Sample records for yang-lee edge singularity

  1. On spinodal points and Lee-Yang edge singularities

    NASA Astrophysics Data System (ADS)

    An, X.; Mesterházy, D.; Stephanov, M. A.

    2018-03-01

    We address a number of outstanding questions associated with the analytic properties of the universal equation of state of the φ4 theory, which describes the critical behavior of the Ising model and ubiquitous critical points of the liquid–gas type. We focus on the relation between spinodal points that limit the domain of metastability for temperatures below the critical temperature, i.e. T < Tc , and Lee-Yang edge singularities that restrict the domain of analyticity around the point of zero magnetic field H for T > Tc . The extended analyticity conjecture (due to Fonseca and Zamolodchikov) posits that, for T < Tc , the Lee-Yang edge singularities are the closest singularities to the real H axis. This has interesting implications, in particular, that the spinodal singularities must lie off the real H axis for d < 4 , in contrast to the commonly known result of the mean-field approximation. We find that the parametric representation of the Ising equation of state obtained in the \\renewcommandε{\\varepsilon} \

  2. Tests of conformal field theory at the Yang-Lee singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wydro, Tomasz; McCabe, John F.

    2009-12-14

    This paper studies the Yang-Lee edge singularity of 2-dimensional (2D) Ising model based on a quantum spin chain and transfer matrix measurements on the cylinder. Based on finite-size scaling, the low-lying excitation spectrum is found at the Yang-Lee edge singularity. Based on transfer matrix techniques, the single structure constant is evaluated at the Yang-Lee edge singularity. The results of both types of measurements are found to be fully consistent with the predictions for the (A{sub 4}, A{sub 1}) minimal conformal field theory, which was previously identified with this critical point.

  3. Functional renormalization group approach to the Yang-Lee edge singularity

    DOE PAGES

    An, X.; Mesterházy, D.; Stephanov, M. A.

    2016-07-08

    Here, we determine the scaling properties of the Yang-Lee edge singularity as described by a one-component scalar field theory with imaginary cubic coupling, using the nonperturbative functional renormalization group in 3 ≤ d ≤ 6 Euclidean dimensions. We find very good agreement with high-temperature series data in d = 3 dimensions and compare our results to recent estimates of critical exponents obtained with the four-loop ϵ = 6 - d expansion and the conformal bootstrap. The relevance of operator insertions at the corresponding fixed point of the RG β functions is discussed and we estimate the error associated with O(∂more » 4) truncations of the scale-dependent effective action.« less

  4. Functional renormalization group approach to the Yang-Lee edge singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, X.; Mesterházy, D.; Stephanov, M. A.

    Here, we determine the scaling properties of the Yang-Lee edge singularity as described by a one-component scalar field theory with imaginary cubic coupling, using the nonperturbative functional renormalization group in 3 ≤ d ≤ 6 Euclidean dimensions. We find very good agreement with high-temperature series data in d = 3 dimensions and compare our results to recent estimates of critical exponents obtained with the four-loop ϵ = 6 - d expansion and the conformal bootstrap. The relevance of operator insertions at the corresponding fixed point of the RG β functions is discussed and we estimate the error associated with O(∂more » 4) truncations of the scale-dependent effective action.« less

  5. Vafa-Witten theorem and Lee-Yang singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguado, M.; Asorey, M.

    2009-12-15

    We prove the analyticity of the finite volume QCD partition function for complex values of the {theta}-vacuum parameter. The absence of singularities different from Lee-Yang zeros only permits and cusp singularities in the vacuum energy density and never or cusps. This fact together with the Vafa-Witten diamagnetic inequality implies the vanishing of the density of Lee-Yang zeros at {theta}=0 and has an important consequence: the absence of a first order phase transition at {theta}=0. The result provides a key missing link in the Vafa-Witten proof of parity symmetry conservation in vectorlike gauge theories and follows from renormalizability, unitarity, positivity, andmore » existence of Bogomol'nyi-Prasad-Sommerfield bounds. Generalizations of this theorem to other physical systems are also discussed, with particular interest focused on the nonlinear CP{sup N} sigma model.« less

  6. Yang-Lee zeros, Julia sets, and their singularity spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, B.; Lin, B.

    1989-05-01

    We have studied the global scaling properties of the Julia sets of the Yang-Lee zeros of the s-state Potts model on the diamond hierarchical lattice. The singularity spectrum f(..cap alpha..) and the generalized dimension D/sub q/ are calculated for different s values. General observations are made on their variations.

  7. Experimental Determination of Dynamical Lee-Yang Zeros

    NASA Astrophysics Data System (ADS)

    Brandner, Kay; Maisi, Ville F.; Pekola, Jukka P.; Garrahan, Juan P.; Flindt, Christian

    2017-05-01

    Statistical physics provides the concepts and methods to explain the phase behavior of interacting many-body systems. Investigations of Lee-Yang zeros—complex singularities of the free energy in systems of finite size—have led to a unified understanding of equilibrium phase transitions. The ideas of Lee and Yang, however, are not restricted to equilibrium phenomena. Recently, Lee-Yang zeros have been used to characterize nonequilibrium processes such as dynamical phase transitions in quantum systems after a quench or dynamic order-disorder transitions in glasses. Here, we experimentally realize a scheme for determining Lee-Yang zeros in such nonequilibrium settings. We extract the dynamical Lee-Yang zeros of a stochastic process involving Andreev tunneling between a normal-state island and two superconducting leads from measurements of the dynamical activity along a trajectory. From the short-time behavior of the Lee-Yang zeros, we predict the large-deviation statistics of the activity which is typically difficult to measure. Our method paves the way for further experiments on the statistical mechanics of many-body systems out of equilibrium.

  8. CP Symmetry, Lee-Yang zeros and Phase Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguado, M.; Asorey, M.

    2011-05-23

    We analyze the analytic properties of {theta}-vacuum in QCD and its connection with spontaneous symmetry breaking of CP symmetry. A loss of analyticity in the {theta}-vacuum energy density can only be due to the accumulation of Lee-Yang zeros at some real values of {theta}. In the case of first order transitions these singularities are always associated to and cusp singularities and never to or cusps, which in the case {theta} = 0 are incompatible with the Vafa-Witten diamagnetic inequality This fact provides a key missing link in the Vafa-Witten proof of parity symmetry conservation in vector-like gauge theories like QCD.more » The argument is very similar to that used in the derivation of Bank-Casher formula for chiral symmetry breaking. However, the and behavior does not exclude the existence of a first phase transition at {theta} = {pi}, where a and cusp singularity is not forbidden by any inequality; in this case the topological charge condensate is proportional to the density of Lee-Yang zeros at {theta} = {pi}. Moreover, Lee-Yang zeros could give rise to a second order phase transition at {theta} = 0, which might be very relevant for the interpretation of the anomalous behavior of the topological susceptibility in the CP{sup 1} sigma model.« less

  9. Intermittency and dynamical Lee-Yang zeros of open quantum systems.

    PubMed

    Hickey, James M; Flindt, Christian; Garrahan, Juan P

    2014-12-01

    We use high-order cumulants to investigate the Lee-Yang zeros of generating functions of dynamical observables in open quantum systems. At long times the generating functions take on a large-deviation form with singularities of the associated cumulant generating functions-or dynamical free energies-signifying phase transitions in the ensemble of dynamical trajectories. We consider a driven three-level system as well as the dissipative Ising model. Both systems exhibit dynamical intermittency in the statistics of quantum jumps. From the short-time behavior of the dynamical Lee-Yang zeros, we identify critical values of the counting field which we attribute to the observed intermittency and dynamical phase coexistence. Furthermore, for the dissipative Ising model we construct a trajectory phase diagram and estimate the value of the transverse field where the stationary state changes from being ferromagnetic (inactive) to paramagnetic (active).

  10. Lee-Yang zero analysis for the study of QCD phase structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ejiri, Shinji

    2006-03-01

    We comment on the Lee-Yang zero analysis for the study of the phase structure of QCD at high temperature and baryon number density by Monte-Carlo simulations. We find that the sign problem for nonzero density QCD induces a serious problem in the finite volume scaling analysis of the Lee-Yang zeros for the investigation of the order of the phase transition. If the sign problem occurs at large volume, the Lee-Yang zeros will always approach the real axis of the complex parameter plane in the thermodynamic limit. This implies that a scaling behavior which would suggest a crossover transition will notmore » be obtained. To clarify this problem, we discuss the Lee-Yang zero analysis for SU(3) pure gauge theory as a simple example without the sign problem, and then consider the case of nonzero density QCD. It is suggested that the distribution of the Lee-Yang zeros in the complex parameter space obtained by each simulation could be more important information for the investigation of the critical endpoint in the (T,{mu}{sub q}) plane than the finite volume scaling behavior.« less

  11. Trajectory phase transitions and dynamical Lee-Yang zeros of the Glauber-Ising chain.

    PubMed

    Hickey, James M; Flindt, Christian; Garrahan, Juan P

    2013-07-01

    We examine the generating function of the time-integrated energy for the one-dimensional Glauber-Ising model. At long times, the generating function takes on a large-deviation form and the associated cumulant generating function has singularities corresponding to continuous trajectory (or "space-time") phase transitions between paramagnetic trajectories and ferromagnetically or antiferromagnetically ordered trajectories. In the thermodynamic limit, the singularities make up a whole curve of critical points in the complex plane of the counting field. We evaluate analytically the generating function by mapping the generator of the biased dynamics to a non-Hermitian Hamiltonian of an associated quantum spin chain. We relate the trajectory phase transitions to the high-order cumulants of the time-integrated energy which we use to extract the dynamical Lee-Yang zeros of the generating function. This approach offers the possibility to detect continuous trajectory phase transitions from the finite-time behavior of measurable quantities.

  12. Lee-Yang Polynomials and Ground States of Spin Systems

    NASA Astrophysics Data System (ADS)

    Slawny, Joseph

    2014-08-01

    We obtain two kinds of results on the region in the space of the interactions of lattice systems where the Lee-Yang property holds (LY domain). First we show that the LY domain is related to interactions with exactly two ground states. Then we give a description of the full LY domain of an extended "plaquette model" analyzed by Lebowitz and Ruelle (Commun Math Phys 304:711-722, 2011). This allows us to prove a permanence property of the system, which we conjecture to hold in general.

  13. Fermi-edge singularity and the functional renormalization group

    NASA Astrophysics Data System (ADS)

    Kugler, Fabian B.; von Delft, Jan

    2018-05-01

    We study the Fermi-edge singularity, describing the response of a degenerate electron system to optical excitation, in the framework of the functional renormalization group (fRG). Results for the (interband) particle-hole susceptibility from various implementations of fRG (one- and two-particle-irreducible, multi-channel Hubbard–Stratonovich, flowing susceptibility) are compared to the summation of all leading logarithmic (log) diagrams, achieved by a (first-order) solution of the parquet equations. For the (zero-dimensional) special case of the x-ray-edge singularity, we show that the leading log formula can be analytically reproduced in a consistent way from a truncated, one-loop fRG flow. However, reviewing the underlying diagrammatic structure, we show that this derivation relies on fortuitous partial cancellations special to the form of and accuracy applied to the x-ray-edge singularity and does not generalize.

  14. Interlaminar stress singularities at a straight free edge in composite laminates

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Crews, J. H., Jr.

    1980-01-01

    A quasi three dimensional finite element analysis was used to analyze the edge stress problem in four-ply, composite laminates. Convergence studies were made to explore the existence of stress singularities near the free edge. The existence of stress singularities at the intersection of the interface and the free edge is confirmed.

  15. Interlaminar stress singularities at a straight free edge in composite laminates

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Crews, J. H., Jr.

    1981-01-01

    A quasi-three-dimensional finite-element analysis was used to analyze the edge-stress problem in four-ply, composite laminates. The seven laminates that were considered belong to the laminate family where the outer ply angle is between 0 and 90 deg. Systematic convergence studies were made to explore the existence of stress singularities near the free edge. The present analysis appears to confirm the existence of stress singularities at the intersection of the interface and the free edge. The power of the stress singularity was the same for all seven laminates considered.

  16. Finite-volume spectra of the Lee-Yang model

    NASA Astrophysics Data System (ADS)

    Bajnok, Zoltan; el Deeb, Omar; Pearce, Paul A.

    2015-04-01

    We consider the non-unitary Lee-Yang minimal model in three different finite geometries: (i) on the interval with integrable boundary conditions labelled by the Kac labels ( r, s) = (1 , 1) , (1 , 2), (ii) on the circle with periodic boundary conditions and (iii) on the periodic circle including an integrable purely transmitting defect. We apply φ 1,3 integrable perturbations on the boundary and on the defect and describe the flow of the spectrum. Adding a Φ1,3 integrable perturbation to move off-criticality in the bulk, we determine the finite size spectrum of the massive scattering theory in the three geometries via Thermodynamic Bethe Ansatz (TBA) equations. We derive these integral equations for all excitations by solving, in the continuum scaling limit, the TBA functional equations satisfied by the transfer matrices of the associated A 4 RSOS lattice model of Forrester and Baxter in Regime III. The excitations are classified in terms of ( m, n) systems. The excited state TBA equations agree with the previously conjectured equations in the boundary and periodic cases. In the defect case, new TBA equations confirm previously conjectured transmission factors.

  17. Boundary-layer effects in composite laminates: Free-edge stress singularities, part 6

    NASA Technical Reports Server (NTRS)

    Wanag, S. S.; Choi, I.

    1981-01-01

    A rigorous mathematical model was obtained for the boundary-layer free-edge stress singularity in angleplied and crossplied fiber composite laminates. The solution was obtained using a method consisting of complex-variable stress function potentials and eigenfunction expansions. The required order of the boundary-layer stress singularity is determined by solving the transcendental characteristic equation obtained from the homogeneous solution of the partial differential equations. Numerical results obtained show that the boundary-layer stress singularity depends only upon material elastic constants and fiber orientation of the adjacent plies. For angleplied and crossplied laminates the order of the singularity is weak in general.

  18. Field singularities at lossless metal-dielectric arbitrary-angle edges and their ramifications to the numerical modeling of gratings.

    PubMed

    Li, Lifeng

    2012-04-01

    I extend a previous work [J. Opt. Soc. Am. A, 738 (2011)] on field singularities at lossless metal-dielectric right-angle edges and their ramifications to the numerical modeling of gratings to the case of arbitrary metallic wedge angles. Simple criteria are given that allow one knowing the lossless permittivities and the arbitrary wedge angles to determine if the electric field at the edges is nonsingular, can be regularly singular, or can be irregularly singular without calculating the singularity exponent. Furthermore, the knowledge of the singularity type enables one to predict immediately if a numerical method that uses Fourier expansions of the transverse electric field components at the edges will converge or not without making any numerical tests. All conclusions of the previous work about the general relationships between field singularities, Fourier representation of singular fields, and convergence of numerical methods for modeling lossless metal-dielectric gratings have been reconfirmed.

  19. Fermi-Edge Singularity of Spin-Polarized Electrons

    NASA Astrophysics Data System (ADS)

    Plochocka-Polack, P.; Groshaus, J. G.; Rappaport, M.; Umansky, V.; Gallais, Y.; Pinczuk, A.; Bar-Joseph, I.

    2007-05-01

    We study the absorption spectrum of a two-dimensional electron gas (2DEG) in a magnetic field. We find that at low temperatures, when the 2DEG is spin polarized, the absorption spectra, which correspond to the creation of spin up or spin down electrons, differ in magnitude, linewidth, and filling factor dependence. We show that these differences can be explained as resulting from the creation of a Mahan exciton in one case, and of a power law Fermi-edge singularity in the other.

  20. Generation of phase edge singularities by coplanar three-beam interference and their detection.

    PubMed

    Patorski, Krzysztof; Sluzewski, Lukasz; Trusiak, Maciej; Pokorski, Krzysztof

    2017-02-06

    In recent years singular optics has gained considerable attention in science and technology. Up to now optical vortices (phase point dislocations) have been of main interest. This paper presents the first general analysis of formation of phase edge singularities by coplanar three-beam interference. They can be generated, for example, by three-slit interference or self-imaging in the Fresnel diffraction field of a sinusoidal grating. We derive a general condition for the ratio of amplitudes of interfering beams resulting in phase edge dislocations, lateral separation of dislocations depends on this ratio as well. Analytically derived properties are corroborated by numerical and experimental studies. We develop a simple, robust, common path optical self-imaging configuration aided by a coherent tilted reference wave and spatial filtering. Finally, we propose an automatic fringe pattern analysis technique for detecting phase edge dislocations, based on the continuous wavelet transform. Presented studies open new possibilities for developing grating based sensing techniques for precision metrology of very small phase differences.

  1. Edge Singularities and Quasilong-Range Order in Nonequilibrium Steady States.

    PubMed

    De Nardis, Jacopo; Panfil, Miłosz

    2018-05-25

    The singularities of the dynamical response function are one of the most remarkable effects in many-body interacting systems. However in one dimension these divergences only exist strictly at zero temperature, making their observation very difficult in most cold atomic experimental settings. Moreover the presence of a finite temperature destroys another feature of one-dimensional quantum liquids: the real space quasilong-range order in which the spatial correlation functions exhibit power-law decay. We consider a nonequilibrium protocol where two interacting Bose gases are prepared either at different temperatures or chemical potentials and then joined. We show that the nonequilibrium steady state emerging at large times around the junction displays edge singularities in the response function and quasilong-range order.

  2. Edge Singularities and Quasilong-Range Order in Nonequilibrium Steady States

    NASA Astrophysics Data System (ADS)

    De Nardis, Jacopo; Panfil, Miłosz

    2018-05-01

    The singularities of the dynamical response function are one of the most remarkable effects in many-body interacting systems. However in one dimension these divergences only exist strictly at zero temperature, making their observation very difficult in most cold atomic experimental settings. Moreover the presence of a finite temperature destroys another feature of one-dimensional quantum liquids: the real space quasilong-range order in which the spatial correlation functions exhibit power-law decay. We consider a nonequilibrium protocol where two interacting Bose gases are prepared either at different temperatures or chemical potentials and then joined. We show that the nonequilibrium steady state emerging at large times around the junction displays edge singularities in the response function and quasilong-range order.

  3. Holographic signatures of cosmological singularities.

    PubMed

    Engelhardt, Netta; Hertog, Thomas; Horowitz, Gary T

    2014-09-19

    To gain insight into the quantum nature of cosmological singularities, we study anisotropic Kasner solutions in gauge-gravity duality. The dual description of the bulk evolution towards the singularity involves N=4 super Yang-Mills theory on the expanding branch of deformed de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlators show a strong signature of the singularity around horizon scales and decay at large boundary separation at different rates in different directions. More generally, the boundary evolution exhibits a process of particle creation similar to that in inflation. This leads us to conjecture that information on the quantum nature of cosmological singularities is encoded in long-wavelength features of the boundary wave function.

  4. Fermi edge singularities in the mesoscopic regime: Photoabsorption spectra

    NASA Astrophysics Data System (ADS)

    Hentschel, Martina; Ullmo, Denis; Baranger, Harold U.

    2007-12-01

    We study Fermi edge singularities in photoabsorption spectra of generic mesoscopic systems such as quantum dots or nanoparticles. We predict deviations from macroscopic-metallic behavior and propose experimental setups for the observation of these effects. The theory is based on the model of a localized, or rank one, perturbation caused by the (core) hole left behind after the photoexcitation of an electron into the conduction band. The photoabsorption spectra result from the competition between two many-body responses, Anderson’s orthogonality catastrophe and the Mahan-Nozières-DeDominicis contribution. Both mechanisms depend on the system size through the number of particles and, more importantly, fluctuations produced by the coherence characteristic of mesoscopic samples. The latter lead to a modification of the dipole matrix element and trigger one of our key results: a rounded K -edge typically found in metals will turn into a (slightly) peaked edge on average in the mesoscopic regime. We consider in detail the effect of the “bound state” produced by the core hole.

  5. Perron-Frobenius theorem on the superfluid transition of an ultracold Fermi gas

    NASA Astrophysics Data System (ADS)

    Sakumichi, Naoyuki; Kawakami, Norio; Ueda, Masahito

    2014-05-01

    The Perron-Frobenius theorem is applied to identify the superfluid transition of the BCS-BEC crossover based on a cluster expansion method of Lee and Yang. Here, the cluster expansion is a systematic expansion of the equation of state (EOS) in terms of the fugacity z = exp (βμ) as βpλ3 = 2 z +b2z2 +b3z3 + ⋯ , with inverse temperature β =(kB T) - 1 , chemical potential μ, pressure p, and thermal de Broglie length λ =(2 πℏβ / m) 1 / 2 . According to the method of Lee and Yang, EOS is expressed by the Lee-Yang graphs. A singularity of an infinite series of ladder-type Lee-Yang graphs is analyzed. We point out that the singularity is governed by the Perron-Frobenius eigenvalue of a certain primitive matrix which is defined in terms of the two-body cluster functions and the Fermi distribution functions. As a consequence, it is found that there exists a unique fugacity at the phase transition point, which implies that there is no fragmentation of Bose-Einstein condensates of dimers and Cooper pairs at the ladder-approximation level of Lee-Yang graphs. An application to a BEC of strongly bounded dimers is also made.

  6. Shot-noise at a Fermi-edge singularity: Non-Markovian dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ubbelohde, N.; Maire, N.; Haug, R. J.

    2013-12-04

    For an InAs quantum dot we study the current shot noise at a Fermi-edge singularity in low temperature cross-correlation measurements. In the regime of the interaction effect the strong suppression of noise observed at zero magnetic field and the sequence of enhancement and suppression in magnetic field go beyond a Markovian master equation model. Qualitative and quantitative agreement can however be achieved by a generalized master equation model taking non-Markovian dynamics into account.

  7. Boundary-layer effects in composite laminates. I - Free-edge stress singularities. II - Free-edge stress solutions and basic characteristics

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1982-01-01

    The fundamental nature of the boundary-layer effect in fiber-reinforced composite laminates is formulated in terms of the theory of anisotropic elasticity. The basic structure of the boundary-layer field solution is obtained by using Lekhnitskii's stress potentials (1963). The boundary-layer stress field is found to be singular at composite laminate edges, and the exact order or strength of the boundary layer stress singularity is determined using an eigenfunction expansion method. A complete solution to the boundary-layer problem is then derived, and the convergence and accuracy of the solution are analyzed, comparing results with existing approximate numerical solutions. The solution method is demonstrated for a symmetric graphite-epoxy composite.

  8. Quench dynamics in superconducting nanojunctions: Metastability and dynamical Yang-Lee zeros

    NASA Astrophysics Data System (ADS)

    Souto, R. Seoane; Martín-Rodero, A.; Yeyati, A. Levy

    2017-10-01

    We study the charge transfer dynamics following the formation of a phase or voltage biased superconducting nanojunction using a full counting statistics analysis. We demonstrate that the evolution of the zeros of the generating function allows one to identify the population of different many body states much in the same way as the accumulation of Yang-Lee zeros of the partition function in equilibrium statistical mechanics is connected to phase transitions. We give an exact expression connecting the dynamical zeros to the charge transfer cumulants and discuss when an approximation based on "dominant" zeros is valid. We show that, for generic values of the parameters, the system gets trapped into a metastable state characterized by a nonequilibrium population of the many body states which is dependent on the initial conditions. We study in particular the effect of the switching rates in the dynamics showing that, in contrast to intuition, the deviation from thermal equilibrium increases for the slower rates. In the voltage biased case the steady state is reached independent of the initial conditions. Our method allows us to obtain accurate results for the steady state current and noise in quantitative agreement with steady state methods developed to describe the multiple Andreev reflections regime. Finally, we discuss the system dynamics after a sudden voltage drop showing the possibility of tuning the many body states population by an appropriate choice of the initial voltage, providing a feasible experimental way to access the quench dynamics and control the state of the system.

  9. Analysis of singular interface stresses in dissimilar material joints for plasma facing components

    NASA Astrophysics Data System (ADS)

    You, J. H.; Bolt, H.

    2001-10-01

    Duplex joint structures are typical material combinations for the actively cooled plasma facing components of fusion devices. The structural integrity under the incident heat loads from the plasma is one of the most crucial issues in the technology of these components. The most critical domain in a duplex joint component is the free surface edge of the bond interface between heterogeneous materials. This is due to the fact that the thermal stress usually shows a singular intensification in this region. If the plasma facing armour tile consists of a brittle material, the existence of the stress singularity can be a direct cause of failure. The present work introduces a comprehensive analytical tool to estimate the impact of the stress singularity for duplex PFC design and quantifies the relative stress intensification in various materials joints by use of a model formulated by Munz and Yang. Several candidate material combinations of plasma facing armour and metallic heat sink are analysed and the results are compared with each other.

  10. [The medical theory of Lee Je-ma and its character].

    PubMed

    Lee, Kyung-Lock

    2005-12-01

    Lee Je-ma 1837-1900) was a prominent scholar as well as an Korean physician. classified every people into four distinctive types: greater yang [tai yang] person, lesser yin [shao yin] person, greater yin [tai yin] person, lesser yin [shao yin] person. This theory would dictate proper treatment for each type in accordance with individual differences of physical and temperament features. Using these four types he created The Medical Science of Four Types. This article is intended to look into the connection between Lee Je-Ma's 'The Medical Science of Four Types' and 'The Modern' with organizing his ideas about the human body and the human being. Through The Modern, the theory of human being underwent a complete change. Human being in The Premodern, which was determined by sex, age and social status has been changed to the individual human being, which is featured by equality. Lee Je-Ma's medical theory of The Medical Science of Four Types would be analyzed as follow. His concept of human body is oriented toward observable objectivity. But on the other hand, it still remains transcendent status of medical science, which is subordinated by philosophy. According to Lee Je-Ma's theory of human being, human is an equal individual in a modern way of thinking, not as a part of hierarchical group. But on the other hand, it still remains incomplete from getting rid of morality aspect that includes virtue and vice in the concept of human body. The common factors in Lee Je-Ma's ideas about the human body and the human being is 'Dualism of mind and body that means all kinds of status and results depends on each individual. As is stated above, Lee Je-Ma's medical theory has many aspects of The Modern and it proves that Korean traditional medicine could be modernized by itself.

  11. Stress and strain field singularities, micro-cracks, and their role in failure initiation at the composite laminate free-edge

    NASA Astrophysics Data System (ADS)

    Dustin, Joshua S.

    A state-of-the-art multi-scale analysis was performed to predict failure initiation at the free-edge of an angle-ply laminate using the Strain Invariant Failure Theory (SIFT), and multiple improvements to this analysis methodology were proposed and implemented. Application of this analysis and theory led to the conclusion that point-wise failure criteria which ignore the singular stress and strain fields from a homogenized analysis and the presence of free-edge damage in the form of micro-cracking, may do so at the expense of failure prediction capability. The main contributions of this work then are made in the study of the laminate free-edge singularity and in the effects of micro-cracking at the composite laminate free-edge. Study of both classical elasticity and finite element solutions of the laminate free-edge stress field based upon the assumption of homogenized lamina properties reveal that the order of the free-edge singularity is sufficiently small such that the domain of dominance of this term away from the laminate free-edge is much smaller than the relevant dimensions of the microstructure. In comparison to a crack-tip field, these free-edge singularities generate stress and strain fields which are half as intense as those at the crack-tip, leading to the conclusion that existing flaws at the free-edge in the form of micro-cracks would be more prone to the initiation of free-edge failure than the existence of a singularity in the free-edge elasticity solutions. A methodical experiment was performed on a family of [±25°/90°] s laminates made of IM7/8552 carbon/epoxy composite, to both characterize micro-cracks present at the laminate free-edge and to study their behavior under the application of a uniform extensional load. The majority of these micro-cracks were of length on the order of a few fiber diameters, though larger micro-cracks as long as 100 fiber diameters were observed in thicker laminates. A strong correlation between the application of

  12. Treatment of nonconvergence of Fourier modal method arising from irregular field singularities at lossless metal-dielectric right-angle edges.

    PubMed

    Mei, Yanpeng; Liu, Haitao; Zhong, Ying

    2014-04-01

    In a recent work [J. Opt. Soc. Am. A28, 738 (2011)], Lifeng Li and Gerard Granet investigate nonconvergence cases of the Fourier modal method (FMM). They demonstrate that the nonconvergence is due to the irregular field singularities at lossless metal-dielectric right-angle edges. Here we make further investigations on the problem and find that the FMM surprisingly converges for deep sub-wavelength gratings (grating period being much smaller than the illumination wavelength). To overcome the nonconvergence for gratings that are not deep sub-wavelength, we approximately replace the lossless metal-dielectric right-angle edges by a medium with a gradually varied refraction index, so as to remove the irregular field singularities. With such treatment, convergence is observed as the region of the approximate medium approaches vanishing.

  13. Computing Critical Properties with Yang-Yang Anomalies

    NASA Astrophysics Data System (ADS)

    Orkoulas, Gerassimos; Cerdeirina, Claudio; Fisher, Michael

    2017-01-01

    Computation of the thermodynamics of fluids in the critical region is a challenging task owing to divergence of the correlation length and lack of particle-hole symmetries found in Ising or lattice-gas models. In addition, analysis of experiments and simulations reveals a Yang-Yang (YY) anomaly which entails sharing of the specific heat singularity between the pressure and the chemical potential. The size of the YY anomaly is measured by the YY ratio Rμ =C μ /CV of the amplitudes of C μ = - T d2 μ /dT2 and of the total specific heat CV. A ``complete scaling'' theory, in which the pressure mixes into the scaling fields, accounts for the YY anomaly. In Phys. Rev. Lett. 116, 040601 (2016), compressible cell gas (CCG) models which exhibit YY and singular diameter anomalies, have been advanced for near-critical fluids. In such models, the individual cell volumes are allowed to fluctuate. The thermodynamics of CCGs can be computed through mapping onto the Ising model via the seldom-used great grand canonical ensemble. The computations indicate that local free volume fluctuations are the origins of the YY effects. Furthermore, local energy-volume coupling (to model water) is another crucial factor underlying the phenomena.

  14. Singularity embedding method in potential flow calculations

    NASA Technical Reports Server (NTRS)

    Jou, W. H.; Huynh, H.

    1982-01-01

    The so-called H-type mesh is used in a finite-element (or finite-volume) calculation of the potential flow past an airfoil. Due to coordinate singularity at the leading edge, a special singular trial function is used for the elements neighboring the leading edge. The results using the special singular elements are compared to those using the regular elements. It is found that the unreasonable pressure distribution obtained by the latter is removed by the embedding of the singular element. Suggestions to extend the present method to transonic cases are given.

  15. Topological resolution of gauge theory singularities

    NASA Astrophysics Data System (ADS)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-01

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric SU(2) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.

  16. Topological resolution of gauge theory singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-21

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit themore » singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.« less

  17. Fermi edge singularity in a tunnel junction

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Sherkunov, Yury; D'Ambrumenil, Nicholas; Muzykantskii, Boris

    2010-03-01

    We present results on the non-equilibrium Fermi edge singularity (FES) problem in tunnel junctions. The FES, which is present in a Fermi gas subject to any sudden change of potential, manifests itself in the final state many body interaction between the electrons in the leads [1]. We establish a connection between the FES problem in a tunnel junction and the Full Counting Statistics (FCS) for the device [2]. We find that the exact profile of the changing potential (or the profile for the barrier opening and closing in the tunnel junction case) strongly affects the overlap between the initial and final state of the Fermi gas. We factorize the contribution to the FES into two approximately independent terms: one is connected with the short time opening process while the other is concerned with the long time asymptotic effect, namely the Anderson orthogonality catastrophe. We consider applications to a localized level coupled through a tunnel barrier to a 1D lead driven out of equilibrium [3]. References: [1] G. Mahan, Phys. Rev. 163, 1612 (1967); P. Nozieres and C. T. De Dominicis, Phys. Rev. 178, 1079 (1969); P. Anderson, Phys. Rev. Lett. 18, 1049 (1967) [2] J. Zhang, Y. Sherkunov, N. d'Ambrumenil, and B. Muzykantskii, ArXiv:0909.3427 [3] D. Abanin and L. Levitov, Phys. Rev. Lett. 94, 186803 (2005)

  18. X-ray edge singularity in resonant inelastic x-ray scattering (RIXS)

    NASA Astrophysics Data System (ADS)

    Markiewicz, Robert; Rehr, John; Bansil, Arun

    2013-03-01

    We develop a lattice model based on the theory of Mahan, Noziéres, and de Dominicis for x-ray absorption to explore the effect of the core hole on the RIXS cross section. The dominant part of the spectrum can be described in terms of the dynamic structure function S (q , ω) dressed by matrix element effects, but there is also a weak background associated with multi-electron-hole pair excitations. The model reproduces the decomposition of the RIXS spectrum into well- and poorly-screened components. An edge singularity arises at the threshold of both components. Fairly large lattice sizes are required to describe the continuum limit. Supported by DOE Grant DE-FG02-07ER46352 and facilitated by the DOE CMCSN, under grant number DE-SC0007091.

  19. Study of lee-side flows over conically cambered Delta wings at supersonic speeds, part 2

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Watson, Carolyn B.

    1987-01-01

    An experimental investigation was performed in which surface pressure data, flow visualization data, and force and moment data were obtained on four conical delta wing models which differed in leading edge camber only. Wing leading edge camber was achieved through a deflection of the outboard 30% of the local wing semispan of a reference 75 deg swept flat delta wing. The four wing models have leading edge deflection angles delta sub F of 0, 5, 10, and 15 deg measured streamwise. Data for the wings with delta sub F = 10 and 15 deg showed that hinge line separation dominated the lee-side wing loading and prohibited the development of leading edge separation on the deflected portion of wing leading edge. However, data for the wing with delta sub F = 5 deg showed that at an angle of attack of 5 deg, a vortex was positioned on the deflected leading edge with reattachment at the hinge line. Flow visualization results were presented which detail the influence of Mach number, angle of attack, and camber on the lee-side flow characteristics of conically cambered delta wings. Analysis of photographic data identified the existence of 12 distinctive lee-side flow types.

  20. Soluble Model Fluids with Complete Scaling and Yang-Yang Features

    NASA Astrophysics Data System (ADS)

    Cerdeiriña, Claudio A.; Orkoulas, Gerassimos; Fisher, Michael E.

    2016-01-01

    Yang-Yang (YY) and singular diameter critical anomalies arise in exactly soluble compressible cell gas (CCG) models that obey complete scaling with pressure mixing. Thus, on the critical isochore ρ =ρc , C˜ μ≔-T d2μ /d T2 diverges as |t |-α when t ∝T -Tc→0- while ρd-ρc˜|t |2β where ρd(T )=1/2 [ρliq+ρgas] . When the discrete local CCG cell volumes fluctuate freely, the YY ratio Rμ=C˜μ/CV may take any value -∞ 0 . More general decorated CCGs, including "hydrogen bonding" water models, illuminate energy-volume coupling as relevant to Rμ.

  1. Lee-side flow over delta wings at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Miller, D. S.; Wood, R. M.

    1985-01-01

    An experimental investigation of the lee-side flow on sharp leading-edge delta wings at supersonic speeds has been conducted. Pressure data were obtained at Mach numbers from 1.5 to 2.8, and three types of flow-visualization data (oil-flow, tuft, and vapor-screen) were obtained at Mach numbers from 1.7 to 2.8 for wing leading-edge sweep angles from 52.5 deg to 75 deg. From the flow-visualization data, the lee-side flows were classified into seven distinct types and a chart was developed that defines the flow mechanism as a function of the conditions normal to the wing leading edge, specifically, angle of attack and Mach number. Pressure data obtained experimentally and by a semiempirical prediction method were employed to investigate the effects of angle of attack, leading-edge sweep, and Mach number on vortex strength and vortex position. In general, the predicted and measured values of vortex-induced normal force and vortex position obtained from experimental data have the same trends with angle of attack, Mach number, and leading-edge sweep; however, the vortex-induced normal force is underpredicted by 15 to 30 percent, and the vortex spanwise location is overpredicted by approximately 15 percent.

  2. Bogoliubov theory and Lee-Huang-Yang corrections in spin-1 and spin-2 Bose-Einstein condensates in the presence of the quadratic Zeeman effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchino, Shun; Kobayashi, Michikazu; Ueda, Masahito

    2010-06-15

    We develop Bogoliubov theory of spin-1 and spin-2 Bose-Einstein condensates (BECs) in the presence of a quadratic Zeeman effect, and derive the Lee-Huang-Yang (LHY) corrections to the ground-state energy, pressure, sound velocity, and quantum depletion. We investigate all the phases of spin-1 and spin-2 BECs that can be realized experimentally. We also examine the stability of each phase against quantum fluctuations and the quadratic Zeeman effect. Furthermore, we discuss a relationship between the number of symmetry generators that are spontaneously broken and that of Nambu-Goldstone (NG) modes. It is found that in the spin-2 nematic phase there are special Bogoliubovmore » modes that have gapless linear dispersion relations but do not belong to the NG modes.« less

  3. Extremal functions for singular Trudinger-Moser inequalities in the entire Euclidean space

    NASA Astrophysics Data System (ADS)

    Li, Xiaomeng; Yang, Yunyan

    2018-04-01

    In a previous work (Adimurthi and Yang, 2010 [2]), Adimurthi-Yang proved a singular Trudinger-Moser inequality in the entire Euclidean space RN (N ≥ 2). Precisely, if 0 ≤ β < 1 and 0 < γ ≤ 1 - β, then there holds for any τ > 0,

  4. Lee waves, benign and malignant

    NASA Technical Reports Server (NTRS)

    Wurtele, M. G.; Datta, A.

    1992-01-01

    The flow of an incompressible, stratified fluid over an obstacle will produce an oscillation in which buoyancy is the restoring force, called a gravity wave. For disturbances of this scale, the atmosphere may be treated as incompressible; and even the linear approximation will explain many of the phenomena observed in the lee of mountains. However, nonlinearities arise in two ways: (1) through the large (scaled) size of the mountain, and (2) from dynamically singular levels in the fluid field. These produce a complicated array of phenomena that present hazards to aircraft and to lee surface areas. If there is no dynamic barrier, these waves can penetrate vertically into the middle atmosphere (30-100 km attitude), where recent observations show them to be of a length scale that must involve the Coriolis force in any modeling. At these altitudes, the amplitude of the waves is very large, and the waves are studied with a view to their potential impact on the projected National Aerospace Plane. This paper presents the results of analyses and state-of-the-art numerical simulations, validated where possible by observational data.

  5. Loop quantum corrected Einstein Yang-Mills black holes

    NASA Astrophysics Data System (ADS)

    Protter, Mason; DeBenedictis, Andrew

    2018-05-01

    In this paper, we study the homogeneous interiors of black holes possessing SU(2) Yang-Mills fields subject to corrections inspired by loop quantum gravity. The systems studied possess both magnetic and induced electric Yang-Mills fields. We consider the system of equations both with and without Wilson loop corrections to the Yang-Mills potential. The structure of the Yang-Mills Hamiltonian, along with the restriction to homogeneity, allows for an anomaly-free effective quantization. In particular, we study the bounce which replaces the classical singularity and the behavior of the Yang-Mills fields in the quantum corrected interior, which possesses topology R ×S2 . Beyond the bounce, the magnitude of the Yang-Mills electric field asymptotically grows monotonically. This results in an ever-expanding R sector even though the two-sphere volume is asymptotically constant. The results are similar with and without Wilson loop corrections on the Yang-Mills potential.

  6. [Birth and succession of a current of learning in Korean medicine: the supporting yang current of learning].

    PubMed

    Oh, Chaekun

    2014-04-01

    In this study, I aim to reveal how Lee Gyoojoons medicine has given birth to a current of learning, the supporting yang current of learning, and describe its historical significance. Before anything, I'd like to throw the question of whether if there were any currents within the traditional Korean medicine. There are no records of medical currents being widely discussed until now in medical history of Korea; however, the current of Lee Jema's sasang medicine is the most noticeable one. Among the contemporaries of Lee Jema, during the late Chosun, there was also another famed medical practitioner called Lee Gyoojoon. Lee Gyoojoon mainly practiced his medicine within Pohang, Gyeongsangbuk-do area, his apprentices have formed a group and have succeeded his medical practice. Based on the analyses of Lee Gyoojoon's apprentices and the Somun Oriental Medical Society, which is known as a successor group to Lee Gyoojoon's medicine today, they are fully satisfying the five requirements to establish a medical current: first, they held Lee Gyoojoon as the first and foremost, representative practitioner of their current; second, they advocate the supporting yang theory suggested by Lee Gyoojoon, which is originated from his theory of Mind; third, books such as the Major Essentials of Huangdi's Internal Classic Plain Questions, and the Double Grinded Medical Mirror, were being used as the main textbooks to educate their students or to practice medicine. Fourth, Lee Gyoojoon's medical ideas were being transcended quite clearly within his group of apprentices, including Seo Byungoh, Lee Wonse, and the Somun Oriental Medical Society. Fifth, Lee Gyoojoon's apprentices were first produced through the Sukgok School, however, nowadays they are being produced through medical groups formed by Lee Wonse, the Somun Oriental Medical Society, regarding the propagation of medical theories, compilation of textbooks, publication of academic journals, etc. Then, what do the existence of the

  7. Lee-Wick black holes

    NASA Astrophysics Data System (ADS)

    Bambi, Cosimo; Modesto, Leonardo; Wang, Yixu

    2017-01-01

    We derive and study an approximate static vacuum solution generated by a point-like source in a higher derivative gravitational theory with a pair of complex conjugate ghosts. The gravitational theory is local and characterized by a high derivative operator compatible with Lee-Wick unitarity. In particular, the tree-level two-point function only shows a pair of complex conjugate poles besides the massless spin two graviton. We show that singularity-free black holes exist when the mass of the source M exceeds a critical value Mcrit. For M >Mcrit the spacetime structure is characterized by an outer event horizon and an inner Cauchy horizon, while for M =Mcrit we have an extremal black hole with vanishing Hawking temperature. The evaporation process leads to a remnant that approaches the zero-temperature extremal black hole state in an infinite amount of time.

  8. Edwin Lee | NREL

    Science.gov Websites

    Edwin Lee Photo of Edwin Lee Edwin Lee Researcher III-Mechanical Engineering Edwin.Lee@nrel.gov | 303-275-3110 Edwin Lee joined NREL in 2013 and works in the Commercial Buildings Research Group. He

  9. Strength evaluation of butt joint by stress intensity factor of small edge crack near interface edge

    NASA Astrophysics Data System (ADS)

    Sato, T.; Oda, K.; Tsutsumi, N.

    2018-06-01

    Failure of the bonded dissimilar materials generally initiates near the interface, or just from the interface edge due to the stress singularity at the interface edge. In this study, the stress intensity factor of an edge crack close to the interface between the dissimilar materials is analyzed. The small edge crack is strongly dominated by the singular stress field near the interface edge. The analysis of stress intensity factor of small edge crack near the interface in bi-material and butt joint plates is carried out by changing the length and the location of the crack and the region dominated by the interface edge is examined. It is found that the dimensionless stress intensity factor of small crack, normalized by the singular stress at the crack tip point in the bonded plate without the crack, is equal to 1.12, independent of the material combination and adhesive layer thickness, when the relative crack length with respect to the crack location is less than 0.01. The adhesive strength of the bonded plate with various adhesive layer thicknesses can be expressed as the constant critical stress intensity factor of the small edge crack.

  10. Leading-edge singularities in thin-airfoil theory

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1976-01-01

    If the thin airfoil theory is applied to an airfoil having a rounded leading edge, a certain error will arise in the determination of the pressure distribution around the nose. It is shown that the evaluation of the drag of such a blunt nosed airfoil by the thin airfoil theory requires the addition of a leading edge force, analogous to the leading edge thrust of the lifting airfoil. The method of calculation is illustrated by application to: (1) The Joukowski airfoil in subsonic flow; and (2) the thin elliptic cone in supersonic flow. A general formula for the edge force is provided which is applicable to a variety of wing forms.

  11. Calculating corner singularities by boundary integral equations.

    PubMed

    Shi, Hualiang; Lu, Ya Yan; Du, Qiang

    2017-06-01

    Accurate numerical solutions for electromagnetic fields near sharp corners and edges are important for nanophotonics applications that rely on strong near fields to enhance light-matter interactions. For cylindrical structures, the singularity exponents of electromagnetic fields near sharp edges can be solved analytically, but in general the actual fields can only be calculated numerically. In this paper, we use a boundary integral equation method to compute electromagnetic fields near sharp edges, and construct the leading terms in asymptotic expansions based on numerical solutions. Our integral equations are formulated for rescaled unknown functions to avoid unbounded field components, and are discretized with a graded mesh and properly chosen quadrature schemes. The numerically found singularity exponents agree well with the exact values in all the test cases presented here, indicating that the numerical solutions are accurate.

  12. On the phase diagram of water with density functional theory potentials: the melting temperature of Ice I-h with the Perdew-Burke-Ernzerhof and Becke-Lee-Yang-Parr functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Soohaeng; Zeng, Xiao Cheng; Xantheas, Sotiris S.

    2009-06-11

    The melting temperature (Tm) of ice Ih was determined from constant enthalphy (NPH) Born-Oppenheimer Molecular Dynamics (BOMD) simulations to be 417±3 K for the Perdew-Burke-Ernzerhof (PBE) and 411±4 K for the Becke-Lee-Yang-Parr (BLYP) density functionals using a coexisting ice (Ih)-liquid phase at constant pressures of P = 2,500 and 10,000 bar and a density ρ = 1 g/cm3, respectively. This suggests that ambient condition simulations at ρ = 1 g/cm3 will rather describe a supercooled state that is overstructured when compared to liquid water. This work was supported by the US Department of Energy Office of Basic Energy Sciences' Chemicalmore » Sciences program. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less

  13. Singularities in x-ray spectra of metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahan, G.D.

    1987-08-01

    The x-ray spectroscopies discussed are absorption, emission, and photoemission. The singularities show up in each of them in a different manner. In absorption and emission they show up as power law singularities at the thresholds frequencies. This review will emphasize two themes. First a simple model is proposed to describe this phenomena, which is now called the MND model after MAHAN-NOZIERES-DeDOMINICIS. Exact analytical solutions are now available for this model for the three spectroscopies discussed above. These analytical models can be evaluated numerically in a simple way. The second theme of this review is that great care must be usedmore » when comparing the theory to experiment. A number of factors influence the edge shapes in x-ray spectroscopy. The edge singularities play an important role, and are observed in many matals. Quantitative fits of the theory to experiment require the consideration of other factors. 51 refs.« less

  14. Physics of singularities in pressure-impulse theory

    NASA Astrophysics Data System (ADS)

    Krechetnikov, R.

    2018-05-01

    The classical solution in the pressure-impulse theory for the inviscid, incompressible, and zero-surface-tension water impact of a flat plate at zero dead-rise angle exhibits both singular-in-time initial fluid acceleration, ∂v /∂ t |t =0˜δ (t ) , and a near-plate-edge spatial singularity in the velocity distribution, v ˜r-1 /2 , where r is the distance from the plate edge. The latter velocity divergence also leads to the interface being stretched infinitely right after the impact, which is another nonphysical artifact. From the point of view of matched asymptotic analysis, this classical solution is a singular limit when three physical quantities achieve limiting values: sound speed c0→∞ , fluid kinematic viscosity ν →0 , and surface tension σ →0 . This leaves open a question on how to resolve these singularities mathematically by including the neglected physical effects—compressibility, viscosity, and surface tension—first one by one and then culminating in the local compressible viscous solution valid for t →0 and r →0 , demonstrating a nontrivial flow structure that changes with the degree of the bulk compressibility. In the course of this study, by starting with the general physically relevant formulation of compressible viscous flow, we clarify the parameter range(s) of validity of the key analytical solutions including classical ones (inviscid incompressible and compressible, etc.) and understand the solution structure, its intermediate asymptotics nature, characteristics influencing physical processes, and the role of potential and rotational flow components. In particular, it is pointed out that sufficiently close to the plate edge surface tension must be taken into account. Overall, the idea is to highlight the interesting physics behind the singularities in the pressure-impulse theory.

  15. An analytical design procedure for the determination of effective leading edge extensions on thick delta wings

    NASA Technical Reports Server (NTRS)

    Ghaffari, F.; Chaturvedi, S. K.

    1984-01-01

    An analytical design procedure for leading edge extensions (LEE) was developed for thick delta wings. This LEE device is designed to be mounted to a wing along the pseudo-stagnation stream surface associated with the attached flow design lift coefficient of greater than zero. The intended purpose of this device is to improve the aerodynamic performance of high subsonic and low supersonic aircraft at incidences above that of attached flow design lift coefficient, by using a vortex system emanating along the leading edges of the device. The low pressure associated with these vortices would act on the LEE upper surface and the forward facing area at the wing leading edges, providing an additional lift and effective leading edge thrust recovery. The first application of this technique was to a thick, round edged, twisted and cambered wing of approximately triangular planform having a sweep of 58 deg and aspect ratio of 2.30. The panel aerodynamics and vortex lattice method with suction analogy computer codes were employed to determine the pseudo-stagnation stream surface and an optimized LEE planform shape.

  16. Landau singularities and symbology: One- and two-loop MHV amplitudes in SYM theory

    DOE PAGES

    Dennen, Tristan; Spradlin, Marcus; Volovich, Anastasia

    2016-03-14

    We apply the Landau equations, whose solutions parameterize the locus of possible branch points, to the one- and two-loop Feynman integrals relevant to MHV amplitudes in planar N = 4 super-Yang-Mills theory. We then identify which of the Landau singularities appear in the symbols of the amplitudes, and which do not. Finally, we observe that all of the symbol entries in the two-loop MHV amplitudes are already present as Landau singularities of one-loop pentagon integrals.

  17. Singularities of the quad curl problem

    NASA Astrophysics Data System (ADS)

    Nicaise, Serge

    2018-04-01

    We consider the quad curl problem in smooth and non smooth domains of the space. We first give an augmented variational formulation equivalent to the one from [25] if the datum is divergence free. We describe the singularities of the variational space which correspond to the ones of the Maxwell system with perfectly conducting boundary conditions. The edge and corner singularities of the solution of the corresponding boundary value problem with smooth data are also characterized. We finally obtain some regularity results of the variational solution.

  18. ℤ3 parafermionic chain emerging from Yang-Baxter equation.

    PubMed

    Yu, Li-Wei; Ge, Mo-Lin

    2016-02-23

    We construct the 1D ℤ3 parafermionic model based on the solution of Yang-Baxter equation and express the model by three types of fermions. It is shown that the ℤ3 parafermionic chain possesses both triple degenerate ground states and non-trivial topological winding number. Hence, the ℤ3 parafermionic model is a direct generalization of 1D ℤ2 Kitaev model. Both the ℤ2 and ℤ3 model can be obtained from Yang-Baxter equation. On the other hand, to show the algebra of parafermionic tripling intuitively, we define a new 3-body Hamiltonian H123 based on Yang-Baxter equation. Different from the Majorana doubling, the H123 holds triple degeneracy at each of energy levels. The triple degeneracy is protected by two symmetry operators of the system, ω-parity P [formula in text] and emergent parafermionic operator Γ, which are the generalizations of parity PM and emergent Majorana operator in Lee-Wilczek model, respectively. Both the ℤ3 parafermionic model and H123 can be viewed as SU(3) models in color space. In comparison with the Majorana models for SU(2), it turns out that the SU(3) models are truly the generalization of Majorana models resultant from Yang-Baxter equation.

  19. Lee Jay Fingersh | NREL

    Science.gov Websites

    Lee.Fingersh@nrel.gov | 303-384-6929 Lee Jay joined NREL in 1993. For seven years, he was the test engineer on the Unsteady Aerodynamics Experiment turbine, which culminated in the NASA Ames wind tunnel test. Lee has worked on the design and controls for the variable-speed test bed and administered many

  20. Lee waves: Benign and malignant

    NASA Technical Reports Server (NTRS)

    Wurtele, M. G.; Datta, A.; Sharman, R. D.

    1993-01-01

    The flow of an incompressible fluid over an obstacle will produce an oscillation in which buoyancy is the restoring force, called a gravity wave. For disturbances of this scale, the atmosphere may be treated as dynamically incompressible, even though there exists a mean static upward density gradient. Even in the linear approximation - i.e., for small disturbances - this model explains a great many of the flow phenomena observed in the lee of mountains. However, nonlinearities do arise importantly, in three ways: (1) through amplification due to the decrease of mean density with height; (2) through the large (scaled) size of the obstacle, such as a mountain range; and (3) from dynamically singular levels in the fluid field. These effects produce a complicated array of phenomena - large departure of the streamlines from their equilibrium levels, high winds, generation of small scales, turbulence, etc. - that present hazards to aircraft and to lee surface areas. The nonlinear disturbances also interact with the larger-scale flow in such a manner as to impact global weather forecasts and the climatological momentum balance. If there is no dynamic barrier, these waves can penetrate vertically into the middle atmosphere (30-100 km), where recent observations show them to be of a length scale that must involve the coriolis force in any modeling. At these altitudes, the amplitude of the waves is very large, and the phenomena associated with these wave dynamics are being studied with a view to their potential impact on high performance aircraft, including the projected National Aerospace Plane (NASP). The presentation shows the results of analysis and of state-of-the-art numerical simulations, validated where possible by observational data, and illustrated with photographs from nature.

  1. Automatic classification of singular elements for the electrostatic analysis of microelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Su, Y.; Ong, E. T.; Lee, K. H.

    2002-05-01

    The past decade has seen an accelerated growth of technology in the field of microelectromechanical systems (MEMS). The development of MEMS products has generated the need for efficient analytical and simulation methods for minimizing the requirement for actual prototyping. The boundary element method is widely used in the electrostatic analysis for MEMS devices. However, singular elements are needed to accurately capture the behavior at singular regions, such as sharp corners and edges, where standard elements fail to give an accurate result. The manual classification of boundary elements based on their singularity conditions is an immensely laborious task, especially when the boundary element model is large. This process can be automated by querying the geometric model of the MEMS device for convex edges based on geometric information of the model. The associated nodes of the boundary elements on these edges can then be retrieved. The whole process is implemented in the MSC/PATRAN platform using the Patran Command Language (the source code is available as supplementary data in the electronic version of this journal issue).

