Sample records for yangtze river plain

  1. [Nutrients Input Characteristics of the Yangtze River and Wangyu River During the "Water Transfers on Lake Taihu from the Yangtze River"].

    PubMed

    Pan, Xiao-xue; Ma, Ying-qun; Qin, Yan-wen; Zou, Hua

    2015-08-01

    Overall 20 surface water samples were collected from the Yangtze River, the Wangyu River and the Gonghu Bay (Lake Taihu) to clarify the pollution characteristics of nitrogen and phosphorus during 2 sample stages of "Water Transfers on Lake Taihu from the Yangtze River" in August and December of 2013 respectively. The results showed that the mass concentrations of NO2- -N, NO3- -N, NH4+ -N and TN in the Gonghu Bay were lower than those of the Yangtze River and Wangyu River during the 2 water transfer processes. However, there was higher level of DON content in the Gonghu Bay than that of the Yangtze River and Wangyu River. The percentages of various N species showed that NO3- -N was the major N species in the Yangtze River and Wangyu River during the 2 water transfer processes. TP contents in samples collected from the Yangtze River displayed a constant trend compared with the Wangyu River. However, the percentages of various P species were different with each other during the 2 water transfer processes. Mass concentrations of DON and TP in surface water in August were higher than those in December and the contents of NO3- -N and TDP were lower in August than those in December. In general, NO3- -N and TPP were the main N and P species in Wangyu River from the Yangtze River. NO3- -N, PO4(3-) -P and TPP were the main N and P species in Gonghu Bay from Wangyu River during the 2 water transfer processes.

  2. Mid-Holocene hydrology change in the south Taihu area of the Yangtze delta plain, China, and its relationship to the development of Neolithic cultures

    NASA Astrophysics Data System (ADS)

    Chen, T.; Ryves, D.; Wang, Z.; Lewis, J.

    2017-12-01

    During the middle Holocene, the hydrological environments in the Taihu Plain, Yangtze Delta, China, varied tremendously under the influence of sea-level and climate change. Simultaneously, several Neolithic cultures, such as, the Majiabang, Songze, and Liangzhu culture, developed in this region. Basing on AMS14C dating, diatom identification, measurements of C-N elements and their stable isotopes of sediments from core DTX4 and DTX10, obtained in the East Tiaoxi Plain, south Taihu plain, we discussed the influence of hydrology changes on the development of Neolithic cultures. The results revealed that the East Tiaoxi River plain was in an estuary (the Palaeo-Taihu Estuary) condition at 7500 cal. yr BP, undergoing elevated in-fill in response to rapid sea-level rise. After 7500 cal. yr BP, low salinity conditions occurred, likely influenced by the Yangtze freshwater evidenced by constant occurrence of Aulacoseira granulata, which implied Yangtze runoff discharged along the channel of Palaeo-incised Taihu valley into the Hangzhou Bay during the middle Holocene. Sea-water penetration interrupted after 7000 cal. yr BP caused by an abrupt sea-level rise. During 6500-5600 cal. yr BP, sea-water retreated gradually, corresponding to the infilling of Palaeo-Taihu Estuary. Combing records from previously studied cores in the Taihu plain, stable freshwater condition (or dry land) established in most area of the Taihu plain after 5600 cal. yr BP due to the closure of the Palaeo-Taihu Estuary. We speculate that the low-salinity marsh started at about 7500-7000 cal. yr BP probably attracted the early Majiabang people to live around the Palaeo-Taihu Estuary. The sea water penetration between 7000-6500 cal. yr BP matches the left of the late Majiabang and the early-middle Songze people lived in the east of the Palaeo-Taihu Estuary, to the north and east of the Taihu Plain. The context of stable freshwater condition (or dry land) in the East Tiaoxi River plain promoted the

  3. Mid-Holocene palaeoflood events recorded at the Zhongqiao Neolithic cultural site in the Jianghan Plain, middle Yangtze River Valley, China

    NASA Astrophysics Data System (ADS)

    Wu, Li; Zhu, Cheng; Ma, Chunmei; Li, Feng; Meng, Huaping; Liu, Hui; Li, Linying; Wang, Xiaocui; Sun, Wei; Song, Yougui

    2017-10-01

    Palaeo-hydrological and archaeological investigations were carried out in the Jianghan Plain in the middle reaches of the Yangtze River. Based on a comparative analysis of modern flood sediments and multidisciplinary approaches such as AMS14C and archaeological dating, zircon micromorphology, grain size, magnetic susceptibility, and geochemistry, we identified palaeoflood sediments preserved at the Zhongqiao archaeological site. The results indicate that three palaeoflood events (i.e. 4800-4597, 4479-4367, and 4168-3850 cal. yr BP) occurred at the Zhongqiao Site. Comparisons of palaeoflood deposit layers at a number of Neolithic cultural sites show that two extraordinary palaeoflood events occurred in the Jianghan Plain during approximately 4900-4600 cal. yr BP (i.e.mid-late Qujialing cultural period) and 4100-3800 cal. yr BP (i.e. from late Shijiahe cultural period to the Xia Dynasty). Further analysis of the environmental context suggests that these flooding events might have been connected with great climate variability during approximately 5000-4500 cal. yr BP and at ca. 4000 cal. yr BP. These two palaeoflood events were closely related to the expansion of the Jianghan lakes driven by the climatic change, which in turn influenced the rise and fall of the Neolithic cultures in the middle reaches of the Yangtze River. Other evidence also suggests that the intensified discrepancy between social development and environmental change processes (especially the hydrological process) during the late Shijiahe cultural period might be the key factor causing the collapse of the Shijiahe Culture. The extraordinary floods related to the climatic anomaly at ca. 4000 cal. yr BP and political conflicts from internal or other cultural areas all accelerated the collapse of the Shijiahe Culture.

  4. Flux and fate of Yangtze River sediment delivered to the East China Sea

    NASA Astrophysics Data System (ADS)

    Liu, J. P.; Xu, K. H.; Li, A. C.; Milliman, J. D.; Velozzi, D. M.; Xiao, S. B.; Yang, Z. S.

    2007-03-01

    Numerous cores and dating show the Yangtze River has accumulated about 1.16 × 10 12 t sediment in its delta plain and proximal subaqueous delta during Holocene. High-resolution seismic profiling and coring in the southern East China Sea during 2003 and 2004 cruises has revealed an elongated (˜ 800 km) distal subaqueous mud wedge extending from the Yangtze River mouth southward off the Zhejiang and Fujian coasts into the Taiwan Strait. Overlying what appears to be a transgressive sand layer, this distal clinoform thins offshore, from ˜ 40 m thickness between the 20 and 30 m water depth to < 1-2 m between 60 and 90 m water depth, corresponding to an across shelf distance of less than 100 km. Total volume of this distal mud wedge is about 4.5 × 10 11 m 3, equivalent to ˜ 5.4 × 10 11 t of sediment. Most of the sediment in this mud wedge comes from the Yangtze River, with some input presumably coming from local smaller rivers. Thus, the total Yangtze-derived sediments accumulated in its deltaic system and East China Sea inner shelf have amounted to about 1.7 × 10 12 t. Preliminary analyses suggest this longshore and across-shelf transported clinoform mainly formed in the past 7000 yrs after postglacial sea level reached its mid-Holocene highstand, and after re-intensification of the Chinese longshore current system. Sedimentation accumulation apparently increased around 2000 yrs BP, reflecting the evolution of the Yangtze estuary and increased land erosion due to human activities, such as farming and deforestation. The southward-flowing China Coastal Current, the northward-flowing Taiwan Warm Current, and the Kuroshio Current appear to have played critical roles in transporting and trapping most of Yangtze-derived materials in the inner shelf, and hence preventing the sediment escape into the deep ocean.

  5. Adaptation of Arabidopsis thaliana to the Yangtze River basin.

    PubMed

    Zou, Yu-Pan; Hou, Xing-Hui; Wu, Qiong; Chen, Jia-Fu; Li, Zi-Wen; Han, Ting-Shen; Niu, Xiao-Min; Yang, Li; Xu, Yong-Chao; Zhang, Jie; Zhang, Fu-Min; Tan, Dunyan; Tian, Zhixi; Gu, Hongya; Guo, Ya-Long

    2017-12-28

    Organisms need to adapt to keep pace with a changing environment. Examining recent range expansion aids our understanding of how organisms evolve to overcome environmental constraints. However, how organisms adapt to climate changes is a crucial biological question that is still largely unanswered. The plant Arabidopsis thaliana is an excellent system to study this fundamental question. Its origin is in the Iberian Peninsula and North Africa, but it has spread to the Far East, including the most south-eastern edge of its native habitats, the Yangtze River basin, where the climate is very different. We sequenced 118 A. thaliana strains from the region surrounding the Yangtze River basin. We found that the Yangtze River basin population is a unique population and diverged about 61,409 years ago, with gene flows occurring at two different time points, followed by a population dispersion into the Yangtze River basin in the last few thousands of years. Positive selection analyses revealed that biological regulation processes, such as flowering time, immune and defense response processes could be correlated with the adaptation event. In particular, we found that the flowering time gene SVP has contributed to A. thaliana adaptation to the Yangtze River basin based on genetic mapping. A. thaliana adapted to the Yangtze River basin habitat by promoting the onset of flowering, a finding that sheds light on how a species can adapt to locales with very different climates.

  6. Evaluating health of paddy rice field ecosystem with remote sensing and GIS in Lower Yangtze River Plain, China

    NASA Astrophysics Data System (ADS)

    Li, Jingjing; Qin, Zhihao; Li, Wenjuan; Lin, Lu

    2008-10-01

    A paddy rice ecosystem is a farming system composed of paddy, animals, microbes and other environmental factors in specific time and space, with particular temporal and spatial dynamics. Since paddy rice is a main grain crop to feed above half of population in China, the performance of paddy rice ecosystem is highly concerned to yield level of paddy and food supply safety in China. Therefore, monitoring the performance of paddy rice ecosystem is very important to obtain the required information for evaluation of ecosystem health. In the study we intend to develop an approach to monitor the ecosystem performance spatially and dynamically in a regional scale using MODIS remote sensing data and GIS spatial mapping. On the basis of key factors governing the paddy rice ecosystem, we accordingly develop the following three indicators for the evaluation: Crop growing index (CGI), environmental Index (EI), and pests-diseases index (PDI). Then, we integrated the three indicators into a model with different weight coefficients to calculate Comprehensive ecosystem health index (CEHI) to evaluate the performance and functioning of paddy rice ecosystem in a regional scale. CGI indicates the health status of paddy rice calculated from the normalizing enhanced vegetation Index (EVI) retrieved from MODIS data. EI is estimated from temperature Index (TI) and precipitation Index (PI) indicating heat and water stress on the rice field. PDI reflects the damage brought by pests and diseases, which can be estimated using the information obtained from governmental websites. Applying the approach to Lower Yangtze River Plain, we monitor and evaluate the performance of paddy rice ecosystem in various stages of rice growing period in 2006. The results indicated that the performance of the ecosystem was generally very encouraging. During booting stage and heading and blooming stage, the health level was the highest in Anhui province, which is the main paddy rice producer in the region

  7. Pre-Miocene birth of the Yangtze River

    PubMed Central

    Zheng, Hongbo; Clift, Peter D.; Wang, Ping; Tada, Ryuji; Jia, Juntao; He, Mengying; Jourdan, Fred

    2013-01-01

    The development of fluvial systems in East Asia is closely linked to the evolving topography following India–Eurasia collision. Despite this, the age of the Yangtze River system has been strongly debated, with estimates ranging from 40 to 45 Ma, to a more recent initiation around 2 Ma. Here, we present 40Ar/39Ar ages from basalts interbedded with fluvial sediments from the lower reaches of the Yangtze together with detrital zircon U–Pb ages from sand grains within these sediments. We show that a river containing sediments indistinguishable from the modern river was established before ∼23 Ma. We argue that the connection through the Three Gorges must postdate 36.5 Ma because of evaporite and lacustrine sedimentation in the Jianghan Basin before that time. We propose that the present Yangtze River system formed in response to regional extension throughout eastern China, synchronous with the start of strike–slip tectonism and surface uplift in eastern Tibet and fed by strengthened rains caused by the newly intensified summer monsoon. PMID:23610418

  8. Diversity, abundance, and possible sources of fecal bacteria in the Yangtze River.

    PubMed

    Sun, Haohao; He, Xiwei; Ye, Lin; Zhang, Xu-Xiang; Wu, Bing; Ren, Hongqiang

    2017-03-01

    The fecal bacteria in natural waters may pose serious risks on human health. Although many source tracking methods have been developed and used to determine the possible sources of the fecal pollution, little is known about the overall diversity and abundance of fecal bacterial community in natural waters. In this study, a method based on fecal bacterial sequence library was introduced to evaluate the fecal bacterial profile in the Yangtze River (Nanjing section). Our results suggested that the Yangtze River water harbors diverse fecal bacteria. Fifty-eight fecal operational taxonomic units (97% identity level) were detected in the Yangtze River water samples and the relative abundance of fecal bacteria in these samples ranged from 0.1 to 8%. It was also found that the relative abundances of the fecal bacteria in locations near to the downstream of wastewater treatment plants were obviously higher than those in other locations. However, the high abundance of fecal bacteria could decrease to the normal level in 2~4 km in the river due to degradation or dilution, and the overall fecal bacteria level changed little when the Yangtze River flew through the Nanjing City. Moreover, the fecal bacteria in the Yangtze River water were found to be highly associated (Spearman rho = 0.804, P < 0.001) with the potential pathogenic bacteria. Collectively, the findings in this study reveal the diversity, abundance, and possible sources of fecal bacteria in the Yangtze River and advance our understandings of the fecal bacteria community in the natural waters.

  9. Trematode Aspidogastrea found in the freshwater mussels in the Yangtze River basin.

    PubMed

    Zhan, Xiaodong; Li, Chaopin; Wu, Hua

    2017-03-30

    To investigate the prevalence of trematode Aspidogastrea in the freshwater mussels in the Yangtze River basin within Anhui province, China. We initially harvested the freshwater mussels living in the Yangtze River running through Anhui area, and labeled them with corresponding number. Then the samples were dissected for isolating the flukes, which were identified by conventional staining. Infection rate of trematode Aspidogastrea in freshwater mussels in the Yangtze River basin within the territory of Anhui province was 30.38% (103/339) in general, and a total of 912 flukes of Aspidogastrea were detected in the 103 mussels, with average infection rate of 8.85 for each mussel. Trematode Aspidogastrea is prevalent in the freshwater bivalves living in the Yangtze River basin running through Anhui area, and the treamatode was identified as Aspidogaster sp. belong to Aspidogaste under Aspidogastridae of Aspidogastrea.

  10. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    PubMed

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  11. Wastewater discharge impact on drinking water sources along the Yangtze River (China).

    PubMed

    Wang, Zhuomin; Shao, Dongguo; Westerhoff, Paul

    2017-12-01

    Unplanned indirect (de facto) wastewater reuse occurs when wastewater is discharged into surface waters upstream of potable drinking water treatment plant intakes. This paper aims to predict percentages and trends of de facto reuse throughout the Yangtze River watershed in order to understand the relative contribution of wastewater discharges into the river and its tributaries towards averting water scarcity concerns. The Yangtze River is the third longest in the world and supports more than 1/15 of the world's population, yet the importance of wastewater on the river remains ill-defined. Municipal wastewater produced in the Yangtze River Basin increased by 41% between 1998 and 2014, from 2580m 3 /s to 3646m 3 /s. Under low flow conditions in the Yangtze River near Shanghai, treated wastewater contributions to river flows increased from 8% in 1998 to 14% in 2014. The highest levels of de facto reuse appeared along a major tributary (Han River) of the Yangtze River, where de facto reuse can exceed 20%. While this initial analysis of de facto reuse used water supply and wastewater data from 110 cities in the basin and 11 gauging stations with >50years of historic streamflow data, the outcome was limited by the lack of gauging stations at more locations (i.e., data had to be predicted using digital elevation mapping) and lack of precise geospatial location of drinking water intakes or wastewater discharges. This limited the predictive capability of the model relative to larger datasets available in other countries (e.g., USA). This assessment is the first analysis of de facto wastewater reuse in the Yangtze River Basin. It will help identify sections of the river at higher risk for wastewater-related pollutants due to presence of-and reliance on-wastewater discharge that could be the focus of field studies and model predictions of higher spatial and temporal resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. [Surveillance and forecast for schistosome infectivity of Yangtze River and Hanbeihe River during flooding in Hubei Province].

    PubMed

    Tu, Zu-Wu; Cai, Shun-Xiang; Huang, Xi-Bao; Su, Zheng-Ming; Gao, Hua; Chen, Yan-Yan; Cao, Mu-Min; Mao, Guan-Xiang; Xia, Ping-Feng

    2012-04-01

    To investigate the schistosome infectivity of the water body of the Yangtze River and Hanbeihe River during flooding in Hubei Province. The Oncomelania snail status was investigated in 17 sites of the Yangtze River and Hanbei River, and the infectivity of schistosome in sentinel mice was also determined. In the Yangtze River and Hanbei River, the average densities of living snails were 0.35 snails/0.1 m2 and 0.67 snails/0.1 m2 respectively, and the average infection rates of snails were 0.33% and 0.05%, respectively. The sentinel mouse surveillances were carried out twice in 10 sites of the Yangtze River. During the first surveillance the infection rate was 5.5% with 4 positive environment sites, and that was 5.5% with 7 positive environment sites in the second surveillance. The sentinel mouse surveillance was carried out once in 7 sites of the Hanbeihe River, and the infection rate was 11.9% with 4 positive environment sites. By monitoring schistosome infection of the water body, we can understand the threat of environment and provide warning information to prevent from the outbreak and spread of acute schistosomiasis. We can also indirectly get many messages about the quality of snail investigation and the effect of mollusciciding.

  13. [Oncomelania hupensis snail distribution in working areas of Yangtze River hydrologic agencies located in middle and lower reaches of Yangtze River in 2016].

    PubMed

    Min, Xu; Suo-Xin, Huang; Zheng-Yuan, Zhao; Ben-Jiao, Hu; Jun, Fu; Si-Min, Dai; Li-Hong, Wen

    2016-10-13

    To understand the Oncomelania hupensis snail distribution in the working areas of Yangtze River hydrologic agencies located in the middle and lower reaches of the Yangtze River in 2016, so as to provide the evidence for assessing the risk of schistosome infection of hydrological workers and establishing the control strategies. The suspicious environments with O. hupensis snails in the above working areas were selected as study areas, and the snail situation was surveyed by the system sampling method combined with the environmental sampling method. The survey data were collected and analyzed statistically. Totally 19 working areas from 17 hydrological agencies were selected as the investigation sites, among which, 10 working areas from 9 agencies were found with O. hupensis snail distribution. The constituent ratio of the areas with snails reached to 38.81% of the investigation areas, the occurrence rate of frames with snails was 3.08%, and the average density of living snails was 0.07 /0.1 m 2 . By comparison, the average density of living snails and occurrence rate of frames with snails in hydrological agencies under the jurisdiction of the Middle Reaches Administrative Bureau were the most serious among three administrative bureaus of the Yangtze River Water Resources Commission. There are various degrees of O. hupensis breeding in the working areas of hydrological agencies located in the middle and lower reaches of the Yangtze River, and the hydrological workers are facing with the risk of schistosome infection.

  14. Embryotoxicity and genotoxicity evaluation of sediments from Yangtze River estuary using zebrafish (Danio rerio) embryos.

    PubMed

    Li, Qian; Chen, Ling; Liu, Li; Wu, Lingling

    2016-03-01

    Sediments function both as a sink and a source of pollutants in aquatic ecosystems and may impose serious effects on benthic organisms and human health. As one of the largest estuaries in the world, the Yangtze River estuary suffers from abundant wastewater from the coastal cities. In this study, the zebrafish (Danio rerio) embryos were employed in the fish embryo test and a comet assay to evaluate the embryotoxicity and genotoxicity of the sediments from the Yangtze River estuary, respectively. Results showed that the sediments from the Yangtze River estuary significantly increased mortality, induced development abnormalities, and reduced hatching rate and heart rate of zebrafish embryos after 96 h of exposure. Significant genotoxicity was observed in the samples relative to the controls. Relatively low-level embryotoxicity and genotoxicity of sediments were found in the Yangtze River compared with other river systems. Toxic responses were also discussed in relation to the analyzed organic contaminants in sediments. More attention should be paid to non-priority pollutant monitoring in the Yangtze River estuary.

  15. Organic micropollutants in the Yangtze River: seasonal occurrence and annual loads.

    PubMed

    Qi, Weixiao; Müller, Beat; Pernet-Coudrier, Benoit; Singer, Heinz; Liu, Huijuan; Qu, Jiuhui; Berg, Michael

    2014-02-15

    Twenty percent of the water run-off from China's land surface drains into the Yangtze River and carries the sewage of approximately 400 million people out to sea. The lower stretch of the Yangtze therefore offers the opportunity to assess the pollutant discharge of a huge population. To establish a comprehensive assessment of micropollutants, river water samples were collected monthly from May 2009 to June 2010 along a cross-section at the lowermost hydrological station of the Yangtze River not influenced by the tide (Datong Station, Anhui province). Following a prescreening of 268 target compounds, we examined the occurrence, seasonal variation, and annual loads of 117 organic micropollutants, including 51 pesticides, 43 pharmaceuticals, 7 household and industrial chemicals, and 16 polycyclic aromatic hydrocarbons (PAHs). During the 14-month study, the maximum concentrations of particulate PAHs (1-5 μg/g), pesticides (11-284 ng/L), pharmaceuticals (5-224 ng/L), and household and industrial chemicals (4-430 ng/L) were generally lower than in other Chinese rivers due to the dilution caused of the Yangtze River's average water discharge of approximately 30,000 m(3)/s. The loads of most pesticides, anti-infectives, and PAHs were higher in the wet season compared to the dry season, which was attributed to the increased agricultural application of chemicals in the summer, an elevated water discharge through the sewer systems and wastewater treatment plants (WWTP) as a result of high hydraulic loads and the related lower treatment efficiency, and seasonally increased deposition from the atmosphere and runoff from the catchment. The estimated annual load of PAHs in the river accounted for some 4% of the total emission of PAHs in the whole Yangtze Basin. Furthermore, by using sucralose as a tracer for domestic wastewater, we estimate a daily disposal of approximately 47 million m(3) of sewage into the river, corresponding to 1.8% of its average hydraulic load. In summary

  16. Solution by dilution?--A review on the pollution status of the Yangtze River.

    PubMed

    Floehr, Tilman; Xiao, Hongxia; Scholz-Starke, Björn; Wu, Lingling; Hou, Junli; Yin, Daqiang; Zhang, Xiaowei; Ji, Rong; Yuan, Xingzhong; Ottermanns, Richard; Roß-Nickoll, Martina; Schäffer, Andreas; Hollert, Henner

    2013-10-01

    The Yangtze River has been a source of life and prosperity for the Chinese people for centuries and is a habitat for a remarkable variety of aquatic species. But the river suffers from huge amounts of urban sewage, agricultural effluents, and industrial wastewater as well as ship navigation wastes along its course. With respect to the vast amounts of water and sediments discharged by the Yangtze River, it is reasonable to ask whether the pollution problem may be solved by simple dilution. This article reviews the past two decades of published research on organic pollutants in the Yangtze River and several adjacent water bodies connected to the main stream, according to a holistic approach. Organic pollutant levels and potential effects of water and sediments on wildlife and humans, measured in vitro, in vivo, and in situ, were critically reviewed. The contamination with organic pollutants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans, polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs), and others, of water and sediment along the river was described. Especially Wuhan section and the Yangtze Estuary exhibited stronger pollution than other sections. Bioassays, displaying predominantly the endpoints mutagenicity and endocrine disruption, applied at sediments, drinking water, and surface water indicated a potential health risk in several areas. Aquatic organisms exhibited detectable concentrations of toxic compounds like PCBs, OCPs, PBDEs, and PFCs. Genotoxic effects could also be assessed in situ in fish. To summarize, it can be stated that dilution reduces the ecotoxicological risk in the Yangtze River, but does not eliminate it. Keeping in mind an approximately 14 times greater water discharge compared to the major European river Rhine, the absolute pollution mass transfer of the Yangtze River is of severe concern for

  17. Mapping Water Vulnerability of the Yangtze River Basin: 1994-2013.

    PubMed

    Sun, Fengyun; Kuang, Wenhui; Xiang, Weining; Che, Yue

    2016-11-01

    A holistic understanding of the magnitude and long-term trend of water vulnerability is essential for making management decisions in a given river basin. Existing procedures to assess the spatiotemporal dynamic of water vulnerability in complex mega-scale river basins are inadequate; a new method named ensemble hydrologic assessment was proposed in this study, which allows collection of data and knowledge about many aspects of water resources to be synthesized in a useful way for vulnerability assessment. The objective of this study is to illustrate the practical utility of such an integrated approach in examining water vulnerability in the Yangtze River Basin. Overall, the results demonstrated that the ensemble hydrologic assessment model could largely explain the spatiotemporal evolution of water vulnerability. This paper improves understanding of the status and trends of water resources in the Yangtze River Basin.

  18. [Terrain gradient effect of ecosystem service value in middle reach of Yangtze River, China].

    PubMed

    Yang, Suo Hua; Hu, Shou Geng; Qu, Shi Jin

    2018-03-01

    Using land use data in the year 1995, 2005 and 2014, this study estimated the ecosystem service value (ESV) in each county located in the middle reach of Yangtze River and analyzed its spatiotemporal variation features and terrain gradient effects based on "the equivalent value per unit area of ecosystem services in China". The results showed that ESV in the middle reach of Yangtze River was generally higher in mountainous area but lower in plain region, with an obvious terrain gradient effect. Specifically, the relationship of the relief degree of land surface (RDLS) and the ESV showed significant logarithm function at county scale with a high curve fitting degree of 0.53. The ESV increased from 400.35×10 4 yuan·km -2 to 554.57×10 4 yuan·km -2 with the increasing RDLS (grade 1-5) in 2014. During 1995-2004, the ecosystem service value variation changed from decreasing to stable with the increases of the RDLS. With a perspective of ecosystem service values, the value of food production and waste treatment service value decreased with the increase of the RDLS, while the others increased in general, such as the production of raw materials and gas regulation service value, because of the influences of dynamic land use structure in varied topography and distinct dominant ecosystem services from different land types.

  19. [Analysis of trend of Oncomelania snail status in Yangtze River valley of Anhui Province, 1998-2009].

    PubMed

    He, Jia-Chang; Wang, Jia-Sheng; Lu, Jin-You; Li, Ting-Ting; Gao, Feng-Hu; Zhou, Ping; Zhu, Chuan-Ming; He, Long-Zhu; Yu, Bei-Bei; Zhang, Shi-Qing

    2011-04-01

    To understand the trend of Oncomelania hupensis snail distribution in Yangtze River valley of Anhui Province so as to provide an evidence for making out schistosomiasis prevention and control strategies in the future. The snail data from 1998 to 2009 of the Yangtze River valley in Anhui Province were collected including the snail area, newly occurred and re-occurred snail areas, densities of snails and infected snails, etc., and the trend and influence factors were analyzed. With several fluctuations, the snail area showed a trend of declining in general after the devastating summer flooding in 1998. From 1998 to 2009, 3 peaks of newly occurred snail areas appeared in 1998, 2004 and 2006 and 2 peaks of reoccurred snail areas appeared in 1998 and 2004. The densities of living snails and infected snails were more severe in banks of the Yangtze River than in islets of the Yangtze River. During 12 years, 1 peak of living snail density appeared in 2003, and 3 peaks of infected snail density appeared in 1999, 2003-2004 and 2006 in the islets of the Yangtze River. The densities of living snails and infected snails in banks of the Yangtze both appeared 1 peak in 1998. The distribution of snails in the Yangtze River valley is related to nature, society and financial circumstances, and it is hard to completely perform the snail control in a short-term. Therefore, at the same time of strengthening snail control, we should also strengthen infectious source control.

  20. Modeling the impact of river discharge and wind on the hypoxia off Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Zheng, Jingjing; Gao, Shan; Liu, Guimei; Wang, Hui; Zhu, Xueming

    2016-12-01

    The phenomenon of low dissolved oxygen (known as hypoxia) in a coastal ocean system is closely related to a combination of anthropogenic and natural factors. Marine hypoxia occurs in the Yangtze Estuary, China, with high frequency and long persistence. It is related primarily to organic and nutrient enrichment influenced by river discharges and physical factors, such as water mixing. In this paper, a three-dimensional hydrodynamic model was coupled to a biological model to simulate and analyze the ecological system of the East China Sea. By comparing with the observation data, the model results can reasonably capture the physical and biochemical dynamics of the Yangtze Estuary. In addition, the sensitive experiments were also used to examine the role of physical forcing (river discharge, wind speed, wind direction) in controlling hypoxia in waters adjacent to the Yangtze Estuary. The results showed that the wind field and river discharge have significant impact on the hypoxia off the Yangtze Estuary. The seasonal cycle of hypoxia was relatively insensitive to synoptic variability in the river discharge, but integrated hypoxic areas were sensitive to the whole magnitude of river discharge. Increasing the river discharge was shown to increase hypoxic areas, while decreasing the river discharge tended to decrease hypoxic areas. The variations of wind speed and direction had a great impact on the integrated hypoxic areas.

  1. Genetic structure and diversity of Nodularia douglasiae (Bivalvia: Unionida) from the middle and lower Yangtze River drainage.

    PubMed

    Liu, Xiongjun; Cao, Yanling; Xue, Taotao; Wu, Ruiwen; Zhou, Yu; Zhou, Chunhua; Zanatta, David T; Ouyang, Shan; Wu, Xiaoping

    2017-01-01

    The Yangtze River drainage in China is among the most species rich rivers for freshwater mussels (order Unionida) on Earth with at least 68 species known. The freshwater mussels of the Yangtze River face a variety of threats with indications that species are declining in abundance and area of occupancy. This study represents the first analyses of the genetic structure and diversity for the common and widespread freshwater mussel Nodularia douglasiae based on microsatellite DNA genotypes and mitochondrial DNA sequences. Phylogenetic analysis a fragment of the COI mitochondrial gene indicated that N. douglasiae collected from across the middle and lower Yangtze River drainage are monophyletic with N. douglasiae from Japan, Russia, and South Korea. The results of the analysis of both the mtDNA and microsatellite datasets indicated that the seven collection locations of N. douglasiae in the middle and lower Yangtze River drainage showed high genetic diversity, significant genetic differentiation and genetic structure, and stable population dynamics over time. Moreover, we found that the connections among tributaries rivers and lakes in the Yangtze River drainage were important in maintaining gene flow among locations that N. douglasiae inhabits. An understanding of the genetic structure and diversity of a widespread species like N. douglasiae could be used as a surrogate to better understand the populations of other freshwater mussel species that are more rare in the Yangtze River drainage. At the same time, these results could provide a basis for the protection of genetic diversity and management of unionid mussels diversity and other aquatic organisms in the system.

  2. Genetic structure and diversity of Nodularia douglasiae (Bivalvia: Unionida) from the middle and lower Yangtze River drainage

    PubMed Central

    Liu, Xiongjun; Cao, Yanling; Xue, Taotao; Wu, Ruiwen; Zhou, Yu; Zhou, Chunhua; Zanatta, David T.; Ouyang, Shan

    2017-01-01

    The Yangtze River drainage in China is among the most species rich rivers for freshwater mussels (order Unionida) on Earth with at least 68 species known. The freshwater mussels of the Yangtze River face a variety of threats with indications that species are declining in abundance and area of occupancy. This study represents the first analyses of the genetic structure and diversity for the common and widespread freshwater mussel Nodularia douglasiae based on microsatellite DNA genotypes and mitochondrial DNA sequences. Phylogenetic analysis a fragment of the COI mitochondrial gene indicated that N. douglasiae collected from across the middle and lower Yangtze River drainage are monophyletic with N. douglasiae from Japan, Russia, and South Korea. The results of the analysis of both the mtDNA and microsatellite datasets indicated that the seven collection locations of N. douglasiae in the middle and lower Yangtze River drainage showed high genetic diversity, significant genetic differentiation and genetic structure, and stable population dynamics over time. Moreover, we found that the connections among tributaries rivers and lakes in the Yangtze River drainage were important in maintaining gene flow among locations that N. douglasiae inhabits. An understanding of the genetic structure and diversity of a widespread species like N. douglasiae could be used as a surrogate to better understand the populations of other freshwater mussel species that are more rare in the Yangtze River drainage. At the same time, these results could provide a basis for the protection of genetic diversity and management of unionid mussels diversity and other aquatic organisms in the system. PMID:29261733

  3. Effects of fish community on occurrences of Yangtze finless porpoise in confluence of the Yangtze and Wanhe Rivers.

    PubMed

    Zhang, Xiaoke; Yu, Daoping; Wang, Huili; Wan, An; Chen, Minmin; Tao, Feng; Song, Zunrong

    2015-06-01

    The Yangtze finless porpoise is a subspecies of narrow-ridged finless porpoise endemic to the middle and lower reaches of the Yangtze River and the adjoining Poyang and Dongting Lakes. With the depletion of fish stocks in the Yangtze River in recent decades, food availability has become the most important factor affecting the survival of this subspecies. Despite this, the relationships between fish community and occurrences of porpoise are far from being fully understood. Therefore, during September 2013 to August 2014, the occurrences of porpoise were investigated in confluence of the Yangtze and Wanhe Rivers; fish community was also surveyed synchronously in confluence and two adjacent transects. The results showed that (1) the confluence had maximum fish species richness, and the main dominant species was upper fish, while the other two transects were mainly dominated by demersal fish. ANOVA analyses showed that individual number and yield of upper fish which can be eaten by porpoise (upper edible fish) in the confluence were significantly higher than other two transects. (2) Average group size of the porpoise was 3.7 ± 1.8 individuals. The occurrences of porpoise in different seasons had great differences, and the porpoise was more likely to be detected in autumn and winter. (3) Fish community had significant effects on occurrences of porpoise, and the main influencing factors were fish species richness, individual number, and yield of edible fish, especially the upper edible fish. The results of this study will have important implications for the conservation of porpoise.

  4. Early Development of Four Cyprinids Native to the Yangtze River, China

    USGS Publications Warehouse

    Chapman, Duane C.

    2006-01-01

    Chapter 1 -- Notes on the Translation and Use of "A Study of the Early Development of Grass Carp, Black Carp, Silver Carp, and Bighead Carp in the Yangtze River, China" By Duane C. Chapman and Ning Wang Chapter 2 -- A Study of the Early Development of Grass Carp, Black Carp, Silver Carp, and Bighead Carp in the Yangtze River, China By Bolu Yi, Zhishen Liang, Zhitang Yu, Randuan Lin, and Mingjue HeTranslated by Duane C. Chapman and Ning Wang The document A Study of the Early Development of Grass Carp, Black Carp, Silver Carp, and Bighead Carp in the Yangtze River, China (Chapter 2 of this volume) was translated from the Chinese with the approval and assistance of the living authors of that study. It contains the most detailed description available, and approximately 200 drawings, of the early development of the subject fishes. Chapter 1 provides important instructions on the use of the translation, including a description of the Chinese morphometric conventions, which differ from those used by North American scientists. Chapter 1 also provides the historical context in which Chapter 2 was developed, and information on how the larvae of the subject fishes, which have invaded the Mississippi River basin, may be distinguished from other fishes present in the basin.

  5. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China.

    PubMed

    Zhao, Yifei; Zou, Xinqing; Liu, Qing; Yao, Yulong; Li, Yali; Wu, Xiaowei; Wang, Chenglong; Yu, Wenwen; Wang, Teng

    2017-12-31

    The water discharge and sediment load of rivers are changing substantially under the impacts of climate change and human activities, becoming a hot issue in hydro-environmental research. In this study, the water discharge and sediment load in the mainstream and seven tributaries of the Yangtze River were investigated by using long-term hydro-meteorological data from 1953 to 2013. The non-parametric Mann-Kendall test and double mass curve (DMC) were used to detect trends and abrupt change-points in water discharge and sediment load and to quantify the effects of climate change and human activities on water discharge and sediment load. The results are as follows: (1) the water discharge showed a non-significant decreasing trend at most stations except Hukou station. Among these, water discharge at Dongting Lake and the Min River basin shows a significant decreasing trend with average rates of -13.93×10 8 m 3 /year and -1.8×10 8 m 3 /year (P<0.05), respectively. However, the sediment load exhibited a significant decreasing trend in all tributaries of the Yangtze River. (2) No significant abrupt change-points were detected in the time series of water discharge for all hydrological stations. In contrast, significant abrupt change-points were detected in sediment load, most of these changes appeared in the late 1980s. (3) The water discharge was mainly influenced by precipitation in the Yangtze River basin, whereas sediment load was mainly affected by climate change and human activities; the relative contribution ratios of human activities were above 70% for the Yangtze River. (4) The decrease of sediment load has directly impacted the lower Yangtze River and the delta region. These results will provide a reference for better resource management in the Yangtze River Basin. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effects of Yangtze River source water on genomic polymorphisms of male mice detected by RAPD.

    PubMed

    Zhang, Xiaolin; Zhang, Zongyao; Zhang, Xuxiang; Wu, Bing; Zhang, Yan; Yang, Liuyan; Cheng, Shupei

    2010-02-01

    In order to evaluate the environmental health risk of drinking water from Yangtze River source, randomly amplified polymorphic DNA (RAPD) markers were used to detect the effects of the source water on genomic polymorphisms of hepatic cell of male mice (Mus musculus, ICR). After the mice were fed with source water for 90 days, RAPD-polymerase chain reactions (PCRs) were performed on hepatic genomic DNA using 20 arbitrary primers. Totally, 189 loci were generated, including 151 polymorphic loci. On average, one PCR primer produced 5.3, 4.9 and 4.8 bands for each mouse in the control, the groups fed with source water and BaP solution, respectively. Compared with the control, feeding mice with Yangtze River source water caused 33 new loci to appear and 19 to disappear. Statistical analysis of RAPD printfingers revealed that Yangtze River source water exerted a significant influence on the hepatic genomic polymorphisms of male mice. This study suggests that RAPD is a reliable and sensitive method for the environmental health risk of Yangtze River source water.

  7. [Spatio-temporal variations of origin, distribution and diffusion of Oncomelania hupensis in Yangtze River Basin].

    PubMed

    Deng, Chen; Li-Yong, Wen

    2017-10-24

    As the only intermediate host of Schistosoma japonicum, Oncomelania hupensis in China is mainly distributed in the Yangtze River Basin. The origin of the O. hupensis and the spatio-temporal variations of its distribution and diffusion in the Yangtze River Basin and the influencing factors, as well as significances in schistosomiasis elimination in China are reviewed in this paper.

  8. An investigation of enhanced recessions in Poyang Lake: Comparison of Yangtze River and local catchment impacts

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Ye, Xu-chun; Werner, Adrian D.; Li, Yun-liang; Yao, Jing; Li, Xiang-hu; Xu, Chong-yu

    2014-09-01

    Changes in lake hydrological regimes and the associated impacts on water supplies and ecosystems are internationally recognized issues. During the past decade, the persistent dryness of Poyang Lake (the largest freshwater lake in China) has caused water supply and irrigation crises for the 12.4 million inhabitants of the region. There is conjecture as to whether this dryness is caused by climate variability and/or human activities. This study examines long-term datasets of catchment inflow and Lake outflow, and employs a physically-based hydrodynamic model to explore catchment and Yangtze River controls on the Lake's hydrology. Lake water levels fell to their lowest during 2001-2010 relative to previous decades. The average Lake size and volume reduced by 154 km2 and 11 × 108 m3 during the same period, compared to those for the preceding period (1970-2000). Model simulations demonstrated that the drainage effect of the Yangtze River was the primary causal factor. Modeling also revealed that, compared to climate variability impacts on the Lake catchment, modifications to Yangtze River flows from the Three Gorges Dam have had a much greater impact on the seasonal (September-October) dryness of the Lake. Yangtze River effects are attenuated in the Lake with distance from the River, but nonetheless propagate some 100 km to the Lake's upstream limit. Proposals to build additional dams in the upper Yangtze River and its tributaries are expected to impose significant challenges for the management of Poyang Lake. Hydraulic engineering to modify the flow regime between the Lake and the Yangtze River would somewhat resolve the seasonal dryness of the Lake, but will likely introduce other issues in terms of water quality and aquatic ecosystem health, requiring considerable further research.

  9. Estimation of nutrient discharge from the Yangtze River to the East China Sea and the identification of nutrient sources.

    PubMed

    Tong, Yindong; Bu, Xiaoge; Chen, Junyue; Zhou, Feng; Chen, Long; Liu, Maodian; Tan, Xin; Yu, Tao; Zhang, Wei; Mi, Zhaorong; Ma, Lekuan; Wang, Xuejun; Ni, Jing

    2017-01-05

    Based on a time-series dataset and the mass balance method, the contributions of various sources to the nutrient discharges from the Yangtze River to the East China Sea are identified. The results indicate that the nutrient concentrations vary considerably among different sections of the Yangtze River. Non-point sources are an important source of nutrients to the Yangtze River, contributing about 36% and 63% of the nitrogen and phosphorus discharged into the East China Sea, respectively. Nutrient inputs from non-point sources vary among the sections of the Yangtze River, and the contributions of non-point sources increase from upstream to downstream. Considering the rice growing patterns in the Yangtze River Basin, the synchrony of rice tillering and the wet seasons might be an important cause of the high nutrient discharge from the non-point sources. Based on our calculations, a reduction of 0.99Tg per year in total nitrogen discharges from the Yangtze River would be needed to limit the occurrences of harmful algal blooms in the East China Sea to 15 times per year. The extensive construction of sewage treatment plants in urban areas may have only a limited effect on reducing the occurrences of harmful algal blooms in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River

    NASA Astrophysics Data System (ADS)

    Wang, Yuankun; Rhoads, Bruce L.; Wang, Dong; Wu, Jichun; Zhang, Xiao

    2018-03-01

    The Yangtze River is one of the largest and most important rivers in the world. Over the past several decades, the natural sediment regime of the Yangtze River has been altered by the construction of dams. This paper uses multi-scale entropy analysis to ascertain the impacts of large dams on the complexity of high-frequency suspended sediment dynamics in the Yangtze River system, especially after impoundment of the Three Gorges Dam (TGD). In this study, the complexity of sediment dynamics is quantified by framing it within the context of entropy analysis of time series. Data on daily sediment loads for four stations located in the mainstem are analyzed for the past 60 years. The results indicate that dam construction has reduced the complexity of short-term (1-30 days) variation in sediment dynamics near the structures, but that complexity has actually increased farther downstream. This spatial pattern seems to reflect a filtering effect of the dams on the on the temporal pattern of sediment loads as well as decreased longitudinal connectivity of sediment transfer through the river system, resulting in downstream enhancement of the influence of local sediment inputs by tributaries on sediment dynamics. The TGD has had a substantial impact on the complexity of sediment series in the mainstem of the Yangtze River, especially after it became fully operational. This enhanced impact is attributed to the high trapping efficiency of this dam and its associated large reservoir. The sediment dynamics "signal" becomes more spatially variable after dam construction. This study demonstrates the spatial influence of dams on the high-frequency temporal complexity of sediment regimes and provides valuable information that can be used to guide environmental conservation of the Yangtze River.

  11. Genomic evidence for the population genetic differentiation of Misgurnus anguillicaudatus in the Yangtze River basin of China.

    PubMed

    Yi, Shaokui; Wang, Weimin; Zhou, Xiaoyun

    2018-02-21

    Misgurnus anguillicaudatus, an important aquatic species, is mainly distributed in the Yangtze River basin. To reveal the population genetic structure of M. anguillicaudatus distributed in the Yangtze River basin, genotyping by sequencing (GBS) technique was employed to detect the genome wide genetic variations of M. anguillicaudatus. A total of 30.03 Gb raw data were yielded from 70 samples collected from 15 geographic sites located in the Yangtze River basin. Subsequently, 2092 high quality SNPs were genotyped across these samples and used for a series of genetic analysis. The results of genetic analysis showed that high levels of genetic diversity were observed and the populations from upper reaches (UR) were significantly differentiated from the middle and lower reaches (MLR) of Yangtze River basin. Meanwhile, no significant isolation by distance was detected among the populations. Ecological factors (e.g. complicated topography and climatic environment) and anthropogenic factors (e.g. aquaculture and agriculture cultivation) might account for the genetic disconnectivity between UR and MLR populations. This study provided valuable genetic data for the future breeding program and also for the conversation and scientific utilization of those abundant genetic resources stored in the Yangtze River basin. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Middle Holocene marine flooding and human response in the south Yangtze coastal plain, East China

    NASA Astrophysics Data System (ADS)

    Wang, Zhanghua; Ryves, David B.; Lei, Shao; Nian, Xiaomei; Lv, Ye; Tang, Liang; Wang, Long; Wang, Jiehua; Chen, Jie

    2018-05-01

    Coastal flooding catastrophes have affected human societies on coastal plains around the world on several occasions in the past, and are threatening 21st century societies under global warming and sea-level rise. However, the role of coastal flooding in the interruption of the Neolithic Liangzhu culture in the lower Yangtze valley, East China coast has been long contested. In this study, we used a well-dated Neolithic site (the Yushan site) close to the present coastline to demonstrate a marine drowning event at the terminal stage of the Liangzhu culture and discuss its linkage to relative sea-level rise. We analysed sedimentology, chronology, organic elemental composition, diatoms and dinoflagellate cysts for several typical profiles at the Yushan site. The field and sedimentary data provided clear evidence of a palaeo-typhoon event that overwhelmed the Yushan site at ∼2560 BCE, which heralded a period of marine inundation and ecological deterioration at the site. We also infer an acceleration in sea-level rise at 2560-2440 BCE from the sedimentary records at Yushan, which explains the widespread signatures of coastal flooding across the south Yangtze coastal plain at that time. The timing of this mid-Holocene coastal flooding coincided with the sudden disappearance of the advanced and widespread Liangzhu culture along the lower Yangtze valley. We infer that extreme events and flooding accompanying accelerated sea-level rise were major causes of vulnerability for prehistoric coastal societies.

  13. Forecasting the Amount of Waste-Sewage Water Discharged into the Yangtze River Basin Based on the Optimal Fractional Order Grey Model.

    PubMed

    Li, Shuliang; Meng, Wei; Xie, Yufeng

    2017-12-23

    With the rapid development of the Yangtze River economic belt, the amount of waste-sewage water discharged into the Yangtze River basin increases sharply year by year, which has impeded the sustainable development of the Yangtze River basin. The water security along the Yangtze River basin is very important for China, It is something aboutwater security of roughly one-third of China's population and the sustainable development of the 19 provinces, municipalities and autonomous regions among the Yangtze River basin. Therefore, a scientific prediction of the amount of waste-sewage water discharged into Yangtze River basin has a positive significance on sustainable development of industry belt along with Yangtze River basin. This paper builds the fractional DWSGM(1,1)(DWSGM(1,1) model is short for Discharge amount of Waste Sewage Grey Model for one order equation and one variable) model based on the fractional accumulating generation operator and fractional reducing operator, and calculates the optimal order of "r" by using particle swarm optimization(PSO)algorithm for solving the minimum average relative simulation error. Meanwhile, the simulation performance of DWSGM(1,1)model with the optimal fractional order is tested by comparing the simulation results of grey prediction models with different orders. Finally, the optimal fractional order DWSGM(1,1)grey model is applied to predict the amount of waste-sewage water discharged into the Yangtze River basin, and corresponding countermeasures and suggestions are put forward through analyzing and comparing the prediction results. This paper has positive significance on enriching the fractional order modeling method of the grey system.

  14. Forecasting the Amount of Waste-Sewage Water Discharged into the Yangtze River Basin Based on the Optimal Fractional Order Grey Model

    PubMed Central

    Li, Shuliang; Meng, Wei; Xie, Yufeng

    2017-01-01

    With the rapid development of the Yangtze River economic belt, the amount of waste-sewage water discharged into the Yangtze River basin increases sharply year by year, which has impeded the sustainable development of the Yangtze River basin. The water security along the Yangtze River basin is very important for China, It is something about water security of roughly one-third of China’s population and the sustainable development of the 19 provinces, municipalities and autonomous regions among the Yangtze River basin. Therefore, a scientific prediction of the amount of waste-sewage water discharged into Yangtze River basin has a positive significance on sustainable development of industry belt along with Yangtze River basin. This paper builds the fractional DWSGM (1,1) (DWSGM (1,1) model is short for Discharge amount of Waste Sewage Grey Model for one order equation and one variable) model based on the fractional accumulating generation operator and fractional reducing operator, and calculates the optimal order of “r” by using particle swarm optimization (PSO) algorithm for solving the minimum average relative simulation error. Meanwhile, the simulation performance of DWSGM (1,1) model with the optimal fractional order is tested by comparing the simulation results of grey prediction models with different orders. Finally, the optimal fractional order DWSGM (1,1) grey model is applied to predict the amount of waste-sewage water discharged into the Yangtze River basin, and corresponding countermeasures and suggestions are put forward through analyzing and comparing the prediction results. This paper has positive significance on enriching the fractional order modeling method of the grey system. PMID:29295517

  15. Water mass interaction in the confluence zone of the Daning River and the Yangtze River--a driving force for algal growth in the Three Gorges Reservoir.

