ho:YAG laser. Vaporization rates measured 34, 28, and 6 mm3/s, and coagulation zones measured 0.6, 1.3, and 1.7 mm, respectively. A carbonization zone was only observed with CW Tm fiber laser. The vaporization rate of combined CW Tm fiber laser / blue diode laser was comparable to published data for KTP laser for equivalent total power. Thus, high-power blue diode laser, Tm fiber laser, and

  3. Biophysical considerations for optimizing energy delivery during Erbium:YAG laser vitreoretinal surgery

    NASA Astrophysics Data System (ADS)

    Berger, Jeffrey W.; Bochow, Thomas W.; Kim, Rosa Y.; D'Amico, Donald J.

    1996-05-01

    Er:YAG laser-mediated tissue disruption and removal results from both direct ablation and the acousto-mechanical sequelae of explosive vaporization of the tissue water. We investigated the scaling laws for photoablative and photodisruptive interactions, and interpret these results towards optimizing energy delivery for vitreoretinal surgical maneuvers. Experimental studies were performed with a free-running Er:YAG laser (100 - 300 microseconds FWHM, 0.5 - 20 mJ, 1 - 30 Hz). Energy was delivered by fiberoptic to a custom-made handpiece with a 75 - 600 micrometer quartz tip, and applied to excised, en bloc samples of bovine vitreous or model systems of saline solution. Sample temperature was measured with 33 gauge copper- constantan thermocouples. Expansion and collapse of the bubble following explosive vaporization of tissue water was optically detected. The bubble size was calculated from the period of the bubble oscillation and known material properties. A model for bubble expansion is presented based on energy principles and adiabatic gas expansion. Pressure transients associated with bubble dynamics are estimated following available experimental and analytical data. The temperature rise in vitreous and model systems depends on the pulse energy and repetition rate, but is independent of the probe-tip diameter at constant laser power; at moderate repetition rates, the temperature rise depends only on the total energy (mJ) delivered. The maximum bubble diameter increases as the cube root of the pulse energy with a reverberation period of 110 microseconds and a maximum bubble diameter of 1.2 mm following one mJ delivery to saline through a 100 micrometer tip. Our modeling studies generate predictions similar to experimental data and predicts that the maximum bubble diameter increases as the cube root of the pulse energy. We demonstrate that tissue ablation depends on radiant exposure (J/cm2), while temperature rise, bubble size, and pressure depends on total pulse

  4. Tandem Laser Induced Breakdown Spectroscopy (LIBS), Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS) and/or Laser Ablation Inductively Coupled Plasma Optical Emission Spectroscopy (LA-ICP-OES) for the analysis of samples of geological interest

    NASA Astrophysics Data System (ADS)

    Oropeza, D.

    2016-12-01

    A highly innovative laser ablation sampling instrument (J200 Tandem LA - LIBS) that combines the capabilities and analytical benefits of LIBS, LA-ICP-MS and LA-ICP-OES was used for micrometer-scale, spatially-resolved, elemental analysis of a wide variety of samples of geological interest. Data collected using ablation systems consisted of nanosecond (Nd:YAG operated 266nm) and femtosecond lasers (1030 and 343nm). An ICCD LIBS detector and Quadrupole based mass spectrometer were selected for LIBS and ICP-MS detection, respectively. This tandem instrument allows simultaneous determination of major and minor elements (for example, Si, Ca, Na, and Al, and trace elements such as Li, Ce, Cr, Sr, Y, Zn, Zr among others). The research also focused on elemental mapping and calibration strategies, specifically the use of emission and mass spectra for multivariate data analysis. Partial Least Square Regression (PLSR) is shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The study provides a benchmark to evaluate analytical results for more complex geological sample matrices.

  5. A comparison of diode laser and Er:YAG lasers in the treatment of gingival melanin pigmentation.

    PubMed

    Simşek Kaya, Göksel; Yapici Yavuz, Günay; Sümbüllü, Muhammed A; Dayi, Ertunç

    2012-03-01

    This study compared the use of diode and Er:YAG lasers in treating gingival melanin pigmentation (GMP) in terms of gingival depigmentation, local anesthesia requirements, postoperative pain/discomfort, depigmentation effectiveness, and total treatment duration. Twenty patients (13 female, 7 male) referred with GMP were enrolled in the study. Patients were randomly divided into 2 groups. Group 1 was treated with a gallium aluminum arsenide diode laser with a continuous wavelength of 808 nm, and group 2 was treated with an Er:YAG laser with a continuous wavelength of 2,940 nm. Gingival depigmentation was performed by applying the laser at 1 W. Treatment was administered on a weekly basis until a normal pink gingival color was observable in clinical examination and photographs. In addition, patients were asked to evaluate the procedure by using a self-administered questionnaire. Procedures were carried out without the need for any topical or local anesthetic, and no unpleasant events occurred during the actual procedure or the healing period. The total length of treatment was significantly shorter with the diode laser (group 1) than with the Er:YAG laser (group 2; P < .05). No melanin recurrence was detected during any follow-up session. Diode and Er:YAG lasers administered at 1 W both result in satisfactory depigmentation of GMP. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Forskolin and rutin prevent intraocular pressure spikes after Nd:YAG laser iridotomy.

    PubMed

    Nebbioso, M; Belcaro, G; Librando, A; Rusciano, D; Steigerwalt, R D; Pescosolido, N

    2012-12-01

    the purpose of this research was to evaluate whether an oral treatment with an association of forskolin and rutin can blunt the intraocular pressure (IOP) spikes and avoid the damage that may occur after laser iridotomy. Ten patients underwent bilateral Neodymium:YAG (Nd:YAG) laser iridotomy (Visulas YAG III Laser, Zeiss), for the prevention of primary closed-angle glaucoma. IOP was measured in subjects before and after 7 days of pretreatment with placebo or forskolin and rutin by Goldman applanation tonometry. The IOP was measured before surgery and after surgery at 30-60-120 minutes, and 4-7 days. Analysis of variance indicated a significant increase of the postoperative values in patients receiving treatment with placebo (p < 0.001), but not in those who received treatment with the forskolin and rutin association. T test analysis confirmed that IOP still remained significantly elevated 7 days after laser intervention in placebo treated patients, whereas it stayed within normal values in forskolin/rutin treated patients. Forskolin and rutin can blunt the increase of IOP that occurs after Nd-YAG laser iridotomy. This can avoid serious risk to the optic nerve of the patients under laser treatment for iridotomy.

  7. Treatment of vitreous floaters with neodymium YAG laser.

    PubMed Central

    Tsai, W F; Chen, Y C; Su, C Y

    1993-01-01

    Fifteen cases of vitreous floaters with serious psychological reactions have been collected. By using a direct ophthalmoscope, causal vitreous opacities were detected. The opacities were photodisrupted with neodymium YAG laser, using energy levels of 5 to 7.1 mJ and total energy 71 to 742.0 mJ. Symptoms completely disappeared immediately after treatment in all 15 cases. There were no intraoperative or postoperative complications noted during a follow up period of at least 1 year. To our knowledge, the use of neodymium YAG laser to treat vitreous floaters has not been previously described. Our initial experience indicates that the treatment is simple, safe, and effective. Images PMID:8025044

  8. Retinal damage from a Q-switched YAG laser.

    PubMed

    Jampol, L M; Goldberg, M F; Jednock, N

    1983-09-01

    A 42-year-old woman with sickle cell anemia and proliferative retinopathy underwent neodymium-YAG laser therapy for a taut posterior hyaloid membrane causing peripapillary and peripheral traction detachment of the retina. Vitrectomy was not done because the patient required anticoagulation. A Q-switched YAG laser was capable of cutting holes in the taut membrane, but treatment 2 to 3 mm from the retina resulted in microperforation of a retinal vein and focal areas of damage to the retinal pigment epithelium. The damage to the retinal pigment epithelium was not immediately apparent, and ophthalmoscopically visible lesions were seen only when the patient was reexamined 48 hours later.

  9. Further characterization of photothermal breakdown products of uric acid stones following holmium:YAG laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Glickman, Randolph D.; Weintraub, Susan T.; Kumar, Neeru; Corbin, Nicole S.; Lesani, Omid; Teichman, Joel M. H.

    2000-06-01

    Previously we found that Ho:YAG laser (2120 nm) lithotripsy of uric acid stones produced cyanide, a known thermal breakdown product of uric acid. We now report that alloxan, another thermal breakdown product, is also likely produced. Uric acid stones (approximately 98% pure) of human origin were placed in distilled water and subjected to one of the following experimental treatments: unexposed control, exposed to Ho:YAG laser, Nd:YAG laser, or mechanically crushed. Samples were then processed for HPLC analysis with UV detection. Peaks were identified by comparison to authentic standards. All samples contained uric acid, with retention time (RT) about 6 min. All of the laser-exposed samples contained a peak that eluted at 2.5 min, identical to the RT of authentic alloxan. Ho:YAG laser irradiation, however, produced a larger presumed alloxan peak than did the Nd:YAG laser. The peak at 2.5 min, as well as unidentified later-eluting peaks, were present in the laser-exposed, but not the unexposed or mechanically crushed, samples. These results confirm the thermal nature of lithotripsy performed with long-pulse IR lasers.

  10. Treatment of actinic cheilitis with the Er:YAG laser.

    PubMed

    Armenores, Paul; James, Craig L; Walker, Patrick C; Huilgol, Shyamala C

    2010-10-01

    Actinic cheilitis is a common condition with the potential to develop into squamous cell carcinoma. Current treatments have varying cure rates and complications. The role of the erbium:yttrium-aluminum-garnet (Er:YAG) laser in the treatment of actinic cheilitis has not been widely published, despite offering theoretical advantages over current treatment modalities. To evaluate the outcome of a series of patients treated with the Er:YAG laser for actinic cheilitis. This was a retrospective, interventional, nonrandomized, sequential case series set in a tertiary referral, dermatologic surgery unit. Ninety-nine consecutive patients with actinic cheilitis treated with the Er:YAG laser between January 2001 and June 2008 underwent a case note review, of which 77 went on to a structured telephone interview. The main outcome measures were a subjective improvement in lip symptoms related to actinic cheilitis and objective improvement in the lips at routine follow-up. Mean time to interview follow-up was 65.7 months. Of those interviewed, 92.2% believed there had been an improvement in the cosmetic appearance of their lips; one hundred percent believed the function of their lips had improved or remained unchanged; and 84.8% remained completely disease free at the time of follow-up. The majority of patients (93.5%) were satisfied with the laser treatment. Scarring as a direct result of the laser occurred in 5.1% of patients. Retrospective nature of data collection; inability to interview all patients who underwent treatment. The Er:YAG laser is a successful modality for the treatment of actinic cheilitis with good functional and cosmetic results and only a small risk of long-term scarring. It should be considered as a first-line treatment for the disease. Copyright © 2009 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  11. Reduction of timing jitter in a Q-Switched Nd:YAG laser by direct bleaching of a Cr4+:YAG saturable absorber.

    PubMed

    Cole, Brian; Goldberg, Lew; Trussell, C Ward; Hays, Alan; Schilling, Bradley W; McIntosh, Chris

    2009-02-02

    A method for optical triggering of a Q-switched Nd:YAG laser by direct bleaching of a Cr:YAG saturable absorber is described. This method involves the bleaching of a thin sheet of the saturable absorber from a direction orthogonal to the lasing axis using a single laser diode bar, where the Cr:YAG transmission increased from a non-bleached value of 47% to a bleached value of 63%. For steady state operation of a passively Q-switched laser (PRF=10 Hz), the pulse-to-pulse timing jitter showed approximately 12X reduction in standard deviation, from 241 nsec for free running operation to 20 nsec with optical triggering.

  12. Eligibility criteria for Nd-YAG laser treatment of highly symptomatic vitreous floaters.

    PubMed

    Vandorselaer, T; Van De Velde, F; Tassignon, M J

    2001-01-01

    Ten eyes of nine patients were treated for very disturbing vitreous floaters with the technique of Nd-YAG laser vitreolysis. The Scanning Laser Ophthalmoscope (SLO) was used to objectivate the position, the size and the motility of the vitreous floaters with respect to the patient's visual axis, which can be precisely located with the SLO. With this technique it was possible to define more precisely some eligibility criteria for Nd-YAG laser treatment of vitreous floaters and to classify the vitreous floaters in ill-suspended and well-suspended floaters in the vitreous body, the well-suspended floaters responding better to treatment compared to the ill-suspended vitreous floaters. The treatment was performed using the Q-Switched Nd-YAG Laser type Nanolas 15S of Alcon.

  13. GaAs laser diode pumped Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Conant, L. C.; Reno, C. W.

    1974-01-01

    A 1.5-mm by 3-cm neodymium-ion doped YAG laser rod has been side pumped using a GaAs laser diode array tuned to the 8680-A absorption line, achieving a multimode average output power of 120 mW for a total input power of 20 W to the final-stage laser diode drivers. The pumped arrangement was designed to take advantage of the high brightness of a conventional GaAs array as a linear source by introducing the pump light through a slit into a close-wrapped gold coated pump cavity. This cavity forms an integrating chamber for the pump light.

  14. Fabrication of naphthalocyanine nanoparticles by laser ablation in liquid and application to contrast agents for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Yanagihara, Ryuga; Asahi, Tsuyoshi; Ishibashi, Yukihide; Odawara, Osamu; Wada, Hiroyuki

    2018-03-01

    Naphthalocyanine nanoparticles were prepared by laser ablation in liquid using second-harmonics of nanosecond Nd:YAG laser as an excitation light sauce at various laser fluence, and the properties of naphthalocyanine nanoparticles, such as shape, size, zeta potential, chemical structure and optical absorption were examined. The scanning electron microscopy (SEM) and dynamic light scattering (DLS) measurements showed that the particle size of the nanoparticles could be controlled by the laser fluence. The IR spectra of the nanoparticles indicated the formation of carboxylate anion species at laser fluences above 100 mJ/cm2, which will result the zeta potential of the nanoparticles depending on the laser fluence. We also examined the potential application to contrast agents for photoacoustic, and confirmed that the naphthalocyanine nanoparticles generated a strong photoacoustic signal.

  15. Periodontal tissue healing following flap surgery using an Er:YAG laser in dogs.

    PubMed

    Mizutani, Koji; Aoki, Akira; Takasaki, Aristeo Atsushi; Kinoshita, Atsuhiro; Hayashi, Chie; Oda, Shigeru; Ishikawa, Isao

    2006-04-01

    The purpose of this study was to compare periodontal tissue healing following flap surgery using an Er:YAG laser with that of conventional surgery. Bilateral premolars with experimentally induced periodontitis in six dogs were treated by periodontal flap surgery. Degranulation and root debridement in the furcation were performed using an Er:YAG laser or curet. At 3 months postsurgery, animals were sacrificed and decalcified specimens were prepared for histological and histometric analysis. Degranulation and root debridement were effectively performed with an Er:YAG laser without major thermal damage and significantly faster than with a curet. Histologically, the amount of newly formed bone was significantly greater in the laser group than in the curet group, although both groups showed similar amounts of cementum formation and connective tissue attachment. The Er:YAG laser irradiation can be safely and effectively utilized in periodontal flap surgery, and has the potential to promote new bone formation. Copyright 2006 Wiley-Liss, Inc.

  16. Generation of Ince-Gaussian beams in highly efficient, nanosecond Cr, Nd:YAG microchip lasers

    NASA Astrophysics Data System (ADS)

    Dong, J.; Ma, J.; Ren, Y. Y.; Xu, G. Z.; Kaminskii, A. A.

    2013-08-01

    Direct generation of higher-order Ince-Gaussian (IG) beams from laser-diode end-pumped Cr, Nd:YAG self-Q-switched microchip lasers was achieved with high efficiency and high repetition rate. An average output power of over 2 W was obtained at an absorbed pump power of 8.2 W a corresponding optical-to-optical efficiency of 25% was achieved. Various IG modes with nanosecond pulse width and peak power of over 2 kW were obtained in laser-diode pumped Cr, Nd:YAG microchip lasers under different pump power levels by applying a tilted, large area pump beam. The effect of the inversion population distribution induced by the tilted pump beam and nonlinear absorption of Cr4+-ions for different pump power levels on the oscillation of higher-order IG modes in Cr, Nd:YAG microchip lasers is addressed. The higher-order IG mode oscillation has a great influence on the laser performance of Cr, Nd:YAG microchip lasers.

  17. Formation of silicon carbide by laser ablation in graphene oxide-N-methyl-2-pyrrolidone suspension on silicon surface

    NASA Astrophysics Data System (ADS)

    Jaleh, Babak; Ghasemi, Samaneh; Torkamany, Mohammad Javad; Salehzadeh, Sadegh; Maleki, Farahnaz

    2018-01-01

    Laser ablation of a silicon wafer in graphene oxide-N-methyl-2-pyrrolidone (GO-NMP) suspension was carried out with a pulsed Nd:YAG laser (pulse duration = 250 ns, wavelength = 1064 nm). The surface of silicon wafer before and after laser ablation was studied using optical microscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The results showed that the ablation of silicon surface in liquid by pulsed laser was done by the process of melt expulsion under the influence of the confined plasma-induced pressure or shock wave trapped between the silicon wafer and the liquid. The X-ray diffraction‌ (XRD) pattern of Si wafer after laser ablation showed that 4H-SiC layer is formed on its surface. The formation of the above layer was also confirmed by Raman spectroscopy, and X-ray photoelectron spectroscopy‌ (XPS), as well as EDX was utilized. The reflectance of samples decreased with increasing pulse energy. Therefore, the morphological alteration and the formation of SiC layer at high energy increase absorption intensity in the UV‌-vis regions. Theoretical calculations confirm that the formation of silicon carbide from graphene oxide and silicon wafer is considerably endothermic. Development of new methods for increasing the reflectance without causing harmful effects is still an important issue for crystalline Si solar cells. By using the method described in this paper, the optical properties of solar cells can be improved.

  18. Theoretical model predictions and experimental results for a wavelength switchable Tm:YAG laser.

    PubMed

    Niu, Yanxiong; Wang, Caili; Liu, Wenwen; Niu, Haisha; Xu, Bing; Man, Da

    2014-07-01

    We present a theoretical model study of a quasi-three-level laser with particular attention given to the Tm:YAG laser. The oscillating conditions of this laser were theoretically analyzed from the point of the pump threshold while taking into account reabsorption loss. The laser oscillation at 2.02 μm with large stimulated emission sections was suppressed by selecting the appropriate coating for the cavity mirrors, then an efficient laser-diode side-pumped continuous-wave Tm:YAG crystal laser operating at 2.07 μm was realized. Experiments with the Tm:YAG laser confirmed the accuracy of the model, and the model was able to accurately predict that the high Stark sub-level within the H36 ground state manifold has a low laser threshold and long laser wavelength, which was achieved by decreasing the transmission of the output coupler.

  19. Ablation plume structure and dynamics in ambient gas observed by laser-induced fluorescence imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Miyabe, M.; Oba, M.; Iimura, H.; Akaoka, K.; Khumaeni, A.; Kato, M.; Wakaida, I.

    2015-08-01

    The dynamic behavior of an ablation plume in ambient gas has been investigated by laser-induced fluorescence imaging spectroscopy. The second harmonic beam from an Nd:YAG laser (0.5-6 J/cm2) was focused on a sintered oxide pellet or a metal chip of gadolinium. The produced plume was subsequently intersected with a sheet-shaped UV beam from a dye laser so that time-resolved fluorescence images were acquired with an intensified CCD camera at various delay times. The obtained cross-sectional images of the plume indicate that the ablated ground state atoms and ions of gadolinium accumulate in a hemispherical contact layer between the plume and the ambient gas, and a cavity containing a smaller density of ablated species is formed near the center of the plume. At earlier expansion stage, another luminous component also expands in the cavity so that it coalesces into the hemispherical layer. The splitting and coalescence for atomic plume occur later than those for ionic plume. Furthermore, the hemispherical layer of neutral atoms appears later than that of ions; however, the locations of the layers are nearly identical. This coincidence of the appearance locations of the layers strongly suggests that the neutral atoms in the hemispherical layer are produced as a consequence of three-body recombination of ions through collisions with gas atoms. The obtained knowledge regarding plume expansion dynamics and detailed plume structure is useful for optimizing the experimental conditions for ablation-based spectroscopic analysis.

  20. Correlation of histological findings of single session Er:YAG skin fractional resurfacing with various passes and energies and the possible clinical implications.

    PubMed

    Trelles, Mario A; Vélez, Mariano; Mordon, Serge

    2008-03-01

    Ablative fractional resurfacing shows promise for skin resurfacing and tightening and also to improve treatment of epidermal and dermal pigmentary disorders. This study aimed at determining any correlation between epidermal ablation and effects on the dermis when using an Er:YAG laser in ablative fractional resurfacing mode. Ten female subjects participated in the study, mean age 52 years, Skin phototypes: 1 Fitzpatrick type II; 8 type III and 1 type IV. The degree of wrinkles (Glogau scale II or III) was similar in all cases. The laser used was the Pixel Er:YAG system (Alma Lasertrade mark, Israel) which delivers the laser beam via a hand-piece equipped with a beam splitter to divide the 2,940 nm beam into various microbeams of 850 microm in diameter in an 11 mmx11 mm treatment area. Using a constant energy of 1,400 mJ/cm(2), on a test area of 4 cmx2 cm. Two, 4, 6, and 8 passes on the preauricular area of the face were evaluated immediately after treatment. In all cases, the handpiece was kept in the same position, and rotated slightly around its perpendicular axis between passes, then moved on to the next spot. Biopsies were performed and tissue samples were routinely processed and stained with hematoxylin and eosin (H&E). No patient reported any noticeable discomfort, even at 8 passes. The histological findings revealed that, independent of the degree of the wrinkles, more laser passes produced more ablative removal of the epidermis. Residual thermal damage (RTD) with 2 laser passes was not observed but with 4 and 6 passes increased thermal effects and vacuole formation in the epidermal cells were noticed. With 8 laser passes, total epidermal removal was seen together with frank RTD-related changes in the upper part of the papillary dermis. In this study, we have demonstrated that high density fractional Er:YAG laser energy in a single session with multiple passes targeted not only the skin surface with elimination of the epidermis, but could also achieve heat

  1. Scanning electron microscopic study of the effects of Er:YAG laser on root cementum.

    PubMed

    Fujii, T; Baehni, P C; Kawai, O; Kawakami, T; Matsuda, K; Kowashi, Y

    1998-11-01

    Use of Er:YAG laser has been proposed for the removal of microbial deposits and calculus present on teeth affected by periodontal disease. However, the influence of Er:YAG laser irradiation on root surfaces has not yet been fully investigated. The aim of the present study was to evaluate the effects of Er:YAG laser irradiation on root cementum by scanning electron microscopy (SEM). Specimens were obtained from extracted human periodontally-diseased teeth using a water-cooled high-speed bur. An Er:YAG laser beam was then applied at various powers ranging from 25 to 100 mJ/ pulse/sec. The laser irradiation was performed under water irrigation, with the tip held perpendicular to the root surface in the contact mode. Following laser exposure, specimens were fixed, dehydrated, and dried at critical-point in liquid CO2. After mounting on SEM plates and sputter-coating with gold, the cementum surface was examined by SEM. Observations of the root surface showed a relatively flat surface in control specimens. In Er:YAG exposed specimens, the laser beam created a circular, notched-edge, crater-like defect on the root. The bottom of the lesion showed an irregular and sharp-pointed surface. Subsequently, the specimens were fractured with a sharp scalpel perpendicularly to the surface. SEM observations of these specimens showed a 15 microm layer of damaged tissue within the laser-irradiated cementum. The tissue presented an amorphous appearance and the Sharpey's and matrix fiber bundles were not clearly distinguishable. These observations indicate that cementum tissue could be damaged by Er:YAG laser irradiation.