  2. Infrared singularities in Landau gauge Yang-Mills theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alkofer, Reinhard; Huber, Markus Q.; Schwenzer, Kai

    2010-05-15

    We present a more detailed picture of the infrared regime of Landau-gauge Yang-Mills theory. This is done within a novel framework that allows one to take into account the influence of finite scales within an infrared power counting analysis. We find that there are two qualitatively different infrared fixed points of the full system of Dyson-Schwinger equations. The first extends the known scaling solution, where the ghost dynamics is dominant and gluon propagation is strongly suppressed. It features in addition to the strong divergences of gluonic vertex functions in the previously considered uniform scaling limit, when all external momenta tendmore » to zero, also weaker kinematic divergences, when only some of the external momenta vanish. The second solution represents the recently proposed decoupling scenario where the gluons become massive and the ghosts remain bare. In this case we find that none of the vertex functions is enhanced, so that the infrared dynamics is entirely suppressed. Our analysis also provides a strict argument why the Landau-gauge gluon dressing function cannot be infrared divergent.« less

  3. Generalization of Friedberg-Lee symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Chaoshang; Li Tianjun; George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, Texas 77843

    2008-07-01

    We study the possible origin of Friedberg-Lee symmetry. First, we propose the generalized Friedberg-Lee symmetry in the potential by including the scalar fields in the field transformations, which can be broken down to the Friedberg-Lee symmetry spontaneously. We show that the generalized Friedberg-Lee symmetry allows a typical form of Yukawa couplings, and the realistic neutrino masses and mixings can be generated via the seesaw mechanism. If the right-handed neutrinos transform nontrivially under the generalized Friedberg-Lee symmetry, we can have the testable TeV scale seesaw mechanism. Second, we present two models with the SO(3)xU(1) global flavor symmetry in the lepton sector.more » After the flavor symmetry breaking, we can obtain the charged lepton masses, and explain the neutrino masses and mixings via the seesaw mechanism. Interestingly, the complete neutrino mass matrices are similar to those of the above models with generalized Friedberg-Lee symmetry. So the Friedberg-Lee symmetry is the residual symmetry in the neutrino mass matrix after the SO(3)xU(1) flavor symmetry breaking.« less

  4. Use of Awamori-pressed Lees and Tofu Lees as Feed Ingredients for Growing Female Goats

    PubMed Central

    Nagamine, Itsuki; Sunagawa, Katsunori; Kishi, Tetsuya

    2012-01-01

    Okinawan Awamori is produced by fermenting steamed indica rice with black mold, yeast, and water. Awamori-pressed lees is a by-product of the Awamori production process. Tofu lees is a by-product of the Tofu production process. This research consisted of two experiments conducted to elucidate whether or not dried Awamori-pressed lees and Tofu lees can be used as a mixed feed ingredient for raising female goats. In experiment 1, digestion trials were conducted to ascertain the nutritive values of dried Awamori-pressed lees and dried Tofu lees for goats. The digestible crude protein (DCP) and total digestible nutrients (TDN) contents of dried Awamori-pressed lees and Tofu lees were 22.5%, 22.5% (DCP), and 87.2%, 94.4% (TDN) respectively. In experiment 2, 18 female goats (Japanese Saanen×Nubian, three months old, body weight 15.4±0.53 kg) were divided into three groups of six animals (control feed group (CFG), Awamori-pressed lees mixed feed group (AMFG), Tofu lees mixed feed group (TMFG)). The CFG control used feed containing 20% soybean meal as the main protein source, while the AMFG and TMFG treatments used feed mixed with 20% dried Awamori-pressed lees or dried Tofu lees. The groups were fed mixed feed (volume to provide 100 g/d increase in body weight) twice a day (10:00, 16:00). The klein grass hay and water was given ad libitum. The hay intake was measured at 08:00 and 16:00. Body weight and size measurements were taken once a month. At the end of the experiment, a blood sample was drawn from the jugular vein of each animal. The DCP and TDN intakes in AMFG and TMFG showed no significant difference to the CFG. Cumulative measurements of growth in body weight, withers height, chest depth, chest girth, and hip width over the 10 mo period in the AMFG and TMFG were similar to the CFG. By contrast, cumulative growth in body length and hip height in the AMFG and TMFG tended to be larger than the CFG. Cumulative growth in chest width in the AMFG was significantly

  5. On the problem of stress singularities in bonded orthotropic materials

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Delale, F.

    1976-01-01

    The problem of stress singularities at the leading edge of a crack lying in the neighborhood of a bimaterial interface in bonded orthotropic materials is considered. The main objective is to study the effect of material orthotropy on the singular behavior of the stress state when the crack touches or intersects the interface. The results indicate that, due to the large number of material constants involved, in orthotropic materials, the power of stress singularity as well as the stress intensity factor can be considerably different than that found in the isotropic materials with the same stiffness ratio perpendicular to the crack.

  6. The Singular Universe and the Reality of Time

    NASA Astrophysics Data System (ADS)

    Mangabeira Unger, Roberto; Smolin, Lee

    2015-01-01

    Introduction; Part I. Roberto Mangabeira Unger: 1. The science of the one universe in time; 2. The context and consequences of the argument; 3. The singular existence of the universe; 4. The inclusive reality of time; 5. The mutability of the laws of nature; 6. The selective realism of mathematics; Part II. Lee Smolin: 1. Cosmology in crisis; 2. Principles for a cosmological theory; 3. The setting: the puzzles of contemporary cosmology; 4. Hypotheses for a new cosmology; 5. Mathematics; 6. Approaches to solving the metalaw dilemma; 7. Implications of temporal naturalism for philosophy of mind; 8. An agenda for science; 9. Concluding remarks; A note concerning disagreements between our views.

  7. Hybridized Kibble-Zurek scaling in the driven critical dynamics across an overlapping critical region

    NASA Astrophysics Data System (ADS)

    Zhai, Liang-Jun; Wang, Huai-Yu; Yin, Shuai

    2018-04-01

    The conventional Kibble-Zurek scaling describes the scaling behavior in the driven dynamics across a single critical region. In this paper, we study the driven dynamics across an overlapping critical region, in which a critical region (Region A) is overlaid by another critical region (Region B). We develop a hybridized Kibble-Zurek scaling (HKZS) to characterize the scaling behavior in the driven process. According to the HKZS, the driven dynamics in the overlapping region can be described by the critical theories for both Region A and Region B simultaneously. This results in a constraint on the scaling function in the overlapping critical region. We take the quantum Ising chain in an imaginary longitudinal field as an example. In this model, the critical region of the Yang-Lee edge singularity and the critical region of the ferromagnetic-paramagnetic phase transition overlap with each other. We numerically confirm the HKZS by simulating the driven dynamics in this overlapping critical region. The HKZSs in other models are also discussed.

  8. Use of Awamori-pressed Lees and Tofu Lees as Feed Ingredients for Growing Male Goats

    PubMed Central

    Nagamine, Itsuki; Sunagawa, Katsunori; Kina, Takashi

    2013-01-01

    Awamori is produced by fermenting steamed indica rice. Awamori-pressed lees is a by-product of the Awamori production process. Tofu lees is a by-product of the Tofu production process. Research was conducted to test if dried Awamori-pressed lees and Tofu lees can be used as a mixed feed ingredient for raising male goats. Eighteen male kids were divided into three groups of six animals (control feed group (CFG), Awamori-pressed lees mixed feed group (AMFG), Tofu lees mixed feed group (TMFG)). The CFG used feed containing 20% soybean meal as the main protein source, while the AMFG and TMFG used feed mixed with 20% dried Awamori-pressed lees or dried Tofu lees. The groups were fed mixed feed (volume to provide 100 g/d increase in body weight) and alfalfa hay cubes (2.0 kg/d) twice a day (10:00, 16:00). Klein grass hay and water was given ad libitum. Hay intake was measured at 10:00 and 16:00. Body weight and size measurements were taken once a month. At the end of the experiment, a blood sample was drawn from the jugular vein of each animal and the carcass characteristics, the physical and chemical characteristics of loin were analyzed. DCP and TDN intakes in AMFG and TMFG showed no significant difference to the CFG. Cumulative measurements of growth in body weight and size over the 10 mo period in the AMFG and TMFG were similar to the CFG. Blood parameter values were similar to those in normal goats. Dressing carcass weight and percentages, and total weight of meat in the AMFG were similar to that in the CFG, but smaller in the TMFG. The compressed meat juice ratio was higher in both the TMFG and AMFG than the CFG. While the fat in corn, Awamori-pressed lees, and Tofu lees contains more than 50% linoleic acid, the loin fat in both the AMFG and TMFG was very low in linoleic acid due to the increase in the content of oleic acid, stearic acid, and palmitic acid. This indicates that feeding on AMF and TMF does not inhibit hydrogenation by ruminal microorganisms. As in

  9. Coulomb branches with complex singularities

    NASA Astrophysics Data System (ADS)

    Argyres, Philip C.; Martone, Mario

    2018-06-01

    We construct 4d superconformal field theories (SCFTs) whose Coulomb branches have singular complex structures. This implies, in particular, that their Coulomb branch coordinate rings are not freely generated. Our construction also gives examples of distinct SCFTs which have identical moduli space (Coulomb, Higgs, and mixed branch) geometries. These SCFTs thus provide an interesting arena in which to test the relationship between moduli space geometries and conformal field theory data. We construct these SCFTs by gauging certain discrete global symmetries of N = 4 superYang-Mills (sYM) theories. In the simplest cases, these discrete symmetries are outer automorphisms of the sYM gauge group, and so these theories have lagrangian descriptions as N = 4 sYM theories with disconnected gauge groups.

  10. Singular value description of a digital radiographic detector: Theory and measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyprianou, Iacovos S.; Badano, Aldo; Gallas, Brandon D.

    The H operator represents the deterministic performance of any imaging system. For a linear, digital imaging system, this system operator can be written in terms of a matrix, H, that describes the deterministic response of the system to a set of point objects. A singular value decomposition of this matrix results in a set of orthogonal functions (singular vectors) that form the system basis. A linear combination of these vectors completely describes the transfer of objects through the linear system, where the respective singular values associated with each singular vector describe the magnitude with which that contribution to the objectmore » is transferred through the system. This paper is focused on the measurement, analysis, and interpretation of the H matrix for digital x-ray detectors. A key ingredient in the measurement of the H matrix is the detector response to a single x ray (or infinitestimal x-ray beam). The authors have developed a method to estimate the 2D detector shift-variant, asymmetric ray response function (RRF) from multiple measured line response functions (LRFs) using a modified edge technique. The RRF measurements cover a range of x-ray incident angles from 0 deg. (equivalent location at the detector center) to 30 deg. (equivalent location at the detector edge) for a standard radiographic or cone-beam CT geometric setup. To demonstrate the method, three beam qualities were tested using the inherent, Lu/Er, and Yb beam filtration. The authors show that measures using the LRF, derived from an edge measurement, underestimate the system's performance when compared with the H matrix derived using the RRF. Furthermore, the authors show that edge measurements must be performed at multiple directions in order to capture rotational asymmetries of the RRF. The authors interpret the results of the H matrix SVD and provide correlations with the familiar MTF methodology. Discussion is made about the benefits of the H matrix technique with regards to

  11. Elasticity solutions for a class of composite laminate problems with stress singularities

    NASA Technical Reports Server (NTRS)

    Wang, S. S.

    1983-01-01

    A study on the fundamental mechanics of fiber-reinforced composite laminates with stress singularities is presented. Based on the theory of anisotropic elasticity and Lekhnitskii's complex-variable stress potentials, a system of coupled governing partial differential equations are established. An eigenfunction expansion method is introduced to determine the orders of stress singularities in composite laminates with various geometric configurations and material systems. Complete elasticity solutions are obtained for this class of singular composite laminate mechanics problems. Homogeneous solutions in eigenfunction series and particular solutions in polynomials are presented for several cases of interest. Three examples are given to illustrate the method of approach and the basic nature of the singular laminate elasticity solutions. The first problem is the well-known laminate free-edge stress problem, which has a rather weak stress singularity. The second problem is the important composite delamination problem, which has a strong crack-tip stress singularity. The third problem is the commonly encountered bonded composite joints, which has a complex solution structure with moderate orders of stress singularities.

  12. Piercing the water surface with a blade: Singularities of the contact line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alimov, Mars M.; Kornev, Konstantin G.

    An external meniscus on a narrow blade with a slit-like cross section is studied using the hodograph formulation of the Laplace nonlinear equation of capillarity. On narrow blades, the menisci are mostly shaped by the wetting and capillary forces; gravity plays a secondary role. To describe a meniscus in this asymptotic case, the model of Alimov and Kornev [“Meniscus on a shaped fibre: Singularities and hodograph formulation,” Proc. R. Soc. A 470, 20140113 (2014)] has been employed. It is shown that at the sharp edges of the blade, the contact line makes a jump. In the wetting case, the contactmore » line sitting at each side of the blade is lifted above the points where the meniscus first meets the blade edges. In the non-wetting case, the contact line is lowered below these points. The contours of the constant height emanating from the blade edges generate unusual singularities with infinite curvatures at some points at the blade edges. The meniscus forms a unique surface made of two mirror-symmetric sheets fused together. Each sheet is supported by the contact line sitting at each side of the blade.« less

  13. Singularity classification as a design tool for multiblock grids

    NASA Technical Reports Server (NTRS)

    Jones, Alan K.

    1992-01-01

    A major stumbling block in interactive design of 3-D multiblock grids is the difficulty of visualizing the design as a whole. One way to make this visualization task easier is to focus, at least in early design stages, on an aspect of the grid which is inherently easy to present graphically, and to conceptualize mentally, namely the nature and location of singularities in the grid. The topological behavior of a multiblock grid design is determined by what happens at its edges and vertices. Only a few of these are in any way exceptional. The exceptional behaviors lie along a singularity graph, which is a 1-D construct embedded in 3-D space. The varieties of singular behavior are limited enough to make useful symbology on a graphics device possible. Furthermore, some forms of block design manipulation that appear appropriate to the early conceptual-modeling phase can be accomplished on this level of abstraction. An overview of a proposed singularity classification scheme and selected examples of corresponding manipulation techniques is presented.

  14. Characterization of Phenolic Compounds in Wine Lees

    PubMed Central

    Zhijing, Ye; Shavandi, Amin; Harrison, Roland; Bekhit, Alaa El-Din A.

    2018-01-01

    The effect of vinification techniques on phenolic compounds and antioxidant activity of wine lees are poorly understood. The present study investigated the antioxidant activity of white and red wine lees generated at early fermentation and during aging. In this study, the total phenol content (TPC), total tannin content (TTC), mean degree of polymerization (mDP), and antioxidant activities of five white and eight red wine lees samples from different vinification backgrounds were determined. The results showed that vinification techniques had a significant (p < 0.05) impact on total phenol and tannin content of the samples. White wine lees had high mDP content compared with red ones. Catechin (50–62%) and epicatechin contents were the predominant terminal units of polymeric proanthocyanidin extracted from examined samples. Epigallocatechin was the predominant extension unit of white wine lees, whereas epicatechin was the predominant compound in red wine marc. The ORAC (oxygen radical absorbance capacity) assay was strongly correlated with the DPPH (α,α-diphenyl-β-picrylhydrazyl) assay, and the results showed the strong antioxidant activities associated with red wine lees (PN > 35 mg Trolox/g FDM) (PN: Pinot noir lees; FDM: Freeze-dried Material). This study indicates that tannin is one of the major phenolic compounds available in wine lees that can be useful in human and animal health applications. PMID:29587406

  15. Characterization of Phenolic Compounds in Wine Lees.

    PubMed

    Zhijing, Ye; Shavandi, Amin; Harrison, Roland; Bekhit, Alaa El-Din A

    2018-03-25

    The effect of vinification techniques on phenolic compounds and antioxidant activity of wine lees are poorly understood. The present study investigated the antioxidant activity of white and red wine lees generated at early fermentation and during aging. In this study, the total phenol content (TPC), total tannin content (TTC), mean degree of polymerization (mDP), and antioxidant activities of five white and eight red wine lees samples from different vinification backgrounds were determined. The results showed that vinification techniques had a significant ( p < 0.05) impact on total phenol and tannin content of the samples. White wine lees had high mDP content compared with red ones. Catechin (50-62%) and epicatechin contents were the predominant terminal units of polymeric proanthocyanidin extracted from examined samples. Epigallocatechin was the predominant extension unit of white wine lees, whereas epicatechin was the predominant compound in red wine marc. The ORAC (oxygen radical absorbance capacity) assay was strongly correlated with the DPPH (α, α-diphenyl-β-picrylhydrazyl) assay, and the results showed the strong antioxidant activities associated with red wine lees (PN > 35 mg Trolox/g FDM) (PN: Pinot noir lees; FDM: Freeze-dried Material). This study indicates that tannin is one of the major phenolic compounds available in wine lees that can be useful in human and animal health applications.

  16. High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides.

    PubMed

    Charnukha, A; Evtushinsky, D V; Matt, C E; Xu, N; Shi, M; Büchner, B; Zhigadlo, N D; Batlogg, B; Borisenko, S V

    2015-12-18

    In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.

  17. High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides

    NASA Astrophysics Data System (ADS)

    Charnukha, A.; Evtushinsky, D. V.; Matt, C. E.; Xu, N.; Shi, M.; Büchner, B.; Zhigadlo, N. D.; Batlogg, B.; Borisenko, S. V.

    2015-12-01

    In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.

  18. Coplanar three-beam interference and phase edge dislocations

    NASA Astrophysics Data System (ADS)

    Patorski, Krzysztof; SłuŻewski, Łukasz; Trusiak, Maciej; Pokorski, Krzysztof

    2016-12-01

    We present a comprehensive analysis of grating three-beam interference to discover a broad range of the ratio of amplitudes A of +/-1 diffraction orders and the zero order amplitude C providing phase edge dislocations. We derive a condition A/C > 0.5 for the occurrence of phase edge dislocations in three-beam interference self-image planes. In the boundary case A/C = 0.5 singularity conditions are met in those planes (once per interference field period), but the zero amplitude condition is not accompanied by an abrupt phase change. For A/C > 0.5 two adjacent singularities in a single field period show opposite sign topological charges. The occurrence of edge dislocations for selected values of A/C was verified by processing fork fringes obtained by introducing the fourth beam in the plane perpendicular to the one containing three coplanar diffraction orders. Two fork pattern processing methods are described, 2D CWT (two-dimensional continuous wavelet transform) and 2D spatial differentiation.

  19. Leading singularities and off-shell conformal integrals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drummond, James; Duhr, Claude; Eden, Burkhard

    2013-08-29

    The three-loop four-point function of stress-tensor multiplets in N=4 super Yang-Mills theory contains two so far unknown, off-shell, conformal integrals, in addition to the known, ladder-type integrals. In our paper we evaluate the unknown integrals, thus obtaining the three-loop correlation function analytically. The integrals have the generic structure of rational functions multiplied by (multiple) polylogarithms. We use the idea of leading singularities to obtain the rational coefficients, the symbol — with an appropriate ansatz for its structure — as a means of characterising multiple polylogarithms, and the technique of asymptotic expansion of Feynman integrals to obtain the integrals in certainmore » limits. The limiting behaviour uniquely fixes the symbols of the integrals, which we then lift to find the corresponding polylogarithmic functions. The final formulae are numerically confirmed. Furthermore, we develop techniques that can be applied more generally, and we illustrate this by analytically evaluating one of the integrals contributing to the same four-point function at four loops. This example shows a connection between the leading singularities and the entries of the symbol.« less

  20. On the linear programming bound for linear Lee codes.

    PubMed

    Astola, Helena; Tabus, Ioan

    2016-01-01

    Based on an invariance-type property of the Lee-compositions of a linear Lee code, additional equality constraints can be introduced to the linear programming problem of linear Lee codes. In this paper, we formulate this property in terms of an action of the multiplicative group of the field [Formula: see text] on the set of Lee-compositions. We show some useful properties of certain sums of Lee-numbers, which are the eigenvalues of the Lee association scheme, appearing in the linear programming problem of linear Lee codes. Using the additional equality constraints, we formulate the linear programming problem of linear Lee codes in a very compact form, leading to a fast execution, which allows to efficiently compute the bounds for large parameter values of the linear codes.

  1. Singular structures on liquid rims

    NASA Astrophysics Data System (ADS)

    Mayer, Hans C.; Krechetnikov, Rouslan

    2014-03-01

    This experimental note is concerned with a new effect we discovered in the course of studying water hammering phenomena. Namely, the ejecta originating from the solid plate impact on a water surface brings about a liquid rim at its edge with the fluid flowing towards the rim center and forming a singular structure resembling a "pancake." Here, we present the experimental observations and a qualitative physical explanation for the effect, which proves to be fundamental to the situation when the size and speed of the impacting body are such that the capillary effects become important.

  2. Marion McGregor Lee Loy

    ERIC Educational Resources Information Center

    Rossi, Joe

    2007-01-01

    This article presents an interview with Marion Frances Kaleleonalani McGregor Lee Loy who served as a teacher in the Hawai'i Department of Education from 1935 to 1974. Marion McGregor Lee Loy was born in 1911 in Honolulu. She attended Central Grammar and Lincoln Grammar schools before entering Kamehameha School for Girls in the ninth grade. Lee…

  3. 76 FR 30947 - Stephen Lee Seldon: Debarment Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ...] Stephen Lee Seldon: Debarment Order AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY... Act (the FD&C Act) permanently debarring Stephen Lee Seldon, M.D. from providing services in any... authority delegated to the Director (Staff Manual Guide 1410.35), finds that Stephen Lee Seldon has been...

  4. Moiré edge states in twisted graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Fleischmann, M.; Gupta, R.; Weckbecker, D.; Landgraf, W.; Pankratov, O.; Meded, V.; Shallcross, S.

    2018-05-01

    The edge physics of graphene based systems is well known to be highly sensitive to the atomic structure at the boundary, with localized zero mode edge states found only on the zigzag-type termination of the lattice. Here we demonstrate that the graphene twist bilayer supports an additional class of edge states, that (i) are found for all edge geometries and thus are robust against edge roughness, (ii) occur at energies coinciding with twist induced Van Hove singularities in the bulk and (iii) possess an electron density strongly modulated by the moiré lattice. Interestingly, these "moiré edge states" exist only for certain lattice commensurations and thus the edge physics of the twist bilayer is, in dramatic contrast to that of the bulk, not uniquely determined by the twist angle.

  5. Interactions between yeast lees and wine polyphenols during simulation of wine aging. II. Analysis of desorbed polyphenol compounds from yeast lees.

    PubMed

    Mazauric, Jean-Paul; Salmon, Jean-Michel

    2006-05-31

    In the first part of this work, the analysis of the polyphenolic compounds remaining in the wine after different contact times with yeast lees during simulation of red wine aging was undertaken. To achieve a more precise view of the wine polyphenols adsorbed on lees during red wine aging and to establish a clear balance between adsorbed and remnant polyphenol compounds, the specific analysis of the chemical composition of the adsorbed polyphenolic compounds (condensed tannins and anthocyanins) after their partial desorbtion from yeast lees by denaturation treatments was realized in the second part of the study. The total recovery of polyphenol compounds from yeast lees was not complete, since a rather important part of the initial wine colored polyphenols, especially those with a dominant blue color component, remained strongly adsorbed on yeast lees, as monitored by color tristimulus and reflectance spectra measurements. All anthocyanins were recovered at a rather high percentage (about 62%), and it was demonstrated that they were not adsorbed in relation with their sole polarity. Very few monomeric phenolic compounds were extracted from yeast lees. With the use of drastic denaturing treatments, the total recovery of condensed tannins reached 83%. Such tannins extracted from yeast lees exhibited very high polymeric size and a rather high percentage of galloylated residues by comparison with initial wine tannins, indicating that nonpolar tannins were preferentially desorbed from yeast lees by the extraction treatments.

  6. Constraints on the Lee-Wick Higgs sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carone, Christopher D.; Primulando, Reinard

    2009-09-01

    Lee-Wick partners to the standard model Higgs doublet may appear at a mass scale that is significantly lower than that of the remaining Lee-Wick partner states. The relevant effective theory is a two-Higgs doublet model in which one doublet has wrong-sign kinetic and mass terms. We determine bounds on this effective theory, including those from neutral B-meson mixing, b{yields}X{sub s}{gamma}, and Z{yields}bb. The results differ from those of conventional two-Higgs doublet models and lead to meaningful constraints on the Lee-Wick Higgs sector.

  7. Development of the triplet singularity for the analysis of wings and bodies in supersonic flow

    NASA Technical Reports Server (NTRS)

    Woodward, F. A.

    1981-01-01

    A supersonic triplet singularity was developed which eliminates internal waves generated by panels having supersonic edges. The triplet is a linear combination of source and vortex distributions which gives directional properties to the perturbation flow field surrounding the panel. The theoretical development of the triplet singularity is described together with its application to the calculation of surface pressures on wings and bodies. Examples are presented comparing the results of the new method with other supersonic methods and with experimental data.

  8. The Earl Lee Street Art Campaign

    ERIC Educational Resources Information Center

    Bubba

    2013-01-01

    This article describes a catchy phrase with more to its meaning than first view. A slogan "All the girls love Earl Lee," appears in street art around the world. Earl Lee is a lovable, handsome man who owns the fictitious Earl Lube industries. Originally intended to bring a smile to people's faces at a time when there wasn't much to smile…

  9. Magnetic monopole in noncommutative space-time and Wu-Yang singularity-free gauge transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laangvik, Miklos; Salminen, Tapio; Tureanu, Anca

    2011-04-15

    We investigate the validity of the Dirac quantization condition for magnetic monopoles in noncommutative space-time. We use an approach which is based on an extension of the method introduced by Wu and Yang. To study the effects of noncommutativity of space-time, we consider the gauge transformations of U{sub *}(1) gauge fields and use the corresponding deformed Maxwell's equations. Using a perturbation expansion in the noncommutativity parameter {theta}, we show that the Dirac quantization condition remains unmodified up to the first order in the expansion parameter. The result is obtained for a class of noncommutative source terms, which reduce to themore » Dirac delta function in the commutative limit.« less

  10. NATIONAL SECURITY: Relief, Rebukes Follow Agreement on Lee.

    PubMed

    Lawler, A

    2000-09-15

    What began as an explosive case of alleged nuclear espionage is expected to end quietly soon when physicist Wen Ho Lee walks free from an Albuquerque, New Mexico, courtroom after 9 months in jail. The ignominious collapse of the government's case and Lee's release have embarrassed federal prosecutors. However, the news was a relief to Asian-American researchers and others who say Lee's status as a suspect had heightened racial tensions at the national labs.

  11. Design of compactly supported wavelet to match singularities in medical images

    NASA Astrophysics Data System (ADS)

    Fung, Carrson C.; Shi, Pengcheng

    2002-11-01

    Analysis and understanding of medical images has important clinical values for patient diagnosis and treatment, as well as technical implications for computer vision and pattern recognition. One of the most fundamental issues is the detection of object boundaries or singularities, which is often the basis for further processes such as organ/tissue recognition, image registration, motion analysis, measurement of anatomical and physiological parameters, etc. The focus of this work involved taking a correlation based approach toward edge detection, by exploiting some of desirable properties of wavelet analysis. This leads to the possibility of constructing a bank of detectors, consisting of multiple wavelet basis functions of different scales which are optimal for specific types of edges, in order to optimally detect all the edges in an image. Our work involved developing a set of wavelet functions which matches the shape of the ramp and pulse edges. The matching algorithm used focuses on matching the edges in the frequency domain. It was proven that this technique could create matching wavelets applicable at all scales. Results have shown that matching wavelets can be obtained for the pulse edge while the ramp edge requires another matching algorithm.

  12. Kinetics of Structural Changes on GaSb(001) Singular and Vicinal Surfaces During the UHV Annealing

    NASA Astrophysics Data System (ADS)

    Vasev, A. V.; Putyato, M. A.; Preobrazhenskii, V. V.; Bakarov, A. K.; Toropov, A. I.

    2018-05-01

    The dynamics of processes of antimony desorption was investigated on the singular and vicinal GaSb(001) surface by RHEED method. The role of the terraces edges was determined during antimony evaporation in Langmuir desorption mode. It is shown that the structural transition (2x5) -> (1x3) is a complex of two transitions - order -> disorder and disorder -> order. The influence of the degree of surface miscut from the singular face on the dimension of the transition (2x5) -> DO was studied. The activation energies of structural transitions ex(2x5) -> (2x5), (2x5) -> DO and DO -> (1x3) on singular and vicinal faces GaSb(001) were determined.

  13. Argand-plane vorticity singularities in complex scalar optical fields: an experimental study using optical speckle.

    PubMed

    Rothschild, Freda; Bishop, Alexis I; Kitchen, Marcus J; Paganin, David M

    2014-03-24

    The Cornu spiral is, in essence, the image resulting from an Argand-plane map associated with monochromatic complex scalar plane waves diffracting from an infinite edge. Argand-plane maps can be useful in the analysis of more general optical fields. We experimentally study particular features of Argand-plane mappings known as "vorticity singularities" that are associated with mapping continuous single-valued complex scalar speckle fields to the Argand plane. Vorticity singularities possess a hierarchy of Argand-plane catastrophes including the fold, cusp and elliptic umbilic. We also confirm their connection to vortices in two-dimensional complex scalar waves. The study of vorticity singularities may also have implications for higher-dimensional fields such as coherence functions and multi-component fields such as vector and spinor fields.

  14. Radiation bounce from the Lee-Wick construction?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karouby, Johanna; Brandenberger, Robert

    2010-09-15

    It was recently realized that matter modeled by the scalar field sector of the Lee-Wick standard model yields, in the context of a homogeneous and isotropic cosmological background, a bouncing cosmology. However, bouncing cosmologies induced by pressureless matter are in general unstable to the addition of relativistic matter (i.e. radiation). Here we study the possibility of obtaining a bouncing cosmology if we add not only radiation, but also its Lee-Wick partner, to the matter sector. We find that, in general, no bounce occurs. The only way to obtain a bounce is to choose initial conditions with very special phases ofmore » the radiation field and its Lee-Wick partner.« less

  15. Persistence of the longnose darter (P. nasuta) in Lee Creek, Oklahoma

    USGS Publications Warehouse

    Gatlin, Michael R.; Long, James M.

    2011-01-01

    Lee Creek is one of Oklahoma’s six rivers designated as "scenic" by the Oklahoma Legislature. Lee Creek is located on the Oklahoma-Arkansas border in far eastern Oklahoma. The headwaters originate in northwestern Arkansas and flow south towards the Arkansas River. While the majority of the stream is in Arkansas, a portion flows into Oklahoma northwest of Uniontown, AR and continues for 28.2 river-km before crossing back into Arkansas near Van Buren, AR. The hydrology of lower Lee Creek has been altered by Lee Creek Reservoir near Van Buren, AR. It was believed that pre-impounded Lee Creek had the largest existing population of longnose darters (8). However, the most recent fish surveys in Lee Creek were conducted approximately twenty years ago. Robinson (8) surveyed Lee Creek in Arkansas, upstream of the Oklahoma border, and found longnose darters upstream of Natural Dam, AR. Wagner et al. (10) were the last to document longnose darter presence in the Oklahoma segment of Lee Creek. No efforts to collect this species in Oklahoma have occurred since the completion of Lee Creek Reservoir. Our objective was to determine whether the species persist in this segment of its historic range since impoundment.

  16. Unidirectional spectral singularities.

    PubMed

    Ramezani, Hamidreza; Li, Hao-Kun; Wang, Yuan; Zhang, Xiang

    2014-12-31

    We propose a class of spectral singularities emerging from the coincidence of two independent singularities with highly directional responses. These spectral singularities result from resonance trapping induced by the interplay between parity-time symmetry and Fano resonances. At these singularities, while the system is reciprocal in terms of a finite transmission, a simultaneous infinite reflection from one side and zero reflection from the opposite side can be realized.

  17. Preemptive Approach to Improving Survival in Epithelial Ovarian Cancer

    DTIC Science & Technology

    2012-06-01

    Metab 2008;93:3471–7. 692[87] Cho JH, Lee JG, Yang YI, Kim JH, Ahn JH, Baek NI, Lee KT, Choi JH. Eupatilin, a die- 693tary flavonoid , induces G2/M cell...Metab 2008;93:3471–7. 692[87] Cho JH, Lee JG, Yang YI, Kim JH, Ahn JH, Baek NI, Lee KT, Choi JH. Eupatilin, a die- 693tary flavonoid , induces G2/M

  18. One-loop renormalization of Lee-Wick gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinstein, Benjamin; O'Connell, Donal

    2008-11-15

    We examine the renormalization of Lee-Wick gauge theory to one-loop order. We show that only knowledge of the wave function renormalization is necessary to determine the running couplings, anomalous dimensions, and vector boson masses. In particular, the logarithmic running of the Lee-Wick vector boson mass is exactly related to the running of the coupling. In the case of an asymptotically free theory, the vector boson mass runs to infinity in the ultraviolet. Thus, the UV fixed point of the pure gauge theory is an ordinary quantum field theory. We find that the coupling runs more quickly in Lee-Wick gauge theorymore » than in ordinary gauge theory, so the Lee-Wick standard model does not naturally unify at any scale. Finally, we present results on the beta function of more general theories containing dimension six operators which differ from previous results in the literature.« less

  19. Benchmarking quantum mechanical calculations with experimental NMR chemical shifts of 2-HADNT

    NASA Astrophysics Data System (ADS)

    Liu, Yuemin; Junk, Thomas; Liu, Yucheng; Tzeng, Nianfeng; Perkins, Richard

    2015-04-01

    In this study, both GIAO-DFT and GIAO-MP2 calculations of nuclear magnetic resonance (NMR) spectra were benchmarked with experimental chemical shifts. The experimental chemical shifts were determined experimentally for carbon-13 (C-13) of seven carbon atoms for the TNT degradation product 2-hydroxylamino-4,6-dinitrotoluene (2-HADNT). Quantum mechanics GIAO calculations were implemented using Becke-3-Lee-Yang-Parr (B3LYP) and other six hybrid DFT methods (Becke-1-Lee-Yang-Parr (B1LYP), Becke-half-and-half-Lee-Yang-Parr (BH and HLYP), Cohen-Handy-3-Lee-Yang-Parr (O3LYP), Coulomb-attenuating-B3LYP (CAM-B3LYP), modified-Perdew-Wang-91-Lee-Yang-Parr (mPW1LYP), and Xu-3-Lee-Yang-Parr (X3LYP)) which use the same correlation functional LYP. Calculation results showed that the GIAO-MP2 method gives the most accurate chemical shift values, and O3LYP method provides the best prediction of chemical shifts among the B3LYP and other five DFT methods. Three types of atomic partial charges, Mulliken (MK), electrostatic potential (ESP), and natural bond orbital (NBO), were also calculated using MP2/aug-cc-pVDZ method. A reasonable correlation was discovered between NBO partial charges and experimental chemical shifts of carbon-13 (C-13).

  20. Understanding Singular Vectors

    ERIC Educational Resources Information Center

    James, David; Botteron, Cynthia

    2013-01-01

    matrix yields a surprisingly simple, heuristical approximation to its singular vectors. There are correspondingly good approximations to the singular values. Such rules of thumb provide an intuitive interpretation of the singular vectors that helps explain why the SVD is so…

  1. Naked singularities are not singular in distorted gravity

    NASA Astrophysics Data System (ADS)

    Garattini, Remo; Majumder, Barun

    2014-07-01

    We compute the Zero Point Energy (ZPE) induced by a naked singularity with the help of a reformulation of the Wheele-DeWitt equation. A variational approach is used for the calculation with Gaussian Trial Wave Functionals. The one loop contribution of the graviton to the ZPE is extracted keeping under control the UltraViolet divergences by means of a distorted gravitational field. Two examples of distortion are taken under consideration: Gravity's Rainbow and Noncommutative Geometry. Surprisingly, we find that the ZPE is no more singular when we approach the singularity.

  2. On SYM theory and all order bulk singularity structures of BPS strings in type II theory

    NASA Astrophysics Data System (ADS)

    Hatefi, Ehsan

    2018-06-01

    The complete forms of the S-matrix elements of a transverse scalar field, two world volume gauge fields, and a Potential Cn-1 Ramond-Ramond (RR) form field are investigated. In order to find an infinite number of t , s , (t + s + u)-channel bulk singularity structures of this particular mixed open-closed amplitude, we employ all the conformal field theory techniques to , exploring all the entire correlation functions and all order α‧ contact interactions to these supersymmetric Yang-Mills (SYM) couplings. Singularity and contact term comparisons with the other symmetric analysis, and are also carried out in detail. Various couplings from pull-Back of branes, Myers terms and several generalized Bianchi identities should be taken into account to be able to reconstruct all order α‧ bulk singularities of type IIB (IIA) superstring theory. Finally, we make a comment on how to derive without any ambiguity all order α‧ contact terms of this S-matrix which carry momentum of RR in transverse directions.

  3. Retrospective: Ivy Lee and the German Dye Trust.

    ERIC Educational Resources Information Center

    Hainsworth, Brad E.

    1987-01-01

    Examines the relationship between public relations trailblazer Ivy Lee and the German Dye Trust, which became an agent for the policies of Adolf Hitler. Discusses how Lee's efforts to use this relationship to persuade his contacts to influence the Nazi leadership failed because of his formal connection with this group. (JD)

  4. Resolution of quantum singularities

    NASA Astrophysics Data System (ADS)

    Konkowski, Deborah; Helliwell, Thomas

    2017-01-01

    A review of quantum singularities in static and conformally static spacetimes is given. A spacetime is said to be quantum mechanically non-singular if a quantum wave packet does not feel, in some sense, the presence of a singularity; mathematically, this means that the wave operator is essentially self-adjoint on the space of square integrable functions. Spacetimes with classical mild singularities (quasiregular ones) to spacetimes with classical strong curvature singularities have been tested. Here we discuss the similarities and differences between classical singularities that are healed quantum mechanically and those that are not. Possible extensions of the mathematical technique to more physically realistic spacetimes are discussed.

  5. Contracting singular horseshoe

    NASA Astrophysics Data System (ADS)

    Morales, C. A.; San Martín, B.

    2017-11-01

    We suggest a notion of hyperbolicity adapted to the geometric Rovella attractor (Robinson 2012 An Introduction to Dynamical Systems—Continuous and Discrete (Pure and Applied Undergraduate Texts vol 19) 2nd edn (Providence, RI: American Mathematical Society)) . More precisely, we call a partially hyperbolic set asymptotically sectional-hyperbolic if its singularities are hyperbolic and if its central subbundle is asymptotically sectional expanding outside the stable manifolds of the singularities. We prove that there are highly chaotic flows with Rovella-like singularities exhibiting this kind of hyperbolicity. We shall call them contracting singular horseshoes.

  6. Quantitation and structural determination of glucosylceramides contained in sake lees.

    PubMed

    Takahashi, Koshiro; Izumi, Kazuki; Nakahata, Eriko; Hirata, Miyo; Sawada, Kazutaka; Tsuge, Keisuke; Nagao, Koji; Kitagaki, Hiroshi

    2014-01-01

    Sake lees are solid parts filtered from the mash of sake, the traditional rice wine of Japan, which is brewed with Aspergillus oryzae and Saccharomyces cerevisiae. The moisture-holding activity of sake lees has long been recognized in Japan. However, the constituent responsible for this activity has not been elucidated. In this study, we first determined the structure of the glucosylceramides contained in sake lees. The glucosylceramides contained in sake lees were N-2'-hydroxyoctadecanoyl-l-O-β-D-glucopyranosyl-9-methyl-4,8-sphingadienine (d19:2/C18:0h), N-2'-hydroxyoctadecanoyl-l-O-β-D-glucopyranosyl-4,8-sphingadienine (d18:2/C18:0h), N-2'-hydroxyicosanoyl-l-O-β-D-glucopyranosyl-4,8-sphingadienine (d18:2/C20:0h) and N-2'-hydroxyicosanoyl-l-O-β-D-glucopyranosyl-4,8-sphingadienine (d18:2/C22:0h), which corresponded to those of A. oryzae and rice. The glucosylceramide produced by A. oryzae constituted the most abundant species (43% of the total glucosylceramide) in the sake lees. These results will be of value in the utilization of sake lees for cosmetics and functional foods.

  7. Singularity and Bohm criterion in hot positive ion species in the electronegative ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aslaninejad, Morteza; Yasserian, Kiomars

    2016-05-15

    The structure of the discharge for a magnetized electronegative ion source with two species of positive ions is investigated. The thermal motion of hot positive ions and the singularities involved with it are taken into account. By analytical solution of the neutral region, the location of the singular point and also the values of the plasma parameter such as electric potential and ion density at the singular point are obtained. A generalized Bohm criterion is recovered and discussed. In addition, for the non-neutral solution, the numerical method is used. In contrast with cold ion plasma, qualitative changes are observed. Themore » parameter space region within which oscillations in the density and potential can be observed has been scanned and discussed. The space charge behavior in the vicinity of edge of the ion sources has also been discussed in detail.« less

  8. Singularity in structural optimization

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Guptill, J. D.; Berke, L.

    1993-01-01

    The conditions under which global and local singularities may arise in structural optimization are examined. Examples of these singularities are presented, and a framework is given within which the singularities can be recognized. It is shown, in particular, that singularities can be identified through the analysis of stress-displacement relations together with compatibility conditions or the displacement-stress relations derived by the integrated force method of structural analysis. Methods of eliminating the effects of singularities are suggested and illustrated numerically.

  9. Edge effects in angle-ply composite laminates

    NASA Technical Reports Server (NTRS)

    Hsu, P. W.; Herakovich, C. T.

    1977-01-01

    This paper presents the results of a zeroth-order solution for edge effects in angle-ply composite laminates obtained using perturbation techniques and a limiting free body approach. The general solution for edge effects in laminates of arbitrary angle ply is applied to the special case of a (+ or - 45)s graphite/epoxy laminate. Interlaminar stress distributions are obtained as a function of the laminate thickness-to-width ratio and compared to finite difference results. The solution predicts stable, continuous stress distributions, determines finite maximum tensile interlaminar normal stress and provides mathematical evidence for singular interlaminar shear stresses in (+ or - 45) graphite/epoxy laminates.

  10. Adsorption Characteristics of Pb(2+) onto Wine Lees-Derived Biochar.

    PubMed

    Zhu, Qihong; Wu, Jun; Wang, Lilin; Yang, Gang; Zhang, Xiaohong

    2016-08-01

    Biochar has great advantages in soil amendment and polluted soil remediation. Herein, the pore and adsorption properties of wine lees-derived biochar were explored. Specifically, the adsorption isotherm and kinetics of Pb(2+) onto wine lees-derived biochar were examined. Experimental results revealed that wine lees-derived biochar featured large specific surface area and total pore volume, and high contents of -COOH and -OH on its surface. Adsorption of Pb(2+) onto wine lees-derived biochar proceeded via a multilayer adsorption mechanism, as described by the Freundlich adsorption model. Adsorption kinetics followed the Lagergren pseudo-second-order kinetics model; adsorption equilibrium was achieved within 30-60 min. Furthermore, the effect of solution pH on the adsorption of Pb(2+) was investigated. Within the studied pH range of 3-6, the adsorption capacity increased with increasing pH. Under established optimized conditions, wine lees-derived biochar achieved a Pb(2+) adsorption capacity of 79.12 mg/g.

  11. Template-free modeling by LEE and LEER in CASP11.

    PubMed

    Joung, InSuk; Lee, Sun Young; Cheng, Qianyi; Kim, Jong Yun; Joo, Keehyoung; Lee, Sung Jong; Lee, Jooyoung

    2016-09-01

    For the template-free modeling of human targets of CASP11, we utilized two of our modeling protocols, LEE and LEER. The LEE protocol took CASP11-released server models as the input and used some of them as templates for 3D (three-dimensional) modeling. The template selection procedure was based on the clustering of the server models aided by a community detection method of a server-model network. Restraining energy terms generated from the selected templates together with physical and statistical energy terms were used to build 3D models. Side-chains of the 3D models were rebuilt using target-specific consensus side-chain library along with the SCWRL4 rotamer library, which completed the LEE protocol. The first success factor of the LEE protocol was due to efficient server model screening. The average backbone accuracy of selected server models was similar to that of top 30% server models. The second factor was that a proper energy function along with our optimization method guided us, so that we successfully generated better quality models than the input template models. In 10 out of 24 cases, better backbone structures than the best of input template structures were generated. LEE models were further refined by performing restrained molecular dynamics simulations to generate LEER models. CASP11 results indicate that LEE models were better than the average template models in terms of both backbone structures and side-chain orientations. LEER models were of improved physical realism and stereo-chemistry compared to LEE models, and they were comparable to LEE models in the backbone accuracy. Proteins 2016; 84(Suppl 1):118-130. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  12. Singularities in Optimal Structural Design

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Guptill, J. D.; Berke, L.

    1992-01-01

    Singularity conditions that arise during structural optimization can seriously degrade the performance of the optimizer. The singularities are intrinsic to the formulation of the structural optimization problem and are not associated with the method of analysis. Certain conditions that give rise to singularities have been identified in earlier papers, encompassing the entire structure. Further examination revealed more complex sets of conditions in which singularities occur. Some of these singularities are local in nature, being associated with only a segment of the structure. Moreover, the likelihood that one of these local singularities may arise during an optimization procedure can be much greater than that of the global singularity identified earlier. Examples are provided of these additional forms of singularities. A framework is also given in which these singularities can be recognized. In particular, the singularities can be identified by examination of the stress displacement relations along with the compatibility conditions and/or the displacement stress relations derived in the integrated force method of structural analysis.

  13. Singularities in optimal structural design

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Guptill, J. D.; Berke, L.

    1992-01-01

    Singularity conditions that arise during structural optimization can seriously degrade the performance of the optimizer. The singularities are intrinsic to the formulation of the structural optimization problem and are not associated with the method of analysis. Certain conditions that give rise to singularities have been identified in earlier papers, encompassing the entire structure. Further examination revealed more complex sets of conditions in which singularities occur. Some of these singularities are local in nature, being associated with only a segment of the structure. Moreover, the likelihood that one of these local singularities may arise during an optimization procedure can be much greater than that of the global singularity identified earlier. Examples are provided of these additional forms of singularities. A framework is also given in which these singularities can be recognized. In particular, the singularities can be identified by examination of the stress displacement relations along with the compatibility conditions and/or the displacement stress relations derived in the integrated force method of structural analysis.

  14. Nonminimal Wu-Yang wormhole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, A. B.; Zayats, A. E.; Sushkov, S. V.

    2007-04-15

    We discuss exact solutions of a three-parameter nonminimal Einstein-Yang-Mills model, which describe the wormholes of a new type. These wormholes are considered to be supported by the SU(2)-symmetric Yang-Mills field, nonminimally coupled to gravity, the Wu-Yang ansatz for the gauge field being used. We distinguish between regular solutions, describing traversable nonminimal Wu-Yang wormholes, and black wormholes possessing one or two event horizons. The relation between the asymptotic mass of the regular traversable Wu-Yang wormhole and its throat radius is analyzed.

  15. INL@Work Hope Lee microbiologist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hope

    2010-01-01

    INL environmental microbiologist Hope Lee is working to develop and apply tools that clean contaminants out of ground water. You can learn more about INL's environmental projects at http://www.facebook.com/idahonationallaboratory.

  16. INL@Work Hope Lee microbiologist

    ScienceCinema

    Lee, Hope

    2018-02-07

    INL environmental microbiologist Hope Lee is working to develop and apply tools that clean contaminants out of ground water. You can learn more about INL's environmental projects at http://www.facebook.com/idahonationallaboratory.

  17. Generic Friedberg-Lee symmetry of Dirac neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo Shu; Xing Zhizhong; Li Xin

    2008-12-01

    We write out the generic Dirac neutrino mass operator which possesses the Friedberg-Lee symmetry and find that its corresponding neutrino mass matrix is asymmetric. Following a simple way to break the Friedberg-Lee symmetry, we calculate the neutrino mass eigenvalues and show that the resultant neutrino mixing pattern is nearly tri-bimaximal. Imposing the Hermitian condition on the neutrino mass matrix, we also show that the simplified ansatz is consistent with current experimental data and favors the normal neutrino mass hierarchy.

  18. Edge delamination in angle-ply composite laminates, part 5

    NASA Technical Reports Server (NTRS)

    Wang, S. S.

    1981-01-01

    A theoretical method was developed for describing the edge delamination stress intensity characteristics in angle-ply composite laminates. The method is based on the theory of anisotropic elasticity. The edge delamination problem is formulated using Lekhnitskii's complex-variable stress potentials and an especially developed eigenfunction expansion method. The method predicts exact orders of the three-dimensional stress singularity in a delamination crack tip region. With the aid of boundary collocation, the method predicts the complete stress and displacement fields in a finite-dimensional, delaminated composite. Fracture mechanics parameters such as the mixed-mode stress intensity factors and associated energy release rates for edge delamination can be calculated explicity. Solutions are obtained for edge delaminated (theta/-theta theta/-theta) angle-ply composites under uniform axial extension. Effects of delamination lengths, fiber orientations, lamination and geometric variables are studied.

  19. No Lee-Wick fields out of gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodigast, Andreas; Schuster, Theodor

    2009-06-15

    We investigate the gravitational one-loop divergences of the standard model in large extra dimensions, with gravitons propagating in the (4+{delta})-dimensional bulk and gauge fields as well as scalar and fermionic multiplets confined to a three-brane. To determine the divergences we establish a cutoff regularization which allows us to extract gauge-invariant counterterms. In contrast to the claim of a recent paper [F. Wu and M. Zhong, Phys. Rev. D 78, 085010 (2008).], we show that the fermionic and scalar higher derivative counterterms do not coincide with the higher derivative terms in the Lee-Wick standard model. We argue that even if themore » exact Lee-Wick higher derivative terms were found, as in the case of the pure gauge sector, this would not allow to conclude the existence of the massive ghost fields corresponding to these higher derivative terms in the Lee-Wick standard model.« less

  20. Phenomenology of the N = 3 Lee-Wick Standard Model

    NASA Astrophysics Data System (ADS)

    TerBeek, Russell Henry

    With the discovery of the Higgs Boson in 2012, particle physics has decidedly moved beyond the Standard Model into a new epoch. Though the Standard Model particle content is now completely accounted for, there remain many theoretical issues about the structure of the theory in need of resolution. Among these is the hierarchy problem: since the renormalized Higgs mass receives quadratic corrections from a higher cutoff scale, what keeps the Higgs boson light? Many possible solutions to this problem have been advanced, such as supersymmetry, Randall-Sundrum models, or sub-millimeter corrections to gravity. One such solution has been advanced by the Lee-Wick Standard Model. In this theory, higher-derivative operators are added to the Lagrangian for each Standard Model field, which result in propagators that possess two physical poles and fall off more rapidly in the ultraviolet regime. It can be shown by an auxiliary field transformation that the higher-derivative theory is identical to positing a second, manifestly renormalizable theory in which new fields with opposite-sign kinetic and mass terms are found. These so-called Lee-Wick fields have opposite-sign propagators, and famously cancel off the quadratic divergences that plague the renormalized Higgs mass. The states in the Hilbert space corresponding to Lee-Wick particles have negative norm, and implications for causality and unitarity are examined. This dissertation explores a variant of the theory called the N = 3 Lee-Wick Standard Model. The Lagrangian of this theory features a yet-higher derivative operator, which produces a propagator with three physical poles and possesses even better high-energy behavior than the minimal Lee-Wick theory. An analogous auxiliary field transformation takes this higher-derivative theory into a renormalizable theory with states of alternating positive, negative, and positive norm. The phenomenology of this theory is examined in detail, with particular emphasis on the collider

  1. Singular spectrum and singular entropy used in signal processing of NC table

    NASA Astrophysics Data System (ADS)

    Wang, Linhong; He, Yiwen

    2011-12-01

    NC (numerical control) table is a complex dynamic system. The dynamic characteristics caused by backlash, friction and elastic deformation among each component are so complex that they have become the bottleneck of enhancing the positioning accuracy, tracking accuracy and dynamic behavior of NC table. This paper collects vibration acceleration signals from NC table, analyzes the signals with SVD (singular value decomposition) method, acquires the singular spectrum and calculates the singular entropy of the signals. The signal characteristics and their regulations of NC table are revealed via the characteristic quantities such as singular spectrum, singular entropy etc. The steep degrees of singular spectrums can be used to discriminate complex degrees of signals. The results show that the signals in direction of driving axes are the simplest and the signals in perpendicular direction are the most complex. The singular entropy values can be used to study the indetermination of signals. The results show that the signals of NC table are not simple signal nor white noise, the entropy values in direction of driving axe are lower, the entropy values increase along with the increment of driving speed and the entropy values at the abnormal working conditions such as resonance or creeping etc decrease obviously.

  2. LEE VINING INTAKE LOOKING SOUTH. (MOTTLED SKY FROM CONDENSED MOISTURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LEE VINING INTAKE LOOKING SOUTH. (MOTTLED SKY FROM CONDENSED MOISTURE ON NEGATIVE AFFECTING EVEN PROCESSING OF SKY, SAVED FOR DOCUMENTARY PURPOSES) - Los Angeles Aqueduct, Lee Vining Intake Structure, Los Angeles, Los Angeles County, CA

  3. Equivalent Hamiltonian for the Lee model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H. F.

    2008-03-15

    Using the techniques of quasi-Hermitian quantum mechanics and quantum field theory we use a similarity transformation to construct an equivalent Hermitian Hamiltonian for the Lee model. In the field theory confined to the V/N{theta} sector it effectively decouples V, replacing the three-point interaction of the original Lee model by an additional mass term for the V particle and a four-point interaction between N and {theta}. While the construction is originally motivated by the regime where the bare coupling becomes imaginary, leading to a ghost, it applies equally to the standard Hermitian regime where the bare coupling is real. In thatmore » case the similarity transformation becomes a unitary transformation.« less

  4. {lambda} elements for one-dimensional singular problems with known strength of singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, K.K.; Surana, K.S.

    1996-10-01

    This paper presents a new and general procedure for designing special elements called {lambda} elements for one dimensional singular problems where the strength of the singularity is know. The {lambda} elements presented here are of type C{sup 0}. These elements also provide inter-element C{sup 0} continuity with p-version elements. The {lambda} elements do not require a precise knowledge of the extent of singular zone, i.e., their use may be extended beyond the singular zone. When {lambda} elements are used at the singularity, a singular problem behaves like a smooth problem thereby eliminating the need for h, p-adaptive processes all together.more » One dimensional steady state radial flow of an upper convected Maxwell fluid is considered as a sample problem. Least squares approach (or least squares finite element formulation: LSFEF) is used to construct the integral form (error functional I) from the differential equations. Numerical results presented for radially inward flow with inner radius r{sub i} = 0.1, 0.01, 0.001, 0.0001, 0.00001, and Deborah number of 2 (De = 2) demonstrate the accuracy, faster convergence of the iterative solution procedure, faster convergence rate of the error functional and mesh independent characteristics of the {lambda} elements regardless of the severity of the singularity.« less

  5. w-cosmological singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez-Jambrina, L.

    2010-12-15

    In this paper we characterize barotropic index singularities of homogeneous isotropic cosmological models [M. P. Dabrowski and T. Denkiewicz, Phys. Rev. D 79, 063521 (2009).]. They are shown to appear in cosmologies for which the scale factor is analytical with a Taylor series in which the linear and quadratic terms are absent. Though the barotropic index of the perfect fluid is singular, the singularities are weak, as it happens for other models for which the density and the pressure are regular.