    PubMed

    Holbach, Andreas; Wang, Lijing; Chen, Hao; Hu, Wei; Schleicher, Nina; Zheng, Binghui; Norra, Stefan

    2013-10-01

    Increasing eutrophication and algal bloom events in the Yangtze River Three Gorges Reservoir, China, are widely discussed with regard to changed hydrodynamics and nutrient transport and distribution processes. Insights into water exchange and interaction processes between water masses related to large-scale water level fluctuations in the reservoir are crucial to understand water quality and eutrophication dynamics. Therefore, confluence zones of tributaries with the Yangtze River main stream are dedicated key interfaces. In this study, water quality data were recorded in situ and on-line in varying depths with the MINIBAT towed underwater multi-sensor system in the confluence zone of the Daning River and the Yangtze River close to Wushan City during 1 week in August 2011. Geostatistical evaluation of the water quality data was performed, and results were compared to phosphorus contents of selective water samples. The strongly rising water level throughout the measurement period caused Yangtze River water masses to flow upstream into the tributary and supply their higher nutrient and particulate loads into the tributary water body. Rapid algal growth and sedimentation occurred immediately when hydrodynamic conditions in the confluence zone became more serene again. Consequently, water from the Yangtze River main stream can play a key role in providing nutrients to the algal bloom stricken water bodies of its tributaries.

  16. Outbreaks of the Brown Planthopper Nilaparvata lugens (Stål) in the Yangtze River Delta: Immigration or Local Reproduction?

    PubMed Central

    Zhai, Bao-Ping; Lu, Ming-Hong; Liu, Wan-Cai; Zhu, Feng; Wu, Xiang-Wen; Chen, Gui-Hua; Zhang, Xiao-Xi

    2014-01-01

    An effective control strategy for migratory pests is difficult to implement because the cause of infestation (i.e., immigration or local reproduction) is often not established. In particular, the outbreak mechanisms of the brown planthopper, Nilaparvata lugens (Stål), an insect causing massive losses in rice fields in the Yangtze River Delta in China, are frequently unclear. Field surveys of N. lugens were performed in Jiangsu and Zhejiang Provinces in 2008 to 2010 and related historical data from 2003 onwards were collected and analyzed to clarify the cause of these infestations. Results showed that outbreaks of N. lugens in the Yangtze River Delta were mostly associated with an extremely high increase in population. Thus, reproduction rather than immigration from distant sources were the cause of the infestations. Although mass migration occurred late in the season (late August and early September), the source areas of N. lugens catches in the Yangtze River Delta were mainly located in nearby areas, including the Yangtze River Delta itself, Anhui and northern Jiangxi Provinces. These regions collectively form the lower-middle reaches of the Yangtze River, and the late migration can thus be considered as an internal bioflow within one population. PMID:24558459

  17. Outbreaks of the brown planthopper Nilaparvata lugens (Stål) in the Yangtze River Delta: immigration or local reproduction?

    PubMed

    Hu, Gao; Lu, Fang; Zhai, Bao-Ping; Lu, Ming-Hong; Liu, Wan-Cai; Zhu, Feng; Wu, Xiang-Wen; Chen, Gui-Hua; Zhang, Xiao-Xi

    2014-01-01

    An effective control strategy for migratory pests is difficult to implement because the cause of infestation (i.e., immigration or local reproduction) is often not established. In particular, the outbreak mechanisms of the brown planthopper, Nilaparvata lugens (Stål), an insect causing massive losses in rice fields in the Yangtze River Delta in China, are frequently unclear. Field surveys of N. lugens were performed in Jiangsu and Zhejiang Provinces in 2008 to 2010 and related historical data from 2003 onwards were collected and analyzed to clarify the cause of these infestations. Results showed that outbreaks of N. lugens in the Yangtze River Delta were mostly associated with an extremely high increase in population. Thus, reproduction rather than immigration from distant sources were the cause of the infestations. Although mass migration occurred late in the season (late August and early September), the source areas of N. lugens catches in the Yangtze River Delta were mainly located in nearby areas, including the Yangtze River Delta itself, Anhui and northern Jiangxi Provinces. These regions collectively form the lower-middle reaches of the Yangtze River, and the late migration can thus be considered as an internal bioflow within one population.

  18. [Shifting path of industrial pollution gravity centers and its driving mechanism in Pan-Yangtze River Delta].

    PubMed

    Zhao, Hai-Xia; Jiang, Xiao-Wei; Cui, Jian-Xin

    2014-11-01

    Shifting path of industrial pollution gravity centers is the response of environmental special formation during the industry transfer process, in order to prove the responding of industrial pollution gravity centers to industry transfer in economically developed areas, this paper calculates the gravity centers of industrial wastewater, gas and solid patterns and reveals the shifting path and its driving mechanism, using the data of industrial pollution in the Pan-Yangtze River Delta from 2000 to 2010. The results show that the gravity center of the industrial waste in Pan-Yangtze River Delta shifts for sure in the last 10 years, and gravity center of solid waste shifts the maximum distance within the three wastes, which was 180.18 km, and shifting distances for waste gas and waste water were 109.51 km and 85.92 km respectively. Moreover, the gravity center of the industrial waste in Pan-Yangtze River Delta shifts westwards, and gravity centers of waste water, gas and solid shift for 0.40 degrees, 0.17 degrees and 0.03 degrees respectively. The shifting of industrial pollution gravity centers is driven by many factors. The rapid development of the heavy industry in Anhui and Jiangxi provinces results in the westward shifting of the pollutions. The optimization and adjustment of industrial structures in Yangtze River Delta region benefit to alleviating industrial pollution, and high-polluting industries shifted to Anhui and Jiangxi provinces promotes pollution gravity center shifting to west. While the development of massive clean enterprise, strong environmental management efforts and better environmental monitoring system slow the shifting trend of industrial pollution to the east in Yangtze River Delta. The study of industrial pollution gravity shift and its driving mechanism provides a new angle of view to analyze the relationship between economic development and environmental pollution, and also provides academic basis for synthetical management and control of

  19. Variation in MERRA-2 aerosol optical depth over the Yangtze River Delta from 1980 to 2016

    NASA Astrophysics Data System (ADS)

    Sun, Enwei; Che, Huizheng; Xu, Xiaofeng; Wang, Zhenzhu; Lu, Chunsong; Gui, Ke; Zhao, Hujia; Zheng, Yu; Wang, Yaqiang; Wang, Hong; Sun, Tianze; Liang, Yuanxin; Li, Xiaopan; Sheng, Zhizhong; An, Linchang; Zhang, Xiaoye; Shi, Guangyu

    2018-05-01

    In this study, 765 instantaneous MERRA-2 (second Modern-Era Retrospective analysis for Research and Applications) aerosol optical depth (AOD) values at 550 nm were compared with those of a sky radiometer in Hefei (31.90° N, 117.17° E) for the different seasons from March 2007 to February 2010. The correlation coefficients (R) were 0.88, 0.83, 0.88, and 0.80 in spring, summer, autumn, and winter, respectively. The MERRA-2 AOD is also compared with MODIS Aqua AOD in the entire Yangtze River Delta, and good agreement has been obtained. The MERRA-2 AOD product was used to analyze the spatial distribution and temporal variation of the annual, seasonal and monthly means of the AOD over the Yangtze River Delta region from 1980 to 2016 (37 years). The mean values of the MERRA-2 AOD during the study period show that the AOD (between 0.45 and 0.55) in the northern area of the Yangtze River Delta was higher than that (between 0.30 and 0.45) of the southern area. The northwest part of the Yangtze River Delta had the highest mean AOD values (between 0.50 and 0.55). The AOD increased slowly in the 1980s and 1990s, followed by a rapid increase between 2001 and 2010. An AOD decrease can be seen from 2011 to 2016. The mean AOD in each month is discussed. High AOD was observed in March, April, and June, while low AOD could be seen in September, October, November, and December. Three different area types (large cities, medium-sized cities, and remote areas) had nearly the same annual AOD variation. Large cities had the highest AOD (about 0.48), while remote areas had the lowest (about 0.42). In summer, the AOD in remote areas was much lower than that in cities. The AOD variational trend over the Yangtze River Delta was studied during two periods. The increasing trend could be seen over the entire Yangtze River Delta in each month from 1980 to 2009. A decreasing trend was found all over the Yangtze River Delta in January, February, March, July, October, and November, whereas in

  20. Climate Drivers of Spatiotemporal Variability of Precipitation in the Source Region of Yangtze River

    NASA Astrophysics Data System (ADS)

    Du, Y.; Berndtsson, R.; An, D.; Yuan, F.

    2017-12-01

    Variability of precipitation regime has significant influence on the environment sustainability in the source region of Yangtze River, especially when the vegetation degradation and biodiversity reduction have already occurred. Understanding the linkage between variability of local precipitation and global teleconnection patterns is essential for water resources management. Based on physical reasoning, indices of the climate drivers can provide a practical way of predicting precipitation. Due to high seasonal variability of precipitation, climate drivers of the seasonal precipitation also varies. However, few reports have gone through the teleconnections between large scale patterns with seasonal precipitation in the source region of Yangtze River. The objectives of this study are therefore (1) assessment of temporal trend and spatial variability of precipitation in the source region of Yangtze River; (2) identification of climate indices with strong influence on seasonal precipitation anomalies; (3) prediction of seasonal precipitation based on revealed climate indices. Principal component analysis and Spearman rank correlation were used to detect significant relationships. A feed-forward artificial neural network(ANN) was developed to predict seasonal precipitation using significant correlated climate indices. Different influencing climate indices were revealed for precipitation in each season, with significant level and lag times. Significant influencing factors were selected to be the predictors for ANN model. With correlation coefficients between observed and simulated precipitation over 0.5, the results were eligible to predict the precipitation of spring, summer and winter using teleconnections, which can improve integrated water resources management in the source region of Yangtze River.

  1. Solanaceae plant malformation in Chongqing City, China, reveals a pollution threat to the Yangtze River.

    PubMed

    Zhang, Hongbo; Liu, Guanshan; Timko, Michael P; Li, Jiana; Wang, Wenjing; Ma, Haoran

    2014-10-21

    Water quality is under increasing threat from industrial and natural sources of pollutants. Here, we present our findings about a pollution incident involving the tap water of Chongqing City in China. In recent years, Solanaceae plants grown in greenhouses in this city have displayed symptoms of cupped, strappy leaves. These symptoms resembled those caused by chlorinated auxinic herbicides. We have determined that these symptoms were caused by the tap water used for irrigation. Using a bioactivity-guided fractionation method, we isolated a substance with corresponding auxinic activity from the tap water. The substance was named "solanicide" because of its strong bioactivity against Solanaceae plants. Further investigation revealed that the solanicide in the water system of Chongqing City is derived from the Jialing River, a major tributary of the Yangtze River. Therefore, it is also present in the Yangtze River downstream of Chongqing after the inflow of the Jialing River. Biological analyses indicated that solanicide is functionally similar to, but distinct from, other known chlorinated auxinic herbicides. Chemical assays further showed that solanicide structurally differs from those compounds. This study has highlighted a water pollution threat to the Yangtze River and its floodplain ecosystem.

  2. Scanning vertical distributions of typical aerosols along the Yangtze River using elastic lidar.

    PubMed

    Fan, Shidong; Liu, Cheng; Xie, Zhouqing; Dong, Yunsheng; Hu, Qihou; Fan, Guangqiang; Chen, Zhengyi; Zhang, Tianshu; Duan, Jingbo; Zhang, Pengfei; Liu, Jianguo

    2018-07-01

    In recent years, China has experienced heavy air pollution, especially haze caused by particulate matter (PM). The compositions, horizontal distributions, transport, and chemical formation mechanisms of PM and its precursors have been widely investigated in China based on near-ground measurements. However, the understanding of the distributions and physical and chemical processes of PM in the vertical direction remains limited. In this study, an elastic lidar was employed to investigate the vertical profiles of aerosols along the Yangtze River during the Yangtze River Campaign of winter 2015. Some typical aerosols were identified and some events were analyzed in three cases. Dust aerosols can be transported from the Gobi Desert to the Yangtze River basin across a long distance at both low and high altitudes in early December. The transport route was perpendicular to the ship track, suggesting that the dust aerosols may have affected a large area. Moreover, during transport, some dust was also affected by the areas below its transport route since some anthropogenic pollutants were mixed with the dust and changed some of its optical properties. Biomass-burning aerosols covering a distant range along the Yangtze River were identified. This result directly shows the impact areas of biomass-burning aerosols in some agricultural fields. Some directly emitted aerosol plumes were observed, and direct effects of such plumes were limited both temporally and spatially. In addition, an aerosol plume with very low linear depolarization ratios, probably formed through secondary processes, was also observed. These results can help us better understand aerosols in large spatial scales in China and can be useful to regional haze studies. Copyright © 2018. Published by Elsevier B.V.

  3. Bioanalytical and instrumental analysis of estrogenic activities in drinking water sources from Yangtze River Delta.

    PubMed

    Hu, Xinxin; Shi, Wei; Cao, Fu; Hu, Guanjiu; Hao, Yingqun; Wei, Si; Wang, Xinru; Yu, Hongxia

    2013-02-01

    The estrogenic activities of source water from Yangtze River, Huaihe River, Taihu Lake and groundwater in Yangtze River Delta in the dry and wet season were determined by use of reporter gene assays based on African green monkey kidney (CV-1) cell lines. Higher estrogenic activities were observed in the dry season, and the estrogenic potentials in water samples from Taihu Lake were greater than other river basins. None of the samples from groundwater showed estrogen receptor (ER) agonist activity. The 17β-Estradiol (E2) equivalents (EEQs) of water samples in the dry season ranged from 9.41×10(-1) to 1.20×10(1) ng E2 L(-1). In the wet season, EEQs of all the water samples were below the detection limit as 9.00×10(-1) ng E2 L(-1) except for one sample from Huaihe River. The highest contribution of E2 was detected in Yangtze River as 99% of estrogenic activity. Nonylphenol (NP, 100% detection rate) and octylphenol (OP, 100% detection rate) might also be responsible for the estrogenic activities in water sources. Potential health risk induced by the estrogenic chemicals in source water may be posed to the residents through water drinking. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Spatio-temporal distribution and sources of Pb identified by stable isotopic ratios in sediments from the Yangtze River Estuary and adjacent areas.

    PubMed

    Chen, Bin; Liu, Jian; Hu, Limin; Liu, Ming; Wang, Liang; Zhang, Xilin; Fan, Dejiang

    2017-02-15

    To understand the spatio-temporal distribution and sources of Pb in the sediments of the Yangtze River Estuary and its adjacent areas, 25 surface sediments and 1 sediment core were collected from the study areas. The concentrations of Al and Pb of these sediments exhibit a decreasing trend from the nearshore towards the offshore, with higher concentrations in the coastal areas of the East China Sea (ECS) and southwest of Jeju Island. According to the stable isotopic ratios of Pb, in combination with the elemental ratios and clay mineral data, it is inferred that sedimentary Pb in the surface sediments of the coastal areas of the ECS may come primarily from the Yangtze River, while the Pb southwest of Jeju Island is probably derived from both the Yangtze and Yellow Rivers. The particulate Pb derived from the Yangtze River was possibly dispersed along two paths: the path southward along the coastline of the ECS and the path eastward associated with the Changjiang Diluted Water (CDW), which crosses the shelf of the ECS towards the area southeast of Jeju Island. Although the Yangtze River Basin witnessed rapid economic development during the period from the late 1970s to the middle 1990s, the influence of human activity on Pb concentration remained weak in the Yangtze River Estuary. Since the early 2000s, however, sedimentary Pb has been significantly increasing in the coastal mud areas of the ECS due to the increasing influence of human activity, such as the increase in atmospheric emission of anthropogenic Pb in China, construction of the Three Gorges Dam (TGD), and the construction of smaller dams in the upper reaches of the Yangtze River. Coal combustion and the smelting of non-ferrous metals are possible anthropogenic sources for the sedimentary Pb in the Yangtze River Estuary. Copyright © 2016. Published by Elsevier B.V.

  5. Tidal impacts on the subtidal flow division at the main bifurcation in the Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Feng, Haochuan; Hoitink, A. J. F.; Zhu, Yuliang; Gong, Fei; Zheng, Jinhai

    2017-09-01

    Flow division at bifurcations in the Yangtze Estuary has received ample attention, since it may control the pathways of terrestrial sediments over downstream river branches including the 12.5 m Deepwater Navigation channel. While some efforts have been made to interpret flow division at the bifurcations of the Yangtze Estuary, little attention has been paid to the role of tides. Flow division at estuarine bifurcations is made complicated by tides that propagate from the outlet of the tidal channels into the delta. To quantify the tidal influence on the distribution of river discharge, and more generally, to understand the mechanisms governing the subtidal flow division at the tidally affected bifurcation in the Yangtze River Delta, a two-dimensional hydrodynamic model is employed. In this model, the landward boundary is chosen beyond the tidal limit, where the tidal motion has faded out entirely. The seaward boundary is chosen such that the river discharge does not influence the water level. Subtidal discharges are decomposed using the method of factor separation, to distinguish between the effects of tides, river discharge and river-tide interactions on the subtidal flow division. Results indicate that tides modify the river discharge distribution over distributary channels in the Yangtze River Delta, particularly in the dry season. A significant difference in the subtidal flow division during spring tide and neap tide shows that the tidally averaged flow division over the distributaries in the delta greatly depends on tidal amplitude. By varying the river discharge at the landward boundary and amplitudes and phases of the principal tidal constituents at the seaward boundary of the established model, the sensitivities of the subtidal flow division to the river discharge and tidal amplitude variation were investigated in detail. Generally, the tidal impacts on the subtidal flow division are around 12% to 22%, with river discharge varying from 30,000 m3s-1 to 20

  6. A comparative study of the flux and fate of the Mississippi and Yangtze river sediments

    NASA Astrophysics Data System (ADS)

    Xu, K.; Yang, S. L.

    2015-03-01

    Large rivers play a key role in delivering water and sediment into the global oceans. Large-river deltas and associated coastlines are important interfaces for material fluxes that have a global impact on marine processes. In this study, we compare water and sediment discharge from Mississippi and Yangtze rivers by assessing: (1) temporal variation under varying climatic and anthropogenic impacts, (2) delta response of the declining sediment discharge, and (3) deltaic lobe switching and Holocene sediment dispersal patterns on the adjacent continental shelves. Dam constructions have decreased both rivers' sediment discharge significantly, leading to shoreline retreat along the coast. The sediment dispersal of the river-dominated Mississippi Delta is localized but for the tide-dominated Yangtze Delta is more diffuse and influenced by longshore currents. Sediment declines and relative sea level rises have led to coastal erosion, endangering the coasts of both rivers.

  7. Exhumation Reconstruction of the Xiangcheng Area, SE Tibetan Plateau. Implication on the Evolution of the Yangtze River in the Cenozoic.

    NASA Astrophysics Data System (ADS)

    Gourbet, L.; Yang, R.; Fellin, M. G.; Gong, J.; Maden, C.

    2016-12-01

    Geodynamic processes associated with timing of river incision and river network reorganization on the Tibetan plateau margins remain controversial. In particular, hydrographic network modifications in SE Tibet have been interpreted as related with regional-scale uplift or fault motion. The paleocourse of the upper Yangtze river (Jinsha Sha) and the timing of the establishment of its modern course are highly debated, leading to conflicting models of the plateau evolution. For example, estimated ages for the formation of the Yangtze first bend (where the river shifts from flowing southward to northward) range from the Eocene to the Pliocene. River incision can be reconstructed using low-temperature thermochronometry. However, the lack of suitable rocks along the main riverbed of the Yangtze makes it challenging. To address this problem, we perform a local study of the Xiangcheng area, located in Sichuan, about 150 km upstream of the first bend and drained by tributaries of the upper Yangtze. We combine a tectono-geomorphic analysis to a reconstruction of exhumation rates using (U-Th-Sm)/He thermochronometry. The study area is characterized by the NW-SE trending, active left-lateral Xiangcheng fault, which is attested by crustal-depth seismic activity. Importantly, the courses of two tributaries of the Yangtze are deflected along the Xiangcheng fault, suggesting that the fault partly controls the evolution of the upper Yangtze course. Locally, the fault also exhibits triangular facets, suggesting normal motion probably related to the fault segmentation. Granite samples from the Xiangcheng pluton were collected along three altitudinal profiles and analyzed using zircon and apatite (U-Th-Sm)/He thermochronometry. We will discuss the results and their implications on exhumation and on the Yangtze river history during the Cenozoic.

  8. East Asian Summer Monsoon Rainfall: A Historical Perspective of the 1998 Flood over Yangtze River

    NASA Technical Reports Server (NTRS)

    Weng, H.-Y.; Lau, K.-M.

    1999-01-01

    One of the main factors that might have caused the disastrous flood in China during 1998 summer is long-term variations that include a trend indicating increasing monsoon rainfall over the Yangtze River Valley. China's 160-station monthly rainfall anomaly for the summers of 1955-98 is analyzed for exploring such long-term variations. Singular value decomposition (SVD) between the summer rainfall and the global sea surface temperature (SST) anomalies reveals that the rainfall over Yangtze River Valley is closely related to global and regional SST variabilities at both interannual and interdecadal timescales. SVD1 mode links the above normal rainfall condition in central China to an El Nino-like SSTA distribution, varying on interannual timescale modified by a trend during the period. SVD3 mode links positive rainfall anomaly in Yangtze River Valley to the warm SST anomaly in the subtropical western Pacific, varying on interannual timescales modified by interdecadal timescales. This link tends to be stronger when the Nino3 area becomes colder and the western subtropical Pacific becomes warmer. The 1998 summer is a transition season when the 1997/98 El Nino event was in its decaying phase, and the SST in the Nino3 area emerged below normal anomaly while the subtropical western Pacific SST above normal. Thus, the first and third SVD modes become dominant in 1998 summer, favoring more Asian summer monsoon rainfall over the Yangtze River Valley.

  9. Richness and diversity of helminth communities in the Japanese grenadier anchovy, Coilia nasus, during its anadromous migration in the Yangtze River, China.

    PubMed

    Li, Wen X; Zou, Hong; Wu, Shan G; Song, Rui; Wang, Gui T

    2012-06-01

    To determine the relationship between the species richness, diversity of helminth communities, and migration distance during upward migration from coast to freshwater, helminth communities in the anadromous fish Coilia nasus were investigated along the coast of the East China Sea, the Yangtze Estuary, and 3 localities on the Yangtze River. Six helminth species were found in 224 C. nasus . Changes in salinity usually reduced the survival time of parasites, and thus the number of helminth species and their abundance. Except for the 2 dominant helminths, the acanthocephalan Acanthosentis cheni and the nematode Contracaecum sp., mean abundance of other 4 species of helminths was rather low (<1.0) during the upward migration in the Yangtze River. Mean abundance of the 2 dominant helminths peaked in the Yangtze Estuary and showed no obvious decrease among the 3 localities on the Yangtze River. Mean species richness, Brillouin's index, and Shannon index were also highest in the estuary (1.93 ± 0.88, 0.28 ± 0.25, and 0.37 ± 0.34, respectively) and did not exhibit marked decline at the 3 localities on the Yangtze River. A significant negative correlation was not seen between the similarity and the geographical distance (R  =  -0.5104, P  =  0.1317). The strong salinity tolerance of intestinal helminths, relatively brief stay in the Yangtze River, and large amount of feeding on small fish and shrimp when commencing spawning migration perhaps were responsible for the results.

  10. Assessing dissolved inorganic nitrogen flux in the Yangtze River, China: Sources and scenarios

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Chen, Zhongyuan; Finlayson, Brian; Webber, Michael; Wu, Xiaodan; Li, Maotian; Chen, Jing; Wei, Taoyuan; Barnett, Jon; Wang, Mark

    2013-07-01

    This study gives a thorough assessment of the occurrences of dissolved inorganic nitrogen (DIN) in the Yangtze River in the past half century. The results have shown that nitrogen fertilizer, a major DIN source, has been replaced by domestic sewage in the last decade, which has dramatically driven up DIN loads in the Yangtze. DIN concentrations showed a rapid increase from < 0.5 mg L- 1 in the 1960s to nearly 1.5 mg L- 1 at the end of the 1990s. Since then DIN has remained steady at ca. 1.6-1.8 mg L- 1. A significant relationship between the historical DIN record at the downstream gauging station (Datong) and nitrogen (N) sources in the Yangtze River basin is established using principal components analysis. This allows us to apportion DIN loads for the year 2007 (the most recent year of measured DIN data available) to various N sources, listed here in order of weight: sewage (0.391 million tons); atmosphere (0.358 million tons); manure (0.318 million tons), N-fertilizer (0.271 million tons). Therefore, we estimated that a DIN load of 1.339 × 106 t was delivered to the lower Yangtze and its estuarine water in that year. We established scenarios to predict DIN concentrations in the lower Yangtze at 10 year intervals to 2050. For a dry year (20,000 m3 s- 1) DIN concentrations would range from 2.2-3.0 mg L- 1 for 2020-2050. This far exceeds the 2.0 mg L- 1 defined on the Chinese National Scale as the worst class for potable source water. The scenario results suggest that upgrading the sewage treatment systems throughout the basin will be an effective way to help reduce DIN concentrations to less than 2.0 mg L- 1 in the lower Yangtze. This would save the Shanghai megacity from the increasing threat of heavily polluted water sources, where > 23 million people are at present dependent on the Yangtze estuary for 70% of their freshwater intake.

  11. Estimates of long-term water total phosphorus (TP) concentrations in three large shallow lakes in the Yangtze River basin, China.

    PubMed

    Wu, Pan; Qin, Boqiang; Yu, Ge

    2016-03-01

    The shallow lakes in the eastern China developed on alluvial plains with high-nutrient sediments, and most overflow into the Yangtze River with short hydraulic residence times, whereas they become eutrophic over long time periods. Assuming strong responses to hydrogeological changes in the basin, we attempted to determine the dynamic eutrophication history of these lakes. Although evaluation models for internal total phosphorus (TP) loading are widely used for deep lakes in Europe and North America, the accuracy of these models for shallow lakes that have smaller water volumes controlled by the geometrical morphology and greater basin area of alluvial plains is unknown. To describe the magnitude of changes in velocity of trophic state for the studied shallow lakes, we first evaluated the P retention model in relation to the major forces driving lake morphology, basin climate, and external discharge and then used the model to estimate changes in TP in three large shallow lakes (Taihu, Chao, and Poyang) over 60 years (1950-2009 AD). The observed levels of TP were verified against the relative error of the three lakes (<6.43 %) and Nash-Sutcliffe coefficients (0.67-0.75). The results showed that the predicted TP concentrations largely increased with hydraulic residence time, especially in extreme drought years, with a generally rising trend in trophic status. The simulated trophic state index showed that lakes Taihu and Poyang became eutrophic in the 1990s, whereas Lake Chao became eutrophic in the 1980s; lakes Taihu and Chao ultimately became hypereutrophic in the 2000s. The analysis suggested that the tropic status of the shallow lakes was affected by both the hydroclimate and geological sedimentation of the Yangtze River basin. This work will contribute to the development of an internal P loading model for further evaluating trophic states.

  12. Temporal and Spatial Variation of Water Yield Modulus in the Yangtze River Basin in Recent 60 Years

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoqing; Weng, Baisha; Qin, Tianling

    2018-01-01

    The Yangtze River Basin is the largest river basin of Asia and the third largest river basin of the world, the gross water resources amount ranks first in the river basins of the country, and it occupies an important position in the national water resources strategic layout. Under the influence of climate change and human activities, the water cycle has changed. The temporal and spatial distribution of precipitation in the basin is more uneven and the floods are frequent. In order to explore the water yield condition in the Yangtze River Basin, we selected the Water Yield Modulus (WYM) as the evaluation index, then analyzed the temporal and spatial evolution characteristics of the WYM in the Yangtze River Basin by using the climate tendency method and the M-K trend test method. The results showed that the average WYM of the Yangtze River Basin in 1956-2015 are between 103,600 and 1,262,900 m3/km2, with an average value of 562,300 m3/km2, which is greater than the national average value of 295,000 m3/km2. The minimum value appeared in the northwestern part of the Tongtian River district, the maximum value appeared in the northeastern of Dongting Lake district. The rate of change in 1956-2015 is between -0.68/a and 0.79/a, it showed a downward trend in the western part but not significantly, an upward trend in the eastern part reached a significance level of α=0.01. The minimum value appeared in the Tongtian River district, the largest value appeared in the Hangjia Lake district, and the average tendency rate is 0.04/a in the whole basin.

  13. Biocides in the Yangtze River of China: spatiotemporal distribution, mass load and risk assessment.

    PubMed

    Liu, Wang-Rong; Zhao, Jian-Liang; Liu, You-Sheng; Chen, Zhi-Feng; Yang, Yuan-Yuan; Zhang, Qian-Qian; Ying, Guang-Guo

    2015-05-01

    Nineteen biocides were investigated in the Yangtze River to understand their spatiotemporal distribution, mass loads and ecological risks. Fourteen biocides were detected, with the highest concentrations up to 166 ng/L for DEET in surface water, and 54.3 ng/g dry weight (dw) for triclocarban in sediment. The dominant biocides were DEET and methylparaben, with their detection frequencies of 100% in both phases. An estimate of 152 t/y of 14 biocides was carried by the Yangtze River to the East China Sea. The distribution of biocides in the aquatic environments was significantly correlated to Gross Domestic Product (GDP), total phosphorus (TP) and total nitrogen (TN), suggesting dominant input sources from domestic wastewater of the cities along the river. Risk assessment showed high ecological risks posed by carbendazim in both phases and by triclosan in sediment. Therefore, proper measures should be taken to reduce the input of biocides into the river systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Spatiotemporal distribution and mass loadings of perfluoroalkyl substances in the Yangtze River of China.

    PubMed

    Pan, Chang-Gui; Ying, Guang-Guo; Zhao, Jian-Liang; Liu, You-Sheng; Jiang, Yu-Xia; Zhang, Qian-Qian

    2014-09-15

    A systematic investigation into contamination profiles of eighteen perfluoroalkyl substances (PFASs) in both surface water and sediments of Yangtze River was carried out by using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) in summer and winter of 2013. The total concentrations of the PFASs in the water and sediment of Yangtze River ranged from 2.2 to 74.56 ng/L and 0.05 to 1.44 ng/g dry weights (dw), respectively. The PFAS concentrations were correlated to some selected water quality parameters such as pH, total phosphorus (TP), total nitrogen (TN) and conductivity in water, and some sediment properties, such as total organic carbon (TOC), TP, and TN in sediment. The monitoring results for the water and sediment samples showed no obvious seasonal variations. Among the selected 18 PFASs, perfluorooctanoic acid (PFOA) was the dominant PFAS compound found both in water and sediment for the two seasons with its maximum concentration of 18.03 ng/L in water and 0.72 ng/g in sediment, followed by perfluorobutane sulfonic acid (PFBS) with its maximum concentration of 41.9 ng/L in water in Wuhan, whereas the lowest concentrations of PFASs were observed at Poyang lake. The annual loadings of PFOA, perfluorohexanoic acid (PFHxA), PFBS, perfluorooctane sulfonic acid (PFOS) and the total PFASs in the Yangtze River were 6.8 tons, 2.2 tons, 8.2 tons, 0.88 tons, and 20.7 tons, respectively. Wuhan and Er'zhou of Hubei contributed the most amounts of PFASs into the Yangtze River. A correlation was found between some PFASs, for example PFBS and PFOS, which suggests that both of these PFASs originate from common sources in the region. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Channel morphology and its impact on flood passage, the Tianjiazhen reach of the middle Yangtze River

    NASA Astrophysics Data System (ADS)

    Shi, Yafeng; Zhang, Qiang; Chen, Zhongyuan; Jiang, Tong; Wu, Jinglu

    2007-03-01

    The Tianjiazhen reach of the middle Yangtze is about 8 km long, and characterized by a narrow river width of 650 m and local water depth of > 90 m in deep inner troughs, of which about 60 m is below the mean sea level. The troughs in the channel of such a large river are associated with regional tectonics and local lithology. The channel configuration plays a critical role in modifying the height and duration of river floods and erosion of the riverbed. The formation of the troughs in the bed of the Yangtze is considered to be controlled by sets of NW-SE-oriented neotectonic fault zones, in which some segments consist of highly folded thick Triassic limestone crossed by the Yangtze River. Several limestone hills, currently located next to the river channel, serve as nodes that create large vortices in the river, thereby accelerating downcutting on the riverbed composed of limestone highly susceptible to physical corrosion and chemical dissolution. Hydrological records indicate that the nodal hills and channel configuration at Tianjiazhen do not impact on normal flow discharges but discharges > 50,000 m 3s - 1 are slowed down for 2-3 days. Catastrophic floods are held up for even longer periods. These inevitably result in elevated flood stages upstream of prolonged duration, affecting large cities such as Wuhan and a very large number of people.

  16. [Study on distribution and countermeasures of Oncomelania snails in beach wetlands of Runzhou section of lower reaches of Yangtze River].

    PubMed

    Xia, Ai; Huang, Yixin; Jiang, Jun; Zhou, Ya-Min; Hang, De-rong; Tao, Heng-ye

    2014-04-01

    To understand the distribution of the river beach wetlands and Oncomelania snails in the lower reaches of the Yangtze River, and explore the countermeasures of snail control. The river beach wetlands outside the Yangtze River levee were investigated and classified according to the hierarchical and classification system of wetlands of China. The snail survey was carried out in the beach wetlands of Runzhou section of lower reaches of the Yangtze River from 2004 to 2013. The change trend of snail areas and the densities was analyzed in the wetlands. The river beach of Runzhou section of lower reaches of the Yangtze River belongs to the riverine wetland. There was Oncomelania snail breeding except the permanent water area. At present, there were natural wetlands of 1303.0 hm2, human-made wetlands of 1479.0 hmb2 and wetland function changes of 1059.0 hm2 in the river beach of Runzhou section. There was the snail area of 181.4 hm2 in the natural wetland in 2013. The area of snail control by the molluscicide and environmental modification was 4624.55 hm2 from 2004 to 2013. The decline rates of snail areas and densities were 66.53% and 77.66% respectively. The existing Oncomelania snails were distributed in the natural wetlands. The human-made wetland is helpful to snail control. The snail control in the river beach wetlands should attach a great importance to the protection of wetland ecology.

  17. Risk and toxicity assessments of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake, China.

    PubMed

    Fu, Jie; Hu, Xin; Tao, Xiancong; Yu, Hongxia; Zhang, Xiaowei

    2013-11-01

    Heavy metal pollution is one of the most serous environmental issues globally. To evaluate the metal pollution in Jiangsu Province of China, the total concentrations of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake were analyzed. Ecological risk of sediments and human health risk of fish consumption were assessed respectively. Furthermore, toxicity of samples on expression of the stress responsive genes was evaluated using microbial live cell-array method. The results showed that the heavy metals concentrations in sediments from the Yangtze River were much higher than those in sediments from the Taihu Lake. However, the fishes from the Taihu Lake had higher concentrations of heavy metals than fishes from the Yangtze River. Ecological risk evaluation showed that the heavy metal contaminants in sediments from the Yangtze River posed higher risk of adverse ecological effects, while sediments from the study areas of Taihu Lake were relatively safe. Health risk assessment suggested that the heavy metals in fishes of both Yangtze River and Taihu Lake might have risk of adverse health effects to human. The toxicity assessment indicated that the heavy metals in these sediments and fishes showed transcriptional effects on the selected 21 stress responsive genes, which were involved in the pathways of DNA damage response, chemical stress, and perturbations of electron transport. Together, this field investigation combined with chemical analysis, risk assessment and toxicity bioassay would provide useful information on the heavy metal pollution in Jiangsu Province. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. [Prevalence of hypertension and its influencing factors in rural areas along the Yangtze River in Anhui Province in 2014-2015].

    PubMed

    Hu, Mingjun; Zhou, Mengmeng; Yang, Yuwei; Liang, Ling; Zhong, Qi; Qin, Qirong; Wang, Xiaodong; Huang, Fen

    2017-11-01

    To investigate the prevalence, awareness, treatment, control and related influence factors of hypertension among rural adult residents in areas along the Yangtze River in Anhui Province. Totally 2873 rural adult residents in seven typical towns along the Yangtze River of Chizhou, Tongling and Ma'anshan Cities, Anhui Province were selected, with multistage-stratified random cluster sampling, to perform questionnaires and physical measurements from year 2014 to 2015. The prevalence of hypertension was 30. 7%( standardized prevalence was 18. 4%), the awareness rate was 50. 6%( standardized rate was 29. 0%), the treatment rate was40. 4%( standardized rate was 18. 7%), the control rate was 17. 7%( standardized ratewas 9. 3%) in rural areas along the Yangtze River in Anhui Province. The prevalence, awareness, treatment and control rates of hypertension were increased with age increase. Abdominal obesity( OR = 1. 855, 95% CI 1. 467-2. 344), family history of hypertension( OR = 1. 594, 95% CI 1. 265-2. 008), the average annual household income < 60 000 yuan and increased BMI were risk factors of hypertension in rural areas along the Yangtze River. Female( OR = 0. 734, 95% CI 0. 604-0. 891) was its protective factors. While the factors of awareness, treatment and control rates of hypertension were not same. The prevalence of hypertension is higher in the areas along the Yangtze River in Anhui Province. However, the awareness, treatment and control rate of hypertension are lower.

  19. Effect of water flux and sediment discharge of the Yangtze River on PAHs sedimentation in the estuary.

    PubMed

    Li, Rufeng; Feng, Chenghong; Wang, Dongxin; He, Maozhi; Hu, Lijuan; Shen, Zhenyao

    2016-12-01

    Historical distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) and their carriers (i.e., organic matter and mineral particles) in the sediment cores of the Yangtze Estuary were investigated, with emphasis laid on the role of the Yangtze River. Grain size component of sediments (clay, silt, and sand) and organic carbon (black carbon and total organic carbon) in the sediment cores were markedly affected by water flux and sediment discharge of the Yangtze River. Qualitative and quantitative analysis results showed that sands and black carbon acted as the main carriers of PAHs. The sedimentation of two-ring to three-ring PAHs in the estuary had significant correlations with water flux and sediment discharge of the Yangtze River. The relative lower level of the four-ring and five-ring to six-ring PAHs concentrations appeared around the year 2003 and remained for the following several years. This time period accorded well with the water impoundment time of the Three Gorges Reservoir. The decreased level of two-ring to three-ring PAHs occurred in the year 1994, and the peak points around the year 2009 indicated that PAHs sedimentation in the estuary also had close relationship to severe drought and flood in the catchments. The findings presented in this paper could provide references for assessing the impacts of water flux and sediment discharge on the historical deposition of PAHs and their carriers in the Yangtze Estuary.

  20. The distribution of sediments grain size along the depth in source of the Yangtze River, Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Yao, S.; Zhou, S.; Liu, X.; Yan, X.; Lu, J.

    2017-12-01

    Sediment was the one result of river process, in alluvial rive, it can reflect the hydrodynamic characteristic, even the hydrology and climate. In the source region of the Yangtze River with few human activities, The Qumalai Reach of the Tongtianhe River was selected to research the distribution of sediments grain size along the depth. The vertical drilling tools were used to obtain 7 boreholes along the river cross section, and the sedimentary cores were made analysis of stratification and granularity. The results show: The sediments are dominated by sand and grail, the sediment transport capacity of river sources is strong; the grain size frequency distribution curve with 2 3 kurtosis, main peak is sharp, it is typical deposit sediment of the suspended load; The grain size coarsen from the stream terrace to the main channel, sediment transport capacity of main stream is bigger; There are several coarse and fine sediments layers in the sedimentary core of the terrace and flood plain, medium diameters of each layer are various from 0.4mm to 80mm, different layer with different grain size can reflect the different hydrodynamic characteristic of each historical period. This result can provide the original data and enlightenment to support the research for historical river process and hydrology so much as the climate change.

  1. Impact of climate change on the streamflow hydrology of the Yangtze River in China

    USDA-ARS?s Scientific Manuscript database

    Tuotuo River basin, the source region of the Yangtze River, is the key area, where the impact of climate change has been observed on many of the hydrological processes of this central region of the Tibetan Plateau. In this study, we examined six global climate models (GCMs) under three Respectively ...

  2. DNA barcoding and evaluation of genetic diversity in Cyprinidae fish in the midstream of the Yangtze River.

    PubMed

    Shen, Yanjun; Guan, Lihong; Wang, Dengqiang; Gan, Xiaoni

    2016-05-01

    The Yangtze River is the longest river in China and is divided into upstream and mid-downstream regions by the Three Gorges (the natural barriers of the Yangtze River), resulting in a complex distribution of fish. Dramatic changes to habitat environments may ultimately threaten fish survival; thus, it is necessary to evaluate the genetic diversity and propose protective measures. Species identification is the most significant task in many fields of biological research and in conservation efforts. DNA barcoding, which constitutes the analysis of a short fragment of the mitochondrial cytochrome c oxidase subunit I (COI) sequence, has been widely used for species identification. In this study, we collected 561 COI barcode sequences from 35 fish from the midstream of the Yangtze River. The intraspecific distances of all species were below 2% (with the exception of Acheilognathus macropterus and Hemibarbus maculatus). Nevertheless, all species could be unambiguously identified from the trees, barcoding gaps and taxonomic resolution ratio values. Furthermore, the COI barcode diversity was found to be low (≤0.5%), with the exception of H. maculatus (0.87%), A. macropterus (2.02%) and Saurogobio dabryi (0.82%). No or few shared haplotypes were detected between the upstream and downstream populations for ten species with overall nucleotide diversities greater than 0.00%, which indicated the likelihood of significant population genetic structuring. Our analyses indicated that DNA barcoding is an effective tool for the identification of cyprinidae fish in the midstream of the Yangtze River. It is vital that some protective measures be taken immediately because of the low COI barcode diversity.

  3. Remote sensing of cloud distributions over the Bayanhar Mountains - Watershed of the Yangtze and Yellow rivers

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liu, J. M.; Dodge, J. C.; Smith, R. E.

    1986-01-01

    Although the two largest rivers in China originate in the same region separated only by the Bayanhar Mountains as a watershed, the Yangtze and Yellow rivers behave in quite different ways. Most of the warm and humid air currents from the Arabian sea and the Bay of Bengal are blocked by the Bayanhar Mountains. As a result the amount of water in the Yellow River is only 5 percent of that in the Yangtze river. Based on the cloud coverage area and the cloud volumetric distributions, and also the thickness above 9.4 km of the cumulus clouds located north and south of the Bayanhar Mountains from the geosynchronous satellite infrared imagery, the results suggest that a more detailed investigation is warranted in the hope that the proper modification of cumuli north of the Bayanhar Mountains would enhance the rainfall over the fountainhead of the Yellow River.

  4. Mutagenicity and estrogenicity of raw water and drinking water in an industrialized city in the Yangtze River Delta.

    PubMed

    Xiao, Sanhua; Lv, Xuemin; Zeng, Yifan; Jin, Tao; Luo, Lan; Zhang, Binbin; Zhang, Gang; Wang, Yanhui; Feng, Lin; Zhu, Yuan; Tang, Fei

    2017-10-01

    Public concern was aroused by frequently reported water pollution incidents in Taihu Lake and the Yangtze River. The pollution also caught and sustained the attention of the scientific community. From 2010 to 2016, raw water and drinking water samples were continually collected at Waterworks A and B (Taihu Lake) and Waterworks C (Yangtze River). The non-volatile organic pollutants in the water samples were extracted by solid phase extraction. Ames tests and yeast estrogen screen (YES) assays were conducted to evaluate the respective mutagenic and estrogenic effects. Water samples from the Yangtze River-based Waterworks C possessed higher mutagenicity than those from Taihu Lake-based Waterworks A (P<0.001) and Waterworks B (P = 0.026). Water treatment enhanced the direct mutagenicity (P = 0.022), and weakened the estrogenicity of the raw water (P<0.001) with a median removal rate of 100%. In fact, very few of the finished samples showed estrogenic activity. Raw water samples from Waterworks A showed weaker estrogenicity than those from Waterworks B (P = 0.034) and Waterworks C (P = 0.006). In summary, mutagenic effects in drinking water and estrogenic effects in raw water merited sustained attention. The Yangtze River was more seriously polluted by mutagenic and estrogenic chemicals than Taihu Lake was. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Influence of the South-to-North Water Transfer and the Yangtze River Mitigation Projects on the water quality of Han River, China

    NASA Astrophysics Data System (ADS)

    Liu, W.; Kuo, Y. M.

    2016-12-01

    The Middle Route of China's South-to-North Water Transfer (MSNW) and Yangtze-Han River Water Diversion (YHWD) Projects have been operated since 2014, which may deteriorate water quality in Han River. The 11 water sampling sites distributed from the middle and down streams of Han River watershed were monitored monthly between July 2014 and December 2015. Factor analysis and cluster analysis were applied to investigate the major pollution types and main variables influencing water quality in Han River. The factor analysis distinguishes three main pollution types (agricultural nonpoint source, organic, and phosphorus point source pollution) affecting water quality of Han River. Cluster analysis classified all sampling sites into four groups and determined their pollution source for both Dry and Wet seasons. The sites located at central city receive point source pollution in both seasons. The water quality in downstream Han River (excluding central city sites) was influenced by nonpoint source pollution from Jianghan Plain. Variations of water qualities are associated with hydrological conditions varied from operations of engineering projects and seasonal variability especially in Dry season. Good water quality as Class III mainly occurred when flow rate is greater than 800 cms in Dry season. The low average flow rate below 583 cms will degrade water quality as Class V at almost all sites. Elevating the flow rate discharged from MSNW and YHWD Projects to Han River can avoid degrading water quality especially in low flow conditions and may decrease the probability of algal bloom occurrence in Han River. Increasing the flow rate from 400 cms to 700 cms in main Han River can obviously improve the water quality of Han River. The investigation of relationships between water quality and flow rate in both projects can provide management strategies of water quality for various flow conditions.

  6. Predictability of current and future multi-river discharges: Ganges, Brahmaputra, Yangtze, Blue Nile, and Murray-Darling rivers

    NASA Astrophysics Data System (ADS)

    Jian, Jun

    2007-12-01

    Determining river discharge is of critical importance to many societies as they struggle with fresh water supply and risk of flooding. In Bangladesh, floods occur almost every year but with sufficient irregularity to have adverse social and economical consequences. Important goals are to predict the discharge to be used for the optimization of agricultural practices, disaster mitigation and water resource management. The aim of this study is to determine the predictability of river discharge in a number of major rivers on time scale varying from weeks to a century. We investigated predictability considering relationship between SST and discharge. Next, we consider IPCC model projections of river discharge while the models are statistically adjusted against observed discharges. In this study, we consider five rivers, the Ganges, the Brahmaputra, the Yangtze, the Blue Nile, and the Murray-Darling Rivers. On seasonal time scales, statistically significant correlations are found between mean monthly equatorial Pacific sea surface temperature (SST) and the summer Ganges discharge with lead times of 2-3 months due to oscillations of the El Nino-Southern Oscillation (ENSO) phenomena. In addition, there are strong correlations in the southwest and northeast Pacific. These, too, appear to be tied to the ENSO cycle. The Brahmaputra discharge, on the other hand, shows somewhat weaker relationships with tropical SST. Strong lagged correlations relationships are found with SST in the Bay of Bengal but these are the result of very warm SSTs and exceptional Brahmaputra discharge during the summer of 1998. When this year is removed from the time series, relationships weaken everywhere except in the northwestern Pacific for the June discharge and in areas of the central Pacific straddling the equator for the July discharge. The relationships are relative strong, but they are persistent from month to month and suggest that two different and sequential factors influence Brahmaputra

  7. Response of the turbidity maximum zone in the Yangtze River Estuary due to human activities during the dry season.

    PubMed

    Chen, Xiaofeng; Shen, Zhenyao; Yang, Ye

    2016-09-01

    The interaction between a river and the sea results in a turbidity maximum zone (TMZ) within the estuary, which has a great impact on the local ecosystem. In the Yangtze River Estuary, the magnitude and extent of the TMZ vary with water discharge. In this study, the cumulative human activity altered the water discharge regime from the river to the estuary. In the post-Three Gorges Dam (TGD) period, water discharge increased by 35.10 % at Datong in February compared with that in the pre-TGD period. The effects of water discharge variation on the characteristics of the TMZ were analyzed during spring and neap tidal periods using the three-dimensional environmental fluid dynamic code (EFDC) model. The area of the TMZ decreased by 3.11 and 17.39 % during neap and spring tides, respectively. In addition, the upper limit of the TMZ moved 11.68 km seaward during neap tide, whereas the upper limit of the TMZ in the upstream and downstream areas moved seaward 9.65 and 2.34 km, respectively, during spring tide. These findings suggest that the area and location of the TMZ are more sensitive to upstream runoff during spring tide than during neap tide. These changes in the TMZ will impact the biochemical processes in the Yangtze River Estuary. In the foreseeable future, the distribution characteristic of TMZ will inevitably change due to variations in the Yangtze River discharge resulting from new human activities (i.e., new dams), which are being constructed upstream in the Yangtze River system.