  2. Design of a high-power, high-brightness Nd:YAG solar laser.

    PubMed

    Liang, Dawei; Almeida, Joana; Garcia, Dário

    2014-03-20

    A simple high-power, high-brightness Nd:YAG solar laser pumping approach is presented in this paper. The incoming solar radiation is both collected and concentrated by four Fresnel lenses and redirected toward a Nd:YAG laser head by four plane-folding mirrors. A fused-silica secondary concentrator is used to compress the highly concentrated solar radiation to a laser rod. Optimum pumping conditions and laser resonator parameters are found through ZEMAX and LASCAD numerical analysis. Solar laser power of 96 W is numerically calculated, corresponding to the collection efficiency of 24  W/m². A record-high solar laser beam brightness figure of merit of 9.6 W is numerically achieved.

  3. In vitro study of the variable square pulse Er:YAG laser cutting efficacy for apicectomy.

    PubMed

    Grgurević, Josko; Grgurević, Lovro; Miletić, Ivana; Karlović, Zoran; Krmek, Silvana Jukić; Anić, Ivica

    2005-06-01

    Variable square pulse (VSP) Er:YAG laser should be quicker than older Er:YAG lasers. The objectives were: (1) comparison of VSP laser and mechanical handpiece efficacy for apicectomy and (2) determination of optimal pulse width/energy/frequency combination. Sixty extracted, single-rooted mature human teeth with round apical parts were instrumented, root filled, cleaned, and divided into four groups. Apical 2 mm of each root were apicectomized with mechanical handpiece and Er:YAG laser with three different settings (LaserA = 200 mJ/300 microseconds/ 8 Hz; LaserB = 200 mJ/100 microseconds/8 Hz; LaserC = 380 mJ/100 microseconds/20 Hz). Timing results were statistically compared. LaserC was the most efficient setting. Differences between groups were significant except between LaserC-Mechanical and LaserA-LaserC (P < 0.05). VSP Er:YAG laser used for apicectomy is slower by a factor of 7-31 than mechanical handpiece, but treatment outcome is acceptable. Optimal settings for apicectomy with VSP laser are 380 mJ/100 microseconds/20 Hz. Copyright 2005 Wiley-Liss, Inc.

  4. The Construction of a Nd:YAG Laser and Observation of the Output.

    DTIC Science & Technology

    1983-12-01

    State Laser En ineering, p. 55, Springer-Verlag New York, Inc., 97.- 4. Koechner, W., p. 56. 5. Siegman , A. E., An Introduction to Lasers and Masers...AD-A138 855 THE CONSTRUCTION OF A ND YAG LASER AND OBSERVATION OF i/i THE OUTPUT(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CAK H CHUNG DEC 83...CONSTRUCTION OF A Nd:YAG LASER AND OBSERVATION OF THE OUTPUT by Im. Ki Hyun Chung December 1983 Thesis Advisor: A. W. Cooper Approved for public release

  5. Analysis of Shear Bond Strength and Morphology of Er:YAG Laser-Recycled Ceramic Orthodontic Brackets.

    PubMed

    Han, Ruo-qiao; Yang, Kai; Ji, Ling-fei; Ling, Chen

    2016-01-01

    The aim of this study was to compare the recycling of deboned ceramic brackets via an Er:YAG laser or via the traditional chairside processing methods of flaming and sandblasting; shear bond strength and morphological changes were evaluated in recycled brackets versus new brackets. 3M Clarity Self-Ligating Ceramic Brackets with a microcrystalline base were divided into groups subjected to flaming, sandblasting, or exposure to an Er:YAG laser. New ceramic brackets served as a control group. Shear bond strengths were determined with an Electroforce test machine and tested for statistical significance through analysis of variance. Morphological examinations of the recycled ceramic bracket bases were conducted with scanning electron microscopy and confocal laser scanning microscopy. Residue on the bracket base was analyzed with Raman spectroscopy. Faded, dark adhesive was left on recycled bracket bases processed via flaming. Adhesive was thoroughly removed by both sandblasting and exposure to an Er:YAG laser. Compared with new brackets, shear bond strength was lower after sandblasting (p < 0.05), but not after exposure to an Er:YAG laser. The Er:YAG laser caused no damage to the bracket. Er:YAG lasers effectively remove adhesive from the bases of ceramic brackets without damaging them; thus, this method may be preferred over other recycling methods.

  6. Nd:YAG laser double wavelength ablation of pollution encrustation on marble and bonding glues on duplicated painting canvas

    NASA Astrophysics Data System (ADS)

    Batishche, Sergei; Englezis, Apostolis; Gorovets, Tatiana; Kouzmouk, Andrei; Pilipenka, Uladzimir; Pouli, Paraskevi; Tatur, Hennady; Totou, Garyfallia; Ukhau, Viktar

    2005-07-01

    In the present study, a newly developed one-beam IR-UV laser cleaning system is presented. This system may be used for different applications in diverse fields, such as outdoors stonework conservation and canvas paintings restoration. The simultaneous use of the fundamental radiation of a Q-switched Nd:YAG laser at 1064 nm and its third harmonic at 355 nm was found appropriate to clean pollution crusts, while ensuring that no discoloration ("yellowing") would occur. The optimum ratio of UV to IR wavelengths in the final cleaning beam was investigated. In parallel, the same system was tested in diverse applications, such as the removal of bonding glues from duplicated canvases. The optimum laser parameters were investigated both on technical samples as well as on original paintings.

  7. Formation of polymer nanoparticles by UV pulsed laser ablation of poly (bisphenol A carbonate) in liquid environment

    NASA Astrophysics Data System (ADS)

    Martínez-Tong, Daniel E.; Sanz, Mikel; Ezquerra, Tiberio A.; Nogales, Aurora; Marco, José F.; Castillejo, Marta; Rebollar, Esther

    2017-10-01

    Suspensions of poly(bisphenol A carbonate) (PBAC) nanoparticles of varying size and shape have been produced by ablation of a PBAC target in liquid media with the fourth harmonic of a Q-switched Nd:YAG laser (wavelength 266 nm, full width at half maximum 4 ns, repetition rate 10 Hz). The polymer target was placed at the bottom of a rotating glass vessel filled with around a 10 mm column of liquid. Laser ablation in water leads to spherical nanoparticles with diameters of several tens of nanometers for fluences close to 1 J/cm2. Ablation at lower fluences, around 0.1 J/cm2, results in the production of nanoparticles of smaller diameters and also of non-spherical nanoparticles. Additional irradiations at the fluence of 0.1 J/cm2 were performed in several liquid media with different properties, in terms of density, viscosity, thermal conductivity, boiling temperature, isothermal compressibility and polarity. The different size distributions observed were related to the thermal conductivity of the systems, while their viscosity seems to be responsible for the development of nanostructures with different morphologies.

  8. Cryogenic Tm: YAG Laser in the Near Infrared

    DTIC Science & Technology

    2015-05-29

    Applications Group. The focus of his work at Lincoln Laboratory has been solid-state lasers including microchip lasers , external-cavity diode lasers ...REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < Cryogenic Tm:YAG Laser in the Near Infrared* Tso Yee Fan...Senior Member, IEEE, Juan R. Ochoa, and Patricia A. Reed Abstract- Thulium laser operation on the 3H4 - 3H6 transition at 823 nm has been demonstrated

  9. Ablation velocity and thermal damage of myocardial tissue using a CO2 laser for transmyocardial laser revascularization

    NASA Astrophysics Data System (ADS)

    Sachinopoulou, Anna; Beek, Johan F.; van Leeuwen, Ton G. J. M.; Beek, W. J.

    1999-02-01

    Transmyocardial Laser Revascularization (TMLR) is a new experimental method for relief of angina pectoris in patients with severe coronary artery disease. TMLR aims at revascularizing chronic hibernating myocardium by creating transmural channels. One of the working mechanism hypotheses is that the endocardial side of the channels remains open, enabling perfusion of the hibernating myocardium directly from the left ventricle. Although the working mechanism of TMLR is still unknown (perfusion through patent channels, induction of angiogenesis, relief of angina through destruction of sympatic innervation, others?), first clinical studies are successful. Currently, the Heart LaserTM and other CO2 lasers, XeCl Excimer laser and Ho:YAG laser are under investigation for TMLR. The initial attempts of TMR with needles were soon replaced by laser induced channels. Efforts were focused on developing a CO2 laser that could penetrate a beating heart during its relaxation phase. Later, the position of the beam could be fixed in the myocardial wall using lasers with fiber delivery systems and perforation was achieved within multiple cycles. Various researchers reported on both patent and non-patent channels after TMLR. Our belief is that the extent of laser induced thermal damage is one of the factors that determine the clinical outcome and the extent of angiogenesis (and, possibly, the patency of the channel). The purpose of this study is to present a simple theoretical model to predict the extent of thermal damage around a transmyocardial channel. In vitro experiments were performed on myocardial bovine tissue and damage was assessed. The results were used to determine the final parameters of the approximating theoretical equation. To evaluate our results, we compared our results to in vitro data using the Heart LaserTM from the literature. Ablation velocities were also measured and the results were compared to ablation velocity calculations using a model described by Ostegar

  10. Latest MIG, TIG arc-YAG laser hybrid welding systems for various welding products

    NASA Astrophysics Data System (ADS)

    Ishide, Takashi; Tsubota, Shuho; Watanabe, Masao

    2003-03-01

    Laser welding is capable of high-efficiency low-strain welding, and so its applications are started to various products. We have also put the high-power YAG laser of up to 10 kW to practical welding use for various products. On the other hand the weakest point of this laser welding is considered to be strict in the welding gap aiming allowance. In order to solve this problem, we have developed hybrid welding of TIG, MIG arc and YAG laser, taking the most advantages of both the laser and arc welding. Since the electrode is coaxial to the optical axis of the YAG laser in this process, it can be applied to welding of various objects. In the coaxial MIG, TIG-YAG welding, in order to make irradiation positions of the YAG laser beams having been guided in a wire or an electrode focused to the same position, the beam transmitted in fibers is separated to form a space between the separated beams, in which the laser is guided. With this method the beam-irradiating area can be brought near or to the arc-generating point. This enables welding of all directions even for the member of a three-dimensional shape. This time we carried out welding for various materials and have made their welding of up to 1 mm or more in welding groove gap possible. We have realized high-speed 1-pass butt welding of 4m/min in welding speed with the laser power of 3 kW for an aluminum alloy plate of approximately 4 mm thick. For a mild steel plate also we have realized butt welding of 1m/min with 5 kW for 6 mm thick. Further, in welding of stainless steel we have shown its welding possibility, by stabilizing the arc with the YAG laser in the welding atmosphere of pure argon, and shown that this welding is effective in high-efficiency welding of various materials. Here we will report the fundamental welding performances and applications to various objects for the coaxial MIG, TIG-YAG welding we have developed.

  11. Modelling ultrafast laser ablation

    NASA Astrophysics Data System (ADS)

    Rethfeld, Baerbel; Ivanov, Dmitriy S.; E Garcia, Martin; Anisimov, Sergei I.

    2017-05-01

    This review is devoted to the study of ultrafast laser ablation of solids and liquids. The ablation of condensed matter under exposure to subpicosecond laser pulses has a number of peculiar properties which distinguish this process from ablation induced by nanosecond and longer laser pulses. The process of ultrafast ablation includes light absorption by electrons in the skin layer, energy transfer from the skin layer to target interior by nonlinear electronic heat conduction, relaxation of the electron and ion temperatures, ultrafast melting, hydrodynamic expansion of heated matter accompanied by the formation of metastable states and subsequent formation of breaks in condensed matter. In case of ultrashort laser excitation, these processes are temporally separated and can thus be studied separately. As for energy absorption, we consider peculiarities of the case of metal irradiation in contrast to dielectrics and semiconductors. We discuss the energy dissipation processes of electronic thermal wave and lattice heating. Different types of phase transitions after ultrashort laser pulse irradiation as melting, vaporization or transitions to warm dense matter are discussed. Also nonthermal phase transitions, directly caused by the electronic excitation before considerable lattice heating, are considered. The final material removal occurs from the physical point of view as expansion of heated matter; here we discuss approaches of hydrodynamics, as well as molecular dynamic simulations directly following the atomic movements. Hybrid approaches tracing the dynamics of excited electrons, energy dissipation and structural dynamics in a combined simulation are reviewed as well.

  12. Clinical dental application of Er:YAG laser for Class V cavity preparation.

    PubMed

    Matsumoto, K; Nakamura, Y; Mazeki, K; Kimura, Y

    1996-06-01

    Following the development of the ruby laser by Maiman in 1960, the Nd:YAG laser, the CO2 laser, the semiconductor laser, the He-Ne laser, excimer lasers, the argon laser, and finally the Er:YAG laser capable of cutting hard tissue easily were developed and have come to be applied clinically. In the present study, the Er:YAG laser emitting at a wavelength of 2.94 microns developed by Luxar was used for the clinical preparation of class V cavities. Parameters of 8 Hz and approx. 250 mJ/pulse maximum output were used for irradiation. Sixty teeth of 40 patients were used in this clinical study. The Er:YAG laser used in this study was found to be a system suitable for clinical application. No adverse reaction was observed in any of the cases. Class V cavity preparation was performed without inducing any pain in 48/60 cases (80%). All of the 12 cases that complained of mild or severe intraoperative pain had previously complained of cervical dentin hypersensibility during the preoperative examination. Cavity preparation was completed with this laser system in 58/60 cases (91.7%). No treatment-related clinical problems were observed during the follow-up period of approx. 30 days after cavity preparation and resin filling. Cavity preparation took between approx. 10 sec and 3 min and was related more or less to cavity size and depth. Overall clinical evaluation showed no safety problem with very good rating in 49 cases (81.7%).

  13. Cystoscopic suture removal by Holmium-YAG laser after Burch procedure

    PubMed Central

    Karaşahin, Emre Kazım; Esin, Sertaç; Alanbay, İbrahim; Ercan, Mutlu Cihangir; Mutlu, Erol; Başer, İskender; Basal, Şeref

    2011-01-01

    Burch colposuspension remains one of the successful operations performed for stress incontinence. Accidental suturing of the bladder wall during the procedure or subsequent erosion may lead to lower urinary tract symptoms. Diagnosis and management of these sutures indicate precise evaluation for which a 70 degree cystoscope is used. In selected cases, Holmium-YAG laser may enable us to manage long-standing, encrustated neglected sutures. Here we would like to report successful removal of intravesical sutures using the Holmium-YAG laser. PMID:24591960

  14. > 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser.

    PubMed

    Bhandari, Rakesh; Taira, Takunori

    2011-09-26

    Megawatt peak power, giant pulse microchip lasers are attractive for wavelength conversion, provided their output is linearly polarized. We use a [110] cut Cr(4+):YAG for passively Q-switched Nd:YAG microchip laser to obtain a stable, linearly polarized output. Further, we optimize the conditions for second harmonic generation at 532 nm wavelength to achieve > 6 MW peak power, 1.7 mJ, 265 ps, 100 Hz pulses with a conversion efficiency of 85%. © 2011 Optical Society of America

  15. Novel Laser Ablation Technology for Surface Decontamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chung H.

    2004-06-01

    Laser ablation for surface cleaning has been pursued for the removal of paint on airplanes. It has also been pursued for the cleaning of semiconductor surfaces. However, all these approaches have been pursued by laser ablation in air. For highly contaminated surface, laser ablation in air can easily cause secondary contamination. Thus it is not suitable to apply to achieve surface decontamination for DOE facilities since many of these facilities have radioactive contaminants on the surface. Any secondary contamination will be a grave concern. The objective of this project is to develop a novel technology for laser ablation in liquidmore » for surface decontamination. It aims to achieve more efficient surface decontamination without secondary contamination and to evaluate the economic feasibility for large scale surface decontamination with laser ablation in liquid. When laser ablation is pursued in the solution, all the desorbed contaminants will be confined in liquid. The contaminants can be precipitated and subsequently contained in a small volume for disposal. It can reduce the risk of the decontamination workers. It can also reduce the volume of contaminants dramatically.« less

  16. Sampling modulation technique in radio-frequency helium glow discharge emission source by use of pulsed laser ablation.

    PubMed

    Naeem, Tariq Mahmood; Matsuta, Hideyuki; Wagatsuma, Kazuaki

    2004-05-01

    An emission excitation source comprising a high-frequency diode-pumped Q-switched Nd:YAG laser and a radio-frequency powered glow discharge lamp is proposed. In this system sample atoms ablated by the laser irradiation are introduced into the lamp chamber and subsequently excited by the helium glow discharge plasma. The pulsed operation of the laser can produce a cyclic variation in the emission intensities of the sample atoms whereas the plasma gas species emit the radiation continuously. The salient feature of the proposed technique is the selective detection of the laser modulation signal from the rest of the continuous background emissions, which can be achieved with the phase sensitive detection of the lock-in amplifier. The arrangement may be used to estimate the emission intensity of the laser ablated atom, free from the interference of other species present in the plasma. The experiments were conducted with a 13.56 MHz radio-frequency (rf) generator operated at 80 W power to produce plasma and the laser at a wavelength of 1064 nm (pulse duration:34 ns, repetition rate:7 kHz and average pulse energy of about 0.36 mJ) was employed for sample ablation. The measurements resulted in almost complete removal of nitrogen molecular bands (N(2)(+) 391.44 nm). Considerable reduction (about 75%) in the emission intensity of a carbon atomic line (C I 193.03 nm) was also observed.

  17. Laser ablation of basal cell carcinomas guided by confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sierra, Heidy; Cordova, Miguel; Nehal, Kishwer; Rossi, Anthony; Chen, Chih-Shan Jason; Rajadhyaksha, Milind

    2016-02-01

    Laser ablation offers precise and fast removal of superficial and early nodular types of basal cell carcinomas (BCCs). Nevertheless, the lack of histological confirmation has been a limitation. Reflectance confocal microscopy (RCM) imaging combined with a contrast agent can offer cellular-level histology-like feedback to detect the presence (or absence) of residual BCC directly on the patient. We conducted an ex vivo bench-top study to provide a set of effective ablation parameters (fluence, number of passes) to remove superficial BCCs while also controlling thermal coagulation post-ablation to allow uptake of contrast agent. The results for an Er:YAG laser (2.9 um and pulse duration 250us) show that with 6 passes of 25 J/cm2, thermal coagulation can be effectively controlled, to allow both the uptake of acetic acid (contrast agent) and detection of residual (or absence) BCCs. Confirmation was provided with histological examination. An initial in vivo study on 35 patients shows that the uptake of contrast agent aluminum chloride) and imaging quality is similar to that observed in the ex vivo study. The detection of the presence of residual tumor or complete clearance was confirmed in 10 wounds with (additional) histology and in 25 lesions with follow-up imaging. Our results indicate that resolution is sufficient but further development and use of appropriate contrast agent are necessary to improve sensitivity and specificity. Advances in RCM technology for imaging of lateral and deep margins directly on the patient may provide less invasive, faster and less expensive image-guided approaches for treatment of BCCs.

  18. Improvement of the technique in treatment of internal hemorrhoids with Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Bao, Xiao-qing; Zhu, Jing; Shi, Hong-Min

    2005-07-01

    Objective: To observe and study the improvement of the technique in treatment of internal hemorrhoids with Nd:YAG laser and evaluate the effective rate. Methods: 60 patients of internal hemorrhoids were treated with Nd:YAG laser (10-15mw) irradiating on the mucosa of the lesions. Results: Among 60 patients, 57 patients were primarily cured with one treatment, 3 patients were primarily cured with two treatments. The effective rate was 95% with one treatment, and it reached to 100% with two treatments. Conclusions: the improvement of the technique in treatment of internal hemorrhoids with Nd:YAG laser is effective and easy to operate.

  19. Multi-watt passively Q-switched Yb:YAB/Cr:YAG microchip lasers

    NASA Astrophysics Data System (ADS)

    Serres, Josep Maria; Loiko, Pavel; Mateos, Xavier; Liu, Junhai; Zhang, Huaijing; Yumashev, Konstantin; Griebner, Uwe; Petrov, Valentin; Aguiló, Magdalena; Díaz, Francesc

    2017-02-01

    A trigonal 5.6 at.% Yb:YAl3(BO3)4 (Yb:YAB) crystal is employed in continuous-wave (CW) and passively Q-switched microchip lasers pumped by a diode at 978 nm. Using a 3 mm-thick, c-cut Yb:YAB crystal, which has a higher pump absorption efficiency, efficient CW microchip laser operation is demonstrated. This laser generated a maximum output power of 7.18 W at 1041-1044 nm with a slope efficiency η of 67% (with respect to the absorbed pump power) and an almost diffraction-limited beam, M2 x,y < 1.1. Inserting a Cr:YAG saturable absorber, stable passive Q-switching of the Yb:YAB microchip laser was obtained. The maximum average output power from the Yb:YAB/Cr:YAG laser reached 2.82 W at 1042 nm with η = 53% and a conversion efficiency with respect to the CW mode of 65% (when using a 0.7 mm-thick Cr:YAG). The latter corresponded to a pulse duration and energy of 7.1 ns / 47 μJ at a pulse repetition rate (PRR) of 60 kHz. Using a 1.3 mm-thick Cr:YAG, 2.02 W were achieved at 1041 nm corresponding to η = 38%. The pulse characteristics were 4.9 ns / 83 μJ at PRR = 24.3 kHz and the maximum peak power reached 17 kW. Yb:YAB crystals are very promising for compact sub-ns power-scalable microchip lasers.

  20. Extended transurethral resection and Nd:YAG laser ablation of the prostate (TURLAP) for carcinoma: a pilot study

    NASA Astrophysics Data System (ADS)

    Childs, Stacy J.

    1993-05-01

    Transurethral resection of the prostate (TURP) has been combined with Nd:YAG application for the treatment of prostatic carcinoma for a decade. The inability to deliver the energy at right angles has made the procedure technically difficult, but results have been encouraging. A pilot study was begun in 1991 on ten patients who refused or were not candidates for radical prostatectomy. The protocol consisted of transrectal ultrasound imaging (TRUS) during extended TURP (EXTURP) followed immediately by Nd:YAG energy applied to the prostate bed and capsule. A second laser application under real time TRUS followed in eight weeks and a third (or fourth in one patient) was undertaken eight weeks later. Energy of 30,000- 85,000 Joules was applied during each procedure with the right angle urolase fiber (Bard) at 60 watts. Lesions were created for 30-60 seconds in each area of remaining tissue documented on TRUS. A thermocoupler was used to monitor rectal temperature. Complications include urinary retention, gross hematuria, bladder neck contracture, early incontinence, late incontinence, and probable permanent incontinence. Of the only four potent patients preoperatively, all (100%) are impotent now. TURLAP appears to be a safe and effective method of killing prostate malignant tissue and should be further studied perhaps in combination with interstitial laser irradiation to increase efficacy and lessen complications.