  6. Working Connections: Suzan Lee--UBS Securities LLC, New York

    ERIC Educational Resources Information Center

    Library Journal, 2004

    2004-01-01

    This article is about Suzan Lee of UBS Securities LLC in New York, a person who is dedicated to connecting aspiring professionals to opportunities in the world of special libraries. In 1999, Lee realized that most library students had only one resource for internships--their library schools--and that these offerings focused largely on public and…

  7. Gravitational catalysis of merons in Einstein-Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Canfora, Fabrizio; Oh, Seung Hun; Salgado-Rebolledo, Patricio

    2017-10-01

    We construct regular configurations of the Einstein-Yang-Mills theory in various dimensions. The gauge field is of meron-type: it is proportional to a pure gauge (with a suitable parameter λ determined by the field equations). The corresponding smooth gauge transformation cannot be deformed continuously to the identity. In the three-dimensional case we consider the inclusion of a Chern-Simons term into the analysis, allowing λ to be different from its usual value of 1 /2 . In four dimensions, the gravitating meron is a smooth Euclidean wormhole interpolating between different vacua of the theory. In five and higher dimensions smooth meron-like configurations can also be constructed by considering warped products of the three-sphere and lower-dimensional Einstein manifolds. In all cases merons (which on flat spaces would be singular) become regular due to the coupling with general relativity. This effect is named "gravitational catalysis of merons".

  8. Naked singularity resolution in cylindrical collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurita, Yasunari; Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502; Nakao, Ken-ichi

    In this paper, we study the gravitational collapse of null dust in cylindrically symmetric spacetime. The naked singularity necessarily forms at the symmetry axis. We consider the situation in which null dust is emitted again from the naked singularity formed by the collapsed null dust and investigate the backreaction by this emission for the naked singularity. We show a very peculiar but physically important case in which the same amount of null dust as that of the collapsed one is emitted from the naked singularity as soon as the ingoing null dust hits the symmetry axis and forms the nakedmore » singularity. In this case, although this naked singularity satisfies the strong curvature condition by Krolak (limiting focusing condition), geodesics which hit the singularity can be extended uniquely across the singularity. Therefore, we may say that the collapsing null dust passes through the singularity formed by itself and then leaves for infinity. Finally, the singularity completely disappears and the flat spacetime remains.« less

  9. Abrupt current switching in graphene bilayer tunnel transistors enabled by van Hove singularities.

    PubMed

    Alymov, Georgy; Vyurkov, Vladimir; Ryzhii, Victor; Svintsov, Dmitry

    2016-04-21

    In a continuous search for the energy-efficient electronic switches, a great attention is focused on tunnel field-effect transistors (TFETs) demonstrating an abrupt dependence of the source-drain current on the gate voltage. Among all TFETs, those based on one-dimensional (1D) semiconductors exhibit the steepest current switching due to the singular density of states near the band edges, though the current in 1D structures is pretty low. In this paper, we propose a TFET based on 2D graphene bilayer which demonstrates a record steep subthreshold slope enabled by van Hove singularities in the density of states near the edges of conduction and valence bands. Our simulations show the accessibility of 3.5 × 10(4) ON/OFF current ratio with 150 mV gate voltage swing, and a maximum subthreshold slope of (20 μV/dec)(-1) just above the threshold. The high ON-state current of 0.8 mA/μm is enabled by a narrow (~0.3 eV) extrinsic band gap, while the smallness of the leakage current is due to an all-electrical doping of the source and drain contacts which suppresses the band tailing and trap-assisted tunneling.

  10. Abrupt current switching in graphene bilayer tunnel transistors enabled by van Hove singularities

    PubMed Central

    Alymov, Georgy; Vyurkov, Vladimir; Ryzhii, Victor; Svintsov, Dmitry

    2016-01-01

    In a continuous search for the energy-efficient electronic switches, a great attention is focused on tunnel field-effect transistors (TFETs) demonstrating an abrupt dependence of the source-drain current on the gate voltage. Among all TFETs, those based on one-dimensional (1D) semiconductors exhibit the steepest current switching due to the singular density of states near the band edges, though the current in 1D structures is pretty low. In this paper, we propose a TFET based on 2D graphene bilayer which demonstrates a record steep subthreshold slope enabled by van Hove singularities in the density of states near the edges of conduction and valence bands. Our simulations show the accessibility of 3.5 × 104 ON/OFF current ratio with 150 mV gate voltage swing, and a maximum subthreshold slope of (20 μV/dec)−1 just above the threshold. The high ON-state current of 0.8 mA/μm is enabled by a narrow (~0.3 eV) extrinsic band gap, while the smallness of the leakage current is due to an all-electrical doping of the source and drain contacts which suppresses the band tailing and trap-assisted tunneling. PMID:27098051

  11. ECOSTRESS and LEE - SpaceX CRS-15 Mission

    NASA Image and Video Library

    2018-06-02

    The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), pictured at the bottom, and the Latching End Effector (LEE), pictured at the top, are integrated into the unpressurized SpaceX Dragon truck June 2, 2018, at the SpaceX facility on Cape Canaveral Air Force Station in Florida. The payloads will be carried to the International Space Station on SpaceX's 15th Commercial Resupply Services mission. ECOSTRESS will measure the temperature of plants and use that information to better understand how much water plants need and how they respond to stress. The Canadian Space Agency is supplying LEE for the Canadarm2 as a spare to replace a failed unit removed by astronauts during a spacewalk in 2017. Each end of the Canadarm2 robotic arm has an identical LEE, which acts like a "hand" to grapple payloads and visiting cargo spaceships.

  12. LEE VINING INTAKE LOOKING NORTH. DIVERTED WATER FOR CITY OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LEE VINING INTAKE LOOKING NORTH. DIVERTED WATER FOR CITY OF LOS ANGELES USED TO GO OUT VIA COVERED CONDUIT TO RIGHT OF PICTURE SPACE. SCORCHED SAGE IN FOREGROUND FROM RECENT FOREST FIRE - Los Angeles Aqueduct, Lee Vining Intake Structure, Los Angeles, Los Angeles County, CA

  13. Singularity computations

    NASA Technical Reports Server (NTRS)

    Swedlow, J. L.

    1976-01-01

    An approach is described for singularity computations based on a numerical method for elastoplastic flow to delineate radial and angular distribution of field quantities and measure the intensity of the singularity. The method is applicable to problems in solid mechanics and lends itself to certain types of heat flow and fluid motion studies. Its use is not limited to linear, elastic, small strain, or two-dimensional situations.

  14. Loop quantum cosmology and singularities.

    PubMed

    Struyve, Ward

    2017-08-15

    Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.

  15. Numerical quadrature methods for integrals of singular periodic functions and their application to singular and weakly singular integral equations

    NASA Technical Reports Server (NTRS)

    Sidi, A.; Israeli, M.

    1986-01-01

    High accuracy numerical quadrature methods for integrals of singular periodic functions are proposed. These methods are based on the appropriate Euler-Maclaurin expansions of trapezoidal rule approximations and their extrapolations. They are used to obtain accurate quadrature methods for the solution of singular and weakly singular Fredholm integral equations. Such periodic equations are used in the solution of planar elliptic boundary value problems, elasticity, potential theory, conformal mapping, boundary element methods, free surface flows, etc. The use of the quadrature methods is demonstrated with numerical examples.

  16. Singularities in loop quantum cosmology.

    PubMed

    Cailleteau, Thomas; Cardoso, Antonio; Vandersloot, Kevin; Wands, David

    2008-12-19

    We show that simple scalar field models can give rise to curvature singularities in the effective Friedmann dynamics of loop quantum cosmology (LQC). We find singular solutions for spatially flat Friedmann-Robertson-Walker cosmologies with a canonical scalar field and a negative exponential potential, or with a phantom scalar field and a positive potential. While LQC avoids big bang or big rip type singularities, we find sudden singularities where the Hubble rate is bounded, but the Ricci curvature scalar diverges. We conclude that the effective equations of LQC are not in themselves sufficient to avoid the occurrence of curvature singularities.

  17. User's manual for interfacing a leading edge, vortex rollup program with two linear panel methods

    NASA Technical Reports Server (NTRS)

    Desilva, B. M. E.; Medan, R. T.

    1979-01-01

    Sufficient instructions are provided for interfacing the Mangler-Smith, leading edge vortex rollup program with a vortex lattice (POTFAN) method and an advanced higher order, singularity linear analysis for computing the vortex effects for simple canard wing combinations.

  18. Spike Lee and Commentaries on His Work. Occasional Papers Series 2, No. 1.

    ERIC Educational Resources Information Center

    Hudson, Herman C., Ed.

    This monograph presents a critical essay and a comprehensive 454-item bibliography on the contemporary African-American filmmaker, Spike Lee. The essay, entitled "African-American Folklore and Cultural History in the Films of Spike Lee" (Gloria J. Gibson-Hudson), analyzes Lee's filmmaking approach from a cultural and historical…

  19. New singularities in unexpected places

    NASA Astrophysics Data System (ADS)

    Barrow, John D.; Graham, Alexander A. H.

    2015-09-01

    Spacetime singularities have been discovered which are physically much weaker than those predicted by the classical singularity theorems. Geodesics evolve through them and they only display infinities in the derivatives of their curvature invariants. So far, these singularities have appeared to require rather exotic and unphysical matter for their occurrence. Here, we show that a large class of singularities of this form can be found in a simple Friedmann cosmology containing only a scalar-field with a power-law self-interaction potential. Their existence challenges several preconceived ideas about the nature of spacetime singularities and has an impact upon the end of inflation in the early universe.

  20. Naked singularity, firewall, and Hawking radiation.

    PubMed

    Zhang, Hongsheng

    2017-06-21

    Spacetime singularity has always been of interest since the proof of the Penrose-Hawking singularity theorem. Naked singularity naturally emerges from reasonable initial conditions in the collapsing process. A recent interesting approach in black hole information problem implies that we need a firewall to break the surplus entanglements among the Hawking photons. Classically, the firewall becomes a naked singularity. We find some vacuum analytical solutions in R n -gravity of the firewall-type and use these solutions as concrete models to study the naked singularities. By using standard quantum theory, we investigate the Hawking radiation emitted from the black holes with naked singularities. Here we show that the singularity itself does not destroy information. A unitary quantum theory works well around a firewall-type singularity. We discuss the validity of our result in general relativity. Further our result demonstrates that the temperature of the Hawking radiation still can be expressed in the form of the surface gravity divided by 2π. This indicates that a naked singularity may not compromise the Hakwing evaporation process.

  1. 75 FR 11225 - Environmental Impact Statement; Lee and Collier Counties, Florida

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... DEPARTMENT OF TRANSPORTATION Federal Highway Administration Environmental Impact Statement; Lee and Collier Counties, Florida AGENCY: Federal Highway Administration (FHWA), DOT. ACTION: Notice of...) for the proposed County Road 951 highway project in Lee and Collier Counties, Florida. This is formal...

  2. "Identity in Flux": Exploring the Work of Nikki S. Lee

    ERIC Educational Resources Information Center

    Allison, Amanda

    2009-01-01

    Identity is a vital topic for discussion, exploration, and discovery in the art classroom. The artwork of Nikki S. Lee provides an opportunity for students to begin reformulating their notions about selfhood. The work of Nikki S. Lee is significant because it blends documentary, fashion, and staged and unstaged photography to allow viewers to…

  3. The Ubiquitous Laplacian Assumption: Reply to Lee and Wagenmakers (2005)

    ERIC Educational Resources Information Center

    Trafimow, David

    2005-01-01

    In their comment on D. Trafimow, M. D. Lee and E. Wagenmakers argued that the requisite probabilities to use in Bayes's theorem can always be found. In the present reply, the author asserts that M. D. Lee and E. Wagenmakers use a problematic assumption and that finding the requisite probabilities is not straightforward. After describing the…

  4. Friedberg-Lee model at finite temperature and density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao Hong; CCAST; Yao Minjie

    2008-06-15

    The Friedberg-Lee model is studied at finite temperature and density. By using the finite temperature field theory, the effective potential of the Friedberg-Lee model and the bag constant B(T) and B(T,{mu}) have been calculated at different temperatures and densities. It is shown that there is a critical temperature T{sub C}{approx_equal}106.6 MeV when {mu}=0 MeV and a critical chemical potential {mu}{approx_equal}223.1 MeV for fixing the temperature at T=50 MeV. We also calculate the soliton solutions of the Friedberg-Lee model at finite temperature and density. It turns out that when T{<=}T{sub C} (or {mu}{<=}{mu}{sub C}), there is a bag constant B(T) [ormore » B(T,{mu})] and the soliton solutions are stable. However, when T>T{sub C} (or {mu}>{mu}{sub C}) the bag constant B(T)=0 MeV [or B(T,{mu})=0 MeV] and there is no soliton solution anymore, therefore, the confinement of quarks disappears quickly.« less

  5. Convergence of strain energy release rate components for edge-delaminated composite laminates

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Crews, J. H., Jr.; Aminpour, M. A.

    1987-01-01

    Strain energy release rates for edge delaminated composite laminates were obtained using quasi 3 dimensional finite element analysis. The problem of edge delamination at the -35/90 interfaces of an 8-ply composite laminate subjected to uniform axial strain was studied. The individual components of the strain energy release rates did not show convergence as the delamination tip elements were made smaller. In contrast, the total strain energy release rate converged and remained unchanged as the delamination tip elements were made smaller and agreed with that calculated using a classical laminated plate theory. The studies of the near field solutions for a delamination at an interface between two dissimilar isotropic or orthotropic plates showed that the imaginary part of the singularity is the cause of the nonconvergent behavior of the individual components. To evaluate the accuracy of the results, an 8-ply laminate with the delamination modeled in a thin resin layer, that exists between the -35 and 90 plies, was analyzed. Because the delamination exists in a homogeneous isotropic material, the oscillatory component of the singularity vanishes.

  6. Ghost busting: PT-symmetric interpretation of the Lee model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, Carl M.; Brandt, Sebastian F.; Chen, J.-H.

    2005-01-15

    The Lee model was introduced in the 1950s as an elementary quantum field theory in which mass, wave function, and charge renormalization could be carried out exactly. In early studies of this model it was found that there is a critical value of g{sup 2}, the square of the renormalized coupling constant, above which g{sub 0}{sup 2}, the square of the unrenormalized coupling constant, is negative. Thus, for g{sup 2} larger than this critical value, the Hamiltonian of the Lee model becomes non-Hermitian. It was also discovered that in this non-Hermitian regime a new state appears whose norm is negative.more » This state is called a ghost state. It has always been assumed that in this ghost regime the Lee model is an unacceptable quantum theory because unitarity appears to be violated. However, in this regime while the Hamiltonian is not Hermitian, it does possess PT symmetry. It has recently been discovered that a non-Hermitian Hamiltonian having PT symmetry may define a quantum theory that is unitary. The proof of unitarity requires the construction of a new time-independent operator called C. In terms of C one can define a new inner product with respect to which the norms of the states in the Hilbert space are positive. Furthermore, it has been shown that time evolution in such a theory is unitary. In this paper the C operator for the Lee model in the ghost regime is constructed in the V/N{theta} sector. It is then shown that the ghost state has a positive norm and that the Lee model is an acceptable unitary quantum field theory for all values of g{sup 2}.« less

  7. On important precursor of singular optics (tutorial)

    NASA Astrophysics Data System (ADS)

    Polyanskii, Peter V.; Felde, Christina V.; Bogatyryova, Halina V.; Konovchuk, Alexey V.

    2018-01-01

    The rise of singular optics is usually associated with the seminal paper by J. F. Nye and M. V. Berry [Proc. R. Soc. Lond. A, 336, 165-189 (1974)]. Intense development of this area of modern photonics has started since the early eighties of the XX century due to invention of the interfrence technique for detection and diagnostics of phase singularities, such as optical vortices in complex speckle-structured light fields. The next powerful incentive for formation of singular optics into separate area of the science on light was connectected with discovering of very practical technique for creation of singular optical beams of various kinds on the base of computer-generated holograms. In the eghties and ninetieth of the XX century, singular optics evolved, almost entirely, under the approximation of complete coherency of light field. Only at the threshold of the XXI century, it has been comprehended that the singular-optics approaches can be fruitfully expanded onto partially spatially coherent, partially polarized and polychromatic light fields supporting singularities of new kinds, that has been resulted in establishing of correlation singular optics. Here we show that correlation singular optics has much deeper roots, ascending to "pre-singular" and even pre-laser epoch and associated with the concept of partial coherence and polarization. It is remarcable that correlation singular optics in its present interpretation has forestalled the standard coherent singular optics. This paper is timed to the sixtieth anniversary of the most profound precursor of modern correlation singular optics [J. Opt. Soc. Am., 47, 895-902 (1957)].

  8. Singularity analysis: theory and further developments

    NASA Astrophysics Data System (ADS)

    Cheng, Qiuming

    2015-04-01

    Since the concept of singularity and local singularity analysis method (LSA) were originally proposed by the author for characterizing the nonlinear property of hydrothermal mineralization processes, the local singularity analysis technique has been successfully applied for identification of geochemical and geophysical anomalies related to various types of mineral deposits. It has also been shown that the singularity is the generic property of singular geo-processes which result in anomalous amounts of energy release or material accumulation within a narrow spatial-temporal interval. In the current paper we introduce several new developments about singularity analysis. First is a new concept of 'fractal density' which describes the singularity of complex phenomena of fractal nature. While the ordinary density possesses a unit of ratio of mass and volume (e.g. g/cm3, kg/m3) or ratio of energy over volume or time (e.g. J/cm3, w/L3, w/s), the fractal density has a unit of ratio of mass over fractal set or energy over fractal set (e.g. g/cmα, kg/mα, J/ mα, w/Lα, where α can be a non-integer). For the matter with fractal density (a non-integer α), the ordinary density of the phenomena (mass or energy) no longer exists and depicts singularity. We demonstrate that most of extreme geo-processes occurred in the earth crust originated from cascade earth dynamics (mental convection, plate tectonics, orogeny and weathering etc) may cause fractal density of mass accumulation or energy release. The examples to be used to demonstrate the concepts of fractal density and singularity are earthquakes, floods, volcanos, hurricanes, heat flow over oceanic ridge, hydrothermal mineralization in orogenic belt, and anomalies in regolith over mine caused by ore and toxic elements vertical migration. Other developments of singularity theory and methodologies including singular Kriging and singularity weights of evidence model for information integration will also be introduced.

  9. Acoustic Scattering from Corners, Edges and Circular Cones

    NASA Astrophysics Data System (ADS)

    Elschner, Johannes; Hu, Guanghui

    2018-05-01

    Consider the time-harmonic acoustic scattering from a bounded penetrable obstacle imbedded in an isotropic homogeneous medium. The obstacle is supposed to possess a circular conic point or an edge point on the boundary in three dimensions and a planar corner point in two dimensions. The opening angles of cones and edges are allowed to be any number in {(0,2π)π}. We prove that such an obstacle scatters any incoming wave non-trivially (that is, the far field patterns cannot vanish identically), leading to the absence of real non-scattering wavenumbers. Local and global uniqueness results for the inverse problem of recovering the shape of penetrable scatterers are also obtained using a single incoming wave. Our approach relies on the singularity analysis of the inhomogeneous Laplace equation in a cone.

  10. Timelike naked singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goswami, Rituparno; Joshi, Pankaj S.; Vaz, Cenalo

    We construct a class of spherically symmetric collapse models in which a naked singularity may develop as the end state of collapse. The matter distribution considered has negative radial and tangential pressures, but the weak energy condition is obeyed throughout. The singularity forms at the center of the collapsing cloud and continues to be visible for a finite time. The duration of visibility depends on the nature of energy distribution. Hence the causal structure of the resulting singularity depends on the nature of the mass function chosen for the cloud. We present a general model in which the naked singularitymore » formed is timelike, neither pointlike nor null. Our work represents a step toward clarifying the necessary conditions for the validity of the Cosmic Censorship Conjecture.« less

  11. The Big Bang Singularity

    NASA Astrophysics Data System (ADS)

    Ling, Eric

    The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.

  12. A Study of the Yang-gyeong-gyu-il-ui (兩景揆日儀) in the Joseon Dynasty

    NASA Astrophysics Data System (ADS)

    Lee, Yong Sam; Kim, Sang Hyuk; Mihn, Byeong-Hee

    2015-03-01

    The Yang-gyeong-gyu-il-ui (兩景揆日儀) is a kind of elevation sundial using three wooden plates. Sang-hyeok Lee (李尙爀, 1810~?) and Byeong-cheol Nam (南秉哲, 1817~1863) gave descriptions of this sundial and explained how to use it in their Gyu-il-go (揆日考) and Ui-gi-jip-seol (儀器輯說), respectively. According to Gyu-il-go (揆日考) there are two horizontal plates and two vertical plates that have lines of season and time. Subseasonal (節候) lines are engraved between seasonal (節氣) lines, subdividing the interval into three equal lines of Cho-hu (初候, early subseason), Jung-hu (中候, mid subseason) and Mal-hu (末候, late subseason); there are 13 seasonal lines for a year, thus resulting in 37 subseasonal lines; also, there are 12 double-hour (時辰) lines for a day engraved on these plates. The only remaining artifact of Yang-gyeong-gyu-il-ui was made in 1849 (the 15th year of Heon-jong) and is kept at the Korea University Museum. We have compared and analyzed Yanggyeong- gyu-il-ui and similar western sundials. Also, we have reviewed the scientific aspect of this artifact and built a replica. Yang-gyeong-gyu-il-ui is a new model enhanced from the miniaturization development in the early Joseon Dynasty and can be applied to the southern part of the tropic line through a structure change.

  13. Overcoming Robot-Arm Joint Singularities

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Houck, J. A.

    1986-01-01

    Kinematic equations allow arm to pass smoothly through singular region. Report discusses mathematical singularities in equations of robotarm control. Operator commands robot arm to move in direction relative to its own axis system by specifying velocity in that direction. Velocity command then resolved into individual-joint rotational velocities in robot arm to effect motion. However, usual resolved-rate equations become singular when robot arm is straightened.

  14. 75 FR 28822 - Duke Energy Carolina, LLC; William States Lee III Combined License Application; Notice of Intent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ..., LLC; William States Lee III Combined License Application; Notice of Intent To Conduct a Supplemental... an application for combined licenses (COL) for its William States Lee III Nuclear Station (Lee) site.../new-licensing/col/lee.html . In addition, the Cherokee County Public Library, 300 E. Rutledge Avenue...

  15. A high-efficiency spin polarizer based on edge and surface disordered silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Xu, Ning; Zhang, Haiyang; Wu, Xiuqiang; Chen, Qiao; Ding, Jianwen

    2018-07-01

    Using the tight-binding formalism, we explore the effect of weak disorder upon the conductance of zigzag edge silicene nanoribbons (SiNRs), in the limit of phase-coherent transport. We find that the fashion of the conductance varies with disorder, and depends strongly on the type of disorder. Conductance dips are observed at the Van Hove singularities, owing to quasilocalized states existing in surface disordered SiNRs. A conductance gap is observed around the Fermi energy for both edge and surface disordered SiNRs, because edge states are localized. The average conductance of the disordered SiNRs decreases exponentially with the increase of disorder, and finally tends to disappear. The near-perfect spin polarization can be realized in SiNRs with a weak edge or surface disorder, and also can be attained by both the local electric field and the exchange field.

  16. Computing singularities of perturbation series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kvaal, Simen; Jarlebring, Elias; Michiels, Wim

    2011-03-15

    Many properties of current ab initio approaches to the quantum many-body problem, both perturbational and otherwise, are related to the singularity structure of the Rayleigh-Schroedinger perturbation series. A numerical procedure is presented that in principle computes the complete set of singularities, including the dominant singularity which limits the radius of convergence. The method approximates the singularities as eigenvalues of a certain generalized eigenvalue equation which is solved using iterative techniques. It relies on computation of the action of the Hamiltonian matrix on a vector and does not rely on the terms in the perturbation series. The method can be usefulmore » for studying perturbation series of typical systems of moderate size, for fundamental development of resummation schemes, and for understanding the structure of singularities for typical systems. Some illustrative model problems are studied, including a helium-like model with {delta}-function interactions for which Moeller-Plesset perturbation theory is considered and the radius of convergence found.« less

  17. Spacetime Singularities in Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Minassian, Eric A.

    2000-04-01

    Recent advances in 2+1 dimensional quantum gravity have provided tools to study the effects of quantization of spacetime on black hole and big bang/big crunch type singularities. I investigate effects of quantization of spacetime on singularities of the 2+1 dimensional BTZ black hole and the 2+1 dimensional torus universe. Hosoya has considered the BTZ black hole, and using a "quantum generalized affine parameter" (QGAP), has shown that, for some specific paths, quantum effects "smear" the singularities. Using gaussian wave functions as generic wave functions, I found that, for both BTZ black hole and the torus universe, there are families of paths that still reach the singularities with a finite QGAP, suggesting that singularities persist in quantum gravity. More realistic calculations, using modular invariant wave functions of Carlip and Nelson for the torus universe, offer further support for this conclusion. Currently work is in progress to study more realistic quantum gravity effects for BTZ black holes and other spacetime models.

  18. The supersonic triplet - A new aerodynamic panel singularity with directional properties. [internal wave elimination

    NASA Technical Reports Server (NTRS)

    Woodward, F. A.; Landrum, E. J.

    1979-01-01

    A new supersonic triplet singularity has been developed which eliminates internal waves generated by panels having supersonic edges. The triplet is a linear combination of source and vortex distributions which provides the desired directional properties in the flow field surrounding the panel. The theoretical development of the triplet is described, together with its application to the calculation of surface pressure on arbitrary body shapes. Examples are presented comparing the results of the new method with other supersonic panel methods and with experimental data.

  19. Yuan T. Lee and Molecular Beam Studies

    Science.gov Websites

    &D Nuggets Database dropdown arrow Search Tag Cloud Browse Reports Database Help Finding Aids : The Influence of Yuan T. Lee, Journal of Chemical Physics, Volume 125, Issue 13, pp. 132302-132302-19

  20. 75 FR 30451 - Duke Energy Carolinas, LLC; Duke Energy Carolinas, LLC; William States Lee III Combined License...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... Energy Carolinas, LLC; William States Lee III Combined License Application; Notice of Intent To Conduct a... environmental review of the William States Lee III Nuclear Station, Units 1 and 2 combined licenses application...-licensing/col/lee.html '' to `` http://www.nrc.gov/reactors/new-reactors/col/lee.html ''. Dated at Rockville...

  1. 76 FR 39869 - Lee 8 Storage Partnership; Notice of Motion for Extension of Rate Case Filing Deadline

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR09-5-003] Lee 8 Storage..., Lee 8 Storage Partnership (Lee 8) filed a request for an extension consistent with the Commission's... extend the cycle for such reviews from three to five years.\\1\\ Therefore, Lee 8 requests that the date...

  2. An Improved Transformation and Optimized Sampling Scheme for the Numerical Evaluation of Singular and Near-Singular Potentials

    NASA Technical Reports Server (NTRS)

    Khayat, Michael A.; Wilton, Donald R.; Fink, Patrick W.

    2007-01-01

    Simple and efficient numerical procedures using singularity cancellation methods are presented for evaluating singular and near-singular potential integrals. Four different transformations are compared and the advantages of the Radial-angular transform are demonstrated. A method is then described for optimizing this integration scheme.

  3. The Semantics of Plurals: A Defense of Singularism

    ERIC Educational Resources Information Center

    Florio, Salvatore

    2010-01-01

    In this dissertation, I defend "semantic singularism", which is the view that syntactically plural terms, such as "they" or "Russell and Whitehead", are semantically singular. A semantically singular term is a term that denotes a single entity. Semantic singularism is to be distinguished from "syntactic singularism", according to which…

  4. Null cosmological singularities and free strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, K.

    2010-03-15

    We continue exploring free strings in the background of null Kasner-like cosmological singularities, following K. Narayan, arXiv:0904.4532. We study the free string Schrodinger wave functional along the lines of K. Narayan, arXiv:0807.1517. We find the wave functional to be nonsingular in the vicinity of singularities whose Kasner exponents satisfy certain relations. We compare this with the description in other variables. We then study certain regulated versions of these singularities where the singular region is replaced by a substringy but nonsingular region and study the string spectra in these backgrounds. The string modes can again be solved for exactly, giving somemore » insight into how string oscillator states get excited near the singularity.« less

  5. Does loop quantum cosmology replace the big rip singularity by a non-singular bounce?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro, Jaume de, E-mail: jaime.haro@upc.edu

    It is stated that holonomy corrections in loop quantum cosmology introduce a modification in Friedmann's equation which prevent the big rip singularity. Recently in [1] it has been proved that this modified Friedmann equation is obtained in an inconsistent way, what means that the results deduced from it, in particular the big rip singularity avoidance, are not justified. The problem is that holonomy corrections modify the gravitational part of the Hamiltonian of the system leading, after Legendre's transformation, to a non covariant Lagrangian which is in contradiction with one of the main principles of General Relativity. A more consistent waymore » to deal with the big rip singularity avoidance is to disregard modification in the gravitational part of the Hamiltonian, and only consider inverse volume effects [2]. In this case we will see that, not like the big bang singularity, the big rip singularity survives in loop quantum cosmology. Another way to deal with the big rip avoidance is to take into account geometric quantum effects given by the the Wheeler-De Witt equation. In that case, even though the wave packets spread, the expectation values satisfy the same equations as their classical analogues. Then, following the viewpoint adopted in loop quantum cosmology, one can conclude that the big rip singularity survives when one takes into account these quantum effects. However, the spreading of the wave packets prevents the recover of the semiclassical time, and thus, one might conclude that the classical evolution of the universe come to and end before the big rip is reached. This is not conclusive because. as we will see, it always exists other external times that allows us to define the classical and quantum evolution of the universe up to the big rip singularity.« less

  6. On irregular singularity wave functions and superconformal indices

    NASA Astrophysics Data System (ADS)

    Buican, Matthew; Nishinaka, Takahiro

    2017-09-01

    We generalize, in a manifestly Weyl-invariant way, our previous expressions for irregular singularity wave functions in two-dimensional SU(2) q-deformed Yang-Mills theory to SU( N). As an application, we give closed-form expressions for the Schur indices of all ( A N - 1 , A N ( n - 1)-1) Argyres-Douglas (AD) superconformal field theories (SCFTs), thus completing the computation of these quantities for the ( A N , A M ) SCFTs. With minimal effort, our wave functions also give new Schur indices of various infinite sets of "Type IV" AD theories. We explore the discrete symmetries of these indices and also show how highly intricate renormalization group (RG) flows from isolated theories and conformal manifolds in the ultraviolet to isolated theories and (products of) conformal manifolds in the infrared are encoded in these indices. We compare our flows with dimensionally reduced flows via a simple "monopole vev RG" formalism. Finally, since our expressions are given in terms of concise Lie algebra data, we speculate on extensions of our results that might be useful for probing the existence of hypothetical SCFTs based on other Lie algebras. We conclude with a discussion of some open problems.

  7. 77 FR 46613 - Safety Zone; 2012 Ironman US Championship Swim, Hudson River, Fort Lee, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... 1625-AA00 Safety Zone; 2012 Ironman US Championship Swim, Hudson River, Fort Lee, NJ AGENCY: Coast... navigable waters of the Hudson River in the vicinity of Englewood Cliffs and Fort Lee, NJ for the 2012... Championship Swim, Hudson River, Fort Lee, NJ in the Federal Register (77 FR 34285). We received no comments on...

  8. Time-dependent mean-field theory for x-ray near-edge spectroscopy

    NASA Astrophysics Data System (ADS)

    Bertsch, G. F.; Lee, A. J.

    2014-02-01

    We derive equations of motion for calculating the near-edge x-ray absorption spectrum in molecules and condensed matter, based on a two-determinant approximation and Dirac's variational principle. The theory provides an exact solution for the linear response when the Hamiltonian or energy functional has only diagonal interactions in some basis. We numerically solve the equations to compare with the Mahan-Nozières-De Dominicis theory of the edge singularity in metallic conductors. Our extracted power-law exponents are similar to those of the analytic theory, but are not in quantitative agreement. The calculational method can be readily generalized to treat Kohn-Sham Hamiltonians with electron-electron interactions derived from correlation-exchange potentials.

  9. Singular reduction of resonant Hamiltonians

    NASA Astrophysics Data System (ADS)

    Meyer, Kenneth R.; Palacián, Jesús F.; Yanguas, Patricia

    2018-06-01

    We investigate the dynamics of resonant Hamiltonians with n degrees of freedom to which we attach a small perturbation. Our study is based on the geometric interpretation of singular reduction theory. The flow of the Hamiltonian vector field is reconstructed from the cross sections corresponding to an approximation of this vector field in an energy surface. This approximate system is also built using normal forms and applying reduction theory obtaining the reduced Hamiltonian that is defined on the orbit space. Generically, the reduction is of singular character and we classify the singularities in the orbit space, getting three different types of singular points. A critical point of the reduced Hamiltonian corresponds to a family of periodic solutions in the full system whose characteristic multipliers are approximated accordingly to the nature of the critical point.

  10. [Plasticity of bacterial genomes: pathogenicity islands and the locus of enterocyte effacement (LEE)].

    PubMed

    Kirsch, Petra; Jores, Jörg; Wieler, Lothar H

    2004-01-01

    Many bacterial virulence attributes, like toxins, adhesins, invasins, iron uptake systems, are encoded within specific regions of the bacterial genome. These in size varying regions are termed pathogenicity islands (PAIs) since they confer pathogenic properties to the respective micro-organism. Per definition PAIs are exclusively found in pathogenic strains and are often inserted near transfer-RNA genes. Nevertheless, non-pathogenic bacteria also possess foreign DNA elements that confer advantageous features, leading to improved fitness. These additional DNA elements as well as PAIs are termed genomic islands and were acquired during bacterial evolution. Significant G+C content deviation in pathogenicity islands with respect to the rest of the genome, the presence of direct repeat sequences at the flanking regions, the presence of integrase gene determinants as other mobility features,the particular insertion site (tRNA gene) as well as the observed genetic instability suggests that pathogenicity islands were acquired by horizontal gene transfer. PAIs are the fascinating proof of the plasticity of bacterial genomes. PAIs were originally described in human pathogenic Escherichia (E.) coli strains. In the meantime PAIs have been found in various pathogenic bacteria of humans, animals and even plants. The Locus of Enterocyte Effacement (LEE) is one particular widely distributed PAI of E coli. In addition, it also confers pathogenicity to the related species Citrobacter (C.) rodentium and Escherichia (E.) alvei. The LEE is an important virulence feature of several animal pathogens. It is an obligate PAI of all animal and human enteropathogenic E. coli (EPEC), and most enterohaemorrhegic E. coli (EHEC) also harbor the LEE. The LEE encodes a type III secretion system, an adhesion (intimin) that mediates the intimate contact between the bacterium and the epithelial cell, as well as various proteins which are secreted via the type III secretion system. The LEE encoded

  11. Top-forms of leading singularities in nonplanar multi-loop amplitudes

    NASA Astrophysics Data System (ADS)

    Chen, Baoyi; Chen, Gang; Cheung, Yeuk-Kwan E.; Xie, Ruofei; Xin, Yuan

    2018-02-01

    The on-shell diagram is a very important tool in studying scattering amplitudes. In this paper we discuss the on-shell diagrams without external BCFW bridges. We introduce an extra step of adding an auxiliary external momentum line. Then we can decompose the on-shell diagrams by removing external BCFW bridges to a planar diagram whose top-form is well known now. The top-form of the on-shell diagram with the auxiliary line can be obtained by adding the BCFW bridges in an inverse order as discussed in our former paper (Chen et al. in Eur Phys J C 77(2):80 2017). To get the top-form of the original diagram, the soft limit of the auxiliary line is needed. We obtain the evolution rule for the Grassmannian integral and the geometry constraint in the soft limit. This completes the top-form description of leading singularities in nonplanar scattering amplitudes of N=4 Super Yang-Mills (SYM), which is valid for arbitrary higher-loops and beyond the Maximally-Helicity-Violation (MHV) amplitudes.

  12. Courtland Lee: A Global Advocate for Counseling

    ERIC Educational Resources Information Center

    Gladding, Samuel T.

    2011-01-01

    Courtland Lee is exemplary in his accomplishments nationally and internationally. His academic achievements are notable in multicultural counseling and social justice. His leadership in counseling has been outstanding with his having served as president of the American Counseling Association, the Association for Multicultural Counseling and…

  13. Structural modeling of age specific fertility curves in Peninsular Malaysia: An approach of Lee Carter method

    NASA Astrophysics Data System (ADS)

    Hanafiah, Hazlenah; Jemain, Abdul Aziz

    2013-11-01

    In recent years, the study of fertility has been getting a lot of attention among research abroad following fear of deterioration of fertility led by the rapid economy development. Hence, this study examines the feasibility of developing fertility forecasts based on age structure. Lee Carter model (1992) is applied in this study as it is an established and widely used model in analysing demographic aspects. A singular value decomposition approach is incorporated with an ARIMA model to estimate age specific fertility rates in Peninsular Malaysia over the period 1958-2007. Residual plots is used to measure the goodness of fit of the model. Fertility index forecast using random walk drift is then utilised to predict the future age specific fertility. Results indicate that the proposed model provides a relatively good and reasonable data fitting. In addition, there is an apparent and continuous decline in age specific fertility curves in the next 10 years, particularly among mothers' in their early 20's and 40's. The study on the fertility is vital in order to maintain a balance between the population growth and the provision of facilities related resources.

  14. Observational constraints on cosmological future singularities

    NASA Astrophysics Data System (ADS)

    Beltrán Jiménez, Jose; Lazkoz, Ruth; Sáez-Gómez, Diego; Salzano, Vincenzo

    2016-11-01

    In this work we consider a family of cosmological models featuring future singularities. This type of cosmological evolution is typical of dark energy models with an equation of state violating some of the standard energy conditions (e.g. the null energy condition). Such a kind of behavior, widely studied in the literature, may arise in cosmologies with phantom fields, theories of modified gravity or models with interacting dark matter/dark energy. We briefly review the physical consequences of these cosmological evolution regarding geodesic completeness and the divergence of tidal forces in order to emphasize under which circumstances the singularities in some cosmological quantities correspond to actual singular spacetimes. We then introduce several phenomenological parameterizations of the Hubble expansion rate to model different singularities existing in the literature and use SN Ia, BAO and H( z) data to constrain how far in the future the singularity needs to be (under some reasonable assumptions on the behavior of the Hubble factor). We show that, for our family of parameterizations, the lower bound for the singularity time cannot be smaller than about 1.2 times the age of the universe, what roughly speaking means {˜ }2.8 Gyrs from the present time.

  15. Naked shell singularities on the brane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seahra, Sanjeev S.

    By utilizing nonstandard slicings of 5-dimensional Schwarzschild and Schwarzschild-AdS manifolds based on isotropic coordinates, we generate static and spherically-symmetric braneworld spacetimes containing shell-like naked null singularities. For planar slicings, we find that the brane-matter sourcing the solution is a perfect fluid with an exotic equation of state and a pressure singularity where the brane crosses the bulk horizon. From a relativistic point of view, such a singularity is required to maintain matter infinitesimally above the surface of a black hole. From the point of view of the AdS/CFT conjecture, the singular horizon can be seen as one possible quantum correctionmore » to a classical black hole geometry. Various generalizations of planar slicings are also considered for a Ricci-flat bulk, and we find that singular horizons and exotic matter distributions are common features.« less

  16. Edge physics of the quantum spin Hall insulator from a quantum dot excited by optical absorption.

    PubMed

    Vasseur, Romain; Moore, Joel E

    2014-04-11

    The gapless edge modes of the quantum spin Hall insulator form a helical liquid in which the direction of motion along the edge is determined by the spin orientation of the electrons. In order to probe the Luttinger liquid physics of these edge states and their interaction with a magnetic (Kondo) impurity, we consider a setup where the helical liquid is tunnel coupled to a semiconductor quantum dot that is excited by optical absorption, thereby inducing an effective quantum quench of the tunneling. At low energy, the absorption spectrum is dominated by a power-law singularity. The corresponding exponent is directly related to the interaction strength (Luttinger parameter) and can be computed exactly using boundary conformal field theory thanks to the unique nature of the quantum spin Hall edge.

  17. JFK in Blackface: Spike Lee's "Malcolm X."

    ERIC Educational Resources Information Center

    Walker, Clarence E.

    1993-01-01

    Discusses the failure of filmmaker Spike Lee to grapple with the real politics of Malcolm X before and after he left the Nation of Islam. Acknowledging the complexity of the man and his context would avoid creating a mythical figure similar to Oliver Stone's movie "JFK." (SLD)

  18. Statistical study of some Lee galaxy groups

    NASA Astrophysics Data System (ADS)

    Mohamed, Sabry A.; Fouad, Ahmed M.

    2017-12-01

    Compact groups of galaxies are systems of small number of galaxies close to each other. They are a good laboratory to study galaxy properties, such as structure, morphology and evolution which are affected by the environment and galaxy interactions. We applied the tree clustering technique (the Euclidean separation distance coefficients) to test the physical reality of groups and used certain criteria (Sabry et al., 2009) depending on the physical attributes of the galaxies. The sample of the data is the quintets groups of Lee compact groups of galaxies (Lee et al., 2004). It is based on a modified version of Hickson's criteria (Hickson, 1982). The results reveal the membership of each galaxy and how it is related to its group. The tables of groups and their members are included. Our results indicates that 12 Groups are real groups with real members while 18 Groups have one galaxy that has attribute discordant and should be discarded from its group.

  19. Are Singularities Integral to General Theory of Relativity?

    NASA Astrophysics Data System (ADS)

    Krori, K.; Dutta, S.

    2011-11-01

    Since the 1960s the general relativists have been deeply obsessed with the possibilities of GTR singularities - blackhole as well as cosmological singularities. Senovilla, for the first time, followed by others, showed that there are cylindrically symmetric cosmological space-times which are free of singularities. On the other hand, Krori et al. have presently shown that spherically symmetric cosmological space-times - which later reduce to FRW space-times may also be free of singularities. Besides, Mitra has in the mean-time come forward with some realistic calculations which seem to rule out the possibility of a blackhole singularity. So whether singularities are integral to GTR seems to come under a shadow.

  20. 77 FR 34285 - Safety Zone; 2012 Ironman U.S. Championship Swim, Hudson River, Fort Lee, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ...-AA00 Safety Zone; 2012 Ironman U.S. Championship Swim, Hudson River, Fort Lee, NJ AGENCY: Coast Guard... safety zone on the navigable waters of the Hudson River in the vicinity of Englewood Cliffs and Fort Lee... the Hudson River in the vicinity of Englewood Cliffs and Fort Lee, New Jersey. This swim event poses...

  1. Quantum healing of spacetime singularities: A review

    NASA Astrophysics Data System (ADS)

    Konkowski, D. A.; Helliwell, T. M.

    2018-02-01

    Singularities are commonplace in general relativistic spacetimes. It is natural to hope that they might be “healed” (or resolved) by the inclusion of quantum mechanics, either in the theory itself (quantum gravity) or, more modestly, in the description of the spacetime geodesic paths used to define them. We focus here on the latter, mainly using a procedure proposed by Horowitz and Marolf to test whether singularities in broad classes of spacetimes can be resolved by replacing geodesic paths with quantum wave packets. We list the spacetime singularities that various authors have studied in this context, and distinguish those which are healed quantum mechanically (QM) from those which remain singular. Finally, we mention some alternative approaches to healing singularities.

  2. Sandstone units of the Lee Formation and related strata in eastern Kentucky

    USGS Publications Warehouse

    Rice, Charles L.

    1984-01-01

    Most of the Cumberland Plateau region of southeastern Kentucky is underlain by thick sequences of quartzose sandstone which are assigned for the most part to the Lee Formation. Much new information has been gathered about the Lee and related strata as a result of the cooperative mapping program of the U. S. Geological Survey and the Kentucky Geological Survey between 1960 and 1978. This report summarizes the age, lithology, distribution, sedimentary structures, and stratigraphic relations of the sandstone units of the Lee within and between each of three major outcrop belts in Kentucky: Cumberland Mountain, Pine Mountain, and the Pottsville Escarpment area. The Lee Formation generally has been regarded as Early Pennsylvanian in age and separated from Mississippian strata in Kentucky by an unconformity. However, lithostratigraphic units included in the formation as presently defined are broadly time-transgressive and range in age from Late Mississippian in parts of the Cumberland Mountain outcrop belt to Middle Pennsylvanian in the Pottsville Escarpment area. Members of the Lee intertongue with and grade into the underlying Pennington Formation and overlying Breathitt Formation. Sandstone and conglomeratic sandstone members of the Lee of Mississippian age found only in parts of the Cumberland overthrust sheet are closely associated with marine rocks; Pennsylvanian members are mostly associated with continental coal-bearing strata. Sandstone members of the Lee are mostly quartz rich and range from more than 90 percent to more than 99 percent quartz. They are relatively coarse grained, commonly pebbly, and in places conglomeratic. The units are southwest-trending linear or broadly lobate bodies. The Lee Formation is as much as 1,500 ft thick in the type area in Cumberland Mountain where it has been divided into eight members. The Pinnacle Overlook, Chadwell, White Rocks Sandstone, Middlesboro, Bee Rock Sandstone, and Naese Sandstone Members are mostly quartzose

  3. Types of flow on the lee side of delta wings

    NASA Astrophysics Data System (ADS)

    Narayan, K. Yegna; Seshadri, S. N.

    1997-03-01

    Delta wings have found wide application in a variety of aerospace vehicles including high performance combat aircraft, supersonic civil aircraft, (proposed) hypersonic aircraft and the space shuttle orbiter. A considerable amount of research work has been carried out over the past three decades and an extensive body of literature is available. The present review focuses attention on the nine possible types of flow that can occur on the lee side of delta wings in a Mach number range which extends from subsonic to hypersonic. The dependence of the flow types on geometrical and freestream parameters has been discussed in detail. The extensive experimental data available has made it possible to obtain a broad physical understanding of the mechanisms underlying the different flow types. However much more work needs to be done to determine the effects of Reynolds number, particularly when either the state of the boundary layer is transitional or when the type of flow is changing from leading edge attached to separated. Computational methods have made spectacular advances in recent years. In particular, solutions of Reynolds averaged Navier-Stokes equations at fairly high Reynolds number have become possible and these computations have captured eight of the nine experimentally observed flow types, including those involving cross flow shock waves and shock-induced separation.

  4. Cicada genus Pomponia Stål, 1866 (Hemiptera: Cicadidae) from Vietnam and Cambodia, with a new species, a new record, and a key to the species.

    PubMed

    Pham, Hong-Thai; Lee, Young June; Constant, Jerome

    2015-03-03

    The genus Pomponia Stål, 1866 from Vietnam and Cambodia is reviewed . Pomponia brevialata Lee & Pham, sp. nov. is described from Vietnam. Pomponia backanensis Pham & Yang, 2009 is added to the Cambodian cicada fauna. A key to the seven Vietnamese and Cambodian species of the genus Pomponia Stål, 1866 is provided: P. linearis (Walker, 1850), P. backanensis Pham & Yang, 2009, P. brevialata Lee & Pham, sp. nov., P. subtilita Lee, 2009, P. piceata Distant, 1905, P. daklakensis Sanborn, 2009, and P. orientalis (Distant, 1912). Synonymic lists, information on geographical distributions, and material examined for the Vietnamese and Cambodian species of Pomponia are provided.

  5. New classification methods on singularity of mechanism

    NASA Astrophysics Data System (ADS)

    Luo, Jianguo; Han, Jianyou

    2010-07-01

    Based on the analysis of base and methods of singularity of mechanism, four methods obtained according to the factors of moving states of mechanism and cause of singularity and property of linear complex of singularity and methods in studying singularity, these bases and methods can't reflect the direct property and systematic property and controllable property of the structure of mechanism in macro, thus can't play an excellent role in guiding to evade the configuration before the appearance of singularity. In view of the shortcomings of forementioned four bases and methods, six new methods combined with the structure and exterior phenomena and motion control of mechanism directly and closely, classfication carried out based on the factors of moving base and joint component and executor and branch and acutating source and input parameters, these factors display the systemic property in macro, excellent guiding performance can be expected in singularity evasion and machine design and machine control based on these new bases and methods.

  6. Phase singularities, correlation singularities, and conditions for complete destructive interference.

    PubMed

    Rosenbury, Christopher; Gu, Yalong; Gbur, Greg

    2012-04-01

    A previously derived condition for the complete destructive interference of partially coherent light emerging from a trio of pinholes in an opaque screen is generalized to the case when the coherence properties of the field are asymmetric. It is shown by example that the interference condition is necessary, but not sufficient, and that the existence of complete destructive interference also depends on the intensity of light emerging from the pinholes and the system geometry; more general conditions for such interference are derived. The phase of the wave field exhibits both phase singularities and correlation singularities, and a number of nonintuitive situations in which complete destructive interference occurs are described and explained.

  7. [Lee Jungsook, a Korean independence activist and a nurse during the Japanese colonial period].

    PubMed

    Kim, Sook Young

    2015-04-01

    This article examines the life of Lee Jungsook, a Korean nurse, as a independence activist during the Japanese colonial period. Lee Jungsook(1896-1950) was born in Bukchung in Hamnam province. She studied at Chungshin girl's high school and worked at Severance hospital. The characteristics and culture of her educational background and work place were very important factors which influenced greatly the life of Lee Jungsook. She learned independent spirit and nationalism from Chungshin girls' high school and worked as nurse at the Severance hospital which were full of intense aspiration for Korea's independence. Many of doctors, professors and medical students were participated in the 3.1 Independence Movement. Lee Jungsook was a founding member of Hyulsungdan who tried to help the independence activists in prison and their families and worked as a main member of Korean Women's Association for Korean Independece and Kyungsung branch of the Korean Red Cross. She was sent to jail by the Japanese government for her independence activism. After being released after serving two years confinement, she worked for the Union for Women's Liberation as a founding member. Lee Joungsook was a great independence activist who had a nursing care spirit as a nurse.

  8. Lee Acculturation Dream Scale for Korean-American college students.

    PubMed

    Lee, Sang Bok

    2005-04-01

    This study examined acculturation as represented in dream narratives of 165 Korean immigrant college students living in the USA. A total of 165 dreams were collected and evaluated using the Lee Acculturation Dream Scale, for which locations of dream contents were coded. 39% of the dreams took place in South Korea, while 38% were in the USA. Also, 16% of the dreams included both locations, whereas 7% had no specific dream location. The dreams contained overlapping dream messages, images, scenes, and interactions in both South Korea and the USA. A two-sample t test on the mean scores of the Lee Acculturation Dream Scale indicated no significant difference between men and women.

  9. Singularity: Scientific containers for mobility of compute.

    PubMed

    Kurtzer, Gregory M; Sochat, Vanessa; Bauer, Michael W

    2017-01-01

    Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science.

  10. Singularity: Scientific containers for mobility of compute

    PubMed Central

    Kurtzer, Gregory M.; Bauer, Michael W.

    2017-01-01

    Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science. PMID:28494014

  11. Treatment of singularities in cracked bodies

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Raju, I. S.

    1990-01-01

    Three-dimensional finite-element analyses of middle-crack tension (M-T) and bend specimens subjected to mode I loadings were performed to study the stress singularity along the crack front. The specimen was modeled using 20-node isoparametric elements. The displacements and stresses from the analysis were used to estimate the power of singularities using a log-log regression analysis along the crack front. The analyses showed that finite-sized cracked bodies have two singular stress fields of the form rho = C sub o (theta, z) r to the -1/2 power + D sub o (theta, phi) R to the lambda rho power. The first term is the cylindrical singularity with the power -1/2 and is dominant over the middle 96 pct (for Poisson's ratio = 0.3) of the crack front and becomes nearly zero at the free surface. The second singularity is a vertex singularity with the vertex point located at the intersection of the crack front and the free surface. The second term is dominant at the free surface and becomes nearly zero away from the boundary layer. The thickness of the boundary layer depends on Poisson's ratio of the material and is independent of the specimen type. The thickness of the boundary layer varied from 0 pct to about 5 pct of the total specimen thickness as Poisson's ratio varied from 0.0 to 0.45. Because there are two singular stress fields near the free surface, the strain energy release rate (G) is an appropriate parameter to measure the severity of the crack.

  12. Treatment of singularities in cracked bodies

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Raju, I. S.

    1989-01-01

    Three-dimensional finite-element analyses of middle-crack tension (M-T) and bend specimens subjected to mode I loadings were performed to study the stress singularity along the crack front. The specimen was modeled using 20-node isoparametric elements. The displacements and stresses from the analysis were used to estimate the power of singularities using a log-log regression analysis along the crack front. The analyses showed that finite-sized cracked bodies have two singular stress fields of the form rho = C sub o (theta, z) r to the -1/2 power + D sub o (theta, phi) R to the lambda rho power. The first term is the cylindrical singularity with the power -1/2 and is dominant over the middle 96 pct (for Poisson's ratio = 0.3) of the crack front and becomes nearly zero at the free surface. The second singularity is a vertex singularity with the vertex point located at the intersection of the crack front and the free surface. The second term is dominant at the free surface and becomes nearly zero away from the the boundary layer. The thickness of the boundary layer depends on Poisson's ratio of the material and is independent of the specimen type. The thickness of the boundary layer varied from 0 pct to about 5 pct of the total specimen thickness as Poisson's ratio varied from 0.0 to 0.45. Because there are two singular stress fields near the free surface, the strain energy release rate (G) is an appropriate parameter to measure the severity of the crack.

  13. Fate of grape flavor precursors during storage on yeast lees.

    PubMed

    Loscos, Natalia; Hernández-Orte, Purificación; Cacho, Juan; Ferreira, Vicente

    2009-06-24

    The effect of the addition of a grape flavor precursor extract to a grape juice, before or after fermentation with three different Saccharomyces cerevisiae yeast strains, on the evolution of the wine aroma composition during a 9-month aging period on yeast lees has been studied. Wine aroma compounds were determined by gas chromatography-mass spectrometry after alcoholic fermentation and after 3 and 9 months of storage. The aging of wine on lees caused important changes in the aroma profiles of wines, making the concentrations of three terpenes, norisoprenoids (except beta-damascenone and beta-ionone), 4-allyl-2,6-dimethoxyphenol, ethyl vanillate, syringaldehyde, and ethyl cinnamate increase, whereas the concentrations of most of the rest of compounds tended to decrease. Lees are responsible for the observed increasing trends, except for linalool and alpha-terpineol, and also for a large part of the observed decrements. As expected, the addition of precursors brings about an increment in the levels of most terpenes, norisoprenoids, vanillins, and ethyl cinnamate, and it is after an aging time when differences linked to the level of precursors in the must become more evident. The timing of the addition of precursors has a minor influence, except for beta-damascenone, vanillin, and syringaldehyde, for which supplementation after fermentation is more effective. It has also been observed that the precursor fraction makes the levels of vinylphenols decrease. Finally, it has also been found that lees from different yeast strains may have a slightly different abilities to release volatile compounds derived from precursors.