  8. Yangtze River, an insignificant genetic boundary in tufted deer (Elaphodus cephalophus): the evidence from a first population genetics study.

    PubMed

    Sun, Zhonglou; Pan, Tao; Wang, Hui; Pang, Mujia; Zhang, Baowei

    2016-01-01

    Great rivers were generally looked at as the geographical barrier to gene flow for many taxonomic groups. The Yangtze River is the third largest river in the world, and flows across South China and into the East China Sea. Up until now, few studies have been carried out to evaluate its effect as a geographical barrier. In this study, we attempted to determine the barrier effect of the Yangtze River on the tufted deer ( Elaphodus cephalophus ) using the molecular ecology approach. Using mitochondrial DNA control region (CR) sequences and 13 nuclear microsatellite loci, we explored the genetic structure and gene flow in two adjacent tufted deer populations (Dabashan and Wulingshan populations), which are separated by the Yangtze River. Results indicated that there are high genetic diversity levels in the two populations, but no distinguishable haplotype group or potential genetic cluster was detected which corresponded to specific geographical population. At the same time, high gene flow was observed between Wulingshan and Dabashan populations. The tufted deer populations experienced population decrease from 0.3 to 0.09 Ma BP, then followed by a distinct population increase. A strong signal of recent population decline ( T = 4,396 years) was detected in the Wulingshan population by a Markov-Switching Vector Autoregressions(MSVAR) process population demography analysis. The results indicated that the Yangtze River may not act as an effective barrier to gene flow in the tufted deer. Finally, we surmised that the population demography of the tufted deer was likely affected by Pleistocene climate fluctuations and ancient human activities.

  9. Evaluation of the ecotoxicity of sediments from Yangtze river estuary and contribution of priority PAHs to ah receptor--mediated activities.

    PubMed

    Liu, Li; Chen, Ling; Shao, Ying; Zhang, Lili; Floehr, Tilman; Xiao, Hongxia; Yan, Yan; Eichbaum, Kathrin; Hollert, Henner; Wu, Lingling

    2014-01-01

    In this study, in vitro bioassays were performed to assess the ecotoxicological potential of sediments from Yangtze River estuary. The cytotoxicity and aryl hydrocarbon receptor (AhR)-mediated toxicity of sediment extracts with rainbow trout (Oncorhynchus mykiss) liver cells were determined by neutral red retention and 7-ethoxyresorufin-O-deethylase assays. The cytotoxicity and AhR-mediated activity of sediments from the Yangtze River estuary ranged from low level to moderate level compared with the ecotoxicity of sediments from other river systems. However, Yangtze River releases approximately 14 times greater water discharge compared with Rhine, a major river in Europe. Thus, the absolute pollution mass transfer of Yangtze River may be detrimental to the environmental quality of estuary and East China Sea. Effect-directed analysis was applied to identify substances causing high dioxin-like activities. To identify unknown substances contributing to dioxin-like potencies of whole extracts, we fractionated crude extracts by open column chromatography. Non-polar paraffinic components (F1), weakly and moderately polar components (F2), and highly polar substances (F3) were separated from each crude extract of sediments. F2 showed the highest dioxin-like activities. Based on the results of mass balance calculation of chemical toxic equivalent concentrations (TEQs), our conclusion is that priority polycyclic aromatic hydrocarbons indicated a low portion of bio-TEQs ranging from 1% to 10% of crude extracts. Further studies should be conducted to identify unknown pollutants.

  10. Evaluation of the Ecotoxicity of Sediments from Yangtze River Estuary and Contribution of Priority PAHs to Ah Receptor-Mediated Activities

    PubMed Central

    Liu, Li; Chen, Ling; Shao, Ying; Zhang, Lili; Floehr, Tilman; Xiao, Hongxia; Yan, Yan; Eichbaum, Kathrin; Hollert, Henner; Wu, Lingling

    2014-01-01

    In this study, in vitro bioassays were performed to assess the ecotoxicological potential of sediments from Yangtze River estuary. The cytotoxicity and aryl hydrocarbon receptor (AhR)-mediated toxicity of sediment extracts with rainbow trout (Oncorhynchus mykiss) liver cells were determined by neutral red retention and 7-ethoxyresorufin-O-deethylase assays. The cytotoxicity and AhR-mediated activity of sediments from the Yangtze River estuary ranged from low level to moderate level compared with the ecotoxicity of sediments from other river systems. However, Yangtze River releases approximately 14 times greater water discharge compared with Rhine, a major river in Europe. Thus, the absolute pollution mass transfer of Yangtze River may be detrimental to the environmental quality of estuary and East China Sea. Effect-directed analysis was applied to identify substances causing high dioxin-like activities. To identify unknown substances contributing to dioxin-like potencies of whole extracts, we fractionated crude extracts by open column chromatography. Non-polar paraffinic components (F1), weakly and moderately polar components (F2), and highly polar substances (F3) were separated from each crude extract of sediments. F2 showed the highest dioxin-like activities. Based on the results of mass balance calculation of chemical toxic equivalent concentrations (TEQs), our conclusion is that priority polycyclic aromatic hydrocarbons indicated a low portion of bio-TEQs ranging from 1% to 10% of crude extracts. Further studies should be conducted to identify unknown pollutants. PMID:25111307

  11. Variations of Runoff and Sediment Load in the Middle and Lower Reaches of the Yangtze River, China (1950-2013)

    PubMed Central

    Li, Na; Wang, Lachun; Zeng, Chunfen; Wang, Dong; Liu, Dengfeng; Wu, Xutong

    2016-01-01

    On the basis of monthly runoff series obtained in 1950–2013 and annual sediment load measured in 1956–-2013 at five key hydrological stations in the middle and lower reaches of the Yangtze River basin, this study used the Mann-Kendall methods to identify trend and abrupt changes of runoff and sediment load in relation to human activities. The results were as follows: (1) The annual and flood season runoffs showed significant decreasing trends at Yichang station, and showed slight downward trends at Hankou and Datong stations, while the abrupt changes of dry season runoff at Yichang, Hankou and Datong stations occurred in about 2007 and the change points were followed by significant increasing trends. The construction of the Three Gorges Dam, which began to operate in 2003, influenced the variations of runoff in the mainstream of Yangtze River, but the effect weakened with the distance along the downstream direction from TGD. (2) Since the 1990s, annual sediment loads at Yichang, Hankou, and Datong stations have been decreasing significantly, and after 2002, the annual sediment load at Yichang dropped below that of Hankou and Datong. The dams and deforestation/forestation contributed to the significant decreasing trend of the sediment load. In addition, the Three Gorges Dam aggravated the downward trend and caused the erosion of the riverbed and riverbanks in the middle and lower reaches. (3) The runoff and sediment load flowing from Dongting Lake into the mainstream of the Yangtze River showed significant decreasing trends at Chenglingji station after 1970s, and in contrast, slight increase in the sediment flow from Poyang Lake to the mainstream of the Yangtze River at Hukou station were detected over the post-TGD period (2003–2013). The result of the study will be an important foundation for watershed sustainable development of the Yangtze River under the human activities. PMID:27479591

  12. Variations of Runoff and Sediment Load in the Middle and Lower Reaches of the Yangtze River, China (1950-2013).

    PubMed

    Li, Na; Wang, Lachun; Zeng, Chunfen; Wang, Dong; Liu, Dengfeng; Wu, Xutong

    2016-01-01

    On the basis of monthly runoff series obtained in 1950-2013 and annual sediment load measured in 1956--2013 at five key hydrological stations in the middle and lower reaches of the Yangtze River basin, this study used the Mann-Kendall methods to identify trend and abrupt changes of runoff and sediment load in relation to human activities. The results were as follows: (1) The annual and flood season runoffs showed significant decreasing trends at Yichang station, and showed slight downward trends at Hankou and Datong stations, while the abrupt changes of dry season runoff at Yichang, Hankou and Datong stations occurred in about 2007 and the change points were followed by significant increasing trends. The construction of the Three Gorges Dam, which began to operate in 2003, influenced the variations of runoff in the mainstream of Yangtze River, but the effect weakened with the distance along the downstream direction from TGD. (2) Since the 1990s, annual sediment loads at Yichang, Hankou, and Datong stations have been decreasing significantly, and after 2002, the annual sediment load at Yichang dropped below that of Hankou and Datong. The dams and deforestation/forestation contributed to the significant decreasing trend of the sediment load. In addition, the Three Gorges Dam aggravated the downward trend and caused the erosion of the riverbed and riverbanks in the middle and lower reaches. (3) The runoff and sediment load flowing from Dongting Lake into the mainstream of the Yangtze River showed significant decreasing trends at Chenglingji station after 1970s, and in contrast, slight increase in the sediment flow from Poyang Lake to the mainstream of the Yangtze River at Hukou station were detected over the post-TGD period (2003-2013). The result of the study will be an important foundation for watershed sustainable development of the Yangtze River under the human activities.

  13. Attribution of extreme precipitation in the lower reaches of the Yangtze River during May 2016

    NASA Astrophysics Data System (ADS)

    Li, Chunxiang; Tian, Qinhua; Yu, Rong; Zhou, Baiquan; Xia, Jiangjiang; Burke, Claire; Dong, Buwen; Tett, Simon F. B.; Freychet, Nicolas; Lott, Fraser; Ciavarella, Andrew

    2018-01-01

    May 2016 was the third wettest May on record since 1961 over central eastern China based on station observations, with total monthly rainfall 40% more than the climatological mean for 1961-2013. Accompanying disasters such as waterlogging, landslides and debris flow struck part of the lower reaches of the Yangtze River. Causal influence of anthropogenic forcings on this event is investigated using the newly updated Met Office Hadley Centre system for attribution of extreme weather and climate events. Results indicate that there is a significant increase in May 2016 rainfall in model simulations relative to the climatological period, but this increase is largely attributable to natural variability. El Niño years have been found to be correlated with extreme rainfall in the Yangtze River region in previous studies—the strong El Niño of 2015-2016 may account for the extreme precipitation event in 2016. However, on smaller spatial scales we find that anthropogenic forcing has likely played a role in increasing the risk of extreme rainfall to the north of the Yangtze and decreasing it to the south.

  14. Terrestrial Contributions to the Aquatic Food Web in the Middle Yangtze River

    PubMed Central

    Wang, Jianzhu; Gu, Binhe; Huang, Jianhui; Han, Xingguo; Lin, Guanghui; Zheng, Fawen; Li, Yuncong

    2014-01-01

    Understanding the carbon sources supporting aquatic consumers in large rivers is essential for the protection of ecological integrity and for wildlife management. The relative importance of terrestrial and algal carbon to the aquatic food webs is still under intensive debate. The Yangtze River is the largest river in China and the third longest river in the world. The completion of the Three Gorges Dam (TGD) in 2003 has significantly altered the hydrological regime of the middle Yangtze River, but its immediate impact on carbon sources supporting the river food web is unknown. In this study, potential production sources from riparian and the main river channel, and selected aquatic consumers (invertebrates and fish) at an upstream constricted-channel site (Luoqi), a midstream estuarine site (Huanghua) and a near dam limnetic site (Maoping) of the TGD were collected for stable isotope (δ13C and δ15N) and IsoSource analyses. Model estimates indicated that terrestrial plants were the dominant carbon sources supporting the consumer taxa at the three study sites. Algal production appeared to play a supplemental role in supporting consumer production. The contribution from C4 plants was more important than that of C3 plants at the upstream site while C3 plants were the more important carbon source to the consumers at the two impacted sites (Huanghua and Maoping), particularly at the midstream site. There was no trend of increase in the contribution of autochthonous production from the upstream to the downstream sites as the flow rate decreased dramatically along the main river channel due to the construction of TGD. Our findings, along with recent studies in rivers and lakes, are contradictory to studies that demonstrate the importance of algal carbon in the aquatic food web. Differences in system geomorphology, hydrology, habitat heterogeneity, and land use may account for these contradictory findings reported in various studies. PMID:25047656

  15. Terrestrial contributions to the aquatic food web in the middle Yangtze River.

    PubMed

    Wang, Jianzhu; Gu, Binhe; Huang, Jianhui; Han, Xingguo; Lin, Guanghui; Zheng, Fawen; Li, Yuncong

    2014-01-01

    Understanding the carbon sources supporting aquatic consumers in large rivers is essential for the protection of ecological integrity and for wildlife management. The relative importance of terrestrial and algal carbon to the aquatic food webs is still under intensive debate. The Yangtze River is the largest river in China and the third longest river in the world. The completion of the Three Gorges Dam (TGD) in 2003 has significantly altered the hydrological regime of the middle Yangtze River, but its immediate impact on carbon sources supporting the river food web is unknown. In this study, potential production sources from riparian and the main river channel, and selected aquatic consumers (invertebrates and fish) at an upstream constricted-channel site (Luoqi), a midstream estuarine site (Huanghua) and a near dam limnetic site (Maoping) of the TGD were collected for stable isotope (δ13C and δ15N) and IsoSource analyses. Model estimates indicated that terrestrial plants were the dominant carbon sources supporting the consumer taxa at the three study sites. Algal production appeared to play a supplemental role in supporting consumer production. The contribution from C4 plants was more important than that of C3 plants at the upstream site while C3 plants were the more important carbon source to the consumers at the two impacted sites (Huanghua and Maoping), particularly at the midstream site. There was no trend of increase in the contribution of autochthonous production from the upstream to the downstream sites as the flow rate decreased dramatically along the main river channel due to the construction of TGD. Our findings, along with recent studies in rivers and lakes, are contradictory to studies that demonstrate the importance of algal carbon in the aquatic food web. Differences in system geomorphology, hydrology, habitat heterogeneity, and land use may account for these contradictory findings reported in various studies.

  16. Identifying hotspots and management of critical ecosystem services in rapidly urbanizing Yangtze River Delta Region, China.

    PubMed

    Cai, Wenbo; Gibbs, David; Zhang, Lang; Ferrier, Graham; Cai, Yongli

    2017-04-15

    Rapid urbanization has altered many ecosystems, causing a decline in many ecosystem services, generating serious ecological crisis. To cope with these challenges, we presented a comprehensive framework comprising five core steps for identifying and managing hotspots of critical ecosystem services in a rapid urbanizing region. This framework was applied in the case study of the Yangtze River Delta (YRD) Region. The study showed that there was large spatial heterogeneity in the hotspots of ecosystem services in the region, hotspots of supporting services and regulating services aggregately distributing in the southwest mountainous areas while hotspots of provisioning services mainly in the northeast plain, and hotspots of cultural services widespread in the waterbodies and southwest mountainous areas. The regionalization of the critical ecosystem services was made through the hotspot analysis. This study provided valuable information for environmental planning and management in a rapid urbanizing region and helped improve China's ecological redlines policy at regional scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A magnetic record of heavy metal pollution in the Yangtze River subaqueous delta.

    PubMed

    Dong, Chenyin; Zhang, Weiguo; Ma, Honglei; Feng, Huan; Lu, Honghua; Dong, Yan; Yu, Lizhong

    2014-04-01

    The rapid industrial development in the Yangtze River watershed over the last several decades has drawn great attention with respect to heavy metal pollution to the Yangtze River estuary and nearby coastal areas. In this study, a 236 cm long sediment core was retrieved from the Yangtze River subaqueous delta (122°36' E, 31°00' N) in 2008 and analyzed for magnetic properties and geochemical compositions to investigate heavy metal pollution history. The activity of (137)Cs peaked at depth 140 cm, with a broad plateau between 120 cm and 140 cm, suggesting an average sedimentation rate of 3.11 cm yr(-1) for the upper 140 cm layer. Magnetic susceptibility (χ), saturation isothermal remanent magnetization (SIRM), anhysteretic remanent magnetization (χARM) and heavy metal enrichment factors (EF) all showed an upward increase trend above depth 140 cm, suggesting that increased ferrimagnetic mineral concentration was accompanied by heavy metal enrichment in the sediment. Geochemical and granolumetric analyses showed that sediment sources and particle sizes played minor roles in the variations of magnetic properties. The effect of diagenesis, which can lead to the selective removal of magnetic minerals, was noticeable in the lower part of the core (140-236 cm). Co-variation between magnetic properties (χ, SIRM and χARM) and EF of Cu and Pb suggests that the elevated ferrimagnetic mineral concentration can be used as an indicator of heavy metal pollution in the reconstruction of environmental changes in estuarine and coastal settings. Copyright © 2014. Published by Elsevier B.V.

  18. Three-dimensional Virtual Simulation of Oil Spill of Yangtze River in Chongqing Area Based on Emergency Decision

    NASA Astrophysics Data System (ADS)

    Chen, Shuzhe; Huang, Liwen

    the river of Yangtze River in Chongqing area is continuous curved. Hydrology and channel situation is complex, and the transportation is busy. With the increasing of shipments of hazardous chemicals year by year, oil spill accident risk is rising. So establishment of three-dimensional virtual simulation of oil spill and its application in decision-making has become an urgent task. This paper detailed the process of three-dimensional virtual simulation of oil spill and established a system of three-dimensional virtual Simulation of oil spill of Yangtze River in Chongqing area by establishing an oil spill model of the Chongqing area based on oil particles model, and the system has been used in emergency decision to provide assistance for the oil spill response.

  19. Dynamics of the wetland vegetation in large lakes of the Yangtze Plain in response to both fertilizer consumption and climatic changes

    NASA Astrophysics Data System (ADS)

    Hou, Xuejiao; Feng, Lian; Chen, Xiaoling; Zhang, Yunlin

    2018-07-01

    Using moderate-resolution imaging spectroradiometer (MODIS) data that cover the 15-year period from 2000 to 2014 and a phenology-based classification method, the long-term changes in the wetland vegetation of 25 large lakes on the Yangtze Plain were obtained. The classification method was developed based on the phenological information extracted from time series of MODIS observations, which demonstrated mean user's/producer's accuracies of 76.17% and 84.58%, respectively. The first comprehensive record of the spatial distribution and temporal dynamics of wetland vegetation in the large lakes on the Yangtze Plain was created. Of the 25 lakes examined, 17 showed a decreasing trend of vegetation area percentages (VAPs) during the study period, and 7 were statistically significant (p < 0.05). The same number of lakes was found to display decreasing trends in vegetation greenness over this 15-year period, and these decreasing trends were statistically significant (p < 0.05) for 11 of the lakes. Substantially fewer lakes showed increases in either their VAPs or their vegetation greenness values. Analysis using a multiple general linear model revealed that the amounts of chemical fertilizer used for farmlands surrounding the lakes, precipitation, daily sunshine hours, temperature and water turbidity played the most important roles in regulating the interannual changes in vegetation greenness in 40% (10/25), 12% (3/25), 4% (1/25), 20% (5/25) and 12% (3/25) of the lake wetlands, respectively. On average, the combined effects of these five driving factors above explained 89.08 ± 7.89% of the variation in greenness over this 15-year period for the 25 lakes. This wetland vegetation environmental data record (EDR) of large lakes in Yangtze Plain demonstration will provide a crucial baseline information for the wetland environment conservation and restoration.

  20. River flood plains: Some observations on their formation

    USGS Publications Warehouse

    Wolman, M. Gordon; Leopold, Luna Bergere

    1957-01-01

    On many small rivers and most great rivers, the flood plain consists of channel and overbank deposits. The proportion of the latter is generally very small.Frequency studies indicate that the flood plains of many streams of different sizes flowing in diverse physiographic and climatic regions are subject to flooding about once a year.The uniform frequency of flooding of the flood-plain surface and the small amount of deposition observed in great floods (average 0.07 foot) support the conclusion that overbank deposition contributes only a minor part of the material constituting the flood plain. The relatively high velocities (1 to 4 fps) which can occur in overbank flows and the reduction in sediment concentration which often accompanies large floods may also help account for this. Although lateral migration of channels is important in controlling the elevation of the flood plain, rates of migration are extremely variable and alone cannot account for the uniform relation the flood-plain surface bears to the channel.Detailed studies of flood plains in Maryland and in North Carolina indicate that it is difficult to differentiate between channel and overbank deposits in a stratigraphic section alone.Because deposition on the flood plain does not continue indefinitely, the flood-plain surface can only be transformed into a terrace surface by some tectonic or climatic change which alters the regimen of the river and causes it to entrench itself below its established bed and associated flood plain. A terrace, then, is distinguished from a flood plain by the frequency with which each is overflowed.

  1. Impact of Yangtze River Water Transfer on the Water Quality of the Lixia River Watershed, China

    PubMed Central

    Ma, Xiaoxue; Wang, Lachun; Wu, Hao; Li, Na; Ma, Lei; Zeng, Chunfen; Zhou, Yi; Yang, Jun

    2015-01-01

    To improve water quality and reduce the negative impacts of sudden inputs of water pollution in the Lixia River watershed, China, a series of experimental water transfers from the Yangtze River to the Lixia River were conducted from 2 December 2006 to 7 January 2007. Water samples were collected every six days at 55 monitoring sites during this period. Eight water parameters (water temperature, pH, dissolved oxygen (DO), chemical oxygen demand (COD), potassium permanganate index (CODMn), ammonia nitrogen (NH4 +-N), electrical conductivity (EC), and water transparency (WT)) were analyzed to determine changes in nutrient concentrations during water transfers. The comprehensive pollution index (Pi) and single-factor (Si) evaluation methods were applied to evaluate spatio-temporal patterns of water quality during water transfers. Water quality parameters displayed different spatial and temporal distribution patterns within the watershed. Water quality was improved significantly by the water transfers, especially for sites closer to water intake points. The degree of improvement is positively related to rates of transfer inflow and drainage outflow. The effects differed for different water quality parameters at each site and at different water transfer times. There were notable decreases in NH4 +-N, DO, COD, and CODMn across the entire watershed. However, positive effects on EC and pH were not observed. It is concluded that freshwater transfers from the Yangtze River can be used as an emergency measure to flush pollutants from the Lixia River watershed. Improved understanding of the effects of water transfers on water quality can help the development and implementation of effective strategies to improve water quality within this watershed. PMID:25835525

  2. Future Earth Coasts: The Mississippi and Yangtze Rivers as Examples

    NASA Astrophysics Data System (ADS)

    D'Elia, C.; Xu, K.; Chen, Z.; Day, J.; Le Tissier, M.

    2016-02-01

    Deltas and estuaries are productive and fertile links between the land and the sea. Deltas occupy only about 5% of the Earth's surface but sustain over a half billion people all around the world. Many river deltas are endangered because of extensive dam and levee construction, declining sediment supply, groundwater withdrawal, relative sea level rise and severe coastal erosion, leading to a variety of threats to natural, economic and social systems. About 630 million people now live at an elevation of 10 m or less above mean sea level, and maintaining sustainable land with a rising sea will be a challenging problem for many major deltaic coasts and cities in the next century. Stemming from 20 years of LOICZ (Land-Ocean Interactions in the Coastal Zone), Future Earth Coasts is a new global initiative that seeks to enable the scientific and social scientific communities to build knowledge through collaborative processes to better understand and address the profound and urgent changes occurring in vulnerable coastal zones. The topics of this comparative study are the Mississippi and Yangtze (Changjiang) Rivers, the largest in the United States and China, respectively. We use these two rivers as examples to evaluate current conditions and catalyze future discussion. The Mississippi and Yangtze both have had long-term observations of physical and biological processes that affect human activities, making it possible to quantify both natural and anthropogenic impacts. We also consider the limits to concept of sustainability for the Earth's biosphere and human civilization, and emphasize biophysical constraints and demographic challenges.

  3. [Study of the fluorescence characteristics of DOM from the Yangtze River and Jialing River around Chongqing's urban areas].

    PubMed

    Ji, Fang-ying; Li, Si; Zhou, Guang-ming; Yu, Dan-ni; Wang, Tu-jin; Cao, Lin; Tan, Xue-mei; Yang, Da-cheng; Zhou, Xiao-yi

    2010-01-01

    The fluorescence emission and excitation emission matrix (EEM) technologies were used to characterize the dissolved organic matter (DOM) in the water body of the Yangtze River and Jialing River around the Chongqing urban areas from April to August 2008. Concerning about the accidents of the Wenchuan's Earthquake in May and Tangjiashan Yansaihu's effects in June, and the high water period time in the summer in two months of July and August, from the EEM obtained from each sampling station and time, the composition, distribution and their changing features of the DOM in the two rivers were investigated as combined with the water samples' environmental parameters such as pH, DO, DOC with EEM's fingerprint features, f(450/500) etc; finally the bio-environment behavior effects of the three types of fluorescence peaks were elaborated, where humic-like, fulvic-like, and protein-like from the five sampling stations' EEMs during the five months were given detailed representation. From the experimental results obtained, the fluorescence peaks are mainly composed of two types of fluorophores: humic-like and protein-like in the two rivers around the Chongqing urban areas during the investigation in five months, the protein-like's peaks value in Jialing River is higher than the values in the Yangtze River, and all the fluorescence peaks in the two Rivers' water body decrease more or less after the two Rivers join in Chun Tan sampling station; the protein-like peak is notably higher after the "5 x 12" earthquake period time including May and June and high water period time, which mainly originated from terrestrial sources, but its intensities decreased observably while the water bodies of the two rivers joining together in the Chao Tianmen and Chun Tan's sampling station.

  4. Case study on rehabilitation of a polluted urban water body in Yangtze River Basin.

    PubMed

    Wu, Juan; Cheng, Shuiping; Li, Zhu; Guo, Weijie; Zhong, Fei; Yin, Daqiang

    2013-10-01

    In the past three decades, the fast development of economy and urbanization has caused increasingly severe pollutions of urban water bodies in China. Consequently, eutrophication and deterioration of aquatic ecosystem, which is especially significant for aquatic vegetation, inevitably became a pervasive problem across the Yangtze River Basin. To rehabilitate the degraded urban water bodies, vegetation replanting is an important issue to improve water quality and to rehabilitate ecosystem. As a case study, a representative polluted urban river, Nanfeihe River, in Hefei City, Anhui Province, was chosen to be a rehabilitation target. In October 2009 and May 2010, 13 species of indigenous and prevalent macrophytes, including seven species emergent, one species floating leaved, and five species submersed macrophytes, were planted along the bank slopes and in the river. Through 1.5 years' replanting practice, the water quality and biodiversity of the river had been improved. The concentrations of total nitrogen (TN), total phosphorus (TP), and ammonia nitrogen (NH4 (+)-N) declined by 46.0, 39.5, and 60.4 %, respectively. The species of macrophytes increased from 14 to 60, and the biodiversity of phytoplankton rose significantly in the river (p<0.05). The biomasses of zooplankton and benthos were also improved after the vegetation replanting. The study confirmed that vegetation replanting could alleviate the increasing water pollution and rehabilitate the degraded aquatic ecosystem. The case study would be an example for polluted urban waters restoration in the middle-downstream area of Yangtze River Base.

  5. Variation of Temperature and Precipitation in Urban Agglomeration and Prevention Suggestion of Waterlogging in Middle and Lower Reaches of Yangtze River

    NASA Astrophysics Data System (ADS)

    Na, Liu; Youjie, Jin; Jiaqi, Dai

    2018-03-01

    The variation trend of temperature and precipitation during flood season in the middle and lower reaches of the Yangtze River basin in recent 50 years and change characteristics of rainfall in five typical flood prone cities are analysed. Aiming at waterlogging problems in the urban agglomeration of middle and lower reaches of the Yangtze River, the comprehensive prevention and control suggestions are put forward. The results showed that: the temperature trend in the basin decreased and then increased, and the precipitation showed a downward-rising-downward trend, no mutation occurred; The incidence of heavy rainfall events in the five typical cities with daily rainfall more than 50mm showed an upward trend, and increased significantly after 2002. The intensity of precipitation increased gradually. Climate change makes urban agglomeration waterlogging disasters become increasingly prominent in the middle and lower reaches of the Yangtze River.

  6. Occurrence of pharmaceuticals and personal care products and associated environmental risks in the central and lower Yangtze river, China.

    PubMed

    Wu, Chenxi; Huang, Xiaolong; Witter, Jason D; Spongberg, Alison L; Wang, Kexiong; Wang, Ding; Liu, Jiantong

    2014-08-01

    Pharmaceutical and personal care products (PPCPs) residues are being highlighted around the world as of emerging concern in surface waters. Here the occurrence of PPCPs in the central and lower Yangtze River, along with four large freshwater lakes within the river basin (Dongting, Poyang, Tai, and Chao) was reported. Fifteen out of twenty selected PPCPs were detected in the collected surface water samples. Caffeine, paraxanthine, sulfamethazine, and clindamycin were detected with 100 percent frequency in the Yangtze River. In the river, the highest average concentration was observed for erythromycin (296 ng L(-1)), followed by caffeine (142 ng L(-1)) and paraxanthine (41 ng L(-1)). In the four lakes, total PPCP concentrations were much higher in the Chao (1547 ng L(-1)) and Tai (1087 ng L(-1)) lakes compared to the Poyang (108 ng L(-1)) and Dongting (137 ng L(-1)) lakes. Lincomycin and clindamycin were most abundant in the lakes, especially in the Tai Lake. Environmental risk assessment for the worst case scenario was assessed using calculated risk quotients, and indicates a high environmental risk of erythromycin and clarithromycin in the Yangtze River, clarithromycin in the Chao Lake, and clindamycin in the Tai Lake. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. The geomorphology of the Mississippi River chenier plain

    USGS Publications Warehouse

    Penland, S.; Suter, J.R.

    1989-01-01

    The chenier plain of the Mississippi River is a shore-parallel zone of alternating transgressive clastic ridges separated by progradational mudflats. The term chenier is derived from the cajun term chene for oak, the tree species that colonizes the crests of the higher ridges. The Mississippi River chenier plain stretches 200 km from Sabine Pass, Texas, to Southwest Point, Louisiana and ranges between 20 and 30 km wide, with elevations of 2-6 m. The timing and the process of formation could be re-evaluated in the light of new chronostratigraphic findings in the Mississippi River delta plain. The stratigraphic relationship between the Teche and Lafourche delta complexes and Ship Shoal offshore indicates that these delta complexes belong to different delta plains that developed at different sealevels. It appears that the Teche delta complex is associated with the late Holocene delta plain which developed 7000 to 3000 yrs B.P. when sealevel stood 5-6 m lower than present. A regional transgression occurred between approximately 3000 BP and 2500 yrs B.P., leading to the transgressive submergence of the late Holocene delta plain, producing the regional Teche shoreline. The timing of this transgression conforms to the age of the most landward ridge in the chenier plain, the Little Chenier-Little Pecan Island trend, which dates at about 2500 yrs B.P. This ridge trend was originally interpreted as representing the Teche delta complex switching event with the landward Holocene/Pleistocene contact representing the high stand shoreline. The implication of this new interpretation is that the Little Chenier-Little Pecan Island trend represents the high stand shoreline, a continuation of the Teche shoreline separating the late Holocene and Recent delta plains, and that the Holocene/Pleistocene contact represents the leading edge of the marshes transgressing onto the Prairie Terrace. Significant mudflat progradation seems to require a westerly position of the Mississippi River

  8. Is ENSO related to 2015 Easter Star Capsized on the Yangtze River of China?

    NASA Astrophysics Data System (ADS)

    Xie, P.

    2015-12-01

    Natural disasters have profound effects on community security and economic damage of China's Hubei province. In June 1st, 2015, a cruise ship, Easter Star, capsized on Yangtze River in Hubei province with 442 died. What reason gives rise to such strong convection causing ship sunk? Based on the wind disasters of Hubei province happened in 1963-2015, this study analyzes their features bytime-series regression, and correlates them to global El Niño/Southern Oscillation (ENSO) events. The compared results demonstrated that the wind disasters shown an increasing tendency. There are two peaks corresponding to the strongest ENSO peaks during the past 50 years; each peak lasts two-three years. The facts demonstrated an essential linear relation between the ENSO phenomena and wind disasters in Hubei province. 2015 Easter Star capsized happened at current El Niño event in 2014-2015. We also observed that the historical wind disasters appeared in seasonal variation. Over 90% events concentrated in spring and summer; very few events happened in autumn and winter. Moreover, the disasters depend on the geographic conditions. Most disasters concentrated in four zones, named as Xingshan-Baokang, Xuanen, Wufeng-Yichang, Jingzhou-Gongan, in which Xingshan and Changyang are the two most density of zones. Yangtze River provides an air flowing conduct for strong convective winds. It can be concluded that the strong convection causing 2015 Easter Star capsized is related to current global ENSO phenomenon.Keywords: ENSO, wind disaster, time-series regression analysis, Easter Star, Yangtze River, Hubei Province,

  9. Genetic Diversity of Daphnia pulex in the Middle and Lower Reaches of the Yangtze River

    PubMed Central

    Wang, Wenping; Zhang, Kun; Deng, Daogui; Zhang, Ya-Nan; Peng, Shuixiu; Xu, Xiaoxue

    2016-01-01

    Increased human activities and environmental changes may lead to genetic diversity variations of Cladocerans in water. Daphnia pulex are distributed throughout the world and often regarded as a model organism. The 16S rDNA, cytochrome c oxidase subunit I (COI), and 18S genes were used as molecular marks. The genetic diversity and phylogeny of D. pulex obtained from 10 water bodies in the middle and lower reaches of the Yangtze River were studied. For 16S rDNA, COI gene, and 18S gene, the A+T content (65.4%, 58.4%, and 54.6%) was significantly higher than the G+C content (34.6%, 41.6% and 45.4%). This result was consistent with higher A and T contents among invertebrates. Based on the genetic distances of 16S rDNA and COI genes, the genetic differences of D. pulex from 10 water bodies located in the middle and lower reaches of the Yangtze River in China was minimal (0%–0.8% for 16S rDNA and 0%–1.5% for COI gene). However, D. pulex evolved into two branches in the phylogenetic trees, which coincided with its geographical distribution. Compared with D. pulex from other countries, the average genetic distance of D. pulex obtained from 10 water bodies in the middle and lower reaches of the Yangtze River reached 9.1%–10.5%, thereby indicating that D. pulex may have evolved into different subspecies. PMID:27015539

  10. Decreasing reference evapotranspiration in a warming climate - A case of Changjiang (Yangtze) River catchment during 1970-2000

    NASA Astrophysics Data System (ADS)

    Xu, C. Y.; Gong, L. B.; Tong, J.; Chen, D. L.

    2006-07-01

    This study deals with temporal trends in the Penman-Monteith reference evapotranspiration estimated from standard meteorological observations, observed pan evaporation, and four related meteorological variables during 1970-2000 in the Yangtze River catchment. Relative contributions of the four meteorological variables to changes in the reference evapotranspiration are quantified. The results show that both the reference evapotranspiration and the pan evaporation have significant. decreasing trends in the upper, the middle as well as in the whole Changjiang (Yangtze) River catchment at the 5% significance level, while the air temperature shows a significant increasing trend. The decreasing trend detected in the reference evapotranspiration can be attributed to the significant decreasing trends in the net radiation and the wind speed.

  11. Ship-based MAX-DOAS measurements of tropospheric NO2, SO2, and HCHO distribution along the Yangtze River

    NASA Astrophysics Data System (ADS)

    Hong, Qianqian; Liu, Cheng; Chan, Ka Lok; Hu, Qihou; Xie, Zhouqing; Liu, Haoran; Si, Fuqi; Liu, Jianguo

    2018-04-01

    In this paper, we present ship-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of tropospheric trace gases' distribution along the Yangtze River during winter 2015. The measurements were performed along the Yangtze River between Shanghai and Wuhan, covering major industrial areas in eastern China. Tropospheric vertical column densities (VCDs) of nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) were retrieved using the air mass factor calculated by the radiative transfer model. Enhanced tropospheric NO2 and SO2 VCDs were detected over downwind areas of industrial zones over the Yangtze River. In addition, spatial distributions of atmospheric pollutants are strongly affected by meteorological conditions; i.e., positive correlations were found between concentration of pollutants and wind speed over these areas, indicating strong influence of transportation of pollutants from high-emission upwind areas along the Yangtze River. Comparison of tropospheric NO2 VCDs between ship-based MAX-DOAS and Ozone Monitoring Instrument (OMI) satellite observations shows good agreement with each other, with a Pearson correlation coefficient (R) of 0.82. In this study, the NO2 / SO2 ratio was used to estimate the relative contributions of industrial sources and vehicle emissions to ambient NO2 levels. Analysis results of the NO2 / SO2 ratio show a higher contribution of industrial NO2 emissions in Jiangsu Province, while NO2 levels in Jiangxi and Hubei provinces are mainly related to vehicle emissions. These results indicate that different pollution control strategies should be applied in different provinces. In addition, multiple linear regression analysis of ambient carbon monoxide (CO) and odd oxygen (Ox) indicated that the primary emission and secondary formation of HCHO contribute 54.4 ± 3.7 % and 39.3 ± 4.3 % to the ambient HCHO, respectively. The largest contribution from primary emissions in winter suggested that

  12. Assessing the potential for change in the middle Yangtze River channel following impoundment of the Three Gorges Dam

    NASA Astrophysics Data System (ADS)

    Yuan, Wenhao; Yin, Daowei; Finlayson, Brian; Chen, Zhongyuan

    2012-04-01

    The geomorphic impacts of dams on downstream river channels are complex, not readily predictable for specific cases, but widely reported in the literature. For the Three Gorges Dam on the Yangtze (Changjiang) River in China, no studies of the impact of the changed flow and sediment conditions below the dam on the behaviour of the channel were included in the pre-dam feasibility report. We have assembled a database of flow and sediment data for the middle Yangtze River from Yichang to Hankou and used this to analyse changes following the closure of the dam. While total flow is little affected, the operating strategy for the dam that provides for storage of part of the summer high flows to maintain hydroelectric power generation in winter (the low flow season) is reflected in changes to the seasonal distribution of flow below the dam. We calculated potential sediment carrying capacity and compared it with measured sediment concentrations for both pre- and post-dam conditions. While channel sedimentation is indicated along the middle Yangtze for pre-dam conditions, scour is indicated for post-dam conditions, highest at Yichang immediately below the dam and decreasing downstream.

  13. Effect of conservation efforts and ecological variables on waterbird population sizes in wetlands of the Yangtze River

    PubMed Central

    Zhang, Yong; Jia, Qiang; Prins, Herbert H. T.; Cao, Lei; de Boer, Willem Frederik

    2015-01-01

    Forage quality and availability, climatic factors, and a wetland’s conservation status are expected to affect the densities of wetland birds. However, the conservation effectiveness is often poorly studied. Here, using twelve years’ census data collected from 78 wetlands in the Yangtze River floodplain, we aimed to understand the effect of these variables on five Anatidae species, and evaluate the effectiveness of the conservation measures by comparing population trends of these species among wetlands that differ in conservations status. We showed that the slope angle of a wetland and the variation thereof best explain the differences in densities of four species. We also found that the population abundances of the Anatidae species generally declined in wetlands along the Yangtze River floodplain over time, with a steeper decline in wetlands with a lower protection status, indicating that current conservation policies might deliver benefits for wintering Anatidae species in China, as population sizes of the species were buffered to some extent against decline in numbers in wetlands with a higher level protection status. We recommend several protection measures to stop the decline of these Anatidae species in wetlands along the Yangtze River floodplain, which are of great importance for the East Asian-Australasian Flyway. PMID:26601785

  14. Effect of conservation efforts and ecological variables on waterbird population sizes in wetlands of the Yangtze River

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Jia, Qiang; Prins, Herbert H. T.; Cao, Lei; de Boer, Willem Frederik

    2015-11-01

    Forage quality and availability, climatic factors, and a wetland’s conservation status are expected to affect the densities of wetland birds. However, the conservation effectiveness is often poorly studied. Here, using twelve years’ census data collected from 78 wetlands in the Yangtze River floodplain, we aimed to understand the effect of these variables on five Anatidae species, and evaluate the effectiveness of the conservation measures by comparing population trends of these species among wetlands that differ in conservations status. We showed that the slope angle of a wetland and the variation thereof best explain the differences in densities of four species. We also found that the population abundances of the Anatidae species generally declined in wetlands along the Yangtze River floodplain over time, with a steeper decline in wetlands with a lower protection status, indicating that current conservation policies might deliver benefits for wintering Anatidae species in China, as population sizes of the species were buffered to some extent against decline in numbers in wetlands with a higher level protection status. We recommend several protection measures to stop the decline of these Anatidae species in wetlands along the Yangtze River floodplain, which are of great importance for the East Asian-Australasian Flyway.

  15. Effect of conservation efforts and ecological variables on waterbird population sizes in wetlands of the Yangtze River.

    PubMed

    Zhang, Yong; Jia, Qiang; Prins, Herbert H T; Cao, Lei; de Boer, Willem Frederik

    2015-11-25

    Forage quality and availability, climatic factors, and a wetland's conservation status are expected to affect the densities of wetland birds. However, the conservation effectiveness is often poorly studied. Here, using twelve years' census data collected from 78 wetlands in the Yangtze River floodplain, we aimed to understand the effect of these variables on five Anatidae species, and evaluate the effectiveness of the conservation measures by comparing population trends of these species among wetlands that differ in conservations status. We showed that the slope angle of a wetland and the variation thereof best explain the differences in densities of four species. We also found that the population abundances of the Anatidae species generally declined in wetlands along the Yangtze River floodplain over time, with a steeper decline in wetlands with a lower protection status, indicating that current conservation policies might deliver benefits for wintering Anatidae species in China, as population sizes of the species were buffered to some extent against decline in numbers in wetlands with a higher level protection status. We recommend several protection measures to stop the decline of these Anatidae species in wetlands along the Yangtze River floodplain, which are of great importance for the East Asian-Australasian Flyway.

  16. [Temporal and spatial distribution of red tide in Yangtze River Estuary and adjacent waters].

    PubMed

    Liu, Lu-San; Li, Zi-Cheng; Zhou, Juan; Zheng, Bing-Hui; Tang, Jing-Liang

    2011-09-01

    The events of red tide were collected in Yangtze River Estuary and adjacent waters from 1972 to 2009. Based on geographic information system (GIS) analysis on the temporal and spatial distribution of red tide, the distribution map was generated accordingly. The results show: (1) There are three red tide-prone areas, which are outside the Yangtze River estuary and the eastern of Sheshan, Huaniaoshan-Shengshan-Gouqi, Zhoushan and the eastern of Zhujiajian. The red tide occurred 174 times in total, in which there were 25 times covered the area was larger than 1 000 km2. After 2000, the frequency of red tide were significantly increasing; (2) The frequent occurrence of red tide was in May (51% of total occurrence) and June (20% of total occurrence); (3) In all of the red tide plankton, the dominant species were Prorocentrum danghaiense, Skeletonema costatum, Prorocentrum dantatum, Nactiluca scientillans. The red tides caused by these species were 38, 35, 15, 10 times separately.

  17. Direct Detection of Potential Pyrethroids in Yangtze River via an Imprinted Multilayer Phosphorescence Probe.

    PubMed

    Chen, Li; Lv, Xiaodong; Dai, Jiangdong; Sun, Lin; Huo, Pengwei; Li, Chunxiang; Yan, Yongsheng

    2018-01-01

    A novel tailored multilayer probe for monitoring potential pyrethroids in the Yangtze River was proposed. The room-temperature phosphorescence method was applied to realize a detection strategy that is superior to the fluorescence method. Efficient Mn-doped ZnS quantum dots with uniform size of 4.6 nm were firstly coated with a mesoporous silica to obtain a suitable intermediate transition layer, then an imprinted layer containing bifenthrin specific recognition sites was anchored. Characterizations verified the multilayer structure convincingly and the detection process relied on the electron transfer-induced fluorescence quenching mechanism. Optional detection time and standard detection curve were obtained within a concentration range from 5.0 to 50 μmol L -1 . The stability was verified to be good after 12 replicates. Feasibility of the probe was proved by monitoring water samples from the Zhenjiang reach of the Yangtze River. The probe offers promise for direct bifenthrin detection in unknown environmental water with an accurate and stable phosphorescence analysis strategy.

  18. Identification of long-term trends and seasonality in high-frequency water quality data from the Yangtze River basin, China

    PubMed Central

    He, Bin; Chen, Yaning; Zou, Shan; Wang, Yi; Nover, Daniel; Chen, Wen; Yang, Guishan

    2018-01-01

    Comprehensive understanding of the long-term trends and seasonality of water quality is important for controlling water pollution. This study focuses on spatio-temporal distributions, long-term trends, and seasonality of water quality in the Yangtze River basin using a combination of the seasonal Mann-Kendall test and time-series decomposition. The used weekly water quality data were from 17 environmental stations for the period January 2004 to December 2015. Results show gradual improvement in water quality during this period in the Yangtze River basin and greater improvement in the Uppermost Yangtze River basin. The larger cities, with high GDP and population density, experienced relatively higher pollution levels due to discharge of industrial and household wastewater. There are higher pollution levels in Xiang and Gan River basins, as indicated by higher NH4-N and CODMn concentrations measured at the stations within these basins. Significant trends in water quality were identified for the 2004–2015 period. Operations of the three Gorges Reservoir (TGR) enhanced pH fluctuations and possibly attenuated CODMn, and NH4-N transportation. Finally, seasonal cycles of varying strength were detected for time-series of pollutants in river discharge. Seasonal patterns in pH indicate that maxima appear in winter, and minima in summer, with the opposite true for CODMn. Accurate understanding of long-term trends and seasonality are necessary goals of water quality monitoring system efforts and the analysis methods described here provide essential information for effectively controlling water pollution. PMID:29466354

  19. Identification of long-term trends and seasonality in high-frequency water quality data from the Yangtze River basin, China.

    PubMed

    Duan, Weili; He, Bin; Chen, Yaning; Zou, Shan; Wang, Yi; Nover, Daniel; Chen, Wen; Yang, Guishan

    2018-01-01

    Comprehensive understanding of the long-term trends and seasonality of water quality is important for controlling water pollution. This study focuses on spatio-temporal distributions, long-term trends, and seasonality of water quality in the Yangtze River basin using a combination of the seasonal Mann-Kendall test and time-series decomposition. The used weekly water quality data were from 17 environmental stations for the period January 2004 to December 2015. Results show gradual improvement in water quality during this period in the Yangtze River basin and greater improvement in the Uppermost Yangtze River basin. The larger cities, with high GDP and population density, experienced relatively higher pollution levels due to discharge of industrial and household wastewater. There are higher pollution levels in Xiang and Gan River basins, as indicated by higher NH4-N and CODMn concentrations measured at the stations within these basins. Significant trends in water quality were identified for the 2004-2015 period. Operations of the three Gorges Reservoir (TGR) enhanced pH fluctuations and possibly attenuated CODMn, and NH4-N transportation. Finally, seasonal cycles of varying strength were detected for time-series of pollutants in river discharge. Seasonal patterns in pH indicate that maxima appear in winter, and minima in summer, with the opposite true for CODMn. Accurate understanding of long-term trends and seasonality are necessary goals of water quality monitoring system efforts and the analysis methods described here provide essential information for effectively controlling water pollution.

  20. [Distribution and source of particulate organic carbon and particulate nitrogen in the Yangtze River Estuary in summer 2012].

    PubMed

    Xing, Jian-Wei; Xian, Wei-Wei; Sheng, Xiu-Zhen

    2014-07-01

    Based on the data from the cruise carried out in August 2012 in the Yangtze River Estuary and its adjacent waters, spatial distributions of particulate organic carbon (POC), particulate nitrogen (PN) and their relationships with environmental factors were studied, and the source of POC and the contribution of phytoplankton to POC were analyzed combined with n (C)/n (N) ratio and chlorophyll a (Chl a) in the Yangtze River Estuary in summer 2012. The results showed that the concentrations of POC in the Yangtze River Estuary ranged from 0.68 mg x L(-1) to 34.80 mg x L(-1) in summer and the average content was 3.74 mg x L(-1), and PN contents varied between 0.03 mg x L(-1) and 9.13 mg x L(-1) with an average value of 0.57 mg x L(-1). Both of them presented that the concentrations in bottom layers were higher than those in the surface. POC and PN as well as total suspended matter (TSM) showed a extremel similar horizontal distribution trend that the highest values appeared in the near of the mouth and southwest of the survey waters, and decreased rapidly as toward the open seas, both of them showed higher contents in coastal zones and lower in outer sea. There was a fairly good positive linear relationship between POC and PN, which indicated that they had the same source. POC and PN expressed significantly positive correlations with TSM and chemical oxygen demand (COD), but showed relatively weak correlations with salinit and chlorophyll a, which demonstrated that terrestrial inputs had a strong influence on the distribution of POC and PN, and phytoplankton production was not the major source of organic matters in the Yangtze River Estuary. Both the n (C)/n (N) ratio and POC/Chl a analysis showed that the main source of POC was terrestrial inputs, and organic debris was the main existence form of POC. Quantitative analysis showed the biomass of phytoplankton only made an average of 2.54% contribution to POC in the Yangtze Rive Estuary in summer and non-living POC

  1. Polychlorinated dibenzo-p-dioxins, dibenzofurans, and dioxin-like polychlorinated biphenyls in sediments from the Yellow and Yangtze Rivers, China.