  1. Proximal fiber tip damage during Holmium:YAG and thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    The Thulium fiber laser (TFL) is being studied as an alternative to Holmium:YAG laser for lithotripsy. TFL beam originates within an 18-μm-core thulium doped silica fiber, and its near single mode, Gaussian beam profile enables transmission of higher laser power through smaller fibers than possible during Holmium laser lithotripsy. This study examines whether TFL beam profile also reduces proximal fiber tip damage compared to Holmium laser multimodal beam. TFL beam at wavelength of 1908 nm was coupled into 105-μm-core silica fibers, with 35-mJ energy, 500-μs pulse duration, and pulse rates of 50-500 Hz. For each pulse rate, 500,000 pulses were delivered. Magnified images of proximal fiber surfaces were taken before and after each trial. For comparison, 20 single-use, 270-μm-core fibers were collected after clinical Holmium laser lithotripsy procedures using standard settings (600 mJ, 350 μs, 6 Hz). Total laser energy, number of laser pulses, and laser irradiation time were recorded, and fibers were rated for damage. For TFL studies, output power was stable, and no proximal fiber damage was observed after delivery of 500,000 pulses at settings up to 35 mJ, 500 Hz, and 17.5 W average power. In contrast, confocal microscopy images of fiber tips after Holmium lithotripsy showed proximal fiber tip degradation in all 20 fibers. The proximal fiber tip of a 105-μm-core fiber transmitted 17.5 W of TFL power without degradation, compared to degradation of 270-μm-core fibers after transmission of 3.6 W of Holmium laser power. The smaller and more uniform TFL beam profile may improve fiber lifetime, and potentially reduce costs for the surgical disposables as well.

  2. High-efficient Nd:YAG microchip laser for optical surface scanning

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    A CW operating, compact, high-power, high-efficient diode pumped 1064nm laser, based on Nd:YAG active medium, was developed for optical surface scanning and mapping applications. To enhance the output beam quality, laser stability, and compactness, a microchip configuration was used. In this arrangement the resonator mirrors were deposited directly on to the laser crystal faces. The Nd-doping concentration was 1 at.% Nd/Y. The Nd:YAG crystal was 5mm long. The laser resonator without pumping radiation recuperation was investigated {the output coupler was transparent for pumping radiation. For the generated laser radiation the output coupler reflectivity was 95%@1064 nm. The diameter of the samples was 5 mm. For the laser pumping two arrangements were investigated. Firstly, a fibre coupled laser diode operating at wavelength 808nm was used in CW mode. The 400 ¹m fiber was delivering up to 14W of pump power amplitude to the microchip laser. The maximum CW output power of 7.2W @ 1064nm in close to TEM00 beam was obtained for incident pumping power 13.7W @ 808 nm. The differential efficiency in respect to the incident pump power reached 56 %. Secondly, a single-emitter, 1W laser diode operating at 808nm was used for Nd:YAG microchip pumping. The laser pumping was directly coupled into the microchip laser using free-space lens optics. Slope efficiency up to 70% was obtained in stable, high-quality, 1064nm laser beam with CW power up to 350mW. The system was successfully used for scanning of super-Gaussian laser mirrors reflectivity profile.

  3. Dynamic response of laser ablative shock waves from coated and uncoated amorphous Boron nanoparticles

    NASA Astrophysics Data System (ADS)

    Paturi, Prem Kiran; Chelikani, Leela; Pinnoju, Venkateshwarlu; Verma, Pankaj; Singh, Raja V.; Acrhem Collaboration; Hemrl Collaboration

    2015-06-01

    Nanoparticles (NP) improve the performance of solid rocket motors with increased burning rate and lower ignition threshold owing to their larger surface area. We present spatio-temporal evolution of laser ablative shock waves (LASWs) from compacted amorphous Boron (B) and Lithium Fluoride coated Boron (LiF-B) of 70-110nm sizes that were compacted to form pellets. Thickness of the LiF coating is 5.5 +/- 1 nm in LiF-B. Laser pulses from second harmonic of Nd:YAG laser (532 nm, 7 ns) are used to generate LASWs expanding in ambient air. The precise time of energy release from the pellets under extreme ablative pressures is studied using shadowgraphy with a temporal resolution of 1.5 ns. Different nature of the shock front (SF) following Sedov-Taylor theory, before and after detachment, indicated two specific time dependent stages of energy release. From the position of SF, velocity behind the SF, similar to that of exhaust velocity is measured. Specific impulse of 241 +/- 5 and 201 +/- 4 sec for LiF-B and B, respectively, at a delay of 0.8 μs from shock inducing laser pulse makes them potential candidates for laser based micro thruster applications. The work is supported by Defence Research and Developement Organization, India through Grants-in-Aid Program.

  4. Temperature variation during apicectomy with Er:YAG laser.

    PubMed

    Bodrumlu, Emre; Keskiner, Ilker; Sumer, Mahmut; Sumer, A Pinar; Telcıoglu, N Tuba

    2012-08-01

    The purpose of this in vitro study was to evaluate the generated temperature of the Er:YAG laser, with three different pulse durations for apicectomy, compared with tungsten bur and surgical saw. Apicectomy is an endodontic surgery performed to remove the root apex and curette adjacent periapical tissue because of lesions of the apical area that are not healing properly. Sixty single-rooted extracted human teeth were resected by three cutting methods: tungsten bur, surgical saw, and Er:YAG laser irradiation with three different pulse durations; pulse duration 50 μs, pulse duration 100 μs, and pulse duration 300 μs. Teflon-insulated, type K thermocouples were used to measure temperature changes during the apicectomy process. Data were analyzed using the general linear models procedure of the SPSS statistical software program. Although there was no statistically significant difference for the mean values of temperature changes at 1 mm away to the cutting site of teeth, there was statistically significant difference among groups for the mean values of temperature changes at 3 mm away to the cutting site of teeth. Additionally, there was statistically significant difference among groups for the total time required for apicectomy. The laser irradiation with pulse duration 50 μs appears to have the lowest temperature rise and the shortest time required for apicectomy of the three pulse durations. However, Er:YAG laser for apicectomy in all pulse durations could be used safely for resection in endodontics in the presence of sufficient water.

  5. A laser-abrasive method for the cutting of enamel and dentin.

    PubMed

    Altshuler, G B; Belikov, A V; Sinelnik, Y A

    2001-01-01

    This paper introduced a new method for the removal of hard dental tissue based upon the use of particles accelerated by laser irradiation, which the authors have called the laser-abrasive method. The particles used were sapphire as powder or an aqueous suspension. The effect of the products of enamel ablation was also investigated. The particles were accelerated using submillisecond pulses of Er:YAG and Nd:YAG lasers. A strobing CCD camera was used to measure the speed of the ejected particles. The additional contribution of these particles to the efficiency of laser ablation of enamel and dentin was also investigated. The results showed that the enamel particles produced by the beam-tissue interaction were also accelerated by this process of ablation and were effective in the removal of enamel and dentin. The use of an aqueous suspension of sapphire particles increased the efficiency of enamel removal threefold when compared with the use of an Er:YAG laser with water spray. The laser-abrasive method allowed for the removal of enamel and dentin at speeds approaching those of the high-speed turbine. Copyright 2001 Wiley-Liss, Inc.

  6. Analysis of Shear Bond Strength and Morphology of Er:YAG Laser-Recycled Ceramic Orthodontic Brackets

    PubMed Central

    Han, Ruo-qiao; Ji, Ling-fei; Ling, Chen

    2016-01-01

    Objective. The aim of this study was to compare the recycling of deboned ceramic brackets via an Er:YAG laser or via the traditional chairside processing methods of flaming and sandblasting; shear bond strength and morphological changes were evaluated in recycled brackets versus new brackets. Materials and Methods. 3M Clarity Self-Ligating Ceramic Brackets with a microcrystalline base were divided into groups subjected to flaming, sandblasting, or exposure to an Er:YAG laser. New ceramic brackets served as a control group. Shear bond strengths were determined with an Electroforce test machine and tested for statistical significance through analysis of variance. Morphological examinations of the recycled ceramic bracket bases were conducted with scanning electron microscopy and confocal laser scanning microscopy. Residue on the bracket base was analyzed with Raman spectroscopy. Results. Faded, dark adhesive was left on recycled bracket bases processed via flaming. Adhesive was thoroughly removed by both sandblasting and exposure to an Er:YAG laser. Compared with new brackets, shear bond strength was lower after sandblasting (p < 0.05), but not after exposure to an Er:YAG laser. The Er:YAG laser caused no damage to the bracket. Conclusion. Er:YAG lasers effectively remove adhesive from the bases of ceramic brackets without damaging them; thus, this method may be preferred over other recycling methods. PMID:27047964

  7. A systematic review of comparative studies of CO2 and erbium:YAG lasers in resurfacing facial rhytides (wrinkles).

    PubMed

    Chen, Kee-Hsin; Tam, Ka-Wai; Chen, I-Fan; Huang, Shihping Kevin; Tzeng, Pei-Chuan; Wang, Hsian-Jenn; Chen, Chiehfeng Cliff

    2017-08-01

    Laser resurfacing is used to minimize wrinkles, solar scars and sequelae of acne. Purpose of the systematic review was to compare resurfacing outcomes of CO 2 laser and erbium: yttrium aluminium garnet (erb:YAG) laser therapies. Medline, Cochrane Library, EMBASE and Google Scholar databases were searched until 9 April 2015 using the following terms: laser, carbon dioxide/CO 2 , facial wrinkles, rhytides and erbium-doped yttrium aluminium garnet/erbium:YAG/Er:YAG. Two-armed controlled split faced studies that compared CO 2 laser and erbium:YAG laser in patients with mild-to-moderate facial wrinkles or rhytides were included. The pooled data in this study and findings of other studies support the greater efficacy with the CO 2 laser in improving facial wrinkles, but the erb:YAG laser was associated with a better complication profile compared with the CO 2 laser. Except one case of hypopigmentation, other complications (i.e., erythema, hyperpigmentation and crusting) and their rates were reported by studies examining both lasers. In general, the CO 2 laser appeared to be more efficacious then the erb:YAG laser in treating facial wrinkles. Both lasers treatments were well tolerated.

  8. Wavelength switchable high-power diode-side-pumped rod Tm:YAG Laser around 2µm.

    PubMed

    Wang, Caili; Du, Shifeng; Niu, Yanxiong; Wang, Zhichao; Zhang, Chao; Bian, Qi; Guo, Chuan; Xu, Jialin; Bo, Yong; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Lei, Wenqiang; Xu, Zuyan

    2013-03-25

    We report a high-power diode-side-pumped rod Tm:YAG laser operated at either 2.07 or 2.02 µm depending on the transmission of pumped output coupler. The laser yields 115W of continuous-wave output power at 2.07 µm with 5% output coupling, which is the highest output power for all solid-state 2.07 μm cw rod Tm:YAG laser reported so far. With an output coupler of 10% transmission, the center wavelength of the laser is switched to 2.02 μm with an output power of 77.1 W. This is the first observation of high-power wavelength switchable diode-side-pumped rod Tm:YAG laser around 2 µm.

  9. Histologic evaluation of laser lipolysis: pulsed 1064-nm Nd:YAG laser versus cw 980-nm diode laser.

    PubMed

    Mordon, Serge; Eymard-Maurin, Anne Françoise; Wassmer, Benjamin; Ringot, Jean

    2007-01-01

    The use of the laser as an auxiliary tool has refined the traditional technique for lipoplasty. During laser lipolysis, the interaction between the laser and the fat produced direct cellular destruction before the suction, reduced bleeding, and promoted skin tightening. This study sought to perform a comparative histologic evaluation of laser lipolysis with the pulsed 1064-nm Nd:YAG laser versus a continuous 980-nm diode laser. A pulsed 1064-nm Nd:YAG (Smart-Lipo; Deka, Italy) and a CW 980-nm diode laser (Pharaon, Osyris, France) were evaluated at different energy settings for lipolysis on the thighs of a fresh cadaver. The lasers were coupled to a 600-microm optical fiber inserted in a 1-mm diameter cannula. Biopsy specimens were taken on irradiated and non-irradiated areas. Hematoxylin-erythrosin-safran staining and immunostaining (anti-PS100 polyclonal antibody) were performed to identify fat tissue damage. In the absence of laser exposures (control specimens), cavities created by cannulation were seen; adipocytes were round in appearance and not deflated. At low energy settings, tumescent adipocytes were observed. At higher energy settings, cytoplasmic retraction, disruption of membranes, and heat-coagulated collagen fibers were noted; coagulated blood cells were also present. For the highest energy settings, carbonization of fat tissue involving fibers and membranes was clearly seen. For equivalent energy settings, 1064-nm and 980-nm wavelengths gave similar histologic results. Laser lipolysis is a relatively new technique that is still under development. Our histologic findings suggest several positive benefits of the laser, including skin retraction and a reduction in intraoperative bleeding. The interaction of the laser with the tissue is similar at 980 nm and 1064 nm with the same energy settings. Because higher volumes of fat are removed with higher total energy, a high-power 980-nm diode laser could offer an interesting alternative to the 1064-nm Nd:YAG

  10. Experimental study using ER-YAG laser in discs: changes in glycosaminoglycan content and synthesis in discs

    NASA Astrophysics Data System (ADS)

    Maehara, Kazuyuki; Nakai, Sadaaki; Naga, Kumi; Nishimoto, Seiji

    2004-09-01

    Changes in discs after Er-Yag laser irradiation are scarcely reported. We made an experimental study using white rabbits and Er-Yag laser. Under general anesthesia, Er-Yag laser was irradiated into lumbar discs. Three or 8 weeks after irradiation, rabbits were sacrificed, and these discs were extracted. The quantitative analysis of the glycosaminoglycan content in the annulus fibrosus, and the incorporation of 35S-sulfate in chondroitin 4 sulfate were measured. The results showed, the increased incorporation of 35S-sulfate in chondroitin 4 sulfate and chondroitin 6 sulfates in groups of laser irradiation may indicate Er-Yag laser irradiation in nucleus pulposus, accelerated glycosaminoglycan production, in the annulus fibrosus. But no difference of unsaturated isomers of chondroitin 4 sulfate, and chondroitin 6 sulfate, and no difference of saturated isomer of keratan sulfate indicate, the influence of Er-Yag laser irradiation was not so high, as to bring the quantitative changes of matrix of annulus fibrosus in term of 8 weeks.

  11. Application of Yb:YAG short pulse laser system

    DOEpatents

    Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Crane, John K.; Telford, Steve; Perry, Michael D.

    2004-07-06

    A diode pumped, high power (at least 20W), short pulse (up to 2 ps), chirped pulse amplified laser using Yb:YAG as the gain material is employed for material processing. Yb:YAG is used as the gain medium for both a regenerative amplifier and a high power 4-pass amplifier. A single common reflective grating optical device is used to both stretch pulses for amplification purposes and to recompress amplified pulses before being directed to a workpiece.

  12. A Q-switched Ho:YAG laser with double anti-misalignment corner cubes pumped by a diode-pumped Tm:YLF laser

    NASA Astrophysics Data System (ADS)

    Wang, Y. P.; Dai, T. Y.; Wu, J.; Ju, Y. L.; Yao, B. Q.

    2018-06-01

    We report the acousto-optically Q-switched Ho:YAG laser with double anti-misalignment corner cubes pumped by a diode-pumped Tm:YLF laser. In the continuous-wave operation of Ho:YAG laser, the maximum s-polarized output power of 3.2 W at 2090.3 nm was obtained under the absorbed pump power of 12.9 W by rotating the fast axis of quarter-wave plate to change the output transmission of laser cavity. The corresponding optical-to-optical conversion efficiency was 24.8% and the slope efficiency was 55.7%. When one of the corner cubes was rotated to 11.8° around vertical direction or 6.7° around horizontal direction, the laser could still operate stably. For the Q-switched operation, the pulse energy of Ho:YAG laser was 9.9 mJ with a pulse width of 53 ns at the repetition rate of 100 Hz, resulting in a peak power of 186.8 kW. The beam quality factor M2 of Ho:YAG laser was 1.3.

  13. Fractional ablative laser skin resurfacing: a review.

    PubMed

    Tajirian, Ani L; Tarijian, Ani L; Goldberg, David J

    2011-12-01

    Ablative laser technology has been in use for many years now. The large side effect profile however has limited its use. Fractional ablative technology is a newer development which combines a lesser side effect profile along with similar efficacy. In this paper we review fractional ablative laser skin resurfacing.

  14. A solar-pumped Nd:YAG laser in the high collection efficiency regime

    NASA Astrophysics Data System (ADS)

    Lando, Mordechai; Kagan, Jacob; Linyekin, Boris; Dobrusin, Vadim

    2003-07-01

    Solar-pumped lasers can be used for space and terrestrial applications. We report on solar side-pumped Nd:YAG laser experiments, which included comprehensive beam quality measurements and demonstrated record collection efficiency and day long operation. A 6.75 m 2 segmented primary mirror was mounted on a commercial two-axis positioner and focused the solar radiation towards a stationary non-imaging-optics secondary concentrator, which illuminated a Nd:YAG laser rod. Solar side-pumped laser experiments were conducted in both the low and the high pumping density regimes. The low density system was composed of a 89 × 98-mm 2 aperture two-dimensional compound parabolic concentrator (CPC) and a 10-mm diameter 130-mm long Nd:YAG laser rod. The laser emitted up to 46 W and operated continuously for 5 h. The high density system was composed of a three-dimensional CPC with 98 mm entrance diameter and 24 mm exit diameter, followed by a two-dimensional CPC with a rectangular 24 × 33 mm 2 aperture. It pumped a 6-mm diameter 72 mm long Nd:YAG laser rod, which emitted up to 45 W. The results constitute a record collection efficiency of 6.7 W/m 2 of primary mirror. We compare the current results to previous solar side-pumped laser experiments, including experiments at higher pumping density but with low collection efficiency. Finally, we present a scaled up design for a 400 W laser pumped by a solar collection area of 60 m 2, incorporating simultaneously high collection efficiency and high pumping density.

  15. Inhibition of enamel demineralisation using "Nd-YAG and diode laser assisted fluoride therapy".

    PubMed

    Chand, B R; Kulkarni, S; Mishra, P

    2016-02-01

    This in vitro study was to evaluate the irradiation efficacy of the Diode laser and the Nd-YAG laser either un-assisted or assisted by acidulated phosphate fluoride (APF) treatment on enamel's acid resistance. Seventy-two enamel samples, obtained from 12 extracted human molars, were randomly assigned to 6 groups as follows: (1) Control (C); (2) Exposed to APF gel (F); (3) Diode laser (DL); (4) Irradiated with Diode laser through APF gel (DL/F); (5) Nd-YAG laser (NL) and (6) Irradiated with Nd-YAG laser through APF gel (NL/F). The specimens were individually demineralised in an acidified hydroxyethylcellulose system, and the acid resistance was evaluated by determining the calcium ion dissolution using atomic absorption spectrometry. The average concentration of the calcium ion determined in groups 1 to 6 was 901, 757, 736, 592, 497 and 416 parts per million micrograms/gram, respectively. The results showed that demineralisation in the NL/F group was significantly less than the other groups and the control group was significantly greater than the other groups (P < 0.001). The effect of Nd-YAG laser irradiation, used alone or in combination with APF, in decreasing the enamel demineralisation was greater than all the other groups.

  16. Temperature rises during application of Er:YAG laser under different primary dentin thicknesses.

    PubMed

    Hubbezoglu, Ihsan; Unal, Murat; Zan, Recai; Hurmuzlu, Feridun

    2013-05-01

    The present study investigated the effects of the Er:YAG laser's different pulse repetition rates on temperature rise under various primary dentin thicknesses. The Er:YAG laser can be used for restorative approaches in clinics and is used to treat dental caries. There are some reports that explain the temperature rise effect of the Er:YAG laser. Recently, the Er:YAG laser has been found to play an important role in temperature rises during the application on dentin. Caries-free primary mandibular molars were prepared to obtain dentin discs with 0.5, 1, 1.5, and 2 mm thicknesses (n=10). These discs were placed between the Teflon mold cylinders of a temperature test apparatus. We preferred three pulse repetition rates of 10, 15, and 20 Hz with an energy density of 12.7 J/cm2 and a 230 μs pulse duration. All dentin discs were irradiated for 30 sec by the Er:YAG laser. Temperature rises were recorded using an L-type thermocouple and universal data loggers/scanners (E-680, Elimko Co., Turkey). Data were analyzed by two-way ANOVA and Tukey tests. Whereas the lowest temperature rise (0.44±0.09 °C) was measured from a 10 Hz pulse repetition rate at a dentin thickness of 2 mm, the highest temperature rise (3.86±0.43 °C) was measured from a 20 Hz pulse repetition rate at a 0.5 mm dentin thickness. Temperature rise did not reach critical value for pulpal injury in any primary dentin thicknesses irradiated by a high repetition rate of the Er:YAG laser.

  17. Efficacy of ablative fractional laser-assisted photodynamic therapy for the treatment of actinic cheilitis: 12-month follow-up results of a prospective, randomized, comparative trial.

    PubMed

    Choi, S H; Kim, K H; Song, K-H

    2015-07-01

    Early identification and treatment of actinic cheilitis (AC) is recommended. Although photodynamic therapy (PDT) is an attractive therapeutic option for AC, PDT for AC does not result in the same satisfactory outcomes as in actinic keratosis (AK). The aim of our study was to compare efficacy, recurrence rate, cosmetic outcome and safety between erbium:yttrium-aluminium-garnet ablative fractional laser-assisted methyl aminolaevulinate-PDT (Er:YAG AFL MAL-PDT) and standard MAL-PDT. Thirty-three patients with histologically confirmed AC randomly received either one session of Er:YAG AFL MAL-PDT or two sessions of MAL-PDT. In the MAL-PDT group, the second session of MAL-PDT was administered 7 days later. Patients were followed up at 1 week and 3 and 12 months, and biopsies were taken from all patients at 3 and 12 months after the last treatment session. At the final 12-month follow-up, cosmetic outcomes were assessed. Adverse events were assessed at week 1 of the treatment phase and every subsequent follow-up visit. In the per-protocol (PP) population, Er:YAG AFL MAL-PDT was significantly more effective (92% complete response rate) than MAL-PDT (59%; P = 0.040) at the 3-month follow-up, and differences in efficacy remained significant at the 12-month follow-up (85% in Er:YAG AFL MAL-PDT and 29% in MAL-PDT). The recurrence rate was significantly lower for Er:YAG AFL MAL-PDT (8%) than for MAL-PDT (50%) group at 12 months (P = 0.029). No significant difference in cosmetic outcome or safety was observed between Er:YAG AFL MAL-PDT and MAL-PDT. Ablative fractional laser pretreatment has significant benefit for the treatment of AC with PDT. © 2014 British Association of Dermatologists.

  18. TEM00 mode Nd:YAG solar laser by side-pumping a grooved rod

    NASA Astrophysics Data System (ADS)

    Vistas, Cláudia R.; Liang, Dawei; Almeida, Joana; Guillot, Emmanuel

    2016-05-01

    A simple TEM00 mode solar laser system with a grooved Nd:YAG rod pumped through a heliostat-parabolic mirror system is reported here. The radiation coupling capacity of a fused silica tube lens was combined with the multipass pumping ability of a 2 V-shaped cavity to provide efficient side-pumping along a 4.0 mm diameter grooved Nd:YAG single-crystal rod. TEM00 mode solar laser power of 3.4 W was measured by adopting an asymmetric large-mode laser resonant cavity. Record TEM00 mode solar laser collection efficiency of 3.4 W/m2and slope efficiency of 1.9% was achieved, which corresponds to 1.8 and 2.4 times more than the previous TEM00 mode Nd:YAG solar laser using the PROMES-CNRS heliostat-parabolic mirror system, respectively.

