Sample records for yakima river tributaries

  1. Yakima Tributary Access and Habitat Program, 2002-2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myra, D.; Ready, C.

    2003-12-01

    The Yakima Tributary Access and Habitat Program (YTAHP) was organized to restore salmonid passage to Yakima tributaries that historically supported salmonids and to improve habitat in areas where access is restored. This program intends to (a) screen unscreened diversion structures to prevent fish entrainment into artificial waterways; (b) provide for fish passage at man-made barriers, such as diversion dams, culverts, siphons and bridges; and (c) provide information and assistance to landowners interested in to contributing to the improvement of water quality, water reliability and stream habitat. The YTAHP developed from a number of groups actively engaged in watershed management, and/ormore » habitat restoration within the Yakima River Basin. These groups include the Washington State Fish and Wildlife (WDFW), Kittitas County Conservation District (KCCD), North Yakima Conservation District (NYCD), Kittitas County Water Purveyors (KCWP), and Ahtanum Irrigation District (AID). The US Bureau of Reclamation (Reclamation) and Yakama Nation (YN) both participated in the development of the objectives of YTAHP. Other entities that will be involved during permitting or project review may include the YN, the federal Natural Resources Conservation Service (NRCS), the US Fish and Wildlife Service (USFWS), the National Marine Fisheries Service (NMFS), and US Army Corps of Engineers (COE). The objectives of YTAHP are listed below and also include subtasks detailed in the report: (1) Conduct Early Action Projects; (2) Review Strategic Plan; (3) Restore Access, including stream inventory, prioritization, implementation; and (4) Provide opportunities to improve habitat and conserve resources. The BPA YTAHP funding supported activities of the program which are described in this report. These activities are primarily related to objective 1 (conduct early action projects) and parts of objectives 2-4. The work supported by YTAHP funding will support a series of scheduled projects

  2. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... 4 p.m. ADDRESSES: The meeting will be held at the Bureau of Reclamation, Yakima Field Office, 1917... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Yakima River Basin Conservation Advisory Group...: Notice of public meeting. SUMMARY: As required by the Federal Advisory Committee Act, the Yakima River...

  3. Yakima River Spring Chinook Enhancement Study, 1991 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, David E.

    1991-05-01

    The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 to 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indianmore » Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system. 47 refs., 89 figs., 67 tabs.« less

  4. Yakima River Spring Chinook Enhancement Study Appendices, 1991 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, David E.

    1991-05-01

    This document consists of the appendices for annual report DOE/BP/39461--9 which is summarized as follows. The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 tomore » 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indian Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system.« less

  5. Bathymetry and Near-River Topography of the Naches and Yakima Rivers at Union Gap and Selah Gap, Yakima County, Washington, August 2008

    USGS Publications Warehouse

    Mastin, M.C.; Fosness, R.L.

    2009-01-01

    Yakima County is collaborating with the Bureau of Reclamation on a study of the hydraulics and sediment-transport in the lower Naches River and in the Yakima River between Union Gap and Selah Gap in Washington. River bathymetry and topographic data of the river channels are needed for the study to construct hydraulic models. River survey data were available for most of the study area, but river bathymetry and near-river topography were not available for Selah Gap, near the confluence of the Naches and Yakima Rivers, and for Union Gap. In August 2008, the U.S. Geological Survey surveyed the areas where data were not available. If possible, the surveys were made with a boat-mounted, single-beam echo sounder attached to a survey-grade Real-Time Kinematic (RTK) global positioning system (GPS). An RTK GPS rover was used on a walking survey of the river banks, shallow river areas, and river bed areas that were impenetrable to the echo sounder because of high densities of macrophytes. After the data were edited, 95,654 bathymetric points from the boat survey with the echo sounder and 1,069 points from the walking survey with the GPS rover were used in the study. The points covered 4.6 kilometers on the Yakima River and 0.6 kilometers on the Naches River. GPS-surveyed points checked within 0.014 to 0.047 meters in the horizontal direction and -0.036 to 0.078 meters in the vertical direction compared to previously established survey control points

  6. Occurrence and distribution of dissolved trace elements in the surface waters of the Yakima River basin, Washington

    USGS Publications Warehouse

    Hughes, Curt A.

    2003-01-01

    Instantaneous arsenic loads calculated for August 1999 were similar to mean monthly loads determined in August 1989 at two intensive fixed sites located on the Yakima main stem. In August 1999, arsenic loads increased twofold between the Yakima River at river mile 72 above Satus and the Yakima River at Kiona at river mile 29.9. The dissolved arsenic loads for the Yakima River at Euclid Bridge at river mile 55 near Grandview and Yakima River at Kiona were within 13 percent of the August 1989 levels.

  7. 77 FR 16558 - Yakima River Basin Conservation Advisory Group Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... on the structure and implementation of the Yakima River Basin Water Conservation Program. The basin... water conservation measures in the Yakima River basin. Improvements in the efficiency of water delivery and use will result in improved streamflows for fish and wildlife and improve the reliability of water...

  8. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudsen, Curtis M.

    2003-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the second in a series of reports that address reproductive ecological research and monitoring of spring chinook in the Yakima River basin. In addition to within-year comparisons, between-year comparisons will be made to determine if traits of the wild Naches basin control population, the naturallymore » spawning population in the upper Yakima River and the hatchery control population are diverging over time. This annual report summarizes data collected between April 1, 2002 and March 31, 2003. In the future, these data will be compared to previous years to identify general trends and make preliminary comparisons. Supplementation success in the Yakima Klickitat Fishery Project's (YKFP) spring chinook (Oncorhynchus tshawytscha) program is defined as increasing natural production and harvest opportunities, while keeping adverse ecological interactions and genetic impacts within acceptable bounds (Busack et al. 1997). Within this context demographics, phenotypic traits, and reproductive ecology have significance because they directly affect natural productivity. In addition, significant changes in locally adapted traits due to hatchery influence, i.e. domestication, would likely be maladaptive resulting in reduced population productivity and fitness (Taylor 1991; Hard 1995). Thus, there is a need to study demographic and phenotypic traits in the YKFP in order to understand hatchery and wild population productivity, reproductive ecology, and the effects of domestication (Busack et al. 1997). Tracking trends in these traits over time is also a critical aspect of domestication monitoring

  9. 75 FR 11554 - Yakima River Basin Conservation Advisory Group Charter Renewal; Notice of Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... the reliability of water supplies for irrigation. FOR FURTHER INFORMATION CONTACT: Ms. Dawn Wiedmeier... River Basin Water Conservation Program. In consultation with the State, the Yakama Nation, Yakima River... nonstructural cost-effective water conservation measures in the Yakima River basin. Improvements in the...

  10. Yakima River Radio-Telemetry Study: Spring Chinook Salmon, 1991-1992 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hockersmith, Eric

    1994-09-01

    As part of the presupplementation planning, baseline data on the productivity of spring chinook salmon (Oncorhynchus tshawytscha) in the Yakima River have been collected. However, for adult salmonids, data on habitat use, delays in passage at irrigation diversions, migration rates, and substock separation had not been previously collected. In 1991, the National Marine Fisheries Service began a 2-year radio-telemetry study of adult spring chinook salmon in the Yakima River Basin. Specific objectives addressed in this study were: to determine spawning populations` run timing, passage patterns at irrigation diversion dams, and morphometric characteristics to determine where and when substocks become separated;more » to evaluate fish passage at Yakima River Basin diversion dams including Prosser, Sunnyside, Wapato, Roza, Town Diversion, Easton, Cowiche, and Wapatox Dams; to determine spring chinook salmon migration rates between Yakima River Basin dams, prespawning behavior, temporal distribution, and habitat utilization; to identify spawning distribution and timing of spring chinook salmon; to determine the amount and cause of prespawning mortality of spring chinook salmon; and to evaluate adult fish-handling procedures for the right-bank, adult-trapping facility at Prosser Dam.« less

  11. Water Quality in the Yakima River Basin, Washington, 1999-2000

    USGS Publications Warehouse

    Fuhrer, Gregory J.; Morace, Jennifer L.; Johnson, Henry M.; Rinella, Joseph F.; Ebbert, James C.; Embrey, Sandra S.; Waite, Ian R.; Carpenter, Kurt D.; Wise, Daniel R.; Hughes, Curt A.

    2004-01-01

    This report contains the major findings of a 1999?2000 assessment of water quality in streams and drains in the Yakima River Basin. It is one of a series of reports by the NAWQA Program that present major findings on water resources in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is assessed at many scales?from large rivers that drain lands having many uses to small agricultural watersheds?and is discussed in terms of local, State, and regional issues. Conditions in the Yakima River Basin are compared to those found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, Tribal, State, or local agencies; universities; public interest groups; or the private sector. The information will be useful in addressing a number of current issues, such as source-water protection, pesticide registration, human health, drinking water, hypoxia and excessive growth of algae and plants, the effects of agricultural land use on water quality, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of water resources in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. Other products describing water-quality conditions in the Yakima River Basin are available. Detailed technical information, data and analyses, methodology, and maps that support the findings presented in this report can be accessed from http://or.water.usgs.gov/yakima. Other reports in this series and data collected from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  12. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 3 of 7, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudsen, Curtis

    2004-05-01

    This is the third in a series of annual reports that address reproductive ecological research and comparisons of hatchery and wild origin spring chinook in the Yakima River basin. Data have been collected prior to supplementation to characterize the baseline reproductive ecology, demographics and phenotypic traits of the unsupplemented upper Yakima population, however this report focuses on data collected on hatchery and wild spring chinook returning in 2003; the third year of hatchery adult returns. This report is organized into three chapters, with a general introduction preceding the first chapter and summarizes data collected between April 1, 2003 and Marchmore » 31, 2004 in the Yakima basin. Summaries of each of the chapters in this report are included below. A major component of determining supplementation success in the Yakima Klickitat Fishery Project's spring chinook (Oncorhynchus tshawytscha) program is an increase in natural production. Within this context, comparing upper Yakima River hatchery and wild origin fish across traits such as sex ratio, age composition, size-at-age, fecundity, run timing and gamete quality is important because these traits directly affect population productivity and individual fish fitness which determine a population's productivity.« less

  13. Watershed models for decision support in the Yakima River basin, Washington

    USGS Publications Warehouse

    Mastin, M.C.; Vaccaro, J.J.

    2002-01-01

    A Decision Support System (DSS) is being developed by the U.S. Geological Survey and the Bureau of Reclamation as part of a long-term project, the Watershed and River Systems Management Program. The goal of the program is to apply the DSS to U.S. Bureau of Reclamation projects in the western United States. The DSS was applied to the Reclamation's Yakima Project in the Yakima River Basin in eastern Washington. An important component of the DSS is the physical hydrology modeling. For the application to the Yakima River Basin, the physical hydrology component consisted of constructing four watershed models using the U.S. Geological Survey's Precipitation-Runoff Modeling System within the Modular Modeling System. The implementation of these models is described. To facilitate calibration of the models, mean annual streamflow also was estimated for ungaged subbasins. The models were calibrated for water years 1950-94 and tested for water years 1995-98. The integration of the models in the DSS for real-time water-management operations using an interface termed the Object User Interface is also described. The models were incorporated in the DSS for use in long-term to short-term planning and have been used in a real-time operational mode since water year 1999.

  14. Hydrogeologic framework and groundwater/surface-water interactions of the upper Yakima River Basin, Kittitas County, central Washington

    USGS Publications Warehouse

    Gendaszek, Andrew S.; Ely, D. Matthew; Hinkle, Stephen R.; Kahle, Sue C.; Welch, Wendy B.

    2014-01-01

    unconfined part of the aquifers in unconsolidated sediments indicate generalized groundwater movement toward the Yakima River and its tributaries and the outlet of the study area. Groundwater movement through fractures within the bedrock aquifers is complex and varies over spatial scales depending on the architecture of the fracture-flow system and its hydraulic properties. The complexity of the fracturedbedrock groundwater-flow system is supported by a wide range of groundwater ages determined from geochemical analyses of carbon-14, sulfur hexafluoride, and tritium in groundwater. These geochemical data also indicate that the shallow groundwater system is actively flushing with young, isotopically heavy groundwater, but isotopicallylight, Pleistocene-age groundwater with a geochemicallyevolved composition occurs at depth within the fracturedbedrock aquifers of upper Kittitas County. An eastward depletion of stable isotopes in groundwater is consistent with hydrologically separate subbasins. This suggests that groundwater that recharges in one subbasin is not generally available for withdrawal or discharge into surface-water features within other subbasins. Water budget components were calculated for 11 subbasins using a watershed model and varied based on the climate, land uses, and geology of the subbasin. Synoptic streamflow measurements made in August 2011 indicate that groundwater discharges into several tributaries of the Yakima River with several losses of streamflow measured where the streams exit bedrock uplands and flow over unconsolidated sediments. Profiles of stream temperature during late summer suggest cool groundwater inflow over discrete sections of streams. This groundwater/surfacewater connection is further supported by the stable-isotope composition of stream water, which reflects the local stableisotope composition of groundwater measured at some wells and springs. Collectively, these hydrogeologic, hydrologic, and geochemical data support a framework

  15. Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Joan B.

    2005-05-01

    In the spring of 2004 naturally produced smolts outmigrating from the Yakima River Basin were collected for the sixth year of pathogen screening. This component of the evaluation is to monitor whether introduction of hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. Since 1999 the Cle Elum Hatchery has been releasing spring chinook salmon smolts into the upper Yakima River to increase natural production. In 1998 and 2000 through 2004 naturally produced smolts were collectedmore » for monitoring at the Chandler smolt collection facility on the lower Yakima River. Smolts were collected from mid to late outmigration, with a target of 200 fish each year. The pathogens monitored were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia virus, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. Of these pathogens, only R. salmoninarum was detected in very low levels in the naturally produced smolts outmigrating in 2004. To date, only bacterial pathogens have been detected and prevalences have been low. There have been small variations each year and these changes are attributed to normal fluctuations in prevalence. All of the pathogens detected are widely distributed in Washington State.« less

  16. Differential uplift and incision of the Yakima River terraces, central Washington State

    USGS Publications Warehouse

    Bender, Adrian M.; Amos, Colin B.; Bierman, Paul R.; Rood, Dylan; Staisch, Lydia; Kelsey, Harvey M.; Sherrod, Brian

    2016-01-01

    The fault-related Yakima folds deform Miocene basalts and younger deposits of the Columbia Plateau in central Washington State. Geodesy implies ~2 mm/yr of NNE directed shortening across the folds, but until now the distribution and rates of Quaternary deformation among individual structures has been unclear. South of Ellensburg, Washington, the Yakima River cuts a ~600 m deep canyon across several Yakima folds, preserving gravel-mantled strath terraces that record progressive bedrock incision and related rock uplift. Here we integrate cosmogenic isochron burial dating of the strath terrace gravels with lidar analysis and field mapping to quantify rates of Quaternary differential incision and rock uplift across two folds transected by the Yakima River: Manastash and Umtanum Ridge. Isochron burial ages from in situ produced 26Al and 10Be at seven sites across the folds date episodes of strath terrace formation over the past ~2.9 Ma. Average bedrock incision rates across the Manastash (~88 m/Myr) and Umtanum Ridge (~46 m/Myr) anticlines are roughly 4 to 8 times higher than rates in the intervening syncline (~14 m/Myr) and outside the canyon (~10 m/Myr). These contrasting rates demonstrate differential bedrock incision driven by ongoing Quaternary rock uplift across the folds at rates corresponding to ~0.13 and ~0.06 mm/yr shortening across postulated master faults dipping 30 ± 10°S beneath the Manastash and Umtanum Ridge anticlines, respectively. The reported Quaternary shortening across the anticlines accounts for ~10% of the ~2 mm/yr geodetic budget, suggesting that other Yakima structures actively accommodate the remaining contemporary deformation.

  17. Assessment of Eutrophication in the Lower Yakima River Basin, Washington, 2004-07

    USGS Publications Warehouse

    Wise, Daniel R.; Zuroske, Marie L.; Carpenter, Kurt D.; Kiesling, Richard L.

    2009-01-01

    In response to concerns that excessive plant growth in the lower Yakima River in south-central Washington was degrading water quality and affecting recreational use, the U.S. Geological Survey and the South Yakima Conservation District conducted an assessment of eutrophication in the lower 116 miles of the river during the 2004-07 irrigation seasons (March - October). The lower Yakima River was divided into three distinct reaches based on geomorphology, habitat, aquatic plant and water-quality conditions. The Zillah reach extended from the upstream edge of the study area at river mile (RM) 116 to RM 72, and had abundant periphyton growth and sparse macrophyte growth, the lowest nutrient concentrations, and moderately severe summer dissolved oxygen and pH conditions in 2005. The Mabton reach extended from RM 72 to RM 47, and had sparse periphyton and macrophyte growth, the highest nutrient conditions, but the least severe summer dissolved oxygen and pH conditions in 2005. The Kiona reach extended from RM 47 to RM 4, and had abundant macrophyte and epiphytic algae growth, relatively high nutrient concentrations, and the most severe summer dissolved oxygen and pH conditions in 2005. Nutrient concentrations in the lower Yakima River were high enough at certain times and locations during the irrigation seasons during 2004-07 to support the abundant growth of periphytic algae and macrophytes. The metabolism associated with this aquatic plant growth caused large daily fluctuations in dissolved oxygen concentrations and pH levels that exceeded the Washington State water-quality standards for these parameters between July and September during all 4 years, but also during other months when streamflow was unusually low. The daily minimum dissolved oxygen concentration was strongly and negatively related to the preceding day's maximum water temperature - information that could prove useful if a dissolved oxygen predictive model is developed for the lower Yakima River

  18. Comparing the Reproductive Success of Yakima River Hatchery-and Wild-Origin Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2000-2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroder, S.L.; Knudsen, C.M.; Rau, J.A.

    In the Yakima Spring Chinook supplementation program, wild fish are brought into the Cle Elum Hatchery, artificially crossed, reared, transferred to acclimation sites, and released into the upper Yakima River as smolts. When these fish mature and return to the Yakima River most of them will be allowed to spawn naturally; a few, however, will be brought back to the hatchery and used for research purposes. In order for this supplementation approach to be successful, hatchery-origin fish must be able to spawn and produce offspring under natural conditions. Recent investigations on salmonid fishes have indicated that exposure to hatchery environmentsmore » during juvenile life may cause significant behavioral, physiological, and morphological changes in adult fish. These changes appear to reduce the reproductive competence of hatchery fish. In general, males are more affected than females; species with prolonged freshwater rearing periods are more strongly impacted than those with shorter rearing periods; and stocks that have been exposed to artificial culture for multiple generations are more impaired than those with a relatively short exposure history to hatchery conditions.« less

  19. From Washington's Yakima River to India's Ganges: Project GREEN Is Connecting.

    ERIC Educational Resources Information Center

    Kuechle, Jeff

    1993-01-01

    Project GREEN (Global Rivers Environmental Education Network) is an international environmental education program empowering students to use science to improve and protect the quality of watersheds. As an integral part of the Yakima School District Environmental Awareness Program, Project GREEN provides educational benefits for both American…

  20. Simulation of streamflow temperatures in the Yakima River basin, Washington, April-October 1981

    USGS Publications Warehouse

    Vaccaro, J.J.

    1986-01-01

    The effects of storage, diversion, return flow, and meteorological variables on water temperature in the Yakima River, in Washington State, were simulated, and the changes in water temperature that could be expected under four alternative-management scenarios were examined for improvement in anadromous fish environment. A streamflow routing model and Lagrangian streamflow temperature model were used to simulate water discharge and temperature in the river. The estimated model errors were 12% for daily discharge and 1.7 C for daily temperature. Sensitivity analysis of the simulation of water temperatures showed that the effect of reservoir outflow temperatures diminishes in a downstream direction. A 4 C increase in outflow temperatures results in a 1.0 C increase in mean irrigation season water temperature at Umtanum in the upper Yakima River basin, but only a 0.01C increase at Prosser in the lower basin. The influence of air temperature on water temperature increases in a downstream direction and is the dominant influence in the lower basin. A 4 C increase in air temperature over the entire basin resulted in a 2.34 C increase in river temperatures at Prosser in the lower basin and 1.46 C at Umtanum in the upper basin. Changes in wind speed and model wind-function parameters had little effect on the model predicted water temperature. Of four alternative management scenarios suggested by the U.S. Bureau of Indian Affairs and the Yakima Indian Nation, the 1981 reservoir releases maintained without diversions or return flow in the river basin produced water temperatures nearest those considered as preferable for salmon and steelhead trout habitat. The alternative management scenario for no reservoir storage and no diversions or return flows in the river basin (estimate of natural conditions) produced conditions that were the least like those considered as preferable for salmon and steelhead trout habitat. (Author 's abstract)

  1. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook and Juvenile-to-Adult PIT-tag Retention; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudsen, Curtis M.

    2002-11-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the first in an anticipated series of reports that address reproductive ecological research and monitoring of spring chinook in the Yakima River basin. In addition to within-year comparisons, between-year comparisons will be made to determine if traits of the wild Naches basin control population, themore » naturally spawning population in the upper Yakima River and the hatchery control population are diverging over time. This annual report summarizes data collected between April 1, 2001 and March 31, 2002. In the future, these data will be compared to previous years to identify general trends and make preliminary comparisons.« less

  2. Summary of Seepage Investigations in the Yakima River Basin, Washington

    USGS Publications Warehouse

    Magirl, C.S.; Julich, R.J.; Welch, W.B.; Curran, C.R.; Mastin, M.C.; Vaccaro, J.J.

    2009-01-01

    Discharge data collected by the U.S. Geological Survey, Washington State Department of Ecology, and Yakama Nation for seepage investigations in the Yakima River basin are made available as downloadable Microsoft Excel files. These data were collected for more than a century at various times for several different studies and are now available in one location to facilitate future analysis by interested parties.

  3. Yakima River Species Interactions Studies, Annual Report 1993.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearsons, Todd N.

    Species interactions research was initiated in 1989 to investigate ecological interactions among fish in response to proposed supplementation of salmon and steelhead in the upper Yakima River basin. Data have been collected prior to supplementation to characterize the rainbow trout population, predict the potential interactions that may occur as a result of supplementation, and develop methods to monitor interactions. Major topics of this report are associated with the life history of rainbow trout, interactions experimentation, and methods for sampling. This report is organized into nine chapters with a general introduction preceding the first chapter and a general discussion following themore » last chapter. This annual report summarizes data collected primarily by the Washington Department of Fish and Wildlife (WDFW) between January 1 and December 31, 1993 in the upper Yakima basin above Roza Dam, however these data were compared to data from previous years to identify preliminary trends and patterns. Major preliminary findings from each of the chapters included in this report are described.« less

  4. Hydrogeologic framework of sedimentary deposits in six structural basins, Yakima River basin, Washington

    USGS Publications Warehouse

    Jones, M.A.; Vaccaro, J.J.; Watkins, A.M.

    2006-01-01

    The hydrogeologic framework was delineated for the ground-water flow system of the sedimentary deposits in six structural basins in the Yakima River Basin, Washington. The six basins delineated, from north to south are: Roslyn, Kittitas, Selah, Yakima, Toppenish, and Benton. Extent and thicknesses of the hydrogeologic units and total basin sediment thickness were mapped for each basin. Interpretations were based on information from about 4,700 well records using geochemical, geophysical, geologist's or driller's logs, and from the surficial geology and previously constructed maps and well interpretations. The sedimentary deposits were thickest in the Kittitas Basin reaching a depth of greater than 2,000 ft, followed by successively thinner sedimentary deposits in the Selah basin with about 1,900 ft, Yakima Basin with about 1,800 ft, Toppenish Basin with about 1,200 ft, Benton basin with about 870 ft and Roslyn Basin with about 700 ft.

  5. Thermal Profiles for Selected River Reaches in the Yakima River Basin, Washington

    USGS Publications Warehouse

    Vaccaro, J.J.; Keys, M.E.; Julich, R.J.; Welch, W.B.

    2008-01-01

    Thermal profiles (data sets of longitudinal near-streambed temperature) that provide information on areas of potential ground-water discharge and salmonid habitat for 11 river reaches in the Yakima River basin, Washington, are available as Microsoft Excel? files that can be downloaded from the Internet. Two reaches were profiled twice resulting in 13 profiles. Data were collected for all but one thermal profile during 2001. Data consist of date and time (Pacific Daylight), near-streambed water temperature, and latitude and longitude collected concurrently using a temperature probe and a Global Positioning System. The data were collected from a watercraft towing the probe with an internal datalogger while moving downstream in a Lagrangian framework.

  6. Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Joan B.

    2003-05-01

    In 1999 the Cle Elem Hatchery began releasing spring chinook smolts into the upper Yakima River for restoration and supplementation. This project was designed to evaluate whether introduction of intensively reared hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. Approximately 200 smolts were collected at the Chandler smolt collection facility on the lower Yakima River during 1998, 2000 and 2001 and 130 smolts were collected in 2002 for monitoring for specific pathogens. The pathogens monitoredmore » were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. In addition the fish were tested for Ceratomyxa shasta spores in 2000 and 2001 (a correction from the 2001 report). To date, the only changes have been in the levels the bacterial pathogens in the naturally produced smolts and they have been minimal. These changes are attributed to normal fluctuation of prevalence.« less

  7. Extent and Depth to Top of Basalt and Interbed Hydrogeologic Units, Yakima River Basin Aquifer System, Washington

    USGS Publications Warehouse

    Jones, M.A.; Vaccaro, J.J.

    2008-01-01

    The hydrogeologic framework was delineated for the ground-water flow system of the three basalt formations and two interbeds in the Yakima River Basin, Washington. The basalt units are nearly equivalent to the Saddle Mountains, Wanapum, and Grande Ronde. The two major interbed units between the basalt formations generally are referred to as the Mabton and Vantage. The basalt formations are a productive source of ground-water for the Yakima River Basin. The Grande Ronde unit comprises the largest area in the Yakima River Basin aquifer system. This unit encompasses an area of about 5,390 mi2 and ranges in altitude from 6,900 ft, where it is exposed at land surface, to a depth of 2,800 ft below land surface. The Wanapum unit encompasses an area of 3,450 mi2 and ranges in altitude from 5,680 ft, where exposed at land surface, to a depth of 2,050 ft below land surface. The Saddle Mountains unit, the least extensive, encompasses an area of 2,290 mi2 and ranges from 4,290 ft, where exposed at the surface, to a depth of 1,840 ft below land surface.

  8. Pollution of the River Niger and its main tributaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nwokedi, G.I.C.; Obodo, G.A.

    1993-08-01

    The River Niger system, with a length of about 4200 kilometers, and a discharge volume of 190 cubic kilometers, per year is the third largest river in Africa, and the largest in West Africa. It serves as an important waterway for the transportation of goods and provides rich agricultural flood basins for the cultivation of food and vegetables. Also it is a major source of animal proteins in form of fishes, snails and other aquatics. Above all the River and its tributaries represent the main source of domestic water supply for the rural communities, and water for irrigation. Therefore theremore » is a need to establish the nature and present levels of pollutants in the river, and the contribution made by the tributaries to the gross pollution level. A number of studies have been reported. Martins reported on the geochemistry of the River Niger while Nriagu; Livingstone; and Imevbore provided some chemical data on the upper reaches around and above its confluence with River Benue at Lokoja. Ajayi and Osibanjo reported on the chemical properties of some tributaries above the confluence of the Niger and the Benue. So far no work has been reported on the lower reaches of the Niger where contributions of the Benue and other major tributaries are significant, and where there are large settlements on its banks and the banks of the tributaries. This work aims at establishing base-line levels of the various pollutants and their sources. 12 refs., 1 fig., 2 tabs.« less

  9. Modeling effects of climate change on Yakima River salmonid habitats

    USGS Publications Warehouse

    Hatten, James R.; Batt, Thomas R.; Connolly, Patrick J.; Maule, Alec G.

    2014-01-01

    We evaluated the potential effects of two climate change scenarios on salmonid habitats in the Yakima River by linking the outputs from a watershed model, a river operations model, a two-dimensional (2D) hydrodynamic model, and a geographic information system (GIS). The watershed model produced a discharge time series (hydrograph) in two study reaches under three climate scenarios: a baseline (1981–2005), a 1-°C increase in mean air temperature (plus one scenario), and a 2-°C increase (plus two scenario). A river operations model modified the discharge time series with Yakima River operational rules, a 2D model provided spatially explicit depth and velocity grids for two floodplain reaches, while an expert panel provided habitat criteria for four life stages of coho and fall Chinook salmon. We generated discharge-habitat functions for each salmonid life stage (e.g., spawning, rearing) in main stem and side channels, and habitat time series for baseline, plus one (P1) and plus two (P2) scenarios. The spatial and temporal patterns in salmonid habitats differed by reach, life stage, and climate scenario. Seventy-five percent of the 28 discharge-habitat responses exhibited a decrease in habitat quantity, with the P2 scenario producing the largest changes, followed by P1. Fry and spring/summer rearing habitats were the most sensitive to warming and flow modification for both species. Side channels generally produced more habitat than main stem and were more responsive to flow changes, demonstrating the importance of lateral connectivity in the floodplain. A discharge-habitat sensitivity analysis revealed that proactive management of regulated surface waters (i.e., increasing or decreasing flows) might lessen the impacts of climate change on salmonid habitats.

  10. Effects of hydraulic and geologic factors on streamflow of the Yakima River Basin, Washington

    USGS Publications Warehouse

    Kinnison, Hallard B.; Sceva, Jack E.

    1963-01-01

    The Yakima River basin, in south-central Washington, is the largest single river system entirely within the confines of the State. Its waters are the most extensively utilized of all the rivers in Washington. The river heads high on the eastern slope of the Cascade Mountains, flows for 180 miles in a generally southeast direction, and discharges into the Columbia River. The western part of the basin is a mountainous area formed by sedimentary, volcanic, and metamorphic rocks, which generally have a low capacity for storing and transmitting water. The eastern part of the basin is. formed by a thick sequence of lava flows that have folded into long ridges and troughs. Downwarped structural basins between many of the ridges are partly filled with younger sedimentary deposits, which at some places are many hundreds of feet thick. The Yakima River flows from structural basin to structural basin through narrow water gaps that have been eroded through the anticlinal ridges. Each basin is also a topographic basin and a ground-water subbasin. A gaging station will measure the total outflow of a drainage area only if it is located at the surface outlet of a ground-water subbasin and then only if the stream basin is nearly coextensive with the ground-water subbasin. Many gaging stations in the Yakima basin are so located. The geology, hydrology, size. and location of 25 ground-water subbasins are described. Since the settlement of the valley began, the development of the land and water resources have caused progressive changes in the natural regimen of the basin's runoff. These changes have resulted from diversion of water from the streams, the application of water on the land for irrigation, the storage and release of flood waters, the pumping of ground water, and other factors Irrigation in the Yakima basin is reported 'to have begun about 1864. In 1955 about 425,000 acres were under irrigation. During the past 60-odd years many gaging stations have been operated at

  11. 33 CFR 334.460 - Cooper River and tributaries at Charleston, SC.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Cooper River and tributaries at... ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.460 Cooper River and tributaries at Charleston, SC. (a) The areas: (1) That portion of the Cooper River beginning on the west shore...

  12. Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 6 of 7, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Joan B.

    2004-05-01

    In 1999 the Cle Elum Hatchery began releasing spring chinook salmon smolts into the upper Yakima River to increase natural production. Part of the evaluation of this program is to monitor whether introduction of hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. In 1998 and 2000 through 2003 naturally produced smolts were collected for monitoring at the Chandler smolt collection facility on the lower Yakima River. Smolts were collected from mid to late outmigration, withmore » a target of 200 fish each year. The pathogens monitored were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia virus, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. To date, only the bacterial pathogens have been detected and prevalences have been low. Prevalences have varied each year and these changes are attributed to normal fluctuation of prevalence. All of the pathogens detected are widely distributed in Washington State.« less

  13. 33 CFR 162.75 - All waterways tributary to the Gulf of Mexico (except the Mississippi River, its tributaries...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Gulf of Mexico (except the Mississippi River, its tributaries, South and Southwest Passes and... WATERWAYS NAVIGATION REGULATIONS § 162.75 All waterways tributary to the Gulf of Mexico (except the... waters of the U.S. tributary to or connected by other waterways with the Gulf of Mexico between St. Marks...

  14. 33 CFR 162.75 - All waterways tributary to the Gulf of Mexico (except the Mississippi River, its tributaries...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Gulf of Mexico (except the Mississippi River, its tributaries, South and Southwest Passes and... WATERWAYS NAVIGATION REGULATIONS § 162.75 All waterways tributary to the Gulf of Mexico (except the... waters of the U.S. tributary to or connected by other waterways with the Gulf of Mexico between St. Marks...

  15. 33 CFR 162.75 - All waterways tributary to the Gulf of Mexico (except the Mississippi River, its tributaries...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Gulf of Mexico (except the Mississippi River, its tributaries, South and Southwest Passes and... WATERWAYS NAVIGATION REGULATIONS § 162.75 All waterways tributary to the Gulf of Mexico (except the... waters of the U.S. tributary to or connected by other waterways with the Gulf of Mexico between St. Marks...

  16. Yakima Fisheries Project : Final Environmental Impact Statement.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    United States. Bonneville Power Administration; Washington; Confederated Tribes and Bands of the Yakama Nation, Washington.

    1996-01-01

    BPA proposes to fund several fishery-related activities in the Yakima River Basin. These activities, known as the Yakima Fisheries Project (YFP), would be jointly managed by the State of Washington and the Yakima Indian Nation. The YFP is included in the Northwest Power Planning Council`s (Council`s) fish and wildlife program. The Council selected the Yakima River system for attention because fisheries resources are severely reduced from historical levels and because there is a significant potential for enhancement of these resources. BPA`s proposed action is to fund (1) information gathering on the implementation of supplementation techniques and on feasibility of reintroducingmore » coho salmon in an environment where native populations have become extinct; (2) research activities based on continuous assessment, feedback and improvement of research design and activities ({open_quotes}adaptive management{close_quotes}); and (3) die construction, operation, and maintenance of facilities for supplementing populations of upper Yakima spring chinook salmon. Examined in addition to No Action are two alternatives for action: (1) supplementation of depressed natural populations of upper Yakima spring chinook and (2) that same supplementation plus a study to determine the feasibility of reestablishing naturally spawning population and a significant fall fishery for coho in the Yakima Basin. Alternative 2 is the preferred action. A central hatchery would be built for either alternative, as well as three sites with six raceways each for acclimation and release of spring chinook smolts. Major issues examined in the Revised Draft EIS include potential impacts of the project on genetic and ecological resources of existing fish populations, on water quality and quantity, on threatened and endangered species listed under the Endangered Species Act, and on the recreational fishery.« less

  17. Annual estimates of water and solute export from 42 tributaries to the Yukon River

    USGS Publications Warehouse

    Frederick Zanden,; Suzanne P. Anderson,; Striegl, Robert G.

    2012-01-01

    Annual export of 11 major and trace solutes for the Yukon River is found to be accurately determined based on summing 42 tributary contributions. These findings provide the first published estimates of tributary specific distribution of solutes within the Yukon River basin. First, we show that annual discharge of the Yukon River can be computed by summing calculated annual discharges from 42 tributaries. Annual discharge for the tributaries is calculated from the basin area and average annual precipitation over that area using a previously published regional regression equation. Based on tributary inputs, we estimate an average annual discharge for the Yukon River of 210 km3 year–1. This value is within 1% of the average measured annual discharge at the U.S. Geological Survey gaging station near the river terminus at Pilot Station, AK, for water years 2001 through 2005. Next, annual loads for 11 solutes are determined by combining annual discharge with point measurements of solute concentrations in tributary river water. Based on the sum of solutes in tributary water, we find that the Yukon River discharges approximately 33 million metric tons of dissolved solids each year at Pilot Station. Discharged solutes are dominated by cations calcium and magnesium (5.65 × 109 and 1.42 × 109 g year–1) and anions bicarbonate and sulphate (17.3 × 109 and 5.40 × 109 g year–1). These loads compare well with loads calculated independently at the three continuous gaging stations along the Yukon River. These findings show how annual solute yields vary throughout a major subarctic river basin and that accurate estimates of total river export can be determined from calculated tributary contributions.

  18. Contrasting biogeochemical characteristics of the Oubangui River and tributaries (Congo River basin)

    PubMed Central

    Bouillon, Steven; Yambélé, Athanase; Gillikin, David P.; Teodoru, Cristian; Darchambeau, François; Lambert, Thibault; Borges, Alberto V.

    2014-01-01

    The Oubangui is a major tributary of the Congo River. We describe the biogeochemistry of contrasting tributaries within its central catchment, with watershed vegetation ranging from wooded savannahs to humid rainforest. Compared to a 2-year monitoring record on the mainstem Oubangui, these tributaries show a wide range of biogeochemical signatures, from highly diluted blackwaters (low turbidity, pH, conductivity, and total alkalinity) in rainforests to those more typical for savannah systems. Spectral analyses of chromophoric dissolved organic matter showed wide temporal variations in the Oubangui compared to spatio-temporal variations in the tributaries, and confirm that different pools of dissolved organic carbon are mobilized during different hydrological stages. δ13C of dissolved inorganic carbon ranged between −28.1‰ and −5.8‰, and was strongly correlated to both partial pressure of CO2 and to the estimated contribution of carbonate weathering to total alkalinity, suggesting an important control of the weathering regime on CO2 fluxes. All tributaries were oversaturated in dissolved greenhouse gases (CH4, N2O, CO2), with highest levels in rivers draining rainforest. The high diversity observed underscores the importance of sampling that covers the variability in subcatchment characteristics, to improve our understanding of biogeochemical cycling in the Congo Basin. PMID:24954525

  19. Evaluation of stream flow effects on smolt survival in the Yakima River Basin, Washington, 2012-2014

    USGS Publications Warehouse

    Courter, Ian; Garrison, Tommy; Kock, Tobias J.; Perry, Russell W.

    2015-01-01

    The influence of stream flow on survival of emigrating juvenile (smolts) Pacific salmon Oncorhynchus spp. and steelhead trout O. mykiss is of key management interest. However, few studies have quantified flow effects on smolt migration survival, and available information does not indicate a consistent flow-survival relationship within the typical range of flows under management control. It is hypothesized that smolt migration and dam passage survival are positively correlated with stream flow because higher flows increase migration rates, potentially reducing exposure to predation, and reduce delays in reservoirs. However, available empirical data are somewhat equivocal concerning the influence of flow on smolt survival and the underlying mechanisms driving this relationship. Stream flow effects on survival of emigrating anadromous salmonids in the Yakima Basin have concerned water users and fisheries managers for over 20 years, and previous studies do not provide sufficient information at the resolution necessary to inform water operations, which typically occur on a small spatiotemporal scale. Using a series of controlled flow releases from 2012-2014, combined with radio telemetry, we quantified the relationship between flow and smolt survival from Roza Dam 208 km downstream to the Yakima River mouth, as well as for specific routes of passage at Roza Dam. A novel multistate mark-recapture model accounted for weekly variation in flow conditions experienced by radio-tagged fish. Groups of fish were captured and radio-tagged at Roza Dam and released at two locations, upstream at the Big Pines Campground (river kilometer [rkm] 211) and downstream in the Roza Dam tailrace (rkm 208). A total of 904 hatchery-origin yearling Chinook salmon O. tshawytscha were captured in the Roza Dam fish bypass, radio-tagged and released upstream of Roza Dam. Two hundred thirty seven fish were released in the tailrace of Roza Dam. Fish released in the tailrace of Roza Dam were tagged

  20. Estimation of total nitrogen and total phosphorus in streams of the Middle Columbia River Basin (Oregon, Washington, and Idaho) using SPARROW models, with emphasis on the Yakima River Basin, Washington

    USGS Publications Warehouse

    Johnson, Henry M.; Black, Robert W.; Wise, Daniel R.

    2013-01-01

    The watershed model SPARROW (Spatially Related Regressions on Watershed attributes) was used to predict total nitrogen (TN) and total phosphorus (TP) loads and yields for the Middle Columbia River Basin in Idaho, Oregon, and Washington. The new models build on recently published models for the entire Pacific Northwest, and provide revised load predictions for the arid interior of the region by restricting the modeling domain and recalibrating the models. Results from the new TN and TP models are provided for the entire region, and discussed with special emphasis on the Yakima River Basin, Washington. In most catchments of the Yakima River Basin, the TN and TP in streams is from natural sources, specifically nitrogen fixation in forests (TN) and weathering and erosion of geologic materials (TP). The natural nutrient sources are overshadowed by anthropogenic sources of TN and TP in highly agricultural and urbanized catchments; downstream of the city of Yakima, most of the load in the Yakima River is derived from anthropogenic sources. Yields of TN and TP from catchments with nearly uniform land use were compared with other yield values and export coefficients published in the scientific literature, and generally were in agreement. The median yield of TN was greatest in catchments dominated by agricultural land and smallest in catchments dominated by grass and scrub land. The median yield of TP was greatest in catchments dominated by forest land, but the largest yields (90th percentile) of TP were from agricultural catchments. As with TN, the smallest TP yields were from catchments dominated by grass and scrub land.

  1. Yakima Fisheries Project : Revised Draft Environmental Impact Statement.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    United States. Bonneville Power Administration.

    1995-05-01

    BPA proposes to fund several fishery-related activities in the Yakima River Basin. The Yakima Fisheries Project (YFP), included in the Northwest Power Planning Council`s fish and wildlife program, would be jointly managed by the State of Washington and the Yakima Indian Nation. Fisheries resources in the Yakima River are severely reduced from historical levels and there is a significant potential for enhancement of these resources. BPA`s proposed action is to fund (1) information gathering on the implementation of supplementation techniques and on feasibility of reintroducing coho salmon in an environment where native populations have become extinct; (2) research activities basedmore » on continuous assessment, feedback and improvement of research design and activities ({open_quotes}adaptive management{close_quotes}); and (3) the construction, operation, and maintenance of facilities for supplementing populations of upper Yakima spring chinook salmon. The project has been considerably revised from the original proposal described in the first draft EIS. Examined in addition to No Action (which would leave present anadromous fisheries resources unchanged in the, Basin) are two alternatives for action: (1) supplementation of depressed natural populations of upper Yakima spring chinook and (2) that same supplementation plus a study to determine the feasibility of re-establishing (via stock imported from another basin) naturally spawning population and a significant fall fishery for coho in the Yakima Basin. Alternative 2 has been identified as the preferred action. Major issues examined in the Revised Draft EIS include potential impacts of the project on genetic and ecological resources of existing fish populations, on water quality and quantity, on threatened and endangered species listed under the Endangered Species Act, and on the recreational fishery.« less

  2. Field Trip 5: HYDROGEOLOGY OF BEER AND WINE IN THE YAKIMA VALLEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Last, George V.; Bachmann, Matthew P.; Bjornstad, Bruce N.

    The climate and geology of eastern Washington are ideally suited to the production of hops and wine grapes. Nearly all of Washington’s hop and wine-grape production is located in the lower Yakima River Basin , which is one of the most intensively irrigated areas in the United States. Most of this irrigation water has been supplied by surface water reservoirs and canal systems drawing from the Yakima River. However, increasing demands for water has spurred the increased use of groundwater resources. This field trip guide explores many aspects of the geology and hydrogeology in the lower Yakima River Basin, particularlymore » as they relate to water resources that support the local beer and wine industries.« less

  3. Estimation of stream conditions in tributaries of the Klamath River, northern California

    USGS Publications Warehouse

    Manhard, Christopher V.; Som, Nicholas A.; Jones, Edward C.; Perry, Russell W.

    2018-01-01

    Because of their critical ecological role, stream temperature and discharge are requisite inputs for models of salmonid population dynamics. Coho Salmon inhabiting the Klamath Basin spend much of their freshwater life cycle inhabiting tributaries, but environmental data are often absent or only seasonally available at these locations. To address this information gap, we constructed daily averaged water temperature models that used simulated meteorological data to estimate daily tributary temperatures, and we used flow differentials recorded on the mainstem Klamath River to estimate daily tributary discharge. Observed temperature data were available for fourteen of the major salmon bearing tributaries, which enabled estimation of tributary-specific model parameters at those locations. Water temperature data from six mid-Klamath Basin tributaries were used to estimate a global set of parameters for predicting water temperatures in the remaining tributaries. The resulting parameter sets were used to simulate water temperatures for each of 75 tributaries from 1980-2015. Goodness-of-fit statistics computed from a cross-validation analysis demonstrated a high precision of the tributary-specific models in predicting temperature in unobserved years and of the global model in predicting temperatures in unobserved streams. Klamath River discharge has been monitored by four gages that broadly intersperse the 292 kilometers from the Iron Gate Dam to the Klamath River mouth. These gages defined the upstream and downstream margins of three reaches. Daily discharge of tributaries within a reach was estimated from 1980-2015 based on drainage-area proportionate allocations of the discharge differential between the upstream and downstream margin. Comparisons with measured discharge on Indian Creek, a moderate-sized tributary with naturally regulated flows, revealed that the estimates effectively approximated both the variability and magnitude of discharge.

  4. 33 CFR 207.180 - All waterways tributary to the Gulf of Mexico (except the Mississippi River, its tributaries...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Gulf of Mexico (except the Mississippi River, its tributaries, South and Southwest Passes and the... DEFENSE NAVIGATION REGULATIONS § 207.180 All waterways tributary to the Gulf of Mexico (except the... with the Gulf of Mexico between St. Marks, Fla., and the Rio Grande, Tex. (both inclusive), and the...

  5. 33 CFR 207.180 - All waterways tributary to the Gulf of Mexico (except the Mississippi River, its tributaries...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Gulf of Mexico (except the Mississippi River, its tributaries, South and Southwest Passes and the... DEFENSE NAVIGATION REGULATIONS § 207.180 All waterways tributary to the Gulf of Mexico (except the... with the Gulf of Mexico between St. Marks, Fla., and the Rio Grande, Tex. (both inclusive), and the...

  6. 33 CFR 207.180 - All waterways tributary to the Gulf of Mexico (except the Mississippi River, its tributaries...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Gulf of Mexico (except the Mississippi River, its tributaries, South and Southwest Passes and the... DEFENSE NAVIGATION REGULATIONS § 207.180 All waterways tributary to the Gulf of Mexico (except the... with the Gulf of Mexico between St. Marks, Fla., and the Rio Grande, Tex. (both inclusive), and the...

  7. Estimates of average annual tributary inflow to the lower Colorado River, Hoover Dam to Mexico

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.

    1987-01-01

    Estimates of tributary inflow by basin or area and by surface water or groundwater are presented in this report and itemized by subreaches in tabular form. Total estimated average annual tributary inflow to the Colorado River between Hoover Dam and Mexico, excluding the measured tributaries, is 96,000 acre-ft or about 1% of the 7.5 million acre-ft/yr of Colorado River water apportioned to the States in the lower Colorado River basin. About 62% of the tributary inflow originates in Arizona, 30% in California, and 8% in Nevada. Tributary inflow is a small component in the water budget for the river. Most of the quantities of unmeasured tributary inflow were estimated in previous studies and were based on mean annual precipitation for 1931-60. Because mean annual precipitation for 1951-80 did not differ significantly from that of 1931-60, these tributary inflow estimates are assumed to be valid for use in 1984. Measured average annual runoff per unit drainage area on the Bill Williams River has remained the same. Surface water inflow from unmeasured tributaries is infrequent and is not captured in surface reservoirs in any of the States; it flows to the Colorado River gaging stations. Estimates of groundwater inflow to the Colorad River valley. Average annual runoff can be used in a water budget; although in wet years, runoff may be large enough to affect the calculation of consumptive use and to be estimated from hydrographs for the Colorado River valley are based on groundwater recharge estimates in the bordering areas, which have not significantly changed through time. In most areas adjacent to the Colorado River valley, groundwater pumpage is small and pumping has not significantly affected the quantity of groundwater discharged to the Colorado River valley. In some areas where groundwater pumpage exceeds the quantity of groundwater discharge and water levels have declined, the quantity of discharge probably has decreased and groundwater inflow to the Colorado

  8. Surface-water-quality assessment of the Yakima River basin, Washington; project description

    USGS Publications Warehouse

    McKenzie, S.W.; Rinella, J.F.

    1987-01-01

    In April 1986, the U.S. Geological Survey began the National Water Quality Assessment program to: (1) provide a nationally consistent description of the current status of water quality, (2) define water quality trends that have occurred over recent decades, and (3) relate past and present water quality conditions to relevant natural features, the history of land and water use, and land management and waste management practices. At present (1987), The National Water Quality Assessment program is in a pilot studies phase, in which assessment concepts and approaches are being tested and modified to prepare for possible full implementation of the program. Seven pilot projects (four surface water projects and three groundwater projects) have been started. The Yakima River basin in Washington is one of the pilot surface water project areas. The Yakima River basin drains in area of 6,155 sq mi and contains about 1,900 river mi of perennial streams. Major land use activities include growing and harvesting timber, dryland pasture grazing, intense farming and irrigated agriculture, and urbanization. Water quality issues that result from these land uses include potentially large concentrations of suspended sediment, bacteria, nutrients, pesticides, and trace elements that may affect water used for human consumption, fish propagation and passage, contact recreation, livestock watering, and irrigation. Data will be collected in a nine year cycle. The first three years of the cycle will be a period of concentrated data acquisition and interpretation. For the next six years, sample collection will be done at a much lower level of intensity to document the occurrence of any gross changes in water quality. This nine year cycle would then be repeated. Three types of sampling activities will be used for data acquisition: fixed location station sampling, synoptic sampling, and intensive reach studies. (Lantz-PTT)

  9. Importance of reservoir tributaries to spawning of migratory fish in the upper Paraná River

    USGS Publications Warehouse

    da Silva, P.S.; Makrakis, Maristela Cavicchioli; Miranda, Leandro E.; Makrakis, Sergio; Assumpcao, L.; Paula, S.; Dias, João Henrique Pinheiro; Marques, H.

    2015-01-01

    Regulation of rivers by dams transforms previously lotic reaches above the dam into lentic ones and limits or prevents longitudinal connectivity, which impairs access to suitable habitats for the reproduction of many migratory fish species. Frequently, unregulated tributaries can provide important habitat heterogeneity to a regulated river and may mitigate the influence of impoundments on the mainstem river. We evaluated the importance of tributaries to spawning of migratory fish species over three spawning seasons, by comparing several abiotic conditions and larval fish distributions in four rivers that are tributaries to an impounded reach of the Upper Parana River, Brazil. Our study confirmed reproduction of at least 8 long-distance migrators, likely nine, out of a total of 19 occurring in the Upper Parana River. Total larval densities and percentage species composition differed among tributaries, but the differences were not consistent among spawning seasons and unexpectedly were not strongly related to annual differences in temperature and hydrology. We hypothesize that under present conditions, densities of larvae of migratory species may be better related to efficiency of fish passage facilities than to temperature and hydrology. Our study indicates that adult fish are finding suitable habitat for spawning in tributaries, fish eggs are developing into larvae, and larvae are finding suitable rearing space in lagoons adjacent to the tributaries. Our findings also suggest the need for establishment of protected areas in unregulated and lightly regulated tributaries to preserve essential spawning and nursery habitats.

  10. Pulsed flows, tributary inputs, and food web structure in a highly regulated river

    USGS Publications Warehouse

    Sabo, John; Caron, Melanie; Doucett, Richard R.; Dibble, Kimberly L.; Ruhi, Albert; Marks, Jane; Hungate, Bruce; Kennedy, Theodore A.

    2018-01-01

    1.Dams disrupt the river continuum, altering hydrology, biodiversity, and energy flow. Although research indicates that tributary inputs have the potential to dilute these effects, knowledge at the food web level is still scarce.2.Here we examined the riverine food web structure of the Colorado River below Glen Canyon Dam, focusing on organic matter sources, trophic diversity, and food chain length. We asked how these components respond to pulsed flows from tributaries following monsoon thunderstorms that seasonally increase streamflow in the American Southwest.3.Tributaries increased the relative importance of terrestrial organic matter, particularly during the wet season below junctures of key tributaries. This contrasted with the algal-based food web present immediately below Glen Canyon Dam.4.Tributary inputs during the monsoon also increased trophic diversity and food chain length: food chain length peaked below the confluence with the largest tributary (by discharge) in Grand Canyon, increasing by >1 trophic level over a 4-5 kilometre reach possibly due to aquatic prey being flushed into the mainstem during heavy rain events.5.Our results illustrate that large tributaries can create seasonal discontinuities, influencing riverine food web structure in terms of allochthony, food web diversity, and food chain length.6.Synthesis and applications. Pulsed flows from unregulated tributaries following seasonal monsoon rains increase the importance of terrestrially-derived organic matter in large, regulated river food webs, increasing food chain length and trophic diversity downstream of tributary inputs. Protecting unregulated tributaries within hydropower cascades may be important if we are to mitigate food web structure alteration due to flow regulation by large dams. This is critical in the light of global hydropower development, especially in megadiverse, developing countries where dam placement (including completed and planned structures) is in tributaries.

  11. Temporal Variations in 234U/238U Activity Ratios in Four Mississippi River Tributaries

    NASA Astrophysics Data System (ADS)

    Grzymko, T. J.; Marcantonio, F.

    2005-05-01

    In 2004 we sampled the four tributaries that are the major contributors to the Mississippi River in terms of water discharge, i.e., the Arkansas, Missouri, Upper Mississippi, and Ohio rivers. Each river was sampled four times over the course of the year at variable levels of discharge in an attempt to constrain the causes of the temporal variations of 234U/238U activity ratios in the lower Mississippi River at New Orleans. The tributary uranium data support the idea that lower river uranium isotope and elemental systematics are controlled by a simple mass balance of the source tributary discharges. Furthermore, the uranium isotope ratios of the individual tributaries show coherent patterns of variability. Specifically, the data obtained from the four sampling trips yielded similar patterns of temporal variation in the 234U/238U activity ratios of all of the rivers, although the absolute values of these ratios were distinctly different from one river to the next. The pattern was such that the highest 234U/238U activity ratios were observed during the highest flow associated with the spring freshet while the lowest ratios occurred during the summer. For example, in the Missouri River, the 234U/238U activity ratios varied from 1.51 (February 12) to 1.37 (April 14) to 1.34 (July 16) to 1.37 (November 12), while in the Ohio River the same ratios varied from 1.36 (February 12) to 1.29 (April 14) to 1.21 (July 16) to 1.23 (November 12). The apparent seasonal pattern of these ratios in each tributary has led to several ideas as to the causes of the observed trends. The first, and most obvious, is that in each individual drainage basin there are various source tributaries that contribute to the uranium isotope systematics of the main stem of the tributary of interest. It follows that the variations in the uranium activity ratios may be caused by spatial variations in the source rock chemistry of the drainage basin. Other more complex scenarios can also be envisioned and

  12. Distribution of fish, benthic invertebrate, and algal communities in relation to physical and chemical conditions, Yakima River basin, Washington, 1990

    USGS Publications Warehouse

    Cuffney, T.F.; Meador, M.R.; Porter, S.D.; Gurtz, M.E.

    1997-01-01

    Biological investigations were conducted in the Yakima River Basin, Washington, in conjunction with a pilot study for the U.S. Geological Survey's National Water-Quality Assessment Program. Ecological surveys were conducted at 25 sites in 1990 to (1) assess water-quality conditions based on fish, benthic invertebrate, and algal communities; (2) determine the hydrologic, habitat, and chemical factors that affect the distributions of these organisms; and (3) relate physical and chemical conditions to water quality. Results of these investigations showed that land uses and other associated human activities influenced the biological characteristics of streams and rivers and overall water-quality conditions. Fish communities of headwater streams in the Cascades and Eastern Cascades ecoregions of the Yakima River Basin were primarily composed of salmonids and sculpins, with cyprinids dominating in the rest of the basin. The most common of the 33 fish taxa collected were speckled dace, rainbow trout, and Paiute sculpin. The highest number of taxa (193) was found among the inverte- brates. Insects, particularly sensitive forms such as mayflies, stoneflies, and caddisflies (EPT--Ephemeroptera, Plecoptera, and Trichoptera fauna), formed the majority of the invertebrate communities of the Cascades and Eastern Cascades ecoregions. Diatoms dominated algal communities throughout the basin; 134 algal taxa were found on submerged rocks, but other stream microhabitats were not sampled as part of the study. Sensitive red algae and diatoms were predominant in the Cascades and Eastern Cascades ecoregions, whereas the abundance of eutrophic diatoms and green algae was large in the Columbia Basin ecoregion of the Yakima River Basin. Ordination of physical, chemical, and biological site characteristics indicated that elevation was the dominant factor accounting for the distribution of biota in the Yakima River Basin; agricultural intensity and stream size were of secondary importance

  13. Digital-model simulation of the Toppenish alluvial aquifer, Yakima Indian Reservation, Washington

    USGS Publications Warehouse

    Bolke, E.L.; Skrivan, James A.

    1981-01-01

    Increasing demands for irrigating additional lands and proposals to divert water from the Yakima River by water users downstream from the Yakima Indian Reservation have made an accounting of water availability important for present-day water management in the Toppenish Creek basin. A digital model was constructed and calibrated for the Toppenish alluvial aquifer to help fulfill this need. The average difference between observed and model-calculated aquifer heads was about 4 feet. Results of model analysis show that the net gain from the Yakima River to the aquifer is 90 cubic feet per second, and the net loss from the aquifer to Toppenish Creek is 137 cubic feet per second. Water-level declines of about 5 feet were calculated for an area near Toppenish in response to a hypothetical tenfold increase in 1974 pumping rates. (USGS)

  14. Critical role of seasonal tributaries for native fish and aquatic biota in the Sacramento River

    NASA Astrophysics Data System (ADS)

    Marchetti, M.

    2016-12-01

    We examined the ecology of seasonal tributaries in California in terms of native fishes and aquatic macroinvertebrates. This talk summarizes data from five individual studies. Studying juvenile Chinook growth using otolith microstructure we find that fish grow faster and larger in seasonal tributaries. In a four-year study on the abundance of native fish larvae in tributaries of the Sacramento River we find certain tributaries produce an order of magnitude more native fish larvae than nearby permanent streams. In a study comparing the distribution and abundance of aquatic macroinvertebrates in a seasonal tributary with a permanent stream we find the seasonal tributary contains unique taxa, higher drift densities and ecologically distinct communities. In a cross-watershed comparison of larval fish drift we find that a seasonal tributary produces more larvae than all other streams/rivers we examined. In a comparison of juvenile Chinook growth morphology between seasonal and permanent streams using geometric morphometrics we find that salmon show phenotypic plasticity and their growth is characteristically different in seasonal tributaries. Taken together, this body of work highlights the critical ecological importance of this habitat.

  15. Environmental contaminants and biomarker responses in fish from the Columbia River and its tributaries: spatial and temporal trends

    USGS Publications Warehouse

    Hinck, J.E.; Schmitt, C.J.; Blazer, V.S.; Denslow, N.D.; Bartish, T.M.; Anderson, P.J.; Coyle, J.J.; Dethloff, G.M.; Tillitt, D.E.

    2006-01-01

    Fish were collected from 16 sites on rivers in the Columbia River Basin (CRB) from September 1997 to April 1998 to document temporal and spatial trends in the concentrations of accumulative contaminants and to assess contaminant effects on the fish. Sites were located on the mainstem of the Columbia River and on the Snake, Willamette, Yakima, Salmon, and Flathead Rivers. Common carp (Cyprinus carpio), black bass (Micropterus sp.), and largescale sucker (Catostomus macrocheilus) were the targeted species. Fish were field-examined for external and internal lesions, selected organs were weighed to compute somatic indices, and tissue and fluid samples were preserved for fish health and reproductive biomarker analyses. Composite samples of whole fish, grouped by species and gender, from each site were analyzed for organochlorine and elemental contaminants using instrumental methods and for 2,3,7,8-tetrachloro dibenzo-p-dioxin-like activity (TCDD-EQ) using the H4IIE rat hepatoma cell bioassay. Overall, pesticide concentrations were greatest in fish from lower CRB sites and elemental concentrations were greatest in fish from upper CRB sites. These patterns reflected land uses. Lead (Pb) concentrations in fish from the Columbia River at Northport and Grand Coulee, Washington (WA) exceeded fish and wildlife toxicity thresholds (> 0.4 ??g/g). Selenium (Se) concentrations in fish from the Salmon River at Riggins, Idaho (ID), the Columbia River at Vernita Bridge, WA, and the Yakima River at Granger, WA exceeded toxicity thresholds for piscivorous wildlife (> 0.6 ??g/g). Mercury (Hg) concentrations in fish were elevated throughout the basin but were greatest (> 0.4 ??g/g) in predatory fish from the Salmon River at Riggins, ID, the Yakima River at Granger, WA, and the Columbia River at Warrendale, Oregon (OR). Residues of p,p???-DDE were greatest (> 0.8 ??g/g) in fish from agricultural areas of the Snake, Yakima, and Columbia River basins but were not detected in upper CRB fish

  16. Environmental contaminants and biomarker responses in fish from the Columbia River and its tributaries: spatial and temporal trends.

    PubMed

    Hinck, Jo Ellen; Schmitt, Christopher J; Blazer, Vicki S; Denslow, Nancy D; Bartish, Timothy M; Anderson, Patrick J; Coyle, James J; Dethloff, Gail M; Tillitt, Donald E

    2006-08-01

    Fish were collected from 16 sites on rivers in the Columbia River Basin (CRB) from September 1997 to April 1998 to document temporal and spatial trends in the concentrations of accumulative contaminants and to assess contaminant effects on the fish. Sites were located on the mainstem of the Columbia River and on the Snake, Willamette, Yakima, Salmon, and Flathead Rivers. Common carp (Cyprinus carpio), black bass (Micropterus sp.), and largescale sucker (Catostomus macrocheilus) were the targeted species. Fish were field-examined for external and internal lesions, selected organs were weighed to compute somatic indices, and tissue and fluid samples were preserved for fish health and reproductive biomarker analyses. Composite samples of whole fish, grouped by species and gender, from each site were analyzed for organochlorine and elemental contaminants using instrumental methods and for 2,3,7,8-tetrachloro dibenzo-p-dioxin-like activity (TCDD-EQ) using the H4IIE rat hepatoma cell bioassay. Overall, pesticide concentrations were greatest in fish from lower CRB sites and elemental concentrations were greatest in fish from upper CRB sites. These patterns reflected land uses. Lead (Pb) concentrations in fish from the Columbia River at Northport and Grand Coulee, Washington (WA) exceeded fish and wildlife toxicity thresholds (>0.4 microg/g). Selenium (Se) concentrations in fish from the Salmon River at Riggins, Idaho (ID), the Columbia River at Vernita Bridge, WA, and the Yakima River at Granger, WA exceeded toxicity thresholds for piscivorous wildlife (>0.6 microg/g). Mercury (Hg) concentrations in fish were elevated throughout the basin but were greatest (>0.4 microg/g) in predatory fish from the Salmon River at Riggins, ID, the Yakima River at Granger, WA, and the Columbia River at Warrendale, Oregon (OR). Residues of p,p'-DDE were greatest (>0.8 microg/g) in fish from agricultural areas of the Snake, Yakima, and Columbia River basins but were not detected in upper CRB

  17. 33 CFR 117.664 - Rainy River, Rainy Lake and their tributaries.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Rainy River, Rainy Lake and their tributaries. 117.664 Section 117.664 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Minnesota § 117.664 Rainy River...

  18. 33 CFR 117.664 - Rainy River, Rainy Lake and their tributaries.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Rainy River, Rainy Lake and their tributaries. 117.664 Section 117.664 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Minnesota § 117.664 Rainy River...

  19. 33 CFR 117.664 - Rainy River, Rainy Lake and their tributaries.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Rainy River, Rainy Lake and their tributaries. 117.664 Section 117.664 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Minnesota § 117.664 Rainy River...

  20. 33 CFR 117.664 - Rainy River, Rainy Lake and their tributaries.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Rainy River, Rainy Lake and their tributaries. 117.664 Section 117.664 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Minnesota § 117.664 Rainy River...

  1. Evaluating the conservation potential of tributaries for native fishes in the Upper Colorado River Basin

    USGS Publications Warehouse

    Laub, Brian G.; Thiede, Gary P.; Macfarlane, William W.; Budy, Phaedra

    2018-01-01

    We explored the conservation potential of tributaries in the upper Colorado River basin by modeling native fish species richness as a function of river discharge, temperature, barrier‐free length, and distance to nearest free‐flowing main‐stem section. We investigated a historic period prior to large‐scale water development and a contemporary period. In the historic period, species richness was log‐linearly correlated to variables capturing flow magnitude, particularly mean annual discharge. In the contemporary period, the log‐linear relationship between discharge and species richness was still evident but weaker. Tributaries with lower average temperature and separated from free‐flowing main‐stem sections often had fewer native species compared to tributaries with similar discharge but with warmer temperature and directly connected to free‐flowing main stems. Thus, tributaries containing only a small proportion of main‐stem discharge, especially those at lower elevations with warmer temperatures and connected to free‐flowing main stems, can support a relatively high species richness. Tributaries can help maintain viable populations by providing ecological processes disrupted on large regulated rivers, such as natural flow and temperature regimes, and may present unique conservation opportunities. Efforts to improve fish passage, secure environmental flows, and restore habitat in these tributaries could greatly contribute to conservation of native fish richness throughout the watershed.

  2. Data collection and development of a hydrodynamic and temperature model to evaluate causeway modifications at the mouth of the Yakima River

    NASA Astrophysics Data System (ADS)

    Martinez Baquero, G. F.; Furnans, J.; Hudson, C.; Magan, C.

    2012-12-01

    Management decisions on rivers and associated habitats require sound tools to identify major drivers for spatial and temporal variations of temperature and related water quality variables. 3D hydrodynamic and water quality models are key components to abstract flow dynamics in complex river systems as they allow extrapolating available observations to ungaged locations and alternative scenarios. The data collection and model development are intended to support the Mid-Columbia Fisheries Enhancement Group in conjunction with the Benton Conservation District in efforts to understand how seasonal flow patterns in the Yakima and Columbia rivers interact with the Yakima delta geometry to cause the relatively high water temperatures previously observed west of Bateman Island. These high temperatures are suspected of limiting salmonid success in the area, possibly contributing to adjustments in migration patterns and increased predation. The Environmental Fluid Dynamics Code (EFDC) and Water Quality Analysis Simulation Program (WASP) are used to model flow patterns and enable simulations of temperature distributions and water quality parameters at the confluence. Model development is supported by a bathymetric campaign in 2011 to evaluate delta geometry and to construct the EFDC domain, a sonar river survey in 2012 to measure velocity profiles and to enable model calibration, and a continuous collection of temperature and dissolved oxygen records from Level Scout probes at key locations during last year to drive water quality simulations. The current model is able to reproduce main flow features observed at the confluence and is being prepared to integrate previous and current temperature observations. The final model is expected to evaluate scenarios for the removal or alteration of the Bateman Island Causeway. Alterations to the causeway that permit water passage to the south of Bateman Island are likely to dramatically alter the water flow patterns through the Yakima

  3. Anthropogenic impacts on American eel demographics in Hudson River tributaries, New York

    USGS Publications Warehouse

    Machut, L.S.; Limburg, K.E.; Schmidt, R.E.; Dittman, D.

    2007-01-01

    Populations of American eel Anguilla rostrata along the eastern coast of North America have declined drastically for largely unknown reasons. We examined the population dynamics of American eels in six tributaries of the Hudson River, New York, to quantify their distribution and the impacts of anthropogenic stressors. With up to 155 American eels per 100 m2, tributary densities are greater than those within the main stem of the Hudson River and are among the highest reported anywhere. The predominance of small American eels (<200 mm) and wide range of ages (from young-of-year glass eels to 24-year-old yellow eels) suggest that tributaries are an important nursery area for immature American eels. However, upstream of natural and artificial barriers, American eel densities were reduced by at least a factor of 10 and condition, as measured by mass, was significantly lower. Significantly lower American eel condition was also found with increasing riparian urbanization. Density-dependent growth limitations below barriers are suggested by increased growth rates above the first tributary barrier. We suggest that (1) tributaries are important habitat for the conservation of American eels and (2) mitigation of anthropogenic stressors is vital for complete utilization of available habitat and conservation of the species. ?? Copyright by the American Fisheries Society 2007.

  4. Timing, frequency and environmental conditions associated with mainstem-tributary movement by a lowland river fish, golden perch (Macquaria ambigua).

    PubMed

    Koster, Wayne M; Dawson, David R; O'Mahony, Damien J; Moloney, Paul D; Crook, David A

    2014-01-01

    Tributary and mainstem connections represent important links for the movement of fish and other biota throughout river networks. We investigated the timing, frequency and environmental conditions associated with movements by adult golden perch (Macquaria ambigua) between the mainstem of the mid-Murray River and a tributary, the Goulburn River, in south-eastern Australia, using acoustic telemetry over four years (2007-2011). Fish were tagged and released in autumn 2007-2009 in the mid-Murray (n = 42) and lower Goulburn (n = 37) rivers within 3-6 km of the mid-Murray-lower Goulburn junction. 38% of tagged fish undertook mainstem-tributary movements, characterised mostly by temporary occupation followed by return of fish to the original capture river. Approximately 10% of tagged fish exhibited longer-term shifts between the mainstem and tributary. Movement of fish from the tributary into the mainstem occurred primarily during the spawning season and in some years coincided with the presence of golden perch eggs/larvae in drift samples in the mainstem. Many of the tributary-to-mainstem movements occurred during or soon after changes in flow. The movements of fish from the mainstem into the tributary were irregular and did not appear to be associated with spawning. The findings show that golden perch moved freely across the mainstem-tributary interface. This demonstrates the need to consider the spatial, behavioural and demographic interdependencies of aquatic fauna across geographic management units such as rivers.

  5. Timing, Frequency and Environmental Conditions Associated with Mainstem–Tributary Movement by a Lowland River Fish, Golden Perch (Macquaria ambigua)

    PubMed Central

    Koster, Wayne M.; Dawson, David R.; O’Mahony, Damien J.; Moloney, Paul D.; Crook, David A.

    2014-01-01

    Tributary and mainstem connections represent important links for the movement of fish and other biota throughout river networks. We investigated the timing, frequency and environmental conditions associated with movements by adult golden perch (Macquaria ambigua) between the mainstem of the mid-Murray River and a tributary, the Goulburn River, in south-eastern Australia, using acoustic telemetry over four years (2007–2011). Fish were tagged and released in autumn 2007–2009 in the mid-Murray (n = 42) and lower Goulburn (n = 37) rivers within 3–6 km of the mid-Murray-lower Goulburn junction. 38% of tagged fish undertook mainstem–tributary movements, characterised mostly by temporary occupation followed by return of fish to the original capture river. Approximately 10% of tagged fish exhibited longer-term shifts between the mainstem and tributary. Movement of fish from the tributary into the mainstem occurred primarily during the spawning season and in some years coincided with the presence of golden perch eggs/larvae in drift samples in the mainstem. Many of the tributary-to-mainstem movements occurred during or soon after changes in flow. The movements of fish from the mainstem into the tributary were irregular and did not appear to be associated with spawning. The findings show that golden perch moved freely across the mainstem–tributary interface. This demonstrates the need to consider the spatial, behavioural and demographic interdependencies of aquatic fauna across geographic management units such as rivers. PMID:24788137

  6. Development and Application of a Decision Support System for Water Management Investigations in the Upper Yakima River, Washington

    USGS Publications Warehouse

    Bovee, Ken D.; Waddle, Terry J.; Talbert, Colin; Hatten, James R.; Batt, Thomas R.

    2008-01-01

    The Yakima River Decision Support System (YRDSS) was designed to quantify and display the consequences of different water management scenarios for a variety of state variables in the upper Yakima River Basin, located in central Washington. The impetus for the YRDSS was the Yakima River Basin Water Storage Feasibility Study, which investigated alternatives for providing additional water in the basin for threatened and endangered fish, irrigated agriculture, and municipal water supply. The additional water supplies would be provided by combinations of water exchanges, pumping stations, and off-channel storage facilities, each of which could affect the operations of the Bureau of Reclamation's (BOR) five headwaters reservoirs in the basin. The driver for the YRDSS is RiverWare, a systems-operations model used by BOR to calculate reservoir storage, irrigation deliveries, and streamflow at downstream locations resulting from changes in water supply and reservoir operations. The YRDSS uses output from RiverWare to calculate and summarize changes at 5 important flood plain reaches in the basin to 14 state variables: (1) habitat availability for selected life stages of four salmonid species, (2) spawning-incubation habitat persistence, (3) potential redd scour, (4) maximum water temperatures, (5) outmigration for bull trout (Salvelinus confluentus) from headwaters reservoirs, (6) outmigration of salmon smolts from Cle Elum Reservoir, (7) frequency of beneficial overbank flooding, (8) frequency of damaging flood events, (9) total deliverable water supply, (10) total water supply deliverable to junior water rights holders, (11) end-of-year reservoir carryover, (12) potential fine sediment transport rates, (13) frequency of events capable of armor layer disruption, and (14) geomorphic work performed during each water year. Output of the YRDSS consists of a series of conditionally formatted scoring tables, wherein the changes to a state variable resulting from an operational

  7. Comparing the Reproductive Success of Yakima River Hatchery- and Wild-Origin Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroder, S.L.; Pearsons, T.N.; Knudsen, C.M.

    2005-05-01

    originated from wild fish returning to the upper Yakima River. When they return as adults, almost all of them will spawn naturally in the Yakima River. The offspring they produce are expected to augment the Yakima spring Chinook population. Whether such an increase will occur or how great it may be depends on two factors, the ability of hatchery fish to reproduce under natural conditions and the capacity of their offspring to survive to maturity. One of the objectives of the Yakima Fisheries Project is to determine whether the hatchery-origin adults produced by the project have experienced any reduction in their ability to reproduce under natural conditions. To accomplish that objective an observation stream was built in 2000 on the grounds of the Cle Elum Supplementation and Research Facility. Beginning in 2001 hatchery and wild spring Chinook from the upper Yakima River stock have been introduced into the stream and allowed to reproduce. Microsatellite DNA is used to establish the genetic relationships between the adults placed into the stream and fry that are produced by each population. Six populations consisting of mixtures of wild and hatchery fish have been placed into the stream. Pedigree assessments have been completed on five of them. These assessments have shown that the reproductive success in males is often twice as variable as that experienced by females. In the five populations so far examined; wild males (age 4 and 5) produced the most offspring. The success of comparable hatchery males relative to wild males ranged from 37% to 113%. Hatchery and wild males maturing as 3-yr-olds (jacks) and as 1- and 0-yr-olds (precocious males) were also used in the study populations. They were not as successful at producing offspring as the larger hatchery and wild males. During 2001 and 2002 two populations of hatchery and wild fish were placed into the observation stream each year. Each one occupied about half of the structure. In these populations wild females exhibited

  8. Distribution of agrochemicals in the lower Mississippi River and its tributaries

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.

    1990-01-01

    The Mississippi River and its tributaries drain extensive agricultural regions of the Mid-Continental United States. Millions of pounds of herbicides are applied annually in these areas to improve crop yields. Many of these compounds are transported into the river from point and nonpoint sources, and eventually are discharged into the Gulf of Mexico. Studies being conducted by the U.S. Geological Survey along the lower Mississippi River and its major tributaries, representing a 2000 km river reach, have confirmed that several triazine and acetanilide herbicides and their degradation products are ubiquitous in this riverine system. These compounds include atrazine and its degradation products desethyl and desisopropylatrazine, cyanazine, simazine, metolachlor, and alachlor and its degradation products 2-chloro-2',6'-diethylacetanilide, 2-hydroxy-2',6-diethylacetanilide and 2,6-diethylaniline. Loads of these compounds were determined at 16 different sampling stations. Stream-load calculations provided information concerning (a) conservative or nonconservative behavior of herbicides; (b) point sources or nonpoint sources; (c) validation of sampling techniques; and (d) transport past each sampling station.

  9. Low PCB concentrations observed in American eel (Anguilla rostrata) in six Hudson River tributaries

    USGS Publications Warehouse

    Limburg, K.E.; Machut, L.S.; Jeffers, P.; Schmidt, R.E.

    2008-01-01

    We analyzed 73 eels, collected in 2004 and 2005 above the head of tide in six Hudson River tributaries, for total PCBs, length, weight, age, and nitrogen stable isotope ratios (??15N). Mean total PCB concentration (wet weight basis) was 0.23 ppm ?? 0.08 (standard error), with a range of 0.008 to 5.4 ppm. A majority of eels (84) had concentrations below 0.25 ppm, and only seven eels (10%) had concentrations exceeding 0.5 ppm. Those eels with higher PCB concentrations were ???12 yr; there was a weak correlation of PCB concentration with ??15N and also with weight. Compared to recent (2003) data from the mainstem of the Hudson River estuary, these results indicate that tributaries are generally much less contaminated with PCBs. We hypothesize that those tributary eels with high PCB concentrations were relatively recent immigrants from the mainstem. Given concern over the possible adverse effects of PCBs on eel reproduction, these tributaries may serve as refugia. Therefore, providing improved access to upland tributaries may be critically important to this species. ?? 2008 Northeastern Naturalist.