    PubMed

    Gao, Lirong; Huang, Huiting; Liu, Lidan; Li, Cheng; Zhou, Xin; Xia, Dan

    2015-12-01

    Polychlorinated dibenzodioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) are toxic environmental pollutants that are often found in sediments. The Yangtze and Yellow rivers in China are two of the largest rivers in Asia and are therefore important aquatic ecosystems; however, few studies have investigated the PCDD/F and PCB content in the sediments of these rivers. Accordingly, this study was conducted to generate baseline data for future environmental risk assessments. In the present study, 26 surface sediments from the middle reaches of the Yellow and Yangtze rivers were analyzed for PCDD/Fs and dioxin-like (dl) PCBs by high-resolution gas chromatography and high-resolution mass spectrometry. The ranges of PCDD/F, dl-PCB, and WHO-TEQ content in sediments from the Yellow River were 2.1-19.8, 1.11-9.9, and 0.08-0.57 pg/g (dry weight), respectively. The ranges of PCDD/F, dl-PCB, and WHO-TEQ content in sediments from the Yangtze River were 6.1-84.9, 1.8-24.1, and 0.13-0.29 pg/g (dry weight), respectively. Total organic carbon and dl-PCB contents in the Yellow River were significantly correlated (Spearman's correlation coefficient, r = 0.64, P < 0.05). It is well known that total organic carbon plays a role in the transport and redistribution of dl-PCB. Principal component analysis indicated that PCDD/Fs may arise from pentachlorophenol, sodium pentachlorophenate, and atmospheric deposition, while dl-PCBs likely originate from burning of coal and wood for domestic heating. The dioxin levels in the river sediments examined in this study were relatively low. These findings advance our knowledge regarding eco-toxicity and provide useful information regarding contamination sources.

  2. Human impacts on sediment in the Yangtze River: A review and new perspectives

    NASA Astrophysics Data System (ADS)

    Yang, H. F.; Yang, S. L.; Xu, K. H.; Milliman, J. D.; Wang, H.; Yang, Z.; Chen, Z.; Zhang, C. Y.

    2018-03-01

    Changes in riverine suspended and riverbed sediments have environmental, ecological and social implications. Here, we provide a holistic review of water and sediment transport and examine the human impacts on the flux, concentration and size of sediment in the Yangtze River in recent decades. We find that most of the fluvial sediment has been trapped in reservoirs, except for the finest portion. Furthermore, soil-conservation since the 1990s has reduced sediment yield. From 1956-1968 (pre-dam period) to 2013-2015 (post-dams and soil-conservation), the sediment discharge from the sub-basins decreased by 91%; in the main river, the sediment flux decreased by 99% at Xiangjiaba (upper reach), 97% at Yichang (transition between upper and middle reaches), 83% at Hankou (middle reach), and 77% at Datong (tidal limit). Because the water discharge was minimally impacted, the suspended sediment concentration decreased to the same extent as the sediment flux. Active erosion of the riverbed and coarsening of surficial sediments were observed in the middle and lower reaches. Fining of suspended sediments was identified along the river, which was counteracted by downstream erosion. Along the 700-km-long Three Gorges Reservoir, which retained 80% of the sediment from upstream, the riverbed gravel or rock was buried by mud because of sedimentation after impoundment. Along with these temporal variations, the striking spatial patterns of riverine suspended and riverbed sediments that were previously exhibited in this large basin were destroyed or reversed. Therefore, we conclude that the human impacts on sediment in the Yangtze River are strong and systematic.

  3. Predicting assemblages and species richness of endemic fish in the upper Yangtze River.

    PubMed

    He, Yongfeng; Wang, Jianwei; Lek-Ang, Sithan; Lek, Sovan

    2010-09-01

    The present work describes the ability of two modeling methods, Classification and Regression Tree (CART) and Random Forest (RF), to predict endemic fish assemblages and species richness in the upper Yangtze River, and then to identify the determinant environmental factors contributing to the models. The models included 24 predictor variables and 2 response variables (fish assemblage and species richness) for a total of 46 site units. The predictive quality of the modeling approaches was judged with a leave-one-out validation procedure. There was an average success of 60.9% and 71.7% to assign each site unit to the correct assemblage of fish, and 73% and 84% to explain the variance in species richness, by using CART and RF models, respectively. RF proved to be better than CART in terms of accuracy and efficiency in ecological applications. In any case, the mixed models including both land cover and river characteristic variables were more powerful than either individual one in explaining the endemic fish distribution pattern in the upper Yangtze River. For instance, altitude, slope, length, discharge, runoff, farmland and alpine and sub-alpine meadow played important roles in driving the observed endemic fish assemblage structure, while farmland, slope grassland, discharge, runoff, altitude and drainage area in explaining the observed patterns of endemic species richness. Therefore, the various effects of human activity on natural aquatic ecosystems, in particular, the flow modification of the river and the land use changes may have a considerable effect on the endemic fish distribution patterns on a regional scale. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Trends and variability of daily precipitation extremes during 1960-2012 in the Yangtze River Basin, China

    USDA-ARS?s Scientific Manuscript database

    Trends and variability of extreme precipitation events are important for water-related disaster prevention and mitigation as well as water resource management. Based on daily precipitation dataset from 143 meteorological stations in the Yangtze River Basin (YRB), a suite of precipitation indices rec...

  5. Linkages between the spatial toxicity of sediments and sediment dynamics in the Yangtze River Estuary and neighboring East China Sea.

    PubMed

    Gao, Jinjuan; Shi, Huahong; Dai, Zhijun; Mei, Xuefei; Zong, Haibo; Yang, Hongwei; Hu, Lingling; Li, Shushi

    2018-02-01

    Anthropogenic activities are driving an increase in sediment contamination in coastal areas. This poses significant challenges for the management of estuarine ecosystems and their adjacent seas worldwide. However, few studies have been conducted on how dynamic mechanisms affect the sediment toxicity in the estuarine environment. This study was designed to investigate the linkages between sediment toxicity and hydrodynamics in the Yangtze River Estuary (YRE) area. High sediment toxicity was found in the Yangtze River mouth (Region I), the depocenter of the Yangtze River Delta (Region II), and the southeastern area of the adjacent sea (Region III), while low sediment toxicity was found in the northeastern offshore region (Region IV). A spatial comparison analysis and regression model indicated that the distributed pattern of sediment toxicity was likely related to hydrodynamics and circumfluence in the East China Sea (ECS) shelf. Specifically, high sediment toxicity in Region I may be affected by the Yangtze River Pump (YRP) and the low hydrodynamics there, and high toxicity in Region II can be influenced by the low sediment dynamics and fine sediment in the depocenter. The high sediment toxicity in Region III might be related to the combination of the YRP and Taiwan Warm Current, while the low toxicity in Region IV may be influenced by the local coarse-grained relict sand with strong sediment dynamics there. The present research results further suggest that it is necessary to link hydrodynamics and the spatial behavior of sediment and sediment-derived pollutants when assessing the pollution status of estuarine environments, especially for those mega-estuaries and their neighboring ocean environments with complex waves, tides and ocean currents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Modeling the spatial-temporal dynamics of net primary production in Yangtze River Basin using IBIS model

    USGS Publications Warehouse

    Zhang, Z.; Jiang, H.; Liu, J.; Zhu, Q.; Wei, X.; Jiang, Z.; Zhou, G.; Zhang, X.; Han, J.

    2011-01-01

    The climate change has significantly affected the carbon cycling in Yangtze River Basin. To better understand the alternation pattern for the relationship between carbon cycling and climate change, the net primary production (NPP) were simulated in the study area from 1956 to 2006 by using the Integrated Biosphere Simulator (IBIS). The results showed that the average annual NPP per square meter was about 0.518 kg C in Yangtze River Basin. The high NPP levels were mainly distributed in the southeast area of Sichuan, and the highest value reached 1.05 kg C/m2. The NPP increased based on the simulated temporal trends. The spatiotemporal variability of the NPP in the vegetation types was obvious, and it was depended on the climate and soil condition. We found the drought climate was one of critical factor that impacts the alterations of the NPP in the area by the simulation. ?? 2011 IEEE.

  7. Satellite remote sensing of water resources in the Yangtze and Yellow Rivers of China based on infrared imagery of cloud distributions

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Dodge, James C.

    1990-01-01

    Although the two largest rivers in China originate in the same region, separated only by the Bayanhar Mountains as a watershed, the Yangtze and Yellow Rivers behave in quite different ways. Most of the warm and humid air currents from the Arabian Sea and Bay of Bengal are blocked by the Bayanhar Mountains. As a result, the amount of water in the Yellow River is only 5 percent of that in the Yangtze River. Based on the cloud coverage area and the cloud volumetric distributions, and also the thickness above 9.4 kms of the cumulus clouds located north and south of the Bayanhar Mountains, from GEO satellite IR imagery, the results suggest that a more detailed investigation is warranted in the hope that the proper modification of cumuli north of the Bayanhar Mountains would enhance the rainfall over the fountainhead of the Yellow River.

  8. Capacity of humic substances to complex with iron at different salinities in the Yangtze River estuary and East China Sea.

    PubMed

    Yang, Rujun; Su, Han; Qu, Shenglu; Wang, Xuchen

    2017-05-03

    The iron binding capacities (IBC) of fulvic acid (FA) and humic acid (HA) were determined in the salinity range from 5 to 40. The results indicated that IBC decreased while salinity increased. In addition, dissolved iron (dFe), FA and HA were also determined along the Yangtze River estuary's increasing salinity gradient from 0.14 to 33. The loss rates of dFe, FA and HA in the Yangtze River estuary were up to 96%, 74%, and 67%, respectively. The decreases in dFe, FA and HA, as well as the change in IBC of humic substances (HS) along the salinity gradient in the Yangtze River estuary were all well described by a first-order exponential attenuation model: y(dFe/FA/HA, S) = a 0 × exp(kS) + y 0 . These results indicate that flocculation of FA and HA along the salinity gradient resulted in removal of dFe. Furthermore, the exponential attenuation model described in this paper can be applied in the major estuaries of the world where most of the removal of dFe and HS occurs where freshwater and seawater mix.

  9. A Gridded Daily Min/Max Temperature Dataset With 0.1° Resolution for the Yangtze River Valley and its Error Estimation

    NASA Astrophysics Data System (ADS)

    Xiong, Qiufen; Hu, Jianglin

    2013-05-01

    The minimum/maximum (Min/Max) temperature in the Yangtze River valley is decomposed into the climatic mean and anomaly component. A spatial interpolation is developed which combines the 3D thin-plate spline scheme for climatological mean and the 2D Barnes scheme for the anomaly component to create a daily Min/Max temperature dataset. The climatic mean field is obtained by the 3D thin-plate spline scheme because the relationship between the decreases in Min/Max temperature with elevation is robust and reliable on a long time-scale. The characteristics of the anomaly field tend to be related to elevation variation weakly, and the anomaly component is adequately analyzed by the 2D Barnes procedure, which is computationally efficient and readily tunable. With this hybridized interpolation method, a daily Min/Max temperature dataset that covers the domain from 99°E to 123°E and from 24°N to 36°N with 0.1° longitudinal and latitudinal resolution is obtained by utilizing daily Min/Max temperature data from three kinds of station observations, which are national reference climatological stations, the basic meteorological observing stations and the ordinary meteorological observing stations in 15 provinces and municipalities in the Yangtze River valley from 1971 to 2005. The error estimation of the gridded dataset is assessed by examining cross-validation statistics. The results show that the statistics of daily Min/Max temperature interpolation not only have high correlation coefficient (0.99) and interpolation efficiency (0.98), but also the mean bias error is 0.00 °C. For the maximum temperature, the root mean square error is 1.1 °C and the mean absolute error is 0.85 °C. For the minimum temperature, the root mean square error is 0.89 °C and the mean absolute error is 0.67 °C. Thus, the new dataset provides the distribution of Min/Max temperature over the Yangtze River valley with realistic, successive gridded data with 0.1° × 0.1° spatial resolution and

  10. Variation of River Islands around a Large City along the Yangtze River from Satellite Remote Sensing Images

    PubMed Central

    Shi, Haiyun; Gao, Chao; Dong, Changming; Xia, Changshui; Xu, Guanglai

    2017-01-01

    River islands are sandbars formed by scouring and silting. Their evolution is affected by several factors, among which are runoff and sediment discharge. The spatial-temporal evolution of seven river islands in the Nanjing Section of the Yangtze River of China was examined using TM (Thematic Mapper) and ETM (Enhanced Thematic Mapper)+ images from 1985 to 2015 at five year intervals. The following approaches were applied in this study: the threshold value method, binarization model, image registration, image cropping, convolution and cluster analysis. Annual runoff and sediment discharge data as measured at the Datong hydrological station upstream of Nanjing section were also used to determine the roles and impacts of various factors. The results indicated that: (1) TM/ETM+ images met the criteria of information extraction of river islands; (2) generally, the total area of these islands in this section and their changing rate decreased over time; (3) sediment and river discharge were the most significant factors in island evolution. They directly affect river islands through silting or erosion. Additionally, anthropocentric influences could play increasingly important roles. PMID:28953218

  11. Rhenium Concentration Variations in the Non-flood Period of the Yangtze River Water and Estimation of the Oxidation Rate of Organic Carbon

    NASA Astrophysics Data System (ADS)

    Xu, P.; Chen, Y.; Li, S.; Wang, K.

    2017-12-01

    In geological history, the uplift of the Tibet plateau has accelerated the silicate weathering and organic carbon burial at the same time, which made great influence on the global carbon cycle by increasing the carbon sink. Because of the vital connection between tectonic uplift and carbon cycle, more and more attention was casted on rivers originating from orogens. The Yangtze River, as an important large river in the world, is one of them. However, although silicate weathering has been studied thoroughly, researches on organic carbon cycle are much less, and oxidation of fossil organic carbon remained poorly constrained. In this study, we try to use rhenium(Re) as a proxy to estimate the oxidation rate of fossil organic carbon and thus proceed our understanding towards the carbon cycle, the silicate weathering. This is because Re has a close relationship with organic carbon in the sediments and will be released into hydrological network in the mountain river catchments by being oxidized and exist as soluble ReO4-, so that we can use Re concentration in river water to estimate the oxidation rate of organic carbon. We collected water samples from the Yangtze River fortnightly at Banqiao Ferry and the sampling date cover the non-flood period. In this way, we are able to have a rough estimate of the amount of carbon dioxide that released to the atmosphere by the oxidation of organic carbon, using the data of non-flood period we got. We found that Re concentration in Yangtze River ranges approximately from 45 to 85 pmol/L. The rate of organic carbon weathering is estimated using the expression, ΦCO2,fossil=[Re]×runoff×[OC/Re]rock, and according to researches on the black shale of Yangtze River, the value 2.86×106 is chosen as the ratio OC(organic carbon) to Re in the black shale. The result is a really high flux, up to 152×109mol/y, just a little less than of the CO2 consumption rates from silicate weathering which is 191×109mol/y and about 166×109mol/y in non

  12. Genetic diversity of the Chinese goat in the littoral zone of the Yangtze River as assessed by microsatellite and mtDNA.

    PubMed

    E, Guang-Xin; Zhao, Yong-Ju; Chen, Li-Peng; Ma, Yue-Hui; Chu, Ming-Xing; Li, Xiang-Long; Hong, Qiong-Hua; Li, Lan-Hui; Guo, Ji-Jun; Zhu, Lan; Han, Yan-Guo; Gao, Hui-Jiang; Zhang, Jia-Hua; Jiang, Huai-Zhi; Jiang, Cao-De; Wang, Gao-Fu; Ren, Hang-Xing; Jin, Mei-Lan; Sun, Yuan-Zhi; Zhou, Peng; Huang, Yong-Fu

    2018-05-01

    The objective of this study was to assess the genetic diversity and population structure of goats in the Yangtze River region using microsatellite and mtDNA to better understand the current status of those goat genetic diversity and the effects of natural landscape in fashion of domestic animal genetic diversity. The genetic variability of 16 goat populations in the littoral zone of the Yangtze River was estimated using 21 autosomal microsatellites, which revealed high diversity and genetic population clustering with a dispersed geographical distribution. A phylogenetic analysis of the mitochondrial D-loop region (482 bp) was conducted in 494 goats from the Yangtze River region. In total, 117 SNPs were reconstructed, and 173 haplotypes were identified, 94.5% of which belonged to lineages A and B. Lineages C, D, and G had lower frequencies (5.2%), and lineage F haplotypes were undetected. Several high-frequency haplotypes were shared by different ecogeographically distributed populations, and the close phylogenetic relationships among certain low-frequency haplotypes indicated the historical exchange of genetic material among these populations. In particular, the lineage G haplotype suggests that some west Asian goat genetic material may have been transferred to China via Muslim migration.

  13. Urban Household Carbon Emission and Contributing Factors in the Yangtze River Delta, China

    PubMed Central

    Xu, Xibao; Tan, Yan; Chen, Shuang; Yang, Guishan; Su, Weizhong

    2015-01-01

    Carbon reduction at the household level is an integral part of carbon mitigation. This study analyses the characteristics, effects, contributing factors and policies for urban household carbon emissions in the Yangtze River Delta of China. Primary data was collected through structured questionnaire surveys in three cities in the region – Nanjing, Ningbo, and Changzhou in 2011. The survey data was first used to estimate the magnitude of household carbon emissions in different urban contexts. It then examined how, and to what extent, each set of demographic, economic, behavioral/cognitive and spatial factors influence carbon emissions at the household level. The average of urban household carbon emissions in the region was estimated to be 5.96 tonnes CO2 in 2010. Energy consumption, daily commuting, garbage disposal and long-distance travel accounted for 51.2%, 21.3%, 16.0% and 11.5% of the total emission, respectively. Regulating rapidly growing car-holdings of urban households, stabilizing population growth, and transiting residents’ low-carbon awareness to household behavior in energy saving and other spheres of consumption in the context of rapid population aging and the growing middle income class are suggested as critical measures for carbon mitigation among urban households in the Yangtze River Delta. PMID:25884853

  14. Snake River Plain FORGE Well Data for USGS-142

    DOE Data Explorer

    Robert Podgorney

    2015-11-23

    Well data for the USGS-142 well located in eastern Snake River Plain, Idaho. This data collection includes lithology reports, borehole logs, and photos of rhyolite core samples. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  15. Modal analysis of annual runoff volume and sediment load in the Yangtze river-lake system for the period 1956-2013.

    PubMed

    Chen, Huai; Zhu, Lijun; Wang, Jianzhong; Fan, Hongxia; Wang, Zhihuan

    2017-07-01

    This study focuses on detecting trends in annual runoff volume and sediment load in the Yangtze river-lake system. Times series of annual runoff volume and sediment load at 19 hydrological gauging stations for the period 1956-2013 were collected. Based on the Mann-Kendall test at the 1% significance level, annual sediment loads in the Yangtze River, the Dongting Lake and the Poyang Lake were detected with significantly descending trends. The power spectrum estimation indicated predominant oscillations with periods of 8 and 20 years are embedded in the runoff volume series, probably related to the El Niño Southern Oscillation (2-7 years) and Pacific Decadal Oscillation (20-30 years). Based on dominant components (capturing more than roughly 90% total energy) extracted by the proper orthogonal decomposition method, total change ratios of runoff volume and sediment load during the last 58 years were evaluated. For sediment load, the mean CRT value in the Yangtze River is about -65%, and those in the Dongting Lake and the Poyang Lake are -92.2% and -87.9% respectively. Particularly, the CRT value of the sediment load in the channel inflow of the Dongting Lake is even -99.7%. The Three Gorges Dam has intercepted a large amount of sediment load and decreased the sediment load downstream.

  16. Characterizing hydrological activities over Yangtze River basin using the new HUST-Grace2016 model, MODIS, and NCEP/NCAR data

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Luo, Z.; Tangdamrongsub, N.; He, L.

    2017-12-01

    Accurate TWS estimation is important to evaluate the situation of the water resource over the Yangtze River basin. This study exploits the TWS observation from the new gravity model, HUST-Grace06, which is developed by a new low-frequency noise processing strategy. A novel GRACE post-processing approach is proposed to enhance the quality of the TWS estimate, and the improved TWS is used to characterize the hydrological activities over the Yangtze River basin. The approach includes the effective noise reduction and the leakage error mitigation based on forward modeling. The HUST-Grace06 derived TWS presents good agreement with the CSR mascon solution as well as the PCR-GLOBWB hydrological model. Particularly, our solution provides remarkable performance in identifying the extreme climate events e.g., flood and drought over the Yangtze River basin. In addition, for the first time, the NCEP/NCAR reanalysis data is incorporated with GRACE in the exploration of the climate induced hydrological activities. The comparison between GRACE and the MODIS-derived NDVI data is also conducted to investigate their connection regarding temporal and spatial distribution. The analysis suggests that the terrestrial reflectance data can be used to represent the TWS information. Importantly, such information can be used to fill the missing data in case of the early termination of GRACE or during the prelaunch of the GRACE Follow-On mission.

  17. Will river erosion below the Three Gorges Dam stop in the middle Yangtze?

    NASA Astrophysics Data System (ADS)

    Lai, X.; Yin, D.; Finlayson, B. L.; Wei, T.; Li, M.; Yuan, W.; Yang, S.; Dai, Z.; Gao, S.; Chen, Z.

    2017-11-01

    The environmental impact of the Three Gorges Dam has been a subject of vigorous academic, political and social debate since its inception. This includes the key issue of post-dam river channel erosion, which was predicted by the feasibility study to extend to the river mouth. In this paper we examine the geomorphic response of the channel of the middle Yangtze for 660 km downstream of the dam. Using data on channel characteristics, bed material and sediment transport, we show that in the decade following the dam closure, pre-dam seasonal erosion has been replaced by year-round erosion, a pattern most marked at the upstream end of the study area. The sediment carrying capacity of the river channel has been largely reduced below the dam. The locus of bed scour has moved progressively downstream, ceasing as the bed material became too coarse to be transported (e.g. D50: 0.29 mm pre-dam coarsened to 20 mm below the dam by 2008). About 400 km below the dam there is a reduction in channel slope that changes the sediment carrying capacity from 0.25 kg m-3 to only about 0.05 kg m-3, which is insufficient to move bed sediment. The new long-term hydro-morphological equilibrium that will be established in this section of the middle Yangtze will prevent the further incision downstream initiated by the Three Gorges Dam. The results suggest that the full extent of adverse environmental impact predicted by the pre-dam studies will not eventuate.

  18. Snake River Plain FORGE Well Data for WO-2

    DOE Data Explorer

    Robert Podgorney

    1991-07-29

    Well data for the WO-2 well located in eastern Snake River Plain, Idaho. This data collection includes lithology reports, borehole logs, temperature at depth data, neutron density and gamma data, and rock strength parameters for the WO-2 well. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  19. The asymmetric response of Yangtze river basin summer rainfall to El Niño/La Niña

    NASA Astrophysics Data System (ADS)

    Hardiman, Steven C.; Dunstone, Nick J.; Scaife, Adam A.; Bett, Philip E.; Li, Chaofan; Lu, Bo; Ren, Hong-Li; Smith, Doug M.; Stephan, Claudia C.

    2018-02-01

    The Yangtze river basin, in South East China, experiences anomalously high precipitation in summers following El Niño. This can lead to extensive flooding and loss of life. However, the response following La Niña has not been well documented. In this study, the response of Yangtze summer rainfall to El Niño/La Niña is found to be asymmetric, with no significant response following La Niña. The nature of this asymmetric response is found to be in good agreement with that simulated by the Met Office seasonal forecast system. Yangtze summer rainfall correlates positively with spring sea surface temperatures in the Indian Ocean and northwest Pacific. Indian Ocean sea surface temperatures are found to respond linearly to El Niño/La Niña, and to have a linear impact on Yangtze summer rainfall. However, northwest Pacific sea surface temperatures respond much more strongly following El Niño and, further, correlate more strongly with positive rainfall years. It is concluded that, whilst delayed Indian Ocean signals may influence summer Yangtze rainfall, it is likely that they do not lead to the asymmetric nature of the rainfall response to El Niño/La Niña.

  20. [Challenges and countermeasures of forestry schistosomiasis control programs in ecological priority of Yangtze River economic belt development].

    PubMed

    Ning, Su; Yong-Jie, Xu

    2016-12-13

    Relevant projects carried out within the Yangtze River economic belt on the impact of schistosomiasis epidemic and transmission are important issues for "ecological priority" in the process of implementing the strategy. The key problems of schistosomiasis epidemic risk, epidemic happening repeatedly, difficulty of rehabilitating Oncomelania hupensis snail control and schistosomiasis prevention forest, lag of evaluation system and platform construction, lack of basic research, et al. were analyzed in the Yangtze River economic belt taking "ecological priority" as the basis in this paper. Then corresponding countermeasures to these challenges were put forward so as to provide the reference for the national forestry schistosomiasis control programs, which include: execution of the comprehensive prevention and control strategy, scheming of the new round of forestry schistosomiasis control programs, strengthening schistosomiasis prevention and control, promoting productivity in existing forestry to consolidate and improve the achievements of previous forestry schistosomiasis control programs, and promoting the intensity of technological innovation to improve the technological level of forestry schistosomiasis control programs.

  1. Pu and 137Cs in the Yangtze River estuary sediments: distribution and source identification.

    PubMed

    Liu, Zhiyong; Zheng, Jian; Pan, Shaoming; Dong, Wei; Yamada, Masatoshi; Aono, Tatsuo; Guo, Qiuju

    2011-03-01

    Pu isotopes and (137)Cs were analyzed using sector field ICP-MS and γ spectrometry, respectively, in surface sediment and core sediment samples from the Yangtze River estuary. (239+240)Pu activity and (240)Pu/(239)Pu atom ratios (>0.18) shows a generally increasing trend from land to sea and from north to south in the estuary. This spatial distribution pattern indicates that the Pacific Proving Grounds (PPG) source Pu transported by ocean currents was intensively scavenged into the suspended sediment under favorable conditions, and mixed with riverine sediment as the water circulated in the estuary. This process is the main control for the distribution of Pu in the estuary. Moreover, Pu is also an important indicator for monitoring the changes of environmental radioactivity in the estuary as the river basin is currently the site of extensive human activities and the sea level is rising because of global climate changes. For core sediment samples the maximum peak of (239+240)Pu activity was observed at a depth of 172 cm. The sedimentation rate was estimated on the basis of the Pu maximum deposition peak in 1963-1964 to be 4.1 cm/a. The contributions of the PPG close-in fallout Pu (44%) and the riverine Pu (45%) in Yangtze River estuary sediments are equally important for the total Pu deposition in the estuary, which challenges the current hypothesis that the riverine Pu input was the major source of Pu budget in this area.

  2. Spatio-temporal pattern of schistosomiasis in Anhui Province, East China: Potential effect of the Yangtze River - Huaihe River Water Transfer Project.

    PubMed

    Cao, Zhi-Guo; Li, Si; Zhao, Ya-E; Wang, Tian-Ping; Bergquist, Robert; Huang, Yin-Yin; Gao, Feng-Hua; Hu, Yi; Zhang, Zhi-Jie

    2018-05-09

    Anhui Province has been one of typical epidemic areas of schistosomiasis in East China as a wide range of large lake and marshland regions provide an ideal environment for growth and reproduction of the intermediate snail host. With the completion of the Yangtze River-Huaihe River Water Transfer Project (YHWTP), launched by the end of 2016, the epidemic areas are expected to expand and controlling schistosomiasis remains a challenge. Based on annual surveillance data at the county level in Anhui for the period 2006-2015, spatial and temporal cluster analyses were conducted to assess the pattern of risk through spatial (Local Moran's I and flexible scan statistic) and space-time scan statistic (Kulldorff). It was found that schistosomiasis sero-prevalence was dramatically reduced and maintained at a low level. Cluster results showed that spatial extent of schistosomiasis contracted, but snail distribution remained geographically stable across the study area. Clusters, both for schistosomiasis and snail presence, were common along the Yangtze River. Considering the effect of the ongoing YHWTP on the potential spread of schistosomiasis, Zongyang County and Anqing, which will be transected by the new water-transfer route, should be given a priority for strengthened surveillance and control. Attention should also be paid to Guichi since it is close to one of the planned inlets of the YHWTP. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Study on the Evaluation of Economic Support Index for Pig Breeding in Water Network Area of Middle Reaches of Yangtze River

    NASA Astrophysics Data System (ADS)

    Leng, Bi-Bin; Zhang, Qi-zhen; Lai, Wen-wei; Tang, Xin-Fan

    2018-06-01

    The central region of China boasts a long history, abundant resources, convenient transportation, advanced economy, a strong industrial and agricultural foundation and a rapid development of modern service industry, with about 10.7% of the country's total land area, 26.5% of the country's population and a GDP of about 21.4% of the country's total . As the population center, transportation hub, economic hinterland and important market, it is the second echelon of China's economic development; the central region of China plays an important role in the division of labor in China. The middle reaches of the Yangtze River water network includes four neighboring provinces- Hubei, Hunan, Anhui and Jiangxi. Although all four provinces are located in the middle of the Yangtze River Basin, there are still quite some differences. Based on the 2017 Statistical Yearbook data, this paper studies the economic supportive index of pig breeding in four provinces located in the water network area of the middle reaches of the Yangtze River in Jiangxi, Hubei, Hunan and Anhui. The evaluation results show that among the four provinces, the socio-economic conditions of Hubei Province can most support the large-scale cultivation of live pigs, and the support of Jiangxi Province is the weakest.

  4. Snake River Plain FORGE Well Data for INEL-1

    DOE Data Explorer

    Robert Podgorney

    1979-03-01

    Well data for the INEL-1 well located in eastern Snake River Plain, Idaho. This data collection includes caliper logs, lithology reports, borehole logs, temperature at depth data, neutron density and gamma data, full color logs, fracture analysis, photos, and rock strength parameters for the INEL-1 well. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  5. Atmospheric deposition and air-sea gas exchange fluxes of DDT and HCH in the Yangtze River Estuary, East China Sea

    NASA Astrophysics Data System (ADS)

    Li, Zhongxia; Lin, Tian; Li, Yuanyuan; Jiang, Yuqing; Guo, Zhigang

    2017-07-01

    The Yangtze River Estuary (YRE) is strongly influenced by the Yangtze River and lies on the pathway of the East Asian Monsoon. This study examined atmospheric deposition and air-sea gas exchange fluxes of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) to determine whether the YRE is a sink or source of selected pesticides at the air-water interface under the influences of river input and atmospheric transport. The air-sea gas exchange of DDT was characterized by net volatilization with a marked difference in its fluxes between summer (140 ng/m2/d) and the other three seasons (12 ng/m2/d), possibly due to the high surface seawater temperatures and larger riverine input in summer. However, there was no obvious seasonal variation in the atmospheric HCH deposition, and the air-sea gas exchange reached equilibrium because of low HCH levels in the air and seawater after the long-term banning of HCH and the degradation. The gas exchange flux of HCH was comparable to the dry and wet deposition fluxes at the air-water interface. This suggests that the influences from the Yangtze River input and East Asian continental outflow on the fate of HCH in the YRE were limited. The gas exchange flux of DDT was about fivefold higher than the total dry and wet deposition fluxes. DDT residues in agricultural soil transported by enhanced riverine runoff were responsible for sustaining such a high net volatilization in summer. Moreover, our results indicated that there were fresh sources of DDT from the local environment to sustain net volatilization throughout the year.

  6. Formation of A-type granites in the Lower Yangtze River Belt: A perspective from apatite geochemistry

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Yan; Li, He; Ding, Xing; Wu, Kai; Guo, Jia; Liu, Ji-Qiang; Sun, Wei-Dong

    2018-04-01

    Apatite is ubiquitous in A-type granites, and can be used to elucidate the volatile contents of the silicate melt, which reflect its source characteristics. A-type granites have been recognized as a distinct group of granites. A1- and A2-type subgroups are produced under different extensional settings. However, the details of the mechanisms behind the distinctive geochemical characteristics of A1- and A2-type granites remain obscure. Belts of Cretaceous A1- and A2-type granites occur along the Lower Yangtze River Belt in eastern China. Here we investigated the major and trace element compositions of apatites from contemporary A1- and A2-type granites at different localities along the Lower Yangtze River Belt, in order to decipher their discrepant source processes. Apatites from A1- and A2-type granites show similar major and trace elements, but differ in their F and Cl concentrations. Apatites from A1-type granites in the eastern part of the Lower Yangtze River Belt have much lower F and higher Cl concentrations compared to A2-type granites in the western part. Moreover, from the east to the west, the F concentrations of apatites from A1-type granites increase, while the Cl concentrations decline. In a subducted plate, F is retained by amphibole, chlorite, serpentine and mica minerals through the amphibolite stage, and finally by phengite and lawsonite during the eclogite stage, whereas, Cl is controlled by amphibole, chlorite and serpentine. The high and varied Cl concentrations in A1 subgroup apatites, therefore, may be attributed to the breakdown of amphibole, chlorite and/or serpentine decomposition during partial melting of subducted oceanic crust releasing a large amount of Cl at shallower depth. In contrast, F is transported to deeper depths in the subducted oceanic crust, and released through breakdown of phengite and lawsonite, making an important contribution to the formation of A2-type granites. Apatites from A1- and A2-type granite samples show regular

  7. Volcanism of the Eastern Snake River Plain, Idaho: A comparative planetary geology-guidebook

    NASA Technical Reports Server (NTRS)

    Greeley, R.; King, J. S.

    1977-01-01

    The Planetary Geology Field Conference on the central Snake River Plain was conceived and developed to accomplish several objectives. Primarily, field conferences are sponsored by the National Aeronautics and Space Administration to draw attention to aspects of terrestrial geology that appear to be important in interpreting the origin and evolution of extraterrestrial planetary surfaces. Another aspect is to present results of recent research in a region. A final objective of this conference is to bring together investigators of diverse backgrounds who share a common interest in the Snake River Plain. The Snake River Plain appears to be similar in surface morphology to many volcanic regions on the Moon, Mars, and possibly Mercury. Therefore, the Snake River Plain, in combination with the relatively good state of preservation, the lack of forests or other heavy vegetation, and the good network of jeep trails, is an area nearly ideal for analog studies.

  8. Fluvial terraces of the Little River Valley, Atlantic Coastal Plain, North Carolina

    Treesearch

    Bradley Suther; David Leigh; George Brook

    2011-01-01

    An optically-stimulated luminescence (OSL) and radiocarbon chronology is presented for fluvial terraces of the Little River, a tributary to the Cape Fear River that drains 880 km2 of the Sandhills Province of the upper Coastal Plain of North Carolina. This study differs from previous work in the southeastern Atlantic Coastal Plain in that numerical age estimates are...

  9. Thyroid hormone disrupting activities associated with phthalate esters in water sources from Yangtze River Delta.

    PubMed

    Shi, Wei; Zhang, Feng-Xian; Hu, Guan-Jiu; Hao, Ying-Qun; Zhang, Xiao-Wei; Liu, Hong-Ling; Wei, Si; Wang, Xin-Ru; Giesy, John P; Yu, Hong-Xia

    2012-07-01

    Thyroid hormone disrupting compounds in water sources is a concern. Thyroid hormone (TH) agonist and antagonist activities of water sources from the Yangtze River, Huaihe River, Taihu Lake and ground water in the Yangtze River Delta region were evaluated by use of a TH reporter gene assay based on the green monkey kidney fibroblast (CV-1). While weak TH receptor (TR) agonist potency was observed in only one of 15 water sources, antagonist potency was present in most of the water sources. TR antagonist equivalents could be explained by the presence of dibutyl phthalate (DBP), with concentrations ranging from 2.8×10(1) to 1.6×10(3) μg DBP /L (ATR-EQ(50)s). None of the ground waters exhibited TH agonist potencies while all of the samples from Taihu Lake displayed notable TR antagonist potencies. To identify the responsible thyroid active compounds, instrumental analysis was conducted to measure a list of potential thyroid-disrupting chemicals, including organochlorine (OC) pesticides and phthalate esters. Combining the results of the instrumental analysis with those of the bioassay, DBP was determined to account for 17% to 144% of ATR-EQ(50)s in water sources. Furthermore, ATR-EQ(20-80) ranges for TR antagonist activities indicated that samples from locations WX-1 and WX-2 posed the greatest health concern and the associated uncertainty may warrant further investigation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Recent coarsening of sediments on the southern Yangtze subaqueous delta front: A response to river damming

    NASA Astrophysics Data System (ADS)

    Yang, H. F.; Yang, S. L.; Meng, Y.; Xu, K. H.; Luo, X. X.; Wu, C. S.; Shi, B. W.

    2018-03-01

    After more than 50,000 dams were built in the Yangtze basin, especially the Three Gorges Dam (TGD) in 2003, the sediment discharge to the East China Sea decreased from 470 Mt/yr before dams to the current level of 140 Mt/yr. The delta sediment's response to this decline has interested many researchers. Based on a dataset of repeated samplings at 44 stations in this study, we compared the surficial sediment grain sizes in the southern Yangtze subaqueous delta front for two periods: pre-TGD (1982) and post-TGD (2012). External factors of the Yangtze River, including water discharge, sediment discharge and suspended sediment grain size, were analysed, as well as wind speed, tidal range and wave height of the coastal ocean. We found that the average median size of the sediments in the delta front coarsened from 8.0 μm in 1982 to 15.4 μm in 2012. This coarsening was accompanied by a decrease of clay components, better sorting and more positive skewness. Moreover, the delta morphology in the study area changed from an overall accretion of 1.0 cm/yr to an erosion of - 0.6 cm/yr. At the same time, the riverine sediment discharge decreased by 70%, and the riverine suspended sediment grain size increased from 8.4 μm to 10.5 μm. The annual wind speed and wave height slightly increased by 2% and 3%, respectively, and the tidal range showed no change trend. Considering the increased wind speed and wave height, there was no evidence that the capability of the China Coastal Current to transport sediment southward has declined in recent years. The sediment coarsening in the Yangtze delta front was thus mainly attributed to the delta's transition from accumulation to erosion which was originally generated by river damming. These findings have important implications for sediment change in many large deltaic systems due to worldwide human impacts.

  11. Temporal and spatial distribution of red tide outbreaks in the Yangtze River Estuary and adjacent waters, China.

    PubMed

    Liu, Lusan; Zhou, Juan; Zheng, Binghui; Cai, Wenqian; Lin, Kuixuan; Tang, Jingliang

    2013-07-15

    Between 1972 and 2009, evidence of red tide outbreaks in the Yangtze River Estuary and adjacent waters was collected. A geographic information system (GIS) was used to analyze the temporal and spatial distribution of these red tides, and it was subsequently used to map the distribution of these events. The results show that the following findings. (1) There were three red tide-prone areas: outside the Yangtze River Estuary and the eastern coast of Sheshan, the Huaniaoshan-Shengshan-Gouqi waters, and the Zhoushan areas and eastern coast of Zhujiajian. In these areas, red tides occurred 174 total times, 25 of which were larger than 1000 km(2) in areal extent. After 2000, the frequency of red tide outbreaks increased significantly. (2) During the months of May and June, the red tide occurrence in these areas was 51% and 20%, respectively. (3) Outbreaks of the dominant red tide plankton species Prorocentrum dong-haiense, Skeletonema costatum, Prorocentrum dantatum, and Noctiluca scientillan occurred 38, 35, 15, and 10 times, respectively, during the study interval. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Regional implications of heat flow of the Snake River Plain, Northwestern United States

    NASA Astrophysics Data System (ADS)

    Blackwell, D. D.

    1989-08-01

    The Snake River Plain is a major topographic feature of the Northwestern United States. It marks the track of an upper mantle and crustal melting event that propagated across the area from southwest to northeast at a velocity of about 3.5 cm/yr. The melting event has the same energetics as a large oceanic hotspot or plume and so the area is the continental analog of an oceanic hotspot track such as the Hawaiian Island-Emperor Seamount chain. Thus, the unique features of the area reflect the response of a continental lithosphere to a very energetic hotspot. The crust is extensively modified by basalt magma emplacement into the crust and by the resulting massive rhyolite volcanism from melted crustal material, presently occurring at Yellowstone National Park. The volcanism is associated with little crustal extension. Heat flow values are high along the margins of the Eastern and Western Snake River Plains and there is abundant evidence for low-grade geothermal resources associated with regional groundwater systems. The regional heat flow pattern in the Western Snake River Plains reflects the influence of crustal-scale thermal refraction associated with the large sedimentary basin that has formed there. Heat flow values in shallow holes in the Eastern Snake River Plains are low due to the Snake River Plains aquifer, an extensive basalt aquifer where water flow rates approach 1 km/yr. Below the aquifer, conductive heat flow values are about 100 mW m -2. Deep holes in the region suggest a systematic eastward increase in heat flow in the Snake River Plains from about 75-90 mW m -2 to 90-110 mW m -2. Temperatures in the upper crust do not behave similarly because the thermal conductivity of the Plio-Pleistocene sedimentary rocks in the west is lower than that in the volcanic rocks characteristic of the Eastern Snake River Plains. Extremely high heat loss values (averaging 2500 mW m -2) and upper crustal temperatures are characteristic of the Yellowstone caldera.

  13. Study on Spatial Spillover Effects of Logistics Industry Development for Economic Growth in the Yangtze River Delta City Cluster Based on Spatial Durbin Model

    PubMed Central

    Xu, Xinxing

    2017-01-01

    The overall entropy method is used to evaluate the development level of the logistics industry in the city based on a mechanism analysis of the spillover effect of the development of the logistics industry on economic growth, according to the panel data of 26 cities in the Yangtze River delta. On this basis, the paper uses the spatial durbin model to study the direct impact of the development of the logistics industry on economic growth and the spatial spillover effect. The results show that the direct impact coefficient of the development of the logistics industry in the Yangtze River Delta urban agglomeration on local economic growth is 0.092, and the significant spatial spillover effect on the economic growth in the surrounding area is 0.197. Compared with the labor force input, capital investment and the degree of opening to the world, and government functions, the logistics industry’s direct impact coefficient is the largest, other than capital investment; the coefficient of the spillover effect is higher than other control variables, making it a “strong engine” of the Yangtze River Delta urban agglomeration economic growth. PMID:29207555

  14. Study on Spatial Spillover Effects of Logistics Industry Development for Economic Growth in the Yangtze River Delta City Cluster Based on Spatial Durbin Model.

    PubMed

    Xu, Xinxing; Wang, Yuhong

    2017-12-04

    The overall entropy method is used to evaluate the development level of the logistics industry in the city based on a mechanism analysis of the spillover effect of the development of the logistics industry on economic growth, according to the panel data of 26 cities in the Yangtze River delta. On this basis, the paper uses the spatial durbin model to study the direct impact of the development of the logistics industry on economic growth and the spatial spillover effect. The results show that the direct impact coefficient of the development of the logistics industry in the Yangtze River Delta urban agglomeration on local economic growth is 0.092, and the significant spatial spillover effect on the economic growth in the surrounding area is 0.197. Compared with the labor force input, capital investment and the degree of opening to the world, and government functions, the logistics industry's direct impact coefficient is the largest, other than capital investment; the coefficient of the spillover effect is higher than other control variables, making it a "strong engine" of the Yangtze River Delta urban agglomeration economic growth.

  15. Flood plain and channel dynamics of the Quinault and Queets Rivers, Washington, USA

    USGS Publications Warehouse

    O'Connor, J. E.; Jones, M.A.; Haluska, T.L.

    2003-01-01

    Observations from this study and previous studies on the Queets River show that channel and flood-plain dynamics and morphology are affected by interactions between flow, sediment, and standing and entrained wood, some of which likely involve time frames similar to 200–500-year flood-plain half-lives. On the upper Quinault River and Queets River, log jams promote bar growth and consequent channel shifting, short-distance avulsions, and meander cutoffs, resulting in mobile and wide active channels. On the lower Quinault River, large portions of the channel are stable and flow within vegetated flood plains. However, locally, channel-spanning log jams have caused channel avulsions within reaches that have been subsequently mobile for several decades. In all three reaches, log jams appear to be areas of conifer germination and growth that may later further influence channel and flood-plain conditions on long time scales by forming flood-plain areas resistant to channel migration and by providing key members of future log jams. Appreciation of these processes and dynamics and associated temporal and spatial scales is necessary to formulate effective long-term approaches to managing fluvial ecosystems in forested environments.

  16. Savannah River Region: Transition between the Gulf and Atlantic Coastal Plains. Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zullo, V.A.; Harris, W.B.; Price, V.

    1990-12-31

    The focus of the this conference of Coastal Plains geologists was on the Savannah River region of Georgia and South Carolina, and particularly on the geology of the US Department of Energy`s 300 square mile Savannah River Site (SRS) in western South Carolina. Current geological studies indicate that the Mesozoic-Cenozoic section in the Savannah River region is transitional between that of the Gulf Coastal Plain to the southwest and that of the Atlantic Coastal Plain to the northeast. With the transitional aspect of the region as its theme, the first session was devoted to overviews of Cretaceous and Paleogene geologymore » in the Gulf and Atlantic Coastal Plains. Succeeding presentations and resulting discussions dealt with more specific problems in structural, lithostratigraphic, hydrological, biostratigraphic, and cyclostratigraphic analysis, and of correlation to standard stratigraphic frameworks. For these conference proceedings, individual papers have been processed separately for the Energy Data Base.« less

  17. Effects of Spartina alterniflora invasion on soil respiration in the Yangtze River estuary, China.

    PubMed

    Bu, Naishun; Qu, Junfeng; Li, Zhaolei; Li, Gang; Zhao, Hua; Zhao, Bin; Li, Bo; Chen, Jiakuan; Fang, Changming

    2015-01-01

    Many studies have found that plant invasion can enhance soil organic carbon (SOC) pools, by increasing net primary production (NPP) and/or decreased soil respiration. While most studies have focused on C input, little attention has been paid to plant invasion effects on soil respiration, especially in wetland ecosystems. Our study examined the effects of Spartina alterniflora invasion on soil respiration and C dynamics in the Yangtze River estuary. The estuary was originally occupied by two native plant species: Phragmites australis in the high tide zone and Scirpus mariqueter in the low tide zone. Mean soil respiration rates were 185.8 and 142.3 mg CO2 m(-2) h(-1) in S. alterniflora and P. australis stands in the high tide zone, and 159.7 and 112.0 mg CO2 m(-2) h(-1) in S. alterniflora and S. mariqueter stands in the low tide zone, respectively. Aboveground NPP (ANPP), SOC, and microbial biomass were also significantly higher in the S. alterniflora stands than in the two native plant stands. S. alterniflora invasion did not significantly change soil inorganic carbon or pH. Our results indicated that enhanced ANPP by S. alterniflora exceeded invasion-induced C loss through soil respiration. This suggests that S. alterniflora invasion into the Yangtze River estuary could strengthen the net C sink of wetlands in the context of global climate change.

  18. [Ciliate diversity and spatiotemporal variation in surface sediments of Yangtze River estuary hypoxic zone].

    PubMed

    Feng, Zhao; Kui-Dong, Xu; Zhao-Cui, Meng

    2012-12-01

    By using denaturing gradient gel electrophoresis (DGGE) and sequencing as well as Ludox-QPS method, an investigation was made on the ciliate diversity and its spatiotemporal variation in the surface sediments at three sites of Yangtze River estuary hypoxic zone in April and August 2011. The ANOSIM analysis indicated that the ciliate diversity had significant difference among the sites (R = 0.896, P = 0.0001), but less difference among seasons (R = 0.043, P = 0.207). The sequencing of 18S rDNA DGGE bands revealed that the most predominant groups were planktonic Choreotrichia and Oligotrichia. The detection by Ludox-QPS method showed that the species number and abundance of active ciliates were maintained at a higher level, and increased by 2-5 times in summer, as compared with those in spring. Both the Ludox-QPS method and the DGGE technique detected that the ciliate diversity at the three sites had the similar variation trend, and the Ludox-QPS method detected that there was a significant variation in the ciliate species number and abundance between different seasons. The species number detected by Ludox-QPS method was higher than that detected by DGGE bands. Our study indicated that the ciliates in Yangtze River estuary hypoxic zone had higher diversity and abundance, with the potential to supply food for the polyps of jellyfish.