  19. Cumulative probability of neodymium: YAG laser posterior capsulotomy after phacoemulsification.

    PubMed

    Ando, Hiroshi; Ando, Nobuyo; Oshika, Tetsuro

    2003-11-01

    To retrospectively analyze the cumulative probability of neodymium:YAG (Nd:YAG) laser posterior capsulotomy after phacoemulsification and to evaluate the risk factors. Ando Eye Clinic, Kanagawa, Japan. In 3997 eyes that had phacoemulsification with an intact continuous curvilinear capsulorhexis, the cumulative probability of posterior capsulotomy was computed by Kaplan-Meier survival analysis and risk factors were analyzed using the Cox proportional hazards regression model. The variables tested were sex; age; type of cataract; preoperative best corrected visual acuity (BCVA); presence of diabetes mellitus, diabetic retinopathy, or retinitis pigmentosa; type of intraocular lens (IOL); and the year the operation was performed. The IOLs were categorized as 3-piece poly(methyl methacrylate) (PMMA), 1-piece PMMA, 3-piece silicone, and acrylic foldable. The cumulative probability of capsulotomy after cataract surgery was 1.95%, 18.50%, and 32.70% at 1, 3, and 5 years, respectively. Positive risk factors included a better preoperative BCVA (P =.0005; risk ratio [RR], 1.7; 95% confidence interval [CI], 1.3-2.5) and the presence of retinitis pigmentosa (P<.0001; RR, 6.6; 95% CI, 3.7-11.6). Women had a significantly greater probability of Nd:YAG laser posterior capsulotomy (P =.016; RR, 1.4; 95% CI, 1.1-1.8). The type of IOL was significantly related to the probability of Nd:YAG laser capsulotomy, with the foldable acrylic IOL having a significantly lower probability of capsulotomy. The 1-piece PMMA IOL had a significantly higher risk than 3-piece PMMA and 3-piece silicone IOLs. The probability of Nd:YAG laser capsulotomy was higher in women, in eyes with a better preoperative BCVA, and in patients with retinitis pigmentosa. The foldable acrylic IOL had a significantly lower probability of capsulotomy.

  20. Cutting and coagulation during intraoral soft tissue surgery using Er: YAG laser.

    PubMed

    Onisor, I; Pecie, R; Chaskelis, I; Krejci, I

    2013-06-01

    To find the optimal techniques and parameters that enables Er:YAG laser to be used successfully for small intraoral soft tissue interventions, in respect to its cutting and coagulation abilities. In vitro pre-tests: 4 different Er:YAG laser units and one CO2 unit as the control were used for incision and coagulation on porcine lower jaws and optimal parameters were established for each type of intervention and each laser unit: energy, frequency, type, pulse duration and distance. 3 different types of intervention using Er:YAG units are presented: crown lengthening, gingivoplasty and maxillary labial frenectomy with parameters found in the in vitro pre-tests. The results showed a great decrease of the EMG activity of masseter and anterior temporalis muscles. Moreover, the height and width of the chewing cycles in the frontal plane increased after therapy. Er:YAG is able to provide good cutting and coagulation effects on soft tissues. Specific parameters have to be defined for each laser unit in order to obtain the desired effect. Reduced or absent water spray, defocused light beam, local anaesthesia and the most effective use of long pulses are methods to obtain optimal coagulation and bleeding control.

  1. Effects of a pulsed Nd:YAG laser on enamel and dentin

    NASA Astrophysics Data System (ADS)

    Myers, Terry D.

    1990-06-01

    Enamel and dentin samples were exposed extraorally to a pulsed neodymium yttriuma1uminumgarnet (Nd:YAG) laser. The lased samples were observed using both scanning electron microscopy and histological techniques to determine the effects of the laser. The present study has provided the following points: (1) Properly treated, enamel can be 1aser etched to a depth comparable to that achieved with phosphoric acid etching; and (2) both carious and noncarious dentin can be vaporized by the Nd:YAG laser. No cracking or chipping of any enamel or dentin sample was observed histologically or under the SEM.

  2. Comparison of pulsed dye laser versus combined pulsed dye laser and Nd:YAG laser in the treatment of inflammatory acne vulgaris.

    PubMed

    Salah El Din, Manal Mohamed; Samy, Nevien Ahmed; Salem, Amira Eid

    2017-06-01

    Both pulsed dye laser and combined 585/1064-nm (sequential dual-wavelength PDL and Nd:YAG) laser improves inflammatory skin disorders including acne vulgaris. To compare the efficacy of 585-nm pulsed dye laser versus sequential dual-wavelength PDL and Nd:YAG in treatment of acne vulgaris. Thirty patients with acne vulgaris were treated by PDL alone on half of the face while contra lateral half was treated by combined 585/1064 nm laser. The study showed that inflammatory acne lesions count was significantly reduced by 82.5% (p 0.0001) on PDL sides and by 83.5% (p 0.00001) on combined 585/1064-nm side after 8 weeks, while reduction of non-inflammatory acne lesions was observed at 8 weeks by 58.4% and 71.5% respectively. However, difference between the two modalities was not statistically significant. PDL and combined PDL/Nd:YAG laser treatment were found to be an effective, safe and well-tolerated treatment option for inflammatory and non-inflammatory acne vulgaris.

  3. Laser ablation in analytical chemistry - A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling,more » with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.« less

  4. Detection of early caries by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-07-01

    To improve sensitivity of dental caries detection by laser-induced breakdown spectroscopy (LIBS) analysis, it is proposed to utilize emission peaks in the ultraviolet. We newly focused on zinc whose emission peaks exist in ultraviolet because zinc exists at high concentration in the outer layer of enamel. It was shown that by using ratios between heights of an emission peak of Zn and that of Ca, the detection sensitivity and stability are largely improved. It was also shown that early caries are differentiated from healthy part by properly setting a threshold in the detected ratios. The proposed caries detection system can be applied to dental laser systems such as ones based on Er:YAG-lasers. When ablating early caries part by laser light, the system notices the dentist that the ablation of caries part is finished. We also show the intensity of emission peaks of zinc decreased with ablation with Er:YAG laser light.

  5. Laboratory investigation of the efficacy of holmium:YAG laser irradiation in removing intracanal debris

    NASA Astrophysics Data System (ADS)

    Nuebler-Moritz, Michael; Gutknecht, Norbert; Sailer, Hermann F.; Hering, Peter; Prettl, Wilhelm

    1997-05-01

    Current endodontic therapy involves debridement and disinfection of the root canal by means of mechanical instrumentation and chemical irrigation. However, several studies have shown that these techniques fail to achieve complete cleansing. Recently, lasers have been suggested for use within root canals. This study was conducted to determine the efficacy of Holmium:YAG laser irradiation in removing intracanal debris and smear layer. Root canal surfaces of freshly-extracted human teeth were exposed to pulsed Ho:YAG laser radiation. Subsequently, laser induced structural changes were investigated using scanning electron microscopy. Temperature measurements during irradiation were performed by means of thermocouples. The result of this survey give a preliminary indication of the ability of the Ho:YAG laser to improve current endodontic treatment survey give a preliminary indication of the ability of the Ho:YAG laser to improve current endodontic treatment modalities. However, limitations exist with regard to circumscribed and well-quantified irradiation of root canal surfaces, due to the lack of perpendicular delivery of the laser beam. Additional studies will be required to develop suitable optical transmission systems, in order to achieve complete cleansing and to avoid damage to the periradicular tissues, respectively.

  6. Laser ablation of human atherosclerotic plaque without adjacent tissue injury

    NASA Technical Reports Server (NTRS)

    Grundfest, W. S.; Litvack, F.; Forrester, J. S.; Goldenberg, T.; Swan, H. J. C.

    1985-01-01

    Seventy samples of human cadaver atherosclerotic aorta were irradiated in vitro using a 308 nm xenon chloride excimer laser. Energy per pulse, pulse duration and frequency were varied. For comparison, 60 segments were also irradiated with an argon ion and an Nd:YAG laser operated in the continuous mode. Tissue was fixed in formalin, sectioned and examined microscopically. The Nd:YAG and argon ion-irradiated tissue exhibited a central crater with irregular edges and concentric zones of thermal and blast injury. In contrast, the excimer laser-irradiated tissue had narrow deep incisions with minimal or no thermal injury. These preliminary experiments indicate that the excimer laser vaporizes tissue in a manner different from that of the continuous wave Nd:YAG or argon ion laser. The sharp incision margins and minimal damage to adjacent normal tissue suggest that the excimer laser is more desirable for general surgical and intravascular uses than are the conventionally used medical lasers.

  7. Optical triggering of a Q-switched Nd:YAG laser via transverse bleaching of a Cr:YAG saturable absorber.

    PubMed

    Cole, Brian; Lei, Jonathan; DiLazaro, Tom; Schilling, Bradley; Goldberg, Lew

    2009-11-01

    Optical triggering via direct bleaching of a Cr:YAG saturable absorber was applied to a monolithic Nd:YAG/Cr:YAG laser crystal. The method uses a single laser diode bar to bleach a thin sheet within the saturable absorber from a direction orthogonal to the lasing axis. By placing the Q-switch at the time corresponding to the steepest slope (dT/dt) for change in transmission during bleaching, the pulse-to-pulse timing jitter showed a 13.2x reduction in standard deviation, from 132 ns for free-running operation to 10 ns with optical triggering. We measured that a fluence of 60 kW/cm(2) was sufficient to enable optical triggering, where a diode appropriately sized for the length of the Cr:YAG (approximately 3 mm) would then require only approximately 150 W of optical power over a 1-2 micros duration to enable effective jitter reduction. Additionally, we measured an increase in optical-to-optical efficiency with optical triggering, where the efficiency improved from 12% to 13.5%.

  8. Advances in laser technology and fibre-optic delivery systems in lithotripsy.

    PubMed

    Fried, Nathaniel M; Irby, Pierce B

    2018-06-08

    The flashlamp-pumped, solid-state holmium:yttrium-aluminium-garnet (YAG) laser has been the laser of choice for use in ureteroscopic lithotripsy for the past 20 years. However, although the holmium laser works well on all stone compositions and is cost-effective, this technology still has several fundamental limitations. Newer laser technologies, including the frequency-doubled, double-pulse YAG (FREDDY), erbium:YAG, femtosecond, and thulium fibre lasers, have all been explored as potential alternatives to the holmium:YAG laser for lithotripsy. Each of these laser technologies is associated with technical advantages and disadvantages, and the search continues for the next generation of laser lithotripsy systems that can provide rapid, safe, and efficient stone ablation. New fibre-optic approaches for safer and more efficient delivery of the laser energy inside the urinary tract include the use of smaller-core fibres and fibres that are tapered, spherical, detachable or hollow steel, or have muzzle brake distal fibre-optic tips. These specialty fibres might provide advantages, including improved flexibility for maximal ureteroscope deflection, reduced cross section for increased saline irrigation rates through the working channel of the ureteroscope, reduced stone retropulsion for improved stone ablation efficiency, and reduced fibre degradation and burnback for longer fibre life.

  9. Laser ablation based fuel ignition

    DOEpatents

    Early, J.W.; Lester, C.S.

    1998-06-23

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  10. Laser ablation based fuel ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    1998-01-01

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  11. Comparative study on laser tissue ablation between PV and HPS lasers

    NASA Astrophysics Data System (ADS)

    Kang, Hyun Wook; Jebens, David; Mitchell, Gerald; Koullick, Ed

    2008-02-01

    Laser therapy for obstructive benign prostatic hyperplasia (BPH) has gained broad adoption due to effective tissue removal, immediate hemostasis, and minor complications. The aim of this study is to quantitatively compare ablation characteristics of PV (Photoselective Vaporization) and the newly introduced HPS (High Performance System) 532 nm lasers. Bovine prostatic tissues were ablated in vitro, using a custom-made scanning system. Laser-induced volume produced by two lasers was quantified as a function of applied power, fiber working distance (WD), and treatment speed. Given the same power of 80 W and speed of 4 mm/s, HPS created up to 50 % higher tissue ablation volume than PV did. PV induced a rapid decrease of ablation volume when WD increased from 0.5 mm to 3 mm while HPS yielded almost constant tissue removal up to 3 mm for both 80 W and 120 W. As the treatment speed increased, both lasers reached saturation in tissue ablation volume. Lastly, both PV and HPS lasers exhibited approximately 1 mm thick heat affected zone (HAZ) in this study although HPS created twice deeper ablation channels with a depth of up to 4 mm. Due to a smaller beam size and a higher output power, HPS maximized tissue ablation rate with minimal thermal effects to the adjacent tissue. Furthermore, more collimated beam characteristics provides more spatial flexibility and may even help to decrease the rate of fiber degradation associated with thermal damage from debris reattachment to the tip.

  12. Performance study of highly efficient 520 W average power long pulse ceramic Nd:YAG rod laser

    NASA Astrophysics Data System (ADS)

    Choubey, Ambar; Vishwakarma, S. C.; Ali, Sabir; Jain, R. K.; Upadhyaya, B. N.; Oak, S. M.

    2013-10-01

    We report the performance study of a 2% atomic doped ceramic Nd:YAG rod for long pulse laser operation in the millisecond regime with pulse duration in the range of 0.5-20 ms. A maximum average output power of 520 W with 180 J maximum pulse energy has been achieved with a slope efficiency of 5.4% using a dual rod configuration, which is the highest for typical lamp pumped ceramic Nd:YAG lasers. The laser output characteristics of the ceramic Nd:YAG rod were revealed to be nearly equivalent or superior to those of high-quality single crystal Nd:YAG rod. The laser pump chamber and resonator were designed and optimized to achieve a high efficiency and good beam quality with a beam parameter product of 16 mm mrad (M2˜47). The laser output beam was efficiently coupled through a 400 μm core diameter optical fiber with 90% overall transmission efficiency. This ceramic Nd:YAG laser will be useful for various material processing applications in industry.

  13. Passive Q-switching of microchip lasers based on Ho:YAG ceramics.

    PubMed

    Lan, R; Loiko, P; Mateos, X; Wang, Y; Li, J; Pan, Y; Choi, S Y; Kim, M H; Rotermund, F; Yasukevich, A; Yumashev, K; Griebner, U; Petrov, V

    2016-06-20

    A Ho:YAG ceramic microchip laser pumped by a Tm fiber laser at 1910 nm is passively Q-switched by single- and multi-layer graphene, single-walled carbon nanotubes (SWCNTs), and Cr2+:ZnSe saturable absorbers (SAs). Employing SWCNTs, this laser generated an average power of 810 mW at 2090 nm with a slope efficiency of 68% and continuous wave to Q-switching conversion efficiency of 70%. The shortest pulse duration was 85 ns at a repetition rate of 165 kHz, and the pulse energy reached 4.9 μJ. The laser performance and pulse stability were superior compared to graphene SAs even for a different number of graphene layers (n=1 to 4). A model for the description of the Ho:YAG laser Q-switched by carbon nanostructures is presented. This modeling allowed us to estimate the saturation intensity for multi-layered graphene and SWCNT SAs to be 1.2±0.2 and 7±1  MW/cm2, respectively. When using Cr2+:ZnSe, the Ho:YAG microchip laser generated 11 ns/25 μJ pulses at a repetition rate of 14.8 kHz.

  14. Growth of GaAs “nano ice cream cones” by dual wavelength pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Schamp, C. T.; Jesser, W. A.; Shivaram, B. S.

    2007-05-01

    Harmonic generation crystals inherently offer the possibility of using multiple wavelengths of light in a single laser pulse. In the present experiment, the fundamental (1064 nm) and second harmonic (532 nm) wavelengths from an Nd:YAG laser are focused together on GaAs and GaSb targets for ablation. Incident energy densities up to about 45 J/cm 2 at 10 Hz with substrate temperatures between 25 and 600 °C for durations of about 60 s have been used in an ambient gas pressure of about 10 -6 Torr. The ablated material was collected on electron-transparent amorphous carbon films for TEM analysis. Apart from a high density of isolated nanocrystals, the most common morphology observed consists of a crystalline GaAs cone-like structure in contact with a sphere of liquid Ga, resembling an "ice cream cone", typically 50-100 nm in length. For all of the heterostuctures of this type, the liquid/solid/vacuum triple junction is found to correspond to the widest point on the cone. These heterostructures likely form by preferential evaporation of As from molten GaAs drops ablated from the target. The resulting morphology minimizes the interfacial and surface energies of the liquid Ga and solid GaAs.

  15. The holmium laser in urology.

    PubMed

    Wollin, T A; Denstedt, J D

    1998-02-01

    To review the physics related to the holmium laser, its laser-tissue interactions, and its application to the treatment of urological diseases. The holmium: YAG laser is a solid-state, pulsed laser that emits light at 2100 nm. It combines the qualities of the carbon dioxide and neodymium:YAG lasers providing both tissue cutting and coagulation in a single device. Since the holmium wavelength can be transmitted down optical fibers, it is especially suited for endoscopic surgery. The authors provide a review of the literature as it relates to the holmium laser and its application to urology. The holmium wavelength is strongly absorbed by water. Tissue ablation occurs superficially, providing for precise incision with a thermal injury zone ranging from 0.5 to 1.0 mm. This level of coagulation is sufficient for adequate hemostasis. The most common urologic applications of the holmium laser that have been reported include incision of urethral and ureteral strictures; ablation of superficial transitional cell carcinoma; bladder neck incision and prostate resection; and lithotripsy of urinary calculi. The holmium: YAG laser is a multi-purpose, multi-specialty surgical laser. It has been shown to be safe and effective for multiple soft tissue applications and stone fragmentation. Its utilization in urology is anticipated to increase with time as a result of these features.

  16. [Intraocular pressure after ND: YAG laser capsulotomy in pseudophakic patients with glaucoma].

    PubMed

    Sesar, Antonio; Petric, Irena; Sesar, Ivanka; Lacmnovic-Loncar, Valentina; Jurisić, Darija; Tomić, Zeljka; Mandić, Zdravko

    2006-01-01

    The aim of the study was to analyze changes in intraocular pressure after Nd: YAG laser capsulotomy in pseudophakic patients with glaucoma. Intraocular pressure was recorded before, and 1 and 3 hours after YAG laser capsulotomy in 69 pseudophakic patients with glaucoma. Twenty eight patients received no therapy before capsulotomy, 21 patients received topical brimonidine 0.2%, and 20 patients received topical dorzolamide 2% 1 hour before laser capsulotomy. All patients received topical tropicamide 1% and tetracaine 0.5%. Nd: YAG laser posterior capsulotomy was performed using inverted-U technique to make a 3-4 mm diameter capsulotomy. After capsulotomy, all eyes received topical fluorometholone for 10 days. A pressure rise was greater in patients without any therapy before YAG laser capsulotomy. Eight patients with glaucoma showed intraocular pressure rise of 5 mm Hg, and 2 patients pressure rise of 10 mm Hg after laser capsulotomy. A reduction of intraocular pressure rise was found in patients who received dorzolamide 2% or brimonidine 0.2%, only 1 patient in each group developed a pressure rise of 5 mm Hg. In all patients a significant pressure rise developed within the first hour. It is difficult to compare different studies due to different techniques of cataract surgery and different intraocular lense material and design. Barnes showed that 6 of 29 (21%) developed a pressure rise of 5 mm Hg, and 1 of 29 (3%) patients a pressure rise of 10 mm Hg. In our study, 29% of patients had a pressure rise of > or =5 mm Hg, and 7% of patients had a rise of > or =10 mm Hg after laser capsulotomy. These results may be associated with a large proportion of extracapsular cataract extraction (71%) versus phacoemulsification (29%) in our patients. Pretreatment with dorzolamide 2% or brimonidine 0.2% reduce the intraocular pressure rise after Nd: YAG laser capsulotomy in pseudophakic patients with glaucoma.

  17. Neodymium: YAG laser damage threshold. A comparison of injection-molded and lathe-cut polymethylmethacrylate intraocular lenses.

    PubMed

    Wilson, S E; Brubaker, R F

    1987-01-01

    The possibility that injection-molded intraocular lenses (IOLs) with imperfections called iridescent clefts could have a decreased threshold to neodymium: YAG (Nd:YAG) laser-induced damage was investigated. Thresholds for Nd:YAG laser-induced damage were determined for injection-molded and lathe-cut polymethylmethacrylate lenses. When aimed at a membrane in contact with a posterior convex surface, the average thresholds were 0.96 +/- 0.18 mJ (Standard deviation [SD]) and 1.80 +/- 0.55 mJ, respectively. The difference was significant at P = 0.001. When injection-molding polymethylmethacrylate was used to make lathe-cut IOLs, very few iridescent clefts were present, and the threshold to Nd:YAG laser-induced damage was 0.94 +/- 0.25 mJ. Iridescent clefts are therefore produced during the injection-molding process but they do not lower the threshold to Nd:YAG laser-induced damage. Rather, the reduced threshold in injection-molded lenses is most probably a result of the polymethylmethacrylate used in their manufacture. Clinically, iridescent clefts in a lens suggest that it has been manufactured by an injection-molding process and that Nd:YAG laser posterior capsulotomy must be performed at the lowest possible energy level to avoid damage.

  18. Scanning electron microscopy of real and artificial kidney stones before and after Thulium fiber laser ablation in air and water

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-02-01

    We investigated proposed mechanisms of laser lithotripsy, specifically for the novel, experimental Thulium fiber laser (TFL). Previous lithotripsy studies with the conventional Holmium:YAG laser noted a primary photothermal mechanism (vaporization). Our hypothesis is that an additional mechanical effect (fragmentation) occurs due to vaporization of water in stone material from high absorption of energy, called micro-explosions. The TFL irradiated calcium oxalate monohydrate (COM) and uric acid (UA) stones, as well as artificial stones (Ultracal30 and BegoStone), in air and water environments. TFL energy was varied to determine the relative effect on the ablation mechanism. Scanning electron microscopy (SEM) was used to study qualitative and characteristic changes in surface topography with correlation to presumed ablation mechanisms. Laser irradiation of stones in air produced charring and melting of the stone surface consistent with a photothermal effect and minimal fragmentation, suggesting no mechanical effect from micro-explosions. For COM stones ablated in water, there was prominent fragmentation in addition to recognized photothermal effects, supporting dual mechanisms during TFL lithotripsy. For UA stones, there were minimal photothermal effects, and dominant effects were mechanical. By increasing TFL pulse energy, a greater mechanical effect was demonstrated for both stone types. For artificial stones, there was no significant evidence of mechanical effects. TFL laser lithotripsy relies on two prominent mechanisms for stone ablation, photothermal and mechanical. Water is necessary for the mechanical effect which can be augmented by increasing pulse energy. Artificial stones may not provide a predictive model for mechanical effects during laser lithotripsy.

  19. Dual beam optical system for pulsed laser ablation film deposition

    DOEpatents

    Mashburn, Douglas N.

    1996-01-01

    A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target.

  20. New application of a bipolar Nd:YAG handpiece in laser cardiac surgery

    NASA Astrophysics Data System (ADS)

    Mizutani, Tetsuo; Suzuki, Hitoshi; Katayama, Yoshihiko

    1997-05-01

    A bipolar Nd-YAG laser (1.064 micrometer) handpiece was experimentally examined for a venous dissection without scissors and sutures and clinically introduced for the vein graft harvesting in coronary artery bypass grafting (CABG). Experimental study: One hundred and thirty-five segments of the mongrel dog veins were employed. Nd-YAG laser was irradiated on the vein held by the bipolar Nd-YAG handpiece at the power of 5, 9, 13, and 17 watts, and success defined as a complete vein citing without bleeding at the laser-applied sites were gained in all except three; 97.8% of success rate. Laser exposure time for cutting the vein decreased in order to an increase of the applied laser power, and the veins of bigger diameter needed more longer exposure time in the group of the same laser power. An average exposure time was 4.4 seconds for the veins of 1 mm diameter at 13 watts. In histological examination, a vascular lumen at the cutting site was diminished and covered with a degenerated vascular wall, and bleeding was not seen in all specimen. Clinical study: In 18 cases of CABG the bipolar Nd-YAG handpiece was applied to cut the branches of the great saphenous vein without scissors and sutures. Forty-two grafts harvested by this handpiece were used for aortocoronary bypass grating. All were survived and the angiographic examination demonstrated a 90% of graft patency at an average period of 3.5 years after the operation. Laser-induced morphological change such as aneurysmal formation or graft stenosis was not recognized.