  10. Supplement Analysis for Yakima/Klickitat Fisheries Project, (DOE/EIS-0169-SA-05)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Patricia R.

    2002-09-20

    Yakima/Klickitat Fisheries Project – Under the Monitoring and Evaluation Program (M&E), the domestication selection research task would be modified to include a hatchery control line, maintained entirely by spawning hatchery-origin fish. The Bonneville Power Administration is funding ongoing studies, research, and artificial production of several salmonid species in the Yakima and Klickitat river basins. BPA analyzed environmental impacts of research and supplementation projects in the Yakima basin in an Environmental Impact Statement (EIS) completed in 1996 (USDOE/BPA 1996), and in the following Supplement Analyses: DOE/EIS-0169-SA-01, completed in May 1999; DOE/EIS-0169-SA-02, completed in August 1999; DOE/EIS-0169-SA-03, completed in 2000; DOE/EIS-0169-SA-04, completedmore » in November 2000. The purpose of this Supplement Analysis is to determine if a Supplemental EIS is needed to analyze the changes proposed in the Monitoring and Evaluation program (#199506325) of the Yakima Klickitat Fisheries Project (YKFP) as reviewed in the FY 2001 Project Proposals for the Columbia River Gorge and Inter-Mountain Provinces, ISRP 2000-9 (December 1, 2000). Modifications to the M&E program are in support of the experimental acclimation, rearing and incubating activities for spring chinook.« less

  11. Translocation of Humpback Chub into tributary streams of the Colorado River: Implications for conservation of large-river fishes

    USGS Publications Warehouse

    Spurgeon, Jonathan J.; Paukert, Craig P.; Healy, Brian D.; Trammell, Melissa; Speas, Dave; Smith, Emily Omana

    2015-01-01

    The Humpback Chub Gila cypha, a large-bodied, endangered cyprinid endemic to the Colorado River basin, is in decline throughout most of its range due largely to anthropogenic factors. Translocation of Humpback Chub into tributaries of the Colorado River is one conservation activity that may contribute to the expansion of the species’ current range and eventually provide population redundancy. We evaluated growth, survival, and dispersal following translocation of approximately 900 Humpback Chub over a period of 3 years (2009, 2010, and 2011) into Shinumo Creek, a tributary stream of the Colorado River within Grand Canyon National Park. Growth and condition of Humpback Chub in Shinumo Creek were consistent among year-classes and equaled or surpassed growth estimates from both the main-stem Colorado River and the Little Colorado River, where the largest (and most stable) Humpback Chub aggregation remains. Based on passive integrated tag recoveries, 53% ( = 483/902) of translocated Humpback Chub dispersed from Shinumo Creek into the main-stem Colorado River as of January 2013, 35% leaving within 25 d following translocation. Annual apparent survival estimates within Shinumo Creek ranged from 0.22 to 0.41, but were strongly influenced by emigration. Results indicate that Shinumo Creek provides favorable conditions for growth and survival of translocated Humpback Chub and could support a new population if reproduction and recruitment occur in the future. Adaptation of translocation strategies of Humpback Chub into tributary streams ultimately may refine the role translocation plays in recovery of the species.

  12. The effects of increased stream temperatures on juvenile steelhead growth in the Yakima River Basin based on projected climate change scenarios

    USGS Publications Warehouse

    Hardiman, Jill M.; Mesa, Matthew G.

    2013-01-01

    Stakeholders within the Yakima River Basin expressed concern over impacts of climate change on mid-Columbia River steelhead (Oncorhynchus mykiss), listed under the Endangered Species Act. We used a bioenergetics model to assess the impacts of changing stream temperatures—resulting from different climate change scenarios—on growth of juvenile steelhead in the Yakima River Basin. We used diet and fish size data from fieldwork in a bioenergetics model and integrated baseline and projected stream temperatures from down-scaled air temperature climate modeling into our analysis. The stream temperature models predicted that daily mean temperatures of salmonid-rearing streams in the basin could increase by 1–2°C and our bioenergetics simulations indicated that such increases could enhance the growth of steelhead in the spring, but reduce it during the summer. However, differences in growth rates of fish living under different climate change scenarios were minor, ranging from about 1–5%. Because our analysis focused mostly on the growth responses of steelhead to changes in stream temperatures, further work is needed to fully understand the potential impacts of climate change. Studies should include evaluating changing stream flows on fish activity and energy budgets, responses of aquatic insects to climate change, and integration of bioenergetics, population dynamics, and habitat responses to climate change.

  13. Water Quality of the Snake River and Five Eastern Tributaries in the Upper Snake River Basin, Grand Teton National Park, Wyoming, 1998-2002

    USGS Publications Warehouse

    Clark, Melanie L.; Sadler, Wilfrid J.; O'Ney, Susan E.

    2004-01-01

    To address water-resource management objectives of the National Park Service in Grand Teton National Park, the U.S. Geological Survey in cooperation with the National Park Service has conducted water-quality sampling in the upper Snake River Basin. Routine sampling of the Snake River was conducted during water years 1998-2002 to monitor the water quality of the Snake River through time. A synoptic study during 2002 was conducted to supplement the routine Snake River sampling and establish baseline water-quality conditions of five of its eastern tributaries?Pilgrim Creek, Pacific Creek, Buffalo Fork, Spread Creek, and Ditch Creek. Samples from the Snake River and the five tributaries were collected at 12 sites and analyzed for field measurements, major ions and dissolved solids, nutrients, selected trace metals, pesticides, and suspended sediment. In addition, the eastern tributaries were sampled for fecal-indicator bacteria by the National Park Service during the synoptic study. Major-ion chemistry of the Snake River varies between an upstream site above Jackson Lake near the northern boundary of Grand Teton National Park and a downstream site near the southern boundary of the Park, in part owing to the inputs from the eastern tributaries. Water type of the Snake River changes from sodium bicarbonate at the upstream site to calcium bicarbonate at the downstream site. The water type of the five eastern tributaries is calcium bicarbonate. Dissolved solids in samples collected from the Snake River were significantly higher at the upstream site (p-value<0.001), where concentrations in 43 samples ranged from 62 to 240 milligrams per liter, compared to the downstream site where concentrations in 33 samples ranged from 77 to 141 milligrams per liter. Major-ion chemistry of Pilgrim Creek, Pacific Creek, Buffalo Fork, Spread Creek, and Ditch Creek generally did not change substantially between the upstream sites near the National Park Service boundary with the National

  14. 33 CFR 334.450 - Cape Fear River and tributaries at Sunny Point Army Terminal, Brunswick County, N.C.; restricted...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Cape Fear River and tributaries... AND RESTRICTED AREA REGULATIONS § 334.450 Cape Fear River and tributaries at Sunny Point Army Terminal, Brunswick County, N.C.; restricted area. (a) The area. That portion of Cape Fear River due west of the main...

  15. Effects of Domestication on Predation Mortality and Competitive Dominance; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearsons, Todd N.; Fritts, Anthony L.; Scott, Jennifer L.

    2005-05-01

    Fisheries Project is studying the effects of domestication on a variety of adult and juvenile traits of spring chinook salmon (Busack et al. 2003). The overall experimental design is to compare a variety of traits, across generations, from three lines of Yakima basin chinook, a hatchery control, supplementation line, and a wild control. The hatchery line was derived from wild upper Yakima broodstock and is only allowed to spawn in the hatchery. The supplementation line is upper Yakima stock that spawns in the upper Yakima River. This stock is an integration of wild and hatchery supplementation fish. Starting in 2005, we plan to use a wild control line of fish that will be the offspring of wild broodstock collected in the Naches River system, a tributary to the Yakima River. The Naches River is not stocked with hatchery fish, and there is minimal stray from Upper Yakima supplementation, so we believe that these will serve as a control to compare any genotypic changes in the hatchery and the supplementation line. As generations of fish are tested, we believe we will be able to analyze the data using an analysis of covariance to test the hypothesis that the hatchery line will exhibit greater domestication over generations, the wild line will remain at baseline levels, and the supplementation line will be somewhere in between. In this report, we have used the terms ''hatchery'' or ''supplementation'' to refer to upper Yakima fish that are progeny of fish that spent one generation in the hatchery, and ''wild'' to refer to fish that have had no exposure to the hatchery other than the matings for this experiment. The terms are relative to the parents that produced the fish for these experiments. All progeny of these fish were mated and reared under the same laboratory conditions. This report addresses two juvenile traits: predation mortality, and competitive dominance. Other traits will be presented in other project reports. It is anticipated that it will take at least two to five

  16. Channel planform change and detachment of tributary: A study on the Haora and Katakhal Rivers, Tripura, India

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Shreya; Saha, Sushmita; Ghosh, Kapil; Kumar De, Sunil

    2013-07-01

    The main objective of the paper is to find the probable causes behind the shifting course of the Haora River, one of the major rivers of West Tripura and detachment of one of its major tributaries, the Katakhal River. From a recent satellite image, we observed that the River Haora has changed its course drastically near the confluence. Earlier, it used to take a sharp northward bend to meet with the River Titas immediately after crossing the Indo-Bangladesh border; but presently it is flowing westward to do so. Moreover, the Katakhal River, a right bank tributary of the River Haora, that used to flow through the northern side of the city of Agartala and meet with the River Haora at Bangladesh, is no longer a tributary of the Haora River. Now it is completely detached from the Haora River and meets with the River Titas separately. Spatiotemporal maps have been used to detect the changes. Field investigation, with the help of GPS, has been done in order to find the link between the Haora River and the Katakhal River within the Indian territory. Changing patterns of the Haora and Katakhal River confluences are also analysed, and earlier courses are identified. The shifting trends of both of these two rivers are found along the flanks of the interfluvial area because of microscale tectonic activity, i.e., upliftment of the interfluvial zone.

  17. Fecal-indicator bacteria in the Allegheny, Monongahela, and Ohio Rivers and selected tributaries, Allegheny County, Pennsylvania, 2001-2005

    USGS Publications Warehouse

    Buckwalter, Theodore F.; Zimmerman, Tammy M.; Fulton, John W.

    2006-01-01

    Concentrations of fecal-indicator bacteria were determined in 1,027 water-quality samples collected from July 2001 through August 2005 during dry- (72-hour dry antecedent period) and wet-weather (48-hour dry antecedent period and at least 0.3 inch of rain in a 24-hour period) conditions in the Allegheny, Monongahela, and Ohio Rivers (locally referred to as the Three Rivers) and selected tributaries in Allegheny County. Samples were collected at five sampling sites on the Three Rivers and at eight sites on four tributaries to the Three Rivers having combined sewer overflows. Water samples were analyzed for three fecal-indicator organisms fecal coliform, Escherichia coli (E. coli), and enterococci bacteria. Left-bank and right-bank surface-water samples were collected in addition to a cross-section composite sample at each site. Concentrations of fecal coliform, E. coli, and enterococci were detected in 98.6, 98.5, and 87.7 percent of all samples, respectively. The maximum fecal-indicator bacteria concentrations were collected from Sawmill Run, a tributary to the Ohio River; Sawmill Run at Duquesne Heights had concentrations of fecal coliform, E. coli, and enterococci of 410,000, 510,000, and 180,000 col/100 mL, respectively, following a large storm. The samples collected in the Three Rivers and selected tributaries frequently exceeded established recreational standards and criteria for bacteria. Concentrations of fecal coliform exceeded the Pennsylvania water-quality standard (200 col/100 mL) in approximately 63 percent of the samples. Sample concentrations of E. coli and enterococci exceeded the U.S. Environmental Protection Agency (USEPA) water-quality criteria (235 and 61 col/100 mL, respectively) in about 53 and 47 percent, respectively, of the samples. Fecal-indicator bacteria were most strongly correlated with streamflow, specific conductance, and turbidity. These correlations most frequently were observed in samples collected from tributary sites. Fecal

  18. Spawning and nursery habitats of neotropical fish species in the tributaries of a regulated river

    USGS Publications Warehouse

    Makrakis, Maristela Cavicchioli; da Silva, Patrícia S.; Makrakis, Sergio; de Lima, Ariane F.; de Assumpção, Lucileine; de Paula, Salete; Miranda, Leandro E.; Dias, João Henrique Pinheiro

    2012-01-01

    This chapter provides information on ontogenetic patterns of neotropical fish species distribution in tributaries (Verde, Pardo, Anhanduí, and Aguapeí rivers) of the Porto Primavera Reservoir, in the heavily dammed Paraná River, Brazil, identifying key spawning and nursery habitats. Samplings were conducted monthly in the main channel of rivers and in marginal lagoons from October through March during three consecutive spawning seasons in 2007-2010. Most species spawn in December especially in Verde River. Main river channels are spawning habitats and marginal lagoons are nursery areas for most fish, mainly for migratory species. The tributaries have high diversity of larvae species: a total of 56 taxa representing 21 families, dominated by Characidae. Sedentary species without parental care are more abundant (45.7%), and many long-distance migratory fish species are present (17.4%). Migrators included Prochilodus lineatus, Rhaphiodon vulpinus, Hemisorubim platyrhynchos, Pimelodus maculatus, Pseudoplatystoma corruscans, Sorubim lima, two threatened migratory species: Salminus brasiliensis and Zungaro jahu, and one endangered migratory species: Brycon orbignyanus. Most of these migratory species are vital to commercial and recreational fishing, and their stocks have decreased drastically in the last decades, attributed to habitat alteration, especially impoundments. The fish ladder at Porto Primavera Dam appears to be playing an important role in re-establishing longitudinal connectivity among critical habitats, allowing ascent to migratory fish species, and thus access to upstream reaches and tributaries. Establishment of Permanent Conservation Units in tributaries can help preserve habitats identified as essential spawning and nursery areas, and can be key to the maintenance and conservation of the fish species in the Paraná River basin.

  19. Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearsons, Todd N.; Thomas, Joan B.

    2003-01-01

    The change in pathogens prevalence to wild fish is probably the least studied ecological interaction associated with hatchery operations. In 1999, the Cle Elum Hatchery began releasing spring chinook smolts into the upper Yakima River to increase natural production. Part of the evaluation of this program is to evaluate whether introduction of hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. Approximately 200 smolts were collected at the Chandler smolt collection facility on the lower Yakimamore » River during 1998, 2000 and 2001 and monitored for specific pathogens. The pathogens monitored were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. In addition, the fish were tested for Ceratomyxa shasta spores in 2001. Not all testing has been completed for every year, but to date, there have only been minimal changes in levels of the bacterial pathogens in the naturally produced smolts. At this point, due to the limited testing so far, these changes are attributed to normal fluctuation of prevalence.« less

  20. Organochlorine pesticide residues in bed sediments of the San Joaquin River and its tributary streams, California

    USGS Publications Warehouse

    Gilliom, R.J.; Clifton, D.G.

    1987-01-01

    The distribution and concentrations of organochlorine pesticide residues in bed sediments were assessed from samples collected at 24 sites in the San Joaquin River and its tributaries in the San Joaquin Valley, California. Sampling was designed to collect the finest grained bed sediments present in the vicinity of each site. One or more of the 14 pesticides analyzed were detected at every site. Pesticides detected at one or more sites were chlordane, DDD, DDE, DDT, dieldrin, endosulfan, mirex, and toxaphene. Pesticides not detected were endrin, heptachlor, heptachlor epoxide, lindane, methoxychlor, and perthane. The most frequently detected pesticides were DDD (83% of sites), DDE (all sites), DDT (33% of sites), and dieldrin (58% of sites). Maximum concentrations of these pesticides, which were correlated with each other and with the amount of organic carbon in the sample, were DDD, 260 micrograms/kg; DDE, 430 micrograms/kg; DDT, 420 micrograms/kg; and dieldrin, 8.9 micrograms/kg. Six small tributary streams that drain agricultural areas west of the San Joaquin River had the highest concentrations. Water concentrations and loads were estimated for each pesticide from its concentration in bed sediments, the concentration of suspended sediment, and streamflow. Estimated loadings of DDD, DDE, DDT, and dieldrin from tributaries to the San Joaquin River indicate that most of the loading to the river at the time of the study was probably from the westside tributaries. Estimated water concentrations exceeded the aquatic life criterion for the sum of DDD, DDE, and DDt of 0.001 microgram/L at nine of the 24 sites sampled. Five of the nine sites are westside tributaries and one is the San Joaquin River near Vernalis. (Author 's abstract)

  1. 33 CFR 334.475 - Brickyard Creek and tributaries and the Broad River at Beaufort, SC.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and the Broad River at Beaufort, SC. 334.475 Section 334.475 Navigation and Navigable Waters CORPS OF....475 Brickyard Creek and tributaries and the Broad River at Beaufort, SC. (a) The areas: (1) That...°. (9) (Laurel Bay Military Family Housing Area, Broad River). That section of the Broad River...

  2. 33 CFR 334.475 - Brickyard Creek and tributaries and the Broad River at Beaufort, SC.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and the Broad River at Beaufort, SC. 334.475 Section 334.475 Navigation and Navigable Waters CORPS OF....475 Brickyard Creek and tributaries and the Broad River at Beaufort, SC. (a) The areas: (1) That...°. (9) (Laurel Bay Military Family Housing Area, Broad River). That section of the Broad River...

  3. 33 CFR 334.475 - Brickyard Creek and tributaries and the Broad River at Beaufort, SC.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and the Broad River at Beaufort, SC. 334.475 Section 334.475 Navigation and Navigable Waters CORPS OF....475 Brickyard Creek and tributaries and the Broad River at Beaufort, SC. (a) The areas: (1) That...°. (9) (Laurel Bay Military Family Housing Area, Broad River). That section of the Broad River...

  4. 33 CFR 334.475 - Brickyard Creek and tributaries and the Broad River at Beaufort, SC.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and the Broad River at Beaufort, SC. 334.475 Section 334.475 Navigation and Navigable Waters CORPS OF....475 Brickyard Creek and tributaries and the Broad River at Beaufort, SC. (a) The areas: (1) That...°. (9) (Laurel Bay Military Family Housing Area, Broad River). That section of the Broad River...

  5. 33 CFR 334.475 - Brickyard Creek and tributaries and the Broad River at Beaufort, SC.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and the Broad River at Beaufort, SC. 334.475 Section 334.475 Navigation and Navigable Waters CORPS OF....475 Brickyard Creek and tributaries and the Broad River at Beaufort, SC. (a) The areas: (1) That...°. (9) (Laurel Bay Military Family Housing Area, Broad River). That section of the Broad River...

  6. A Synoptic Survey of Nitrogen and Phosphorus in Tributary Streams and Great Rivers of the Upper Mississippi River Basin

    EPA Science Inventory

    We combined stream chemistry and hydrology data from surveys of 467 tributary stream sites and 447 great river sites in the Upper Mississippi River basin to provide a regional snapshot of baseflow total nitrogen (TN) and total phosphorus (TP) concentrations, and to investigate th...

  7. 2. 3/4 VIEW OF NACHES RIVER BRIDGE, LOOKING SOUTHWEST (BURLINGTON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. 3/4 VIEW OF NACHES RIVER BRIDGE, LOOKING SOUTHWEST (BURLINGTON NORTHERN RAILROAD BRIDGE ON EXTREME LEFT) - Yakima Valley Transportation Company Interurban Railroad, Naches River Bridge, Yakima, Yakima County, WA

  8. Water quality of the Fox River and four tributaries in Green Lake County, Wisconsin, 2001-2002

    USGS Publications Warehouse

    Graczyk, David J.; Garn, Herbert S.

    2003-01-01

    The purpose of this report is to summarize the water-quality data collected on the Fox River and its tributaries in Green Lake County, Wisconsin, from November 2001 through August 2002. The goals of the project were to (1) determine the current water quality of the Fox River and selected main tributaries in Green Lake County, (2) assess the spacial variation of the water-quality conditions of the main Fox River reach, and (3) build on the quantitative data base so that future monitoring can help detect and evaluate improving or declining water-quality conditions objectively.

  9. Yakima basalt of the Tieton River area, south-central Washington

    USGS Publications Warehouse

    Swanson, Donald A.

    1967-01-01

    The basalts are warped into five nearly west-trending folds and an eastward-sloping homocline. The homocline is related directly to Cascade uplift, which may have begun at about the time that Yakima-type flows ceased flooding the area.

  10. Contrasting biogeochemical characteristics of right-bank tributaries of the Oubangui River, and a comparison with the mainstem river (Congo basin, Central African Republic).

    NASA Astrophysics Data System (ADS)

    Bouillon, Steven; Yambélé, Athanase; Gillikin, David P.; Teodoru, Cristian; Darchambeau, François; Lambert, Thibault; Borges, Alberto V.

    2014-05-01

    The Oubangui is a major right-bank tributary of the Congo River, draining an area of ~500,000 km² of mainly wooded savannahs. Here, we describe data on the physico-chemical characteristics and biogeochemistry of contrasting tributaries within the central Oubangui catchment collected during 3 field surveys between 2010 and 2012, with land use ranging from wooded savannahs to humid tropical rainforest. Compared to data from two years of sampling at high temporal resolution on the mainstem river in Bangui (Central African Republic), these tributaries show a remarkably wide range of biogeochemical signatures, from highly diluted blackwaters (low turbidity, pH, conductivity and total alkalinity (TA)) in rivers draining dense rainforests to those more typical for (sub)tropical savannah systems. Based on carbon stable isotope data (δ13C), the majority of sites show a corresponding dominance of C3-derived organic matter, with a tendency for increased C4 contributions the more turbid sites such as the Mpoko River. δ13C of dissolved organic carbon (DOC) were generally similar to those of particulate organic carbon (POC) across the different tributaries. δ13C of dissolved inorganic carbon (DIC) ranged between -28.1 ‰ in low-TA rainforest (blackwater) rivers to -5.8 ‰ in the mainstem Oubangui. These variations were strongly correlated to both partial pressure of CO2 (pCO2) and to the estimated contribution of carbonate weathering to total alkalinity, suggesting an important control of the dominant weathering regime (silicate versus carbonate weathering) on DIC and CO2 fluxes. All tributaries were consistently oversaturated in dissolved greenhouse gases (CH4, N2O, and CO2) with respect to atmospheric equilibrium, with highest levels observed in rivers draining rainforest vegetation. The high diversity observed within this subcatchment of the Congo River basin is equivalent to that observed in much larger, heterogeneous catchments, and underscores the importance of

  11. Northern Great Plains Network water quality monitoring design for tributaries to the Missouri National Recreational River

    USGS Publications Warehouse

    Rowe, Barbara L.; Wilson, Stephen K.; Yager, Lisa; Wilson, Marcia H.

    2013-01-01

    The National Park Service (NPS) organized more than 270 parks with important natural resources into 32 ecoregional networks to conduct Inventory and Monitoring (I&M) activities for assessment of natural resources within park units. The Missouri National Recreational River (NRR) is among the 13 parks in the NPS Northern Great Plain Network (NGPN). Park managers and NGPN staff identified surface water resources as a high priority vital sign to monitor in park units. The objectives for the Missouri NRR water quality sampling design are to (1) assess the current status and long-term trends of select water quality parameters; and (2) document trends in streamflow at high-priority stream systems. Due to the large size of the Missouri River main stem, the NGPN water quality design for the Missouri NRR focuses on wadeable tributaries within the park unit. To correlate with the NGPN water quality protocols, monitoring of the Missouri NRR consists of measurement of field core parameters including dissolved oxygen, pH, specific conductance, and temperature; and streamflow. The purpose of this document is to discuss factors examined for selection of water quality monitoring on segments of the Missouri River tributaries within the Missouri NRR.Awareness of the complex history of the Missouri NRR aids in the current understanding and direction for designing a monitoring plan. Historical and current monitoring data from agencies and entities were examined to assess potential NGPN monitoring sites. In addition, the U.S. Environmental Protection Agency 303(d) list was examined for the impaired segments on tributaries to the Missouri River main stem. Because major tributaries integrate water quality effects from complex combinations of land use and environmental settings within contributing areas, a 20-mile buffer of the Missouri NRR was used to establish environmental settings that may impact the water quality of tributaries that feed the Missouri River main stem. For selection of

  12. Concentrations and loads of suspended sediment and nutrients in surface water of the Yakima River basin, Washington, 1999-2000 [electronic resource] : with an analysis of trends in concentrations

    USGS Publications Warehouse

    Ebbert, James C.; Embrey, Sandra S.; Kelley, Janet A.

    2003-01-01

    Spatial and temporal variations in concentrations and loads of suspended sediment and nutrients in surface water of the Yakima River Basin were assessed using data collected during 1999?2000 as part of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program. Samples were collected at 34 sites located throughout the Basin in August 1999 using a Lagrangian sampling design, and also were collected weekly and monthly from May 1999 through January 2000 at three of the sites. Nutrient and sediment data collected at various time intervals from 1973 through 2001 by the USGS, Bureau of Reclamation, Washington State Department of Ecology, and Roza-Sunnyside Board of Joint Control were used to assess trends in concentrations. During irrigation season (mid-March to mid-October), concentrations of suspended sediment and nutrients in the Yakima River increase as relatively pristine water from the forested headwaters moves downstream and mixes with discharges from streams, agricultural drains, and wastewater treatment plants. Concentrations of nutrients also depend partly on the proportions of mixing between river water and discharges: in years of ample water supply in headwater reservoirs, more water is released during irrigation season and there is more dilution of nutrients discharged to the river downstream. For example, streamflow from river mile (RM) 103.7 to RM 72 in August 1999 exceeded streamflow in July 1988 by a factor of almost 2.5, but loads of total nitrogen and phosphorus discharged to the reach from streams, drains, and wastewater treatment plants were only 1.2 and 1.1 times larger. In years of ample water supply, canal water, which is diverted from either the Yakima or Naches River, makes up more of the flow in drains and streams carrying agricultural return flows. The canal water dilutes nutrients (especially nitrate) transported to the drains and streams in runoff from fields and in discharges from subsurface field drains and the

  13. Assessing climate-change risks to cultural and natural resources in the Yakima River Basin, Washington, USA

    USGS Publications Warehouse

    Hatten, James R.; Waste, Stephen M.; Maule, Alec G.

    2014-01-01

    We provide an overview of an interdisciplinary special issue that examines the influence of climate change on people and fish in the Yakima River Basin, USA. Jenni et al. (2013) addresses stakeholder-relevant climate change issues, such as water availability and uncertainty, with decision analysis tools. Montag et al. (2014) explores Yakama Tribal cultural values and well-being and their incorporation into the decision-making process. Graves and Maule (2012) simulates effects of climate change on stream temperatures under baseline conditions (1981–2005) and two future climate scenarios (increased air temperature of 1 °C and 2 °C). Hardiman and Mesa (2013) looks at the effects of increased stream temperatures on juvenile steelhead growth with a bioenergetics model. Finally, Hatten et al. (2013) examines how changes in stream flow will affect salmonids with a rule-based fish habitat model. Our simulations indicate that future summer will be a very challenging season for salmonids when low flows and high water temperatures can restrict movement, inhibit or alter growth, and decrease habitat. While some of our simulations indicate salmonids may benefit from warmer water temperatures and increased winter flows, the majority of simulations produced less habitat. The floodplain and tributary habitats we sampled are representative of the larger landscape, so it is likely that climate change will reduce salmonid habitat potential throughout particular areas of the basin. Management strategies are needed to minimize potential salmonid habitat bottlenecks that may result from climate change, such as keeping streams cool through riparian protection, stream restoration, and the reduction of water diversions. An investment in decision analysis and support technologies can help managers understand tradeoffs under different climate scenarios and possibly improve water and fish conservation over the next century.

  14. Design of a sediment-monitoring gaging network on ephemeral tributaries of the Colorado River in Glen, Marble, and Grand Canyons, Arizona

    USGS Publications Warehouse

    Griffiths, Ronald E.; Topping, David J.; Anderson, Robert S.; Hancock, Gregory S.; Melis, Theodore S.

    2014-01-01

    Management of sediment in rivers downstream from dams requires knowledge of both the sediment supply and downstream sediment transport. In some dam-regulated rivers, the amount of sediment supplied by easily measured major tributaries may overwhelm the amount of sediment supplied by the more difficult to measure lesser tributaries. In this first class of rivers, managers need only know the amount of sediment supplied by these major tributaries. However, in other regulated rivers, the cumulative amount of sediment supplied by the lesser tributaries may approach the total supplied by the major tributaries. The Colorado River downstream from Glen Canyon has been hypothesized to be one such river. If this is correct, then management of sediment in the Colorado River in the part of Glen Canyon National Recreation Area downstream from the dam and in Grand Canyon National Park may require knowledge of the sediment supply from all tributaries. Although two major tributaries, the Paria and Little Colorado Rivers, are well documented as the largest two suppliers of sediment to the Colorado River downstream from Glen Canyon Dam, the contributions of sediment supplied by the ephemeral lesser tributaries of the Colorado River in the lowermost Glen Canyon, and Marble and Grand Canyons are much less constrained. Previous studies have estimated amounts of sediment supplied by these tributaries ranging from very little to almost as much as the amount supplied by the Paria River. Because none of these previous studies relied on direct measurement of sediment transport in any of the ephemeral tributaries in Glen, Marble, or Grand Canyons, there may be significant errors in the magnitudes of sediment supplies estimated during these studies. To reduce the uncertainty in the sediment supply by better constraining the sediment yield of the ephemeral lesser tributaries, the U.S. Geological Survey Grand Canyon Monitoring and Research Center established eight sediment-monitoring gaging

  15. Suspended Sediment Loads and Tributary Inputs in the Mississippi River below St. Louis, MO, 1990-2013 Compared With Earlier Results

    NASA Astrophysics Data System (ADS)

    Allison, M. A.; Biedenharn, D. S.; Dahl, T. A.; Kleiss, B.; Little, C. D.

    2017-12-01

    Annual suspended sediment loads and water discharges were calculated in the Mississippi River mainstem channel, and at the most downstream gaging station for major tributaries, from below the Missouri confluence near St. Louis, MO to Belle Chasse, LA, as well as down the Atchafalaya distributary for water years 1990 to 2013. The purpose of the present study was to assess changes in the Mississippi River sediment budget over the past half century, and to examine the continuing role that anthropogenic (e.g., dams, river control works, soil conservation practices) and natural (e.g., rainfall and denudation rates) factors have in controlling these changes. Sixteen of the 17 measured Mississippi River tributaries decreased in total suspended sediment load) from 1970-1978 to 1990-2013. The largest decreases occurred in the 2nd (Ohio River, 41% of 1970-1978) and 4th (Arkansas River, 45% of 1970-1978) largest water sources to the Mississippi. The Missouri River remains the largest Mississippi River tributary in terms of average annual suspended sediment flux; its relative contribution increased from 38% to 51% of the total flux from the 17 measured tributaries, even as its total suspended flux declined by 13%. Averaged over the period of study (WY 1990-2013), water flux increased by 468% and sediment flux increased by 37,418% downstream from the Gavin's Point Dam to the confluence with the Mississippi. Possible reasons for this disproportional increase in suspended sediment load downstream include sediment-rich contributions from 2nd order rivers below the dams and channel incision. Suggested station improvements to the system include improved monitoring of the Upper Mississippi and Arkansas River tributaries, establishing additional mainstem stations in the reach between Thebes, IL and Arkansas City, AR, and standardization of laboratory and field methodologies to eliminate a major source of station-to-station and time-series variability in the sediment budgeting.

  16. Congruent Bifurcation Angles in River Delta and Tributary Channel Networks

    NASA Astrophysics Data System (ADS)

    Coffey, Thomas S.; Shaw, John B.

    2017-11-01

    We show that distributary channels on river deltas exhibit a mean bifurcation angle that can be understood using theory developed in tributary channel networks. In certain cases, tributary network bifurcation geometries have been demonstrated to be controlled by diffusive groundwater flow feeding incipient bifurcations, producing a characteristic angle of 72∘. We measured 25 unique distributary bifurcations in an experimental delta and 197 bifurcations in 10 natural deltas, yielding a mean angle of 70.4∘±2.6∘ (95% confidence interval) for field-scale deltas and a mean angle of 68.3∘±8.7∘ for the experimental delta, consistent with this theoretical prediction. The bifurcation angle holds for small scales relative to channel width length scales. Furthermore, the experimental data show that the mean angle is 72∘ immediately after bifurcation initiation and remains relatively constant over significant time scales. Although distributary networks do not mirror tributary networks perfectly, the similar control and expression of bifurcation angles suggests that additional morphodynamic insight may be gained from further comparative study.

  17. Surface-water-quality assessment of the Yakima River basin, Washington; distribution of pesticides and other organic compounds in water, sediment, and aquatic biota, 1987-91; with a section on dissolved organic carbon in the Yakima River basin

    USGS Publications Warehouse

    Rinella, Joseph F.; McKenzie, Stuart W.; Crawford, J. Kent; Foreman, William T.; Fuhrer, Gregory J.; Morace, Jennifer L.; Aiken, George R.

    1999-01-01

    During 1987-91, chemical data were collected for pesticides and other organic compounds in surface water, streambed sediment, suspended sediment, agricultural soil, and aquatic biota to determine the occurrence, distribution, transport, and fate of organic compounds in the Yakima River basin in Washington. The report describes the chemical and physical properties of the compounds most frequently detected in the water column; organochlorine compounds including DDT, organophosphorus compounds, thiocarbamate and sulfite compounds, acetamide and triazine compounds, and chlorophenoxy-acetic acid and benzoic compounds. Concentrations are evaluated relative to chronic-toxicity water quality criteria and guidelines for the protection of human health and freshwater aquatic life.

  18. Nitrate in the Mississippi River and its tributaries, 1980 to 2008: Are we making progress?

    USGS Publications Warehouse

    Sprague, Lori A.; Hirsch, Robert M.; Aulenbach, Brent T.

    2011-01-01

    Changes in nitrate concentration and flux between 1980 and 2008 at eight sites in the Mississippi River basin were determined using a new statistical method that accommodates evolving nitrate behavior over time and produces flow-normalized estimates of nitrate concentration and flux that are independent of random variations in streamflow. The results show that little consistent progress has been made in reducing riverine nitrate since 1980, and that flow-normalized concentration and flux are increasing in some areas. Flow-normalized nitrate concentration and flux increased between 9 and 76% at four sites on the Mississippi River and a tributary site on the Missouri River, but changed very little at tributary sites on the Ohio, Iowa, and Illinois Rivers. Increases in flow-normalized concentration and flux at the Mississippi River at Clinton and Missouri River at Hermann were more than three times larger than at any other site. The increases at these two sites contributed much of the 9% increase in flow-normalized nitrate flux leaving the Mississippi River basin. At most sites, concentrations increased more at low and moderate streamflows than at high streamflows, suggesting that increasing groundwater concentrations are having an effect on river concentrations.

  19. Copper, cadmium, and zinc concentrations in aquatic food chains from the Upper Sacramento River (California) and selected tributaries

    USGS Publications Warehouse

    Saiki, M.K.; Castleberry, D. T.; May, T. W.; Martin, B.A.; Bullard, F. N.

    1995-01-01

    Metals enter the Upper Sacramento River above Redding, California, primarily through Spring Creek, a tributary that receives acid-mine drainage from a US EPA Superfund site known locally as Iron Mountain Mine. Waterweed (Elodea canadensis) and aquatic insects (midge larvae, Chironomidae; and mayfly nymphs, Ephemeroptera) from the Sacramento River downstream from Spring Creek contained much higher concentrations of copper (Cu), cadmium (Cd), and zinc (Zn) than did similar taxa from nearby reference tributaries not exposed to acid-mine drainage. Aquatic insects from the Sacramento River contained especially high maximum concentrations of Cu (200 mg/kg dry weight in midge larvae), Cd (23 mg/kg dry weight in mayfly nymphs), and Zn (1,700 mg/kg dry weight in mayfly nymphs). Although not always statistically significant, whole-body concentrations of Cu, Cd, and Zn in fishes (threespine stickleback, Gasterosteus aculeatus; Sacramento sucker, Catostomus occidentalis; Sacramento squawfish, Ptychocheilus grandis; and chinook salmon, Oncorhynchus tshawytasch) from the Sacramento River were generally higher than in fishes from the reference tributaries.

  20. Effects of Domestication on Predation Mortality and Competitive Dominance; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 2 of 7, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearsons, Todd N.; Fritts, Anthony L.; Scott, Jennifer L.

    2004-05-01

    studying the effects of domestication on a variety of adult and juvenile traits of spring chinook salmon (Busack et al. 2003). The overall experimental design is to compare a variety of traits, across generations, from three lines of Yakima basin chinook, a hatchery control, supplementation line, and a wild control. The hatchery line was derived from wild upper Yakima broodstock and is only allowed to spawn in the hatchery. The supplementation line is upper Yakima stock that spawns in the upper Yakima River. This stock is an integration of wild and hatchery supplementation fish. Starting in 2005, we plan to use a wild control line of fish that will be the offspring of wild broodstock collected in the Naches River system, a tributary to the Yakima River. The Naches River is not stocked with hatchery fish, and there is minimal stray from Upper Yakima supplementation, so we believe that these will serve as a control to compare any genotypic changes in the hatchery and the supplementation line. As generations of fish are tested, we believe we will be able to analyze the data using an analysis of covariance to test the hypothesis that the hatchery line will exhibit greater domestication over generations, the wild line will remain at baseline levels, and the supplementation line will be somewhere in between. In this report, we have used the terms ''hatchery'' or ''supplementation'' to refer to upper Yakima fish that are progeny of fish that spent one generation in the hatchery, and ''wild'' to refer to fish that have had no exposure to the hatchery other than the matings for this experiment. The terms are relative to the parents that produced the fish for these experiments. All progeny of these fish were mated and reared under the same laboratory conditions. This report addresses two juvenile traits: predation mortality, and competitive dominance. Other traits will be presented in other project reports. It is anticipated that it will take at least two to five generations to

  1. Linking Benthic Macroinvertebrates and Physicochemical Variables for Water Quality Assessment in Saigon River and Its Tributaries, Vietnam

    NASA Astrophysics Data System (ADS)

    Pham, A. D.

    2017-10-01

    The benthic macroinvertebrates living on the bottom channels are one of the most promising of the potential indicators of river health for the Saigon River and its tributaries with hydrochemistry playing a supporting role. An evaluation of the interrelationships within this approach deems necessary. This work identified and tested these relationships to improve the method for water quality assessment. Data from over 4,500 km2 watershed were used as a representative example for the Saigon River and its tributaries. The data covered the period March and September, 2007, 2008, 2009, 2010 and 2015. To implement this evaluation, the analyses were based on accepted the methodology of Mekong River Commission and the studies of scientific group for the biological status assessment. For correlation analyses, the selected environmental variables were compared with the ecological indices, based on benthic macroinvertebrates. The results showed that the metrics of Species Richness, H’, and 1-DS had significant and strong relationships with the water quality variables of DO, BOD5, T_N, and TP (R2 = 0.3751 - 0.8866; P << 0.05). While the metrics of Abundance of benthic macroinvertebrates did not have a statistically significant relationship with any water quality variables (R2 = 0.0000 - 0.0744; P > 0.05). Additionally, the metrics of Species Richness, H’, and 1-DS had negatively correlated with the pH and TSS. Both univariate and multivariate analyses were used to examine the ecological quality of the Saigon River and its tributaries using benthic macroinvertebrates seems to be the most sensitive indicator to correlate with physicochemical variables. This demonstrated that it could be applied to describe the water quality in the Saigon River and its tributaries.

  2. Nutrient and suspended-sediment concentrations and loads and benthic-invertebrate data for tributaries to the St. Croix River, Wisconsin and Minnesota, 1997-99

    USGS Publications Warehouse

    Lenz, Bernard N.; Robertson, Dale M.; Fallon, James D.; Ferrin, Randy

    2001-01-01

    Benthic invertebrates were sampled and indices of water quality were calculated at 16 tributaries in fall 1999. Benthic invertebrate indices indicated excellent to good water quality at all tributaries except Valley Creek, Willow River, and Kettle River. No relations were found between benthic invertebrate indices and the calculated and estimated 1999 annual tributary loads and yields.

  3. 10. VIEW OF YAKIMA VALLEY TRANSPORTATION COMPANY AND UNION PACIFIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF YAKIMA VALLEY TRANSPORTATION COMPANY AND UNION PACIFIC RAILROAD INTERCHANGE TRACKS AT YAKIMA - Yakima Valley Transportation Company Interurban Railroad, Connecting towns of Yakima, Selah & Wiley City, Yakima, Yakima County, WA

  4. Concentrations of nitrate in drinking water in the lower Yakima River Basin, Groundwater Management Area, Yakima County, Washington, 2017

    USGS Publications Warehouse

    Huffman, Raegan L.

    2018-05-29

    The U.S. Geological Survey, in cooperation with the lower Yakima River Basin Groundwater Management Area (GWMA) group, conducted an intensive groundwater sampling collection effort of collecting nitrate concentration data in drinking water to provide a baseline for future nitrate assessments within the GWMA. About every 6 weeks from April through December 2017, a total of 1,059 samples were collected from 156 wells and 24 surface-water drains. The domestic wells were selected based on known location, completion depth, ability to collect a sample prior to treatment on filtration, and distribution across the GWMA. The drains were pre-selected by the GWMA group, and further assessed based on ability to access sites and obtain a representative sample. More than 20 percent of samples from the domestic wells and 12.8 percent of drain samples had nitrate concentrations that exceeded the maximum contaminant level (MCL) of 10 milligrams per liter established by the U.S. Environmental Protection Agency. At least one nitrate concentration above the MCL was detected in 26 percent of wells and 33 percent of drains sampled. Nitrate was not detected in 13 percent of all samples collected.

  5. Yakima/Klickitat Fisheries Project Genetic Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 1 of 7, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busack, Craig A.; Frye, Alice; Kassler, Todd

    2004-05-01

    plan is included as an appendix. In chapter 5 we present a final report on computer simulations of factorial mating designs. Using three different schemes for combining breeding values of fish, we found that full factorial mating offers a substantial increase in effective size over single-pair mating. Although full factorial mating may be too difficult logistically, but a significant proportion of the full factorial mating advantage can be obtained by using 2 x 2 partial factorials. We have developed a method that allows us to determine the relative effective size advantage of mixed partial factorial designs. In chapter 6 we report on an analysis of stock origin of smolts collected at Chandler. The 702 Chinook salmon smolts collected at the Chandler trap in 2003 were screened at 12 microsatellite DNA loci. A new Yakima basin baseline, consisting of spring chinook from the upper Yakima, Naches, and American River populations and fall chinook from the Marion Drain and lower Yakima populations, was created for these same 12 loci. DNA template problems with the tissue collections from the Naches, and American River populations prompted the omission of four loci prior to analysis. The results indicated: 80% Naches spring, 13% American River spring, 7% upper Yakima spring, and less than 1% for the two fall populations combined. The estimated stock proportions in the 2003 Chandler collection differed substantially from those for the 2002 collection. The temporal pattern of sampling in both Chandler smolt collections was not proportional to the observed outmigration in each year, suggesting that both of these estimates should be regarded with caution. Strengthening of the baseline data set will be a high priority for future work with Chandler smolts.« less

  6. 11. VIEW OF YAKIMA VALLEY TRANSPORTATION COMPANY AND UNION PACIFIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF YAKIMA VALLEY TRANSPORTATION COMPANY AND UNION PACIFIC RAILROAD INTERCHANGE TRACKS AT YAKIMA, SHOWING DETAIL OF OVERHEAD WIRING - Yakima Valley Transportation Company Interurban Railroad, Connecting towns of Yakima, Selah & Wiley City, Yakima, Yakima County, WA

  7. 12. VIEW OF YAKIMA VALLEY TRANSPORTATION COMPANY AND UNION PACIFIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF YAKIMA VALLEY TRANSPORTATION COMPANY AND UNION PACIFIC RAILROAD INTERCHANGE TRACKS AT YAKIMA, SHOWING SOUTH END OF OVERHEAD WIRING TERMINATION - Yakima Valley Transportation Company Interurban Railroad, Connecting towns of Yakima, Selah & Wiley City, Yakima, Yakima County, WA

  8. The Bottomland Hardwoods of the Hatchie River, The Only Unchannelized Mississippi Tributary

    Treesearch

    Roger Steed; Edward Buckner

    2002-01-01

    Documenting the natural condition of the floodplain forests of Mississippi River tributaries becomes ever more elusive as cultural alterations continue to obscure their "original" character. The 4,532 hectare Hatchie National Wildlife Refuge (HNWR) in West Tennessee provides the best-available opportunity to document the floodplain forests that once...

  9. Two Case Studies to Quantify Resilience across Food-Energy-Water Systems: the Columbia River Treaty and Adaptation in Yakima River Basin Irrigation Systems

    NASA Astrophysics Data System (ADS)

    Malek, K.; Adam, J. C.; Richey, A.; Rushi, B. R.; Stockle, C.; Yoder, J.; Barik, M.; Lee, S. Y.; Rajagopalan, K.; Brady, M.; Barber, M. E.; Boll, J.; Padowski, J.

    2017-12-01

    The U.S. Pacific Northwest (PNW) plays a significant role in meeting agricultural and hydroelectric demands nationwide. Climatic and anthropogenic stressors, however, potentially threaten the productivity, resilience, and environmental health of the region. Our objective is to understand how resilience of each Food-Energy-Water (FEW) sector, and the combined Nexus, respond to exogenous perturbations and the extent to which technological and institutional advances can buffer these perturbations. In the process of taking information from complex integrated models and assessing resilience across FEW sectors, we start with two case studies: 1) Columbia River Treaty (CRT) with Canada that determines how multiple reservoirs in the Columbia River basin (CRB) are operated, and 2) climate change adaptation actions in the Yakima River basin (YRB). We discuss these case studies in terms of the similarities and contrasts related to FEW sectors and management complexities. Both the CRB and YBP systems are highly sensitive to climate change (they are both snowmelt-dominant) and already experience water conflict. The CRT is currently undergoing renegotiation; a new CRT will need to consider a much more comprehensive approach, e.g., treating environmental flows explicitly. The YRB also already experiences significant water conflict and thus the comprehensive Yakima Basin Integrated Plan (YBIP) is being pursued. We apply a new modeling framework that mechanistically captures the interactions between the FEW sectors to quantify the impacts of CRT and YBIP planning (as well as adaptation decisions taken by individuals, e.g., irrigators) on resilience in each sector. Proposed modification to the CRT may relieve impacts to multiple sectors. However, in the YRB, irrigators' actions to adapt to climate change (through investing in more efficient irrigation technology) could reduce downstream water availability for other users. Developing a process to quantify resilience to perturbations

  10. Water and sediment quality of the Yukon River and its tributaries, from Eagle to St. Marys, Alaska, 2002-2003

    USGS Publications Warehouse

    Dornblaser, Mark M.; Halm, Douglas R.

    2006-01-01

    The Yukon River basin is a vast and diverse ecosystem covering more than 330,000 square miles, an area larger than Texas. Approximately 126,000 people live within the basin and depend on the Yukon River and its tributaries for drinking water, commerce, and recreational and subsistence fish and game resources. Much of the Yukon River basin is underlain by permafrost containing vast amounts of organic carbon and nutrients. Recent climatic warming of the basin has resulted in lengthening of the growing season, melting of permafrost, deepening of the soil active layer, drying of upland soils, and shrinking of wetlands. These mostly terrestrial effects also affect the hydrology of the basin, changing the timing, magnitude, and fate of water and dissolved and particulate materials delivery to the Yukon River and its tributaries. As permafrost melts, stored carbon and nutrients are expected to become available for decomposition by soil organisms or for export downstream and to the Bering Sea. Such changes can have numerous, far-reaching effects on the ecosystem, including increased emission of greenhouse gases such as carbon dioxide and methane; changes in stream productivity, including salmon populations; changes in the productivity and chemistry of the Bering Sea; and increased fire frequency. One important question is whether organic carbon export to rivers will increase or decrease downstream from large wetland areas presently having substantial carbon storage, such as Yukon Flats. Because very few historical water-quality data are available for the Yukon River basin, scientists are unable to quantitatively assess potential effects of climate warming on aquatic ecosystems in the basin. In order to address these concerns, the U.S. Geological Survey conducted a comprehensive baseline water-quality characterization of the Yukon River and its major tributaries during 2000-05. The study included frequent water-quality sampling at a fixed-site network. In addition to the

  11. Suspended-sediment loads from major tributaries to the Missouri River between Garrison Dam and Lake Oahe, North Dakota, 1954-98

    USGS Publications Warehouse

    Macek-Rowland, Kathleen M.

    2000-01-01

    Annual suspended-sediment loads for water years 1954 through 1998 were estimated for the major tributaries in the Missouri River Basin between Garrison Dam and Lake Oahe in North Dakota and for the Missouri River at Garrison Dam and the Missouri River at Bismarck, N. Dak.  The major tributaries are the Knife River, Turtle Creek, Painted Woods Creek, Square Butte Creek, Burnt Creek, Heart River, and Apple Creek.  Sediment and streamflow data used to estimate the suspended-sediment loads were from selected U.S. Geological Survey streamflow-gaging stations located within each basin.  Some of the stations had no sediment data available and limited continuous streamflow data for water years 1954 through 1998.  Therefore, data from nearby streamflow-gaging stations were assumed for the calculations. The Heart River contributed the largest amount of suspended sediment to the Missouri River for 1954-98.  Annual suspended-sediment loads in the Heart River near Mandan ranged from less than 1 to 40 percent of the annual suspended-sediment load in the Missouri River. The Knife River contributed the second largest amount of suspended sediment to the Missouri River.  Annual suspended-sediment loads in the Knife River at Hazen ranged from less than 1 to 19 percent of the annual suspended-sediment load in the Missouri River.  Apple Creek, Turtle Creek, Painted Woods Creek, Square Butte Creek, and Burnt Creek all contributed 2 percent or less of the annual suspended-sediment load in the Missouri River.  The Knife River and the Heart River also had the largest average suspended-sediment yields for the seven tributaries.  The yield for the Knife River was 91.1 tons per square mile, and the yield for the Heart River was 133 tons per square mile.  The remaining five tributaries had yields of less than 24 tons per square mile based on total drainage area. 

  12. Tributary use by imperiled Flannelmouth and Bluehead Suckers in the upper Colorado River Basin

    USGS Publications Warehouse

    Fraser, Gregory S.; Winkelman, Dana L.; Bestgen, Kevin R.; Thompson, Kevin G.

    2017-01-01

    Habitat alterations and establishment of nonnative fishes have reduced the distributions of Flannelmouth Sucker Catostomus latipinnis and Bluehead Sucker C. discobolus to less than 50% of their historical ranges in the Colorado River basin. Tributaries are sometimes less altered than main-stem habitat in the basin and may be important to support various life history processes, but their role in the maintenance of Flannelmouth Sucker and Bluehead Sucker populations is poorly understood. Using mark–recapture techniques, we show tributaries are important habitat for native suckers in the upper Colorado River basin and report three main findings. First, both Flannelmouth and Bluehead suckers likely respond to a thermal cue that initiates spawning movement patterns. Suckers moved into Coal Creek from the White River beginning in mid-May of 2012 and 2013 to spawn. The majority of sucker spawning movements occurred when water temperatures in White River exceeded 11–14°C and those in Coal Creek were 2.5–4°C warmer, while flows varied between years. Second, based on PIT tag detection arrays, 13–45% of suckers showed spawning site fidelity. Sampling only with fyke nets would have resulted in the conclusion that site fidelity by native suckers was only 1–17%, because nets were less efficient at detecting marked fish. Third, most suckers of both species emigrated from Coal Creek within 48 h after being captured while suckers that were detected only via arrays remained resident for 10–12 d. The posthandling flight response we observed was not anticipated and to our knowledge has not been previously reported for these species. Remote PIT tag antenna arrays allowed for a stronger inference regarding movement and tributary use by these species than what could be achieved using just fyke nets. Tributaries are an important part of Flannelmouth Sucker and Bluehead Sucker life history and thus important to conservation strategies for these species.

  13. Paleovalley fills: Trunk vs. tributary

    USGS Publications Warehouse

    Kvale, E.P.; Archer, A.W.

    2007-01-01

    A late Mississippian-early Pennsylvanian eustatic sea level drop resulted in a complex lowstand drainage network being eroded across the Illinois Basin in the eastern United States. This drainage system was filled during the early part of the Pennsylvanian. Distinct differences can be recognized between the trunk and tributary paleovalley fills. Fills preserved within the trunk systems tend to be fluvially dominated and consist of bed-load deposits of coarse- to medium-grained sandstone and conglomerate. Conversely, the incised valleys of tributary systems tend to be filled with dark mudstone, thinly interbedded sandstones, and mudstones and siltstones. These finer grained facies exhibit marine influences manifested by tidal rhythmites, certain traces fossils, and macro- and microfauna. Examples of tributary and trunk systems, separated by no more than 7 km (4.3 mi) along strike, exhibit these styles of highly contrasting fills. Useful analogs for understanding this Pennsylvanian system include the Quaternary glacial sluiceways present in the lower Ohio, White, and Wabash river valleys of Indiana (United States) and the modern Amazon River (Brazil). Both the Amazon River and the Quaternary rivers of Indiana have (or had) trunk rivers that are (were) dominated by large quantities of bed load relative to their tributaries. The trunk valley systems of these analogs aggraded much more rapidly than their tributary valleys, which evolved into lakes because depositional rates along the trunk are (were) so high that the mouths of the tributaries have been dammed by bed-load deposits. These Holocene systems illustrate that sediment yields can significantly influence the nature of fill successions within incised valleys independent of rates of sea level changes or proximity to highstand coastlines. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  14. Bioassessment metrics and deposited sediments in tributaries of the Chattooga river watershed

    Treesearch

    Erica Chiao; J. Bruce Wallace

    2003-01-01

    Excessive sedimentation places waters of the Chattooga River network at risk of biological impairment. Monitoring efforts could be improved by including metrics that are responsive to changes in levels of fine sediments. We sampled three habitats (riffle, depositional, bedrock outcrop) for benthic macroinvertebrates at four sites in three low-order, tributary reaches...

  15. Algal and Water-Quality Data for the Yellowstone River and Tributaries, Montana and Wyoming, 1999-2000

    USGS Publications Warehouse

    Peterson, David A.

    2009-01-01

    Streams of the Yellowstone River Basin in Montana and Wyoming were sampled as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Algal communities were sampled in 1999 in conjunction with other ecological sampling and in 2000 during synoptic sampling. Water-quality measurements related to the algal sampling included light attenuation and dissolved-oxygen concentrations. Sites were sampled on the main-stem Yellowstone River, major tributaries such as the Clarks Fork Yellowstone River and the Bighorn River, and selected minor tributaries. Some of the data collected, such as the phytoplankton chlorophyll-a data, were referenced or summarized in previous U.S. Geological Survey reports but were not previously published in tabular form, and therefore are presented in this report, prepared in cooperation with the Montana Department of Environmental Quality. Data presented in this report include chlorophyll-a concentrations in phytoplankton and periphyton samples, as well as light attenuation and dissolved-oxygen production data from 1999-2000.

  16. Determination of the 100-year flood plain on Upper Three Runs and selected tributaries, and the Savannah River at the Savannah River site, South Carolina, 1995

    USGS Publications Warehouse

    Lanier, T.H.

    1996-01-01

    The 100-year flood plain was determined for Upper Three Runs, its tributaries, and the part of the Savannah River that borders the Savannah River Site. The results are provided in tabular and graphical formats. The 100-year flood-plain maps and flood profiles provide water-resource managers of the Savannah River Site with a technical basis for making flood-plain management decisions that could minimize future flood problems and provide a basis for designing and constructing drainage structures along roadways. A hydrologic analysis was made to estimate the 100-year recurrence- interval flow for Upper Three Runs and its tributaries. The analysis showed that the well-drained, sandy soils in the head waters of Upper Three Runs reduce the high flows in the stream; therefore, the South Carolina upper Coastal Plain regional-rural-regression equation does not apply for Upper Three Runs. Conse- quently, a relation was established for 100-year recurrence-interval flow and drainage area using streamflow data from U.S. Geological Survey gaging stations on Upper Three Runs. This relation was used to compute 100-year recurrence-interval flows at selected points along the stream. The regional regression equations were applicable for the tributaries to Upper Three Runs, because the soil types in the drainage basins of the tributaries resemble those normally occurring in upper Coastal Plain basins. This was verified by analysis of the flood-frequency data collected from U.S. Geological Survey gaging station 02197342 on Fourmile Branch. Cross sections were surveyed throughout each reach, and other pertinent data such as flow resistance and land-use were col- lected. The surveyed cross sections and computed 100-year recurrence-interval flows were used in a step-backwater model to compute the 100-year flood profile for Upper Three Runs and its tributaries. The profiles were used to delineate the 100-year flood plain on topographic maps. The Savannah River forms the southwestern border

  17. Water and Sediment Quality in the Yukon River and its Tributaries Between Atlin, British Columbia, Canada, and Eagle, Alaska, USA, 2004

    USGS Publications Warehouse

    Halm, Douglas R.; Dornblaser, Mark M.

    2007-01-01

    The Yukon River basin is the fourth largest watershed in North America at 831,400 square kilometers (km2). Approximately 126,000 people live within the basin and depend on the Yukon River and its tributaries for drinking water, commerce, subsistence, and recreational fish and game resources. Climate warming in the Arctic and Subarctic regions encompassing the Yukon basin has recently become a concern because of possible far-reaching effects on the ecosystem. Large amounts of carbon and nutrients are stored in permafrost and have potential for release in response to this warming. These changes in carbon and nutrient cycling may result in changes in stream chemistry and productivity, including salmon populations, and ultimately changes in the chemistry and productivity of the Bearing Sea. To address these concerns, the U.S. Geological Survey (USGS) conducted a 5-year comprehensive water-quality study of the Yukon River and its major tributaries starting in 2000. The study included frequent water-quality sampling at a fixed site network as well as intensive sampling along the Yukon River and its major tributaries. This report contains observations of water and sediment quantity and quality of the Yukon River and its tributaries in Canada during 2004. Chemical, biological, physical, and discharge data are presented for the reach of river between Atlin, British Columbia, Canada, and Eagle, Alaska, USA.

  18. Habitat relationships and larval drift of native and nonindigenous fishes in neighboring tributaries of a coastal California river

    Treesearch

    Bret C. Harvey; Jason L. White; Rodney J. Nakamoto

    2002-01-01

    Abstract - Motivated by a particular interest in the distribution of the nonindigenous, piscivorous Sacramento pikeminnow, Ptychocheilus grandis, we examined fish-habitat relationships in small tributaries (draining 20-200 km 2 )in the Eel River drainage of northwestern California.We sampled juvenile and adult fish in 15 tributaries in both the summer and...

  19. Effects of Potential Future Warming on Runoff in the Yakima River Basin, Washington

    USGS Publications Warehouse

    Mastin, Mark C.

    2008-01-01

    The Bureau of Reclamation has implemented a long-term planning study of potential water-storage alternatives in the Yakima River Basin, which includes planning for climate change effects on available water resources in the basin. Previously constructed watershed models for the Yakima River Basin were used to simulate changes in unregulated streamflow under two warmer climate scenarios, one representing a 1 degree C increase in the annual air temperature over current conditions (plus one scenario) and one representing a 2 degree C increase in the annual air temperature over current conditions (plus two scenario). Simulations were done for water years 1981 through 2005 and the results were compared to simulated unregulated runoff for the same period using recorded daily precipitation, and minimum and maximum air temperatures (base conditions). Precipitation was not altered for the two warmer climate change scenarios. Simulated annual runoff for the plus one and plus two scenarios decreased modestly from the base conditions, but the seasonal distribution and the general pattern of runoff proved to be highly sensitive to temperature changes throughout the basin. Seasonally increased runoff was simulated during the late autumn and winter months for both the plus one and plus two scenarios compared to base conditions. Comparisons at six principal regulatory locations in the basin showed that the maximum percentage increases in runoff over the base conditions during December to March varied from 24 to 48 percent for the plus one scenario and 59 to 94 percent for the plus two scenario. During late spring and summer months, significantly decreased runoff was simulated at these sites for both scenarios compared to base conditions. Simulated maximum decreases in runoff occurred during June and July, and the changes ranged from -22 to -51 percent for the plus one scenario and -44 to -76 percent for the plus two scenario. Differences in total annual runoff at these sites ranged

  20. Pesticides in surface water of the Yakima River basin, Washington, 1999-2000; their occurrence and an assessment of factors affecting concentrations and loads

    USGS Publications Warehouse

    Ebbert, James C.; Embrey, Sandra S.

    2002-03-19

    Pesticide losses, defined as the ratio of the amount discharged from a basin from May 1999 through January 2000 divided by the amount applied during 1999, were estimated for Moxee and Granger Drains and the Yakima River at Kiona. Losses ranged from less than 0.01 to 1.5 percent of pesticides applied and are comparable to those observed (0.01 to 2.2 percent) in irrigated agricultural basins in the Central Columbia Plateau of Washington State.

  1. Surface-water-quality assessment of the Yakima River Basin in Washington: Overview of major findings, 1987-91

    USGS Publications Warehouse

    Morace, Jennifer L.; Fuhrer, Gregory J.; Rinella, Joseph F.; McKenzie, Stuart W.; Gannett, Marshall W.; Bramblett, Karen L.; Pogue, Ted R.; Skach, Kenneth A.; Embrey, Sandra S.; Cuffney, Thomas F.; Meador, Michael R.; Porter, Stephen D.; Gurtz, Martin E.

    1999-01-01

    An ecological assessment of the Yakima River Basin ranked physical, chemical, and biological conditions at impaired (degraded) sites against reference sites in an effort to understand how land use changes physical and chemical site characteristics and how biota respond to these changes. For this assessment, the basin was divided into four natural ecological categories: (1) Cascades ecoregion, (2) Eastern Cascades Slopes and Foothills ecoregion, (3) Columbia Basin ecoregion, and (4) large rivers. Each of these categories has a unique combination of climate and landscape features that produces a distinctive terrestrial vegetation assemblage. In the combined Cascades and Eastern Cascades site group, which had the fewest impaired sites, the metals index was the only physical and chemical index that indicated any impairment. The moderate levels of impairment noted in the invertebrate and algal communities were not, however, associated with metals, and may have been related to the effects of logging, although the intensity of logging was not directly quantified in this study. Sites in the Columbia Basin site group were all moderately or severely impaired with the exception of the two reference sites (Umtanum Creek and Satus Creek below Dry Creek), which showed no physical, chemical, or biological impairment. Three sites were heavily affected by agriculture (Granger Drain, Moxee Drain, and Spring Creek) and were listed as severely impaired by most of the physical, chemical, and biological condition indices. Agriculture was the primary cause of the impairment of biological communities in this site group. The primary physical and chemical indicators of agricultural effects were nutrients, pesticides, dissolved solids, and substrate embeddedness, which all tended to increase with agricultural intensity. The biological effects of agriculture were manifested by a decrease in the abundance and number of native species of fish and invertebrates, a shift in algal communities to

  2. 77 FR 21526 - Eastern Washington Cascades Provincial Advisory Committee and the Yakima Provincial Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... Parks office, 270 9th Street NE., East Wenatchee, WA has been replaced with an open public meeting... Stewardship Challenge, Yakima River Basin Integrated Water Resource Management Plan, Holden Mine Remediation..., Okanogan- Wenatchee National Forest, 215 Melody Lane, Wenatchee, Washington 98801, phone 509-664-9200...

  3. Patterns of migration and residency in coastal cutthroat trout Oncorhynchus clarkii clarkii from two tributaries of the lower Columbia River

    USGS Publications Warehouse

    Zydlewski, G.B.; Zydlewski, Joseph D.; Johnson, J.

    2009-01-01

    Coastal cutthroat trout Onchorhynchus clarkii clarkii life-history variants, migration and freshwater residency were monitored using stationary passive integrated transponder (PIT) tag arrays in two tributaries of the Columbia River from 2001 to 2005 (Abernathy Creek, river kilometre, rkm 76) and from 2002 to 2005 (Chinook River, rkm 6). In 2001-2003 and 2002-2003 (Abernathy and Chinook, respectively), 300-500 coastal O. c. clarkii were captured in each tributary by electrofishing and implanted with 23 mm PIT tags. PIT arrays monitored movements from the initiation of tagging through the spring of 2005. Rotary screw traps were also operated on both tributaries. In Abernathy Creek, 28% of tagged individuals were observed through either active capture or passive interrogation. Of these, 32% were identified as migrants and 68% were identified as residents. In the Chinook River, 48% of tagged fish were observed subsequent to tagging; 92% of these fish were migrants and only 8% were resident. In both tributaries, a greater proportion of resident fish were in the upper reaches. The majority of migrants (78-93%) moved the spring following tagging. Migrants leaving at age 2+ years tended to grow faster than those that migrated at age 3+ years or residents. Patterns of growth or growth opportunities may influence both patterns of life-history expression and the timing of migration. ?? 2009 The Fisheries Society of the British Isles.

  4. Mercury Contributions from Flint Creek and other Tributaries to the Upper Clark Fork River in Northwestern Montana

    NASA Astrophysics Data System (ADS)

    Langner, H.; Young, M.; Staats, M. F.

    2013-12-01

    Methylmercury contamination in biota is a major factor diminishing the environmental quality of the Upper Clark Fork River (CFR), e.g. by triggering human consumption limits of fish. The CFR is subject to one of the largest Superfund cleanup projects in the US, but remediation and restoration is currently focused exclusively on other mining-related contaminants (As, Cu, Zn, Pb, Cd), which may be counterproductive with respect to the bio-availability of mercury, for example by creation of wetlands along mercury-contaminated reaches of the river. The identification and elimination of Hg sources is an essential step toward reducing the methylmercury exposure in the biota of the CFR watershed because a strong correlation exists between total mercury levels in river sediment and methylmercury levels in aquatic life. We analyzed duplicate samples from the top sediment layer of the main stem and significant tributaries to the Clark Fork River along a 240 km reach between Butte, MT and downstream of the Missoula Valley. Mercury concentrations were 1.3 × 1.6 (mean × SD, n = 35) in the main stem. Concentrations in tributaries varied widely (0.02 to 85 mg/kg) and seemed only loosely related to the number of historic precious metal mines in the watershed. In the upper reach of the CFR, elevated Hg levels are likely caused by residual contaminated sediments in the flood plain. Levels tend to decrease downstream until Drummond, MT, where Flint Creek contributes a significant amount of mercury, causing Hg levels in the main stem CFR to increase from 0.7 to 4 mg/kg. Levels continue to decrease downstream. Flint Creek is the single largest contributor of Hg to the CFR. Detailed sampling of the main stem Flint Creek and tributaries (26 sites) showed extremely high levels in two tributaries (22 to 85 mg/kg) where historic milling operations were located. Elimination of these point sources may be accomplished comparatively economically and may significantly reduce mercury levels in

  5. Poems of Children--Yakima Nation.

    ERIC Educational Resources Information Center

    Swanson, Robert

    The collection of poems was written for use in the Yakima Indian Reservation pre-school programs and was intended to introduce Yakima children to creative thought process at their own level with content that is part of their own world. The author spent several months observing in the Tribal Headstart Centers at three locations on the Yakima…

  6. The Land of the Yakimas.

    ERIC Educational Resources Information Center

    Pace, Robert E., Comp.

    The information booklet details the history and development of the Yakima Nation from long before contact with the white man to the present day. It describes how the food-gathering life of the early inhabitants of Washington's Yakima Valley began to change with the arrival of the Lewis and Clark Expedition in 1805. The booklet details the influx…

  7. Debris flows from tributaries of the Colorado River, Grand Canyon National Park, Arizona

    USGS Publications Warehouse

    Webb, Robert H.; Pringle, Patrick T.; Rink, Glenn R.

    1989-01-01

    A reconnaissance of 36 tributaries of the Colorado River indicates that debris flows are a major process by which sediment is transported to the Colorado River in Grand Canyon National Park. Debris flows are slurries of sediment and water that have a water content of less than about 40 percent by volume. Debris flows occur frequently in arid and semiarid regions. Slope failures commonly trigger debris flows, which can originate from any rock formation in the Grand Canyon. The largest and most frequent flows originate from the Permian Hermit Shale, the underlying Esplanade Sandstone of the Supai Group, and other formations of the Permian and Pennsylvanian Supai Group. Debris flows also occur in the Cambrian Muav Limestone and underlying Bright Angel Shale and the Quaternary basalts in the western Grand Canyon. Debris-flow frequency and magnitude were studied in detail in the Lava-Chuar Creek drainage at Colorado River mile 65.5; in the Monument Creek drainage at mile 93.5; and in the Crystal Creek drainage at mile 98.2. Debris flows have reached the Colorado River on an average of once every 20 to 30 years in the Lava-Chuar Creek drainage since about 1916. Two debris flows have reached the Colorado River in the last 25 years in Monument Creek. The Crystal Creek drainage has had an average of one debris flow reaching the Colorado River every 50 years, although the debris flow of 1966 has been the only flow that reached the Colorado River since 1900. Debris flows may actually reach the Colorado River more frequently in these drainages because evidence for all debris flows may not have been preserved in the channel-margin stratigraphy. Discharges were estimated for the peak flow of three debris flows that reached the Colorado River. The debris flow of 1966 in the Lava-Chuar Creek drainage had an estimated discharge of 4,000 cubic feet per second. The debris flow of 1984 in the Monument Creek drainage had a discharge estimated between 3,600 and 4,200 cubic feet per

  8. Sediment Budgeting in Dam-Affected Rivers: Assessing the Influence of Damming, Tributaries, and Alluvial Valley Sediment Storage on Sediment Regimes

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.; Dekker, F. J.; Riebe, C. S.

    2014-12-01

    Although sediment supply is recognized as a fundamental driver of fluvial processes, measuring how dams affect sediment regimes and incorporating such knowledge into management strategies remains challenging. To determine the influences of damming, tributary supply, and valley morphology and sediment storage on downstream sediment supply in a dryland river, the Bill Williams River (BWR) in western Arizona, we measured basin erosion rates using cosmogenic nuclide analysis of beryllium-10 (10Be) at sites upstream and downstream of a dam along the BWR, as well as from tributaries downstream of the dam. Riverbed sediment mixing calculations were used to test if the dam, which blocks sediment supply from the upper 85% of the basin's drainage area, increases the proportion of tributary sediment to residual upstream sediment in mainstem samples downstream of the dam. Erosion rates in the BWR watershed are more than twice as large in the upper catchment (136 t km-2 yr-1) than in tributaries downstream of Alamo Dam (61 t km-2 yr-1). Tributaries downstream of the dam have little influence on mainstem sediment dynamics. The effect of the dam on reducing sediment supply is limited, however, because of the presence of large alluvial valleys along the mainstem BWR downstream of the dam that store substantial sediment and mitigate supply reductions from the upper watershed. These inferences, from our 10Be derived erosion rates and mixing calculations, are consistent with field observations of downstream changes in bed material size, which suggest that sediment-deficit conditions are restricted to a 10 km reach downstream of the dam, and limited reservoir bathymetry data. Many studies have suggested that tributary sediment inputs downstream of dams play a key role in mitigating dam-induced sediment deficits, but here we show that in a dryland river with ephemeral tributaries, sediment stored in alluvial valleys can also play a key role and in some cases trumps the role of

  9. Influence of multiple dam passage on survival of juvenile Chinook salmon in the Columbia River estuary and coastal ocean

    PubMed Central

    Rechisky, Erin L.; Welch, David W.; Porter, Aswea D.; Jacobs-Scott, Melinda C.; Winchell, Paul M.

    2013-01-01

    Multiple dam passage during seaward migration is thought to reduce the subsequent survival of Snake River Chinook salmon. This hypothesis developed because juvenile Chinook salmon from the Snake River, the Columbia River’s largest tributary, migrate >700 km through eight hydropower dams and have lower adult return rates than downstream populations that migrate through only 3 or 4 dams. Using a large-scale telemetry array, we tested whether survival of hatchery-reared juvenile Snake River spring Chinook salmon is reduced in the estuary and coastal ocean relative to a downstream, hatchery-reared population from the Yakima River. During the initial 750-km, 1-mo-long migration through the estuary and coastal ocean, we found no evidence of differential survival; therefore, poorer adult returns of Snake River Chinook may develop far from the Columbia River. Thus, hydrosystem mitigation efforts may be ineffective if differential mortality rates develop in the North Pacific Ocean for reasons unrelated to dam passage. PMID:23576733

  10. A stakeholder project to model water temperature under future climate scenarios in the Satus and Toppenish watersheds of the Yakima River Basinin Washington, USA

    USGS Publications Warehouse

    Graves, D.; Maule, A.

    2014-01-01

    The goal of this study was to support an assessment of the potential effects of climate change on select natural, social, and economic resources in the Yakima River Basin. A workshop with local stakeholders highlighted the usefulness of projecting climate change impacts on anadromous steelhead (Oncorhynchus mykiss), a fish species of importance to local tribes, fisherman, and conservationists. Stream temperature is an important environmental variable for the freshwater stages of steelhead. For this study, we developed water temperature models for the Satus and Toppenish watersheds, two of the key stronghold areas for steelhead in the Yakima River Basin. We constructed the models with the Stream Network Temperature Model (SNTEMP), a mechanistic approach to simulate water temperature in a stream network. The models were calibrated over the April 15, 2008 to September 30, 2008 period and validated over the April 15, 2009 to September 30, 2009 period using historic measurements of stream temperature and discharge provided by the Yakama Nation Fisheries Resource Management Program. Once validated, the models were run to simulate conditions during the spring and summer seasons over a baseline period (1981–2005) and two future climate scenarios with increased air temperature of 1°C and 2°C. The models simulated daily mean and maximum water temperatures at sites throughout the two watersheds under the baseline and future climate scenarios.

  11. Fish community response to dam removal in a Maine coastal river tributary

    USGS Publications Warehouse

    Zydlewski, Joseph D.; Hogg, Robert S.; Coghlan, Stephen M.; Gardner, Cory

    2016-01-01

    Sedgeunkedunk Stream, a third-order tributary to the Penobscot River in Maine, historically has supported several anadromous fishes including Atlantic Salmon Salmo salar, Alewife Alosa pseudoharengus, and Sea Lamprey Petromyzon marinus. Two small dams constructed in the 1800s reduced or eliminated spawning runs entirely. In 2009, efforts to restore marine–freshwater connectivity in the system culminated in removal of the lowermost dam (Mill Dam) providing access to 4.7 km of lotic habitat and unimpeded passage into the lentic habitat of Fields Pond. In anticipation of these barrier removals, we initiated a modified before-after-control-impact study, and monitored stream fish assemblages in fixed treatment and reference sites. Electrofishing surveys were conducted twice yearly since 2007. Results indicated that density, biomass, and diversity of the fish assemblage increased at all treatment sites upstream of the 2009 dam removal. No distinct changes in these metrics occurred at reference sites. We documented recolonization and successful reproduction of Atlantic Salmon, Alewife, and Sea Lamprey in previously inaccessible upstream reaches. These results clearly demonstrate that dam removal has enhanced the fish assemblage by providing an undisrupted stream gradient linking a small headwater lake and tributary with a large coastal river, its estuary, and the Atlantic Ocean.

  12. Nonpoint source contamination of the Mississippi river and its tributaries by herbicides

    USGS Publications Warehouse

    Pereira, W.E.; Hostettler, F.D.

    1993-01-01

    A study of the Mississippi River and its tributaries during July-August 1991, October-November 1991, and April-May 1992 has indicated that the entire navigable reach of the river is contaminated with a complex mixture of agrochemicals and their transformation products derived from nonpoint sources. Twenty-three compounds were identified, including triazine, chloroacetanilide, thiocarbamate, phenylurea, pyridazine, and organophosphorus pesticides. The upper and middle Mississippi River Basin farm lands are major sources of herbicides applied to corn, soybeans, and sorghum. Farm lands in the lower Mississippi River Basin are a major source of rice and cotton herbicides. Inputs of the five major herbicides atrazine, cyanazine, metolachlor, alachlor, and simazine to the Mississippi River are mainly from the Minnesota, Des Moines, Missouri, and Ohio Rivers. Ratios of desethylatrazine/atrazine potentially are useful indicators of groundwater and surface water interactions in the Mississippi River. These ratios suggested that during baseflow conditions, there is a significant groundwater contribution to the river. The Mississippi River thus serves as a drainage channel for pesticide-contaminated surface and groundwater from the midwestern United States. Conservative estimates of annual mass transport indicated that about 160 t of atrazine, 71 t of cyanazine, 56 t of metolachlor, and 18 t of alachlor were discharged into the Gulf of Mexico in 1991.