  19. Effects of Spartina alterniflora Invasion on Soil Respiration in the Yangtze River Estuary, China

    PubMed Central

    Bu, Naishun; Qu, Junfeng; Li, Zhaolei; Li, Gang; Zhao, Hua; Zhao, Bin; Li, Bo; Chen, Jiakuan; Fang, Changming

    2015-01-01

    Many studies have found that plant invasion can enhance soil organic carbon (SOC) pools, by increasing net primary production (NPP) and/or decreased soil respiration. While most studies have focused on C input, little attention has been paid to plant invasion effects on soil respiration, especially in wetland ecosystems. Our study examined the effects of Spartina alterniflora invasion on soil respiration and C dynamics in the Yangtze River estuary. The estuary was originally occupied by two native plant species: Phragmites australis in the high tide zone and Scirpus mariqueter in the low tide zone. Mean soil respiration rates were 185.8 and 142.3 mg CO2 m−2 h−1 in S. alterniflora and P. australis stands in the high tide zone, and 159.7 and 112.0 mg CO2 m−2 h−1 in S. alterniflora and S. mariqueter stands in the low tide zone, respectively. Aboveground NPP (ANPP), SOC, and microbial biomass were also significantly higher in the S. alterniflora stands than in the two native plant stands. S. alterniflora invasion did not significantly change soil inorganic carbon or pH. Our results indicated that enhanced ANPP by S. alterniflora exceeded invasion-induced C loss through soil respiration. This suggests that S. alterniflora invasion into the Yangtze River estuary could strengthen the net C sink of wetlands in the context of global climate change. PMID:25799512

  20. Phenomena and characteristics of barrier river reaches in the middle and lower Yangtze River, China

    NASA Astrophysics Data System (ADS)

    You, Xingying; Tang, Jinwu

    2017-06-01

    Alluvial river self-adjustment describes the mechanism whereby a river that was originally in an equilibrium state of sediment transport encounters some disturbance that destroys the balance and results in responses such as riverbed deformation. A systematic study of historical and recent aerial photographs and topographic maps in the Middle and Lower Reaches of the Yangtze River (MLYR) shows that river self-adjustment has the distinguishing feature of transferring from upstream to downstream, which may affect flood safety, waterway morphology, bank stability, and aquatic environmental safety over relatively long reaches downstream. As a result, it is necessary to take measures to control or block this transfer. Using the relationship of the occurrence time of channel adjustments between the upstream and downstream, 34 single-thread river reaches in the MLYR were classified into four types: corresponding, basically corresponding, basically not corresponding, not corresponding. The latter two types, because of their ability to prevent upstream channel adjustment from transferring downstream, are called barrier river reaches in this study. Statistics indicate that barrier river reaches are generally single thread and slightly curved, with a narrow and deep cross-sectional morphology, and without flow deflecting nodes in the upper and middle parts of reaches. Moreover, in the MLYR, barrier river reaches have a hydrogeometric coefficient of {<}{4}, a gradient {>}1.2‱, a silty clay content of the concave bank {>}{9.5}%, and a median diameter of the bed sediment {>}{0.158} mm. The barrier river reach mechanism lies in that can effectively centralise the planimetric position of the main stream from different upstream directions, meaning that no matter how the upper channel adjusts, the main stream shows little change, providing relatively stable inflow conditions for the lower reaches. Regarding river regulation, it is necessary to optimise the benefits of barrier river

  1. GF-1 and Landsat observed a 40-year wetland spatiotemporal variation and its coupled environmental factors in Yangtze River estuary

    NASA Astrophysics Data System (ADS)

    Sun, Nan; Zhu, Weining; Cheng, Qian

    2018-07-01

    Wetlands are health indicators of aquatic ecosystems and also vulnerable to regional environmental and socio-economic changes. For exploring wetland spatiotemporal variations in estuarine and coastal regions of the Yangtze River, we extracted wetland information from 40-year time-series images of Landsat, GF-1, and other satellites, using the classification method of decision tree. Potential environmental and socio-economic factors which may drive wetland variations were analyzed. Results show that the wetland area in Yangtze River estuary has increased 663 km2, but it was only contributed by the increasing of human-made wetlands (767 km2), which were mostly caused by economic growth and constructions of human-made hydro-projects in Yangtze Delta. In comparison, natural wetlands, such as tidal flats and marshes, have decreased 163 km2. Land reclamation has changed these natural wetlands into reservoirs, aquaculture ponds and paddy fields. Wetlands in Shanghai and Qidong urban regions were mainly affected by human activities, while wetland variations in Chongming Island were mainly controlled by natural factors such as the upstream discharge, precipitation, diurnal variation of tidal level and long-term sea level rising. The general trend is that the natural wetland was transformed into the human-made wetland, and the human-made wetland was transformed into construction land.

  2. Spatio-temporal distribution and environmental risk of sedimentary heavy metals in the Yangtze River Estuary and its adjacent areas.

    PubMed

    Chen, Bin; Liu, Jian; Qiu, Jiandong; Zhang, Xilin; Wang, Shuang; Liu, Jinqing

    2017-03-15

    Twenty-five surface sediments and one sediment core sample were collected from the study area. Grain size, major elements, and heavy metals were determined. The content of fine-grained sediments (silt and clay), as well as the concentrations of major elements and heavy metals, showed seaward decreasing trends, with high content in the coastal areas of the East China Sea (ECS) and south west of Jeju Island. Low enrichment factor (EF) and geoaccumulation index (Igeo) values were found, indicating that the ecological risk of heavy metals was low. The EF values obtained from the high-resolution sedimentary records of heavy metals in the Yangtze River Estuary could be divided into Stage 1 (1950s to the late 1970s) and Stage 2 (late 1970s to the current sampling day), which coincided with economic development of the Yangtze River Basin, implementation of environmental protection, and impoundment of the Three Gorges Dam. Copyright © 2016. Published by Elsevier Ltd.

  3. Contribution of the upper river, the estuarine region, and the adjacent sea to the heavy metal pollution in the Yangtze Estuary.

    PubMed

    Yin, Su; Wu, Yuehan; Xu, Wei; Li, Yangyang; Shen, Zhenyao; Feng, Chenghong

    2016-07-01

    To determine whether the discharge control of heavy metals in the Yangtze River basin can significantly change the pollution level in the estuary, this study analyzed the sources (upper river, the estuarine region, and the adjacent sea) of ten heavy metals (As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn) in dissolved and particulate phases in the surface water of the estuary during wet, normal, and dry seasons. Metal sources inferred from section fluxes agree with those in statistical analysis methods. Heavy metal pollution in the surface water of Yangtze Estuary primarily depends on the sediment suspension and the wastewater discharge from estuary cities. Upper river only constitutes the main source of dissolved heavy metals during the wet season, while the estuarine region and the adjacent sea (especially the former) dominate the dissolved metal pollution in the normal and dry seasons. Particulate metals are mainly derived from sediment suspension in the estuary and the adjacent sea, and the contribution of the upper river can be neglected. Compared with the hydrologic seasons, flood-ebb tides exert a more obvious effect on the water flow directions in the estuary. Sediment suspension, not the upper river, significantly affects the suspended particulate matter concentration in the estuary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Dynamics of the lakes in the middle and lower reaches of the Yangtze River basin, China, since late nineteenth century.

    PubMed

    Cui, Lijuan; Gao, Changjun; Zhao, Xinsheng; Ma, Qiongfang; Zhang, Manyin; Li, Wei; Song, Hongtao; Wang, Yifei; Li, Shengnan; Zhang, Yan

    2013-05-01

    The middle and lower reaches of the Yangtze River basin have the most representative and largest concentration of freshwater lakes in China. However, the size and number of these lakes have changed considerably over the past century due to the natural and anthropogenic impact. The lakes, larger than 10 km(2) in size, were chosen from relief maps and remotely sensed images in 1875, 1950, 1970, 1990, 2000, and 2008 to study the dynamics of lakes in the middle and lower reaches of the Yangtze River basin and to examine the causes and consequences of these changes. Results indicated that there was a dramatic reduction in lake areas, which decreased by 7,841.2 km(2) (42.64 %) during the study period (1875-2008), and the number of lakes in this region changed moderately. Meanwhile, a large number of lakes in the middle and lower reaches of the Yangtze River basin were directly converted into paddy fields, ponds, building lands, or other land-use types over the study period. Therefore, all kinds of lake reclamation should be identified as the major driving factors for the loss of lake in this region. Furthermore, flooding, soil erosion, and sedimentation were also the main factors which triggered lake changes in different periods. Some wetland conservation and restoration projects have been implemented since the 1970s, but they have not reversed the lake degradation. These findings were of great importance to managers involved in making policy for the conservation of lake ecosystems and the utilization of lake resources.

  5. Geothermal alteration of basaltic core from the Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Sant, Christopher J.

    The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is a trail of volcanics from the Yellowstone hotspot. Three exploratory geothermal wells were drilled on the Snake River Plain. This project analyzes basaltic core from the first well at Kimama, north of Burley, Idaho. The objectives of this project are to establish zones of geothermal alteration and analyze the potential for geothermal power production using sub-aquifer resources on the axial volcanic zone of the Snake River Plain. Thirty samples from 1,912 m of core were sampled and analyzed for clay content and composition using X-ray diffraction. Observations from core samples and geophysical logs are also used to establish alteration zones. Mineralogical data, geophysical log data and physical characteristics of the core suggest that the base of the Snake River Plain aquifer at the axial zone is located 960 m below the surface, much deeper than previously suspected. Swelling smectite clay clogs pore spaces and reduces porosity and permeability to create a natural base to the aquifer. Increased temperatures favor the formation of smectite clay and other secondary minerals to the bottom of the hole. Below 960 m the core shows signs of alteration including color change, formation of clay, and filling of other secondary minerals in vesicles and fractured zones of the core. The smectite clay observed is Fe-rich clay that is authigenic in some places. Geothermal power generation may be feasible using a low temperature hot water geothermal system if thermal fluids can be attained near the bottom of the Kimama well.

  6. Comparisons of PBDE composition and concentration in fish collected from the Detroit River, MI and Des Plaines River, IL

    USGS Publications Warehouse

    Rice, C.P.; Chernyak, S.M.; Begnoche, L.; Quintal, R.; Hickey, J.

    2002-01-01

    Polybrominated diphenyl ethers (PBDEs) were identified in fish collected from the Detroit River, MI and Des Plaines Rivers, IL. In the Detroit River fish, carp and large mouth bass, the congener patterns were dominated by the 2,2′,4,4′-tetrabromo (BDE-47) congener; however, in Des Plaines River carp the dominant isomers were the heptabromo congeners BDE-181 and BDE-183 and lesser amounts of another heptabromo congener, BDE-190, and two hexabromo congeners, BDE-154 and BDE-153. Three possible sources exist for these less-commonly identified PBDE congeners: (a) waste discharge from manufacturing or discarded products near the river, (b) public owned treatment work (POTW) effluents which constitute more than 75% of the flow in the Des Plaines River, (c) or formation of these congeners by debromination of in-place deposits of decabromodiphenyl ether. Average concentration totals (sum of concentrations for seven of the dominant PBDE congeners) were similar on a wet weight bases for the carp (5.39 ng/g wet weight) and large mouth bass (5.25 ng/g) in the Detroit River samples; however, the bass were significantly higher, ρ=0.01, when compared on a lipid basis (bass-163 ng/g vs. carp-40.5 ng/g lipid weight). Some of the PBDE congeners were positively correlated with increasing lipid levels in both fish species. Average total PBDE concentrations in the carp from the Des Plaines River (12.48 ng/g wet weight) were significantly higher, ρ=0.01, than in carp from the Detroit River. The residues were isolated using standard organochlorine methods for fish and analyzed using gas chromatography/mass spectrometry-negative chemical ionization methods.

  7. 78 FR 49684 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

  8. Summary of the Snake River plain Regional Aquifer-System Analysis in Idaho and eastern Oregon

    USGS Publications Warehouse

    Lindholm, G.F.

    1993-01-01

    The 15,600 sq mi Snake River Plain in southern Idaho and eastern Oregon was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis program. Quaternary basalt of the Snake River Group underlies most of the 10,800 square mile eastern plain and constitutes the most productive aquifers. Transmissivity of the upper 200 feet of the basalt aquifer commonly ranges from 100,000 to 1,000,000 square feet per day. Vertical hydraulic conductivity is several orders of magnitude lower than horizontal hydraulic conductivity and is related to the degree of jointing. Alluvial sand and gravel in the Boise River valley constitutes the most productive aquifers in the 4,800 square mile western plain. Along much of its length, the Snake River gains groundwater. Between Milner and King Hill, the river gained 4.7 million acre-ft in 1980, most as spring flow from the north side. The chemical composition of groundwater in the plain is essentially the same as that in streams and ground- water from tributary drainage basins. The use of surface water for irrigation for 100 years has caused major changes in the hydrologic system on the plain. During that time, recharge on the main part of the eastern plain increased about 70 percent, discharge about 80 percent. In 1980, about 8.9 million acre-ft of Snake River water was diverted and 2.3 million acre-ft of groundwater was pumped from 5,300 wells for irrigation.

  9. In vitro assessment of thyroid hormone disrupting activities in drinking water sources along the Yangtze River.

    PubMed

    Hu, Xinxin; Shi, Wei; Zhang, Fengxian; Cao, Fu; Hu, Guanjiu; Hao, Yingqun; Wei, Si; Wang, Xinru; Yu, Hongxia

    2013-02-01

    The thyroid hormone disrupting activities of drinking water sources from the lower reaches of Yangtze River were examined using a reporter gene assay based on African green monkey kidney fibroblast (CV-1) cells. None of the eleven tested samples showed thyroid receptor (TR) agonist activity. Nine water samples exhibited TR antagonist activities with the equivalents referring to Di-n-butyl phthalate (DNBP) (TR antagonist activity equivalents, ATR-EQ(50)s) ranging from 6.92 × 10(1) to 2.85 × 10(2) μg DNBP/L. The ATR-EQ(50)s and TR antagonist equivalent ranges (ATR-EQ(30-80) ranges) for TR antagonist activities indicated that the water sample from site WX-8 posed the greatest health risks. The ATR-EQ(80)s of the water samples ranging from 1.56 × 10(3) to 6.14 × 10(3) μg DNBP/L were higher than the NOEC of DNBP. The results from instrumental analysis showed that DNBP might be responsible for the TR antagonist activities in these water samples. Water sources along Yangtze River had thyroid hormone disrupting potential. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Nontarget Mass Spectrometry Reveals New Perfluoroalkyl Substances in Fish from the Yangtze River and Tangxun Lake, China.

    PubMed

    Liu, Yanna; Qian, Manli; Ma, Xinxin; Zhu, Lingyan; Martin, Jonathan W

    2018-05-15

    Nontarget high-resolution mass spectrometry (Nt-HRMS) has been proven useful for the identification of unknown poly- and perfluoroalkyl substances (PFASs) in commercial products and water, but applications to biological samples are limited. China is the major PFAS-manufacturing nation; thus, here, we adapted our Nt-HRMS methods to fish collected from the Yangtze River and Tangxun Lake to discover potentially bioaccumulative PFASs in aquatic organisms destined for human consumption. In addition to traditional PFASs, over 330 other fluorinated analytes belonging to 10 classes of PFASs were detected among the pooled fish livers, including 6 sulfonate classes, 2 amine classes, 1 carboxylate class, and 1 N-heterocycle class. One class was detected in samples from both locations, 8 classes were detected exclusively in Tangxun Lake fish, and 1 class was detected exclusively in Yangtze River fish, 10 km downstream of a fluorochemical manufacturing site where we first reported these substances in wastewater 3 years ago. Overall, 4 of the PFAS classes (>165 analytes) are reported for the first time here. Wider monitoring and toxicological testing should be a priority for understanding the health risks posed to people and wildlife exposed to these substances.

  11. Wetland hydrology and tree distribution of the Apalachicola River flood plain, Florida

    USGS Publications Warehouse

    Leitman, Helen M.; Sohm, James E.; Franklin, Marvin A.

    1984-01-01

    The Apalachicola River in northwest Florida is part of a three-State drainage basin encompassing 50,800 km 2 in Alabama, Georgia, and Florida. The river is formed by the confluence of the Chattahoochee and Flint Rivers at Jim Woodruff Dam from which it flows 171 km to Apalachicola Bay in the Gulf of Mexico. Its average annual discharge at Chattahoochee, Fla., is 690 m3/s (1958-80) with annual high flows averaging nearly 3,000 m3/s. Its flood plain supports 450 km 2 of bottom-land hardwood and tupelo-cypress forests. The Apalachicola River Quality Assessment focuses on the hydrology and productivity of the flood-plain forest. The purpose of this part of the assessment is to address river and flood-plain hydrology, flood-plain tree species and forest types, and water and tree relations. Seasonal stage fluctuations in the upper river are three times greater than in the lower river. Analysis of long-term streamflow record revealed that 1958-79 average annual and monthly flows and flow durations were significantly greater than those of 1929-57, probably because of climatic changes. However, stage durations for the later period were equal to or less than those of the earlier period. Height of natural riverbank levees and the size and distribution of breaks in the levees have a major controlling effect on flood-plain hydrology. Thirty-two kilometers upstream of the bay, a flood-plain stream called the Brothers River was commonly under tidal influence during times of low flow in the 1980 water year. At the same distance upstream of the bay, the Apalachicola River was not under tidal influence during the 1980 water year. Of the 47 species of trees sampled, the five most common were wet-site species constituting 62 percent of the total basal area. In order of abundance, they were water tupelo, Ogeechee tupelo, baldcypress, Carolina ash, and swamp tupelo. Other common species were sweetgum, overcup oak, planertree, green ash, water hickory, sugarberry, and diamond-leaf oak

  12. 78 FR 36091 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

  13. 77 FR 65478 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River...

  14. 77 FR 60044 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River...

  15. 76 FR 65609 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal...

  16. A comparative study of golf industry between Yangtze River Delta, China and Central Japan

    NASA Astrophysics Data System (ADS)

    Yang, Yangfan; Jin, Pingbin; Gong, Huiwen

    2018-03-01

    As a competition event of the 2016 Olympic Game, golf sport has aroused great attention around the world. And the Yangtze River Delta(YRD) in China, has already got certain basis and qualifications of developing golf industry, but somehow far from meeting the great potential demand of the market. This research selects the Yangtze River Delta (YRD) and Central Japan (CJ), which are indifferent golf developing stages, as the objectives. Comparative studies are being carried out with an aim of revealing the discrepancies of golf industry in selected regions. The correlations between golf industry and regional economic developing level have been explored as well. Mainly based on a geographical perspective, this research presents an initial effort to combine approaches of setting comparative indexes and spatial analysis, so that golf industry of selected regions will be compared in all directions. The results reveal that great gaps exist in YRD and CJ in terms of golf construction, service, and golf consumption. Problems in developing golf industry in YRD are identified based on the empirical results. A long-term golf development in YRD that deviating from the realistic demand is attributed to both government policies and the operational principles that the market subjects hold. Based on a comparative empirical study, suggestions relating to the government as well as the market players are put forward, with an aim of guiding the golf industry to develop in a sustainable way.

  17. Occurrence of organotins in the Yangtze River and the Jialing River in the urban section of Chongqing, China.

    PubMed

    Gao, Jun-Min; Zhang, Ying; Guo, Jin-Song; Jin, Fen; Zhang, Ke

    2013-05-01

    The occurrence of organotins in the Yangtze River and the Jialing River in the urban section of Chongqing, China and their impact on drinking water waterworks are reported in this study. Water samples were extracted by solid-phase microextraction and measured using a gas chromatograph with mass spectrometer. The results showed that the rivers studied were polluted by both butyltins and phenyltins and that the butyltin species was the dominant pollutant. Butyltins, especially monobutyltin, were detected in all 18 sampling stations, and phenyltins were detected only in 11 sampling stations. Majority of the organotins were MBTs with concentrations varying from 27.3 to 1,145.8 ng Sn L(-1). Diphenyltin and dibutyltin were the second most common with the highest levels of 113.7 and 202.5 ng Sn L(-1), respectively. Monophenyltin, tributyltin, and triphenyltin had the lowest detection rates with concentration levels of 9.7, 161.8, and 37.2 ng Sn L(-1), respectively. Some of the organotins were also detected in drinking water waterworks, which posed a threat to the water quality of Chongqing.

  18. [Surveillance and risk assessment system of schistosomiasis in Jiangsu Province Ⅲ Risk of schistosomiasis transmission in the area along the Yangtze River in Yangzhou City].

    PubMed

    Yin-Ping, Zuo; Dao-Jian, Zhu; Guang-Lin, Du; Kai, Tang; Yu-Cai, Ma; Zheng-Qiu, Zhang; Shao-Zhou, Chen; Fubiao, Wang; Hong-Ping, Tang; Jin, Zhang; Le-Ping, Sun

    2016-08-02

    To evaluate the potential risk of schistosomiasis transmission in the area along the Yangtze River in Yangzhou City, so as to provide evidences for establishing a post-transmission surveillance system for schistosomiasis in marshland regions. The water infectivity, floating boatmen and fishermen infection, reservoir host infection and wild feces contamination were investigated in five districts/counties along the Yangtze River in Yangzhou City, including Guangling, Hanjiang, Jiangdu, Yizheng and Development Zone, and the transmission factors and risky characteristics were assessed after interruption of schistosomiasis transmission in marshland regions. A total of 15 key water regions were identified in the area along the Yangtze River in Yangzhou City in 2015. A total of 1 500 sentinel mice were placed, after breeding, their overall survival rate was 99.33%; 1 490 were dissected, with no schistosome infection. Of the 5 576 floating boatmen and fishermen examined, no schistosome infection was observed, and among the 3 566 domestic animals (including 171 cattle, 1 895 sheep and 1 500 pigs), no infections were detected. During the period between January and March, 2016, there were 3 200 mouse traps placed on 8 marshlands, and 62 wild mice were captured from 6 marshlands, with a capture rate of 1.94%, and no schistosomeinfected wild mice were seen. In addition, there were 35 pieces of fresh wild feces captured from 7 marshlands, including 11 pieces of bovine feces (31.43%), 17 pieces of sheep feces (48.57%), 2 pieces of dog feces (5.71%) and 5 pieces of other feces (14.29%), and no infections were detected. There is a low risk of schistosomiasis transmission in the area along the Yangtze River in Yangzhou City. However, the contamination of feces from bovine and sheep that are freely pastured on marshlands is a big threat to schistosomiasis control.

  19. Using Braid Plain Ecology and Geomorphology to Inform Bank Erosion Management along a Braided River, Matanuska River, Alaska

    NASA Astrophysics Data System (ADS)

    Curran, J. H.; McTeague, M. L.

    2010-12-01

    Braided rivers are inherently dynamic but quantifying the nature and implications of this dynamism can contribute to more comprehensive understanding of these systems and management of the river corridor. Bank erosion along the glacial, braided Matanuska River in southcentral Alaska has challenged generations of officials and generated a host of proposed solutions such as riprapped banks, dikes, gravel mining, and trenching. Increasingly, assessment of the technical feasibility of these methods has been accompanied by consideration of ecological factors and nonstructural solutions. The Matanuska River is braided over 85 percent of its course and clearwater side channels in abandoned braid plain areas provide as much as 90 percent of the spawning habitat in the basin for chum and sockeye salmon (Oncorhynchus keta and O. nerka). An assessment of braid plain vegetation, bank erosion rates, effects of a large flood, and distribution of clearwater side channels establishes a scientific basis for ecological and geomorphological considerations and recently helped guide development of a management plan for the river corridor. A historical analysis of braid plain features, marginal positions, and vegetation patterns from 1949, 1962, and 2006 orthophotographs showed that the 2006 braid plain was 43 percent vegetated and had an average age of 16 years. Only about 4 percent of the braid plain contained vegetated islands and over 60 percent of these were young and sparsely vegetated, implying that a suite of active channels migrated frequently across the braid plain and that vegetation did not appreciably limit channel movement. Rates of erosion to the braid plain margins averaged 0.3 m/yr from 1949 to 2006 but erosion was localized, with 64 percent of the erosion at only 8 percent of the banks. Cumulative bank change was twice as great along banks consisting of Holocene fluvial deposits (fans and terraces) identified during Geographic Information System (GIS) mapping than on

  20. Slab-controlled Tectonomagmatism of the Pacific Northwest: A Holistic view of Columbia River, High Lava Plains, and Snake River Plain/Yellowstone Volcanism

    NASA Astrophysics Data System (ADS)

    James, D. E.; Fouch, M. J.; Long, M. D.; Druken, K. A.; Wagner, L. S.; Chen, C.; Carlson, R. W.

    2012-12-01

    We interpret post-20 Ma tectonomagmatism across the U.S. Pacific Northwest in the context of subduction related processes. While mantle plume models have long enjoyed favor as an explanation for the post 20-Ma magmatism in the region, conceptually their support has hinged almost entirely on two major features: (1) Steens/Columbia River flood basalt volcanism (plume head); and (2) The Snake River Plain/Yellowstone hotspot track (plume tail). Recent work, synthesized in this presentation, suggests that these features are more plausibly the result of mantle dynamical processes driven by southerly truncation of the Farallon/Juan de Fuca subduction zone and slab detachment along the evolving margin of western North America (Long et al., 2012; James et al., 2011). Plate reconstructions indicate that shortening of the subduction zone by the northward migration of the Mendocino triple junction resulted in a significant increase in the rate of trench retreat and slab rollback ca 20 Ma. Both numerical modeling and physical tank experiments in turn predict large-scale mantle upwelling and flow around the southern edge of the rapidly retreating slab, consistent both with the observed Steens/Columbia River flood volcanism and with the strong E-W mantle fabric observed beneath the region of the High Lava Plains of central and eastern Oregon. The High Lava Plains and Snake River Plain time-progressive volcanism began concurrently about 12 Ma, but along highly divergent tracks and characterized by strikingly different upper mantle structure. Crustal and upper mantle structure beneath the High Lava Plains exhibits evidence typical of regional extension; i.e. thin crust, flat and sharp Moho, and an uppermost mantle with low velocities but otherwise largely devoid of significant vertical structure. In contrast, the Snake River Plain exhibits ultra-low mantle velocities to depths of about 180 km along the length of the hotspot track. Seismic images of the upper mantle in the depth

  1. Hyperspectral Imaging of River Systems

    DTIC Science & Technology

    2010-09-30

    98) Prescribed by ANSI Std Z39-18 2 2. As soon as it is available we will collect HICOTM data for the Yangtze River and adjacent coastal...the Yangtze and other river systems. The goal is to validate our algorithms and to further our understanding of this important river and the East...For the past year we have been collecting HICOTM data for the Columbia (Fig. 3) and Yangtze Rivers (Fig. 4). There are many constraints on data

  2. An integrated environmental improvement of marshlands: impact on control and elimination of schistosomiasis in marshland regions along the Yangtze River, China.

    PubMed

    Sun, Le-Ping; Wang, Wei; Zuo, Yin-Ping; Zhang, Zheng-Qiu; Hong, Qing-Biao; Yang, Guo-Jing; Zhu, Hong-Ru; Liang, You-Sheng; Yang, Hai-Tao

    2017-03-22

    Schistosomiasis is a global snail-transmitted infectious disease of poverty. Transmission control had been achieved in China in 2015 after the control efforts for over 60 years. Currently, the remaining core regions endemic for Schistosoma japonicum are mainly located in the marshland and lake regions along the Yangtze River basin. During the period from 2001 through 2015, an integrated environmental improvement of the marshlands was carried out through the implementation of industrial, agricultural and resources development projects in Yizheng County along the Yangtze River. S. japonicum infection in humans, livestock and snails was estimated by serology, stool examination, hatching technique and microscopy during the 15-year study period to evaluate the effect of the integrated environmental improvement on control and elimination of schistosomiasis. A 0.05% overall rate of S. japonicum infection was observed in snails during the 15-year study period, and no infected snails were detected since 2012. The overall prevalence of S. japonicum infection was 0.09% in humans during the study period, and no human infection was found since 2012. In addition, only 13 bovines were identified with S. japonicum infection in 2003 during the 15-year study period, and since 2004, no infection was found in livestock. The results of the present study demonstrate that the implementation of industrial, agricultural and water resources development projects, not only alters snail habitats in marshland regions, and promotes local economic development, which appears a win-to-win strategy to block the transmission of S. japonicum and accelerate socio-economic development along the Yangtze River.

  3. Dependence of Wetland Vegetation on Hydrological Regime in a Large Floodplain Lake (Poyang Lake) in the Middle Yangtze River

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Tan, Z.; Xu, X.

    2017-12-01

    Exemplified in the Yangtze River floodplain lake, Poyang Lake, investigations were carried out to examine the dependence of vegetation on hydrological variables. The Lake is one of the few lakes that remain naturally connected to the Yangtze River. The Lake surface expanses to 4000 km2 in wet seasons, and reduces to less than 1000 km2 in dry seasons, creating some 3000 km2 vital wetland habitats for many animals. Remote sensing was used to obtain the spatial distribution of wetland vegetations. A lake hydrodynamic model using MIKE 21 was employed to determine the variability of wetland inundation. In-situ high time frequency observations of climate, soil moisture, and groundwater depth were also conducted in a typical wetland transect of 1 km long. Vegetations were sampled periodically to obtain species composition, diversity and biomass. Results showed that the spatial distribution of vegetation highly depended on the inundation duration and depth. Optimal hydrological variables existed for the typical vegetations in Poyang Lake wetland. Numerical simulations using HYDRUS-1D further demonstrated that both groundwater depth and soil moisture had significant effects on the growth of vegetation and the water demand in terms of transpiration, even in a wet climate zone such as middle Yangtze River. It was found that the optimal groundwater depths existed for both above- and belowground biomass. Simulation scenarios indicated that climate changes and human modification of hydrology would affect the water usage of vegetation and may cause a strategic adaptation of the vegetation to the stressed hydrological conditions. The study revealed new knowledge on the high dependence of wetland vegetation on both surface water regime and groundwater depths, in wet climate zone. Outcomes of this study may provide support for an integrated management of balancing water resources development and wetland sustainability maintenance in Poyang Lake, and other floodplain wetlands, with

  4. Quantitative tolerance values for common stream benthic macroinvertebrates in the Yangtze River Delta, Eastern China.

    PubMed

    Qin, Chun-Yan; Zhou, Jin; Cao, Yong; Zhang, Yong; Hughes, Robert M; Wang, Bei-Xin

    2014-09-01

    Aquatic organisms' tolerance to water pollution is widely used to monitor and assess freshwater ecosystem health. Tolerance values (TVs) estimated based on statistical analyses of species-environment relationships are more objective than those assigned by expert opinion. Region-specific TVs are the basis for developing accurate bioassessment metrics particularly in developing countries, where both aquatic biota and their responses to human disturbances have been poorly documented. We used principal component analysis to derive a synthetic gradient for four stressor variables (total nitrogen, total phosphorus, dissolved oxygen, and % silt) based on 286 sampling sites in the Taihu Lake and Qiantang River basins (Yangtze River Delta), China. We used the scores of taxa on the first principal component (PC1), which explained 49.8% of the variance, to estimate the tolerance values (TV(r)) of 163 macroinvertebrates taxa that were collected from at least 20 sites, 81 of which were not included in the Hilsenhoff TV lists (TV(h)) of 1987. All estimates were scaled into the range of 1-10 as in TV(h). Of all the taxa with different TVs, 46.3% of TV(r) were lower and 52.4% were higher than TV(h). TV(r) were significantly (p < 0.01, Fig. 2), but weakly (r(2) = 0.34), correlated with TVh. Seven biotic metrics based on TVr were more strongly correlated with the main stressors and were more effective at discriminating references sites from impacted sites than those based on TV(h). Our results highlight the importance of developing region-specific TVs for macroinvertebrate-based bioassessment and to facilitate assessment of streams in China, particularly in the Yangtze River Delta.

  5. Relations Among River Stage, Rainfall, Ground-Water Levels, and Stage at Two Missouri River Flood-Plain Wetlands

    USGS Publications Warehouse

    Kelly, Brian P.

    2001-01-01

    The source of water is important to the ecological function of Missouri River flood-plain wetlands. There are four potential sources of water to flood-plain wetlands: direct flow from the river channel during high river stage, ground-water movement into the wetlands in response to river-stage changes and aquifer recharge, direct precipitation, and runoff from surrounding uplands. Concurrent measurements of river stage, rainfall, ground-water level, and wetland stage were compared for two Missouri River flood-plain wetlands located near Rocheport, Missouri, to characterize the spatial and temporal relations between river stage, rainfall, ground-water levels and wetland stage, determine the source of water to each wetland, and compare measured and estimated stage and ground-water levels at each site. The two sites chosen for this study were wetland NC-5, a non-connected, 50 feet deep scour constantly filled with water, formed during the flood of 1993, and wetland TC-1, a shallow, temporary wetland intermittently filled with water. Because these two wetlands bracket a range of wetland types of the Missouri River flood plain, the responses of other Missouri River wetlands to changes in river stage, rainfall, and runoff should be similar to the responses exhibited by wetlands NC-5 and TC-1. For wetlands deep enough to intersect the ground-water table in the alluvial aquifer, such as wetland NC-5, the ground-water response factor can estimate flood-plain wetland stage changes in response to known river-stage changes. Measured maximum stage and ground-water-level changes at NC-5 fall within the range of estimated changes using the ground-water response factor. Measured maximum ground-water-level changes at TC-1 are similar to, but consistently greater than the estimated values, and are most likely the result of alluvial deposits with higher than average hydraulic conductivity located between wetland TC-1 and the Missouri River. Similarity between ground-water level and

  6. Wetland hydrology and tree distribution of the Apalachicola River flood plain, Florida

    USGS Publications Warehouse

    Leitman, H.M.; Sohm, J.E.; Franklin, M.A.

    1982-01-01

    The Apalachicola River is part of a 50,800-square-kilometer drainage basin in northwest Florida, Alabama, and Georgia. The river is formed by the confluence of the Chattahoochee and Flint Rivers at Jim Woodruff Dam and flows 171 kilometers to Apalachicola Bay in the Gulf of Mexico. Its flood plain supports 450 square kilometers of bottom-land hardwood and tupelco-cypress forests. The most common trees, constituting 62 percent of the total basal area, were five wet-site species; water tupelo, Ogeeche tupelo, baldcypress, Carolina ash, and swamp tupelo. Other common species were sweetgum, overcup oak, planertree, green ash, water hickory, sugarberry, and diamond-leaf oak. Five forest types were defined based on species predominance by basal area. Biomass increased downstream and was greatest in forests growing on permanently saturated soils. Water and tree relations varied with river location because range in water-level fluctuation and topographic relief in the flood plain diminished downstream. Heights of natural riverbank levees and size and distribution of breaks in levees had a major controlling effect on flood-plain hydrology. Depth of water, duration of inundation and saturation, and river location, but not water velocity, were very highly correlated with forest types. (USGS)

  7. Characterizing groundwater/surface-water interactions in the interior of Jianghan Plain, central China

    NASA Astrophysics Data System (ADS)

    Du, Yao; Ma, Teng; Deng, Yamin; Shen, Shuai; Lu, Zongjie

    2018-06-01

    Quantifying groundwater/surface-water interactions is essential for managing water resources and revealing contaminant fate. There has been little concern on the exchange between streams and aquifers through an extensive aquitard thus far. In this study, hydrogeologic calculation and tritium modeling were jointly applied to characterize such interactions through an extensive aquitard in the interior of Jianghan Plain, an alluvial plain of Yangtze River, China. One groundwater simulation suggested that the lateral distance of influence from the river was about 1,000 m; vertical flow in the aquitard followed by lateral flow in the aquifer contributed significantly more ( 90%) to the aquifer head change near the river than lateral bank storage in the aquitard followed by infiltration. The hydrogeologic calculation produced vertical fluxes of the order 0.01 m/day both near and farther from the river, suggesting that similar shorter-lived (half-monthly) vertical fluxes occur between the river and aquitard near the river, and between the surface end members and aquitard farther from the river. Tritium simulation based on the OTIS model produced an average groundwater residence time of about 15 years near the river and a resulting vertical flux of the order 0.001 m/day. Another tritium simulation based on a dispersion model produced a vertical flux of the order 0.0001 m/day away from the river, coupled with an average residence time of around 90 years. These results suggest an order of magnitude difference for the longer-lived (decadal) vertical fluxes between surface waters and the aquifer near and away from the river.

  8. Characterizing groundwater/surface-water interactions in the interior of Jianghan Plain, central China

    NASA Astrophysics Data System (ADS)

    Du, Yao; Ma, Teng; Deng, Yamin; Shen, Shuai; Lu, Zongjie

    2018-01-01

    Quantifying groundwater/surface-water interactions is essential for managing water resources and revealing contaminant fate. There has been little concern on the exchange between streams and aquifers through an extensive aquitard thus far. In this study, hydrogeologic calculation and tritium modeling were jointly applied to characterize such interactions through an extensive aquitard in the interior of Jianghan Plain, an alluvial plain of Yangtze River, China. One groundwater simulation suggested that the lateral distance of influence from the river was about 1,000 m; vertical flow in the aquitard followed by lateral flow in the aquifer contributed significantly more ( 90%) to the aquifer head change near the river than lateral bank storage in the aquitard followed by infiltration. The hydrogeologic calculation produced vertical fluxes of the order 0.01 m/day both near and farther from the river, suggesting that similar shorter-lived (half-monthly) vertical fluxes occur between the river and aquitard near the river, and between the surface end members and aquitard farther from the river. Tritium simulation based on the OTIS model produced an average groundwater residence time of about 15 years near the river and a resulting vertical flux of the order 0.001 m/day. Another tritium simulation based on a dispersion model produced a vertical flux of the order 0.0001 m/day away from the river, coupled with an average residence time of around 90 years. These results suggest an order of magnitude difference for the longer-lived (decadal) vertical fluxes between surface waters and the aquifer near and away from the river.

  9. The response of grain production to changes in quantity and quality of cropland in Yangtze River Delta, China.

    PubMed

    Liu, Guilin; Zhang, Luocheng; Zhang, Qian; Musyimi, Zipporah

    2015-02-01

    Cropland in Yangtze River Delta has declined drastically since economic reforms in 1978 that led to rapid economic development. Such cropland loss due to population growth has led to a decline in grain production. This study aimed at analyzing the impact of land use changes on grain production. To achieve this, the spatiotemporal dynamics of cropland during 1980-2010 were analyzed. Irrigation and soil fertility data were used as additional lines of evidence. Cropland loss had negative impacts on grain production. About 80 and 66% of grain production decreased during 1980-2005 and 2005-2010 respectively. This decline was attributed to the conversion of cropland to built-up areas. Abandoned cropland areas were mainly concentrated in regions with high irrigation capability and high soil fertility, while cropland reclamation was mainly in areas with low irrigation and soil fertility, implying that, although cropland was reclaimed, production remained low. The decline in cropland area has reinforced the chronic food insecurity in Yangtze River Delta. This study demonstrated the response of grain production to the changes in cropland quantity and quality. It also provides scientific evidence for decision makers to protect cropland and enhance grain production. © 2014 Society of Chemical Industry.

  10. Genome Sequence of the Freshwater Yangtze Finless Porpoise.

    PubMed

    Yuan, Yuan; Zhang, Peijun; Wang, Kun; Liu, Mingzhong; Li, Jing; Zheng, Jingsong; Wang, Ding; Xu, Wenjie; Lin, Mingli; Dong, Lijun; Zhu, Chenglong; Qiu, Qiang; Li, Songhai

    2018-04-16

    The Yangtze finless porpoise ( Neophocaena asiaeorientalis ssp. asiaeorientalis ) is a subspecies of the narrow-ridged finless porpoise ( N. asiaeorientalis ). In total, 714.28 gigabases (Gb) of raw reads were generated by whole-genome sequencing of the Yangtze finless porpoise, using an Illumina HiSeq 2000 platform. After filtering the low-quality and duplicated reads, we assembled a draft genome of 2.22 Gb, with contig N50 and scaffold N50 values of 46.69 kilobases (kb) and 1.71 megabases (Mb), respectively. We identified 887.63 Mb of repetitive sequences and predicted 18,479 protein-coding genes in the assembled genome. The phylogenetic tree showed a relationship between the Yangtze finless porpoise and the Yangtze River dolphin, which diverged approximately 20.84 million years ago. In comparisons with the genomes of 10 other mammals, we detected 44 species-specific gene families, 164 expanded gene families, and 313 positively selected genes in the Yangtze finless porpoise genome. The assembled genome sequence and underlying sequence data are available at the National Center for Biotechnology Information under BioProject accession number PRJNA433603.

  11. Genome Sequence of the Freshwater Yangtze Finless Porpoise

    PubMed Central

    Yuan, Yuan; Zhang, Peijun; Wang, Kun; Liu, Mingzhong; Li, Jing; Zheng, Jinsong; Wang, Ding; Xu, Wenjie; Lin, Mingli; Dong, Lijun; Zhu, Chenglong; Qiu, Qiang

    2018-01-01

    The Yangtze finless porpoise (Neophocaena asiaeorientalis ssp. asiaeorientalis) is a subspecies of the narrow-ridged finless porpoise (N. asiaeorientalis). In total, 714.28 gigabases (Gb) of raw reads were generated by whole-genome sequencing of the Yangtze finless porpoise, using an Illumina HiSeq 2000 platform. After filtering the low-quality and duplicated reads, we assembled a draft genome of 2.22 Gb, with contig N50 and scaffold N50 values of 46.69 kilobases (kb) and 1.71 megabases (Mb), respectively. We identified 887.63 Mb of repetitive sequences and predicted 18,479 protein-coding genes in the assembled genome. The phylogenetic tree showed a relationship between the Yangtze finless porpoise and the Yangtze River dolphin, which diverged approximately 20.84 million years ago. In comparisons with the genomes of 10 other mammals, we detected 44 species-specific gene families, 164 expanded gene families, and 313 positively selected genes in the Yangtze finless porpoise genome. The assembled genome sequence and underlying sequence data are available at the National Center for Biotechnology Information under BioProject accession number PRJNA433603. PMID:29659530

  12. Heavy Metal Pollution of Lakes along the Mid-Lower Reaches of the Yangtze River in China: Intensity, Sources and Spatial Patterns

    PubMed Central

    Zeng, Haiao; Wu, Jinglu

    2013-01-01

    Lakes in the middle and lower reaches of the Yangtze River form a shallow lake group unique in the World that is becoming increasingly polluted by heavy metals. Previous studies have largely focused on individual lakes, with limited exploration of the regional pattern of heavy metal pollution of the lake group in this area. This paper explores the sources, intensity and spatial patterns of heavy metal pollution of lake sediments. A total of 45 sample lakes were selected and the concentrations of key metal elements in the sediments of each lake were measured. The cluster analysis (CA), principal component analysis (PCA) and Geo-accumulation index (Ig) analysis permitted analysis of the source and pollution intensity of the target lakes. Results suggested a notable spatial variation amongst the sample lakes. Lakes in the upper part of the lower reach of the Yangtze River surrounded by typical urban landscapes were strongly or extremely polluted, with high concentrations of Pb, Zn, Cu and Cd in their sediments. This was attributed to large amount of untreated industrial discharges and municipal sewage produced within the lake catchments. In contrast, the heavy-metal pollution of lakes in the Taihu Delta area was notably lower due to industrial restructuring and implementation of effective environmental protection measures. Lakes along the middle reach of Yangtze River surrounded by agricultural areas were unpolluted to moderately polluted by heavy metals overall. Our results suggested that lakes in the central part of China require immediate attention and efforts should be made to implement management plans to prevent further degradation of water quality in these lakes. PMID:23442559

  13. Precursory strong-signal characteristics of the convective clouds of the Central Tibetan Plateau detected by radar echoes with respect to the evolutionary processes of an eastward-moving heavy rainstorm belt in the Yangtze River Basin

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Xu, Xiangde; Ruan, Zheng; Chen, Bin; Wang, Fang

    2018-03-01

    The integrated analysis of the data from a C-band frequency-modulated continuous-wave (C-FMCW) radar site in Naqu obtained during a rainstorm over the middle and lower reaches of the Yangtze River and the data concerning the three-dimensional structure of the circulation of the precipitation system that occurred over the lower reaches of the Yangtze River Basin during the Third Tibetan Plateau (TP) Atmospheric Experiment from August 15th to 19th, 2014, was carried out. The changes in the echo intensity at the C-FMCW radar site in Naqu were of regional indicative significance for the characteristics of the whole-layer apparent heat source Q1 in local areas and the region of the adjacent river source area, including the Yangtze River, Yellow River, and Lancang River (hereinafter referred to as the "source area of three rivers"), as well as to the vertical speeds due to the development of convection. This study indicates that the C-FMCW radar echo intensity of the plateau convection zone and the related power structures of the coupled dipole circulations in the middle layer of the atmosphere, as well as in the upper atmospheric level divergence and lower atmospheric level convergence, are important stimuli for convective clouds in this region. Furthermore, these radar data provided a physical image of the development and maintenance mechanisms of an eastward-moving heavy rainstorm belt. This study also shows that changes in the echo intensities at the C-FMCW radar site of Naqu can provide strong signals related to heavy rainstorm processes in the upper reaches of the Yangtze River.

  14. Atmospheric nitrogen deposition in the Yangtze River basin: Spatial pattern and source attribution.

    PubMed

    Xu, Wen; Zhao, Yuanhong; Liu, Xuejun; Dore, Anthony J; Zhang, Lin; Liu, Lei; Cheng, Miaomiao

    2018-01-01

    The Yangtze River basin is one of the world's hotspots for nitrogen (N) deposition and likely plays an important role in China's riverine N output. Here we constructed a basin-scale total dissolved inorganic N (DIN) deposition (bulk plus dry) pattern based on published data at 100 observational sites between 2000 and 2014, and assessed the relative contributions of different reactive N (N r ) emission sectors to total DIN deposition using the GEOS-Chem model. Our results show a significant spatial variation in total DIN deposition across the Yangtze River basin (33.2 kg N ha -1 yr -1 on average), with the highest fluxes occurring mainly in the central basin (e.g., Sichuan, Hubei and Hunan provinces, and Chongqing municipality). This indicates that controlling N deposition should build on mitigation strategies according to local conditions, namely, implementation of stricter control of N r emissions in N deposition hotspots but moderate control in the areas with low N deposition levels. Total DIN deposition in approximately 82% of the basin area exceeded the critical load of N deposition for semi-natural ecosystems along the basin. On the basin scale, the dominant source of DIN deposition is fertilizer use (40%) relative to livestock (11%), industry (13%), power plant (9%), transportation (9%), and others (18%, which is the sum of contributions from human waste, residential activities, soil, lighting and biomass burning), suggesting that reducing NH 3 emissions from improper fertilizer (including chemical and organic fertilizer) application should be a priority in curbing N deposition. This, together with distinct spatial variations in emission sector contributions to total DIN deposition also suggest that, in addition to fertilizer, major emission sectors in different regions of the basin should be considered when developing synergistic control measures. Copyright © 2017. Published by Elsevier Ltd.

  15. A monitoring study of the 1998 rainstorm along the Yangtze River of China by using TIPEX data

    NASA Astrophysics Data System (ADS)

    Wang, Jizhi; Yang, Yuanqin; Xu, Xiangde; Zhang, Guangzhi

    2003-05-01

    By using data from the Secondary Tibetan Plateau Science Experiment (TIPEX) in 1998, including enhanced soundings, surface observations, data from captive balloons, remote sensing, and Doppler radar (China and Japan cooperative study of GAME/ Tibet), a monitoring study on the generation and moving track of the cumulus convective systems over the Tibetan Plateau is made, and the relationship between the evolution of cloud systems over the Tibetan Plateau and 1998 flooding in China is studied. The results are as follows. 1) Analyzing the image animation and Hovmoller diagram of satellite TBB data shows that the rainstorms for the Yangtze River in the last ten days of July 1998 can be tracked regionally to the Tibetan Plateau. 2) For the period of cloud clusters passing through the Amdo station (18 19 July), monitoring observations by Doppler radar is made. The monitoring of radar echoes shows that the developing, eastward motion, and strengthening of the echoes can be frequently observed in the middle of the Tibetan Plateau. An integrated analysis and tracking of the generation, disappearance, development, and eastward motion of these convective systems by using multiple instruments is very valuable for diagnosing and predicting the influence of the plateau systems on the downstream weather situation. 3) The integrated analysis of space-time cross sections of the enhanced upper air and surface observations from TIPEX during the intensified observation period shows that the frequent development of convective clouds over the Tibetan Plateau is related with the quasi-stationary convergence of surface winds. The dynamic convergence of surface winds, the vertical shear in the upper air, and transportation of water vapor due to increasing humidity over the Tibetan Plateau played an important role in the developing and strengthening of rainstorms over the Yangtze River in 1998. 4) Meso-sale filtration analysis of the vertical distribution of water vapor over the Tibetan

  16. Health risk assessment of heavy metals in fish and accumulation patterns in food web in the upper Yangtze River, China.

    PubMed

    Yi, Yujun; Tang, Caihong; Yi, Tieci; Yang, Zhifeng; Zhang, Shanghong

    2017-11-01

    This study aims to concern the distribution of As, Cr, Cd, Hg, Cu, Zn, Pb and Fe in surface sediment, zoobenthos and fishes, and quantify the accumulative ecological risk and human health risk of metals in river ecological system based on the field investigation in the upper Yangtze River. The results revealed high ecological risk of As, Cd, Cu, Hg, Zn and Pb in sediment. As and Cd in fish presented potential human health risk of metals by assessing integrated target hazard quotient results based on average and maximum concentrations, respectively. No detrimental health effects of heavy metals on humans were found by daily fish consumption. While, the total target hazard quotient (1.659) exceeding 1, it meant that the exposed population might experience noncarcinogenic health risks from the accumulative effect of metals. Ecological network analysis model was established to identify the transfer routes and quantify accumulative effects of metals on river ecosystem. Control analysis between compartments showed large predator fish firstly depended on the omnivorous fish. Accumulative ecological risk of metals indicated that zoobenthos had the largest metal propagation risk and compartments located at higher trophic levels were not easier affected by the external environment pollution. A potential accumulative ecological risk of heavy metal in the food web was quantified, and the noncarcinogenic health risk of fish consumption was revealed for the upper reach of the Yangtze River. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. 76 FR 2829 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  18. 77 FR 20295 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  19. 77 FR 35854 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  20. 75 FR 52462 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  1. 75 FR 73966 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  2. Temporal variations of groundwater quality in the Western Jianghan Plain, China.