  14. Duality Quantum Simulation of the Yang-Baxter Equation

    NASA Astrophysics Data System (ADS)

    Zheng, Chao; Wei, Shijie

    2018-04-01

    The Yang-Baxter equation has become a significant theoretical tool in a variety of areas of physics. It is desirable to investigate the quantum simulation of the Yang-Baxter equation itself, exploring the connections between quantum integrability and quantum information processing, in which the unity of both the Yang-Baxter equation system and its quantum entanglement should be kept as a whole. In this work, we propose a duality quantum simulation algorithm of the Yang-Baxter equation, which contains the Yang-Baxter system and an ancillary qubit. Contrasting to conventional methods in which the two hand sides of the equation are simulated separately, they are simulated simultaneously in this proposal. Consequently, it opens up a way to further investigate entanglements in a Yang-Baxter equation.

  15. Duality Quantum Simulation of the Yang-Baxter Equation

    NASA Astrophysics Data System (ADS)

    Zheng, Chao; Wei, Shijie

    2018-07-01

    The Yang-Baxter equation has become a significant theoretical tool in a variety of areas of physics. It is desirable to investigate the quantum simulation of the Yang-Baxter equation itself, exploring the connections between quantum integrability and quantum information processing, in which the unity of both the Yang-Baxter equation system and its quantum entanglement should be kept as a whole. In this work, we propose a duality quantum simulation algorithm of the Yang-Baxter equation, which contains the Yang-Baxter system and an ancillary qubit. Contrasting to conventional methods in which the two hand sides of the equation are simulated separately, they are simulated simultaneously in this proposal. Consequently, it opens up a way to further investigate entanglements in a Yang-Baxter equation.

  16. 76 FR 79228 - Combined Licenses at William States Lee III Nuclear Station Site, Units 1 and 2; Duke Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... William States Lee III Nuclear Station Site, Units 1 and 2; Duke Energy Carolinas, LLC AGENCY: Nuclear... Statement for Combined Licenses (COL) for William States Lee III Nuclear Station Units 1 and 2 [Lee Nuclear... draft EIS can be accessed online at the NRC's William States Lee III Nuclear Site Web page at http://www...

  17. Leading-edge receptivity for blunt-nose bodies

    NASA Technical Reports Server (NTRS)

    Kerschen, Edward J.

    1991-01-01

    This research program investigates boundary-layer receptivity in the leading-edge region for bodies with blunt leading edges. Receptivity theory provides the link between the unsteady distrubance environment in the free stream and the initial amplitudes of the instability waves in the boundary layer. This is a critical problem which must be addressed in order to develop more accurate prediction methods for boundary-layer transition. The first phase of this project examines the effects of leading-edge bluntness and aerodynamic loading for low Mach number flows. In the second phase of the project, the investigation is extended to supersonic Mach numbers. Singular perturbation techniques are utilized to develop an asymptotic theory for high Reynolds numbers. In the first year, the asymptotic theory was developed for leading-edge receptivity in low Mach number flows. The case of a parabolic nose is considered. Substantial progress was made on the Navier-Sotkes computations. Analytical solutions for the steady and unsteady potential flow fields were incorporated into the code, greatly expanding the types of free-stream disturbances that can be considered while also significantly reducing the the computational requirements. The time-stepping algorithm was modified so that the potential flow perturbations induced by the unsteady pressure field are directly introduced throughout the computational domain, avoiding an artificial 'numerical diffusion' of these from the outer boundary. In addition, the start-up process was modified by introducing the transient Stokes wave solution into the downstream boundary conditions.

  18. Future singularity avoidance in phantom dark energy models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro, Jaume de, E-mail: jaime.haro@upc.edu

    2012-07-01

    Different approaches to quantum cosmology are studied in order to deal with the future singularity avoidance problem. Our results show that these future singularities will persist but could take different forms. As an example we have studied the big rip which appear when one considers the state equation P = ωρ with ω < −1, showing that it does not disappear in modified gravity. On the other hand, it is well-known that quantum geometric effects (holonomy corrections) in loop quantum cosmology introduce a quadratic modification, namely proportional to ρ{sup 2}, in Friedmann's equation that replace the big rip by amore » non-singular bounce. However this modified Friedmann equation could have been obtained in an inconsistent way, what means that the obtained results from this equation, in particular singularity avoidance, would be incorrect. In fact, we will show that instead of a non-singular bounce, the big rip singularity would be replaced, in loop quantum cosmology, by other kind of singularity.« less

  19. Exotic singularities and spatially curved loop quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Parampreet; Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5; Vidotto, Francesca

    2011-03-15

    We investigate the occurrence of various exotic spacelike singularities in the past and the future evolution of k={+-}1 Friedmann-Robertson-Walker model and loop quantum cosmology using a sufficiently general phenomenological model for the equation of state. We highlight the nontrivial role played by the intrinsic curvature for these singularities and the new physics which emerges at the Planck scale. We show that quantum gravity effects generically resolve all strong curvature singularities including big rip and big freeze singularities. The weak singularities, which include sudden and big brake singularities, are ignored by quantum gravity when spatial curvature is negative, as was previouslymore » found for the spatially flat model. Interestingly, for the spatially closed model there exist cases where weak singularities may be resolved when they occur in the past evolution. The spatially closed model exhibits another novel feature. For a particular class of equation of state, this model also exhibits an additional physical branch in loop quantum cosmology, a baby universe separated from the parent branch. Our analysis generalizes previous results obtained on the resolution of strong curvature singularities in flat models to isotropic spacetimes with nonzero spatial curvature.« less

  20. Mountain-Wave Induced Rotors in the Lee of Three-Dimensional Ridges

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Durran, D. R.

    2003-12-01

    investigate the sensitivity of the rotor dynamics to topographic variations in the cross-flow direction. As many as six nested grids are used with a minimum horizontal resolution of 22 m and 90 vertical levels in order to resolve the internal rotor structure and sub-rotors. The simulation results indicate a thin sheet of high-vorticity fluid develops adjacent to the ground along the lee slope and then ascends abruptly as it is advected into the updraft at the leading edge of the first trapped lee wave. This vortex sheet is primarily forced by mechanical shear associated with frictional processes at the surface. Instability of the horizontal vortex sheet occurs along the leading edge of the "parent" rotor and as a result coherent sub-rotor circulations subsequently develop. These sub-rotors intensify and are advected downstream or back toward the mountain into the parent rotor at low-levels leading to an enhancement of the near-surface horizontal vorticity. Horizontal vorticity within the sub-rotors are enhanced several fold. The horizontal vorticity generation appears to be enhanced near the edges of the wake emanating from the circular peak due to vortex stretching of the parent rotor and also further maximized due to stretching associated with three-dimensional turbulent eddies. The results suggest that preferred regions of intense rotors may exist near topographic features that enhance vortex stretching.

  1. Evolution of singularities in a partially coherent vortex beam.

    PubMed

    van Dijk, Thomas; Visser, Taco D

    2009-04-01

    We study the evolution of phase singularities and coherence singularities in a Laguerre-Gauss beam that is rendered partially coherent by letting it pass through a spatial light modulator. The original beam has an on-axis minumum of intensity--a phase singularity--that transforms into a maximum of the far-field intensity. In contrast, although the original beam has no coherence singularities, such singularities are found to develop as the beam propagates. This disappearance of one kind of singularity and the gradual appearance of another is illustrated with numerical examples.

  2. Inclined edge crack in two bonded elastic quarter planes under out-of-plane loading

    NASA Astrophysics Data System (ADS)

    Hwang, E. H.; Choi, S. R.; Earmme, Y. Y.

    1992-08-01

    The problem of the interfacial edge crack in which the crack-inclination angle = zero is solved analytically by means of the Wiener-Hopf technique with the Mellin transform. The results are found to confirm the result by Bassani and Erdogan (1979) showing that there is no stress singularity for the interface perpendicular to the free boundary at the junction with a straight inclined interface with no crack.

  3. Graphene-edge dielectrophoretic tweezers for trapping of biomolecules.

    PubMed

    Barik, Avijit; Zhang, Yao; Grassi, Roberto; Nadappuram, Binoy Paulose; Edel, Joshua B; Low, Tony; Koester, Steven J; Oh, Sang-Hyun

    2017-11-30

    The many unique properties of graphene, such as the tunable optical, electrical, and plasmonic response make it ideally suited for applications such as biosensing. As with other surface-based biosensors, however, the performance is limited by the diffusive transport of target molecules to the surface. Here we show that atomically sharp edges of monolayer graphene can generate singular electrical field gradients for trapping biomolecules via dielectrophoresis. Graphene-edge dielectrophoresis pushes the physical limit of gradient-force-based trapping by creating atomically sharp tweezers. We have fabricated locally backgated devices with an 8-nm-thick HfO 2 dielectric layer and chemical-vapor-deposited graphene to generate 10× higher gradient forces as compared to metal electrodes. We further demonstrate near-100% position-controlled particle trapping at voltages as low as 0.45 V with nanodiamonds, nanobeads, and DNA from bulk solution within seconds. This trapping scheme can be seamlessly integrated with sensors utilizing graphene as well as other two-dimensional materials.

  4. Optical spectral singularities as threshold resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafazadeh, Ali

    2011-04-15

    Spectral singularities are among generic mathematical features of complex scattering potentials. Physically they correspond to scattering states that behave like zero-width resonances. For a simple optical system, we show that a spectral singularity appears whenever the gain coefficient coincides with its threshold value and other parameters of the system are selected properly. We explore a concrete realization of spectral singularities for a typical semiconductor gain medium and propose a method of constructing a tunable laser that operates at threshold gain.

  5. 77 FR 14032 - John H. Chafee Coastal Barrier Resources System; Lee County, FL, and Newport County, RI...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ..., FXHC11240900000T5, 123] John H. Chafee Coastal Barrier Resources System; Lee County, FL, and Newport County, RI... Lee County, Florida. The second map, dated September 30, 2009, is for four CBRS units located in... by Lee County, and 1 restaurant. The Service's assessment of 2011 aerial imagery estimates that the...

  6. Exact solutions, finite time singularities and non-singular universe models from a variety of Λ(t) cosmologies

    NASA Astrophysics Data System (ADS)

    Pan, Supriya

    2018-01-01

    Cosmological models with time-dependent Λ (read as Λ(t)) have been investigated widely in the literature. Models that solve background dynamics analytically are of special interest. Additionally, the allowance of past or future singularities at finite cosmic time in a specific model signals for a generic test on its viabilities with the current observations. Following these, in this work we consider a variety of Λ(t) models focusing on their evolutions and singular behavior. We found that a series of models in this class can be exactly solved when the background universe is described by a spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) line element. The solutions in terms of the scale factor of the FLRW universe offer different universe models, such as power-law expansion, oscillating, and the singularity free universe. However, we also noticed that a large number of the models in this series permit past or future cosmological singularities at finite cosmic time. At last we close the work with a note that the avoidance of future singularities is possible for certain models under some specific restrictions.

  7. Recent Results on Singularity Strengths

    NASA Astrophysics Data System (ADS)

    Nolan, Brien

    2002-12-01

    In this contribution, we review some recent results on strengths of singularities. In a space-time (M,g), let γ[τ0, 0) → M be an incomplete, inextendible causal geodesic, affinely parametrised by τ, tangent ěc k. Let Jτ1 :=set of Jacobi fields along γ, orthogonal to γ and vanishing at time τ1 ≥ τ0 i.e. ěc ξ ∈ J{τ 1 } iff D2ξa = -Rbcdakbkdξc, gabξakb = 0, and ěc ξ (τ 1 ) = 0. Vτ1(τ) := volume element defined by full set of independent elements of Jτ1 (2-dim for null geodesies, 3-dim for time-like); Vτ1 := ∥Vτ1∥. Definition (Tipler 1977): γ terminates in a gravitationally strong singularity if for all 0 > τ1 ≥ τ0, lim infτ→0- Vτ1(τ) = 0. γ... gravitationally weak ... lim infτ→0- Vτ1(τ) > 0. The interpretation is that at a strong singularity, an extended body, e.g. a gravitational wave detector, is crushed to zero volume by the singularity. Tipler's definition does not take account of the possibility that (i) V → ∞ or (ii) V → finite, non-zero value, but with infinite stretching/crushing in orthogonal directions ('spaghettifying singularity'). Extended definition (Nolan 1999): strong if either V → 0,∞ or if for every τ1, there is an element ěc ξ of Jτ1 satisfying ||ěc ξ || -> 0. Otherwise weak. (Ori 2000): singularity is 'deformationally strong' if either (i) it is Tipler-strong or (ii) for every τ1, there is an element ěc ξ of Jτ1 satisfying ||ěc ξ || -> ∞ . Otherwise, deformationally weak...

  8. Nonlinear spectral singularities for confined nonlinearities.

    PubMed

    Mostafazadeh, Ali

    2013-06-28

    We introduce a notion of spectral singularity that applies for a general class of nonlinear Schrödinger operators involving a confined nonlinearity. The presence of the nonlinearity does not break the parity-reflection symmetry of spectral singularities but makes them amplitude dependent. Nonlinear spectral singularities are, therefore, associated with a resonance effect that produces amplified waves with a specific amplitude-wavelength profile. We explore the consequences of this phenomenon for a complex δ-function potential that is subject to a general confined nonlinearity.

  9. Naked singularities as particle accelerators. II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, Mandar; Joshi, Pankaj S.; Malafarina, Daniele

    We generalize here our earlier results on particle acceleration by naked singularities. We showed recently [M. Patil and P. S. Joshi, Phys. Rev. D 82, 104049 (2010).] that the naked singularities that form due to the gravitational collapse of massive stars provide a suitable environment where particles could get accelerated and collide at arbitrarily high center-of-mass energies. However, we focused there only on the spherically symmetric gravitational collapse models, which were also assumed to be self-similar. In this paper, we broaden and generalize the result to all gravitational collapse models leading to the formation of a naked singularity as themore » final state of collapse, evolving from a regular initial data, without making any prior restrictive assumptions about the spacetime symmetries such as above. We show that, when the particles interact and collide near the Cauchy horizon, the energy of collision in the center-of-mass frame will be arbitrarily high, thus offering a window to the Planck scale physics. We also consider the issue of various possible physical mechanisms of generation of such very high-energy particles from the vicinity of naked singularity. We then construct a model of gravitational collapse to a timelike naked singularity to demonstrate the working of these ideas, where the pressure is allowed to be negative, but the energy conditions are respected. We show that a finite amount of mass-energy density has to be necessarily radiated away from the vicinity of the naked singularity as the collapse evolves. Therefore, the nature of naked singularities, both at the classical and quantum level, could play an important role in the process of particle acceleration, explaining the occurrence of highly energetic outgoing particles in the vicinity of the Cauchy horizon that participate in extreme high-energy collisions.« less

  10. Oxygen Consumption by Postfermentation Wine Yeast Lees: Factors Affecting Its Rate and Extent under Oenological Conditions

    PubMed Central

    Müller, Jonas; Schmidt, Dominik

    2016-01-01

    Summary Postfermentation wine yeast lees show antioxidant properties based on their ability to consume dissolved oxygen. The oxygen consumption capacity of suspended yeast lees obtained after fermentations with six commercial active dry yeast strains was investigated in model, white and red wines using fluorescence-based oxygen sensors operating in a nondestructive way. In model solution, the oxygen consumption rate of yeast lees was shown to depend on their amount, yeast strain, sulfur dioxide and temperature. It is slightly lower in red than in white wines. It is strongly decreased by current levels of free sulfur dioxide, thus excluding the complementary use of both as antioxidants in wine. However, in 25 randomly sampled white wines produced under commercial conditions, the rate and extent of oxygen consumption during the first six months of postfermentation had no significant correlation with any of these interacting factors, making it difficult to predict the actual antioxidant effect of yeast lees. In these wines, yeast lees consumed 0 to 47% of the dissolved oxygen. Although total oxygen consumption capacity of yeast lees is not a limiting factor under commercial winemaking conditions, their oxygen consumption proceeds at a limited rate that reduces but cannot totally prevent concomitant chemical oxidation of the wine. PMID:28115896

  11. Oxygen Consumption by Postfermentation Wine Yeast Lees: Factors Affecting Its Rate and Extent under Oenological Conditions.

    PubMed

    Schneider, Volker; Müller, Jonas; Schmidt, Dominik

    2016-12-01

    Postfermentation wine yeast lees show antioxidant properties based on their ability to consume dissolved oxygen. The oxygen consumption capacity of suspended yeast lees obtained after fermentations with six commercial active dry yeast strains was investigated in model, white and red wines using fluorescence-based oxygen sensors operating in a nondestructive way. In model solution, the oxygen consumption rate of yeast lees was shown to depend on their amount, yeast strain, sulfur dioxide and temperature. It is slightly lower in red than in white wines. It is strongly decreased by current levels of free sulfur dioxide, thus excluding the complementary use of both as antioxidants in wine. However, in 25 randomly sampled white wines produced under commercial conditions, the rate and extent of oxygen consumption during the first six months of postfermentation had no significant correlation with any of these interacting factors, making it difficult to predict the actual antioxidant effect of yeast lees. In these wines, yeast lees consumed 0 to 47% of the dissolved oxygen. Although total oxygen consumption capacity of yeast lees is not a limiting factor under commercial winemaking conditions, their oxygen consumption proceeds at a limited rate that reduces but cannot totally prevent concomitant chemical oxidation of the wine.

  12. Dynamic Singularity Spectrum Distribution of Sea Clutter

    NASA Astrophysics Data System (ADS)

    Xiong, Gang; Yu, Wenxian; Zhang, Shuning

    2015-12-01

    The fractal and multifractal theory have provided new approaches for radar signal processing and target-detecting under the background of ocean. However, the related research mainly focuses on fractal dimension or multifractal spectrum (MFS) of sea clutter. In this paper, a new dynamic singularity analysis method of sea clutter using MFS distribution is developed, based on moving detrending analysis (DMA-MFSD). Theoretically, we introduce the time information by using cyclic auto-correlation of sea clutter. For transient correlation series, the instantaneous singularity spectrum based on multifractal detrending moving analysis (MF-DMA) algorithm is calculated, and the dynamic singularity spectrum distribution of sea clutter is acquired. In addition, we analyze the time-varying singularity exponent ranges and maximum position function in DMA-MFSD of sea clutter. For the real sea clutter data, we analyze the dynamic singularity spectrum distribution of real sea clutter in level III sea state, and conclude that the radar sea clutter has the non-stationary and time-varying scale characteristic and represents the time-varying singularity spectrum distribution based on the proposed DMA-MFSD method. The DMA-MFSD will also provide reference for nonlinear dynamics and multifractal signal processing.

  13. What can nuclear collisions teach us about the boiling of water or the formation of multi-star systems

    NASA Astrophysics Data System (ADS)

    Gross, D. H. E.

    2001-11-01

    Phase transitions in nuclei, small atomic clusters and self-gravitating systems demand the extension of thermo-statistics to "Small" systems. The main obstacle is the thermodynamic limit. It is shown how the original definition of the entropy by Boltzmann as the volume of the energy-manifold of the N-body phase space allows a geometrical definition of the entropy as function of the conserved quantities. Without invoking the thermodynamic limit the whole "zoo" of phase transitions and critical points/lines can be unambiguously defined. The relation to the Yang-Lee singularities of the grand-canonical partition sum is pointed out. It is shown that just phase transitions in non-extensive systems give the complete set of characteristic parameters of the transition including the surface tension. Nuclear heavy-ion collisions are an experimental playground to explore this extension of thermo-statistics

  14. A limiting analysis for edge effects in angle-ply laminates

    NASA Technical Reports Server (NTRS)

    Hsu, P. W.; Herakovich, C. T.

    1976-01-01

    A zeroth order solution for edge effects in angle ply composite laminates using perturbation techniques and a limiting free body approach was developed. The general method of solution for laminates is developed and then applied to the special case of a graphite/epoxy laminate. Interlaminar stress distributions are obtained as a function of the laminate thickness to width ratio h/b and compared to existing numerical results. The solution predicts stable, continuous stress distributions, determines finite maximum tensile interlaminar normal stress for two laminates, and provides mathematical evidence for singular interlaminar shear stresses.

  15. Diffraction of a Gaussian laser beam by a straight edge leading to the formation of optical vortices and elliptical diffraction fringes

    NASA Astrophysics Data System (ADS)

    Zeylikovich, Iosif; Nikitin, Aleksandr

    2018-04-01

    The diffraction of a Gaussian laser beam by a straight edge has been studied theoretically and experimentally for many years. In this paper, we have experimentally observed for the first time the formation of the cusped caustic (for the Fresnel number F ≈ 100) in the shadow region of the straight edge, with the cusp placed near the center of the circular laser beam(λ = 0 . 65 μm) overlapped with the elliptical diffraction fringes. These fringes are originated at the region near the cusp of the caustic where light intensity is zero and the wave phase is singular (the optical vortex). We interpret observed diffraction fringes as a result of interference between the helical wave created by the optical vortex and cylindrical wave diffracted at the straight edge. We have theoretically revealed that the number of high contrast diffraction fringes observable in a shadow region is determined by the square of the diffracted angles in the range of spatial frequencies of the scattered light field in excellent agreement with experiments. The extra phase singularities with opposite charges are also observed along the shadow boundary as the fork-like diffraction fringes.

  16. Singularities in water waves and Rayleigh-Taylor instability

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1991-01-01

    Singularities in inviscid two-dimensional finite-amplitude water waves and inviscid Rayleigh-Taylor instability are discussed. For the deep water gravity waves of permanent form, through a combination of analytical and numerical methods, results describing the precise form, number, and location of singularities in the unphysical domain as the wave height is increased are presented. It is shown how the information on the singularity in the unphysical region has the same form as for deep water waves. However, associated with such a singularity is a series of image singularities at increasing distances from the physical plane with possibly different behavior. Furthermore, for the Rayleigh-Taylor problem of motion of fluid over a vacuum and for the unsteady water wave problem, integro-differential equations valid in the unphysical region are derived, and how these equations can give information on the nature of singularities for arbitrary initial conditions is shown.

  17. 76 FR 34123 - Culturally Significant Objects Imported for Exhibition Determinations: “Lee Ufan: Marking Infinity”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ... DEPARTMENT OF STATE [Public Notice 7501] Culturally Significant Objects Imported for Exhibition Determinations: ``Lee Ufan: Marking Infinity'' SUMMARY: Notice is hereby given of the following determinations... the exhibition ``Lee Ufan: Marking Infinity,'' imported from abroad for temporary exhibition within...

  18. Art as a Singular Rule

    ERIC Educational Resources Information Center

    Avital, Doron

    2007-01-01

    This paper will examine an unresolved tension inherent in the question of art and argue for the idea of a singular rule as a natural resolution. In so doing, the structure of a singular rule will be fully outlined and its paradoxical constitution will be resolved. The tension I mention above unfolds both as a matter of history and as a product of…

  19. 78 FR 77508 - Duke Energy Carolinas, LLC; William States Lee III Nuclear Station, Units 1 and 2; Combined...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ..., LLC; William States Lee III Nuclear Station, Units 1 and 2; Combined Licenses Application Review... Environmental Impact Statement [EIS] for Combined Licenses (COLs) for William States Lee III Nuclear Station... be accessed online at the NRC's William States Lee III Nuclear Station--specific Web page at: www.nrc...

  20. Naked singularities as particle accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, Mandar; Joshi, Pankaj S.

    We investigate here the particle acceleration by naked singularities to arbitrarily high center of mass energies. Recently it has been suggested that black holes could be used as particle accelerators to probe the Planck scale physics. We show that the naked singularities serve the same purpose and probably would do better than their black hole counterparts. We focus on the scenario of a self-similar gravitational collapse starting from a regular initial data, leading to the formation of a globally naked singularity. It is seen that when particles moving along timelike geodesics interact and collide near the Cauchy horizon, the energymore » of collision in the center of mass frame will be arbitrarily high, thus offering a window to Planck scale physics.« less

  1. Two-photon Lee-Goldburg nuclear magnetic resonance: Simultaneous homonuclear decoupling and signal acquisition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michal, Carl A.; Hastings, Simon P.; Lee, Lik Hang

    2008-02-07

    We present NMR signals from a strongly coupled homonuclear spin system, {sup 1}H nuclei in adamantane, acquired with simultaneous two-photon excitation under conditions of the Lee-Goldburg experiment. Small coils, having inside diameters of 0.36 mm, are used to achieve two-photon nutation frequencies of {approx}20 kHz. The very large rf field strengths required give rise to large Bloch-Siegert shifts that cannot be neglected. These experiments are found to be extremely sensitive to inhomogeneity of the applied rf field, and due to the Bloch-Siegert shift, exhibit a large asymmetry in response between the upper and lower Lee-Goldburg offsets. Two-photon excitation has themore » potential to enhance both the sensitivity and performance of homonuclear dipolar decoupling, but is made challenging by the high rf power required and the difficulties introduced by the inhomogeneous Bloch-Siegert shift. We briefly discuss a variation of the frequency-switched Lee-Goldburg technique, called four-quadrant Lee-Goldburg (4QLG) that produces net precession in the x-y plane, with a reduced chemical shift scaling factor of 1/3.« less

  2. Observation of Mountain Lee Waves with MODIS NIR Column Water Vapor

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Alexander, M. J.; Ott, L.; Molod, A.; Holben, B.; Susskind, J.; Wang, Y.

    2014-01-01

    Mountain lee waves have been previously observed in data from the Moderate Resolution Imaging Spectroradiometer (MODIS) "water vapor" 6.7 micrometers channel which has a typical peak sensitivity at 550 hPa in the free troposphere. This paper reports the first observation of mountain waves generated by the Appalachian Mountains in the MODIS total column water vapor (CWV) product derived from near-infrared (NIR) (0.94 micrometers) measurements, which indicate perturbations very close to the surface. The CWV waves are usually observed during spring and late fall or some summer days with low to moderate CWV (below is approx. 2 cm). The observed lee waves display wavelengths from3-4 to 15kmwith an amplitude of variation often comparable to is approx. 50-70% of the total CWV. Since the bulk of atmospheric water vapor is confined to the boundary layer, this indicates that the impact of thesewaves extends deep into the boundary layer, and these may be the lowest level signatures of mountain lee waves presently detected by remote sensing over the land.

  3. Potential of lees from wine, beer and cider manufacturing as a source of economic nutrients: An overview.

    PubMed

    Pérez-Bibbins, B; Torrado-Agrasar, A; Salgado, J M; Oliveira, R Pinheiro de Souza; Domínguez, J M

    2015-06-01

    Lees are the wastes generated during the fermentation and aging processes of different industrial activities concerning alcoholic drinks such as wine, cider and beer. They must be conveniently treated to avoid uncontrolled dumping which causes environmental problems due to their high content of phenols, pesticides, heavy metals, and considerable concentrations of nitrogen, phosphate and potassium as well as high organic content. The companies involved must seek alternative environmental and economic physicochemical and biological treatments for their revalorization consisting in the recovery or transformation of the components of the lees into high value-added compounds. After describing the composition of lees and market of wine, beer and cider industries in Spain, this work aims to review the recent applications of wine, beer and cider lees reported in literature, with special attention to the use of lees as an endless sustainable source of nutrients and the production of yeast extract by autolysis or cell disruption. Lees and/or yeast extract can be used as nutritional supplements with potential exploitation in the biotechnological industry for the production of natural compounds such as xylitol, organic acids, and biosurfactants, among others. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. 'Items for criticism (not in sequence)': Joseph DeLee, Pare Lorentz and The Fight for Life (1940).

    PubMed

    Gainty, Caitjan

    2017-09-01

    In the late 1920s, the American obstetrician Joseph DeLee brought the motion-picture camera into the birth room. Following that era's trend of adapting industrial efficiency practices for medical environments, DeLee's films give spectacular and unexpected expression to the engineering concept of 'streamlining'. Accomplishing what more tangible obstetric streamlining practices had failed to, DeLee's cameras, and his post-production manipulation, shifted birth from messy and dangerous to rationalized, efficient, death-defying. This was film as an active and effective medical tool. Years later, the documentarian Pare Lorentz produced and wrote his own birth film, The Fight for Life (1940). The documentary subject of the film was DeLee himself, and the film was set in his hospitals, on the same maternity 'sets' that had once showcased film's remarkable streamlining capacity to give and keep life. Yet relatively little of DeLee was retained in the film's content, resulting in a showdown that, by way of contrast, further articulated DeLee's understanding of film's medical powers and, in so doing, hinted at a more dynamic moment in the history of medicine while speaking also to the process by which that understanding ceased to be historically legible.

  5. Singular Atom Optics with Spinor BECs

    NASA Astrophysics Data System (ADS)

    Schultz, Justin T.; Hansen, Azure; Bigelow, Nicholas P.

    2015-05-01

    We create and study singular spin textures in pseudo-spin-1/2 BECs. A series of two-photon Raman interactions allows us to not only engineer the spinor wavefunction but also perform the equivalent of atomic polarimetry on the BEC. Adapting techniques from optical polarimetry, we can image two-dimensional maps of the atomic Stokes parameters, thereby fully reconstructing the atomic wavefunction. In a spin-1/2 system, we can represent the local spin superposition with ellipses in a Cartesian basis. The patterns that emerge from the major axes of the ellipses provide fingerprints of the singularities that enable us to classify them as lemons, stars, saddles, or spirals similar to classification schemes for singularities in singular optics, condensed matter, and liquid crystals. These techniques may facilitate the study of geometric Gouy phases in matter waves as well as provide an avenue for utilizing topological structures as quantum gates.

  6. Neutrino masses in the Lee-Wick standard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinosa, Jose Ramon; Grinstein, Benjamin; O'Connell, Donal

    2008-04-15

    Recently, an extension of the standard model based on ideas of Lee and Wick has been discussed. This theory is free of quadratic divergences and hence has a Higgs mass that is stable against radiative corrections. Here, we address the question of whether or not it is possible to couple very heavy particles, with masses much greater than the weak scale, to the Lee-Wick standard model degrees of freedom and still preserve the stability of the weak scale. We show that in the LW-standard model the familiar seesaw mechanism for generating neutrino masses preserves the solution to the hierarchy puzzlemore » provided by the higher derivative terms. The very heavy right-handed neutrinos do not destabilize the Higgs mass. We give an example of new heavy degrees of freedom that would destabilize the hierarchy, and discuss a general mechanism for coupling other heavy degrees of freedom to the Higgs doublet while preserving the hierarchy.« less

  7. 75 FR 27576 - J.N. “Ding” Darling National Wildlife Refuge, Lee County, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R4-R-2010-N052; 40136-1265-0000-S3] J.N. ``Ding'' Darling National Wildlife Refuge, Lee County, FL AGENCY: Fish and Wildlife Service, Interior... variety of species in a highly developed landscape. The city of Sanibel, Lee County, Sanibel-Captiva...

  8. 7 CFR 61.1 - Words in singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Words in singular form. 61.1 Section 61.1 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Words in singular form. Words used in the regulations in this subpart in the singular form shall be...

  9. Probing the degenerate states of V-point singularities.

    PubMed

    Ram, B S Bhargava; Sharma, Anurag; Senthilkumaran, Paramasivam

    2017-09-15

    V-points are polarization singularities in spatially varying linearly polarized optical fields and are characterized by the Poincare-Hopf index η. Each V-point singularity is a superposition of two oppositely signed orbital angular momentum states in two orthogonal spin angular momentum states. Hence, a V-point singularity has zero net angular momentum. V-points with given |η| have the same (amplitude) intensity distribution but have four degenerate polarization distributions. Each of these four degenerate states also produce identical diffraction patterns. Hence to distinguish these degenerate states experimentally, we present in this Letter a method involving a combination of polarization transformation and diffraction. This method also shows the possibility of using polarization singularities in place of phase singularities in optical communication and quantum information processing.

  10. 7 CFR 46.1 - Words in singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Words in singular form. 46.1 Section 46.1 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Words in singular form. Words in this part in the singular form shall be deemed to import the plural...

  11. EDITORIAL: The plurality of optical singularities

    NASA Astrophysics Data System (ADS)

    Berry, Michael; Dennis, Mark; Soskin, Marat

    2004-05-01

    This collection of papers arose from an Advanced Research Workshop on Singular Optics, held at the Bogolyubov Institute in Kiev, Ukraine, during 24-28 June 2003. The workshop was generously financed by NATO, with welcome additional support from Institute of Physics Publishing and the National Academy of Sciences of Ukraine. There had been two previous international meetings devoted to singular optics, in Crimea in 1997 and 2000, reflecting the strong involvement of former Soviet Union countries in this research. Awareness of singular optics is growing within the wider optics community, indicated by symposia on the subject at several general optics meetings. As the papers demonstrate, the field of singular optics has reached maturity. Although the subject originated in an observation on ultrasound, it has been largely theory-driven until recently. Now, however, there is close contact between theory and experiment, and we speculate that this is one reason for its accelerated development. To single out particular papers for mention here would be invidious, and since the papers speak for themselves it is not necessary to describe them all. Instead, we will confine ourselves to a brief description of the main areas included in singular optics, to illustrate the broad scope of the subject. Optical vortices are lines of phase singularity: nodal lines where the intensity of the light, represented by a complex scalar field, vanishes. The subject has emerged from flatland, where the vortices are points characterized by topological charges, into the much richer world of vortex lines in three dimensions. By combining Laguerre-Gauss or Bessel beams, or reflecting light from plates with spiral steps, intricate arrangements can be generated, with vortices that are curved, looped, knotted, linked or braided. With light whose state of polarization varies with position, different singularities occur, associated with the vector nature of light. These are also lines, on which the

  12. Classical stability of sudden and big rip singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrow, John D.; Lip, Sean Z. W.

    2009-08-15

    We introduce a general characterization of sudden cosmological singularities and investigate the classical stability of homogeneous and isotropic cosmological solutions of all curvatures containing these singularities to small scalar, vector, and tensor perturbations using gauge-invariant perturbation theory. We establish that sudden singularities at which the scale factor, expansion rate, and density are finite are stable except for a set of special parameter values. We also apply our analysis to the stability of Big Rip singularities and find the conditions for their stability against small scalar, vector, and tensor perturbations.

  13. Tsung-Dao Lee, Weak Interactions, and Nonconservation of Parity

    Science.gov Websites

    his Ph.D. from the University of Chicago in 1950. After working as a research associate at the University of Chicago and the University of California, Berkeley, Lee joined the Institute for Advanced Study

  14. The Garrett Lee Smith Memorial Suicide Prevention Program

    ERIC Educational Resources Information Center

    Goldston, David B.; Walrath, Christine M.; McKeon, Richard; Puddy, Richard W.; Lubell, Keri M.; Potter, Lloyd B.; Rodi, Michael S.

    2010-01-01

    In response to calls for greater efforts to reduce youth suicide, the Garrett Lee Smith (GLS) Memorial Act has provided funding for 68 state, territory, and tribal community grants, and 74 college campus grants for suicide prevention efforts. Suicide prevention activities supported by GLS grantees have included education, training programs…

  15. Infinite derivative gravity: non-singular cosmology & blackhole solutions

    NASA Astrophysics Data System (ADS)

    Mazumdar, A.

    Both Einstein’s theory of General Relativity and Newton’s theory of gravity possess a short distance and small time scale catastrophe. The blackhole singularity and cosmological Big Bang singularity problems highlight that current theories of gravity are incomplete description at early times and small distances. I will discuss how one can potentially resolve these fundamental problems at a classical level and quantum level. In particular, I will discuss infinite derivative theories of gravity, where gravitational interactions become weaker in the ultraviolet, and therefore resolving some of the classical singularities, such as Big Bang and Schwarzschild singularity for compact non-singular objects with mass up to 1025 grams. In this lecture, I will discuss quantum aspects of infinite derivative gravity and discuss few aspects which can make the theory asymptotically free in the UV.

  16. Observer-dependent sign inversions of polarization singularities.

    PubMed

    Freund, Isaac

    2014-10-15

    We describe observer-dependent sign inversions of the topological charges of vector field polarization singularities: C points (points of circular polarization), L points (points of linear polarization), and two virtually unknown singularities we call γ(C) and α(L) points. In all cases, the sign of the charge seen by an observer can change as she changes the direction from which she views the singularity. Analytic formulas are given for all C and all L point sign inversions.

  17. Causality as an emergent macroscopic phenomenon: The Lee-Wick O(N) model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinstein, Benjamin; O'Connell, Donal; Wise, Mark B.

    2009-05-15

    In quantum mechanics the deterministic property of classical physics is an emergent phenomenon appropriate only on macroscopic scales. Lee and Wick introduced Lorentz invariant quantum theories where causality is an emergent phenomenon appropriate for macroscopic time scales. In this paper we analyze a Lee-Wick version of the O(N) model. We argue that in the large-N limit this theory has a unitary and Lorentz invariant S matrix and is therefore free of paradoxes in scattering experiments. We discuss some of its acausal properties.

  18. Forecasting selected specific age mortality rate of Malaysia by using Lee-Carter model

    NASA Astrophysics Data System (ADS)

    Shukri Kamaruddin, Halim; Ismail, Noriszura

    2018-03-01

    Observing mortality pattern and trend is an important subject for any country to maintain a good social-economy in the next projection years. The declining in mortality trend gives a good impression of what a government has done towards macro citizen in one nation. Selecting a particular mortality model can be a tricky based on the approached method adapting. Lee-Carter model is adapted because of its simplicity and reliability of the outcome results with approach of regression. Implementation of Lee-Carter in finding a fitted model and hence its projection has been used worldwide in most of mortality research in developed countries. This paper studies the mortality pattern of Malaysia in the past by using original model of Lee-Carter (1992) and hence its cross-sectional observation for a single age. The data is indexed by age of death and year of death from 1984 to 2012, in which are supplied by Department of Statistics Malaysia. The results are modelled by using RStudio and the keen analysis will focus on the trend and projection of mortality rate and age specific mortality rate in the future. This paper can be extended to different variants extensions of Lee-Carter or any stochastic mortality tool by using Malaysia mortality experience as a centre of the main issue.

  19. Quantum groups, Yang-Baxter maps and quasi-determinants

    NASA Astrophysics Data System (ADS)

    Tsuboi, Zengo

    2018-01-01

    For any quasi-triangular Hopf algebra, there exists the universal R-matrix, which satisfies the Yang-Baxter equation. It is known that the adjoint action of the universal R-matrix on the elements of the tensor square of the algebra constitutes a quantum Yang-Baxter map, which satisfies the set-theoretic Yang-Baxter equation. The map has a zero curvature representation among L-operators defined as images of the universal R-matrix. We find that the zero curvature representation can be solved by the Gauss decomposition of a product of L-operators. Thereby obtained a quasi-determinant expression of the quantum Yang-Baxter map associated with the quantum algebra Uq (gl (n)). Moreover, the map is identified with products of quasi-Plücker coordinates over a matrix composed of the L-operators. We also consider the quasi-classical limit, where the underlying quantum algebra reduces to a Poisson algebra. The quasi-determinant expression of the quantum Yang-Baxter map reduces to ratios of determinants, which give a new expression of a classical Yang-Baxter map.

  20. Singular spectrum analysis of sleep EEG in insomnia.

    PubMed

    Aydın, Serap; Saraoǧlu, Hamdi Melih; Kara, Sadık

    2011-08-01

    In the present study, the Singular Spectrum Analysis (SSA) is applied to sleep EEG segments collected from healthy volunteers and patients diagnosed by either psycho physiological insomnia or paradoxical insomnia. Then, the resulting singular spectra computed for both C3 and C4 recordings are assigned as the features to the Artificial Neural Network (ANN) architectures for EEG classification in diagnose. In tests, singular spectrum of particular sleep stages such as awake, REM, stage1 and stage2, are considered. Three clinical groups are successfully classified by using one hidden layer ANN architecture with respect to their singular spectra. The results show that the SSA can be applied to sleep EEG series to support the clinical findings in insomnia if ten trials are available for the specific sleep stages. In conclusion, the SSA can detect the oscillatory variations on sleep EEG. Therefore, different sleep stages meet different singular spectra. In addition, different healthy conditions generate different singular spectra for each sleep stage. In summary, the SSA can be proposed for EEG discrimination to support the clinical findings for psycho-psychological disorders.

  1. Generalized teleparallel cosmology and initial singularity crossing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awad, Adel; Nashed, Gamal, E-mail: Adel.Awad@bue.edu.eg, E-mail: gglnashed@sci.asu.edu.eg

    We present a class of cosmological solutions for a generalized teleparallel gravity with f ( T )= T +α̃ (− T ) {sup n} , where α̃ is some parameter and n is an integer or half-integer. Choosing α̃ ∼ G {sup n} {sup −1}, where G is the gravitational constant, and working with an equation of state p = w ρ, one obtains a cosmological solution with multiple branches. The dynamics of the solution describes standard cosmology at late times, but the higher-torsion correction changes the nature of the initial singularity from big bang to a sudden singularity. Themore » milder behavior of the sudden singularity enables us to extend timelike or lightlike curves, through joining two disconnected branches of solution at the singularity, leaving the singularity traversable. We show that this extension is consistent with the field equations through checking the known junction conditions for generalized teleparallel gravity. This suggests that these solutions describe a contracting phase a prior to the expanding phase of the universe.« less

  2. Spectral singularities and Bragg scattering in complex crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhi, S.

    2010-02-15

    Spectral singularities that spoil the completeness of Bloch-Floquet states may occur in non-Hermitian Hamiltonians with complex periodic potentials. Here an equivalence is established between spectral singularities in complex crystals and secularities that arise in Bragg diffraction patterns. Signatures of spectral singularities in a scattering process with wave packets are elucidated for a PT-symmetric complex crystal.

  3. Quenching of the Quantum Hall Effect in Graphene with Scrolled Edges

    NASA Astrophysics Data System (ADS)

    Cresti, Alessandro; Fogler, Michael M.; Guinea, Francisco; Castro Neto, A. H.; Roche, Stephan

    2012-04-01

    Edge nanoscrolls are shown to strongly influence transport properties of suspended graphene in the quantum Hall regime. The relatively long arclength of the scrolls in combination with their compact transverse size results in formation of many nonchiral transport channels in the scrolls. They short circuit the bulk current paths and inhibit the observation of the quantized two-terminal resistance. Unlike competing theoretical proposals, this mechanism of disrupting the Hall quantization in suspended graphene is not caused by ill-chosen placement of the contacts, singular elastic strains, or a small sample size.

  4. Diffraction of V-point singularities through triangular apertures.

    PubMed

    Ram, B S Bhargava; Sharma, Anurag; Senthilkumaran, P

    2017-05-01

    In this paper we present experimental studies on diffraction of V-point singularities through equilateral and isosceles right triangular apertures. When V-point index, also called Poincare-Hopf index (η), of the optical field is +1, the diffraction disintegrates it into two monstars/lemons. When V-point index η is -1, diffraction produces two stars. The diffraction pattern, unlike phase singularity, is insensitive to polarity of the polarization singularity and the intensity pattern remains invariant. Higher order V-point singularities are generated using Sagnac interferometer and it is observed that the diffraction disintegrates them into lower order C-points.

  5. The geometry of singularities and the black hole information paradox

    NASA Astrophysics Data System (ADS)

    Stoica, O. C.

    2015-07-01

    The information loss occurs in an evaporating black hole only if the time evolution ends at the singularity. But as we shall see, the black hole solutions admit analytical extensions beyond the singularities, to globally hyperbolic solutions. The method used is similar to that for the apparent singularity at the event horizon, but at the singularity, the resulting metric is degenerate. When the metric is degenerate, the covariant derivative, the curvature, and the Einstein equation become singular. However, recent advances in the geometry of spacetimes with singular metric show that there are ways to extend analytically the Einstein equation and other field equations beyond such singularities. This means that the information can get out of the singularity. In the case of charged black holes, the obtained solutions have nonsingular electromagnetic field. As a bonus, if particles are such black holes, spacetime undergoes dimensional reduction effects like those required by some approaches to perturbative Quantum Gravity.

  6. 62. Detail of bellmouth looking southeast. Photo by Robin Lee ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. Detail of bellmouth looking southeast. Photo by Robin Lee Tedder, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  7. Process gg{yields}h{sub 0}{yields}{gamma}{gamma} in the Lee-Wick standard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauss, F.; Underwood, T. E. J.; Zwicky, R.

    2008-01-01

    The process gg{yields}h{sub 0}{yields}{gamma}{gamma} is studied in the Lee-Wick extension of the standard model (LWSM) proposed by Grinstein, O'Connell, and Wise. In this model, negative norm partners for each SM field are introduced with the aim to cancel quadratic divergences in the Higgs mass. All sectors of the model relevant to gg{yields}h{sub 0}{yields}{gamma}{gamma} are diagonalized and results are commented on from the perspective of both the Lee-Wick and higher-derivative formalisms. Deviations from the SM rate for gg{yields}h{sub 0} are found to be of the order of 15%-5% for Lee-Wick masses in the range 500-1000 GeV. Effects on the rate formore » h{sub 0}{yields}{gamma}{gamma} are smaller, of the order of 5%-1% for Lee-Wick masses in the same range. These comparatively small changes may well provide a means of distinguishing the LWSM from other models such as universal extra dimensions where same-spin partners to standard model fields also appear. Corrections to determinations of Cabibbo-Kobayashi-Maskawa (CKM) elements |V{sub t(b,s,d)}| are also considered and are shown to be positive, allowing the possibility of measuring a CKM element larger than unity, a characteristic signature of the ghostlike nature of the Lee-Wick fields.« less

  8. Normal forms of Hopf-zero singularity

    NASA Astrophysics Data System (ADS)

    Gazor, Majid; Mokhtari, Fahimeh

    2015-01-01

    The Lie algebra generated by Hopf-zero classical normal forms is decomposed into two versal Lie subalgebras. Some dynamical properties for each subalgebra are described; one is the set of all volume-preserving conservative systems while the other is the maximal Lie algebra of nonconservative systems. This introduces a unique conservative-nonconservative decomposition for the normal form systems. There exists a Lie-subalgebra that is Lie-isomorphic to a large family of vector fields with Bogdanov-Takens singularity. This gives rise to a conclusion that the local dynamics of formal Hopf-zero singularities is well-understood by the study of Bogdanov-Takens singularities. Despite this, the normal form computations of Bogdanov-Takens and Hopf-zero singularities are independent. Thus, by assuming a quadratic nonzero condition, complete results on the simplest Hopf-zero normal forms are obtained in terms of the conservative-nonconservative decomposition. Some practical formulas are derived and the results implemented using Maple. The method has been applied on the Rössler and Kuramoto-Sivashinsky equations to demonstrate the applicability of our results.

  9. Computation at a coordinate singularity

    NASA Astrophysics Data System (ADS)

    Prusa, Joseph M.

    2018-05-01

    Coordinate singularities are sometimes encountered in computational problems. An important example involves global atmospheric models used for climate and weather prediction. Classical spherical coordinates can be used to parameterize the manifold - that is, generate a grid for the computational spherical shell domain. This particular parameterization offers significant benefits such as orthogonality and exact representation of curvature and connection (Christoffel) coefficients. But it also exhibits two polar singularities and at or near these points typical continuity/integral constraints on dependent fields and their derivatives are generally inadequate and lead to poor model performance and erroneous results. Other parameterizations have been developed that eliminate polar singularities, but problems of weaker singularities and enhanced grid noise compared to spherical coordinates (away from the poles) persist. In this study reparameterization invariance of geometric objects (scalars, vectors and the forms generated by their covariant derivatives) is utilized to generate asymptotic forms for dependent fields of interest valid in the neighborhood of a pole. The central concept is that such objects cannot be altered by the metric structure of a parameterization. The new boundary conditions enforce symmetries that are required for transformations of geometric objects. They are implemented in an implicit polar filter of a structured grid, nonhydrostatic global atmospheric model that is simulating idealized Held-Suarez flows. A series of test simulations using different configurations of the asymptotic boundary conditions are made, along with control simulations that use the default model numerics with no absorber, at three different grid sizes. Typically the test simulations are ∼ 20% faster in wall clock time than the control-resulting from a decrease in noise at the poles in all cases. In the control simulations adverse numerical effects from the polar

  10. Tangled nonlinear driven chain reactions of all optical singularities

    NASA Astrophysics Data System (ADS)

    Vasil'ev, V. I.; Soskin, M. S.

    2012-03-01

    Dynamics of polarization optical singularities chain reactions in generic elliptically polarized speckle fields created in photorefractive crystal LiNbO3 was investigated in details Induced speckle field develops in the tens of minutes scale due to photorefractive 'optical damage effect' induced by incident beam of He-Ne laser. It was shown that polarization singularities develop through topological chain reactions of developing speckle fields driven by photorefractive nonlinearities induced by incident laser beam. All optical singularities (C points, optical vortices, optical diabolos,) are defined by instantaneous topological structure of the output wavefront and are tangled by singular optics lows. Therefore, they have develop in tangled way by six topological chain reactions driven by nonlinear processes in used nonlinear medium (photorefractive LiNbO3:Fe in our case): C-points and optical diabolos for right (left) polarized components domains with orthogonally left (right) polarized optical vortices underlying them. All elements of chain reactions consist from loop and chain links when nucleated singularities annihilated directly or with alien singularities in 1:9 ratio. The topological reason of statistics was established by low probability of far enough separation of born singularities pair from existing neighbor singularities during loop trajectories. Topology of developing speckle field was measured and analyzed by dynamic stokes polarimetry with few seconds' resolution. The hierarchy of singularities govern scenario of tangled chain reactions was defined. The useful space-time data about peculiarities of optical damage evolution were obtained from existence and parameters of 'islands of stability' in developing speckle fields.

  11. The sensitivity of tokamak magnetohydrodynamics stability on the edge equilibrium

    NASA Astrophysics Data System (ADS)

    Zheng, L. J.; Kotschenreuther, M. T.; Valanju, P.

    2017-10-01

    Due to the X-point singularity, the safety factor tends to infinity as approaching to the last closed flux surface. The numerical treatments of the near X-point behavior become challenging both for equilibrium and stability. The usual solution is to cut off a small fraction of edge region for system stability evaluation or simply use an up-down symmetric equilibrium without X-point as an approximation. In this work, we assess the sensitivity of this type of equilibrium treatments on the stability calculation. It is found that the system stability can depend strongly on the safety factor value (qa) at the edge after the cutting-off. When the edge safety factor value falls in the vicinity of a rational mode number (referred to as the resonant gap), the system becomes quite unstable due to the excitation of the peeling type modes. Instead, when the edge safety factor is outside the resonant gaps, the system is much more stable and the predominant modes become the usual external kink (or ballooning and infernal) type. It is also found that the resonant gaps become smaller and smaller as qa increases. The ideal magnetohydrodynamic peeling ballooning stability diagram is widely used to explain the experimental observations, and the current results indicate that the conventional peeling ballooning stability diagram based on the simplified equilibrium needs to be reexamined.

  12. Treatment of singularities in a middle-crack tension specimen

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Raju, I. S.

    1990-01-01

    A three-dimensional finite-element analysis of a middle-crack tension specimen subjected to mode I loading was performed to study the stress singularity along the crack front. The specimen was modeled using 20-node isoparametric elements with collapsed nonsingular elements at the crack front. The displacements and stresses from the analysis were used to estimate the power of singularities, by a log-log regression analysis, along the crack front. Analyses showed that finite-sized cracked bodies have two singular stress fields. Because of two singular stress fields near the free surface and the classical square root singularity elsewhere, the strain energy release rate appears to be an appropriate parameter all along the crack front.

  13. Cusp singularities in f(R) gravity: pros and cons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin; Yeom, Dong-han

    We investigate cusp singularities in f(R) gravity, especially for Starobinsky and Hu-Sawicki dark energy models. We illustrate that, by using double-null numerical simulations, a cusp singularity can be triggered by gravitational collapses. This singularity can be cured by adding a quadratic term, but this causes a Ricci scalar bump that can be observed by an observer outside the event horizon. Comparing with cosmological parameters, it seems that it would be difficult to see super-Planckian effects by astrophysical experiments. On the other hand, at once there exists a cusp singularity, it can be a mechanism to realize a horizon scale curvaturemore » singularity that can be interpreted by a firewall.« less

  14. Entangled singularity patterns of photons in Ince-Gauss modes

    NASA Astrophysics Data System (ADS)

    Krenn, Mario; Fickler, Robert; Huber, Marcus; Lapkiewicz, Radek; Plick, William; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Photons with complex spatial mode structures open up possibilities for new fundamental high-dimensional quantum experiments and for novel quantum information tasks. Here we show entanglement of photons with complex vortex and singularity patterns called Ince-Gauss modes. In these modes, the position and number of singularities vary depending on the mode parameters. We verify two-dimensional and three-dimensional entanglement of Ince-Gauss modes. By measuring one photon and thereby defining its singularity pattern, we nonlocally steer the singularity structure of its entangled partner, while the initial singularity structure of the photons is undefined. In addition we measure an Ince-Gauss specific quantum-correlation function with possible use in future quantum communication protocols.

  15. Singularity-free dislocation dynamics with strain gradient elasticity

    NASA Astrophysics Data System (ADS)

    Po, Giacomo; Lazar, Markus; Seif, Dariush; Ghoniem, Nasr

    2014-08-01

    The singular nature of the elastic fields produced by dislocations presents conceptual challenges and computational difficulties in the implementation of discrete dislocation-based models of plasticity. In the context of classical elasticity, attempts to regularize the elastic fields of discrete dislocations encounter intrinsic difficulties. On the other hand, in gradient elasticity, the issue of singularity can be removed at the outset and smooth elastic fields of dislocations are available. In this work we consider theoretical and numerical aspects of the non-singular theory of discrete dislocation loops in gradient elasticity of Helmholtz type, with interest in its applications to three dimensional dislocation dynamics (DD) simulations. The gradient solution is developed and compared to its singular and non-singular counterparts in classical elasticity using the unified framework of eigenstrain theory. The fundamental equations of curved dislocation theory are given as non-singular line integrals suitable for numerical implementation using fast one-dimensional quadrature. These include expressions for the interaction energy between two dislocation loops and the line integral form of the generalized solid angle associated with dislocations having a spread core. The single characteristic length scale of Helmholtz elasticity is determined from independent molecular statics (MS) calculations. The gradient solution is implemented numerically within our variational formulation of DD, with several examples illustrating the viability of the non-singular solution. The displacement field around a dislocation loop is shown to be smooth, and the loop self-energy non-divergent, as expected from atomic configurations of crystalline materials. The loop nucleation energy barrier and its dependence on the applied shear stress are computed and shown to be in good agreement with atomistic calculations. DD simulations of Lome-Cottrell junctions in Al show that the strength of the

  16. Finite element techniques applied to cracks interacting with selected singularities

    NASA Technical Reports Server (NTRS)

    Conway, J. C.