  1. Nd:YAG Pulsed Laser Assisted Machining of AMS 5708 Waspaloy Alloy

    NASA Astrophysics Data System (ADS)

    Sharifi, Zahra; Shoja-Razavi, Reza; Vafaei, Reza; Hashemi, Sayed Hamid

    2018-03-01

    Due to very high strenght, low thermal conductivity, and high work hardening rate, the machinability of nickel-based superalloys is poor at room temperature. Laser-assisted machining (LAM) can provide a better aspect of machining such alloys. Since the wavelength of Nd:YAG laser is about 1/10th of that of CO2 laser, absorption and heating efficiency of Nd:YAG laser is much higher on metals and especially superalloys. Transmission of Nd:YAG laser through fiber optics to the heating point on the workpiece is a simple task during machining. This makes the LAM process more convenient and practical than the CM process. In this study a model is introduced for LAM of waspaloy, and its machinability is evaluated in terms of ease of material removal. Also, a temperature generation model is introduced for the Nd:YAG laser beam. Furthemore, wear behavior of an uncoated tungsten carbide and the formed chips were compared during the LAM and the CM of waspolay. To study the wear mechanism, the worn cutting tool was studied via scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). The formed chips were also evaluated via SEM and optical microscopy. Based on the results, the optimum LAM conditions were obtained at a cutting speed of 24 m/min and a feed rate of 0.06 mm/rev when a 400 W laser mean power and 80 Hz frequency are applied. Under these conditions, the temperature ahead of the cutting tool edge on the surface of workpiece was estimated to be 524°C. In comparison with CM, a significant improvement in tool wear and a better chip morphology were achieved through LAM, and also specific cutting energy and surface roughness were reduced by 25 and 20%, respectively.

  2. Instrumentation For The Surgical Application Of The Nd:YAG Laser

    NASA Astrophysics Data System (ADS)

    Frank, F.; Bailer, P.; Beck, O.; Bowering, R.; Hofstetter, A.

    1984-03-01

    The Nd:YAG laser has become a coagulation instrument, which has found acceptance in interdisciplinary surgery. The main contributors are its highly efficient coagulation capability in interaction with tissue and the fact that the Nd:YAG laser beam can be transmitted by means of a simple quartz-glass fiber. Appropriate systems and instruments for transmission and operation have been developed for the various applications in neurosurgery, pulmology, gastroenterology, urology, gynaecology and dermatology. Operation methods in open and endoscopic surgery under use of several hand held devices and flexible as well as rigid endoscopes are being demonstrated by clinical examples of application.

  3. Diode-pumped continuous-wave eye-safe Nd:YAG laser at 1415 nm.

    PubMed

    Lee, Hee Chul; Byeon, Sung Ug; Lukashev, Alexei

    2012-04-01

    We describe the output performance of the 1415 nm emission in Nd:YAG in a plane-concave cavity under traditional pumping into the 4F5/2 level (808 nm) and direct in-band pumping into the 4F3/2 level (885 nm). An end-pumped Nd:YAG laser yielded maximum cw output power of 6.3 W and 4.2 W at 885 nm and 808 nm laser diode (LD) pumping, respectively. To the best of our knowledge, this is the highest output power of a LD-pumped 1415 nm laser.

  4. Optimum Laser Beam Characteristics for Achieving Smoother Ablations in Laser Vision Correction.

    PubMed

    Verma, Shwetabh; Hesser, Juergen; Arba-Mosquera, Samuel

    2017-04-01

    Controversial opinions exist regarding optimum laser beam characteristics for achieving smoother ablations in laser-based vision correction. The purpose of the study was to outline a rigorous simulation model for simulating shot-by-shot ablation process. The impact of laser beam characteristics like super Gaussian order, truncation radius, spot geometry, spot overlap, and lattice geometry were tested on ablation smoothness. Given the super Gaussian order, the theoretical beam profile was determined following Lambert-Beer model. The intensity beam profile originating from an excimer laser was measured with a beam profiler camera. For both, the measured and theoretical beam profiles, two spot geometries (round and square spots) were considered, and two types of lattices (reticular and triangular) were simulated with varying spot overlaps and ablated material (cornea or polymethylmethacrylate [PMMA]). The roughness in ablation was determined by the root-mean-square per square root of layer depth. Truncating the beam profile increases the roughness in ablation, Gaussian profiles theoretically result in smoother ablations, round spot geometries produce lower roughness in ablation compared to square geometry, triangular lattices theoretically produce lower roughness in ablation compared to the reticular lattice, theoretically modeled beam profiles show lower roughness in ablation compared to the measured beam profile, and the simulated roughness in ablation on PMMA tends to be lower than on human cornea. For given input parameters, proper optimum parameters for minimizing the roughness have been found. Theoretically, the proposed model can be used for achieving smoothness with laser systems used for ablation processes at relatively low cost. This model may improve the quality of results and could be directly applied for improving postoperative surface quality.

  5. Dual beam optical system for pulsed laser ablation film deposition

    DOEpatents

    Mashburn, D.N.

    1996-09-24

    A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target. 3 figs.

  6. Endodontic applications of a short pulsed FR Nd:YAG dental laser: photovaporization of extruded pulpal tissue following traumatic fractures of two maxillary central incisors--a clinical trial repor

    NASA Astrophysics Data System (ADS)

    Gregg, Robert H., II

    1992-06-01

    Historically, many techniques have been attempted in the search for a satisfactory and consistent treatment of inflamed, painful, hyperemic pulpal tissue. Present techniques attempting to achieve profound local anesthesia in such tissue, have not been satisfactory. Local anesthesia techniques acceptable to the patient with painful hyperemic pulpal tissue, has eluded previous technology. The subsequent treatment of hyperemic tissue without sufficient anesthesia primarily involves undesirable invasive mechanical/surgical procedures. Described in this clinical trial is a technique using free running (FR) pulsed, Nd:YAG laser energy to ablate soft tooth pulpal tissue--a technique employed after conventional endodontic methods failed. A free running pulsed, FR Nd:YAG dental laser was successfully used at 20 pulses per second and 1.25 watts to photovaporize endodontic pulpal tissue (pulpectomy) to allow a conventional endodontic file to extirpate the remaining soft tissue remnants and access the root apex. Also described in this paper is the 'hot-tip' effect of contact fiber laser surgery. This clinical trial achieved the immediate, short term objective of endodontic soft tissue removal via photovaporization, without pain reported by the patient. The pulsed FR Nd:YAG dental laser used as described in this clinical report appears to be a very safe and very effective technique; offers a treatment alternative to traditional therapy that suggests high patient acceptance; and is significantly less stressful for the doctor and staff than traditional treatment options. Long-term, controlled scientific and clinical studies are necessary to establish the safety and efficacy of both the helium-neon energy for visualization and the low-watt pulsed FR Nd:YAG energy for photovaporization of soft endodontic pulpal tissue within the root canal. Research is especially needed to understand the effects of a low-watt, pulsed FR, Nd:YAG laser on the activity of osteoclasts and odontoclasts

  7. Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance.

    PubMed

    Liu, Hongliang; Jia, Yuechen; Vázquez de Aldana, Javier Rodríguez; Jaque, Daniel; Chen, Feng

    2012-08-13

    We report on the fabrication of depressed cladding waveguide lasers in Nd:YAG (neodymium doped yttrium aluminum garnet, Nd:Y3Al5O12) ceramics microstructured by femtosecond laser pulses. Full control over the confined light spatial distribution is demonstrated by the fabrication of high contrast waveguides with hexagonal, circular and trapezoidal configurations. The confocal fluorescence measurements of the waveguides reveal that the original luminescence features of Nd3+ ions are well-preserved in the waveguide regions. Under optical pump at 808 nm, cladding waveguides showed continuous wave efficient laser oscillation. The maximum output power obtained at 1064.5 nm is ~181 mW with a slope efficiency as high as 44%, which suggests that the fabricated Nd:YAG ceramic waveguides are promising candidates for efficient integrated laser sources.

  8. Holographic interferometry with an injection seeded Nd:YAG laser and two reference beams

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    1989-01-01

    The performance of twin injection seeded Nd:YAG lasers is compared with the performance of an argon-ion laser for recording dual-reference-beam holograms in AGFA 8E56 emulsion. Optical heterodyning is used to measure interference, and the results are expressed in terms of heterodyning signal level and intensity signal-to-noise. The Nd:YAG laser system is to be used for optical inspections of structures for cracks, defects, gas leaks, and structural changes.

  9. Laser beam interactions with vapor plumes during Nd:YAG laser welding on aluminum

    NASA Astrophysics Data System (ADS)

    Peebles, H. C.; Russo, A. J.; Hadley, G. R.; Akau, R. L.

    Welds produced on pure aluminum targets using pulsed Nd:YAG lasers can be accurately described using a relatively simple conduction mode heat transfer model provided that the fraction of laser energy absorbed is known and the amount of metal vaporized is smalled however at laser fluences commonly used in many production welding schedules significant aluminum vaporization does occur. The possible mechanisms have been identified which could result in laser beam attenuation by the vapor plume.

  10. Laser ablation of dental tissues with picosecond pulses of 1.06-microm radiation transmitted through a hollow-core photonic-crystal fiber.

    PubMed

    Konorov, Stanislav O; Mitrokhin, Vladimir P; Fedotov, Andrei B; Sidorov-Biryukov, Dmitrii A; Beloglazov, Valentin I; Skibina, Nina B; Shcherbakov, Andrei V; Wintner, Ernst; Scalora, Michael; Zheltikov, Aleksei M

    2004-04-10

    Sequences of picosecond pulses of 1.06-microm Nd:YAG laser radiation with a total energy of approximately 2 mJ are transmitted through a hollow-core photonic-crystal fiber with a core diameter of approximately 14 microm and are focused onto a tooth's surface in vitro to ablate dental tissue. The hollow-core photonic-crystal fiber is shown to support the single-fundamental-mode regime for 1.06-microm laser radiation, serving as a spatial filter and allowing the laser beam's quality to be substantially improved. The same fiber is used to transmit emission from plasmas produced by laser pulses onto the tooth's surface in the backward direction for detection and optical diagnostics.

  11. Applications of laser ablation to microengineering

    NASA Astrophysics Data System (ADS)

    Gower, Malcolm C.; Rizvi, Nadeem H.

    2000-08-01

    Applications of pulsed laser ablation to the manufacture of micro- electro-mechanical systems (MEMS) and micro-opto-electro-mechanical systems (MOEMS) devices are presented. Laser ablative processes used to manufacture a variety of microsystems technology (MST) components in the computer peripheral, sensing and biomedical industries are described together with a view of some future developments.

  12. Fractured Anterior Chamber Intraocular Lens (ACIOL) Complicating Nd: YAG Laser for Peripheral Iridotomy.

    PubMed

    Farah, Edgard; Koutsandrea, Chryssanthi; Papaefthimiou, Ioannis; Papaconstantinou, Dimitris; Georgalas, Ilias

    2013-01-01

    Laser peripheral iridotomy is the procedure of choice for the treatment of angle-closure glaucoma caused by relative or absolute pupillary block. Nd: YAG laser iridotomy has been reported to have several complications such as Iris bleeding, hyphema, transient IOP elevation, intraocular inflammation, choroidal, retinal detachment and vitreous hemorrhage. We report a case of a 74 year old lady on anticoagulant treatment who developed pupillary block and angle closure glaucoma after cataract surgery and anterior chamber intraocular lens (ACIOL) insertion complicated with intraoperative bleeding. The patient was treated with Nd: YAG laser iridotomy , however, the ACIOL was inadvertently fractured after a single shot of laser and it had to be replaced. Although the incidence is rare. Ophthalmologists and Opticians should be aware that an ACIOL may be fractured even after a single Nd:YAG laser shot and avoid to perform it close to the ACIOL. Pretreatment counseling should include this rare complication.

  13. Investigations on laser hard tissue ablation under various environments

    NASA Astrophysics Data System (ADS)

    Kang, H. W.; Oh, J.; Welch, A. J.

    2008-06-01

    The purpose of this study was to investigate the effect of liquid environments upon laser bone ablation. A long-pulsed Er,Cr:YSGG laser was employed to ablate bovine bone tibia at various radiant exposures under dry, wet (using water or perfluorocarbon) and spray environmental conditions. Energy loss by the application of liquid during laser irradiation was evaluated, and ablation performance for all conditions was quantitatively measured by optical coherence tomography (OCT). Microscope images were also used to estimate thermal side effects in tissue after multiple-pulse ablation. Wet using water and spray conditions equally attenuated the 2.79 µm wavelength laser beam. Higher transmission efficiency was obtained utilizing a layer of perfluorocarbon. Dry ablation exhibited severe carbonization due to excessive heat accumulation. Wet condition using water resulted in similar ablation volume to the dry case without carbonization. The perfluorocarbon layer produced the largest ablation volume but some carbonization due to the poor thermal conductivity. Spray induced clean cutting with slightly reduced efficiency. Liquid-assisted ablation provided significant beneficial effects such as augmented material removal and cooling/cleaning effects during laser osteotomy.

  14. The study of laser pulse width on efficiency of Ho:YAG laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Zhang, Jian J.; Rutherford, Jonathan; Solomon, Metasebya; Cheng, Brian; Xuan, Jason R.; Gong, Jason; Yu, Honggang; Xia, Michael; Yang, Xirong; Hasenberg, Thomas; Curran, Sean

    2017-02-01

    When treating ureteral calculi, retropulsion can be reduced by using a longer pulse width without compromising fragmentation efficiency (from the studies by David S. Finley et al. and Hyun Wook Kang et al.). In this study, a lab build Ho:YAG laser was used as the laser pulse source, with pulse energy from 0.2J up to 3.0 J, and electrical pump pulse width from 150 us up to 1000 us. The fiber used in the investigation is a 365 μm core diameter fiber, SureFlexTM, Model S-LLF365. Plaster of Paris calculus phantoms were ablated at different energy levels (0.2, 0.5, 1, 2, 3J) and with different number of pulses (1, 3, 10) using different electrical pump pulse width (333, 667, 1000 μs). The dynamics of the recoil action of a calculus phantom was monitored using a high-speed camera with frame rate up to 1 million frame per second (Photron Fastcam SA5); and the laser-induced craters were evaluated with a 3-D digital microscope (Keyence VHX-900F). A design of experiment software (DesignExpert-10, Minneapolis, MN, USA) is used in this study for the best fit of surface response on volume of dusting and retropulsion amplitude. The numerical formulas for the response surfaces of dusting speed and retropulsion amplitude are generated. More detailed investigation on the optimal conditions for dusting of other kinds of stone samples and the fiber size effect will be conducted as a future study.

  15. Effects of laser fluence and liquid media on preparation of small Ag nanoparticles by laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Moura, Caroline Gomes; Pereira, Rafael Santiago Floriani; Andritschky, Martin; Lopes, Augusto Luís Barros; Grilo, João Paulo de Freitas; Nascimento, Rubens Maribondo do; Silva, Filipe Samuel

    2017-12-01

    This study aims to assess a method for preparation of small and highly stable Ag nanoparticles by nanosecond laser ablation in liquid. Effect of liquid medium and laser fluence on the size, morphology and structure of produced nanoparticles has been studied experimentally. Pulses of a Nd:YAG laser of 1064 nm wavelength at 35 ns pulse width at different fluences were employed to irradiate the silver target in different environments (water, ethanol and acetone). The UV-Visible absorption spectra of nanoparticles exhibit surface plasmon resonance absorption peak in the UV region. STEM and TEM micrographs were used to evaluate the size and shape of nanoparticles. The stability of silver colloids in terms of oxidation at different liquid media was analyzed by SAED patterns. The results showed that characteristics of Ag nanoparticles and their production rate were strongly influenced by varying laser fluence and liquid medium. Particles from 2 to 80 nm of diameter were produced using different conditions and no oxidation was found in ethanol and acetone media. This work puts in evidence a promising approach to produce small nanoparticles by using high laser fluence energy.

  16. Mechanical properties and molecular structure analysis of subsurface dentin after Er:YAG laser irradiation.

    PubMed

    He, Zhengdi; Chen, Lingling; Hu, Xuejuan; Shimada, Yasushi; Otsuki, Masayuki; Tagami, Junji; Ruan, Shuangchen

    2017-10-01

    The purpose of this study was to evaluate the chemical and mechanical modifications in subsurface dentin layer after Er: YAG (Erbium-Yttrium Aluminium Garnet) laser irradiation, as the guidance of new dental restorative materials specific for laser irradiated dentin. Dentin disks obtained from extracted human molars were prepared and exposed to a single pulse Er:YAG laser irradiation at 80mJ/pulse. After laser irradiation the mechanical and chemical characteristics of intertubular dentin in subsurface layer were studied using nanoindentation tester and micro-Raman spectromy (μ-RS). The dentin 5-50µm depth beneath the lased surface was determined as testing area. Two-way analysis of variance (ANOVA) were used to compare the mechanical values between lased and untreated subsurface dentin (P = 0.05). A laser affected subsurface dentin layer after Er:YAG laser treatment is present. The laser irradiation is considered to decrease the mechanical properties in the superficial subsurface layer (<15µm deep). There was no significant difference in nanohardness and Young's modulus between lased subsurface dentin and untreated dentin (p > 0.05) under the depth of 15µm. However, the dentin at 5µm and 10µm depth beneath the lased surface exhibited significantly lower (~ 47.8% and ~ 33.6% respectively) hardness (p < 0.05). Er:YAG laser irradiation affected both mineral and organic components in subsurface dentin layer, a higher degree of crystallinity and reduced organic compounds occurred in the lased subsurface dentin. Under the tested laser parameters, Er:YAG laser irradiation causes lower mechanical values and reduction of organic components in subsurface dentin, which has deleterious effects on resin adhesion to this area. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides.

    PubMed

    Tan, Yang; Luan, Qingfang; Liu, Fengqin; Chen, Feng; Vázquez de Aldana, Javier Rodríguez

    2013-08-12

    This work reports on the Q-switched pulsed laser generation from double-cladding Nd:YAG ceramic waveguides. Double-cladding waveguides with different combination of diameters were inscribed into a sample of Nd:YAG ceramic. With an additional semiconductor saturable absorber, stable pulsed laser emission at the wavelength of 1064 nm was achieved with pulses of 21 ns temporal duration and ~14 μJ pulse energy at a repetition rate of 3.65 MHz.

  18. Analysis of magnesium and copper in aluminum alloys with high repetition rate laser-ablation spark-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Xiaoyong; Dong, Bo; Chen, Yuqi; Li, Runhua; Wang, Fujuan; Li, Jiaoyang; Cai, Zhigang

    2018-03-01

    In order to improve the analytical speed and performance of laser-ablation based atomic emission spectroscopy, high repetition rate laser-ablation spark-induced breakdown spectroscopy (HRR LA-SIBS) was first developed. Magnesium and copper in aluminum alloys were analyzed with this technique. In the experiments, the fundamental output of an acousto-optically Q-switched Nd:YAG laser operated at 1 kHz repetition rate with low pulse energy and 120 ns pulse width was used to ablate the samples and the plasma emission was enhanced by spark discharge. The spectra were recorded with a compact fiber spectrometer with non-intensified charge-coupled device in non-gating mode. Different parameters relative with analytical performance, such as capacitance, voltage, laser pulse energy were optimized. Under current experimental conditions, calibration curves of magnesium and copper in aluminum alloys were built and limits of detection of them were determined to be 14.0 and 9.9 ppm by HRR LA-SIBS, respectively, which were 8-12 folds better than that achieved by HRR LA under similar experimental condition without spark discharge. The analytical sensitivities are close to those obtained with conventional LIBS but with improved analytical speed as well as possibility of using compact fiber spectrometer. Under high repetition rate operation, the noise level can be decreased and the analytical reproducibility can be improved obviously by averaging multiple measurements within short time. High repetition rate operation of laser-ablation spark-induced breakdown spectroscopy is very helpful for improving analytical speed. It is possible to find applications in fast elements analysis, especially fast two-dimension elemental mapping of solid samples.

  19. Influence of static pressure on dynamic characteristics of laser-induced cavitation and hard-tissue ablation under liquid environment

    NASA Astrophysics Data System (ADS)

    Chen, Chuanguo; Li, Xuwei; Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen

    2014-11-01

    Several studies have demonstrated that laser-induced hard tissue ablation effects can be enhanced by applying an additional water-layer on tissue surface. However, the related mechanism has not yet been presented clearly. In this paper, the influence of static pressure on dynamic characteristics of cavitation induced by pulse laser in liquid and its effect on bovine shank bone ablation were investigated. The laser source is fiber-guided free-running Ho:YAG laser with wavelength of 2080 nm, pulse duration of 350 μs and energy of 1600 mJ. The tissue samples were immerged in pure water at different depths of 11, 16, 21, 26 and 31 mm. The working distance between the fiber tip and tissue surface was fixed at 1 mm for all studies. The dynamic interaction between laser, water and tissue were recorded by high-speed camera, and the morphological changes of bone tissue were assessed by stereomicroscope and OCT. The results showed that many times expansion and collapse of bubble were observed, more than four pulsation periods were accurately achieved with the most energy deposited in the first period and the bubble became more and more irregular in shape. The longitudinal length (7.49--6.74 mm) and transverse width (6.69--6.08 mm) of bubble were slowly decreased while volume (0.0586--0.0124 mm3) of ablation craters were drastically reduced, with static pressure increasing. The results also presented that the water-layer on hard-tissue surface can not only reduce thermal injury but also improve lubricity of craters, although the water-layer reduced ablation efficiency.

  20. New long-wavelength Nd:YAG laser at 1.44 micron: effect on brain.

    PubMed

    Martiniuk, R; Bauer, J A; McKean, J D; Tulip, J; Mielke, B W

    1989-02-01

    A wavelength-shifted Nd:YAG laser, tuned to coincide with the infrared absorption peak of water at 1.44 microns, was used to make lesions in normal rabbit brain. A total of 48 lesions were made with power up to 20 W, with energy up to 40 joules, and with two different spot sizes. These lesions were compared to lesions made with 1.06 microns radiation from an Nd:YAG laser under identical operating conditions. Measurements of blood-brain barrier damage and width, depth, and volume of tissue affected were obtained 30 minutes after placement of the lesions. It was found that 1.44-microns lesions produced photoevaporative tissue loss at the highest intensities used. The layer of coagulated tissue remaining after photovaporization had a mean thickness of 0.6 mm irrespective of the volume of tissue removed. There was no photovaporization in the 1.06-microns lesions. In addition, the amount of peripheral edema per unit volume of tissue coagulated was approximately half at the 1.44-microns wavelength. These findings suggest that the 1.44-microns Nd:YAG laser may be a useful surgical instrument since it combines the photoevaporative effect of the CO2 laser while maintaining the advantages of the conventional Nd:YAG laser (quartz fiber delivery and effective hemostasis).

  1. Er:YAG and alexandrite laser radiation propagation in the root canal and its effect on bacteria

    NASA Astrophysics Data System (ADS)

    Jelinkova, Helena; Dostalova, Tatjana; Duskova, Jana; Miyagi, Mitsunobu; Shoji, Shigeru; Sulc, Jan; Nemec, Michal

    1999-05-01

    The goal of the study was to verify differences between the alexandrite and Er:YAG laser energy distribution in the root canal and in the surrounding dentin and bone tissues. For the experiment, two lasers were prepared: the Er:YAG laser (λ=2.94 μm) with a delivery system fluorocarbon polymer-coated silver hollow glass waveguide ended by a special sapphire tip and the alexandrite laser (λ=0.75 μm) with a silicon fiber. The Er:YAG laser was operated in a free-running mode, the length of the generated pulses was 250 μsec and the output energy ranged from 100 to 350 mJ. The pulse length of the free- running alexandrite laser was 70 μsec and the output energy was ranged from 80 up to 200 mJ. For the experiment prepared root canals of molars were used. It was ascertained that the radiation of the alexandrite laser passes through the root canal and hits the surrounding tissue. Nocardia asteroids, Filaments, Micrococcus albus, Lactobacillus sp and Streptococcus sanguis colonies were treated by the Er:YAG or alexandrite laser radiation. The surface was checked by scanning electron microscopy. From the result it follows that the Er:YAG laser destroyed microbial colonies but the differences is in the depth of the affected area.