    PubMed

    Niu, Beibei; Wang, Huanhuan; Loáiciga, Hugo A; Hong, Song; Shao, Wei

    2017-02-01

    The Western Jianghan Plain (WJHP) lies in the middle reaches of the Yangtze River. It has been impacted by anthropogenic activities during the past decades. The long-term variations of the WJHP's regional aquifer's hydrochemistry and groundwater quality have not been previously assessed. Sixteen physiochemical parameters at 29 monitoring wells within the Western Jianghan Plain were monitored during 1992-2010 and analyzed with multiple approaches. The confined groundwater is predominantly of the HCO 3 -Ca-Mg type with Cl - , SO 4 2- , NH 4 -N, and NO 3 -N showing remarkable spatial variations. Correlation analysis was used to identify the origins and contamination sources of groundwater. The seasonal Mann-Kendall test revealed that pH, NO 3 -N, and Cl - concentrations at 27, 26 and 15 wells, respectively, exhibited significant increasing trends during 1992-2010. The increase of pH may be attributed to CO 2 degassing caused by extensive groundwater extraction. Regional average NO 3 -N concentrations of groundwater increased coincidently with the increased use of fertilizer, which suggests that nitrate pollution is caused by agricultural activities. Abnormally high values of Cl - and SO 4 2- at some wells were induced by industrial chemicals. In addition, the similarity of the temporal variations of the regional average of pH, NH 4 -N, and NO 3 -N concentrations in groundwater with those in the Yangtze River at the outlet of the Three Gorges Reservoir (TGR) suggests that the variations of these parameters in the WJHP is partly due to water storage by the TGR. This study presents an analysis of temporal variations of groundwater quality in the WJHP that reveals a relation between the creation of the TGR and downstream groundwater quality. This paper's findings provide clues for measures that could be taken to protect the groundwater quality of the WJHP's aquifer. Copyright © 2016. Published by Elsevier B.V.

  3. Improving simulations of snow water equivalent and total water storage changes over the Upper Yangtze River basin using multi-source remote sensing data

    NASA Astrophysics Data System (ADS)

    Han, P.; Long, D.

    2017-12-01

    Snow water equivalent (SWE) and total water storage (TWS) changes are important hydrological state variables over cryospheric regions, such as China's Upper Yangtze River (UYR) basin. Accurate simulation of these two state variables plays a critical role in understanding hydrological processes over this region and, in turn, benefits water resource management, hydropower development, and ecological integrity over the lower reaches of the Yangtze River, one of the largest rivers globally. In this study, an improved CREST model coupled with a snow and glacier melting module was used to simulate SWE and TWS changes over the UYR, and to quantify contributions of snow and glacier meltwater to the total runoff. Forcing, calibration, and validation data are mainly from multi-source remote sensing observations, including satellite-based precipitation estimates, passive microwave remote sensing-based SWE, and GRACE-derived TWS changes, along with streamflow measurements at the Zhimenda gauging station. Results show that multi-source remote sensing information can be extremely valuable in model forcing, calibration, and validation over the poorly gauged region. The simulated SWE and TWS changes and the observed counterparts are highly consistent, showing NSE coefficients higher than 0.8. The results also show that the contributions of snow and glacier meltwater to the total runoff are 8% and 6%, respectively, during the period 2003‒2014, which is an important source of runoff. Moreover, from this study, the TWS is found to increase at a rate of 5 mm/a ( 0.72 Gt/a) for the period 2003‒2014. The snow melting module may overestimate SWE for high precipitation events and was improved in this study. Key words: CREST model; Remote Sensing; Melting model; Source Region of the Yangtze River

  4. [Effects of macro-jellyfish abundance dynamics on fishery resource structure in the Yangtze River estuary and its adjacent waters].

    PubMed

    Shan, Xiu-Juan; Zhuang, Zhi-Meng; Jin, Xian-Shi; Dai, Fang-Qun

    2011-12-01

    Based on the bottom trawl survey data in May 2007 and May and June 2008, this paper analyzed the effects of the abundance dynamics of macro-jellyfish on the species composition, distribution, and abundance of fishery resource in the Yangtze River estuary and its adjacent waters. From May 2007 to June 2008, the average catch per haul and the top catch per haul of macro-jellyfish increased, up to 222.2 kg x h(-1) and 1800 kg x h(-1) in June 2008, respectively. The macro-jellyfish were mainly distributed in the areas around 50 m isobath, and not beyond 100 m isobath where was the joint front of the coastal waters of East China Sea, Yangtze River runoff, and Taiwan Warm Current. The main distribution area of macro-jellyfish in June migrated northward, as compared with that in May, and the highest catches of macro-jellyfish in May 2007 and May 2008 were found in the same sampling station (122.5 degrees E, 28.5 degrees N). In the sampling stations with higher abundance of macro-jellyfish, the fishery abundance was low, and the fishery species also changed greatly, mainly composed by small-sized species (Trachurus japonicus, Harpadon nehereus, and Acropoma japonicum) and pelagic species (Psenopsis anomala, Octopus variabilis) and Trichiurus japonicus, and P. anomala accounted for 23.7% of the total catch in June 2008. Larimichthys polyactis also occupied higher proportion of the total catch in sampling stations with higher macro-jellyfish abundance, but the demersal species Lophius litulon was not found, and a few crustaceans were collected. This study showed that macro-jellyfish had definite negative effects on the fishery community structure and abundance in the Yangtze River estuary fishery ecosystem, and further, changed the energy flow patterns of the ecosystem through cascading trophic interactions. Therefore, macro-jellyfish was strongly suggested to be an independent ecological group when the corresponding fishery management measures were considered.

  5. Association analysis between spatiotemporal variation of vegetation greenness and precipitation/temperature in the Yangtze River Basin (China).

    PubMed

    Cui, Lifang; Wang, Lunche; Singh, Ramesh P; Lai, Zhongping; Jiang, Liangliang; Yao, Rui

    2018-05-23

    The variation in vegetation greenness provides good understanding of the sustainable management and monitoring of land surface ecosystems. The present paper discusses the spatial-temporal changes in vegetation and controlling factors in the Yangtze River Basin (YRB) using Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) for the period 2001-2013. Theil-Sen Median trend analysis, Pearson correlation coefficients, and residual analysis have been used, which shows decreasing trend of the annual mean NDVI over the whole YRB. Spatially, the regions with significant decreasing trends were mainly located in parts of central YRB, and pronounced increasing trends were observed in parts of the eastern and western YRB. The mean NDVI during spring and summer seasons increased, while it decreased during autumn and winter seasons. The seasonal mean NDVI shows spatial heterogeneity due to the vegetation types. The correlation analysis shows a positive relation between NDVI and temperature over most of the YRB, whereas NDVI and precipitation show a negative correlation. The residual analysis shows an increase in NDVI in parts of eastern and western YRB and the decrease in NDVI in the small part of Yangtze River Delta (YRD) and the mid-western YRB due to human activities. In general, climate factors were the principal drivers of NDVI variation in YRB in recent years.

  6. Characterization of geomorphic units in the alluvial valleys and channels of Gulf Coastal Plain rivers in Texas, with examples from the Brazos, Sabine, and Trinity Rivers, 2010

    USGS Publications Warehouse

    Coffman, David K.; Malstaff, Greg; Heitmuller, Franklin T.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the Texas Water Development Board, described and characterized examples of geomorphic units within the channels and alluvial valleys of Texas Gulf Coastal Plain rivers using a geomorphic unit classification scale that differentiates geomorphic units on the basis of their location either outside or inside the river channel. The geomorphic properties of a river system determine the distribution and type of potential habitat both within and adjacent to the channel. This report characterizes the geomorphic units contained in the river channels and alluvial valleys of Texas Gulf Coastal Plain rivers in the context of the River Styles framework. This report is intended to help Texas Instream Flow Program practitioners, river managers, ecologists and biologists, and others interested in the geomorphology and the physical processes of the rivers of the Texas Gulf Coastal Plain (1) gain insights into how geomorphic units develop and adjust spatially and temporally, and (2) be able to recognize common geomorphic units from the examples cataloged in this report. Recent aerial imagery (high-resolution digital orthoimagery) collected in 2008 and 2009 were inspected by using geographic information system software to identify representative examples of the types of geomorphic units that occurred in the study area. Geomorphic units outside the channels of Texas Gulf Coastal Plain rivers are called \\"valley geomorphic units\\" in this report. Valley geomorphic units for the Texas Gulf Coastal Plain rivers described in this report are terraces, flood plains, crevasses and crevasse splays, flood-plain depressions, tie channels, tributaries, paleochannels, anabranches, distributaries, natural levees, neck cutoffs, oxbow lakes, and constructed channels. Channel geomorphic units occur in the river channel and are subject to frequent stresses associated with flowing water and sediment transport; they adjust (change) relatively quickly in

  7. Seasonal variation in drifting eggs and larvae in the upper Yangtze, China.

    PubMed

    Jiang, Wei; Liu, Huan-Zhang; Duan, Zhong-Hua; Cao, Wen-Xuan

    2010-05-01

    From 5 March to 25 July 2008, ichthyoplankton drifting into the Three Gorges Reservoir from the upper reaches of the Yangtze River were sampled daily to investigate the species composition, abundance, and seasonal variation in early-stage fishes in this area. Twenty-eight species belonging to five orders and 17 families or subfamilies were identified by analyzing fish eggs and larvae, and a total of 14.16 billion individuals were estimated drifting through the sampling section during the investigation. Among the ichthyoplankton sampled, species in Cultrinae, Cobitidae, Gobioninae and Gobiidae, along with the common carp (Cyprinus carpio Linnaeus), comprised 89.6% of the total amount. Six peaks of drift density were identified during the sampling period, and a significant correlation was found between drift density with water discharge. The dominant species were different in each drift peak, indicating different spawning times for the major species. The total amount of the four major Chinese carps that drifted through the sampling section was estimated as 0.88 billion, indicating an increase in the population sizes of these species in the upper reaches of the Yangtze River after construction of the Three Gorges Dam. Actually, these reaches have become the largest spawning area for the four major Chinese carps in the Yangtze River. The large total amount of eggs and larvae drifting through this section demonstrated that the upper reaches of the Yangtze River provided important spawning sites for many fish species, and that conservation of this area should be of great concern.

  8. [Effect of water conservancy schistosomiasis control projects combined with molluscicide to control Oncomelania hupensis snails in rivers connecting with Yangtze River in Pukou District, Nanjing City].

    PubMed

    Qiang, Zhou; Li-Xin, Wan; De-Rong, Hang; Qi-Hui, You; Jun, You; Yu-Lin, Zhang; Zhao-Feng, Zhu; Yi-Xin, Huang

    2017-12-07

    To evaluate the effect of the water conservancy schistosomiasis control projects combined with molluscicide to control Oncomelania hupensis snails in the rivers connecting with the Yangtze River. The water conservancy schistosomiasis control projects of Zhujiashan River, Qili River and Gaowang River were chosen as the study objects in Pukou District, Nanjing City. The data review method and field investigation were used to evaluate the effect of the water conservancy schistosomiasis control projects combined with molluscicide to control O. hupensis snails. After the projects of the water level control and concrete slope protection and mollusciciding were implemented, the snails in the project river sections were completely eliminated. The snail diffusion did not happen in the inland irrigation area too. In the outside of the river beach, though the snails still existed, the snail densities plunged below 1.0 snail per 1.0 m 2 . The comprehensive measures of the combination of water level control, concrete slope protection and mollusciciding can effectively control and eliminate the snails, and prevent the snails from spreading.

  9. Spatial-Temporal Variations of Chlorophyll-a in the Adjacent Sea Area of the Yangtze River Estuary Influenced by Yangtze River Discharge.

    PubMed

    Wang, Ying; Jiang, Hong; Jin, Jiaxin; Zhang, Xiuying; Lu, Xuehe; Wang, Yueqi

    2015-05-20

    Carrying abundant nutrition, terrigenous freshwater has a great impact on the spatial and temporal heterogeneity of phytoplankton in coastal waters. The present study analyzed the spatial-temporal variations of Chlorophyll-a (Chl-a) concentration under the influence of discharge from the Yangtze River, based on remotely sensed Chl-a concentrations. The study area was initially zoned to quantitatively investigate the spatial variation patterns of Chl-a. Then, the temporal variation of Chl-a in each zone was simulated by a sinusoidal curve model. The results showed that in the inshore waters, the terrigenous discharge was the predominant driving force determining the pattern of Chl-a, which brings the risk of red tide disasters; while in the open sea areas, Chl-a was mainly affected by meteorological factors. Furthermore, a diversity of spatial and temporal variations of Chl-a existed based on the degree of influences from discharge. The diluted water extended from inshore to the east of Jeju Island. This process affected the Chl-a concentration flowing through the area, and had a potential impact on the marine environment. The Chl-a from September to November showed an obvious response to the discharge from July to September with a lag of 1 to 2 months.

  10. Spatial-Temporal Variations of Chlorophyll-a in the Adjacent Sea Area of the Yangtze River Estuary Influenced by Yangtze River Discharge

    PubMed Central

    Wang, Ying; Jiang, Hong; Jin, Jiaxin; Zhang, Xiuying; Lu, Xuehe; Wang, Yueqi

    2015-01-01

    Carrying abundant nutrition, terrigenous freshwater has a great impact on the spatial and temporal heterogeneity of phytoplankton in coastal waters. The present study analyzed the spatial-temporal variations of Chlorophyll-a (Chl-a) concentration under the influence of discharge from the Yangtze River, based on remotely sensed Chl-a concentrations. The study area was initially zoned to quantitatively investigate the spatial variation patterns of Chl-a. Then, the temporal variation of Chl-a in each zone was simulated by a sinusoidal curve model. The results showed that in the inshore waters, the terrigenous discharge was the predominant driving force determining the pattern of Chl-a, which brings the risk of red tide disasters; while in the open sea areas, Chl-a was mainly affected by meteorological factors. Furthermore, a diversity of spatial and temporal variations of Chl-a existed based on the degree of influences from discharge. The diluted water extended from inshore to the east of Jeju Island. This process affected the Chl-a concentration flowing through the area, and had a potential impact on the marine environment. The Chl-a from September to November showed an obvious response to the discharge from July to September with a lag of 1 to 2 months. PMID:26006121

  11. Summary of the Snake River plain Regional Aquifer-System Analysis in Idaho and eastern Oregon

    USGS Publications Warehouse

    Lindholm, G.F.

    1996-01-01

    Regional aquifers underlying the 15,600-square-mile Snake River Plain in southern Idaho and eastern Oregon was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis program. The largest and most productive aquifers in the Snake River Plain are composed of Quaternary basalt of the Snake River Group, which underlies most of the 10,8000-square-mile eastern plain. Aquifer tests and simulation indicate that transmissivity of the upper 200 feet of the basalt aquifer in the eastern plain commonly ranges from about 100,000 to 1,000,000 feet squared per day. However, transmissivity of the total aquifer thickness may be as much as 10 million feet squared per day. Specific yield of the upper 200 feet of the aquifer ranges from about 0.01 to 0.20. Average horizontal hydraulic conductivity of the upper 200 feet of the basalt aquifer ranges from less than 100 to 9,000 feet per day. Values may be one to several orders of magnitude higher in parts in individual flows, such as flow tops. Vertical hydraulic conductivity is probably several orders of magnitude lower than horizontal hydraulic conductivity and is generally related to the number of joints. Pillow lava in ancestral Snake River channels has the highest hydraulic conductivity of all rock types. Hydraulic conductivity of the basalt decreases with depth because of secondary filling of voids with calcite and silica. An estimated 80 to 120 million acre-feet of water is believed to be stored in the upper 200 feet of the basalt aquifer in the eastern plain. The most productive aquifers in the 4,800-square-mile western plain are alluvial sand and gravel in the Boise River valley. Although aquifer tests indicate that transmissivity of alluvium in the Boise River valley ranges from 5,000 to 160,000 feet squared per day, simulation suggests that average transmissivity of the upper 500 feet is generally less than 20,000 feet squared per day. Vertically averaged horizontal hydraulic conductivity of the upper

  12. Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert K Podgorney; Thomas R. Wood; Travis L McLing

    2013-09-01

    The Snake River volcanic province overlies a thermal anomaly that extends deep into the mantle and represents one of the highest heat flow provinces in North America (Blackwell and Richards, 2004). This makes the Snake River Plain (SRP) one of the most under-developed and potentially highest producing geothermal districts in the United States. Elevated heat flow is typically highest along the margins of the topographic SRP and lowest along the axis of the plain, where thermal gradients are suppressed by the Snake River aquifer. Beneath this aquifer, however, thermal gradients rise again and may tap even higher heat flows associatedmore » with the intrusion of mafic magmas into the mid-crustal sill complex (e.g., Blackwell, 1989).« less

  13. Anabranching rivers on the Northern Plains of arid central Australia

    NASA Astrophysics Data System (ADS)

    Tooth, Stephen; Nanson, Gerald C.

    1999-09-01

    Anabranching rivers are a widespread feature of the Northern Plains in the Alice Springs region of central Australia but their unusual characteristics previously have not been described. On the Northern Plains, anabranching occurs on rivers transporting bedloads of coarse sand and gravel and is characterised by channels of variable size and shape which occur within a broader, typically well-defined, channel-train. Channels are separated by channel-train ridges—narrow, flow-aligned, vegetated features—or by wider islands. Ridges and islands are either depositional features (formed in situ by accretionary processes) or erosional features (formed by excision from once-continuous areas of floodplain). Vegetation plays a key role in the initiation, survival and growth of depositional forms through its influence on flow, sediment transport and ridge and island stability. Anabranching is also related to the influence of tributaries, for some large rivers alternate from single-thread to anabranching along their length in response to tributary inputs of water and sediment. Tributary inputs occur during flow events that are either independent from, or in concert with, floods in the trunk channel. Ridges and islands form in association with tributaries as a result of various hydrological, depositional and erosional processes, including irrigation of enhanced numbers of in-channel trees and resulting lee-side sediment accretion, floodplain scour, and the formation and maintenance of deferred-junction tributaries. The change from single-thread to anabranching downstream of tributary junctions occurs in the absence of any significant change in channel gradient or degree of channel confinement. On the Northern Plains, anabranching appears to be a stable river pattern that helps to maintain the throughput of relatively coarse sediment in low-gradient (typically 0.0005-0.002) channels characterised by an abundance of within-channel vegetation and subject to declining downstream

  14. [Distributions and air-sea fluxes of dissolved nitrous oxide in the Yangtze River estuary and its adjacent marine area in spring and summer].

    PubMed

    Wang, Lan; Zhang, Gui-ling; Sun, Ming-shuang; Ren, Jing-ling

    2014-12-01

    Distributions and air-sea fluxes of nitrous oxide (N2O) in the seawaters of the Yangtze River estuary and its adjacent marine area were investigated during two cruises in March and July 2012. Dissolved N2O concentrations in surface waters ranged from 9.34 to 49.08 nmol x L(-1) with an average of (13.27 ± 6.40) nmol x L(-1) in spring and ranged from 7.27 to 27.81 nmol x L(-1) with an average of (10.62 ± 5.03) nmol x L(-1) in summer. There was no obvious difference between surface and bottom N2O concentrations. N2O concentrations in both surface and bottom waters decreased along the freshwater plume from the river mouth to the open sea. High values of dissolved N2O were found in turbidity maximum zone, which suggests that maximal turbidity enhances nitrification. Temperature had dual effects on dissolved N2O concentrations. N2O saturations in surface waters ranged from 86.9% to 351.3% with an average of (111.5 ± 41.4)% in spring and ranged from 111.7% to 396.0% with an average of (155.9 ± 68.4)% in summer. N2O were over-saturated at most stations. The sea-to-air fluxes of N2O were estimated to be (3.2 ± 10.9), (5.5 ± 19.3) and (12.2 ±52.3) μmol x (m2 x d)(-1) in spring and (7.3 ± 12.4), (12.7 ± 20.4) and (20.4 ± 35.9) μmol x (m2 x d)(-1) in summer using the LM86, W92 and RC01 relationships, respectively. The annual emissions of N2O from the Yangtze River estuary and its adjacent marine area were estimated to be 0.6 x 10(-2) Tg x a(-1) (LM86), 1.1 x 10(-2) Tg x a(-1) (W92) and 2.0 x 10(-2) Tg x a(-1) (RC01). Although the area of the Yangtze River estuary and its adjacent marine area only accounts for 0.02% of the total area of the world's oceans, their emission of N2O accounts for 0.06% of global oceanic N2O emission, indicating that the Yangtze River estuary and its adjacent marine area is an active area to produce and emit N2O.

  15. Perfluoroalkyl and polyfluoroalkyl substances in the lower atmosphere and surface waters of the Chinese Bohai Sea, Yellow Sea, and Yangtze River estuary.

    PubMed

    Zhao, Zhen; Tang, Jianhui; Mi, Lijie; Tian, Chongguo; Zhong, Guangcai; Zhang, Gan; Wang, Shaorui; Li, Qilu; Ebinghaus, Ralf; Xie, Zhiyong; Sun, Hongwen

    2017-12-01

    Polyfluoroalkyl and perfluoroalkyl substances (PFASs), in the forms of neutral polyfluoroalkyl substances in the gas phase of air and ionic perfluoroalkyl substances in the dissolved phase of surface water, were investigated during a sampling campaign in the Bohai Sea, Yellow Sea, and Yangtze River estuary in May 2012. In the gas phase, the concentrations of neutral ∑PFASs were within the range of 76-551pg/m 3 . Higher concentrations were observed in the South Yellow Sea. 8:2 fluorotelomer alcohol (FTOH) was the predominant compound as it accounted for 92%-95% of neutral ∑PFASs in all air samples. Air mass backward trajectory analysis indicated that neutral ∑PFASs came mainly from the coast of the Yellow Sea, including the Shandong, Jiangsu, and Zhejiang provinces of China, and the coastal region of South Korea. The fluxes of gas phase dry deposition were simulated for neutral PFASs, and neutral ∑PFASs fluxes varied from 0.37 to 2.3pg/m 2 /s. In the dissolved phase of the surface water, concentrations of ionic ∑PFASs ranged from 1.6 to 118ng/L, with the Bohai Sea exhibiting higher concentrations than both the Yellow Sea and the Yangtze River estuary. Perfluorooctanoic acid (PFOA) was the predominant compound accounting for 51%-90% of the ionic ∑PFAS concentrations. Releases from industrial and domestic activities as well as the semiclosed geographical conditions increased the level of ionic ∑PFASs in the Bohai Sea. The spatial distributions of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs) were different significantly. The Laizhou Bay was the major source region of PFCAs and the Yangtze River estuary was the major source of PFSAs. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The Tempe volcanic province of Mars and comparisons with the Snake River Plains of Idaho

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.

    1981-01-01

    The Tempe volcanic region of Mars, a relatively low plain of probable basaltic flood lava affinity, is shown to be comparable in many respects to features of the Snake River Plains of Idaho, including both scale and type of features observed. Superimposed upon the Tempe plain are a variety of features that appear structurally controlled, along an orientation of N60 deg E; comprising low shields, irregular hills that may be silicic domes, and possible composite cones. The Tempe/Snake River match is held to be the first in which direct comparison can be made between Martian and terrestrial geologic-geomorphic features without encountering problems of scale.

  17. Biological thresholds of nitrogen and phosphorus in a typical urban river system of the Yangtz delta, China.

    PubMed

    Liang, Xinqiang; Zhu, Sirui; Ye, Rongzhong; Guo, Ru; Zhu, Chunyan; Fu, Chaodong; Tian, Guangming; Chen, Yingxu

    2014-09-01

    River health and associated risks are fundamentally dependent on the levels of the primary productivities, i.e., sestonic and benthic chlorophyll-a. We selected a typical urban river system of the Yangtz delta to investigate nutrient and non-nutrient responses of chlorophyll-a contents and to determine biological thresholds of N and P. Results showed the mean contents of sestonic and benthic chlorophyll-a across all sampling points reached 10.2 μg L(-1) and 149.3 mg m(-2). The self-organized mapping analysis suggested both chlorophyll-a contents clearly responded to measurements of N, P, and water temperature. Based on the chlorophyll-a criteria for fresh water and measured variables, we recommend the biological thresholds of N and P for our river system be set at 2.4 mg N L(-1) and 0.2 mg P L(-1), and these be used as initial nutrient reference values for local river managers to implement appropriate strategies to alleviate nutrient loads and trophic status. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Water-level changes in the High Plains aquifer, Republican River Basin in Colorado, Kansas, and Nebraska, 2002 to 2015

    USGS Publications Warehouse

    McGuire, V.L.

    2016-12-29

    The High Plains aquifer underlies 111.8 million acres (about 175,000 square miles) in parts of eight States—Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. More than 95 percent of the water withdrawn from the High Plains aquifer is used for irrigation. Water-level declines began in parts of the High Plains aquifer soon after the beginning of substantial irrigation with groundwater in the aquifer area (about 1950). The Republican River Basin is 15.9 million acres (about 25,000 square miles) and is located in northeast Colorado, northern Kansas, and southwest Nebraska. The Republican River Basin overlies the High Plains aquifer for 87 percent of the basin area. Water-level declines had begun in parts of the High Plains aquifer within the Republican River Basin by 1964. In 2002, management practices were enacted in the Middle Republican Natural Resources District in Nebraska to comply with the Republican River Compact Final Settlement. The U.S. Geological Survey, in cooperation with the Middle Republican Natural Resources District, completed a study of water-level changes in the High Plains aquifer within the Republican River Basin from 2002 to 2015 to enable the Middle Republican Natural Resources District to assess the effect of the management practices, which were specified by the Republican River Compact Final Settlement. Water-level changes determined from this study are presented in this report.Water-level changes from 2002 to 2015 in the High Plains aquifer within the Republican River Basin, by well, ranged from a rise of 9.4 feet to a decline of 43.2 feet. The area-weighted, average water-level change from 2002 to 2015 in this part of the aquifer was a decline of 4.5 feet.

  19. 76 FR 63199 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... of Engineers' scheduled maintenance shutdown of Barrier IIB. During the enforcement period, entry...

  20. Impact of the operation of cascade reservoirs in upper Yangtze River on hydrological variability of the mainstream

    NASA Astrophysics Data System (ADS)

    Changjiang, Xu; Dongdong, Zhang

    2018-06-01

    As the impacts by climate changes and human activities are intensified, variability may occur in river's annual runoff as well as flood and low water characteristics. In order to understand the characteristics of variability in hydrological series, diagnosis and identification must be conducted specific to the variability of hydrological series, i.e., whether there was variability and where the variability began to occur. In this paper, the mainstream of Yangtze River was taken as the object of study. A model was established to simulate the impounding and operation of upstream cascade reservoirs so as to obtain the runoff of downstream hydrological control stations after the regulation by upstream reservoirs in different level years. The Range of Variability Approach was utilized to analyze the impact of the operation of upstream reservoirs on the variability of downstream. The results indicated that the overall hydrologic alterations of Yichang hydrological station in 2010 level year, 2015 level year and the forward level year were 68.4, 72.5 and 74.3 % respectively, belonging to high alteration in all three level years. The runoff series of mainstream hydrological stations presented variability in different degrees, where the runoff series of the four hydrological stations including Xiangjiaba, Gaochang and Wulong belonged to high alteration in the three level years; and the runoff series of Beibei hydrological station in 2010 level year belonged to medium alteration, and high alteration in 2015 level year and the forward level year. The study on the impact of the operation of cascade reservoirs in Upper Yangtze River on hydrological variability of the mainstream had important practical significance on the sustainable utilization of water resources, disaster prevention and mitigation, safe and efficient operation and management of water conservancy projects and stable development of the economic society.

  1. Irrigated acreage and other land uses on the Snake River Plain, Idaho and eastern Oregon

    USGS Publications Warehouse

    Lindholm, Gerald F.; Goodell, S.A.

    1986-01-01

    Prompted by the need for a current, accurate, and repeatable delineation of irrigated acreage on the Snake River Plain, the U.S. Geological Survey entered into a cooperative agreement with the Idaho Department of Water Resources Image Analysis Facility and the U.S. Bureau of Reclamation to delineate 1980 land use form Landsat data. Irrigated acreage data were needed as input to groundwater flow models developed by the U.S. Geological Survey in a study of the regional aquifer system underlying the Snake River Plain. Single-date digital multispectral scanner data analyzed to delineate land-use classes. Source of irrigation water (surface water, ground water, and combined) was determined from county maps of 1975 water-related land use, data from previous investigations, and field checking. Surface-water diversions for irrigation on the Snake River Plain began in the 1840's. With the stimulus of Federal aid authorized by the Desert Land Act, Carey Act, and Reclamation Act, irrigated area increased rapidly in the early 1900's. By 1929, 2.2 million acres were irrigated. Ground water became and important source of irrigation water after World War II. In 1980, about 3.1 million acres of the Snake River Plain were irrigate: 2.0 million acres with surface water, 1.0 million with ground water, and 0.1 million with combined surface and ground water. About 5.2 million acres (half of the plain) are undeveloped rangeland, 1.0 million acres (one-tenth) are classified as barren. The remaining land is a mixture of dryland agriculture, water bodies, wetland, forests, and urban areas.

  2. Mississippi River delta plain, Louisiana coast, and inner shelf Holocene geologic framework, processes, and resources

    USGS Publications Warehouse

    Williams, S. Jeffress; Kulp, Mark; Penland, Shea; Kindinger, Jack L.; Flocks, James G.; Buster, Noreen A.; Holmes, Charles W.

    2009-01-01

    Extending nearly 400 km from Sabine Pass on the Texas-Louisiana border east to the Chandeleur Islands, the Louisiana coastal zone (Fig. 11.1) along the north-central Gulf of Mexico is the southern terminus of the largest drainage basin in North America (>3.3 million km2), which includes the Mississippi River delta plain where approximately 6.2 million kilograms per year of sediment is delivered to the Gulf of Mexico (Coleman 1988). The Mississippi River, active since at least Late Jurassic time (Mann and Thomas 1968), is the main distributary channel of this drainage system and during the Holocene has constructed one of the largest delta plains in the world, larger than 30,000 km2 (Coleman and Prior 1980; Coleman 1981; Coleman et al. 1998). The subsurface geology and geomorphology of the Louisiana coastal zone reffects a complex history of regional tectonic events and fluvial, deltaic, and marine sedimentary processes affected by large sea-level fluctuations. Despite the complex geology of the north-central Gulf basin, a long history of engineering studies and Scientific research investigations (see table 11.1) has led to substantial knowledge of the geologic framework and evolution of the delta plain region (see also Bird et al., chapter 1 in this volume). Mississippi River delta plain, Louisiana coast, and inner shelf Holocene geologic framework, processes, and resources. Available from: https://www.researchgate.net/publication/262802561_Mississippi_River_delta_plain_Louisiana_coast_and_inner_shelf_Holocene_geologic_framework_processes_and_resources [accessed Sep 13, 2017].

  3. 76 FR 78161 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... the U.S. Army Corps of Engineers' maintenance operations of dispersal barrier IIB. During these...

  4. 77 FR 25595 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... Corps of Engineers' post-maintenance testing of Barrier IIA and IIB. During the enforcement period...

  5. 76 FR 35106 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago..., DHS. ACTION: Final rule. SUMMARY: The Coast Guard is establishing a permanent safety zone from Brandon... Safety Zones; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary...

  6. Sedimentary Facies and Stratigraphy of the Changjiang (Yangtze River) Delta

    NASA Astrophysics Data System (ADS)

    Dalrymple, R. W.; Zhang, X.; Lin, C. M.

    2017-12-01

    A disproportionate number of the world's largest deltas are tide-dominated or strongly tide-influenced, in part because the low gradient of these rivers allows the tide to penetrate far inland, generating strong tidal currents at the river mouth. These deltas also tend to be mud-dominated because a significant fraction of the bedload is trapped farther inland. Despite their great importance as sediment depo-centers, as analogues for ancient sedimentary successions, and as areas of intense human occupation, they are the most poorly understood coastal system. The Changjiang (Yangtze River), the 4th largest river in the world in terms of sediment discharge, is one such tide-dominated system, with a mean tidal range of 2.7 m and tidal-current speeds of 1 m/s at its mouth. It shows a fairly typical series of low-relief channels and bars in the mouth-bar area and passes seaward and down-drift into a coastal mud belt that extends 800 km to the south of the river mouth. The deposits from both the transgressive-phase and modern delta are all dominated by mud, except for the fluvial-channel deposits that are clean sand. Channel-floor deposits in areas with appreciable tidal influence contain abundant fluid-mud layers (1-3 cm thick), intercalated with relatively coarse sand; such mud layers show evidence of tidal cyclicity. The overlying tidal-bar deposits commonly become sandier upward because of the upward loss of fluid-mud layers. The tidal channels and bars that characterize the mouth-bar and delta-front area are dominated by randomly organized structureless mud layers, 5-30 cm thick, that are interpreted to be storm-generated fluid-mud deposits. These mud layers become less abundant upward, generating upward-sanding successions. These facies are very similar to those seen in the Amazon and Fly River deltas, suggesting that this is a common motif, and indicating the importance of fluid mud in the dynamics of such systems. Facies proximality can be determined by careful

  7. Exhumation history of the Anqing Orefield in the Lower Yangtze River Metallogenic Belt: Evidence from apatite fission-track thermochronology

    NASA Astrophysics Data System (ADS)

    Li, X.; Yang, X.

    2017-12-01

    The Lower Yangtze River Metallogenic Belt (LYRMB) is one of the most important Cu-Au-Fe polymetallic belts in China. These deposits along the Yangtze River region have been related to the Yanshanian intrusive rocks in the Mesozoic. The Anqing orefield is located in the northwestern Anqing, southwestern Anhui Province, eastern China, along the Lower Yangtze River Belt. Here, we report new apatite fission-track (AFT) thermochronology of the granitoids ( 130 Ma for zircon U-Pb age) associated with the Anqing orefields to reveal the exhumation history of the Anqing orefields in LYRMB, eastern China. AFT ages from 54.4±2.1 to 63.9±3.4 Ma with mean measured track lengths between 12.4±1.8 and 13.1±1.4 μm, were obtained for the granitoids sampled from the ore fields in the Anqing orefield, and AFT age of 36.3±1.3 Ma with mean track length of 12.3±2.3μm for the granitoids adjacent to the south Tan-Lu fault. A long, slow exhumation ( 60-15 Ma), and a short, rapid tectonic exhumation (15-0 Ma) have been identified in the study region based on the AFT data and modeling results for the samples from the ore fields. The results show that the granitoids underwent roughly similar cooling, and inferred exhumation pattern. Assuming a steady-state paleogeothermal gradient of 35ºC/km founded on geological setting, the exhumations of 570 m and 1140 m, were achieved in the Anqing orefield, during 60-15 Ma and 15-0 Ma, respectively. Further, the AFT age of the granitoids adjacent to the south Tan-Lu fault is less than the AFT ages of the granitoids associated with the ore fields, possibly owing to the activation of the Tan-Lu fault in the Cenozoic. The exhumation history of the Anqing orefields may be closely response to the Pacific Plate subduction in the Cenozoic, which could be implications for the preservation potential of ore bodies in the Anqing orefield. This work is supported by the National Natural Science Foundation of China (41372227), and the DREAM project of MOST

  8. Integrated magnetostratigraphy and lithostratigraphy of five cores in Yangtze delta, China : significance of sedimentary evolution

    NASA Astrophysics Data System (ADS)

    Peng, Jie; Yang, XiaoQiang; Qiang, XiaoKe; Liu, YeBo; Zhou, QiXian

    2017-04-01

    The sedimentary history and characteristics of the Yangtze delta help us understand the tectonic evolution and geological formation process in the Eastern coastal area of China since the Cenozoic Era. Previous chronology of sediments in this area are not detailed or precise. Furthermore, when the delta area reached the maximum is still debatable. Palaeomagnetic polarity reversal and excursions, AMS14C dating, optically stimulated luminescence (OSL) dating, and the hard clay marker layer analysis were integrated to establish the chronostratigraphic framework of five drilling cores from the south Yangtze delta. Results from the bottom part of core CSB6 suggested Gauss normal polarity chron, an age of more than about 2600 ka. The other four cores showed initial deposition time between 200-60 ka B.P., significantly later than CSB6. We infer the reason is that CSB6 locating in the Changxin-Fenghua Fracture. Combined with data from referenced magnetostratigraphic cores in the Yangtze River Delta, we suggest that tectonic movement resulted in a much longer depositional age in some parts of the Yangtze River Delta and influenced the sedimentary characteristics of thick (North) to thin (South) and thick (East) to thin (West). In conclusion, a relatively wide range of deposition in the Yangtze River Delta occurred since about 200 ka B.P. The deposition of fine particles (clay-silt), which was controlled by slow tectonic subsidence and sea-level changes, expanded to the whole delta region after about 60 ka B.P. We propose that this time scale maybe used for further study on the evolution of the Yangtze delta's paleoclimate and paleoenvironment. References [1]Peng J,Yang X Q,Qiang X K,et al.Magnetostratigraphy characteristics of several cores around the Qiantang River mouth and its significance.Chinese J.Geophys.(in Chinese),2016,59(8):2949-2964. [2]Li C X, Chen Q Q, Zhang J Q,et al. Stratigraphy and paleoenvironmental changes in the Yangtze Delta during the Late Quaternary

  9. Determination of the 100-year flood plain on Upper Three Runs and selected tributaries, and the Savannah River at the Savannah River site, South Carolina, 1995

    USGS Publications Warehouse

    Lanier, T.H.

    1996-01-01

    The 100-year flood plain was determined for Upper Three Runs, its tributaries, and the part of the Savannah River that borders the Savannah River Site. The results are provided in tabular and graphical formats. The 100-year flood-plain maps and flood profiles provide water-resource managers of the Savannah River Site with a technical basis for making flood-plain management decisions that could minimize future flood problems and provide a basis for designing and constructing drainage structures along roadways. A hydrologic analysis was made to estimate the 100-year recurrence- interval flow for Upper Three Runs and its tributaries. The analysis showed that the well-drained, sandy soils in the head waters of Upper Three Runs reduce the high flows in the stream; therefore, the South Carolina upper Coastal Plain regional-rural-regression equation does not apply for Upper Three Runs. Conse- quently, a relation was established for 100-year recurrence-interval flow and drainage area using streamflow data from U.S. Geological Survey gaging stations on Upper Three Runs. This relation was used to compute 100-year recurrence-interval flows at selected points along the stream. The regional regression equations were applicable for the tributaries to Upper Three Runs, because the soil types in the drainage basins of the tributaries resemble those normally occurring in upper Coastal Plain basins. This was verified by analysis of the flood-frequency data collected from U.S. Geological Survey gaging station 02197342 on Fourmile Branch. Cross sections were surveyed throughout each reach, and other pertinent data such as flow resistance and land-use were col- lected. The surveyed cross sections and computed 100-year recurrence-interval flows were used in a step-backwater model to compute the 100-year flood profile for Upper Three Runs and its tributaries. The profiles were used to delineate the 100-year flood plain on topographic maps. The Savannah River forms the southwestern border

  10. 75 FR 64673 - Safety Zone, Brandon Road Lock and, Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... Zone, Brandon Road Lock and, Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and... Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Ship and...: The Coast Guard will enforce Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des...

  11. 78 FR 65874 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... Guard will enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including...

  12. 78 FR 36092 - Safety Zone; Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... Zone; Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... Coast Guard will enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan...

  13. 78 FR 40635 - Safety Zone; Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-08

    ... Zone; Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... Coast Guard will enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan...

  14. [Mutagenicity study of water samples from a waterworks taking Yangtze River as its water source in Jiangsu Province].

    PubMed

    Xiao, Sanhua; Luo, Lan; Qiao, Qian; Lü, Xuemin; Wang, Yanhui; Feng, Lin; Tang, Fei; Wang, Haiyong; Bie, Nana; Wang, Yuehong

    2017-05-01

    To understand the occurrence and change of mutagencity of water samples in the process of drinking water treatment and distribution in a waterworks taking Yangtze River as its water source in Jiangsu Province. Large volume of inlet water, finished water and tap water samples were extracted by XAD-2 resin. Mutagencities were assessed by Ames test and a mutation ratio( MR) of 2 or greater was judged as a positive result. Compared with the samples with S9, samples without S9 presented more positive results( P = 0. 005). That water treatment elevated MR values( P = 0. 007) while the pipe transport made MR values down( P = 0. 038) was observed in samples without S9. The tap water showed weaker mutagenicities than the raw water in samples with S9( P = 0. 008). Compared to the raw water samples, the finished water samples showed more positive results(-S9) and lower MR values( + S9, P =0. 002). Significant mutagenicities of water samples from the Yangtze Riverand its processed water were presented, and frame shit and direct mutagens deserved special concern.

  15. Sedimentary record and luminescence chronology of palaeoflood events along the Gold Gorge of the upper Hanjiang River, middle Yangtze River basin, China

    NASA Astrophysics Data System (ADS)

    Guo, Yongqiang; Huang, Chun Chang; Zhou, Yali; Pang, Jiangli; Zha, Xiaochun; Fan, Longjiang; Mao, Peini

    2018-05-01

    Palaeoflood slackwater deposits (SWDs) along the river banks have important implications for the reconstruction of the past hydro-climatic events. Two palaeoflood SWD beds were identified in the Holocene loess-soil sequences on the cliff river banks along the Gold Gorge of the upper Hanjiang River by field investigation and laboratory analysis. They have recorded two palaeoflood events which were dated by optically stimulated luminescence to 3.2-2.8 ka and 2.1-1.8 ka, respectively. The reliability of the ages obtained for the two events are further confirmed by the presence of archaeological remains and good regional pedostratigraphic correlation. The peak discharges of two palaeoflood events at the studied sites were estimated to be 16,560-17,930 m3/s. A correlation with the palaeoflood events identified in the other reaches shows that great floods occurred frequently during the episodes of 3200-2800 and 2000-1700 a BP along the upper Hanjiang River valley during the last 4000 years. These phases of palaeoflood events in central China are well correlated with the climatic variability identified by δ18O record in the stalagmites from the middle Yangtze River Basin and show apparent global linkages. Palaeoflood studies in a watershed scale also imply that strengthened human activities during the Shang dynasty (BCE 1600-1100) and Han dynasty (BCE206-CE265) may have caused accelerated soil erosion along the upper Hanjiang River valley.

  16. Diagnostic heavy minerals in Plio-Pleistocene sediments of the Yangtze Coast, China with special reference to the Yangtze River connection into the sea

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Wang, Zhanghua; Chen, Zhongyuan; Wei, Zixin; Wei, Taoyuan; Wei, Wei

    2009-12-01

    This present study revealed five heavy mineral zones in the Yangtze coastal borehole sediments. Ilmenite, garnet and zircon suite of Zone I of the Pliocene characterizes the derivation of basaltic bedrock and local andesitic-granitic rocks. Indicative limonite in the Zone I sediments formed as alluvial fan facies shows strong chemical weathering. The assemblage of amphibole, straurolite, kyanite and idocrase of metamorphic derivation, together with a few zircon and tourmaline of andesitic-granitic origin in Zone II, represents the extension of sediment sources to the lower and middle Yangtze basin in Early Pleistocene as the study area subsided. Also, the braided to meandering riverine facies demonstrates a longer distance sediment transport. Few heavy minerals remained in Zone III of Mid-Pleistocene, when mottled thicker stiff mud occurred as the lacustrine facies, suggesting a quasi-coastal floodplain with lower capability of sediment transport. Heavy minerals appeared significant and continuous in Zone IV of Late Pleistocene, when changing to the shallow marine facies, inferring much extended sediment sources to the upper Yangtze. Hypersthene, identified primarily in Zone IV, was closely associated with the Er-Mei Mountain tholeiite basalt of the upper Yangtze. Heavy minerals of Zone V remained almost the same as IV during Holocene, when the modern delta evolved. The heavy minerals suggested the timing of the Yangtze connection to the sea at ca 0.12 Ma BP.

  17. A high-resolution genetic linkage map and QTL fine mapping for growth-related traits and sex in the Yangtze River common carp (Cyprinus carpio haematopterus).

    PubMed

    Feng, Xiu; Yu, Xiaomu; Fu, Beide; Wang, Xinhua; Liu, Haiyang; Pang, Meixia; Tong, Jingou

    2018-04-02

    A high-density genetic linkage map is essential for QTL fine mapping, comparative genome analysis, identification of candidate genes and marker-assisted selection for economic traits in aquaculture species. The Yangtze River common carp (Cyprinus carpio haematopterus) is one of the most important aquacultured strains in China. However, quite limited genetics and genomics resources have been developed for genetic improvement of economic traits in such strain. A high-resolution genetic linkage map was constructed by using 7820 2b-RAD (2b-restriction site-associated DNA) and 295 microsatellite markers in a F2 family of the Yangtze River common carp (C. c. haematopterus). The length of the map was 4586.56 cM with an average marker interval of 0.57 cM. Comparative genome mapping revealed that a high proportion (70%) of markers with disagreed chromosome location was observed between C. c. haematopterus and another common carp strain (subspecies) C. c. carpio. A clear 2:1 relationship was observed between C. c. haematopterus linkage groups (LGs) and zebrafish (Danio rerio) chromosomes. Based on the genetic map, 21 QTLs for growth-related traits were detected on 12 LGs, and contributed values of phenotypic variance explained (PVE) ranging from 16.3 to 38.6%, with LOD scores ranging from 4.02 to 11.13. A genome-wide significant QTL (LOD = 10.83) and three chromosome-wide significant QTLs (mean LOD = 4.84) for sex were mapped on LG50 and LG24, respectively. A 1.4 cM confidence interval of QTL for all growth-related traits showed conserved synteny with a 2.06 M segment on chromosome 14 of D. rerio. Five potential candidate genes were identified by blast search in this genomic region, including a well-studied multi-functional growth related gene, Apelin. We mapped a set of suggestive and significant QTLs for growth-related traits and sex based on a high-density genetic linkage map using SNP and microsatellite markers for Yangtze River common carp. Several

  18. [Investigation on knowledge, attitude, and practice of schistosomiasis prevention and control and infection status in Armed Police Forces stationed along Yangtze River].

    PubMed

    Ming-Zhen, He; Yi-Qing, Xie; Yan-Li, Guo; Hong, Chen; Yong-Gen, Zou; Shi-Ying, Zhu; You, Zhang

    2016-12-21

    To understand the status of knowledge, attitude, and practice of schistosomiasis prevention and control and infection status in Armed Police Forces stationed along the Yangtze River, so as to provide the reference for formulating the schistosomiasis prevention and control measures in Armed Police Forces. A questionnaire survey was conducted in the Armed Police Forces along the Yangtze River in Jiangsu Province, and the investigation content included social demographic data, schistosomiasis prevention knowledge, attitude and behavior. All the subjects were examined for Schistosoma japonicum infection. Totally 376 soldiers were investigated in 2 sites. The total passing rate of schistosomiasis knowledge was 72.87%. The passing rate among different age groups had no significant difference ( χ 2 =0.26, P > 0.05). The passing rate of soldiers from endemic areas was significantly higher than that of the soldiers from non-endemic areas ( χ 2 =4.71, P < 0.05). The passing rate of officers was significantly higher than that of the soldiers ( χ 2 = 4.21, P < 0.05). The passing rate of soldiers with the education levels of junior school, high school, college, undergraduate and above increased gradually, with a significant difference ( χ 2 =8.16, P < 0.05). The soldiers with positive attitude accounted for 93.88%. Among the water contact behaviors, training accounted for 17.55% and participating in the task (such as flood fighting and water work) accounted for 86.44%. When launching, the rate of taking protective measures was 52.93%. The rate of taking protective measures in the knowledge passing group was much higher than that in the knowledge failed group ( χ 2 =10.55, P < 0.05). The stool was harmlessly treated in the two camps. Among 376 soldiers, the positive rate of blood examinations was 0.53%, but the stool examinations were all negative. The overall level of knowledge and correct behavior of schistosomiasis prevention in the Armed Police Forces along the Yangtze

  19. Spatial distribution of planktonic bacterial and archaeal communities in the upper section of the tidal reach in Yangtze River

    PubMed Central

    Fan, Limin; Song, Chao; Meng, Shunlong; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Li, Dandan; Zhang, Cong; Hu, Gengdong; Chen, Jiazhang

    2016-01-01

    Bacterioplankton and archaeaplankton communities play key roles in the biogeochemical processes of water, and they may be affected by many factors. In this study, we used high-throughput 16S rRNA gene sequencing to profile planktonic bacterial and archaeal community compositions in the upper section of the tidal reach in Yangtze River. We found that the predominant bacterial phyla in this river section were Proteobacteria, Firmicutes, and Actinobacteria, whereas the predominant archaeal classes were Halobacteria, Methanomicrobia, and unclassified Euryarchaeota. Additionally, the bacterial and archaeal community compositions, richnesses, functional profiles, and ordinations were affected by the spatial heterogeneity related to the concentration changes of sulphate or nitrate. Notably, the bacterial community was more sensitive than the archaeal community to changes in the spatial characteristics of this river section. These findings provide important insights into the distributions of bacterial and archaeal communities in natural water habitats. PMID:27966673

  20. Spatial distribution of planktonic bacterial and archaeal communities in the upper section of the tidal reach in Yangtze River

    NASA Astrophysics Data System (ADS)

    Fan, Limin; Song, Chao; Meng, Shunlong; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Li, Dandan; Zhang, Cong; Hu, Gengdong; Chen, Jiazhang

    2016-12-01

    Bacterioplankton and archaeaplankton communities play key roles in the biogeochemical processes of water, and they may be affected by many factors. In this study, we used high-throughput 16S rRNA gene sequencing to profile planktonic bacterial and archaeal community compositions in the upper section of the tidal reach in Yangtze River. We found that the predominant bacterial phyla in this river section were Proteobacteria, Firmicutes, and Actinobacteria, whereas the predominant archaeal classes were Halobacteria, Methanomicrobia, and unclassified Euryarchaeota. Additionally, the bacterial and archaeal community compositions, richnesses, functional profiles, and ordinations were affected by the spatial heterogeneity related to the concentration changes of sulphate or nitrate. Notably, the bacterial community was more sensitive than the archaeal community to changes in the spatial characteristics of this river section. These findings provide important insights into the distributions of bacterial and archaeal communities in natural water habitats.