    1975-01-01

    The finite-element method for computing the extensional stress-intensity factor for cracks approaching selected singularities of varied geometry is described. Stress-intensity factors are generated using both displacement and J-integral techniques, and numerical results are compared to those obtained experimentally in a photoelastic investigation. The selected singularities considered are a colinear crack, a circular penetration, and a notched circular penetration. Results indicate that singularities greatly influence the crack-tip stress-intensity factor as the crack approaches the singularity. In addition, the degree of influence can be regulated by varying the overall geometry of the singularity. Local changes in singularity geometry have little effect on the stress-intensity factor for the cases investigated.

  17. Specialty functions singularity mechanics problems

    NASA Technical Reports Server (NTRS)

    Sarigul, Nesrin

    1989-01-01

    The focus is in the development of more accurate and efficient advanced methods for solution of singular problems encountered in mechanics. At present, finite element methods in conjunction with special functions, boolean sum and blending interpolations are being considered. In dealing with systems which contain a singularity, special finite elements are being formulated to be used in singular regions. Further, special transition elements are being formulated to couple the special element to the mesh that models the rest of the system, and to be used in conjunction with 1-D, 2-D and 3-D elements within the same mesh. Computational simulation with a least squares fit is being utilized to construct special elements, if there is an unknown singularity in the system. A novel approach is taken in formulation of the elements in that: (1) the material properties are modified to include time, temperature, coordinate and stress dependant behavior within the element; (2) material properties vary at nodal points of the elements; (3) a hidden-symbolic computation scheme is developed and utilized in formulating the elements; and (4) special functions and boolean sum are utilized in order to interpolate the field variables and their derivatives along the boundary of the elements. It may be noted that the proposed methods are also applicable to fluids and coupled problems.

  18. Laser singular Theta-pinch

    NASA Astrophysics Data System (ADS)

    Okulov, A. Yu.

    2010-10-01

    The interaction of the two counter-propagating ultrashort laser pulses with singular wavefronts in the thin slice of the underdense plasma is considered. It is shown that ion-acoustic wave is excited via Brillouin three-wave resonance by corkscrew interference pattern of paraxial singular laser beams. The orbital angular momentum carried by light is transferred to plasma ion-acoustic vortex. The rotation of the density perturbations of electron fluid is the cause of helical current which produces the kilogauss axial quasi-static magnetic field. The exact analytical configurations are presented for an ion-acoustic current field and magnetic induction. The range of experimentally accessible parameters is evaluated.

  19. Particle creation by naked singularities in higher dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, Umpei; Nemoto, Hiroya; Shimano, Masahiro

    Recently, the possibility was pointed out by one of the present authors and his collaborators that an effective naked singularity referred to as ''a visible border of spacetime'' is generated by high-energy particle collision in the context of large extra dimensions or TeV-scale gravity. In this paper, we investigate the particle creation by a naked singularity in general dimensions, while adopting a model in which a marginally naked singularity forms in the collapse of a homothetic lightlike pressureless fluid. We find that the spectrum deviates from that of Hawking radiation due to scattering near the singularity but can be recastmore » in quasithermal form. The temperature is always higher than that of Hawking radiation of a same-mass black hole, and can be arbitrarily high depending on a parameter in the model. This implies that, in principle, the naked singularity may be distinguished from a black hole in collider experiments.« less

  20. Southern Clerics and the Passing of Lee: Mythic Rhetoric and the Construction of a Sacred Symbol.

    ERIC Educational Resources Information Center

    Fulmer, Hal W.

    1990-01-01

    Examines the symbolic content of eulogies delivered by Southern clergymen following the 1870 death of Confederate General Robert E. Lee. Explores the clergy's discussions of Lee's immortality and the redemptive power of audience unity which were foundations for later mythic discourse on the general's life. (SG)

  1. Can accretion disk properties observationally distinguish black holes from naked singularities?

    NASA Astrophysics Data System (ADS)

    Kovács, Z.; Harko, T.

    2010-12-01

    Naked singularities are hypothetical astrophysical objects, characterized by a gravitational singularity without an event horizon. Penrose has proposed a conjecture, according to which there exists a cosmic censor who forbids the occurrence of naked singularities. Distinguishing between astrophysical black holes and naked singularities is a major challenge for present day observational astronomy. In the context of stationary and axially symmetrical geometries, a possibility of differentiating naked singularities from black holes is through the comparative study of thin accretion disks properties around rotating naked singularities and Kerr-type black holes, respectively. In the present paper, we consider accretion disks around axially-symmetric rotating naked singularities, obtained as solutions of the field equations in the Einstein-massless scalar field theory. A first major difference between rotating naked singularities and Kerr black holes is in the frame dragging effect, the angular velocity of a rotating naked singularity being inversely proportional to its spin parameter. Because of the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution and equilibrium radiation spectrum) are different for these two classes of compact objects, consequently giving clear observational signatures that could discriminate between black holes and naked singularities. For specific values of the spin parameter and of the scalar charge, the energy flux from the disk around a rotating naked singularity can exceed by several orders of magnitude the flux from the disk of a Kerr black hole. In addition to this, it is also shown that the conversion efficiency of the accreting mass into radiation by rotating naked singularities is always higher than the conversion efficiency for black holes, i.e., naked singularities provide a much more efficient mechanism for converting mass into radiation than black

  2. Nonminimal Einstein-Yang-Mills-Higgs theory: Associated, color, and color-acoustic metrics for the Wu-Yang monopole model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, A. B.; Zayats, A. E.; Dehnen, H.

    2007-12-15

    We discuss a nonminimal Einstein-Yang-Mills-Higgs model with uniaxial anisotropy in the group space associated with the Higgs field. We apply this theory to the problem of propagation of color and color-acoustic waves in the gravitational background related to the nonminimal regular Wu-Yang monopole.

  3. Big bounce with finite-time singularity: The F(R) gravity description

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    An alternative to the Big Bang cosmologies is obtained by the Big Bounce cosmologies. In this paper, we study a bounce cosmology with a Type IV singularity occurring at the bouncing point in the context of F(R) modified gravity. We investigate the evolution of the Hubble radius and we examine the issue of primordial cosmological perturbations in detail. As we demonstrate, for the singular bounce, the primordial perturbations originating from the cosmological era near the bounce do not produce a scale-invariant spectrum and also the short wavelength modes after these exit the horizon, do not freeze, but grow linearly with time. After presenting the cosmological perturbations study, we discuss the viability of the singular bounce model, and our results indicate that the singular bounce must be combined with another cosmological scenario, or should be modified appropriately, in order that it leads to a viable cosmology. The study of the slow-roll parameters leads to the same result indicating that the singular bounce theory is unstable at the singularity point for certain values of the parameters. We also conformally transform the Jordan frame singular bounce, and as we demonstrate, the Einstein frame metric leads to a Big Rip singularity. Therefore, the Type IV singularity in the Jordan frame becomes a Big Rip singularity in the Einstein frame. Finally, we briefly study a generalized singular cosmological model, which contains two Type IV singularities, with quite appealing features.

  4. Redundant single gimbal control moment gyroscope singularity analysis

    NASA Technical Reports Server (NTRS)

    Bedrossian, Nazareth S.; Paradiso, Joseph; Bergmann, Edward V.; Rowell, Derek

    1990-01-01

    The robotic manipulator is proposed as the mechanical analog to single gimbal control moment gyroscope systems, and it is shown that both systems share similar difficulties with singular configurations. This analogy is used to group gimbal angles corresponding to any momentum state into different families. The singularity problem associated with these systems is examined in detail. In particular, a method is presented to test for the possibility of nontorque-producing gimbal motion at a singular configuration, as well as to determine the admissible motions in the case when this is possible. Sufficient conditions are derived for instances where the singular system can be reconfigured into a nonsingular state by these nontorque-producing motions.

  5. Enhancing reproducibility in scientific computing: Metrics and registry for Singularity containers.

    PubMed

    Sochat, Vanessa V; Prybol, Cameron J; Kurtzer, Gregory M

    2017-01-01

    Here we present Singularity Hub, a framework to build and deploy Singularity containers for mobility of compute, and the singularity-python software with novel metrics for assessing reproducibility of such containers. Singularity containers make it possible for scientists and developers to package reproducible software, and Singularity Hub adds automation to this workflow by building, capturing metadata for, visualizing, and serving containers programmatically. Our novel metrics, based on custom filters of content hashes of container contents, allow for comparison of an entire container, including operating system, custom software, and metadata. First we will review Singularity Hub's primary use cases and how the infrastructure has been designed to support modern, common workflows. Next, we conduct three analyses to demonstrate build consistency, reproducibility metric and performance and interpretability, and potential for discovery. This is the first effort to demonstrate a rigorous assessment of measurable similarity between containers and operating systems. We provide these capabilities within Singularity Hub, as well as the source software singularity-python that provides the underlying functionality. Singularity Hub is available at https://singularity-hub.org, and we are excited to provide it as an openly available platform for building, and deploying scientific containers.

  6. Enhancing reproducibility in scientific computing: Metrics and registry for Singularity containers

    PubMed Central

    Prybol, Cameron J.; Kurtzer, Gregory M.

    2017-01-01

    Here we present Singularity Hub, a framework to build and deploy Singularity containers for mobility of compute, and the singularity-python software with novel metrics for assessing reproducibility of such containers. Singularity containers make it possible for scientists and developers to package reproducible software, and Singularity Hub adds automation to this workflow by building, capturing metadata for, visualizing, and serving containers programmatically. Our novel metrics, based on custom filters of content hashes of container contents, allow for comparison of an entire container, including operating system, custom software, and metadata. First we will review Singularity Hub’s primary use cases and how the infrastructure has been designed to support modern, common workflows. Next, we conduct three analyses to demonstrate build consistency, reproducibility metric and performance and interpretability, and potential for discovery. This is the first effort to demonstrate a rigorous assessment of measurable similarity between containers and operating systems. We provide these capabilities within Singularity Hub, as well as the source software singularity-python that provides the underlying functionality. Singularity Hub is available at https://singularity-hub.org, and we are excited to provide it as an openly available platform for building, and deploying scientific containers. PMID:29186161

  7. Observational constraints on finite scale factor singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denkiewicz, Tomasz, E-mail: atomekd@wmf.univ.szczecin.pl

    2012-07-01

    We discuss the combined constraints on a Finite Scale Factor Singularity (FSF) universe evolution scenario, which come from the shift parameter R, baryon acoustic oscillations (BAO) A, and from the type Ia supernovae. We show that observations allow existence of such singularities in the 2 × 10{sup 9} years in future (at 1σ CL) which is much farther than a Sudden Future Singularity (SFS), and that at the present moment of the cosmic evolution, one cannot differentiate between cosmological scenario which allow finite scale factor singularities and the standard ΛCDM dark energy models. We also show that there is anmore » allowed value of m = 2/3 within 1σ CL, which corresponds to a dust-filled Einstein-de-Sitter universe limit of the early time evolution and so it is pasted into a standard early-time scenario.« less

  8. Singularity-free backstepping controller for model helicopters.

    PubMed

    Zou, Yao; Huo, Wei

    2016-11-01

    This paper develops a backstepping controller for model helicopters to achieve trajectory tracking without singularity, which occurs in the attitude representation when the roll or pitch reaches ±π2. Based on a simplified model with unmodeled dynamics, backstepping technique is introduced to exploit the controller and hyperbolic tangent functions are utilized to compensate the unmodeled dynamics. Firstly, a position loop controller is designed for the position tracking, where an auxiliary dynamic system with suitable parameters is introduced to warrant the singularity-free requirement for the extracted command attitude. Then, a novel attitude loop controller is proposed to obviate singularity. It is demonstrated that, based on the established criteria for selecting controller parameters and desired trajectories, the proposed controller realizes the singularity-free trajectory tracking of the model helicopter. Simulations confirm the theoretical results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Finite conformal quantum gravity and spacetime singularities

    NASA Astrophysics Data System (ADS)

    Modesto, Leonardo; Rachwał, Lesław

    2017-12-01

    We show that a class of finite quantum non-local gravitational theories is conformally invariant at classical as well as at quantum level. This is actually a range of conformal anomaly-free theories in the spontaneously broken phase of the Weyl symmetry. At classical level we show how the Weyl conformal invariance is able to tame all the spacetime singularities that plague not only Einstein gravity, but also local and weakly non-local higher derivative theories. The latter statement is proved by a singularity theorem that applies to a large class of weakly non-local theories. Therefore, we are entitled to look for a solution of the spacetime singularity puzzle in a missed symmetry of nature, namely the Weyl conformal symmetry. Following the seminal paper by Narlikar and Kembhavi, we provide an explicit construction of singularity-free black hole exact solutions in a class of conformally invariant theories.

  10. Relativistic collisions as Yang-Baxter maps

    NASA Astrophysics Data System (ADS)

    Kouloukas, Theodoros E.

    2017-10-01

    We prove that one-dimensional elastic relativistic collisions satisfy the set-theoretical Yang-Baxter equation. The corresponding collision maps are symplectic and admit a Lax representation. Furthermore, they can be considered as reductions of a higher dimensional integrable Yang-Baxter map on an invariant manifold. In this framework, we study the integrability of transfer maps that represent particular periodic sequences of collisions.

  11. Molecular mechanism of G1 arrest and cellular senescence induced by LEE011, a novel CDK4/CDK6 inhibitor, in leukemia cells.

    PubMed

    Tao, Yan-Fang; Wang, Na-Na; Xu, Li-Xiao; Li, Zhi-Heng; Li, Xiao-Lu; Xu, Yun-Yun; Fang, Fang; Li, Mei; Qian, Guang-Hui; Li, Yan-Hong; Li, Yi-Ping; Wu, Yi; Ren, Jun-Li; Du, Wei-Wei; Lu, Jun; Feng, Xing; Wang, Jian; He, Wei-Qi; Hu, Shao-Yan; Pan, Jian

    2017-01-01

    Overexpression of cyclin D1 dependent kinases 4 and 6 (CDK4/6) is a common feature of many human cancers including leukemia. LEE011 is a novel inhibitor of both CDK4 and 6. To date, the molecular function of LEE011 in leukemia remains unclear. Leukemia cell growth and apoptosis following LEE011 treatment was assessed through CCK-8 and annexin V/propidium iodide staining assays. Cell senescence was assessed by β-galactosidase staining and p16 INK4a expression analysis. Gene expression profiles of LEE011 treated HL-60 cells were investigated using an Arraystar Human LncRNA array. Gene ontology and KEGG pathway analysis were then used to analyze the differentially expressed genes from the cluster analysis. Our studies demonstrated that LEE011 inhibited proliferation of leukemia cells and could induce apoptosis. Hoechst 33,342 staining analysis showed DNA fragmentation and distortion of nuclear structures following LEE011 treatment. Cell cycle analysis showed LEE011 significantly induced cell cycle G 1 arrest in seven of eight acute leukemia cells lines, the exception being THP-1 cells. β-Galactosidase staining analysis and p16 INK4a expression analysis showed that LEE011 treatment can induce cell senescence of leukemia cells. LncRNA microarray analysis showed 2083 differentially expressed mRNAs and 3224 differentially expressed lncRNAs in LEE011-treated HL-60 cells compared with controls. Molecular function analysis showed that LEE011 induced senescence in leukemia cells partially through downregulation of the transcriptional expression of MYBL2. We demonstrate for the first time that LEE011 treatment results in inhibition of cell proliferation and induction of G 1 arrest and cellular senescence in leukemia cells. LncRNA microarray analysis showed differentially expressed mRNAs and lncRNAs in LEE011-treated HL-60 cells and we demonstrated that LEE011 induces cellular senescence partially through downregulation of the expression of MYBL2. These results may open new

  12. [Talk about nomenclature of twelve meridians from quantitative yin-yang theory].

    PubMed

    Zhao, Xi-xin; Wang, Xue-xia; Zhao, Zhao; Ran, Peng-fei; Lü, Xiao-rui

    2009-03-01

    Based on leads provided by Neijing and other literature, analyze origins of the three-yin and the three-yang and the their respective contents of yin and yang, indicating the principle that the order of yang-qi from more to less is Yang ming, Tai yang, Shao yang, and the order of yin-qi is Tai yin, Shao yin, Jue yin. According to the location of five (six) zang-organs, respective yin-qi content is defined, and according to the principle of more yin-qi matches more, and less yin-qi matches less, five (six) zang-organs match each other. The zang-organs above the diaphragm joints with The Hand-Channels and the zang-organs below the diaphragm with The Foot-Channels, completing the nomenclature of twelve meridians. The names of the six yang-channels correspond to the yin-channels of the exterior-interior relationship, the yin-channels link with hands (feet), and the yang-channels also link with hands (feet), and the amount of yin-qi of the zang-organs corresponding to the yin-channels and the amount of yang-qi of the fu-organs corresponding to yang-channels are in a state of balance. Based on this principle, nomenclature of six channels are completed. Emphasize that the nomenclature of twelve meridians contains profound TCM theories, especially, TCM, by yin-yang, three-yin and three- yang, illustrates living phenomena from the whole to the system and organ level in human body, and the scientific principle "yin-yang can be unlimitedly divided" and its significance, which must guide the studies on living phenomena with modern life sciences from the whole to the molecular level.

  13. 7 CFR 900.100 - Words in the singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.100 Section 900.100 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Words in the singular form. Words in this subpart in the singular form shall be deemed to import the...

  14. 7 CFR 900.1 - Words in the singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.1 Section 900.1 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Words in the singular form. Words in this subpart in the singular form shall be deemed to import the...

  15. 7 CFR 900.50 - Words in the singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.50 Section 900.50 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Words in the singular form. Words in this subpart in the singular form shall be deemed to import the...

  16. 7 CFR 1200.50 - Words in the singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Words in the singular form. 1200.50 Section 1200.50 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING....50 Words in the singular form. Words in this subpart in the singular form shall be deemed to import...

  17. Singularities of Floquet scattering and tunneling

    NASA Astrophysics Data System (ADS)

    Landa, H.

    2018-04-01

    We study quasibound states and scattering with short-range potentials in three dimensions, subject to an axial periodic driving. We find that poles of the scattering S matrix can cross the real energy axis as a function of the drive amplitude, making the S matrix nonanalytic at a singular point. For the corresponding quasibound states that can tunnel out of (or get captured within) a potential well, this results in a discontinuous jump in both the angular momentum and energy of emitted (absorbed) waves. We also analyze elastic and inelastic scattering of slow particles in the time-dependent potential. For a drive amplitude at the singular point, there is a total absorption of incoming low-energy (s wave) particles and their conversion to high-energy outgoing (mostly p ) waves. We examine the relation of such Floquet singularities, lacking in an effective time-independent approximation, with well-known "spectral singularities" (or "exceptional points"). These results are based on an analytic approach for obtaining eigensolutions of time-dependent periodic Hamiltonians with mixed cylindrical and spherical symmetry, and apply broadly to particles interacting via power-law forces and subject to periodic fields, e.g., co-trapped ions and atoms.

  18. Gravitational lensing by rotating naked singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyulchev, Galin N.; Yazadjiev, Stoytcho S.; Institut fuer Theoretische Physik, Universitaet Goettingen, Friedrich-Hund-Platz 1, D-37077 Goettingen

    We model massive compact objects in galactic nuclei as stationary, axially symmetric naked singularities in the Einstein-massless scalar field theory and study the resulting gravitational lensing. In the weak deflection limit we study analytically the position of the two weak field images, the corresponding signed and absolute magnifications as well as the centroid up to post-Newtonian order. We show that there are static post-Newtonian corrections to the signed magnification and their sum as well as to the critical curves, which are functions of the scalar charge. The shift of the critical curves as a function of the lens angular momentummore » is found, and it is shown that they decrease slightly for the weakly naked and vastly for the strongly naked singularities with the increase of the scalar charge. The pointlike caustics drift away from the optical axis and do not depend on the scalar charge. In the strong deflection limit approximation, we compute numerically the position of the relativistic images and their separability for weakly naked singularities. All of the lensing quantities are compared to particular cases as Schwarzschild and Kerr black holes as well as Janis-Newman-Winicour naked singularities.« less

  19. Singularity computations. [finite element methods for elastoplastic flow

    NASA Technical Reports Server (NTRS)

    Swedlow, J. L.

    1978-01-01

    Direct descriptions of the structure of a singularity would describe the radial and angular distributions of the field quantities as explicitly as practicable along with some measure of the intensity of the singularity. This paper discusses such an approach based on recent development of numerical methods for elastoplastic flow. Attention is restricted to problems where one variable or set of variables is finite at the origin of the singularity but a second set is not.

  20. 75 FR 69160 - Quarterly Publication of Individuals, Who Have Chosen To Expatriate, as Required by Section 6039G

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... Anderson John Derek Anderson Rose Mary Andreen Clas Svante Joel Ang Diana Shu-Zhen Angelini Kevin Yang... Anthony Bergandi Marco Lee Berre Jean N. Berryman Curtis Frederick Beveridge Richard Henry Earle Beveridge... Cheung Mark Quintin Chih-Hsiang Lisa Lee Chiu Sammy Kai-Kong Christianson Marlys Chun Jessica Chung...

  1. Polarization singularity indices in Gaussian laser beams

    NASA Astrophysics Data System (ADS)

    Freund, Isaac

    2002-01-01

    Two types of point singularities in the polarization of a paraxial Gaussian laser beam are discussed in detail. V-points, which are vector point singularities where the direction of the electric vector of a linearly polarized field becomes undefined, and C-points, which are elliptic point singularities where the ellipse orientations of elliptically polarized fields become undefined. Conventionally, V-points are characterized by the conserved integer valued Poincaré-Hopf index η, with generic value η=±1, while C-points are characterized by the conserved half-integer singularity index IC, with generic value IC=±1/2. Simple algorithms are given for generating V-points with arbitrary positive or negative integer indices, including zero, at arbitrary locations, and C-points with arbitrary positive or negative half-integer or integer indices, including zero, at arbitrary locations. Algorithms are also given for generating continuous lines of these singularities in the plane, V-lines and C-lines. V-points and C-points may be transformed one into another. A topological index based on directly measurable Stokes parameters is used to discuss this transformation. The evolution under propagation of V-points and C-points initially embedded in the beam waist is studied, as is the evolution of V-dipoles and C-dipoles.

  2. Treatment of charge singularities in implicit solvent models.

    PubMed

    Geng, Weihua; Yu, Sining; Wei, Guowei

    2007-09-21

    This paper presents a novel method for solving the Poisson-Boltzmann (PB) equation based on a rigorous treatment of geometric singularities of the dielectric interface and a Green's function formulation of charge singularities. Geometric singularities, such as cusps and self-intersecting surfaces, in the dielectric interfaces are bottleneck in developing highly accurate PB solvers. Based on an advanced mathematical technique, the matched interface and boundary (MIB) method, we have recently developed a PB solver by rigorously enforcing the flux continuity conditions at the solvent-molecule interface where geometric singularities may occur. The resulting PB solver, denoted as MIBPB-II, is able to deliver second order accuracy for the molecular surfaces of proteins. However, when the mesh size approaches half of the van der Waals radius, the MIBPB-II cannot maintain its accuracy because the grid points that carry the interface information overlap with those that carry distributed singular charges. In the present Green's function formalism, the charge singularities are transformed into interface flux jump conditions, which are treated on an equal footing as the geometric singularities in our MIB framework. The resulting method, denoted as MIBPB-III, is able to provide highly accurate electrostatic potentials at a mesh as coarse as 1.2 A for proteins. Consequently, at a given level of accuracy, the MIBPB-III is about three times faster than the APBS, a recent multigrid PB solver. The MIBPB-III has been extensively validated by using analytically solvable problems, molecular surfaces of polyatomic systems, and 24 proteins. It provides reliable benchmark numerical solutions for the PB equation.

  3. Treatment of charge singularities in implicit solvent models

    NASA Astrophysics Data System (ADS)

    Geng, Weihua; Yu, Sining; Wei, Guowei

    2007-09-01

    This paper presents a novel method for solving the Poisson-Boltzmann (PB) equation based on a rigorous treatment of geometric singularities of the dielectric interface and a Green's function formulation of charge singularities. Geometric singularities, such as cusps and self-intersecting surfaces, in the dielectric interfaces are bottleneck in developing highly accurate PB solvers. Based on an advanced mathematical technique, the matched interface and boundary (MIB) method, we have recently developed a PB solver by rigorously enforcing the flux continuity conditions at the solvent-molecule interface where geometric singularities may occur. The resulting PB solver, denoted as MIBPB-II, is able to deliver second order accuracy for the molecular surfaces of proteins. However, when the mesh size approaches half of the van der Waals radius, the MIBPB-II cannot maintain its accuracy because the grid points that carry the interface information overlap with those that carry distributed singular charges. In the present Green's function formalism, the charge singularities are transformed into interface flux jump conditions, which are treated on an equal footing as the geometric singularities in our MIB framework. The resulting method, denoted as MIBPB-III, is able to provide highly accurate electrostatic potentials at a mesh as coarse as 1.2Å for proteins. Consequently, at a given level of accuracy, the MIBPB-III is about three times faster than the APBS, a recent multigrid PB solver. The MIBPB-III has been extensively validated by using analytically solvable problems, molecular surfaces of polyatomic systems, and 24 proteins. It provides reliable benchmark numerical solutions for the PB equation.

  4. Robust Lee local statistic filter for removal of mixed multiplicative and impulse noise

    NASA Astrophysics Data System (ADS)

    Ponomarenko, Nikolay N.; Lukin, Vladimir V.; Egiazarian, Karen O.; Astola, Jaakko T.

    2004-05-01

    A robust version of Lee local statistic filter able to effectively suppress the mixed multiplicative and impulse noise in images is proposed. The performance of the proposed modification is studied for a set of test images, several values of multiplicative noise variance, Gaussian and Rayleigh probability density functions of speckle, and different characteris-tics of impulse noise. The advantages of the designed filter in comparison to the conventional Lee local statistic filter and some other filters able to cope with mixed multiplicative+impulse noise are demonstrated.

  5. Metric dimensional reduction at singularities with implications to Quantum Gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoica, Ovidiu Cristinel, E-mail: holotronix@gmail.com

    2014-08-15

    A series of old and recent theoretical observations suggests that the quantization of gravity would be feasible, and some problems of Quantum Field Theory would go away if, somehow, the spacetime would undergo a dimensional reduction at high energy scales. But an identification of the deep mechanism causing this dimensional reduction would still be desirable. The main contribution of this article is to show that dimensional reduction effects are due to General Relativity at singularities, and do not need to be postulated ad-hoc. Recent advances in understanding the geometry of singularities do not require modification of General Relativity, being justmore » non-singular extensions of its mathematics to the limit cases. They turn out to work fine for some known types of cosmological singularities (black holes and FLRW Big-Bang), allowing a choice of the fundamental geometric invariants and physical quantities which remain regular. The resulting equations are equivalent to the standard ones outside the singularities. One consequence of this mathematical approach to the singularities in General Relativity is a special, (geo)metric type of dimensional reduction: at singularities, the metric tensor becomes degenerate in certain spacetime directions, and some properties of the fields become independent of those directions. Effectively, it is like one or more dimensions of spacetime just vanish at singularities. This suggests that it is worth exploring the possibility that the geometry of singularities leads naturally to the spontaneous dimensional reduction needed by Quantum Gravity. - Highlights: • The singularities we introduce are described by finite geometric/physical objects. • Our singularities are accompanied by dimensional reduction effects. • They affect the metric, the measure, the topology, the gravitational DOF (Weyl = 0). • Effects proposed in other approaches to Quantum Gravity are obtained naturally. • The geometric dimensional reduction

  6. 7 CFR 900.36 - Words in the singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.36 Section 900.36 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Marketing Orders § 900.36 Words in the singular form. Words in this subpart in the singular form shall be...

  7. 7 CFR 900.20 - Words in the singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.20 Section 900.20 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... § 900.20 Words in the singular form. Words in this subpart in the singular form shall be deemed to...

  8. Polyphenols from Wine Lees as a Novel Functional Bioactive Compound in the Protection Against Oxidative Stress and Hyperlipidaemia

    PubMed Central

    Landeka, Irena; Jurčević; Dora, Mirna; Guberović, Iva; Petras, Marija; Rimac, Suzana; Brnčić

    2017-01-01

    Summary The study examines the potential of wine industry by-product, the lees, as a rich mixture of natural polyphenols, and its physiological potential to reduce postprandial metabolic and oxidative stress caused by a cholesterol-rich diet in in vivo model. Chemical analysis of wine lees showed that their total solid content was 94.2%. Wine lees contained total phenols, total nonflavonoids and total flavonoids expressed in mg of gallic acid equivalents per 100 g of dry mass: 2316.6±37.9, 1332.5±51.1 and 984.1±28.2, respectively. The content of total anthocyanins expressed in mg of cyanidin-3-glucoside equivalents per 100 g of dry mass was 383.1±21.6. Antioxidant capacity of wine lees determined by the DPPH and FRAP methods and expressed in mM of Trolox equivalents per 100 g was 259.8±1.8 and 45.7±1.05, respectively. The experiment lasted 60 days using C57BL/6 mice divided in four groups: group 1 was fed normal diet and used as control, group 2 was fed normal diet with added wine lees, group 3 was fed high-cholesterol diet (HCD), i.e. normal diet with the addition of sunflower oil, and group 4 was fed HCD with wine lees. HCD increased serum total cholesterol (TC) by 2.3-fold, triacylglycerol (TAG) by 1.5-fold, low-density lipoprotein (LDL) by 3.5-fold and liver malondialdehyde (MDA) by 50%, and reduced liver superoxide dismutase (SOD) by 50%, catalase (CAT) by 30% and glutathione (GSH) by 17.5% compared to control. Conversely, treatment with HCD and wine lees reduced TC and LDL up to 1.4 times more than with HCD only, with depletion of lipid peroxidation (MDA) and restoration of SOD and CAT activities in liver, approximating values of the control. HDL levels were unaffected in any group. Serum transaminase activity showed no hepatotoxic properties in the treatment with lees alone. In the proposed model, wine lees as a rich polyphenol source could be a basis for functional food products without alcohol. PMID:28559739

  9. Sharp bounds for singular values of fractional integral operators

    NASA Astrophysics Data System (ADS)

    Burman, Prabir

    2007-03-01

    From the results of Dostanic [M.R. Dostanic, Asymptotic behavior of the singular values of fractional integral operators, J. Math. Anal. Appl. 175 (1993) 380-391] and Vu and Gorenflo [Kim Tuan Vu, R. Gorenflo, Singular values of fractional and Volterra integral operators, in: Inverse Problems and Applications to Geophysics, Industry, Medicine and Technology, Ho Chi Minh City, 1995, Ho Chi Minh City Math. Soc., Ho Chi Minh City, 1995, pp. 174-185] it is known that the jth singular value of the fractional integral operator of order [alpha]>0 is approximately ([pi]j)-[alpha] for all large j. In this note we refine this result by obtaining sharp bounds for the singular values and use these bounds to show that the jth singular value is ([pi]j)-[alpha][1+O(j-1)].

  10. 9. Photocopy of painting (Painted by the architect, Mr. Lee ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopy of painting (Painted by the architect, Mr. Lee and presented to the Rev. J.J. Roberts, Rector, 1853-1866) April 1960 EXTERIOR, GENERAL VIEW - Church of the Holy Cross, State Route 261, Stateburg, Sumter County, SC

  11. Predicting financial market crashes using ghost singularities.

    PubMed

    Smug, Damian; Ashwin, Peter; Sornette, Didier

    2018-01-01

    We analyse the behaviour of a non-linear model of coupled stock and bond prices exhibiting periodically collapsing bubbles. By using the formalism of dynamical system theory, we explain what drives the bubbles and how foreshocks or aftershocks are generated. A dynamical phase space representation of that system coupled with standard multiplicative noise rationalises the log-periodic power law singularity pattern documented in many historical financial bubbles. The notion of 'ghosts of finite-time singularities' is introduced and used to estimate the end of an evolving bubble, using finite-time singularities of an approximate normal form near the bifurcation point. We test the forecasting skill of this method on different stochastic price realisations and compare with Monte Carlo simulations of the full system. Remarkably, the approximate normal form is significantly more precise and less biased. Moreover, the method of ghosts of singularities is less sensitive to the noise realisation, thus providing more robust forecasts.

  12. Gravitational radiation from a cylindrical naked singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakao, Ken-ichi; Morisawa, Yoshiyuki

    We construct an approximate solution which describes the gravitational emission from a naked singularity formed by the gravitational collapse of a cylindrical thick shell composed of dust. The assumed situation is that the collapsing speed of the dust is very large. In this situation, the metric variables are obtained approximately by a kind of linear perturbation analysis in the background Morgan solution which describes the motion of cylindrical null dust. The most important problem in this study is what boundary conditions for metric and matter variables should be imposed at the naked singularity. We find a boundary condition that allmore » the metric and matter variables are everywhere finite at least up to the first order approximation. This implies that the spacetime singularity formed by this high-speed dust collapse is very similar to that formed by the null dust and the final singularity will be a conical one. Weyl curvature is completely released from the collapsed dust.« less

  13. Anisotropic singularities in modified gravity models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Figueiro, Michele Ferraz; Saa, Alberto; Departamento de Matematica Aplicada, IMECC-UNICAMP, C.P. 6065, 13083-859 Campinas, SP

    2009-09-15

    We show that the common singularities present in generic modified gravity models governed by actions of the type S={integral}d{sup 4}x{radical}(-g)f(R,{phi},X), with X=-(1/2)g{sup ab}{partial_derivative}{sub a}{phi}{partial_derivative}{sub b}{phi}, are essentially the same anisotropic instabilities associated to the hypersurface F({phi})=0 in the case of a nonminimal coupling of the type F({phi})R, enlightening the physical origin of such singularities that typically arise in rather complex and cumbersome inhomogeneous perturbation analyses. We show, moreover, that such anisotropic instabilities typically give rise to dynamically unavoidable singularities, precluding completely the possibility of having physically viable models for which the hypersurface ({partial_derivative}f/{partial_derivative}R)=0 is attained. Some examples are explicitly discussed.

  14. Lee C. Bradley III (Phillips Exeter Class of 1943): Physicist, Officer, and Gentleman

    NASA Astrophysics Data System (ADS)

    Cardon, Bartley L.

    2004-03-01

    Lee Carrington Bradley's career as a physicist began as an accomplished student at Phillips Exeter Academy, where he was influenced by Professor John C. Hogg, chairman of the Science Department. He graduated in 1943 and entered the V-12 program for naval officers and completed his undergraduate degree in physics at Princeton University. After a brief tour as a Navy Ensign he joined the first group of American Rhodes Scholars to attend Oxford University, in 1947, following the conclusion of World War II. Under the guidance of H.G. Kuhn of Clarendon Laboratory, Lee completed his Ph.D. in physics in 1950. He then accepted an instructorship in physics at Princeton until he was called to MIT as an assistant professor in 1954 and later as a research associate in the Harrison Spectroscopy Laboratory. In 1966 he joined the technical staff of MIT Lincoln Laboratory, and became a senior staff member in 1978, a position he held until his retirement in 1992. From 1947 to 1966 Lee's interest was primarily in the field of optical spectroscopy, where his work brought him into contact with many of the outstanding physicists of his era. Upon joining Lincoln Laboratory, his physics interests shifted toward optics and laser propagation, the latter a field in which he made significant contributions. My illustrated tribute will discuss Lee's passage from Phillips Exeter to Lincoln Laboratory, describing his physics and some of the notable physicists with whom he worked.

  15. AUTHOR MARGOT LEE SHETTERLY SPEAKS AT MSFC WOMEN'S HISTORY MONTH

    NASA Image and Video Library

    2017-03-07

    DIANE CAIN, STANDING NEAR CENTER, OF NASA MARSHALL SPACE FLIGHT CENTER'S OFFICE OF HUMAN CAPITAL, SPEAKS TO AN AUDIENCE GATHERED FOR AN AGENCY-WIDE LIVESTREAM PRESENTATION BY AUTHOR MARGOT LEE SHETTERLY FROM NASA'S LANGLEY RESEARCH CENTER ON MARCH 7

  16. Prayer and University Commencement: Application of "Lee v. Weisman."

    ERIC Educational Resources Information Center

    Colwell, W. Bradley; Thurston, Paul W.

    1995-01-01

    Discusses reasons why the "Lee v. Weisman" Supreme Court decision that held unconstitutional a Rhode Island school policy for prayer at a junior high school commencement does not extend to the university level. Concludes that an appropriately worded commencement prayer could pass the three-part "Lemon" threshold and not violate…

  17. Fluorinated Materials for Air-stable and Moisture-resistant Flexible Optoelectronics

    DTIC Science & Technology

    2014-01-02

    Kim Jong , H.; Shin, S.; Yang, H.; An, B.-K.; Yang, L.; Park Soo, Y. Adv Mater 2012, 24, 911-915; (c) Geng, Y.; Li, H.-B.; Wu, S.-X.; Su, Z.-M. J...Park, J.-U.; Shir, D. J.-L.; Nam , Y.-S.; Jeon, S.; Rogers, J. A. Chem. Rev. 2007, 107, 1117-1160; (g) Murphy, A. R.; Frechet, J. M. J. Chem. Rev. 2007...2649-2655; (w) Song, H.-J.; Kim , D.-H.; Lee, E.-J.; Heo, S.-W.; Lee, J.-Y.; Moon, D.-K. Macromolecules (Washington, DC, U. S.) 2012, 45, 7815- 7822; (x

  18. Semiclassical analysis of spectral singularities and their applications in optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafazadeh, Ali

    2011-08-15

    Motivated by possible applications of spectral singularities in optics, we develop a semiclassical method of computing spectral singularities. We use this method to examine the spectral singularities of a planar slab gain medium whose gain coefficient varies due to the exponential decay of the intensity of the pumping beam inside the medium. For both singly and doublypumped samples, we obtain universal upper bounds on the decay constant beyond which no lasing occurs. Furthermore, we show that the dependence of the wavelength of the spectral singularities on the value of the decay constant is extremely mild. This is an indication ofmore » the stability of optical spectral singularities.« less

  19. 33. VIEW OF TIOGA ROAD DESCENDING LEE VINING CANYON. SAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. VIEW OF TIOGA ROAD DESCENDING LEE VINING CANYON. SAME VIEW AS CA-149-3. LOOKING ESE. GIS: N-37 56 58.2 / W-119 13 28.1 - Tioga Road, Between Crane Flat & Tioga Pass, Yosemite Village, Mariposa County, CA

  20. 4. VISTA POINT AND INTERPRETIVE PLAQUE AT LEE VINING CANYON. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VISTA POINT AND INTERPRETIVE PLAQUE AT LEE VINING CANYON. NOTE ROAD CUT ON CANYON WALL. LOOKING NNE. GIS: N-37 56 30.3 / 119 13 44.8 - Tioga Road, Between Crane Flat & Tioga Pass, Yosemite Village, Mariposa County, CA

  1. Cycle of phase, coherence and polarization singularities in Young's three-pinhole experiment.

    PubMed

    Pang, Xiaoyan; Gbur, Greg; Visser, Taco D

    2015-12-28

    It is now well-established that a variety of singularities can be characterized and observed in optical wavefields. It is also known that these phase singularities, polarization singularities and coherence singularities are physically related, but the exact nature of their relationship is still somewhat unclear. We show how a Young-type three-pinhole interference experiment can be used to create a continuous cycle of transformations between classes of singularities, often accompanied by topological reactions in which different singularities are created and annihilated. This arrangement serves to clarify the relationships between the different singularity types, and provides a simple tool for further exploration.

  2. Naked singularities in higher dimensional Vaidya space-times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S. G.; Dadhich, Naresh

    We investigate the end state of the gravitational collapse of a null fluid in higher-dimensional space-times. Both naked singularities and black holes are shown to be developing as the final outcome of the collapse. The naked singularity spectrum in a collapsing Vaidya region (4D) gets covered with the increase in dimensions and hence higher dimensions favor a black hole in comparison to a naked singularity. The cosmic censorship conjecture will be fully respected for a space of infinite dimension.

  3. New method for detecting singularities in experimental incompressible flows

    NASA Astrophysics Data System (ADS)

    Kuzzay, Denis; Saw, Ewe-Wei; Martins, Fabio J. W. A.; Faranda, Davide; Foucaut, Jean-Marc; Daviaud, François; Dubrulle, Bérengère

    2017-06-01

    We introduce two new criteria based on the work of Duchon and Robert (2000 Nonlinearity 13 249) and Eyink (2006 Phys. Rev. E 74 066302), which allow for the local detection of Navier-Stokes singularities in experimental flows. We discuss the difference between non-dissipative or dissipative Euler quasi-singularities and genuine Navier-Stokes dissipative singularites, and classify them with respect to their Hölder exponent h. We show that our criteria allow us to detect areas in a flow where the velocity field is no more regular than Hölder continuous with some Hölder exponent h ≤slant 1/2 . We illustrate our discussion using classical tomographic particle image velocimetry (TPIV) measurements obtained inside a high Reynolds number flow generated in the boundary layer of a wind tunnel. Our study shows that, in order to detect singularities or quasi-singularities, one does not need to have access to the whole velocity field inside a volume, but can instead look for them from stereoscopic PIV data on a plane. We also provide a discussion about the link between areas detected by our criteria and areas corresponding to large vorticity. We argue that this link might provide either a clue about the genesis of these quasi-singularities or a way to discriminate dissipative Euler quasi-singularities and genuine Navier-Stokes singularities.

  4. Novel symmetries in Christ-Lee model

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Shukla, A.

    2016-07-01

    We demonstrate that the gauge-fixed Lagrangian of the Christ-Lee model respects four fermionic symmetries, namely; (anti-)BRST symmetries, (anti-)co-BRST symmetries within the framework of BRST formalism. The appropriate anticommutators amongst the fermionic symmetries lead to a unique bosonic symmetry. It turns out that the algebra obeyed by the symmetry transformations (and their corresponding conserved charges) is reminiscent of the algebra satisfied by the de Rham cohomological operators of differential geometry. We also provide the physical realizations of the cohomological operators in terms of the symmetry properties. Thus, the present model provides a simple model for the Hodge theory.

  5. 7 CFR 900.80 - Words in the singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.80 Section 900.80....C. 608b(b) and 7 U.S.C. 608e Covering Fruits, Vegetables, and Nuts § 900.80 Words in the singular form. Words in this subpart in the singular form shall be deemed to import the plural, and vice versa...

  6. Two-spectral Yang-Baxter operators in topological quantum computation

    NASA Astrophysics Data System (ADS)

    Sanchez, William F.

    2011-05-01

    One of the current trends in quantum computing is the application of algebraic topological methods in the design of new algorithms and quantum computers, giving rise to topological quantum computing. One of the tools used in it is the Yang-Baxter equation whose solutions are interpreted as universal quantum gates. Lately, more general Yang-Baxter equations have been investigated, making progress as two-spectral equations and Yang-Baxter systems. This paper intends to apply these new findings to the field of topological quantum computation, more specifically, the proposition of the two-spectral Yang-Baxter operators as universal quantum gates for 2 qubits and 2 qutrits systems, obtaining 4x4 and 9x9 matrices respectively, and further elaboration of the corresponding Hamiltonian by the use of computer algebra software Mathematica® and its Qucalc package. In addition, possible physical systems to which the Yang-Baxter operators obtained can be applied are considered. In the present work it is demonstrated the utility of the Yang-Baxter equation to generate universal quantum gates and the power of computer algebra to design them; it is expected that these mathematical studies contribute to the further development of quantum computers

  7. Recharge to the surficial aquifer system in Lee and Hendry counties, Florida

    USGS Publications Warehouse

    Krulikas, R.K.; Giese, G.L.

    1995-01-01

    Protection of ground-water recharge areas against contamination is of great interest in Florida, a State whose population depends heavily on ground water and that is experiencing rapid growth. The Florida Legislature is considering implementation of a tax incentive program to owners of high-rate recharge lands that remain undeveloped. High-rate recharge was arbitrarily set at 10 or more inches per year. The U.S. Geological Survey, in cooperation with the South Florida Water Management District, conducted a study to investigate the efficacy of several methods for estimating recharge to the surficial aquifer system in southwestern Florida and to map recharge at a scale of 1:100,000. Four maps were constructed at a scale of 1:100,000 for Lee and Hendry Counties, depicting the configuration of the water table of the surficial aquifer system, direction of ground-water flow, general soil characteristics, and recharge rates. Point recharge rates calculated for 25 sites in Lee County from comparisons of chloride concentrations in precipitation and in water from the surficial aquifer system ranged from 0.6 to 9.0 inches per year. Local recharge rates estimated by increases in flow along theoretical flow tubes in the surficial aquifer system were 8.0 inches per year in a part of Lee County and 8.2 inches per year in a part of Hendry County. Information on oxygen isotopes in precipitation and water from the surficial aquifer system was used to verify that the source of chlorides in the aquifer system was from precipitation rather than upward leakage of saline water. Soil maps and general topographic and hydrologic considerations were used with calculated point and local recharge rates to regionalize rates throughout Lee and Hendry Counties. The areas of greatest recharge were found in soils of flatwoods and sloughs, which were assigned estimated recharge rates of 0 to 10 inches per year. Soils of swamps and sloughs were assigned values of 0 to 3.0 inches per year; soils of

  8. Numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity

    NASA Astrophysics Data System (ADS)

    Korepanov, V. V.; Matveenko, V. P.; Fedorov, A. Yu.; Shardakov, I. N.

    2013-07-01

    An algorithm for the numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity is considered. The algorithm is based on separation of a power-law dependence from the finite-element solution in a neighborhood of singular points in the domain under study, where singular solutions are possible. The obtained power-law dependencies allow one to conclude whether the stresses have singularities and what the character of these singularities is. The algorithm was tested for problems of classical elasticity by comparing the stress singularity exponents obtained by the proposed method and from known analytic solutions. Problems with various cases of singular points, namely, body surface points at which either the smoothness of the surface is violated, or the type of boundary conditions is changed, or distinct materials are in contact, are considered as applications. The stress singularity exponents obtained by using the models of classical and asymmetric elasticity are compared. It is shown that, in the case of cracks, the stress singularity exponents are the same for the elasticity models under study, but for other cases of singular points, the stress singularity exponents obtained on the basis of asymmetric elasticity have insignificant quantitative distinctions from the solutions of the classical elasticity.

  9. 75 FR 74711 - Duke Energy Lee II, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2069-000] Duke Energy Lee II, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket... proceeding, of Duke Energy Lee II, LLC's application for market-based rate authority, with an accompanying...

  10. Lee wave breaking region: the map of instability development scenarios

    NASA Astrophysics Data System (ADS)

    Yakovenko, S. N.

    2017-10-01

    Numerical study of a stably stratified flow above the two-dimensional cosine-shaped obstacle has been performed by DNS and LES. These methods were implemented to solve the three-dimensional Navier-Stokes equations in the Boussinesq approximation, together with by the scalar diffusion equation. The results of scanning in the wide ranges of physical parameters (Reynolds and Prandtl/Schmidt numbers relating to laboratory experiment cases and atmospheric or oceanic situations) are presented for instability and turbulence development scenarios in the overturning internal lee waves. The latter is generated by the obstacle in a flow with the constant inflow values of velocity and stable density gradient. Evolution of lee-wave breaking is explored by visualization of velocity and scalar (density) fields, and the analysis of spectra. Based on the numerical simulation results, the power-law dependence on Reynolds number is demonstrated for the wavelength of the most unstable perturbation.

  11. Correlation singularities in partially coherent electromagnetic beams.

    PubMed

    Raghunathan, Shreyas B; Schouten, Hugo F; Visser, Taco D

    2012-10-15

    We demonstrate that coherence vortices, singularities of the correlation function, generally occur in partially coherent electromagnetic beams. In successive cross sections of Gaussian Schell-model beams, their locus is found to be a closed string. These coherence singularities have implications for both interference experiments and correlation of intensity fluctuation measurements performed with such beams.

  12. INCA Modelling of the Lee System: strategies for the reduction of nitrogen loads

    NASA Astrophysics Data System (ADS)

    Flynn, N. J.; Paddison, T.; Whitehead, P. G.

    The Integrated Nitrogen Catchment model (INCA) was applied successfully to simulate nitrogen concentrations in the River Lee, a northern tributary of the River Thames for 1995-1999. Leaching from urban and agricultural areas was found to control nitrogen dynamics in reaches unaffected by effluent discharges and abstractions; the occurrence of minimal flows resulted in an upward trend in nitrate concentration. Sewage treatment works (STW) discharging into the River Lee raised nitrate concentrations substantially, a problem which was compounded by abstractions in the Lower Lee. The average concentration of nitrate (NO3) for the simulation period 1995-96 was 7.87 mg N l-1. Ammonium (NH4) concentrations were simulated less successfully. However, concentrations of ammonium rarely rose to levels which would be of environmental concern. Scenarios were run through INCA to assess strategies for the reduction of nitrate concentrations in the catchment. The conversion of arable land to ungrazed vegetation or to woodland would reduce nitrate concentrations substantially, whilst inclusion of riparian buffer strips would be unsuccessful in reducing nitrate loading. A 50% reduction in nitrate loading from Luton STW would result in a fall of up to 5 mg N l-1 in the reach directly affected (concentrations fell from maxima of 13 to 8 mg N l-1 , nearly a 40 % reduction), whilst a 20% reduction in abstractions would reduce maximum peaks in concentration in the lower Lee by up to 4 mg l-1 (from 17 to 13 mg N l-1, nearly a 25 % reduction),.

  13. Initial singularity and pure geometric field theories

    NASA Astrophysics Data System (ADS)

    Wanas, M. I.; Kamal, Mona M.; Dabash, Tahia F.

    2018-01-01

    In the present article we use a modified version of the geodesic equation, together with a modified version of the Raychaudhuri equation, to study initial singularities. These modified equations are used to account for the effect of the spin-torsion interaction on the existence of initial singularities in cosmological models. Such models are the results of solutions of the field equations of a class of field theories termed pure geometric. The geometric structure used in this study is an absolute parallelism structure satisfying the cosmological principle. It is shown that the existence of initial singularities is subject to some mathematical (geometric) conditions. The scheme suggested for this study can be easily generalized.

  14. Dalitz plot distributions in presence of triangle singularities

    DOE PAGES

    Szczepaniak, Adam P.

    2016-03-25

    We discuss properties of three-particle Dalitz distributions in coupled channel systems in presence of triangle singularities. The single channel case was discussed long ago where it was found that as a consequence of unitarity, effects of a triangle singularity seen in the Dalitz plot are not seen in Dalitz plot projections. In the coupled channel case we find the same is true for the sum of intensities of all interacting channels. As a result, unlike the single channel case, however, triangle singularities do remain visible in Dalitz plot projections of individual channels.

  15. Singularity Preserving Numerical Methods for Boundary Integral Equations

    NASA Technical Reports Server (NTRS)

    Kaneko, Hideaki (Principal Investigator)

    1996-01-01

    In the past twelve months (May 8, 1995 - May 8, 1996), under the cooperative agreement with Division of Multidisciplinary Optimization at NASA Langley, we have accomplished the following five projects: a note on the finite element method with singular basis functions; numerical quadrature for weakly singular integrals; superconvergence of degenerate kernel method; superconvergence of the iterated collocation method for Hammersteion equations; and singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel. This final report consists of five papers describing these projects. Each project is preceeded by a brief abstract.

  16. Dalitz plot distributions in presence of triangle singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczepaniak, Adam P.

    We discuss properties of three-particle Dalitz distributions in coupled channel systems in presence of triangle singularities. The single channel case was discussed long ago where it was found that as a consequence of unitarity, effects of a triangle singularity seen in the Dalitz plot are not seen in Dalitz plot projections. In the coupled channel case we find the same is true for the sum of intensities of all interacting channels. As a result, unlike the single channel case, however, triangle singularities do remain visible in Dalitz plot projections of individual channels.

  17. T. J. Lee Presents Plaque to Vice President Dan Quayle

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Vice President Dan Quayle holds up an inscribed plaque presented by Marshall Space Flight Center Director T. J. Lee (right) during Quayle's August 31, 1992 visit. While at Marshall, Quayle participated in a roundtable discussion with aerospace managers and addressed Center employees in Building 4755.

  18. Tachyon field in loop quantum cosmology: An example of traversable singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Lifang; Zhu Jianyang

    2009-06-15

    Loop quantum cosmology (LQC) predicts a nonsingular evolution of the universe through a bounce in the high energy region. But LQC has an ambiguity about the quantization scheme. Recently, the authors in [Phys. Rev. D 77, 124008 (2008)] proposed a new quantization scheme. Similar to others, this new quantization scheme also replaces the big bang singularity with the quantum bounce. More interestingly, it introduces a quantum singularity, which is traversable. We investigate this novel dynamics quantitatively with a tachyon scalar field, which gives us a concrete example. Our result shows that our universe can evolve through the quantum singularity regularly,more » which is different from the classical big bang singularity. So this singularity is only a weak singularity.« less

  19. Interactions between yeast lees and wine polyphenols during simulation of wine aging: I. Analysis of remnant polyphenolic compounds in the resulting wines.

    PubMed

    Mazauric, Jean-Paul; Salmon, Jean-Michel

    2005-07-13

    Wine aging on yeast lees is a traditional enological practice used during the manufacture of wines. This technique has increased in popularity in recent years for the aging of red wines. Although wine polyphenols interact with yeast lees to a limited extent, such interactions have a large effect on the reactivity toward oxygen of wine polyphenolic compounds and yeast lees. Various domains of the yeast cell wall are protected by wine polyphenols from the action of extracellular hydrolytic enzymatic activities. Polysaccharides released during autolysis are thought to exert a significant effect on the sensory qualities of wine. We studied the chemical composition of polyphenolic compounds remaining in solution or adsorbed on yeast lees after various contact times during the simulation of wine aging. The analysis of the remnant polyphenols in the wine indicated that wine polyphenols adsorption on yeast lees follows biphasic kinetics. An initial and rapid fixation is followed by a slow, constant, and saturating fixation that reaches its maximum after about 1 week. Only very few monomeric phenolic compounds remained adsorbed on yeast lees, and no preferential adsorption of low or high polymeric size tannins occurred. The remnant condensed tannins in the wine contained fewer epigallocatechin units than the initial tannins, indicating that polar condensed tannins were preferentially adsorbed on yeast lees. Conversely, the efficiency of anthocyanin adsorption on yeast lees was unrelated to its polarity.