  13. Movement and habitat use by radio-tagged paddlefish in the upper Mississippi River and tributaries

    USGS Publications Warehouse

    Zigler, S.J.; Dewey, M.R.; Knights, B.C.; Runstrom, A.L.; Steingraeber, M.T.

    2003-01-01

    We used radio telemetry to evaluate the movement and habitat use of paddlefish Polyodon spathula in the upper Mississippi River and two tributary rivers. Radio transmitters were surgically implanted into 71 paddlefish in Navigation Pools 5A and 8 of the upper Mississippi River, the Chippewa River, and the Wisconsin River during fall 1994 through fall 1996. Radiotagged paddlefish were located through summer 1997. The range of paddlefish movement was typically low during all seasons except spring, but some paddlefish moved throughout the 420-km extent of the study area. Paddlefish tagged in the Chippewa River were closely linked with the upper Mississippi River, as substantial portions of the population inhabited the adjacent Navigation Pool 4 each spring; paddlefish in the Wisconsin River, however, rarely ventured out of that tributary. The use of aquatic area types by paddlefish varied among the study reaches. A cartographic model of paddlefish habitat suitability was developed for Navigation Pool 8 based on geographic information systems (GIS) coverages of bathymetry and current velocity. The value of paddlefish habitat in the cartographic model increased with depth and decreased with current velocity. For example, areas modeled as excellent corresponded to regions classified as having both deep water (greater than or equal to6.0 m) and negligible (<5 cm/s) current velocities. Our study suggests that aquatic area types are an inadequate basis for making sound management decisions regarding the critical habitats of paddlefish in complex riverine systems because such strata rely on gross geomorpological features rather than on the physicochemical variables that fish use to choose habitats. The development of systemic GIS coverages of such variables could improve the understanding of fish habitat selection and management in the upper Mississippi River.

  14. Macroinvertebrate diets reflect tributary inputs and turbidity-driven changes in food availability in the Colorado River downstream of Glen Canyon Dam

    USGS Publications Warehouse

    Wellard Kelly, Holly A.; Rosi-Marshall, Emma J.; Kennedy, Theodore A.; Hall, Robert O.; Cross, Wyatt F.; Baxter, Colden V.

    2013-01-01

    Physical changes to rivers associated with large dams (e.g., water temperature) directly alter macroinvertebrate assemblages. Large dams also may indirectly alter these assemblages by changing the food resources available to support macroinvertebrate production. We examined the diets of the 4 most common macroinvertebrate taxa in the Colorado River through Glen and Grand Canyons, seasonally, at 6 sites for 2.5 y. We compared macroinvertebrate diet composition to the composition of epilithon (rock and cliff faces) communities and suspended organic seston to evaluate the degree to which macroinvertebrate diets tracked downstream changes in resource availability. Diets contained greater proportions of algal resources in the tailwater of Glen Canyon Dam and more terrestrial-based resources at sites downstream of the 1st major tributary. As predicted, macroinvertebrate diets tracked turbidity-driven changes in resource availability, and river turbidity partially explained variability in macroinvertebrate diets. The relative proportions of resources assimilated by macroinvertebrates ranged from dominance by algae to terrestrial-based resources, despite greater assimilation efficiencies for algal than terrestrial C. Terrestrial resources were most important during high turbidity conditions, which occurred during the late-summer monsoon season (July–October) when tributaries contributed large amounts of organic matter to the mainstem and suspended sediments reduced algal production. Macroinvertebrate diets were influenced by seasonal changes in tributary inputs and turbidity, a result suggesting macroinvertebrate diets in regulated rivers may be temporally dynamic and driven by tributary inputs.

  15. Total Phosphorus Loads for Selected Tributaries to Sebago Lake, Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.

    2001-01-01

    The streamflow and water-quality datacollection networks of the Portland Water District (PWD) and the U.S. Geological Survey (USGS) as of February 2000 were analyzed in terms of their applicability for estimating total phosphorus loads for selected tributaries to Sebago Lake in southern Maine. The long-term unit-area mean annual flows for the Songo River and for small, ungaged tributaries are similar to the long-term unit-area mean annual flows for the Crooked River and other gaged tributaries to Sebago Lake, based on a regression equation that estimates mean annual streamflows in Maine. Unit-area peak streamflows of Sebago Lake tributaries can be quite different, based on a regression equation that estimates peak streamflows for Maine. Crooked River had a statistically significant positive relation (Kendall's Tau test, p=0.0004) between streamflow and total phosphorus concentration. Panther Run had a statistically significant negative relation (p=0.0015). Significant positive relations may indicate contributions from nonpoint sources or sediment resuspension, whereas significant negative relations may indicate dilution of point sources. Total phosphorus concentrations were significantly larger in the Crooked River than in the Songo River (Wilcoxon rank-sum test, p<0.0001). Evidence was insufficient, however, to indicate that phosphorus concentrations from medium-sized drainage basins, at a significance level of 0.05, were different from each other or that concentrations in small-sized drainage basins were different from each other (Kruskal-Wallis test, p= 0.0980, 0.1265). All large- and medium-sized drainage basins were sampled for total phosphorus approximately monthly. Although not all small drainage basins were sampled, they may be well represented by the small drainage basins that were sampled. If the tributaries gaged by PWD had adequate streamflow data, the current PWD tributary monitoring program would probably produce total phosphorus loading data that

  16. Water quality in the Mahoning River and selected tributaries in Youngstown, Ohio

    USGS Publications Warehouse

    Stoeckel, Donald M.; Covert, S. Alex

    2002-01-01

    The lower reaches of the Mahoning River in Youngstown, Ohio, have been characterized by the Ohio Environmental Protection Agency (OEPA) as historically having poor water quality. Most wastewater-treatment plants (WWTPs) in the watershed did not provide secondary sewage treatment until the late 1980s. By the late 1990s, the Mahoning River still received sewer-overflow discharges from 101 locations within the city of Youngstown, Ohio. The Mahoning River in Youngstown and Mill Creek, a principal tributary to the Mahoning River in Youngstown, have not met biotic index criteria since the earliest published assessment by OEPA in 1980. Youngstown and the OEPA are working together toward the goal of meeting water-quality standards in the Mahoning River. The U.S. Geological Survey collected information to help both parties assess water quality in the area of Youngstown and to estimate bacteria and inorganic nitrogen contributions from sewer-overflow discharges to the Mahoning River. Two monitoring networks were established in the lower Mahoning River: the first to evaluate hydrology and microbiological and chemical water quality and the second to assess indices of fish and aquatic-macroinvertebrate-community health. Water samples and water-quality data were collected from May through October 1999 and 2000 to evaluate where, when, and for how long water quality was affected by sewer-overflow discharges. Water samples were collected during dry- and wet-weather flow, and biotic indices were assessed during the first year (1999). The second year of sample collection (2000) was directed toward evaluating changes in water quality during wet-weather flow, and specifically toward assessing the effect of sewer-overflow discharges on water quality in the monitoring network. Water-quality standards for Escherichia coli (E. coli) concentration and draft criteria for nitrate plus nitrite and total phosphorus were the regulations most commonly exceeded in the Mahoning River and Mill

  17. Factors Affecting the Occurrence and Distribution of Pesticides in the Yakima River Basin, Washington, 2000

    USGS Publications Warehouse

    Johnson, Henry M.

    2007-01-01

    The Yakima River Basin is a major center of agricultural production. With a cultivated area of about 450,000 ha (hectares), the region is an important producer of tree fruit, grapes, hops, and dairy products as well as a variety of smaller production crops. To control pest insects, weeds, and fungal infections, about 146 pesticide active ingredients were applied in various formulations during the 2000 growing season. Forty-six streams or drains in the Yakima River Basin were sampled for pesticides in July and October of 2000. Water samples also were collected from 11 irrigation canals in July. The samples were analyzed for 75 of the pesticide active ingredients applied during the 2000 growing season - 63 percent of the pesticides were detected. An additional 14 pesticide degradates were detected, including widespread occurrence of 2 degradates of DDT. The most frequently detected herbicide was 2,4-D, which was used on a variety of crops and along rights-of-way. It was detected in 82 percent of the samples collected in July. The most frequently detected insecticide was azinphos-methyl, which was used primarily on tree fruit. It was detected in 37 percent of the samples collected in July. All occurrences of azinphos-methyl exceeded the Environmental Protection Agency recommended chronic concentration for the protection of aquatic organisms. More than 90 percent of the July samples and 79 percent of the October samples contained two or more pesticides, with a median of nine in July and five in October. The most frequently occurring herbicides in mixtures were atrazine, 2,4-D, and the degradate deethylatrazine. The most frequently occurring insecticides in mixtures were azinphos-methyl, carbaryl, and p,p'-DDE (a degradate of DDT). A greater number of pesticides and higher concentrations were found in July than in October, reflecting greater usage and water availability for transport during the summer growing and irrigation season. Most of the samples collected in

  18. Estimates of ground-water pumpage from the Yakima River Basin aquifer system, Washington, 1960-2000

    USGS Publications Warehouse

    Vaccaro, J.J.; Sumioka, S.S.

    2006-01-01

    Ground-water pumpage in the Yakima River Basin, Washington, was estimated for eight categories of use for 1960-2000 as part of an investigation to assess groundwater availability in the basin. Methods used, pumpage estimates, reliability of the estimates, and a comparison with appropriated quantities are described. The eight categories of pumpage were public water supply, self-supplied domestic (exempt wells), irrigation, frost protection, livestock and dairy operations, industrial and commercial, fish and wildlife propagation, and ground-water claims. Pumpage estimates were based on methods that varied by the category and primarily represent pumpage for groundwater rights. Washington State Department of Ecology’s digital database has 2,874 active ground-water rights in the basin that can withdraw an annual quantity of about 529,231 acre-feet during dry years. Irrigation rights are for irrigation of about 129,570 acres. All but 220 of the rights were associated with well drillers’ logs, allowing for a spatial representation of the pumpage. Five-hundred and sixty of the irrigation rights were estimated to be standby/reserve rights. During this study, another 30 rights were identified that were not in the digital database. These rights can withdraw an annual quantity of about 20,969 acre-feet; about 6,700 acre-feet of these rights are near but outside the basin. In 1960, total annual pumpage in the basin, excluding standby/reserve pumpage, was about 115,776 acre-feet. By 2000, total annual pumpage was estimated to be 395,096 acre-feet, and excluding the standby/reserve rights, the total was 312,284 acre-feet. Irrigation accounts for about 60 percent of the pumpage, followed by public water supply at about 12 percent. The smallest category of pumpage was for livestock use with pumpage estimated to be 6,726 acre-feet. Total annual pumpage in 2000 was about 430 cubic feet per second, which is about 11 percent of the surface-water demand. Maximum pumpage is in July

  19. Water quality of the St. Clair River, Lake St. Clair, and their U.S. tributaries, 1946-2005

    USGS Publications Warehouse

    Healy, Denis F.; Chambers, Douglas B.; Rachol, Cynthia M.; Jodoin, Richard S.

    2007-01-01

    The St. Clair River/Lake St. Clair waterway forms an international boundary between the United States and Canada. The waters of the area are an important part of the cultural heritage of the area and serves as an important water-supply and power-generating resource; the waterway also supports an economy based largely on recreation, agriculture, and manufacturing. This report was undertaken as part of the Lake St. Clair Regional Monitoring Project for the purpose of providing a comprehensive assessment of the hydrological, chemical, and physical state of the surface water of Lake St. Clair and its tributaries. The data varied in focus and density over the period of compilation which in many cases this variation prevented the completion of statistical analyses because data did not meet minimum comparability or quality requirements for those tests. Comparison of water quality of the Belle, Black, Clinton, and Pine River Basins, as well as basins of minor rivers in the study area, showed that water quality in many of the tributaries, particularly the Clinton River and some of the minor rivers, was degraded compared to the water quality of the St. Clair River/Lake St. Clair waterway. Data analyses included comparison of nutrients, chloride, specific conductance, turbidity, biochemical oxygen demand (BOD), and pesticides among the basins and the St. Clair River. Median concentrations of total nitrate were well below the recommended USEPA total nitrogen ambient water-quality criterion of 0.54 mg/L as N for nutrient ecoregion VII for all study-area streams except the Clinton River. More than 93 percent of the phosphorus concentrations for the Belle, Black, Pine and minor river basins and 84 percent of the phosphorus concentrations for the Clinton River Basin are greater than the USEPA recommended ambient total phosphorus criterion of 0.033 mg/L for rivers and streams. Nine chloride concentrations exceeded the USEPA criterion maximum concentration (CMC) for chloride set at

  20. Debris flows from tributaries of the Colorado River, Grand Canyon National Park, Arizona

    USGS Publications Warehouse

    Webb, R.H.; Pringle, P.T.; Rink, G.R.

    1987-01-01

    A reconnaissance of 36 tributaries of the Colorado River indicates that debris flows are a major process by which sediment is transported to the Colorado River in Grand Canyon National Park. Debris flows are slurries of sediment and water that have a water content < 40% by volume. Debris flows occur frequently in arid and semiarid regions. Slope failures commonly trigger debris flows, which can originate from any rock formation in the Grand Canyon. The largest and most frequent flows originate from the Permian Hermit Shale, the underlying Esplanade Sandstone of the Supai Group, and other formations of the Permian and Pennsylvanian Supai Group. Debris flows have reached the Colorado River on an average of once every 20 to 30 yr in the Lava-Chuar Creek drainage since about 1916. Two debris flows have reached the Colorado River in the last 25 yr in Monument Creek. The Crystal Creek drainage has had an average of one debris flow reaching the Colorado River every 50 yr, although the debris flow of 1966 has been the only flow that reached the Colorado River since 1900. Debris flows may actually reach the Colorado River more frequently in these drainages because evidence for all debris flows may not have been preserved in the channel-margin stratigraphy. Discharges were estimated for the peak flow of three debris flows that reached the Colorado River. The debris flow of 1966 in the Lava-Chuar Creek drainage had an estimated discharge of 4,000 cu ft/sec. The debris flow of 1984 in the Monument Creek drainage had a discharge estimated between 3,600 and 4,200 cu ft/sec. The debris flow of 1966 in the Crystal Creek drainage had a discharge estimated between 9,200 and 14,000 cu ft/sec. Debris flows in the Grand Canyon generally are composed of 10 to 40% sand by weight and may represent a significant source of beach-building sand along the Colorado River. The particle size distributions are very poorly sorted and the largest transported boulders were in the Crystal Creek

  1. Temporal trends and spatial patterns in nutrient export along the Mississippi River and its Tributaries

    NASA Astrophysics Data System (ADS)

    Stewart, B.; Li, L.

    2017-12-01

    The Mississippi River, the largest river in the U. S., exports excessive nutrients from the land to the sea, causing the problem of hypoxia in the Gulf of Mexico. In this research, we examined nutrient export along the Mississippi River and its tributaries to understand its trends and patterns and to identify the major factors contributing to these trends. We examined nutrient data from 1950 - 2017 for four sites along the Mississippi River and four tributary sites from the U. S. Geological Survey. The species included: total nitrogen, organic nitrogen, ammonia, nitrate, orthophosphate, and phosphorous. We analyzed the power law relationship of concentration and discharge, for which the export of nutrient species exhibited several trends. Both nitrogen (N) and phosphorous (P) species exhibited mostly chemodynamic behavior. This is in contrast to previous observations in smaller agricultural land where N and P export was mostly chemostatic with no significant change in concentration as discharge varies, suggesting possible scaling effects at different spatial scales. We also compared the average annual concentration over time at each site. The N concentration decreased from upstream to downstream, likely due to greater agricultural activities in the upstream Mississippi river and possible denitrification along the river. The N concentration also increased with time. The P species, however, fluctuated from site to site with no clear spatial patterns, but consistently exhibited higher concentrations at upstream sites with greater agricultural activities. The P species also fluctuated over time, likely due to patterns in discharge and agricultural activities. The results of this research can be further explored by calculating the total export of nutrients into the Gulf of Mexico to determine limits and drivers of nutrient export for better water management, thus helping prevent hypoxia and eutrophication within the Mississippi River basin.

  2. River-aquifer exchanges in the Yakima River basin, Washington

    USGS Publications Warehouse

    Vaccaro, J.J.

    2011-01-01

    Five categories of data are analyzed to enhance understanding of river-aquifer exchanges-the processes by which water moves between stream channels and the adjacent groundwater system-in the Yakima River basin. The five datasets include (1) results of chemical analyses of water for tritium (3H, a radioactive isotope of hydrogen) and the ratios of the stable isotopes of hydrogen (2H/1H) and oxygen (18O/16O), (2) series of stream discharge measurements within specified reaches (seepage investigations or 'runs'), (3) vertical hydraulic gradients (between stream stage and hydraulic heads the underlying aquifer) measured using mini-piezometers, (4) groundwater levels and water temperature in shallow wells near stream channels, and (5) thermal profiles (continuous records of water temperature along river reaches). Exchanges are described in terms of streamflow, vertical hydraulic gradients, groundwater temperature and levels, and streamflow temperature, and where appropriate, the exchanges are discussed in terms of their relevance to and influence on salmonid habitat. The isotope data shows that the ultimate source of surface and groundwater is meteoric water derived from atmospheric precipitation. Water from deep wells has a different isotopic composition than either shallow groundwater or surface water, indicating that the deep groundwater system contributes, at most, only a small component of the surface-water discharge. The isotope data confirms that river-aquifer exchanges involve primarily modern streamflow and modern, shallow groundwater. Net exchanges of water for 46 stream sections investigated with seepage runs ranged from nearly zero to 1,071 ft3/s for 28 gaining sections, and -3 to -242 ft3/s for 18 losing sections. The magnitude of the upper 50 percent of the net gains is an order of magnitude larger than those for net losses. The sections have a normalized net exchange (as absolute value) that fully ranged from near 0 to 65.6 (ft3/s)/mi. Gaining

  3. Low-flow profiles of the upper Savannah and Ogeechee Rivers and tributaries in Georgia

    USGS Publications Warehouse

    Carter, R.F.; Hopkins, E.H.; Perlman, H.A.

    1988-01-01

    Low flow information is provided for use in an evaluation of the capacity of streams to permit withdrawals or to accept waste loads without exceeding the limits of State water quality standards. The purpose of this report is to present the results of a compilation of available low flow data in the form of tables and ' 7Q10 flow profiles ' (minimum average flow for 7 consecutive days with a 10-yr recurrence interval)(7Q10 flow plotted against distance along a stream channel) for all streams reaches of the Upper Savannah and Ogeechee Rivers and tributaries where sufficient data of acceptable accuracy are available. Drainage area profiles are included for all stream basins larger than 5 sq mi, except for those in a few remote areas. This report is the third in a series of reports that will cover all stream basins north of the Fall Line in Georgia. It includes the Georgia part of the Savannah River basin from its headwaters down to and including McBean Creek, and Brier Creek from its headwaters down to and including Boggy Gut Creek. It also includes the Ogeechee River from its headwaters down to and including Big Creek, and Rocky Comfort Creek (tributary to Ogeechee River) down to the Glascock-Jefferson County line. Flow records were not adjusted for diversions or other factors that cause measured flows to represent other than natural flow conditions. The 7-day minimum flow profile was omitted for stream reaches where natural flow was known to be altered significantly. (Lantz-PTT)

  4. Chesapeake Bay Tributary Strategies

    EPA Pesticide Factsheets

    Chesapeake Bay Tributary Strategies were developed by the seven watershed jurisdictions and outlined the river basin-specific implementation activities to reduce nutrient and sediment pollutant loads from point and nonpoint sources.

  5. Streamflow and selenium loads during synoptic sampling of the Gunnison River and its tributaries near Delta, Colorado, November 2015

    USGS Publications Warehouse

    Stevens, Michael R.; Leib, Kenneth J.; Thomas, Judith C.; Bauch, Nancy J.; Richards, Rodney J.

    2018-06-13

    In response to the need for more information about selenium (Se) sources and transport, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, completed a study that characterized Se loads in a reach of the Gunnison River between Delta and Grand Junction, Colo. This report identifies where possible dissolved Se loading is occurring in a study reach in the Lower Gunnison River Basin between Delta and Grand Junction on November 19, 2015.The combined Se loads from the Gunnison River at Delta (site 3) and the Uncompahgre River at Delta (site 4) were about 95 percent of the load at the furthest downstream main-stem sample location at the Gunnison River below Roubideau Creek near Delta (site 20) (31.6 and 33.4 pounds per day, respectively), indicating that about 5 percent of the total load (1.8 pounds) was potentially contributed from diffuse groundwater inflow. Main-stem streamflow accounting during November 2015 in a downstream direction was not supportive of substantial net gains or losses in the main-stem water balance.The cumulative load from measured tributary inflows downstream from the Uncompahgre River confluence only amounted to 1.2 pounds of the main-stem loads (1.8 pounds gain) from site 4 to the end of the synoptic reach at site 20. The remaining 33 percent (about 0.6 pounds) of Se load increase was not accounted for by known tributary inflow. Yet, the small changes in the streamflow mass balance in the same reach does not strongly support a net inflow explanation for the apparent gain in load.Based on the results of the loading and streamflow analysis, when errors in the loading estimates are considered, there is no conclusive evidence of an appreciable amount of Se load that is unaccounted for in the study reach of the Gunnison River as was originally hypothesized. Differences determined from comparisons of cumulative tributary loads and Gunnison River main-stem loads for this study are within error estimates of the main

  6. Approaches to restoration of oak forests on farmed lowlands of the Mississippi River and its tributaries

    Treesearch

    Emile S. Gardiner; Daniel C. Dey; John A. Stanturf; Brian Roy Lockhart

    2010-01-01

    The lowlands associated with the Mississippi River and its tributaries historically supported extensive broadleaf forests that were particularly rich in oak (Quercus spp.) species. Beginning in the 1700s, deforestation for agriculture substantially reduced the extent of the original forest, and fragmented the remainder into small parcels. More...

  7. Water Quality Assessment of Danjiangkou Reservoir and its Tributaries in China

    NASA Astrophysics Data System (ADS)

    Liu, Linghua; Peng, Wenqi; Wu, Leixiang; Liu, Laisheng

    2018-01-01

    Danjiangkou Reservoir is an important water source for the middle route of the South to North Water Diversion Project in China, and water quality of Danjiangkou Reservoir and its tributaries is crucial for the project. The purpose of this study is to evaluate the water quality of Daniiangkou Reservoir and its tributaries based on Canadian Council of Ministers of the Environment Water Quality Index (CCMEWQI). 22 water quality parameters from 25 sampling sites were analyzed to calculate WQI. The results indicate that water quality in Danjiangkou Reservoir area, Hanjiang River and Danjiang River is excellent. And the seriously polluted tributary rivers were Shending River, Jianghe River, Sihe River, Tianhe River, Jianhe River and Jiangjun River. Water quality parameters that cannot meet the standard limit for drinking water source were fecal coliform bacteria, CODcr, CODMn, BOD5, NH3-N, TP, DO, anionic surfactant and petroleum. Fecal coliform bacteria, TP, ammonia nitrogen, CODMn were the most common parameters to fail.

  8. Flood-inundation mapping for the Blue River and selected tributaries in Kansas City, Missouri, and vicinity, 2012

    USGS Publications Warehouse

    Heimann, David C.; Weilert, Trina E.; Kelly, Brian P.; Studley, Seth E.

    2015-01-01

    The U.S. Geological Survey (USGS) and City of Kansas City, Missouri, operate multiple streamgages along the Blue River and tributaries in and near the city. Knowledge of water level at a streamgage is difficult to translate into depth and areal extent of flooding at points distant from the streamgage. One way to address these informational gaps is to produce a library of flood-inundation maps that are referenced to the stages recorded at a streamgage. By referring to the appropriate map, emergency responders can discern the severity of flooding (depth of water and areal extent), identify roads that are or may be flooded, and make plans for notification or evacuation of residents in harm’s way for some distance upstream and downstream from the streamgage. The USGS, in cooperation with the city of Kansas City, Missouri, developed a library of flood-inundation maps for the Blue River and selected tributaries.

  9. Sediment transport by irrigation return flows in four small drains within the DID-18 drainage of the Sulphur Creek basin, Yakima County, Washington, April 1979 to October 1981

    USGS Publications Warehouse

    Boucher, P.R.

    1984-01-01

    Suspended sediment, water discharges, and water temperatures were monitored in four small drains in the DID-18 basin of the Sulphur Creek basin, a tributary to the Yakima River, Washington. Water outflow, inflow, and miscellaneous sites were also monitored. The information was used to evaluate the effectiveness of management practices in reducing sediment loads in irrigated areas. This study was one of seven Model Implementation Plan projects selected by the U.S. Soil Conservation Service and the U.S. Environmental Protection Agency to demonstrate the effectiveness of institutional and administrative implementation of management plans. Sediment discharges from the four basins could not be correlated with changes in management practices, because Imhoff Cone readings collected for the study showed no statistical differences between the three irrigation seasons. However, one drain acted as a sink for sediment where more lands were sprinkler irrigated; this drain had a smaller proportion of row crops than did the other three drains. (USGS)

  10. Particle tracking for selected groundwater wells in the lower Yakima River Basin, Washington

    USGS Publications Warehouse

    Bachmann, Matthew P.

    2015-10-21

    Generalized groundwater-flow directions in unconsolidated basin-fill deposits were towards the Yakima River, which acts as a local sink for shallow groundwater, and roughly parallel to topographic gradients. Particles backtracked from more shallow aquifer locations traveled shorter distances before reaching the water table than particles from deeper locations. Flowpaths for particles starting at wells completed in the basalt units underlying the basin-fill deposits sometimes were different than for wells with similar lateral locations but more shallow depths. In cases where backtracking particles reached geologic structures simulated as flow barriers, abrupt changes in direction in some particle pathlines suggest significant changes in simulated hydraulic gradients that may not accurately reflect actual conditions. Most groundwater wells sampled had associated zones of contribution within the Toppenish/Benton subbasin between the well and the nearest subbasin margin, but interpretation of these results for any specific well is likely to be complicated by the assumptions and simplifications inherent in the model construction process. Delineated zones of contribution for individual wells are sensitive to the depths assigned to the screened interval of the well, resulting in simulated areal extents of the zones of contribution to a discharging well that are elongated in the direction of groundwater flow.

  11. Temporal Variations in 234U/238U Activity Ratios in the Lower Mississippi River due to Changes in Source Tributary Discharges

    NASA Astrophysics Data System (ADS)

    Grzymko, T. J.; Marcantonio, F.; McKee, B. A.; Stewart, C. M.

    2004-12-01

    The world's 25 largest river systems contribute nearly 50% of all freshwater to the global ocean and carry large quantities of dissolved trace metals annually. Trace metal concentrations in these systems show large variances on seasonal time scales. In order to constrain the causes of these variations, consistent sampling on sub-seasonal time intervals is essential. Here, we focus on the Mississippi River, the seventh largest river in the world in terms of freshwater discharge and the third largest in terms of drainage basin area. Biweekly sampling of the lower Mississippi River at New Orleans was performed from January 2003 to August 2004. Uranium concentrations and 234U/238U activity ratios were measured for the dissolved component (<0.2 μ m-fraction) of river water. Over the course of this study, dissolved U activity ratios spanned a range of about 25%, from 1.23 to 1.60. Dissolved U concentrations ranged from 0.28 to 1.06 ppb. The relationship between concentrations, activity ratios, and lower river discharge is complicated, and no clear pattern is observed on both biweekly and seasonal timescales. However, there does seem to be a relationship between the larger seasonal trends in the lower Mississippi River and variations in the discharge of its upstream tributaries. To constrain this relationship, we have sampled water from the Missouri River, the upper Mississippi River above the confluence with the Missouri, the Ohio River, and the Arkansas River in February, April, and August of 2004. For the upstream samples measured thus far, the highest dissolved uranium concentrations are observed for the Missouri River at 2.02 ppb, while the lowest are found in the Ohio River at 0.38 ppb. Dissolved 234U/238U activity ratios are as unique for each tributary and vary from 1.36 in the Ohio River to 1.51 in the Missouri River. A preliminary mass balance analysis reveals that the lower river uranium activity ratios are controlled simply by the quantity and isotope

  12. Streamflow characteristics of small tributaries of Rock Creek, Milk River basin, Montana, base period water years 1983-87

    USGS Publications Warehouse

    Parrett, Charles; Hull, J.A.

    1990-01-01

    Five streamflow-gaging stations were installed in the Rock Creek basin north of the Milk River near Hinsdale, Montana. Streamflow was monitored at these stations and at an existing gaging station upstream on Rock Creek from May 1983 through September 1987. The data collected were used to describe the flow characteristics of four small tributary streams. Annual mean streamflow ranges from 2.8 to 57 cu ft/sec in the mainstem and from 0 to 0.60 cu ft/sec in the tributaries. Monthly mean streamflow ranged from 0 to 528 cu ft/sec in Rock Creek and from zero to 5.3 cu ft/sec in the four tributaries. The six gaged sites show similar patterns of daily mean streamflow during periods of large runoff, but substantial individual variations during periods of lesser runoff. During periods of lesser runoff , the small tributaries may have small daily mean streamflows. At other times, daily mean streamflow at the two mainstem sites decreased downstream. Daily mean streamflow in the tributaries appears to be closely related to daily mean streamflow in the mainstem only during periods of substantial area-wide runoff. Thus, streamflow in the tributaries resulting from local storms or local snowmelt may not contribute to streamflow in the mainstem. (USGS)

  13. Use of Virginia's tributaries of the Potomac River by anadromous fishes : final report for phase four of an analysis of the impediments to spawning migrations of anadromous fish in Virginia rivers.

    DOT National Transportation Integrated Search

    1988-10-01

    The use of Virginia's tributaries of the lower Potomac River (downstream of Great Falls) : by striped bass, American shad, hickory shad, and river herring (a collective term for alewife : and blueback herring) was determined by reviewing literature, ...

  14. Hyperspectral landcover classification for the Yakima Training Center, Yakima, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinmaus, K.L.; Perry, E.M.; Petrie, G.M.

    1998-04-01

    The US Department of Energy`s (DOE`s) Pacific Northwest National Laboratory (PNNL) was tasked in FY97-98 to conduct a multisensor feature extraction project for the Terrain Modeling Project Office (TMPO) of the National Imagery and Mapping Agency (NIMA). The goal of this research is the development of near-autonomous methods to remotely classify and characterize regions of military interest, in support of the TMPO of NIMA. These methods exploit remotely sensed datasets including hyperspectral (HYDICE) imagery, near-infrared and thermal infrared (Daedalus 3600), radar, and terrain datasets. The study site for this project is the US Army`s Yakima Training Center (YTC), a 326,741-acremore » training area located near Yakima, Washington. Two study areas at the YTC were selected to conduct and demonstrate multisensor feature extraction, the 2-km x 2-km Cantonment Area and the 3-km x 3-km Choke Point area. Classification of the Cantonment area afforded a comparison of classification results at different scales.« less

  15. Channel-morphology data for the Tongue River and selected tributaries, southeastern Montana, 2001-02

    USGS Publications Warehouse

    Chase, Katherine J.

    2004-01-01

    Coal-bed methane exploration and production have begun within the Tongue River watershed in southeastern Montana. The development of coal-bed methane requires production of large volumes of ground water, some of which may be discharged to streams, potentially increasing stream discharge and sediment load. Changes in stream discharge or sediment load may result in changes to channel morphology through changes in erosion and vegetation. These changes might be subtle and difficult to detect without baseline data that indicate stream-channel conditions before extensive coal-bed methane development began. In order to provide this baseline channel-morphology data, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, collected channel-morphology data in 2001-02 to document baseline conditions for several reaches along the Tongue River and selected tributaries. This report presents channel-morphology data for five sites on the mainstem Tongue River and four sites on its tributaries. Bankfull, water-surface, and thalweg elevations, channel sections, and streambed-particle sizes were measured along reaches near streamflow-gaging stations. At each site, the channel was classified using methods described by Rosgen. For six sites, bankfull discharge was determined from the stage- discharge relation at the gage for the stage corresponding to the bankfull elevation. For three sites, the step-backwater computer model HEC-RAS was used to estimate bankfull discharge. Recurrence intervals for the bankfull discharge also were estimated for eight of the nine sites. Channel-morphology data for each site are presented in maps, tables, graphs, and photographs.

  16. Long-term decreases in phosphorus and suspended solids, but not nitrogen, in six upper Mississippi River tributaries, 1991–2014

    USGS Publications Warehouse

    Kreiling, Rebecca; Houser, Jeff N.

    2016-01-01

    Long-term trends in tributaries provide valuable information about temporal changes in inputs of nutrients and sediments to large rivers. Data collected from 1991 to 2014 were used to investigate trends in total nitrogen (TN), total phosphorus (TP), nitrate (NO3–N), soluble-reactive P (SRP), and total suspended solids (TSS) in the following six tributaries of the upper Mississippi River: Cannon (CaR; Minnesota (MN)), Maquoketa (MR; Iowa (IA)), Wapsipinicon (WR; IA), Cuivre (CuR; Missouri (MO)), Chippewa (ChR; Wisconsin (WI)), and Black (BR; WI) rivers. Weighted regression on time discharge and season was used to statistically remove effects of random variation in discharge from estimated trends in flow-normalized concentrations and flux. Concentration and flux of TSS declined in all six rivers. Concentration of P declined in four of the rivers, and P flux declined in five rivers. Concentration and flux of N exhibited small changes relative to TP. TN concentration and flux did not change substantially in four of the rivers and decreased in two (ChR, CuR). Nitrate concentration and flux increased in three rivers (ChR, BR, CaR) and remained relatively constant in the other three rivers. General declines in P and TSS suggest that improvements in agricultural land management, such as the adoption of conservation tillage and enrollment of vulnerable acreage into the Conservation Reserve Program, may have reduced surface runoff; similar reductions in N were not observed.

  17. Parvicapsula minibicornis in anadromous sockeye (Oncorhynchus nerka) and coho (Oncorhynchus kisutch) salmon from tributaries of the Columbia River.

    PubMed

    Jones, Simon; Prosperi-Porta, Gina; Dawe, Sheila; Taylor, Kimberley; Goh, Benjamin

    2004-08-01

    The myxosporean parasite Parvicapsula minibicornis is described from adult sockeye and coho salmon during spawning migrations in tributaries of the Columbia River in Canada and the United States. These observations extend the known distribution of this parasite from the Fraser River drainage basin. The parasite was identified in Columbia River salmonids using polymerase chain reaction (PCR) and by in situ hybridization, but unlike in Fraser River salmon, it was not observed in conventional histological preparations of the kidney. Prevalence of the parasite determined by PCR was higher in spawning sockeye from the Fraser River than in those from the Okanagan River. Our ability to explain the relatively low prevalence and absence of clinical P. minibicornis infections in Columbia River salmon is hampered by our poor understanding of the life cycle of this parasite.

  18. Design of a monitoring network and assessment of the pollution on the Lerma river and its tributaries by wastewaters disposal.

    PubMed

    Fall, C; Hinojosa-Peña, A; Carreño-de-León, M C

    2007-02-01

    While the 2005 progress report of the United Nations Millennium Development Goals stresses out the need of a dramatic increase in investment to meet the sanitation target in the third world, it is important to anticipate about some parallel negative impacts that may have this optimistic programme (extension of sewer networks without sufficient treatment works). Research was initiated on Lerma River (Mexico), subjected to many rejects disposal, to design a monitoring network and evaluate the impact of wastewaters on its water quality. The discharges was inventorized, geo-positioned with a GPS and mapped, while the physico-chemical characteristics of the river water, its tributaries and main rejects were evaluated. Microtox system was used as an additional screening tool. Along the 60 km of the High Course of Lerma River (HCLR), 51 discharges, with a diameter or width larger than 0.3 m (including 7 small tributaries) were identified. Based on the inventory, a monitoring network of 21 sampling stations in the river and 13 in the important discharges (>2 m) was proposed. A great similitude was found between the average characteristics of the discharges and the river itself, in both the wet and dry seasons. Oxygen was found exhausted (<0.5 mg/L) almost all along the high course of the river, with COD and TDS average levels of 390 and 1980 mg/L in the dry season, against 150 and 400 mg/L in the wet season. In the dry season, almost all the sites along the river revealed some toxicity to the bacteria test species (2.9 to 150 TU, with an average of 27 TU). Same septic conditions and toxicity levels were observed in many of the discharges. Four of the six evaluated tributaries, as well as the lagoon (origin of the river), were relatively in better conditions (2 to 8 mg/L D.O., TU<1) than for the Lerma, acting as diluents and renewal of the HCLR flow rate. The river was shown to be quite a main sewer collector. The high surface water contamination by untreated wastewaters

  19. Occurrence and Transport of Diazinon in the Sacramento River and Selected Tributaries, California, during Two Winter Storms, January?February 2001

    USGS Publications Warehouse

    Dileanis, Peter D.; Brown, David L.; Knifong, Donna L.; Saleh, Dina

    2003-01-01

    Diazinon, an organophosphate insecticide, is applied as an orchard dormant spray in the Sacramento Valley during the winter months when the area receives most of its annual rainfall. During winter rainstorms that frequently follow dormant spray applications, some of the applied pesticide is transported in storm runoff to the Sacramento River and its tributaries. Diazinon is also used to control insect pests on residential and commercial properties in urban areas and is frequently detected in urban storm runoff draining into the Sacramento River system. Between January 24 and February 14, 2001, diazinon concentrations and loads were measured in the Sacramento River and selected tributaries during two winter storms that occurred after dormant spray applications were made to orchards in the Sacramento Valley. Water samples were collected at 21 sites that represented agricultural and urban inputs on a variety of scales, from small tributaries and drains representing local land use to main-stem river sites representing regional effects. Concentrations of diazinon ranged from below laboratory reporting levels to 1,380 nanograms per liter (ng/L), with a median of 55 ng/L during the first monitored storm and 26 ng/L during the second. The highest concentrations were observed in small channels draining predominantly agricultural land. About 26,000 pounds of diazinon were reported applied to agricultural land in the study area just before and during the monitoring period. About 0.2 percent of the applied insecticide appeared to be transported to the lower Sacramento River during that period. The source of about one third of the total load measured in the lower Sacramento River appears to be in the portion of the drainage basin upstream of the city of Colusa. About 12 percent of the diazinon load in the lower Sacramento River was transported from the Feather River Basin, which drains much of the mountainous eastern portions of the Sacramento River Basin. Diazinon use in the

  20. Habitat associations of juvenile Burbot in a tributary of the Kootenai River

    USGS Publications Warehouse

    Beard, Zachary S.; Quist, Michael C.; Hardy, Ryan S.; Ross, Tyler J.

    2017-01-01

    Burbot Lota lota in the lower Kootenai River, Idaho, have been the focus of extensive conservation efforts, particularly conservation aquaculture. One of the primary management strategies has been the release of Burbot into small tributaries in the Kootenai River basin, such as Deep Creek. Since 2012, approximately 12,000 juvenile Burbot have been stocked into Deep Creek; however, little is known about the habitat use of stocked Burbot. The objective of this study was to evaluate habitat associations of juvenile Burbot in Deep Creek. Fish and habitat were sampled from 58 reaches of the creek. Regression models suggested that Burbot moved little after stocking and were associated with areas of high mean depth and coarse substrate. This study provides additional knowledge on habitat associations of juvenile Burbot and suggests that managers should consider selecting deep habitats with coarse substrate for stocking locations.

  1. Effects of coal-mine discharges on the quality of the Stonycreek River and its tributaries, Somerset and Cambria counties, Pennsylvania

    USGS Publications Warehouse

    Williams, Donald R.; Sams, James I.; Mulkerrin, Mary E.

    1996-01-01

    This report describes the results of a study by the U.S. Geological Survey, done in cooperation with the Somerset Conservation District, to locate and sample abandoned coal-mine discharges in the Stonycreek River Basin, to prioritize the mine discharges for remediation, and to determine the effects of the mine discharges on water quality of the Stonycreek River and its major tributaries. From October 1991 through November 1994, 270 abandoned coal-mine discharges were located and sampled. Discharges from 193 mines exceeded U.S. Environmental Protection Agency effluent standards for pH, discharges from 122 mines exceeded effluent standards for total-iron concentration, and discharges from 141 mines exceeded effluent standards for total-manganese concentration. Discharges from 94 mines exceeded effluent standards for all three constituents. Only 40 mine discharges met effluent standards for pH and concentrations of total iron and total manganese.A prioritization index (PI) was developed to rank the mine discharges with respect to their loading capacity on the receiving stream. The PI lists the most severe mine discharges in a descending order for the Stonycreek River Basin and for subbasins that include the Shade Creek, Paint Creek, Wells Creek, Quemahoning Creek, Oven Run, and Pokeytown Run Basins.Passive-treatment systems that include aerobic wetlands, compost wetlands, and anoxic limestone drains (ALD's) are planned to remediate the abandoned mine discharges. The successive alkalinity-producing-system treatment combines ALD technology with the sulfate reduction mechanism of the compost wetland to effectively remediate mine discharge. The water quality and flow of each mine discharge will determine which treatment system or combination of treatment systems would be necessary for remediation.A network of 37 surface-water sampling sites was established to determine stream-water quality during base flow. A series of illustrations show how water quality in the mainstem

  2. Effects of Jackson Lake dam and Tributaries on the Hydrology and Geomorphology of the Snake River, Grand Teton National Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Nelson, N. C.; Schmidt, J. C.

    2006-05-01

    Geomorphic and hydrologic analyses of the Snake River in Grand Teton National Park (GTNP) indicate that flow contributions of tributaries mitigate impacts of regulation. Since a flow regime change in 1958, regulation resulted in a 43 and 35% decrease in estimated unregulated flows immediately downstream of Jackson Lake Dam (JLD) and at Moose (43 km and 5 tributaries downstream of JLD), respectively. Geomorphic evidence indicates that some channel characteristics are more sensitive than others to this decreasing influence of flow regulation. First, entrainment of tracer rocks suggests that the ability of the Snake River to mobilize its bed increases downstream. A greater proportion of the bed became active, and the mobilized clasts moved further, in the two study reaches furthest downstream. Second, repeat mapping from aerial photographs suggest that some changes in channel form are the result of flow regulation and some are the result of climatically driven changes in runoff determined by tributaries. Initial decreases in flows due to regulation may have caused the observed channel narrowing between 1945 and 1969, and greater precipitation causing greater natural flows may have resulted in the subsequent channel widening between 1969 and 1990. Third, flow models were used to obtain the magnitudes of flows necessary to inundate two floodplain surfaces in 4 reaches from JLD to Moose. Recurrence intervals and inundation periods were similar for a narrow, inset floodplain in all 4 reaches, suggesting that this surface developed due to regulation. Recurrence intervals for a much broader and higher floodplain decreased downstream from 9 to 3.2 years and inundation periods increased downstream from 1.1 to 3 days immediately below JLD and at Moose, respectively. This suggests the upper floodplain was formed prior to regulation of the Snake River. Thus, the effects of flow regulation on bed mobility and connectivity between the channel and the upper floodplain decrease

  3. Ecological comparisons of Lake Erie tributaries with elevated incidence of fish tumors

    USGS Publications Warehouse

    Smith, Stephen B.; Blouin, Marc A.; Mac, Michael J.

    1994-01-01

    Ecological comparisons were made between two Lake Erie tributaries (Black and Cuyahoga rivers) with contaminated sediments and elevated rates of tumors in fish populations and a third, relatively unpolluted, reference tributary, the Huron River. Fish populations, benthic invertebrates, and sediments were evaluated in all three Ohio rivers. Community structure analyses indicated similar total densities but lower species diversity for fish and benthic invertebrates in the contaminated rivers when compared with the reference river. Growth rates in fish from the contaminated areas were either similar to or higher than those offish from the reference site. Brown bullhead (Ameiurus nebulosus) from the two contaminated tributaries exhibited 51% (Black River) and 45% (Cuyahoga River) incidence of liver lesions (neoplastic and preneoplastic) as compared with a 4% incidence of liver lesions in brown bullhead from the reference river (Huron River). Incidence of external abnormalities on brown bullhead was 54% (Black River) and 73% (Cuyahoga River) as compared with a 14% incidence on fish from the Huron River. On a regional basis, incidence of external abnormalities on particular benthic fish species may be an effective method to quickly indicate areas for more intensive contaminant studies.

  4. Soil and geologic controls on recharge and groundwater flow response to climate perturbation: A case study of the Yakima River Basin

    NASA Astrophysics Data System (ADS)

    Nguyen, T. T.; Pham, H. V.; Bachmann, M.; Tague, C.; Adam, J. C.

    2017-12-01

    The Yakima River Basin (YRB) is one of the most important agricultural basins in Washington State with annual revenues in excess of $3.2 billion. This intensively irrigated basin is, however, one of the state's most climatically sensitive water resources system as it heavily relies on winter snowpack and limited reservoir storage. Water shortages and drought are expected to be more frequent with climate change, population growth and increasing agricultural demand. This could result in significant impacts on the groundwater system and subsequently the Yakima River. The goal of this study is to assess how soil and geologic characteristics affect catchment recharge and groundwater flow across three catchments within the YRB using a coupled framework including a physically based hydro-ecological model, the Regional Hydro-Ecologic Simulation System (RHESSys) and a groundwater model, MODFLOW. Soil and geologic-related parameters were randomly sampled to use within the Distributed Evaluation of Local Sensitivity Analysis (DELSA) framework to explore their roles in governing catchment recharge and groundwater flow to climate perturbation. Preliminarily results show that catchment recharge is most sensitive to variation in soil transmissivity in two catchments. However, in the other catchment, recharge is more influenced by soil field capacity and bypass recharge. Recharge is also more sensitive to geologic related parameters in catchments where a portion of its flow comes from deep groundwater. When including the effect of climate perturbations, the sensitivity of recharge responses to soil and geologic characteristics varies with temperature and precipitation change. On the other hand, horizontal hydraulic conductivity is the dominant factor that controls groundwater flow responses in catchments with low permeability soil; alternatively, specific storage (and, to some extent, vertical anisotropy) are important in catchments with more conductive soil. The modeling

  5. Alder Establishment and Channel Dynamics in a Tributary of the South Fork Eel River, Mendocino County, California

    Treesearch

    William J. Trush; Edward C. Connor; Knight Alan W.

    1989-01-01

    Riparian communities established along Elder Creek, a tributary of the upper South Fork Eel River, are bounded by two frequencies of periodic flooding. The upper limit for the riparian zone occurs at bankfull stage. The lower riparian limit is associated with a more frequent stage height, called the active channel, having an exceedance probability of 11 percent on a...

  6. Evaluation of total phosphorus mass balance in the lower Boise River and selected tributaries, southwestern Idaho

    USGS Publications Warehouse

    Etheridge, Alexandra B.

    2013-01-01

    he U.S. Geological Survey (USGS), in cooperation with Idaho Department of Environmental Quality, developed spreadsheet mass-balance models for total phosphorus using results from three synoptic sampling periods conducted in the lower Boise River watershed during August and October 2012, and March 2013. The modeling reach spanned 46.4 river miles (RM) along the Boise River from Veteran’s Memorial Parkway in Boise, Idaho (RM 50.2), to Parma, Idaho (RM 3.8). The USGS collected water-quality samples and measured streamflow at 14 main-stem Boise River sites, two Boise River north channel sites, two sites on the Snake River upstream and downstream of its confluence with the Boise River, and 17 tributary and return-flow sites. Additional samples were collected from treated effluent at six wastewater treatment plants and two fish hatcheries. The Idaho Department of Water Resources quantified diversion flows in the modeling reach. Total phosphorus mass-balance models were useful tools for evaluating sources of phosphorus in the Boise River during each sampling period. The timing of synoptic sampling allowed the USGS to evaluate phosphorus inputs to and outputs from the Boise River during irrigation season, shortly after irrigation ended, and soon before irrigation resumed. Results from the synoptic sampling periods showed important differences in surface-water and groundwater distribution and phosphorus loading. In late August 2012, substantial streamflow gains to the Boise River occurred from Middleton (RM 31.4) downstream to Parma (RM 3.8). Mass-balance model results indicated that point and nonpoint sources (including groundwater) contributed phosphorus loads to the Boise River during irrigation season. Groundwater exchange within the Boise River in October 2012 and March 2013 was not as considerable as that measured in August 2012. However, groundwater discharge to agricultural tributaries and drains during non-irrigation season was a large source of discharge and

  7. Assessing Microplastic Loads in the Mississippi River and Its Major Tributaries

    NASA Astrophysics Data System (ADS)

    Hasenmueller, E. A.; Martin, K. M.; Conkle, J. L.; White, J. R.

    2017-12-01

    Plastic debris is ubiquitous in marine environments and can cause significant harm to aquatic life when organisms become entangled in the plastic or mistake it for food. Macroplastic debris (plastic >5 mm in diameter) has received significant attention from the public, government agencies, and the scientific community. However, the majority of plastics in aquatic environments are microplastics (plastic <5 mm in diameter), emerging contaminants that, due to their small size, were understudied until the last decade. Estimates of plastic debris in the world's ocean vary widely from 244,000 tonnes floating at the water's surface to 4.8-12.7 million tonnes loaded from terrestrial sources annually. Many of these terrestrial inputs of plastic debris to the ocean have not yet been systematically quantified. The Mississippi River is likely one of the largest sources of marine plastic debris, not only to the Gulf of Mexico, but also the global ocean. Therefore, this research, funded by the National Oceanic and Atmospheric Administration (NOAA) Marine Debris Program, has quantified and characterized microplastics (i.e., size, shape, and resin type) at the surface and at depth along the mainstem of the Mississippi River, including near major cities such as St. Louis and New Orleans, as well as in some of the Mississippi River's major tributaries (i.e., the Missouri River, Ohio River, and Illinois River). Sampling is ongoing, but our datasets will allow us to characterize: 1) total microplastic concentrations and loads, 2) spatial and temporal trends in microplastic abundances, and 3) land-use effects on microplastic levels across the Mississippi River watershed. Our data will also provide estimates of the total discharge of microplastics from the Mississippi River to the Gulf of Mexico. These efforts will provide a baseline for future research relating to the fate and effects of microplastics in aquatic environments and can guide federal and local policy makers in creating and

  8. 75 FR 53264 - Restricted Area in Cape Fear River and Tributaries at Sunny Point Army Terminal, Brunswick County...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... DEPARTMENT OF DEFENSE Department of the Army, Corps of Engineers 33 CFR Part 334 Restricted Area in Cape Fear River and Tributaries at Sunny Point Army Terminal, Brunswick County, NC AGENCY: U.S. Army Corps of Engineers, DoD. ACTION: Proposed rule. SUMMARY: The U.S. Army requested that the U.S...

  9. 75 FR 53197 - Restricted Area in Cape Fear River and Tributaries at Sunny Point Army Terminal, Brunswick County...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... DEPARTMENT OF DEFENSE Department of the Army, Corps of Engineers 33 CFR Part 334 Restricted Area in Cape Fear River and Tributaries at Sunny Point Army Terminal, Brunswick County, NC AGENCY: U.S. Army Corps of Engineers, DoD. ACTION: Direct final rule. SUMMARY: The U.S. Army requested that the U.S...

  10. Survival, movement, and distribution of juvenile Burbot in a tributary of the Kootenai River

    USGS Publications Warehouse

    Beard, Zachary S.; Quist, Michael C.; Hardy, Ryan S.; Ross, Tyler J.

    2017-01-01

    Burbot Lota lota in the lower Kootenai River, Idaho, have been the focus of extensive conservation efforts, particularly the release of hatchery-reared juvenile Burbot into small tributaries. The Idaho Department of Fish and Game installed a fixed PIT antenna on Deep Creek, a tributary of the Kootenai River, to evaluate movement of juvenile Burbot to the Kootenai River. Since then, approximately 12,000 juvenile Burbot have been PIT-tagged and released into Deep Creek, but few Burbot have been detected at the antenna, thus raising questions about their fate in the creek. The objectives of this study were to evaluate survival, movement, and distribution of Burbot released into Deep Creek. During 2014, 3,000 age-0, 200 age-1, 16 age-2, and 16 age-4 Burbot were released at two different locations; during 2015, 3,000 age-0 Burbot were released at six different locations (i.e., 500 fish/site). Five additional stationary PIT tag antennas were installed on Deep Creek prior to stocking in 2014. Mobile PIT tag antennas were used to survey the creek in 2015 and 2016. A Barker model in Program MARK was used to estimate survival. Stationary and mobile PIT tag antennas relocated 3,372 (56%) of the Burbot released in Deep Creek during 2014 and 2015. Eighty-eight percent of PIT tags relocated during mobile surveys were relocated within 1 km of a release location. Mobile surveys of release locations in Deep Creek suggested poor dispersal from stocking locations. Survival did not vary across years or release groups. Initial 7-month survival in Deep Creek was 0.27, and survival improved to 0.63 after the first 7 months. Although survival did not differ between years or among release groups, managers may consider releasing Burbot at lower densities across multiple locations.

  11. Water-quality and biological conditions in selected tributaries of the Lower Boise River, southwestern Idaho, water years 2009-12

    USGS Publications Warehouse

    Etheridge, Alexandra B.; MacCoy, Dorene E.; Weakland, Rhonda J.

    2014-01-01

    Water-quality conditions were studied in selected tributaries of the lower Boise River during water years 2009–12, including Fivemile and Tenmile Creeks in 2009, Indian Creek in 2010, and Mason Creek in 2011 and 2012. Biological samples, including periphyton biomass and chlorophyll-a, benthic macroinvertebrates, and fish were collected in Mason Creek in October 2011. Synoptic water-quality sampling events were timed to coincide with the beginning and middle of the irrigation season as well as the non-irrigation season, and showed that land uses and irrigation practices affect water quality in the selected tributaries. Large increases in nutrient and sediment concentrations and loads occurred over relatively short stream reaches and affected nutrient and sediment concentrations downstream of those reaches. Escherichia coli (E. coli) values increased in study reaches adjacent to pastured lands or wastewater treatment plants, but increased E. coli values at upstream locations did not necessarily affect E. coli values at downstream locations. A spatial loading analysis identified source areas for nutrients, sediment, and E. coli, and might be useful in selecting locations for water-quality improvement projects. Effluent from wastewater treatment plants increased nutrient loads in specific reaches in Fivemile and Indian Creeks. Increased suspended-sediment loads were associated with increased discharge from irrigation returns in each of the studied tributaries. Samples collected during or shortly after storms showed that surface runoff, particularly during the winter, may be an important source of nutrients in tributary watersheds with substantial agricultural land use. Concentrations of total phosphorus, suspended sediment, and E. coli exceeded regulatory water-quality targets or trigger levels at one or more monitoring sites in each tributary studied, and exceedences occurred during irrigation season more often than during non-irrigation season. As with water

  12. Low-flow profiles of the Tennessee River tributaries in Georgia

    USGS Publications Warehouse

    Carter, R.F.; Hopkins, E.H.; Perlman, H.A.

    1988-01-01

    Low flow information is provided for use in an evaluation of the capacity of streams to permit withdrawals or to accept waste loads without exceeding the limits of State water quality standards. The purpose of this report is to present the results of a compilation of available low flow data in the form of tables and ' 7Q10 flow profiles ' (minimum average flow for 7 consecutive days with a 10-yr recurrence interval) (7Q10 flow plotted against distance along a stream channel) for all stream reaches of the Tennessee River tributaries where sufficient data of acceptable accuracy are available. Drainage area profiles are included for all stream basins larger than 5 sq mi, except for those in a few remote areas. This report is the fifth in a series of reports that will cover all stream basins north of the Fall Line in Georgia. It includes the parts of the Tennessee River basin in Georgia. Flow records were not adjusted for diversions or other factors that cause measured flows to represent other than natural flow conditions. The 7-day minimum flow profile was omitted for stream reaches where natural flow was known to be altered significantly. (Lantz-PTT)

  13. Toxicity of bed sediments from the Niagara River Area of Concern and tributaries, New York, to Chironomus dilutus and Hyalella azteca, 2014-15

    USGS Publications Warehouse

    George, Scott D.; Baldigo, Barry P.; Duffy, Brian T.

    2016-09-20

    The Niagara River was designated as an Area of Concern in 1987 on both the United States and Canadian sides of the international boundary line because past industrial discharges and hazardous waste sites had caused extensive degradation of aquatic habitats. The degradation of the “benthos”, or the benthic macroinvertebrate community, was identified as one of seven beneficial use impairments caused by contaminated bed sediments. The U.S. Geological Survey and the New York State Department of Environmental Conservation, in cooperation with the U.S. Environmental Protection Agency, conducted a study in 2014 and 2015 to gather more extensive data on (a) the toxicity of bed sediments and (b) the status of macroinvertebrate communities on the main stem and tributaries of the Niagara River. This report addresses the first component of that study (toxicity of bed sediments), and summarizes results from laboratory toxicity tests that compare the survival and growth of two macroinvertebrate species between bed sediments from study sites and laboratory controls. Sediment toxicity was negligible at most sites, however poor performance of one or both test species in bed sediments from several tributary sites suggests that the quality of sediments may be adversely affecting benthic macroinvertebrate communities in some tributaries to the Niagara River.

  14. Faunal assemblages and multi-scale habitat patterns in headwater tributaries of the South Fork Trinity River - an unregulated river embedded within a multiple-use landscape

    Treesearch

    H. H. Jr. Welsh; J. J. G. R. Hodgson; J. M. Emlen Duda

    2010-01-01

    Headwaters can represent 80% of stream kilometers in a watershed, and they also have unique physical and biological properties that have only recently been recognized for their importance in sustaining healthy functioning stream networks and their ecological services. We sampled 60 headwater tributaries in the South Fork Trinity River, a 2,430 km2...

  15. Sampling little fish in big rivers: Larval fish detection probabilities in two Lake Erie tributaries and implications for sampling effort and abundance indices

    USGS Publications Warehouse

    Pritt, Jeremy J.; DuFour, Mark R.; Mayer, Christine M.; Roseman, Edward F.; DeBruyne, Robin L.

    2014-01-01

    Larval fish are frequently sampled in coastal tributaries to determine factors affecting recruitment, evaluate spawning success, and estimate production from spawning habitats. Imperfect detection of larvae is common, because larval fish are small and unevenly distributed in space and time, and coastal tributaries are often large and heterogeneous. We estimated detection probabilities of larval fish from several taxa in the Maumee and Detroit rivers, the two largest tributaries of Lake Erie. We then demonstrated how accounting for imperfect detection influenced (1) the probability of observing taxa as present relative to sampling effort and (2) abundance indices for larval fish of two Detroit River species. We found that detection probabilities ranged from 0.09 to 0.91 but were always less than 1.0, indicating that imperfect detection is common among taxa and between systems. In general, taxa with high fecundities, small larval length at hatching, and no nesting behaviors had the highest detection probabilities. Also, detection probabilities were higher in the Maumee River than in the Detroit River. Accounting for imperfect detection produced up to fourfold increases in abundance indices for Lake Whitefish Coregonus clupeaformis and Gizzard Shad Dorosoma cepedianum. The effect of accounting for imperfect detection in abundance indices was greatest during periods of low abundance for both species. Detection information can be used to determine the appropriate level of sampling effort for larval fishes and may improve management and conservation decisions based on larval fish data.

  16. Occurrence and accumulation of pesticides and organic contaminants in river sediment, water and clam tissues from the San Joaquin River and tributaries, California

    USGS Publications Warehouse

    Pereira, W.E.; Domagalski, Joseph L.; Hostettler, F.D.; Brown, L.R.; Rapp, J.B.

    1996-01-01

    A study was conducted in 1992 to assess the effects of anthropogenic activities and land use on the water quality of the San Joaquin River and its major tributaries. This study focused on pesticides and organic contaminants, looking at distributions of contaminants in water, bed and suspended sediment, and the bivalve Corbicula fluminea. Results indicated that this river system is affected by agricultural practices and urban runoff. Sediments from Dry Creek contained elevated concentrations of polycyclic aromatic hydrocarbons (PAHs), possibly derived from urban runoff from the city of Modesto; suspended sediments contained elevated amounts of chlordane. Trace levels of triazine herbicides atrazine and simazine were present in water at most sites. Sediments, water, and bivalves from Orestimba Creek, a westside tributary draining agricultural areas, contained the greatest levels of DDT (1,1,1-trichloro-2-2-bis[p-chlorophenyl]ethane), and its degradates DDD (1,1-dichloro-2,2-bis[p-chlorophenyl]ethane), and DDE (1,1-dichloro-2,2- bis[p-chlorophenyl]ethylene). Sediment adsorption co efficients (K(oc)), and bioconcentration factors (BCF) in Corbicula of DDT, DDD, and DDE at Orestimba Creek were greater than predicted values. Streams of the western San Joaquin Valley can potentially transport significant amounts of chlorinated pesticides to the San Joaquin River, the delta, and San Francisco Bay. Organochlorine compounds accumulate in bivalves and sediment and may pose a problem to other biotic species in this watershed.

  17. A reconnaissance study of halogenated organic compounds in catfish from the lower Mississippi river and its major tributaries

    USGS Publications Warehouse

    Leiker, T.J.; Rostad, C.E.; Barnes, C.R.; Pereira, W.E.

    1991-01-01

    Blue catfish, (Ictarurus furcatus), black bullhead catfish, (Ictalurus melas), channel catfish (Ictalurus punctatus), and flathead catfish (Pylodictus olivaris), were collected along a 1200 mile river reach of the Mississippi River and its major tributaries. Tissue samples were extracted and analyzed by fused silica capillary gas chromatography/mass spectrometry (GC/MS) to determine the concentrations of hydrophobic organic halogenated contaminants that have bioconcentrated within the tissues. The compounds identified in the tissue include chlordane, polychlorinated biphenyls (PCBs), DDT and its metabolites along with several other chlorinated pesticides. The data indicates that the southern reach of the river system appears to be more contaminated than the middle and upper reaches of the study area.

  18. Suspended sediments from upstream tributaries as the source of downstream river sites

    NASA Astrophysics Data System (ADS)

    Haddadchi, Arman; Olley, Jon

    2014-05-01

    Understanding the efficiency with which sediment eroded from different sources is transported to the catchment outlet is a key knowledge gap that is critical to our ability to accurately target and prioritise management actions to reduce sediment delivery. Sediment fingerprinting has proven to be an efficient approach to determine the sources of sediment. This study examines the suspended sediment sources from Emu Creek catchment, south eastern Queensland, Australia. In addition to collect suspended sediments from different sites of the streams after the confluence of tributaries and outlet of the catchment, time integrated suspended samples from upper tributaries were used as the source of sediment, instead of using hillslope and channel bank samples. Totally, 35 time-integrated samplers were used to compute the contribution of suspended sediments from different upstream waterways to the downstream sediment sites. Three size fractions of materials including fine sand (63-210 μm), silt (10-63 μm) and fine silt and clay (<10 μm) were used to find the effect of particle size on the contribution of upper sediments as the sources of sediment after river confluences. And then samples were analysed by ICP-MS and -OES to find 41 sediment fingerprints. According to the results of Student's T-distribution mixing model, small creeks in the middle and lower part of the catchment were major source in different size fractions, especially in silt (10-63 μm) samples. Gowrie Creek as covers southern-upstream part of the catchment was a major contributor at the outlet of the catchment in finest size fraction (<10 μm) Large differences between the contributions of suspended sediments from upper tributaries in different size fractions necessitate the selection of appropriate size fraction on sediment tracing in the catchment and also major effect of particle size on the movement and deposition of sediments.

  19. Yakima/Klickitat Fisheries Project Genetic Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busack, Craig A.; Fritts, Anthony L.; Loxterman, Janet

    2003-05-01

    In chapter 1 we report on studies of the population genetic structure, using DNA microsatellites, of steelhead collected from different locations in the Yakima River basin (Roza Dam, Ahtanum Creek, Toppenish Creek, and Satus Creek) in 2000 and 2001. Of 28 pairwise tests of genotypic differentiation, only the 2000 and 2001 Roza Dam collections and the 2000 and 2001 Satus Creek collections did not exhibit significant differences. Similarly, pairwise tests of genetic differentiation (FST) were significant for all comparisons except the between-years comparisons of Roza Dam, Toppenish Creek, and Satus Creek collections. All tests between populations sampled from different localitiesmore » were significant, indicating that these collections represent genetically differentiated stocks. In chapter 2 we report on genetic comparisons, again using microsatellites, of the three spring chinook populations in the Yakima basin (Upper Yakima, Naches, and American) with respect to our ability to be able to estimate the proportions of the three populations in mixed smolt samples collected at Chandler. We evaluated this both in terms of mixed fishery analysis, where proportions are estimated, but the likely provenance of any particular fish is unknown, and classification, where an attempt is made to assign individual fish to their population of origin. Simulations were done over the entire ranged of stock proportions observed in the Yakima basin in the last 20+ years. Stock proportions can be estimated very accurately by either method. Chapter 3 reports on our ongoing effort at cryopreserving semen from wild Upper Yakima spring chinook. In 2002, semen from 91 males, more than 50% of those spawned, was cryopreserved. Representation over the spawning season was excellent. Chapters 4,5, and 6 all relate to the continuing development of the domestication study design. Chapter 4 details the ISRP consultations and evolution of the design from last year's preferred alternative to the

  20. Nutrient concentrations and loads and Escherichia coli densities in tributaries of the Niantic River estuary, southeastern Connecticut, 2005 and 2008–2011

    USGS Publications Warehouse

    Mullaney, John R.

    2013-01-01

    Nutrient concentrations and loads and Escherichia coli (E. coli) densities were studied in 2005 and from 2008 through 2011 in water-quality samples from tributaries of the Niantic River Estuary in southeastern Connecticut. Data from a water-quality survey of the base flow of subbasins in the watershed in June 2005 were used to determine the range of total nitrogen concentrations (0.09 to 2.4 milligrams per liter), instantaneous loads (less than 1 to 62 pounds per day) and the yields of total nitrogen ranging from 0.02 to 11.2 pounds per square mile per day (less than 1 to 7.2 kilograms per hectare per year) from basin segments. Nitrogen yields were positively correlated with the amount of developed land in each subbasin. Stable isotope measurements of nitrate (δ15N) and oxygen (δ18O) ranged from 3.9 to 9.4 per mil and 0.7 to 4.1 per mil, respectively, indicating that likely sources of nitrate in base flow are soil nitrate and ammonium fertilizers, sewage or animal waste, or a mixture of these sources. Continuous streamflow and monthly water-quality sampling, with additional storm event sampling, were conducted at the three major tributaries (Latimer Brook, Oil Mill Brook, and Stony Brook) of the Niantic River from October 2008 through September 2011. Samples were analyzed for nitrogen and phosphorus constituents and E. coli densities. Total freshwater discharge from these tributaries, which is reduced by upstream withdrawals, ranged from 25.9 to 37.8 million gallons per day. Total nitrogen and phosphorus concentrations generally were low, with the mean values below the U.S. Environmental Protection Agency recommended nutrient concentration values of 0.71 milligram per liter and 0.031 milligram per liter, respectively. Total nitrogen was predominantly in the form of total ammonia plus organic nitrogen at the Oil Mill Brook and Stony Brook sites and in the form of nitrate at Latimer Brook. Annual total nitrogen loads that flowed into the Niantic River estuary from

  1. A field analysis of lampricide photodegradation in Great Lakes tributaries.

    PubMed

    McConville, Megan B; Cohen, Natan M; Nowicki, Shawn M; Lantz, Stephen R; Hixson, Jase L; Ward, Adam S; Remucal, Christina K

    2017-07-19

    The lampricides 3-trifluoromethyl-4-nitrophenol (TFM) and 2',5-dichloro-4'-nitrosalicylanilide (niclosamide) are added to Great Lakes tributaries to target the sea lamprey, an invasive parasitic fish. This study examines the photochemical behavior of the lampricides in Carpenter Creek, Sullivan Creek, and the Manistique River. The observed loss of TFM in Carpenter and Sullivan Creeks (i.e., 34 and 19%) was similar to the loss of bromide in parallel time of passage studies (i.e., 30 and 29%), demonstrating that TFM photodegradation was minimal in both tributaries during the lampricide application. Furthermore, the absence of inorganic and organic photoproducts in the Manistique River demonstrates that TFM and niclosamide photodegradation was minimal in this large tributary, despite its long residence time (i.e., 3.3 days). Kinetic modeling was used to identify environmental variables primarily responsible for the limited photodegradation of TFM in the field compared to estimates from laboratory data. This analysis demonstrates that the lack of TFM photodegradation was attributable to the short residence times in Carpenter and Sullivan Creeks, while depth, time of year, time of day, and cloud cover influenced photochemical fate in the Manistique River. The modeling approach was extended to assess how many of the 140 United States tributaries treated with lampricides in 2015 and 2016 were amenable to TFM photolysis. While >50% removal of TFM due to photolysis could occur in 13 long and shallow tributaries, in most systems lampricides will reach the Great Lakes untransformed.

  2. Benthic invertebrates and quality of streambed sediments in the White River and selected tributaries in and near Indianapolis, Indiana, 1994-96

    USGS Publications Warehouse

    Voelker, David C.; Renn, Danny E.

    2000-01-01

    During this study, 369 benthic-invertebrate samples were collected at 21 sites and 33 streambed-sediment samples were collected at 14 sites to help develop and evaluate control strategies to mediate the impact of point and nonpoint sources of pollution on the White River and selected tributaries in and near Indianapolis, Indiana. Data analyses show that 124 taxa were identified and that most of the benthic invertebrates found belong to one of three taxa: the pollution-tolerant Diptera and the pollution-intolerant Ephemeroptera and Trichoptera. The Hilsenhoff Biotic Index, which was calculated from the number of arthropods and their tolerance to pollution, ranged from 4.4 (very good) to 9.4 (very poor) on the White River, and from 4.9 (good) to 9.1 (very poor) on the tributaries. The Ephemeroptera, Plecoptera, and Trichoptera (EPT) Richness Index, which was calculated from the number of taxa in pollution-intolerant species, ranged from 0 to 9 for the White River and from 0 to 9 for the tributaries. A high EPT Richness Index value reflects a great diversity of pollution-intolerant invertebrates at a site and generally indicates good water quality. A comparison of data collected during the 1994 through 1996 study to data collected during a 1981 through 1987 study indicates that the proportion of pollution-tolerant taxa increased in the immediate vicinity of Indianapolis. This increase may be an indicator that the water quality in the immediate vicinity of Indianapolis has declined since the earlier study. Comparison of the Hilsenhoff Biotic Index values, however, indicates there has been no change since the previous study. In the analysis of streambed sediments, small amounts of 12 metals were detected. Of those, only lead exceeded sediment-quality guidelines for the protection of aquatic life in three samples from two sites. Thirteen insecticides were detected in the streambed sediments, and of those only chlordane exceeded sediment-quality guidelines for the

  3. Characterization of water quality in selected tributaries of the Alamosa River, southwestern Colorado, including comparisons to instream water-quality standards and toxicological reference values, 1995-97

    USGS Publications Warehouse

    Ortiz, Roderick F.; Ferguson, Sheryl A.

    2001-01-01

    A comprehensive water-quality sampling network was implemented by the U.S. Geological Survey from 1995 through 1997 at 12 tributary sites to the Alamosa River. The network was designed to address data gaps identified in the initial ecological risk assessment of the Summitville Superfund site. Tributaries draining hydrothermally altered areas had higher median values for nearly all measured properties and constituents than tributaries draining unaltered areas. Colorado instream standards for pH, copper, iron, and zinc were in attainment at most tributary sites. Instream standards for pH and chronic aquatic-life standards for iron were not attained in Jasper Creek. Toxicological reference values were most often exceeded at Iron Creek, Alum Creek, Bitter Creek, Wightman Fork, and Burnt Creek. These tributaries all drain hydrothermally altered areas.

  4. Importance of measuring discharge and sediment transport in lesser tributaries when closing sediment budgets

    NASA Astrophysics Data System (ADS)

    Griffiths, Ronald E.; Topping, David J.

    2017-11-01

    Sediment budgets are an important tool for understanding how riverine ecosystems respond to perturbations. Changes in the quantity and grain size distribution of sediment within river systems affect the channel morphology and related habitat resources. It is therefore important for resource managers to know if a river reach is in a state of sediment accumulation, deficit or stasis. Many sediment-budget studies have estimated the sediment loads of ungaged tributaries using regional sediment-yield equations or other similar techniques. While these approaches may be valid in regions where rainfall and geology are uniform over large areas, use of sediment-yield equations may lead to poor estimations of loads in regions where rainfall events, contributing geology, and vegetation have large spatial and/or temporal variability. Previous estimates of the combined mean-annual sediment load of all ungaged tributaries to the Colorado River downstream from Glen Canyon Dam vary by over a factor of three; this range in estimated sediment loads has resulted in different researchers reaching opposite conclusions on the sign (accumulation or deficit) of the sediment budget for particular reaches of the Colorado River. To better evaluate the supply of fine sediment (sand, silt, and clay) from these tributaries to the Colorado River, eight gages were established on previously ungaged tributaries in Glen, Marble, and Grand canyons. Results from this sediment-monitoring network show that previous estimates of the annual sediment loads of these tributaries were too high and that the sediment budget for the Colorado River below Glen Canyon Dam is more negative than previously calculated by most researchers. As a result of locally intense rainfall events with footprints smaller than the receiving basin, floods from a single tributary in semi-arid regions can have large (≥ 10 ×) differences in sediment concentrations between equal magnitude flows. Because sediment loads do not

  5. Synthetic organic agrochemicals in the lower Mississippi River and its major tributaries: Distribution, transport and fate

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.; ,

    1992-01-01

    The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2',6'-diethylacetanilide, 2-hydroxy-2',6'-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987-1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products were generated from point and non-point sources. Seasonal variations and hydrologic conditions controlled the loads of these compounds in the Mississippi River. Cross-channel mixing was slow downstream from major river confluences, possibly requiring several hundred kilometers of downriver transit for completion. The annual transport of these compounds into the Gulf of Mexico was estimated to be < 2% of the annual application of each herbicide in the Midwest.The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2???,6???-diethylacetanilide, 2-hydroxy-2???,6???-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987-1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products

  6. Estimation of erosion and sedimentation yield in the Ucayali river basin, a Peruvian tributary of the Amazon River, using ground and satellite methods

    NASA Astrophysics Data System (ADS)

    Santini, William; Martinez, Jean-Michel; Guyot, Jean-Loup; Espinoza, Raul; Vauchel, Philippe; Lavado, Waldo

    2014-05-01

    Since 2003, the works of HYBAM observatory (www.ore-hybam.org) has allowed to quantify with accuracy, precision and over a long period Amazon's main rivers discharges and sediments loads. In Peru, a network of 8 stations is regularly gauged and managed in association with the national meteorological and Hydrological service (SENAMHI), the UNALM (National Agrological University of La Molina) and the National Water Agency (ANA). Nevertheless, some current processes of erosion and sedimentation in the foreland basins are still little known, both in volumes and in localization. The sedimentary contributions of Andean tributaries could be there considerable, masking a very strong sedimentation in subsidence zones localized between the control points of the HYBAM's network. The development of spatial techniques such as the Altimetry and reflectance measurement allows us today to complete the ground's network: HYBAM's works have allowed establishing a relation between surface concentration and reflectance in Amazonian rivers (Martinez et al., 2009, Espinoza et al., 2012) and reconstituting water levels series (Calmant et al., 2006, 2008). If the difficulty of calibration of these techniques increases towards the upstream, their use can allow a first characterization of the tributaries contributions and sedimentation zones. At world level, erosion and sedimentation yields in the upper Ucayali are exceptional, favored by a marked seasonality in this region (Espinoza et al., 2009, Lavado, 2010, Pépin et al., 2010) and the presence of cells of extreme precipitation ("Hotspots") (Johnson et al., 1976, Espinoza et al, 2009a). The upper Ucayali drainage basin is a Piggyback where the River run with a low slope, parallel to the Andean range, deposing by gravity hundred millions a year of sands, silts and clays. In this work, we thus propose an estimation of sedimentation and erosion yield in the Ucayali river basin using ground and satellite methods.

  7. Presumptive Sources of Fecal Contamination in Four Tributaries to the New River Gorge National River, West Virginia, 2004

    USGS Publications Warehouse

    Mathes, Melvin V.; O'Brien, Tara L.; Strickler, Kriston M.; Hardy, Joshua J.; Schill, William B.; Lukasik, Jerzy; Scott, Troy M.; Bailey, David E.; Fenger, Terry L.