  1. Chemical weather forecasting for the Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Xu, J.; Zhou, G.; Chang, L.; Chen, B.

    2016-12-01

    Shanghai is one of the largest megacities in the world. With rapid economic growth of the city and its surrounding areas in recent years, air pollution has posed adverse effects on public health and ecosystem. In winter heavy pollution episodes are often associated with PM exceedances under stagnant conditions or transport events, whereas in summer the region frequently experiences elevated O3 levels. Chemical weather prediction systems with the WRF-Chem and CMAQ models are being developed to support air quality and haze forecasting for Shanghai and the Yangtze River Delta region. We will present main components of the modeling system, forecasting products, as well as evaluation results. Evaluation of the WRF-Chem forecasts show the model has generally good ability to capture the temporal variations of O3 and PM2.5. Substantial regional differences exist, with the best performance in Shanghai. Meanwhile, the forecasts tend to degrade during highly polluted episodes and transitional time periods, which highlights the need to improve model representation of key process (e.g. meteorological fields and formation of secondary pollutants). Recent work includes using the ECMWF global model forecasts as chemical boundary conditions for our regional model. We investigate the impact of chemical downscaling, and also compare the results from different models participated in the PANDA (PArtnership with chiNa on space Data) project. Results from ongoing efforts (e.g. chemical weather forecasting driven by SMS regional high resolution NWP) will also be presented.

  2. Occurrence and variability of mining-related lead and zinc in the Spring River flood plain and tributary flood plains, Cherokee County, Kansas, 2009--11

    USGS Publications Warehouse

    Juracek, Kyle E.

    2013-01-01

    Historical mining activity in the Tri-State Mining District (TSMD), located in parts of southeast Kansas, southwest Missouri, and northeast Oklahoma, has resulted in a substantial ongoing input of cadmium, lead, and zinc to the environment. To provide some of the information needed to support remediation efforts in the Cherokee County, Kansas, superfund site, a 4-year study was begun in 2009 by the U.S. Geological Survey that was requested and funded by the U.S. Environmental Protection Agency. A combination of surficial-soil sampling and coring was used to investigate the occurrence and variability of mining-related lead and zinc in the flood plains of the Spring River and several tributaries within the superfund site. Lead- and zinc-contaminated flood plains are a concern, in part, because they represent a long-term source of contamination to the fluvial environment. Lead and zinc contamination was assessed with reference to probable-effect concentrations (PECs), which represent the concentrations above which adverse aquatic biological effects are likely to occur. The general PECs for lead and zinc were 128 and 459 milligrams per kilogram, respectively. The TSMD-specific PECs for lead and zinc were 150 and 2,083 milligrams per kilogram, respectively. Typically, surficial soils in the Spring River flood plain had lead and zinc concentrations that were less than the general PECs. Lead and zinc concentrations in the surficial-soil samples were variable with distance downstream and with distance from the Spring River channel, and the largest lead and zinc concentrations usually were located near the channel. Lead and zinc concentrations larger than the general or TSMD-specific PECs, or both, were infrequent at depth in the Spring River flood plain. When present, such contamination typically was confined to the upper 2 feet of the core and frequently was confined to the upper 6 inches. Tributaries with few or no lead- and zinc-mined areas in the basin—Brush Creek

  3. Study on the water resources optimal operation based on riverbed wind erosion control in West Liaohe River plain

    NASA Astrophysics Data System (ADS)

    Wanguang, Sun; Chengzhen, Li; Baoshan, Fan

    2018-06-01

    Rivers are drying up most frequently in West Liaohe River plain and the bare river beds present fine sand belts on land. These sand belts, which yield a dust heavily in windy days, stress the local environment deeply as the riverbeds are eroded by wind. The optimal operation of water resources, thus, is one of the most important methods for preventing the wind erosion of riverbeds. In this paper, optimal operation model for water resources based on riverbed wind erosion control has been established, which contains objective function, constraints, and solution method. The objective function considers factors which include water volume diverted into reservoirs, river length and lower threshold of flow rate, etc. On the basis of ensuring the water requirement of each reservoir, the destruction of the vegetation in the riverbed by the frequent river flow is avoided. The multi core parallel solving method for optimal water resources operation in the West Liaohe River Plain is proposed, which the optimal solution is found by DPSA method under the POA framework and the parallel computing program is designed in Fork/Join mode. Based on the optimal operation results, the basic rules of water resources operation in the West Liaohe River Plain are summarized. Calculation results show that, on the basis of meeting the requirement of water volume of every reservoir, the frequency of reach river flow which from Taihekou to Talagan Water Diversion Project in the Xinkai River is reduced effectively. The speedup and parallel efficiency of parallel algorithm are 1.51 and 0.76 respectively, and the computing time is significantly decreased. The research results show in this paper can provide technical support for the prevention and control of riverbed wind erosion in the West Liaohe River plain.

  4. The diel rhythms of biosonar behavior in the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) in the port of the Yangtze River: The correlation between prey availability and boat traffic.

    PubMed

    Wang, Zhitao; Akamatsu, Tomonari; Wang, Kexiong; Wang, Ding

    2014-01-01

    Information on the habitat use of the critically endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) is critical for its conservation. The diel biosonar behavior of the porpoise in the port areas of the Yangtze River was examined along with simultaneous observations of fish density and boat traffic. Biosonar pulses from the porpoises were detected for 1233 min (5.77%) over a 21,380 min duration of effective observations. In total, 190 (5.63%) buzzes (an indication of prey capture attempts) were recorded among the 3372 identified click trains. Of the 168 echolocation encounters (bouts of click trains less than eight min apart), 150 (89.3%) involved single animals, indicating that solitary porpoises were frequently present and feeding in the port areas. Significant diel patterns were evident involving the biosonar behavior of the porpoises (including click trains and buzzes), fish density and boat traffic. The frequencies of the click trains and buzzes were significantly lower during the day than in the evening and at night, which suggests that porpoises in this region are primarily engaged in crepuscular and nocturnal foraging. The lack of a significant diel pattern in the echolocation encounters indicates the importance of the port in porpoise conservation. A forced feeding schedule may be associated with the lack of a significant correlation between porpoise acoustics and boat traffic. Overall, prey availability appears to be the primary factor that attracts porpoises. Additionally, porpoises tend to migrate or remain downstream in the morning and migrate or remain upstream in the evening, most likely to follow their prey. The findings of this study can be used to improve the conservation of the Yangtze finless porpoise.

  5. The Diel Rhythms of Biosonar Behavior in the Yangtze Finless Porpoise (Neophocaena asiaeorientalis asiaeorientalis) in the Port of the Yangtze River: The Correlation between Prey Availability and Boat Traffic

    PubMed Central

    Wang, Zhitao; Akamatsu, Tomonari; Wang, Kexiong; Wang, Ding

    2014-01-01

    Information on the habitat use of the critically endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) is critical for its conservation. The diel biosonar behavior of the porpoise in the port areas of the Yangtze River was examined along with simultaneous observations of fish density and boat traffic. Biosonar pulses from the porpoises were detected for 1233 min (5.77%) over a 21,380 min duration of effective observations. In total, 190 (5.63%) buzzes (an indication of prey capture attempts) were recorded among the 3372 identified click trains. Of the 168 echolocation encounters (bouts of click trains less than eight min apart), 150 (89.3%) involved single animals, indicating that solitary porpoises were frequently present and feeding in the port areas. Significant diel patterns were evident involving the biosonar behavior of the porpoises (including click trains and buzzes), fish density and boat traffic. The frequencies of the click trains and buzzes were significantly lower during the day than in the evening and at night, which suggests that porpoises in this region are primarily engaged in crepuscular and nocturnal foraging. The lack of a significant diel pattern in the echolocation encounters indicates the importance of the port in porpoise conservation. A forced feeding schedule may be associated with the lack of a significant correlation between porpoise acoustics and boat traffic. Overall, prey availability appears to be the primary factor that attracts porpoises. Additionally, porpoises tend to migrate or remain downstream in the morning and migrate or remain upstream in the evening, most likely to follow their prey. The findings of this study can be used to improve the conservation of the Yangtze finless porpoise. PMID:24823945

  6. Quantifying the impact of the Three Gorges Dam on the thermal dynamics of the Yangtze River

    NASA Astrophysics Data System (ADS)

    Cai, Huayang; Piccolroaz, Sebastiano; Huang, Jingzheng; Liu, Zhiyong; Liu, Feng; Toffolon, Marco

    2018-05-01

    This study examines the impact of the world’s largest dam, the Three Gorges Dam (TGD), on the thermal dynamics of the Yangtze River (China). The analysis uses long-term observations of river water temperature (RWT) in four stations and reconstructs the RWT that would have occurred in absence of the TGD. Relative to pre-TGD conditions, RWT consistently warmed in the region due to air temperature (AT) increase. In addition, the analysis demonstrates that the TGD significantly affected RWT in the downstream reach. At the closest downstream station (Yichang) to the TGD, the annual cycle of RWT experienced a damped response to AT and a marked seasonal alteration: warming during all seasons except for spring and early summer which were characterized by cooling. Both effects were a direct consequence of the larger thermal inertia of the massive water volume stored in the TGD reservoir, causing the downstream reach to be more thermally resilient. The approach used here to quantify the separate contributions of climate and human interventions on RWT can be used to set scientific guidelines for river management and conservation planning strategies.

  7. Influences of Relative Sea-Level Rise and Mississippi River Delta Plain Evolution on the Holocene Middle Amite River, Southeastern Louisiana

    USGS Publications Warehouse

    Autin, W.J.

    1993-01-01

    The Holocene geomorphic history of southeastern Louisiana's middle Amite River is recorded in the stratigraphy of three alloformations, identified in decreasing age as the Watson (WAT), Denham Springs (DS), and Magnolia Bridge (MAG). The WAT meander belt formed by at least 9000 yr B.P., when sea level was lower and the Amite River was tributary to a larger ancestral drainage basin. The DS became an active meander belt by at least 3000 yr B.P., in response to relative sea-level rise and eastward progradation of the Mississippi River delta plain. The MAG developed its meander belt, in part, during the European settlement of the drainage basin, and is now attempting to adjust to modern anthropogenic influences. Geomorphic influences on the middle Amite River floodplain have temporal and spatial components that induce regional- and local-scale effects. Regional extrinsic influences caused meander belt avulsion that produced alloformations. However, local influences produced intrinsic geomorphic thresholds that modified channel morphology within a meander belt but did not induce alloformation development. Base-level influences of the relative sea-level rise and the Mississippi River delta plain were so dominant that the effects of possible climate change were not recognized in the Holocene Amite River system.

  8. Integrating channel form and processes in the Gangetic plains rivers: Implications for geomorphic diversity

    NASA Astrophysics Data System (ADS)

    Roy, N. G.; Sinha, R.

    2018-02-01

    Geomorphic diversity at a variety of spatial and temporal scales has been studied in the western Ganga plains (WGP), India, to isolate the dominating factors at each scale that have the potential to cause major geomorphic change. The Ganga River and its major tributaries draining the WGP have been investigated in terms of longitudinal, cross-sectional, and planform morphology to assess the influence of potential controls such as climate, geology, topography, land use, hydrology, and sediment transport. These data were then compared with those from the rivers draining the eastern Ganga plains (EGP) to understand the geomorphic diversity across the Ganga plains and the causal factors. Our investigations suggest that in-channel geomorphic diversity over decadal scale in rivers with low width-to-depth (W/D) ratio is caused by periodic incision/aggradation, but it is driven by channel avulsion in rivers characterized by high W/D ratio. Similarly, planform (reach-scale) parameters such as sinuosity and braid-channel-ratio are influenced by intrinsic factors such as changes in hydrological conditions and morphodynamics (cutoffs, small-scale avulsion) that are in turn impacted by natural and human-induced factors. Finally, we have isolated the climatic and hydrologic effects on the longitudinal profile concavity of alluvial trunk channels in tectonically stable and unstable landscapes. We demonstrate that the rivers flowing through a tectonically stable landscape are graded in nature where higher discharge tends to create more concave longitudinal profiles compared to those in tectonically unstable landscape at 103-year scale.

  9. Source apportionment of surface ozone in the Yangtze River Delta, China in the summer of 2013

    NASA Astrophysics Data System (ADS)

    Li, L.; An, J. Y.; Shi, Y. Y.; Zhou, M.; Yan, R. S.; Huang, C.; Wang, H. L.; Lou, S. R.; Wang, Q.; Lu, Q.; Wu, J.

    2016-11-01

    We applied ozone source apportionment technology (OSAT) with tagged tracers coupled within the Comprehensive Air Quality Model with Extensions (CAMx) to study the region and source category contribution to surface ozone in the Yangtze River Delta area in summer of 2013. Results indicate that the daytime ozone concentrations in the YRD region are influenced by emissions both locally, regionally and super-regionally. At urban Shanghai, Hangzhou and Suzhou receptors, the ozone formation is mainly VOC-limited, precursor emissions form Zhejiang province dominate their O3 concentrations. At the junction area among two provinces and Shanghai city, the ozone is usually influenced by all the three areas. The daily max O3 at the Dianshan Lake in July are contributed by Zhejiang (48.5%), Jiangsu (11.7%), Anhui (11.6%) and Shanghai (7.4%), long-range transport constitutes around 20.9%. At Chongming site, the BVOC emissions rate is higher than urban region. Regional contribution results show that Shanghai constitutes 15.6%, Jiangsu contributes 16.2% and Zhejiang accounts for 25.5% of the daily max O3. The analysis of the source category contribution to high ozone in the Yangtze River Delta region indicates that the most significant anthropogenic emission source sectors contributing to O3 pollution include industry, vehicle exhaust, although the effects vary with source sector and selected pollution episodes. Emissions of NOx and VOCs emitted from the fuel combustion of industrial boilers and kilns, together with VOCs emissions from industrial process contribute a lot to the high concentrations in urban Hangzhou, Suzhou and Shanghai. The contribution from regional elevated power plants cannot be neglected, especially to Dianshan Lake. Fugitive emissions of volatile pollution sources also have certain contribution to regional O3. These results indicate that the regional collaboration is of most importance to reduce ambient ozone pollution, particularly during high ozone episodes.

  10. Chemical characteristics of PM2.5 during summer at a background site of the Yangtze River Delta in China

    NASA Astrophysics Data System (ADS)

    Liang, Linlin; Engling, Guenter; Zhang, Xiaoye; Sun, Junying; Zhang, Yangmei; Xu, Wanyun; Liu, Chang; Zhang, Gen; Liu, Xuyan; Ma, Qianli

    2017-12-01

    With rapid economic development and urbanization, particular attention has been paid to atmospheric chemical studies in the Yangtze River Delta in China. PM2.5 samples were collected by a MiniVol™ air sampler in summer time at a background site of the Yangtze River Delta in China. Carbonaceous components, i.e., OC and EC, levoglucosan and water-soluble inorganic ions, including sulfate, nitrate, ammonium, etc., were quantified. The average concentration of PM2.5 in summer at Lin'an was 30.19 ± 8.86 μg m-3, lower than previous studies reported, confirming that air pollution in China is improving, e.g., by emission control measures and subsequent reduction in PM emissions in China. Investigating the relationship among sulfate, nitrate and ammonium showed that SO42- existed as (NH4)2SO4, while NO3- may have been present as NaNO3 and KNO3. Based on molecular tracers, synoptic data as well as air mass back trajectory analysis, it was revealed that regional transport and stable synoptic conditions both play an important role in controlling the variations of aerosol chemical components. The comparison of chemical species between clean and hazy days showed that secondary organic and inorganic aerosols have different production processes. Secondary organic carbon (SOC) was much more important during clean days, while secondary inorganic aerosol species were readily produced and consequently became more important during polluted periods in Lin'an during summer time.

  11. Blood lead level is associated with non-alcoholic fatty liver disease in the Yangtze River Delta region of China in the context of rapid urbanization.

    PubMed

    Zhai, Hualing; Chen, Chi; Wang, Ningjian; Chen, Yi; Nie, Xiaomin; Han, Bing; Li, Qin; Xia, Fangzhen; Lu, Yingli

    2017-08-31

    China has undergone rapid urbanization in the past three decades. We aimed to report blood lead level (B-Pb) in the most rapidly urbanized Yangtze River Delta Region of China, and explore the association B-Pb and non-alcoholic fatty liver disease (NAFLD). Our data source was the SPECT-China study. We enrolled 2011 subjects from 6 villages in the Yangtze River Delta Region. Lead was measured by atomic absorption spectrometry. According to abdominal ultrasound, residents were divided into normal and NAFLD groups. In total, 824 (41.0%) were diagnosed with NAFLD. Medians (interquartile range) of B-Pb were 5.29 μg/dL (3.60-7.28) [0.25 μmol/L (0.17-0.35)] for men and 4.49 μg/dL (2.97-6.59) [0.22 μmol/L (0.14-0.32)] for women. In both genders, the NAFLD group had significantly greater B-Pb than normal group (both P < 0.001). The prevalence of NAFLD significantly increased with increasing B-Pb quartiles in men (P for trend = 0.032) and women (P for trend = 0.001). Residents in Shanghai had significantly greater B-Pb (P < 0.001) and a higher prevalence of NAFLD (P < 0.001). Compared with women in the lowest quartile of BLL, OR of NAFLD in women in the highest quartile was 1.613 (95%CI 1.082-2.405) (P for trend = 0.019) after multivariable adjustment. In men, this association showed marginal significance (OR 2.168, 95%CI 0.989-4.750, P for trend = 0.063). B-Pb in Chinese residents in the Yangtze River Delta Region were much higher than in developed countries. Elevated B-Pb was associated with an increased risk of NAFLD, especially in women.

  12. The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China.

    PubMed

    Huang, Qunfang; Lu, Yuqi

    2015-07-27

    The Yangtze River Delta (YRD) has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA) has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI) effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime) and maximal (daytime) air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 ± 0.030, 0.282 ± 0.042, 0.225 ± 0.044 and 0.179 ± 0.046 °C/decade during the period of 1957-2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05). Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001). The average warming rate of average air temperature attributable to urbanization is 0.124 ± 0.074 °C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming.

  13. The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China

    PubMed Central

    Huang, Qunfang; Lu, Yuqi

    2015-01-01

    The Yangtze River Delta (YRD) has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA) has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI) effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime) and maximal (daytime) air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 ± 0.030, 0.282 ± 0.042, 0.225 ± 0.044 and 0.179 ± 0.046 °C/decade during the period of 1957–2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05). Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001). The average warming rate of average air temperature attributable to urbanization is 0.124 ± 0.074 °C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming. PMID:26225986

  14. Spatial distribution of bisphenol S in surface water and human serum from Yangtze River watershed, China: Implications for exposure through drinking water.

    PubMed

    Wan, Yanjian; Xia, Wei; Yang, Shunyi; Pan, Xinyun; He, Zhenyu; Kannan, Kurunthachalam

    2018-05-01

    Bisphenol S (BPS) is an emerging environmental contaminant. The occurrence of this compound in humans and the environment is not well described. In this study, 120 surface water samples and 240 human serum samples were collected along the Yangtze River in 2015 for the determination of the occurrence of BPS. Surface water and human serum samples were extracted by solid phase extraction and liquid-liquid extraction, respectively, and analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). BPS was detected in all river water samples at concentrations that ranged from 0.18 to 14.9 ng/L (median: 0.98 ng/L), with higher concentrations in spring than summer. The median estimated daily intake (EDI) of BPS through water ingestion by infants in spring and summer was 0.12 and 0.06 ng/kg body weight (bw)/day, respectively. BPS was detected in human serum with the highest concentrations in samples from Nanjing (median: 0.65 ng/mL, maximum: 169 ng/mL) among the four cities studied. No significant gender related difference in BPS concentrations was observed in human sera, while higher concentrations were found in younger individuals than elderly. The EDI of BPS calculated based on serum concentrations of adults in Nanjing was 22.8 ng/kg bw/day. Ingestion of water accounted for <1% of the total BPS intake by the Chinese population. This is the first report of the occurrence of BPS in water from the Yangtze River and human serum from several cities located along this river in China. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. [Effect of water storage and aquaculture on Oncomelania hupensis control in tidal flats wetlands of islet-beach type area of Dantu section of lower reaches of Yangtze River].

    PubMed

    Li, Ye-fang; Huang, Yi-xin; Wang, He-sheng; Hang, De-rong; Chen, Xiang-ping; Xie, Yi-feng; Zhang, Lian-heng

    2015-12-01

    To evaluate the effect and the benefits of the projects of water storage and aquaculture on Oncomelania hupensis snail control in the tidal flats wetlands of islet-beach type area of lower reaches of the Yangtze River. The projects of water storage and aquaculture on 0. hupensis snail control were implemented in the tidal flats wetlands of islet-beach type of lower reaches of the Yangtze River. The breed situation of the snails was investigated by the conventional method before and after the project implementation and the effect of control and elimination of the snails by the projects were evaluated. At the same time, the cost-benefit analysis of two projects among them was performed by the static benefit-cost ratio method. All of 0. hupensis snails were eliminated in the first year after the implementation of seven water storage and aquaculture projects. The costs of detection and control of snails saved by each project was 69.20 thousand yuan a year on average. The annual net benefits of the "Nanhao Group 10 beach" project and "Wutao Group 6-14 beach" project were 2 039.40 thousand yuan and 955.00 thousand yuan respectively, and the annual net benefit-cost ratios were 1.09: 1 and 1.07: 1 respectively. The O. hupensis snails could be rapidly eliminated by the water storage and aquaculture, and the economic benefit is obvious, but the wetland ecological protection and flood control safety should be considered in the tidal flats wetlands of islet-beach type area of lower reaches of the Yangtze River.

  16. The Yangtze-Project

    NASA Astrophysics Data System (ADS)

    Subklew, Günter; Ulrich, Julia; Fürst, Leander; Höltkemeier, Agnes

    2010-05-01

    As an important element in Chinese politics for the development of the Western parts of the country, a large hydraulic engineering project - the Three Gorges Dam - has been set up in order to dam the Yangtze River for a length of over 600 km with an average width of about 1,100 m. It is expected that this results in ecological, technical and social problems of a magnitude hardly dealt with before. With this gigantic project, the national executive is pursuing the aims of - preventing flooding - safeguarding the water supply - encouraging navigation and - generating electric energy. In future, fluctuations of the water level of up to 30 metres will be deliberately applied in the dammed-up section of the river while retaining the flow character of the seasonal variation. The pollution of the Yangtze with a wide range of problem substances is frequently underestimated since in many cases attention is only paid to the low measured concentrations. However, the large volumes of water lead to appreciable loads and thus the danger of an accumulation of pollutants even reaching the human food chain. It should also not be forgotten that the Yangtze represents the major, and in some cases indeed the only, source of drinking and domestic water for the population. A consideration of the water level in the impoundment that will in future arise from management of the reservoir reveals the dramatic change in contrast to the natural inundation regime. In the past, the flood events on the banks of the Yangtze and its tributaries occurred in the summer months. The plants in the riparian zone (water fluctuation zone = WFZ) were previously inundated during the warmer time of year (28 ° July/August) and the terrestrial phase of the WFZ was characterized by cool temperatures (3-5 °C January) that permitted little plant activity. In future, the highest water levels will occur in winter above the dam on the Yangtze and also on the tributaries flowing into it. The plants in the WFZ will

  17. Sediment-Basalt Architecture, Pliocene and Pleistocene Eastern and Central Snake River Plain

    NASA Astrophysics Data System (ADS)

    Helm-Clark, C. M.; Link, P. K.

    2006-12-01

    This presentation is a synthesis of known stratigraphic studies of the Pliocene, Pleistocene and Holocene basalts and interbedded sedimentary beds on the Eastern Snake River Plain (ESRP). This information is important for understanding the post-caldera tectonic evolution of the ESRP, especially for tracking patterns of volcanic eruption and changes in topography. Geophysical surveys and existing well logs indicate the depth of the basalt sequence is usually 2 km or less, even near the axis of the Plain. An alteration horizon, the product of high heat-flow in the wake of the Yellowstone hot spot, moderated by cold-water recharge in the thick and highly-transmissive Snake River Aquifer, has variable depth. The surface and near-surface of the lava fields are mainly basalts less than a half a million years old, from Island Park to Twin Falls/Shoshone. Near the junction of the Eastern and Western Snake River Plains, these youngest late Pleistocene basalts, many less than 100,000 years old, overlie early Pleistocene basalts more than a million and a half years old. Most basalt flows have been erupted from NW-trending volcanic rift zones like the Great Rift of Idaho or from the Axial Volcanic High (AVH). The AVH is a constructional axial ridge formed by multiple volcanic vents, small shield volcanoes and rhyolitic domes which run the length of the ESRP. A combination of previous and new stratigraphic and geochronology studies, including U-Pb detrital-zircon geochronology on sediments, reveals several lake sequences, formed by the damming of rivers. These tend to be thickest in upstream, valley-mouth, and Plain-marginal locations where the rivers were trapped. The lake beds generally pinch out toward the AVH. The most notable of these are the Mid-Pleistocene Raft Formation, the Late Pleistocene American Falls Lake Beds, at least two mid-Pleistocene sequences of ponded sediment from the Big Lost River at its egress onto the ESRP, and a 2.5 to 1.6 Ma sequence in the Big Lost

  18. Development of emissions inventory and identification of sources for priority control in the middle reaches of Yangtze River Urban Agglomerations.

    PubMed

    Sun, Xiaowei; Cheng, Shuiyuan; Lang, Jianlei; Ren, Zhenhai; Sun, Chao

    2018-06-01

    This paper presents the first attempt to investigate the emission source control of the Middle Reaches of Yangtze River Urban Agglomerations (MRYRUA), one of the national urban agglomerations in China. An emission inventory of the MRYRUA was developed as inputs to the CAMx model based on county-level activity data obtained by full-coverage investigation and source-based spatial surrogates. A classification technology method for priority control of atmospheric emission sources was introduced and applied in the MRYRUA for the evaluation of the emission sources control on the region-scale and city-scale, respectively. The results demonstrated that the emission sources in the Hefei-centered urban agglomerations contributed the biggest on the mean PM 2.5 concentrations of the MRYRUA and should be taken the priority to control. The emission sources in the Ma'anshan city, Xiangtan city, Hefei city and Wuhan city were the bigger contributors on the mean PM 2.5 concentrations of the MRYRUA among the cities and should be taken the priority to control. In generally, emission sources in cities along the Yangtze River and the tributary should be given the special attention for the regional air quality target attainments. This study can give an understanding of Chinese emissions and provide a valuable preference to policy makers for finding effective mitigation measures and control strategies for reducing national and regional air pollution in China. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Extent and frequency of inundation of Schuylkill River flood plain from Conshohocken to Philadelphia, Pennsylvania

    USGS Publications Warehouse

    Alter, A.T.

    1966-01-01

    Information on flood conditions plays an important part in the development and use of river valleys. This report presents maps, profiles, and flood-frequency relations developed from past flood experience on the Schuylkill River from Conshohocken to Philadelphia, Pa. The maps and profiles are used to define the areal extent and depth of flooding of the August 24, 1933, and August 19, 1955, floods. The flood of October 4, 1869, which is the greatest flood known on the lower Schuylkill River, is presented on the flood profile and on the ten cross sections. The area inundated by the 1869 flood is not defined because insufficient data are available and because hydrologic and hydraulic conditions have undoubtedly changed to such an extent that such a definition would have little present significance. The basic flood data were prepared to aid individuals, organizations, and governmental agencies in making sound decisions for the safe and economical development of the lower Schuylkill River valley. Recommendations for land use, or suggestions for limitations of land use, are not made in this report.The responsibility for planning for the optimum land use in the flood plain and the implementation of flood-plain regulations to achieve such optimum use rests with the State and local interests. The preparation of this report was undertaken after consultation with representatives of the Philadelphia City Planning Commission and the Montgomery County Planning Commission who expressed the need for flood-plain information and their willingness to consider floodplain regulations.The area covered by this report extends downstream along the Schuylkill River from Plymouth Dam in Conshohocken to the mouth of Wissahickon Creek in Philadelphia. Flooding along Wissahickon Creek is not included in the report. The reach studied extends from 13.0 miles to 21.0 miles upstream from the river mouth. All river distances used in the report are river miles upstream from the mouth of the

  20. Distribution and risk assessment of trace metals in sediments from Yangtze River estuary and Hangzhou Bay, China.

    PubMed

    Li, Feipeng; Mao, Lingchen; Jia, Yubao; Gu, Zhujun; Shi, Weiling; Chen, Ling; Ye, Hua

    2018-01-01

    The Yangtze River estuary (YRE) and Hangzhou Bay (HZB) is of environmental significance because of the negative impact from industrial activities and rapid development of aquaculture on the south bank of HZB (SHZB) in recent years. This study investigated the distribution and risk assessments of trace metals (Cr, Cu, Zn, Hg, Pb, and Cd) accumulated in surface sediments by sampling in YRE, outer and south HZB. Copper and Zn concentration (avg. 35.4 and 98.7 mg kg -1 , respectively) in surface sediments were generally higher than the background suggesting a widespread of Cu and Zn in the coastal area of Yangtze River Delta. High concentrations of Cu (~ 42 mg kg -1 ), Zn (~ 111 mg kg -1 ), Cd (~ 0.27 mg kg -1 ), and Hg (~ 0.047 mg kg -1 ) were found in inner estuary of YRE and decreased offshore as a result of terrestrial input and dilution effect of total metal contents by "cleaner" sediments from the adjacent sea. In outer HZB, accumulation of terrestrial derived metal has taken place near the Zhoushan Islands. Increase in sediment metal concentration from the west (inner) to the east (outer) of SHZB gave rise to the input of fine-grained sediments contaminated with metals from outer bay. According the results from geoaccumulation index, nearly 75% of samples from YRE were moderately polluted (1.0 < I geo  < 2.0) by Cd. Cadmium and Hg contributed for 80~90% to the potential ecological risk index in the YRE and HZB, with ~ 72% sites in HZB under moderate risk (150 ≤ RI < 300) especially near Zhoushan Islands.

  1. Knife River: Early Village Life on the Plains. Teaching with Historic Places.

    ERIC Educational Resources Information Center

    Metcalf, Fay

    This document, from the lesson plan series, "Teaching with Historic Places," examines the Native Americans who lived on the plains along the Knife River in what is now North Dakota. Following an introductory section, the document sets out student objectives, teaching activities, readings, and illustrations. The teaching activity…

  2. Flood-plain areas of the Mississippi River, mile 866.8 to mile 888.0, Minnesota

    USGS Publications Warehouse

    Carlson, George H.; Gue, Lowell C.

    1980-01-01

    Profiles of the regional flood, 500-year flood, and flood-protection elevation have been developed for a 21-mile reach of the Mississippi River. Areas flooded by the regional flood and by the 500-year flood were delineated by photogrammetric mapping techniques and are shown on seven large-scale map sheets. Over 1,300 acres of flood plain are included in the cities of Anoka, Champlin, Coon Rapids, Dayton, Ramsey and Elk River, and in unincorporated areas of Wright County. The flood-outline maps and flood profiles comprise data needed by local units of government to adopt, enforce, and administer flood-plain management regulations along the Mississippi River throughout the study reach. Streamflow data from two gaging stations provided the basis for definition of the regional and 500-year floods. Cross-section data obtained at 83 locations were used to develop a digital computer model of the river. Flood elevation and discharge data from the 1965 flood provided a basis for adjusting the computer model. Information relating the history of floods, formation of ice jams, and duration of flood elevations at Anoka and at Elk River are included.

  3. Asian Carp Survivability Experiments and Water Transport Surveys in the Illinois River. Volume 2

    DTIC Science & Technology

    2013-01-01

    Reference 3)) have documented the egg and larval stages of grass, black, silver and bighead carps in the Yangtze River. This early paper also reported...rates at controlled tempera- tures to better understand the early egg and larval stages of silver and bighead carp. In the Yangtze River, after the...translated by Duane Chapman 2006, Gezhouba Water Control Project and four famous fishes in Yangtze River, Hubei Science and Technology Press, Wuhan

  4. Remote sensing, planform, and facies analysis of the Plain of Tineh, Egypt for the remains of the defunct Pelusiac River

    NASA Astrophysics Data System (ADS)

    Quintanar, Jessica; Khan, Shuhab D.; Fathy, Mohamed S.; Zalat, Abdel-Fattah A.

    2013-11-01

    The Pelusiac Branch was a distributary river in the Nile Delta that splits off from the main trunk of the Nile River as it flowed toward the Mediterranean. At approximately 25 A.D., it was chocked by sand and silt deposits from prograding beach accretion processes. The lower course of the river and its bifurcation point from the trunk of the Nile have been hypothesized based on ancient texts and maps, as well as previous research, but results have been inconsistent. Previous studies partly mapped the lower course of the Pelusiac River in the Plain of Tineh, east of the Suez Canal, but rapid urbanization related to the inauguration of the Peace Canal mega-irrigation project has covered any trace of the linear feature reported by these previous studies. The present study used multispectral remote sensing data of GeoEYE-1 and Landsat-TM to locate and accurately map the course of the defunct Pelusiac River within the Plain of Tineh. Remote sensing analysis identified a linear feature that is 135 m wide at its maximum and approximately 13 km long. It extends from the Pelusium ruins to the Suez Canal, just north of the Peace Canal. This remotely located linear feature corresponds to the path of the Pelusiac River during Roman times. Planform geomorphology was applied to determine the hydrological regime and paleodischarge of the river prior to becoming defunct. Planform analysis derived a bankfull paleodischarge value of ~ 5700 m3 s- 1 and an average discharge of 650 m3 s- 1, using the reach average for the interpreted Pelusiac River. The derived values show a river distributary similar in discharge to the modern dammed Damietta river. Field work completed in April of 2012 derived four sedimentary lithofacies of the upper formation on the plain that included pro-delta, delta-front and delta-plain depositional environments. Diatom and fossil mollusk samples were also identified that support coastal beach and lagoonal environments of deposition. Measured section columns

  5. Semi-volatile organic compounds and trace elements in the Yangtze River source of drinking water.

    PubMed

    Wu, Bing; Zhang, Xuxiang; Zhang, Xiaolin; Yasun, Aishangjiang; Zhang, Yan; Zhao, Dayong; Ford, Tim; Cheng, Shupei

    2009-08-01

    Determination of 24 semi-volatile organic compounds (SVOCs) and 24 trace elements in water samples was conducted in order to investigate the quality of the Nanjing source of drinking water taken from Yangtze River. The total concentrations of SVOCs and trace elements were in the range of 1,951-11,098 ng/l and 51,274-72,384 microg/l, respectively. No significant seasonal changes were found for the pollutants' concentrations. A primary health risk assessment was carried out to evaluate potential health effects. Risk quotients involving carcinogenic effects for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, bis(2-ethylhexyl)phthalate and arsenic were >1 under the worst-case scenario. The results of this study demonstrate the importance of further studies on the environmental health effects of exposure to the source water.

  6. Determining the contributions of urbanisation and climate change to NPP variations over the last decade in the Yangtze River Delta, China.

    PubMed

    Wu, Shaohua; Zhou, Shenglu; Chen, Dongxiang; Wei, Zongqiang; Dai, Liang; Li, Xingong

    2014-02-15

    Terrestrial net primary production (NPP) is an important measure of global change, and identifying the relative contributions of urbanisation and climate change to NPP is important for understanding the impact of human and natural influences on terrestrial systems and the carbon cycle. The objective of this study was to reveal how urbanisation and climate drive changes in NPP. Satellite-based estimates of NPP collected over a 12-year period (1999-2010) were analysed to identify NPP variations in the Yangtze River Delta. Temporal and spatial analysis methods were used to identify the relationships among NPP, nighttime light urbanisation index values, and climatic factors from pixel to regional scales. The NPP of the entire Yangtze River Delta decreased slightly at a rate of -0.5 g C m(-2)a(-1) from 1999 to 2010, but this change was not significant. However, in the urban region, NPP decreased significantly (p<0.05) at a rate of -4.7 g C m(-2)a(-1) due to urbanisation processes. A spatially explicit method was proposed to partition the relative contributions of urbanisation and climate change to NPP variation. The results revealed that the urbanisation factor is the main driving force for NPP change in high-speed urbanisation areas, and the factor accounted for 47% of the variations. However, in the forest and farm regions, the NPP variation was mainly controlled by climate change and residual factors. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. OSL dating of fine-grained quartz from Holocene Yangtze delta sediments

    NASA Astrophysics Data System (ADS)

    Sugisaki, S.; Buylaert, J. P.; Murray, A. S.; Tada, R.; Zheng, H.; Ke, W.; Saito, K.; Irino, T.; Chao, L.; Shiyi, L.; Uchida, M.

    2014-12-01

    Flood events in the Yangtze River are associated with variation in East Asian Summer Monsoon (EASM) precipitation. Understanding the frequency and scale of the EASM precipitation during the Holocene is a key to understanding the mechanism and cyclicity of floods and droughts. Because about 70% of the annual discharge occurs during the flood season, the Yangtze delta sediments provide a good archive of EASM precipitation. In this study, we investigate the possibility of applying OSL dating to establishing high-resolution chronologies for the Yangtze delta sediment cores YD13-1H and G3. The objectives of this study are: (1) test whether fine grained quartz in present day suspended particle matter (SPM) is fully bleached or reset before deposition, (2) where possible, test quartz fine- and coarse-grain OSL dating against radiocarbon shell ages, (3) interpret the sediment transport processes through the differential bleaching of quartz and feldspar OSL signals. We show that the SPM collected from the surface water column of the Yangtze River during the flood season is well-bleached (offset ~60 years). Fine-grained pro-delta sediments are thus potentially a good dosimeter for OSL dating. OSL ages sediment cores indicate a pronounced change in sedimentation rate at ~6 ka and ~2ka. These events are consistent with what is known of the evolution of the Yangtze catchment and delta. The delta began to build at ~6 ka (Zhao et al., 1979), and human activities increased significantly in the catchment at ~2ka (Chen et al., 1985). It is however surprising that the entire top 9 m of sediment only records these two events. The question of whether significant deposition was limited to 2 ka and 6 ka, or whether the record has been disturbed by erosion/reworking remains. These issues are discussed in terms of the reliability of the quartz OSL ages, the degree of bleaching by comparison with polymineral OSL signals, and the relationship of the OSL ages to the sedimentary record.

  8. The characteristics changes of pH and EC of atmospheric precipitation and analysis on the source of acid rain in the source area of the Yangtze River from 2010 to 2015

    NASA Astrophysics Data System (ADS)

    Zong-Jie, Li; Song, Ling-Ling; Jing-zhu, Ma; Li, Yong-ge

    2017-05-01

    Through the analysis of pH value, EC, precipitation and wind speed of 402 precipitation samples in the source region of the Yangtze River from January 1, 2010 to December 31, 2015, especially for the analysis of the 14 acid rain events. The results showed that: the acid rain in the source region of the Yangtze River was mainly affected by the southwest monsoon and the westerly circulation. The occurrence of acid rain mainly controlled by industrial pollution and other pollutants coming from India and other surrounding areas. And the other cause was that because of the Qinghai Tibet highway and the Qinghai Tibet railway, there were a lot of cars coming and going. And there were people in the summer to plateau tourism increased year by year, and more for self-driving travelling. This added additional pollutants (automobile exhaust) for the source of the Yangtze River. During the period of sampling, the variation range of pH value was from 4.0 to 8.57, with the mean was 6.37. And the range of EC was from 5.2 to 124.4 μs/cm, the average was 27.59 μs/cm. The order of conductivity in the four seasons was Spring > Winter > Summer > Autumn. And the order of pH in four seasons was Summer > Spring = Winter > Autumn. The results are also helpful for further understanding the acid rain in the Tibetan Plateau and providing scientific basis for the effective prevention and control of acid rain.

  9. Risk Assessment on Dietary Exposure to Aflatoxin B1 in Post-Harvest Peanuts in the Yangtze River Ecological Region

    PubMed Central

    Ding, Xiaoxia; Wu, Linxia; Li, Peiwu; Zhang, Zhaowei; Zhou, Haiyan; Bai, Yizhen; Chen, Xiaomei; Jiang, Jun

    2015-01-01

    Based on the 2983 peanut samples from 122 counties in six provinces of China’s Yangtze River ecological region collected between 2009–2014, along with the dietary consumption data in Chinese resident nutrition and health survey reports from 2002 and 2004, dietary aflatoxin exposure and percentiles in the corresponding statistics were calculated by non-parametric probability assessment, Monte Carlo simulation and bootstrap sampling methods. Average climatic conditions in the Yangtze River ecological region were calculated based on the data from 118 weather stations via the Thiessen polygon method. The survey results found that the aflatoxin contamination of peanuts was significantly high in 2013. The determination coefficient (R2) of multiple regression reflected by the aflatoxin B1 content with average precipitation and mean temperature in different periods showed that climatic conditions one month before harvest had the strongest impact on aflatoxin B1 contamination, and that Hunan and Jiangxi provinces were greatly influenced. The simulated mean aflatoxin B1 intake from peanuts at the mean peanut consumption level was 0.777–0.790 and 0.343–0.349 ng/(kg·d) for children aged 2–6 and standard adults respectively. Moreover, the evaluated cancer risks were 0.024 and 0.011/(100,000 persons·year) respectively, generally less than China’s current liver cancer incidence of 24.6 cases/(100,000 persons·year). In general, the dietary risk caused by peanut production and harvest was low. Further studies would focus on the impacts of peanut circulation and storage on aflatoxin B1 contamination risk assessment in order to protect peanut consumers’ safety and boost international trade. PMID:26501322

  10. Pollution status of polycyclic aromatic hydrocarbons in surface sediments from the Yangtze River Estuary and its adjacent coastal zone.

    PubMed

    Wang, Chenglong; Zou, Xinqing; Gao, Jianhua; Zhao, Yifei; Yu, Wenwen; Li, Yali; Song, Qiaochu

    2016-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are mainly produced by incomplete combustion and are used as indicators of anthropogenic activities on the environment. This study analyses the PAHs level in the Yangtze River Estuary (YRE), an important component of Yangtze River and a developed and populated region in China. Surface sediments were collected from 77 sites at the YRE and its adjacent coastal zone (IACZ) for a comprehensive study of PAHs. Kriging interpolation technology and Positive matrix factorization (PMF) model were applied to explore the spatial distribution and sources of PAHs. Concentrations of 16 PAHs (ΣPAHs) varied from 27.2 ng g(-1) to 621.6 ng g(-1) dry weight, with an average value of 158.2 ng g(-1). Spatially, ΣPAHs exhibited wide fluctuation and exhibited an increasing tendency from north to south. In addition, ΣPAHs exhibited a decreasing trend with increasing distance between the estuary and IACZ. The deposition flux of PAHs indicated that more than 107.8 t a(-1) PAHs was deposited in the study area annually. The results of the PMF model revealed that anthropogenic activities were the main sources of PAHs in the study area. Vehicle emissions and marine engines were the most important sources and accounted for 40.9% of the pollution. Coal combustion, petrogenic sources, and wood combustion were other sources that contributed 23.9%, 23.6%, and 11.5%, respectively. The distribution patterns of PAHs in the YRE and IACZ were influenced by many complicated factors such as sediment grain size, hydrodynamics and so on. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A review of crust and upper mantle structure studies of the Snake River Plain-Yellowstone volcanic system: A major lithospheric anomaly in the western U.S.A.

    USGS Publications Warehouse

    Iyer, H.M.

    1984-01-01

    The Snake River Plain-Yellowstone volcanic system is one of the largest, basaltic, volcanic field in the world. Here, there is clear evidence for northeasterly progression of rhyolitic volcanism with its present position in Yellowstone. Many theories have been advanced for the origin of the Snake River Plain-Yellowstone system. Yellowstone and Eastern Snake River Plain have been studied intensively using various geophysical techniques. Some sparse geophysical data are available for the Western Snake River Plain as well. Teleseismic data show the presence of a large anomalous body with low P- and S-wave velocities in the crust and upper mantle under the Yellowstone caldera. A similar body in which compressional wave velocity is lower than in the surrounding rock is present under the Eastern Snake River Plain. No data on upper mantle anomalies are available for the Western Snake River Plain. Detailed seismic refraction data for the Eastern Snake River Plain show strong lateral heterogeneities and suggest thinning of the granitic crust from below by mafic intrusion. Available data for the Western Snake River Plain also show similar thinning of the upper crust and its replacement by mafic material. The seismic refraction results in Yellowstone show no evidence of the low-velocity anomalies in the lower crust suggested by teleseismic P-delay data and interpreted as due to extensive partial melting. However, the seismic refraction models indicate lower-than-normal velocities and strong lateral inhomogeneities in the upper crust. Particularly obvious in the refraction data are two regions of very low seismic velocities near the Mallard Eake and Sour Creek resurgent domes in the Yellowstone caldera. The low-velocity body near the Sour Creek resurgent dome is intepreted as partially molten rock. Together with other geophysical and thermal data, the seismic results indicate that a sub-lithospheric thermal anomaly is responsible for the time-progressive volcanism along the

  12. Changes in river discharge and hydrograph separation in the upper basins of Yangtze and Yellow Rivers on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ding, Y.

    2017-12-01

    Systematic changes of river discharge and the concentration-discharge relation were explored to elucidate the response of river discharge to climate change as well as the connectivity of hydrologic and hydrochemical processes using hydrological data during 1956-2015 and chemical data during 2013-2015 at Yanshiping (YSP, 4,538 km2), Tuotuohe (TTH, 15,924 km2) and Zhimenda (ZMD, 137,704 km2) gauging sections in the upper basin of Yangtze River (UBYA), and at Huangheyan (HHY, 20,930 km2), Jimai (JM, 45,019 km2), Jungong (JG, 98,414 km2) and Tangnaihai (TNH, 121,972 km2) gauging sections in the upper basin of Yellow River (UBYE) on the Tibetan Plateau (TP). Results showed that annual discharge in UBYA presents a decreasing trend from 1950s to late 1970s and exhibits an increasing trend since 1970s due to increased temperature and precipitation. However, discharge in UBYE increases from 1950s to 1980s and decrease since late 1980s due to increased temperature and decreased precipitation. Snow/ice meltwater may play an important role on changes in river discharge from the most upper catchments, particularly for periods with increasing temperature, where snow cover, glaciers and frozen soils are widely distributed. Concentration/flux-discharge in discharge was dominated by a well-defined power law relation, with R2 values lower on rising than falling limbs. This finding has important implications for efforts to estimate annual concentrations and export of major solutes from similar catchments in cold regions where only river discharge is available. Concentrations of conservative solutes in discharge resulted from mixing of two end-members at the most upper gauging sections (YSP, TTH and HHY), and three end-members at the lower gauging sections (ZMD, JM, JG and TNH), with relatively constant solute concentrations in end-members. Relationship between the fractional contributions of meltwater and/or precipitation and groundwater and river discharge followed the same relation

  13. Asian Carp Survivability Experiments and Water Transport Surveys in the Illinois River, Volume 1

    DTIC Science & Technology

    2013-01-01

    developmental stages of the eggs and larvae of the four species of Asian carp in the Yangtze River. These stages begin with egg fertilization and end with the...hatching in the Yangtze River after about 38 hours. Development to the juvenile stage in silver and bighead carp was estimated to take about 60-70 days...Native to the Yangtze River, China. U.S. Geological Survey Data Series 239, 51 pp. Coulter, A. & Goforth, R. R. 2011. Silver and Bighead Carp

  14. Hydrology, geomorphology, and vegetation of Coastal Plain rivers in the southeastern United States

    Treesearch

    Cliff R. Hupp

    2000-01-01

    Rivers of the Coastal Plain of the southeastern United States are characteristically low-gradient meandering systems that develop broad floodplains subjected to frequent and prolonged flooding. These floodplains support a relatively unique forested wetland (Bottomland Hardwoods), which have received considerable ecological study, but distinctly less hydrogeomorphic...

  15. Research Note:Effects of human activities on the Yangtze River suspended sediment flux into the estuary in the last century

    NASA Astrophysics Data System (ADS)

    Yang, S. L.; Shi, Z.; Zhao, H. Y.; Li, P.; Dai, S. B.; Gao, A.