  2. Lack of adjunctive benefit of Er:YAG laser in non-surgical periodontal treatment: a randomized split-mouth clinical trial.

    PubMed

    Rotundo, Roberto; Nieri, Michele; Cairo, Francesco; Franceschi, Debora; Mervelt, Jana; Bonaccini, Daniele; Esposito, Marco; Pini-Prato, Giovanpaolo

    2010-06-01

    This split-mouth, randomized, clinical trial aimed to evaluate the efficacy of erbium-doped:yttrium-aluminium-garnet (Er:YAG) laser application in non-surgical periodontal treatment. A total of 27 patients underwent four modalities of non-surgical therapy: supragingival debridement; scaling and root planing (SRP)+Er:YAG laser; Er:YAG laser; and SRP. Each strategy was randomly assigned and performed in one of the four quadrants. Clinical outcomes were evaluated at 3 and 6 months. Subjective benefits of patients have been evaluated by means of questionnaires. Six months after therapy, Er:YAG laser showed no statistical difference in clinical attachment gain with respect to supragingival scaling [0.15 mm (95% CI -0.16; 0.46)], while SRP showed a greater attachment gain than the supragingival scaling [0.37 mm (95% CI 0.05; 0.68)]. No difference resulted between Er:YAG laser+SRP and SRP alone [0.05 mm (95% CI -0.25; 0.36)]. The adjunctive use of Er:YAG laser to conventional SRP did not reveal a more effective result than SRP alone. Furthermore, the sites treated with Er:YAG laser showed similar results of the sites treated with supragingival scaling.

  3. Potential role of S100A8 in skin rejuvenation with the 1064-nm Q-switched Nd:YAG laser.

    PubMed

    Qin, Yan; Qin, Xiaofeng; Xu, Peng; Zhi, Yuanting; Xia, Weili; Dang, Yongyan; Gu, Jun; Ye, Xiyun

    2018-04-01

    The 1064-nm Q-switched Nd:YAG laser is demonstrated to be effective for non-ablative skin rejuvenation, but the molecular mechanism by which dermis responses to laser-induced damage and initiates skin remodeling is still unclear. HaCaT cells and 3T3 skin fibroblasts were irradiated with the 1064-nm Q-switched Nd:YAG laser at the different doses. Then, cells were collected and lysed for PCR and Western blot analysis. Cell viability was detected by Cell Counting Kit-8 (CCK-8) before and after laser irradiation. The expressions of S100A8, advanced glycosylation end product-specific receptor (RAGE) and inflammatory cytokines in two cell lines were markedly upregulated after laser treatments. The PCR, Western blot, and ELISA analysis showed the significant increase of type I and III procollagen in the 3T3 cells treated with the 1064-nm laser. Interestingly, si S100A8 effectively inhibited the expression of cytokines and collagen, while S100A8 treatments significantly increased them. P-p38 and p-p65 levels were also elevated after the 1064-nm laser irradiation, which is positively related with S100A8. Cell viability and reactive oxygen species (ROS) levels were not changed, while the content of superoxidase dismutase (SOD) in two cells was increased after laser irradiation. Our results demonstrated that the overexpression of S100A8 induced by the 1064-nm laser irradiation triggered inflammatory reactions in skin cells. The inflammatory microenvironment and improvement of skin antioxidant capacity contribute to new collagen synthesis in the skin cells. Thus, S100A8 was required for laser-induced new collagen synthesis in skin cells. p38/MAPK and NF-κB signal pathways were involved in S100A8-mediated inflammatory reactions in response to laser irradiation.

  4. Postoperative discomfort after Nd:YAG laser and conventional frenectomy: comparison of both genders.

    PubMed

    Akpınar, A; Toker, H; Lektemur Alpan, A; Çalışır, M

    2016-03-01

    Evidence has suggested that males and females experience and report feeling pain differently. The aim of this study was to determine the postoperative perception levels of both females and males after neodymium-doped yttrium aluminum garnet (Nd:YAG) laser frenectomy and conventional frenectomy, and to compare the perceptions between genders. Eighty-nine patients requiring frenectomy were randomly assigned to have treatment with either the conventional frenectomy or with the Nd:YAG laser. Postoperative discomfort (pain, chewing, talking) was recorded using a visual analog scale (VAS) on the operation day and postoperative days 1, 3, 7 and 10. According to the female VAS scores of the pain, chewing and speaking discomfort were statistically higher in the conventional group than those of the laser group on the operation day, and on the first and third postoperative days. Pain discomfort in males was statistically higher in the conventional group than those of the laser group on the operation day. Speaking discomfort in males was statistically higher in the conventional group than those of the laser group on the operation day and the first postoperative day. The present study indicated that Nd:YAG laser treatment used for frenectomies provides better postoperative comfort for each gender, especially in females in terms of pain, chewing and speaking than the conventional procedure up to the seventh postoperative day. According to our results, Nd:YAG laser may provide a safe, bloodless, painless surgery and an impressive alternative for frenectomy operations. © 2015 Australian Dental Association.

  5. Clinical Evaluation of Nd:YAG and 685-nm Diode Laser Therapy for Desensitization of Teeth with Gingival Recession

    PubMed Central

    Canakci, Varol; Ozdemir, Atilla; Kaya, Yavuz

    2009-01-01

    Abstract Objectives: The aim of this study was to evaluate the effectiveness of two types of lasers, the Nd:YAG laser and the 685-nm diode laser, as dentin desensitizers as well as both the immediate and late therapeutic effects on teeth with gingival recession. Materials and Methods: The study was conducted on 56 teeth in 14 patients with Miller's class 1 and 2 gingival recession with clinically elicitable dentin hypersensitivity (DH). The patients were divided into two groups: a Nd:YAG-laser-treated group and a 685-nm diode laser-treated group. DH was assessed by means of an air stimulus, and a visual analog scale (VAS) was used to measure DH. The selected teeth in the two groups received laser therapy for three sessions. Teeth subjected to Nd:YAG-laser treatment were irradiated at 1 W and 10 Hz for 60 sec at 1064 nm, and those receiving 685-nm diode laser treatment were irradiated at 25 mW and 9 Hz for 100 sec. Results: Significant reductions in DH occurred at all time points measured during the three treatment sessions in both treatment groups. Comparing the means of the responses in the three treatment sessions for the two groups revealed that the Nd:YAG laser group had a higher degree of desensitization compared to the other group (p < 0.01). The immediate and late therapeutic effects of the Nd:YAG laser were more evident than those of the 685-nm diode laser. Conclusions: Both of these lasers can be used to reduce DH without adverse effects. Desensitization of teeth with gingival recession with the Nd:YAG laser was more effective than with the diode laser. The Nd:YAG laser appears to be a promising new tool for successfully reducing DH. PMID:19281413

  6. Experimental investigation of the effects of different liquid environments on the graphene oxide produced by laser ablation method

    NASA Astrophysics Data System (ADS)

    Ghavidel, Elham; Sari, Amir Hossein; Dorranian, Davoud

    2018-07-01

    In this work, the effects of liquid environments on the characteristics and optical properties of carbon nanostructures - in particular, Graphene Oxide (GO) - prepared by pulsed laser ablation were studied experimentally. The second harmonic beam of a Q-switched Nd:YAG laser of 532 nm wavelength at 6 ns pulse width and 0.7 J/cm2 fluence was employed to irradiate the graphite target in liquid nitrogen, deionized water, and 0.01 M CTAB solution under the same initial experimental conditions. Produced nanostructures were characterized by Raman scattering spectrum, FE-SEM and TEM images, Photoluminescence, and UV-Vis-NIR spectrum. TEM and FE-SEM images show sheet-like morphology with few square micrometer area graphenes in all samples. Raman and UV-Vis-NIR analyses show that graphene is oxidized due to the presence of oxygen molecules in ablation environment. Results demonstrate that the graphene nanosheets produced in deionized water are multilayer, contains the largest sp2 domain size, the least defects and the lowest possibility of aggregation.

  7. Experimental study of electro-optical Q-switched pulsed Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    A, Maleki; M Kavosh, Tehrani; H, Saghafifar; M, H. Moghtader Dindarlu

    2016-03-01

    We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We experimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switched modes at different pulse repetition rates from 1 Hz to 100 Hz. The laser output energy is stabilized by using a special configuration of the optical resonator. In this laser, an unsymmetrical concave-concave resonator is used and this structure helps the mode volume to be nearly fixed when the pulse repetition rate is increased. According to the experimental results in the Q-switched operation, the laser output energy is nearly constant around 70 mJ with an FWHM pulse width of 7 ns at 100 Hz. The optical-to-optical conversion efficiency in the Q-switched regime is 17.5%.

  8. Effect of CO2, Nd:YAG, and Er:YAG lasers on dentin and pulp tissues in dogs

    NASA Astrophysics Data System (ADS)

    Abt, Elliot; Wigdor, Harvey A.; Walsh, Joseph T., Jr.; Brown, Joseph D.

    1992-06-01

    Although there has been interest in lasers in dentistry since lasers were first developed in the early 1960's, this interest was limited until recently. Over the past five years there has been a flurry of interest to find the most effective wavelength and parameters of treatment. With this interest has come clinical and experimental reports. This project is a pilot study to investigate laser effects on dogs teeth. Multiple teeth from 2 dogs (n equals 40) were treated using either a CO2, Nd:YAG, or an Er:YAG laser, or slow-speed rotary instrumentation. One dog died after treatment and was not used in this study. The second dog was sacrificed four days after treatment with the lasers and the teeth were decalcified and processed for light microscopy. The dentin and pulpal tissues were then evaluated for changes from their normal histologic patterns. The purpose of this study was to first determine if the dog would be a good model for in-vivo histologic testing of lasers and second to evaluate the histologic effects of different lasers on dog's teeth. Our findings suggest that each laser causes a different degree of effect to the treated teeth. The specifics of these effects are discussed herein.

  9. Dynamics of laser ablative shock waves from one dimensional periodic structured surfaces

    NASA Astrophysics Data System (ADS)

    Paturi, Prem Kiran; Chelikani, Leela; Pinnoju, Venkateshwarlu; Acrhem Team

    2015-06-01

    Spatio-temporal evolution of Laser ablative shock waves (LASWs) from one dimensional periodic structured surfaces (1D-PSS) of Aluminum is studied using time resolved defocused shadowgraphy technique. LASWs are generated by focusing 7 ns pulses from second harmonic of Nd:YAG (532 nm, 10 Hz) laser on to 1D-PSS with sinusoidal and triangular modulations of varying periodicity. An expanded He-Ne laser (632.8 nm) is used as probe beam for shadowgraphy. Evolution of ablative shock front (SF) with 1.5 ns temporal resolution is used to measure position of the SF, its nature, density and pressure behind the SF. The effect of surface modulation on the LASW and contact front dynamics was compared to those from a flat surface (FS) of Aluminum. SWs from FS and PSS obeyed Taylor's solution for spherical and planar nature, respectively. The velocity of SF from 1D PSS had a twofold increase compared to the FS. This was further enhanced for structures whose periodicity is of the order of excitation wavelength. Variation of SF properties with varying periodicity over a range of 3.3 μm to 0.55 μm has the potential to tailor shockwaves of required parameters. The work is supported by Defence Research and Developement Organization, India through Grants-in-Aid Program. The periodic surfaces were procured with financial support from BRFST project No. NFP-MAT-A12-04.

  10. Vapor emissions resulting from Nd:YAG laser interaction with tooth structure.

    PubMed

    Gelskey, S C; White, J M; Gelskey, D E; Kremers, W

    1998-11-01

    The Neodymium:yttrium aluminum garnet (Nd:YAG) dental laser has been cleared by the United States Food and Drug Administration (FDA) for marketing in intraoral soft tissue treatment. The efficacy and safety of the Nd:YAG laser in the treatment of hard dental tissue as well as the effects of dental irradiation on the pulp and periodontium have been investigated. Odors resulting from laser irradiation have been reported, but the nature and toxicity of associated decomposition vapors is unknown and the health consequences of their inhalation have not yet been studied. The purpose of this in vitro study was to identify vapors emitted during interaction of the Nd:YAG laser with carious human enamel and dentin and sound enamel and dentin coated with organic ink. Vapor emissions were collected from prepared sections of extracted human teeth receiving laser irradiation of 100 mJ and 10 Hz for a duration of 1, 10, or 60 s. Emissions were collected by means of charcoal absorption tubes, and subsequently analyzed using a Gas Chromatograph equipped with Mass Selective (GC/MS) and Flame Ionization Detectors to identify the chemical constituents of the vapors. No compounds were identified in Nd:YAG laser-treated caries, enamel and dentin. No volatile vapors were identified from samples of tooth materials exposed to the laser for 1 or 10 s. Camphor was positively identified in the test sample which consisted of India ink-coated dentin and the reference sample of India ink-coated glass beads, both exposed to the laser for 60 s. 2,5-norbornadiene was tentatively identified in these samples. The Threshold Limit Value (TLV) of camphor is 2 ppm with a Lethal Dose Level (LDLo) of 50 mg/kg (human oral), while the TLV and LDLo of 2,5-norbornadiene is unknown. Occupational and public health safety measures are discussed in this article. Further research is needed to quantify the compounds produced and to determine their toxicity to patients and to dental care providers.

  11. Setup for functional cell ablation with lasers: coupling of a laser to a microscope.

    PubMed

    Sweeney, Sean T; Hidalgo, Alicia; de Belle, J Steven; Keshishian, Haig

    2012-06-01

    The selective removal of cells by ablation is a powerful tool in the study of eukaryotic developmental biology, providing much information about their origin, fate, or function in the developing organism. In Drosophila, three main methods have been used to ablate cells: chemical, genetic, and laser ablation. Each method has its own applicability with regard to developmental stage and the cells to be ablated, and its own limitations. The primary advantage of laser-based ablation is the flexibility provided by the method: The operations can be performed in any cell pattern and at any time in development. Laser-based techniques permit manipulation of structures within cells, even to the molecular level. They can also be used for gene activation. However, laser ablation can be expensive, labor-intensive, and time-consuming. Although live cells can be difficult to image in Drosophila embryos, the use of vital fluorescent imaging methods has made laser-mediated cell manipulation methods more appealing; the methods are relatively straightforward. This article provides the information necessary for setting up and using a laser microscope for lasesr ablation studies.

  12. Resurfacing of Facial Acne Scars With a New Variable-Pulsed Er:YAG Laser in Fitzpatrick Skin Types IV and V.

    PubMed

    Chathra, Namitha; Mysore, Venkataram

    2018-01-01

    The Er:YAG laser, considered to be less effective than CO 2 laser in its traditional form, in its new modulated version has variable pulse technology that is claimed to be superior to the earlier versions of the laser. The aim of the study was to check efficacy and safety of the new variable square pulse (VSP) Er:YAG laser in the management of acne scar in patients with Fitzpatrick skin types IV and V. This retrospective study consisted of 80 patients (Fitzpatrick skin types IV and V) with atrophic and hypertrophic facial acne scars. Records of the patients who had undergone four treatment sessions with VSP technology equipped with Er:YAG laser were extracted. Each patient had undergone a minimum of four sessions. Fractional mode at medium laser pulse (SP) and long pulse (LP) was employed for the depressed center of the scars to stimulate neocollagenogenesis. Short laser pulse (MSP) in nonfractionated mode was used for ablating the raised scar border and hypertrophic scars. Goodman and Baron global scarring grading system was used for qualitative and quantitative assessments. Patient's satisfaction to the treatment and observer's assessment of improvement (based on photographs) was graded as poor (<25% improvement), fair (25-50% improvement), good (51-75% improvement), and excellent (>75% improvement). At the end of the four sessions, the number of patients in grade IV postacne scarring reduced from 16 to 2 and that in grade III from 47 to 29. The mean score significantly dropped from 36.94 to 27.5. Subjective assessment revealed that 78 of 80 patients had noticed more than 25% improvement, with 50 of them showing more than 50% improvement at the end of four sessions. Eight patients perceived an excellent response and 42 reported a good response. This is notably higher than the observer's grading, which showed an excellent response in only 2 patients and a good response in 35. Adverse effects were limited to prolonged erythema (two patients), prolonged crusting

  13. Percutaneous laser ablation of benign and malignant thyroid nodules.

    PubMed

    Papini, Enrico; Bizzarri, Giancarlo; Pacella, Claudio M

    2008-10-01

    Percutaneous image-guided procedures, largely based on thermal ablation, are at present under investigation for achieving a nonsurgical targeted cytoreduction in benign and malignant thyroid lesions. In several uncontrolled clinical trials and in two randomized clinical trials, laser ablation has demonstrated a good efficacy and safety for the shrinkage of benign cold thyroid nodules. In hyperfunctioning nodules, laser ablation induced a nearly 50% volume reduction with a variable frequency of normalization of thyroid-stimulating hormone levels. Laser ablation has been tested for the palliative treatment of poorly differentiated thyroid carcinomas, local recurrences or distant metastases. Laser ablation therapy is indicated for the shrinkage of benign cold nodules in patients with local pressure symptoms who are at high surgical risk. The treatment should be performed only by well trained operators and after a careful cytological evaluation. Laser ablation does not seem to be consistently effective in the long-term control of hyperfunctioning thyroid nodules and is not an alternative treatment to 131I therapy. Laser ablation may be considered for the cytoreduction of tumor tissue prior to external radiation therapy or chemotherapy of local or distant recurrences of thyroid malignancy that are not amenable to surgical or radioiodine treatment.

  14. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  15. Spectroscopic studies on diamond like carbon films synthesized by pulsed laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Madhusmita; Krishnan, R., E-mail: krish@igcar.gov.in; Ravindran, T. R.

    2016-05-23

    Hydrogen free Diamond like Carbon (DLC) thin films enriched with C-C sp{sup 3} bonding were grown on Si (111) substrates at laser pulse energies varying from 100 to 400 mJ (DLC-100, DLC-200, DLC-300, DLC-400), by Pulsed Laser Ablation (PLA) utilizing an Nd:YAG laser operating at fundamental wavelength. Structural, optical and morphological evolutions as a function of laser pulse energy were studied by micro Raman, UV-Vis spectroscopic studies and Atomic Force Microscopy (AFM), respectively. Raman spectra analysis provided critical clues for the variation in sp{sup 3} content and optical energy gap. The sp{sup 3} content was estimated using the FWHM ofmore » the G peak and found to be in the range of 62-69%. The trend of evolution of sp{sup 3} content matches well with the evolution of I{sub D}/I{sub G} ratio with pulse energy. UV-Vis absorption study of DLC films revealed the variation of optical energy gap with laser pulse energy (1.88 – 2.23 eV), which matches well with the evolution of G-Peak position of the Raman spectra. AFM study revealed that roughness, size and density of particulate in DLC films increase with laser pulse energy.« less

  16. Resonantly diode laser pumped 1.6-μm Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Garbuzov, Dmitri; Kudryashov, Igor; Dubinskii, Mark

    2005-06-01

    We report what is believed to be the first demonstration of direct resonant diode pumping of a 1.6-mm Er3+-doped bulk solid-state laser (DPSSL). The most of the results is obtained with pumping Er:YAG by the single mode diode laser packaged in fibered modules. The fibered modules, emitting at 1470 nm and 1530 nm wavelength with and without fiber grating (FBG) stabilization, have been used in pumping experiments. The very first results on high power DPSSL operation achieved with diode array pumping also will be presented. The highest absorbed photon conversion efficiency of 26% has been obtained for Er:YAG DPSSL using the 1470-nm single-mode module. Analysis of the DPSSL input-output characteristics suggests that the obtained slope efficiency can be increased at least up to 40% through the reduction of intracavity losses and pumping efficiency improvement. Diode pumped SSL (DPSSL) operates at a wavelength of 1617 nm and 1645 nm.

  17. Space qualified Nd:YAG laser (phase 1 - design)

    NASA Technical Reports Server (NTRS)

    Foster, J. D.; Kirk, R. F.

    1971-01-01

    Results of a design study and preliminary design of a space qualified Nd:YAG laser are presented. A theoretical model of the laser was developed to allow the evaluation of the effects of various parameters on its performance. Various pump lamps were evaluated and sum pumping was considered. Cooling requirements were examined and cooling methods such as radiation, cryogenic and conductive were analysed. Power outputs and efficiences of various configurations and the pump and laser lifetime are discussed. Also considered were modulation and modulating methods.

  18. Genotoxic effects of 1064-nm Nd:YAG and 532-nm KTP lasers on fibroblast cell cultures.

    PubMed

    Senturk, N; Bedir, A; Bilgici, B; Aydin, F; Okuyucu, A; Ozmen, Z C; Turanli, A Y

    2010-07-01

    Several different laser types are used in cutaneous surgery. The neodymium:yttrium-aluminium-garnet (Nd:YAG) and frequency-doubled Nd:YAG (KTP, potassium titanyl phosphate) lasers are widely used in dermatology. To investigate the possible genotoxic effects on fibroblasts of irradiation with a 1064-nm Nd:YAG laser and a 532-nm KTP laser. Fibroblast cell cultures were exposed to each of the lasers, using 10-mm spot size at 60 ms pulse duration with 10, 20, 40 J/cm(2) and 3, 6, 12 J/cm(2) fluences, respectively. Fibroblasts in passages 1-6 were used. During laser irradiation, 96-well microplate cultures were kept on a cooling block and transported on ice and in the dark, and processed immediately for single-cell gel electrophoresis (SCGE) assay (also known as a comet assay). DNA damage was determined by computerized assessment of comet assay. There was increasing damage with increasing numbers of passages. For the Nd:YAG laser, the greatest damage occurred on passages 5 and 6, whereas the greatest damage appeared at passages 3 and 4 for KTP and returned to baseline at passages 5 and 6. Damage also increased with each dose increment for both wavelengths. At the highest dose for both wavelengths (Nd:YAG 40 J/cm(2) and KTP 12 J/cm(2)), damage was higher with the Nd:YAG laser. Different patterns of cellular damage were seen for different cell-culture passages, treatment doses, and laser wavelengths. These dose ranges are generally used for the treatment of vascular and pigmented lesions and for rejuvenation purposes. As replicative ageing or cell senescence is one of the critical factors determining the extent of cell damage induced by laser therapy, these results may have important implications for clinical practice.

  19. High-power diode-side-pumped rod Tm:YAG laser at 2.07 μm.

    PubMed

    Wang, Caili; Niu, Yanxiong; Du, Shifeng; Zhang, Chao; Wang, Zhichao; Li, Fangqin; Xu, Jialin; Bo, Yong; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Xu, Zuyan

    2013-11-01

    We report a high-power diode-laser (LD) side-pumped rod Tm:YAG laser of around 2 μm. The laser was water-cooled at 8°C and yielded a maximum output power of 267 W at 2.07 μm, which is the highest output power for an all solid-state cw 2.07 μm rod Tm:YAG laser reported as far as we know. The corresponding optical-optical conversion efficiency was 20.7%, and the slope efficiency was about 29.8%, respectively.

  20. Hypopigmentation Induced by Frequent Low-Fluence, Large-Spot-Size QS Nd:YAG Laser Treatments.

    PubMed

    Wong, Yisheng; Lee, Siong See Joyce; Goh, Chee Leok

    2015-12-01

    The Q-switched 1064-nm neodymium-doped yttrium aluminum garnet (QS 1064-nm Nd:YAG) laser is increasingly used for nonablative skin rejuvenation or "laser toning" for melasma. Multiple and frequent low-fluence, large-spot-size treatments are used to achieve laser toning, and these treatments are associated with the development of macular hypopigmentation as a complication. We present a case series of three patients who developed guttate hypomelanotic macules on the face after receiving laser toning treatment with QS 1064-nm Nd:YAG.