    2007-01-01

    Several methods were used to determine the sources of fecal contamination in water samples collected during September and October 2004 from four tributaries to the New River Gorge National River -- Arbuckle Creek, Dunloup Creek, Keeney Creek, and Wolf Creek. All four tributaries historically have had elevated levels of fecal coliform bacteria. The source-tracking methods used yielded various results, possibly because one or more methods failed. Sourcing methods used in this study included the detection of several human-specific and animal-specific biological or molecular markers, and library-dependent pulsed-field gel electrophoresis analysis that attempted to associate Escherichia coli bacteria obtained from water samples with animal sources by matching DNA-fragment banding patterns. Evaluation of the results of quality-control analysis indicated that pulsed-field gel electrophoresis analysis was unable to identify known-source bacteria isolates. Increasing the size of the known-source library did not improve the results for quality-control samples. A number of emerging methods, using markers in Enterococcus, human urine, Bacteroidetes, and host mitochondrial DNA, demonstrated some potential in associating fecal contamination with human or animal sources in a limited analysis of quality-control samples. All four of the human-specific markers were detected in water samples from Keeney Creek, a watershed with no centralized municipal wastewater-treatment facilities, thus indicating human sources of fecal contamination. The human-specific Bacteroidetes and host mitochondrial DNA markers were detected in water samples from Dunloup Creek, Wolf Creek, and to a lesser degree Arbuckle Creek. Results of analysis for wastewater compounds indicate that the September 27 sample from Arbuckle Creek contained numerous human tracer compounds likely from sewage. Dog, horse, chicken, and pig host mitochondrial DNA were detected in some of the water samples with the exception of the

  8. Temporal variability in terrestrially-derived sources of particulate organic carbon in the lower Mississippi River and its upper tributaries

    NASA Astrophysics Data System (ADS)

    Bianchi, Thomas S.; Wysocki, Laura A.; Stewart, Mike; Filley, Timothy R.; McKee, Brent A.

    2007-09-01

    In this study, we examined the temporal changes of terrestrially-derived particulate organic carbon (POC) in the lower Mississippi River (MR) and in a very limited account, the upper tributaries (Upper MR, Ohio River, and Missouri River). We used for the first time a combination of lignin-phenols, bulk stable carbon isotopes, and compound-specific isotope analyses (CSIA) to examine POC in the lower MR and upper tributaries. A lack of correlation between POC and lignin phenol abundances ( Λ8) was likely due to dilution effects from autochthonous production in the river, which has been shown to be considerably higher than previously expected. The range of δ 13C values for p-hydroxycinnamic and ferulic acids in POC in the lower river do support that POM in the lower river does have a significant component of C 4 in addition to C 3 source materials. A strong correlation between δ 13C values of p-hydroxycinnamic, ferulic, and vanillyl phenols suggests a consistent input of C 3 and C 4 carbon to POC lignin while a lack of correlation between these same phenols and POC bulk δ 13C further indicates the considerable role of autochthonous carbon in the lower MR POC budget. Our estimates indicate an annual flux of POC of 9.3 × 10 8 kg y -1 to the Gulf of Mexico. Total lignin fluxes, based on Λ8 values of POC, were estimated to be 1.2 × 10 5 kg y -1. If we include the total dissolved organic carbon (DOC) flux (3.1 × 10 9 kg y -1) reported by [Bianchi T. S., Filley T., Dria K. and Hatcher, P. (2004) Temporal variability in sources of dissolved organic carbon in the lower Mississippi River. Geochim. Cosmochim. Acta68, 959-967.], we get a total organic carbon flux of 4.0 × 10 9 kg y -1. This represents 0.82% of the annual total organic carbon supplied to the oceans by rivers (4.9 × 10 11 kg).

  9. Evaluation of Water Quality for Two St. Johns River Tributaries Receiving Septic Tank Effluent, Duval County, Florida

    USGS Publications Warehouse

    Wicklein, Shaun M.

    2004-01-01

    Tributary streamflow to the St. Johns River in Duval County is thought to be affected by septic tank leachate from residential areas adjacent to these tributaries. Water managers and the city of Jacksonville have committed to infrastructure improvements as part of a management plan to address the impairment of tributary water quality. In order to provide data to evaluate the effects of future remedial activities in selected tributaries, major ion and nutrient concentrations, fecal coliform concentrations, detection of wastewater compounds, and tracking of bacterial sources were used to document septic tank influences on the water quality of selected tributaries. The tributaries Fishing Creek and South Big Fishweir Creek were selected because they drain subdivisions identified as high priority locations for septic tank phase-out projects: the Pernecia and Murray Hill B subdivisions, respectively. Population, housing (number of residences), and septic tank densities for the Murray Hill B subdivision are greater than those for the Pernecia subdivision. Water-quality samples collected in the study basins indicate influences from ground water and septic tanks. Estimated concentrations of total nitrogen ranged from 0.33 to 2.86 milligrams per liter (mg/L), and ranged from less than laboratory reporting limit (0.02 mg/L) to 0.64 mg/L for total phosphorus. Major ion concentrations met the State of Florida Class III surface-water standards; total nitrogen and total phosphorus concentrations exceeded the U.S. Environmental Protection Agency Ecoregion XII nutrient criteria for rivers and streams 49 and 96 percent of the time, respectively. Organic wastewater compounds detected at study sites were categorized as detergents, antioxidants and flame retardants, manufactured polycarbonate resins, industrial solvents, and mosquito repellent. The most commonly detected compound was para-nonylphenol, a breakdown product of detergent. Results of wastewater sampling give evidence that

  10. The Columbia River and Tributaries Study, Interim Report, Yakima-Union Gap Flood Damage Reduction, Yakima River Basin, Washington.

    DTIC Science & Technology

    1980-03-01

    Populus trichoearp& Shrubs Red osier dogwood Cornus stolonifera Willows Salix spp. C Elderberry Sambucus glauca C Serviceberry Amelanchier alnifolia C...Taraxucum off icinale C Madowlrue Thalictrum occidentale C Ceow prni Heracleum lanatun C Monkey flower Iiis langsdorf sii C Rocky Mountain irishi mssuins...aboaeem oil the significant aree.Ioloical resources is the project aea TO the centrary nearby are suggest that important material OWwall be loated to the

  11. Antibiotic contamination in a typical developing city in south China: occurrence and ecological risks in the Yongjiang River impacted by tributary discharge and anthropogenic activities.

    PubMed

    Xue, Baoming; Zhang, Ruijie; Wang, Yinghui; Liu, Xiang; Li, Jun; Zhang, Gan

    2013-06-01

    The occurrence and distribution of ten selected antibiotics from three groups (sulfonamides, macrolides, and trimethoprim) were investigated in the Yongjiang River, which flows through Nanning City, a typical developing city in China. The study also assessed the ecological risks and the potential effects caused by discharge from tributaries and anthropogenic activities. Concentrations of most of the antibiotics were elevated along the section of the river in the urban area, highlighting the significant impact of high population density and human activities on the presence of antibiotics in the environment. The concentrations in the tributaries (ranged from not detected to 1336ngL(-1)) were generally higher than those in the main stream (ranged from not detected to 78.8ngL(-1)), but both areas contained the same predominant antibiotics, revealing the importance of tributary discharge as a source of antibiotic pollution. A risk assessment for the surface water contamination revealed that sulfamethoxazole and erythromycin posed high ecological risks to the most sensitive aquatic organisms (Synechococcus leopoliensis and Pseudokirchneriella subcapitata, respectively) in the midstream and some tributaries. Most of the selected antibiotics presented high ecological risks (risk quotients up to 95) in the sediments. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Streamflow trends in the Spokane River and tributaries, Spokane Valley/Rathdrum Prairie, Idaho and Washington

    USGS Publications Warehouse

    Hortness, Jon E.; Covert, John J.

    2005-01-01

    A clear understanding of the aquifer and river dynamics within the Spokane Valley/Rathdrum Prairie is essential in making proper management decisions concerning ground-water and surface-water appropriations. Management of the Spokane Valley/Rathdrum Prairie aquifer is complicated because of interstate, multi-jurisdictional responsibilities, and by the interaction between ground water and surface water. Kendall?s tau trend analyses were completed on monthly mean (July through December) and annual 7-day low streamflow data for the period 1968?2002 from gaging stations located within the Spokane Valley/Rathdrum Prairie. The analyses detected trends of decreasing monthly mean streamflow at the following gaging stations: Spokane River near Post Falls, Idaho (August and September); Spokane River at Spokane, Washington (September); and Little Spokane River at Dartford, Washington (September and October); and decreasing annual 7-day low streamflows at the following gaging stations: Spokane River near Post Falls, Idaho and Spokane River at Spokane, Washington. Limited analyses of lake-level, precipitation, tributary inflow, temperature, and water-use data provided little insight as to the reason for the decreasing trends in streamflow. A net gain in streamflow occurs between the gaging stations Spokane River near Post Falls, Idaho and Spokane River at Spokane, Washington. Significant streamflow losses occur between the gaging stations Spokane River near Post Falls, Idaho and Spokane River at Greenacres, Washington; most, if not all, of the gains occur downstream from the Greenacres gaging station. Trends of decreasing net streamflow gains in the Spokane River between the near Post Falls and at Spokane gaging stations were detected for the months of September, October, and November.

  13. Importance of measuring discharge and sediment transport in lesser tributaries when closing sediment budgets

    USGS Publications Warehouse

    Griffiths, Ronald; Topping, David

    2017-01-01

    Sediment budgets are an important tool for understanding how riverine ecosystems respond to perturbations. Changes in the quantity and grain size distribution of sediment within river systems affect the channel morphology and related habitat resources. It is therefore important for resource managers to know if a river reach is in a state of sediment accumulation, deficit or stasis. Many sediment-budget studies have estimated the sediment loads of ungaged tributaries using regional sediment-yield equations or other similar techniques. While these approaches may be valid in regions where rainfall and geology are uniform over large areas, use of sediment-yield equations may lead to poor estimations of loads in regions where rainfall events, contributing geology, and vegetation have large spatial and/or temporal variability.Previous estimates of the combined mean-annual sediment load of all ungaged tributaries to the Colorado River downstream from Glen Canyon Dam vary by over a factor of three; this range in estimated sediment loads has resulted in different researchers reaching opposite conclusions on the sign (accumulation or deficit) of the sediment budget for particular reaches of the Colorado River. To better evaluate the supply of fine sediment (sand, silt, and clay) from these tributaries to the Colorado River, eight gages were established on previously ungaged tributaries in Glen, Marble, and Grand canyons. Results from this sediment-monitoring network show that previous estimates of the annual sediment loads of these tributaries were too high and that the sediment budget for the Colorado River below Glen Canyon Dam is more negative than previously calculated by most researchers. As a result of locally intense rainfall events with footprints smaller than the receiving basin, floods from a single tributary in semi-arid regions can have large (≥ 10 ×) differences in sediment concentrations between equal magnitude flows. Because sediment loads do not

  14. Shovelnose sturgeon spawning in relation to varying discharge treatments in a Missouri River tributary

    USGS Publications Warehouse

    Goodman, B.J.; Guy, C.S.; Camp, S.L.; Gardner, W.M.; Kappenman, K.M.; Webb, M.A.H.

    2013-01-01

    Many lotic fish species use natural patterns of variation in discharge and temperature as spawning cues, and these natural patterns are often altered by river regulation. The effects of spring discharge and water temperature variation on the spawning of shovelnose sturgeon Scaphirhynchus platorynchus have not been well documented. From 2006 through 2009, we had the opportunity to study the effects of experimental discharge levels on shovelnose sturgeon spawning in the lower Marias River, a regulated tributary to the Missouri River in Montana. In 2006, shovelnose sturgeon spawned in the Marias River in conjunction with the ascending, peak (134 m3/s) and descending portions of the spring hydrograph and water temperatures from 16°C to 19°C. In 2008, shovelnose sturgeon spawned in conjunction with the peak (118 m3/s) and descending portions of the spring hydrograph and during a prolonged period of increased discharge (28–39 m3/s), coupled with water temperatures from 11°C to 23°C in the lower Marias River. No evidence of shovelnose sturgeon spawning was documented in the lower Marias River in 2007 or 2009 when discharge remained low (14 and 20 m3/s) despite water temperatures suitable and optimal (12°C-24°C) for shovelnose sturgeon embryo development. A similar relationship between shovelnose sturgeon spawning and discharge was observed in the Teton River. These data suggest that discharge must reach a threshold level (28 m3/s) and should be coupled with water temperatures suitable (12°C-24°C) or optimal (16°C-20°C) for shovelnose sturgeon embryo development to provide a spawning cue for shovelnose sturgeon in the lower Marias River.

  15. Development of a database-driven system for simulating water temperature in the lower Yakima River main stem, Washington, for various climate scenarios

    USGS Publications Warehouse

    Voss, Frank; Maule, Alec

    2013-01-01

    A model for simulating daily maximum and mean water temperatures was developed by linking two existing models: one developed by the U.S. Geological Survey and one developed by the Bureau of Reclamation. The study area included the lower Yakima River main stem between the Roza Dam and West Richland, Washington. To automate execution of the labor-intensive models, a database-driven model automation program was developed to decrease operation costs, to reduce user error, and to provide the capability to perform simulations quickly for multiple management and climate change scenarios. Microsoft© SQL Server 2008 R2 Integration Services packages were developed to (1) integrate climate, flow, and stream geometry data from diverse sources (such as weather stations, a hydrologic model, and field measurements) into a single relational database; (2) programmatically generate heavily formatted model input files; (3) iteratively run water temperature simulations; (4) process simulation results for export to other models; and (5) create a database-driven infrastructure that facilitated experimentation with a variety of scenarios, node permutations, weather data, and hydrologic conditions while minimizing costs of running the model with various model configurations. As a proof-of-concept exercise, water temperatures were simulated for a "Current Conditions" scenario, where local weather data from 1980 through 2005 were used as input, and for "Plus 1" and "Plus 2" climate warming scenarios, where the average annual air temperatures used in the Current Conditions scenario were increased by 1degree Celsius (°C) and by 2°C, respectively. Average monthly mean daily water temperatures simulated for the Current Conditions scenario were compared to measured values at the Bureau of Reclamation Hydromet gage at Kiona, Washington, for 2002-05. Differences ranged between 1.9° and 1.1°C for February, March, May, and June, and were less than 0.8°C for the remaining months of the year

  16. Tracking fluorescent dissolved organic matter in multistage rivers using EEM-PARAFAC analysis: implications of the secondary tributary remediation for watershed management.

    PubMed

    Nie, Zeyu; Wu, Xiaodong; Huang, Haomin; Fang, Xiaomin; Xu, Chen; Wu, Jianyu; Liang, Xinqiang; Shi, Jiyan

    2016-05-01

    Profound understanding of behaviors of organic matter from sources to multistage rivers assists watershed management for improving water quality of river networks in rural areas. Ninety-one water samples were collected from the three orders of receiving rivers in a typical combined polluted subcatchment (diffuse agricultural pollutants and domestic sewage) located in China. Then, the fluorescent dissolved organic matter (FDOM) information for these samples was determined by the excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC). Consequently, two typical humic-like (C1 and C2) and other two protein-like (C3 and C4) components were separated. Their fluorescence peaks were located at λ ex/em = 255(360)/455, <250(320)/395, 275/335, and <250/305 nm, which resembled the traditional peaks of A + C, A + M, T, and B, respectively. In addition, C1 and C2 accounted for the dominant contributions to FDOM (>60 %). Principal component analysis (PCA) further demonstrated that, except for the autochthonous produced C4, the allochthonous components (C1 and C2) had the same terrestrial origins, but C3 might possess the separate anthropogenic and biological sources. Moreover, the spatial heterogeneity of contamination levels was noticeable in multistage rivers, and the allochthonous FDOM was gradually homogenized along the migration directions. Interestingly, the average content of the first three PARAFAC components in secondary tributaries and source pollutants had significantly higher levels than that in subsequent receiving rivers, thus suggesting that the supervision and remediation for secondary tributaries would play a prominent role in watershed management works.

  17. Interactions between invasive round gobies (Neogobius melanostomous) and fantail darters (Etheostoma flabellare) in a tributary of the St. Lawrence River, New York, USA

    USGS Publications Warehouse

    Abbett, Ross; Waldt, Emily M.; Johnson, James H.; McKenna, James E.; Dittman, Dawn E.

    2013-01-01

    The initial, rapid expansion of the invasive round goby (Neogobius melanostomus) throughout the Great Lakes drainage was largely confined to lentic systems. We recently observed round gobies ascending two tributaries of the St. Lawrence River. The expansion of gobies into small lotic environments may place ecologically similar species at risk. Fantail darter (Etheostoma flabellare) is one of the several benthic species of the New York Great Lakes drainages that are threatened by round goby invasion. We examined the habitat use and diet composition of fantail darters and round gobies in Mullet Creek, a third-order tributary of the St. Lawrence River, NY, USA. The objectives of this study were to determine the degree of habitat and diet overlap between fantail darters and round gobies in a tributary of the St. Lawrence River. Gobies and darters co-occurred at 22% of capture sites. Of the four habitat variables examined (cover, depth, substrate and velocity), only depth use was significantly different with gobies using deeper habitats than darters. Among the two species and size classes sampled (large vs. small), large darters had the most restricted habitat use requirements. There was variation in round goby and darter diet composition, but only moderate diet overlap occurred between fantail darters and round gobies (Cλ = 0.43). Conditions in Mullet Creek were appropriate for the evaluation of possible spatial and dietary competition between round goby and native darters. Early detection and management of round goby invasions is critical to maintaining ecological integrity of lotic ecosystems in the St. Lawrence Valley.

  18. Measured and Estimated Sodium-Adsorption Ratios for Tongue River and its Tributaries, Montana and Wyoming, 2004-06

    USGS Publications Warehouse

    Cannon, M.R.; Nimick, David A.; Cleasby, Thomas E.; Kinsey, Stacy M.; Lambing, John H.

    2007-01-01

    The Tongue River drains an area of about 5,400 square miles and flows northward from its headwaters in the Bighorn National Forest of northeastern Wyoming to join the Yellowstone River at Miles City, Montana. Water from the Tongue River and its tributaries is extensively used for irrigation in both Wyoming and Montana. The Tongue River watershed contains vast coal deposits that are extracted at several surface mines. In some areas of the watershed, the coal beds also contain methane gas (coal-bed methane or natural gas), which has become the focus of intense exploration and development. Production of coal-bed methane requires the pumping of large volumes of ground water from the coal beds to reduce water pressure within the formation and release the stored gas. Water from the coal beds typically is high in sodium and low in calcium and magnesium, resulting in a high sodium-adsorption ratio (SAR). Disposal of ground water with high sodium concentrations into the Tongue River has the potential to increase salinity and SAR of water in the river, and potentially reduce the quality of water for irrigation purposes. This report documents SAR values measured in water samples collected at 12 monitoring sites in the Tongue River watershed and presents regression relations between specific conductance (SC) and SAR at each site for the years 2004-06. SAR in water samples was determined from laboratory-measured concentrations of sodium, calcium, and magnesium. The results of regression analysis indicated that SC and SAR were significantly related (p-values < 0.05) at most sites. The regression relations developed for most monitoring sites in the Tongue River watershed were used with continuous SC data to estimate daily SAR during the 2004 and 2005 irrigation seasons and to estimate 2006 provisional SAR values, which were displayed on the Web in real-time. Water samples were collected and analyzed from seven sites on the main stem of the Tongue River located at: (1) Monarch

  19. Synthetic organic agrochemicals in the lower Mississippi River and its major tributaries--Distribution, transport and fate

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.

    1992-01-01

    The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2′,6′-diethylacetanilide 2-hydroxy-2′,6′-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987–1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products were generated from point and non-point sources. Seasonal variations and hydrologic conditions controlled the loads of these compounds in the Mississippi River. Cross-channel mixing was slow downstream from major river confluences, possibly requiring several hundred kilometers of downriver transit for completion. The annual transport of these compounds into the Gulf of Mexico was estimated to be < 2% of the annual application of each herbicide in the Midwest.

  20. Occurrence of Organic Compounds and Trace Elements in the Upper Passaic and Elizabeth Rivers and Their Tributaries in New Jersey, July 2003 to February 2004: Phase II of the New Jersey Toxics Reduction Workplan for New York-New Jersey Harbor

    USGS Publications Warehouse

    Wilson, Timothy P.; Bonin, Jennifer L.

    2008-01-01

    Samples of surface water and suspended sediment were collected from the Passaic and Elizabeth Rivers and their tributaries in New Jersey from July 2003 to February 2004 to determine the concentrations of selected chlorinated organic and inorganic constituents. This sampling and analysis was conducted as Phase II of the New York-New Jersey Harbor Estuary Workplan?Contaminant Assessment and Reduction Program (CARP), which is overseen by the New Jersey Department of Environmental Protection. Phase II of the New Jersey Workplan was conducted to define upstream tributary and point sources of contaminants in those rivers sampled during Phase I work, with special emphasis on the Passaic and Elizabeth Rivers. Samples were collected from three groups of tributaries: (1) the Second, Third, and Saddle Rivers; (2) the Pompton and upper Passaic Rivers; and (3) the West Branch and main stem of the Elizabeth River. The Second, Third, and Saddle Rivers were sampled near their confluence with the tidal Passaic River, but at locations not affected by tidal flooding. The Pompton and upper Passaic Rivers were sampled immediately upstream from their confluence at Two Bridges, N.J. The West Branch and the main stem of the Elizabeth River were sampled just upstream from their confluence at Hillside, N.J. All tributaries were sampled during low-flow discharge conditions using the protocols and analytical methods for organic constituents used in low-flow sampling in Phase I. Grab samples of streamflow also were collected at each site and were analyzed for trace elements (mercury, methylmercury, cadmium, and lead) and for suspended sediment, particulate organic carbon, and dissolved organic carbon. The measured concentrations and available historical suspended-sediment and stream-discharge data (where available) were used to estimate average annual loads of suspended sediment and organic compounds in these rivers. Total suspended-sediment loads for 1975?2000 were estimated using rating

  1. Hydromorphodynamic effects of the width ratio and local tributary widening on discordant confluences

    NASA Astrophysics Data System (ADS)

    Guillén-Ludeña, S.; Franca, M. J.; Alegria, F.; Schleiss, A. J.; Cardoso, A. H.

    2017-09-01

    River training works performed in the last couple of centuries constrained the natural dynamics of channel networks in locations that include the confluences between tributaries and main channels. As a result, the dynamics of these confluences are currently characterized by homogeneous flow depths, flow velocities, and morphologic conditions, which are associated with impoverished ecosystems. The widening of river reaches is seen as a useful measure for river restoration, as it enhances the heterogeneity in flow depths, flow velocities, sediment transport, and bed substrates. The purpose of this study is to analyze the effects of local widening of the tributary mouth as well as the effects of the ratio between the width of the tributary and that of the main channel on the flow dynamics and bed morphology of river confluences. For that purpose, 12 experiments were conducted in a 70° laboratory confluence. In these experiments, three unit-discharge ratios were tested (qr = 0.37, 0.50, and 0.77) with two width ratios and two tributary configurations. The unit-discharge ratio is defined as the unit discharge in the tributary divided by that of the main channel, measured upstream of the confluence. The width ratio, which is defined as the width of the tributary divided by that of the main channel, was modified by changing the width of the main channel from 0.50 to 1.00 m (corresponding to Br = 0.30 and 0.15 respectively). The tributary configurations consisted of (i) a straight reach with a constant width (the so-called reference configuration) and (ii) a straight reach with a local widening at the downstream end (the so-called widened configuration). During the experiments, a uniform sediment mixture was continuously supplied to both channels. This experimental setup is novel among existing experimental studies on confluence dynamics, as it addresses new confluence configurations and includes a continuous sediment supply to both channels. The experiments were run

  2. Streamflow and sediment-transport data, Colorado River and three tributaries in Grand Canyon, Arizona, 1983 and 1985-86

    USGS Publications Warehouse

    Garrett, W.B.; van de Vanter, E.K.; Graf, J.B.

    1993-01-01

    The U.S. Geological Survey collected streamflow and sediment-transport data at 5 streamflow-gaging stations on the Colorado River between Glen Canyon Dam and Lake Mead as a part of an interagency environmental study. The data were collected for about 6 mo in 1983 and about 4 mo in 1985-86; data also were collected at 3 sites on tributary streams in 1983. The data were used for development of unsteady flow-routing and sediment-transport models, sand-load rating curves, and evaluation of channel changes. For the 1983 sampling period, 1,076 composite cross-section suspended-sediment samples were analyzed; 809 of these samples were collected on the main stem of the Colorado River and 267 samples were from the tributaries. Bed-material samples were obtained at 1,988 verticals; 161 samples of material in transport near the bed (bedload) were collected to define the location of sand, gravel, and bed rock in the channel cross section; and 664 discharge measurements were made. For the 1985-86 sampling period, 765 composite cross-section suspended-sediment samples and 887 individual vertical samples from cross sections were analyzed. Bed-material samples were obtained at 531 verticals, 159 samples of bedload were collected, and 218 discharge measurements were made. All data are presented in tabular form. Some types of data also are presented in graphs to better show trends or variations. (USGS)

  3. Surficial geologic maps along the riparian zone of the Animas River and its headwater tributaries, Silverton to Durango, Colorado, with upper Animas River watershed gradient profiles

    USGS Publications Warehouse

    Blair, R.W.; Yager, D.B.; Church, S.E.

    2002-01-01

    This product consists of Adobe Acrobat .PDF format documents for 10 surficial geologic strip maps along the Animas River watershed from its major headwater tributaries, south to Durango, Colorado. The Animas River originates in the San Juan Mountains north of the historic mining town of Silverton, Colorado. The surficial geologic maps identify surficial deposits, such as flood-plain and terrace gravels, alluvial fans, glacial till, talus, colluvium, landslides, and bogs. Sixteen primary units were mapped that included human-related deposits and structures, eight alluvial, four colluvial, one glacial, travertine deposits, and undifferentiated bedrock. Each of the surficial geologic strip maps has .PDF links to surficial geology photographs, which enable the user to take a virtual tour of these deposits. Geochemical data collected from mapped surficial deposits that pre- and postdate mining activity have aided in determining the geochemical baseline in the watershed. Several photographs with their corresponding geochemical baseline profiles are accessible through .PDF links from several of the maps. A single coverage for all surficial deposits mapped is included as an ArcInfo shape file as an Arc Export format .e00 file. A gradient map for major headwater tributary streams to the Animas River is also included. The gradient map has stream segments that are color-coded based on relative variations in slope and .PDF format links to each stream gradient profile. Stream gradients were derived from U.S. Geological Survey 10-m digital elevation model data. This project was accomplished in support of the U.S. Geological Survey's Abandoned Mine Lands Initiative in the San Juan Mountains, Colorado.

  4. Tributary loading of mercury to Lake Michigan: Importance of seasonal events and phase partitioning

    USGS Publications Warehouse

    Hurley, J.P.; Cowell, S.E.; Shafer, M.M.; Hughes, P.E.

    1998-01-01

    As a component of a lakewide mass balance study for Lake Michigan, we measured total mercury (Hg(T)) concentrations and fluxes in 11 selected tributaries. Unfiltered Hg(T) concentrations ranged from 0.56 ng l-61 at the Pete Marquette River to 182 ng l-1 at the Fox River. Highest mean Hg(T) concentrations were observed in the Fox R., Indiana Harbor Ship Canal, Grand R. and the Kalamazoo R. Mean particulate matter Hg(T) content ranged from about 0.1 to 1.5 ??g g-1, with highest levels from the industrialized basins of the Indiana Harbor and Fox River. Highest tributary loading rates (g day-1) were observed from the Fox, Grand, Kalamazoo and St. Joseph Rivers. Increased loading rates during spring melt and summer/fall storm events in these tributaries were generally associated with particulate loading from either sediment resuspension or erosional processes. In contrast, filtered Hg(T) represented 80% of the Hg(T) flux in the Manistique R., whose watershed is comprised almost entirely of wetlands and forest.

  5. Next-Generation Sequencing of Microbial Communities in the Athabasca River and Its Tributaries in Relation to Oil Sands Mining Activities

    PubMed Central

    Yergeau, Etienne; Lawrence, John R.; Sanschagrin, Sylvie; Waiser, Marley J.; Korber, Darren R.

    2012-01-01

    The Athabasca oil sands deposit is the largest reservoir of crude bitumen in the world. Recently, the soaring demand for oil and the availability of modern bitumen extraction technology have heightened exploitation of this reservoir and the potential unintended consequences of pollution in the Athabasca River. The main objective of the present study was to evaluate the potential impacts of oil sands mining on neighboring aquatic microbial community structure. Microbial communities were sampled from sediments in the Athabasca River and its tributaries as well as in oil sands tailings ponds. Bacterial and archaeal 16S rRNA genes were amplified and sequenced using next-generation sequencing technology (454 and Ion Torrent). Sediments were also analyzed for a variety of chemical and physical characteristics. Microbial communities in the fine tailings of the tailings ponds were strikingly distinct from those in the Athabasca River and tributary sediments. Microbial communities in sediments taken close to tailings ponds were more similar to those in the fine tailings of the tailings ponds than to the ones from sediments further away. Additionally, bacterial diversity was significantly lower in tailings pond sediments. Several taxonomic groups of Bacteria and Archaea showed significant correlations with the concentrations of different contaminants, highlighting their potential as bioindicators. We also extensively validated Ion Torrent sequencing in the context of environmental studies by comparing Ion Torrent and 454 data sets and by analyzing control samples. PMID:22923391

  6. 77 FR 18786 - Eastern Washington Cascades Provincial Advisory Committee and the Yakima Provincial Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... DEPARTMENT OF AGRICULTURE Forest Service Eastern Washington Cascades Provincial Advisory Committee and the Yakima Provincial Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting... Chief's 10-Year Stewardship Challenge, Upper Yakima Basin Water Enhancement Project, Holden Mine...

  7. Surface-water-quality assessment of the Yakima River basin in Washington; spatial and temporal distribution of trace elements in water, sediment, and aquatic biota, 1987-91; with a section on geology

    USGS Publications Warehouse

    Fuhrer, Gregory J.; Cain, Daniel J.; McKenzie, Stuart W.; Rinella, Joseph F.; Crawford, J. Kent; Skach, Kenneth A.; Hornberger, Michelle I.; Gannett, Marshall W.

    1999-01-01

    The report describes the distribution of trace elements in sediment, water, and aquatic biota in the Yakima River basin, Washington. Trace elements were determined from streambed sediment, suspended sediment, filtered and unfiltered water samples, aquatic insects, clams, fish livers, and fish fillets between 1987 and 1991. The distribution of trace elements in these media was related to local geology and anthropogenic sources. Additionally, annual and instantaneous loads were estimated for trace elements associated with suspended sediment and trace elements in filtered water samples. Trace elements also were screened against U.S. Environmental Protection Agency guidelines established for the protection of human health and aquatic life.

  8. Modeling Water Temperature in the Yakima River, Washington, from Roza Diversion Dam to Prosser Dam, 2005-06

    USGS Publications Warehouse

    Voss, Frank D.; Curran, Christopher A.; Mastin, Mark C.

    2008-01-01

    A mechanistic water-temperature model was constructed by the U.S. Geological Survey for use by the Bureau of Reclamation for studying the effect of potential water management decisions on water temperature in the Yakima River between Roza and Prosser, Washington. Flow and water temperature data for model input were obtained from the Bureau of Reclamation Hydromet database and from measurements collected by the U.S. Geological Survey during field trips in autumn 2005. Shading data for the model were collected by the U.S. Geological Survey in autumn 2006. The model was calibrated with data collected from April 1 through October 31, 2005, and tested with data collected from April 1 through October 31, 2006. Sensitivity analysis results showed that for the parameters tested, daily maximum water temperature was most sensitive to changes in air temperature and solar radiation. Root mean squared error for the five sites used for model calibration ranged from 1.3 to 1.9 degrees Celsius (?C) and mean error ranged from ?1.3 to 1.6?C. The root mean squared error for the five sites used for testing simulation ranged from 1.6 to 2.2?C and mean error ranged from 0.1 to 1.3?C. The accuracy of the stream temperatures estimated by the model is limited by four errors (model error, data error, parameter error, and user error).

  9. Outline of the water resources of the Status Creek basin, Yakima Indian Reservation, Washington

    USGS Publications Warehouse

    Molenaar, Dee

    1976-01-01

    On the Yakima Indian Reservation, Washington, only about 5 percent of the Satus Creek basin--in the relatively flat eastern lowland adjacent to and including part of the Yakima River lowland--is agriculturally developed, mostly through irrigation. Because the basin 's streams do not contain adequate water for irrigation, most irrigation is by canal diversion from the adjoining Toppenish Creek basin. Irrigation application of as much as 9.25 acre-feet per acre per year, combined with the presence of poorly drained silt and clay layers in this area, and the natural upward discharge of ground water from deeper aquifers (water-bearing layers), has contributed to a waterlogging problem, which has affected about 10,500 acres, or about 25 percent of the irrigated area. In the upland of the basin, a large average annual base flow of about 30 cubic feet per second in Logy Creek indicates the presence of a potentially highly productive aquifer in young (shallow) basalt lavas underlying the higher western parts of the upland. This aquifer may provide a reservoir from which streamflow may be augmented by ground-water pumping or, alternatively, it may be used as a source of ground water for irrigation of upland areas directly. (Woodard-USGS)

  10. Approaches to restoration of oak forests on farmed lowlands of the Mississippi river and its tributaries (Avances en la restauración de bosques de roble en tierras bajas agrícolas del Río Mississippi y sus tributaries)

    Treesearch

    E.S. Gardiner; D.C. Dey; John Stanturf; B.R. Lockhart

    2010-01-01

    The lowlands associated with the Mississippi River and its tributaries historically supported extensive broadleaf forests that were particularly rich in oak (Quercus spp.) species. Beginning in the 1700s, deforestation for agriculture substantially reduced the extent of the original forest, and fragmented the remainder into small parcels. More recently, declines in...

  11. Water quality of the Upper West Branch Susquehanna River and tributary streams between Curwensville and Renovo, Pennsylvania, May and July 1984

    USGS Publications Warehouse

    Hainly, R.A.; Barker, J.L.

    1993-01-01

    The soils and rocks of the Upper West Branch Susquehanna River basin, from its headwaters downstream for 150 miles, are laden with pyritic materials that have the potential to produce acid mine drainage. The effects of mine drainage are severe, particularly in the reach between Curwensville and Renovo where present water quality cannot support viable populations of benthic macroinvertebrates or fish. During base-flow periods in May and July 1984, streamflow and water quality were measured at four sites on the West Branch Susquehanna River and near the mouths of 94 tributaries. Water-quality constituents determined were temperature, specific conductance, pH, acidity, alkalinity, and concentrations of dissolved sulfate and total and dissolved forms of iron, manganese, aluminum, and zinc. The data collected for the study indicate that the predominant influence on water quality of the tributaries is land use. An area where few or no coal deposits or disturbed area were present was found to have relatively good surface-water quality (median pH was nearly 5.5 units), whereas areas where coal mining was active in the basin, or where large areas of unreclaimed mines were present, were found to have poorest water quality (median pH was generally less than 4.0 units). In general, Moshannon, Sinnemahoning, Clearfield, and Kettle Creeks were found to be the largest tributary sources of acidity and total-recoverable iron to the river. During the May sampling, Moshannon, Sinnemahoning, and Clearfield Creeks contributed 63 percent of the 365 tons/day of acidity, and Moshannon and Clearfield Creeks contributed 76 percent of the 44.8 tons/day of total-recoverable iron that were discharged to the river. During the July sampling, Moshannon, Kettle, and Clearfield Creeks contributed 60 percent of the 131 tons/day of acidity, and Moshannon and Kettle Creeks contributed 51 percent of the 6.5 tons/day of total-recoverable iron discharged to the river . The West Branch Susquehanna River

  12. Identifying stakeholder-relevant climate change impacts: a case study in the Yakima River Basin, Washington, USA

    USGS Publications Warehouse

    Jenni, K.; Graves, D.; Hardiman, Jill M.; Hatten, James R.; Mastin, Mark C.; Mesa, Matthew G.; Montag, J.; Nieman, Timothy; Voss, Frank D.; Maule, Alec G.

    2014-01-01

    Designing climate-related research so that study results will be useful to natural resource managers is a unique challenge. While decision makers increasingly recognize the need to consider climate change in their resource management plans, and climate scientists recognize the importance of providing locally-relevant climate data and projections, there often remains a gap between management needs and the information that is available or is being collected. We used decision analysis concepts to bring decision-maker and stakeholder perspectives into the applied research planning process. In 2009 we initiated a series of studies on the impacts of climate change in the Yakima River Basin (YRB) with a four-day stakeholder workshop, bringing together managers, stakeholders, and scientists to develop an integrated conceptual model of climate change and climate change impacts in the YRB. The conceptual model development highlighted areas of uncertainty that limit the understanding of the potential impacts of climate change and decision alternatives by those who will be most directly affected by those changes, and pointed to areas where additional study and engagement of stakeholders would be beneficial. The workshop and resulting conceptual model highlighted the importance of numerous different outcomes to stakeholders in the basin, including social and economic outcomes that go beyond the physical and biological outcomes typically reported in climate impacts studies. Subsequent studies addressed several of those areas of uncertainty, including changes in water temperatures, habitat quality, and bioenergetics of salmonid populations.

  13. Particle size of sediments collected from the bed of the Amazon River and its tributaries in June and July 1976

    USGS Publications Warehouse

    Nordin, Carl F.; Meade, R.H.; Mahoney, H.A.; Delany, B.M.

    1977-01-01

    Sixty-five samples of bed material were collected from the Amazon River and its major tributaries between Belem, Brazil, and Iquitos, Peru. Samples were taken with a standard BM-54 sampler, a pipe dredge, or a Helley-Smith bedload sampler. Most of the samples have median diameters in the size range of fine to medium sand and contain small percentages of fine gravel. Complete size distributions are tabulated.

  14. Sediment loads in the Red River of the North and selected tributaries near Fargo, North Dakota, 2010--2011

    USGS Publications Warehouse

    Galloway, Joel M.; Nustad, Rochelle A.

    2012-01-01

    Natural-resource agencies are concerned about possible geomorphic effects of a proposed diversion project to reduce the flood risk in the Fargo-Moorhead metropolitan area. The U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers collected data in the spring of 2010 and 2011, and from June to November 2011, during rainfall-runoff events and base-flow conditions to provide information on sediment transport. The data were used to examine sediment concentrations, loads, and particle-size distributions at nine selected sites in the Red River and its tributaries near the Fargo-Moorhead metropolitan area. Suspended-sediment concentration varied among sites in 2010 and 2011. The least suspended-sediment concentrations were measured at the Red River (site 1) and the Buffalo River (site 9), and the greatest concentrations were measured at the two Sheyenne River sites (sites 3 and 4). Estimated daily suspended-sediment loads were highly variable in 2010 and 2011 in the Red River and its tributaries, with the greatest loads occurring in the spring and the smallest loads occurring in the winter. For the Red River, daily suspended-sediment loads ranged from 26 to 3,500 tons per day at site 1 and from 30 to 9,010 tons per day at site 2. For the Sheyenne River, daily loads ranged from less than 10 to 10,200 tons per day at site 3 and from less than 10 to 4,530 tons per day at site 4. The mean daily load was 191 tons per day in 2010 and 377 tons per day in 2011 for the Maple River, and 610 tons per day in 2011 for the Wild Rice River (annual loads were not computed for 2010). For the three sites that were only sampled in 2011 (sites 7, 8 and 9), the mean daily suspended-sediment loads ranged from 40 tons per day at the Lower Branch Rush River (site 8) to 118 tons per day at the Buffalo River (site 9). For sites that had estimated loads in 2010 and 2011 (sites 1–5), estimated annual (March–November) suspended-sediment loads were greater in 2011 compared to

  15. Yakima/Klickitat Fisheries Project; Washington Department of Fish and Wildlife Policy/Technical Involvement and Planning, 2001-2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Easterbrooks, John A.; Pearsons, Todd N.

    2003-03-01

    The Yakima/Klickitat Fisheries Project (YKFP) is a supplementation project sponsored by the Northwest Power Planning Council (Columbia River Basin Fish and Wildlife Program 1994, Measure 7.4K). The objectives of the YKFP are: (1) to test the hypothesis that new supplementation techniques can be used in the Yakima River Basin to increase natural production and to improve harvest opportunities while maintaining the long-term genetic fitness of the wild and native salmonid populations and keeping adverse ecological interactions within acceptable limits (Yakima Fisheries Project Final Environment Impact Statement, 1996); (2) provide knowledge about the use of supplementation, so that it may bemore » used to mitigate effects on anadromous fisheries throughout the Columbia River Basin; (3) to maintain and improve the quantity and productivity of salmon and steelhead habitat, including those areas made accessible by habitat improvements; (4) to ensure that Project implementation remains consistent with the Council's Fish and Wildlife Program; and (5) to implement the Project in a prudent and environmentally sound manner. Current YKFP operations have been designed to test the principles of supplementation (Busack et al. 1997). The Project's experimental design has focused on the following critical uncertainties affecting supplementation: (1) The survival and reproductive success of hatchery fish after release from the hatchery; (2) The impacts of hatchery fish as they interact with non-target species and stocks; and, (3) The effects of supplementation on the long-term genetic fitness of fish stocks. The YKFP endorses an adaptive management policy applied through a project management framework as described in the Yakima/Klickitat Fisheries Project Planning Status Report (1995), Fast and Craig (1997), Clune and Dauble 1991. The project is managed by a Policy Group consisting of a representative of the Yakama Nation (YN, lead agency) and a representative of the Washington

  16. 27 CFR 9.69 - Yakima Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....” (b) Approved maps. The approved maps for determining the boundary of the Yakima Valley viticultural... Mountain; (7) Then west following the Toppenish Ridge, across an unnamed mountain (elevation 2172 feet), an... 3372 feet); and (10) Then east following Ahtanum Ridge, crossing unnamed peaks of 2037 feet elevation...

  17. 27 CFR 9.69 - Yakima Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....” (b) Approved maps. The approved maps for determining the boundary of the Yakima Valley viticultural... Mountain; (7) Then west following the Toppenish Ridge, across an unnamed mountain (elevation 2172 feet), an... 3372 feet); and (10) Then east following Ahtanum Ridge, crossing unnamed peaks of 2037 feet elevation...

  18. Spatial distribution and speciation of mercury and methyl mercury in the surface water of East River (Dongjiang) tributary of Pearl River Delta, South China.

    PubMed

    Liu, Jinling; Feng, Xinbin; Zhu, Wei; Zhang, Xian; Yin, Runsheng

    2012-01-01

    The distribution and speciation of mercury in surface water of East River, Guangdong province, China were investigated. All told 63 water samples were collected during a bi-weekly sampling campaign from July 15th to 26th, 2009. Total mercury (THg) concentrations in water samples ranged from 11 to 49 ng/L. Maximum levels of THg were measured in the lower reaches of East River, where it passes through a major industrial area adjacent to Dongguang city. Higher ratios of dissolved mercury (THg (aq)) in proportion to THg were restricted to the downstream section of East River. Concentrations of the minor constituent methyl mercury varied in the range from 0.08 to 0.21 ng/L. On average, methyl mercury made up 0.8% and 0.56% of THg (aq) and THg, respectively. Dissolved species dominated the speciation of methyl mercury in proportions up to 81%, which may imply that methyl mercury is largely produced in situ within the river water. Environmental factors (such as water temperature, dissolved oxygen, etc.) are regarded to play an important role in Hg methylation processes were monitored and assessed. In an international perspective, East River must be classified as a polluted river with considerably sources within its industrial areas. The THg (aq) and particle mercury fluxes to the Pearl River Estuary by East River run-off were estimated to be 0.31 ± 0.11 and 0.17 ± 0.13 t/year, respectively. Hence, in total nearly 0.5 t Hg is annually released to the sea from the East River tributary.

  19. Hydrologic data, Colorado River and major tributaries, Glen Canyon Dam to Diamond Creek, Arizona, water years 1990-95

    USGS Publications Warehouse

    Rote, John J.; Flynn, Marilyn E.; Bills, D.J.

    1997-01-01

    The U.S. Geological Survey collected hydrologic data at 12 continuous-record stations along the Colorado River and its major tributaries between Glen Canyon Dam and Diamond Creek. The data were collected from October 1989 through September 1995 as part of the Bureau of Reclamation's Glen Canyon Environmental Studies. The data include daily values for streamflow discharge, suspended-sediment discharge, temperature, specific conductance, pH, and dissolved-oxygen concentrations, and discrete values for physical properties and chemical constituents of water. All data are presented in tabular form.

  20. 33 CFR 207.160 - All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the United States or under its authorization. (6) When rafts are left for any reason with no one in... be left clear for navigation along the tributary. Such storage spaces must be protected by booms and... north of New River Inlet, North Carolina; to the Superintendent of Lighthouses at Charleston, South...

  1. Occurrence and variability of mining-related lead and zinc in the Spring River flood plain and tributary flood plains, Cherokee County, Kansas, 2009--11

    USGS Publications Warehouse

    Juracek, Kyle E.

    2013-01-01

    Historical mining activity in the Tri-State Mining District (TSMD), located in parts of southeast Kansas, southwest Missouri, and northeast Oklahoma, has resulted in a substantial ongoing input of cadmium, lead, and zinc to the environment. To provide some of the information needed to support remediation efforts in the Cherokee County, Kansas, superfund site, a 4-year study was begun in 2009 by the U.S. Geological Survey that was requested and funded by the U.S. Environmental Protection Agency. A combination of surficial-soil sampling and coring was used to investigate the occurrence and variability of mining-related lead and zinc in the flood plains of the Spring River and several tributaries within the superfund site. Lead- and zinc-contaminated flood plains are a concern, in part, because they represent a long-term source of contamination to the fluvial environment. Lead and zinc contamination was assessed with reference to probable-effect concentrations (PECs), which represent the concentrations above which adverse aquatic biological effects are likely to occur. The general PECs for lead and zinc were 128 and 459 milligrams per kilogram, respectively. The TSMD-specific PECs for lead and zinc were 150 and 2,083 milligrams per kilogram, respectively. Typically, surficial soils in the Spring River flood plain had lead and zinc concentrations that were less than the general PECs. Lead and zinc concentrations in the surficial-soil samples were variable with distance downstream and with distance from the Spring River channel, and the largest lead and zinc concentrations usually were located near the channel. Lead and zinc concentrations larger than the general or TSMD-specific PECs, or both, were infrequent at depth in the Spring River flood plain. When present, such contamination typically was confined to the upper 2 feet of the core and frequently was confined to the upper 6 inches. Tributaries with few or no lead- and zinc-mined areas in the basin—Brush Creek

  2. Methods for estimating tributary streamflow in the Chattahoochee River basin between Buford Dam and Franklin, Georgia

    USGS Publications Warehouse

    Stamey, Timothy C.

    1998-01-01

    Simple and reliable methods for estimating hourly streamflow are needed for the calibration and verification of a Chattahoochee River basin model between Buford Dam and Franklin, Ga. The river basin model is being developed by Georgia Department of Natural Resources, Environmental Protection Division, as part of their Chattahoochee River Modeling Project. Concurrent streamflow data collected at 19 continuous-record, and 31 partial-record streamflow stations, were used in ordinary least-squares linear regression analyses to define estimating equations, and in verifying drainage-area prorations. The resulting regression or drainage-area ratio estimating equations were used to compute hourly streamflow at the partial-record stations. The coefficients of determination (r-squared values) for the regression estimating equations ranged from 0.90 to 0.99. Observed and estimated hourly and daily streamflow data were computed for May 1, 1995, through October 31, 1995. Comparisons of observed and estimated daily streamflow data for 12 continuous-record tributary stations, that had available streamflow data for all or part of the period from May 1, 1995, to October 31, 1995, indicate that the mean error of estimate for the daily streamflow was about 25 percent.

  3. Soil Organic Carbon Transport in Headwater Tributaries of the Amazon River Traced by Branched GDGTs

    NASA Astrophysics Data System (ADS)

    Kirkels, F.; Peterse, F.; Ponton, C.; Feakins, S. J.; West, A. J.

    2016-12-01

    Transfer of soil organic carbon from land to sea by rivers plays a key role in the global carbon cycle by enabling long-term storage upon deposition in the marine environment, and generates archives of paleoinformation. Specific soil bacterial membrane lipids (branched glycerol dialkyl glycerol tetraethers, brGDGTs) can trace soil inputs to a river. BrGDGT distributions relate to soil pH and mean annual air temperature and can be inferred by a novel calibration [1]. In the Amazon Fan, down-core changes in brGDGTs have been used for paleoclimate reconstructions [2]. However, the effects of fluvial sourcing and transport on brGDGT signals in sedimentary deposits are largely unknown. In this study, we investigated the implications of upstream dynamics and hydrological variability (wet/dry season) on brGDGT distributions carried by the Madre de Dios River (Peru), a tributary of the upper Amazon River. The Madre de Dios basin covers a 4.5 km elevation gradient draining the eastern flank of the Andes to the Amazonian floodplains [3], along which we examined organic and mineral soils, and river suspended particulate matter (SPM). BrGDGT signals of SPM indicate sourcing of soils within the catchment, with concentrations increasing downstream indicating accumulation of this biomarker. River depth profiles demonstrated uniform brGDGT distributions and concentrations, suggesting no preferential transport and that brGDGTs are well-mixed in the river. These findings add to prior studies on brGDGTs in the downstream Amazon River [4, 5]. Our study highlights the importance of the upstream drainage basin to constrain the source of brGDGTs in rivers, to better interpret climate reconstructions with this proxy. [1] De Jonge et al. (2014) Geochim Cosmochim Act 141, 97-112 [2] Bendle et al. (2010) Geochem Geoph Geosy 11 [3] Ponton et al. (2014) Geophys. Res. Lett 41, 6420-6427. [4] Kim et al. (2012) Geochim Cosmochim Act 90, 163-180. [5] Zell et al. (2013) Front Microbio 4, 228.

  4. Parasites of fishes in the Colorado River and selected tributaries in Grand Canyon, Arizona.

    USGS Publications Warehouse

    Cole, Rebecca A.; Sterner, Mauritz C.; Linder, Chad; Hoffnagle, Timothy L.; Persons, Bill; Choudhury, Anindo; Haro, Roger

    2012-01-01

    As part of the endangered humpback chub (HBC; Gila cypha) Adaptive Management Program, a parasite survey was conducted from 28 June to 17 July 2006 in 8 tributaries and 7 adjacent sections of the main stem of the Colorado River, U.S.A. In total, 717 fish were caught, including 24 HBC. Field necropsies yielded 19 parasite species, 5 of which (Achtheres sp., Kathlaniidae gen. sp., Caryophyllaidae gen. sp., Myxidium sp., and Octomacrum sp.) are new records for Grand Canyon, Arizona, U.S.A. Spearman's correlation coefficient analyses showed no correlations between parasite burden and fork length for various combinations of fish and parasite species. Regression analyses suggest that no parasite species had a strong effect on fish length. The most diverse parasite community (n=14) was at river kilometer (Rkm) 230, near the confluence of Kanab Creek. The most diverse parasite infracommunity (n=12) was found in the non-native channel catfish (CCF; Ictaluris punctatus). Overall parasite prevalence was highest in CCF (85%) followed by that in HBC (58%). The parasite fauna of humpback chub was mainly composed of Bothriocephalus acheilognathi and Ornithodiplostomum sp. metacercariae.

  5. Particle size of sediments collected from the bed of the Amazon River and its tributaries in May and June 1977

    USGS Publications Warehouse

    Nordin, Carl F.; Meade, R.H.; Curtis, W.F.; Bosio, N.J.; Delaney, B.M.

    1979-01-01

    One-hundred-eight samples of bed material were collected from the Amazon River and its major tributaries between Belem, Brazil , and Iquitos, Peru. Samples were taken with a standard BM-54 sampler or with pipe dredges from May 18 to June 5, 1977. Most of the samples have median diameters in the size range of fine to medium sand and contain small percentages of fine gravel. Complete size distributions are tabulated. (Woodard-USGS)

  6. Organic carbon and nitrogen content associated with colloids and suspended particulates from the Mississippi River and some of its tributaries

    USGS Publications Warehouse

    Rostad, C.E.; Leenheer, J.A.; Daniel, S.R.

    1997-01-01

    Suspended material samples were collected at 16 sites along the Mississippi River and some of its tributaries during July-August 1991, October-November 1991, and April-May 1992, and separated into colloid and particulate fractions to determine the organic carbon content of these two fractions of suspended material. Sample collection involved centrifugation to isolate the suspended particulate fraction and ultrafiltration to isolate the colloid fraction. For the first time, particulate and colloid concentrations and organic carbon and nitrogen content were investigated along the entire reach of the Mississippi River from above Minneapolis, Minnesota, to below New Orleans, Louisiana. Organic carbon content of the colloid (15.2 percent) was much higher than organic carbon content of the particulate material (4.8 percent). Carbon/nitrogen ratios of colloid and particulate phases were more similar to ratios for microorganisms than to ratios for soils, humic materials, or plants.Suspended material samples were collected at 16 sites along the Mississippi River and some of its tributaries during July-August 1991, October-November 1991, and April-May 1992, and separated into colloid and particulate fractions to determine the organic carbon content of these two fractions of suspended material. Sample collection involved centrifugation to isolate the suspended particulate fraction and ultrafiltration to isolate the colloid fraction. For the first time, particulate and colloid concentrations and organic carbon and nitrogen content were investigated along the entire reach of the Mississippi River from above Minneapolis, Minnesota, to below New Orleans, Louisiana. Organic carbon content of the colloid (15.2 percent) was much higher than organic carbon content of the particulate material (4.8 percent). Carbon/nitrogen ratios of colloid and particulate phases were more similar to ratios for microorganisms than to ratios for soils, humic materials, or plants.

  7. Applying of Factor Analyses for Determination of Trace Elements Distribution in Water from River Vardar and Its Tributaries, Macedonia/Greece

    PubMed Central

    Popov, Stanko Ilić; Stafilov, Trajče; Šajn, Robert; Tănăselia, Claudiu; Bačeva, Katerina

    2014-01-01

    A systematic study was carried out to investigate the distribution of fifty-six elements in the water samples from river Vardar (Republic of Macedonia and Greece) and its major tributaries. The samples were collected from 27 sampling sites. Analyses were performed by mass spectrometry with inductively coupled plasma (ICP-MS) and atomic emission spectrometry with inductively coupled plasma (ICP-AES). Cluster and R mode factor analysis (FA) was used to identify and characterise element associations and four associations of elements were determined by the method of multivariate statistics. Three factors represent the associations of elements that occur in the river water naturally while Factor 3 represents an anthropogenic association of the elements (Cd, Ga, In, Pb, Re, Tl, Cu, and Zn) introduced in the river waters from the waste waters from the mining and metallurgical activities in the country. PMID:24587756

  8. Water Quality of the Upper Delaware Scenic and Recreational River and Tributary Streams, New York and Pennsylvania

    USGS Publications Warehouse

    Siemion, Jason; Murdoch, Peter S.

    2010-01-01

    Water-quality samples were collected from the Upper Delaware Scenic and Recreational River (UPDE) and its tributaries during the period October 1, 2005, to September 30, 2007, to document existing water quality, determine relations between land use and water quality, and identify areas of water-quality concern. A tiered water-quality monitoring framework was used, with the tiers consisting of intensively sampled sites, gradient sites representing the range of land uses present in the basin, and regional stream-survey sites. Median nitrate and total phosphorous concentrations were 1.15 and 0.01 mg/L (milligrams per liter) for three sites on the mainstem Delaware River, 1.27 and 0.009 mg/L for the East Branch Delaware River, 2.04 and 0.01 mg/L for the West Branch Delaware River, and 0.68 and 0.006 mg/L for eight tributaries that represent the range of land uses resent in the basin, respectively. The percentage of agricultural land varied by basin from 0 to 30 percent and the percentage of suburbanization varied from 0 to 17 percent. There was a positive correlation between the percentage of agricultural land use in a basin and observed concentrations of acid neutralizing capacity, calcium, potassium, nitrate, and total dissolved nitrogen, whereas no correlation between the percentage of suburbanization and water quality was detected. Results of stream surveys showed that nitrate concentrations in 55 to 65 percent of the UPDE Basin exceeded the nitrate reference condition and a suggested water-quality guideline for ecological impairment in New York State (0.98 mg/L) during the spring. Many of the affected parts of the basin were more than 90 percent forested and showed signs of episodic acidification, indicating that the long-term effects of acid deposition play a role in the high nitrate levels. Nitrate concentrations in 75 percent of samples collected from agricultural sites exceeded the suggested nitrate water-quality guideline for ecological impairment

  9. Microhabitat use by brook trout inhabiting small tributaries and a large river main stem: Implications for stream habitat restoration in the central Appalachians

    USGS Publications Warehouse

    Hansbarger, Jeff L.; Petty, J. Todd; Mazik, Patricia M.

    2008-01-01

    Brook trout (Salvelinus fontinalis) habitat restoration is needed across a range of stream sizes; however, studies quantifying brook trout habitat preferences in streams of differing sizes are rare. We used radio-telemetry to quantify adult brook trout microhabitat use in a central Appalachian watershed, the upper Shavers Fork of the Cheat River in eastern West Virginia. Our objectives were to: 1) quantify non-random microhabitat use by adult brook trout in the Shavers Fork main stem (drainage area = 32 km2) and an adjacent tributary, Rocky Run (drainage area = 7 km2); and 2) construct stream-specific habitat suitability curves (HSCs) for four important microhabitat variables (depth, average current velocity, maximum current velocity within one meter, and distance to cover). Brook trout used a subset of available microhabitats in both the main stem and Rocky Run: trout tended to occupy microhabitats that were deeper, higher velocity, and closer to cover than expected by chance alone. Although specific microhabitat values differed between the main stem and tributary populations, the overall patterns in brook trout microhabitat use were consistent regardless of stream size. Habitat suitability curves were constructed based on brook trout microhabitat use and will be used to design and monitor the effectiveness of future habitat restoration efforts in the Shavers Fork watershed. Our results suggest that habitat enhancement projects that increase the availability of deep, high velocity microhabitats adjacent to cover would benefit brook trout in both small tributaries and larger river main stems.

  10. Effect of agriculture on water quality of Lake Biwa tributaries, Japan.

    PubMed

    Nakano, Takanori; Tayasu, Ichiro; Yamada, Yoshihiro; Hosono, Takahiro; Igeta, Akitake; Hyodo, Fujio; Ando, Atsushi; Saitoh, Yu; Tanaka, Takuya; Wada, Eitaro; Yachi, Shigeo

    2008-01-15

    We investigated the effects of natural environments and human activity on Lake Biwa, central Japan. We determined the concentrations of 19 elements and the compositions of stable S and Sr isotopes in the main tributaries of the lake and compared them with the corresponding values obtained from the lake water during the circulation period. Results of a principal component analysis indicated that the components dissolved in the lower reaches of the tributaries can be divided into group 1 (HCO(3), SO(4), NO(3), Ca, Mg, Sr) and group 2 components (Cl, Br, Na, K, Ba, Rb, Cs). The concentrations of group 1 components were high in the rivers of the southern area, which is urbanized and densely populated, and the eastern area, which consists of plains where agriculture predominates, compared with the rivers of the northern and western areas, which are mostly mountainous and sparsely populated. The concentrations of group 2 components tended to be high in the river water of industrial areas. The delta(34)S values of SO(4) in the river water converged to 0+/-2 per thousand as the SO(4) concentration increased and, excluding the areas where limestone is extensively distributed, as the HCO(3) concentration increased. In particular, both the delta(34)S values (0+/-2 per thousand) and the (87)Sr/(86)Sr ratios (0.7117+/-0.0005) fell within narrow ranges in the small and medium rivers of the eastern plain area, where rice is widely grown. These values agreed respectively with the delta(34)S values of the fertilizers used in the Lake Biwa basin and the soil-exchangeable (87)Sr/(86)Sr in the eastern plain. The characteristics of water quality in the small and medium rivers of the eastern area can be explained by a model in which sulfuric, nitric, and bicarbonic acids generated by the decomposition of agricultural fertilizer and paddy rice selectively leached out alkaline-earth elements adsorbed on the soil and sediments of the plain or dissolved calcium carbonate enriched with Mg

  11. Distribution of phytobenthos in the Yakima River basin, Washington, in relation to geology, land use, and other environmental factors

    USGS Publications Warehouse

    Leland, Harry V.

    1995-01-01

    Benthic-algal distributions in the Yakima River, Washington, basin were, examined in relation to geology, land use, water chemistry, and stream habitat using indicator-species classification (TWINSPAN) and canonical correspondence analysis (CCA). Algal assemblages identified byTWINSPAN were each associated with a narrow range of water-quality conditions. In the Cascade geologic province, where timber harvest and grazing are the dominant land uses, differences in community structure (CCA site scores) and concentrations of major ions (Ca and Mg) and nutrients (solute P, SiO2 and inorganic N) varied with dominant rock type of the basin. In agricultural areas of the Columbia Plateau province, differences in phytobenthos structure were based primarily on the degree of enrichment of dissolved solids, inorganic N, and solute P from irrigation-return flows and subsurface drainage. Habitat characteristics strongly correlated with community structure included reach altitude, turbidity, substratum embeddedness (Columbia Plateau), large woody-debris density (Cascade Range), and composition and density of the riparian vegetation. Algal biomass (AFDM) correlated with composition and density of the riparian vegetation but not with measured chemical-constituent concentrations. Nitrogen limitation in streams of the Cascade Range favored nitrogen-fixing blue-green algae and diatoms with endosymbiotic blue-greens, whereas nitrogen heterotrophs were abundant in agricultural areas of the Columbia Plateau.

  12. Distribution of phytobenthos in the Yakima River basin, Washington, in relation to geology, land use and other environmental factors

    USGS Publications Warehouse

    Leland, Harry V.

    1995-01-01

    Benthic-algal distributions in the Yakima River, Washington, basin were, examined in relation to geology, land use, water chemistry, and stream habitat using indicator-species classification (TWINSPAN) and canonical correspondence analysis (CCA). Algal assemblages identified byTWINSPAN were each associated with a narrow range of water-quality conditions. In the Cascade geologic province, where timber harvest and grazing are the dominant land uses, differences in community structure (CCA site scores) and concentrations of major ions (Ca and Mg) and nutrients (solute P, SiO2 and inorganic N) varied with dominant rock type of the basin. In agricultural areas of the Columbia Plateau province, differences in phytobenthos structure were based primarily on the degree of enrichment of dissolved solids, inorganic N, and solute P from irrigation-return flows and subsurface drainage. Habitat characteristics strongly correlated with community structure included reach altitude, turbidity, substratum embeddedness (Columbia Plateau), large woody-debris density (Cascade Range), and composition and density of the riparian vegetation. Algal biomass (AFDM) correlated with composition and density of the riparian vegetation but not with measured chemical-constituent concentrations. Nitrogen limitation in streams of the Cascade Range favored nitrogen-fixing blue-green algae and diatoms with endosymbiotic blue-greens, whereas nitrogen heterotrophs were abundant in agricultural areas of the Columbia Plateau.

  13. Backwater effects in the Amazon River basin of Brazil

    USGS Publications Warehouse

    Meade, R.H.; Rayol, J.M.; Da Conceicao, S.C.; Natividade, J.R.G.

    1991-01-01

    The Amazon River mainstem of Brazil is so regulated by differences in the timing of tributary inputs and by seasonal storage of water on floodplains that maximum discharges exceed minimum discharges by a factor of only 3. Large tributaries that drain the southern Amazon River basin reach their peak discharges two months earlier than does the mainstem. The resulting backwater in the lowermost 800 km of two large southern tributaries, the Madeira and Puru??s rivers, causes falling river stages to be as much as 2-3 m higher than rising stages at any given discharge. Large tributaries that drain the northernmost Amazon River basin reach their annual minimum discharges three to four months later than does the mainstem. In the lowermost 300-400 km of the Negro River, the largest northern tributary and the fifth largest river in the world, the lowest stages of the year correspond to those of the Amazon River mainstem rather than to those in the upstream reaches of the Negro River. ?? 1991 Springer-Verlag New York Inc.

  14. Distribution and solid-phase speciation of toxic heavy metals of bed sediments of Bharali tributary of Brahmaputra River.

    PubMed

    Hoque, Raza Rafiqul; Goswami, K G; Kusre, B C; Sarma, K P

    2011-06-01

    Heavy metal (Fe, Mn, Zn, Cu, Ni, Pb, and Cd) concentrations and their chemical speciations were investigated for the first time in bed sediments of Bharali River, a major tributary of the Brahmaputra River of the Eastern Himalayas. Levels of Fe, Mn, Pb, and Cd in the bed sediments were much below the average Indian rivers; however, Cu and Zn exhibit levels on the higher side. Enrichment factors (EF) of all metals was greater than 1 and a higher trend of EF was seen in the abandoned channel for most metals. Pb showed maximum EF of 32 at site near an urban center. The geoaccumulation indices indicate that Bharali river is moderately polluted. The metals speciations, done by a sequential extraction regime, show that Cd, Cu, and Pb exhibit considerable presence in the exchangeable and carbonate fraction, thereby showing higher mobility and bioavailability. On the other hand, Ni, Mn, and Fe exhibit greater presence in the residual fraction and Zn was dominant in the Fe-Mn oxide phase. Inter-species correlations at three sites did not show similar trends for metal pairs indicating potential variations in the contributing sources.

  15. Faunal assemblages and multi-scale habitat patterns in headwater tributaries of the South Fork Trinity River - an unregulated river embedded within a multiple-use landscape

    USGS Publications Warehouse

    Welsh, H.H.; Hodgson, G.R.; Duda, J.J.; Emlen, J.M.

    2010-01-01

    Headwaters can represent 80% of stream kilometers in a watershed, and they also have unique physical and biological properties that have only recently been recognized for their importance in sustaining healthy functioning stream networks and their ecological services. We sampled 60 headwater tributaries in the South Fork Trinity River, a 2,430 km2, mostly forested, multiple-use watershed in northwestern California. Our objectives were: (1) to differentiate unique headwater types using 69 abiotic and vegetation variables measured at three spatial scales, and then to reduce these to informative subsets; (2) determine if distinct biota occupied the different tributary types; (3) determine the environmental attributes associated with the presence and abundance of these biotic assemblages; and (4) using niche modeling, determine key attribute thresholds to illustrate how these biota could be employed as metrics of system integrity and ecological services. Several taxa were sufficiently abundant and widespread to use as bio-indicators: the presence and abundance of steelhead trout (Oncorhynchus mykiss), herpetofauna (reptile and amphibian) species richness, and signal crayfish (Pacifastacus leniusculus) represented different trophic positions, value as commercial resources (steelhead), sensitivity to environmental stress (amphibians), and indicators of biodiversity (herpetofauna species richness). Herpetofauna species richness did not differ, but abundances of steelhead trout, signal crayfish, and amphibian richness all differed significantly among tributary types. Niche models indicated that distribution and abundance patterns in both riparian and aquatic environments were associated with physical and structural attributes at multiple spatial scales, both within and around reaches. The bio-indicators responded to unique sets of attributes, reflecting the high environmental heterogeneity in headwater tributaries across this large watershed. These niche attributes

  16. Sources of polycyclic aromatic hydrocarbons in sediments of the Bharalu River, a tributary of the River Brahmaputra in Guwahati, India.

    PubMed

    Hussain, Karishma; Balachandran, S; Rafiqul Hoque, Raza

    2015-12-01

    Analysis of riverine sediments offers important information regarding anthropogenic activities in the adjacent watershed. In this study, we provide polycyclic aromatic hydrocarbon (PAH) levels, their possible sources and potential hazards in the Bharalu tributary of the Brahmaputra River flowing through Guwahati city in India. The USEPA's 16 priority PAHs were determined in river bank sediments during two distinct seasons viz. pre- and post-monsoon. The ∑PAHs concentrations varied between 338 and 23,100 ng g(-1) during post-monsoon and between 609 and 8620 ng g(-1) during pre-monsoon. Mean benzo(a)pyrene (BaP) levels were between 17.8 ± 12 and 21.9 ± 27 ng g(-1) during post- and pre-monsoon seasons respectively. Spatial variations were observed. Interestingly, bank sediment samples from the sites near the confluence of the Bharalu River with the Brahmaputra River were found to have maximum concentrations of PAHs during post-monsoon season. The profile of the PAHs was dominated by 3-, 4- and 6-ring compounds. We estimated hazards of PAHs as RQ∑PAHs, which showed seasonal variation: 3 times higher during post-monsoon than pre-monsoon. 3-and 4-ring PAHs were the major PAHs of concern. The Bharalu River sediment was found to pose medium to high hazards to ecosystem. The individual PAHs including Acy, Phen and Pyr were observed with RQ(MPCs) value >1 indicating severe hazards during post-monsoon and pre-monsoon season. A very high percentage of coefficient of variation (CV) for PAHs during post-monsoon also revealed great variation in hazards and sources in this season. The diagnostic ratios indicated both petrogenic and pyrogenic origin of the PAHs. The pyrogenic contributions were mainly attributed to emissions from diesel, gasoline and wood combustion which are mainly from anthropogenic sources. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Impacts of the Columbia River hydroelectric system on main-stem habitats of fall chinook salmon

    USGS Publications Warehouse

    Dauble, D.D.; Hanrahan, T.P.; Geist, D.R.; Parsley, M.J.

    2003-01-01

    Salmonid habitats in main-stem reaches of the Columbia and Snake rivers have changed dramatically during the past 60 years because of hydroelectric development and operation. Only about 13% and 58% of riverine habitats in the Columbia and Snake rivers, respectively, remain. Most riverine habitat is found in the upper Snake River; however, it is upstream of Hells Canyon Dam and not accessible to anadromous salmonids. We determined that approximately 661 and 805 km of the Columbia and Snake rivers, respectively, were once used by fall chinook salmon Oncorhynchus tshawytscha for spawning. Fall chinook salmon currently use only about 85 km of the main-stem Columbia River and 163 km of the main-stem Snake River for spawning. We used a geomorphic model to identify three river reaches downstream of present migration barriers with high potential for restoration of riverine processes: the Columbia River upstream of John Day Dam, the Columbia-Snake-Yakima River confluence, and the lower Snake River upstream of Little Goose Dam. Our analysis substantiated the assertion that historic spawning areas for fall chinook salmon occurred primarily within wide alluvial floodplains, which were once common in the mainstem Columbia and Snake rivers. These areas possessed more unconsolidated sediment and more bars and islands and had lower water surface slopes than did less extensively used areas. Because flows in the main stem are now highly regulated, the predevelopment alluvial river ecosystem is not expected to be restored simply by operational modification of one or more dams. Establishing more normative flow regimes - specifically, sustained peak flows for scouring - is essential to restoring the functional characteristics of existing, altered habitats. Restoring production of fall chinook salmon to any of these reaches also requires that population genetics and viability of potential seed populations (i.e., from tributaries, tailrace spawning areas, and hatcheries) be considered.

  18. Low-flow profiles of the upper Oconee River and tributaries in Georgia

    USGS Publications Warehouse

    Carter, R.F.; Hopkins, E.H.; Perlman, H.A.

    1988-01-01

    Low flow information is provided for use in an evaluation of the capacity of streams to permit withdrawals or to accept waste loads without exceeding the limits of State water quality standards. The purpose of this report is to present the results of a compilation of available low flow data in the form of tables and ' 7Q10 flow profiles ' (minimum average flow for 7 consecutive days with a 10-yr recurrence interval)(7Q10 flow plotted against distance along a stream channel) for all streams reaches of the Upper Oconee River and tributaries in Georgia where sufficient data of acceptable accuracy are available. Drainage area profiles are included for all stream basins larger than 5 sq mi, except for those in a few remote areas. This report is the second in a series of reports that will cover all stream basins north of the Fall Line in Georgia. It includes the Oconee River basin down to and including Camp Creek at stream mile 134.53, Town Creek in Baldwin and Hancock Counties down to County Road 213-141, and Buffalo Creek in Hancock County down to the Hancock-Washington County line. Flow records were not adjusted for diversions or other factors that cause measured flows to represent other than natural flow conditions. The 7-day minimum flow profile was omitted for stream reaches where natural flow was known to be altered significantly. (Lantz-PTT)

  19. Assessing the potential for rainbow trout reproduction in tributaries of the Mountain Fork River below Broken Bow Dam, southeastern Oklahoma

    Treesearch

    James M. Long; Trevor A. Starks; Tyler Farling; Robert Bastarache

    2016-01-01

    Stocked trout (Salmonidae) in reservoir tailwater systems in the Southern United States have been shown to use tributary streams for spawning and rearing. The lower Mountain Fork of the Little River below Broken Bow Dam is one of two year-round tailwater trout fisheries in Oklahoma, and the only one with evidence of reproduction by stocked rainbow trout (Oncorhynchus...

  20. Hydrogeologic Framework, Groundwater Movement, and Water Budget in Tributary Subbasins and Vicinity, Lower Skagit River Basin, Skagit and Snohomish Counties, Washington

    USGS Publications Warehouse

    Savoca, Mark E.; Johnson, Kenneth H.; Sumioka, Steven S.; Olsen, Theresa D.; Fasser, Elisabeth T.; Huffman, Raegan L.

    2009-01-01

    A study to characterize the groundwater-flow system in four tributary subbasins and vicinity of the lower Skagit River basin was conducted by the U.S. Geological Survey to assist Skagit County and the Washington State Department of Ecology in evaluating the effects of potential groundwater withdrawals and consumptive use on tributary streamflows. This report presents information used to characterize the groundwater and surface-water flow system in the subbasins, and includes descriptions of the geology and hydrogeologic framework of the subbasins; groundwater recharge and discharge; groundwater levels and flow directions; seasonal groundwater-level fluctuations; interactions between aquifers and the surface-water system; and a water budget for the subbasins. The study area covers about 247 mi2 along the Skagit River and its tributary subbasins (East Fork Nookachamps Creek, Nookachamps Creek, Carpenter Creek, and Fisher Creek) in southwestern Skagit County and northwestern Snohomish County, Washington. The geology of the area records a complex history of accretion along the continental margin, mountain building, deposition of terrestrial and marine sediments, igneous intrusion, and the repeated advance and retreat of continental glaciers. A simplified surficial geologic map was developed from previous mapping in the area, and geologic units were grouped into nine hydrogeologic units consisting of aquifers and confining units. A surficial hydrogeologic unit map was constructed and, with lithologic information from 296 drillers'logs, was used to produce unit extent and thickness maps and four hydrogeologic sections. Groundwater in unconsolidated aquifers generally flows towards the northwest and west in the direction of the Skagit River and Puget Sound. This generalized flow pattern is likely complicated by the presence of low-permeability confining units that separate discontinuous bodies of aquifer material and act as local groundwater-flow barriers. Groundwater

  1. Determination of dissolved-phase pesticides in surface water from the Yakima River basin, Washington, using the Goulden large-sample extractor and gas chromatography/mass spectrometer

    USGS Publications Warehouse

    Foster, Gregory D.; Gates, Paul M.; Foreman, William T.; McKenzie, Stuart W.; Rinella, Frank A.

    1993-01-01

    Concentrations of pesticides in the dissolved phase of surface water samples from the Yakima River basin, WA, were determined using preconcentration in the Goulden large-sample extractor (GLSE) and gas chromatography/mass spectrometry (GC/MS) analysis. Sample volumes ranging from 10 to 120 L were processed with the GLSE, and the results from the large-sample analyses were compared to those derived from 1-L continuous liquid-liquid extractions Few of the 40 target pesticides were detected in 1-L samples, whereas large-sample preconcentration in the GLSE provided detectable levels for many of the target pesticides. The number of pesticides detected in GLSE processed samples was usually directly proportional to sample volume, although the measured concentrations of the pesticides were generally lower at the larger sample volumes for the same water source. The GLSE can be used to provide lower detection levels relative to conventional liquid-liquid extraction in GC/MS analysis of pesticides in samples of surface water.

  2. Peak-flow frequency for tributaries of the Colorado River downstream of Austin, Texas

    USGS Publications Warehouse

    Asquith, William H.

    1998-01-01

    Peak-flow frequency for 38 stations with at least 8 years of data in natural (unregulated and nonurbanized) basins was estimated on the basis of annual peak-streamflow data through water year 1995. Peak-flow frequency represents the peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, 250, and 500 years. The peak-flow frequency and drainage basin characteristics for the stations were used to develop two sets of regression equations to estimate peak-flow frequency for tributaries of the Colorado River in the study area. One set of equations was developed for contributing drainage areas less than 32 square miles, and another set was developed for contributing drainage areas greater than 32 square miles. A procedure is presented to estimate the peak discharge at sites where both sets of equations are considered applicable. Additionally, procedures are presented to compute the 50-, 67-, and 90-percent prediction interval for any estimation from the equations.

  3. Physiological status of naturally reared juvenile spring chinook salmon in the Yakima River: Seasonal dynamics and changes associated with smolting

    USGS Publications Warehouse

    Beckman, B.R.; Larsen, D.A.; Sharpe, C.; Lee-Pawlak, B.; Schreck, C.B.; Dickhoff, Walton W.