  20. A Comparison Between Internal Waves Observed in the Southern Ocean and Lee Wave Generation Theory

    NASA Astrophysics Data System (ADS)

    Nikurashin, M.; Benthuysen, J.; Naveira Garabato, A.; Polzin, K. L.

    2016-02-01

    Direct observations in the Southern Ocean report enhanced internal wave activity and turbulence in a few kilometers above rough bottom topography. The enhancement is co-located with the deep-reaching fronts of the Antarctic Circumpolar Current, suggesting that the internal waves and turbulence are sustained by near-bottom flows interacting with rough topography. Recent numerical simulations confirm that oceanic flows impinging on rough small-scale topography are very effective generators of internal gravity waves and predict vigorous wave radiation, breaking, and turbulence within a kilometer above bottom. However, a linear lee wave generation theory applied to the observed bottom topography and mean flow characteristics has been shown to overestimate the observed rates of the turbulent energy dissipation. In this study, we compare the linear lee wave theory with the internal wave kinetic energy estimated from finestructure data collected as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). We show that the observed internal wave kinetic energy levels are generally in agreement with the theory. Consistent with the lee wave theory, the observed internal wave kinetic energy scales quadratically with the mean flow speed, stratification, and topographic roughness. The correlation coefficient between the observed internal wave kinetic energy and mean flow and topography parameters reaches 0.6-0.8 for the 100-800 m vertical wavelengths, consistent with the dominant lee wave wavelengths, and drops to 0.2-0.5 for wavelengths outside this range. A better agreement between the lee wave theory and the observed internal wave kinetic energy than the observed turbulent energy dissipation suggests remote breaking of internal waves.

  1. Managing focal fields of vector beams with multiple polarization singularities.

    PubMed

    Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Gan, Xuetao; Zhao, Jianlin

    2016-11-10

    We explore the tight focusing behavior of vector beams with multiple polarization singularities, and analyze the influences of the number, position, and topological charge of the singularities on the focal fields. It is found that the ellipticity of the local polarization states at the focal plane could be determined by the spatial distribution of the polarization singularities of the vector beam. When the spatial location and topological charge of singularities have even-fold rotation symmetry, the transverse fields at the focal plane are locally linearly polarized. Otherwise, the polarization state becomes a locally hybrid one. By appropriately arranging the distribution of the polarization singularities in the vector beam, the polarization distributions of the focal fields could be altered while the intensity maintains unchanged.

  2. APC Yin-Yang haplotype associated with colorectal cancer risk

    PubMed Central

    GARRE, P.; DE LA HOYA, M.; INIESTA, P.; ROMERA, A.; LLOVET, P.; GONZALEZ, S.; PEREZ-SEGURA, P.; CAPELLA, G.; DIAZ-RUBIO, E.; CALDES, T.

    2010-01-01

    The Yin-Yang haplotype is defined as two mismatched haplotypes (Yin and Yang) representing the majority of the existing haplotypes in a particular genomic region. The human adenomatous polyposis coli (APC) gene shows a Yin-Yang haplotype pattern accounting for 84% of all of the haplotypes existing in the Spanish population. Several association studies have been published regarding APC gene variants (SNPs and haplotypes) and colorectal cancer (CRC) risk. However, no studies concerning diplotype structure and CRC risk have been conducted. The aim of the present study was to investigate whether the APC Yin-Yang homozygote diplotype is over-represented in patients with sporadic CRC when compared to its distribution in controls, and its association with CRC risk. TaqMan® assays were used to genotype three tagSNPs selected across the APC Yin-Yang region. Frequencies of the APC Yin-Yang tagSNP alleles, haplotype and diplotype of 378 CRC cases and 642 controls were compared. Two Spanish CRC group samples were included [Hospital Clínico San Carlos in Madrid (HCSC) and Instituto Catalán de Oncología in Barcelona (ICO)]. Analysis of 157 consecutive CRC patients and 405 control subjects from HCSC showed a significative effect for the risk of CRC (OR=1.93; 95% CI 1.32–2.81; P=0.001). However, this effect was not confirmed in 221 CRC patients and 237 control subjects from ICO (OR=0.89; 95% CI 0.61–1.28; P=0.521). We found a significant association between the APC homozygote Yin-Yang diplotype and the risk of colorectal cancer in the HCSC samples. However, we did not observe this association in the ICO samples. These observations suggest that a study with a larger Spanish cohort is necessary to confirm the effects of the APC Yin-Yang diplotype on the risk of CRC. PMID:22993613

  3. APC Yin-Yang haplotype associated with colorectal cancer risk.

    PubMed

    Garre, P; DE LA Hoya, M; Iniesta, P; Romera, A; Llovet, P; Gonzalez, S; Perez-Segura, P; Capella, G; Diaz-Rubio, E; Caldes, T

    2010-09-01

    The Yin-Yang haplotype is defined as two mismatched haplotypes (Yin and Yang) representing the majority of the existing haplotypes in a particular genomic region. The human adenomatous polyposis coli (APC) gene shows a Yin-Yang haplotype pattern accounting for 84% of all of the haplotypes existing in the Spanish population. Several association studies have been published regarding APC gene variants (SNPs and haplotypes) and colorectal cancer (CRC) risk. However, no studies concerning diplotype structure and CRC risk have been conducted. The aim of the present study was to investigate whether the APC Yin-Yang homozygote diplotype is over-represented in patients with sporadic CRC when compared to its distribution in controls, and its association with CRC risk. TaqMan(®) assays were used to genotype three tagSNPs selected across the APC Yin-Yang region. Frequencies of the APC Yin-Yang tagSNP alleles, haplotype and diplotype of 378 CRC cases and 642 controls were compared. Two Spanish CRC group samples were included [Hospital Clínico San Carlos in Madrid (HCSC) and Instituto Catalán de Oncología in Barcelona (ICO)]. Analysis of 157 consecutive CRC patients and 405 control subjects from HCSC showed a significative effect for the risk of CRC (OR=1.93; 95% CI 1.32-2.81; P=0.001). However, this effect was not confirmed in 221 CRC patients and 237 control subjects from ICO (OR=0.89; 95% CI 0.61-1.28; P=0.521). We found a significant association between the APC homozygote Yin-Yang diplotype and the risk of colorectal cancer in the HCSC samples. However, we did not observe this association in the ICO samples. These observations suggest that a study with a larger Spanish cohort is necessary to confirm the effects of the APC Yin-Yang diplotype on the risk of CRC.

  4. NASA Aquarius Detects Possible Effects of Tropical Storm Lee in Gulf

    NASA Image and Video Library

    2011-12-07

    Tropical Storm Lee made landfall over New Orleans on Sept. 2-3, 2011, with predicted rainfall of 15 to 20 inches 38 to 51 centimeters over southern Louisiana. These charts are from NASA Aquarius spacecraft.

  5. Holography and noncommutative yang-mills theory

    PubMed

    Li; Wu

    2000-03-06

    In this Letter a recently proposed gravity dual of noncommutative Yang-Mills theory is derived from the relations between closed string moduli and open string moduli recently suggested by Seiberg and Witten. The only new input one needs is a simple form of the running string tension as a function of energy. This derivation provides convincing evidence that string theory integrates with the holographical principle and demonstrates a direct link between noncommutative Yang-Mills theory and holography.

  6. Continuations of the nonlinear Schrödinger equation beyond the singularity

    NASA Astrophysics Data System (ADS)

    Fibich, G.; Klein, M.

    2011-07-01

    We present four continuations of the critical nonlinear Schrödinger equation (NLS) beyond the singularity: (1) a sub-threshold power continuation, (2) a shrinking-hole continuation for ring-type solutions, (3) a vanishing nonlinear-damping continuation and (4) a complex Ginzburg-Landau (CGL) continuation. Using asymptotic analysis, we explicitly calculate the limiting solutions beyond the singularity. These calculations show that for generic initial data that lead to a loglog collapse, the sub-threshold power limit is a Bourgain-Wang solution, both before and after the singularity, and the vanishing nonlinear-damping and CGL limits are a loglog solution before the singularity, and have an infinite-velocity expanding core after the singularity. Our results suggest that all NLS continuations share the universal feature that after the singularity time Tc, the phase of the singular core is only determined up to multiplication by eiθ. As a result, interactions between post-collapse beams (filaments) become chaotic. We also show that when the continuation model leads to a point singularity and preserves the NLS invariance under the transformation t → -t and ψ → ψ*, the singular core of the weak solution is symmetric with respect to Tc. Therefore, the sub-threshold power and the shrinking-hole continuations are symmetric with respect to Tc, but continuations which are based on perturbations of the NLS equation are generically asymmetric.

  7. Outlining the influence of non-conventional yeasts in wine ageing over lees.

    PubMed

    Belda, Ignacio; Navascués, Eva; Marquina, Domingo; Santos, Antonio; Calderón, Fernando; Benito, Santiago

    2016-07-01

    During the last decade, the use of innovative yeast cultures of both Saccharomyces cerevisiae and non-Saccharomyces yeasts as alternative tools to manage the winemaking process have turned the oenology industry. Although the contribution of different yeast species to wine quality during fermentation is increasingly understood, information about their role in wine ageing over lees is really scarce. This work aims to analyse the incidence of three non-Saccharomyces yeast species of oenological interest (Torulaspora delbrueckii, Lachancea thermotolerans and Metschnikowia pulcherrima) and of a commercial mannoprotein-overproducer S. cerevisiae strain compared with a conventional industrial yeast strain during wine ageing over lees. To evaluate their incidence in mouthfeel properties of wine after 4 months of ageing, the mannoprotein content of wines was evaluated, together with other wine analytic parameters, such as colour and aroma, biogenic amines and amino acids profile. Some differences among the studied parameters were observed during the study, especially regarding the mannoprotein concentration of wines. Our results suggest that the use of T. delbrueckii lees in wine ageing is a useful tool for the improvement of overall wine quality by notably increasing mannoproteins, reaching values higher than obtained using a S. cerevisiae overproducer strain. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Symmetry breaking and singularity structure in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Commeford, K. A.; Garcia-March, M. A.; Ferrando, A.; Carr, Lincoln D.

    2012-08-01

    We determine the trajectories of vortex singularities that arise after a single vortex is broken by a discretely symmetric impulse in the context of Bose-Einstein condensates in a harmonic trap. The dynamics of these singularities are analyzed to determine the form of the imprinted motion. We find that the symmetry-breaking process introduces two effective forces: a repulsive harmonic force that causes the daughter trajectories to be ejected from the parent singularity and a Magnus force that introduces a torque about the axis of symmetry. For the analytical noninteracting case we find that the parent singularity is reconstructed from the daughter singularities after one period of the trapping frequency. The interactions between singularities in the weakly interacting system do not allow the parent vortex to be reconstructed. Analytic trajectories were compared to the actual minima of the wave function, showing less than 0.5% error for an impulse strength of v=0.00005. We show that these solutions are valid within the impulse regime for various impulse strengths using numerical integration of the Gross-Pitaevskii equation. We also show that the actual duration of the symmetry-breaking potential does not significantly change the dynamics of the system as long as the strength is below v=0.0005.

  9. Singular behavior of jet substructure observables

    DOE PAGES

    Larkoski, Andrew J.; Moult, Ian

    2016-01-20

    Jet substructure observables play a central role at the Large Hadron Collider for identifying the boosted hadronic decay products of electroweak scale resonances. The complete description of these observables requires understanding both the limit in which hard substructure is resolved, as well as the limit of a jet with a single hard core. In this paper we study in detail the perturbative structure of two prominent jet substructure observables, N-subjettiness and the energy correlation functions, as measured on background QCD jets. In particular, we focus on the distinction between the limits in which two-prong structure is resolved or unresolved. Dependingmore » on the choice of subjet axes, we demonstrate that at fixed order, N-subjettiness can manifest myriad behaviors in the unresolved region: smooth tails, end-point singularities, or singularities in the physical region. The energy correlation functions, by contrast, only have non-singular perturbative tails extending to the end point. We discuss the effect of hadronization on the various observables with Monte Carlo simulation and demonstrate that the modeling of these effects with non-perturbative shape functions is highly dependent on the N-subjettiness axes definitions. Lastly, our study illustrates those regions of phase space that must be controlled for high-precision jet substructure calculations, and emphasizes how such calculations can be facilitated by designing substructure observables with simple singular structures.« less

  10. Selective Migration among Southern Blacks: A Reinterpretation of Lee (1951).

    ERIC Educational Resources Information Center

    Wolff, JosePh L.

    1979-01-01

    Explanations of differences in IQs of Northern and Southern Blacks focus on selective migration (hereditarians) or environmental causes such as education, discrimination and cultural deprivation. In this paper the environmentalist position is questioned and certain neglected features of Lee's data are construed as providing strong evidence for…

  11. Singular trajectories: space-time domain topology of developing speckle fields

    NASA Astrophysics Data System (ADS)

    Vasil'ev, Vasiliy; Soskin, Marat S.

    2010-02-01

    It is shown the space-time dynamics of optical singularities is fully described by singularities trajectories in space-time domain, or evolution of transverse coordinates(x, y) in some fixed plane z0. The dynamics of generic developing speckle fields was realized experimentally by laser induced scattering in LiNbO3:Fe photorefractive crystal. The space-time trajectories of singularities can be divided topologically on two classes with essentially different scenario and duration. Some of them (direct topological reactions) consist from nucleation of singularities pair at some (x, y, z0, t) point, their movement and annihilation. They possess form of closed loops with relatively short time of existence. Another much more probable class of trajectories are chain topological reactions. Each of them consists from sequence of links, i.e. of singularities nucleation in various points (xi yi, ti) and following annihilation of both singularities in other space-time points with alien singularities of opposite topological indices. Their topology and properties are established. Chain topological reactions can stop on the borders of a developing speckle field or go to infinity. Examples of measured both types of topological reactions for optical vortices (polarization C points) in scalar (elliptically polarized) natural developing speckle fields are presented.

  12. Singularities in Free Surface Flows

    NASA Astrophysics Data System (ADS)

    Thete, Sumeet Suresh

    Free surface flows where the shape of the interface separating two or more phases or liquids are unknown apriori, are commonplace in industrial applications and nature. Distribution of drop sizes, coalescence rate of drops, and the behavior of thin liquid films are crucial to understanding and enhancing industrial practices such as ink-jet printing, spraying, separations of chemicals, and coating flows. When a contiguous mass of liquid such as a drop, filament or a film undergoes breakup to give rise to multiple masses, the topological transition is accompanied with a finite-time singularity . Such singularity also arises when two or more masses of liquid merge into each other or coalesce. Thus the dynamics close to singularity determines the fate of about-to-form drops or films and applications they are involved in, and therefore needs to be analyzed precisely. The primary goal of this thesis is to resolve and analyze the dynamics close to singularity when free surface flows experience a topological transition, using a combination of theory, experiments, and numerical simulations. The first problem under consideration focuses on the dynamics following flow shut-off in bottle filling applications that are relevant to pharmaceutical and consumer products industry, using numerical techniques based on Galerkin Finite Element Methods (GFEM). The second problem addresses the dual flow behavior of aqueous foams that are observed in oil and gas fields and estimates the relevant parameters that describe such flows through a series of experiments. The third problem aims at understanding the drop formation of Newtonian and Carreau fluids, computationally using GFEM. The drops are formed as a result of imposed flow rates or expanding bubbles similar to those of piezo actuated and thermal ink-jet nozzles. The focus of fourth problem is on the evolution of thinning threads of Newtonian fluids and suspensions towards singularity, using computations based on GFEM and experimental

  13. Regularizing cosmological singularities by varying physical constants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dąbrowski, Mariusz P.; Marosek, Konrad, E-mail: mpdabfz@wmf.univ.szczecin.pl, E-mail: k.marosek@wmf.univ.szczecin.pl

    2013-02-01

    Varying physical constant cosmologies were claimed to solve standard cosmological problems such as the horizon, the flatness and the Λ-problem. In this paper, we suggest yet another possible application of these theories: solving the singularity problem. By specifying some examples we show that various cosmological singularities may be regularized provided the physical constants evolve in time in an appropriate way.

  14. Transmutation of planar media singularities in a conformal cloak.

    PubMed

    Liu, Yichao; Mukhtar, Musawwadah; Ma, Yungui; Ong, C K

    2013-11-01

    Invisibility cloaking based on optical transformation involves materials singularity at the branch cut points. Many interesting optical devices, such as the Eaton lens, also require planar media index singularities in their implementation. We show a method to transmute two singularities simultaneously into harmless topological defects formed by anisotropic permittivity and permeability tensors. Numerical simulation is performed to verify the functionality of the transmuted conformal cloak consisting of two kissing Maxwell fish eyes.

  15. Global embeddings for branes at toric singularities

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Vijay; Berglund, Per; Braun, Volker; García-Etxebarria, Iñaki

    2012-10-01

    We describe how local toric singularities, including the Toric Lego construction, can be embedded in compact Calabi-Yau manifolds. We study in detail the addition of D-branes, including non-compact flavor branes as typically used in semi-realistic model building. The global geometry provides constraints on allowable local models. As an illustration of our discussion we focus on D3 and D7-branes on (the partially resolved) ( dP 0)3 singularity, its embedding in a specific Calabi-Yau manifold as a hypersurface in a toric variety, the related type IIB orientifold compactification, as well as the corresponding F-theory uplift. Our techniques generalize naturally to complete intersections, and to a large class of F-theory backgrounds with singularities.

  16. Quantum no-singularity theorem from geometric flows

    NASA Astrophysics Data System (ADS)

    Alsaleh, Salwa; Alasfar, Lina; Faizal, Mir; Ali, Ahmed Farag

    2018-04-01

    In this paper, we analyze the classical geometric flow as a dynamical system. We obtain an action for this system, such that its equation of motion is the Raychaudhuri equation. This action will be used to quantize this system. As the Raychaudhuri equation is the basis for deriving the singularity theorems, we will be able to understand the effects and such a quantization will have on the classical singularity theorems. Thus, quantizing the geometric flow, we can demonstrate that a quantum space-time is complete (nonsingular). This is because the existence of a conjugate point is a necessary condition for the occurrence of singularities, and we will be able to demonstrate that such conjugate points cannot occur due to such quantum effects.

  17. Boundary singularities produced by the motion of soap films.

    PubMed

    Goldstein, Raymond E; McTavish, James; Moffatt, H Keith; Pesci, Adriana I

    2014-06-10

    Recent work has shown that a Möbius strip soap film rendered unstable by deforming its frame changes topology to that of a disk through a "neck-pinching" boundary singularity. This behavior is unlike that of the catenoid, which transitions to two disks through a bulk singularity. It is not yet understood whether the type of singularity is generally a consequence of the surface topology, nor how this dependence could arise from an equation of motion for the surface. To address these questions we investigate experimentally, computationally, and theoretically the route to singularities of soap films with different topologies, including a family of punctured Klein bottles. We show that the location of singularities (bulk or boundary) may depend on the path of the boundary deformation. In the unstable regime the driving force for soap-film motion is the mean curvature. Thus, the narrowest part of the neck, associated with the shortest nontrivial closed geodesic of the surface, has the highest curvature and is the fastest moving. Just before onset of the instability there exists on the stable surface the shortest closed geodesic, which is the initial condition for evolution of the neck's geodesics, all of which have the same topological relationship to the frame. We make the plausible conjectures that if the initial geodesic is linked to the boundary, then the singularity will occur at the boundary, whereas if the two are unlinked initially, then the singularity will occur in the bulk. Numerical study of mean curvature flows and experiments support these conjectures.

  18. Boundary singularities produced by the motion of soap films

    PubMed Central

    Goldstein, Raymond E.; McTavish, James; Moffatt, H. Keith; Pesci, Adriana I.

    2014-01-01

    Recent work has shown that a Möbius strip soap film rendered unstable by deforming its frame changes topology to that of a disk through a “neck-pinching” boundary singularity. This behavior is unlike that of the catenoid, which transitions to two disks through a bulk singularity. It is not yet understood whether the type of singularity is generally a consequence of the surface topology, nor how this dependence could arise from an equation of motion for the surface. To address these questions we investigate experimentally, computationally, and theoretically the route to singularities of soap films with different topologies, including a family of punctured Klein bottles. We show that the location of singularities (bulk or boundary) may depend on the path of the boundary deformation. In the unstable regime the driving force for soap-film motion is the mean curvature. Thus, the narrowest part of the neck, associated with the shortest nontrivial closed geodesic of the surface, has the highest curvature and is the fastest moving. Just before onset of the instability there exists on the stable surface the shortest closed geodesic, which is the initial condition for evolution of the neck’s geodesics, all of which have the same topological relationship to the frame. We make the plausible conjectures that if the initial geodesic is linked to the boundary, then the singularity will occur at the boundary, whereas if the two are unlinked initially, then the singularity will occur in the bulk. Numerical study of mean curvature flows and experiments support these conjectures. PMID:24843162

  19. Three dimensional canonical singularity and five dimensional N = 1 SCFT

    NASA Astrophysics Data System (ADS)

    Xie, Dan; Yau, Shing-Tung

    2017-06-01

    We conjecture that every three dimensional canonical singularity defines a five dimensional N = 1 SCFT. Flavor symmetry can be found from singularity structure: non-abelian flavor symmetry is read from the singularity type over one dimensional singular locus. The dimension of Coulomb branch is given by the number of compact crepant divisors from a crepant resolution of singularity. The detailed structure of Coulomb branch is described as follows: a) a chamber of Coulomb branch is described by a crepant resolution, and this chamber is given by its Nef cone and the prepotential is computed from triple intersection numbers; b) Crepant resolution is not unique and different resolutions are related by flops; Nef cones from crepant resolutions form a fan which is claimed to be the full Coulomb branch.

  20. Singularities of the Euler equation and hydrodynamic stability

    NASA Technical Reports Server (NTRS)

    Tanveer, S.; Speziale, Charles G.

    1993-01-01

    Equations governing the motion of a specific class of singularities of the Euler equation in the extended complex spatial domain are derived. Under some assumptions, it is shown how this motion is dictated by the smooth part of the complex velocity at a singular point in the unphysical domain. These results are used to relate the motion of complex singularities to the stability of steady solutions of the Euler equation. A sufficient condition for instability is conjectured. Several examples are presented to demonstrate the efficacy of this sufficient condition which include the class of elliptical flows and the Kelvin-Stuart Cat's Eye.

  1. Singularities of the Euler equation and hydrodynamic stability

    NASA Technical Reports Server (NTRS)

    Tanveer, S.; Speziale, Charles G.

    1992-01-01

    Equations governing the motion of a specific class of singularities of the Euler equation in the extended complex spatial domain are derived. Under some assumptions, it is shown how this motion is dictated by the smooth part of the complex velocity at a singular point in the unphysical domain. These results are used to relate the motion of complex singularities to the stability of steady solutions of the Euler equation. A sufficient condition for instability is conjectured. Several examples are presented to demonstrate the efficacy of this sufficient condition which include the class of elliptical flows and the Kelvin-Stuart Cat's Eye.

  2. Spontaneous generation of singularities in paraxial optical fields.

    PubMed

    Aiello, Andrea

    2016-04-01

    In nonrelativistic quantum mechanics, the spontaneous generation of singularities in smooth and finite wave functions is a well understood phenomenon also occurring for free particles. We use the familiar analogy between the two-dimensional Schrödinger equation and the optical paraxial wave equation to define a new class of square-integrable paraxial optical fields that develop a spatial singularity in the focal point of a weakly focusing thin lens. These fields are characterized by a single real parameter whose value determines the nature of the singularity. This novel field enhancement mechanism may stimulate fruitful research for diverse technological and scientific applications.

  3. On the singular perturbations for fractional differential equation.

    PubMed

    Atangana, Abdon

    2014-01-01

    The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method.

  4. Radiative double copy for Einstein-Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Chester, David

    2018-04-01

    Recently, a double-copy formalism was used to calculate gravitational radiation from classical Yang-Mills radiation solutions. This work shows that the Yang-Mills theory coupled to a biadjoint scalar field admits a radiative double copy that agrees with solutions in the Einstein-Yang-Mills theory at the lowest finite order. Within this context, the trace-reversed metric h¯μ ν is a natural double copy of the gauge boson Aμ a . This work provides additional evidence that solutions in gauge and gravity theories are related, even though their respective Lagrangians and nonlinear equations of motion appear to be different.

  5. Equilibrium stellar systems with spindle singularities

    NASA Technical Reports Server (NTRS)

    Shapiro, Stuart L.; Teukolsky, Saul A.

    1992-01-01

    Equilibrium sequences of axisymmetric Newtonian clusters that tend toward singular states are constructed. The distribution functions are chosen to be of the form f = f(E, Jz). The numerical method then determines the density and gravitational potential self-consistently to satisfy Poisson's equation. For the prolate models, spindle singularities arise from the depletion of angular momentum near the symmetry axis. While the resulting density enhancement is confined to the region near the axis, the influence of the spindle extends much further out through its tidal gravitational field. Centrally condensed prolate clusters may contain strong-field regions even though the spindle mass is small and the mean cluster eccentricity is not extreme. While the calculations performed here are entirely Newtonian, the issue of singularities is an important topic in general relativity. Equilibrium solutions for relativistic star clusters can provide a testing ground for exploring this issue. The methods used in this paper for building nonspherical clusters can be extended to relativistic systems.

  6. Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik

    Using the double-copy construction of Yang-Mills-Einstein theories formulated in our earlier work, we obtain compact presentations for single-trace Yang-Mills-Einstein tree amplitudes with up to five external gravitons and an arbitrary number of gluons. These are written as linear combinations of color-ordered Yang-Mills trees, where the coefficients are given by color/kinematics-satisfying numerators in a Yang-Mills + φ 3 theory. The construction outlined in this paper holds in general dimension and extends straightforwardly to supergravity theories. For one, two, and three external gravitons, our expressions give identical or simpler presentations of amplitudes already constructed through string-theory considerations or the scattering equations formalism.more » Our results are based on color/kinematics duality and gauge invariance, and strongly hint at a recursive structure underlying the single-trace amplitudes with an arbitrary number of gravitons. We also present explicit expressions for all-loop single-graviton Einstein-Yang-Mills amplitudes in terms of Yang-Mills amplitudes and, through gauge invariance, derive new all-loop amplitude relations for Yang-Mills theory.« less

  7. Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy

    DOE PAGES

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik; ...

    2017-07-03

    Using the double-copy construction of Yang-Mills-Einstein theories formulated in our earlier work, we obtain compact presentations for single-trace Yang-Mills-Einstein tree amplitudes with up to five external gravitons and an arbitrary number of gluons. These are written as linear combinations of color-ordered Yang-Mills trees, where the coefficients are given by color/kinematics-satisfying numerators in a Yang-Mills + φ 3 theory. The construction outlined in this paper holds in general dimension and extends straightforwardly to supergravity theories. For one, two, and three external gravitons, our expressions give identical or simpler presentations of amplitudes already constructed through string-theory considerations or the scattering equations formalism.more » Our results are based on color/kinematics duality and gauge invariance, and strongly hint at a recursive structure underlying the single-trace amplitudes with an arbitrary number of gravitons. We also present explicit expressions for all-loop single-graviton Einstein-Yang-Mills amplitudes in terms of Yang-Mills amplitudes and, through gauge invariance, derive new all-loop amplitude relations for Yang-Mills theory.« less

  8. Singularities in the classical Rayleigh-Taylor flow - Formation and subsequent motion

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1993-01-01

    The creation and subsequent motion of singularities of solution to classical Rayleigh-Taylor flow (two dimensional inviscid, incompressible fluid over a vacuum) are discussed. For a specific set of initial conditions, we give analytical evidence to suggest the instantaneous formation of one or more singularities at specific points in the unphysical plane, whose locations depend sensitively on small changes in initial conditions in the physical domain. One-half power singularities are created in accordance with an earlier conjecture; however, depending on initial conditions, other forms of singularities are also possible. For a specific initial condition, we follow a numerical procedure in the unphysical plane to compute the motion of a one-half singularity. This computation confirms our previous conjecture that the approach of a one-half singularity towards the physical domain corresponds to the development of a spike at the physical interface. Under some assumptions that appear to be consistent with numerical calculations, we present analytical evidence to suggest that a singularity of the one-half type cannot impinge the physical domain in finite time.

  9. Singularities in the classical Rayleigh-Taylor flow: Formation and subsequent motion

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1992-01-01

    The creation and subsequent motion of singularities of solution to classical Rayleigh-Taylor flow (two dimensional inviscid, incompressible fluid over a vacuum) are discussed. For a specific set of initial conditions, we give analytical evidence to suggest the instantaneous formation of one or more singularities at specific points in the unphysical plane, whose locations depend sensitively on small changes in initial conditions in the physical domain. One-half power singularities are created in accordance with an earlier conjecture; however, depending on initial conditions, other forms of singularities are also possible. For a specific initial condition, we follow a numerical procedure in the unphysical plane to compute the motion of a one-half singularity. This computation confirms our previous conjecture that the approach of a one-half singularity towards the physical domain corresponds to the development of a spike at the physical interface. Under some assumptions that appear to be consistent with numerical calculations, we present analytical evidence to suggest that a singularity of the one-half type cannot impinge the physical domain in finite time.

  10. Singular perturbation and time scale approaches in discrete control systems

    NASA Technical Reports Server (NTRS)

    Naidu, D. S.; Price, D. B.

    1988-01-01

    After considering a singularly perturbed discrete control system, a singular perturbation approach is used to obtain outer and correction subsystems. A time scale approach is then applied via block diagonalization transformations to decouple the system into slow and fast subsystems. To a zeroth-order approximation, the singular perturbation and time-scale approaches are found to yield equivalent results.

  11. Wave-front singularities for two-dimensional anisotropic elastic waves.

    NASA Technical Reports Server (NTRS)

    Payton, R. G.

    1972-01-01

    Wavefront singularities for the displacement functions, associated with the radiation of linear elastic waves from a point source embedded in a finitely strained two-dimensional elastic solid, are examined in detail. It is found that generally the singularities are of order d to the -1/2 power, where d measures distance away from the front. However, in certain exceptional cases singularities of order d to the -n power, where n = 1/4, 2/3, 3/4, may be encountered.

  12. Sunrayce 97 Continues Day 4 - Fulton to Lee's Summit

    Science.gov Websites

    (202) 586-0713 Lee's Summit, MO -- Massachusetts Institute of Technology (MIT) took Day IV and maintained the overall lead as sunrayce 97 completed its fourth day. The elapsed time for the day for the attaining good sun early enough in the day to replenish the batteries, as such a fast pace will deplete them

  13. Classification of almost toric singularities of Lagrangian foliations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izosimov, Anton M

    2011-07-31

    The topological classification is given of almost toric singularities of integrable Hamiltonian systems with a large number of degrees of freedom, that is, of nondegenerate singularities without hyperbolic components. A descriptive geometric model is constructed, which makes it possible to perform effective calculations. Bibliography: 10 titles.

  14. The Analytic Structure of Scattering Amplitudes in N = 4 Super-Yang-Mills Theory

    NASA Astrophysics Data System (ADS)

    Litsey, Sean Christopher

    We begin the dissertation in Chapter 1 with a discussion of tree-level amplitudes in Yang-. Mills theories. The DDM and BCJ decompositions of the amplitudes are described and. related to one another by the introduction of a transformation matrix. This is related to the. Kleiss-Kuijf and BCJ amplitude identities, and we conjecture a connection to the existence. of a BCJ representation via a condition on the generalized inverse of that matrix. Under. two widely-believed assumptions, this relationship is proved. Switching gears somewhat, we introduce the RSVW formulation of the amplitude, and the extension of BCJ-like features to residues of the RSVW integrand is proposed. Using the previously proven connection of BCJ representations to the generalized inverse condition, this extension is validated, including a version of gravitational double copy. The remainder of the dissertation involves an analysis of the analytic properties of loop. amplitudes in N = 4 super-Yang-Mills theory. Chapter 2 contains a review of the planar case, including an exposition of dual variables and momentum twistors, dual conformal symmetry, and their implications for the amplitude. After defining the integrand and on-shell diagrams, we explain the crucial properties that the amplitude has no poles at infinite momentum and that its leading singularities are dual-conformally-invariant cross ratios, and can therefore be normalized to unity. We define the concept of a dlog form, and show that it is a feature of the planar integrand as well. This leads to the definition of a pure integrand basis. The proceeding setup is connected to the amplituhedron formulation, and we put forward the hypothesis that the amplitude is determined by zero conditions. Chapter 3 contains the primary computations of the dissertation. This chapter treats. amplitudes in fully nonplanar N = 4 super-Yang-Mills, analyzing the conjecture that they. follow the pattern of having no poles at infinity, can be written in dlog

  15. [Herbs for calming liver and suppressing yang in treatment of hyperthyroidism with hyperactive liver yang: herbal effects on lymphocyte protein expression].

    PubMed

    Li, Xiangping; Yin, Tao; Zhong, Guangwei; Li, Wei; Luo, Yanhong; Xiang, Lingli; Liu, Zhehao

    2011-07-01

    To observe the herbal effects on hyperthyroidism patients with syndrome of hyperactivity of liver-Yang by method for calming the liver and suppressing Yang and investigate its effects on the lymphocyte protein expression. This approach may lay a foundation for the further investigation of the curative mechanisms of calming the liver and suppressing Yang treatment. A total of 48 hyperthyroidism patients with syndrome of hyperactivity of liver-Yang were randomly divided into treatment group and control group. The treatment group was treated by method for calming the liver and suppressing Yang in accordance with traditional Chinese medicine (TCM) and the control group with thiamazole tablets for three periods of treatment The therapeutic effects, the score of TCM symptom, electrocardiogram (P wave), thyroid hormones and ultrasound were observed in both groups before and after the treatment. The side effects in the treatment course were observed in both groups. The level of differential protein expression was analyzed by two-dimensional electrphoresis and matrix assisted laser desorption/ionizaton time-of-flight mass spectrometry. The treatment group has the effect on stepping down the heart rate, cutting down the P wave amplitude changes, regulating the level of thyroid hormones and decreasing the volume of thyromegaly. There are not statistically significant between the treatment group and control group. However, the treatment group has obviously better effect on regulating TCM symptom and decreasing the side reaction than the control group (P<0.05). There are not statistically significant on the total effective between the treatment group and control group. The average spots in lymphocyte for normal people, before and after treating hyperthyroidism patients with syndrome of hyperactivity of liver-Yang were (429 +/- 31), (452 +/- 28) and (437 +/- 36) spots respectively. Eight down-regulated protein expressions and 11 up-regulated protein expressions were obtained in

  16. Singular vectors for the WN algebras

    NASA Astrophysics Data System (ADS)

    Ridout, David; Siu, Steve; Wood, Simon

    2018-03-01

    In this paper, we use free field realisations of the A-type principal, or Casimir, WN algebras to derive explicit formulae for singular vectors in Fock modules. These singular vectors are constructed by applying screening operators to Fock module highest weight vectors. The action of the screening operators is then explicitly evaluated in terms of Jack symmetric functions and their skew analogues. The resulting formulae depend on sequences of pairs of integers that completely determine the Fock module as well as the Jack symmetric functions.

  17. Stress singularities at the vertex of a cylindrically anisotropic wedge

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Boduroglu, H.

    1980-01-01

    The plane elasticity problem for a cylindrically anisotropic solid is formulated. The form of the solution for an infinite wedge shaped domain with various homogeneous boundary conditions is derived and the nature of the stress singularity at the vertex of the wedge is studied. The characteristic equations giving the stress singularity and the angular distribution of the stresses around the vertex of the wedge are obtained for three standard homogeneous boundary conditions. The numerical examples show that the singular behavior of the stresses around the vertex of an anisotropic wedge may be significantly different from that of the isotropic material. Some of the results which may be of practical importance are that for a half plane the stress state at r = 0 may be singular and for a crack the power of stress singularity may be greater or less than 1/2.

  18. Advocacy -- Professional School Counselors Closing the Achievement Gap Through Empowerment: A Response to Hipolito-Delgado and Lee

    ERIC Educational Resources Information Center

    Mitcham-Smith, Michelle

    2007-01-01

    The author comments on several aspects of an article by Hipolito-Delgado and Lee entitled "Empowerment Theory for the Professional School Counselor: A Manifesto for What Really Matters" (Professional School Counseling, v10 n4 p327-332 Apr 2007; see EJ767346). Hipolito-Delgado and Lee's article highlights a critical need for a comprehensive,…

  19. In Situ Observation of Reversible Nanomagnetic Switching Induced by Electric Fields

    DTIC Science & Technology

    2010-03-12

    Balke, N.; Yang, C. H.; Lee, D.; Hu, W.; Zhan, Q.; Yang, P. L.; Fraile-Rodriguez, A.; Scholl , A.; Wang, S. X.; Ramesh, R. Nat. Mater. 2008, 7 (6... Williams , D. B.; Carter, C. B., Transmission electron microscopy: a textbook for materials science; Plenum Press: New York, 1996; Vol. xxvii, p 729

  20. The Significance of Grit: A Conversation with Angela Lee Duckworth

    ERIC Educational Resources Information Center

    Perkins-Gough, Deborah

    2013-01-01

    For the last 11 years, Angela Lee Duckworth of the University of Pennsylvania has been conducting ground breaking studies on "grit"--the quality that enables individuals to work hard and stick to their long-term passions and goals. In this interview with "Educational Leadership," Duckworth describes what her research has shown…

  1. Removing singular refractive indices with sculpted surfaces

    PubMed Central

    Horsley, S. A. R.; Hooper, I. R.; Mitchell–Thomas, R. C.; Quevedo–Teruel, O.

    2014-01-01

    The advent of Transformation Optics established the link between geometry and material properties, and has resulted in a degree of control over electromagnetic fields that was previously impossible. For waves confined to a surface it is known that there is a simpler, but related, geometrical equivalence between the surface shape and the refractive index, and here we demonstrate that conventional devices possessing a singularity — that is, the requirement of an infinite refractive index — can be realised for waves confined to an appropriately sculpted surface. In particular, we redesign three singular omnidirectional devices: the Eaton lens, the generalized Maxwell Fish–Eye, and the invisible sphere. Our designs perfectly reproduce the behaviour of these singular devices, and can be achieved with simple isotropic media of low refractive index contrast. PMID:24786649

  2. On the dynamic singularities in the control of free-floating space manipulators

    NASA Technical Reports Server (NTRS)

    Papadopoulos, E.; Dubowsky, S.

    1989-01-01

    It is shown that free-floating space manipulator systems have configurations which are dynamically singular. At a dynamically singular position, the manipulator is unable to move its end effector in some direction. This problem appears in any free-floating space manipulator system that permits the vehicle to move in response to manipulator motion without correction from the vehicle's attitude control system. Dynamic singularities are functions of the dynamic properties of the system; their existence and locations cannot be predicted solely from the kinematic structure of the manipulator, unlike the singularities for fixed base manipulators. It is also shown that the location of these dynamic singularities in the workplace is dependent upon the path taken by the manipulator in reaching them. Dynamic singularities must be considered in the control, planning and design of free-floating space manipulator systems. A method for calculating these dynamic singularities is presented, and it is shown that the system parameters can be selected to reduce the effect of dynamic singularities on a system's performance.

  3. Teleman localization of Hochschild homology in a singular setting

    NASA Astrophysics Data System (ADS)

    Brasselet, J.-P.; Legrand, A.

    2009-09-01

    The aim of this paper is to generalize the Hochschild-Kostant-Rosenberg theorem to the case of singular varieties, more precisely, to manifolds with boundary and to varieties with isolated singularities. In these situations, we define suitable algebras of functions and study the localization of the corresponding Hochschild homology. The tool we use is the Teleman localization process. In the case of isolated singularities, the closed Hochschild homology corresponds to the intersection complex which relates the objects defined here to intersection homology.

  4. Correlation singularities in a partially coherent electromagnetic beam with initially radial polarization.

    PubMed

    Zhang, Yongtao; Cui, Yan; Wang, Fei; Cai, Yangjian

    2015-05-04

    We have investigated the correlation singularities, coherence vortices of two-point correlation function in a partially coherent vector beam with initially radial polarization, i.e., partially coherent radially polarized (PCRP) beam. It is found that these singularities generally occur during free space propagation. Analytical formulae for characterizing the dynamics of the correlation singularities on propagation are derived. The influence of the spatial coherence length of the beam on the evolution properties of the correlation singularities and the conditions for creation and annihilation of the correlation singularities during propagation have been studied in detail based on the derived formulae. Some interesting results are illustrated. These correlation singularities have implication for interference experiments with a PCRP beam.

  5. Evolution of coherence singularities of Schell-model beams.

    PubMed

    Rodrigo, José A; Alieva, Tatiana

    2015-08-01

    We show that the propagation of the widely used Schell-model partially coherent light can be easily understood using the ambiguity function. This approach is especially beneficial for the analysis of the mutual intensity of Schell-model beams (SMBs), which are associated with stable coherent beams such as Laguerre-, Hermite-, and Ince-Gaussian. We study the evolution of the coherence singularities during the SMB propagation. It is demonstrated that the distance of singularity formation depends on the coherence degree of the input beam. Moreover, it is proved that the shape, position, and number of singularity curves in far field are defined by the associated coherent beam.

  6. On the Singular Perturbations for Fractional Differential Equation

    PubMed Central

    Atangana, Abdon

    2014-01-01

    The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method. PMID:24683357

  7. Singularities and the geometry of spacetime

    NASA Astrophysics Data System (ADS)

    Hawking, Stephen

    2014-11-01

    The aim of this essay is to investigate certain aspects of the geometry of the spacetime manifold in the General Theory of Relativity with particular reference to the occurrence of singularities in cosmological solutions and their relation with other global properties. Section 2 gives a brief outline of Riemannian geometry. In Section 3, the General Theory of Relativity is presented in the form of two postulates and two requirements which are common to it and to the Special Theory of Relativity, and a third requirement, the Einstein field equations, which distinguish it from the Special Theory. There does not seem to be any alternative set of field equations which would not have some undeseriable features. Some exact solutions are described. In Section 4, the physical significance of curvature is investigated using the deviation equation for timelike and null curves. The Riemann tensor is decomposed into the Ricci tensor which represents the gravitational effect at a point of matter at that point and the Welyl tensor which represents the effect at a point of gravitational radiation and matter at other points. The two tensors are related by the Bianchi identities which are presented in a form analogous to the Maxwell equations. Some lemmas are given for the occurrence of conjugate points on timelike and null geodesics and their relation with the variation of timelike and null curves is established. Section 5 is concerned with properties of causal relations between points of spacetime. It is shown that these could be used to determine physically the manifold structure of spacetime if the strong causality assumption held. The concepts of a null horizon and a partial Cauchy surface are introduced and are used to prove a number of lemmas relating to the existence of a timelike curve of maximum length between two sets. In Section 6, the definition of a singularity of spacetime is given in terms of geodesic incompleteness. The various energy assumptions needed to prove

  8. Segmentation of singularity maps in the context of soil porosity

    NASA Astrophysics Data System (ADS)

    Martin-Sotoca, Juan J.; Saa-Requejo, Antonio; Grau, Juan; Tarquis, Ana M.

    2016-04-01

    Geochemical exploration have found with increasingly interests and benefits of using fractal (power-law) models to characterize geochemical distribution, including concentration-area (C-A) model (Cheng et al., 1994; Cheng, 2012) and concentration-volume (C-V) model (Afzal et al., 2011) just to name a few examples. These methods are based on the singularity maps of a measure that at each point define areas with self-similar properties that are shown in power-law relationships in Concentration-Area plots (C-A method). The C-A method together with the singularity map ("Singularity-CA" method) define thresholds that can be applied to segment the map. Recently, the "Singularity-CA" method has been applied to binarize 2D grayscale Computed Tomography (CT) soil images (Martin-Sotoca et al, 2015). Unlike image segmentation based on global thresholding methods, the "Singularity-CA" method allows to quantify the local scaling property of the grayscale value map in the space domain and determinate the intensity of local singularities. It can be used as a high-pass-filter technique to enhance high frequency patterns usually regarded as anomalies when applied to maps. In this work we will put special attention on how to select the singularity thresholds in the C-A plot to segment the image. We will compare two methods: 1) cross point of linear regressions and 2) Wavelets Transform Modulus Maxima (WTMM) singularity function detection. REFERENCES Cheng, Q., Agterberg, F. P. and Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109-130. Cheng, Q. (2012). Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Afzal, P., Fadakar Alghalandis, Y., Khakzad, A., Moarefvand, P. and Rashidnejad Omran, N. (2011) Delineation of mineralization zones in

  9. The strong energy condition and the S-brane singularity problem

    NASA Astrophysics Data System (ADS)

    McInnes, Brett

    2003-06-01

    Recently it has been argued that, because tachyonic matter satisfies the Strong Energy Condition [SEC], there is little hope of avoiding the singularities which plague S-Brane spacetimes. Meanwhile, however, Townsend and Wohlfarth have suggested an ingenious way of circumventing the SEC in such situations, and other suggestions for actually violating it in the S-Brane context have recently been proposed. Of course, the natural context for discussions of [effective or actual] violations of the SEC is the theory of asymptotically deSitter spacetimes, which tend to be less singular than ordinary FRW spacetimes. However, while violating or circumventing the SEC is necessary if singularities are to be avoided, it is not at all clear that it is sufficient. That is, we can ask: would an asymptotically deSitter S-brane spacetime be non-singular? We show that this is difficult to achieve; this result is in the spirit of the recently proved "S-brane singularity theorem". Essentially our results suggest that circumventing or violating the SEC may not suffice to solve the S-Brane singularity problem, though we do propose two ways of avoiding this conclusion.

  10. Tailoring Eigenmodes at Spectral Singularities in Graphene-based PT Systems.

    PubMed

    Zhang, Weixuan; Wu, Tong; Zhang, Xiangdong

    2017-09-12

    The spectral singularity existing in PT-synthetic plasmonic system has been widely investigated. Only lasing-mode can be excited resulting from the passive characteristic of metallic materials. Here, we investigated the spectral singularity in the hybrid structure composed of the photoexcited graphene and one-dimensional PT-diffractive grating. In this system, both lasing- and absorption-modes can be excited with the surface conductivity of photoexcited graphene being loss and gain, respectively. Remarkably, the spectral singularity will disappear with the optically pumped graphene to be lossless. In particular, we find that spectral singularities can exhibit symmetry-modes, when the loss and gain of the grating is unbalanced. Meanwhile, by tuning the loss (gain) of graphene and non-PT diffraction grating, lasing- and absorption-modes can also be excited. We hope that tunable optical modes at spectral singularities can have some applications in designing novel surface-enhanced spectroscopies and plasmon lasers.

  11. Stanley Corrsin Award Talk: The role of singularities in hydrodynamics

    NASA Astrophysics Data System (ADS)

    Eggers, Jens

    2017-11-01

    If a tap is opened slowly, a drop will form. The separation of the drop is described by a singularity of the Navier-Stokes equation with a free surface. Shock waves are singular solutions of the equations of ideal, compressible hydrodynamics. These examples show that singularities are characteristic for the tendency of the hydrodynamic equations to develop small scale features spontaneously, starting from smooth initial conditions. As a result, new structures are created, which form the building blocks of more complicated flows. The mathematical structure of singularities is self-similar, and their characteristics are fixed by universal properties. This will be illustrated by physical examples, as well as by applications to engineering problems such as printing, coating, or air entrainment. Finally, more recent developments will be discussed: the increasing complexity underlying the self-similar behavior of some singularities, and the spatial structure of shock waves.

  12. Future singularities and teleparallelism in loop quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamba, Kazuharu; Haro, Jaume de; Odintsov, Sergei D., E-mail: bamba@kmi.nagoya-u.ac.jp, E-mail: jaime.haro@upc.edu, E-mail: odintsov@ieec.uab.es

    2013-02-01

    We demonstrate how holonomy corrections in loop quantum cosmology (LQC) prevent the Big Rip singularity by introducing a quadratic modification in terms of the energy density ρ in the Friedmann equation in the Friedmann-Lemaître-Robertson-Walker (FLRW) space-time in a consistent and useful way. In addition, we investigate whether other kind of singularities like Type II,III and IV singularities survive or are avoided in LQC when the universe is filled by a barotropic fluid with the state equation P = −ρ−f(ρ), where P is the pressure and f(ρ) a function of ρ. It is shown that the Little Rip cosmology does notmore » happen in LQC. Nevertheless, the occurrence of the Pseudo-Rip cosmology, in which the phantom universe approaches the de Sitter one asymptotically, is established, and the corresponding example is presented. It is interesting that the disintegration of bound structures in the Pseudo-Rip cosmology in LQC always takes more time than that in Einstein cosmology. Our investigation on future singularities is generalized to that in modified teleparallel gravity, where LQC and Brane Cosmology in the Randall-Sundrum scenario are the best examples. It is remarkable that F(T) gravity may lead to all the kinds of future singularities including Little Rip.« less

  13. On the initial singularity problem in rainbow cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Grasiele; Gubitosi, Giulia; Amelino-Camelia, Giovanni, E-mail: grasiele.dossantos@icranet.org, E-mail: g.gubitosi@imperial.ac.uk, E-mail: giovanni.amelino-camelia@roma1.infn.it

    2015-08-01

    It has been recently claimed that the initial singularity might be avoided in the context of rainbow cosmology, where one attempts to account for quantum-gravitational corrections through an effective-theory description based on an energy-dependent ('rainbow') spacetime metric. We here scrutinize this exciting hypothesis much more in depth than previous analyses. In particular, we take into account all requirements for singularity avoidance, while previously only a subset of these requirements had been considered. Moreover, we show that the implications of a rainbow metric for thermodynamics are more significant than previously appreciated. Through the analysis of two particularly meaningful examples of rainbowmore » metrics we find that our concerns are not merely important conceptually, but actually change in quantitatively significant manner the outcome of the analysis. Notably we only find examples where the singularity is not avoided, though one can have that in the regime where our semi-classical picture is still reliable the approach to the singularity is slowed down when compared to the standard classical scenario. We conclude that the study of rainbow metrics provides tantalizing hints of singularity avoidance but is inconclusive, since some key questions remain to be addressed just when the scale factor is very small, a regime which, as here argued, cannot be reliably described by an effective rainbow-metric picture.« less

  14. Impact of viscous boundary layers on the emission of lee-waves

    NASA Astrophysics Data System (ADS)

    Renaud, Antoine; Venaille, Antoine; Bouchet, Freddy

    2017-04-01

    Oceans large-scale structures such as jets and vortices can lose their energy into small-scale turbulence. Understanding the physical mechanisms underlying those energy transfers remains a major theoretical challenge. Here we propose an approach that shed new light on the role of bottom topography in this problem. At a linear level, one efficient way of extracting energy and momentum from the mean-flow above topography undulations is the radiation of lee-waves. The generated lee-waves are well described by inviscid theory which gives a prediction for the energy-loss rate at short time [1]. Using a quasi-linear approach we describe the feedback of waves on the mean-flow occurring mostly close to the bottom topography. This can thereafter impact the lee-waves radiation and thus modify the energy-loss rate for the mean-flow. In this work, we consider the Boussinesq equations with periodic boundary conditions in the zonal direction. Taking advantage of this idealized geometry, we apply zonally-symmetric wave-mean interaction theory [2,3]. The novelty of our work is to discuss the crucial role of dissipative effects, such as molecular or turbulent viscosities, together with the importance of the boundary conditions (free-slip vs no-slip). We provide explicite computations in the case of the free evolution of an initially barotropic flow above a sinusoidal topography with free-slip bottom boundary condition. We show how the existence of the boundary layer for the wave-field can enhance the streaming close to the topography. This leads to the emergence of boundary layer for the mean-flow impacting the energy-loss rate through lee-wave emissions. Our results are compared against direct numerical simulations using the MIT general circulation model and are found to be in good agreement. References [1] S.L. Smith, W.R. Young, Conversion of the Barotropic Tide, JPhysOcean 2002 [2] 0. Bühler, Waves and Mean Flows, second edition, Cambridge university press 2014 [3] J

  15. Twisting singular solutions of Betheʼs equations

    NASA Astrophysics Data System (ADS)

    Nepomechie, Rafael I.; Wang, Chunguang

    2014-12-01

    The Bethe equations for the periodic XXX and XXZ spin chains admit singular solutions, for which the corresponding eigenvalues and eigenvectors are ill-defined. We use a twist regularization to derive conditions for such singular solutions to be physical, in which case they correspond to genuine eigenvalues and eigenvectors of the Hamiltonian.

  16. Quantum propagation across cosmological singularities

    NASA Astrophysics Data System (ADS)

    Gielen, Steffen; Turok, Neil

    2017-05-01

    The initial singularity is the most troubling feature of the standard cosmology, which quantum effects are hoped to resolve. In this paper, we study quantum cosmology with conformal (Weyl) invariant matter. We show that it is natural to extend the scale factor to negative values, allowing a large, collapsing universe to evolve across a quantum "bounce" into an expanding universe like ours. We compute the Feynman propagator for Friedmann-Robertson-Walker backgrounds exactly, identifying curious pathologies in the case of curved (open or closed) universes. We then include anisotropies, fixing the operator ordering of the quantum Hamiltonian by imposing covariance under field redefinitions and again finding exact solutions. We show how complex classical solutions allow one to circumvent the singularity while maintaining the validity of the semiclassical approximation. The simplest isotropic universes sit on a critical boundary, beyond which there is qualitatively different behavior, with potential for instability. Additional scalars improve the theory's stability. Finally, we study the semiclassical propagation of inhomogeneous perturbations about the flat, isotropic case, at linear and nonlinear order, showing that, at least at this level, there is no particle production across the bounce. These results form the basis for a promising new approach to quantum cosmology and the resolution of the big bang singularity.

  17. Realization of non-holonomic constraints and singular perturbation theory for plane dumbbells

    NASA Astrophysics Data System (ADS)

    Koshkin, Sergiy; Jovanovic, Vojin

    2017-10-01

    We study the dynamics of pairs of connected masses in the plane, when nonholonomic (knife-edge) constraints are realized by forces of viscous friction, in particular its relation to constrained dynamics, and its approximation by the method of matching asymptotics of singular perturbation theory when the mass to friction ratio is taken as the small parameter. It turns out that long term behaviors of the frictional and constrained systems may differ dramatically no matter how small the perturbation is, and when this happens is not determined by any transparent feature of the equations of motion. The choice of effective time scales for matching asymptotics is also subtle and non-obvious, and secular terms appearing in them can not be dealt with by the classical methods. Our analysis is based on comparison to analytic solutions, and we present a reduction procedure for plane dumbbells that leads to them in some cases.