  1. Photodynamic therapy with Photofrin followed by thermal ablation for elimination of dysplasia and early cancer in Barrett's esophagus: follow-up in 100 patients

    NASA Astrophysics Data System (ADS)

    Panjehpour, Masoud; Overholt, Bergein F.; Haydek, John M.

    1998-05-01

    Photodynamic therapy (PDT) using Photofrin and 630 nm laser light was used to treat 100 Barrett's esophagus patients with dysplasia and early cancer. Twelve patients had superficial esophageal cancers (T1-T2, NO, MO). Laser light was delivered to the esophageal mucosa by cylindrical diffuser inserted through the endoscope or via a 3, 5 or 7 cm windowed esophageal centering balloons. Nd:YAG laser ablation was used on small residual islands of Barrett's mucosa during long term follow-up after PDT. Patients were maintained on omeprazole and were followed for 6 - 84 months following photodynamic therapy. Photodynamic therapy produced destruction of normal, dysplastic and malignant mucosa in treated areas. Approximately 75 - 80% of treated Barrett's mucosa healed as normal squamous epithelium in all patients. Complete elimination of Barrett's epithelium was found in 43 patients. Nd:YAG laser was required to ablate small residual areas of Barrett's mucosa in 35 of these patients. Dysplasia was eliminated in 77 patients. Ten of the 12 malignancies were ablated with no recurrence being found during follow-up. Healing was associated with esophageal strictures in 34% but after using the 5 and 7 cm balloons, the incidence of strictures decreased to 18%. All strictures were treated successfully by dilation. In summary, PDT alone or combined with Nd:YAG laser ablation, in conjunction with long-term acid inhibition provides an effective endoscopic treatment to eliminate dysplasia and superficial cancer in Barrett's patients, and reduce the amount of or eliminate Barrett's mucosa completely.

  2. Laser Ablated Carbon Nanodots for Light Emission.

    PubMed

    Reyes, Delfino; Camacho, Marco; Camacho, Miguel; Mayorga, Miguel; Weathers, Duncan; Salamo, Greg; Wang, Zhiming; Neogi, Arup

    2016-12-01

    The synthesis of fluorescent carbon dots-like nanostructures (CNDs) obtained through the laser ablation of a carbon solid target in liquid environment is reported. The ablation process was induced in acetone with laser pulses of 1064, 532, and 355 nm under different irradiation times. Close-spherical amorphous CNDs with sizes between 5 and 20 nm, whose abundance strongly depends on the ablation parameters were investigated using electron microscopy and was confirmed using absorption and emission spectroscopies. The π- π* electronic transition at 3.76 eV dominates the absorption for all the CNDs species synthesized under different irradiation conditions. The light emission is most efficient due to excitation at 3.54 eV with the photoluminescence intensity centered at 3.23 eV. The light emission from the CNDs is most efficient due to ablation at 355 nm. The emission wavelength of the CNDs can be tuned from the near-UV to the green wavelength region by controlling the ablation time and modifying the ablation and excitation laser wavelength.

  3. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    NASA Astrophysics Data System (ADS)

    Han, Xianglong; Liu, Xiaolin; Bai, Ding; Meng, Yao; Huang, Lan

    2008-11-01

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure.

  4. Laser performance and modeling of RE3+:YAG double-clad crystalline fiber waveguides

    NASA Astrophysics Data System (ADS)

    Li, Da; Lee, Huai-Chuan; Meissner, Stephanie K.; Meissner, Helmuth E.

    2018-02-01

    We report on laser performance of ceramic Yb:YAG and single crystal Tm:YAG double-clad crystalline fiber waveguide (CFW) lasers towards the goal of demonstrating the design and manufacturing strategy of scaling to high output power. The laser component is a double-clad CFW, with RE3+:YAG (RE = Yb, Tm respectively) core, un-doped YAG inner cladding, and ceramic spinel or sapphire outer cladding. Laser performance of the CFW has been demonstrated with 53.6% slope efficiency and 27.5-W stable output power at 1030-nm for Yb:YAG CFW, and 31.6% slope efficiency and 46.7-W stable output power at 2019-nm for Tm:YAG CFW, respectively. Adhesive-Free Bond (AFB®) technology enables a designable refractive index difference between core and inner cladding, and designable core and inner cladding sizes, which are essential for single transverse mode CFW propagation. To guide further development of CFW designs, we present thermal modeling, power scaling and design of single transverse mode operation of double-clad CFWs and redefine the single-mode operation criterion for the double-clad structure design. The power scaling modeling of double-clad CFW shows that in order to achieve the maximum possible output power limited by the physical properties, including diode brightness, thermal lens effect, and simulated Brillion scattering, the length of waveguide is in the range of 0.5 2 meters. The length of an individual CFW is limited by single crystal growth and doping uniformity to about 100 to 200 mm lengths, and also by availability of starting crystals and manufacturing complexity. To overcome the limitation of CFW lengths, end-to-end proximity-coupling of CFWs is introduced.

  5. Effect of laser peripheral iridotomy using argon and neodymium-YAG lasers on corneal endothelial cell density: 7-year longitudinal evaluation.

    PubMed

    Ono, Takashi; Iida, Masaharu; Sakisaka, Toshihiro; Minami, Keiichiro; Miyata, Kazunori

    2018-03-01

    To evaluate the changes in corneal endothelial cell density (ECD) over a 7-year period after laser peripheral iridotomy (LPI) using argon and neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers. Retrospective case series. Eyes that underwent prophylactic LPI using argon and Nd:YAG lasers were followed up for 7 years. Central corneal endothelial cells were observed by use of noncontact specular microscopy preoperatively and at 1 and 7 years postoperatively. Changes in ECD and the associations between preoperative ECD and the total energy of the Nd:YAG laser were evaluated. Fifty-one eyes of 51 patients were followed up for 7 years. The ECD significantly decreased after LPI (P < 0.049), and the reduction rate at 1 year after the surgery (1.69 ± 4.80%, 95% CI: 0.34%-3.04%) was significantly higher than the annual reduction rates after 1 year (0.17 ± 0.85%/y, P = 0.036, 95% CI: -0.07% to 0.41%). No association was found between the preoperative ECD and the total laser energy. Long-term evaluation indicated that the reduction in ECD after argon-Nd:YAG laser LPI was present but small during the initial year and was negligible after 1 year.

  6. Ablative Fractional 10 600 nm Carbon Dioxide Laser Versus Non-ablative Fractional 1540 nm Erbium-Glass Laser in Egyptian Post-acne Scar patients.

    PubMed

    Elsaie, Mohamed L; Ibrahim, Shady M; Saudi, Wael

    2018-01-01

    Introduction: Non-ablative fractional erbium-doped glass 1540 nm and fractional ablative 10600 nm carbon dioxide lasers are regarded as effective modalities for treating acne atrophic scars. In this study, we aimed to compare the effectiveness of fractional CO 2 laser and fractional nonablative 1540 nm erbium doped glass laser in treating post acne atrophic scars in Egyptian patients. Methods: Fifty-eight patients complaining of moderate and severe acne atrophic scars were randomly divided into 2 groups of 29 patients each. Both groups were subjected to 4 treatment sessions with 3 weeks interval and were followed up for 3 months. In group A, enrolled patient sreceived C2 laser, while in group B, patients were treated with 1540 nm erbium glass fractional laser. Results: Clinical assessment revealed that the mean grades of progress and improvement were higher with fractional 10600 nm CO2 laser but with non-significant difference between both treatments ( P = 0.1). The overall patients' satisfaction with both lasers were not significantly different ( P = 0.44). Conclusion: Both fractional ablative CO2 and fractional non-ablative erbium glass lasers are good modalities for treating acne scars with a high efficacy and safety profile and good patient satisfaction. The fractional ablative laser showed higher efficacy while non-ablative laser offered less pain and shorter downtime.

  7. Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, S. S.; Miloshevsky, G. V.; Diwakar, P. K.

    2012-08-15

    We investigated spatio-temporal evolution of ns laser ablation plumes at atmospheric pressure, a favored condition for laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass-spectrometry. The 1064 nm, 6 ns pulses from a Nd:YAG laser were focused on to an Al target and the generated plasma was allowed to expand in 1 atm Ar. The hydrodynamic expansion features were studied using focused shadowgraphy and gated 2 ns self-emission visible imaging. Shadowgram images showed material ejection and generation of shock fronts. A secondary shock is observed behind the primary shock during the time window of 100-500 ns with instabilities near themore » laser cone angle. By comparing the self-emission images obtained using fast photography, it is concluded that the secondary shocks observed in the shadowgraphy were generated by fast moving target material. The plume front estimates using fast photography exhibited reasonable agreement with data obtained from shadowgraphy at early times {<=}400 ns. However, at later times, fast photography images showed plume confinement while the shadowgraphic images showed propagation of the plume front even at greater times. The structure and dynamics of the plume obtained from optical diagnostic tools were compared to numerical simulations. We have shown that the main features of plume expansion in ambient Ar observed in the experiments can be reproduced using a continuum hydrodynamics model which provided valuable insight into the expansion dynamics and shock structure of the plasma plume.« less

  8. Nd:YAG end pumped by semiconductor laser arrays for free space optical communications

    NASA Technical Reports Server (NTRS)

    Sipes, D. L., Jr.

    1985-01-01

    Preliminary experimental results are reported for a diode-pumped Nd:YAG laser employing a tightly focused end-pump geometry. The resonator configuration is planoconcave, with the pumped end of the Nd:YAG rod being coated for high reflection at 1.06 microns. This geometry rectifies nearly all the inefficiencies plaguing side-pumped schemes. This laser is further considered as a candidate for optical communication over the deep space channel.

  9. Observing laser ablation dynamics with sub-picosecond temporal resolution

    NASA Astrophysics Data System (ADS)

    Tani, Shuntaro; Kobayashi, Yohei

    2017-04-01

    Laser ablation is one of the most fundamental processes in laser processing, and the understanding of its dynamics is of key importance for controlling and manipulating the outcome. In this study, we propose a novel way of observing the dynamics in the time domain using an electro-optic sampling technique. We found that an electromagnetic field was emitted during the laser ablation process and that the amplitude of the emission was closely correlated with the ablated volume. From the temporal profile of the electromagnetic field, we analyzed the motion of charged particles with subpicosecond temporal resolution. The proposed method can provide new access to observing laser ablation dynamics and thus open a new way to optimize the laser processing.

  10. Synchronization of skin ablation and microjet injection for an effective transdermal drug delivery

    NASA Astrophysics Data System (ADS)

    Jang, Hun-jae; Yeo, Seonggu; Yoh, Jack J.

    2016-04-01

    An Er:YAG laser with 2940-nm wavelength and 150-µs pulse duration was built for the purpose of combined ablation and microjet injection. A shorter pulse duration compared to common erbium lasers in dentistry is desirable for a synchronization of skin ablation and subsequent microjet injection into target skin for transdermal injection of liquid dose. A single laser beam is split into two for an optimal energy of pre-ablation of skin and the residual energy allocated to a microjet ejection. A newly designed injector consists of an L-shaped chamber and a parabolic mirror in a single unit, and the handheld laser is a part of an integrated system requiring no optical fiber. Through various injection tests using the porcine skin, the effectiveness of the new delivery system is herein evaluated.

  11. Dual-laser-beam-induced breakdown spectroscopy of copper using simultaneous continuous wave CO(2) and Q-switched Nd:YAG lasers.

    PubMed

    Shoursheini, S Z; Parvin, P; Sajad, B; Bassam, M A

    2009-04-01

    In this work, we investigate the enhancement of Cu emission lines of a micro-plasma induced by a Nd:YAG laser due to the thermal effect of simultaneous irradiation by a continuous wave (CW) CO(2) laser. The enhancement of the emission lines was achieved at a higher temperature with minimal distortion of the target when the focal point of the Nd:YAG laser was located approximately 1 mm away from the sample surface.

  12. In vitro testing of Nd:YAG laser processed calcium phosphate coatings.

    PubMed

    De Carlos, A; Lusquiños, F; Pou, J; León, B; Pérez-Amor, M; Driessens, F C M; Hing, K; Best, S; Bonfield, W

    2006-11-01

    Nd:YAG laser cladding is a new method for deposition of a calcium phosphate onto metallic surfaces of interest in implantology. The aim of this study was to compare the biologic response of MG-63 human osteoblast-like cells grown on Ti-6Al-4V substrates coated with a calcium phosphate layer applied using different methods: plasma spraying as reference material and Nd:YAG laser cladding as test material. Tissue culture polystyrene was used as negative control. The Nd:YAG laser clad material showed a behaviour similar to the reference material, plasma spray, respective to cell morphology (SEM observations), cell proliferation (AlamarBlue assay) and cytotoxicity of extracts (MTT assay). Proliferation, as measured by the AlamarBlue assay, showed little difference in the metabolic activity of the cells on the materials over an 18 day culture period. There were no significant differences in the cellular growth response on the test material when compared to the ones exhibited by the reference material. In the solvent extraction test all the extracts had some detrimental effect on cellular activity at 100% concentration, although cells incubated in the test material extract showed a proliferation rate similar to that of the reference material. To better understand the scope of these results it should be taken into account that the Nd:YAG clad coating has recently been developed. The fact that its in vitro performance is comparable to that produced by plasma spray, a material commercially available for more than ten years, indicates that this new laser based method could be of commercial interest in the near future.

  13. VCSEL end-pumped passively Q-switched Nd:YAG laser with adjustable pulse energy.

    PubMed

    Goldberg, Lew; McIntosh, Chris; Cole, Brian

    2011-02-28

    A compact, passively Q-switched Nd:YAG laser utilizing a Cr4+:YAG saturable absorber, is end-pumped by the focused emission from an 804 nm vertical-cavity surface-emitting laser (VCSEL) array. By changing the VCSEL operating current, we demonstrated 2x adjustability in the laser output pulse energy, from 9 mJ to 18 mJ. This energy variation was attributed to changes in the angular distribution of VCSEL emission with drive current, resulting in a change in the pump intensity distribution generated by a pump-light-focusing lens.

  14. Nd:YAG-CO(2) double-pulse laser induced breakdown spectroscopy of organic films.

    PubMed

    Weidman, Matthew; Baudelet, Matthieu; Palanco, Santiago; Sigman, Michael; Dagdigian, Paul J; Richardson, Martin

    2010-01-04

    Laser-induced breakdown spectroscopy (LIBS) using double-pulse irradiation with Nd:YAG and CO(2) lasers was applied to the analysis of a polystyrene film on a silicon substrate. An enhanced emission signal, compared to single-pulse LIBS using a Nd:YAG laser, was observed from atomic carbon, as well as enhanced molecular emission from C(2) and CN. This double-pulse technique was further applied to 2,4,6-trinitrotoluene residues, and enhanced LIBS signals for both atomic carbon and molecular CN emission were observed; however, no molecular C(2) emission was detected.

  15. Effect of Er:YAG Laser and Sandblasting in Recycling of Ceramic Brackets.

    PubMed

    Yassaei, Soghra; Aghili, Hossein; Hosseinzadeh Firouzabadi, Azadeh; Meshkani, Hamidreza

    2017-01-01

    Introduction: This study was performed to determine the shear bond strength of rebonded mechanically retentive ceramic brackets after recycling with Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser or sandblasting. Methods: Twenty-eight debonded ceramic brackets plus 14 intact new ceramic brackets were used in this study. Debonded brackets were randomly divided into 2 groups of 14. One group was treated by Er:YAG laser and the other with sandblasting. All the specimens were randomly bonded to 42 intact human upper premolars. The shear bond strength of all specimens was determined with a universal testing machine at a crosshead speed of 0.5 mm/min until bond failure occurred. The recycled bracket base surfaces were observed under a scanning electron microscope (SEM). Analysis of variance (ANOVA) and Tukey tests were used to compare the shear bond strength of the 3 groups. Fisher exact test was used to evaluate the differences in adhesive remnant index (ARI) scores. Results: The highest bond strength belonged to brackets recycled by Sandblasting (16.83 MPa). There was no significant difference between the shear bond strength of laser and control groups. SEM photographs showed differences in 2 recycling methods. The laser recycled bracket appeared to have as well-cleaned base as the new bracket. Although the sandblasted bracket photographs showed no remnant adhesives, remarkable micro-roughening of the base of the bracket was apparent. Conclusion: According to the results of this study, both Er:YAG laser and sandblasting were efficient to mechanically recondition retentive ceramic brackets. Also, Er:YAG laser did not change the design of bracket base while removing the remnant adhesives which might encourage its application in clinical practice.

  16. Effect of Er:YAG Laser and Sandblasting in Recycling of Ceramic Brackets

    PubMed Central

    Yassaei, Soghra; Aghili, Hossein; Hosseinzadeh Firouzabadi, Azadeh; Meshkani, Hamidreza

    2017-01-01

    Introduction: This study was performed to determine the shear bond strength of rebonded mechanically retentive ceramic brackets after recycling with Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser or sandblasting. Methods: Twenty-eight debonded ceramic brackets plus 14 intact new ceramic brackets were used in this study. Debonded brackets were randomly divided into 2 groups of 14. One group was treated by Er:YAG laser and the other with sandblasting. All the specimens were randomly bonded to 42 intact human upper premolars. The shear bond strength of all specimens was determined with a universal testing machine at a crosshead speed of 0.5 mm/min until bond failure occurred. The recycled bracket base surfaces were observed under a scanning electron microscope (SEM). Analysis of variance (ANOVA) and Tukey tests were used to compare the shear bond strength of the 3 groups. Fisher exact test was used to evaluate the differences in adhesive remnant index (ARI) scores. Results: The highest bond strength belonged to brackets recycled by Sandblasting (16.83 MPa). There was no significant difference between the shear bond strength of laser and control groups. SEM photographs showed differences in 2 recycling methods. The laser recycled bracket appeared to have as well-cleaned base as the new bracket. Although the sandblasted bracket photographs showed no remnant adhesives, remarkable micro-roughening of the base of the bracket was apparent. Conclusion: According to the results of this study, both Er:YAG laser and sandblasting were efficient to mechanically recondition retentive ceramic brackets. Also, Er:YAG laser did not change the design of bracket base while removing the remnant adhesives which might encourage its application in clinical practice. PMID:28912939

  17. Resonantly diode-pumped eye-safe Er:YAG laser with fiber-shaped crystal

    NASA Astrophysics Data System (ADS)

    Němec, Michal; Šulc, Jan; Hlinomaz, Kryštof; Jelínková, Helena; Nejezchleb, Karel; Čech, Miroslav

    2018-02-01

    Solid-state eye-safe lasers are interesting sources for various applications, such as lidar, remote sensing, and ranging. A resonantly diode-pumped Er:YAG laser could be one of them allowing to reach a tunable laser emission in 1.6 μm spectral region. To overcome low pump absorption and poor pumping beam quality generated by commercially available laser diode, an active medium could be formed to long and thin laser rod guiding pumping radiation. Such an effective cooling during a high power pumping, which is a "crystal-fiber" benefit, may be useful for "standard" crystal active medium. The main goal of this work was to investigate the laser characteristics of new developed Er:YAG crystal with a special shape for diode-pumping. Er:YAG fiber-shape crystal with square cross-section (1x1mm) and 40mm in length was doped by 0.1% Er3+ ions. All sides of this crystal were polished and in addition the end-faces of it were antireflection coatings for the wavelength 1470 and 1645 nm. As a pump system, a fiber coupled laser diode (f = 10 Hz, t = 10 ms) emitting radiation at 1465 nm wavelength was used. Er:YAG fiber-shape crystal was placed onto a copper holder in the 85 mm long plan-concave resonator consisting of a pump flat mirror and output curved (r = 150 mm) coupler with a reflectivity of 96 % @ 1645 nm. The dependence of the output peak power on absorbed pump power was investigated and the maximum 0.8 W was obtained. The corresponding slope efficiency was 14.5 %. The emitting wavelength was equaled to 1645 nm (4 nm linewidth, FWHM). The spatial beam structure was close to the Gaussian mode.

  18. High-efficiency cavity-dumped micro-chip Yb:YAG laser

    NASA Astrophysics Data System (ADS)

    Nishio, M.; Maruko, A.; Inoue, M.; Takama, M.; Matsubara, S.; Okunishi, H.; Kato, K.; Kyomoto, K.; Yoshida, T.; Shimabayashi, K.; Morioka, M.; Inayoshi, S.; Yamagata, S.; Kawato, S.

    2014-09-01

    High-efficiency cavity-dumped ytterbium-doped yttrium aluminum garnet (Yb:YAG) laser was developed. Although the high quantum efficiency of ytterbium-doped laser materials is appropriate for high-efficiency laser oscillation, the efficiency is decreased by their quasi-three/four laser natures. High gain operation by high intensity pumping is suitable for high efficiency oscillation on the quasi-three/four lasers without extremely low temperature cooling. In our group, highest efficiency oscillations for continuous wave, nanosecond to picosecond pulse lasers were achieved at room temperature by the high gain operation in which pump intensities were beyond 100 kW/cm2.

  19. A Review of Laser Ablation Propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phipps, Claude; Bohn, Willy; Lippert, Thomas

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser thatmore » is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.« less

  20. Benign thyroid nodule unresponsive to radiofrequency ablation treated with laser ablation: a case report.

    PubMed

    Oddo, Silvia; Balestra, Margherita; Vera, Lara; Giusti, Massimo

    2018-05-11

    Radiofrequency ablation and laser ablation are safe and effective techniques for reducing thyroid nodule volume, neck symptoms, and cosmetic complaints. Therapeutic success is defined as a nodule reduction > 50% between 6 and 12 months after the procedure, but a percentage of nodules inexplicably do not respond to thermal ablation. We describe the case of a young Caucasian woman with a solid benign thyroid nodule who refused surgery and who had undergone radiofrequency ablation in 2013. The nodule did not respond in terms of either volume reduction or improvement in neck symptoms. After 2 years, given the patient's continued refusal of thyroidectomy, we proposed laser ablation. The nodule displayed a significant volume reduction (- 50% from radiofrequency ablation baseline volume, - 57% from laser ablation baseline), and the patient reported a significant improvement in neck symptoms (from 6/10 to 1/10 on a visual analogue scale). We conjecture that some benign thyroid nodules may be intrinsically resistant to necrosis when one specific ablation technique is used, but may respond to another technique. To the best of our knowledge, this is the first description of the effect of performing a different percutaneous ablation technique in a nodule that does not respond to radiofrequency ablation.

  1. [Evaluation of YAG-laser vitreolysis effectiveness based on quantitative characterization of vitreous floaters].