    2000-01-01

    Two year-classes of juvenile spring chinook salmon Oncorhynchus tshawytscha from the Yakima River, Washington, were sampled from July (3-4 months postemergence) through May (yearling smolt out-migration). Physiological characters measured included liver glycogen, body lipid, gill Na+-K+ ATPase, plasma thyroxine (T4), and plasma insulin-like growth factor-I (IGF-I). Distinct physiological changes were found that corresponded to season. Summer and fall were characterized by relatively high body lipid and condition factor. Winter was characterized by decreases in body lipid, condition factor, and plasma hormones. An increase in condition factor and body lipid was found in February and March. Finally, April and May were characterized by dramatic changes characteristic of smolting, including increased gill Na+-K+ ATPase activity, plasma T4, and IGF-I and decreased condition factor, body lipid, and liver glycogen. These results create a physiological template for juvenile spring chinook salmon in the drainage that provides a baseline for comparison with other years, populations, and life history types. In addition, this baseline provides a standard for controlled laboratory experiments and a target for fish culturists who rear juvenile spring chinook salmon for release from conservation hatcheries. The implications of these results for juvenile chinook salmon ecology and life history are discussed.

  4. Oil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries

    PubMed Central

    Kelly, Erin N.; Short, Jeffrey W.; Schindler, David W.; Hodson, Peter V.; Ma, Mingsheng; Kwan, Alvin K.; Fortin, Barbra L.

    2009-01-01

    For over a decade, the contribution of oil sands mining and processing to the pollution of the Athabasca River has been controversial. We show that the oil sands development is a greater source of contamination than previously realized. In 2008, within 50 km of oil sands upgrading facilities, the loading to the snowpack of airborne particulates was 11,400 T over 4 months and included 391 kg of polycyclic aromatic compounds (PAC), equivalent to 600 T of bitumen, while 168 kg of dissolved PAC was also deposited. Dissolved PAC concentrations in tributaries to the Athabasca increased from 0.009 μg/L upstream of oil sands development to 0.023 μg/L in winter and to 0.202 μg/L in summer downstream. In the Athabasca, dissolved PAC concentrations were mostly <0.025 μg/L in winter and 0.030 μg/L in summer, except near oil sands upgrading facilities and tailings ponds in winter (0.031–0.083 μg/L) and downstream of new development in summer (0.063–0.135 μg/L). In the Athabasca and its tributaries, development within the past 2 years was related to elevated dissolved PAC concentrations that were likely toxic to fish embryos. In melted snow, dissolved PAC concentrations were up to 4.8 μg/L, thus, spring snowmelt and washout during rain events are important unknowns. These results indicate that major changes are needed to the way that environmental impacts of oil sands development are monitored and managed. PMID:19995964

  5. Assessing dam development, land use conversion, and climate change pressures on tributary river flows and water quality of the Mekong's Tonle Sap basin.

    NASA Astrophysics Data System (ADS)

    Cochrane, T. A.; Arias, M. E.; Oeurng, C.; Arnaiz, M.; Piman, T.

    2016-12-01

    The Tonle Sap Lake is Southeast Asia's most productive freshwater fishery, but the productivity of this valuable ecosystem is under threat from extensive development in the lower Mekong. With dams potentially blocking all major tributaries along the lower Mekong River, the role of local Tonle Sap basin tributaries for maintaining environmental flows, sediment loads, and fish recruitment is becoming increasingly critical. Development within the Tonle Sap basin, however, is not stagnant. Developers are proposing extensive dam development in key Tonle Sap tributaries (see Figure). Some dams will provide hydroelectricity and others will provide opportunities for large-scale irrigation resulting in agro-industrial expansion. There is thus an immediate need to assess the current situation and understand future effects of dam development and land use conversion under climate change on local riverine ecosystems. A combination of remote sensing, field visits, and hydro-meteorological data analyses enabled an assessment of water infrastructure and agricultural development in the basin. The application of SWAT for modelling flows and water quality combined with HEC-RESSIM for reservoir operations enabled for a holistic modelling approach. Initial results show that dams and land use change dominate flow and water quality responses, when compared to climate change. Large ongoing dam and irrigation development in the Pursat and Battambang subbasins will critically alter the natural river flows to the Tonle Sap Lake. Some of the observed dams did not have provisions for sediment flushing, clearing of flooded areas, fish passages, or other environmental protection measures. Poor planning and operation of this infrastructure could have dire consequences on the fragile riverine ecosystem of Tonle Sap tributaries, resulting in fish migration barriers, losses in aquatic habitats, and ecological degradation. The seemingly chaotic development in the Tonle Sap basin induces a great level

  6. Geology and ground-water resources of the Ahtanum Valley, Yakima County, Washington

    USGS Publications Warehouse

    Foxworthy, B.L.

    1962-01-01

    , variations in the flow of irrigation ditches and in rates of water application, variations in local precipitation, and seasonal differences in withdrawals from wells. Annual fluctuations of levels generally are less than 10 feet except in localities of heavy pumping. Periodic measurements of water levels in two observation wells in the area indicate, locally at least, a persistent decline in artesian pressures in confined basalt aquifers, although the record is too short to show whether withdrawal by pumping has reached, or is nearing, an optimum balance with recharge. The aquifers are recharged by precipitation, by infiltration from streams, and by ground-water underflow into the area. Ground water is discharged by seepage to streams, by evapotranspiration, by springs and seeps at the land surface, and, artificially, by withdrawal from wells. It is estimated that the seepage discharge to the Yakima River from the area studied may range from about 20,000 to 25,000 acre-feet per year. The consumptive waste of ground water by phreatophytes probably exceeds 4,000 acre-feet per year and may represent a large reclaimable source of water in the area. The annual withdrawal of ground water from wells in the area for domestic, industrial, irrigation, public, and stock supplies is estimated to be 6,300 acre-feet. The chemical quality of the ground water generally is satisfactory for most purposes, although the water from many wells is harder than is desirable for domestic use.

  7. 33 CFR 207.180 - All waterways tributary to the Gulf of Mexico (except the Mississippi River, its tributaries...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DEFENSE NAVIGATION REGULATIONS § 207.180 All waterways tributary to the Gulf of Mexico (except the... least three (3) inches less than the depth over the sills or breast walls. (iv) Vessels having...

  8. Effects of water temperature on breeding phenology, growth and timing of metamorphosis of foothill yellow-legged frogs (Rana boylii) on the mainstem and selected tributaries of California's Trinity River - 2004-2009.

    Treesearch

    Clara Wheeler; James Bettaso; Donald Ashton; Hartwell Welsh

    2013-01-01

    The cold temperatures maintained in the Trinity River are beneficial to fish but may be problematic for foothill yellow-legged frogs. We examined the timing of breeding, reproductive output, and growth and development of tadpoles for populations of foothill yellow-legged frogs on the mainstem and six tributaries of the Trinity River. On the colder mainstem, onset of...

  9. Management of Water Quantity and Quality Based on Copula for a Tributary to Miyun Reservoir, Beijing

    NASA Astrophysics Data System (ADS)

    Zang, N.; Wang, X.; Liang, P.

    2017-12-01

    Due to the complex mutual influence between water quantity and water quality of river, it is difficult to reflect the actual characters of the tributaries to reservoir. In this study, the acceptable marginal probability distributions for water quantity and quality of reservoir inflow were calculated. A bivariate Archimedean copula was further applied to establish the joint distribution function of them. Then multiple combination scenarios of water quantity and water quality were designed to analyze their coexistence relationship and reservoir management strategies. Taking Bai river, an important tributary into the Miyun Reservoir, as a study case. The results showed that it is feasible to apply Frank copula function to describe the jointed distribution function of water quality and water quantity for Bai river. Furthermore, the monitoring of TP concentration needs to be strengthen in Bai river. This methodology can be extended to larger dimensions and is transferable to other reservoirs via establishment of models with relevant data for a particular area. Our findings help better analyzing the coexistence relationship and influence degree of the water quantity and quality of the tributary to reservoir for the purpose of water resources protection.

  10. Hydrologic data from Nation, Kandik, and Yukon rivers, Yukon-Charley Rivers National Preserve, Alaska

    USGS Publications Warehouse

    Brabets, Timothy P.

    2001-01-01

    Flow data were collected from two adjacent rivers in Yukon?Charley Rivers National Preserve, Alaska?the Nation River (during 1991?2000) and the Kandik River (1994?2000)?and from the Yukon River (1950?2000) at Eagle, Alaska, upstream from the boundary of the preserve. These flow records indicate that most of the runoff from these rivers occurs from May through September and that the average monthly discharge during this period ranges from 1,172 to 2,210 cubic feet per second for the Nation River, from 1,203 to 2,633 cubic feet per second for the Kandik River, and from 112,000 to 224,000 cubic feet per second for the Yukon River. Water-quality data were collected for the Nation River and several of its tributaries from 1991 to 1992 and for the Yukon River at Eagle from 1950 to 1994. Three tributaries to the Nation River (Waterfall Creek, Cathedral Creek, and Hard Luck Creek) have relatively high concentrations of calcium, magnesium, and sulfate. These three watersheds are underlain predominantly by Paleozoic and Precambrian rocks. The Yukon River transports 33,000,000 tons of suspended sediment past Eagle each year. Reflecting the inputs from its major tributaries, the water of the Yukon River at Eagle is dominated by calcium?magnesium bicarbonate.

  11. Biodegradability of dissolved organic carbon in the Yukon River and its tributaries: Seasonality and importance of inorganic nitrogen

    USGS Publications Warehouse

    Wickland, Kimberly P.; Aiken, George R.; Butler, Kenna D.; Dornblaser, Mark M.; RGM Spencer,; Striegl, Robert G.

    2012-01-01

    Northern high-latitude rivers transport large amounts of terrestrially derived dissolved organic matter (DOM) from boreal and arctic ecosystems to coastal areas and oceans. Current knowledge of the biodegradability of DOM in these rivers is limited, particularly for large rivers discharging to the Arctic Ocean. We conducted a seasonally comprehensive study of biodegradable dissolved organic carbon (BDOC) dynamics in the Yukon River and two of its tributaries in Alaska, USA. Distinct seasonal patterns of BDOC, consistent across a wide range of watershed size, indicate BDOC is transported year-round. Relative biodegradability (%BDOC) was greatest during winter, and decreased into spring and summer. Due to large seasonal differences in DOC concentration, the greatest concentrations of BDOC (mg C L−1) occurred during spring freshet, followed by winter and summer. While chemical composition of DOM was an important driver of BDOC, the overriding control of BDOC was mineral nutrient availability due to wide shifts in carbon (C) and nitrogen (N) stoichiometry across seasons. We calculated seasonal and annual loads of BDOC exported by the Yukon River by applying measured BDOC concentrations to daily water discharge values, and also by applying an empirical correlation between %BDOC and the ratio of DOC to dissolved inorganic N (DIN) to total DOC loads. The Yukon River exports ∼0.2 Tg C yr−1 as BDOC that is decomposable within 28 days. This corresponds to 12–18% of the total annual DOC export. Furthermore, we calculate that the six largest arctic rivers, including the Yukon River, collectively export ∼2.3 Tg C yr−1 as BDOC to the Arctic Ocean.

  12. Contrasting fish assemblages in free-flowing and impounded tributaries to the Upper Delaware River: Implications for conserving biodiversity

    USGS Publications Warehouse

    Baldigo, Barry P.; Delucia, Mari-Beth; Keller, Walter D.; Schuler, George E.; Apse, Colin D.; Moberg, Tara

    2015-01-01

    The Neversink River and the Beaver Kill in southeastern New York are major tributaries to the Delaware River, the longest undammed river east of the Mississippi. While the Beaver Kill is free flowing for its entire length, the Neversink River is subdivided by the Neversink Reservoir, which likely affects the diversity of local fish assemblages and health of aquatic ecosystems. The reservoir is an important part of the New York City waster-supply system that provides drinking water to more than 9 million people. Fish population and community data from recent quantitative surveys at comparable sites in both basins were assessed to characterize the differences between free-flowing and impounded rivers and the extent of reservoir effects to improve our capacity to define ecosystems responses that two modified flow-release programs (implemented in 2007 and 2011) should produce in the Neversink River. In general, the continuum of changes in fish assemblages which normally occur between headwaters and mouth was relatively uninterrupted in the Beaver Kill, but disrupted by the mid-basin impoundment in the Neversink River. Fish assemblages were also adversely affected at several acidified sites in the upper Neversink River, but not at most sites assessed herein. The reservoir clearly excluded diadromous species from the upper sub-basin, but it also substantially reduced community richness, diversity, and biomass at several mid-basin sites immediately downstream from the impoundment. There results will aid future attempts to determine if fish assemblages respond to more natural, yet highly regulated, flow regimes in the Neversink River. More important, knowledge gained from this study can help optimize use of valuable water resources while promoting species of special concern, such as American eel (Anguilla rostrata) and conserving biodiversity in Catskill Mountain streams.

  13. First direct confirmation of grass carp spawning in a Great Lakes tributary

    USGS Publications Warehouse

    Embke, Holly S.; Kocovsky, Patrick M.; Richter, Catherine A.; Pritt, Jeremy J.; Christine M. Mayer,; Qian, Song

    2016-01-01

    Grass carp (Ctenopharyngodon idella), an invasive species of Asian carp, has been stocked for many decades in the United States for vegetation control. Adult individuals have been found in all of the Great Lakes except Lake Superior, but no self-sustaining populations have yet been identified in Great Lakes tributaries. In 2012, a commercial fisherman caught four juvenile diploid grass carp in the Sandusky River, a major tributary to Lake Erie. Otolith microchemistry and the capture location of these fish permitted the conclusion that they were most likely produced in the Sandusky River. Due to this finding, we sampled ichthyoplankton using paired bongo net tows and larval light traps during June–August of 2014 and 2015 to determine if grass carp are spawning in the Sandusky River. From the samples collected in 2015, we identified and staged eight eggs that were morphologically consistent with grass carp. Five eggs were confirmed as grass carp using quantitative Polymerase Chain Reaction for a grass carp-specific marker, while the remaining three were retained for future analysis. Our finding confirms that grass carp are naturally spawning in this Great Lakes tributary. All eggs were collected during high-flow events, either on the day of peak flow or 1–2 days following peak flow, supporting an earlier suggestion that high flow conditions favor grass carp spawning. The next principal goal is to identify the spawning and hatch location(s) for the Sandusky River. Predicting locations and conditions where grass carp spawning is most probable may aid targeted management efforts.

  14. BILIARY PAH METABOLITES AS A BIOLOGICAL INDICATOR OF FISH EXPOSURE IN TRIBUTARIES OF LAKE ERIE

    EPA Science Inventory

    Biliary polynuclear aromatic hydrocarbons (PAH) metabolites have been studied as a biological indicator of fish exposure to PAHs since the mid 1980's. Brown bullheads were collected from the following Lake Erie tributaries: Buffalo River (BUF), Niagara River at Love Canal (NIA)...

  15. A data reconnaissance on the effect of suspended-sediment concentrations on dissolved-solids concentrations in rivers and tributaries in the Upper Colorado River Basin

    USGS Publications Warehouse

    Tillman, Fred D.; Anning, David W.

    2014-01-01

    The Colorado River is one of the most important sources of water in the western United States, supplying water to over 35 million people in the U.S. and 3 million people in Mexico. High dissolved-solids loading to the River and tributaries are derived primarily from geologic material deposited in inland seas in the mid-to-late Cretaceous Period, but this loading may be increased by human activities. High dissolved solids in the River causes substantial damages to users, primarily in reduced agricultural crop yields and corrosion. The Colorado River Basin Salinity Control Program was created to manage dissolved-solids loading to the River and has focused primarily on reducing irrigation-related loading from agricultural areas. This work presents a reconnaissance of existing data from sites in the Upper Colorado River Basin (UCRB) in order to highlight areas where suspended-sediment control measures may be useful in reducing dissolved-solids concentrations. Multiple linear regression was used on data from 164 sites in the UCRB to develop dissolved-solids models that include combinations of explanatory variables of suspended sediment, flow, and time. Results from the partial t-test, overall likelihood ratio, and partial likelihood ratio on the models were used to group the sites into categories of strong, moderate, weak, and no-evidence of a relation between suspended-sediment and dissolved-solids concentrations. Results show 68 sites have strong or moderate evidence of a relation, with drainage areas for many of these sites composed of a large percentage of clastic sedimentary rocks. These results could assist water managers in the region in directing field-scale evaluation of suspended-sediment control measures to reduce UCRB dissolved-solids loading.

  16. Channel infiltration from floodflows along the Pawnee River and its tributaries, west-central Kansas

    USGS Publications Warehouse

    Gillespie, James B.; Perry, C.A.

    1988-01-01

    Most of the streams is west-central Kansas are ephemeral. Natural recharge to the alluvial aquifers underlying these streams occurs during periods of storm runoff in the ephemeral channels. Proposed flood-retarding structures within the basin will alter the downstream runoff characteristics in these channels by reducing the peak flow and increasing the flow duration. Information concerning channel-infiltration rate, unsaturated and saturated flow, and lithology of the unsaturated zone as related to stream stage and duration was collected along the Pawnee River and its tributaries to determine the effects of the flood-retarding structures. The infiltration rate on ephemeral streams was determined at five sites within the Pawnee River Basin. Tests were conducted in channel infiltrometers constructed by isolating a section of channel with two plastic-lined wooden cofferdams. At two of the sites, perched groundwater mounds intersected the bottom of the channel and reduced the infiltration rate. At two other sites where the perched groundwater mounds did not reach the bottom of the channel, the infiltration rate was directly proportional to the stage. Comparison of infiltration from simulated controlled and uncontrolled floodflows at the five sites indicated an average increase of about 2% with the controlled floodflow. Cumulative infiltration for these simulations ranged from 0.5 to 14.8 acre-ft/mi of channel. (USGS)

  17. A Three-Year Study of Ichyoplankton in Coastal Plains Reaches of the Savannah River Site and its Tributaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, D.

    2007-03-05

    Altering flow regimes of rivers has large effects on native floras and faunas because native species are adapted to the natural flow regime, many species require lateral connectivity with floodplain habitat for feeding or spawning, and the change in regime often makes it possible for invasive species to replace natives (Bunn & Arthington 2002). Floodplain backwaters, both permanent and temporary, are nursery areas for age 0+ fish and stable isotope studies indicate that much of the productivity that supports fish larvae is autochthonous to these habitats (Herwig et al. 2004). Limiting access by fish to floodplain habitat for feeding, spawningmore » and nursery habitat is one of the problems noted with dams that regulate flow in rivers and is considered to be important as an argument to remove dams and other flow regulating structures from rivers (Shuman 1995; Bednarek 2001). While there have been a number of studies in the literature about the use of floodplain habitat for fish reproduction (Copp 1989; Killgore & Baker 1996; Humphries, et al. 1999; Humphries and Lake 2000; Crain et al. 2004; King 2004) there have been only a few studies that examined this aspect of stream ecology in more than a cursory way. The study reported here was originally designed to determine whether the Department of Energy's (DOE) Savannah River Site was having a negative effect on fish reproduction in the Savannah River but its experimental design allowed examination of the interactions between the river, the floodplain and the tributaries entering the Savannah River across this floodplain. This study is larger in length of river covered than most in the literature and because of its landscape scale may be in important indicator of areas where further study is required.« less

  18. The occurrence and distribution of trace metals in the Mississippi River and its tributaries

    USGS Publications Warehouse

    Taylor, Howard E.; Garbarino, J.R.; Brinton, T.I.

    1990-01-01

    Quantitative and semiquantitative analyses of dissolved trace metals are reported for designated sampling sites on the Mississippi River and its main tributaries utilizing depth-integrated and width-integrated sampling technology to collect statistically representative samples. Data are reported for three sampling periods, including: July-August 1987, November-December 1987, and May-June 1988. Concentrations of Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Pb, Sr, Tl, U, V, and Zn are reported quantitatively, with the remainder of the stable metals in the periodic table reported semiquantitatively. Correlations between As and V, Ba and U, Cu and Zn, Li and Ba, and Li and U are significant at the 99% confidence level for each of the sampling trips. Comparison of the results of this study for selected metals with other published data show generally good agreement for Cr, Cu, Fe, and Zn, moderate agreement for Mo, and poor agreement for Cd and V.

  19. Test-well drilling in the upper Satus Creek basin, Yakima Indian Reservation, Washington

    USGS Publications Warehouse

    Pearson, H.E.

    1977-01-01

    Two test wells were drilled in the upper Satus Creek basin of the Yakima Indian Reservation, Washington, using the air-rotary method. At site 1 the well penetrated a young basalt and 175 feet of the Yakima Basalt, and at site 2 the well penetrated the young basalt. The well at site 1 was drilled to a depth of 350 feet. Tests for drawdown and yield indicated a specific capacity of about 11 gallons per minute per foot of drawdown. The potential yield of this well may be about 1,000 gallons per minute. The well at site 2 was drilled to a depth of 500 feet. Only a small quantity of water was encountered and no test for yield was made. Data from these wells, including chemical analysis of the water from the well at site 1, will provide information useful in the development and management of the ground-water resources in this part of the Yakima Indian Reservation. (Woodard-USGS)

  20. Paleoseismology of a newly discovered scarp in the Yakima fold-and-thrust belt, Kittitas County, Washington

    USGS Publications Warehouse

    Barnett, Elizabeth A.; Sherrod, Brian L.; Norris, Robert; Gibbons, Douglas

    2013-01-01

    The Boylston Mountains anticlinal ridge is one of several that are cored by rocks of the Columbia River Basalt Group and, with the interceding synclinal valleys, constitute the Yakima fold-and-thrust belt of central Washington. Lidar data acquired from the U.S. Army's Yakima Training Center reveal a prominent, northwest-side-up, 65°- to 70°-trending, 3- to 4-meter-high scarp that cuts across the western end of the Boylston Mountains, perpendicular to the mapped anticline. The scarp continues to the northeast from the ridge on the southern side of Park Creek and across the low ridges for a total length of about 3 kilometers. A small stream deeply incises its flood plain where it projects across Johnson Canyon. The scarp is inferred to be late Quaternary in age based on its presence on the modern landscape and the incised flood-plain sediments in Johnson Canyon. Two trenches were excavated across this scarp. The most informative of the two, the Horned Lizard trench, exposed shallow, 15.5-Ma Grande Ronde Basalt, which is split by a deep, wide crack that is coincident with the base of the scarp and filled with wedges of silty gravels that are interpreted to represent at least two generations of fault colluvium that offset a buried soil.

  1. The fishermen were right: experimental evidence for tributary refuge hypothesis during floods.

    PubMed

    Koizumi, Itsuro; Kanazawa, Yukiyo; Tanaka, Yuuki

    2013-05-01

    Fishermen often anecdotally report an unexpected increase of fish caught in small tributary streams during floods, presumably due to refuge-seeking behavior from the main stem. From a population perspective, this implies the significance of refuge habitats and connectivity for population viability against natural disturbances. Despite the plausibility, however, surprisingly few studies have examined the tributary refuge hypothesis, mainly due to the difficulty in field survey during floods. Here, we made use of a large-scale controlled flood to assess whether fishes move into tributaries during flooding in the main stem. A planned water release from the Satsunai River Dam located on Hokkaido Island in Japan rapidly increased the main stem discharge by more than 20-fold. Before, during, and after flooding censuses in four tributaries provided evidence of the refuge-seeking behavior of fishes from the main stem. For example, more than 10 Dolly Varden char, a salmonid fish, were caught in a tributary during the flood, even though almost no individuals were captured before or after the flood. The fish responded immediately to the flooding, suggesting the need for studies during disturbances. In addition, the likelihood of refuge movements varied among tributaries, suggesting the importance of local environmental differences between tributary and the main stem habitats. This is the first study to experimentally confirm the tributary refuge hypothesis, and underscores the roles of habitat diversity and connectivity during disturbances, even though some habitats are not used during normal conditions.

  2. Organic contaminants associated with suspended sediment collected during five cruises of the Mississippi River and its principal tributaries, May 1988 to June 1990

    USGS Publications Warehouse

    Rostad, Colleen E.; Bishop, LaDonna M.; Ellis, Geoffrey S.; Leiker, Thomas J.; Monsterleet, Stephanie G.; Pereira, Wilfred E.

    2004-01-01

    Suspended-sediment samples were obtained from sites along the Mississippi River and its principal tributaries to determine the presence of halogenated hydrophobic organic compounds on the suspended sediment smaller than 63 micrometers. Sample collection involved pumping discharge-weighted volumes of river water along a cross section of the river into a continuous-flow centrifuge to isolate the suspended sediment. The suspended sediment was analyzed by gas chromatography/mass spectrometry for pentachlorobenzene, hexachlorobenzene, pentachloroanisole, chlorothalonil, pentachlorophenol, dachthal, chlordane, nonachlor, and penta-, hexa-, hepta-, and octachlorobiphenyls. Samples collected during June 1989 and February-March 1990 also were analyzed for U.S. Environmental Protection Agency priority pollutants, including polycyclic aromatic hydrocarbons, phthalate esters, and triazines. Samples were collected at sites on the Mississippi River from above St. Louis, Missouri to below New Orleans, Louisiana, and on the Illinois, Missouri, Ohio, Wabash, Cumberland, Tennessee, White, Arkansas, and Yazoo Rivers. Masses of selected halogenated hydrophobic organic compounds associated with the suspended sediment at each site are presented in this report in tabular format, along with suspended-sediment concentration, water discharge, and organic-carbon content.

  3. Current-use flame retardants in the water of Lake Michigan tributaries

    USGS Publications Warehouse

    Guo, Jiehong; Romanak, Kevin; Westenbroek, Stephen M.; Hites, Ronald A.; Venier, Marta

    2017-01-01

    In this study, we measured the concentrations of 65 flame retardants in water samples from five Lake Michigan tributaries. These flame retardants included organophosphate esters (OPEs), brominated flame retardants (BFRs), and Dechlorane-related compounds. A total of 59 samples, including both the particulate and the dissolved phases, were collected from the Grand, Kalamazoo, Saint Joseph, and Lower Fox rivers and from the Indiana Harbor and Ship Canal (IHSC) in 2015. OPEs were the most abundant among the targeted compounds with geometric mean concentrations ranging from 20 to 54 ng/L; OPE concentrations were comparable among the five tributaries. BFR concentrations were about 1 ng/L, and the most-abundant compounds were bis(2-ethylhexyl) tetrabromophthalate, 2-ethylhexyl 2,3,4,5-tetrabromobenzoate, and decabromodiphenyl ether. The highest BFR concentrations were measured in either the IHSC or the Saint Joseph River. The dechlorane-related compounds were detected at low concentrations (<1 pg/L). The fraction of target compounds in the particulate phase relative to the dissolved phase varied by chemical and tended to increase with their octanol–water partition coefficient. The chemical loading from all the five tributaries into Lake Michigan were <10 kg/year for the BFRs and about 500 kg/year for the OPEs.

  4. Nature of distribution of mercury in the sediments of the river Yamuna (tributary of the Ganges), India.

    PubMed

    Subramanian, V; Madhavan, N; Saxena, Rajinder; Lundin, Lars-Christer

    2003-06-01

    Suspended Particulate Matter (SPM), surface (bed sediments) and short length cores of sediments collected from the largest tributary of the river Ganges, namely the river Yamuna, were analysed for total mercury as well as its fractionation in various size and chemical sites in the sediments following standard procedures. Also, attempts were made to determine the vertical distribution in sediments in relation to the recent timescale of a few decades. Our observations indicate that the SPM in general showed higher levels of total mercury compared to the surface sediments while at places the enhancement could be by a factor of 10, say around 25 microg g(-1) in the downstream region that integrates the industrial midstream and agricultural downstream terrain near its confluence with the Ganges. Surface sediments in the upstream direction near the Himalayan foothills and SPM in the lower reaches showed significant high Index of Geoaccumulation (Igeo) as defined by Müller. Size fractionation studies indicate that the finer fraction preferentially showed higher levels of mercury while in the lower reaches of the river, the total mercury is equitably distributed among all size fractions. The proportion of the residual fraction of mercury in relation to mobile fractions, in general decreases downstream towards its confluence with the Ganges river. In sediment cores, the vertical distribution show systematic peaks of mercury indicating that addition of this toxic metal to the aquatic system is in direct proportion to the increase in various types of human activities such as thermal power plants, land use changes (urbanisation) in the midstream region and intensive fertiliser application in lower reaches of this vast river basin.

  5. Occurrence and transport of diazinon in the Sacramento River, California, and selected tributaries during three winter storms, January-February 2000

    USGS Publications Warehouse

    Dileanis, Peter D.; Bennett, Kevin P.; Domagalski, Joseph L.

    2002-01-01

    The organophosphate pesticide diazinon is applied as a dormant orchard spray in the Sacramento Valley, California, during the winter when the area receives a majority of its annual rainfall. Dormant spray pesticides, thus, have the potential to wash off the areas of application and migrate with storm runoff to streams in the Sacramento River Basin. Previous monitoring studies have shown that rain and associated runoff from winter storms plays an important role in the transport of diazinon from point of application to the Sacramento River and tributaries. Between January 30 and February 25, 2000, diazinon concentrations in the Sacramento River and selected tributaries were monitored on 5 consecutive days during each of three winter storms that moved through the Sacramento Valley after diazinon had been applied to orchards in the basin. Water samples were collected at 17 sites chosen to represent the effect of upstream land use at local and regional scales. Most samples were analyzed using an enzyme-linked immunosorbent assay (ELISA). Analysis by gas chromatography with electron capture detector and thermionic specific detector (GC/ECD/TSD) and gas chromatography with mass spectrometry (GC/MS) was done on split replicates from over 30 percent of the samples to confirm ELISA results and to provide lower analytical reporting limits at selected sites [30 ng/L (nanogram per liter) for ELISA, 20 ng/L for GC/ECD/TSD, and 2 ng/L for GC/MS]. Concentrations determined from ELISA analyses were consistently higher than concentrations for split samples analyzed by gas chromatography methods. Because of bias between diazinon concentrations using ELISA and gas chromatography methods, results from ELISA analyses were not compared to water-quality criteria. Load calculations using the ELISA analyses are similarly biased. Because the bias was consistent, however, the ELISA data is useful in site-to-site comparisons used to rank the relative levels and contributions of diazinon from

  6. Water resources under future scenarios of climate change and biofuel development: A case study for Yakima River basin

    NASA Astrophysics Data System (ADS)

    Demissie, Y. K.

    2013-12-01

    In recent years, biofuel has become an important renewable energy source with a potential to help mitigate climate change. However, agriculture productivity and its potential use for sustainable production of biofuel are strongly dependent on climate and water conditions that may change in response to future changes in climate and/or socio-economic conditions. For instant in 2012, the US has experienced the most severe drought that results in a 12% decrease in corn production - the main feedstock used for biofuel in US - indicating the vulnerability of biofuel development and policies to change in climate and associated extreme weather conditions. To understand this interrelationship and the combined effects of increased biofuel production and climate change on regional and local water resources, we have applied a SWAT watershed model which integrates future scenarios of climate change and biofuel development and simulates the associated impacts on watershed hydrology, water quality, soil erosion, and agriculture productivity. The study is applied to the Yakima River basin (YRB), which has higher biomass resources in Washington State and represents a region where forestry and agriculture intersect with considerable water shortage as well as spatial variations in annual precipitation. Unlike earlier studies, which commonly define biofuel and climate change scenarios independently, in this study the decision on alternative biofuel feedstock mixes and associated change in land use and management take into account the anticipated climate change. The resulted spatial and temporal distributions of water budget, nutrient loads, and sediment erosion is analyzed to evaluate the effectiveness of biofuel policies under constraints of climate change and water resources in the region.

  7. Changes in channel geometry of six eruption-affected tributaries of the Lewis River, 1980-82, Mount St. Helens, Washington

    USGS Publications Warehouse

    Martinson, H.A.; Finneran, S.D.; Topinka, L.J.

    1984-01-01

    The May 18, 1980, eruption of Mount St. Helens generated a lateral blast, lahars and tephra deposits that altered tributary channels in the Lewis River drainage basin. In order to assess potential flood hazards, study channel adjustments, and construct a sediment budget for the perturbed drainages on the east and southeast flanks of the volcano, channel cross sections were monumented and surveyed on Pine Creek, Muddy River, and Smith Creek during September and October of 1980. Additional cross sections were monumented and surveyed on Swift Creek, Bean Creek, and Clearwater Creek during the summer of 1981. The network of 88 channel cross sections has been resurveyed annually. Selected cross sections have been surveyed more frequently, following periods of higher flow. The repetitive cross-section surveys provide measurements of bank erosion or accretion and of channel erosion or aggradation. The report presents channel cross-section profiles constructed from the survey data collected during water years 1980-82. (USGS)

  8. Concentrations, loads, and yields of select constituents from major tributaries of the Mississippi and Missouri Rivers in Iowa, water years 2004-2008

    USGS Publications Warehouse

    Garrett, Jessica D.

    2012-01-01

    Excess nutrients, suspended-sediment loads, and the presence of pesticides in Iowa rivers can have deleterious effects on water quality in State streams, downstream major rivers, and the Gulf of Mexico. Fertilizer and pesticides are used to support crop growth on Iowa's highly productive agricultural landscape and for household and commercial lawns and gardens. Water quality was characterized near the mouths of 10 major Iowa tributaries to the Mississippi and Missouri Rivers from March 2004 through September 2008. Stream loads were calculated for select ions, nutrients, and sediment using approximately monthly samples, and samples from storm and snowmelt events. Water-quality samples collected using standard streamflow-integrated protocols were analyzed for major ions, nutrients, carbon, pesticides, and suspended sediment. Statistical data summaries of sample data used parametric and nonparametric techniques to address potential bias related to censored data and multiple levels of censoring of data below analytical detection limits. Constituent stream loads were computed using standard pre-defined models in S-LOADEST that include streamflow and time terms plus additional terms for streamflow variability and streamflow anomalies. Streamflow variability terms describe the difference in streamflow from recent average conditions, whereas streamflow anomaly terms account for deviations from average conditions from long- to short-term sequentially. Streamflow variability or anomaly terms were included in 44 of 80 site/constituent individual models, demonstrating the usefulness of these terms in increasing accuracy of the load estimates. Constituent concentrations in Iowa streams exhibit streamflow, seasonal, and spatial patterns related to the landform and climate gradients across the studied basins. The streamflow-concentration relation indicated dilution for ions such as chloride and sulfate. Other constituent concentrations, such as dissolved organic carbon and

  9. Influence of riparian and watershed alterations on sandbars in a Great Plains river

    USGS Publications Warehouse

    Fischer, Jeffrey M.; Paukert, Craig P.; Daniels, M.L.

    2014-01-01

    Anthropogenic alterations have caused sandbar habitats in rivers and the biota dependent on them to decline. Restoring large river sandbars may be needed as these habitats are important components of river ecosystems and provide essential habitat to terrestrial and aquatic organisms. We quantified factors within the riparian zone of the Kansas River, USA, and within its tributaries that influenced sandbar size and density using aerial photographs and land use/land cover (LULC) data. We developed, a priori, 16 linear regression models focused on LULC at the local, adjacent upstream river bend, and the segment (18–44 km upstream) scales and used an information theoretic approach to determine what alterations best predicted the size and density of sandbars. Variation in sandbar density was best explained by the LULC within contributing tributaries at the segment scale, which indicated reduced sandbar density with increased forest cover within tributary watersheds. Similarly, LULC within contributing tributary watersheds at the segment scale best explained variation in sandbar size. These models indicated that sandbar size increased with agriculture and forest and decreased with urban cover within tributary watersheds. Our findings suggest that sediment supply and delivery from upstream tributary watersheds may be influential on sandbars within the Kansas River and that preserving natural grassland and reducing woody encroachment within tributary watersheds in Great Plains rivers may help improve sediment delivery to help restore natural river function.

  10. Anadromous sea lampreys recolonize a Maine coastal river tributary after dam removal

    USGS Publications Warehouse

    Hogg, Robert; Coghlan, Stephen M.; Zydlewski, Joseph D.

    2013-01-01

    Sedgeunkedunk Stream, a third-order tributary to the Penobscot River, Maine, historically supported several anadromous fishes, including the Atlantic Salmon Salmo salar, AlewifeAlosa pseudoharengus, and Sea Lamprey Petromyzon marinus. However, two small dams constructed in the 1800s reduced or eliminated spawning runs entirely. In 2009, efforts to restore marine–freshwater connectivity in the system culminated with removal of the lowermost dam, thus providing access to an additional 4.6 km of lotic habitat. Because Sea Lampreys utilized accessible habitat prior to dam removal, they were chosen as a focal species with which to quantify recolonization. During spawning runs of 2008–2011 (before and after dam removal), individuals were marked with PIT tags and their activity was tracked with daily recapture surveys. Open-population mark–recapture models indicated a fourfold increase in the annual abundance of spawning-phase Sea Lampreys, with estimates rising from 59±4 () before dam removal (2008) to 223±18 and 242±16 after dam removal (2010 and 2011, respectively). Accompanying the marked increase in annual abundance was a greater than fourfold increase in nesting sites: the number of nests increased from 31 in 2008 to 128 and 131 in 2010 and 2011, respectively. During the initial recolonization event (i.e., in 2010), Sea Lampreys took 6 d to move past the former dam site and 9 d to expand into the furthest upstream reaches. Conversely, during the 2011 spawning run, Sea Lampreys took only 3 d to penetrate into the upstream reaches, thus suggesting a potential positive feedback in which larval recruitment into the system may have attracted adult spawners via conspecific pheromone cues. Although more research is needed to verify the migratory pheromone hypothesis, our study clearly demonstrates that small-stream dam removal in coastal river systems has the potential to enhance recovery of declining anadromous fish populations.

  11. Flood-inundation maps and wetland restoration suitability index for the Blue River and selected tributaries, Kansas City, Missouri, and vicinity, 2012

    USGS Publications Warehouse

    Heimann, David C.; Kelly, Brian P.; Studley, Seth E.

    2015-01-01

    Additional information in this report includes maps of simulated stream velocity for an 8.2-mile, two-dimensional modeled reach of the Blue River and a Wetland Restoration Suitability Index (WRSI) generated for the study area that was based on hydrologic, topographic, and land-use digital feature layers. The calculated WRSI for the selected flood-plain area ranged from 1 (least suitable for possible wetland mitigation efforts) to 10 (most suitable for possible wetland mitigation efforts). A WRSI of 5 to 10 is most closely associated with existing riparian wetlands in the study area. The WRSI allows for the identification of lands along the Blue River and selected tributaries that are most suitable for restoration or creation of wetlands. Alternatively, the index can be used to identify and avoid disturbances to areas with the highest potential to support healthy sustainable riparian wetlands.

  12. Creating a Community Coalition to Prevent Childhood Obesity in Yakima County, Washington: Rev It Up! 2008

    PubMed Central

    Brown, Jessica; Bindler, Ruth C.; Miller, Kris

    2012-01-01

    Background One-third of the US population is obese, and childhood obesity has tripled since the late 1970s. Childhood obesity is a significant health issue requiring interventions on individual, interpersonal, community, organizational, and policy levels. Community coalitions offer successful strategies for engaging community partners with health improvement goals. Community Context In 2008, Yakima County, an agricultural community in eastern Washington, was ranked the eighth fattest city in the United States. Recognizing the obesity problem, the Yakima Health District (YHD) established 2 objectives: to decrease rates of childhood obesity in Yakima County and to recruit and establish a community coalition of key stakeholders and experts to help address the problem. Methods The YHD spearheaded a movement to create a community coalition. The coalition applied for and received state and federal grants. In September 2008, the YHD held the first recruitment event for Rev It Up!, its community-based effort to address the obesity problem in Yakima. YHD invited the Washington State Department of Health to advise the coalition-building and action-planning process. Outcome The community coalition achieved 5 of 7 objectives, including developing a common vision, creating an advisory committee, and conducting a community inventory, prioritization process, and action plan. However, unexpected public health challenges in the YHD delayed coalition efforts. Interpretation Creating the Rev It Up! coalition met a community need and engaged community partners. Some potential partners were dissuaded by the 6-month period required to establish the coalition. Rev It Up! continues as a community effort to reduce rates of obesity in Yakima County. PMID:22765932

  13. Data on polychlorinated biphenyls, dieldrin, lead, and cadmium in Wisconsin and Upper Michigan tributaries to Green Bay, July 1987 through April 1988

    USGS Publications Warehouse

    House, L.B.

    1990-01-01

    Neither dieldrin nor cadmium was detected in any of the sampled tributaries. Detectable concentrations of polychlorinated biphenyls and lead were found at only three sites. Polychorinated biphenyls (0.10 microgram per gram) and lead (10 milligrams per kilogram) were found in the bottom sediment of Duck Creek, a western-shore tributary near the city of Green Bay. Lead (10 milligrams per kilogram) also was found in the bottom sediment of the Suamico River near the mouth, about 5 miles north of Duck Creek. Lead (4 micrograms per liter) was detected in a spring-runoff sample from the Fishdam River, a tributary from upper Michigan.

  14. Spawning patterns of Pacific Lamprey in tributaries to the Willamette River, Oregon

    USGS Publications Warehouse

    Mayfield, M.P.; Schultz, Luke; Wyss, Lance A.; Clemens, B. J.; Schreck, Carl B.

    2014-01-01

    Addressing the ongoing decline of Pacific Lamprey Entosphenus tridentatus across its range along the west coast of North America requires an understanding of all life history phases. Currently, spawning surveys (redd counts) are a common tool used to monitor returning adult salmonids, but the methods are in their infancy for Pacific Lamprey. To better understand the spawning phase, our objective was to assess temporal spawning trends, redd abundance, habitat use, and spatial patterns of spawning at multiple spatial scales for Pacific Lamprey in the Willamette River basin, Oregon. Although redd density varied considerably across surveyed reaches, the observed temporal patterns of spawning were related to physical habitat and hydrologic conditions. As has been documented in studies in other basins in the Pacific Northwest, we found that redds were often constructed in pool tailouts dominated by gravel, similar to habitat used by spawning salmonids. Across the entire Willamette Basin, Pacific Lampreys appeared to select reaches with alluvial geology, likely because this is where gravel suitable for spawning accumulated. At the tributary scale, spawning patterns were not as strong, and in reaches with nonalluvial geology redds were more spatially clumped than in reaches with alluvial geology. These results can be used to help identify and conserve Pacific Lamprey spawning habitat across the Pacific Northwest.

  15. Using hydrodynamic model to predict PFOS and PFOA transport in the Daling River and its tributary, a heavily polluted river into the Bohai Sea, China.

    PubMed

    Li, Qifeng; Wang, Tieyu; Zhu, Zhaoyun; Meng, Jing; Wang, Pei; Suriyanarayanan, Sarvajayakesavalu; Zhang, Yueqing; Zhou, Yunqiao; Song, Shuai; Lu, Yonglong; Yvette, Baninla

    2017-01-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are extremely persistent in the environment, and have the potential for long-range transport. The present study focused on the Daling River and its tributary, a larger river flowing into Liaodong Bay of the Bohai Sea. Recent studies have shown the elevated levels of PFOS and PFOA in the Daling River. Hence, the objective of this study was to investigate the seasonal changes, fate and transport modeling of PFOS and PFOA concentrations using one-dimensional DHI MIKE-11 river model. We designed three scenarios to assess the risk of PFOS and PFOA in surface water: the measured concentrations, constant maximum and the magnitude of a continuous constant load. The mean absolute errors divided by the mean of measured concentrations were 41-64% for PFOS and 29-36% for PFOA. The result indicated that PFOS and PFOA in the downstream of the Daling River would not reach a harmful level with the current load. The fluorochemical parks contributed an average of 44.57% of the total PFOS and 95.44% of the total PFOA flow that reached the estuary. The mass flow was observed as 1.74 kg y -1 for PFOS and 40.57 kg y -1 for PFOA to the Bohai Sea. These modeling results may be useful for monitoring the status and trends of emerging POPs and will help the determination of the risk to both humans and wildlife, in the estuarine and coastal areas of the Bohai Sea, China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Biological structure and dynamics of fish assemblages in tributaries of eastern Lake Ontario

    USGS Publications Warehouse

    McKenna, James E.; Munawar, M.

    2003-01-01

    Interest in effective management of Great Lakes natural resources and restoration of native populations has stimulated interest in the conditions and ecological role of tributaries in the Great Lakes ecosystem. Rivers of Lake Ontario's eastern basin provide an excellent opportunity to examine important tributaries and their relationship to Lake Ontario. This paper reports on the results of an investigation of fish assemblage structure in lower reaches of the Salmon and Oswego Rivers and at their interfaces with Lake Ontario. These two systems represent conditions near the end points on a continuum from highly disturbed to pristine. They are also of great interest to resource managers for their important fisheries and other economic values. The objective was to identify distinct fish assemblages within these systems and relate their characteristics to biotic and abiotic conditions in an attempt to determine factors responsible for structuring and maintaining those species assemblages. This information is intended to provide baseline information for monitoring the status of these rivers and coastal systems and to aid in the development of models of ecological health.

  17. Bedload transport in a river confluence

    NASA Astrophysics Data System (ADS)

    Martín-Vide, J. P.; Plana-Casado, A.; Sambola, A.; Capapé, S.

    2015-12-01

    The confluence of the regulated Toltén River and its tributary the unregulated Allipén (south of Chile) has proved dynamic in the last decade. Daily bedload measurements with a Helley-Smith sampler, bed surveys, and grain-size distributions of the two rivers are obtained from a field campaign that lasts 3 months in high-flow season. The goals are to quantify total bedload and to understand the balance between tributary and main river and the bedload distribution in space and texture. The bedload transport varies 200-fold, with a maximum of 5000 t/day. The discharge varies five-fold, with a maximum of 900 m3/s. Two-thirds of the total bedload volume are transported through the deeper area of the cross section and gravel is predominant (64%). Average bedload volumes in the confluence seem unbalanced in favour of the tributary. Main river bedload transport is predominantly at below-capacity conditions, while the tributary bedload transport is at-capacity conditions. This is deemed the main reason of inaccuracy of the bedload predictors. The roles of entrainment into suspension, helical flow, partial transport, and mobile armour are discussed.

  18. Influence of environmental and anthropogenic factors at the bottom sediments in a Doce River tributary in Brazil.

    PubMed

    Dos Reis, Deyse Almeida; da Fonseca Santiago, Aníbal; Nascimento, Laura Pereira; Roeser, Hubert Mathias Peter

    2017-03-01

    In developing countries, it is uncommon to find watersheds that have been the object of detailed environmental studies. It makes the assessment of the magnitude of environmental impacts and pollution of these sites difficult. This research demonstrated ways to understand the dynamics of river bottom sediments contamination, even for watersheds with a lack of environmental data. Based on geochemical affinity, we conducted a comprehensive study on the concentration of metals and metalloids. Then, we discussed the probable origin of the concentration of these elements at the bottom sediment along the Matipó River. The Matipó River is an important tributary of the Doce River, which stood out in international headlines because of the mining tailing dam disaster in Mariana, Minas Gerais, in 2015. The bottom sediment samples were taken in 25 stations located along the basin in different seasonal periods. The results showed that copper ([Formula: see text] = 464.7 mg kg -1 ) and zinc ([Formula: see text] = 287.7 mg kg -1 ) probably have natural origin, despite of the high concentrations. Lead ([Formula: see text] = 28.0 mg kg -1 ), chromium ([Formula: see text] = 153.2 mg kg -1 ), and nickel ([Formula: see text] = 41.8 mg kg -1 ) also had high concentrations at some collecting stations, and this probably reflected the local natural conditions. The bedrock of the studying basin is dominantly composed of metabasalts and metatonalites interlayered with calcitic and dolomitic metalimestone. On the other hand, the concentration was worrisome in stations near human activities, possibly due to impacts caused by unsustainably agriculture and livestock.

  19. Isotopic fingerprint of the middle Olt River basin, Romania.

    PubMed

    Popescu, Raluca; Costinel, Diana; Ionete, Roxana Elena; Axente, Damian

    2014-01-01

    One of the most important tributaries of the Danube River in Romania, the Olt River, was characterized in its middle catchment in terms of the isotopic composition using continuous flow-isotope ratio mass spectrometry (CF-IRMS). Throughout a period of 10 months, from November 2010 to August 2011, water samples from the Olt River and its more important tributaries were collected in order to investigate the seasonal and spatial isotope patterns of the basin waters. The results revealed a significant difference between the Olt River and its tributaries, by the fact that the Olt River waters show smaller seasonal variations in the stable isotopic composition and are more depleted in (18)O and (2)H. The waters present an overall enrichment in heavy isotopes during the warm seasons.

  20. Shoals and valley plugs in the Hatchie River watershed

    USGS Publications Warehouse

    Diehl, Timothy H.

    2000-01-01

    Agricultural land use and gully erosion have historically contributed more sediment to the streams of the Hatchie River watershed than those streams can carry. In 1970, the main sedimentation problem in the watershed occurred in the tributary flood plains. This problem motivated channelization projects (U.S. Department of Agriculture, 1970). By the mid-1980's, concern had shifted to sedimentation in the Hatchie River itself where channelized tributaries were understood to contribute much of the sediment. The Soil Conservation Service [Natural Resources Conservation Service (NRCS) since 1996] estimated that 640,000 tons of bedload (sand) accumulates in the Hatchie River each year and identified roughly the eastern two-thirds of the watershed, where loess is thin or absent, as the main source of sand (U.S. Department of Agriculture, 1986a). The U.S. Geological Survey (USGS), in cooperation with the West Tennessee River Basin Authority (WTRBA), conducted a study of sediment accumulation in the Hatchie River and its tributaries. This report identifies the types of tributaries and evaluates sediment, shoal formation, and valley-plug problems. The results presented here may contribute to a better understanding of similar problems in West Tennessee and the rest of the southeastern coastal plain. This information also will help the WTRBA manage sedimentation and erosion problems in the Hatchie River watershed.The source of the Mississippi section of the Hatchie River is in the sand hills southwest of Corinth, Mississippi (fig. 1). This section of the Hatchie River flows northward in an artificial drainage canal, gathering water from tributary streams that also are channelized. The drainage canal ends 2 miles south of the Tennessee State line. The Tennessee section of the Hatchie River winds north and west in a meandering natural channel to the Mississippi River. Although most of the Hatchie River tributaries are also drainage canals, the river's main stem has kept most of

  1. Yakima/Klickitat Fisheries Project: Short Project Overview of Spring Chinook Salmon Supplementation in the Upper Yakima Basin; Washington Department of Fish and Wildlife Policy/Technical Involvement and Planning, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, David E.; Bosch, William J.

    2005-09-01

    impacts that were outside of containment objectives were not caused by supplementation activities. Some fish and bird piscivores have been estimated to consume large numbers of salmonids in the Yakima Basin. Natural production of Chinook salmon in the upper Yakima Basin appears to be density dependent under current conditions and may constrain the benefits of supplementation. However, such constraints (if they exist) could be countered by YKFP habitat actions that have resulted in: the protection of over 900 acres of prime floodplain habitat, reconnection and screening of over 15 miles of tributary habitat, substantial water savings through irrigation improvements, and restoration of over 80 acres of floodplain and side channels. Harvest opportunities for tribal and non-tribal fishers have also been enhanced, but are variable among years. The YKFP is still in the early stages of evaluation, and as such the data and findings presented in this report should be considered preliminary until further data is collected and analyses completed. Nonetheless, the YKFP has produced significant findings, and produced methodologies that can be used to evaluate and improve supplementation. A summary table of topical area performance is presented.« less

  2. Community-level response of fishes and aquatic macroinvertebrates to stream restoration in a third-order tributary of the Potomac River, USA

    USGS Publications Warehouse

    Selego, Stephen M.; Rose, Charnee L.; Merovich, George T.; Welsh, Stuart A.; Anderson, James T.

    2012-01-01

    Natural stream channel design principles and riparian restoration practices were applied during spring 2010 to an agriculturally impaired reach of the Cacapon River, a tributary of the Potomac River which flows into the Chesapeake Bay. Aquatic macroinvertebrates and fishes were sampled from the restoration reach, two degraded control, and two natural reference reaches prior to, concurrently with, and following restoration (2009 through 2010). Collector filterers and scrapers replaced collector gatherers as the dominant macroinvertebrate functional feeding groups in the restoration reach. Before restoration, based on indices of biotic integrity (IBI), the restoration reach fish and macroinvertebrate communities closely resembled those sampled from the control reaches, and after restoration more closely resembled those from the reference reaches. Although the macroinvertebrate community responded more favorably than the fish community, both communities recovered quickly from the temporary impairment caused by the disturbance of restoration procedures and suggest rapid improvement in local ecological conditions.

  3. Predicting the occurrence of cold water patches at intermittent and ephemeral tributary confluences with warm rivers

    EPA Science Inventory

    Small, cold tributary streams can provide important thermal refuge habitat for cold-water fishes such as Pacific salmon (Oncorhynchus spp.) residing in warm, downstream receiving waters. We investigated the potential function of small perennial and non-perennial tributary stream...

  4. Hydrogeologic Framework of the Yakima River Basin Aquifer System, Washington

    USGS Publications Warehouse

    Vaccaro, J.J.; Jones, M.A.; Ely, D.M.; Keys, M.E.; Olsen, T.D.; Welch, W.B.; Cox, S.E.

    2009-01-01

    The Yakima River basin aquifer system underlies about 6,200 square miles in south-central Washington. The aquifer system consists of basin-fill deposits occurring in six structural-sedimentary basins, the Columbia River Basalt Group (CRBG), and generally older bedrock. The basin-fill deposits were divided into 19 hydrogeologic units, the CRBG was divided into three units separated by two interbed units, and the bedrock was divided into four units (the Paleozoic, the Mesozoic, the Tertiary, and the Quaternary bedrock units). The thickness of the basin-fill units and the depth to the top of each unit and interbed of the CRBG were mapped. Only the surficial extent of the bedrock units was mapped due to insufficient data. Average mapped thickness of the different units ranged from 10 to 600 feet. Lateral hydraulic conductivity (Kh) of the units varies widely indicating the heterogeneity of the aquifer system. Average or effective Kh values of the water-producing zones of the basin-fill units are on the order of 1 to 800 ft/d and are about 1 to 10 ft/d for the CRBG units as a whole. Effective or average Kh values for the different rock types of the Paleozoic, Mesozoic, and Tertiary units appear to be about 0.0001 to 3 ft/d. The more permeable Quaternary bedrock unit may have Kh values that range from 1 to 7,000 ft/d. Vertical hydraulic conductivity (Kv) of the units is largely unknown. Kv values have been estimated to range from about 0.009 to 2 ft/d for the basin-fill units and Kv values for the clay-to-shale parts of the units may be as small as 10-10 to 10-7 ft/d. Reported Kv values for the CRBG units ranged from 4x10-7 to 4 ft/d. Variations in the concentrations of geochemical solutes and the concentrations and ratios of the isotopes of hydrogen, oxygen, and carbon in groundwater provided information on the hydrogeologic framework and groundwater movement. Stable isotope ratios of water (deuterium and oxygen-18) indicated dispersed sources of groundwater recharge to

  5. The fluvial geochemistry of the rivers of Eastern Siberia: I. tributaries of the Lena River draining the sedimentary platform of the Siberian Craton

    NASA Astrophysics Data System (ADS)

    Huh, Youngsook; Tsoi, Mai-Yin; Zaitsev, Alexandr; Edmond, John M.

    1998-05-01

    The response of continental weathering rates to changing climate and atmospheric PCO 2 is of considerable importance both to the interpretation of the geological sedimentary record and to predictions of the effects of future anthropogenic influences. While comprehensive work on the controlling mechanisms of contemporary chemical and mechanical weathering has been carried out in the tropics and, to a lesser extent, in the strongly perturbed northern temperate latitudes, very little is known about the peri-glacial environments in the subarctic and arctic. Thus, the effects of climate, essentially temperature and runoff, on the rates of atmospheric CO 2 consumption by weathering are not well quantified at this climatic extreme. To remedy this lack a comprehensive survey has been carried out of the geochemistry of the large rivers of Eastern Siberia, the Lena, Yana, Indigirka, Kolyma, Anadyr, and numerous lesser streams which drain a pristine, high-latitude region that has not experienced the pervasive effects of glaciation and subsequent anthropogenic impacts common to western Eurasia and North America. The scale of the terrain sampled, in terms of area, is comparable to that of the continental United States or the Amazon/Orinoco and includes a similarly diverse range of geologic and climatic environments. In this paper the chemical fluxes from the western region, the very large, ancient, and geologically stable sedimentary basin, Precambrian to Quaternary, of the Siberian Platform will be presented and compared to published results from analogous terrains in the tropical basins of China. While the range in the chemical signatures of the various tributaries included here (˜60 sampled) is large, this mainly reflects lithology rather than the weathering environment. The areal chemical fluxes are comparable to those of the Chinese rivers, being dominated by the dissolution of carbonates and evaporites. The net consumption of atmospheric CO 2 by aluminosilicate

  6. [Hygienic evaluation of transboundary pollution of the Ural River basin].

    PubMed

    Iskakov, A Zh; Lestsova, N A; Zasorin, B V; Boev, M V

    2009-01-01

    The anthropogenic pollution of the Ural River and its tributaries is the most important problem of the Ural-Caspian basin. Transboundary inflow from Kazakhstan to Russian is 30.9 km3/year. The border Ilek river pollution was hygienically evaluated and the contribution of pollution sources was ascertained, with the seasonal variations and hydrochemical background being kept in mind, from 2002 to 2007. The monitoring data on the content of priority pollutants of the surface waters of the basin of the Ilek River, a tributary of the Ural River, which come from the Republic of Kazakhstan, are given. Semiquantitative spectral estimation and the atomic absorption method were used to study the chemical composition of bottom sediments in the Ilek River and its tributaries. The magnitude and sources of influence of man-caused pollution on the quality of the river water were established.

  7. 75 FR 51945 - Safety Zone; Potomac River, St. Mary's River, St. Inigoes, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ...-AA00 Safety Zone; Potomac River, St. Mary's River, St. Inigoes, MD AGENCY: Coast Guard, DHS. ACTION... of the St. Mary's River, a tributary of the Potomac River. This action is necessary to provide for.... Navy helicopter located near St. Inigoes, Maryland. This safety zone is intended to protect the...

  8. Major and Trace Element Fluxes to the Ganges River: Significance of Small Flood Plain Tributary as Non-Point Pollution Source

    NASA Astrophysics Data System (ADS)

    Lakshmi, V.; Sen, I. S.; Mishra, G.

    2017-12-01

    There has been much discussion amongst biologists, ecologists, chemists, geologists, environmental firms, and science policy makers about the impact of human activities on river health. As a result, multiple river restoration projects are on going on many large river basins around the world. In the Indian subcontinent, the Ganges River is the focal point of all restoration actions as it provides food and water security to half a billion people. Serious concerns have been raised about the quality of Ganga water as toxic chemicals and many more enters the river system through point-sources such as direct wastewater discharge to rivers, or non-point-sources. Point source pollution can be easily identified and remedial actions can be taken; however, non-point pollution sources are harder to quantify and mitigate. A large non-point pollution source in the Indo-Gangetic floodplain is the network of small floodplain rivers. However, these rivers are rarely studied since they are small in catchment area ( 1000-10,000 km2) and discharge (<100 m3/s). As a result, the impact of these small floodplain rivers on the dissolved chemical load of large river systems is not constrained. To fill this knowledge gap we have monitored the Pandu River for one year between February 2015 and April 2016. Pandu river is 242 km long and is a right bank tributary of Ganges with a total catchment area of 1495 km2. Water samples were collected every month for dissolved major and trace elements. Here we show that the concentration of heavy metals in river Pandu is in higher range as compared to the world river average, and all the dissolved elements shows a large spatial-temporal variation. We show that the Pandu river exports 192170, 168517, 57802, 32769, 29663, 1043, 279, 241, 225, 162, 97, 28, 25, 22, 20, 8, 4 Kg/yr of Ca, Na, Mg, K, Si, Sr, Zn, B, Ba, Mn, Al, Li, Rb, Mo, U, Cu, and Sb, respectively, to the Ganga river, and the exported chemical flux effects the water chemistry of the Ganga

  9. Colloid particle sizes in the Mississippi River and some of its tributaries, from Minneapolis to below New Orleans

    USGS Publications Warehouse

    Rostad, C.E.; Rees, T.F.; Daniel, S.R.

    1998-01-01

    An on-board technique was developed that combined discharge-weighted pumping to a high-speed continuous-flow centrifuge for isolation of the particulate-sized material with ultrafiltration for isolation of colloid-sized material. In order to address whether these processes changed the particle sizes during isolation, samples of particles in suspension were collected at various steps in the isolation process to evaluate changes in particle size. Particle sizes were determined using laser light-scattering photon correlation spectroscopy and indicated no change in size during the colloid isolation process. Mississippi River colloid particle sizes from twelve sites from Minneapolis to below New Orleans were compared with sizes from four tributaries and three seasons, and from predominantly autochthonous sources upstream to more allochthonous sources downstream. ?? 1998 John Wiley Sons, Ltd.

  10. Hydrologic, land cover and seasonal patterns of waterborne pathogens in great lakes tributaries

    USDA-ARS?s Scientific Manuscript database

    Great Lakes tributaries deliver waterborne pathogens from a host of sources. To examine the hydrologic, land cover, and seasonal variability of waterborne pathogens, protozoa (2), pathogenic bacteria (4) and human (8) and bovine (8) viruses from eight rivers were monitored in the Great Lakes watersh...

  11. The effect of contaminated sediments on fecundity of the brown bullhead in three Lake Erie tributaries

    USGS Publications Warehouse

    Lesko, Lynn T.; Smith, Stephen B.; Blouin, Marc A.

    1996-01-01

    Female brown bullhead (Ameiurus nebulosus) were collected from three Lake Erie tributaries (Ohio) from 8 to 25 May 1989, to determine the effects of contaminated sediments on reproductive potentials. Fish obtained from the Black and Cuyahoga rivers, which contain sediments with elevated concentrations of metals, PCBs, and PAHs, were compared with fish collected in Mud Brook, a tributary of the Huron River, which was selected as our reference site. Fecundity, egg diameter, fish length and weight, and the presence of external abnormalities were recorded for each fish. Brown bullhead from the contaminated sites were larger then those from the reference site and fecundity was significantly (P < 0.05) different in all three river systems. Those from the most polluted river (Cuyahoga River) had the greatest number of eggs per individual female. The high frequency of external abnormalities observed on brown bullhead from the contaminated sites did not appear to have a detrimental influence on fecundity. These results suggest that fecundity of the brown bullhead was not adversely affected in ecosystems altered by the presence of contaminated sediments. Increased fecundity of the brown bullhead from impacted rivers may be the result of reduced competition for an abundant invertebrate food source and limited predation by other fish species whose numbers are largely depleted in these degraded systems.

  12. Community-level response of fishes and aquatic macroinvertebrates to stream restoration in a third-order tributary of the Potomac River, USA

    USGS Publications Warehouse

    Selego, S.M.; Rose, C.L.; Merovich, G.T.; Welsh, S.A.; Anderson, James T.

    2012-01-01

    Natural stream channel design principles and riparian restoration practices were applied during spring 2010 to an agriculturally impaired reach of the Cacapon River, a tributary of the Potomac River which flows into the Chesapeake Bay. Aquatic macroinvertebrates and fishes were sampled from the restoration reach, two degraded control, and two natural reference reaches prior to, concurrently with, and following restoration (2009 through 2010). Collector filterers and scrapers replaced collector gatherers as the dominant macroinvertebrate functional feeding groups in the restoration reach. Before restoration, based on indices of biotic integrity (IBI), the restoration reach fish and macroinvertebrate communities closely resembled those sampled from the control reaches, and after restoration more closely resembled those from the reference reaches. Although the macroinvertebrate community responded more favorably than the fish community, both communities recovered quickly from the temporary impairment caused by the disturbance of restoration procedures and suggest rapid improvement in local ecological conditions. Copyright ?? 2012 Stephen M. Selego et al.

  13. The Upper Mississippi River System—Topobathy

    USGS Publications Warehouse

    Stone, Jayme M.; Hanson, Jenny L.; Sattler, Stephanie R.

    2017-03-23

    The Upper Mississippi River System (UMRS), the navigable part of the Upper Mississippi and Illinois Rivers, is a diverse ecosystem that contains river channels, tributaries, shallow-water wetlands, backwater lakes, and flood-plain forests. Approximately 10,000 years of geologic and hydrographic history exist within the UMRS. Because it maintains crucial wildlife and fish habitats, the dynamic ecosystems of the Upper Mississippi River Basin and its tributaries are contingent on the adjacent flood plains and water-level fluctuations of the Mississippi River. Separate data for flood-plain elevation (lidar) and riverbed elevation (bathymetry) were collected on the UMRS by the U.S. Army Corps of Engineers’ (USACE) Upper Mississippi River Restoration (UMRR) Program. Using the two elevation datasets, the U.S. Geological Survey (USGS) Upper Midwest Environmental Sciences Center (UMESC) developed a systemic topobathy dataset.

  14. [Studies on the water quality of the river Po and its tributaries between Monte Cremona and Casalmaggiore. II. Period 1971-2].

    PubMed

    Bellelli, E; Bracchi, U; Sansebastiano, G

    1976-01-01

    The results relating to the research carried out on the river Po upstream and downstream Cremona town, at Casalmaggiore and at the mouths of the right side tributaries Arda-Ongina and Taro in the period 1971-72 are reported in the present note. The samplings took place once every month and on the same day flow measurements were effected by the Magistracy of the river Po in the five stations. The results of this first series of sampling have shown a good stability of the water quality of the river Po, in the different seasons and in the different hydrological conditions. No significative differences were poi nted out for the most part of the determined parameters between the stations upstream and downstream Cremona and Casalmaggiore, except the turbid load (turbidity, suspended matter at 105 degrees C, setteable solids) which presented at Casalmaggiore an average value absolutely higher than the calculated one which was achieved considering concentrations and river flow at Cremona and at the mouths of Arda-Ongina and Taro. With few exceptions the water quality keeps a good level for fish life and its actual pollution degree let us think it possible to improve the situation in a short time. Only microbiological parameters are excepted, as they exceed the proposed limits for recreation and bathing uses (W.Q.C.).

  15. Discrete Organic Phosphorus Signatures are Evident in Pollutant Sources within a Lake Erie Tributary.

    PubMed

    Brooker, M R; Longnecker, K; Kujawinski, E B; Evert, M H; Mouser, P J

    2018-06-19

    Phosphorus loads are strongly associated with the severity of harmful algal blooms in Lake Erie, a Great Lake situated between the United States and Canada. Inorganic and total phosphorus measurements have historically been used to estimate nonpoint and point source contributions, from contributing watersheds with organic phosphorus often neglected. Here, we used ultrahigh resolution mass spectrometry to characterize the dissolved organic matter and specifically dissolved organic phosphorus composition of several nutrient pollutant source materials and aqueous samples in a Lake Erie tributary. We detected between 23 and 313 organic phosphorus formulas across our samples, with manure samples having greater abundance of phosphorus- and nitrogen containing compounds compared to other samples. Manures also were enriched in lipids and protein-like compounds. The greatest similarities were observed between the Sandusky River and wastewater treatment plant effluent (WWTP), or the Sandusky River and agricultural edge of field samples. These sample pairs shared 84% of organic compounds and 59-73% of P-containing organic compounds, respectively. This similarity suggests that agricultural and/or WWTP sources dominate the supply of organic phosphorus compounds to the river. We identify formulas shared between the river and pollutant sources that could serve as possible markers of source contamination in the tributary.

  16. 76 FR 8345 - Endangered and Threatened Species; Recovery Plan Module for Columbia River Estuary Salmon and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ..., 6:30-8:30 p.m. Vancouver, WA, January 31, 2008, at the Water Resources Education Center, 6:30-8:30 p... influenced by Columbia River tributary/ mainstem water withdrawals and other water management actions in... River tributary/ mainstem water withdrawals and other water management actions in tributaries. Flow...

  17. Yakima/Klickitat Production Preliminary Design Report, Appendix C: Yakima and Klickitat Preliminary Engineering Reports.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CH2M Hill; R.W. Beck and Associates.

    1990-03-01

    This chapter describes the biological and physical fish culture requirements of the hatchery system from which the concepts for the design are formulated. It includes a discussion of the program goals for fish production in the Yakima Basin followed by a brief summary of selected sites. The biological criteria are presented for the water system, adult holding, incubation, rearing, and finally transportation and release. The biological criteria address the water and space requirements, the number and type of vessels, and the related support requirements. To be assured that the components of the system meet all program demands, each life phasemore » from adult capture to the juvenile or smolt transfer into the acclimation sites is analyzed.« less

  18. Responses of physical, chemical, and biological indicators of water quality to a gradient of agricultural land use in the Yakima River Basin, Washington

    USGS Publications Warehouse

    Cuffney, T.F.; Meador, M.R.; Porter, S.D.; Gurtz, M.E.

    2000-01-01

    The condition of 25 stream sites in the Yakima River Basin, Washington, were assessed by the U.S. Geological Survey's National Water-Quality Assessment Program. Multimetric condition indices were developed and used to rank sites on the basis of physical, chemical, and biological characteristics. These indices showed that sites in the Cascades and Eastern Cascades ecoregions were largely unimpaired. In contrast, all but two sites in the Columbia Basin ecoregion were impaired, some severely. Agriculture (nutrients and pesticides) was the primary factor associated with impairment and all impaired sites were characterized by multiple indicators of impairment. All indices of biological condition (fish, invertebrates, and algae) declined as agricultural intensity increased. The response exhibited by invertebrates and algae suggested a threshold response with conditions declining precipitously at relatively low levels of agricultural intensity and little response at moderate to high levels of agricultural intensity. This pattern of response suggests that the success of mitigation will vary depending upon where on the response curve the mitigation is undertaken. Because the form of the community condition response is critical to effective water-quality management, the National Water-Quality Assessment Program is conducting studies to examine the response of biota to gradients of land-use intensity and the relevance of these responses to water-quality management. These land-use gradient pilot studies will be conducted in several urban areas starting in 1999.

  19. The spatiotemporal distribution of dissolved carbon in the main stems and their tributaries along the lower reaches of Heilongjiang River Basin, Northeast China.

    PubMed

    Wang, Lili; Song, Changchun; Guo, Yuedong

    2016-01-01

    The Heilongjiang River Basin in the eastern Siberia, one of the largest river basins draining to the North Pacific Ocean, is a border river between China, Mongolia, and Russia. In this study, we examined the spatial and seasonal variability in dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved total carbon (DTC) concentrations along lower reaches of Heilongjiang River Basin, China. Water samples were collected monthly along the mouths of main rivers (Heilongjiang River, Wusuli River, and Songhua River) and their ten tributary waters for 2 years. The DOC concentrations of waters ranged from 1.74 to 16.64 mg/L, with a mean value of 8.90 ± 0.27 mg/L (n = 165). Notably, mean DIC concentrations were 9.08 ± 0.31 mg/L, accounting for 13.26∼83.27% of DTC. DIC concentrations increased significantly after the Heilongjiang River passed through Northeast China, while DOC concentrations decreased. Over 50% of DIC concentrations were decreased during exports from groundwater to rice fields and from rice fields to ditches. Water dissolved carbon showed large spatial and temporal variations during the 2-year measurement, suggesting that more frequently samplings were required. Carbon (DIC + DOC) loads from the Heilongjiang River to the Sea of Okhotsk were estimated to be 3.26 Tg C/year in this study, accounting for 0.64% of the global water dissolved carbon flux. DIC export contributed an average of 51.84% of the estimated carbon load in the Heilongjiang River, acting as an important carbon component during riverine transport. Our study could provide some guides on agricultural water management and contribute to more accurately estimate global carbon budgets.

  20. Characterization of dissolved organic matter in drinking water sources impacted by multiple tributaries.

    PubMed

    Rosario-Ortiz, Fernando L; Snyder, Shane A; Suffet, I H

    2007-10-01

    The characterization of dissolved organic matter (DOM) in drinking water sources is important as this material contributes to the formation of disinfection by-products (DBPs) and affects how water treatment unit operations are optimized. Drinking water utilities often draw water from sources impacted by multiple tributaries, with possible shifts in DOM concentrations and reactivity over time, depending on specific environmental conditions. In this study, results are presented on the characterization of DOM under varying ambient conditions from the four main tributaries of Lake Mead, a large reservoir in the southwest United States. The tributaries include the Las Vegas Wash (LVW), Muddy River (MR), Virgin River (VR) and the upper Colorado River (UCR). One additional sample was collected at the outflow of the reservoir (lower Colorado River (LCR)). The DOM was characterized by both bulk parameters (specific ultraviolet absorbance (SUVA)) and specific physicochemical properties, i.e. size, polarity and fluorescence. The analyses were performed emphasizing limited changes in its natural configuration by eliminating analytical preparation steps, excluding sample filtration (0.45 microm filter). Results indicate that each tributary had a different molecular weight distribution, as well as fluorescence properties, which helped in the identification of the relative source of DOM (allochthonous versus autochthonous). The largest apparent molecular weight distribution was observed for DOM samples collected at the MR site, which is fed mostly by groundwater seepage. The smallest apparent molecular weight was observed for DOM collected at the LCR site, suggesting that retention in the reservoir resulted in a decrease in molecular weight as a probable result of photo oxidation and microbial processes. Fluorescence analysis aided the differentiation of DOM by clearly identifying waters that were affected by microbial activity (LVW, UCR, and LCR), either by wastewater influence

  1. New Techniques for Real-Time Stage Forecasting for Tributaries in the Nashville Area

    NASA Astrophysics Data System (ADS)

    Charley, W.; Moran, B.; LaRosa, J.

    2011-12-01

    On Saturday, May 1, 2010, heavy rain began falling in the Cumberland River Valley, Tennessee, and continued through the following day. 13.5 inches was measured at Nashville, an unprecedented amount that doubled the previous 2-day record, and exceeded the May monthly total record of 11 inches. Elsewhere in the valley, amounts of over 19 inches were measured. This intensity of rainfall quickly overwhelmed tributaries to the Cumberland in the Nashville area, causing wide-spread and serious flooding. Tractor-trailers and houses were seen floating down Mill Creek, a primary tributary in the south eastern area of Nashville. Twenty-six people died and over 2 billion dollars in damage occurred as a result of the flood. Since that time, several other significant rainfall events have occurred in the area. As a result of the flood, agencies in the Nashville area want better capabilities to forecast stages for the local tributaries. Better stage forecasting will help local agencies close roads, evacuate homes and businesses and similar actions. An interagency group, consisting of Metro Nashville Water Services and Office of Emergency Management, the National Weather Service, the US Geological Survey and the US Army Corps of Engineers, has been established to seek ways to better forecast short-term events in the region. It should be noted that the National Weather Service has the official responsibility of forecasting stages. This paper examines techniques and algorithms that are being developed to meet this need and the practical aspects of integrating them into a usable product that can quickly and accurately forecast stages in the short-time frame of the tributaries. This includes not only the forecasting procedure, but also the procedure to acquire the latest precipitation and stage data to make the forecasts. These procedures are integrated into the program HEC-RTS, the US Army Corps of Engineers Real-Time Simulation program. HEC-RTS is a Java-based integration tool that

  2. Angler harvest, hatchery return, and tributary stray rates of recycled adult summer steelhead Oncorhynchus mykiss in the Cowlitz River, Washington

    USGS Publications Warehouse

    Kock, Tobias J.; Perry, Russell W.; Gleizes, Chris; Dammers, Wolf; Liedtke, Theresa L.

    2016-01-01

    Hatchery ‘recycling’ programs have been used to increase angling opportunities by re-releasing fish into a river after they returned to a hatchery or fish trap. Recycling is intended to increase opportunities for fishermen, but this strategy could affect wild fish populations if some recycled fish remain in the river and interact with wild fish populations. To quantify hatchery return and angler harvest rates of recycled steelhead, we conducted a 2-year study on the Cowlitz River, Washington. A total of 1051 steelhead were recycled, including 218 fish that were radio-tagged. Fates of recycled steelhead were similar between years: 48.4% returned to the hatchery, 19.2% were reported captured by anglers, and 32.4% remained in the river. A multistate model quantified the effects of covariates on hatchery return and angler harvest rates, which were positively affected by river discharge and negatively affected by time since release. However, hatchery return rates increased and angler harvest rates decreased during periods of increasing discharge. A total of 21.1% (46 fish) of the radio-tagged steelhead failed to return to the hatchery or be reported by anglers, but nearly half of those fish (20 fish) appeared to be harvested and not reported. The remaining tagged fish (11.9% of the radio-tagged population) were monitored into the spawning period, but only five fish (2.3% of the radio-tagged population) entered tributaries where wild steelhead spawning occurs. Future research focused on straying behaviour, and spawning success of recycled steelhead may further advance the understanding of the effects of recycling as a management strategy.