  18. Cosmological singularities in Bakry-Émery spacetimes

    NASA Astrophysics Data System (ADS)

    Galloway, Gregory J.; Woolgar, Eric

    2014-12-01

    We consider spacetimes consisting of a manifold with Lorentzian metric and a weight function or scalar field. These spacetimes admit a Bakry-Émery-Ricci tensor which is a natural generalization of the Ricci tensor. We impose an energy condition on the Bakry-Émery-Ricci tensor and obtain singularity theorems of a cosmological type, both for zero and for positive cosmological constant. That is, we find conditions under which every timelike geodesic is incomplete. These conditions are given by 'open' inequalities, so we examine the borderline (equality) cases and show that certain singularities are avoided in these cases only if the geometry is rigid; i.e., if it splits as a Lorentzian product or, for a positive cosmological constant, a warped product, and the weight function is constant along the time direction. Then the product case is future timelike geodesically complete while, in the warped product case, worldlines of certain conformally static observers are complete. Our results answer a question posed by J Case. We then apply our results to the cosmology of scalar-tensor gravitation theories. We focus on the Brans-Dicke family of theories in 4 spacetime dimensions, where we obtain 'Jordan frame' singularity theorems for big bang singularities.

  19. Wind-tunnel studies of advanced cargo aircraft concepts. [leading edge vortex flaps for drag reduction

    NASA Technical Reports Server (NTRS)

    Rao, D. M.; Goglia, G. L.

    1981-01-01

    Accomplishments in vortex flap research are summarized. A singular feature of the vortex flap is that, throughout the range of angle of attack range, the flow type remains qualitatively unchanged. Accordingly, no large or sudden change in the aerodynamic characteristics, as happens when forcibly maintained attached flow suddenly reverts to separation, will occur with the vortex flap. Typical wind tunnel test data are presented which show the drag reduction potential of the vortex flap concept applied to a supersonic cruise airplane configuration. The new technology offers a means of aerodynamically augmenting roll-control effectiveness on slender wings at higher angles of attack by manipulating the vortex flow generated from leading edge separation. The proposed manipulator takes the form of a flap hinged at or close to the leading edge, normally retracted flush with the wing upper surface to conform to the airfoil shape.

  20. Remarks on non-singular black holes

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.

    2018-01-01

    We briefly discuss non-singular black hole models, with the main focus on the properties of non-singular evaporating black holes. Such black holes possess an apparent horizon, however the event horizon may be absent. In such a case, the information from the black hole interior may reach the external observer after the complete evaporation of the black hole. This model might be used for the resolution of the information loss puzzle. However, as we demonstrate, in a general case the quantum radiation emitted from the black hole interior, calculated in the given black hole background, is very large. This outburst of the radiation is exponentially large for models with the redshift function α = 1. We show that it can be suppressed by including a non-trivial redshift function. However, even this suppression is not enough to guarantee self-consistency of the model. This problem is a manifestation of a general problem, known as the "mass inflation". We briefly comment on possible ways to overcome this problem in the models of non-singular evaporating black holes.

  1. Lee side flow for slender delta wings of finite thickness

    NASA Technical Reports Server (NTRS)

    Szodruch, J. G.

    1980-01-01

    An experimental and theoretical investigation carried out to determine the lee side flow field over delta wings at supersonic speeds is presented. A theoretical method to described the flow field is described, where boundary conditions as a result of the experimental study are needed. The computed flow field with shock induced separation is satisfactory.

  2. Exploring the Inner Edge of the Habitable Zone with Fully Coupled Oceans

    NASA Astrophysics Data System (ADS)

    Way, M.; Del Genio, A. D.; Kiang, N. Y.; Kelley, M.; Aleinov, I. D.; Clune, T.; Puma, M. J.

    2015-12-01

    Rotation in planetary atmospheres plays an important role inregulating atmospheric and oceanic heat flow, cloud formation and precipitation.Using the Goddard Institute for Space Studies (GISS) three dimensional GeneralCirculation Model (3D-GCM) we demonstrate how varying rotation rate andincreasing the incident solar flux on a planet are related to each other and mayallow the inner edge of the habitable zone to be much closer than many previoushabitable zone studies have indicated. This is shown in particular for fullycoupled ocean runs over a large range of insolation and rotation rates.Results with a 100m mixed layer depth and our fully coupled ocean runs arecompared with those of Yang et al. 2014, which demonstrates consistencyacross models. However, there are clear differences for rotations rates of 1-16xpresent earth day lengths between the mixed layer and fully coupled ocean models,which points to the necessity of using fully coupled oceans whenever possible.The latter was recently demonstrated quite clearly by Hu & Yang 2014 in theiraquaplanet study with a fully coupled ocean when compared with similar mixedlayer ocean studies and by Cullum et al. 2014. Atmospheric constituent amounts were also varied alongside adjustments to cloudparameterizations. While the latter have an effect on what a planet's global meantemperature is once the oceans reach equilibrium they donot qualitatively change the overall relationship between the globally averagedsurface temperature and incident solar flux for rotation rates ranging from 1to 256 times the present Earth day length. At the same time this studydemonstrates that given the lack of knowledge about the atmospheric constituentsand clouds on exoplanets there is still a large uncertainty as to where a planetwill sit in a given star's habitable zone. We also explore options for understanding the possibility for regional habitabilityvia an aridity index and a separate moisture index. The former is related to the

  3. Unique Identification of Lee-Wick Gauge Bosons at Linear Colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzo, Thomas G.

    2007-12-14

    Grinstein, O'Connell and Wise have recently presented an extension of the Standard Model (SM), based on the ideas of Lee and Wick (LW), which demonstrates an interesting way to remove the quadratically divergent contributions to the Higgs mass induced by radiative corrections. This model predicts the existence of negative-norm copies of the usual SM fields at the TeV scale with ghost-like propagators and negative decay widths, but with otherwise SM-like couplings. In earlier work, it was demonstrated that the LW states in the gauge boson sector of these models, though easy to observe, cannot be uniquely identified as such atmore » the LHC. In this paper, we address the issue of whether or not this problem can be resolved at an e{sup +}e{sup -} collider with a suitable center of mass energy range. We find that measurements of the cross section and the left-right polarization asymmetry associated with Bhabha scattering can lead to a unique identification of the neutral electroweak gauge bosons of the Lee-Wick type.« less

  4. Dynamic soft variable structure control of singular systems

    NASA Astrophysics Data System (ADS)

    Liu, Yunlong; Zhang, Caihong; Gao, Cunchen

    2012-08-01

    The dynamic soft variable structure control (VSC) of singular systems is discussed in this paper. The definition of soft VSC and the design of its controller modes are given. The stability of singular systems with the dynamic soft VSC is proposed. The dynamic soft variable structure controller is designed, and the concrete algorithm on the dynamic soft VSC is given. The dynamic soft VSC of singular systems which was developed for the purpose of intentionally precluding chattering, achieving high regulation rates and shortening settling times enhanced the dynamic quality of the systems. It is illustrated the feasibility and validity of the proposed strategy by a simulation example, and an outlook on its auspicious further development is presented.

  5. Bäcklund Transformations in 10D SUSY Yang-Mills Theories

    NASA Astrophysics Data System (ADS)

    Gervais, Jean-Loup

    A Bäcklund transformation is derived for the Yang's type (super) equations previously derived (hep-th/9811108) by M. Saveliev and the author, from the ten-dimensional super-Yang-Mills field equations in an on-shell light cone gauge. It is shown to be based upon a particular gauge transformation satisfying nonlinear conditions which ensure that the equations retain the same form. These Yang's type field equations are shown to be precisely such that they automatically provide a solution of these conditions. This Bäcklund transformation is similar to the one proposed by A. Leznov for self-dual Yang-Mills in four dimensions. In the introduction a personal recollection on the birth of supersymmetry is given.

  6. Two Approaches of Studying Singularity of Projective Conics

    ERIC Educational Resources Information Center

    Broyles, Chris; Muller, Lars; Tikoo, Mohan; Wang, Haohao

    2010-01-01

    The singularity of a projective conic can be determined via the associated matrix to the implicit equation of the projective conic. In this expository article, we will first derive a known result for determining the singularity of a projective conic via the associated matrix. Then we will introduce the concepts of [mu]-basis of the parametric…

  7. Mengjin Yang | NREL

    Science.gov Websites

    on the formation of higher efficiency formamidinium lead triiodide-based solar cells," Chem -0003-2019-4298 Dr. Mengjin Yang received his Ph.D. in Materials Science from the University of Pittsburgh, where he investigated nanomaterials for solar energy conversion under the supervision of Prof

  8. Multivalued classical mechanics arising from singularity loops in complex time

    NASA Astrophysics Data System (ADS)

    Koch, Werner; Tannor, David J.

    2018-02-01

    Complex-valued classical trajectories in complex time encounter singular times at which the momentum diverges. A closed time contour around such a singular time may result in final values for q and p that differ from their initial values. In this work, we develop a calculus for determining the exponent and prefactor of the asymptotic time dependence of p from the singularities of the potential as the singularity time is approached. We identify this exponent with the number of singularity loops giving distinct solutions to Hamilton's equations of motion. The theory is illustrated for the Eckart, Coulomb, Morse, and quartic potentials. Collectively, these potentials illustrate a wide variety of situations: poles and essential singularities at finite and infinite coordinate values. We demonstrate quantitative agreement between analytical and numerical exponents and prefactors, as well as the connection between the exponent and the time circuit count. This work provides the theoretical underpinnings for the choice of time contours described in the studies of Doll et al. [J. Chem. Phys. 58(4), 1343-1351 (1973)] and Petersen and Kay [J. Chem. Phys. 141(5), 054114 (2014)]. It also has implications for wavepacket reconstruction from complex classical trajectories when multiple branches of trajectories are involved.

  9. Advances in edge-diffraction modeling for virtual-acoustic simulations

    NASA Astrophysics Data System (ADS)

    Calamia, Paul Thomas

    In recent years there has been growing interest in modeling sound propagation in complex, three-dimensional (3D) virtual environments. With diverse applications for the military, the gaming industry, psychoacoustics researchers, architectural acousticians, and others, advances in computing power and 3D audio-rendering techniques have driven research and development aimed at closing the gap between the auralization and visualization of virtual spaces. To this end, this thesis focuses on improving the physical and perceptual realism of sound-field simulations in virtual environments through advances in edge-diffraction modeling. To model sound propagation in virtual environments, acoustical simulation tools commonly rely on geometrical-acoustics (GA) techniques that assume asymptotically high frequencies, large flat surfaces, and infinitely thin ray-like propagation paths. Such techniques can be augmented with diffraction modeling to compensate for the effect of surface size on the strength and directivity of a reflection, to allow for propagation around obstacles and into shadow zones, and to maintain soundfield continuity across reflection and shadow boundaries. Using a time-domain, line-integral formulation of the Biot-Tolstoy-Medwin (BTM) diffraction expression, this thesis explores various aspects of diffraction calculations for virtual-acoustic simulations. Specifically, we first analyze the periodic singularity of the BTM integrand and describe the relationship between the singularities and higher-order reflections within wedges with open angle less than 180°. Coupled with analytical approximations for the BTM expression, this analysis allows for accurate numerical computations and a continuous sound field in the vicinity of an arbitrary wedge geometry insonified by a point source. Second, we describe an edge-subdivision strategy that allows for fast diffraction calculations with low error relative to a numerically more accurate solution. Third, to address

  10. Wave Geometry: a Plurality of Singularities

    NASA Astrophysics Data System (ADS)

    Berry, M. V.

    Five interconnected wave singularities are discussed: phase monopoles, at eigenvalue degeneracies in parameter space, where the 2-form generating the geomeeic phase is singular, phase dislocations, at zeros of complex wavefunctions in position space, where different wavefronts (surfaces of constant phase) meet; caustics, that is envelopes (foci) of families of classical paths or geometrical rays, where real rays are born violently and which are complementary to dislocations; Stokes sets, at which a complex ray is born gently where it is maximally dominated by another ray; and complex degeneracies, which are the sources of adiabatic quantum transtions in analytic Hamiltonians.

  11. Interface with weakly singular points always scatter

    NASA Astrophysics Data System (ADS)

    Li, Long; Hu, Guanghui; Yang, Jiansheng

    2018-07-01

    Assume that a bounded scatterer is embedded into an infinite homogeneous isotropic background medium in two dimensions. The refractive index function is supposed to be piecewise constant. If the scattering interface contains a weakly singular point, we prove that the scattered field cannot vanish identically. This implies the absence of non-scattering energies for piecewise analytic interfaces with one singular point. Local uniqueness is obtained for shape identification problems in inverse medium scattering with a single far-field pattern.

  12. The Effect of Water Management and Land Use Practices on the Restoration of Lee Vining and Rush Creeks

    Treesearch

    Peter Vorster; G. Mathias Kondolf

    1989-01-01

    This paper describes water management and land use practices in the Rush and Lee Vining Creek watersheds and evaluates the effect they have had on the stream environment. The management practices will continue to have effects on the flow regime and consequently habitat conditions on lower Lee Vining and Rush Creeks. The implications of existing and potential management...

  13. A relation between deformed superspace and Lee-Wick higher-derivative theories

    NASA Astrophysics Data System (ADS)

    Dias, M.; Ferrari, A. F.; Palechor, C. A.; Senise, C. R., Jr.

    2015-07-01

    We propose a non-anticommutative superspace that relates to the Lee-Wick type of higher-derivative theories, which are known for their interesting properties and have led to proposals of phenomenologically viable higher-derivative extensions of the Standard Model. The deformation of superspace we consider does not preserve supersymmetry or associativity in general, but, we show that a non-anticommutative version of the Wess-Zumino model can be properly defined. In fact, the definition of chiral and antichiral superfields turns out to be simpler in our case than in the well known N=1/2 supersymmetric case. We show that when the theory is truncated at the first nontrivial order in the deformation parameter, supersymmetry is restored, and we end up with a well-known Lee-Wick type of higher-derivative extension of the Wess-Zumino model. Thus, we show how non-anticommutativity could provide an alternative mechanism for generating these higher-derivative theories.

  14. Chiral Luttinger liquids and a generalized Luttinger theorem in fractional quantum Hall edges via finite-entanglement scaling

    NASA Astrophysics Data System (ADS)

    Varjas, Dániel; Zaletel, Michael P.; Moore, Joel E.

    2013-10-01

    We use bosonic field theories and the infinite system density matrix renormalization group method to study infinite strips of fractional quantum Hall states starting from microscopic Hamiltonians. Finite-entanglement scaling allows us to accurately measure chiral central charge, edge-mode exponents, and momenta without finite-size errors. We analyze states in the first and second levels of the standard hierarchy and compare our results to predictions of the chiral Luttinger liquid theory. The results confirm the universality of scaling exponents in chiral edges and demonstrate that renormalization is subject to universal relations in the nonchiral case. We prove a generalized Luttinger theorem involving all singularities in the momentum-resolved density, which naturally arises when mapping Landau levels on a cylinder to a fermion chain and deepens our understanding of non-Fermi liquids in one dimension.

  15. Cloud patterns lee of Hawaii Island: A synthesis of satellite observations and numerical simulation

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Xie, Shang-Ping; Hafner, Jan

    2008-08-01

    Standing well above the trade wind inversion, Hawaii Island (maximum elevation ˜4.2 km) splits the northeast trade winds and induces a westerly reverse flow in the wake. Satellite observations and regional model simulations are used to investigate circulation effects on lee cloud formation during summer. Over the island, the cloud distribution is consistent with orographic-induced vertical motions. Over the lee ocean, our analysis reveals a cloud band that extends southwestward over a few tens of kilometers from the southwest coast of the island. This southwest lee cloud band is most pronounced in the afternoon, anchored by strong convergence and maintained by in situ cloud production in the upward motion. Such an offshore cloud band is not found off the northwest coast, an asymmetry possibly due to the Coriolis effect on the orographic flow. Off the Kona coast, the dynamically induced westerly reverse flow keeps the wake cool and nearly free of clouds during the day. Along the Kona coast, clouds are blown offshore from the island by the easterly trades in the afternoon in a layer above the reverse flow. Deprived of in situ production, these afternoon Kona coast clouds dissipate rapidly offshore. At night, the offshore land/valley breezes converge onto the onshore reverse flow, and a cloud deck forms on and off the Kona coast, bringing nighttime rain as observed at land stations. To illustrate the circulation effect, lee cloud formation is compared between tall Hawaii and short Kauai/Oahu Islands, which feature the flow-around and flow-over regimes, respectively. Effects of trade wind strength on the leeside cloudiness are also studied.

  16. Propagation of the Lissajous singularity dipole emergent from non-paraxial polychromatic beams

    NASA Astrophysics Data System (ADS)

    Haitao, Chen; Gao, Zenghui; Wang, Wanqing

    2017-06-01

    The propagation of the Lissajous singularity dipole (LSD) emergent from the non-paraxial polychromatic beams is studied. It is found that the handedness reversal of Lissajous singularities, the change in the shape of Lissajous figures, as well as the creation and annihilation of the LSD may take place by varying the propagation distance, off-axis parameter, wavelength, or amplitude factor. Comparing with the LSD emergent from paraxial polychromatic beams, the output field of non-paraxial polychromatic beams is more complicated, which results in some richer dynamic behaviors of Lissajous singularities, such as more Lissajous singularities and no vanishing of a single Lissajous singularity at the plane z>0.

  17. STS-110 Crew Interviews: Lee Morin

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 Mission Specialist Lee Morin is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Morin outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the payload (S0 Truss and Mobile Transporter) and the dry run installation of the S0 truss that will take place the day before the EVA for the actual installation. Morin discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew of the International Space Station (ISS). He ends with his thoughts on the most valuable aspect of the ISS.

  18. Scalar perturbation in symmetric Lee-Wick bouncing universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Inyong; Kwon, O-Kab, E-mail: iycho@seoultech.ac.kr, E-mail: okab@skku.edu

    2011-11-01

    We investigate the scalar perturbation in the Lee-Wick bouncing universe driven by an ordinary scalar field plus a ghost field. We consider only a symmetric evolution of the universe and the scalar fields about the bouncing point. The gauge invariant Sasaki-Mukhanov variable is numerically solved in the spatially flat gauge. We find a new form of the initial perturbation growing during the contracting phase. After the bouncing, this growing mode stabilizes to a constant mode which is responsible for the late-time power spectrum.

  19. Forecasting the mortality rates using Lee-Carter model and Heligman-Pollard model

    NASA Astrophysics Data System (ADS)

    Ibrahim, R. I.; Ngataman, N.; Abrisam, W. N. A. Wan Mohd

    2017-09-01

    Improvement in life expectancies has driven further declines in mortality. The sustained reduction in mortality rates and its systematic underestimation has been attracting the significant interest of researchers in recent years because of its potential impact on population size and structure, social security systems, and (from an actuarial perspective) the life insurance and pensions industry worldwide. Among all forecasting methods, the Lee-Carter model has been widely accepted by the actuarial community and Heligman-Pollard model has been widely used by researchers in modelling and forecasting future mortality. Therefore, this paper only focuses on Lee-Carter model and Heligman-Pollard model. The main objective of this paper is to investigate how accurately these two models will perform using Malaysian data. Since these models involves nonlinear equations that are explicitly difficult to solve, the Matrix Laboratory Version 8.0 (MATLAB 8.0) software will be used to estimate the parameters of the models. Autoregressive Integrated Moving Average (ARIMA) procedure is applied to acquire the forecasted parameters for both models as the forecasted mortality rates are obtained by using all the values of forecasted parameters. To investigate the accuracy of the estimation, the forecasted results will be compared against actual data of mortality rates. The results indicate that both models provide better results for male population. However, for the elderly female population, Heligman-Pollard model seems to underestimate to the mortality rates while Lee-Carter model seems to overestimate to the mortality rates.

  20. Object detection with a multistatic array using singular value decomposition

    DOEpatents

    Hallquist, Aaron T.; Chambers, David H.

    2014-07-01

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across a surface and that travels down the surface. The detection system converts the return signals from a time domain to a frequency domain, resulting in frequency return signals. The detection system then performs a singular value decomposition for each frequency to identify singular values for each frequency. The detection system then detects the presence of a subsurface object based on a comparison of the identified singular values to expected singular values when no subsurface object is present.

  1. Variational Integration for Ideal Magnetohydrodynamics and Formation of Current Singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yao

    Coronal heating has been a long-standing conundrum in solar physics. Parker's conjecture that spontaneous current singularities lead to nanoflares that heat the corona has been controversial. In ideal magnetohydrodynamics (MHD), can genuine current singularities emerge from a smooth 3D line-tied magnetic field? To numerically resolve this issue, the schemes employed must preserve magnetic topology exactly to avoid artificial reconnection in the presence of (nearly) singular current densities. Structure-preserving numerical methods are favorable for mitigating numerical dissipation, and variational integration is a powerful machinery for deriving them. However, successful applications of variational integration to ideal MHD have been scarce. In thismore » thesis, we develop variational integrators for ideal MHD in Lagrangian labeling by discretizing Newcomb's Lagrangian on a moving mesh using discretized exterior calculus. With the built-in frozen-in equation, the schemes are free of artificial reconnection, hence optimal for studying current singularity formation. Using this method, we first study a fundamental prototype problem in 2D, the Hahm-Kulsrud-Taylor (HKT) problem. It considers the effect of boundary perturbations on a 2D plasma magnetized by a sheared field, and its linear solution is singular. We find that with increasing resolution, the nonlinear solution converges to one with a current singularity. The same signature of current singularity is also identified in other 2D cases with more complex magnetic topologies, such as the coalescence instability of magnetic islands. We then extend the HKT problem to 3D line-tied geometry, which models the solar corona by anchoring the field lines in the boundaries. The effect of such geometry is crucial in the controversy over Parker's conjecture. The linear solution, which is singular in 2D, is found to be smooth. However, with finite amplitude, it can become pathological above a critical system length. The

  2. Inverting dedevelopment: geometric singularity theory in embryology

    NASA Astrophysics Data System (ADS)

    Bookstein, Fred L.; Smith, Bradley R.

    2000-10-01

    The diffeomorphism model so useful in the biomathematics of normal morphological variability and disease is inappropriate for applications in embryogenesis, where whole coordinate patches are created out of single points. For this application we need a suitable algebra for the creation of something from nothing in a carefully organized geometry: a formalism for parameterizing discrete nondifferentiabilities of invertible functions on Rk, k $GTR 1. One easy way to begin is via the inverse of the development map - call it the dedevelopment map, the deformation backwards in time. Extrapolated, this map will inevitably have singularities at which its derivative is zero. When the dedevelopment map is inverted to face forward in time, the singularities become appropriately isolated infinities of derivative. We have recently introduced growth visualizations via extrapolations to the isolated singularities at which only one directional derivative is zero. Maps inverse to these create new coordinate patches directionally rather than radically. The most generic singularity that suits this purpose is the crease f(x,y) equals (x,x2y+y3), which has already been applied in morphometrics for the description of focal morphogenetic phenomena. We apply it to embryogenesis in the form of its analytic inverse, and demonstrate its power using a priceless new data set of mouse embryos imaged in 3D by micro-MR with voxels smaller than 100micrometers 3.

  3. Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oshemkov, Andrey A

    2010-10-06

    A complete invariant is constructed that is a solution of the problem of semilocal classification of saddle singularities of integrable Hamiltonian systems. Namely, a certain combinatorial object (an f{sub n}-graph) is associated with every nondegenerate saddle singularity of rank zero; as a result, the problem of semilocal classification of saddle singularities of rank zero is reduced to the problem of enumeration of the f{sub n}-graphs. This enables us to describe a simple algorithm for obtaining the lists of saddle singularities of rank zero for a given number of degrees of freedom and a given complexity. Bibliography: 24 titles.

  4. Summary of reported agriculture and irrigation water use in Lee County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Lee County, Arkansas. The number of withdrawal registrations for Lee County was 1,582 (1,533 groundwater and 49 surface water). Water withdrawals reported during the registration process total 3.77 Mgal/d (3.39 Mgal/d groundwater and 0.38 Mgal/d surface water) for agriculture and 169.25 Mgal/d (166.79 Mgal/d groundwater and 2.46 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 97,029 acres of land to irrigate wheat, rice, corn, soybeans, milo, cotton, hay, vegetables, and nuts as well as for the agricultural uses of animal aquaculture and ducks.

  5. Singularities in Dromo formulation. Analysis of deep flybys

    NASA Astrophysics Data System (ADS)

    Roa, Javier; Sanjurjo-Rivo, Manuel; Peláez, Jesús

    2015-08-01

    The singularities in Dromo are characterized in this paper, both from an analytical and a numerical perspective. When the angular momentum vanishes, Dromo may encounter a singularity in the evolution equations. The cancellation of the angular momentum occurs in very specific situations and may be caused by the action of strong perturbations. The gravitational attraction of a perturbing planet may lead to rapid changes in the angular momentum of the particle. In practice, this situation may be encountered during deep planetocentric flybys. The performance of Dromo is evaluated in different scenarios. First, Dromo is validated for integrating the orbit of Near Earth Asteroids. Resulting errors are of the order of the diameter of the asteroid. Second, a set of theoretical flybys are designed for analyzing the performance of the formulation in the vicinity of the singularity. New sets of Dromo variables are proposed in order to minimize the dependency of Dromo on the angular momentum. A slower time scale is introduced, leading to a more stable description of the flyby phase. Improvements in the overall performance of the algorithm are observed when integrating orbits close to the singularity.

  6. Singularity-free dynamic equations of spacecraft-manipulator systems

    NASA Astrophysics Data System (ADS)

    From, Pål J.; Ytterstad Pettersen, Kristin; Gravdahl, Jan T.

    2011-12-01

    In this paper we derive the singularity-free dynamic equations of spacecraft-manipulator systems using a minimal representation. Spacecraft are normally modeled using Euler angles, which leads to singularities, or Euler parameters, which is not a minimal representation and thus not suited for Lagrange's equations. We circumvent these issues by introducing quasi-coordinates which allows us to derive the dynamics using minimal and globally valid non-Euclidean configuration coordinates. This is a great advantage as the configuration space of a spacecraft is non-Euclidean. We thus obtain a computationally efficient and singularity-free formulation of the dynamic equations with the same complexity as the conventional Lagrangian approach. The closed form formulation makes the proposed approach well suited for system analysis and model-based control. This paper focuses on the dynamic properties of free-floating and free-flying spacecraft-manipulator systems and we show how to calculate the inertia and Coriolis matrices in such a way that this can be implemented for simulation and control purposes without extensive knowledge of the mathematical background. This paper represents the first detailed study of modeling of spacecraft-manipulator systems with a focus on a singularity free formulation using the proposed framework.

  7. Predicting financial market crashes using ghost singularities

    PubMed Central

    2018-01-01

    We analyse the behaviour of a non-linear model of coupled stock and bond prices exhibiting periodically collapsing bubbles. By using the formalism of dynamical system theory, we explain what drives the bubbles and how foreshocks or aftershocks are generated. A dynamical phase space representation of that system coupled with standard multiplicative noise rationalises the log-periodic power law singularity pattern documented in many historical financial bubbles. The notion of ‘ghosts of finite-time singularities’ is introduced and used to estimate the end of an evolving bubble, using finite-time singularities of an approximate normal form near the bifurcation point. We test the forecasting skill of this method on different stochastic price realisations and compare with Monte Carlo simulations of the full system. Remarkably, the approximate normal form is significantly more precise and less biased. Moreover, the method of ghosts of singularities is less sensitive to the noise realisation, thus providing more robust forecasts. PMID:29596485

  8. Robert E. Lee's Demand for the Surrender of John Brown

    ERIC Educational Resources Information Center

    Rulli, Daniel F.

    2004-01-01

    The featured document that is the main topic of this article, Robert E. Lee's Demand for the Surrender of John Brown and his Party [at Harpers Ferry], October 18, 1859, is from the Records of the Adjutant General's Office, 1780s-1917; Record Group 94, and is in the holdings of the National Archives. As a part of "Teaching with…

  9. Perfect fluid tori orbiting Kehagias-Sfetsos naked singularities

    NASA Astrophysics Data System (ADS)

    Stuchlík, Z.; Pugliese, D.; Schee, J.; Kučáková, H.

    2015-09-01

    We construct perfect fluid tori in the field of the Kehagias-Sfetsos (K-S) naked singularities. These are spherically symmetric vacuum solutions of the modified Hořava quantum gravity, characterized by a dimensionless parameter ω M^2, combining the gravitational mass parameter M of the spacetime with the Hořava parameter ω reflecting the role of the quantum corrections. In dependence on the value of ω M^2, the K-S naked singularities demonstrate a variety of qualitatively different behavior of their circular geodesics that is fully reflected in the properties of the toroidal structures, demonstrating clear distinction to the properties of the torii in the Schwarzschild spacetimes. In all of the K-S naked singularity spacetimes the tori are located above an "antigravity" sphere where matter can stay in a stable equilibrium position, which is relevant for the stability of the orbiting fluid toroidal accretion structures. The signature of the K-S naked singularity is given by the properties of marginally stable tori orbiting with the uniform distribution of the specific angular momentum of the fluid, l= const. In the K-S naked singularity spacetimes with ω M^2 > 0.2811, doubled tori with the same l= const can exist; mass transfer between the outer torus and the inner one is possible under appropriate conditions, while only outflow to the outer space is allowed in complementary conditions. In the K-S spacetimes with ω M^2 < 0.2811, accretion from cusped perfect fluid tori is not possible due to the non-existence of unstable circular geodesics.

  10. Optimization Evaluation: Lee Chemical Superfund Site, City Of Liberty, Clay County, Missouri

    EPA Pesticide Factsheets

    The Lee Chemical Superfund Site (site) is located along Missouri Highway 210 in Liberty, Missouri, approximately 15 miles east of Kansas City, Missouri. Currently, the site is a vacant lot of approximately2.5 acres in a flat alluvial plain.

  11. N = 2* Yang-Mills on the Lattice

    NASA Astrophysics Data System (ADS)

    Joseph, Anosh

    2018-03-01

    The N = 2* Yang-Mills theory in four dimensions is a non-conformal theory that appears as a mass deformation of maximally supersymmetric N = 4 Yang-Mills theory. This theory also takes part in the AdS/CFT correspondence and its gravity dual is type IIB supergravity on the Pilch-Warner background. The finite temperature properties of this theory have been studied recently in the literature. It has been argued that at large N and strong coupling this theory exhibits no thermal phase transition at any nonzero temperature. The low temperature N = 2* plasma can be compared to the QCD plasma. We provide a lattice construction of N = 2* Yang-Mills on a hypercubic lattice starting from the N = 4 gauge theory. The lattice construction is local, gauge-invariant, free from fermion doubling problem and preserves a part of the supersymmetry. This nonperturbative formulation of the theory can be used to provide a highly nontrivial check of the AdS/CFT correspondence in a non-conformal theory.

  12. Measurements of a Lee Wave in the Southern Ocean: Energy and Momentum Fluxes and Mixing

    NASA Astrophysics Data System (ADS)

    Cusack, J. M.; Naveira Garabato, A.; Smeed, D.; Girton, J. B.

    2016-02-01

    Lee waves, internal waves generated by stratified flow over topographic features are thought to break and generate a significant proportion of the turbulent mixing required to close the abyssal overturning circulation. A lack of observations means that there is large uncertainty in the magnitude of contribution that lee waves make to turbulent transformations, as well as their importance in local and global momentum and energy budgets. Two EM-APEX profiling floats deployed in the Drake Passage during the Diapycnal and Isopycnal Mixing Experiment (DIMES) independently measured a large lee wave over the Shackleton Fracture Zone. A model for steady EM-APEX motion is presented and used to calculate absolute vertical water velocity in addition to horizontal velocity measurements made by the floats. The wave is observed to have velocity fluctuations in all three directions of over 15 cm s-1 and a frequency close to the local buoyancy frequency. Furthermore, the wave has a measured peak vertical flux of horizontal momentum of 6 N m-2, a value that is two orders of magnitude larger than the time mean wind forcing on the Southern Ocean. Linear internal wave theory was used to estimate wave energy density and fluxes, while a mixing parameterisation was used to estimate the magnitude of turbulent kinetic energy dissipation, which was found to be elevated above typical background levels by two orders of magnitude. This work provides the first direct measurement of a lee wave generated by ACC flow over topography with simultaneous estimates of energy fluxes and mixing.

  13. Dissipative universe-inflation with soft singularity

    NASA Astrophysics Data System (ADS)

    Brevik, Iver; Timoshkin, Alexander V.

    We investigate the early-time accelerated universe after the Big Bang. We pay attention to the dissipative properties of the inflationary universe in the presence of a soft type singularity, making use of the parameters of the generalized equation of state of the fluid. Flat Friedmann-Robertson-Walker metric is being used. We consider cosmological models leading to the so-called type IV singular inflation. Our obtained theoretical results are compared with observational data from the Planck satellite. The theoretical predictions for the spectral index turn out to be in agreement with the data, while for the scalar-to-tensor ratio, there are minor deviations.

  14. Singular Vectors' Subtle Secrets

    ERIC Educational Resources Information Center

    James, David; Lachance, Michael; Remski, Joan

    2011-01-01

    Social scientists use adjacency tables to discover influence networks within and among groups. Building on work by Moler and Morrison, we use ordered pairs from the components of the first and second singular vectors of adjacency matrices as tools to distinguish these groups and to identify particularly strong or weak individuals.

  15. Characteristic classes, singular embeddings, and intersection homology.

    PubMed

    Cappell, S E; Shaneson, J L

    1987-06-01

    This note announces some results on the relationship between global invariants and local topological structure. The first section gives a local-global formula for Pontrjagin classes or L-classes. The second section describes a corresponding decomposition theorem on the level of complexes of sheaves. A final section mentions some related aspects of "singular knot theory" and the study of nonisolated singularities. Analogous equivariant analogues, with local-global formulas for Atiyah-Singer classes and their relations to G-signatures, will be presented in a future paper.

  16. Incoherent averaging of phase singularities in speckle-shearing interferometry.

    PubMed

    Mantel, Klaus; Nercissian, Vanusch; Lindlein, Norbert

    2014-08-01

    Interferometric speckle techniques are plagued by the omnipresence of phase singularities, impairing the phase unwrapping process. To reduce the number of phase singularities by physical means, an incoherent averaging of multiple speckle fields may be applied. It turns out, however, that the results may strongly deviate from the expected √N behavior. Using speckle-shearing interferometry as an example, we investigate the mechanism behind the reduction of phase singularities, both by calculations and by computer simulations. Key to an understanding of the reduction mechanism during incoherent averaging is the representation of the physical averaging process in terms of certain vector fields associated with each speckle field.

  17. No-go for partially massless spin-2 Yang-Mills

    DOE PAGES

    Garcia-Saenz, Sebastian; Hinterbichler, Kurt; Joyce, Austin; ...

    2016-02-05

    There are various no-go results forbidding self-interactions for a single partially massless spin-2 field. Given the photon-like structure of the linear partially massless field, it is natural to ask whether a multiplet of such fields can interact under an internal Yang-Mills like extension of the partially massless symmetry. In this paper, we give two arguments that such a partially massless Yang-Mills theory does not exist. The first is that there is no Yang-Mills like non-abelian deformation of the partially massless symmetry, and the second is that cubic vertices with the appropriate structure constants do not exist.

  18. Solitons and black holes in non-Abelian Einstein-Born-Infeld theory

    NASA Astrophysics Data System (ADS)

    Dyadichev, V. V.; Gal'tsov, D. V.

    2000-08-01

    Recently it was shown that the Born-Infeld modification of the quadratic Yang-Mills action gives rise to classical particle-like solutions in the flat space which have a striking similarity with the Bartnik-McKinnon solutions obtained within the gravity coupled Yang-Mills theory. We show that both families of solutions are continuously related within the framework of the Einstein-Born-Infeld theory via interpolating sequences of parameters. We also investigate an internal structure of the associated black holes and find that the Born-Infeld non-linearity changes drastically the black hole interior typical for the usual quadratic Yang-Mills theory. In the latter case a generic solution exhibits violent metric oscillations near the singularity. In the Born-Infeld case the generic interior solution is smooth, the metric tends to the standard Schwarzschild type singularity, and we did not observe internal horizons. Smoothing of the `violent' EYM singularity may be interpreted as a result of non-gravitational quantum effects.

  19. 7 CFR 1200.1 - Words in the singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Words in the singular form. 1200.1 Section 1200.1 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING... Governing Proceedings To Formulate and Amend an Order § 1200.1 Words in the singular form. Words in this...

  20. Dynamical singularities for complex initial conditions and the motion at a real separatrix.

    PubMed

    Shnerb, Tamar; Kay, K G

    2006-04-01

    This work investigates singularities occurring at finite real times in the classical dynamics of one-dimensional double-well systems with complex initial conditions. The objective is to understand the relationship between these singularities and the behavior of the systems for real initial conditions. An analytical treatment establishes that the dynamics of a quartic double well system possesses a doubly infinite sequence of singularities. These are associated with initial conditions that converge to those for the real separatrix as the singularity time becomes infinite. This confluence of singularities is shown to lead to the unstable behavior that characterizes the real motion at the separatrix. Numerical calculations confirm the existence of a large number of singularities converging to the separatrix for this and two additional double-well systems. The approach of singularities to the real axis is of particular interest since such behavior has been related to the formation of chaos in nonintegrable systems. The properties of the singular trajectories which cause this convergence to the separatrix are identified. The hyperbolic fixed point corresponding to the potential energy maximum, responsible for the characteristic motion at a separatrix, also plays a critical role in the formation of the complex singularities by delaying trajectories and then deflecting them into asymptotic regions of space from where they are directly repelled to infinity in a finite time.

  1. Electron and Ion Conductivity Calculations using the Model of Lee and More

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, John C.

    The following notes describe the ARES implementation of the inverse of the electron conduction coefficient, using the model of Lee and More, Physics of Fluids 27, page 1273, 1984. An addendum describing the modifications for analogous ion conduction coeffiecient appears at the bottom.

  2. Assessing the relationships between phylogenetic and functional singularities in sharks (Chondrichthyes).

    PubMed

    Cachera, Marie; Le Loc'h, François

    2017-08-01

    The relationships between diversity and ecosystem functioning have become a major focus of science. A crucial issue is to estimate functional diversity, as it is intended to impact ecosystem dynamics and stability. However, depending on the ecosystem, it may be challenging or even impossible to directly measure ecological functions and thus functional diversity. Phylogenetic diversity was recently under consideration as a proxy for functional diversity. Phylogenetic diversity is indeed supposed to match functional diversity if functions are conservative traits along evolution. However, in case of adaptive radiation and/or evolutive convergence, a mismatch may appear between species phylogenetic and functional singularities. Using highly threatened taxa, sharks, this study aimed to explore the relationships between phylogenetic and functional diversities and singularities. Different statistical computations were used in order to test both methodological issue (phylogenetic reconstruction) and overall a theoretical questioning: the predictive power of phylogeny for function diversity. Despite these several methodological approaches, a mismatch between phylogeny and function was highlighted. This mismatch revealed that (i) functions are apparently nonconservative in shark species, and (ii) phylogenetic singularity is not a proxy for functional singularity. Functions appeared to be not conservative along the evolution of sharks, raising the conservational challenge to identify and protect both phylogenetic and functional singular species. Facing the current rate of species loss, it is indeed of major importance to target phylogenetically singular species to protect genetic diversity and also functionally singular species in order to maintain particular functions within ecosystem.

  3. Case Study: Lee's Summit West High School--Empowering Students to Succeed

    ERIC Educational Resources Information Center

    Southern Regional Education Board (SREB), 2014

    2014-01-01

    The Southern Regional Education Board's (SREB's) case study series highlights best practices High Schools That Work (HSTW) network schools and districts are implementing to better prepare students for further studies and careers. Lee's Summit West (LSW) High School near Kansas City, Missouri, boasts of a 99 percent graduation rate; 93 percent of…

  4. Who Killed Annabel Lee? Writing about Literature in the Composition Classroom

    ERIC Educational Resources Information Center

    Richardson, Mark

    2004-01-01

    Literature is a vehicle for teaching critical thinking and interpretation by making students write about literature rather than silencing them with hegemonic discourses. The interpretation of E.A. Poe's Annabel Lee by the students in an experiment indicates the need to develop confidence and conviction in the students regarding their writing that…

  5. Scale-invariant streamline equations and strings of singular vorticity for perturbed anisotropic solutions of the Navier-Stokes equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libin, A., E-mail: a_libin@netvision.net.il

    2012-12-15

    A linear combination of a pair of dual anisotropic decaying Beltrami flows with spatially constant amplitudes (the Trkal solutions) with the same eigenvalue of the curl operator and of a constant velocity orthogonal vector to the Beltrami pair yields a triplet solution of the force-free Navier-Stokes equation. The amplitudes slightly variable in space (large scale perturbations) yield the emergence of a time-dependent phase between the dual Beltrami flows and of the upward velocity, which are unstable at large values of the Reynolds number. They also lead to the formation of large-scale curved prisms of streamlines with edges being the stringsmore » of singular vorticity.« less

  6. Tentative identification of polar and mid-polar compounds in extracts from wine lees by liquid chromatography-tandem mass spectrometry in high-resolution mode.

    PubMed

    Delgado de la Torre, M P; Priego-Capote, F; Luque de Castro, M D

    2015-06-01

    Sustainable agriculture has a pending goal in the revalorization of agrofood residues. Wine lees are an abundant residue in the oenological industry. This residue, so far, has been used to obtain tartaric acid or pigments but not for being qualitatively characterized as a source of polar and mid-polar compounds such as flavonoids, phenols and essential amino acids. Lees extracts from 11 Spanish wineries have been analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in high resolution mode. The high-resolution power of LC-MS/MS has led to the tentative identification of the most representative compounds present in wine lees, comprising primary amino acids, anthocyans, flavanols, flavonols, flavones and non-flavonoid phenolic compounds, among others. Attending to the profile and content of polar and mid-polar compounds in wine lees, this study underlines the potential of wine lees as an exploitable source to isolate interesting compounds. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Singularities of interference of three waves with different polarization states.

    PubMed

    Kurzynowski, Piotr; Woźniak, Władysław A; Zdunek, Marzena; Borwińska, Monika

    2012-11-19

    We presented the interference setup which can produce interesting two-dimensional patterns in polarization state of the resulting light wave emerging from the setup. The main element of our setup is the Wollaston prism which gives two plane, linearly polarized waves (eigenwaves of both Wollaston's wedges) with linearly changed phase difference between them (along the x-axis). The third wave coming from the second arm of proposed polarization interferometer is linearly or circularly polarized with linearly changed phase difference along the y-axis. The interference of three plane waves with different polarization states (LLL - linear-linear-linear or LLC - linear-linear-circular) and variable change difference produce two-dimensional light polarization and phase distributions with some characteristic points and lines which can be claimed to constitute singularities of different types. The aim of this article is to find all kind of these phase and polarization singularities as well as their classification. We postulated in our theoretical simulations and verified in our experiments different kinds of polarization singularities, depending on which polarization parameter was considered (the azimuth and ellipticity angles or the diagonal and phase angles). We also observed the phase singularities as well as the isolated zero intensity points which resulted from the polarization singularities when the proper analyzer was used at the end of the setup. The classification of all these singularities as well as their relationships were analyzed and described.

  8. Locality and Unitarity of Scattering Amplitudes from Singularities and Gauge Invariance

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, Nima; Rodina, Laurentiu; Trnka, Jaroslav

    2018-06-01

    We conjecture that the leading two-derivative tree-level amplitudes for gluons and gravitons can be derived from gauge invariance together with mild assumptions on their singularity structure. Assuming locality (that the singularities are associated with the poles of cubic graphs), we prove that gauge invariance in just n -1 particles together with minimal power counting uniquely fixes the amplitude. Unitarity in the form of factorization then follows from locality and gauge invariance. We also give evidence for a stronger conjecture: assuming only that singularities occur when the sum of a subset of external momenta go on shell, we show in nontrivial examples that gauge invariance and power counting demand a graph structure for singularities. Thus, both locality and unitarity emerge from singularities and gauge invariance. Similar statements hold for theories of Goldstone bosons like the nonlinear sigma model and Dirac-Born-Infeld by replacing the condition of gauge invariance with an appropriate degree of vanishing in soft limits.

  9. Constructing Current Singularity in a 3D Line-tied Plasma

    DOE PAGES

    Zhou, Yao; Huang, Yi-Min; Qin, Hong; ...

    2017-12-27

    We revisit Parker's conjecture of current singularity formation in 3D line-tied plasmas using a recently developed numerical method, variational integration for ideal magnetohydrodynamics in Lagrangian labeling. With the frozen-in equation built-in, the method is free of artificial reconnection, and hence it is arguably an optimal tool for studying current singularity formation. Using this method, the formation of current singularity has previously been confirmed in the Hahm–Kulsrud–Taylor problem in 2D. In this paper, we extend this problem to 3D line-tied geometry. The linear solution, which is singular in 2D, is found to be smooth for arbitrary system length. However, with finitemore » amplitude, the linear solution can become pathological when the system is sufficiently long. The nonlinear solutions turn out to be smooth for short systems. Nonetheless, the scaling of peak current density versus system length suggests that the nonlinear solution may become singular at finite length. Finally, with the results in hand, we can neither confirm nor rule out this possibility conclusively, since we cannot obtain solutions with system length near the extrapolated critical value.« less

  10. Towards timelike singularity via AdS dual

    NASA Astrophysics Data System (ADS)

    Bhowmick, Samrat; Chatterjee, Soumyabrata

    2017-07-01

    It is well known that Kasner geometry with spacelike singularity can be extended to bulk AdS-like geometry, furthermore, one can study field theory on this Kasner space via its gravity dual. In this paper, we show that there exists a Kasner-like geometry with timelike singularity for which one can construct a dual gravity description. We then study various extremal surfaces including spacelike geodesics in the dual gravity description. Finally, we compute correlators of highly massive operators in the boundary field theory with a geodesic approximation.

  11. Maximal volume behind horizons without curvature singularity

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Jun; Guo, Xin-Xuan; Wang, Towe

    2018-01-01

    The black hole information paradox is related to the area of event horizon, and potentially to the volume and singularity behind it. One example is the complexity/volume duality conjectured by Stanford and Susskind. Accepting the proposal of Christodoulou and Rovelli, we calculate the maximal volume inside regular black holes, which are free of curvature singularity, in asymptotically flat and anti-de Sitter spacetimes respectively. The complexity/volume duality is then applied to anti-de Sitter regular black holes. We also present an analytical expression for the maximal volume outside the de Sitter horizon.

  12. Asymmetric lasing at spectral singularities

    NASA Astrophysics Data System (ADS)

    Jin, L.

    2018-03-01

    Scattering coefficients can diverge at spectral singularities. In such situation, the stationary solution becomes a laser solution with outgoing waves only. We explore a parity-time (PT )-symmetric non-Hermitian two-arm Aharonov-Bohm interferometer consisting of three coupled resonators enclosing synthetic magnetic flux. The synthetic magnetic flux does not break the PT symmetry, which protects the symmetric transmission. The features and conditions of symmetric, asymmetric, and unidirectional lasing at spectral singularities are discussed. We elucidate that lasing affected by the interference is asymmetric; asymmetric lasing is induced by the interplay between the synthetic magnetic flux and the system's non-Hermiticity. The product of the left and right transmissions is equal to that of the reflections. Our findings reveal that the synthetic magnetic flux affects light propagation, and the results can be applied in the design of lasing devices.

  13. Transformations between Jordan and Einstein frames: Bounces, antigravity, and crossing singularities

    NASA Astrophysics Data System (ADS)

    Kamenshchik, Alexander Yu.; Pozdeeva, Ekaterina O.; Vernov, Sergey Yu.; Tronconi, Alessandro; Venturi, Giovanni

    2016-09-01

    We study the relation between the Jordan-Einstein frame transition and the possible description of the crossing of singularities in flat Friedmann universes, using the fact that the regular evolution in one frame can correspond to crossing singularities in the other frame. We show that some interesting effects arise in simple models such as one with a massless scalar field or another wherein the potential is constant in the Einstein frame. The dynamics in these models and in their conformally coupled counterparts are described in detail, and a method for the continuation of such cosmological evolutions beyond the singularity is developed. We compare our approach with some other, recently developed, approaches to the problem of the crossing of singularities.

  14. Singular instantons in Eddington-inspired-Born-Infeld gravity

    DOE PAGES

    Arroja, Frederico; Chen, Che -Yu; Chen, Pisin; ...

    2017-03-23

    In this study, we investigate O(4)-symmetric instantons within the Eddington-inspired-Born-Infeld gravity theory (EiBI) . We discuss the regular Hawking-Moss instanton and find that the tunneling rate reduces to the General Relativity (GR) value, even though the action value is different by a constant. We give a thorough analysis of the singular Vilenkin instanton and the Hawking-Turok instanton with a quadratic scalar field potential in the EiBI theory. In both cases, we find that the singularity can be avoided in the sense that the physical metric, its scalar curvature and the scalar field are regular under some parameter restrictions, but theremore » is a curvature singularity of the auxiliary metric compatible with the connection. We find that the on-shell action is finite and the probability does not reduce to its GR value. We also find that the Vilenkin instanton in the EiBI theory would still cause the instability of the Minkowski space, similar to that in GR, and this is observationally inconsistent. This result suggests that the singularity of the auxiliary metric may be problematic at the quantum level and that these instantons should be excluded from the path integral.« less

  15. Chiral Luttinger liquids and a generalized Luttinger's theorem in fractional quantum Hall edges via finite-entanglement scaling

    NASA Astrophysics Data System (ADS)

    Varjas, Daniel; Zaletel, Michael; Moore, Joel

    2014-03-01

    We use bosonic field theories and the infinite system density matrix renormalization group (iDMRG) method to study infinite strips of fractional quantum Hall (FQH) states starting from microscopic Hamiltonians. Finite-entanglement scaling allows us to accurately measure chiral central charge, edge mode exponents and momenta without finite-size errors. We analyze states in the first and second level of the standard hierarchy and compare our results to predictions of the chiral Luttinger liquid (χLL) theory. The results confirm the universality of scaling exponents in chiral edges and demonstrate that renormalization is subject to universal relations in the non-chiral case. We prove a generalized Luttinger's theorem involving all singularities in the momentum-resolved density, which naturally arises when mapping Landau levels on a cylinder to a fermion chain and deepens our understanding of non-Fermi liquids in 1D.

  16. Professor Alison Lee: A Stellar Presence in Australian Higher Education Research

    ERIC Educational Resources Information Center

    Manathunga, Catherine; Kelly, Frances; Grant, Barbara

    2016-01-01

    For around two decades and up to her untimely death in September 2012, Professor Alison Lee was a significant figure in Australian higher education research. Alison's incisive work ranged across several sub-fields of higher education studies and helped broaden the field as a whole beyond issues of teaching and learning. She also brought an…

  17. ZN graded discrete Lax pairs and Yang-Baxter maps

    NASA Astrophysics Data System (ADS)

    Fordy, Allan P.; Xenitidis, Pavlos

    2017-05-01

    We recently introduced a class of ZN graded discrete Lax pairs and studied the associated discrete integrable systems (lattice equations). In this paper, we introduce the corresponding Yang-Baxter maps. Many well-known examples belong to this scheme for N=2, so, for N≥3, our systems may be regarded as generalizations of these. In particular, for each N we introduce a class of multi-component Yang-Baxter maps, which include HBIII (of Papageorgiou et al. 2010 SIGMA 6, 003 (9 p). (doi:10.3842/SIGMA.2010.033)), when N=2, and that associated with the discrete modified Boussinesq equation, for N=3. For N≥5 we introduce a new family of Yang-Baxter maps, which have no lower dimensional analogue. We also present new multi-component versions of the Yang-Baxter maps FIV and FV (given in the classification of Adler et al. 2004 Commun. Anal. Geom. 12, 967-1007. (doi:10.4310/CAG.2004.v12.n5.a1)).

  18. Quantum singularities in (2+1) dimensional matter coupled black hole spacetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unver, O.; Gurtug, O.

    2010-10-15

    Quantum singularities considered in the 3D Banados-Teitelboim-Zanelli (BTZ) spacetime by Pitelli and Letelier [Phys. Rev. D 77, 124030 (2008)] is extended to charged BTZ and 3D Einstein-Maxwell-dilaton gravity spacetimes. The occurrence of naked singularities in the Einstein-Maxwell extension of the BTZ spacetime both in linear and nonlinear electrodynamics as well as in the Einstein-Maxwell-dilaton gravity spacetimes are analyzed with the quantum test fields obeying the Klein-Gordon and Dirac equations. We show that with the inclusion of the matter fields, the conical geometry near r=0 is removed and restricted classes of solutions are admitted for the Klein-Gordon and Dirac equations. Hence,more » the classical central singularity at r=0 turns out to be quantum mechanically singular for quantum particles obeying the Klein-Gordon equation but nonsingular for fermions obeying the Dirac equation. Explicit calculations reveal that the occurrence of the timelike naked singularities in the considered spacetimes does not violate the cosmic censorship hypothesis as far as the Dirac fields are concerned. The role of horizons that clothes the singularity in the black hole cases is replaced by repulsive potential barrier against the propagation of Dirac fields.« less

  19. Beyond singular values and loop shapes

    NASA Technical Reports Server (NTRS)

    Stein, G.

    1985-01-01

    The status of singular value loop-shaping as a design paradigm for multivariable feedback systems is reviewed. It shows that this paradigm is an effective design tool whenever the problem specifications are spacially round. The tool can be arbitrarily conservative, however, when they are not. This happens because singular value conditions for robust performance are not tight (necessary and sufficient) and can severely overstate actual requirements. An alternate paradign is discussed which overcomes these limitations. The alternative includes a more general problem formulation, a new matrix function mu, and tight conditions for both robust stability and robust performance. The state of the art currently permits analysis of feedback systems within this new paradigm. Synthesis remains a subject of research.

  20. Singularity-sensitive gauge-based radar rainfall adjustment methods for urban hydrological applications

    NASA Astrophysics Data System (ADS)

    Wang, L.-P.; Ochoa-Rodríguez, S.; Onof, C.; Willems, P.