    PubMed

    Shaimova, V A; Shaimov, T B; Shaimov, R B; Galin, A Yu; Goloshchapova, Zh A; Ryzhkov, P K; Fomin, A V

    2018-01-01

    To develop methods for evaluating effectiveness of YAG-laser vitreolysis of vitreous floaters. The study included 144 patients (173 eyes) who had underwent YAG-laser vitreolysis and were under observation from 01.09.16 to 31.01.18. The patients were 34 to 86 years old (mean age 62.7±10.2 years), 28 (19.4%) patients were male, 116 (80.6%) - female. All patients underwent standard and additional examination: ultrasonography (Accutome B-scan plus, U.S.A.), optic biometry (Lenstar 900, Haag-Streit, Switzerland), spectral optical coherence tomography using RTVue XR Avanti scanner (Optovue, U.S.A.) in modes Enhanced HD Line, 3D Retina, 3D Widefield MCT, Cross Line, Angio Retina, and scanning laser ophthalmoscopy (SLO) using Navilas 577s system. Laser vitreolysis was performed using the Ultra Q Reflex laser (Ellex, Australia). This paper presents methods of objective quantitative and qualitative assessment of artifactual shadows of vitreous floaters with spectral optical coherence tomographic scanner RTVue xR Avanti employing an algorithm of automatic detection of non-perfusion zones in modes Angio Retina, HD Angio Retina, as well as foveal avascular zone (FAZ) measurement with Angio Analytics® software. SLO performed with Navilas 577s was used as method of visualizing floaters and artifactual shadows in retinal surface layers prior to surgical treatment and after YAG-laser vitreolysis. Suggested methods of quantitative and qualitative assessment of artifactual shadows of the floaters in retinal layers are promising and may prove to be highly relevant for clinical monitoring of patients, optimization of treatment indications and evaluating effectiveness of YAG-laser vitreolysis. Further research of laser vitreolysis effectiveness in patients with vitreous floaters is necessary.

  2. Effect analysis of material properties of picosecond laser ablation for ABS/PVC

    NASA Astrophysics Data System (ADS)

    Tsai, Y. H.; Ho, C. Y.; Chiou, Y. J.

    2017-06-01

    This paper analytically investigates the picosecond laser ablation of ABS/PVC. Laser-pulsed ablation is a wellestablished tool for polymer. However the ablation mechanism of laser processing for polymer has not been thoroughly understood yet. This study utilized a thermal transport model to analyze the relationship between the ablation rate and laser fluences. This model considered the energy balance at the decomposition interface and Arrhenius law as the ablation mechanisms. The calculated variation of the ablation rate with the logarithm of the laser fluence agrees with the measured data. It is also validated in this work that the variation of the ablation rate with the logarithm of the laser fluence obeys Beer's law for low laser fluences. The effects of material properties and processing parameters on the ablation depth per pulse are also discussed for picosecond laser processing of ABS/PVC.

  3. Histologic and photonic evaluation of a pulsed Nd:YAG laser for ablation of subcutaneous adipose tissue.

    PubMed

    Ichikawa, Kota; Tanino, Ryuzaburo; Wakaki, Moriaki

    2006-12-20

    and lipolysis using a pulsed Nd:YAG laser. The results will be useful for research and development of a more effective laser system for liposculpture.

  4. In vitro comparison of stone retropulsion and fragmentation of the frequency doubled, double pulse nd:yag laser and the holmium:yag laser.

    PubMed

    Marguet, Charles G; Sung, Jeff C; Springhart, W Patrick; L'Esperance, James O; Zhou, Songlin; Zhong, Pei; Albala, David M; Preminger, Glenn M

    2005-05-01

    The frequency doubled, double pulse Nd:YAG (FREDDY) laser (World of Medicine, Berlin, Germany) functions through the generation of a plasma bubble. Upon bubble collapse a mechanical shock wave is generated, causing stone fragmentation. This mechanism of action is in contrast to the holmium laser, which cause stone destruction by vaporization. Observed clinical stone retropulsion and fragmentation with the FREDDY and holmium lasers has prompted a series of in vitro experiments designed to compare laser induced retropulsion and fragmentation with those of a holmium laser and pneumatic lithotrite. For retropulsion a hands-off underwater laboratory setup, including a horizontally oriented silicone tube 1.3 cm in diameter and a holder to keep the stone phantom in contact with the quartz laser fiber or pneumatic probe, was used. Previously weighed, cylindrical Bego stone phantoms (Bego USA, Smithfield, Rhode Island) were placed in the apparatus. Stone fragmentation was performed with the FREDDY or holmium laser, or the pneumatic lithotripter. The FREDDY and holmium lasers were tested at similar pulse energy and frequency settings. As a standard for comparison, a pneumatic lithotrite was tested with a semirigid probe and single pulse settings of 100, 200 and 300 kPa. Stone phantoms underwent 30 shocks per setting. Mean net retropulsion, defined as the final resting point of the stone, as determined by direct measurement, was recorded for each setting. For fragmentation plaster of Paris stone phantoms of known weights were used to compare the fragmentation ability of each laser. Stones phantoms were placed in a hands-off underwater setup, consisting of an inverted silicon syringe and holder immersed in tap water. The laser fiber (365 microm for the holmium and 280 microm for the FREDDY) was placed through the tip of the syringe in contact with the stone phantom. A total of 24 stones were divided into 4 groups of 6 per group. Two groups were fragmented with the FREDDY laser

  5. [Combined CO2 and Nd-YAG laser in neurosurgical practice. A 1st experience apropos of 40 intracranial procedures].

    PubMed

    Roux, F X; Leriche, B; Cioloca, C; Devaux, B; Turak, B; Nohra, G

    1992-01-01

    The authors present their experience concerning the use of Combolaser (Lasermatic, Finland), in neurosurgery. This laser-unit combines two wavelengths (CO2 and 1.06 Nd-YAG) which are emitted simultaneously and coaxially. During the last 12 months, 40 patients harbouring an intracranial tumor were operated upon with such a combolaser unit: 8 infra-tentorial, 32 supra-tentorial, 17 were meningiomas. The mean output power used during the procedures was 3-5 w for both CO2 and Nd-YAG beams. The authors discuss the advantages and inconveniences of such a laser; and they compare it with the other laser-units they have been using for the last 10 years: CO2-Laser, 1.06 Nd-YAG and 1.32 Nd-YAG laser. The main inconvenience of this unit is linked to the utilization of the articulated arm which conducts the CO2 laser beam. This drawback should be avoided or limited by the use of a fiber microguide, which will conduct both CO2 and Nd-YAG beams simultaneously. The principal contribution of a combined-laser unit is the quality of the haemostasis associated to a very good vaporization and cutting effect. When both wavelengths are synchronized, the combined laser beams penetrate into the nervous parenchyma more deeply than the only CO2 laser beam would with the same parameters. The vaporization effect is identical to that obtained with the isolated CO2 laser; the quality of haemostasis is limited to the effects of the Nd-YAG laser. Another advantage must be emphasized: the possibility of utilizing separately the CO2 laser and the 1.06 Nd-YAG.

  6. Using transurethral Ho:YAG-laser resection to treat urethral stricture and bladder neck contracture

    NASA Astrophysics Data System (ADS)

    Bo, Juanjie; Dai, Shengguo; Huang, Xuyuan; Zhu, Jing; Zhang, Huiguo; Shi, Hongmin

    2005-07-01

    Objective: Ho:YAG laser had been used to treat the common diseases of urinary system such as bladder cancer and benign prostatic hyperplasia in our hospital. This study is to assess the efficacy and safety of transurethral Ho:YAG-laser resection to treat the urethral stricture and bladder neck contracture. Methods: From May 1997 to August 2004, 26 cases of urethral stricture and 33 cases of bladder neck contracture were treated by transurethral Ho:YAG-laser resection. These patients were followed up at regular intervals after operation. The uroflow rate of these patients was detected before and one-month after operation. The blood loss and the energy consumption of holmium-laser during the operation as well as the complications and curative effect after operation were observed. Results: The therapeutic effects were considered successful, with less bleeding and no severe complications. The Qmax of one month postoperation increased obviously than that of preoperation. Of the 59 cases, restenosis appeared in 11 cases (19%) with the symptoms of dysuria and weak urinary stream in 3-24 months respectively. Conclusions: The Ho:YAG-laser demonstrated good effect to treat the obstructive diseases of lower urinary tract such as urethral stricture and bladder neck contracture. It was safe, minimal invasive and easy to operate.

  7. Tungsten carbide precursors as an example for influence of a binder on the particle formation in the nanosecond laser ablation of powdered materials.

    PubMed

    Holá, Markéta; Mikuska, Pavel; Hanzlíková, Renáta; Kaiser, Jozef; Kanický, Viktor

    2010-03-15

    A study of LA-ICP-MS analysis of pressed powdered tungsten carbide precursors was performed to show the advantages and problems of nanosecond laser ablation of matrix-unified samples. Five samples with different compositions were pressed into pellets both with silver powder as a binder serving to keep the matrix unified, and without any binder. The laser ablation was performed by nanosecond Nd:YAG laser working at 213 nm. The particle formation during ablation of both sets of pellets was studied using an optical aerosol spectrometer allowing the measurement of particle concentration in two size ranges (10-250 nm and 0.25-17 microm) and particle size distribution in the range of 0.25-17 microm. Additionally, the structure of the laser-generated particles was studied after their collection on a filter using a scanning electron microscope (SEM) and the particle chemical composition was determined by an energy dispersive X-ray spectroscope (EDS). The matrix effect was proved to be reduced using the same silver powdered binder for pellet preparation in the case of the laser ablation of powdered materials. The LA-ICP-MS signal dependence on the element content present in the material showed an improved correlation for Co, Ti, Ta and Nb of the matrix-unified samples compared to the non-matrix-unified pellets. In the case of W, the ICP-MS signal of matrix-unified pellets was influenced by the changes in the particle formation. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  8. Structure and properties of nanoparticles fabricated by laser ablation of Zn metal targets in water and ethanol

    NASA Astrophysics Data System (ADS)

    Svetlichnyi, V. A.; Lapin, I. N.

    2013-10-01

    Size characteristics, structure, and spectral and luminescent properties of nanoparticles fabricated by laser ablation of zinc metal targets in water and ethanol are experimentally investigated upon excitation by Nd:YAG-laser radiation (1064 nm, 7 ns, and 15 Hz). It is demonstrated that zinc oxide nanoparticles with average sizes of 10 nm (in water) and 16 nm (in ethanol) are formed in the initial stage as a result of ablation. The kinetics of the absorption and luminescence spectra, transmission electron microscopy, and x-ray structural analysis demonstrate that during long storage of water dispersions and their drying, nanoparticles efficiently interact with carbon dioxide gas of air that leads to the formation of water-soluble Zn(CO3)2(OH)6. In ethanol, Zn oxidation leads to the formation of stable dispersions of ZnO nanoparticles with 99% of the wurtzite phase; in this case, the fluorescence spectra of ZnO nanoparticles change with time, shifting toward longer wavelength region from 550 to 620 nm, which is caused by the changed nature of defects.

  9. Photoactive dye enhanced tissue ablation for endoscopic laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Ahn, Minwoo; Nguyen, Trung Hau; Nguyen, Van Phuc; Oh, Junghwan; Kang, Hyun Wook

    2015-02-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia with high laser power. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue ablation with low laser power. The experiment was implemented on chicken breast due to minimal optical absorption Amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532-nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm2. Light absorbance and ablation threshold were measured with UV-VIS spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with input parameter. Among the dyes, AR created the highest ablation rate of 44.2+/-0.2 μm/pulse due to higher absorbance and lower ablation threshold. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33 % reduced laser power with almost equivalent performance. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser treatment for BPH with low power application.

  10. YAG laser treatment causes rapid degeneration and regeneration of collagen fibres in pig skin and facilitates fibroblast growth.

    PubMed

    Kono, Ayuko; Oguri, Akiko; Yokoo, Kazuhisa; Watanabe, Hideto

    2012-10-01

    The non-ablative laser therapies have been speculated to cause microinjury in the dermal collagen fibres and increase collagen synthesis in the fibroblasts, leading to remodelling of the extracellular matrix. This study investigated the effects of neodymium YAG laser treatment on pig skin, especially focusing on its extracellular matrix molecules. The dorsal areas of a minipig were subjected to laser treatment, and samples were obtained by punch biopsies, and histological, immunohistochemical, and biochemical analyses were performed. The laser treatment caused degeneration of collagen fibres and fibrils, which were reconstituted within 24 hours, whereas there was no inflammation and no apparent damage on elastic fibres. Small blood vessels disappeared by the laser treatment, which re-appeared in 3 days. Biochemically, the amounts of collagen decreased up to day 3 after the treatment and then increased at day 7. When fibroblasts in dermal tissue at day 28 were counted, more fibroblasts in the treated tissue were observed than non-treated control. These results suggest that, although the laser treatment transiently degenerates collagen fibres and fibrils, it restores and increases them, mainly by an increase in dermal fibroblasts, assuring its minimal complication of skin.

  11. Thermal effects associated with the Nd/YAG dental laser.

    PubMed

    von Fraunhofer, J A; Allen, D J

    1993-01-01

    The heat produced at the dentinal pulpal wall opposite the irradiation site was measured during etching of dental enamel with an Nd:YAG laser in preparation for direct bonding of orthodontic appliances. Forty extracted human teeth were randomly divided into four groups of 10 teeth. Within each group, the buccal surfaces of 5 teeth and the lingual surfaces of the other 5 teeth were laser treated for 12 sec. Irradiation was performed with a commercial Nd:YAG laser at the power settings of 80mJ, 1W, 2W and 3W. Prior to irradiation, an occlusal access preparation was made into the pulp in order to facilitate the placement of a thermocouple for measurement of temperature changes at the dentinal pulpal wall opposite the irradiation site. The thermocouple was held against the dentinal pulpal wall and the resulting temperature changes were recorded. Heating effects at the dentinal pulpal wall on both buccal and lingual surfaces showed an increase in heat as a function of the increase in power output from the laser unit (p < 0.01). The temperatures measured at power levels 1-3W appeared to be of sufficient magnitude to cause at least localized pulpal inflammation and possible irreversible damage to the pulp tissue immediately opposite the site of laser irradiation.

  12. Laser Ablation for Cancer: Past, Present and Future

    PubMed Central

    Schena, Emiliano; Saccomandi, Paola; Fong, Yuman

    2017-01-01

    Laser ablation (LA) is gaining acceptance for the treatment of tumors as an alternative to surgical resection. This paper reviews the use of lasers for ablative and surgical applications. Also reviewed are solutions aimed at improving LA outcomes: hyperthermal treatment planning tools and thermometric techniques during LA, used to guide the surgeon in the choice and adjustment of the optimal laser settings, and the potential use of nanoparticles to allow biologic selectivity of ablative treatments. Promising technical solutions and a better knowledge of laser-tissue interaction should allow LA to be used in a safe and effective manner as a cancer treatment. PMID:28613248

  13. A new procedure for refurbishment of power plant Superalloy 617 by pulsed Nd:YAG laser process

    NASA Astrophysics Data System (ADS)

    Taheri, Naser; Naffakh-Moosavy, Homam; Ghaini, Farshid Malek

    2017-06-01

    The present study has evaluated the surface rejuvenation of aged Inconel 617 superalloy by both GTAW and pulsed Nd:YAG laser techniques. The gas tungsten arc welding (GTAW) by heat input per unit length [Q/V(J/mm)] of 280, 291.67, 309.74 and 225.48 (J/mm), and the pulse Nd:YAG laser process by the 15.71, 19.43 and 22.32 (J/mm), were employed. The Rosenthal equation was used for calculation of mushy zone (MZ) and partially-melted zone (PMZ). Size of MZ and PMZ in GTAW are more than 31 and 6 times than that of formed in pulsed Nd:YAG laser. According to the characterizations, solidification and liquation cracks were observed in these areas produced by GTAW whereas no cracks were identified in laser treated samples. Also, line scan EDS analyses demonstrated the interdendritic chromium and molybdenum segregation, which facilitated formation of hot cracks. With reduction in heat input per unit length, the hardness increased and the size of solidified metal microstructure reduced in pulse Nd:YAG laser. These comparative results showed that pulse Nd:YAG laser can easily be utilized as a new rejuvenation technique for aged Alloy 617 in comparison to the conventional processes due to extremely narrow MZ and HAZ and better surface soundness and mechanical properties.

  14. Loss of structural water and carbonate of Nd:YAG laser-irradiated human enamel.

    PubMed

    Corrêa-Afonso, Alessandra Marques; Bachmann, Luciano; de Almeida, Cíntia Guimarães; Dibb, Regina Guenka Palma; Borsatto, Maria Cristina

    2015-05-01

    The objective of this study was to use Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) to assess whether Nd:YAG laser irradiation associated with a dye or not alters the chemical constitution of the enamel. Fourteen enamel sections were randomly divided into two groups: (1) Nd:YAG and (2) dye + Nd:YAG. First, the untreated enamel surfaces were analyzed by FTIR to acquire the control absorption spectrum. Next, Group 2 received a layer of inactivated coal diluted in deionized water before laser treatment. Enamel samples belonging to groups 1 and 2 were then irradiated with a 1,064-nm Nd:YAG laser (80 mJ, 10 Hz) in the contact mode; the carbonate absorption band and the water absorption band were measured in each sample after irradiation. The water band was measured again 24 h, 48 h, and 7 days after irradiation. Group 1 had statistically similar water and carbonate contents before and after irradiation. Group 2 displayed significantly lower (p < 0.05) water content after irradiation, which remained constant along time at 24 and 48 h. After 7 days, the water content increased slightly, being statistically higher than in the other experimental periods, except for the control. The carbonate/phosphate ratio was measured only at the beginning, and after irradiation, it decreased only in Group 2 indicating carbonate loss (p < 0.05). Irradiation with 1,064-nm Nd:YAG laser associated with a dye reduces the carbonate and structural water content in the enamel.

  15. Cutaneous pain effects induced by Nd:YAG and CO2 laser stimuli

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Rui; Yu, Guang-Yuan; Yang, Zai-Fu; Chen, Hong-Xia; Hu, Dong-Dong; Zou, Xian-Biao

    2012-12-01

    The near infrared laser technique can activate cutaneous nociceptors with high specificity and reproducibility and be used in anti-riot equipment. This study aimed to explore cutaneous pain effect and determine the threshold induced by Nd:YAG and CO2 laser stimuli. The corresponding wavelength was 1.32μm and 10.6μm. The pain effect was assessed in three healthy subjects (1 woman and 2 men) on the skin of dorsum of both hands. The energy of each pulse and whether the subjects felt a painful sensation after each stimulus were recorded. A simplified Bliss Method was used to calculate the pain threshold which were determined under three pulse durations for Nd:YAG laser and one pulse duration for CO2 laser. As a result the pain thresholds were determined to be 5.6J/cm2, 5.4J/cm2 and 5.0J/cm2 respectively when using Nd:YAG laser, 4.0mm beam diameter, 8ms, 0.1s and 1s pulse duration. The pain threshold was 1.0J/cm2 when using CO2 laser, 4.0mm beam diameter and 0.1s pulse duration. We concluded that the threshold of cutaneous pain elicited by 1.32μm laser was independent upon the pulse duration when the exposure time ranged from 8ms to 1s. Under the same exposure condition, the threshold of cutaneous pain elicited by 1.32μm laser was higher than that elicited by 10.6μm laser.

  16. Laser ablated hard coating for microtools

    DOEpatents

    McLean, II, William; Balooch, Mehdi; Siekhaus, Wigbert J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10-20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode.

  17. Laser ablated hard coating for microtools

    DOEpatents

    McLean, W. II; Balooch, M.; Siekhaus, W.J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10--20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode. 12 figs.

  18. 2940-nm Er:YAG fractional laser enhanced the effect of topical drug for psoriasis.

    PubMed

    Li, Ruilian; Zhou, Jun; Su, Hui; Wang, Mei; Wang, Yongxian; Xiao, Shengxiang; Ma, Huiqun

    2017-08-01

    We observed the promoting effects of the 2940-nm erbium:YAG (Er:YAG) fractional laser in topical drug delivery for psoriasis. A total of five (four males and one female) recalcitrant psoriasis patients were given laser treatment eight times at 1-week intervals with the following parameters: 5-11% spot density and 100-μm energy depth. The psoriatic skin lesions on the left knee and the corresponding lesions at the right ones of each psoriasis patient were randomly divided into two groups: laser + topical drug group (L) and drug alone group (D). The psoriatic lesions in both groups were treated with the same topical treatment (calcipotriol ointment). The corresponding psoriatic lesions in the L group received extra 2940-nm Er:YAG laser irradiation before topical treatment. The photos of psoriatic lesions were taken before each treatment. The final photos were obtained from the patients at the seventh day after the final treatment. Drug alone or in combination with laser Er:YAG both reduced psoriatic lesions. However, with the increase in the number of treatments, increasing differences were observed between the treatment and the control sides. The therapeutic outcomes in the L groups were better than those in the D groups. Psoriasis area and severity index (PASI) scores for five cases of both groups were decreased. However, the scores in the L groups were lower than those in the D groups. The use of 2940 nm Er:YAG promoted the absorption of topical drugs for psoriasis, improving the therapeutic effect.

  19. Comparative research on medicine application with 0.53-um, 1.06-um, and 1.32-um Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Li, Yahua; Li, Zhenjia; Zhu, Changhong; Huang, Yizhong

    1996-09-01

    Because of its high power and excellent optical features, laser has almost been applied to everywhere of medical research and clinic. Over the past several years, laser medical has achieved a rapid progress, and laser medical instruments has developed promptly, each new wavelength can be successfully applied in diagnostic and treatment of diseases. Among the medical lasers, Nd:YAG solid-state laser systems have proven useful in surgical use operate, such as neurosurgery, gastroenterology, cardioangiology, urology, gynecology, dermatology and ENT. As with other solid-state lasers, the Nd:YAG laser can be made to emit various wavelengths by means of suitable resonator configurations and some newest solid-state laser technology, pumped by the Krypton lamp, the Nd:YAG laser at room temperature exhibits transition at 1.06 micrometer Nd:YAG, using nonlinear crystal and Q-switch to double its frequency can attain 0.53 micrometer green beam. In our laser systems, the efficiency at 1.06 micrometer is more than 3 percent, an efficiency of 0.5 percent at 1.32 micrometer and 0.53 micrometer can be attained. For a power of 100w at 1.06 micrometer, 15w at 1.32 micrometer and 0.53 micrometer can therefore be produced. All of three kinds Nd:YAG laser hold these characteristics: high output power; optical fiber transition that can be cooperated with endoscope. The paper mainly discusses laser operating characteristics and clinic applications of three kinds wavelengths at 0.53 micrometer 1.06 micrometer and 1.32 micrometer Nd:YAG laser systems.

  20. Effect of Nd:YAG laser capsulotomy on refraction in multifocal apodized diffractive pseudophakia.

    PubMed

    Vrijman, Violette; van der Linden, Jan Willem; Nieuwendaal, Carla P; van der Meulen, Ivanka J E; Mourits, Maarten P; Lapid-Gortzak, Ruth

    2012-08-01

    To evaluate the effect on refraction of neodymium:YAG (Nd:YAG) laser posterior capsulotomy for posterior capsule opacification (PCO), and to evaluate the correlation between automated and subjective refraction in multifocal apodized diffractive pseudophakia. A retrospective study of 75 pseudophakic eyes (50 patients) with multifocal apodized diffractive pseudophakia, treated for PCO with Nd:YAG laser posterior capsulotomy, was performed. Pre- and postintervention values of refractive and visual parameters were compared. The outcomes of autorefraction and subjective refraction were also compared. Uncorrected and corrected distance visual acuity improved significantly after Nd:YAG capsulotomy (P<.001). No significant changes were noted in defocus equivalent, astigmatic power vectors J(0) and J(45), and overall blurring strength in subjective refraction and autorefraction. Spherical equivalent changed significantly in autorefraction (P=.008), but not in subjective refraction. Autorefraction and subjective refraction were highly correlated in spherical equivalent, defocus equivalent, and blurring strength (r(2)>0.59). In approximately 7% of eyes, a change of more than 0.50 diopters in spherical equivalent in subjective refraction occurred. In most cases, Nd:YAG laser capsulotomy in patients with multifocal pseudophakia did not result in a change in refraction. However, 7% of eyes experienced a significant change in subjective refraction. Autorefraction correlated well with subjective refraction in apodized diffractive multifocal IOLs. Copyright 2012, SLACK Incorporated.