  3. Application of the FluEgg model to predict transport of Asian carp eggs in the Saint Joseph River (Great Lakes tributary)

    USGS Publications Warehouse

    Garcia, Tatiana; Murphy, Elizabeth A.; Jackson, P. Ryan; Garcia, Marcelo H.

    2015-01-01

    The Fluvial Egg Drift Simulator (FluEgg) is a three-dimensional Lagrangian model that simulates the movement and development of Asian carp eggs until hatching based on the physical characteristics of the flow field and the physical and biological characteristics of the eggs. This tool provides information concerning egg development and spawning habitat suitability including: egg plume location, egg vertical and travel time distribution, and egg-hatching risk. A case study of the simulation of Asian carp eggs in the Lower Saint Joseph River, a tributary of Lake Michigan, is presented. The river hydrodynamic input for FluEgg was generated in two ways — using hydroacoustic data and using HEC-RAS model data. The HEC-RAS model hydrodynamic input data were used to simulate 52 scenarios covering a broad range of flows and water temperatures with the eggs at risk of hatching ranging from 0 to 93% depending on river conditions. FluEgg simulations depict the highest percentage of eggs at risk of hatching occurs at the lowest discharge and at peak water temperatures. Analysis of these scenarios illustrates how the interactive relation among river length, hydrodynamics, and water temperature influence egg transport and hatching risk. An improved version of FluEgg, which more realistically simulates dispersion and egg development, is presented. Also presented is a graphical user interface that facilitates the use of FluEgg and provides a set of post-processing analysis tools to support management decision-making regarding the prevention and control of Asian carp reproduction in rivers with or without Asian carp populations.

  4. Another unique river: a consideration of some of the characteristics of the trunk tributaries of the Nile River in northwestern Ethiopia in relationship to their aquatic food resources.

    PubMed

    Kappelman, John; Tewabe, Dereje; Todd, Lawrence; Feseha, Mulugeta; Kay, Marvin; Kocurek, Gary; Nachman, Brett; Tabor, Neil; Yadeta, Meklit

    2014-12-01

    Aquatic food resources are important components of many modern human hunter-gatherer diets and yet evidence attesting to the widespread exploitation of this food type appears rather late in the archaeological record. While there are times when, for example, the capture of fish and shellfish requires sophisticated technology, there are other cases when the exact ecological attributes of an individual species and the particulars of its environment make it possible for these foods to be incorporated into the human diet with little or no tool use and only a minimal time investment. In order to better understand the full set of variables that are considered in these sorts of foraging decisions, it is necessary to detail the attributes of each particular aquatic environment. We discuss here some of the characteristics of the trunk tributaries of the Nile and Blue Rivers in the Horn of Africa. Unlike typical perennial rivers, these 'temporary' rivers flow only during a brief but intense wet season; during the much longer dry season, the rivers are reduced to a series of increasingly disconnected waterholes, and the abundant and diverse fish and mollusk populations are trapped in ever smaller evaporating pools. The local human population today utilizes a number of diverse capture methods that range from simple to complex, and vary according to the size and depth of the waterhole and the time of the year. When we view the particular characteristics of an individual river system, we find that each river is 'unique' in its individual attributes. The Horn of Africa is believed to be along the route that modern humans followed on their migration out of Africa, and it is likely that the riverine-based foraging behaviors of these populations accompanied our species on its movement into the rest of the Old World. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Coyote and the Crane--A Legend of the Yakimas.

    ERIC Educational Resources Information Center

    George, Larry

    Written in plain terms, printed in large type, and accompanied by illustrations, this legend of the Yakima Indians tells of how the crane came to be; it is the story of how Coyote turns a man into a crane because the man would not share his catch of fish. "In the old days people shared things. It was our way of life. If a person was hungry…

  6. 5. VIEW FROM TRACK, LOOKING NORTH THROUGH SPANS (BURLINGTON NORTHERN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW FROM TRACK, LOOKING NORTH THROUGH SPANS (BURLINGTON NORTHERN RAILROAD BRIDGE ON RIGHT) - Yakima Valley Transportation Company Interurban Railroad, Naches River Bridge, Yakima, Yakima County, WA

  7. Water mass interaction in the confluence zone of the Daning River and the Yangtze River--a driving force for algal growth in the Three Gorges Reservoir.

    PubMed

    Holbach, Andreas; Wang, Lijing; Chen, Hao; Hu, Wei; Schleicher, Nina; Zheng, Binghui; Norra, Stefan

    2013-10-01

    Increasing eutrophication and algal bloom events in the Yangtze River Three Gorges Reservoir, China, are widely discussed with regard to changed hydrodynamics and nutrient transport and distribution processes. Insights into water exchange and interaction processes between water masses related to large-scale water level fluctuations in the reservoir are crucial to understand water quality and eutrophication dynamics. Therefore, confluence zones of tributaries with the Yangtze River main stream are dedicated key interfaces. In this study, water quality data were recorded in situ and on-line in varying depths with the MINIBAT towed underwater multi-sensor system in the confluence zone of the Daning River and the Yangtze River close to Wushan City during 1 week in August 2011. Geostatistical evaluation of the water quality data was performed, and results were compared to phosphorus contents of selective water samples. The strongly rising water level throughout the measurement period caused Yangtze River water masses to flow upstream into the tributary and supply their higher nutrient and particulate loads into the tributary water body. Rapid algal growth and sedimentation occurred immediately when hydrodynamic conditions in the confluence zone became more serene again. Consequently, water from the Yangtze River main stream can play a key role in providing nutrients to the algal bloom stricken water bodies of its tributaries.

  8. 33 CFR 125.06 - Western rivers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Western rivers. 125.06 Section... VESSELS § 125.06 Western rivers. The term western rivers as used in the regulations in this subchapter shall include only the Red River of the North, the Mississippi River and its tributaries above the Huey...

  9. Estuarine River Data for the Ten Thousand Islands Area, Florida, Water Year 2005

    USGS Publications Warehouse

    Byrne, Michael J.; Patino, Eduardo

    2008-01-01

    The U.S. Geological Survey collected stream discharge, stage, salinity, and water-temperature data near the mouths of 11 tributaries flowing into the Ten Thousand Islands area of Florida from October 2004 to June 2005. Maximum positive discharge from Barron River and Faka Union River was 6,000 and 3,200 ft3/s, respectively; no other tributary exceeded 2,600 ft3/s. Salinity variation was greatest at Barron River and Faka Union River, ranging from 2 to 37 ppt, and from 3 to 34 ppt, respectively. Salinity maximums were greatest at Wood River and Little Wood River, each exceeding 40 ppt. All data were collected prior to the commencement of the Picayune Strand Restoration Project, which is designed to establish a more natural flow regime to the tributaries of the Ten Thousand Islands area.

  10. 76 FR 34962 - Eastern Washington Cascades Provincial Advisory Committee and the Yakima Provincial Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... forest activities that have occurred during the past year. All Eastern Washington Cascades and Yakima... questions regarding this meeting to Clint Kyhl, Designated Federal Official, USDA, Okanogan- Wenatchee...

  11. Concentration, flux, and trend estimates with uncertainty for nutrients, chloride, and total suspended solids in tributaries of Lake Champlain, 1990–2014

    USGS Publications Warehouse

    Medalie, Laura

    2016-12-20

    The U.S. Geological Survey, in cooperation with the New England Interstate Water Pollution Control Commission and the Vermont Department of Environmental Conservation, estimated daily and 9-month concentrations and fluxes of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids from 1990 (or first available date) through 2014 for 18 tributaries of Lake Champlain. Estimates of concentration and flux, provided separately in Medalie (2016), were made by using the Weighted Regressions on Time, Discharge, and Season (WRTDS) regression model and update previously published WRTDS model results with recent data. Assessment of progress towards meeting phosphorus-reduction goals outlined in the Lake Champlain management plan relies on annual estimates of phosphorus flux. The percent change in annual concentration and flux is provided for two time periods. The R package EGRETci was used to estimate the uncertainty of the trend estimate. Differences in model specification and function between this study and previous studies that used WRTDS to estimate concentration and flux using data from Lake Champlain tributaries are described. Winter data were too sparse and nonrepresentative to use for estimates of concentration and flux but were sufficient for estimating the percentage of total annual flux over the period of record. Median winter-to-annual fractions ranged between 21 percent for total suspended solids and 27 percent for dissolved phosphorus. The winter contribution was largest for all constituents from the Mettawee River and smallest from the Ausable River. For the full record (1991 through 2014 for total and dissolved phosphorus and chloride and 1993 through 2014 for nitrogen and total suspended solids), 6 tributaries had decreasing trends in concentrations of total phosphorus, and 12 had increasing trends; concentrations of dissolved phosphorus decreased in 6 and increased in 8 tributaries; fluxes of total phosphorus decreased in 5 and

  12. Thermal and hydrologic suitability of Lake Erie and its major tributaries for spawning of Asian carps

    USGS Publications Warehouse

    Kocovsky, Patrick M.; Chapman, Duane C.; McKenna, James E.

    2012-01-01

    Bighead carp Hypophthalmichthys nobilis, silver carp H. molitrix, and grass carp Ctenopharyngodon idella (hereafter Asian carps) have expanded throughout the Mississippi River basin and threaten to invade Lakes Michigan and Erie. Adult bighead carp and grass carp have been captured in Lake Erie, but self-sustaining populations probably do not exist. We examined thermal conditions within Lake Erie to determine if Asian carps would mature, and to estimate time of year when fish would reach spawning condition. We also examined whether thermal and hydrologic conditions in the largest tributaries to western and central Lake Erie were suitable for spawning of Asian carps. We used length of undammed river, predicted summer temperatures, and predicted water velocity during flood events to determine whether sufficient lengths of river are available for spawning of Asian carps. Most rivers we examined have at least 100 km of passable river and summer temperatures suitable (> 21 C) for rapid incubation of eggs of Asian carps. Predicted water velocity and temperature were sufficient to ensure that incubating eggs, which drift in the water column, would hatch before reaching Lake Erie for most flood events in most rivers if spawned far enough upstream. The Maumee, Sandusky, and Grand Rivers were predicted to be the most likely to support spawning of Asian carps. The Black, Huron, Portage, and Vermilion Rivers were predicted to be less suitable. The weight of the evidence suggests that the largest western and central Lake Erie tributaries are thermally and hydrologically suitable to support spawning of Asian carps.

  13. Miocene to present deformation rates in the Yakima Fold Province and implications for earthquake hazards in central Washington State, USA

    NASA Astrophysics Data System (ADS)

    Staisch, Lydia; Sherrod, Brian; Kelsey, Harvey; Blakely, Richard; Möller, Andreas; Styron, Richard

    2017-04-01

    The Yakima fold province (YFP), located in the Cascadia backarc of central Washington, is a region of active distributed deformation that accommodates NNE-SSW shortening. Geodetic data show modern strain accumulation of 2 mm/yr across this large-scale fold province. Deformation rates on individual structures, however, are difficult to assess from GPS data given low strain rates and the relatively short time period of geodetic observation. Geomorphic and geologic records, on the other hand, span sufficient time to investigate deformation rates on the folds. Resolving fault geometries and slip rates of the YFP is imperative to seismic hazard assessment for nearby infrastructure, including a large nuclear waste facility and hydroelectric dams along the Columbia and Yakima Rivers. We present new results on the timing and magnitude of deformation across several Yakima folds, including the Manastash Ridge, Umtanum Ridge, and Saddle Mountains anticlines. We constructed several line-balanced cross sections across the folds to calculated the magnitude of total shortening since Miocene time. To further constrain our structural models, we include forward-modeling of magnetic and gravity anomaly data. We estimate total shortening between 1.0 and 2.4 km across individual folds, decreasing eastward, consistent with geodetically and geologically measured clockwise rotation. Importantly, we find that thrust faults reactivate and invert normal faults in the basement, and do not appear to sole into a common décollement at shallow to mid-crustal depth. We constrain spatial and temporal variability in deformation rates along the Saddle Mountains, Manastash Ridge and Umtanum Ridge anticlines using geomorphic and stratigraphic markers of topographic evolution. From stratigraphy and geochronology of growth strata along the Saddle Mountains we find that the rate of deformation has increased up to six-fold since late Miocene time. To constrain deformation rates along other Yakima folds

  14. Dioxin in the river Elbe.

    PubMed

    Götz, Rainer; Bergemann, Michael; Stachel, Burkhard; Umlauf, Gunther

    2017-09-01

    This paper provides a macro-analysis of the dioxin contamination in the river Elbe from the 1940s to the present. Based on different data sets, the historic dioxin concentration in the Elbe has been reconstructed. For the section between the tributary Mulde and Hamburg, during the 1940s, we find a concentration of about 1500 pg WHO-TEQ g -1 . We argue that this dioxin contamination was caused mainly by emissions from a magnesium plant in Bitterfeld-Wolfen, whose effluents were discharged into a tributary of the river Mulde which flows into the Elbe. Dioxin pattern recognition with neural networks (Kohonen) confirms this. A model simulation shows that a hypothetical dioxin concentration of 10,000 pg WHO-TEQ g -1 in the tributary Mulde could have caused the reconstructed dioxin concentration of 1500 pg WHO-TEQ g -1 in the Elbe. The recent dioxin concentration (about 25-100 pg WHO-TEQ g -1 ) in the river Elbe, downstream the tributary Mulde, originates, according to our hypothesis, from emissions of the banks and the highly contaminated flood plains (transport of the particle bound dioxin). As other possible dioxin sources, the following could be excluded: the dioxin concentration in the Mulde, groynes, small ports, sport boat harbours, and extreme floods. Our hypothesis is supported by the results of pattern recognition techniques and a model simulation. According to these findings, we argue that remediation efforts to reduce the dioxin concentration in the river Elbe are unlikely to be successful. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Relation of water quality to land use in the drainage basins of four tributaries to the Toms River, New Jersey, 1994--1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunchak-Kariouk, K.

    1999-01-01

    This report describes the results of a study to determine the relation between land use and the water quality of four tributaries to the Toms River--Long Swamp Creek, Wrangel Brook, Davenport Branch, and Jakes Branch. The constituent concentrations and yield values presented in this report are based on water-quality and streamflow data collected at seven sites during base flow and stormflow conditions during May 1994 to October 1995. Concentrations and yields (area-normalized instantaneous load values) during periods of base flow and stormflow in the growing and nongrowing seasons are presented for sites on Long Swamp Creek, Wrangel Brook, and Davenportmore » Branch. Only concentrations during base flow are presented for the site on Jakes Branch. Water-quality constituents for which concentrations and yield values are reported include total nitrogen, ammonia, nitrate, organic nitrogen, hydrolyzable phosphorus plus orthophosphorus, orthophosphorus, total suspended solids, and fecal-coliform bacteria. Concentrations of nitrite and Escherichia coliform bacteria also are listed. Distributions of constituent concentrations and yields during base flow and stormflow in the growing and nongrowing season are shown in boxplots. Specific conductance, pH, temperature, and dissolved oxygen in the four tributaries also are discussed, and their values are listed.« less

  16. Zooplankton Linkages between Rivers and Great Lakes: Case Study from the St. Louis River

    EPA Science Inventory

    In this case study, we characterized the spatial and seasonal distribution and abundance of zooplankton within the hydrologically complex drowned river mouth of the St. Louis River, the second largest tributary to Lake Superior and an important fish nursery. We hypothesize that z...

  17. Flow structure at low momentum ratio river confluences

    NASA Astrophysics Data System (ADS)

    Moradi, Gelare; Rennie, Colin. D.; Cardot, Romain; Mettra, François; Lane, Stuart. N.

    2017-04-01

    The flow structure at river confluences is a complex pattern of fluid motion and can be characterized by the formation of secondary circulation. As river confluences play an essential role on flow hydrodynamics and control the movement of sediment through river networks, there has been substantial attention given to this subject in recent decades. However, there is still much debate over how momentum ratio and sediment transport can control secondary circulation and mixing processes. In particular, studies have tended to assume that there is some equilibrium between the bed morphology present and the flow structures that form in the junction region. However, this overlooks the fact that tributaries may be associated with highly varying sediment supply regimes, especially for shorter and steeper tributaries, with temporal changes in sediment delivery ratios (between the main stem and the tributary) that do not follow exactly changes in momentum ratio. This may lead to bed morphologies that are a function of rates of historical sediment supply during sediment transporting events and not the momentum ratio associated with the junction during its measurement. It is quite possible that tributaries with low flow momentum ratio have a relatively higher sediment delivery ratio, such that the tributary is still able to influence significantly secondary circulation in the main channel, long after the sediment transport event, and despite its low flow momentum during measurement. The focus of this paper is low momentum ratio junctions where it is possible that the tributary can deliver large amounts of sediment. Secondary circulation at junctions is thought to be dominated by streamwise-oriented vortical cells. These cells are produced by the convergence of surface flow towards the centre of the main channel, with descending motion in the zone of maximum flow convergence. Once flow arrives at the bed, it diverges and completes its rotation by an upwelling motion through the

  18. Detecting groundwater contamination of a river in Georgia, USA using baseflow sampling

    NASA Astrophysics Data System (ADS)

    Reichard, James S.; Brown, Chandra M.

    2009-05-01

    Algal blooms and fish kills were reported on a river in coastal Georgia (USA) downstream of a poultry-processing plant, prompting officials to conclude the problems resulted from overland flow associated with over-application of wastewater at the plant’s land application system (LAS). An investigation was undertaken to test the hypothesis that contaminated groundwater was also playing a significant role. Weekly samples were collected over a 12-month period along an 18 km reach of the river and key tributaries. Results showed elevated nitrogen concentrations in tributaries draining the plant and a tenfold increase in nitrate in the river between the tributary inputs. Because ammonia concentrations were low in this reach, it was concluded that nitrate was entering via groundwater discharge. Data from detailed river sampling and direct groundwater samples from springs and boreholes were used to isolate the entry point of the contaminant plume. Analysis showed two separate plumes, one associated with the plant’s unlined wastewater lagoon and another with its LAS spray fields. The continuous discharge of contaminated groundwater during summer low-flow conditions was found to have a more profound impact on river-water quality than periodic inputs by overland flow and tributary runoff.

  19. Enhancing mud supply from the Lower Missouri River to the Mississippi River Delta USA: Dam bypassing and coastal restoration

    NASA Astrophysics Data System (ADS)

    Kemp, G. Paul; Day, John W.; Rogers, J. David; Giosan, Liviu; Peyronnin, Natalie

    2016-12-01

    Sand transport to the Mississippi River Delta (MRD) remains sufficient to build wetlands in shallow, sheltered coastal bays fed by engineered diversions on the Mississippi River (MR) and its Atchafalaya River (AR) distributary. But suspended mud (silt & clay) flux to the coast has dropped from a mean of 390 Mt y-1 in the early 1950s, to 100 Mt y-1 since 1970. This fine-grained sediment travels deeper into receiving estuarine basins and plays a critical role in sustaining existing marshes. Virtually all of the 300 Mt y-1 of missing mud once flowed from the Missouri River (MOR) Basin before nearly 100 dams were built as part of the Pick-Sloan water development project. About 100 Mt y-1 is now intercepted by main-stem Upper MOR dams closed in 1953. But the remaining 200 Mt y-1 is trapped by impoundments built on tributaries to the Lower MOR in the 1950s and 1960s. Sediment flux during the post-dam high MOR discharge years of 1973, 1993 and 2011 approached pre-dam levels when tributaries to the Lower MOR, including the Platte and Kansas Rivers, contributed to flood flows. West bank tributaries drain a vast, arid part of the Great Plains, while those entering from the east bank traverse the lowlands of the MOR floodplain. Both provinces are dominated by highly erodible loess soils. Staunching the continued decline in MR fine-grained sediment flux has assumed greater importance now that engineered diversions are being built to reconnect the Lowermost MR to the MRD. Tributary dam bypassing in the Lower MOR basin could increase mud supply to the MRD by 100-200 Mt y-1 within 1-2 decades. Such emergency measures to save the MRD are compatible with objectives of the Missouri River Restoration and Platte River Recovery Programs to restore MOR riparian habitat for endangered species. Rapid mobilization to shunt fine-grained sediments past as many as 50 Lower MOR tributary dams in several U.S. states will undoubtedly require as much regional coordination and funding in the 21st

  20. Transport of Riverine Material From Multiple Rivers in the Chesapeake Bay: Important Control of Estuarine Circulation on the Material Distribution

    NASA Astrophysics Data System (ADS)

    Du, Jiabi; Shen, Jian

    2017-11-01

    Driven by estuarine circulation, material released from lower Chesapeake Bay tributaries has the potential to be transported to the upper Bay. How far and what fraction of the material from tributaries can be carried to the upper estuary have not been quantitatively investigated. For an estuary system with multiple tributaries, the relative contribution from each tributary can provide valuable information for source assessment and fate prediction for riverine materials and passive moving organisms. We conducted long-term numerical simulations using multiple passive tracers that are independently released in the headwater of five main rivers (i.e., Susquehanna, Potomac, Rappahannock, York, and James Rivers) and calculated the relative contribution of each river to the total material in the mainstem. The results show that discharge from Susquehanna River exerts the dominant control on the riverine material throughout the entire mainstem. Despite the smaller contribution from the lower-middle Bay tributaries to the total materials in the mainstem, materials released from these rivers have a high potential to be transported to the middle-upper Bay through the bottom inflow by the persistent estuarine circulation. The fraction of the tributary material transported to the upper Bay depends on the location of the tributary. Materials released near the mouth are subject to a rapid flushing process, small retention time, and strong shelf current. Our results reveal three distinct spatial patterns for materials released from the main river, tributary, and coastal oceans. This study highlights the important control of estuarine circulation over horizontal and vertical distributions of materials in the mainstem.

  1. Using Elemental Abundances and Petrophysical Properties to Trace Sediment Transport in the Hudson River

    NASA Astrophysics Data System (ADS)

    Chang, C.; Kenna, T. C.; Nitsche, F. O.

    2016-12-01

    The IPCC predicts that the frequency and severity of storms worldwide will increase due to climate change, a growing concern for the highly populated coastal areas near the Hudson River estuary. Storms have the potential to change the river's sediment budget, and it is necessary to update the current understanding of the effect of storms on sediment dynamics. In 2011, Tropical Storm Lee and Hurricane Irene delivered over 2.7 million tons of sediment to the Hudson River including over 1.5 million tons from the Mohawk River, a freshwater tributary, in addition to record amounts contributed from other major tributaries. The goals of this project are to use sediment elemental compositions to trace the major tributaries contributing to this storm-deposited sediment and to determine where sediment is accumulating as a result of storm activity. Chemical analysis of over 800 archived sediment samples are compiled to provide a pre-storm background level. These samples are compared to newly deposited sediment and material from specific tributaries. Elemental abundances (K, Ca, Ti, Cr, Mn, Fe, Co, Cu, Zn, Rb, Sr, Zr, Pb, and U) are measured using a field portable X-Ray Fluorescence (XRF) unit and core scanning XRF unit. Bulk matrix density is measured using a pycnometer. The measurements are used to identify elemental signatures from tributary sediment and to trace the influence of specific tributaries on deposition through the river. Our results suggests measureable signatures in sediment from individual tributaries. The Mohawk River contributes high concentrations of Ca due to the calcite deposits in its watershed. XRF measurements also show the effect of human activity on sediment deposition; variations in Rb and Zr indicate changes in deposition due to dredging in Haverstraw Bay. The salt wedge front, where ocean and fresh water meets is evident in areas of below average matrix density. This project shows significant geochemical variability between sediment from different

  2. Generalized sediment budgets of the Lower Missouri River, 1968–2014

    USGS Publications Warehouse

    Heimann, David C.

    2016-09-13

    Sediment budgets of the Lower Missouri River were developed in a study led by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers. The scope of the study included the development of a long-term (post-impoundment, 1968–2014) average annual sediment budget and selected annual, monthly, and daily sediment budgets for a reach and period that adequate data were available. Included in the analyses were 31 main-stem and tributary stations of the Lower Missouri River and two Mississippi River stations—the Mississippi River below Grafton, Illinois, and the Mississippi River at St. Louis, Missouri.Long-term average annual suspended-sediment loads of Missouri River main-stem stations ranged from 0.33 million tons at the Missouri River at Yankton, South Dakota, station to 71.2 million tons at Missouri River at Hermann, Mo., station. Gaged tributary gains accounted for 9–36 percent of the local reach budgets and cumulative gaged tributary contributions accounted for 84 percent of the long-term average suspended-sediment load of the Missouri River at Hermann, Mo., station. Although the sediment budgets for seven defined main-stem reaches generally were incomplete—missing bedload, reach storage, and ungaged tributary contributions—the budget residuals (net result of sediment inputs and outputs) for six of the seven reaches ranged from -7.0 to 1.7 million tons, or from -9.2 to 4.0 percent of the reach output suspended-sediment load, and were within the 10 percent reported measurement error of annual suspended-sediment loads for large rivers. The remaining reach, downstream from Gavin’s Point Dam, extended from Yankton, S. Dak., to Sioux City, Iowa, and had a budget residual of -9.8 million tons, which was -88 percent of the suspended-sediment load at Sioux City.The Lower Missouri River reach from Omaha, Nebraska, to Nebraska City, Nebr., had periods of concurrent sediment data for each primary budget component with which to analyze and

  3. Yakima/Klickitat Fisheries Project Monitoring and Evaluation, Final Report For the Performance Period May 1, 2008 through April 30, 2009.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampson, Melvin R.

    2009-07-30

    The Yakima-Klickitat Fisheries Project (YKFP) is a joint project of the Yakama Nation (lead entity) and the Washington State Department of Fish and Wildlife (WDFW) and is sponsored in large part by the Bonneville Power Administration (BPA) with oversight and guidance from the Northwest Power and Conservation Council (NPCC). It is among the largest and most complex fisheries management projects in the Columbia Basin in terms of data collection and management, physical facilities, habitat enhancement and management, and experimental design and research on fisheries resources. Using principles of adaptive management, the YKFP is attempting to evaluate all stocks historically presentmore » in the Yakima subbasin and apply a combination of habitat restoration and hatchery supplementation or reintroduction, to restore the Yakima Subbasin ecosystem with sustainable and harvestable populations of salmon, steelhead and other at-risk species. The original impetus for the YKFP resulted from the landmark fishing disputes of the 1970s, the ensuing legal decisions in United States versus Washington and United States versus Oregon, and the region's realization that lost natural production needed to be mitigated in upriver areas where these losses primarily occurred. The YKFP was first identified in the NPCC's 1982 Fish and Wildlife Program (FWP) and supported in the U.S. v Oregon 1988 Columbia River Fish Management Plan (CRFMP). A draft Master Plan was presented to the NPCC in 1987 and the Preliminary Design Report was presented in 1990. In both circumstances, the NPCC instructed the Yakama Nation, WDFW and BPA to carry out planning functions that addressed uncertainties in regard to the adequacy of hatchery supplementation for meeting production objectives and limiting adverse ecological and genetic impacts. At the same time, the NPCC underscored the importance of using adaptive management principles to manage the direction of the Project. The 1994 FWP reiterated the

  4. Tributaries affect the thermal response of lakes to climate change

    NASA Astrophysics Data System (ADS)

    Råman Vinnå, Love; Wüest, Alfred; Zappa, Massimiliano; Fink, Gabriel; Bouffard, Damien

    2018-01-01

    Thermal responses of inland waters to climate change varies on global and regional scales. The extent of warming is determined by system-specific characteristics such as fluvial input. Here we examine the impact of ongoing climate change on two alpine tributaries, the Aare River and the Rhône River, and their respective downstream peri-alpine lakes: Lake Biel and Lake Geneva. We propagate regional atmospheric temperature effects into river discharge projections. These, together with anthropogenic heat sources, are in turn incorporated into simple and efficient deterministic models that predict future water temperatures, river-borne suspended sediment concentration (SSC), lake stratification and river intrusion depth/volume in the lakes. Climate-induced shifts in river discharge regimes, including seasonal flow variations, act as positive and negative feedbacks in influencing river water temperature and SSC. Differences in temperature and heating regimes between rivers and lakes in turn result in large seasonal shifts in warming of downstream lakes. The extent of this repressive effect on warming is controlled by the lakes hydraulic residence time. Previous studies suggest that climate change will diminish deep-water oxygen renewal in lakes. We find that climate-related seasonal variations in river temperatures and SSC shift deep penetrating river intrusions from summer towards winter. Thus potentially counteracting the otherwise negative effects associated with climate change on deep-water oxygen content. Our findings provide a template for evaluating the response of similar hydrologic systems to on-going climate change.

  5. Floods on Duck River and Flat, Big Spring, Bomar, and Little Hurricane Creeks and Pettus and Holland Branches and unnamed tributaries to Bomar and Little Hurricane Creeks and Holland Branch in the vicinity of Shelbyville, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This flood hazard information report describes the extent and severity of the flood potential along selected reaches of the Duck River; Flat, Big Spring, Bomar, and Little Hurricane Creeks; Pettus and Holland Branches; and unnamed tributaries to Bomar and Little Hurricane Creeks and Holland Branch in the vicinity of Shelbyville, Tennessee.

  6. Preimpoundment water quality of Raystown Branch Juniata River and six tributary streams, south-central Pennsylvania

    USGS Publications Warehouse

    Williams, Donald R.

    1976-01-01

    The Raystown Branch Juniata River watershed, which is the main water source for Raystown Lake, is a 960-square-mile (2,490 square kilometres) drainage basin in south-central Pennsylvania. Preimpoundment water-quality data were collected on the Raystown Branch and six tributary st.reams in the basin. Specific conductance values varied inversely with water discharge. The pH values were extremely low only at the Shoup Run site. Dissolved oxygen concentrations observed at all sites indicated a relatively high oxygen saturation level throughout the year. Seasonal variations in nitrate-N and orthophosphate-P levels were measured at the main inflow station at Saxton, Pa. The highest concentrations of nitrate-N and orthophosphate-P occurred in the winter and spring months and the lowest concentrations were measured dur:l.ng the swnmer and fall. Bacteriological data indicated no excessive -amounts of fecal matter present at the inflows. Soil samples collected at four sites in the impoundment area were predominantly of the Barbour, Philo, and Basher series, which are considered to be highly fertile soils with silt-loam and sandy~loam textures. Morphological features of the lake basin and low nutrient levels at the inflows should prevent excessive weed growth around the lake perimeter.

  7. Characterizing hydroclimatic variability in tributaries of the Upper Colorado River Basin—WY1911-2001

    NASA Astrophysics Data System (ADS)

    Matter, Margaret A.; Garcia, Luis A.; Fontane, Darrell G.; Bledsoe, Brian

    2010-01-01

    SummaryMountain snowpack is the main source of water in the semi-arid Colorado River Basin (CRB), and while the demands for water are increasing, competing and often conflicting, the supply is limited and has become increasingly variable over the 20th Century. Greater variability is believed to contribute to lower accuracy in water supply forecasts, plus greater variability violates the assumption of stationarity, a fundamental assumption of many methods used in water resources engineering planning, design and management. Thus, it is essential to understand the underpinnings of hydroclimatic variability in order to accurately predict effects of climate changes and effectively meet future water supply challenges. A new methodology was applied to characterized time series of temperature, precipitation, and streamflow (i.e., historic and reconstructed undepleted flows) according to the three climate regimes that occurred in CRB during the 20th Century. Results for two tributaries in the Upper CRB show that hydroclimatic variability is more deterministic than previously thought because it entails complementary temperature and precipitation patterns associated with wetter or drier conditions on climate regime and annual scales. Complementary temperature and precipitation patterns characterize climate regime type (e.g., cool/wet and warm/dry), and the patterns entail increasing or decreasing temperatures and changes in magnitude and timing of precipitation according to the climate regime type. Accompanying each climate regime on annual scales are complementary temperature ( T) and precipitation ( P) patterns that are associated with upcoming precipitation and annual basin yield (i.e., total annual flow volume at a streamflow gauge). Annual complementary T and P patterns establish by fall, are detectable as early as September, persist to early spring, are related to the relative magnitude of upcoming precipitation and annual basin yield, are unique to climate regime type

  8. Estimates of Monthly Ground-Water Recharge to the Yakima River Basin Aquifer System, Washington, 1960-2001, for Current Land-Use and Land-Cover Conditions

    USGS Publications Warehouse

    Vaccaro, J.J.; Olsen, T.D.

    2007-01-01

    Unique ID grid with a unique value per Hydrologic Response Unit (HRU) per basin in reference to the estimated ground-water recharge for current conditions in the Yakima Basin Aquifer System, (USGS report SIR 2007-5007). Total 78,144 unique values. This grid made it easy to provide estimates of monthly ground-water recharge for water years 1960-2001in an electronic format for water managers, planners, and hydrologists, that could be related back to a spatially referenced grid by the unique ID.

  9. Babocomari River Riparian Protection Project

    Treesearch

    Dan Robinett; Linda Kennedy

    2013-01-01

    The Babocomari River is a major tributary of the San Pedro River in Santa Cruz and Cochise counties, Arizona. This 140,000 acre catchment includes rolling grasslands on the Sonoita plain, oak woodlands in the Canelo Hills and the pine-oak forests of the northwestern Huachuca Mountains. The Babocomari River runs for 22 miles from its headwaters near Sonoita at 5000 feet...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flagg, Thomas A.

    The National Marine Fisheries Service (NMFS) and the Bonneville Power Administration (BPA) are involved in a project to evaluate the feasibility of re-establishing anadromous salmon runs to Cle Elum Lake in the Yakima River Basin of Washington state. Historically, the Yakima River system supported large runs of anadromous salmonids that contributed significantly to the Columbia River harvest. Habitat destruction and overfishing drastically reduced run abundance prior to the early 1900s. Salmon runs were eliminated from upper reaches of the Yakima River Basin with development of irrigation storage reservoirs without fishways in the early 1900s. The goal of the NMFS/BPA projectmore » is to determine if it is feasible for anadromous salmonids to recolonize the habitat above Cle Elum Dam under the present format of irrigation water withdrawal from the reservoir. The primary concern is whether anadromous fish can successfully exit Cle Elum Lake and survive downstream passage through the Yakima and Columbia Rivers to the ocean.« less

  11. Occurrence, distribution, and trends of volatile organic compounds in the Ohio River and its major tributaries, 1987-96

    USGS Publications Warehouse

    Lundgren, Robert F.; Lopes, Thomas J.

    1999-01-01

    The Ohio River is a source of drinking water for more than 3 million people. Thus, it is important to monitor the water quality of this river to determine if contaminants are present, their concentrations, and if water quality is changing with time. This report presents an analysis of the occurrence, distribution, and trends of 21 volatile organic compounds (VOCs) along the main stem of the Ohio River and its major tributaries from 1987 through 1996. The data were collected by the Ohio River Valley Water Sanitation Commission's Organics Detection System, which monitors daily for VOCs at 15 stations. Various statistical methods were applied to basinwide data from all monitoring stations and to data from individual monitoring stations. For the basinwide data, one or more VOCs were detected in 45 percent of the 44,837 river-water samples. Trichloromethane, detected in 26 percent of the samples, was the most frequently detected VOC followed by benzene (11 percent), methylbenzene (6.4 percent), and the other 18 VOCs, which were detected in less than 4 percent of the samples. In samples from 8 of the 15 monitoring stations, trichloromethane was also the most frequently detected VOC. These stations were generally near large cities along the Ohio River. The median trichloromethane concentration was 0.3 microgram per liter (μg/L), and concentrations ranged from less than 0.1 to 125.3 μg/L. Most of the VOCs had median detected concentrations that ranged from 0.1 to 0.4 μg/L for the basinwide data and for samples from individual stations. Samples from stations in the upstream part of the basin and from the Kanawha River had the highest median concentrations. Ninety-nine percent of the detected VOC concentrations were within U.S. Environmental Protection Agency drinking-water regulations. Of the 268 exceedances of drinking-water regulations, 188 were due to the detection of 1,2-dichloroethane prior to 1993 in samples from the monitoring station near Paducah, Ky. Time trend

  12. Yakima/Klickitat Fisheries Project Genetic Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2005-2006 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busack, Craig A.; Fritts, Anthony L.; Kassler, Todd

    2006-05-01

    This report covers one of many topics under the Yakima/Klickitat Fisheries Project's Monitoring and Evaluation Program (YKFPME). The YKFPME is funded under two BPA contracts, one for the Yakama Nation and the other for the Washington Department of Fish and Wildlife (Contract number 22370, Project Number 1995-063-25). A comprehensive summary report for all of the monitoring and evaluation topics will be submitted after all of the topical reports are completed. This approach to reporting enhances the ability of people to get the information they want, enhances timely reporting of results, and provides a condensed synthesis of the whole YKFPME. Themore » current report was completed by the Washington Department of Fish and Wildlife.« less

  13. Fall diel diet composition of American eel (Anguilla rostrata) in a tributary of the Hudson River, New York, USA

    USGS Publications Warehouse

    Waldt, Emily M.; Abbett, Ross; Johnson, James H.; Dittman, Dawn E.; McKenna, James E.

    2013-01-01

    American eel (Anguilla rostrata), a once common species, is now in decline throughout much of its native range in North America. There is little information on the role of American eel in river food webs. A better understanding of the diet and ecological role of American eel will help in the conservation of this important species. During autumn 2009, eel and aquatic invertebrate samples were collected from Hannacroix Creek, a tributary of the Hudson River, in Albany and Greene counties, New York, USA. Eel diet was analyzed by the eel size and time period (day or night). A high proportion of eel stomachs were empty (73%). Eel diets varied among size classes and day and night feeding periods (p = 0.001). Diet overlap was significant between small and medium eels caught both during the day (α = 0.71) and at night (α = 0.84). Nocturnal diet and nocturnal invertebrate samples were similar (α = 0.65), indicating a preference for bottom feeding during the night. Mayfly nymphs were the major prey consumed in each period by all size classes. Among eels that fed, night-feeding eels had the greatest stomach weight (as a percent of total body weight). The swim-bladder parasite, Anguillicoloides crassus, was also observed in eels of all size classes with nearly 50% afflicted.

  14. Relations among geology, physiography, land use, and stream habitat conditions in the Buffalo and Current River Systems, Missouri and Arkansas

    USGS Publications Warehouse

    Panfil, Maria S.; Jacobson, Robert B.

    2001-01-01

    This study investigated links between drainage-basin characteristics and stream habitat conditions in the Buffalo National River, Arkansas and the Ozark National Scenic Riverways, Missouri. It was designed as an associative study - the two parks were divided into their principle tributary drainage basins and then basin-scale and stream-habitat data sets were gathered and compared between them. Analyses explored the relative influence of different drainage-basin characteristics on stream habitat conditions. They also investigated whether a relation between land use and stream characteristics could be detected after accounting for geologic and physiographic differences among drainage basins. Data were collected for three spatial scales: tributary drainage basins, tributary stream reaches, and main-stem river segments of the Current and Buffalo Rivers. Tributary drainage-basin characteristics were inventoried using a Geographic Information System (GIS) and included aspects of drainage-basin physiography, geology, and land use. Reach-scale habitat surveys measured channel longitudinal and cross-sectional geometry, substrate particle size and embeddedness, and indicators of channel stability. Segment-scale aerial-photo based inventories measured gravel-bar area, an indicator of coarse sediment load, along main-stem rivers. Relations within and among data sets from each spatial scale were investigated using correlation analysis and multiple linear regression. Study basins encompassed physiographically distinct regions of the Ozarks. The Buffalo River system drains parts of the sandstone-dominated Boston Mountains and of the carbonate-dominated Springfield and Salem Plateaus. The Current River system is within the Salem Plateau. Analyses of drainage-basin variables highlighted the importance of these physiographic differences and demonstrated links among geology, physiography, and land-use patterns. Buffalo River tributaries have greater relief, steeper slopes, and more

  15. Evidence of panmixia between sympatric life history forms of coastal cutthroat trout in two lower Columbia River tributaries

    USGS Publications Warehouse

    Johnson, Jeffrey R.; Baumsteiger, Jason; Zydlewski, Joseph D.; Hudson, J. Michael; Ardren, William R.

    2010-01-01

    Coastal cutthroat trout Oncorhynchus clarkii clarkii exhibit resident and migratory life history strategies that often occur sympatrically, but the relationship between these forms within a population is poorly characterized. Through use of passive integrated transponder technology, migratory and resident coastal cutthroat trout were identified in two lower Columbia River tributaries (Abernathy Creek and the Chinook River) separated by more than 80 km. Genetic data from 17 highly variable microsatellite loci were used to ascertain the genetic population structure of these life history forms within and between streams. No distinct genetic separation was observed between the life history forms within a stream, as assessed by four different statistical approaches: permutation tests based on the genetic differentiation index F ST, principal components analysis of individuals, analysis of molecular variance, and contingency tests of allele frequency heterogeneity. Genetic differences were an order of magnitude higher between stream samples (F ST > 0.03) than between life history forms within a stream (F ST < 0.003). The contingency test detected allele frequency differences between migratory and resident life history forms in Abernathy Creek (P = 0.001), but this result was influenced more by age-class structure than by reproductive isolation between life history forms. Results are consistent with a single, randomly mating population in each stream producing both migratory and resident life history forms. These data suggest that individual life history strategy in coastal cutthroat trout is predominantly determined by phenotypic plasticity rather than genotype.

  16. Wind-forced salt intrusion into a tributary estuary

    NASA Astrophysics Data System (ADS)

    Sanford, Lawrence P.; Boicourt, William C.

    1990-08-01

    Moored measurements and hydrographic surveys were carried out during the summers of 1986 and 1987 to examine interaction between the mainstem of the Chesapeake Bay and the Choptank River, an eastern shore tributary estuary. The data show that an important mode of interaction is through wind-forced intrusion of saline, hypoxic water from below the pycnocline of the Bay into the lower river. Intrusions are driven by lateral tilting of the pycnocline in the Bay, when high salinity water is upwelled on the eastern side of the Bay in response to a southward pulse of wind stress. The resulting internal surges propagate up the relict Choptank entrance channel at a speed of about 20 cm/s and spill onto the broad sill inside the mouth of the river. Intrusion-favorable pycnocline tilts in the Bay do not always result in lower layer intrusion into the Choptank, but may be blocked or choked in the entrance channel on occasion. The data suggest that wind-forced intrusion of salt leads to increased gravitational circulation in the Choptank during the summer months, providing a mechanism through which high frequency energy may be directly translated into lower frequency motion.

  17. Anabranching rivers on the Northern Plains of arid central Australia

    NASA Astrophysics Data System (ADS)

    Tooth, Stephen; Nanson, Gerald C.

    1999-09-01

    Anabranching rivers are a widespread feature of the Northern Plains in the Alice Springs region of central Australia but their unusual characteristics previously have not been described. On the Northern Plains, anabranching occurs on rivers transporting bedloads of coarse sand and gravel and is characterised by channels of variable size and shape which occur within a broader, typically well-defined, channel-train. Channels are separated by channel-train ridges—narrow, flow-aligned, vegetated features—or by wider islands. Ridges and islands are either depositional features (formed in situ by accretionary processes) or erosional features (formed by excision from once-continuous areas of floodplain). Vegetation plays a key role in the initiation, survival and growth of depositional forms through its influence on flow, sediment transport and ridge and island stability. Anabranching is also related to the influence of tributaries, for some large rivers alternate from single-thread to anabranching along their length in response to tributary inputs of water and sediment. Tributary inputs occur during flow events that are either independent from, or in concert with, floods in the trunk channel. Ridges and islands form in association with tributaries as a result of various hydrological, depositional and erosional processes, including irrigation of enhanced numbers of in-channel trees and resulting lee-side sediment accretion, floodplain scour, and the formation and maintenance of deferred-junction tributaries. The change from single-thread to anabranching downstream of tributary junctions occurs in the absence of any significant change in channel gradient or degree of channel confinement. On the Northern Plains, anabranching appears to be a stable river pattern that helps to maintain the throughput of relatively coarse sediment in low-gradient (typically 0.0005-0.002) channels characterised by an abundance of within-channel vegetation and subject to declining downstream

  18. RED RIVER BASIN BIOLOGICAL MONITORING WORKGROUP

    EPA Science Inventory

    The goal of this project is to improve coordination of biological monitoring efforts in the Red River Basin. This is to be accomplished through coordination of a study to develop sampling protocols for macroinvertebrates in the main stream and lower tributaries of the Red River....

  19. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin.

    PubMed

    Ziv, Guy; Baran, Eric; Nam, So; Rodríguez-Iturbe, Ignacio; Levin, Simon A

    2012-04-10

    The Mekong River Basin, site of the biggest inland fishery in the world, is undergoing massive hydropower development. Planned dams will block critical fish migration routes between the river's downstream floodplains and upstream tributaries. Here we estimate fish biomass and biodiversity losses in numerous damming scenarios using a simple ecological model of fish migration. Our framework allows detailing trade-offs between dam locations, power production, and impacts on fish resources. We find that the completion of 78 dams on tributaries, which have not previously been subject to strategic analysis, would have catastrophic impacts on fish productivity and biodiversity. Our results argue for reassessment of several dams planned, and call for a new regional agreement on tributary development of the Mekong River Basin.

  20. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin

    PubMed Central

    Ziv, Guy; Baran, Eric; Nam, So; Rodríguez-Iturbe, Ignacio; Levin, Simon A.

    2012-01-01

    The Mekong River Basin, site of the biggest inland fishery in the world, is undergoing massive hydropower development. Planned dams will block critical fish migration routes between the river's downstream floodplains and upstream tributaries. Here we estimate fish biomass and biodiversity losses in numerous damming scenarios using a simple ecological model of fish migration. Our framework allows detailing trade-offs between dam locations, power production, and impacts on fish resources. We find that the completion of 78 dams on tributaries, which have not previously been subject to strategic analysis, would have catastrophic impacts on fish productivity and biodiversity. Our results argue for reassessment of several dams planned, and call for a new regional agreement on tributary development of the Mekong River Basin. PMID:22393001

  1. Population connectivity and genetic structure of burbot (Lota lota) populations in the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Underwood, Zachary E.; Mandeville, Elizabeth G.; Walters, Annika W.

    2016-01-01

    Burbot (Lota lota) occur in the Wind River Basin in central Wyoming, USA, at the southwestern extreme of the species’ native range in North America. The most stable and successful of these populations occur in six glacially carved mountain lakes on three different tributary streams and one large main stem impoundment (Boysen Reservoir) downstream from the tributary populations. Burbot are rarely found in connecting streams and rivers, which are relatively small and high gradient, with a variety of potential barriers to upstream movement of fish. We used high-throughput genomic sequence data for 11,197 SNPs to characterize the genetic diversity, population structure, and connectivity among burbot populations on the Wind River system. Fish from Boysen Reservoir and lower basin tributary populations were genetically differentiated from those in the upper basin tributary populations. In addition, fish within the same tributary streams fell within the same genetic clusters, suggesting there is movement of fish between lakes on the same tributaries but that populations within each tributary system are isolated and genetically distinct from other populations. Observed genetic differentiation corresponded to natural and anthropogenic barriers, highlighting the importance of barriers to fish population connectivity and gene flow in human-altered linked lake-stream habitats.

  2. 75 FR 7440 - Eastern Washington Cascades Provincial Advisory Committee and the Yakima Provincial Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Eastern Washington Cascades Provincial Advisory Committee and the Yakima Provincial Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting... Committee will meet on March 9, 2010 at the Sunnyslope Fire Station, 206 Easy Street, Wenatchee, WA. During...

  3. Assessing the potential for rainbow trout reproduction in tributaries of the Mountain Fork River below Broken Bow Dam, southeastern Oklahoma

    USGS Publications Warehouse

    Long, James M.; Starks, Trevor A.; Farling, Tyler; Bastarache, Robert

    2016-01-01

    inventory of the resident fish communities in these tributaries is lacking. To address these gaps, we surveyed 10 tributaries, from intermittent through third order, for fishes during presumed spawning periods of rainbow trout; we used backpack electrofishing in February and April 2015 and 2016 to determine the composition of the fish assemblages and whether trout were present. Stocked adult trout were found in three tributaries in 2015; wild juvenile rainbow trout were found in Bee Branch in 2015 and in an intermittent tributary of Spillway Creek, just above the “Cold Hole,” in 2016. Fish assemblages were dominated by highland stonerollers (Campostoma spadiceum) in larger, wider systems and by orangebelly darters (Etheostoma radiosum) in smaller, narrower streams. These data fill an information gap in our understanding of small streams in the Ouachita Mountains, and they demonstrate that some streams are suitable for rainbow trout reproduction.

  4. River mainstem thermal regimes influence population structuring within an Appalachian brook trout population

    USGS Publications Warehouse

    Aunins, Aaron W.; Petty, J. Todd; King, Timothy L.; Schilz, Mariya; Mazik, Patricia M.

    2015-01-01

    Brook trout (Salvelinus fontinalis) often exist as highly differentiated populations, even at small spatial scales, due either to natural or anthropogenic sources of isolation and low rates of dispersal. In this study, we used molecular approaches to describe the unique population structure of brook trout inhabiting the Shavers Fork watershed, located in eastern West Virginia, and contrast it to nearby populations in tributaries of the upper Greenbrier River and North Fork South Branch Potomac Rivers. Bayesian and maximum likelihood clustering methods identified minimal population structuring among 14 collections of brook trout from throughout the mainstem and tributaries of Shavers Fork, highlighting the role of the cold-water mainstem for connectivity and high rates of effective migration among tributaries. In contrast, the Potomac and Greenbrier River collections displayed distinct levels of population differentiation among tributaries, presumably resulting from tributary isolation by warm-water mainstems. Our results highlight the importance of protecting and restoring cold-water mainstem habitats as part of region-wide brook trout conservation efforts. In addition, our results from Shavers Fork provide a contrast to previous genetic studies that characterize Appalachian brook trout as fragmented isolates rather than well-mixed populations. Additional study is needed to determine whether the existence of brook trout as genetically similar populations among tributaries is truly unique and whether connectivity among brook trout populations can potentially be restored within other central Appalachian watersheds.

  5. Debris flows in Grand Canyon National Park, Arizona: magnitude, frequency and effects on the Colorado River

    USGS Publications Warehouse

    Melis, Theodre S.; Webb, Robert H.; ,

    1993-01-01

    Debris flows are recurrent sediment-transport processes in 525 tributaries of the Colorado River in Grand Canyon. Arizona. Initiated by slope failures in bedrock and (or) colluvium during intense rainfall, Grand Canyon debris flows are high-magnitude, short-duration floods. Debris flows in these tributaries transport very large boulders into the river where they accumulate on debris fans and form rapids. The frequency of debris flows range from less than 1 per century to 10 or more per century in these tributaries. Before regulation by Glen Canyon Dam in 1963, high-magnitude floods on the Colorado River reworked debris fans by eroding all particles except large boulders. Because flow regulation has substantially decreased the river's competence, debris flows occurring after 1963 have increased accumulation of finer-grained sediments on debris fans and in rapids.

  6. Relation between Nitrates in Water Wells and Potential Sources in the Lower Yakima Valley, Washington State

    EPA Science Inventory

    Results of a study EPA conducted to investigate the contribution of various sources to the high nitrate levels in groundwater and residential drinking water wells in the Lower Yakima Valley of Washington State.

  7. Spatial design principles for sustainable hydropower development in river basins

    DOE PAGES

    Jager, Henriëtte I.; Efroymson, Rebecca A.; Opperman, Jeff J.; ...

    2015-02-27

    How can dams be arranged within a river basin such that they benefit society? Recent interest in this question has grown in response to the worldwide trend toward developing hydropower as a source of renewable energy in Asia and South America, and the movement toward removing unnecessary dams in the US. Environmental and energy sustainability are important practical concerns, and yet river development has rarely been planned with the goal of providing society with a portfolio of ecosystem services into the future. We organized a review and synthesis of the growing research in sustainable river basin design around four spatialmore » decisions: Is it better to build fewer mainstem dams or more tributary dams? Should dams be clustered or distributed among distant subbasins? Where should dams be placed along a river? At what spatial scale should decisions be made? We came up with the following design principles for increasing ecological sustainability: (i) concentrate dams within a subset of tributary watersheds and avoid downstream mainstems of rivers, (ii) disperse freshwater reserves among the remaining tributary catchments, (iii) ensure that habitat provided between dams will support reproduction and retain offspring, and (iv) formulate spatial decision problems at the scale of large river basins. Based on our review, we discuss trade-offs between hydropower and ecological objectives when planning river basin development. We hope that future testing and refinement of principles extracted from our review will define a path toward sustainable river basin design.« less

  8. Washington Phase II Fish Diversion Screen Evaluations in the Yakima and Touchet River Basins, 2005-2006 Annual Reports.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamness, Mickie; Abernethy, C.; Tunnicliffe, Cherylyn

    2006-02-01

    In 2005, Pacific Northwest National Laboratory (PNNL) researchers evaluated 25 Phase II fish screen sites in the Yakima and Touchet river basins. Pacific Northwest National Laboratory performs these evaluations for Bonneville Power Administration (BPA) to determine whether the fish screening devices meet National Marine Fisheries Service (NMFS) criteria to promote safe and timely fish passage. Evaluations consist of measuring velocities in front of the screens, using an underwater camera to look at the condition and environment in front of the screens, and noting the general condition and operation of the sites. Results of the evaluations in 2005 include the following:more » (1) Most approach velocities met the NMFS criterion of less than or equal to 0.4 fps. Less than 13% of all approach measurements exceeded the criterion, and these occurred at 10 of the sites. Flat-plate screens had more problems than drum screens with high approach velocities. (2) Bypass velocities generally were greater than sweep velocities, but sweep velocities often did not increase toward the bypass. The latter condition could slow migration of fish through the facility. (3) Screen and seal materials generally were in good condition. (4) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well-greased and operative. (5) Washington Department of Fish and Wildlife (WDFW) and U.S. Bureau of Reclamation (USBR) generally operate and maintain fish screen facilities in a way that provides safe passage for juvenile fish. (6) In some instances, irrigators responsible for specific maintenance at their sites (e.g., debris removal) are not performing their tasks in a way that provides optimum operation of the fish screen facility. New ways need to be found to encourage them to maintain their facilities properly. (7) We recommend placing datasheets providing up-to-date operating criteria and design flows in each sites logbox. The datasheet should

  9. Development of a regional macroinvertebrate index for large river bioassessment

    EPA Science Inventory

    Large river bioassessment protocols lag far behind those of wadeable streams and often rely on fish assemblages of individual rivers. We developed a regional macroinvertebrate index and assessed relative condition of six large river tributaries to the upper Mississippi and Ohio r...

  10. Hydraulic and water-quality data collection for the investigation of Great Lakes tributaries for Asian carp spawning and egg-transport suitability

    USGS Publications Warehouse

    Murphy, Elizabeth A.; Jackson, P. Ryan

    2013-01-01

    While hydraulic data from all four rivers indicated settling of eggs is possible in some locations, all four rivers also exhibited sufficient temperatures, water-quality characteristics, turbulence, and transport times outside of settling zones for successful suspension and development of Asian carp eggs to the hatching stage before the threat of settlement. These observed data indicate that these four Great Lakes tributaries have sufficient hydraulic and water-quality characteristics to support successful spawning and recruitment of Asian carps. The data indicate that with the right temperature and flow conditions, river reaches as short as 25 km may allow Asian carp eggs sufficient time to develop to hatching. Additionally, examining the relation between critical shear velocity and mean velocity, egg settling appears to take place at mean velocities in the range of 15–25 centimeters per second, a much lower value than is generally cited in the literature. A first-order estimate of the minimum transport velocity for Asian carp eggs in a river can be obtained by using mean flow depth and river substrate data, and curves were constructed to show this relation. These findings would expand the number of possible tributaries suitable for Asian carp spawning and contribute to the understanding of how hydraulic and water-quality information can be used to screen additional rivers in the future.

  11. Sediment-quality assessment of the Lower Oconee River

    USGS Publications Warehouse

    Lasier, P.J.; Winger, P.V.; Shelton, J.L.; Bogenrieder, K.J.

    2004-01-01

    Sediment quality was assessed at multiple sites in the lower Oconee River, GA to identify contaminants potentially affecting the survival of an endemic ?At-Risk? species of fish, the robust redhorse (Moxostoma robustum). Five major tributaries that drain urban and agricultural watersheds enter this stretch of river and several carry permitted municipal and industrial effluents containing Cd, Cu, and Zn. Sediments for chemical analyses and toxicity tests with Hyalella azteca (Amphipoda) were collected at 12 locations that included sites above and below the major tributaries. Compared to national data bases and to the nearby Apalachicola-Chattahoochee-Flint watershed, sediments from the Oconee River had elevated concentrations of Cr, Cu, Hg and Zn. Zinc concentrations showed a marked increase in sediment downstream of the confluence of Buffalo Creek demonstrating contributions from permitted municipal and industrial effluents discharged to that tributary. When exposed to these sediments, growth of H. azteca was significantly reduced. Amphipod growth was also reduced when exposed to sediments collected from another site due to toxicity from Cr. Sediments in the lower Oconee River appear to be impaired due to metal contamination and could pose a threat to organisms, such as the robust redhorse, that are closely associated with this matrix during their life cycle.

  12. Fish communities of the Buffalo River Basin and nearby basins of Arkansas and their relation to selected environmental factors, 2001-2002

    USGS Publications Warehouse

    Petersen, James C.

    2004-01-01

    The Buffalo River lies in north-central Arkansas and is a tributary of the White River. Most of the length of the Buffalo River lies within the boundaries of Buffalo National River, a unit of the National Park Service; the upper 24 river kilometers lie within the boundary of the Ozark National Forest. Much of the upper and extreme lower parts of the basin on the south side of the Buffalo River is within the Ozark National Forest. During the summers of 2001 and 2002, fish communities were sampled at 52 sites in the study area that included the Buffalo River Basin and selected smaller nearby basins within the White River Basin in north-central Arkansas. Water quality (including nutrient and bacteria concentrations) and several other environmental factors (such as stream size, land use, substrate size, and riparian shading) also were measured. A total of 56 species of fish were collected from sites within the Buffalo River Basin in 2001 and 2002. All 56 species also were collected from within the boundaries of Buffalo National River. Twenty-two species were collected from headwater sites on tributaries of the Buffalo River; 27 species were collected from sites within or immediately adjacent to the Ozark National Forest. The list of species collected from Buffalo National River is similar to the list of species reported by previous investigators. Species richness at sites on the mainstem of the Buffalo River generally increased in a downstream direction. The number of species collected (both years combined) increased from 17 at the most upstream site to 38 near the mouth of the Buffalo River. In 2001 and 2002, a total of 53 species of fish were collected from sites outside the Buffalo River Basin. Several fish community metrics varied among sites in different site categories (mainstem, large tributary, small tributary, headwater, and developed out-of-basin sites). Median relative abundances of stonerollers ranged from about 25 to 55 percent and were highest at

  13. Water resources of the Kettle River watershed, east-central Minnesota

    USGS Publications Warehouse

    Helgesen, John O.; Lindholm, G.F.; Broussard, W.L.; Ericson, D.W.

    1973-01-01

    The glacial deposits are generally less than 100 feet thick. Bedrock consists of several types and occasionally crops out at land surface. Topography ranges from gently rolling to steeply undulating. About 1,060 square miles is drained by the Kettle River and its tributaries, and about 510 square miles by smaller streams that are direct tributaries to the St. Croix River. Peat and swamp areas are common, particularly in the eastern part of the area. Most of the watershed is forested, mainly with hardwoods.

  14. Using side-scan sonar to characterize and map physical habitat and anthropogenic underwater features in the St. Louis River

    EPA Science Inventory

    Characterizing underwater habitat and other features is difficult and costly, especially in large river systems. The St. Louis River is the largest US tributary to Lake Superior and the lower portion consists of a 48.5 km2 complex of wetlands, tributaries, and bays. We surveyed 8...

  15. Concentrations and estimated loads of nutrients, mercury, and polychlorinated biphenyls in selected tributaries to Lake Michigan, 2005-6

    USGS Publications Warehouse

    Westenbroek, Stephen M.

    2010-01-01

    The Lake Michigan Mass Balance Project (LMMBP) measured and modeled the concentrations of environmentally persistent contaminants in air, river and lake water, sediment, and fish and bird tissues in and around Lake Michigan for an 18-month period spanning 1994-95. Tributary loads were calculated as part of the LMMBP. The work described in this report was designed to provide updated concentration data and load estimates for 5 nutrients, total mercury, and total polychlorinated biphenyl (PCB) at 5 of the original 11 LMMBP sampling sites. Samples were collected at five Lake Michigan tributary monitoring sites during 2005 and 2006. Annual loads calculated for the 2005-6 sampling period are as much as 50 percent lower relative to the 1994-95 time period. Differences between the loads calculated for the two time periods are likely related to a combination of (1) biases introduced by a reduced level of sampling effort, (2) differences in hydrological characteristics, and (3) actual environmental change. Estimated annual total mercury loads during 2005-6 ranged from 51 kilograms per year (kg/yr) in the Fox River to 2.2 kg/yr in the Indiana Harbor and Ship Canal. Estimated annual total PCB loads during 2005-6 ranged from 132 kg/yr in the Fox River to 6.2 kg/yr in the Grand River.

  16. Potential Effects of Dams on Migratory Fish in the Mekong River: Lessons from Salmon in the Fraser and Columbia Rivers

    NASA Astrophysics Data System (ADS)

    Ferguson, John W.; Healey, Michael; Dugan, Patrick; Barlow, Chris

    2011-01-01

    We compared the effects of water resource development on migratory fish in two North American rivers using a descriptive approach based on four high-level indicators: (1) trends in abundance of Pacific salmon, (2) reliance on artificial production to maintain fisheries, (3) proportion of adult salmon that are wild- versus hatchery-origin, and (4) number of salmon populations needing federal protection to avoid extinction. The two rivers had similar biological and physical features but radically different levels of water resource development: the Fraser River has few dams and all are located in tributaries, whereas the Columbia River has more than 130 large mainstem and tributary dams. Not surprisingly, we found substantial effects of development on salmon in the Columbia River. We related the results to potential effects on migratory fish in the Mekong River where nearly 200 mainstem and tributary dams are installed, under construction, or planned and could have profound effects on its 135 migratory fish species. Impacts will vary with dam location due to differential fish production within the basin, with overall effects likely being greatest from 11 proposed mainstem dams. Minimizing impacts will require decades to design specialized fish passage facilities, dam operations, and artificial production, and is complicated by the Mekong's high diversity and productivity. Prompt action is needed by governments and fisheries managers to plan Mekong water resource development wisely to prevent impacts to the world's most productive inland fisheries, and food security and employment opportunities for millions of people in the region.

  17. Organochlorine pesticide residues in bed sediments of the San Joaquin River, California

    USGS Publications Warehouse

    Gilliom, Robert J.; Clifton, Daphne G.

    1990-01-01

    Bed sediments of the San Joaquin River and its tributaries were sampled during October 7–11, 1985, and analyzed for organochiorine pesticide residues in order to determine their areal distribution and to evaluate and prioritize needs for further study. Residues of DDD, DDE, DDT, and dieldrin are widespread in the fine-grained bed sediments of the San Joaquin River and its tributaries despite little or no use of these pesticides for more than 15 years. The San Joaquin River has among the highest bed-sediment concentrations of DDD, DDE, DDT, and dieldrin residues of major rivers in the United States. Concentrations of all four pesticides were correlated with each other and with the amount of organic carbon and fine-grained particles in the bed sediments. The highest concentrations occurred in bed sediments of westside tributary streams. Potential tributary loads of DDD, DDE, DDT, and dieldrin to the San Joaquin River were computed from bed-sediment concentrations and data on streamfiow and suspended-sediment concentration in order to identify the general magnitude of differences between streams and to determine study priorities. The estimated loads indicate that the most important sources of residues during the study period were Salt Slough because of a high load of fine sediment, and Newman Wasteway, Orestimba Creek, and Hospital Creek because of high bed-sediment concentrations. Generally, the highest estimated loads of DDD, DDE, DDT, and dieldrin were in Orestimba and Hospital Creeks.

  18. Movement patterns of armado, Pterodoras granulosus, in the Paraná River Basin

    USGS Publications Warehouse

    Makrakis, M.C.; Miranda, L.E.; Makrakis, S.; Fernandez, D.R.; Garcia, J.O.; Dias, J.H.P.

    2007-01-01

    We studied the migratory behaviour of armado, Pterodoras granulosus, in the Paraná River Basin of Brazil, Paraguay and Argentina, during 1997–2005. This species invaded the Upper Paraná River after upstream dispersal was facilitated when Itaipu Reservoir inundated a natural barrier. Fish were tagged (N = 8051) in the mainstems of the Yacyreta and Itaipu reservoirs, bays of major tributaries, the Paraná River floodplain above Itaipu Reservoir, and below dams. In all, 420 fish were recaptured of which 61% moved away from the release area. Fish moved a maximum of 215 km (mean 42), and at a maximum rate of 9.4 km·day−1 (mean 0.6). Of the 256 armados that moved away from the release site, 145 moved upstream towards unimpounded stretches of the Paraná River and 111 moved downstream into the reservoir and bays of its tributaries (maximum 150 km). Based on the observed migratory movements, we suspect that most of the reproductive output originates in tributaries to the reservoirs. The ability of this species to expand its range presents a conundrum by pitting fishery management interests against conservation needs. Maintenance of the important armado fisheries depends on the ability of the species to migrate freely to use spawning and nursery areas in reservoir tributaries and floodplains. However, its ability to migrate long distances can allow this non-native species the opportunity to invade most of the Upper Paraná River.

  19. Improved classification of drainage networks using junction angles and secondary tributary lengths

    NASA Astrophysics Data System (ADS)

    Jung, Kichul; Marpu, Prashanth R.; Ouarda, Taha B. M. J.

    2015-06-01

    River networks in different regions have distinct characteristics generated by geological processes. These differences enable classification of drainage networks using several measures with many features of the networks. In this study, we propose a new approach that only uses the junction angles with secondary tributary lengths to directly classify different network types. This methodology is based on observations on 50 predefined channel networks. The cumulative distributions of secondary tributary lengths for different ranges of junction angles are used to obtain the descriptive values that are defined using a power-law representation. The averages of the values for the known networks are used to represent the classes, and any unclassified network can be classified based on the similarity of the representative values to those of the known classes. The methodology is applied to 10 networks in the United Arab Emirates and Oman and five networks in the USA, and the results are validated using the classification obtained with other methods.

  20. Simulated and observed 2010 floodwater elevations in selected river reaches in the Pawtuxet River Basin, Rhode Island

    USGS Publications Warehouse

    Zarriello, Phillip J.; Olson, Scott A.; Flynn, Robert H.; Strauch, Kellan R.; Murphy, Elizabeth A.

    2014-01-01

    Heavy, persistent rains from late February through March 2010 caused severe flooding that set, or nearly set, peaks of record for streamflows and water levels at many long-term streamgages in Rhode Island. In response to this event, hydraulic models were updated for selected reaches covering about 56 river miles in the Pawtuxet River Basin to simulate water-surface elevations (WSEs) at specified flows and boundary conditions. Reaches modeled included the main stem of the Pawtuxet River, the North and South Branches of the Pawtuxet River, Pocasset River, Simmons Brook, Dry Brook, Meshanticut Brook, Furnace Hill Brook, Flat River, Quidneck Brook, and two unnamed tributaries referred to as South Branch Pawtuxet River Tributary A1 and Tributary A2. All the hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) version 4.1.0 using steady-state simulations. Updates to the models included incorporation of new field-survey data at structures, high resolution land-surface elevation data, and updated flood flows from a related study. The models were assessed using high-water marks (HWMs) obtained in a related study following the March– April 2010 flood and the simulated water levels at the 0.2-percent annual exceedance probability (AEP), which is the estimated AEP of the 2010 flood in the basin. HWMs were obtained at 110 sites along the main stem of the Pawtuxet River, the North and South Branches of the Pawtuxet River, Pocasset River, Simmons Brook, Furnace Hill Brook, Flat River, and Quidneck Brook. Differences between the 2010 HWM elevations and the simulated 0.2-percent AEP WSEs from flood insurance studies (FISs) and the updated models developed in this study varied with most differences attributed to the magnitude of the 0.2-percent AEP flows. WSEs from the updated models generally are in closer agreement with the observed 2010 HWMs than with the FIS WSEs. The improved agreement of the updated simulated water elevations to

  1. Flood discharges and hydraulics near the mouths of Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek in the New River Gorge National River, West Virginia

    USGS Publications Warehouse

    Wiley, J.B.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, studied the frequency and magnitude of flooding near the mouths of five tributaries to the New River in the New River Gorge National River. The 100-year peak discharge at each tributary was determined from regional frequency equations. The 100-year discharge at Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek was 3,400 cubic feet per second, 640 cubic feet per second, 8,200 cubic feet per second, 7,100 cubic feet per second, and 9,400 cubic feet per second, respectively. Flood elevations for each tributary were determined by application of a steady-state, one-dimensional flow model. Manning's roughness coefficients for the stream channels ranged from 0.040 to 0.100. Bridges that would be unable to contain the 100-year flood within the bridge opening included: the State Highway 82 bridge on Wolf Creek, the second Fayette County Highway 25 bridge upstream from the confluence with New River on Dunloup Creek, and an abandoned log bridge on Mill Creek.

  2. Comprehensive Characterization of Droughts to Assess the Effectiveness of a Basin-Wide Integrated Water Management in the Yakima River Basin

    NASA Astrophysics Data System (ADS)

    Demissie, Y.; Mortuza, M. R.; Li, H. Y.

    2017-12-01

    Better characterization and understanding of droughts and their potential links to climate and hydrologic factors are essential for water resources planning and management in drought-sensitive but agriculturally productive regions like the Yakima River Basin (YKB) in Washington State. The basin is semi-arid and heavily relies on a fully appropriated irrigation water for fruit and crop productions that worth more than 3 billion annually. The basin experienced three major droughts since 2000 with estimated 670 million losses in farm revenue. In response to these and expected worsening drought conditions in the future, there is an ongoing multi-agency effort to adopt a basin-wide integrated water management to ensure water security during severe droughts. In this study, the effectiveness of the proposed water management plan to reduce the frequency and severity of droughts was assessed using a new drought index developed based on the seasonal variations of precipitation, temperature, snow accumulation, streamflow, and reservoir storages. In order to uncover the underlying causes of the various types of droughts observed during the 1961-2016, explanatory data analysis using deep learning was conducted for the local climate and hydrologic data including total water supply available, as well as global climatic phenomenon (El Niño/Southern Oscillation, Pacific Decadal Oscillation and North Atlantic Oscillation). The preliminary results showed that besides shortage in annual precipitation, various combinations of climate and hydrologic factors are responsible for the different drought conditions in the basin. Particularly, the winter snowpack, which provides about 2/3 of the surface water in the basin along with the carryover storage from the reservoirs play an important role during both single- and multiple-year drought events. Besides providing the much-needed insights about characteristics of droughts and their contributing factors, the outcome of the study is expected

  3. [Ecological characteristics of phytoplankton in Suining tributary under bio-remediation].

    PubMed

    Liu, Dongyan; Zhao, Jianfu; Zhang, Yalei; Ma, Limin

    2005-04-01

    Based on the analyses of phytoplankton community in the treated and untreated reaches of Suining tributary of Suzhou River, this paper studied the effects of bio-remediation on phytoplankton. As the result of the remediation, the density and Chl-a content of phytoplankton in treated reach were greatly declined, while the species number and Shannon-Wiener diversity index ascended obviously. The percentage of Chlorophyta and Baeillariophyta ascended, and some species indicating medium-and oligo-pollution were found. All of these illustrated that bio-remediation engineering might significantly benefit to the improvement of phytoplankton community structure and water quality.

  4. Legacy lead arsenate soil contamination at childcare centers in the Yakima Valley, Central Washington, USA.

    PubMed

    Durkee, Jenna; Bartrem, Casey; Möller, Gregory

    2017-02-01

    From the early 1900s to the 1950s, Yakima Valley orchards were commonly treated with lead arsenate (LA) insecticides. Lead (Pb) and arsenic (As) soil contamination has been identified on former orchard lands throughout Central Washington and pose a threat to human health and the environment. The levels of Pb and As in soil and interior dust at participating childcare centers in the Upper Yakima Valley (Yakima County), Washington were sampled to explore exposure potential for young children. Childcare center soils were collected from two soil depths, homogenized, and analyzed in bulk by a field-portable X-ray fluorescence spectrometer (XRF). Interior dust wipes samples were collected from at least two locations in each facility. All soil samples >250 mg/kg Pb and/or >20 As mg/kg were sieved to 250 μm, tested by XRF a second time, and analyzed via acid digestion and inductively coupled plasma mass spectrometry (ICP-MS) analysis. Bulk and sieved XRF results, as well as ICP-MS to XRF results were strongly correlated. Maximum Pb and As XRF results indicated that 4 (21%) and 8 (42%) of the 19 childcare centers surveyed exceeded the regulatory standard for Pb and As, respectively. Historic land use was significantly associated with elevated Pb and As levels. Interior dust loadings were below United States Environmental Protection Agency (EPA) guidelines. Childcare centers are areas of intensive use for children and when coupled with potential residential exposure in their homes, the total daily exposure is a potential hazard to children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Using Side-scan Sonar to Characterize and Map Physical Habitat and Anthropogenic Underwater Features in the St. Louis River. (poster)

    EPA Science Inventory

    Characterizing underwater habitat and other features is difficult and costly, especially in large river systems. The St. Louis River is the largest US tributary to Lake Superior and the lower portion consists of a 48.5 km2 complex of wetlands, tributaries, and bays. We surveyed 8...

  6. Recovery of Phytophthora species from drainage points and tributaries within two forest stream networks: a preliminary report

    Treesearch

    J. Hwang; S.W. Oak; S.N. Jeffers

    2011-01-01

    To evaluate the number of stream sample sites needed to effectively survey a given stream network for species of Phytophthora, two stream networks, Davidson River and Cathey's Creek, in western North Carolina (USA) were studied. One-litre water samples were collected from the terminal drainage points and most of the tributaries in each stream...

  7. Floods in the Raccoon River basin, Iowa

    USGS Publications Warehouse

    Heinitz, Albert J.

    1980-01-01

    Evaluation of flood hazards, and the planning, design, and operation of various facilities on flood plains requires information on floods. This report provides information on flood stages and discharges, flood magnitude and frequency, bench mark data, and flood profiles for the Raccoon River and some of its tributaries. Ir covers the Raccoon River, the North Raccoon River to the northern boundary of Sac County and the lower reaches of the Middle and South Raccoon Rivers.

  8. Concentrations and Loads of Organic Compounds and Trace Elements in Tributaries to Newark and Raritan Bays, New Jersey

    USGS Publications Warehouse

    Wilson, Timothy P.; Bonin, Jennifer L.

    2007-01-01

    A study was undertaken to determine the concentrations and loads of sediment and chemicals delivered to Newark and Raritan Bays by five major tributaries: the Raritan, Passaic, Rahway, Elizabeth, and Hackensack Rivers. This study was initiated by the State of New Jersey as Study I-C of the New Jersey Toxics Reduction Workplan for the New York-New Jersey Harbor, working under the NY-NJ Harbor Estuary Program (HEP) Contaminant Assessment and Reduction Program (CARP). The CARP is a comprehensive effort to evaluate the levels and sources of toxic contaminants to the tributaries and estuarine areas of the NY-NJ Harbor, including Newark and Raritan Bays. The Raritan and Passaic Rivers are large rivers (mean daily discharges of 1,189 and 1,132 cubic feet per second (ft3/s), respectively), that drain large, mixed rural/urban basins. The Elizabeth and Rahway Rivers are small rivers (mean daily discharges of 25.9 and 49.1 ft3/s, respectively) that drain small, highly urbanized and industrialized basins. The Hackensack River drains a small, mixed rural/urban basin, and its flow is highly controlled by an upstream reservoir (mean daily discharge of 90.4 ft3/s). These rivers flow into urbanized estuaries and ultimately, to the Atlantic Ocean. Each of these tributaries were sampled during two to four storm events, and twice each during low-flow discharge conditions. Samples were collected using automated equipment installed at stations adjacent to U.S. Geological Survey streamflow-gaging stations near the heads-of-tide of these rivers. Large-volume (greater than 50 liters of water and a target of 1 gram of sediment), flow-weighted composite samples were collected for chemical analysis using filtration to collect suspended particulates and exchange resin (XAD-2) to sequester dissolved contaminants. Composite whole-water samples were collected for dissolved polycyclic aromatic hydrocarbons (PAH) and for trace element analysis. Additional discrete grab samples were collected

  9. Maintaining population persistence in the face of an extremely altered hydrograph: implications for three sensitive fishes in a tributary of the Green River, Utah

    USGS Publications Warehouse

    Bottcher, Jared L.