    2015-09-01

    Gauge-based radar rainfall adjustment techniques have been widely used to improve the applicability of radar rainfall estimates to large-scale hydrological modelling. However, their use for urban hydrological applications is limited as they were mostly developed based upon Gaussian approximations and therefore tend to smooth off so-called "singularities" (features of a non-Gaussian field) that can be observed in the fine-scale rainfall structure. Overlooking the singularities could be critical, given that their distribution is highly consistent with that of local extreme magnitudes. This deficiency may cause large errors in the subsequent urban hydrological modelling. To address this limitation and improve the applicability of adjustment techniques at urban scales, a method is proposed herein which incorporates a local singularity analysis into existing adjustment techniques and allows the preservation of the singularity structures throughout the adjustment process. In this paper the proposed singularity analysis is incorporated into the Bayesian merging technique and the performance of the resulting singularity-sensitive method is compared with that of the original Bayesian (non singularity-sensitive) technique and the commonly used mean field bias adjustment. This test is conducted using as case study four storm events observed in the Portobello catchment (53 km2) (Edinburgh, UK) during 2011 and for which radar estimates, dense rain gauge and sewer flow records, as well as a recently calibrated urban drainage model were available. The results suggest that, in general, the proposed singularity-sensitive method can effectively preserve the non-normality in local rainfall structure, while retaining the ability of the original adjustment techniques to generate nearly unbiased estimates. Moreover, the ability of the singularity-sensitive technique to preserve the non-normality in rainfall estimates often leads to better reproduction of the urban drainage system

  1. YANG-MILLS Theory in, Beyond, and Behind Observed Reality

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    The primary interactions of Yang-Mills theory [1] are visibly embodied in hard processes, most directly in jets. The character of jets also reflects the deep structure of effective charge, which is dominated by the influence of intrinsically non-Abelian gauge dynamics. These proven insights into fundamental physics ramify in many directions, and are far from being exhausted. I will discuss three rewarding explorations from my own experience, whose point of departure is the hard Yang-Mills interaction, and whose end is not yet in sight. Given an insight so profound and fruitful as Yang and Mills brought us, it is in order to try to consider its broadest implications, which I attempt at the end.

  2. On integrability of the Yang-Baxter {sigma}-model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimcik, Ctirad

    2009-04-15

    We prove that the recently introduced Yang-Baxter {sigma}-model can be considered as an integrable deformation of the principal chiral model. We find also an explicit one-to-one map transforming every solution of the principal chiral model into a solution of the deformed model. With the help of this map, the standard procedure of the dressing of the principal chiral solutions can be directly transferred into the deformed Yang-Baxter context.

  3. Environmental Illness and the Future of Healthcare: Chang-Rae Lee's On Such a Full Sea.

    PubMed

    Barrish, Phillip

    2018-06-02

    Chang-Rae Lee's 2014 novel On Such a Full Sea uses the genre of speculative fiction to reflect on longstanding healthcare debates in the United States that have recently crystalized around the Affordable Care Act. The novel imagines the political economy of healthcare in a future America devastated by environmental illness. What kind of care is available and to whom? Who provides it? Who pays for it? What about distribution and access? The different healthcare systems governing each of three geo-social zones in Lee's future society represent exaggerated versions of the scenarios participants in the ACA debate claim their opponents' health policies would produce. The essay argues that Lee's novel ultimately favors a version of universal government-funded care over a system based on supposed free-market principles, even as the novel also tries to make room for conservative Americans' fears about the specter of so-called "socialized medicine." More broadly, the essay contends that the health humanities should devote more attention to literary and artistic engagements with healthcare as a system: a complex set of financial models, public and private institutions, government policies, and actors whose roles range well beyond patient and care provider.

  4. Aerodynamic influence coefficient method using singularity splines

    NASA Technical Reports Server (NTRS)

    Mercer, J. E.; Weber, J. A.; Lesferd, E. P.

    1974-01-01

    A numerical lifting surface formulation, including computed results for planar wing cases is presented. This formulation, referred to as the vortex spline scheme, combines the adaptability to complex shapes offered by paneling schemes with the smoothness and accuracy of loading function methods. The formulation employes a continuous distribution of singularity strength over a set of panels on a paneled wing. The basic distributions are independent, and each satisfied all the continuity conditions required of the final solution. These distributions are overlapped both spanwise and chordwise. Boundary conditions are satisfied in a least square error sense over the surface using a finite summing technique to approximate the integral. The current formulation uses the elementary horseshoe vortex as the basic singularity and is therefore restricted to linearized potential flow. As part of the study, a non planar development was considered, but the numerical evaluation of the lifting surface concept was restricted to planar configurations. Also, a second order sideslip analysis based on an asymptotic expansion was investigated using the singularity spline formulation.

  5. Experimental realization of the Yang-Baxter Equation via NMR interferometry.

    PubMed

    Vind, F Anvari; Foerster, A; Oliveira, I S; Sarthour, R S; Soares-Pinto, D O; Souza, A M; Roditi, I

    2016-02-10

    The Yang-Baxter equation is an important tool in theoretical physics, with many applications in different domains that span from condensed matter to string theory. Recently, the interest on the equation has increased due to its connection to quantum information processing. It has been shown that the Yang-Baxter equation is closely related to quantum entanglement and quantum computation. Therefore, owing to the broad relevance of this equation, besides theoretical studies, it also became significant to pursue its experimental implementation. Here, we show an experimental realization of the Yang-Baxter equation and verify its validity through a Nuclear Magnetic Resonance (NMR) interferometric setup. Our experiment was performed on a liquid state Iodotrifluoroethylene sample which contains molecules with three qubits. We use Controlled-transfer gates that allow us to build a pseudo-pure state from which we are able to apply a quantum information protocol that implements the Yang-Baxter equation.

  6. Statistical analysis of effective singular values in matrix rank determination

    NASA Technical Reports Server (NTRS)

    Konstantinides, Konstantinos; Yao, Kung

    1988-01-01

    A major problem in using SVD (singular-value decomposition) as a tool in determining the effective rank of a perturbed matrix is that of distinguishing between significantly small and significantly large singular values to the end, conference regions are derived for the perturbed singular values of matrices with noisy observation data. The analysis is based on the theories of perturbations of singular values and statistical significance test. Threshold bounds for perturbation due to finite-precision and i.i.d. random models are evaluated. In random models, the threshold bounds depend on the dimension of the matrix, the noisy variance, and predefined statistical level of significance. Results applied to the problem of determining the effective order of a linear autoregressive system from the approximate rank of a sample autocorrelation matrix are considered. Various numerical examples illustrating the usefulness of these bounds and comparisons to other previously known approaches are given.

  7. Looking for Asian butch-dykes: exploring filmic representations of East Asian butch-dykes in Donna Lee's Enter the Mullet.

    PubMed

    Lin, Hui-Ling

    2009-01-01

    Asian butch-dykes have been overlooked in analyses of Chinese cinema, studies that often concentrate on "feminized" transgender roles. This article examines cinematic representations of Asian butch-dykes through film analysis of Enter the Mullet (2004), a five-minute short, and in-depth interviews with the filmmaker, Donna Lee, a Chinese-Canadian in Vancouver. Lee's film is inspired by Enter the Dragon (1973), starring Bruce Lee, the most recognized icon of Asian masculinity. Combining with the mullet hairstyle, which is often associated with White working-class, the filmmaker introduces viewers to the hybrid masculinity of Asian butch-dykes. The article argues that Asian female masculinity can be a strategic means of destabilizing the hegemony of White-male-middle-class masculinity.

  8. Singularity detection by wavelet approach: application to electrocardiogram signal

    NASA Astrophysics Data System (ADS)

    Jalil, Bushra; Beya, Ouadi; Fauvet, Eric; Laligant, Olivier

    2010-01-01

    In signal processing, the region of abrupt changes contains the most of the useful information about the nature of the signal. The region or the points where these changes occurred are often termed as singular point or singular region. The singularity is considered to be an important character of the signal, as it refers to the discontinuity and interruption present in the signal and the main purpose of the detection of such singular point is to identify the existence, location and size of those singularities. Electrocardiogram (ECG) signal is used to analyze the cardiovascular activity in the human body. However the presence of noise due to several reasons limits the doctor's decision and prevents accurate identification of different pathologies. In this work we attempt to analyze the ECG signal with energy based approach and some heuristic methods to segment and identify different signatures inside the signal. ECG signal has been initially denoised by empirical wavelet shrinkage approach based on Steins Unbiased Risk Estimate (SURE). At the second stage, the ECG signal has been analyzed by Mallat approach based on modulus maximas and Lipschitz exponent computation. The results from both approaches has been discussed and important aspects has been highlighted. In order to evaluate the algorithm, the analysis has been done on MIT-BIH Arrhythmia database; a set of ECG data records sampled at a rate of 360 Hz with 11 bit resolution over a 10mv range. The results have been examined and approved by medical doctors.

  9. "Lee v. Weisman": The Tenth Justice Takes Aim at the "Lemon" Test.

    ERIC Educational Resources Information Center

    Johnson, T. Page

    1991-01-01

    U.S. Solicitor General Kenneth W. Starr has asked the Supreme Court to abandon the Establishment Clause it formulated in "Lemon v. Kurtzman" (1971) for cases involving governmental accommodation of religion in civic life. Starr's "amicus curiae" in "Lee v. Weisman" questions the clause's persistent tendency to…

  10. Vertical structure and microphysical characteristics of precipitation on the high terrain and lee side of the Olympic Mountains

    NASA Astrophysics Data System (ADS)

    Zagrodnik, J. P.; McMurdie, L. A.; Houze, R.

    2017-12-01

    As mid-latitude cyclones pass over coastal mountain ranges, the processes producing their clouds and precipitation are modified when they encounter complex terrain, leading to a maximum in precipitation fallout on the windward slopes and a minimum on the lee side. The precipitation that does reach the high terrain and lee side of a mountain range can be theoretically determined by a complex interaction between the dynamics of air lifting over the terrain, the thermodynamics of moist air, and the microphysical time required to grow particles large enough to fall out. To date, there have been few observational studies that have focused on the nonlinear microphysical processes contributing to the variability of precipitation that is received on the lee side slopes of a mountain range such as the Olympic Mountains. The 2015-16 Olympic Mountains Experiment (OLYMPEX) collected unprecedented observations on the high terrain and lee side of the Olympic Mountains including frequent soundings on Vancouver Island, dual-polarization Doppler radar, multi-frequency airborne radar, and ground-based particle size and crystal habit observations at the higher elevation Hurricane Ridge site. We utilize these observations to examine the evolution of the vertical structure and microphysical precipitation characteristics over the high terrain and leeside within the context of large-scale dynamic and thermodynamic conditions that evolve during the passage of cold season mid-latitude cyclones. The primary goal is to determine the degree to which the observed variability in lee side precipitation amount and microphysical properties are controlled by variations in temperature, flow speed and direction, shear, and stability associated with characteristic synoptic storm sectors and frontal passages.

  11. Parity-Time Symmetry Breaking in Spin Chains.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galda, Alexey; Vinokur, Valerii M.

    We investigate nonequilibrium phase transitions in classical Heisenberg spin chains associated with spontaneous breaking of parity-time (PT) symmetry of the system under the action of Slonczewski spin-transfer torque (STT) modeled by an applied imaginary magnetic field. We reveal the STT-driven PT symmetry-breaking phase transition between the regimes of precessional and exponentially damped spin dynamics and show that its several properties can be derived from the distribution of zeros of the system's partition function, the approach first introduced by Yang and Lee for studying equilibrium phase transitions in Ising spin chains. The physical interpretation of imaginary magnetic field as describing themore » action of nonconservative forces opens the possibility of direct observations of Lee-Yang zeros in nonequilibrium physical systems.« less

  12. Parity-time symmetry breaking in spin chains

    NASA Astrophysics Data System (ADS)

    Galda, Alexey; Vinokur, Valerii M.

    2018-05-01

    We investigate nonequilibrium phase transitions in classical Heisenberg spin chains associated with spontaneous breaking of parity-time (PT ) symmetry of the system under the action of Slonczewski spin-transfer torque (STT) modeled by an applied imaginary magnetic field. We reveal the STT-driven PT symmetry-breaking phase transition between the regimes of precessional and exponentially damped spin dynamics and show that its several properties can be derived from the distribution of zeros of the system's partition function, the approach first introduced by Yang and Lee for studying equilibrium phase transitions in Ising spin chains. The physical interpretation of imaginary magnetic field as describing the action of nonconservative forces opens the possibility of direct observations of Lee-Yang zeros in nonequilibrium physical systems.

  13. The Friedmann-Lemaître-Robertson-Walker Big Bang Singularities are Well Behaved

    NASA Astrophysics Data System (ADS)

    Stoica, Ovidiu Cristinel

    2016-01-01

    We show that the Big Bang singularity of the Friedmann-Lemaître-Robertson-Walker model does not raise major problems to General Relativity. We prove a theorem showing that the Einstein equation can be written in a non-singular form, which allows the extension of the spacetime before the Big Bang. The physical interpretation of the fields used is discussed. These results follow from our research on singular semi-Riemannian geometry and singular General Relativity.

  14. Experimental verification of free-space singular boundary conditions in an invisibility cloak

    NASA Astrophysics Data System (ADS)

    Wu, Qiannan; Gao, Fei; Song, Zhengyong; Lin, Xiao; Zhang, Youming; Chen, Huanyang; Zhang, Baile

    2016-04-01

    A major issue in invisibility cloaking, which caused intense mathematical discussions in the past few years but still remains physically elusive, is the plausible singular boundary conditions associated with the singular metamaterials at the inner boundary of an invisibility cloak. The perfect cloaking phenomenon, as originally proposed by Pendry et al for electromagnetic waves, cannot be treated as physical before a realistic inner boundary of a cloak is demonstrated. Although a recent demonstration has been done in a waveguide environment, the exotic singular boundary conditions should apply to a general environment as in free space. Here we fabricate a metamaterial surface that exhibits the singular boundary conditions and demonstrate its performance in free space. Particularly, the phase information of waves reflected from this metamaterial surface is explicitly measured, confirming the singular responses of boundary conditions for an invisibility cloak.

  15. The Garrett Lee Smith memorial suicide prevention program.

    PubMed

    Goldston, David B; Walrath, Christine M; McKeon, Richard; Puddy, Richard W; Lubell, Keri M; Potter, Lloyd B; Rodi, Michael S

    2010-06-01

    In response to calls for greater efforts to reduce youth suicide, the Garrett Lee Smith (GLS) Memorial Act has provided funding for 68 state, territory, and tribal community grants, and 74 college campus grants for suicide prevention efforts. Suicide prevention activities supported by GLS grantees have included education, training programs (including gatekeeper training), screening activities, infrastructure for improved linkages to services, crisis hotlines, and community partnerships. Through participation in both local- and cross-site evaluations, GLS grantees are generating data regarding the local context, proximal outcomes, and implementation of programs, as well as opportunities for improvement of suicide prevention efforts.

  16. The Garrett Lee Smith Memorial Suicide Prevention Program

    PubMed Central

    Goldston, David B.; Walrath, Christine M.; McKeon, Richard; Puddy, Richard W.; Lubell, Keri M.; Potter, Lloyd B.; Rodi, Michael S.

    2011-01-01

    Responding to calls for greater efforts to reduce youth suicide, the Garrett Lee Smith (GLS) Memorial Act to date has provided funding for 68 state, territory, and tribal community grants, and 74 college campus grants for suicide prevention efforts. Suicide prevention activities supported by GLS grantees have included education, training programs including gatekeeper training, screening activities, infrastructure for improved linkages to services, crisis hotlines, and community partnerships. Through participation in both local- and cross-site evaluations, GLS grantees are generating data regarding the local context, proximal outcomes, and implementation of programs, as well as opportunities for improvement of suicide prevention efforts. PMID:20560746

  17. On the solution of integral equations with strongly singular kernels

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1986-01-01

    Some useful formulas are developed to evaluate integrals having a singularity of the form (t-x) sup-m ,m greater than or equal 1. Interpreting the integrals with strong singularities in Hadamard sense, the results are used to obtain approximate solutions of singular integral equations. A mixed boundary value problem from the theory of elasticity is considered as an example. Particularly for integral equations where the kernel contains, in addition to the dominant term (t-x) sup -m , terms which become unbounded at the end points, the present technique appears to be extremely effective to obtain rapidly converging numerical results.

  18. On the solution of integral equations with strongly singular kernels

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1987-01-01

    Some useful formulas are developed to evaluate integrals having a singularity of the form (t-x) sup-m, m greater than or equal 1. Interpreting the integrals with strong singularities in Hadamard sense, the results are used to obtain approximate solutions of singular integral equations. A mixed boundary value problem from the theory of elasticity is considered as an example. Particularly for integral equations where the kernel contains, in addition to the dominant term (t-x) sup-m, terms which become unbounded at the end points, the present technique appears to be extremely effective to obtain rapidly converging numerical results.

  19. Curved singular beams for three-dimensional particle manipulation.

    PubMed

    Zhao, Juanying; Chremmos, Ioannis D; Song, Daohong; Christodoulides, Demetrios N; Efremidis, Nikolaos K; Chen, Zhigang

    2015-07-13

    For decades, singular beams carrying angular momentum have been a topic of considerable interest. Their intriguing applications are ubiquitous in a variety of fields, ranging from optical manipulation to photon entanglement, and from microscopy and coronagraphy to free-space communications, detection of rotating black holes, and even relativistic electrons and strong-field physics. In most applications, however, singular beams travel naturally along a straight line, expanding during linear propagation or breaking up in nonlinear media. Here, we design and demonstrate diffraction-resisting singular beams that travel along arbitrary trajectories in space. These curved beams not only maintain an invariant dark "hole" in the center but also preserve their angular momentum, exhibiting combined features of optical vortex, Bessel, and Airy beams. Furthermore, we observe three-dimensional spiraling of microparticles driven by such fine-shaped dynamical beams. Our findings may open up new avenues for shaped light in various applications.

  20. Singularity perturbed zero dynamics of nonlinear systems

    NASA Technical Reports Server (NTRS)

    Isidori, A.; Sastry, S. S.; Kokotovic, P. V.; Byrnes, C. I.

    1992-01-01

    Stability properties of zero dynamics are among the crucial input-output properties of both linear and nonlinear systems. Unstable, or 'nonminimum phase', zero dynamics are a major obstacle to input-output linearization and high-gain designs. An analysis of the effects of regular perturbations in system equations on zero dynamics shows that whenever a perturbation decreases the system's relative degree, it manifests itself as a singular perturbation of zero dynamics. Conditions are given under which the zero dynamics evolve in two timescales characteristic of a standard singular perturbation form that allows a separate analysis of slow and fast parts of the zero dynamics.

  1. Degenerate SDEs with singular drift and applications to Heisenberg groups

    NASA Astrophysics Data System (ADS)

    Huang, Xing; Wang, Feng-Yu

    2018-09-01

    By using the ultracontractivity of a reference diffusion semigroup, Krylov's estimate is established for a class of degenerate SDEs with singular drifts, which leads to existence and pathwise uniqueness by means of Zvonkin's transformation. The main result is applied to singular SDEs on generalized Heisenberg groups.

  2. Aβ Damages Learning and Memory in Alzheimer's Disease Rats with Kidney-Yang Deficiency

    PubMed Central

    Qi, Dongmei; Qiao, Yongfa; Zhang, Xin; Yu, Huijuan; Cheng, Bin; Qiao, Haifa

    2012-01-01

    Previous studies demonstrated that Alzheimer's disease was considered as the consequence produced by deficiency of Kidney essence. However, the mechanism underlying the symptoms also remains elusive. Here we report that spatial learning and memory, escape, and swimming capacities were damaged significantly in Kidney-yang deficiency rats. Indeed, both hippocampal Aβ 40 and 42 increases in Kidney-yang deficiency contribute to the learning and memory impairments. Specifically, damage of synaptic plasticity is involved in the learning and memory impairment of Kidney-yang deficiency rats. We determined that the learning and memory damage in Kidney-yang deficiency due to synaptic plasticity impairment and increases of Aβ 40 and 42 was not caused via NMDA receptor internalization induced by Aβ increase. β-Adrenergic receptor agonist can rescue the impaired long-term potential (LTP) in Kidney-yang rats. Taken together, our results suggest that spatial learning and memory inhibited in Kidney-yang deficiency might be induced by Aβ increase and the decrease of β 2 receptor function in glia. PMID:22645624

  3. Do sewn up singularities falsify the Palatini cosmology?

    NASA Astrophysics Data System (ADS)

    Szydłowski, Marek; Stachowski, Aleksander; Borowiec, Andrzej; Wojnar, Aneta

    2016-10-01

    We investigate further (cf. Borowiec et al. JCAP 1601(01):040, 2016) the Starobinsky cosmological model R+γ R^2 in the Palatini formalism with a Chaplygin gas and baryonic matter as a source in the context of singularities. The dynamics reduces to the 2D sewn dynamical system of a Newtonian type (a piece-wise-smooth dynamical system). We demonstrate that the presence of a sewn up freeze singularity (glued freeze type singularities) for the positive γ is, in this case, a generic feature of the early evolution of the universe. It is demonstrated that γ equal zero is a bifurcation parameter and the dynamics qualitatively changes as the γ sign is changing. On the other side for the case of negative γ instead of the big bang the sudden bounce singularity of a finite scale factor does appear and there is a generic class of bouncing solutions. While the Ω _{γ } > 0 is favored by data only very small values of Ω _{γ } parameter are allowed if we require agreement with the Λ CDM model. From the statistical analysis of astronomical observations, we deduce that the case of only very small negative values of Ω _γ cannot be rejected. Therefore, observation data favor the universe without the ghost states (f'(hat{R})>0) and tachyons (f''(hat{R})>0).

  4. Generalized Friedberg-Lee model for CP violation in neutrino physics

    NASA Astrophysics Data System (ADS)

    Razzaghi, N.; Gousheh, S. S.

    2012-09-01

    We propose a phenomenological model of Dirac neutrino mass operator based on the Friedberg-Lee neutrino mass model to include CP violation. By considering the most general set of complex coefficients, and imposing the condition that the mass eigenvalues are real, we find a neutrino mass matrix which is non-Hermitian, symmetric, and magic. In particular, we find that the requirement of obtaining real mass eigenvalues by transferring the residual phases to the mass eigenstates self-consistently dictates the following relationship between the imaginary part of the mass matrix elements B and the parameters of the Friedberg-Lee model: B=±(3)/(4)(a-br)2sin⁡22θ13cos⁡2θ12. We obtain inverted neutrino mass hierarchy m3=0. Making a correspondence between our model and the experimental data produces stringent conditions on the parameters as follows: 35.06°≲θ12≲36.27°, θ23=45°, 7.27°≲θ13≲11.09°, and 82.03°≲δ≲85.37°. We get mildly broken μ-τ symmetry, which reduces the resultant neutrino mixing pattern from tri-bimaximal to trimaximal. The CP violation as measured by the Jarlskog parameter is restricted by 0.027≲J≲0.044.

  5. Evaluation of an adaptive traffic signal system : route 291 in Lee's Summit, Missouri.

    DOT National Transportation Integrated Search

    2010-03-01

    An adaptive traffic signal system was installed on a 12-signal, 2.5-mi arterial in Lees Summit, Missouri in the Spring : of 2008. An evaluation of travel time, delay, number of stops, fuel consumption, and emissions was conducted, which : compared...

  6. AmeriFlux US-SuS Maui Sugarcane Lee/Sheltered

    DOE Data Explorer

    Anderson, Ray [USDA-Agricultural Research Service, United States Salinity Laboratory, Contaminant Fate and Transport Unit; Wang, Dong [USDA - Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Water Management Research Unit

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-SuS Maui Sugarcane Lee/Sheltered. Site Description - Continuous, irrigated, sugarcane cultivation for >100 years. Practice is to grow plant sugarcane for 2 years, drydown, burn leaves, harvest cane, and then till and replant very shortly after harvest. First cycle of observations were from July 2011 to November 2012. Second cycle was from April 2013 to December 2013. Site differs from Sugarcane Windy and Sugarcane Middle in soil type and meteorology.

  7. Quark masses and mixings with hierarchical Friedberg-Lee symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araki, Takeshi; Geng, C. Q.

    2010-04-01

    We consider the Friedberg-Lee symmetry for the quark sector and show that the symmetry closely relates to both quark masses and mixing angles. We also extend our scheme to the fourth generation quark model and find the relation |V{sub tb}{sup '}|{approx_equal}|V{sub t}{sup '}{sub b}|{approx_equal}m{sub b}/m{sub b}{sup '}<{lambda}{sup 2} with {lambda}{approx_equal}0.22 for m{sub b}=4.2 GeV and m{sub b}{sup '}>199 GeV.

  8. Singularity-free interpretation of the thermodynamics of supercooled water

    NASA Astrophysics Data System (ADS)

    Sastry, Srikanth; Debenedetti, Pablo G.; Sciortino, Francesco; Stanley, H. E.

    1996-06-01

    The pronounced increases in isothermal compressibility, isobaric heat capacity, and in the magnitude of the thermal expansion coefficient of liquid water upon supercooling have been interpreted either in terms of a continuous, retracing spinodal curve bounding the superheated, stretched, and supercooled states of liquid water, or in terms of a metastable, low-temperature critical point. Common to these two scenarios is the existence of singularities associated with diverging density fluctuations at low temperature. We show that the increase in compressibility upon lowering the temperature of a liquid that expands on cooling, like water, is not contingent on any singular behavior, but rather is a thermodynamic necessity. We perform a thermodynamic analysis for an anomalous liquid (i.e., one that expands when cooled) in the absence of a retracing spinodal and show that one may in general expect a locus of compressibility extrema in the anomalous regime. Our analysis suggests that the simplest interpretation of the behavior of supercooled water consistent with experimental observations is free of singularities. We then develop a waterlike lattice model that exhibits no singular behavior, while capturing qualitative aspects of the thermodynamics of water.

  9. On Resolutions of Cosmological Singularities in Higher-Spin Gravity

    NASA Astrophysics Data System (ADS)

    Burrington, Benjamin; Pando Zayas, Leopoldo; Rombes, Nicholas

    2014-03-01

    Gravity in three dimensions is simpler than in four, due to the lack of gravitational waves, and can be recast as a Chern-Simons theory. In this context, it is straightforward to generalize Einstein's gravity, with or without cosmological constant, by changing the gauge group. Using this, we study the resolution of certain cosmological singularities, and extend the singularity resolution scheme proposed by Krishnan and Roy. We discuss the resolution of a big-bang singularity in the case of gravity coupled to a spin-4 field realized as Chern-Simons theory with gauge group SL (4 , C) . We show the existence of gauge transformations that do not change the holonomy of the Chern-Simons gauge potential and lead to metrics without the initial singularity. We argue that such transformations always exist in the context of gravity coupled to a spin-N field when described by Chern-Simons with gauge group SL (N , C) . This work was supported by the DOE under grant DE-FG02-95ER40899, a research grant from Troy University, and the Honors Summer Fellowship at the University of Michigan.

  10. Quantum jump from singularity to outside of black hole

    NASA Astrophysics Data System (ADS)

    Dündar, Furkan Semih; Hajian, Kamal

    2016-02-01

    Considering the role of black hole singularity in quantum evolution, a resolution to the firewall paradox is presented. It is emphasized that if an observer has the singularity as a part of his spacetime, then the semi-classical evolution would be non-unitary as viewed by him. Specifically, a free-falling observer inside the black hole would have a Hilbert space with non-unitary evolution; a quantum jump for particles encountering the singularity to outside of the horizon as late Hawking radiations. The non-unitarity in the jump resembles the one in collapse of wave function, but preserves entanglements. Accordingly, we elaborate the first postulate of black hole complementarity: freely falling observers who pass through the event horizon would have non-unitary evolution, while it does not have physically measurable effects for them. Besides, no information would be lost in the singularity. Taking the modified picture into account, the firewall paradox can be resolved, respecting No Drama. A by-product of our modification is that roughly half of the entropy of the black hole is released close to the end of evaporation in the shape of very hot Hawking radiation.

  11. Classification of subsurface objects using singular values derived from signal frames

    DOEpatents

    Chambers, David H; Paglieroni, David W

    2014-05-06

    The classification system represents a detected object with a feature vector derived from the return signals acquired by an array of N transceivers operating in multistatic mode. The classification system generates the feature vector by transforming the real-valued return signals into complex-valued spectra, using, for example, a Fast Fourier Transform. The classification system then generates a feature vector of singular values for each user-designated spectral sub-band by applying a singular value decomposition (SVD) to the N.times.N square complex-valued matrix formed from sub-band samples associated with all possible transmitter-receiver pairs. The resulting feature vector of singular values may be transformed into a feature vector of singular value likelihoods and then subjected to a multi-category linear or neural network classifier for object classification.

  12. Spontaneously broken Yang-Mills-Einstein supergravities as double copies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik

    Color/kinematics duality and the double-copy construction have proved to be systematic tools for gaining new insight into gravitational theories. Extending our earlier work, in this article we introduce new double-copy constructions for large classes of spontaneously-broken Yang-Mills-Einstein theories with adjoint Higgs elds. One gaugetheory copy entering the construction is a spontaneously-broken (super-)Yang-Mills theory, while the other copy is a bosonic Yang-Mills-scalar theory with trilinear scalar interactions that display an explicitly-broken global symmetry. We show that the kinematic numerators of these gauge theories can be made to obey color/kinematics duality by exhibiting particular additional Lie-algebraic relations. We discuss in detail explicitmore » examples with N = 2 supersymmetry, focusing on Yang-Mills-Einstein supergravity theories belonging to the generic Jordan family in four and five dimensions, and identify the map between the supergravity and double-copy elds and parameters. We also briefly discuss the application of our results to N = 4 supergravity theories. The constructions are illustrated by explicit examples of tree-level and one-loop scattering amplitudes.« less

  13. Spontaneously broken Yang-Mills-Einstein supergravities as double copies

    DOE PAGES

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik; ...

    2017-06-13

    Color/kinematics duality and the double-copy construction have proved to be systematic tools for gaining new insight into gravitational theories. Extending our earlier work, in this article we introduce new double-copy constructions for large classes of spontaneously-broken Yang-Mills-Einstein theories with adjoint Higgs elds. One gaugetheory copy entering the construction is a spontaneously-broken (super-)Yang-Mills theory, while the other copy is a bosonic Yang-Mills-scalar theory with trilinear scalar interactions that display an explicitly-broken global symmetry. We show that the kinematic numerators of these gauge theories can be made to obey color/kinematics duality by exhibiting particular additional Lie-algebraic relations. We discuss in detail explicitmore » examples with N = 2 supersymmetry, focusing on Yang-Mills-Einstein supergravity theories belonging to the generic Jordan family in four and five dimensions, and identify the map between the supergravity and double-copy elds and parameters. We also briefly discuss the application of our results to N = 4 supergravity theories. The constructions are illustrated by explicit examples of tree-level and one-loop scattering amplitudes.« less

  14. High Performance Sustainable School Design: Roy Lee Walker Elementary, McKinney, Texas.

    ERIC Educational Resources Information Center

    SHW Group, Inc., Dallas, TX.

    This document describes the sustainable features of the Roy Lee Walker Elementary School (Texas), a prototype "Eco Education" school that blends the physical environment with the student learning process while protecting the site. The document also presents the process of integrating sustainability criteria in all phases of the school's…

  15. The effect of spherical aberration on the phase singularities of focused dark-hollow Gaussian beams

    NASA Astrophysics Data System (ADS)

    Luo, Yamei; Lü, Baida

    2009-06-01

    The phase singularities of focused dark-hollow Gaussian beams in the presence of spherical aberration are studied. It is shown that the evolution behavior of phase singularities of focused dark-hollow Gaussian beams in the focal region depends not only on the truncation parameter and beam order, but also on the spherical aberration. The spherical aberration leads to an asymmetric spatial distribution of singularities outside the focal plane and to a shift of singularities near the focal plane. The reorganization process of singularities and spatial distribution of singularities are additionally dependent on the sign of the spherical aberration. The results are illustrated by numerical examples.

  16. Spatial Distribution of Phase Singularities in Optical Random Vector Waves.

    PubMed

    De Angelis, L; Alpeggiani, F; Di Falco, A; Kuipers, L

    2016-08-26

    Phase singularities are dislocations widely studied in optical fields as well as in other areas of physics. With experiment and theory we show that the vectorial nature of light affects the spatial distribution of phase singularities in random light fields. While in scalar random waves phase singularities exhibit spatial distributions reminiscent of particles in isotropic liquids, in vector fields their distribution for the different vector components becomes anisotropic due to the direct relation between propagation and field direction. By incorporating this relation in the theory for scalar fields by Berry and Dennis [Proc. R. Soc. A 456, 2059 (2000)], we quantitatively describe our experiments.

  17. Free energy of singular sticky-sphere clusters.

    PubMed

    Kallus, Yoav; Holmes-Cerfon, Miranda

    2017-02-01

    Networks of particles connected by springs model many condensed-matter systems, from colloids interacting with a short-range potential and complex fluids near jamming, to self-assembled lattices and various metamaterials. Under small thermal fluctuations the vibrational entropy of a ground state is given by the harmonic approximation if it has no zero-frequency vibrational modes, yet such singular modes are at the epicenter of many interesting behaviors in the systems above. We consider a system of N spherical particles, and directly account for the singularities that arise in the sticky limit where the pairwise interaction is strong and short ranged. Although the contribution to the partition function from singular clusters diverges in the limit, its asymptotic value can be calculated and depends on only two parameters, characterizing the depth and range of the potential. The result holds for systems that are second-order rigid, a geometric characterization that describes all known ground-state (rigid) sticky clusters. To illustrate the applications of our theory we address the question of emergence: how does crystalline order arise in large systems when it is strongly disfavored in small ones? We calculate the partition functions of all known rigid clusters up to N≤21 and show the cluster landscape is dominated by hyperstatic clusters (those with more than 3N-6 contacts); singular and isostatic clusters are far less frequent, despite their extra vibrational and configurational entropies. Since the most hyperstatic clusters are close to fragments of a close-packed lattice, this underlies the emergence of order in sticky-sphere systems, even those as small as N=10.

  18. Free energy of singular sticky-sphere clusters

    NASA Astrophysics Data System (ADS)

    Kallus, Yoav; Holmes-Cerfon, Miranda

    2017-02-01

    Networks of particles connected by springs model many condensed-matter systems, from colloids interacting with a short-range potential and complex fluids near jamming, to self-assembled lattices and various metamaterials. Under small thermal fluctuations the vibrational entropy of a ground state is given by the harmonic approximation if it has no zero-frequency vibrational modes, yet such singular modes are at the epicenter of many interesting behaviors in the systems above. We consider a system of N spherical particles, and directly account for the singularities that arise in the sticky limit where the pairwise interaction is strong and short ranged. Although the contribution to the partition function from singular clusters diverges in the limit, its asymptotic value can be calculated and depends on only two parameters, characterizing the depth and range of the potential. The result holds for systems that are second-order rigid, a geometric characterization that describes all known ground-state (rigid) sticky clusters. To illustrate the applications of our theory we address the question of emergence: how does crystalline order arise in large systems when it is strongly disfavored in small ones? We calculate the partition functions of all known rigid clusters up to N ≤21 and show the cluster landscape is dominated by hyperstatic clusters (those with more than 3 N -6 contacts); singular and isostatic clusters are far less frequent, despite their extra vibrational and configurational entropies. Since the most hyperstatic clusters are close to fragments of a close-packed lattice, this underlies the emergence of order in sticky-sphere systems, even those as small as N =10 .

  19. Shocks and finite-time singularities in Hele-Shaw flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teodorescu, Razvan; Wiegmann, P; Lee, S-y

    Hele-Shaw flow at vanishing surface tension is ill-defined. In finite time, the flow develops cusplike singularities. We show that the ill-defined problem admits a weak dispersive solution when singularities give rise to a graph of shock waves propagating in the viscous fluid. The graph of shocks grows and branches. Velocity and pressure jump across the shock. We formulate a few simple physical principles which single out the dispersive solution and interpret shocks as lines of decompressed fluid. We also formulate the dispersive solution in algebro-geometrical terms as an evolution of Krichever-Boutroux complex curve. We study in details the most genericmore » (2,3) cusp singularity which gives rise to an elementary branching event. This solution is self-similar and expressed in terms of elliptic functions.« less

  20. Nonnormal operators in physics, a singular-vectors approach: illustration in polarization optics.

    PubMed

    Tudor, Tiberiu

    2016-04-20

    The singular-vectors analysis of a general nonnormal operator defined on a finite-dimensional complex vector space is given in the frame of a pure operatorial ("nonmatrix," "coordinate-free") approach, performed in a Dirac language. The general results are applied in the field of polarization optics, where the nonnormal operators are widespread as operators of various polarization devices. Two nonnormal polarization devices representative for the class of nonnormal and even pathological operators-the standard two-layer elliptical ideal polarizer (singular operator) and the three-layer ambidextrous ideal polarizer (singular and defective operator)-are analyzed in detail. It is pointed out that the unitary polar component of the operator exists and preserves, in such pathological case too, its role of converting the input singular basis of the operator in its output singular basis. It is shown that for any nonnormal ideal polarizer a complementary one exists, so that the tandem of their operators uniquely determines their (common) unitary polar component.

  1. Cross-tie walls and magnetic singularities on the surface of permalloy films (abstract)

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Kueny, A.; Koymen, A. R.

    1997-04-01

    An understanding of the surface magnetic microstructure of thin polycrystalline permalloy films is important for the development of improved magnetoresistive sensors. Scanning electron microscopy with polarization analysis (SEMPA) was used to image the surface magnetic domain structure of permalloy films in ultrahigh vacuum. The SEMPA system uses a compact Mott electron spin polarimeter with a Th foil (operating at 25 keV) that has been attached to the back of a hemispherical energy analyzer. Two orthogonal in-plane components of the electron spin polarization were measured to obtain magnetic domain images with excellent contrast. 350 Å Ni83Fe17 films, deposited by Honeywell-Micro Switch using dc magnetron sputtering, were studied. The samples were demagnetized along the easy axis by an ac magnetic field with decreasing amplitude. Using SEMPA, zigzag domain walls separating two large approximately head-on domains were observed. Cross-tie walls were observed with a periodic vortex structure along the straight edges of the zigzag domain walls. The cross-tie walls occur at the points where the magnetization is reversed by 180° across the straight edges of the wall. At high magnification, the elliptical and hyperbolic singularities at the cross-tie walls were clearly observed. In addition, the Néel part and the Bloch part of the cross-tie were distinguished This is a detailed study of cross-tie walls on sputter deposited thin permalloy films using SEMPA and our results are in good agreement with theoretical calculations.

  2. Non-Singular Dislocation Elastic Fields and Linear Elastic Fracture Mechanics

    NASA Astrophysics Data System (ADS)

    Korsunsky, Alexander M.

    2010-03-01

    One of the hallmarks of the traditional linear elastic fracture mechanics (LEFM) is the presence of an (integrable) inverse square root singularity of strains and stresses in the vicinity of the crack tip. It is the presence of this singularity that necessitates the introduction of the concepts of stress intensity factor (and its critical value, the fracture toughness) and the energy release rate (and material toughness). This gives rise to the Griffith theory of strength that includes, apart from applied stresses, the considerations of defect size and geometry. A highly successful framework for the solution of crack problems, particularly in the two-dimensional case, due to Muskhelishvili (1953), Bilby and Eshelby (1968) and others, relies on the mathematical concept of dislocation. Special analytical and numerical methods of dealing with the characteristic 1/r (Cauchy) singularity occupy a prominent place within this theory. Recently, in a different context of dislocation dynamics simulations, Cai et al. (2006) proposed a novel means of removing the singularity associated with the dislocation core, by introducing a blunting radius parameter a into the expressions for elastic fields. Here, using the example of two-dimensional elasticity, we demonstrate how the adoption of the similar mathematically expedient tool leads naturally to a non-singular formulation of fracture mechanics problems. This opens an efficient means of treating a variety of crack problems.

  3. Conformally-flat, non-singular static metric in infinite derivative gravity

    NASA Astrophysics Data System (ADS)

    Buoninfante, Luca; Koshelev, Alexey S.; Lambiase, Gaetano; Marto, João; Mazumdar, Anupam

    2018-06-01

    In Einstein's theory of general relativity the vacuum solution yields a blackhole with a curvature singularity, where there exists a point-like source with a Dirac delta distribution which is introduced as a boundary condition in the static case. It has been known for a while that ghost-free infinite derivative theory of gravity can ameliorate such a singularity at least at the level of linear perturbation around the Minkowski background. In this paper, we will show that the Schwarzschild metric does not satisfy the boundary condition at the origin within infinite derivative theory of gravity, since a Dirac delta source is smeared out by non-local gravitational interaction. We will also show that the spacetime metric becomes conformally-flat and singularity-free within the non-local region, which can be also made devoid of an event horizon. Furthermore, the scale of non-locality ought to be as large as that of the Schwarzschild radius, in such a way that the gravitational potential in any metric has to be always bounded by one, implying that gravity remains weak from the infrared all the way up to the ultraviolet regime, in concurrence with the results obtained in [arXiv:1707.00273]. The singular Schwarzschild blackhole can now be potentially replaced by a non-singular compact object, whose core is governed by the mass and the effective scale of non-locality.

  4. Non-negative infrared patch-image model: Robust target-background separation via partial sum minimization of singular values

    NASA Astrophysics Data System (ADS)

    Dai, Yimian; Wu, Yiquan; Song, Yu; Guo, Jun

    2017-03-01

    To further enhance the small targets and suppress the heavy clutters simultaneously, a robust non-negative infrared patch-image model via partial sum minimization of singular values is proposed. First, the intrinsic reason behind the undesirable performance of the state-of-the-art infrared patch-image (IPI) model when facing extremely complex backgrounds is analyzed. We point out that it lies in the mismatching of IPI model's implicit assumption of a large number of observations with the reality of deficient observations of strong edges. To fix this problem, instead of the nuclear norm, we adopt the partial sum of singular values to constrain the low-rank background patch-image, which could provide a more accurate background estimation and almost eliminate all the salient residuals in the decomposed target image. In addition, considering the fact that the infrared small target is always brighter than its adjacent background, we propose an additional non-negative constraint to the sparse target patch-image, which could not only wipe off more undesirable components ulteriorly but also accelerate the convergence rate. Finally, an algorithm based on inexact augmented Lagrange multiplier method is developed to solve the proposed model. A large number of experiments are conducted demonstrating that the proposed model has a significant improvement over the other nine competitive methods in terms of both clutter suppressing performance and convergence rate.

  5. Quantum Yang-Mills Dark Energy

    NASA Astrophysics Data System (ADS)

    Pasechnik, Roman

    2016-02-01

    In this short review, I discuss basic qualitative characteristics of quantum non-Abelian gauge dynamics in the non-stationary background of the expanding Universe in the framework of the standard Einstein--Yang--Mills formulation. A brief outlook of existing studies of cosmological Yang--Mills fields and their properties will be given. Quantum effects have a profound impact on the gauge field-driven cosmological evolution. In particular, a dynamical formation of the spatially-homogeneous and isotropic gauge field condensate may be responsible for both early and late-time acceleration, as well as for dynamical compensation of non-perturbative quantum vacua contributions to the ground state of the Universe. The main properties of such a condensate in the effective QCD theory at the flat Friedmann--Lema\\'itre--Robertson--Walker (FLRW) background will be discussed within and beyond perturbation theory. Finally, a phenomenologically consistent dark energy can be induced dynamically as a remnant of the QCD vacua compensation arising from leading-order graviton-mediated corrections to the QCD ground state.

  6. Surface singularities in Eddington-inspired Born-Infeld gravity.

    PubMed

    Pani, Paolo; Sotiriou, Thomas P

    2012-12-21

    Eddington-inspired Born-Infeld gravity was recently proposed as an alternative to general relativity that offers a resolution of spacetime singularities. The theory differs from Einstein's gravity only inside matter due to nondynamical degrees of freedom, and it is compatible with all current observations. We show that the theory is reminiscent of Palatini f(R) gravity and that it shares the same pathologies, such as curvature singularities at the surface of polytropic stars and unacceptable Newtonian limit. This casts serious doubt on its viability.

  7. Burton-Miller-type singular boundary method for acoustic radiation and scattering

    NASA Astrophysics Data System (ADS)

    Fu, Zhuo-Jia; Chen, Wen; Gu, Yan

    2014-08-01

    This paper proposes the singular boundary method (SBM) in conjunction with Burton and Miller's formulation for acoustic radiation and scattering. The SBM is a strong-form collocation boundary discretization technique using the singular fundamental solutions, which is mathematically simple, easy-to-program, meshless and introduces the concept of source intensity factors (SIFs) to eliminate the singularities of the fundamental solutions. Therefore, it avoids singular numerical integrals in the boundary element method (BEM) and circumvents the troublesome placement of the fictitious boundary in the method of fundamental solutions (MFS). In the present method, we derive the SIFs of exterior Helmholtz equation by means of the SIFs of exterior Laplace equation owing to the same order of singularities between the Laplace and Helmholtz fundamental solutions. In conjunction with the Burton-Miller formulation, the SBM enhances the quality of the solution, particularly in the vicinity of the corresponding interior eigenfrequencies. Numerical illustrations demonstrate efficiency and accuracy of the present scheme on some benchmark examples under 2D and 3D unbounded domains in comparison with the analytical solutions, the boundary element solutions and Dirichlet-to-Neumann finite element solutions.

  8. Yang Monopoles and Emergent Three-Dimensional Topological Defects in Interacting Bosons

    NASA Astrophysics Data System (ADS)

    Yan, Yangqian; Zhou, Qi

    2018-06-01

    The Yang monopole as a zero-dimensional topological defect has been well established in multiple fields in physics. However, it remains an intriguing question to understand the interaction effects on Yang monopoles. Here, we show that the collective motion of many interacting bosons gives rise to exotic topological defects that are distinct from Yang monopoles seen by a single particle. Whereas interactions may distribute Yang monopoles in the parameter space or glue them to a single giant one of multiple charges, three-dimensional topological defects also arise from continuous manifolds of degenerate many-body eigenstates. Their projections in lower dimensions lead to knotted nodal lines and nodal rings. Our results suggest that ultracold bosonic atoms can be used to create emergent topological defects and directly measure topological invariants that are not easy to access in solids.

  9. New contributions to physics by Prof. C. N. Yang: 2009-2011

    NASA Astrophysics Data System (ADS)

    Ma, Zhong-Qi

    2016-01-01

    In a seminal paper of 1967, Professor Chen Ning Yang found the full solution of the one-dimensional Fermi gas with a repulsive delta function interaction by using the Bethe ansatz and group theory. This work with a brilliant discovery of the Yang-Baxter equation has been inspiring new developments in mathematical physics, statistical physics, and many-body physics. Based on experimental developments in simulating many-body physics of one-dimensional systems of ultracold atoms, during a period from 2009 to 2011, Prof. Yang published seven papers on the exact properties of the ground state of bosonic and fermionic atoms with the repulsive delta function interaction and a confined potential to one dimension. Here I would like to share my experience in doing research work fortunately under the direct supervision of Prof. Yang in that period.

  10. New Contributions to Physics by Prof. C. N. Yang: 2009-2011

    NASA Astrophysics Data System (ADS)

    Ma, Zhong-Qi

    In a seminal paper of 1967, Professor Chen Ning Yang found the full solution of the one-dimensional Fermi gas with a repulsive delta function interaction by using the Bethe ansatz and group theory. This work with a brilliant discovery of the Yang-Baxter equation has been inspiring new developments in mathematical physics, statistical physics, and many-body physics. Based on experimental developments in simulating many-body physics of one-dimensional systems of ultracold atoms, during a period from 2009 to 2011, Prof. Yang published seven papers on the exact properties of the ground state of bosonic and fermionic atoms with the repulsive delta function interaction and a confined potential to one dimension. Here I would like to share my experience in doing research work fortunately under the direct supervision of Prof. Yang in that period.

  11. Short time propagation of a singular wave function: Some surprising results

    NASA Astrophysics Data System (ADS)

    Marchewka, A.; Granot, E.; Schuss, Z.

    2007-08-01

    The Schrödinger evolution of an initially singular wave function was investigated. First it was shown that a wide range of physical problems can be described by initially singular wave function. Then it was demonstrated that outside the support of the initial wave function the time evolution is governed to leading order by the values of the wave function and its derivatives at the singular points. Short-time universality appears where it depends only on a single parameter—the value at the singular point (not even on its derivatives). It was also demonstrated that the short-time evolution in the presence of an absorptive potential is different than in the presence of a nonabsorptive one. Therefore, this dynamics can be harnessed to the determination whether a potential is absorptive or not simply by measuring only the transmitted particles density.

  12. A robust watermarking scheme using lifting wavelet transform and singular value decomposition

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anuj; Verma, Deval; Verma, Vivek Singh

    2017-01-01

    The present paper proposes a robust image watermarking scheme using lifting wavelet transform (LWT) and singular value decomposition (SVD). Second level LWT is applied on host/cover image to decompose into different subbands. SVD is used to obtain singular values of watermark image and then these singular values are updated with the singular values of LH2 subband. The algorithm is tested on a number of benchmark images and it is found that the present algorithm is robust against different geometric and image processing operations. A comparison of the proposed scheme is performed with other existing schemes and observed that the present scheme is better not only in terms of robustness but also in terms of imperceptibility.

  13. Hilbert's Hotel in polarization singularities.

    PubMed

    Wang, Yangyundou; Gbur, Greg

    2017-12-15

    We demonstrate theoretically how the creation of polarization singularities by the evolution of a fractional nonuniform polarization optical element involves the peculiar mathematics of countably infinite sets in the form of "Hilbert's Hotel." Two distinct topological processes can be observed, depending on the structure of the fractional optical element.

  14. A Generalized Method of Image Analysis from an Intercorrelation Matrix which May Be Singular.

    ERIC Educational Resources Information Center

    Yanai, Haruo; Mukherjee, Bishwa Nath

    1987-01-01

    This generalized image analysis method is applicable to singular and non-singular correlation matrices (CMs). Using the orthogonal projector and a weaker generalized inverse matrix, image and anti-image covariance matrices can be derived from a singular CM. (SLD)

  15. On the splash and splat singularities for the one-phase inhomogeneous Muskat Problem

    NASA Astrophysics Data System (ADS)

    Córdoba, Diego; Pernas-Castaño, Tania

    2017-10-01

    In this paper, we study finite time splash and splat singularities formation for the interface of one fluid in a porous media with two different permeabilities. We prove that the smoothness of the interface breaks down in finite time into a splash singularity but this is not going to happen into a splat singularity.

  16. Becoming an International Scientist in South Korea: Ho Wang Lee's Research Activity about Epidemic Hemorrhagic Fever.

    PubMed

    Shin, Miyoung

    2017-04-01

    In the 1960-70s, South Korea was still in the position of a science latecomer. Although the scientific research environment in South Korea at that time was insufficient, there was a scientist who achieved outcomes that could be recognized internationally while acting in South Korea. He was Ho Wang Lee(1928~ ) who found Hantann Virus that causes epidemic hemorrhagic fever for the first time in the world. It became a clue to identify causative viruses of hemorrhagic diseases that were scattered here and there throughout the world. In addition, these outcomes put Ho Wang Lee on the global center of research into epidemic hemorrhagic fever. This paper examines how a Korean scientist who was in the periphery of virology could go into the central area of virology. Also this article shows the process through which the virus found by Ho Wang Lee was registered with the international academia and he proceeded with follow-up research based on this progress to reach the level at which he generalized epidemic hemorrhagic fever related studies throughout the world. While he was conducting the studies, experimental methods that he had never experienced encountered him as new difficulties. He tried to solve the new difficulties faced in his changed status through devices of cooperation and connection. Ho Wang Lee's growth as a researcher can be seen as well as a view of a researcher that grew from a regional level to an international level and could advance from the area of non-mainstream into the mainstream. This analytic tool is meaningful in that it can be another method of examining the growth process of scientists in South Korea or developing countries.

  17. Generalized Ultrametric Semilattices of Linear Signals

    DTIC Science & Technology

    2014-01-23

    53–73, 1998. [8] John C. Eidson , Edward A. Lee, Slobodan Matic, Sanjit A. Seshia, and Jia Zou. Distributed real- time software for cyber-physical...Theoretical Computer Science, 16(1):5–24, 1981. 41 [37] Yang Zhao, Jie Liu, and Edward A. Lee. A programming model for time - synchronized distributed real...response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and

  18. Statistical Analysis of the Ionosphere based on Singular Value Decomposition

    NASA Astrophysics Data System (ADS)

    Demir, Uygar; Arikan, Feza; Necat Deviren, M.; Toker, Cenk

    2016-07-01

    Ionosphere is made up of a spatio-temporally varying trend structure and secondary variations due to solar, geomagnetic, gravitational and seismic activities. Hence, it is important to monitor the ionosphere and acquire up-to-date information about its state in order both to better understand the physical phenomena that cause the variability and also to predict the effect of the ionosphere on HF and satellite communications, and satellite-based positioning systems. To charaterise the behaviour of the ionosphere, we propose to apply Singular Value Decomposition (SVD) to Total Electron Content (TEC) maps obtained from the TNPGN-Active (Turkish National Permanent GPS Network) CORS network. TNPGN-Active network consists of 146 GNSS receivers spread over Turkey. IONOLAB-TEC values estimated from each station are spatio-temporally interpolated using a Universal Kriging based algorithm with linear trend, namely IONOLAB-MAP, with very high spatial resolution. It is observed that the dominant singular value of TEC maps is an indicator of the trend structure of the ionosphere. The diurnal, seasonal and annual variability of the most dominant value is the representation of solar effect on ionosphere in midlatitude range. Secondary and smaller singular values are indicators of secondary variation which can have significance especially during geomagnetic storms or seismic disturbances. The dominant singular values are related to the physical basis vectors where ionosphere can be fully reconstructed using these vectors. Therefore, the proposed method can be used both for the monitoring of the current state of a region and also for the prediction and tracking of future states of ionosphere using singular values and singular basis vectors. This study is supported by by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.

  19. The Brain Dead Patient Is Still Sentient: A Further Reply to Patrick Lee and Germain Grisez

    PubMed Central

    Austriaco, Nicanor Pier Giorgio

    2016-01-01

    Patrick Lee and Germain Grisez have argued that the total brain dead patient is still dead because the integrated entity that remains is not even an animal, not only because he is not sentient but also, and more importantly, because he has lost the radical capacity for sentience. In this essay, written from within and as a contribution to the Catholic philosophical tradition, I respond to Lee and Grisez’s argument by proposing that the brain dead patient is still sentient because an animal with an intact but severed spinal cord can still perceive and respond to external stimuli. The brain dead patient is an unconscious sentient organism. PMID:27089894

  20. Singular eigenstates in the even(odd) length Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Ranjan Giri, Pulak; Deguchi, Tetsuo

    2015-05-01

    We study the implications of the regularization for the singular solutions on the even(odd) length spin-1/2 XXX chains in some specific down-spin sectors. In particular, the analytic expressions of the Bethe eigenstates for three down-spin sector have been obtained along with their numerical forms in some fixed length chains. For an even-length chain if the singular solutions \\{{{λ }α }\\} are invariant under the sign changes of their rapidities \\{{{λ }α }\\}=\\{-{{λ }α }\\}, then the Bethe ansatz equations are reduced to a system of (M-2)/2((M-3)/2) equations in an even (odd) down-spin sector. For an odd N length chain in the three down-spin sector, it has been analytically shown that there exist singular solutions in any finite length of the spin chain of the form N=3(2k+1) with k=1,2,3,\\cdots . It is also shown that there exist no singular solutions in the four down-spin sector for some odd-length spin-1/2 XXX chains.