    2009-01-01

    The ability of an organism to disperse to suitable habitats, especially in modified and fragmented systems, determines individual fitness and overall population viability. The bluehead sucker (Catostomus discobolus), flannelmouth sucker (Catostomus latipinnis), and roundtail chub (Gila robusta) are three species native to the upper Colorado River Basin that now occupy only 50% of their historic range. Despite these distributional declines, populations of all three species are present in the San Rafael River, a highly regulated tributary of the Green River, Utah, providing an opportunity for research. Our goal was to determine the timing and extent of movement, habitat preferences, and limiting factors, ultimately to guide effective management and recovery of these three species. In 2007-2008, we sampled fish from 25 systematically selected, 300-m reaches in the lower 64 km of the San Rafael River, spaced to capture the range of species, life-stages, and habitat conditions present. We implanted all target species with a passive integrated transponder (PIT) tag, installed a passive PIT tag antennae, and measured key habitat parameters throughout each reach and at the site of native fish capture. We used random forest modeling to identify and rank the most important abiotic and biotic predictor variables, and reveal potential limiting factors in the San Rafael River. While flannelmouth sucker were relatively evenly distributed within our study area, highest densities of roundtail chub and bluehead sucker occurred in isolated, upstream reaches characterized by complex habitat. In addition, our movement and length-frequency data indicate downstream drift of age-0 roundtail chub, and active upstream movement of adult flannelmouth sucker, both from source populations, providing the lower San Rafael River with colonists. Our random forest analysis highlights the importance of pools, riffles, and distance-to-source populations, suggesting that bluehead sucker and roundtail

  10. Mixing as a driver of temporal variations in river hydrochemistry: 1. Insights from conservative tracers in the Andes-Amazon transition

    NASA Astrophysics Data System (ADS)

    Torres, Mark A.; Baronas, J. Jotautas; Clark, Kathryn E.; Feakins, Sarah J.; West, A. Joshua

    2017-04-01

    The response of hillslope processes to changes in precipitation may drive the observed changes in the solute geochemistry of rivers with discharge. This conjecture is most robust when variations in the key environmental factors that affect hillslope processes (e.g., lithology, erosion rate, and climate) are minimal across a river's catchment area. For rivers with heterogenous catchments, temporal variations in the relative contributions of different tributary subcatchments may modulate variations in solute geochemistry with runoff. In the absence of a dense network of hydrologic gauging stations, alternative approaches are required to distinguish between the different drivers of temporal variability in river solute concentrations. In this contribution, we apportion the water and solute fluxes of a reach of the Madre de Dios River (Peru) between its four major tributary subcatchments during two sampling campaigns (wet and dry seasons) using spatial variations in conservative tracers. Guided by the results of a mixing model, we identify temporal variations in solute concentrations of the main stem Madre de Dios that are due to changes in the relative contributions of each tributary. Our results suggest that variations in tributary mixing are, in part, responsible for the observed concentration-discharge (C-Q) relationships. The implications of these results are further explored by reanalyzing previously published C-Q data from this region, developing a theoretical model of tributary mixing, and, in a companion paper, comparing the C-Q behavior of a suite of major and trace elements in the Madre de Dios River system.

  11. Water-quality conditions of the lower Boise River, Ada and Canyon Counties, Idaho, May 1994 through February 1997

    USGS Publications Warehouse

    Mullins, William H.

    1998-01-01

    Agricultural land and water use, wastewater treatment facility discharges, land development, road construction, urban runoff, confined-animal feeding operations, reservoir operations, and river channelization affect the water quality and biotic integrity of the lower Boise River between Lucky Peak Dam and the river's mouth at Parma, Idaho. During May 1994 through February 1997, 4 sites on the Boise River, 12 tributary/drain sites, and 3 wastewater treatment facilities were sampled at various intervals during the irrigation (high-flow) and post-irrigation (low-flow) seasons to determine sources, concentrations, and relative loads of nutrients and suspended sediment. Discharge entering the Boise River from the 12 tributary/drain sites and 3 wastewater treatment facilities was measured to determine the nutrient loads being contributed from each source. Total nitrogen, total phosphorus, and suspended sediment concentrations and loads tended to increase in a downstream direction along the Boise River. Among the 15 sources of discharge to the Boise River, 3 southside tributary/drains and the West Boise wastewater treatment facility contributed the largest loads of total nitrogen; the median daily load was more than 2,000 pounds per day. The West Boise wastewater treatment facility contributed the largest median daily load of total phosphorus (810 pounds per day); Dixie Drain contributed the largest median daily load of suspended sediment (26.4 tons per day). Nitrogen-to-phosphorus ratios at the four Boise River sites indicated that phosphorus could be limiting algal growth at the Diversion Dam site, whereas nitrogen could be limiting algal growth at the Glenwood and Middleton sites during some parts of the year. Algal growth in the Boise River near Parma did not appear to be nutrient limited. Because of the complexity of the plumbing system in the lower Boise River (numerous diversions and inflow points), accurate comparisons between discharge and nutrient loads entering

  12. Sources and Transport of Nutrients, Organic Carbon, and Chlorophyll-a in the San Joaquin River Upstream of Vernalis, California, during Summer and Fall, 2000 and 2001

    USGS Publications Warehouse

    Kratzer, Charles R.; Dileanis, Peter D.; Zamora, Celia; Silva, Steven R.; Kendall, Carol; Bergamaschi, Brian A.; Dahlgren, Randy A.

    2004-01-01

    Oxidizable materials from the San Joaquin River upstream of Vernalis can contribute to low dissolved oxygen episodes in the Stockton Deep Water Ship Channel that can inhibit salmon migration in the fall. The U.S. Geological Survey collected and analyzed samples at four San Joaquin River sites in July through October 2000 and June through November 2001, and at eight tributary sites in 2001. The data from these sites were supplemented with data from samples collected and analyzed by the University of California at Davis at three San Joaquin River sites and eight tributary sites as part of a separate study. Streamflows in the San Joaquin River were slightly above the long-term average in 2000 and slightly below average in 2001. Nitrate loads at Vernalis in 2000 were above the long-term average, whereas loads in 2001 were close to average. Total nitrogen loads in 2000 were slightly above average, whereas loads in 2001 were slightly below average. Total phosphorus loads in 2000 and 2001 were well below average. These nutrient loads correspond with the flow-adjusted concentration trends--nitrate concentrations significantly increased since 1972 (p 0.05). Loading rates of nutrients and dissolved organic carbon increased in the San Joaquin River in the fall with the release of wetland drainage into Mud Slough and with increased reservoir releases on the Merced River. During August 2000 and September 2001, the chlorophyll-a loading rates and concentrations in the San Joaquin River declined and remained low during the rest of the sampling period. The most significant tributary sources of nutrients were the Tuolumne River, Harding Drain, and Mud Slough. The most significant tributary sources of dissolved organic carbon were Salt Slough, Mud Slough, and the Tuolumne and Stanislaus Rivers. Compared with nutrients and dissolved organic carbon, the tributaries were minor sources of chlorophyll-a, suggesting that most of the chlorophyll-a was produced in the San Joaquin River

  13. Plastic debris in 29 Great Lakes tributaries: Relations to watershed attributes and hydrology

    USGS Publications Warehouse

    Baldwin, Austin K.; Corsi, Steven; Mason, Sherri A.

    2016-01-01

    Plastic debris is a growing contaminant of concern in freshwater environments, yet sources, transport, and fate remain unclear. This study characterized the quantity and morphology of floating micro- and macroplastics in 29 Great Lakes tributaries in six states under different land covers, wastewater effluent contributions, population densities, and hydrologic conditions. Tributaries were sampled three or four times each using a 333 μm mesh neuston net. Plastic particles were sorted by size, counted, and categorized as fibers/lines, pellets/beads, foams, films, and fragments. Plastics were found in all 107 samples, with a maximum concentration of 32 particles/m3 and a median of 1.9 particles/m3. Ninety-eight percent of sampled plastic particles were less than 4.75 mm in diameter and therefore considered microplastics. Fragments, films, foams, and pellets/beads were positively correlated with urban-related watershed attributes and were found at greater concentrations during runoff-event conditions. Fibers, the most frequently detected particle type, were not associated with urban-related watershed attributes, wastewater effluent contribution, or hydrologic condition. Results from this study add to the body of information currently available on microplastics in different environmental compartments, including unique contributions to quantify their occurrence and variability in rivers with a wide variety of different land-use characteristics while highlighting differences between surface samples from rivers compared with lakes.

  14. Plastic Debris in 29 Great Lakes Tributaries: Relations to Watershed Attributes and Hydrology.

    PubMed

    Baldwin, Austin K; Corsi, Steven R; Mason, Sherri A

    2016-10-04

    Plastic debris is a growing contaminant of concern in freshwater environments, yet sources, transport, and fate remain unclear. This study characterized the quantity and morphology of floating micro- and macroplastics in 29 Great Lakes tributaries in six states under different land covers, wastewater effluent contributions, population densities, and hydrologic conditions. Tributaries were sampled three or four times each using a 333 μm mesh neuston net. Plastic particles were sorted by size, counted, and categorized as fibers/lines, pellets/beads, foams, films, and fragments. Plastics were found in all 107 samples, with a maximum concentration of 32 particles/m 3 and a median of 1.9 particles/m 3 . Ninety-eight percent of sampled plastic particles were less than 4.75 mm in diameter and therefore considered microplastics. Fragments, films, foams, and pellets/beads were positively correlated with urban-related watershed attributes and were found at greater concentrations during runoff-event conditions. Fibers, the most frequently detected particle type, were not associated with urban-related watershed attributes, wastewater effluent contribution, or hydrologic condition. Results from this study add to the body of information currently available on microplastics in different environmental compartments, including unique contributions to quantify their occurrence and variability in rivers with a wide variety of different land-use characteristics while highlighting differences between surface samples from rivers compared with lakes.

  15. Quality of surface and ground waters, Yakima Indian Reservation, Washington, 1973-74

    USGS Publications Warehouse

    Fretwell, M.O.

    1977-01-01

    This report describes the quality of the surface and ground waters of the Yakima Indian Reservation in south-central Washington, during the period November 1973-October 1974. The average dissolved-solids concentrations ranged from 48 to 116 mg/L (milligrams per liter) in the mountain streams, and from 88 to 372 mg/L in the lowland streams, drains, and a canal. All the mountain streams contain soft water (classified as 0-60 mg/L hardness as CaC03), and the lowland streams, drains, and canal contain soft to very hard water (more than 180 mg/L hardness as CaC03). The water is generally of suitable quality for irrigation, and neither salinity nor sodium hazards are a problem in waters from any of the streams studied. The specific conductance of water from the major aquifers ranged from 20 to 1 ,540 micromhos. Ground water was most dilute in mineral content in the Klickitat River basin and most concentrated in part of the Satus Creek basin. The ground water in the Satus Creek basin with the most concentrated mineral content also contained the highest percentage composition of sulfate, chloride, and nitrate. For drinking water, the nitrate-nitrogen concentrations exceeded the U.S. Public Health Service 's recommended limit of 10 mg/L over an area of several square miles, with a maximum observed concentration of 170 mg/L. (Woodard-USGS).

  16. A method for estimating 2D Wrinkle Ridge Strain from application of fault displacement scaling to the Yakima Folds, Washington

    NASA Astrophysics Data System (ADS)

    Mège, Daniel; Reidel, Stephen P.

    The Yakima folds on the central Columbia Plateau are a succession of thrusted anticlines thought to be analogs of planetary wrinkle ridges. They provide a unique opportunity to understand wrinkle ridge structure. Field data and length-displacement scaling are used to demonstrate a method for estimating two-dimensional horizontal contractional strain at wrinkle ridges. Strain is given as a function of ridge length, and depends on other parameters that can be inferred from the Yakima folds and fault population displacement studies. Because ridge length can be readily obtained from orbital imagery, the method can be applied to any wrinkle ridge population, and helps constrain quantitative tectonic models on other planets.

  17. Low-flow characteristics and profiles for the Deep River in the Cape Fear River basin, North Carolina

    USGS Publications Warehouse

    Weaver, J.C.

    1997-01-01

    Drainage area and low-flow discharge profiles are presented for the Deep River. The drainage-area profile shows downstream increases in basin size. At the mouth, the drainage area for the Deep River is 1,441 square miles. Low-flow discharge profiles for the Deep River include 7Q10, 30Q2, W7Q10, and 7Q2 discharges in a continuous profile with contributions from major tributaries included.

  18. Inter-Tributary Movements by Resident Salmonids across a Boreal Riverscape

    PubMed Central

    Bentley, Kale T.; Schindler, Daniel E.; Armstrong, Jonathan B.; Cline, Timothy J.; Brooks, Gabriel T.

    2015-01-01

    Stream-dwelling fishes inhabit river networks where resources are distributed heterogeneously across space and time. Current theory emphasizes that fishes often perform large-scale movements among habitat patches for reproduction and seeking refugia, but assumes that fish are relatively sedentary during growth phases of their life cycle. Using stationary passive integrated transponder (PIT)-tag antennas and snorkel surveys, we assessed the individual and population level movement patterns of two species of fish across a network of tributaries within the Wood River basin in southwestern Alaska where summer foraging opportunities vary substantially among streams, seasons, and years. Across two years, Arctic grayling (Thymallus arcticus) and rainbow trout (Oncorhynchus mykiss) exhibited kilometer-scale movements among streams during the summer growing season. Although we monitored movements at a small fraction of all tributaries used by grayling and rainbow trout, approximately 50% of individuals moved among two or more streams separated by at least 7 km within a single summer. Movements were concentrated in June and July, and subsided by early August. The decline in movements coincided with spawning by anadromous sockeye salmon, which offer a high-quality resource pulse of food to resident species. Inter-stream movements may represent prospecting behavior as individuals seek out the most profitable foraging opportunities that are patchily distributed across space and time. Our results highlight that large-scale movements may not only be necessary for individuals to fulfill their life-cycle, but also to exploit heterogeneously spaced trophic resources. Therefore, habitat fragmentation and homogenization may have strong, but currently undescribed, ecological effects on the access to critical food resources in stream-dwelling fish populations. PMID:26379237

  19. Floods in the English River basin, Iowa

    USGS Publications Warehouse

    Heinitz, A.J.; Riddle, D.E.

    1981-01-01

    Information describing floods is essential for proper planning, design, and operation of bridges and other structures on or over streams and their flood plains. This report provides information on flood stages and discharges, flood magnitude and frequency, bench mark data, and flood profiles for the English River and some of its tributaries. It covers the English River, the North English River to near Guernsey, the south Eaglish River to Barnes City and the lower reaches of the Biddle English and Deep Rivers

  20. Isotopic Evidence of Nitrate Sources and its Relationship to Algae in the San Joaquin River, California

    NASA Astrophysics Data System (ADS)

    Silva, S. R.; Kendall, C.; Young, M. B.; Stringfellow, W. T.; Borglin, S. E.; Kratzer, C. R.; Dahlgren, R. A.; Schmidt, C.; Rollog, M. E.

    2007-12-01

    Many competing demands have been placed on the San Joaquin River including deep water shipping, use as agricultural and drinking water, transport of agricultural and urban runoff, and recreation. These long-established demands limit the management options and increase the importance of understanding the river dynamics. The relationships among sources of water, nitrate, and algae in the San Joaquin River must be understood before management decisions can be made to optimize aquatic health. Isotopic analyses of water samples collected along the San Joaquin River in 2005-2007 have proven useful in assessing these relationships: sources of nitrate, the productivity of the San Joaquin River, and the relationship between nitrate and algae in the river. The San Joaquin River receives water locally from wetlands and agricultural return flow, and from three relatively large tributaries whose headwaters are in the Sierra Nevada. The lowest nitrate concentrations occur during periods of high flow when the proportion of water from the Sierra Nevada is relatively large, reflecting the effect of dilution from the big tributaries and indicating that a large fraction of the nitrate is of local origin. Nitrogen isotopes of nitrate in the San Joaquin River are relatively high (averaging about 12 per mil), suggesting a significant source from animal waste or sewage and/or the effects of denitrification. The d15N of nitrate varies inversely with concentration, indicating that these high isotopic values are also a local product. The d15N values of nitrate from most of the local tributaries is lower than that in the San Joaquin suggesting that nitrate from these tributaries does not account for a significant fraction of nitrate in the river. The source of the non-tributary nitrate must be either small unmeasured surface inputs or groundwater. To investigate whether groundwater might be a significant source of nitrate to the San Joaquin River, groundwater samples are being collected

  1. Analytical results for Bullion Mine and Crystal Mine waste samples and bed sediments from a small tributary to Jack Creek and from Uncle Sam Gulch, Boulder River watershed, Montana

    USGS Publications Warehouse

    Fey, David L.; Church, Stan E.; Finney, Christopher J.

    2000-01-01

    Metal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana affect water quality as a result of acid-generation and toxic-metal solubilization. Mine waste and tailings in the unnamed tributary to Jack Creek draining the Bullion mine area and in Uncle Sam Gulch below the Crystal mine are contributors to water quality degradation of Basin Creek and Cataract Creek, Montana. Basin Creek and Cataract Creek are two of three tributaries to the Boulder River in the study area. The bed sediment geochemistry in these two creeks has also been affected by the acidic drainage from these two mines. Geochemical analysis of 42 tailings cores and eleven bed-sediment samples was undertaken to determine the concentrations of Ag, As, Cd, Cu, Pb, and Zn present in these materials. These elements are environmentally significant, in that they can be toxic to fish and/or the invertebrate organisms in the aquatic food chain. Suites of one-inch cores of mine waste and tailings material were taken from two breached tailings impoundments near the site of the Bullion mine and from Uncle Sam Gulch below the Crystal mine. Forty-two core samples were taken and divided into 211 subsamples. The samples were analyzed by ICP-AES (inductively coupled plasma-atomic emission spectroscopy) using a mixed-acid (HC1-HNO3-HC1O4-HF) digestion. Results of the core analyses show that some samples contain moderate to very high concentrations of arsenic (as much as 13,000 ppm), silver (as much as 130 ppm), cadmium (as much as 260 ppm), copper (as much as 9,000 ppm), lead (as much as 11,000 ppm), and zinc (as much as 18,000 ppm). Eleven bed-sediment samples were also subjected to the mixed-acid total digestion, and a warm (50°C) 2M HC1-1% H2O2 leach and analyzed by ICP-AES. Results indicate that bed sediments of the Jack Creek tributary are impacted by past mining at the Bullion and Crystal mines. The contaminating metals are mostly contained in the 2M HC1-1% H2O2

  2. 9. Close view of gate valves (foreground), paddle wheel guard ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Close view of gate valves (foreground), paddle wheel guard (midground), and water wheel (background), facing southeast (downstream) from drum screen cover. - Congdon Canal, Fish Screen, Naches River, Yakima, Yakima County, WA

  3. Evaluating the Potential of Tributary Restoration to Increase the Overall Survival of Salmon

    NASA Astrophysics Data System (ADS)

    Budy, P.; Schaller, H.

    2006-12-01

    Stream restoration has become a major focus of conservation efforts with millions of dollars spent each year on efforts aimed at recovering imperiled species; however, for animals with complex life-history strategies, this reliance on stream restoration for increasing overall survival requires that several key assumptions be met. We addressed fundamental uncertainties of the current focus on tributary restoration for recovery of endangered Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha): 1) is there potential for improving habitat in tributary streams, 2) what magnitude of early survival improvement can be expected based on stream restoration, and 3) will incremental increases in early survival be sufficient to ensure viability of the populations that compose the Evolutionarily Significant Unit (ESU)? We combined simple mechanistic habitat models, population viability measures, and categorical filters to quantify the potential for increasing total life-cycle survival (TLCS) across all 32 populations (ESU), based on increases to early freshwater survival, predicted to occur in response to restored tributary condition. A wide gap remains between how much survival improvement is needed, versus what is likely to occur under tributary restoration; tributary restoration has the potential to increase survival to the necessary minimum for only four populations in the ESU while the remaining populations (84%) still fall far below the survival needed for future viability. In addition, across the ESU; on average, a 171% increase in TLCS is necessary, whereas only ~106% appears possible. A recovery strategy for these salmon that relies largely on tributary restoration, to mitigate for known mortality imposed at other life stages (e.g., migration through hydropower dams) is risky and has a low probability of success. For animals with complex life cycles and exhibiting long migrations, stream restoration efforts may be ineffective and misplaced, if the

  4. Dissolved-oxygen and algal conditions in selected locations of the Willamette River basin, Oregon

    USGS Publications Warehouse

    Rinella, F.A.; McKenzie, S.W.; Wille, S.A.

    1981-01-01

    During July and August 1978, the U.S. Geological Survey, in cooperation with the Oregon Department of Enviromental Quality, made three intensive river-quality dissolved-oxygen studies in the upper Willamette River basin. Two studies were made on the upper Willamette River and one was made on the Santiam River, a Willamette River tributary. Nitrification, occurring in both the upper Willamette and South Santiam Rivers, accounted for about 62% and 92% of the DO sag in the rivers, respectively. Rates of nitrification were found to be dependent on ammonia concentrations in the rivers. Periphyton and phytoplankton algal samples were collected on the main stem Willamette River and selected tributaries during August 1978. Diatoms were the dominant group in both the periphyton and phytoplankton samples. The most common diatom genera were Melosira, Stephanodiscus, Cymbella, Achnanthes, and Nitzschia. Comparisons with historical data indicate no significant difference from previous years in the total abundance or diversity of the algae. (USGS)

  5. Benefits of prescribed flows for salmon smolt survival enhancement vary longitudinally in a highly managed river system

    USGS Publications Warehouse

    Courter, Ian; Garrison, Thomas; Kock, Tobias J.; Perry, Russell W.; Child, David; Hubble, Joel

    2016-01-01

    The influence of streamflow on survival of emigrating juvenile Pacific salmonids Oncorhynchus spp. (smolts) is a major concern for water managers throughout the northeast Pacific Rim. However, few studies have quantified flow effects on smolt survival, and available information does not indicate a consistent flow–survival relationship within the typical range of flows under management control. In the Yakima Basin, Washington, the potential effects of streamflow alterations on smolt survival have been debated for over 20 years. Using a series of controlled flow releases from upper basin reservoirs and radiotelemetry, we quantified the relationship between flow and yearling Chinook salmon smolt survival in the 208 km reach between Roza Dam and the Yakima River mouth. A multistate mark–recapture model accounted for weekly variation in flow conditions experienced by tagged fish in four discrete river segments. Smolt survival was significantly associated with streamflow in the Roza Reach [river kilometre (rkm) 208–189] and marginally associated with streamflow in the Sunnyside Reach (rkm 169–77). However, smolt survival was not significantly associated with flow in the Naches and Prosser Reaches (rkm 189–169 and rkm 77–3). This discrepancy indicates potential differences in underlying flow-related survival mechanisms, such as predation or passage impediments. Our results clarify trade-offs between flow augmentation for fisheries enhancement and other beneficial uses, and our study design provides a framework for resolving uncertainties about streamflow effects on migratory fish survival in other river systems. 

  6. Quality of surface water in the Suwannee River Basin, Florida, August 1968 through December 1977

    USGS Publications Warehouse

    Hull, Robert W.; Dysart, Joel E.; Mann, William B.

    1981-01-01

    In the 9,950-square mile area of the Suwannee River basin in Florida and Georgia, 17 surface-water stations on 9 streams and several springs were sampled for selected water-quality properties and constituents from August 1968 through December 1977. Analyses from these samples indicate that: (1) the water quality of tributary wetlands controls the water quality of the upper Suwannee River headwaters; (2) groundwater substantially affects the water quality of the Suwannee River basin streams below these headquarters; (3) the water quality of the Suwannee River, and many of its tributaries, is determined by several factors and is not simply related to discharge; and (4) development in the Suwannee River basin has had observable effects on the quality of surface waters. 

  7. Flooding of the Ob River, Russia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A mixture of heavy rainfall, snowmelt, and ice jams in late May and early June of this year caused the Ob River and surrounding tributaries in Western Siberia to overflow their banks. The flooding can be seen in thess image taken on June 16, 2002, by the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra satellite. Last year, the river flooded farther north. Normally, the river resembles a thin black line, but floods have swollen the river considerably. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  8. Continuum Model for River Networks

    NASA Astrophysics Data System (ADS)

    Giacometti, Achille; Maritan, Amos; Banavar, Jayanth R.

    1995-07-01

    The effects of erosion, avalanching, and random precipitation are captured in a simple stochastic partial differential equation for modeling the evolution of river networks. Our model leads to a self-organized structured landscape and to abstraction and piracy of the smaller tributaries as the evolution proceeds. An algebraic distribution of the average basin areas and a power law relationship between the drainage basin area and the river length are found.

  9. Ganges River Delta, Bangladesh, India

    NASA Image and Video Library

    1994-11-14

    The Ganges River Delta is the largest inter-tidal delta in the world. With its extensive mangrove mud flats, swamp vegetation and sand dunes, it is characteristic of many tropical and subtropical coasts. As seen in this photograph, the tributaries and distributaries of the Ganges and Brahmaputra Rivers deposit huge amounts of silt and clay that create a shifting maze of waterways and islands in the Bay of Bengal.

  10. Numerical Simulation of Nocturnal Drainage Flows in Idealized Valley-Tributary Systems.

    NASA Astrophysics Data System (ADS)

    O'Steen, Lance B.

    2000-11-01

    Numerical simulations of nocturnal drainage flow and transport in idealized valley-tributary systems are compared with the Atmospheric Science in Complex Terrain (ASCOT) meteorological field data and tracer studies from the Brush Creek valley of western Colorado. Much of the general valley-tributary flow behavior deduced from observations is qualitatively reproduced in the numerical results. The spatially complex, unsteady nature of the tributary flow found in the field data is also seen in the simulations. Oscillations in the simulated tributary flow are similar to some field observations. However, observed oscillations in the valley flow at the mouth of the tributary could not be reproduced in the numerical results. Thus, hypotheses of strongly coupled valley-tributary flow oscillations, based on field data, cannot be supported by these simulations. Along-valley mass flux calculations based on model results for the valley-tributary system indicate an increase of 5%-10% over a valley without a tributary. Enhanced valley mass fluxes were found from 8 km above the tributary to almost the valley mouth. However, the valley mass fluxes for topography with and without a tributary were nearly equal at the valley outflow. ASCOT field data suggested a tributary mass flow contribution of 5%-15% for a Brush Creek tributary of similar drainage area to the model tributary employed here. Numerical simulations of transport in the nocturnal valley-tributary flow strongly support ASCOT tracer studies in the Pack Canyon tributary of Brush Creek. These results suggest that the valley-tributary interaction can significantly increase plume dispersion under stable conditions. Overall, the simulation results presented here indicate that simple terrain geometries are able to capture many of the salient features of drainage flow in real valley-tributary systems.

  11. The influence of tributary flow density differences on the hydrodynamic behavior of a confluent meander bend and implications for flow mixing

    NASA Astrophysics Data System (ADS)

    Herrero, Horacio S.; Díaz Lozada, José M.; García, Carlos M.; Szupiany, Ricardo N.; Best, Jim; Pagot, Mariana

    2018-03-01

    The goal of this study is to evaluate the influence of tributary flow density differences on hydrodynamics and mixing at a confluent meander bend. A detailed field characterization is performed using an Acoustic Doppler Current Profiler (ADCP) for quantification of the 3D flow field, flow discharge and bathymetry, as well as CTD measurements (conductivity, temperature, depth) to characterize the patterns of mixing. Satellite images of the confluence taken at complementary times to the field surveys were analyzed to evaluate the confluence hydrodynamics at different flow conditions. The results illustrate the differences in hydrodynamics and mixing length in relation to confluences with equal density tributaries. At low-density differences, and higher discharge ratio (Qr) between the two rivers, the flow is similar to equi-density confluent meander bends. In contrast, at high-density differences (low Qr), the tributary flow is confined to near the confluence but the density difference causes the flow to move across channel. In this case, the density difference causes the lateral spread of the tributary flow to be greater than at a greater Qr when the density difference is less. These results illustrate the potential importance of density differences between tributaries in determining the rate and spatial extent of mixing and sediment dispersal at confluent meander bends.

  12. Selenium in the upper Blackfoot River watershed, southeastern Idaho, 2001-12

    USGS Publications Warehouse

    Mebane, Christopher A.; Mladenka, Greg; Van Every, Lynn; Williams, Marshall L.; Hardy, Mark A.; Garbarino, John R.

    2014-11-05

    For the annual spring synoptic samples collected by the IDEQ along the main stem Blackfoot River and major tributaries, selenium concentrations ranged from less than 2 to 870 μg/L in 176 samples. In most years, the synoptic sampling showed that the majority of the selenium loads passing the USGS streamgage at the outlet of the watershed could be attributed to a single tributary, East Mill Creek, which enters the Blackfoot River through Spring Creek. Selenium loads decreased by about half from East Mill Creek before reaching the Blackfoot River, suggesting that much selenium is at least temporarily removed from the water column by uptake by aquatic vegetation or by losses to sediment. Similar decreases in selenium loads occurred through the main stem Blackfoot River before reaching the outlet in low flow years, but not in high flow years.

  13. Analysis of meteorological conditions for the Yakima Smoke Intrusion Case Study, 28 September 2009

    Treesearch

    Miriam Rorig; Robert Solomon; Candace Krull; Janice Peterson; Julia Ruthford; Brian Potter

    2013-01-01

    On 28 September 2009, the Naches Ranger District on the Okanogan-Wenatchee National Forest in south-central Washington state ignited an 800-ha prescribed fire. Later that afternoon, elevated PM2.5 concentrations and visible smoke were reported in Yakima, Washington, about 40 km east of the burn unit. The U.S. National Weather Service forecast for the day had predicted...

  14. Seasonal dynamics and Organic Carbon Flux in the Congo River

    NASA Astrophysics Data System (ADS)

    Seyler, P.; Coynel, A.; Etcheber, H.; Meybeck, M.

    2006-12-01

    The Congo (Zaire) River, the second world river in terms of discharges and drainage area (Q=40600 m3/s; A=3.5 106 km2) after the Amazon River, is -up to now- in near-pristine state. For up to two years , the mainstream near river mouth (Kinshasa/Brazzaville station) and some major and minor tributaries (Oubangui, Mpoko and Ngoko-Sangha) were surveyed every month, for total suspended sediment (TSS), particulate organic carbon (POC) and dissolved organic carbon (DOC). In this very flat basin, TSS levels were very low and organic carbon was essentially exported as DOC: 74% of TOC for the tributaries flowing in savannah regions to 86% for those flowing in the rainforest). The seasonal patterns of TSS, POC and DOC showed clockwise hysteresis with river discharges, with maximum levels two to four months before peak flows. At the Kinshasa/Brazzaville station, the DOC distribution is largely influenced by the input of the tributaries draining the marshy forest area (Central depression). In term of fluxes, a marked difference is pointed out between specific fluxes, threefold higher in the forested basin than in savannahs basins. Computation of inputs to Atlantic Ocean showed that the Congo was responsible for 14.4 106 t/yr of TOC of which 12.4 106 t/yr is DOC and 2 106 t/yr is POC. The three biggest tropical rivers (Amazon, Congo and Orinoco) with only 10 percent of the exoreic world area drained to ocean world contribute to 4 percent of its TSS inputs but 29-33 percent of its organic carbon inputs.

  15. Effect of Agricultural Practices on Hydrology and Water Chemistry in a Small Irrigated Catchment, Yakima River Basin, Washington

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Johnson, Henry M.

    2009-01-01

    The role of irrigation and artificial drainage in the hydrologic cycle and the transport of solutes in a small agricultural catchment in central Washington's Yakima Valley were explored using hydrologic, chemical, isotopic, age-dating, and mineralogical data from several environmental compartments, including stream water, ground water, overland flow, and streambed pore water. A conceptual understanding of catchment hydrology and solute transport was developed and an inverse end-member mixing analysis was used to further explore the effects of agriculture in this small catchment. The median concentrations of major solutes and nitrates were similar for the single field site and for the catchment outflow site, indicating that the net effects of transport processes for these constituents were similar at both scales. However, concentrations of nutrients were different at the two sites, suggesting that field-scale variations in agricultural practices as well as nearstream and instream biochemical processes are important components of agricultural chemical transformation and transport in this catchment. This work indicates that irrigation coupled with artificial drainage networks may exacerbate the ecological effects of agricultural runoff by increasing direct connectivity between fields and streams and minimizing potentially mitigating effects (denitrification and dilution, for example) of longer subsurface pathways.

  16. Distribution, persistence, and hydrologic characteristics of salmon spawning habitats in clearwater side channels of the Matanuska River, southcentral Alaska

    USGS Publications Warehouse

    Curran, Janet H.; McTeague, Monica L.; Burril, Sean E.; Zimmerman, Christian E.

    2011-01-01

    Turbid, glacially influenced rivers are often considered to be poor salmon spawning and rearing habitats and, consequently, little is known about salmon habitats that do occur within rivers of this type. To better understand salmon spawning habitats in the Matanuska River of southcentral Alaska, the distribution and characteristics of clearwater side-channel spawning habitats were determined and compared to spawning habitats in tributaries. More than 100 kilometers of clearwater side channels within the braided mainstem of the Matanuska River were mapped for 2006 from aerial images and ground-based surveys. In reaches selected for historical analysis, side channel locations shifted appreciably between 1949 and 2006, but the relative abundance of clearwater side channels was fairly stable during the same period. Geospatial analysis of side channel distribution shows side channels typically positioned along abandoned bars at the braid plain margin rather than on bars between mainstem channels, and shows a strong correlation of channel abundance with braid plain width. Physical and geomorphic characteristics of the channel and chemical character of the water measured at 19 side channel sites, 6 tributary sites, 4 spring sites, and 5 mainstem channel sites showed conditions suitable for salmon spawning in side channels and tributaries, and a correlation of side channel characteristics with the respective tributary or groundwater source water. Autumn-through-spring monitoring of intergravel water temperatures adjacent to salmon redds (nests) in three side channels and two tributaries indicate adequate accumulated thermal units for incubation and emergence of salmon in side channels and relatively low accumulated thermal units in tributaries.

  17. Purus River suspended sediment variability and contributions to the Amazon River from satellite data (2000-2015)

    NASA Astrophysics Data System (ADS)

    Santos, Andre Luis Martinelli Real dos; Martinez, Jean Michel; Filizola, Naziano Pantoja; Armijos, Elisa; Alves, Luna Gripp Simões

    2018-01-01

    The Purus River is one of the major tributaries of Solimões River in Brazil, draining an area of 370,091 km2 and stretching over 2765 km. Unlike those of the other main tributaries of the Amazon River, the Purus River's sediment discharge is poorly characterized. In this study, as an alternative to the logistic difficulties and considering high monitoring costs, we report an experiment where field measurement data and 2700 satellite (MODIS) images are combined to retrieve both seasonal and interannual dynamics in terms of the Purus river sediment discharge near its confluence with the Solimões River. Field radiometric and hydrologic measurements were acquired during 18 sampling trips, including 115 surface water samples and 61 river discharge measurements. Remote sensing reflectance gave important results in the red and infrared levels. They were very well correlated with suspended sediment concentration. The values of R2 are greater than 0.8 (red band) and 0.9 (NIR band). A retrieval algorithm based on the reflectance in both the red and the infrared was calibrated using the water samples collected for the determination of the surface-suspended sediment concentration (SSS). The algorithm was used to calculate 16 years of SSS time series with MODIS images at the Purus River near its confluence with the Solimões River. Results from satellite data correlated with in situ SSS values validate the use of satellite data to be used as a tool to monitor SSS in the Purus River. We evidenced a very short and intense sediment discharge pulse with 55% of the annual sediment budget discharged during the months of January and February. Using river discharge records, we calculated the mean annual sediment discharge of the Purus River at about of 17 Mt·yr-1.

  18. A New Hydrogeological Research Site in the Willamette River Floodplain

    EPA Science Inventory

    The Willamette River is a ninth-order tributary of the Columbia which passes through a productive and populous region in northwest Oregon. Where unconstrained by shoreline revetments, the floodplain of this river is a high-energy, dynamic system which supports a variety of ripari...

  19. Floodplain restoration increases hyporheic flow in the Yakima River Watershed, Washington

    EPA Science Inventory

    Hyporheic exchange between a river channel and its floodplain region assists in mediating processes such as nutrient removal and temperature regulation. Floodplain restoration in the form of levee setbacks are often carried out to improve the hyporheic exchange. In this study Lig...

  20. 14. Charles Acey Cobb standing adjacent to the fish screen ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Charles Acey Cobb standing adjacent to the fish screen he designed and installed in the Congdon Canal, facing southeast. Photo dates ca. late 1920's. - Congdon Canal, Fish Screen, Naches River, Yakima, Yakima County, WA

  1. Bacterial diversity along a 2600 km river continuum

    PubMed Central

    Savio, Domenico; Sinclair, Lucas; Ijaz, Umer Z.; Parajka, Juraj; Reischer, Georg H.; Stadler, Philipp; Blaschke, Alfred P.; Blöschl, Günter; Mach, Robert L.; Kirschner, Alexander K. T.; Farnleitner, Andreas H.

    2015-01-01

    Summary The bacterioplankton diversity in large rivers has thus far been under‐sampled despite the importance of streams and rivers as components of continental landscapes. Here, we present a comprehensive dataset detailing the bacterioplankton diversity along the midstream of the Danube River and its tributaries. Using 16S rRNA‐gene amplicon sequencing, our analysis revealed that bacterial richness and evenness gradually declined downriver in both the free‐living and particle‐associated bacterial communities. These shifts were also supported by beta diversity analysis, where the effects of tributaries were negligible in regards to the overall variation. In addition, the river was largely dominated by bacteria that are commonly observed in freshwaters. Dominated by the acI lineage, the freshwater SAR11 (LD12) and the P olynucleobacter group, typical freshwater taxa increased in proportion downriver and were accompanied by a decrease in soil and groundwater‐affiliated bacteria. Based on views of the meta‐community and River Continuum Concept, we interpret the observed taxonomic patterns and accompanying changes in alpha and beta diversity with the intention of laying the foundation for a unified concept for river bacterioplankton diversity. PMID:25922985

  2. Comparisons of spawning areas and times for two runs of chinook salmon (Oncorhynchus tshawytscha) in the Kenai River, Alaska

    USGS Publications Warehouse

    Burger, C.V.; Wilmot, R.L.; Wangaard, D.B.

    1985-01-01

    From 1979 to 1982,188 chinook salmon (Oncorhynchus tshawytscha) were tagged with radio transmitters to locate spawning areas in the glacial Kenai River, southcentral Alaska. Results confirmed that an early run entered the river in May and June and spawned in tributaries, and a late run entered the river from late June through August and spawned in the main stem. Spawning peaked during August in tributaries influenced by lakes, but during July in other tributaries. Lakes may have increased fall and winter temperatures of downstream waters, enabling successful reproduction for later spawning fish within these tributaries. This hypothesis assumes that hatching and emergence can be completed in a shorter time in lake-influenced waters. The time of upstream migration and spawning (mid- to late August) of the late run is unique among chinook stocks in Cook Inlet. This behavior may have developed only because two large lakes (Kenai and Skilak) directly influence the main-stem Kenai River. If run timing is genetically controlled, and if the various components of the two runs are isolated stocks that have adapted to predictable stream temperatures, there are implications for stock transplantation programs and for any activities of man that alter stream temperatures.

  3. Ca isotopes in the Ebro River Basin: mixing and lithological tracer

    NASA Astrophysics Data System (ADS)

    Guerrot, C.; Negrel, P. J.; Millot, R.; Petelet-Giraud, E.; Brenot, A.

    2012-12-01

    A large investigation of the Ebro River catchment was done in the past years regarding hydrogen, oxygen, lithium, boron, sulphur and oxygen from SO4 and strontium isotope measurements together with major and trace elements in the dissolved load of 25 river samples collected within the Ebro River Basin in Spain (Millot et al., Geophysical Research Abstracts, Vol. 14, EGU2012-2062, 2012). The Ebro River (928 km long, 85,530 km2 drainage basin) located in North-Eastern Spain rises near the Atlantic coast in the Cantabrian Mountains and flows into the western Mediterranean Sea through several large cities and agricultural, mining and industrial areas. The river is one of the largest contributors of freshwater in the Mediterranean Sea and ends in the Ebro delta, one of the most important wetlands in Europe. Bedrocks of the Ebro River Basin are mainly dominated by carbonates and evaporites from the Paleozoic and Mesozoic terrains. The Ebro river mainstream was sampled at Amposta one time per month between June 2005 and May 2006 and secondly, the Ebro River along its main course and its main tributaries were sampled during one field campaign in April 2006. The behaviour of Ca and its isotopes during water/rock interactions at the scale of a large river basin having various lithologies will be investigated in addition with Sr, S (SO4) and O (SO4) isotopes. One objective is to characterize the processes controlling the isotope signatures of a large river draining predominantly sedimentary bedrocks. The δ44Ca ratio (δ44/40 normalised to Seawater) ranged between -0.87 and -1.09‰ along the Ebro main stream, increasing towards the delta as the Ca content increase. In Amposta, the δ44Ca ratio ranged between -0.66 and -1.04‰ and tends to decrease with the increasing discharge. These variations are very similar to those given by the 87Sr/86Sr ratios and Sr contents. For the tributaries, the δ44Ca ratio ranged between -0.43 and -1.04‰ whereas the anhydrite-gypsum bedrock

  4. Export of dissolved organic carbon from the Penobscot River basin in north-central Maine

    USGS Publications Warehouse

    Huntington, Thomas G.; Aiken, George R.

    2013-01-01

    Dissolved organic carbon (DOC) flux from the Penobscot River and its major tributaries in Maine was determined using continuous discharge measurements, discrete water sampling, and the LOADEST regression software. The average daily flux during 2004–2007 was 71 kg C ha−1 yr−1 (392 Mt C d−1), an amount larger than measured in most northern temperate and boreal rivers. Distinct seasonal variation was observed in the relation between concentration and discharge (C–Q). During June through December (summer/fall), there was a relatively steep positive C–Q relation where concentration increased by a factor of 2–3 over the approximately 20-fold range of observed stream discharge for the Penobscot River near Eddington, Maine. In contrast, during January through May (winter/spring), DOC concentration did not increase with increasing discharge. In addition, we observed a major shift in the C–Q between 2004–2005 and 2006–2007, apparently resulting from unprecedented rainfall, runoff, and soil flushing beginning in late fall 2005. The relative contribution to the total Penobscot River basin DOC flux from each tributary varied dramatically by season, reflecting the role of large regulated reservoirs in certain basins. DOC concentration and flux per unit watershed area were highest in tributaries containing the largest areas in palustrine wetlands. Tributary DOC concentration and flux was positively correlated to percentage wetland area. Climatic or environmental changes that influence the magnitude or timing of river discharge or the abundance of wetlands will likely affect the export of DOC to the near-coastal ocean.

  5. Stable Cl isotope composition of the Changjiang River water

    NASA Astrophysics Data System (ADS)

    Lang, Y.; Liu, C. Q.; LI, S. L.; Aravena, R.; Ding, H.; WANG, B.; Benjamin, C.

    2017-12-01

    To understand chemical wreathing, nutrient cycling, and the impact of human activities on eco-environments of the Changjiang River (Yangtze River) Basin, we carried out a geochemical study on water chemistry and multiple isotopes (C, N, S, Sr…...) of Changjiang River water in the summer season. Some of the research results about the water chemistry, boron isotope geochemistry and suspended matter have been published (Chetelat et al., 2008; Li et al., 2010). Ten samples were selected for the measurement of δ37Cl values, among which 7 samples were collected from main stream and 3 samples from tributaries. The range of δ37Cl values varies between 0.02‰ and 0.33‰ in the main stream and between 0.16‰ and 0.71‰ in the tributary waters. The δ37Cl values in general are negatively correlated with Cl- concentrations for both main stream and tributary waters. δ37Cl value of Wujiang, which is one of the large tributaries in the upper reach of Changjiang and dominated by carbonate rocks in lithology of the watershed, has the maximum value but minimum value of Cl- concentration in this study. The lowest δ37Cl value was measured for the water collected from the estuary of Changjiang River. The variation of δ37Cl values in the waters would be attributed to mixing of different sources of chlorine, which most likely include rain water, ground water, seawater, and pollutants. Systematic characterization of different Cl sources in terms of their chlorine isotope composition is imperative for better understanding of sources and processes of chlorine cycling. Acknowledgements: This work was financially supported by NSFC through project 41073099. (Omit references)

  6. Location and timing of Asian carp spawning in the Lower Missouri River

    USGS Publications Warehouse

    Deters, Joseph E.; Chapman, Duane C.; McElroy, Brandon

    2013-01-01

    We sampled for eggs of Asian carps, (bighead carp Hypophthalmichthys nobilis, silver carp H. molitrix, and grass carp Ctenopharyngodon idella) in 12 sites on the Lower Missouri River and in six tributaries from the months of May through July 2005 and May through June 2006 to examine the spatial and temporal dynamics of spawning activity. We categorized eggs into thirty developmental stages, but usually they could not be identified to species. We estimated spawning times and locations based on developmental stage, temperature dependent rate of development and water velocity. Spawning rate was higher in the daytime between 05:00 and 21:00 h than at night. Spawning was not limited to a few sites, as has been reported for the Yangtze River, where these fishes are native, but more eggs were spawned in areas of high sinuosity. We employ a sediment transport model to estimate vertical egg concentration profiles and total egg fluxes during spawning periods on the Missouri River. We did not identify substantial spawning activity within tributaries or at tributary confluences examined in this study.

  7. Spatial identification of tributary impacts in river networks

    Treesearch

    Christian E. Torgersen; Robert E. Gresswell; Douglas S. Bateman; Kelly M. Burnett

    2008-01-01

    The ability to assess spatial patterns of ecological conditions in river networks has been confounded by difficulties of measuring and perceiving features that are essentially invisible to observers on land and to aircraft and satellites from above. The nature of flowing water, which is opaque or at best semi-transparent, makes it difficult to visualize fine-scale...

  8. Evaluating agricultural nonpoint-source pollution programs in two Lake Erie tributaries.

    PubMed

    Forster, D Lynn; Rausch, Jonathan N

    2002-01-01

    During the past three decades, numerous government programs have encouraged Lake Erie basin farmers to adopt practices that reduce water pollution. The first section of this paper summarizes these state and federal government agricultural pollution abatement programs in watersheds of two prominent Lake Erie tributaries, the Maumee River and Sandusky River. Expenditures are summarized for each program, total expenditures in each county are estimated, and cost effectiveness of program expenditures (i.e., cost per metric ton of soil saved) are analyzed. Farmers received nearly $143 million as incentive payments to implement agricultural nonpoint source pollution abatement programs in the Maumee and Sandusky River watersheds from 1987 to 1997. About 95% of these funds was from federal sources. On average, these payments totaled about $7000 per farm or about $30 per farm acre (annualized equivalent of $2 per acre) within the watersheds. Our analysis raises questions about how efficiently these incentive payments were allocated. The majority of Agricultural Conservation Program (ACP) funds appear to have been spent on less cost-effective practices. Also, geographic areas with relatively low (high) soil erosion rates received relatively large (small) funding.

  9. Water resources of the Yellow Medicine River Watershed, Southwestern Minnesota

    USGS Publications Warehouse

    Novitzki, R.P.; Van Voast, Wayne A.; Jerabek, L.A.

    1969-01-01

    The Yellow Medicine and Minnesota Rivers are the major sources of surface water. For physiographic regions – Upland Plain, Slope, Lowland Plain, and Minnesota River Flood Plain – influence surface drainage, and the flow of ground water through the aquifers. The watershed comprises 1070 square miles, including the drainage basin of the Yellow Medicine River (665 square miles) and 405 square miles drained by small streams tributary to the Minnesota River.

  10. Experiments on sediment pulses in mountain rivers

    Treesearch

    Y. Cui; T. E. Lisle; J. E. Pizzuto; G. Parker

    1998-01-01

    Pulses of sediment can be introduced into mountain rivers from such mechanisms as debris flows, landslides and fans at tributary confluences. These processes can be natural or associated with the activities of humans, as in the case of a pulse created by sediment derived from timber harvest or the removal of a dam. How does the river digest these pulses?

  11. Fluctuation of densities of bacteriophages and Escherichia coli present in natural biofilms and water of a main channel and a small tributary.

    PubMed

    Hirotani, Hiroshi; Yu, Ma; Yamada, Takeshi

    2013-01-01

    Fluctuation of bacteriophage and Escherichia coli densities in naturally developed riverbed biofilms were investigated for a 1-year period. E. coli ranged from 1,500 to 15,500 most probable number (MPN)/100 mL and from 580 to 18,500 MPN/cm(2) in the main channel in the river water and biofilms, respectively. However, the fluctuations were much greater in the tributary, ranging from 0.8 to 100 MPN/100 mL and from 0.3 to 185 MPN/cm(2) in water and biofilms, respectively. The fluctuations of coliphages were also greater in the tributary than in the main channel. FRNA phage serotyping results indicated no significant differences in the source type of the fecal contamination in the main channel and tributary sampling stations. Significant correlations between phage groups in biofilms and water were found at both main channel and tributary. It was assumed that natural biofilms developed in the streambed captured and retained somatic phages in the biofilms for a certain period of time in the main channel site. At the location receiving constant and heavy contamination, the usage of phage indicators may provide additional information on the presence of viruses. In the small tributary it may be possible to estimate the virus concentration by monitoring the E. coli indicator.

  12. GREAT I Study of the Upper Mississippi River. Technical Appendixes. Volume 9. Environmental Impact Statement.

    DTIC Science & Technology

    1980-09-01

    water from the tributaries . The problem of water quality impacts during dredging and disposal are addressed under the section entitled Channel...Dredged material should be placed out of the floodplain of the MIis- sissippi River and tributary streams. b. In those cases where in-floodplain...at dredge sites below the con- fluence of major bed load supplying tributaries when the technical relation- ships indicate a high risk of potential

  13. Trace elements in Corbicula fluminea from the San Joaquin River, California

    USGS Publications Warehouse

    Leland, H.V.; Scudder, B.C.

    1990-01-01

    (i) Trace element concentrations in soft tissue of the benthic bivalve, Corbicula fluminea, from the San Joaquin River and its major tributaries were examined during the primary irrigation season in relation to the spatial variation in concentrations of major, minor and trace constituents in riverwater and sediments. (ii) Selenium concentrations in Corbicula from perennial flow reaches of the San Joaquin River and its major tributaries varied directly with the solute (??? 0.45 ??m) Se concentrations of riverwater. Elevated concentrations occurred in clams from sites with substantial discharge originating as subsurface drainage and irrigation return flows. Both tissue and solute Se concentrations declined from June through the end of the primary irrigation season. (iii) Arsenic concentrations in Corbicula from perennial flow reaches of the San Joaquin River varied directly with the HNO3-extractable (pH 2) As:Fe ratio of suspended matter, providing evidence that sorption to oxyhydroxide surfaces is an important control on the biological availability of As. However, Corbicula from several tributaries draining alluvium derived from the Sierra Nevada had lower As concentrations than would be predicted by the relation developed for perennial flow sites of the San Joaquin River. Arsenic concentrations in Corbicula from the Tuolumne and Merced Rivers and upstream reaches of the San Joaquin River were higher than in clams from the downstream perennial flow reaches of the San Joaquin River. Concentrations of As in clams from downstream perennial flow reaches of the San Joaquin River increased from June through the end of the primary irrigation season. (iv) Mercury concentrations in Corbicula were elevated in upstream reaches of the San Joaquin River, in the Merced and Tuolumne Rivers, and in tributaries draining the Coast Ranges. Mean Cd and Cu concentrations in Corbicula were elevated in the Merced and Tuolumne Rivers, Orestimba Creek and a perennial flow reach of the San

  14. Flooding of the Ob and Irtysh Rivers, Russia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This pair of true- and false-color images shows flooding along the Ob' (large east-west running river) and Irtysh (southern tributary of the Ob') on July 7, 2002. In the false-color image, land surfaces are orange-gold and flood waters are black or dark blue. Fires are marked with red dots in both images. Rivers

  15. Biliary PAH metabolites and the hepatosomatic index of brown bullheads from Lake Erie tributaries

    USGS Publications Warehouse

    Yang, X.; Baumann, P.C.

    2006-01-01

    In studies designed to investigate the environmental exposure of fish in Lake Erie tributaries, a benthic fish, the brown bullhead (Ameiurus nebulosus), was collected from the industrially contaminated Detroit River, Ottawa River, Black River, Cuyahoga River-harbor and -upstream, Ashtabula River, Buffalo River, and Niagara River, and the non-industrialized Old Woman Creek during 1997-2000. Biliary benzo[a]pyrene (B[a]P)- and naphthalene (NAPH)-type metabolites and the hepatosomatic index (HSI) were measured in fish and compared between different sites. Fish from all of the contaminated sites except Niagara River had significantly higher concentrations of both types of polycyclic aromatic hydrocarbon (PAH) metabolites than fish from the Old Woman Creek. Concentrations of PAH metabolites in bile of fish were positively associated with concentrations of PAHs in sediments, supporting the use of bile metabolites as a measure of PAH exposure. Relatively low concentrations of PAHs detected in fish bile and sediments of the Niagara River, which had undergone extensive remediation, suggested a lowered PAH exposure for fish at this site. No apparent trend was observed in HSI between the industrialized and non-industrialized sites. This study demonstrates that biliary PAH metabolites are an effective indicator of exposure of fish to PAHs. However, because factors other than contamination could also affect the liver size of wild fish, HSI alone may be not a reliable biomarker for assessing contaminant stress. ?? 2005 Elsevier Ltd. All rights reserved.

  16. Nutrient-based ecological consideration of a temporary river catchment affected by a reservoir operation to facilitate efficient management.

    PubMed

    Tzoraki, Ourania A; Dörflinger, Gerald; Kathijotes, Nicholas; Kontou, Artemis

    2014-01-01

    The water quality status of the Kouris river in Cyprus was examined in order to fulfil the requirements for ecological quality as defined by the Water Framework Directive-2000/60/EC. Nitrate concentration (mean value) was increased in the Limnatis (2.8 mg L(-1)) tributary in comparison with the Kryos (2.1 mg L(-1)) and Kouris (1.0 mg L(-1)) tributaries depicting the influence of anthropogenic activities. The total maximum daily nutrients loads (TMDLs) based on the flow duration curves approach, showed that nutrients loads exceeded threshold values (33.3-75.6% in all hydrologic condition classes in the Kouris tributary, and 65-78% in the Limnatis tributary) especially under low flow conditions. The TMDL graph is intended to guide the temporal schedule for chemical sampling in all hydrologic classes. Kouris reservoir is an oligotrophic system, strongly influenced by the river's flash-flood character but also by the implemented management practices. Kouris river outflow, which was reduced to one-tenth in the post dam period altered the wetland hydrologic network and contributed to the decrease of aquifer thickness. Continuous evaluation and update of the River Basin Management Plans will be the basis for the sustainable development of the Kouris basin.

  17. Deciphering Paria and Little Colorado River flood regimes and their significance in multi-objective adaptive management strategies for Colorado River resources in Grand Canyon

    NASA Astrophysics Data System (ADS)

    Jain, S.; Topping, D. J.; Melis, T. S.

    2014-12-01

    Planning and decision processes in the Glen Canyon Dam Adaptive Management Program (GCDAMP) strive to balance numerous, often competing, objectives, such as, water supply, hydropower generation, low flow maintenance, sandbars, recreational trout angling, endangered native fish, whitewater rafting, and other sociocultural resources of Glen Canyon National Recreation Area and Grand Canyon National Park. In this context, use of monitored and predictive information on warm-season Paria River floods (JUL-OCT, at point-to-regional scales) has been identified as lead information for a new 10-year long controlled flooding experiment (termed the High-Flow Experiment Protocol) intended to determine management options for rebuilding and maintaining sandbars below Glen Canyon Dam; an adaptive strategy that can potentially facilitate improved planning and dam operations. In this work, we focus on a key concern identified by the GCDAMP, related to the timing and volume of warm season tributary sand input from the Paria River into the Colorado River in Grand Canyon National Park. The Little Colorado River is an important secondary source of sand inputs to Grand Canyon, but its lower segment is also critical spawning habitat for the endangered humpback chub. Fish biologists have reported increased abundance of chub juveniles in this key tributary in summers following cool-season flooding (DEC-FEB), but little is known about chub spawning substrates and behavior or the role that flood frequency in this tributary may play in native fish population dynamics in Grand Canyon. Episodic and intraseasonal variations (with links to equatorial and sub-tropical Pacific sea surface temperature variability) in southwest hydroclimatology are investigated to understand the magnitude, timing and spatial scales of warm- and cool-season floods from these two important tributaries of the semi-arid Colorado Plateau. Coupled variations of floods (magnitude and timing) from these rivers are also

  18. 13. Detail view of drum screen short shaft gears, journal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Detail view of drum screen short shaft gears, journal bearing, rotation drive chain, upper sprocket gear, and drum screen edge in background, facing southeast (downstream) from drum screen cover. - Congdon Canal, Fish Screen, Naches River, Yakima, Yakima County, WA

  19. Colloids in the River Inn

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Baumann, Thomas

    2014-05-01

    In the light of an increasing number of technical applications using nanoparticles and reports of adverse effects of engineered nanoparticles, research on the occurrence and stability of particles in all compartments has to be intensified. Colloids in river water represent the geologic setting, environmental conditions, and the anthropogenic use in its catchment. The river not only acts as a sink for nanoparticles but also as the source term due to exchange in the hyporheic zone and in bank filtration setups. The concentration, size distribution and elemental composition of particles in the River Inn were studied from the source in the Swiss Alps to the river mouth at Passau. Samples were collected after each tributary from a sub-catchment and filtered on-site. The elemental composition was determined after acid digestion with ICP/MS. SEM/EDX analyses provided morphological and elemental information for single particles. A complementary chemical analysis of the river water was performed to assess the geochemical stability of indvidual particles. Particles in the upper, rural parts mainly reveal changes in the geological setting of the tributary catchments. Not unexpectedly, particles originating from crystalline rocks, were more stable than particles originating from calcareous rocks. Anthropogenic and industrial influences increase in the lower parts. This went together with a change of the size distribution, an increase of the number of organic particles, and a decrease of the microfauna. Interestingly, specific leisure activities in a sub-catchment, like extensive downhill skiing, manifest itself in the particle composition.

  20. Modeling and Remote Sensing of Surface Water Dynamics in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Pokhrel, Y. N.

    2017-12-01

    The Mekong river is one of the most complex river systems in the world that is shared by six nations in Southeast Asia. The river still remains relatively undammed (most existing dams are in the tributaries and are small), and its hydrology today is dominated by large natural flow variations that support the highly productive agricultural and riverine ecological systems; however, this is changing due to the alterations in land use and construction of new dams both in the tributaries the mainstream (16 mainstream and 110 tributary dams are planned to be completed by 2030). Understanding the changes in surface water dynamics is therefore crucial to provide realistic future predictions of changes in downstream floodplain and riverine ecology due to the construction of dams in the upstream. In this study, we use an integrated hydrological model and remote sensing data to examine the critical role of surface water systems in modulating the river-floodplain ecology in the lower reach of the basin, with a focus on the Tonle Sap lake. We present results on the changes in the seasonality and long-term trend in river-floodplain inundation extent over the past few decades. These results provide new insights on the changing hydrology of the Mekong and important implications for potential future hydrologic changes under accelerating human activities and climate change.

  1. Strategic planning for instream flow restoration: a case study of potential climate change impacts in the central Columbia River basin.

    PubMed

    Donley, Erin E; Naiman, Robert J; Marineau, Mathieu D

    2012-10-01

    We provide a case study prioritizing instream flow restoration activities by sub-basin according to the habitat needs of Endangered Species Act (ESA)-listed salmonids relative to climate change in the central Columbia River basin in Washington State (USA). The objective is to employ scenario analysis to inform and improve existing instream flow restoration projects. We assess the sensitivity of late summer (July, August, and September) flows to the following scenario simulations - singly or in combination: climate change, changes in the quantity of water used for irrigation and possible changes to existing water resource policy. Flows for four sub-basins were modeled using the Water Evaluation and Planning system (WEAP) under historical and projected conditions of 2020 and 2040 for each scenario. Results indicate that Yakima will be the most flow-limited sub-basin with average reductions in streamflow of 41% under climate conditions of 2020 and 56% under 2040 conditions; 1.3-2.5 times greater than those of other sub-basins. In addition, irrigation plays a key role in the hydrology of the Yakima sub-basin - with flow reductions ranging from 78% to 90% under severe to extreme (i.e., 20-40%) increases in agricultural water use (2.0-4.4 times the reductions in the other sub-basins). The Yakima and Okanogan sub-basins are the most responsive to simulations of flow-bolstering policy change (providing salmon with first priority water allocation and at biologically relevant flows), as demonstrated by 91-100% target flows attained. The Wenatchee and Methow sub-basins do not exhibit similar responsiveness to simulated policy changes. Considering climate change only, we conclude that flow restoration should be prioritized first in the Yakima and Wenatchee sub-basins, and second in the Okanogan and Methow. Considering both climate change and possible policy changes, we recommend that the Yakima sub-basin receive the highest priority for flow restoration activities to sustain

  2. A basin-scale approach to estimating stream temperatures of tributaries to the lower Klamath River, California

    USGS Publications Warehouse

    Flint, L.E.; Flint, A.L.

    2008-01-01

    Stream temperature is an important component of salmonid habitat and is often above levels suitable for fish survival in the Lower Klamath River in northern California. The objective of this study was to provide boundary conditions for models that are assessing stream temperature on the main stem for the purpose of developing strategies to manage stream conditions using Total Maximum Daily Loads. For model input, hourly stream temperatures for 36 tributaries were estimated for 1 Jan. 2001 through 31 Oct. 2004. A basin-scale approach incorporating spatially distributed energy balance data was used to estimate the stream temperatures with measured air temperature and relative humidity data and simulated solar radiation, including topographic shading and corrections for cloudiness. Regression models were developed on the basis of available stream temperature data to predict temperatures for unmeasured periods of time and for unmeasured streams. The most significant factor in matching measured minimum and maximum stream temperatures was the seasonality of the estimate. Adding minimum and maximum air temperature to the regression model improved the estimate, and air temperature data over the region are available and easily distributed spatially. The addition of simulated solar radiation and vapor saturation deficit to the regression model significantly improved predictions of maximum stream temperature but was not required to predict minimum stream temperature. The average SE in estimated maximum daily stream temperature for the individual basins was 0.9 ?? 0.6??C at the 95% confidence interval. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  3. Wetland Management Reduces Sediment and Nutrient Loading to the Upper Mississippi River

    EPA Science Inventory

    Restored riparian wetlands in the Upper Mississippi River basin have the potential to remove sediment and nutrients from tributaries before they flow into the Mississippi River. For 3 yr we calculated retention efficiencies of a marsh complex, which consisted of a restored marsh...

  4. Contemporary seismicity in and around the Yakima Fold and Thrust Belt in eastern Washington

    USGS Publications Warehouse

    Gomberg, J.; Sherrod, B.; Trautman, M.; Burns, E.; Snyder, Diane

    2012-01-01

    We examined characteristics of routinely cataloged seismicity from 1970 to the present in and around the Yakima fold‐and‐thrust belt (YFTB) in eastern Washington to determine if the characteristics of contemporary seismicity provide clues about regional‐scale active tectonics or about more localized, near‐surface processes. We employed new structural and hydrologic models of the Columbia River basalts (CRB) and found that one‐third to one‐half of the cataloged earthquakes occur within the CRB and that these CRB earthquakes exhibit significantly more clustered, and swarmlike, behavior than those outside. These results and inferences from published studies led us to hypothesize that clustered seismicity is likely associated with hydrologic changes in the CRB, which hosts the regional aquifer system. While some general features of the regional groundwater system support this hypothesis, seismicity patterns and mapped long‐term changes in groundwater levels and present‐day irrigation neither support nor refute it. Regional tectonic processes and crustal‐scale structures likely influence the distribution of earthquakes both outside and within the CRB as well. We based this inference on qualitatively assessed alignments between the dominant northwest trends in the geologic structure and the seismicity generally and between specific faults and characteristics of the 2009 Wooded Island swarm and aseismic slip, which is the only cluster studied in detail and the most vigorous since regional monitoring began.

  5. Late Wisconsin and Early Holocene runoff through the upper Ohio River basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kite, J.S.

    A tentative absolute chronology is emerging from radiocarbon dates on glacial, alluvial and colluvial sediments in the upper Ohio River basin. Radiocarbon dates for Gallipolis Lock and Dam indicate the river eroded down to its present bedrock floor before 22,400 yr B.P. Data from several sites indicate aggradation began soon after 22,400 yr B.P., coincident with, or just before, a glacier advance into the upper Ohio basin. Sand and gravel aggraded in glaciated tributaries and the main valley, whereas silt, fine sand, and clay accumulated in unglaciated tributaries. Slope instability and colluvial deposition were extensive at this time. Aggradation continuedmore » until 25 to 40 m of sediments filled the Ohio River Valley. The paucity of radiocarbon dates prohibits precise determination of when peak aggradation occurred and how that peak related to glacial and climatic events. Although the Laurentide Ice Sheet retreated out of the basin by about 14,000 yr B.P., the river remained braided until at least 13,000 yr B.P., possibly because of slope instability in a cold late Wisconsin climate or the time required for the river to adjust to reduced outwash sediment supply. Coarse late-glacial channel deposits may reflect increased flood discharges after 13,000 B.P. and onset of the transition from a braided system to a meandering channel. However, the upper Ohio River seems not to have taken on its modern morphology until the early Holocene. Most dated overbank deposits on tributaries are younger than 10,000 yr B.P.; most on the Ohio River are younger than 8,500 yr B.P.« less

  6. Amazon River investigations, reconnaissance measurements of July 1963

    USGS Publications Warehouse

    Oltman, Roy Edwin; Sternberg, H. O'R.; Ames, F.C.; Davis, L.C.

    1964-01-01

    The first measurements of the flow of the Amazon River were made in July 1963 as a joint project of the University of Brazil, the Brazilian Navy, and the U.S. Geological Survey. The discharge of the Amazon River at Obidos was 7,640,000 cfs at an annual flood stage somewhat lower than the average. For comparison the maximum known discharge of the Mississippi River at Vicksburg is about 2,300,000 cfs. Dissolved-solids concentrations and sediment loads of the Amazon River and of several major tributaries were found to be low.

  7. Pesticides in the Lower Clackamas River Basin, Oregon, 2000-01

    USGS Publications Warehouse

    Carpenter, Kurt D.

    2004-01-01

    In 2000-01, the U. S. Geological Survey sampled the Clackamas River and its major lower-basin tributaries during storm runoff conditions for 86 dissolved pesticides and selected breakdown products. Twenty-seven compounds, including 18 herbicides, 7 insecticides, and 2 pesticide breakdown products, were detected in 18 stream samples. The most commonly detected pesticides, in decreasing frequency, included atrazine, simazine, diazinon, metolachlor, and diuron, which variously occurred in 46-92% of samples collected from the tributaries. Of these, atrazine, simazine, and metolachlor, plus six other compounds, also were detected in the main-stem Clackamas River. Pesticides were detected more frequently and at higher concentrations in the four lowermost tributaries (Deep, Richardson, Rock, and Sieben Creeks). In these streams, 12 to 18 pesticides were detected per stream in samples collected during spring and fall. Pesticides always occurred with at least one other pesticide, and about half of the samples, including one sample from the Clackamas River in October 2000, contained six or more pesticides. Nine pesticides, including the insecticide diazinon and the herbicides 2,4-D, atrazine, dichlobenil, diuron, imazaquin, metolachlor, simazine, and trifluralin, were detected in five water samples of Clackamas River water. No pesticides were detected in three samples of treated Clackamas River water used for drinking-water supply. Concentrations of six compounds--carbaryl, chlorpyrifos, diazinon, dieldrin, malathion, and the breakdown product of DDT (p,p'-DDE)--exceeded established or recommended criteria for the protection of aquatic life in some of the tributaries, sometimes for multiple pesticides in one sample. Identifying the sources of pesticides detected in the Clackamas River Basin is difficult because of the diverse land use in the basin and the multiple-use nature of many of the pesticides detected. Of the 25 parent compounds detected, 22 have agricultural uses

  8. Documentation of input datasets for the soil-water balance groundwater recharge model of the Upper Colorado River Basin

    USGS Publications Warehouse

    Tillman, Fred D.

    2015-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River (also known as the River) and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. This report documents input datasets for a Soil-Water Balance groundwater recharge model that was developed for the Upper Colorado River Basin.

  9. Estimates of Ground-Water Recharge to the Yakima River Basin Aquifer System, Washington, for Predevelopment and Current Land-Use and Land-Cover Conditions

    USGS Publications Warehouse

    Vaccaro, J.J.; Olsen, T.D.

    2007-01-01

    Two models were used to estimate ground-water recharge to the Yakima River Basin aquifer system, Washington for predevelopment (estimate of natural conditions) and current (a multi-year, 1995-2004, composite) land-use and land-cover conditions. The models were the Precipitation-Runoff Modeling System (PRMS) and the Deep Percolation Model (DPM) that are contained in the U.S. Geological Survey's Modular Modeling System. Daily values of recharge were estimated for water years 1950-98 using previously developed PRMS-watershed models for four mainly forested upland areas, and for water years 1950-2003 using DPM applied to 17 semiarid to arid areas in the basin. The mean annual recharge under predevelopment conditions was estimated to be about 11.9 in. or 5,450 ft3/s (about 3.9 million acre-ft) for the 6,207 mi2 in the modeled area. In the modeled areas, recharge ranged from 0.08 in. (1.2 ft3/s) to 34 in. (2,825 ft3/s). About 97 percent of the recharge occurred in the 3,667 mi2 area included in the upland-area models, but much of this quantity is not available to recharge the bedrock hydrogeologic units. Only about 1.0 in., or 187 ft3/s (about 0.14 million acre-ft), was estimated to occur in the 2,540 mi2 area included in the semiarid to arid lowland modeled areas. The mean annual recharge to the aquifer system under current conditions was estimated to be about 15.6 in., or 7,149 ft3/s (about 5.2 million acre-ft). The increase in recharge is due to the application of irrigation water to croplands. The annual quantity of irrigation was more than five times the annual precipitation for some of the modeled areas. Mean annual actual evapotranspiration was estimated to have increased from predevelopment conditions by more than 1,700 ft3/s (about 1.2 million acre-ft) due to irrigation.

  10. Risk ranking of environmental contaminants in Xiaoqing River, a heavily polluted river along urbanizing Bohai Rim.

    PubMed

    Li, Qifeng; Zhang, Yueqing; Lu, Yonglong; Wang, Pei; Suriyanarayanan, Sarvajayakesavalu; Meng, Jing; Zhou, Yunqiao; Liang, Ruoyu; Khan, Kifayatullah

    2018-08-01

    Xiaoqing River, located in the Laizhou Bay of Bohai Sea, is heavily polluted by various pollutants including heavy metals, polycyclic aromatic hydrocarbons (PAHs), hexachlorocyclohexanes (HCHs), perfluoroalkyl acids (PFAAs), bisphenol A (BPA) and pharmaceutical and personal care products (PPCPs). The aim of this study is to identify the relative risks of such contaminants that currently affect the coastal ecosystem. The median and highest concentrations of PFAAs and perfluorooctanoic acid (PFOA) were 3.23 μg L -1 and 325.28 μg L -1 , and 0.173 μg L -1 and 276.24 μg L -1 , respectively, which were ranked higher when compared with global level concentrations. To assess the relative risk levels of perfluorooctane sulfonic acid (PFOS), PFOA, and other contaminants in the upstream and downstream of the Xiaoqing River and in its tributary, a risk ranking analysis was carried out. Copper (Cu), Zinc (Zn), and arsenic (As) showed the highest risk values in the Xiaoqing River, while the relative risks of PFOA and PFOS differed across the various segments. The risk ranking of PFOA was the second highest in the tributary and the fourth highest in the downstream portion of the river, whereas the PFOS was found to be the lowest in all the segments. Heavy metals and PFOA are the main chemicals that should be controlled in the Xiaoqing River. The results of the present study provide a better understanding of the potential ecological risks of the contaminants in Xiaoqing River. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Investigation of nitrogen and phosphorus contents in water in the tributaries of Danjiangkou Reservoir

    PubMed Central

    Liu, Yan; Zhu, Yuanyuan; Qiao, Xiaocui; Chang, Sheng; Fu, Qing

    2018-01-01

    As part of the efforts to ensure adequate supply of quality water from Danjiangkou Reservoir to Beijing, surface water samples were taken from the tributaries of Danjiangkou Reservoir in the normal (May), flood (August) and dry (December) seasons of 2014, and characterized for nitrogen and phosphorus contents as specified in the applicable standards. Test results indicated that (i) the organic pollution in the Sihe and Shendinghe rivers was more serious than those in other tributaries, and the concentrations of nitrogen and phosphorus favoured the growth of most algae; (ii) total phosphorus (TP), total nitrogen (TN) and dissolved inorganic nitrogen (DIN) were in the forms of dissolved phosphorus (DTP), dissolved nitrogen (DTN) and nitrate nitrogen (NO3−-N), respectively, in these seasons; (iii) compared with nitrogen, phosphorus was more likely to block an overrun of phytoplankton; (iv) TN, TP, permanganate index (CODMn) and other ions were positively correlated. These findings are helpful for the government to develop effective measures to protect the source water in Danjingkou Reservoir from pollution. PMID:29410793

  12. 38. Photographic copy of photograph, photographer unknown, 26 March 1915 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Photographic copy of photograph, photographer unknown, 26 March 1915 (original print located at U.S. Bureau of Reclamation Upper Columbia Area Office, Yakima, Washington). " Dredge after failure of control dam." - Keechelus Dam, Yakima River, 10 miles northwest of Easton, Easton, Kittitas County, WA

  13. 39. Photographic copy of photograph, photographer unknown, 26 March 1915 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. Photographic copy of photograph, photographer unknown, 26 March 1915 (original print located at U.S. Bureau of Reclamation Upper Columbia Area Office, Yakima, Washington). "View of control dam after failure." - Keechelus Dam, Yakima River, 10 miles northwest of Easton, Easton, Kittitas County, WA

  14. 51. Photographic copy of construction drawing, U.S. Reclamation Service, August ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. Photographic copy of construction drawing, U.S. Reclamation Service, August 1906 (original drawing located at U.S. Bureau of Reclamation Upper Columbia Area Office, Yakima, Washington). "Crib dam at Lake Keechelus." - Keechelus Dam, Yakima River, 10 miles northwest of Easton, Easton, Kittitas County, WA

  15. Changes in chemical quality of the Arkansas River in Oklahoma and Arkansas (1946-52)

    USGS Publications Warehouse

    Dover, T.B.; Geurin, J.W.

    1953-01-01

    Systematic chemical quality-of-water investigations have been carried on in both Oklahoma and Arkansas by the Geological Survey in cooperation with State and Federal agencies during the past several years. Results of the Survey's quality-of-water investigations are usually published in the annual Water-Supply Papers. However, as the Geological Survey has made no sediment investigations in the Arkansas River Basin in Oklahoma and Arkansas, the published data do not include information on sediment concentrations or loads. This report attempts to summarize information collected to date in the Arkansas River Basin of the two States, and to show as clearly as possible from present information how the chemical quality of water in the Arkansas River changes downstream from the Oklahoma-Kansas State line to its confluence with the Mississippi River, and how it is affected by tributary inflows. Additional information is being collected and further studies are planned. Hence, the conclusions reached herein may be modified by more adequate information at a later date. The Arkansas River enters Oklahoma near Newkirk on the northern boundary just east of the 97th meridian, crosses the State in a general southeasterly direction flowing past Tulsa, enters Arkansas at its western boundary north of the 35th parallel near Fort Smith, still flowing in a general southeasterly direction past Little Rock near the center of the State, and empties into the Mississippi River east of Dumas. The Arkansas River is subject to many types of pollution downstream from the Oklahoma-Kansas State line, and its inferior quality along with an erratic flow pattern has caused it to be largely abandoned as a source of municipal and industrial water supply. At the present time, the Arkansas River is not directly used as a source of public supply in any part of the basin in either Oklahoma or Arkansas. In general, the river water increases in chemical concentration downstream from the Oklahoma-Kansas State

  16. Fluid temperatures: Modeling the thermal regime of a river network

    Treesearch

    Rhonda Mazza; Ashley Steel

    2017-01-01

    Water temperature drives the complex food web of a river network. Aquatic organisms hatch, feed, and reproduce in thermal niches within the tributaries and mainstem that comprise the river network. Changes in water temperature can synchronize or asynchronize the timing of their life stages throughout the year. The water temperature fluctuates over time and place,...

  17. Tracing tetraether lipids from source to sink in the Rhône River system (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Hyun; Ludwig, Wolfgang; Buscail, Roselyne; Dorhout, Denise; Sinninghe Damste, Jaap

    2015-06-01

    In this study, we investigated soils and river suspended particulate matter (SPM) collected in the Rhône and its tributary basins as well as marine surface sediments taken in the Rhône prodelta (Gulf of Lions, NW Mediterranean). Thereby, we traced the signal of branched glycerol dialkyl glycerol tetraethers (brGDGTs) from the source to sink via the Rhône River and its tributaries and identified sources of brGDGTs in rivers and marine sediments. Soil pH rather than the mean annual air temperature (MAAT) explains most of the observed variances of the brGDGT distribution in our soil dataset. The observed changes in the distribution of brGDGTs in the river SPM indicate that brGDGTs brought by the river to the sea are primarily derived from the lower Rhône and its tributary soils, even though in situ production in the river itself cannot be excluded. In marine surface sediments, it appears that the input of riverine brGDGTs is the primary source of brGDGTs in the Rhône prodelta, although the brGDGT composition may be further modified by the in situ production in the marine environment. More work is required to assess fully whether brGDGTs can be used to reconstruct the terrestrial paleoenvironmental changes using marine sediment cores taken in the Rhône prodelta close to the river mouth.

  18. Flooding of the Ob and Irtysh Rivers, Russia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This pair of true- and false-color images shows flooding along the Ob' (large east-west running river) and Irtysh (southern tributary of the Ob') on July 7, 2002. In the false-color image, land surfaces are orange-gold and flood waters are black or dark blue. Fires are marked with red dots in both images. Rivers Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  19. Turbidity and Total Suspended Solids on the Lower Cache River Watershed, AR.

    PubMed

    Rosado-Berrios, Carlos A; Bouldin, Jennifer L

    2016-06-01

    The Cache River Watershed (CRW) in Arkansas is part of one of the largest remaining bottomland hardwood forests in the US. Although wetlands are known to improve water quality, the Cache River is listed as impaired due to sedimentation and turbidity. This study measured turbidity and total suspended solids (TSS) in seven sites of the lower CRW; six sites were located on the Bayou DeView tributary of the Cache River. Turbidity and TSS levels ranged from 1.21 to 896 NTU, and 0.17 to 386.33 mg/L respectively and had an increasing trend over the 3-year study. However, a decreasing trend from upstream to downstream in the Bayou DeView tributary was noted. Sediment loading calculated from high precipitation events and mean TSS values indicate that contributions from the Cache River main channel was approximately 6.6 times greater than contributions from Bayou DeView. Land use surrounding this river channel affects water quality as wetlands provide a filter for sediments in the Bayou DeView channel.

  20. Determining Sediment Sources in the Anacostia River Watershed

    NASA Astrophysics Data System (ADS)

    Devereux, O. H.; Needelman, B. A.; Prestegaard, K. L.; Gellis, A. C.; Ritchie, J. C.

    2005-12-01

    Suspended sediment is a water-quality problem in the Chesapeake Bay. This project is designed to identify sediment sources in an urban watershed, the Northeast Branch of the Anacostia River (in Washington, D.C. and Maryland - drainage area = 188.5 km2), which delivers sediment directly to the Bay. This watershed spans two physiographic regions - the Piedmont and Coastal Plain. Bank sediment and suspended-sediment deposits were characterized using the following techniques: radionuclide (Cs-137) analysis by gamma ray spectrometry, trace-element analysis by ICP-MS, clay mineralogy by XRD, and particle-size analysis by use of a laser particle-size analyzer. Sampling of bank and suspended sediment was designed to: a) characterize tributary inputs from both Piedmont and Coastal Plain sources, and b) differentiate tributary inputs from bank erosion along the main stem of the Northeast Branch. Thirteen sample sites were chosen that represent tributary source areas of each physiographic region and the main stem where mixing occurs. Surface samples of the banks were compared to overbank deposits from a ten year storm (a proxy for the suspended sediments). Fingerprint components are selected from these data. Cesium-137 concentrations were analyzed for bank and overbank deposits for each physiographic region. No clear differences were seen between the two physiographic regions. Significant differences were observed between upland tributaries and the main stem of the Anacostia River. The average activity of Cs-137 for the tributaries was 5.4 bq/kg and the average for the main stem was 1.1 bq/kg. This suggests that there is significant erosion and storage of sediment in the tributaries. The low activity from Cs-137 in the main stem suggests a lack of storage of sediment along the main stem of the river. For the trace-element data, we focused on elements that showed significant variation among the sites. For the bank sediment, these elements include: Sr, V, Y, Ce, and Nd. For the

  1. 33 CFR 207.160 - All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Atlantic Ocean south of Chesapeake Bay and all waterways tributary to the Gulf of Mexico east and south of... tributary to the Gulf of Mexico east and south of St. Marks, Fla.; use, administration, and navigation. (a... Atlantic Ocean south of Chesapeake Bay or with the Gulf of Mexico east and south of St. Marks, Florida. (2...

  2. 33 CFR 207.160 - All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Atlantic Ocean south of Chesapeake Bay and all waterways tributary to the Gulf of Mexico east and south of... tributary to the Gulf of Mexico east and south of St. Marks, Fla.; use, administration, and navigation. (a... Atlantic Ocean south of Chesapeake Bay or with the Gulf of Mexico east and south of St. Marks, Florida. (2...

  3. 33 CFR 207.160 - All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Atlantic Ocean south of Chesapeake Bay and all waterways tributary to the Gulf of Mexico east and south of... tributary to the Gulf of Mexico east and south of St. Marks, Fla.; use, administration, and navigation. (a... Atlantic Ocean south of Chesapeake Bay or with the Gulf of Mexico east and south of St. Marks, Florida. (2...

  4. N2O EMISSIONS FROM STREAMS IN THE NEUSE RIVER WATERSHED, NORTH CAROLINA

    EPA Science Inventory

    The paper presents N2O emission data from 11 sites in the Neuse River watershed. Emissions were measured using a static surface enclosure technique deployed on eight sites on the main river channel and three tributary sites. Ancillary data collected included dissolved ...

  5. Estimating Nitrogen Loading in the Wabash River Subwatershed Using a GIS Schematic Processing Network in Support of Sustainable Watershed Management Planning

    EPA Science Inventory

    The Wabash River is a tributary of the Ohio River. This river system consists of headwaters and small streams, medium river reaches in the upper Wabash watershed, and large river reaches in the lower Wabash watershed. A large part of the river system is situated in agricultural a...

  6. Hydrologic and Geomorphic Impacts of Glacial Lake Outburst Floods From Low-Order Tributaries

    NASA Astrophysics Data System (ADS)

    McCoy, S. W.; Jacquet, J.; McGrath, D.; George, D. L.; Koschitzki, R.; Nimick, D.; Fahey, M. J.; Okuinghttons, J.

    2017-12-01

    Lakes dammed by glacial ice or moraines are common features in the headwaters of both glaciated and recently deglaciated catchments. These dams can fail releasing water in a glacial lake outburst flood (GLOF), which raises the question: do GLOFs from low-order tributaries significantly alter the hydrology and sediment transport regimes of the large mainstem rivers to which they drain? Here we use repeat satellite imagery, in situ measurements, and 2D hydrodynamic modeling to quantify the hydrologic and geomorphic changes that resulted from 22 GLOFs that occurred between 2008 and 2016 from Lago Cachet Dos, Patagonia, Chile. We find that the complicated flood path that includes two lakes and a broad floodplain can dampen peak discharges from over 15,000 m³/s at the source lake to generally less than 2,000 m³/s where the floods enter the mainstem Rio Baker, 40 km downstream. Despite this dampening of GLOF peak discharge, peak discharges still exceeded the peak annual discharge of the Rio Baker, the largest river in Chile by volume, by 1 to 2 times, which in turn increased the frequency and magnitude of flood events. We also document the sediment dynamics in the source lake, where we find that over 25,000,000 m³ of stored sediment was removed during the GLOF cycle that began in 2008. Further downstream, repeat satellite imagery reveals that the large discharges associated with GLOFs produced a nonsteady channel configuration in which old stable channels were abandoned, many new channels were formed, and conveyance capacity changed, best illustrated by the 200 m of delta progradation from the GLOF-affected tributary into the Rio Baker that locally narrowed the Rio Baker channel width from 300 m to 60 m. In total, this analysis demonstrates that GLOFs from distant source lakes can have an outsized impact, both in terms of changing flood characteristics as well as sediment transport, even on the largest river systems.

  7. Climatic variation and runoff from partially-glacierised Himalayan tributary basins of the Ganges.

    PubMed

    Collins, David N; Davenport, Joshua L; Stoffel, Markus

    2013-12-01

    Climate records for locations across the southern slope of the Himalaya between 77°E and 91°E were selected together with discharge measurements from gauging stations on rivers draining partially-glacierised basins tributary to the Ganges, with a view to assessing impacts of climatic fluctuations on year-to-year variations of runoff during a sustained period of glacier decline. The aims were to describe temporal patterns of variation of glaciologically- and hydrologically-relevant climatic variables and of river flows from basins with differing percentages of ice-cover. Monthly precipitation and air temperature records, starting in the mid-nineteenth century at high elevation sites and minimising data gaps, were selected from stations in the Global Historical Climatology Network and CRUTEM3. Discharge data availability was limited to post 1960 for stations in Nepal and at Khab in the adjacent Sutlej basin. Strengths of climate-runoff relationships were assessed by correlation between overlapping portions of annual data records. Summer monsoon precipitation dominates runoff across the central Himalaya. Flow in tributaries of the Ganges in Nepal fluctuated from year to year but the general background level of flow was usually maintained from the 1960s to 2000s. Flow in the Sutlej, however, declined by 32% between the 1970s and 1990s, reflecting substantially reduced summer precipitation. Over the north-west Ganges-upper Sutlej area, monsoon precipitation declined by 30-40% from the 1960s to 2000s. Mean May-September air temperatures along the southern slope of the central Himalayas dipped from the 1960s, after a long period of slow warming or sustained temperatures, before rising rapidly from the mid-1970s so that in the 2000s summer air temperatures reached those achieved in earlier warmer periods. There are few measurements of runoff from highly-glacierised Himalayan headwater basins; runoff from one of which, Langtang Khola, was less than that of the monsoon

  8. Streamflow gain/loss in the Republican River basin, Nebraska, March 1989

    USGS Publications Warehouse

    Johnson, Michaela R.; Stanton, Jennifer S.; Cornwall, James F.; Landon, Matthew K.

    2002-01-01

    This arc and point data set contains streamflow measurement sites and reaches indicating streamflow gain or loss under base-flow conditions along the Republican River and tributaries in Nebraska during March 21 to 22, 1989 (Boohar and others, 1990). These measurements were made to obtain data on ground-water/surface-water interaction. Flow was visually observed to be zero, was measured, or was estimated at 136 sites. The measurements were made on the main stem of the Republican River and all flowing tributaries that enter the Republican River above Swanson Reservoir and parts of the Frenchman, Red Willow, and Medicine Creek drainages in the Nebraska part of the Republican River Basin. Tributaries were followed upstream until the first road crossing where zero flow was encountered. For selected streams, points of zero flow upstream of the first zero flow site were also checked. Streamflow gain or loss for each stream reach was calculated by subtracting the streamflow values measured at the upstream end of the reach and values for contributing tributaries from the downstream value. The data obtained reflected base-flow conditions suitable for estimating streamflow gains and losses for stream reaches between sites. This digital data set was created by manually plotting locations of streamflow measurements. These points were used to designate stream-reach segments to calculate gain/loss per river mile. Reach segments were created by manually splitting the lines from a 1:250,000 hydrography data set (Soenksen and others, 1999) at every location where the streams were measured. Each stream-reach segment between streamflow-measurement sites was assigned a unique reach number. All other lines in the hydrography data set without reach numbers were omitted. This data set was created to archive the calculated streamflow gains and losses of selected streams in part of the Republican River Basin, Nebraska in March 1989, and make the data available for use with geographic

  9. Channel Width Change as a Potential Sediment Source, Minnesota River Basin

    NASA Astrophysics Data System (ADS)

    Lauer, J. W.; Echterling, C.; Lenhart, C. F.; Rausch, R.; Belmont, P.

    2017-12-01

    Turbidity and suspended sediment are important management considerations along the Minnesota River. The system has experience large and relatively consistent increases in both discharge and channel width over the past century. Here we consider the potential role of channel cross section enlargement as a sediment source. Reach-average channel width was digitized from aerial images dated between 1937 and 2015 along multiple sub-reaches of the Minnesota River and its major tributaries. Many of the sub-reaches include several actively migrating bends. The analysis shows relatively consistent increases in width over time, with average increase rates of 0.4 percent per year. Extrapolation to the river network using a regional relationship for cross-sectional area vs. drainage area indicates that large tributaries and main-stem reaches account for most of the bankfull cross-sectional volume in the basin. Larger tributaries and the main stem thus appear more important for widening related sediment production than small tributaries. On a basin-wide basis, widening could be responsible for a gross supply of more sediment than has been gaged at several main-stem sites, indicating that there may be important sinks for both sand and silt/clay size material distributed throughout the system. Sediment storage is probably largest along the lowest-slope reaches of the main stem. While channel width appears to have adjusted relatively quickly in response to discharge and other hydraulic modifications, net storage of sediment in floodplains probably occurs sufficiently slowly that depth adjustment will lag width adjustment significantly. Detailed analysis of the lower Minnesota River using a river segmenting approach allows for a more detailed assessment of reach-scale processes. Away from channel cutoffs, elongation of the channel at eroding bends is consistent with rates observed on other actively migrating rivers. However, the sinuosity increase has been more than compensated by

  10. Distribution of PAEs in the middle and lower reaches of the Yellow River, China.

    PubMed

    Sha, Yujuan; Xia, Xinghui; Yang, Zhifeng; Huang, Gordon H

    2007-01-01

    Samples of water, sediment and suspended particulates were collected from 13 sites in the middle and lower reaches of the Yellow River in China. Phthalic acid esters (PAEs) concentrations in different phases of each sample were determined by Gas Chromatogram GC-FID. The results are shown as follows: (1) In the Xiao Langdi-Dongming Bridge section, PAEs concentrations in water phase from the main river ranged from 3.99 x 10(-3) to 45.45 x 10(-3) mg/L, which were similar to those from other rivers in the world. The PAEs levels in the tributaries of the Yellow River were much higher than those of the main river. (2) In the studied branches, the concentration of PAEs in sediment for Luoyang Petrochemical Channel (331.70 mg/Kg) was the highest. The concentrations of PAEs in sediment phase of the main river were 30.52 to 85.16 mg/Kg, which were much higher than those from other rivers in the world. In the main river, the concentration level of PAEs on suspended solid phases reached 94.22 mg/Kg, and it reached 691.23 mg/Kg in the Yiluo River - one tributary of the Yellow River. (3) Whether in the sediment or on the suspended solid phases, there was no significant correlation between the contents of PAEs and TOC or particle size of the solid phase; and the calculated Koc of Di (2-Ethylhexyl) Phthalate (DEHP) in the river were much less than the theoretical value, which inferred that PAEs were not on the equilibrium between water and suspended solid phases/sediment. (4) Among the measured PAEs compounds, the proportions of DEHP and di-n-butyl phthalate (DBP) were much higher than the others. The concentrations of DEHP exceeded the Quality Standard in all the main river and tributary stations except those in the Mengjin and Jiaogong Bridge of the main river. This indicates that more attention should be paid to pollution control and further assessment in understanding risks associated with human health.

  11. Impact of wetland decline on decreasing dissolved organic carbon concentrations along the Mississippi River continuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Shuiwang; He, Yuxiang; Kaushal, Sujay S.

    Prior to discharging to the ocean, large rivers constantly receive inputs of dissolved organic carbon (DOC) from tributaries or fringing floodplains and lose DOC via continuous in situ processing along distances that span thousands of kilometers. Current concepts predicting longitudinal changes in DOC mainly focus on in situ processing or exchange with fringing floodplain wetlands, while effects of heterogeneous watershed characteristics are generally ignored. We analyzed results from a 17-year time-series of DOC measurements made at seven sites and three expeditions along the entire Mississippi River main channel with DOC measurements made every 17 km. The results show a clearmore » downstream decrease in DOC concentrations that was consistent throughout the entire study period. Downstream DOC decreases were primarily (~63–71%) a result of constant dilutions by low-DOC tributary water controlled by watershed wetland distribution, while in situ processing played a secondary role. We estimate that from 1780 to 1980 wetland loss due to land-use alterations caused a ca. 58% decrease in in DOC concentrations in the tributaries of the Mississippi River. DOC reductions caused by watershed wetland loss likely impacted the capacity for the river to effectively remove nitrogen via denitrification, which can further exacerbate coastal hypoxia. Lastly, these findings highlight the importance of watershed wetlands in regulating DOC longitudinally along the headland to ocean continuum of major rivers.« less

  12. Impact of wetland decline on decreasing dissolved organic carbon concentrations along the Mississippi River continuum

    DOE PAGES

    Duan, Shuiwang; He, Yuxiang; Kaushal, Sujay S.; ...

    2017-01-09

    Prior to discharging to the ocean, large rivers constantly receive inputs of dissolved organic carbon (DOC) from tributaries or fringing floodplains and lose DOC via continuous in situ processing along distances that span thousands of kilometers. Current concepts predicting longitudinal changes in DOC mainly focus on in situ processing or exchange with fringing floodplain wetlands, while effects of heterogeneous watershed characteristics are generally ignored. We analyzed results from a 17-year time-series of DOC measurements made at seven sites and three expeditions along the entire Mississippi River main channel with DOC measurements made every 17 km. The results show a clearmore » downstream decrease in DOC concentrations that was consistent throughout the entire study period. Downstream DOC decreases were primarily (~63–71%) a result of constant dilutions by low-DOC tributary water controlled by watershed wetland distribution, while in situ processing played a secondary role. We estimate that from 1780 to 1980 wetland loss due to land-use alterations caused a ca. 58% decrease in in DOC concentrations in the tributaries of the Mississippi River. DOC reductions caused by watershed wetland loss likely impacted the capacity for the river to effectively remove nitrogen via denitrification, which can further exacerbate coastal hypoxia. Lastly, these findings highlight the importance of watershed wetlands in regulating DOC longitudinally along the headland to ocean continuum of major rivers.« less

  13. 52. Photographic copy of construction drawing, U.S. Reclamation Service, December ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Photographic copy of construction drawing, U.S. Reclamation Service, December 1911 (original drawing located at U.S. Bureau of Reclamation Upper Columbia Area Office, Yakima, Washington). "Keechelus Dam - general plan of dam site." - Keechelus Dam, Yakima River, 10 miles northwest of Easton, Easton, Kittitas County, WA

  14. 46. Photographic copy of photograph, photographer unknown, 24 July 1916 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. Photographic copy of photograph, photographer unknown, 24 July 1916 (original print located at U.S. Bureau of Reclamation Upper Columbia Area Office, Yakima, Washington). "Scheme for shelter for cransemen on bucyrus steam shovel." - Keechelus Dam, Yakima River, 10 miles northwest of Easton, Easton, Kittitas County, WA

  15. A tree-ring based reconstruction of Logan River streamflow, northern Utah

    Treesearch

    Eric B. Allen; Tammy M. Rittenour; R. Justin DeRose; Matthew F. Bekker; Roger Kjelgren; Brendan M. Buckley

    2013-01-01

    We created six new tree-ring chronologies in northern Utah, which were used with preexisting chronologies from Utah and western Wyoming to reconstruct mean annual flow for the Logan River, the largest tributary of the regionally important Bear River. Two reconstruction models were developed, a ''Local'' model that incorporated two Rocky Mountain...

  16. Sources and transport of sediment, nutrients, and oxygen-demanding substances in the Minnesota River basin, 1989-92

    USGS Publications Warehouse

    Payne, G.A.

    1994-01-01

    The Minnesota River, 10 major tributaries, and 21 springs were sampled to determine the sources and transport of sediment, nutrients, and oxygen- demanding substances. The study was part of a four-year assessment of non-point source pollution in the Minnesota River Basin. Runoff from tributary watersheds was identified as the primary source of suspended sediment and nutrients in the Minnesota River mainstem. Suspended-sediment, phosphorus, and nitrate concentrations were elevated in all major tributaries during runoff, but tributaries in the south-central and eastern part of the basin produce the highest annual loading to the mainstem because of higher annual precipitation and runoff in that part of the basin. Particle-size analyses showed that most of the suspended sediment in transport consisted of silt- and clay-size material. Phosphorus enrichment was indicated throughout the mainstem by total phosphorus concentrations that ranged from 0.04 to 0.48 mg/L with a median value of 0.22 mg/L, and an interquartile range of 0.15 to 0.29 mg/L. Nitrate concentrations periodically exceeded drinking water standards in tributaries draining the south-central and eastern part of the basin. Oxygen demand was most elevated during periods of summer low flow. Correlations between levels of biochemical oxygen demand and levels of algal productivity suggest that algal biomass comprises much of the oxygen-demanding material in the mainstem. Transport of sediment, nutrients, and organic carbon within the mainstem was found to be conservative, with nearly all tributary inputs being transported downstream. Uptake and utilization of nitrate and orthophosphorus was indicated during low flow, but at normal and high flow, inputs of these constituents greatly exceeded biological utilization.

  17. Water-Quality Monitoring in Response to Young-of-the-Year Smallmouth Bass (Micropterus dolomieu) Mortality in the Susquehanna River and Major Tributaries, Pennsylvania: 2008

    USGS Publications Warehouse

    Chaplin, Jeffrey J.; Crawford, J. Kent; Brightbill, Robin A.

    2009-01-01

    Mortalities of young-of-the-year (YOY) smallmouth bass (Micropterus dolomieu) recently have occurred in the Susquehanna River due to Flavobacterium columnare, a bacterium that typically infects stressed fish. Stress factors include but are not limited to elevated water temperature and low dissolved oxygen during times critical for survival and development of smallmouth bass (May 1 through July 31). The infections were first discovered in the Susquehanna River and major tributaries in the summer months of 2005 but also were prevalent in 2007. The U.S. Geological Survey, Pennsylvania Fish and Boat Commission, Pennsylvania Department of Environmental Protection, and PPL Corporation worked together to monitor dissolved oxygen, water temperature, pH, and specific conductance on a continuous basis at seven locations from May through mid October 2008. In addition, nutrient concentrations, which may affect dissolved-oxygen concentrations, were measured once in water and streambed sediment at 25 locations. Data from water-quality meters (sondes) deployed as pairs showed daily minimum dissolved-oxygen concentration at YOY smallmouth-bass microhabitats in the Susquehanna River at Clemson Island and the Juniata River at Howe Township Park were significantly lower (p-value < 0.0001) than nearby main-channel habitats. The average daily minimum dissolved-oxygen concentration during the critical period (May 1-July 31) was 1.1 mg/L lower in the Susquehanna River microhabitat and 0.3 mg/L lower in the Juniata River. Daily minimum dissolved-oxygen concentrations were lower than the applicable national criterion (5.0 mg/L) in microhabitat in the Susquehanna River at Clemson Island on 31 days (of 92 days in the critical period) compared to no days in the corresponding main-channel habitat. In the Juniata River, daily minimum dissolved-oxygen concentration in the microhabitat was lower than 5.0 mg/L on 20 days compared to only 5 days in the main-channel habitat. The maximum time periods

  18. Nutrient input from the Loxahatchee River Environmental Control District sewage-treatment plant to the Loxahatchee River Estuary, southeastern Florida

    USGS Publications Warehouse

    Sonntag, W.H.; McPherson, B.F.

    1984-01-01

    Two test discharges of treated-sewage effluent were made to the Loxahatchee River in February and September 1981 from the ENCON sewage-treatment plant to document nutrient loading and downstream transport of the effluent to the estuary under maximum daily discharge allowable by law (4 million gallons per day). Concentrations of total nitrogen in the effluent exceeded background concentrations by as much as 7 times during the February test, while concentrations of total phosphorus exceeded background concentrations by as much as 112 times during the September test. The effluent was transported downstream to the estuary in less than 24 hours. Discharge of treated sewage effluent to the river-estuary system in the 1981 water year accounted for less than 0.5 percent of the total nitrogen and 8 percent of the total phosphorus discharged from the major tributaries to the estuary. If maximum discharges of effluent (4 million gallons per day) were sustained throughout the year, annual nitrogen loading from the effluent would account for 5 to 18 percent of the total nitrogen input by the major tributaries to the estuary. With maximum discharges of effluent, annual phosphorus loading would exceed the amount of phosphorus input by the major tributaries to the estuary by 54 to 167 percent. (USGS)

  19. Integrating Salmon Recovery, Clean Water Act Compliance, Restoration, and Climate Change Impacts in the South Fork Nooksack River

    EPA Science Inventory

    "The South Fork Nooksack River (SFNR) is an important tributary to the Nooksack River, Bellingham Bay, and the Salish Sea. The South Fork Nooksack River comprises one of the 22 independent populations of spring Chinook in the Puget Sound Chinook Evolutionarily Significant Un...

  20. Causes of variations in water quality and aquatic ecology in rivers of the Upper Mississippi River Basin, Minnesota and Wisconsin

    USGS Publications Warehouse

    Stark, James R.

    1996-01-01

    Physical and aquatic biological conditions differ among the Mississippi River and its major tributaries (the St. Croix and Minnesota Rivers) in Minnesota and Wisconsin. The quality of surface water and the ecological condition of rivers affect the ways in which we use them. The St. Croix River is used for recreation; the Mississippi River is used for recreation and is a corridor for commerce; and the Minnesota River primarily drains agricultural lands. Analysis of the environmental framework of the basins and water-quality and ecological information by the National Water-Quality Assessment (NAWQA) Program shows that the conditions of the rivers are a product of a combination of factors including climate, hydrology, geology, soils, land use, land cover, water management, and water use.

  1. Tracing sources of nitrate using water chemistry, land use and nitrogen isotopes in the Ganjiang River, China.

    PubMed

    Wang, Peng; Liu, Junzheng; Qi, Shuhua; Wang, Shiqin; Chen, Xiaoling

    2017-10-01

    In this work, we traced sources of nitrate in the Ganjiang River, a major tributary of Yangtze River, China, by analysing the water chemistry, nitrogen isotopes and land use. Water samples from 20 sites in the main stream and tributaries were collected in the dry and wet seasons. The [Formula: see text] ranged from 0.97 to 8.60 ‰, and was significantly higher in the wet season than in the dry season, and significantly higher in tributaries than in the main stream. In the dry season, [Formula: see text] concentrations and [Formula: see text] were significantly negatively correlated with forest and grassland areas, and positively correlated with paddy field and residential area. However, most of the correlations were not significant in the wet season. The results showed that fertilizer was the main source of nitrate in the Ganjiang River, and domestic sewage was important in the dry season, but its contribution was lower than that in other rivers in the Yangtze Basin. In the wet season, the intensified nitrogen cycle caused by high temperature and the mixing effect caused by rainfall made it difficult to trace nitrate sources using [Formula: see text] and land use.

  2. Stochastic Modeling of Sediment Connectivity for Reconstructing Sand Fluxes and Origins in the Unmonitored Se Kong, Se San, and Sre Pok Tributaries of the Mekong River

    NASA Astrophysics Data System (ADS)

    Schmitt, R. J. P.; Bizzi, S.; Castelletti, A. F.; Kondolf, G. M.

    2018-01-01

    Sediment supply to rivers, subsequent fluvial transport, and the resulting sediment connectivity on network scales are often sparsely monitored and subject to major uncertainty. We propose to approach that uncertainty by adopting a stochastic method for modeling network sediment connectivity, which we present for the Se Kong, Se San, and Sre Pok (3S) tributaries of the Mekong. We quantify how unknown properties of sand sources translate into uncertainty regarding network connectivity by running the CASCADE (CAtchment Sediment Connectivity And DElivery) modeling framework in a Monte Carlo approach for 7,500 random realizations. Only a small ensemble of realizations reproduces downstream observations of sand transport. This ensemble presents an inverse stochastic approximation of the magnitude and variability of transport capacity, sediment flux, and grain size distribution of the sediment transported in the network (i.e., upscaling point observations to the entire network). The approximated magnitude of sand delivered from each tributary to the Mekong is controlled by reaches of low transport capacity ("bottlenecks"). These bottlenecks limit the ability to predict transport in the upper parts of the catchment through inverse stochastic approximation, a limitation that could be addressed by targeted monitoring upstream of identified bottlenecks. Nonetheless, bottlenecks also allow a clear partitioning of natural sand deliveries from the 3S to the Mekong, with the Se Kong delivering less (1.9 Mt/yr) and coarser (median grain size: 0.4 mm) sand than the Se San (5.3 Mt/yr, 0.22 mm) and Sre Pok (11 Mt/yr, 0.19 mm).

  3. An environmental streamflow assessment for the Santiam River basin, Oregon

    USGS Publications Warehouse

    Risley, John C.; Wallick, J. Rose; Mangano, Joseph F.; Jones, Krista L.

    2012-01-01

    The Santiam River is a tributary of the Willamette River in northwestern Oregon and drains an area of 1,810 square miles. The U.S. Army Corps of Engineers (USACE) operates four dams in the basin, which are used primarily for flood control, hydropower production, recreation, and water-quality improvement. The Detroit and Big Cliff Dams were constructed in 1953 on the North Santiam River. The Green Peter and Foster Dams were completed in 1967 on the South Santiam River. The impacts of the structures have included a decrease in the frequency and magnitude of floods and an increase in low flows. For three North Santiam River reaches, the median of annual 1-day maximum streamflows decreased 42–50 percent because of regulated streamflow conditions. Likewise, for three reaches in the South Santiam River basin, the median of annual 1-day maximum streamflows decreased 39–52 percent because of regulation. In contrast to their effect on high flows, the dams increased low flows. The median of annual 7-day minimum flows in six of the seven study reaches increased under regulated streamflow conditions between 60 and 334 percent. On a seasonal basis, median monthly streamflows decreased from February to May and increased from September to January in all the reaches. However, the magnitude of these impacts usually decreased farther downstream from dams because of cumulative inflow from unregulated tributaries and groundwater entering the North, South, and main-stem Santiam Rivers below the dams. A Wilcox rank-sum test of monthly precipitation data from Salem, Oregon, and Waterloo, Oregon, found no significant difference between the pre-and post-dam periods, which suggests that the construction and operation of the dams since the 1950s and 1960s are a primary cause of alterations to the Santiam River basin streamflow regime. In addition to the streamflow analysis, this report provides a geomorphic characterization of the Santiam River basin and the associated conceptual

  4. Patterns of Bacterial and Archaeal Gene Expression through the Lower Amazon River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satinsky, Brandon M.; Smith, Christa B.; Sharma, Shalabh

    Analysis of metatranscriptomic and metagenomic datasets from the lower reaches of the Amazon River between Obidos and the river mouth revealed microbial transcript and gene pools dominated by Actinobacteria, Thaumarchaeota, Bacteroidetes, Acidobacteria, Betaproteobacteria, and Planctomycetes. Three mainstem stations spanning a 625 km reach had similar gene expression patterns (transcripts gene copy-1) across a diverse suite of element cycling genes, but two tributary-influenced stations at the mouth of the Tapajos River and near the Tocantins River at Belem had distinct transcriptome composition and expression ratios, particularly for genes encoding light-related energy capture (higher) and iron acquisition and ammonia oxidation (lower). Environmentalmore » parameters that were useful predictors of gene expression ratios included concentrations of lignin phenols, suspended sediments, nitrate, phosphate, and particulate organic carbon and nitrogen. Similar to the gene expression data, these chemical properties reflected highly homogeneous mainstem stations punctuated by distinct tributary- influenced stations at Tapajos and Belem. Although heterotrophic processes were expected to dominate in the lower Amazon, transcripts from photosynthetic bacteria were abundant in tributary-influenced regions, and transcripts from Thaumarcheota taxa genetically capable of chemosynthetic ammonia oxidation accounted for up to 21% of the transcriptome at others. Based on regressions of transcript numbers against gene numbers, expression ratios of Thaumarchaeota populations were largely unchanged within the mainstem, suggesting a relatively minor role for gene regulation. These quantitative gene and transcript inventories detail a diverse array of energy acquisition strategies and metabolic capabilities for bacteria and archaea populations of the world’s largest river system.« less

  5. Inorganic chemistry of water and bed sediment in selected tributaries of the south Umpqua River, Oregon, 1998

    USGS Publications Warehouse

    Hinkle, Stephen R.

    1999-01-01

    Ten sites on small South Umpqua River tributaries were sampled for inorganic constituents in water and streambed sediment. In aqueous samples, high concentrations (concentrations exceeding U.S. Environmental Protection Agency criterion continuous concentration for the protection of aquatic life) of zinc, copper, and cadmium were detected in Middle Creek at Silver Butte, and the concentration of zinc was high at Middle Creek near Riddle. Similar patterns of trace-element occurrence were observed in streambed-sediment samples.The dissolved aqueous load of zinc carried by Middle Creek along the stretch between the upper site (Middle Creek at Silver Butte) and the lower site (Middle Creek near Riddle) decreased by about 0.3 pounds per day. Removal of zinc from solution between the upper and lower sites on Middle Creek evidently was occurring at the time of sampling. However, zinc that leaves the aqueous phase is not necessarily permanently lost from solution. For example, zinc solubility is pH-dependent, and a shift between solid and aqueous phases towards release of zinc to solution in Middle Creek could occur with a perturbation in stream-water pH. Thus, at least two potentially significant sources of zinc may exist in Middle Creek: (1) the upstream source(s) producing the observed high aqueous zinc concentrations and (2) the streambed sediment itself (zinc-bearing solid phases and/or adsorbed zinc). Similar behavior may be exhibited by copper and cadmium because these trace elements also were present at high concentrations in streambed sediment in the Middle Creek Basin.

  6. Inorganic and organic carbon spatial variability in the Congo River during high waters (December 2013)

    NASA Astrophysics Data System (ADS)

    Borges, Alberto V.; Bouillon, Steven; Teodoru, Cristian; Leporcq, Bruno; Descy, Jean-Pïerre; Darchambeau, François

    2014-05-01

    Rivers are important components of the global carbon cycle, as they transport terrestrial organic matter from the land to the sea, and emit CO2 to the atmosphere. In particular, tropical systems that account for 60% of global freshwater discharge to the oceans. In contrast with south American rivers, very little information is available for African rivers on their carbon flows and stocks, in particular the Congo river, the second largest river in the World in terms of freshwater discharge (1457 km3 yr-1) and in terms of drainage basin (3.75 106 km2) located the second largest tropical forest in the World. Here, we report a data-set of continuous (every minute) records of the partial pressure of CO2 (pCO2) (total of 10,000 records), and discrete samples of particulate (POC) and dissolved (DOC) organic carbon (total of 75 samples) in the mainstem and major tributaries of the Congo river, along the 1700 km stretch from Kisangani to Kinshasa (total river length = 4374 km), during the high water period (December 2013). The pCO2 dynamic range was high ranging from minimum values of 2000 ppm in white waters tributaries (higher turbidity, conductivity and O2, lower DOC), up to maximal values of 18,000 ppm in blackwaters tributaries (lower turbidity, conductivity and O2, higher DOC). In the mainstem, very strong horizontal (cross-section) gradients were imposed by the presence of blackwaters close to the riverbanks and the presence of whitewaters in the middle of the river. In the mainstem, a distinct horizontal (longitudinal) pattern was observed with pCO2 increasing, and conductivity and turbidity decreasing downstream.

  7. Relating stream microbial ecology to land-use in the Choptank River Watershed

    USDA-ARS?s Scientific Manuscript database

    The Choptank River is an estuary and tributary on the Eastern Shore of the Chesapeake Bay whose mouth is a tidal embayment that spans 2057 km2. Approximately 60% of land use in the Choptank River Watershed is agricultural, with large acreages of corn (Zea mays), soybean (Glycine max), wheat (Tritic...

  8. Water quality and ground-water/surface-water interactions along the John River near Anaktuvuk Pass, Alaska, 2002-2003

    USGS Publications Warehouse

    Moran, Edward H.; Brabets, Timothy P.

    2005-01-01

    The headwaters of the John River are located near the village ofAnaktuvuk Pass in the central Brooks Range of interior Alaska. With the recent construction of a water-supply system and a wastewater-treatment plant, most homes in Anaktuvuk Pass now have modern water and wastewater systems. The effluent from the treatment plant discharges into a settling pond near a tributary of the John River. The headwaters of the John River are adjacent to Gates of the Arctic National Park and Preserve, and the John River is a designated Wild River. Due to the concern about possible water-quality effects from the wastewater effluent, the hydrology of the John River near Anaktuvuk Pass was studied from 2002 through 2003. Three streams form the John River atAnaktuvuk Pass: Contact Creek, Giant Creek, and the John RiverTributary. These streams drain areas of 90.3 km (super 2) , 120 km (super 2) , and 4.6 km (super 2) , respectively. Water-qualitydata collected from these streams from 2002-03 indicate that the waters are a calcium-bicarbonate type and that Giant Creek adds a sulfate component to the John River. The highest concentrations of bicarbonate, calcium, sodium, sulfate, and nitrate were found at the John River Tributary below the wastewater-treatment lagoon. These concentrations have little effect on the water quality of the John River because the flow of the John River Tributary is only about 2 percent of the John River flow. To better understand the ground-water/surface-water interactions of the upper John River, a numerical groundwater-flow model of the headwater area of the John River was constructed. Processes that occur during spring break-up, such as thawing of the active layer and the frost table and the resulting changes of storage capacity of the aquifer, were difficult to measure and simulate. Application and accuracy of the model is limited by the lack of specific hydrogeologic data both spatially and temporally. However

  9. Environmental DNA detection of rare and invasive fish species in two Great Lakes tributaries.

    PubMed

    Balasingham, Katherine D; Walter, Ryan P; Mandrak, Nicholas E; Heath, Daniel D

    2018-01-01

    The extraction and characterization of DNA from aquatic environmental samples offers an alternative, noninvasive approach for the detection of rare species. Environmental DNA, coupled with PCR and next-generation sequencing ("metabarcoding"), has proven to be very sensitive for the detection of rare aquatic species. Our study used a custom-designed group-specific primer set and next-generation sequencing for the detection of three species at risk (Eastern Sand Darter, Ammocrypta pellucida; Northern Madtom, Noturus stigmosus; and Silver Shiner, Notropis photogenis), one invasive species (Round Goby, Neogobius melanostomus) and an additional 78 native species from two large Great Lakes tributary rivers in southern Ontario, Canada: the Grand River and the Sydenham River. Of 82 fish species detected in both rivers using capture-based and eDNA methods, our eDNA method detected 86.2% and 72.0% of the fish species in the Grand River and the Sydenham River, respectively, which included our four target species. Our analyses also identified significant positive and negative species co-occurrence patterns between our target species and other identified species. Our results demonstrate that eDNA metabarcoding that targets the fish community as well as individual species of interest provides a better understanding of factors affecting the target species spatial distribution in an ecosystem than possible with only target species data. Additionally, eDNA is easily implemented as an initial survey tool, or alongside capture-based methods, for improved mapping of species distribution patterns. © 2017 John Wiley & Sons Ltd.

  10. Active Layer and Water Geochemistry Dynamics throughout the Yukon River Basin

    NASA Astrophysics Data System (ADS)

    Mutter, E. A.; Toohey, R.; Herman-Mercer, N. M.; Schuster, P. F.

    2017-12-01

    The hydrology of the Yukon River Basin has changed over the last several decades as evidenced by a variety of discharge, gravimetric, and geochemical analyses. The Indigenous Observation Network (ION), a community-based project, was initiated by the Yukon River Inter-Tribal Watershed Council and USGS. Capitalizing on existing USGS monitoring and research infrastructure and supplementing USGS collected data, ION investigates changes in surface water geochemistry and active layer dynamics throughout the Yukon River Basin. Over 1600 samples of surface water geochemistry (i.e., major ions, dissolved organic carbon, and 18O and 2H) have been collected at 35 sites throughout the Yukon River and its major tributaries over the past 15 years. Active layer dynamics (maximum thaw depth, soil temperature and moisture) have been collected at 20 sites throughout the Yukon River Basin for the past eight years. Important regional differences in geochemistry and active layer parameters linked to permafrost continuity and tributaries will be highlighted. Additionally, annual trends and seasonal dynamics describing the spatial and temporal heterogeneity of the watershed will be presented in the context of observed hydrological changes. These data assist the global effort to characterize arctic river fluxes and their relationship to the carbon cycle, weathering and permafrost degradation.

  11. Survival of juvenile chinook salmon and coho salmon in the Roza Dam fish bypass and in downstream reaches of the Yakima River, Washington, 2016

    USGS Publications Warehouse

    Kock, Tobias J.; Perry, Russell W.; Hansen, Amy C.

    2016-12-22

    Estimates of juvenile salmon survival are important data for fishery managers in the Yakima River Basin. Radiotelemetry studies during 2012–14 showed that tagged juvenile Chinook salmon (Oncorhynchus tshawytscha) that passed through the fish bypass at Roza Dam had lower survival than fish that passed through other routes at the dam. That study also identified flow-survival relationships in the reaches between the Roza Dam tailrace and Sunnyside Dam. During 2012–14, survival also was estimated through reaches downstream of Sunnyside Dam, but generally, sample sizes were low and the estimates were imprecise. In 2016, we conducted an evaluation using acoustic cameras and acoustic telemetry to build on information collected during the previous study. The goal of the 2016 research was to identify areas where mortality occurs in the fish bypass at Roza Dam, and to estimate reach-specific survival in reaches downstream of the dam. The 2016 study included juvenile Chinook salmon and coho salmon (O. kisutch).Three acoustic cameras were used to observe fish behavior (1) near the entrances to the fish bypass, (2) at a midway point in the fish bypass (convergence vault), and (3) at the bypass outfall. In total, 504 hours of acoustic camera footage was collected at these locations. We determined that smolt-sized fish (95–170 millimeters [mm]) were present in the highest proportions at each location, but predator-sized fish (greater than 250 mm) also were present at each site. Fish presence generally peaked during nighttime hours and crepuscular periods, and was low during daytime hours. In the convergence vault, smolt-sized fish exhibited holding behavior patterns, which may explain why some fish delayed while passing through the bypass.Some of the acoustic-tagged fish were delayed in the fish bypass following release, but there was no evidence to suggest that they experienced higher mortality than fish that were released at the bypass outfall or downstream of the dam

  12. Oxygen, deuterium, and strontium isotope characteristics of the Indus River water system

    NASA Astrophysics Data System (ADS)

    Sharma, Anupam; Kumar, Kamlesh; Laskar, Amzad; Singh, Sunil Kumar; Mehta, Pankaj

    2017-05-01

    Understanding the sources and compositional characteristics of waters and sediments in the Indus River system is extremely important as its water availability is one of the primary factors for sustenance of the irrigation activities and the socioeconomic status of a very densely populated region of the world. Here we used stable isotopic compositions (δD and δ18O) and strontium isotopic ratio (87Sr/86Sr) in the Indus River water, its tributaries and its small streams (nallahs) in the Indian territory to understand the regional hydrology, water sources, and catchment processes (evaporation, transpiration, recycling, and mixing). The δ18O values in the Indus River system (IRS) ranges from - 16.9‰ to - 12.5‰ and δD from - 122.8‰ to - 88.5‰. The Indus River and its major tributaries (such as the Zanskar, Nubra and Shyok rivers) are characterized by relatively lower δ18O values, whereas TangTse and other small streams contributing to the Indus are relatively enriched in 18O. The local meteoric water line for the IRS was found to be δD = 7.87 × δ18O + 11.41, which is similar to the Global Meteoric Water Line (GMWL) indicating meteoric origin of the water and insignificant secondary evaporation in the catchment. The Deuterium excess (d-excess) in the IRS varies between 6.5‰ and 14.9‰ with an average of 11.7‰, which is mostly higher than the long-term average for the Indian summer monsoon ( 8‰). The higher d-excess value is because of the contribution of moisture from westerlies; a simple mass balance shows 26% water in the main Indus channel is contributed by the westerlies originated from the Mediterranean Sea. The Sr isotope ratio in IRS varies between 0.70515 and 0.71291; wherein the Indus, and its tributary rivers Shyok and Nubra, are characterized by relatively high Sr isotope ratios (avg. 0.71086-0.71243) compared to the Zanskar and TangTse tributaries (Sr 0.709) because of the variation in silicate rock weathering component and carbonate

  13. Changes in the channel-bed level of the western Carpathian rivers over the last 40years

    NASA Astrophysics Data System (ADS)

    Kijowska-Strugała, Małgorzata; Bucała-Hrabia, Anna

    2017-04-01

    Channel-bed level is constantly changing in time and space, and the process is dependent on both natural and anthropogenic factors. In mountain areas this is one of the more visible morphological processes. The main aim of the research was to analyze the dynamics of the position of river channel beds. Three rivers located within the western part of Polish Carpathians were chosen for the analysis: the Ropa river, the Kamienica Nawojowska river and the Ochotnica river. They are typical rivers for the Beskidy Mountains, medium Flysch mountains. To assess changes in the position of channel bed long-term series of data of minimum water stages in the river were used. The Ropa river is the biggest left tributary of the Wisłoka river (basin a of the upper Vistula River). The total length of the river amounts to 80 km, its gradient equals 58.9‰ and the water basin area amounts to 974 km2. The Kamienica Nawojowska river, with a length of 32.2 km is a right tributary of Dunajec river. The average decrease for the entire watercourse is 18.1‰. The catchment area is 238 km2. The Ochotnica river is 22.7 km long and it is a left tributary of the Dunajec river. The average slope for the entire watercourse is 36.1‰. The Ochotnica river characterized by deep valleys (catchment area 107.6 km2). Analysis of trends in minimum annual water stages in the alluvial Ropa river channel throughout the multi-year period of 1995-2014 shows an increasing trend amounting to 0.8 cm/year. In the Kamienica Nawojowska river the tendency of incision was observed starting from the 1960 to 2014. Average annual rate of increase of the minimum stages was between 0.4 to 1.2 cm/year. On the basis of the analysis of the minimum water levels in the years 1972-2011 two periods can be seen with different tendencies to change the position of the Ochotnica channel bottom. The first covers the years 1972-1996, where aggradation (3.9 cm/year) was the predominant process while in the period 1997-2011 incision

  14. Accounting for Consumptive Use of Lower Colorado River Water in Arizona, California, Nevada, and Utah

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.; Wilson, Richard P.

    1994-01-01

    In the Colorado River valley between the east end of Lake Mead and the international boundary with Mexico (see figure), the river is the principal source of water for agricultural, domestic, municipal, industrial, hydroelectric-power generation, and recreational purposes. Water is stored in surface reservoirs and in the river aquifer---permeable sediments and sedimentary rocks that fill the lower Colorado River valley and adjacent tributary valleys. The hydraulic connection between the river and the river aquifer, overbank flow prior to building of the dams, and infiltration as the reservoirs filled allowed the sediments and sedimentary rocks to become saturated with water from the river. Ratios of isotopes of hydrogen and oxygen in water from wells indicate that most of the water in the river aquifer beneath the flood plain and in many places beneath the adjacent alluvial slopes originated from the river. The water table in the river aquifer extends from the river, beneath the flood plain, and under the alluvial slopes until it intersects bedrock. Precipitation in the surrounding mountains and inflow from tributary valleys also contribute small quantities of water to the river aquifer. Consumptive use of river water in the valley results from evapotranspiration by vegetation (crops and phreatophytes) on the flood plain, pumpage from wells to meet domestic and municipal needs, and pumpage from the river for export to areas in California, Arizona, and Nevada outside of the river valley. Most crops are grown on the flood plain; in a few areas, land on the adjacent terraces has been cultivated. Crops were grown on about 70 percent of the total vegetated area in 1984. Phreatophytes---natural vegetation that obtains water from the river aquifer---covered the remaining vegetated areas on the uncultivated flood plain. Most of the water used for irrigation is diverted or pumped directly from the river and reservoirs. Most of the water used for domestic and municipal

  15. Transport of diazinon in the San Joaquin River basin, California

    USGS Publications Warehouse

    Kratzer, Charles R.

    1997-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water to water fleas in February 1993. Previous studies focussed mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River, the Merced, Tuolumne, and Stanislaus Rivers, and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated traveltimes, ephemeral west-side creeks were probably the main diazinon source early in the storms, while the Tuolumne and Merced Rivers and east-side drainage directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 199193 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceeding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 micrograms per liter, a concentration shown to be acutely toxic to water fleas. Diazinon concentrations were highly variable during the storms and frequent sampling was required to adequately describe the concentration curves and to estimate loads.

  16. Thermal study of the Missouri River in North Dakota using infrared imagery

    NASA Technical Reports Server (NTRS)

    Crosby, O. A.

    1971-01-01

    Studies of infrared imagery obtained from aircraft at 305- to 1,524-meter altitudes indicate the feasibility of monitoring thermal changes attributable to the operation of thermal electric plants and storage reservoirs, as well as natural phenomena such as tributary inflow and ground water seeps in large rivers. No identifiable sources of ground water inflow below the surface of the river could be found in the imagery. The thermal patterns from the generating plants and the major tributary inflow are readily apparent in imagery obtained from an altitude of 305 meters. Portions of the tape-recorded imagery were processed in a color-coded quantization to enhance the displays and to attach quantitative significance to the data. The study indicates a marked decrease in water temperature in the Missouri River prior to early fall and a moderate increase in temperature in late fall because of the Lake Sakakawea impoundment.

  17. A preliminary evaluation of regional ground-water flow in south-central Washington

    USGS Publications Warehouse

    La Sala, A. M.; Doty, G.C.; Pearson, F.J.

    1973-01-01

    The characteristics of regional ground-water flow were investigated in a 4,500-square-mile region of south-central Washington, centered on the U.S. Atomic Energy Commission Hanford Reservation. The investigation is part of the Commission's feasibility study on storing high-level radioactive waste in chambers mined in basaltic rocks at a. depth of about 3,000 feet or more below the surface. Ground-water flow., on a regional scale, occurs principally in the basalt and-in interbedded sediments of the Columbia River Group, and is controlled by topography, the structure of the basalt, and the large streams--the Columbia, Snake, and Yakima Rivers. The ground water beneath the main part of the Hanford Reservation, south and west of the Columbia River, inures southeastward from recharge areas in the uplands, including Cold Creek and Dry Creek valleys, and ultimately discharges to the Columbia River south of the reservation: East and southeast of the Columbia River, ground water flows generally southwestward and discharges to the River. The Yakima River valley contains a distinct flow system in which movement is toward the Yakima River from the topographic divides. A large southward-flowing ground-water system beneath the southern flank of the Horse Heaven Hills discharges to the Columbia River in the westward-trending reach downstream from Wallula Gap.

  18. Ecological Survey Data for Environmental Considerations on the Trinity River and Tributaries, Texas.

    DTIC Science & Technology

    1973-07-01

    purpurascens (Sw.) DC. Marsh purslane Ludwigia alustrie (L.) Ell. Maryland senna Cassia marilandica L. Mauchia Bradburia hirtella T. & G. Maximilian...conditions in the lower river. Increases and decreases in salinity due to flow volume determine to a large extent the number of marine species likely to...which may be temporary or, in some cases, long-term inhabitants of the lower river. Seasonal fluctuations in river flow. salinity , turbidity

  19. Data on natural organic substances in dissolved, colloidal, suspended-silt and -clay, and bed-sediment phases in the Mississippi River and some of its tributaries, 1987-90

    USGS Publications Warehouse

    Leenheer, J.A.; Noyes, T.I.; Brown, P.A.

    1994-01-01

    The Mississippi River and some of its tributaries were sampled for natural organic substances dissolved in water and in suspended and bed sediments during seven sampling cruises from 1987-90. The sampling cruises were made during different seasons, in the free-flowing reaches of the river from St. Louis, Missouri, to New Orleans, Louisiana. The first three cruises were made during low-water conditions, and the last four cruises during high-water conditions. The purpose for sampling and characterizing natural organic substances in the various phases in the river was to provide an understanding of how these substances facilitate contaminant transport and transformations in the Mississippi River. Significant conclusions of this study were: (1) Natural organic substances appear to stabilize ' certain colloids against aggregation; therefore, these colloids remain in suspension and can act as transport agents that are not affected by sedimentation. Bacteria were found to be a significant fraction of organic colloids. (2) A new class of organic contaminants (polyethylene glycols) derived from nonionic surfactant residues was discovered dissolved with natural organic substances in water. These polyethylene glycols have the potential to affect both organic and inorganic contaminant transport in water. (3) The entire dissolved organic-matter component under varying hydrologic and seasonal conditions was characterized. (4) A method was developed to characterize organic matter in sediment by solid-state, 13C-nuclear magnetic resonance spectrometry. (5) The organic matter in suspended sediments was characterized by a variety of spectral and nonspectral methods. The protein component (significant in trace-metal binding) and lipid component (significant in organic-contaminant binding) were found to be major constituents in natural organic matter in suspended sediment. (6) Pools are reservoirs acting as traps of sedimentary organic matter of allochthonous origin and export

  20. Sand deposition in the Colorado River in the Grand Canyon from flooding of the Little Colorado River

    USGS Publications Warehouse

    Wiele, S.M.; Graf, J.B.; Smith, J.D.

    1996-01-01

    Methods for computing the volume of sand deposited in the Colorado River in Grand Canyon National Park by floods in major tributaries and for determining redistribution of that sand by main-channel flows are required for successful management of sand-dependent riparian resources. We have derived flow, sediment transport, and bed evolution models based on a gridded topography developed from measured channel topography and used these models to compute deposition in a short reach of the river just downstream from the Little Colorado River, the largest tributary in the park. Model computations of deposition from a Little Colorado River flood in January 1993 were compared to bed changes measured at 15 cross sections. The total difference between changes in cross-sectional area due to deposition computed by the model and the measured changes was 6%. A wide reach with large areas of recirculating flow and large depressions in the main channel accumulated the most sand, whereas a reach with similar planimetric area but a long, narrow shape and relatively small areas of recirculating flow and small depressions in the main channel accumulated only about a seventh as much sand. About 32% of the total deposition was in recirculation zones, 65% was in the main channel, and 3% was deposited along the channel margin away from the recirculation zone. Overall, about 15% of the total input of sand from this Little Colorado River flood was deposited in the first 3 km below the confluence, suggesting that deposition of the flood-derived material extended for only several tens of kilometers downstream from the confluence.

  1. Drainage divides, Massachusetts; Blackstone and Thames River basins

    USGS Publications Warehouse

    Krejmas, Bruce E.; Wandle, S. William

    1982-01-01

    Drainage boundaries for selected subbasins of the Blackstone and Thames River basins in eastern Hampden, eastern Hampshire, western Norfolk, southern Middlesex, and southern Worcester Counties, Massachusetts, are delineated on 12 topographic quadrangle maps at a scale of 1:24,000. Drainage basins are shown for all U.S. Geological Survey data-collection sites and for mouths of major rivers. Drainage basins are shown for the outlets of lakes or ponds and for streams where the drainage area is greater than 3 square miles. Successive sites along watercourses are indicated where the intervening area is at least 6 miles on tributary streams or 15 square miles along the Blackstone River, French River, or Quinebaug River. (USGS)

  2. Applying of factor analyses for determination of trace elements distribution in water from Vardar and its tributaries, Macedonia/Greece.

    PubMed

    Popov, Stanko Ilić; Stafilov, Trajče; Sajn, Robert; Tănăselia, Claudiu; Bačeva, Katerina

    2014-01-01

    A systematic study was carried out to investigate the distribution of fifty-six elements in the water samples from river Vardar (Republic of Macedonia and Greece) and its major tributaries. The samples were collected from 27 sampling sites. Analyses were performed by mass spectrometry with inductively coupled plasma (ICP-MS) and atomic emission spectrometry with inductively coupled plasma (ICP-AES). Cluster and R mode factor analysis (FA) was used to identify and characterise element associations and four associations of elements were determined by the method of multivariate statistics. Three factors represent the associations of elements that occur in the river water naturally while Factor 3 represents an anthropogenic association of the elements (Cd, Ga, In, Pb, Re, Tl, Cu, and Zn) introduced in the river waters from the waste waters from the mining and metallurgical activities in the country.

  3. Suspended-sediment data in the Salt River basin, Missouri

    USGS Publications Warehouse

    Berkas, Wayne R.

    1983-01-01

    Suspended-sediment data collected at six stations in the Salt River basin during 1980-82 are presented. The estimated average annual suspended-sediment load is 1,390,000 tons per year from a geomorphic examination, and 1,330,000 tons per year from periodic sampling at Salt River near Monroe City, Mo. The suspended-sediment load from the major tributaries of the Salt River during 1981 was 1,610,000 tons, which is larger than the estimated values due to above-normal rainfall and runoff. (USGS)

  4. Evidence for early metamorphosis of sea lampreys in the Chippewa River, Michigan

    USGS Publications Warehouse

    Morkert, Sidney B.; Swink, William D.; Seelye, James G.

    1998-01-01

    We determined age at metamorphosis to the juvenile or parasitic phase for sea lampreysPetromyzon marinus in a highly productive Great Lakes tributary to determine if the age at metamorphosis was earlier than expected. Ages determined from statoliths, a structure analogous to otoliths in teleost fishes, indicated that many sea lampreys collected from the Chippewa River, Michigan, in September 1995 were undergoing metamorphosis at age 2, at least 1 year earlier than previously observed. In all, 141 newly metamorphosed lampreys were examined, and 81% were estimated to be only 2 years old. The length-frequency distribution of newly metamorphosed sea lampreys in the Chippewa River also indicated the possibility of metamorphsis at age 2, but to a lesser extent than indicated by statolith aging. The Chippewa River is a highly productive stream that might require more frequent treatment than previously suspected. More careful examination of other highly productive streams is needed to determine if, and to what extent, sea lampreys metamorphose at age 2 in the Chippewa River and other Great Lakes tributaries.

  5. Preliminary results of hydrogeologic investigations Humboldt River Valley, Winnemucca, Nevada

    USGS Publications Warehouse

    Cohen, Philip M.

    1964-01-01

    Most of the ground water of economic importance and nearly all the ground water closely associated with the flow o# the Humboldt River in the. 40-mile reach near Winnemucca, Nev., are in unconsolidated sedimentary deposits. These deposits range in age from Pliocene to Recent and range in character from coarse poorly sorted fanglomerate to lacustrine strata of clay, silt, sand, and gravel. The most permeable deposit consists of sand and gravel of Lake Lahontan age--the so-called medial gravel unit--which is underlain and overlain by fairly impermeable silt and clay also of Lake Lahontan age. The ultimate source of nearly all the water in the study area is precpitation within the drainage basin of the Humboldt River. Much of this water reaches the study, area as flow or underflow of the Humboldt River and as underflow from other valleys tributary to the study area. Little if any flow from the tributary streams in the study area usually reaches the Humboldt River. Most of the tributary streamflow within the study area evaporates or is transpired by vegetation, but a part percolates downward through unconsolidated deposits of the alluvial fans flanking the mountains and move downgradient as ground-water underflow toward the Humboldt River. Areas that contribute significant amounts of ground-water underflow to. the valley of the Humboldt River within the study area are (1) the valley of the Humboldt River upstream from the study area, (2) the Pole Creek-Rock Creek area, (3) Paradise Valley, and (4) Grass Valley and the northwestern slope of the Sonoma Range. The total average underflow from these areas in the period 1949-61 was about 14,000-19,000 acre-feet per year. Much of this underflow discharged into the Humboldt River within the study area and constituted a large part of the base flow of the river. Streamflow in the Humboldt River increases substantially in the early spring, principally because of runoff to the river in the reaches upstream from the study area

  6. Use of a constucted wetland to reduce nonpoint-source pesticide contamination of the Lourens River, South America

    Treesearch

    Ralf Schulz

    2000-01-01

    The Lourens River, Western Cape, South Africa, and its tributaries situated in an intensively cultivated orchard area receive pesticide contamination during rainfall-induced runoff and during spraydrift. A 0.44-ha constructed wetland, built in 1991 in one of the tributaries (summer flow 0.03 m3 per second), was studied in order to assess its effectiveness in reducing...

  7. The 1965 Mississippi River flood in Iowa

    USGS Publications Warehouse

    Schwob, Harlan H.; Myers, Richard E.

    1965-01-01

    Flood data compiled for the part of the River along the eastern border include flood discharges, flood elevations, and the frequency of floods of varying magnitudes. They also include the daily or more frequent stage and discharge data for both the Mississippi River and the downstream gaging stations on Iowa tributaries for the period March-May 1965. Sufficient data are presented to permit studied for preparation of plans for protective works and plans for zoning or for flood plain regulation.

  8. Estimating River Bathymetry, Roughness, and Discharge from Remote Sensing Measurements of River Height on the River Severn, U.K.

    NASA Astrophysics Data System (ADS)

    Durand, Michael; Neal, Jeff; Rodriguez, Ernesto

    2013-09-01

    The Surface Water and Ocean Topography (SWOT) satellite is a swath-mapping radar interferometer that will provide water elevations over inland water bodies and over the ocean. Here we present a Bayesian algorithm that calculates a best estimate of river bathymetry, roughness coefficient, and discharge based on measurements of river height and slope. On the River Severn, UK, we use gage estimates of height and slope during an in-bank flow event to illustrate algorithm functionality. We validate our estimates of river bathymetry and discharge using in situ measurements. We first assumed that the lateral inflows from smaller tributaries were known. In this case, an accurate inverse to bathymetry and roughness was obtained giving a discharge RMSE of 10 %. We then allowed the lateral inflows to be unknown; accuracy in the bathymetry estimates dropped in this case, giving a discharge RMSE of 36 %. Finally, we explored the case where bathymetry in one reach was known; in this case, discharge RMSE was 15.6 %.

  9. Effects of repeated TFM applications on riffle macroinvertebrate communities in four Great Lakes tributaries

    USGS Publications Warehouse

    Weisser, John W.; Adams, Jean V.; Schuldt, Richard J.; Baldwin, Gregg A.; Lavis, Dennis S.; Slade, Jeffrey W.; Heinrich, John W.

    2003-01-01

    As part of the sea lamprey control program in the Great Lakes, a suite of about 150 sea lamprey producing streams have been regularly treated with the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) every 3 to 5 years since 1958. State, provincial, and tribal agencies in the basin supported the use of TFM and urged that the risk to nontarget organisms be minimized. To determine the response of riffle macroinvertebrate communities to repeated TFM treatments over several years, paired samples were taken at control and treatment sites during 1986 to 1995 on four Great Lakes tributaries: the Bois Brule, West Branch Whitefish, Boardman, and Sturgeon (tributary to Cheboygan River system) rivers. Macroinvertebrates were collected in spring and fall by a standard traveling kick method. The communities were described with several metrics, and general linear models were used to test for different patterns of response in the paired control and treatment sites. Relative abundance of the class Oligochaeta, relative abundance of the genus Ephemerella, the Bray-Curtis similarity index (at the taxonomic level of order), EPT genus richness (the number of genera in the orders Ephemeroptera, Plecoptera, and Trichoptera), and total genus richness all increased more at the treatment sites than at the control sites after TFM application. The greater increase in abundance, similarity, and richness at the treatment sites was an indication of recovery in the treatment sites, where a short-term response to TFM was followed by a several-year rebound. TFM treatments in this study during the 1980s and 1990s had no long-lasting effects on riffle macroinvertebrate communities.

  10. Large river bed sediment characterization with low-cost sidecan sonar: Case studies from two setting in the Colorado (Arizona) and Penobscot (Maine) Rivers

    USGS Publications Warehouse

    Buscombe, Daniel D.; Grams, Paul E.; Melis, Theodore S.; Smith, Sean

    2015-01-01

    Here we discuss considerations in the use of sidescan sonar for riverbed sediment classification using examples from two large rivers, the Colorado River below Glen Canyon Dam in Arizona and the Upper Penobscot River in northern Maine (Figure 3). These case studies represent two fluvial systems that differ in recent history, physiography, sediment transport, and fluvial morphologies. The bed of the Colorado River in Glen Canyon National Recreation Area is predominantly graveled with extensive mats of submerged vegetation, and ephemeral surficial sand deposits exist below major tributaries. The bed is imaged periodically to assess the importance of substrate type and variability on rainbow trout spawning and juvenile rearing habitats and controls on aquatic invertebrate population dynamics. The Colorado River bed further below the dam in Grand Canyon National Park is highly dynamic. Tributary inputs of sand, gravel and boulders are spatially variable, and hydraulics of individual pools and eddies vary considerably in space and in response to varying dam operations, including experimental controlled flood releases to rebuild eroding sandbars. The bed encompasses the full range of noncohesive sediments, deposited in complicated spatial patterns. The mobile portion of the Penobscot River is generally more uniform, and consists predominantly of embedded gravels interspersed between bedrock outcrops with small isolated sand patches in sections with modest or low gradients. Patches of large cobbles, boulders and bedrock outcrops are present in the lower reaches of the river near locations of two recent dam removal projects but are of limited extent below the "head of tide" on the river. Aggregations of coarse materials often correspond to locations with abrupt bed elevation drops in the Upper Penobscot River.

  11. Transport of diazinon in the San Joaquin River Basin, California

    USGS Publications Warehouse

    Kratzer, C.R.

    1999-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood-boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water in February 1993. Previous studies focused mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River - the Merced, Tuolumne, and Stanislaus rivers - and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated travel times, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced rivers and east-side drainages directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 1991-1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 ??g/L, a concentration shown to be acutely toxic to water fleas. On the basis of this study and previous studies, diazinon concentrations and streamflow are highly variable during January and February storms, and frequent sampling is required to evaluate transport in the San Joaquin River Basin.

  12. An Experimental Approach for Restoration of Salmon River Ecosystems

    NASA Astrophysics Data System (ADS)

    Stanford, J. A.

    2005-05-01

    River ecosystem theory predicts that dynamic, nonlinear physical and biological processes linking water, heat and materials (biota, sediment, plant-growth nutrients) flux and retention to fluvial landscape change in a habitat mosaic context drive salmon life histories and productivity in freshwater. Multidisciplinary studies and cross-site comparisons within a network of pristine salmon river observatories around the north Pacific Rim support these predictions. Billions of dollars have been spent on salmon-river restoration worldwide to little avail, mainly because salmon biology, rather than ecosystem process boundaries and bottlenecks, is driving restoration goals. I argue that entire river catchment restoration, in relation to these dynamic processes and bottlenecks and also coherent with the estuarine and marine implications of salmon life history parameters, is the only possibility for sustaining or restoring natural productivity and life history (genetic) diversity in salmon rivers. This can be done only in a few places owing to the continual press of human demands on river ecosystems, the morass of legal challenges to proactive salmon river restoration strategies and insufficient understanding of freshwater and marine linkages. The Elwha and Yakima Rivers in Washington, among a few others that I will name, offer real opportunities to restore entire watersheds for wild salmon. These restorations should be viewed as experimental manipulations in which outcomes may be evaluated against norms measured in the salmon river observatory network. Bias from hatcheries and harvest, among other anthropogenic interferences, must be eliminated for such experiments to be evaluated in light of contemporary river ecosystem theory. And, a much more synthetic understanding of freshwater and marine linkages must be forthcoming in concert with a much more robust general theory of river restoration.

  13. Forest resources of the Monocacy River watershed of Maryland and Pennsylvania

    Treesearch

    James C. Rettie; George E. Doverspike; Wayne G. Banks

    1951-01-01

    The Monocacy River Watershed Council, organized in November 1949 with broad representation of the various local interest and civic organizations, is in process of developing a program of conservation for the water and land resources of that area. One of the major objectives is to regulate the streamflow and reduce the silt load of the Monocacy River and its tributaries...

  14. Fluvial terraces of the Little River Valley, Atlantic Coastal Plain, North Carolina

    Treesearch

    Bradley Suther; David Leigh; George Brook

    2011-01-01

    An optically-stimulated luminescence (OSL) and radiocarbon chronology is presented for fluvial terraces of the Little River, a tributary to the Cape Fear River that drains 880 km2 of the Sandhills Province of the upper Coastal Plain of North Carolina. This study differs from previous work in the southeastern Atlantic Coastal Plain in that numerical age estimates are...

  15. Assess the presence and potential habitat for reintroduction of priority freshwater mussel species in the Shenango River.

    DOT National Transportation Integrated Search

    2010-12-31

    The Shenango River is a principal tributary of the Beaver River, which may provide an opportunity for the relocation of clubshell and northern riffleshell. These federally listed mussels and other species of concern may be present in the Shenango Riv...

  16. Simulated and observed 2010 flood-water elevations in selected river reaches in the Moshassuck and Woonasquatucket River Basins, Rhode Island

    USGS Publications Warehouse

    Zarriello, Phillip J.; Straub, David E.; Westenbroek, Stephen M.

    2014-01-01

    Heavy persistent rains from late February through March 2010 caused severe flooding and set, or nearly set, peaks of record for streamflows and water levels at many long-term U.S. Geological Survey streamgages in Rhode Island. In response to this flood, hydraulic models were updated for selected reaches covering about 33 river miles in Moshassuck and Woonasquatucket River Basins from the most recent approved Federal Emergency Management Agency flood insurance study (FIS) to simulate water-surface elevations (WSEs) from specified flows and boundary conditions. Reaches modeled include the main stem of the Moshassuck River and its main tributary, the West River, and three tributaries to the West River—Upper Canada Brook, Lincoln Downs Brook, and East Branch West River; and the main stem of the Woonasquatucket River. All the hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) version 4.1.0 and incorporate new field-survey data at structures, high-resolution land-surface elevation data, and flood flows from a related study. The models were used to simulate steady-state WSEs at the 1- and 2-percent annual exceedance probability (AEP) flows, which is the estimated AEP of the 2010 flood in the Moshassuck River Basin and the Woonasquatucket River, respectively. The simulated WSEs were compared to the high-water mark (HWM) elevation data obtained in these basins in a related study following the March–April 2010 flood, which included 18 HWMs along the Moshassuck River and 45 HWMs along the Woonasquatucket River. Differences between the 2010 HWMs and the simulated 2- and 1-percent AEP WSEs from the FISs and the updated models developed in this study varied along the reach. Most differences could be attributed to the magnitude of the 2- and 1-percent AEP flows used in the FIS and updated model flows. Overall, the updated model and the FIS WSEs were not appreciably different when compared to the observed 2010 HWMs along the

  17. Status of the dirty darter, Etheostoma olivaceum, and bluemask darter, Etheostoma (Doration)sp. , with notes on fishes of the Caney Fork River system, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layman, S.R.; Simons, A.M.; Wood, R.M.

    1993-04-01

    Seventy-six localities were sampled in the Caney Fork River system and adjacent Cumberland River tributaries. Etheostoma olivaceum was found in small creeks from nine tributaries of lower Caney Fork River and three tributaries of the Cumberland River in the Nashville Basin physiographic province. The species was most abundant around slab rocks and rubble over bedrock in slow to moderate current. Etheostoma olivaceum was common throughout its small range; however, given widespread habitat degradation from agriculture, the species should retain its [open quotes]deemed in need of management[close quotes] status in Tennessee. The bluemask darter, Etheostoma (Doration) sp., was collected in slowmore » to moderate current over sand and gravel in Collins River, Rocky River, Cane Creek, and Caney Fork River. All four populations were isolated upstream of Great Falls Reservoir in the Highland Rim physiographic province. The species was found in a 37-km reach of Collins River but was restricted to reaches of 0.2 to 4.3 km in the other three streams. Threats to the species include pesticides from plant nurseries, siltation, gravel dredging, and acid mine drainage. The authors recommend that the bluemask darter be listed as state and federally protected. Two new records were established for the rare Barrens darter, Etheostoma forbesi, in lower Collins River and Barren Fork River, and eight previously unknown records of the species were identified from older museum collections. 21 refs., 1 fig., 1 tab.« less

  18. Water quality and discharge of streams in the Lehigh River Basin, Pennsylvania

    USGS Publications Warehouse

    McCarren, Edward F.; Keighton, Walter B.

    1969-01-01

    The Lehigh River, 100 miles long, is the second largest tributary to the Delaware River. It drains 1,364 square miles in four physiographic provinces. The Lehigh River basin includes mountainous and forested areas, broad agricultural valleys and areas of urban and industrial development. In the headwaters the water is of good quality and has a low concentration of solutes. Downstream, some tributaries receive coal-mine drainage and become acidic; others drain areas underlain by limestone and acquire alkaline characteristics. The alkaline streams neutralize and dilute the acid mine water where they mix. The dissolved-oxygen content of river water, which is high in the upper reaches of the stream, is reduced in the lower reaches because of lower turbulence, higher temperature, and the respiration of organisms. The Lehigh is used for public supply, recreation, waterpower, irrigation, and mining and other industrial purposes. Because the river is shallow in its upper reaches, most of the water comes in contact with the atmosphere as it churns over rocks and around islets and large boulders. Aeration of the water is rapid. When water that was low in dissolved-oxygen concentration was released from the lower strata of the Francis E. Walter Reservoir in June 1966, it quickly became aerated in the Lehigh River, and for 40 miles downstream from the dam the water was nearly saturated with oxygen. Most of the river water requires only moderate treatment for industrial use and public distribution throughout the Lehigh River valley. At times, however, some segments of the main river and its tributaries transport industrial wastes and acid coal-mine drainage. Usually the relatively high concentrations of solutes in water and the ensuing damage caused to quality by such waste discharges are more extensive and prolonged during droughts and other periods of low streamflow. For many years the Lehigh River flow has been continuously measured and its water chemically analyzed. Since

  19. Variation in flow and suspended sediment transport in a montane river affected by hydropeaking and instream mining

    NASA Astrophysics Data System (ADS)

    Béjar, M.; Vericat, D.; Batalla, R. J.; Gibbins, C. N.

    2018-06-01

    The temporal and spatial variability of water and sediment loads of rivers is controlled by a suite of factors whose individual effects are often difficult to disentangle. While land use changes and localised human activities such as instream mining and hydropeaking alter water and sediment transfer, tributaries naturally contribute to discharge and sediment load of mainstem rivers, and so may help compensate upstream anthropogenic factors. The work presented here aimed to assess water and the sediment transfer in a river reach affected by gravel extraction and hydropeaking, set against a backdrop of changes to the supply of water and sediment from tributaries. Discharge and suspended sediment transport were monitored during two average hydrological years at three cross-sections along a 10-km reach of the upper River Cinca, in the Southern Pyrenees. Water and sediment loads differed substantially between the reaches. The upper reach showed a largely torrential discharge regime, controlled mainly by floods, and had high but variable water and sediment loads. The middle reach was influenced markedly by hydropeaking and tributary inflows, which increased its annual water yield four-fold. Suspended sediment load in this reach increased by only 25% compared to upstream, indicating that dilution predominated. In the lowermost section, while discharge remained largely unaltered, sediment load increased appreciably as a result of changes to sediment availability from instream mining and inputs from tributaries. At the reach scale, snowmelt and summer and autumn thunderstorms were responsible for most of the water yield, while flood flows determined the magnitude and transport of the sediment load. The study highlights that a combination of natural and human factors control the spatial and temporal transfer of water and sediment in river channels and that, depending on their geographic location and effect-size, can result in marked variability even over short downstream

  20. A Multi-isotope Tracer Approach Linking Land Use With Carbon and Nitrogen Cycling in the San Joaquin River System

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Silva, S. R.; Dahlgren, R. A.; Stringfellow, W. T.

    2008-12-01

    The San Joaquin River (SJR) is a large hypereutrophic river located in the Central Valley, California, a major agricultural region. Nutrient subsidies, algae, and other organic material from the San Joaquin River contribute to periods of low dissolved oxygen in the Stockton Deep Water Ship Channel, inhibiting salmon migration. We used a multi-isotope approach to link nitrate and particulate organic matter (POM) to different sources and related land uses. The isotope data was also used to better understand the physical and biological processes controlling the distribution of nitrate and POM throughout the river system. Samples collected from the mainstem SJR and tributaries twice-monthly to monthly between March 2005 and December 2007 were analyzed for nitrate, POM, and water isotopes. There are many land uses surrounding the SJR and its tributaries, including multiple types of agriculture, dairies, wetlands, and urban areas. Samples from SJR tributaries containing both major and minor contributions of wetland discharge generally had distinct nitrate and POM isotope signatures compared to other tributaries. Unique nitrate and POM isotope signatures associated with wetland discharges may reflect anaerobic biological processes occurring in flooded soils. For the mainstem SJR, we applied an isotope mass balance approach using nitrate and water isotopes to calculate the expected downstream isotope values based upon measured inputs from known water sources such as drains and tributaries. Differences between the calculated downstream isotope values and the measured values indicate locations and time periods when either biological processes such as algal uptake, or physical process such as the input of unidentified water sources, significantly altered the isotope signatures of water, POM, or nitrate within the SJR. This research will provide a better understanding of how different land uses affect the delivery of carbon and nitrogen to the SJR, and will provide a better