    The surface erosion area in the Yangtze River basin increased from 364×103 km2 in the 1950s to 707×103 km2 in 2001 due to a great increase in population. Based on the regression relationship between surface erosion area and population, the surface erosion area was predicted to be about 280×103 km2 at the beginning of the 20th century. The sediment yield, which increased by about 30% during the first six decades of the 20th century, was closely related to the surface erosion area in this river basin. The Yangtze annual suspended sediment flux into the estuary was about 395×106 t a-1 at the beginning of the century, and this gradually increased to an average of 509×106 t a-1 in the 1960s. The increase in the suspended sediment flux into the estuary was accelerated in the 1950s and the 1960s due to the rapid increase in population and land use immediately after the Second World War and the Liberation War. After the riverine suspended sediment flux reached its maximum in the 1960s, it decreased to <206×106 t a-1 in 2003. Construction of dams was found to be the principal cause for this decreasing trend because, during the same period, (a) the riverine water discharge did not show a decreasing trend, (b) water diversion was not influential and (c) sedimentation in lakes and canals of the middle and lower reaches did not increase. The total storage capacity of reservoirs has increased dramatically over the past half century. The amount of sediment trapped in reservoirs has increased to more than half a billion t a-1. As a result, the suspended sediment flux into the estuary dramatically decreased, even though the sediment yield from many areas of the basin increased in recent decades. Human activities gradually increased the suspended sediment flux into the estuary before the 1960s and then rapidly decreased it. The last century was a period when the Yangtze suspended sediment flux into the estuary was dramatically affected by human activities.

  16. Production and decomposition of forest litter fall on the Apalachicola River flood plain, Florida: Chapter B, Apalachicola River quality assessment

    USGS Publications Warehouse

    Elder, John F.; Cairns, Duncan J.

    1982-01-01

    Measurements of litter fall (leaves and other particulate organic material) and leaf decomposition were made on the bottom-land hardwood swamp of the Apalachicola River flood plain in 1979-80. Litter fall was collected monthly from nets located in 16 study plots. The plots represented five forest types in the swamp and levee areas of the Apalachicola River flood plain. Forty-three species of trees, vines, and other plants contributed to the total litter fall, but more than 90 percent of the leaf material originated from 12 species. Nonleaf material made up 42 percent of the total litter fall. Average litter fall was determined to be 800 grams per square meter per year, resulting in an annual deposition of 3.6 ? 105 metric tons of organic material in the 454-square-kilometer flood plain. The levee communities have less tree biomass but greater tree diversity than do swamp communities. The levee vegetation, containing less tree biomass, produces slightly more litter fall per unit of ground surface area than does the swamp vegetation. The swamps are dominated by three genera: tupelo (Nyssa), cypress (Taxodium) and ash (Fraxinus). These genera account for more than 50 percent of the total leaf fall in the flood plain, but they are the least productive, on a weight-perbiomass basis, of any of the 12 major leaf producers. Decomposition rates of leaves from five common floodplain tree species were measured using a standard leaf-bag technique. Leaf decomposition was highly species dependent. Tupelo (Nyssa spp.) and sweetgum (Liquidambar styraciflua) leaves decomposed completely in 6 months when flooded by river water. Leaves of baldcypress (Taxodium distichum) and diamond-leaf oak (Quercus laurifolia) were much more resistant. Water hickory (Carya aquatica) leaves showed intermediate decomposition rates. Decomposition of all species was greatly reduced in dry environments. Carbon and biomass loss rates from the leaves were nearly linear over a 6-month period, but nitrogen

  17. Snake River Plain FORGE Site Characterization Data

    DOE Data Explorer

    Moos, Danial; Barton, Colleen A.

    2016-04-18

    The site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. This collection includes data on seismic events, groundwater, geomechanical models, gravity surveys, magnetics, resistivity, magnetotellurics (MT), rock physics, stress, the geologic setting, and supporting documentation, including several papers. Also included are 3D models (Petrel and Jewelsuite) of the proposed site. Data for wells INEL-1, WO-2, and USGS-142 have been included as links to separate data collections. These data have been assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL). Other contributors include the National Renewable Energy Laboratory (NREL), Lawrence Livermore National Laboratory (LLNL), the Center for Advanced Energy Studies (CEAS), the University of Idaho, Idaho State University, Boise State University, University of Wyoming, University of Oklahoma, Energy and Geoscience Institute-University of Utah, US Geothermal, Baker Hughes Campbell Scientific Inc., Chena Power, US Geological Survey (USGS), Idaho Department of Water Resources, Idaho Geological Survey, and Mink GeoHydro.

  18. Plan of study for the regional aquifer-system analysis of the Snake River plain, Idaho and eastern Oregon

    USGS Publications Warehouse

    Lindholm, Gerald F.

    1981-01-01

    The 15,600-square-mile Snake River Plain is largely in southern Idaho and includes one of the Nation 's major regional aquifers. A comprehensive investigation of the area 's ground-water resources will be made as part of the U.S. Geological Survey 's Regional Aquifer-System Analysis (RASA) program. Basaltic and sedimentary rocks in the Snake River Plain yield large quantities of water that are vital to the area 's agricultural economy. Basaltic rocks predominate in the eastern Snake River Plain and have especially high water-yielding capabilities. Surface water, largely from the Snake River, is extensively used for irrigation and is a major source of recharge to the ground-water system. Springs issuing from basaltic rocks that form the Snake River Canyon wall near Twin Falls are the major points of ground-water discharge. Increased use of ground water for irrigation is causing concern as to the effect of large-scale withdrawals on spring flow. Ground-water flow models will be used to improve understanding of the hydrologic system, and, if feasible, to aid in evaluating management alternatives. Ground-water quality will be defined and geochemical techniques used to determine the effects of water-rock reactions on water quality. Several reports are planned on different phases of the project, concluding with a summary report. (USGS)

  19. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes

    PubMed Central

    Yang, S. L.; Xu, K. H.; Milliman, J. D.; Yang, H. F.; Wu, C. S.

    2015-01-01

    The increasing impact of both climatic change and human activities on global river systems necessitates an increasing need to identify and quantify the various drivers and their impacts on fluvial water and sediment discharge. Here we show that mean Yangtze River water discharge of the first decade after the closing of the Three Gorges Dam (TGD) (2003–2012) was 67 km3/yr (7%) lower than that of the previous 50 years (1950–2002), and 126 km3/yr less compared to the relatively wet period of pre-TGD decade (1993–2002). Most (60–70%) of the decline can be attributed to decreased precipitation, the remainder resulting from construction of reservoirs, improved water-soil conservation and increased water consumption. Mean sediment flux decreased by 71% between 1950–1968 and the post-TGD decade, about half of which occurred prior to the pre-TGD decade. Approximately 30% of the total decline and 65% of the decline since 2003 can be attributed to the TGD, 5% and 14% of these declines to precipitation change, and the remaining to other dams and soil conservation within the drainage basin. These findings highlight the degree to which changes in riverine water and sediment discharge can be related with multiple environmental and anthropogenic factors. PMID:26206169

  20. Effect of microbially mediated iron mineral transformation on temporal variation of arsenic in the Pleistocene aquifers of the central Yangtze River basin.

    PubMed

    Deng, Yamin; Zheng, Tianliang; Wang, Yanxin; Liu, Lun; Jiang, Hongchen; Ma, Teng

    2018-04-01

    Significant seasonal variation of groundwater arsenic (As) concentrations in shallow aquifers of the Jianghan Plain, central Yangtze River Basin has been reported recently, but the underlying mechanisms remain not well understood. To elaborate biogeochemical processes responsible for the observed As concentration variation, 42-day incubation experiments were done using sediment samples collected respectively from the depth of 26, 36 and 60m of the As-affected aquifer which were labeled respectively as JH26, JH36, JH60. Where JH denotes Jianghan Plain, and the number indicates the depth of the sediment sample. The results indicated that As could be mobilized from the sediments of 26m and 36m depth under the stimulation of exogenous organic carbon, with the maximum As release amount of 1.60 and 1.03mgkg -1 , respectively, while the sediments at 60m depth did not show As mobilization. The microbially mediated reductive dissolution of amorphous iron oxides and reduction of As(V) to As(III) could account for the observed As mobilization. The 16S rRNA high-throughput sequencing results indicated that the variation of microbial community correlated with the released As concentration (R=0.7, P<0.05) and the iron-reducing bacteria, including Pseudomonas, Clostridium and Geobacter, were the main drivers for the As mobilization from the sediments at 26m and 36m depth. The increase of arsC gene abundance (up to 1.4×10 5 copies g -1 ) during As release suggested that As reduction was mediated by the resistant reduction mechanism. By contrast, in the 60m sediments where the Fe and As release was absent, the iron-reducing bacteria accounted for a very minor proportion and sulfate-reducing bacteria were predominant in the microbial community. In addition, after 30days of incubation, the released As in the 26m sediments was immobilized via co-precipitation with or adsorption onto the Fe-sulfide mineral newly-formed by the bacterial sulfate reduction. These results are consistent

  1. Deformation Rates in the Snake River Plain and Adjacent Basin and Range Regions Based on GPS Measurements

    NASA Astrophysics Data System (ADS)

    Payne, S. J.; McCaffrey, R.; King, R. W.; Kattenhorn, S. A.

    2012-12-01

    We estimate horizontal velocities for 405 sites using Global Positioning System (GPS) phase data collected from 1994 to 2010 within the Northern Basin and Range Province, U.S.A. The velocities reveal a slowly-deforming region within the Snake River Plain in Idaho and Owyhee-Oregon Plateau in Oregon separated from the actively extending adjacent Basin and Range regions by shear. Our results show a NE-oriented extensional strain rate of 5.6 ± 0.7 nanostrain/yr in the Centennial Tectonic Belt and an ~E-oriented extensional strain rate of 3.5 ± 0.2 nanostrain/yr in the Great Basin. These extensional rates contrast with the very low strain rate within the 125 km x 650 km region of the Snake River Plain and Owyhee-Oregon Plateau which is not distinguishable from zero (-0.1 ± 0.4 x nanostrain/yr). Inversions of Snake River Plain velocities with dike-opening models indicate that rapid extension by dike intrusion in volcanic rift zones, as previously hypothesized, is not currently occurring. GPS data also disclose that rapid extension in the surrounding regions adjacent to the slowly-deforming region of the Snake River Plain drives shear between them. We estimate right-lateral shear with slip rates of 0.3-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic Belt and left-lateral oblique extension with slip rates of 0.5-1.5 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic Belt. The fastest lateral shearing evident in the GPS occurs near the Yellowstone Plateau where earthquakes with right-lateral strike-slip focal mechanisms are within a NE-trending zone of seismicity. The regional velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic Belt, Snake River Plain, Owyhee-Oregon Plateau, and eastern Oregon, indicating that clockwise rotation is not locally driven by Yellowstone hotspot volcanism, but instead by extension to the south across the Wasatch fault possibly due to gravitational

  2. Aqueous geochemistry and diagenesis in the eastern Snake River Plain aquifer system, Idaho

    USGS Publications Warehouse

    Wood, Warren W.; Low, Walton H.

    1986-01-01

    Water budget and isotopic analyses of water in the eastern Snake River Plain aquifer system confirm that most, if not all, of the water is local meteoric in origin. Solute mass-balance arguments suggest that ∼5 × 109 moles of calcite and 2.6 × 109 moles of silica are precipitated annually in the aquifer. Isotopic evaluations of calcite and petrographic observation of silica support the low-temperature origin of these deposits. Approximately 2.8 × 109 moles of chloride, 4.5 × 109 moles of sodium, 1.4 × 109 moles of sulfate, and 2 × 109 moles of magnesium are removed annually from the aquifer framework by solution. Proposed weathering reactions are shown to be consistent with mass balance, carbon isotopes, observed mineralogy, and chemical thermodynamics. Large quantities of sodium, chloride, and sulfate are being removed from the system relative to their abundances in the rock. Sedimentary interbeds, which are estimated to compose <10% of the aquifer volume, may yield as much as 20% of the solutes generated within the aquifer. Weathering rate of the aquifer framework of the eastern Snake River Plain is 14 (Mg/km2)/yr or less than half the average of the North American continent. This contrasts with the rate for the eastern Snake River basin, 34 (Mg/km2)/yr, which is almost identical to the average for the North American continent. Identification and quantification of reactions controlling solute concentrations in ground water in the eastern plain indicate that the aquifer is not an “inert bathtub” that simply stores and transmits water and solutes but is undergoing active diagenesis and is both a source and sink for solutes.

  3. Prediction of hydrological responds to climate changes in the Upper Yangtze River Basin, China

    NASA Astrophysics Data System (ADS)

    Yang, X.; Ren, L.; Wang, Y.; Zhang, M.; Liu, Y.; Jiang, S.; Yuan, F.

    2017-12-01

    Climate changes have direct effects on hydrological cycle, with the increasing temperature and seasonal shift of precipitation. Therefore, understanding of how climate change may affect the population and water resources and economic development is critical to the water and food security for China. This study aims to evaluate the potential impacts of future climate changes on water resources of the upper basin of Yangtze River (the area controlled by the Yichang hydrological station) using the variable infiltration capacity (VIC) model driven by composite observations (1961-2005) and projections of eight CMIP5 models under scenarios RCP4.5 and RCP8.5 from 2006 to 2099. The raw eight CMIP5 models have been downscaled by the equidistant cumulative distribution functions (EDCDF) statistical downscaling approach from 1961 to 2099. The assessment of the performance of model simulated precipitation and temperature were calculated by comparing to the observations during the historical period (1961-2005). For the same variables, eight CMIP5 models for RCP 4.5 and RCP 8.5 downscaled by EDCDF method were generated during the future period (2006-2099). Overall, the VIC model performed well in monthly streamflow simulation, with the Nash-Sutcliffe coefficient of efficiency (NSCE) 0.92 and 0.97 for calibration and validation, respectively. The annual precipitation is projected to increase by 6.3mm and 8.6mm per decade and the annual temperature will increase by 0.22 °C and 0.53°C per decade (2006-2099) for RCP4.5 and RCP8.5, respectively. In the future period, The total runoff of the study basins would either remain stable or moderately increase by 2.7% and 22.4% per decade, the evapotranspiration increase by 2mm and 13mm per decade, and the soil moisture will reduce by -0.1% and -7.4% per decade under RCP4.5 and RCP8.5, respectively. The changes of model-simulated soil moisture, runoff, and evapotranspiration suggest that there probably be an increasing risk of drought in

  4. Geochemical signature of provenance, tectonics and chemical weathering in the Quaternary flood plain sediments of the Hindon River, Gangetic plain, India

    NASA Astrophysics Data System (ADS)

    Mondal, M. E. A.; Wani, H.; Mondal, Bulbul

    2012-09-01

    The Ganga basin in the Himalayan foreland is a part of the world's largest area of modern alluvial sedimentation. Flood plain sediments of the Hindon River of the Gangetic plain have been analyzed for sediment texture, major and trace elements including rare earth elements (REEs). The results have been used to characterize the source rock composition and to understand the intensity of chemical weathering, tectonics and their interplay in the Hindon flood plain. The sediments of the Hindon flood plain dominantly consist of sand sized particles with little silt and clay. The geochemistry of the Hindon sediments has been compared to the Siwalik mudstone of the Siwalik Group (Siwaliks). The Siwalik sedimentary rocks like sandstones, mudstones and conglomerates are the known source rocks for the Hindon flood plain sediments. Mudstone geochemistry has been considered best to represent the source rock characteristics. The UCC (Upper Continental Crust) normalized major and trace elements of the Hindon flood plain sediments are very similar to the Siwalik mudstone except for Th and Cr. Furthermore, the average chondrite normalized REE pattern of the Hindon flood plain sediments is similar to the Siwalik mudstone. Textural immaturity, K/Rb ratios and the average CIA (Chemical Index of Alteration) and PIA (Plagioclase Index of Alteration) values of the Hindon flood plain sediments indicate that the sediments have not been affected by chemical weathering. Our study suggests that the active tectonics of the Himalayas and monsoon climate enhances only physical erosion of the source rocks (Siwaliks) rather than the chemical alteration. These factors help the Hindon sediments to retain their parental and tectonic signature even after recycling.

  5. Mutagenicity of drinking water sampled from the Yangtze River and Hanshui River (Wuhan section) and correlations with water quality parameters.

    PubMed

    Lv, Xuemin; Lu, Yi; Yang, Xiaoming; Dong, Xiaorong; Ma, Kunpeng; Xiao, Sanhua; Wang, Yazhou; Tang, Fei

    2015-03-31

    A total of 54 water samples were collected during three different hydrologic periods (level period, wet period, and dry period) from Plant A and Plant B (a source for Yangtze River and Hanshui River water, respectively), and several water parameters, such as chemical oxygen demand (COD), turbidity, and total organic carbon (TOC), were simultaneously analyzed. The mutagenicity of the water samples was evaluated using the Ames test with Salmonella typhimurium strains TA98 and TA100. According to the results, the organic compounds in the water were largely frame-shift mutagens, as positive results were found for most of the tests using TA98. All of the finished water samples exhibited stronger mutagenicity than the relative raw and distribution water samples, with water samples collected from Plant B presenting stronger mutagenic strength than those from Plant A. The finished water samples from Plant A displayed a seasonal-dependent variation. Water parameters including COD (r = 0.599, P = 0.009), TOC (r = 0.681, P = 0.02), UV254 (r = 0.711, P = 0.001), and total nitrogen (r = 0.570, P = 0.014) exhibited good correlations with mutagenicity (TA98), at 2.0 L/plate, which bolsters the argument of the importance of using mutagenicity as a new parameter to assess the quality of drinking water.

  6. Mutagenicity of drinking water sampled from the Yangtze River and Hanshui River (Wuhan section) and correlations with water quality parameters

    PubMed Central

    Lv, Xuemin; Lu, Yi; Yang, Xiaoming; Dong, Xiaorong; Ma, Kunpeng; Xiao, Sanhua; Wang, Yazhou; Tang, Fei

    2015-01-01

    A total of 54 water samples were collected during three different hydrologic periods (level period, wet period, and dry period) from Plant A and Plant B (a source for Yangtze River and Hanshui River water, respectively), and several water parameters, such as chemical oxygen demand (COD), turbidity, and total organic carbon (TOC), were simultaneously analyzed. The mutagenicity of the water samples was evaluated using the Ames test with Salmonella typhimurium strains TA98 and TA100. According to the results, the organic compounds in the water were largely frame-shift mutagens, as positive results were found for most of the tests using TA98. All of the finished water samples exhibited stronger mutagenicity than the relative raw and distribution water samples, with water samples collected from Plant B presenting stronger mutagenic strength than those from Plant A. The finished water samples from Plant A displayed a seasonal-dependent variation. Water parameters including COD (r = 0.599, P = 0.009), TOC (r = 0.681, P = 0.02), UV254 (r = 0.711, P = 0.001), and total nitrogen (r = 0.570, P = 0.014) exhibited good correlations with mutagenicity (TA98), at 2.0 L/plate, which bolsters the argument of the importance of using mutagenicity as a new parameter to assess the quality of drinking water. PMID:25825837

  7. Autumn ichthyoplankton assemblage in the Yangtze Estuary shaped by environmental factors.

    PubMed

    Zhang, Hui; Xian, Weiwei; Liu, Shude

    2016-01-01

    This study investigated the response of the ichthyoplankton community to environmental changes in the Yangtze Estuary using canonical correspondence analysis. Ichthyoplankton community and environmental data were recorded during the autumns of 1998, 2000, 2002, 2003, 2004, 2007 and 2009. Among the ichthyoplankton, the dominant larval and juvenile families were the Engraulidae, Gobiidae and Salangidae, and the most common eggs were from Trichiurus lepturus. The ichthyoplankton was identified via canonical correspondence analysis to three assemblages: an estuary assemblage dominated by Chaeturichthys stigmatias, a coastal assemblage dominated by Engraulis japonicus and Stolephorus commersonii, and an offshore assemblage dominated by Trichiurus lepturus. Regarding environmental factors in the Yangtze Estuary, suspended matter and surface seawater salinity were the main factors influencing the distributions of the different assemblages, while sediment from the Yangtze River during the rainy season and chlorophyll a were the principle drivers of the annual variances in the distribution of ichthyoplankton assemblages. Our aims in this study were to provide detailed characterizations of the ichthyoplankton assemblage in the autumns of seven years, examine the long-term dynamics of autumn ichthyoplankton assemblages, and evaluate the influence of environmental factors on the spatial distribution and inter-annual variations of ichthyoplankton assemblages associated with the Yangtze Estuary.

  8. Autumn ichthyoplankton assemblage in the Yangtze Estuary shaped by environmental factors

    PubMed Central

    Liu, Shude

    2016-01-01

    This study investigated the response of the ichthyoplankton community to environmental changes in the Yangtze Estuary using canonical correspondence analysis. Ichthyoplankton community and environmental data were recorded during the autumns of 1998, 2000, 2002, 2003, 2004, 2007 and 2009. Among the ichthyoplankton, the dominant larval and juvenile families were the Engraulidae, Gobiidae and Salangidae, and the most common eggs were from Trichiurus lepturus. The ichthyoplankton was identified via canonical correspondence analysis to three assemblages: an estuary assemblage dominated by Chaeturichthys stigmatias, a coastal assemblage dominated by Engraulis japonicus and Stolephorus commersonii, and an offshore assemblage dominated by Trichiurus lepturus. Regarding environmental factors in the Yangtze Estuary, suspended matter and surface seawater salinity were the main factors influencing the distributions of the different assemblages, while sediment from the Yangtze River during the rainy season and chlorophyll a were the principle drivers of the annual variances in the distribution of ichthyoplankton assemblages. Our aims in this study were to provide detailed characterizations of the ichthyoplankton assemblage in the autumns of seven years, examine the long-term dynamics of autumn ichthyoplankton assemblages, and evaluate the influence of environmental factors on the spatial distribution and inter-annual variations of ichthyoplankton assemblages associated with the Yangtze Estuary. PMID:27114877

  9. 40Ar/39Ar mica dating of late Cenozoic sediments in the upper Yangtze: Implications for sediment provenance and drainage evolution

    NASA Astrophysics Data System (ADS)

    Sun, Xilin; Li, Chang'an; Kuiper, Kuiper; Zhang, Zengjie; Wijbrans, Jan

    2017-04-01

    The development of the river systems in East Asia is closely linked to the uplift of the Tibetan plateau caused by collision of the India-Eurasia. The Yangtze River is the largest river in Asia and the timing and exact causes of its formation are still a matter of debate. Controversy exists for example on the start of the connection of the eastern Tibetan rivers to the eastward flowing Yangtze instead of the southward flowing Red River. Here we use the 40Ar/39Ar dating of detrital micas (muscovite and biotite) and muscovite geochemistry to constrain the sediment provenance in the eastern Tibetan Plateau. The remarkable spatial and temporal variation in sediment provenance allow us to extract information about the evolution of the upper Yangtze River. The combined data suggest that the upper Jinsha River upstream from Shigu town lost its connection with the southward flowing Red River at least earlier than the Pliocene. To the east of Shigu, the Yalong and Jinsha rivers flowed across the Yuanmou Basin into the Red River before 3.1 Ma, but abandoned this connection and turned east somewhere between 3.1 and 2.1 Ma. Our results rule out the possibility of a west-flowing Jinsha River since 1.58 Ma. The current stream directions between Shigu and Panzhihua go north, south and east and must have been formed at that time. Our data also shed new light on the evolution of the Dadu River. The Dadu River did not flow southward into Yuanmou Basin at least since 4.8 Ma but flowed into the Jinsha River along the Anninghe Fault. These capture events are closely linked to the tectonism of the eastern Tibetan Plateau and intensification of the East Asia monsoon.

  10. Recent sedimentation and surface-water flow patterns on the flood plain of the North Fork Forked Deer River, Dyer County, Tennessee

    USGS Publications Warehouse

    Wolfe, W.J.; Diehl, T.H.

    1993-01-01

    Sedimentation in the 19th and 20th centuries has had a major effect on surface-water drainage conditions along a 7-mile section of the North, Fork Forked Deer River flood plain, Dyer County, Tenn. During the century prior to 1930, 5 to 12 feet of sediment were deposited over much of the flood plain, resulting in channel obstruction and widespread flooding. The estimated bankfull capacity of the natural channel before it was channelized in 19 16 was comparable to the base flow of the river during the 1980's. Ditching of the river between 191i6 and 1;9,21 was followed by reductions in sedimentation rates over parts of the flood plain. However, the effects of sedimentation have persisted. Occlusions along the natural channel of the river have divided this stream reach into a series of sloughs. These sloughs continue to fill with sediment and are surrounded by ponds that have expanded since 1941. Degradation of the North Fork Forked Deer ditch may eventually reduce ponding over much of the flood plain. Active incision of headcuts in both banks of the ditch is enhancing the drainage of widespread ponded areas. These headcuts likely will have limited effect on drainage of most tributaries. The highest recent sedimentation rates, in places more than 0.2 foot per year, are concentrated near the flood-plain margin along tributary streams. In conjunction with beaver dams and debris, ongoing sedimentation has blocked flow in several tributaries, posing a flood hazard to agricultural land near the flood-plain margin. The occluded tributaries likely will continue to overflow unless they are periodically dredged or their sediment loads are reduced.

  11. Comparative study of carbonic anhydrase activity in waters among different geological eco-environments of Yangtze River basin and its ecological significance.

    PubMed

    Nzung'a, Sila Onesmus; Pan, Weizhi; Shen, Taiming; Li, Wei; Qin, Xiaoqun; Wang, Chenwei; Zhang, Liankai; Yu, Longjiang

    2018-04-01

    This study provides the presence of carbonic anhydrase (CA) activity in waters of the Yangtze River basin, China, as well as the correlation of CA activity with HCO 3 - concentration and CO 2 sink flux. Different degrees of CA activity could be detected in almost all of the water samples from different geological eco-environments in all four seasons. The CA activity of water samples from karst areas was significantly higher than from non-karst areas (PP3 - concentration (r=0.672, P2 sink flux (r=0.602, P=0.076) in karst areas. This suggests that CA in waters might have a promoting effect on carbon sinks for atmospheric CO 2 in karst river basins. In conditions of similar geological type, higher CA activity was generally detected in water samples taken from areas that exhibited better eco-environments, implying that the CA activity index of waters could be used as an indicator for monitoring ecological environments and protection of river basins. These findings suggest that the role of CA in waters in the karst carbon sink potential of river basins is worthy of further in-depth studies. Copyright © 2017. Published by Elsevier B.V.

  12. Source identification, geochemical normalization and influence factors of heavy metals in Yangtze River Estuary sediment.

    PubMed

    Sun, Xueshi; Fan, Dejiang; Liu, Ming; Tian, Yuan; Pang, Yue; Liao, Huijie

    2018-06-18

    Sediment samples, including 40 surface samples and 12 sediment cores, were collected from 52 stations of the Yangtze River Estuary (YRE) in 2015 and 2016. The 95% linear prediction intervals (LPI) and principal components analysis (PCA), were conducted to evaluate the metal sources and grain-size effect (GSE). The in situ physico-chemical properties of pH, Eh, DO, salinity, temperature and turbidity were combined to elucidate the relationships between environmental factors and the fate of heavy metals in the river-estuary-shelf system. This study indicates a decreasing trend of metals in sediments from the estuary towards the adjacent shelf and the river channel and that Zn, Cu and Cr are mainly derived from natural processes throughout the catchment, whereas Pb appears to have anthropogenic inputs via atmospheric deposition. Furthermore, considering the best fit regression lines between the concentrations of Al and heavy metals as well as the deficiencies of the conventional C elements /C Al method, we introduce an approach (Al-SN: Al-scope normalization) that can eliminate the GSE on heavy metals and be applied to other estuaries. After Al-scope normalization, the relatively constant levels of Zn, Cu and Cr that remain in sediments from the river channel to the estuary and shelf confirmed that the variation of grain size in sediments almost entirely explained the distribution patterns of sediment toxicity in the YRE, while the enrichment of Pb in estuarine sediments could be attributed to its chemical species and physico-chemical properties. The results further suggest that the relationship between grain size and spatial behavior of sediment pollutants should be given priority over the contamination assessment and provenance discrimination in estuarine or similar environments with complex sediment compositions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Constraints on mantle melt geometries from body wave attenuation in the Salton Trough and Snake River Plain

    NASA Astrophysics Data System (ADS)

    Byrnes, J. S.; Bezada, M.

    2017-12-01

    Melt can be retained in the mantle at triple junctions between grain boundaries, be spread in thin films along two-grain boundaries, or be organized by shear into elongate melt-rich bands. Which of these geometries is most prevalent is unknown. This ambiguity makes the interpretation of anomalous seismic velocities and quality factors difficult, since different geometries would result in different mechanical effects. Here, we compare observations of seismic attenuation beneath the Salton Trough and the Snake River Plain; two regions where the presence of melt has been inferred. The results suggest that seismic attenuation is diagnostic of melt geometry. We measure the relative attenuation of P waves from deep focus earthquakes using a time-domain method. Even though the two regions are underlain by comparably strong low-velocity anomalies, their attenuation signature is very different. The upper mantle beneath the Salton Trough is sufficiently attenuating that the presence of melt must lower Qp, while attenuation beneath the Snake River Plain is not anomalous with respect to surrounding regions. These seemingly contradictory results can be reconciled if different melt geometries characterize each region. SKS splitting from the Salton Trough suggests that melt is organized into melt-rich bands, while this is not the case for the Snake River Plain. We infer that beneath the Snake River Plain melt is retained at triple junctions between grain boundaries, a geometry that is not predicted to cause seismic attenuation. More elongate geometries beneath the Salton Trough may cause seismic attenuation via the melt-squirt mechanism. In light of these results, we conclude that prior observations of low seismic velocities with somewhat high quality factors beneath the East Pacific Rise and Southern California suggest that melt does not organize into elongate bands across much of the asthenosphere.

  14. Morphology and mechanism of the very large dunes in the tidal reach of the Yangtze River, China

    NASA Astrophysics Data System (ADS)

    Shuwei, Zheng; Heqin, Cheng; Shuaihu, Wu; Shengyu, Shi; Wei, Xu; Quanping, Zhou; Yuehua, Jiang

    2017-05-01

    High-resolution multibeam data was used to interpret the surface morphology of very large dunes (VLDs) in the tidal reach of the Yangtze River, China. These VLDs can be divided into three categories according to their surface morphological characteristics. (1) VLDs-I: those with a smooth surface and cross-section; (2) VLDs-II: those accompanied by secondary dunes; (3) VLDs-III: those accompanied by secondary dunes and numerous elliptical pits. Parameters and spatial distribution of VLDs, and bed surface sediment were analyzed in the laboratory. Overall, channel morphology is an important factor affecting the development of VLDs, and channels with narrow and straight and certain water surface slope are facilitating the development of VLDs by constraining stream power. Meanwhile, distribution density of VLDs depicts a decreasing trend from Chizhou towards the estuary, are probably influenced by channel morphology and width. Associated pits in VLDs-III change the 3D dune morphology by distributing in secondary dunes as beads. The Three Gorges Dam project (TGP) leads to the bed surface sediment activity frequently and leads to the riverbed surface sediment coarsens, which promotes the further development of dunes. Moreover, other human activities, such as river regulation project, sand mining and Deep Water Channel Regulation Project have changed the regional river boundary conditions and hydrodynamic conditions are influential on the development of VLDs.

  15. Backwater at bridges and densely wooded flood plains, west fork Amite River near Liberty, Mississippi

    USGS Publications Warehouse

    Colson, B.E.; Ming, C.O.; Arcement, George J.

    1979-01-01

    Floodflow data that will provide a base for evaluating digital models relating to open-channel flow were obtained at 22 sites on streams in Alabama, Louisiana, and Mississippi. Thirty-five floods were measured. Analysis of the data indicated methods currently in use would be inaccurate where densely vegetated flood plains are crossed by highway embankments and single-opening bridges. This atlas presents flood information at the site on West Fork Amite River near Liberty, MS. Water depths , velocities, and discharges through bridge openings on West Fork Amite River near Liberty, MS for floods of December 6, 1971 , and March 25, 1973, are shown, together with peak water-surface elevations along embankments and along cross sections. Manning 's roughness coefficient values in different parts of the flood plain are shown on maps, and flood-frequency relations are shown on a graph. (USGS).

  16. Crustal deformation of the Yellowstone-Snake River Plain volcano-tectonic system-Campaign and continuous GPS observations, 1987-2004

    USGS Publications Warehouse

    Puskas, C.M.; Smith, R.B.; Meertens, Charles M.; Chang, W. L.

    2007-01-01

    The Yellowstone-Snake River Plain tectonomagmatic province resulted from Late Tertiary volcanism in western North America, producing three large, caldera-forming eruptions at the Yellowstone Plateau in the last 2 Myr. To understand the kinematics and geodynamics of this volcanic system, the University of Utah conducted seven GPS campaigns at 140 sites between 1987 and 2003 and installed a network of 15 permanent stations. GPS deployments focused on the Yellowstone caldera, the Hebgen Lake and Teton faults, and the eastern Snake River Plain. The GPS data revealed periods of uplift and subsidence of the Yellowstone caldera at rates up to 15 mm/yr. From 1987 to 1995, the caldera subsided and contracted, implying volume loss. From 1995 to 2000, deformation shifted to inflation and extension northwest of the caldera. From 2000 to 2003, uplift continued to the northwest while caldera subsidence was renewed. The GPS observations also revealed extension across the Hebgen Lake fault and fault-normal contraction across the Teton fault. Deformation rates of the Yellowstone caldera and Hebgen Lake fault were converted to equivalent total moment rates, which exceeded historic seismic moment release and late Quaternary fault slip-derived moment release by an order of magnitude. The Yellowstone caldera deformation trends were superimposed on regional southwest extension of the Yellowstone Plateau at up to 4.3 ± 0.2 mm/yr, while the eastern Snake River Plain moved southwest as a slower rate at 2.1 ± 0.2 mm/yr. This southwest extension of the Yellowstone-Snake River Plain system merged into east-west extension of the Basin-Range province. Copyright 2007 by the American Geophysical Union.

  17. Particulate Matter and Gaseous Pollutions in Three Metropolises along the Chinese Yangtze River: Situation and Implications.

    PubMed

    Mao, Mao; Zhang, Xiaolin; Yin, Yan

    2018-05-28

    The situation of criteria atmospheric pollutants, including particulate matter and trace gases (SO₂, NO₂, CO and O₃), over three metropolises (Chongqing, Wuhan, and Nanjing), representing the upstream, midstream and downstream portions of the Yangtze River Basin from September 2015 to August 2016 were analyzed. The maximum annual mean PM 2.5 and PM 10 concentrations were 61.3 and 102.7 μg/m³ in Wuhan, while highest annual average gaseous pollutions occurred in Nanjing, with 49.6 and 22.9 ppb for 8 h O₃ and NO₂, respectively. Compared to a few years ago, SO₂ and CO mass concentrations have dropped to well below the qualification standards, and the O₃ and NO₂ concentrations basically meet the requirements though occasionally is still high. In contrary, about 13%, 25%, 22% for PM 2.5 , and 4%, 17%, 15% for PM 10 exceed the Chinese Ambient Air Quality Standard (CAAQS) Grade II. Particulate matter, especially PM 2.5 , is the most frequent major pollutant to poor air quality with 73%, 64% and 88% accounting for substandard days. Mean PM 2.5 concentrations on PM 2.5 episode days are 2⁻3 times greater than non-episode days. On the basis of calculation of PM 2.5 /PM 10 and PM 2.5 /CO ratios, the enhanced particulate matter pollution on episode days is closely related to secondary aerosol production. Except for O₃, the remaining five pollutants exhibit analogous seasonal patterns, with the highest magnitude in winter and lowest in summer. The results of back trajectories show that air pollution displays synergistic effects on local emissions and long range transport. O₃ commonly demonstrated negative correlations with other pollutants, especially during winter, while moderate to strong positive correlation between particulate matter and NO₂, SO₂, CO were seen. Compared to pollutant substandard ratios over three megacities in eastern China (Beijing, Shanghai, and Guangzhou), the situation in our studied second-tier cities are also severe. The

  18. 33 CFR 165.930 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Des Plaines River located between mile marker 286.0 (Brandon Road Lock and Dam) and mile marker 290.0... Sanitary and Ship Canal. All U.S. waters of the Chicago Sanitary and Ship Canal between mile marker 290.0... (Main Branch) and North Branch Chicago River). (4) Chicago River (Main Branch). All U.S. waters of the...

  19. Relationship between Dongting Lake and surrounding rivers under the operation of the Three Gorges Reservoir, China.

    PubMed

    Zhan, Lucheng; Chen, Jiansheng; Zhang, Shiyin; Huang, Dewen; Li, Ling

    2015-01-01

    The natural flow properties of the Yangtze River have been changed completely following the construction of the Three Gorges Dam. The dam's operation has affected the resources and environment in the middle and lower reaches of the Yangtze River, changing the hydrological conditions and ecological environment of the Dongting Lake. During three different dispatching periods of the reservoir, we took triplicate samples of the river and lake water. All the samples were analysed for δ(2)H and δ(18)O to determine the relationship between the lake and the Yangtze River (and other rivers), and to evaluate objectively the influence of the dam's operation on the lake. During the period of water-supply dispatch, the Four Rivers and Miluo River are the main recharge sources of the lake. During the flood-storage dispatching period, the Dongting Lake is recharged largely by the Three Outlets and the Four Rivers, whereas during the period of water-storage dispatch, most of the lake's water originates from the Miluo, Xiang, Zi, and Yuan rivers. Although the Yangtze River only contributes significantly to the lake's recharge through the Three Outlets during the flood-storage dispatching period, the lake discharges large amounts of water into the Yangtze River during all three periods. Through the operation of the reservoir, it should be ensured that the water level of the Dongting Lake is not too low during the dry season, nor too high during the wet season, thus preventing the lake region from future flood and drought disasters.

  20. Occurrence and ecological risk assessment of organic micropollutants in the lower reaches of the Yangtze River, China: A case study of water diversion.

    PubMed

    Yan, Zhenhua; Yang, Haohan; Dong, Huike; Ma, Binni; Sun, Hongwei; Pan, Ting; Jiang, Runren; Zhou, Ranran; Shen, Jie; Liu, Jianchao; Lu, Guanghua

    2018-08-01

    Water diversion has been increasingly applied to improve water quality in many water bodies. However, little is known regarding pollution by organic micropollutants (OMPs) in water diversion projects, especially at the supplier, and this pollution may threaten the quality of transferred water. In the present study, a total of 110 OMPs belonging to seven classes were investigated in water and sediment collected from a supplier of the Yangtze River within four water diversion projects. A total of 69 and 58 target OMPs were detected in water and sediment, respectively, at total concentrations reaching 1041.78 ng/L and 5942.24 ng/g dry weight (dw). Polycyclic aromatic hydrocarbons (PAHs) and pharmaceuticals were the predominant pollutants identified. When preliminarily compared with the pollution in the receiving water, the Yangtze River generally exhibited mild OMPs pollution and good water quality parameters, implying a clean water source in the water diversion project. However, in Zongyang and Fenghuangjing, PAHs pollution was more abundant than that in the corresponding receiving water in Chaohu Lake. Ammonia nitrogen pollution in the Wangyu River was comparable to that in Taihu Lake. These findings imply that water diversion may threaten receiving waters in some cases. In addition, the risks of all detected pollutants in both water and sediment were assessed. PAHs in water, especially phenanthrene and high-molecular-weight PAHs, posed high risks to invertebrates, followed by the risks to fish and algae. Pharmaceuticals, such as antibiotics and antidepressants, may also pose risks to algae and fish at a number of locations. To the best of our knowledge, this report is the first to describe OMPs pollution in water diversion projects, and the results provide a new perspective regarding the security of water diversion projects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Pattern of atmospheric mercury speciation during episodes of elevated PM2.5 levels in a coastal city in the Yangtze River Delta, China.

    PubMed

    Hong, Youwei; Chen, Jinsheng; Deng, Junjun; Tong, Lei; Xu, Lingling; Niu, Zhenchuan; Yin, Liqian; Chen, Yanting; Hong, Zhenyu

    2016-11-01

    Measurement of atmospheric mercury speciation was conducted in a coastal city of the Yangtze River Delta, China from July 2013 to January 2014, in conjunction with air pollutants and meteorological parameters. The mean concentrations of gaseous elemental mercury (GEM), particulate bound mercury (HgP) and reactive gaseous mercury (RGM) were 3.26 ± 1.63 ng m -3 , 659 ± 931 pg m -3 , and 197 ± 246 pg m -3 , respectively. High percentages of HgP during haze days were found, due to the increase in direct emissions and gas-particle partitioning of RGM. The average gas-particle partitioning coefficients (Kp) during moderate or severe haze days (PM2.5 > 150 μg m -3 ) were obviously decreased. GEM and HgP were positively correlated with PM2.5, SO 2 , NO 2 and CO, suggesting a significant contribution of anthropogenic sources. Elevated HgP concentrations in cold seasons and in the morning were observed while RGM exhibited different seasonal and diurnal pattern. The ratio of HgP/SO 2 and Pearson correlation analysis suggested that coal combustion was the main cause of increasing atmospheric Hg concentrations. The monitoring site was affected by local, regional and interregional sources. The back trajectory analysis suggested that air mass from northwest China and Huabei Plain contributed to elevated atmospheric Hg in winter and autumn, while southeast China with clean air masses were the major contributor in summer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Process-based, forecast modeling of decadal morphological evolution of the Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Luan, Hualong; Ding, Pingxing; Wang, Zhengbing; Ge, Jianzhong

    2017-04-01

    Understanding the decadal morphodynamic evolution of estuaries and deltas and their controls is of vital importance regarding management for estuarine function and sustainable development. This work addresses this issue by applying a process-based model system (Delft3D) to hindcast and then forecast the morphodynamic evolution of the Yangtze Estuary at a decadal time scale. Forced by the river and tides, the model considers sand-mud mixture and the seasonal variations of river water discharge and sediment discharge. The morphodynamic model is validated against three periods, i.e., an accretion period (1958-1978), an erosion period (1986-1997) and a recent accretion period with human activities (2002-2010). Model results show good performance with respect to spatial erosion and deposition patterns, sediment volume changes, and hypsometry curves. The model reveals quite different behaviors for mud transport between the dry and wet seasons, which is subject to prescription of river boundary conditions and bed composition. We then define four scenarios to project evolution to 2030 under decreased river inputs and increased relative sea-level. The simulations reveal that overwhelming amount of erosion will likely occur in the inner and mouth bar area of the estuary. Particularly, the mouth zone will shift from net deposition before 2010 to net erosion by 2030, mainly because of decreasing sediment supply. Changes in water discharge have minor effects on the projected trend. Net erosion will be considerable when the sediment supply is extremely low (100 Mt yr-1) due to the abundance of erodible modern sediment in the Yangtze Estuary. Erosion within the mouth bar area may be unexpected, including the deepening of the tidal inlet at East Chongming Mudflat and the formation of a flood channel on the seaward side of Jiuduan Shoal. Overall, the model results provide valuable information for sustainable delta management under changing conditions for both the Yangtze system and

  3. Comparison of Cottonwood Dendrochronology and Optically Stimulated Luminescence Geochronometers Along a High Plains Meandering River, Powder River, Montana, USA

    NASA Astrophysics Data System (ADS)

    Hasse, T. R.; Schook, D. M.

    2017-12-01

    Geochronometers at centennial scales can aid our understanding of process rates in fluvial geomorphology. Plains cottonwood trees (Populus deltoides ssp. Monilifera) in the high plains of the United States are known to germinate on freshly created deposits such as point bars adjacent to rivers. As the trees mature they may be partially buried (up to a few meters) by additional flood deposits. Cottonwood age gives a minimum age estimate of the stratigraphic surface where the tree germinated and a maximum age estimate for overlying sediments, providing quantitative data on rates of river migration and sediment accumulation. Optically Stimulated Luminescence (OSL) of sand grains can be used to estimate the time since the sand grains were last exposed to sunlight, also giving a minimum age estimate of sediment burial. Both methods have disadvantages: Browsing, partial burial, and other damage to young cottonwoods can increase the time required for the tree to reach a height where it can be sampled with a tree corer, making the germination point a few years to a few decades older than the measured tree age; fluvial OSL samples can have inherited age (when the OSL age is older than the burial age) if the sediment was not completely bleached prior to burial. We collected OSL samples at 8 eroding banks of the Powder River Montana, and tree cores at breast height (±1.2 m) from cottonwood trees growing on the floodplain adjacent to the OSL sample locations. Using the Minimum Age Model (MAM) we found that OSL ages appear to be 500 to 1,000 years older than the adjacent cottonwood trees which range in age (at breast height) from 60 to 185 years. Three explanations for this apparent anomaly in ages are explored. Samples for OSL could be below a stratigraphic unconformity relative to the cottonwood germination elevation. Shallow samples for OSL could be affected by anthropogenic mixing of sediments due to plowing and leveling of hay fields. The OSL samples could have

  4. Hydrologic conditions and distribution of selected radiochemical and chemical constituents in water, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho, 1989 through 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartholomay, R.C.; Orr, B.R.; Liszewski, M.J.

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering Laboratory (INEL) has affected water quality in the Snake River Plain aquifer. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains a continuous monitoring network at the INEL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1989-91. Water in the eastern Snake River Plain aquifer moves principally through fractures and interflowmore » zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged principally from irrigation water, infiltration of streamflow, and ground-water inflow from adjoining mountain drainage basins. Water levels in wells throughout the INEL generally declined during 1989-91 due to drought. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INEL decreased or remained constant during 1989-91. Decreased concentrations are attributed to reduced rates of radioactive-waste disposal, sorption processes, radioactive decay, and changes in waste-disposal practices. Detectable concentrations of chemical constituents in water from the Snake River Plain aquifer at the INEL were variable during 1989-91. Sodium and chloride concentrations in the southern part of the INEL increased slightly during 1989-91 because of increased waste-disposal rates and a lack of recharge from the Big Lost River. Plumes of 1,1,1-trichloroethane have developed near the Idaho Chemical Processing Plant and the Radioactive Waste Management Complex as a result of waste disposal practices.« less

  5. Ozone and fine particle in the western Yangtze River Delta: an overview of 1 yr data at the SORPES station

    NASA Astrophysics Data System (ADS)

    Ding, A. J.; Fu, C. B.; Yang, X. Q.; Sun, J. N.; Zheng, L. F.; Xie, Y. N.; Herrmann, E.; Nie, W.; Petäjä, T.; Kerminen, V.-M.; Kulmala, M.

    2013-06-01

    This work presents an overview of 1 yr measurements of ozone (O3) and fine particular matter (PM2.5) and related trace gases at a recently developed regional background site, the Station for Observing Regional Processes of the Earth System (SORPES), in the western part of the Yangtze River Delta (YRD) in eastern China. Ozone and PM2.5 showed strong seasonal cycles but with contrast patterns: O3 reached a maximum in warm seasons but PM2.5 in cold seasons. Correlation analysis suggests a VOC-sensitive regime for O3 chemistry and a formation of secondary aerosols under conditions of high O3 in summer. Compared with the National Ambient Air Quality Standards in China, our measurements report 15 days of O3 exceedance and 148 days of PM2.5 exceedance during the 1 yr period, suggesting a severe air pollution situation in this region. Case studies for typical O3 and PM2.5 episodes demonstrated that these episodes were generally associated with an air mass transport pathway over the mid-YRD, i.e., along the Nanjing-Shanghai axis with its city clusters, and showed that synoptic weather played an important role in air pollution, especially for O3. Agricultural burning activities caused high PM2.5 and O3 pollution during harvest seasons, especially in June. A calculation of potential source contributions based on Lagrangian dispersion simulations suggests that emissions from the YRD contributed to over 70% of the O3 precursor CO, with a majority from the mid-YRD. North-YRD and the North China Plain are the main contributors to PM2.5 pollution in this region. This work shows an important environmental impact from industrialization and urbanization in the YRD region, and suggests an urgent need for improving air quality in these areas through collaborative control measures among different administrative regions.

  6. Direct connectivity between upstream and downstream promotes rapid response of lower coastal-plain rivers to land-use change

    NASA Astrophysics Data System (ADS)

    Mattheus, Christopher R.; Rodriguez, Antonio B.; McKee, Brent A.

    2009-10-01

    Low-relief fluvial systems that originate in the lower coastal plain and discharge into estuaries are common along passive margins. These watersheds are thought to be disconnected from their termini by floodplains, which buffer the sediment-routing system by sequestration. Here, we present a detailed study of the Newport River, a typical lower coastal-plain system, which reveals high connectivity between watershed and delta. Connectivity is measured as the time lag between initiation of a silviculture operation, which increased landscape erosion, and when the sediment appeared at the bay-head delta. The time lag, measured from aerial photographs and sedimentation rates calculated from 210Pb- and 137Cs-activities in cores from the watershed and delta, is <3 years. Most lower coastal-plain rivers are steeper and have less floodplain accommodation available for storage than their larger counterparts that originate landward of the fall line, which promotes higher connectivity between upstream and downstream.

  7. A new interpretation of deformation rates in the Snake River Plain and adjacent basin and range regions based on GPS measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.J. Payne; R. McCaffrey; R.W. King

    2012-04-01

    We evaluate horizontal Global Positioning System (GPS) velocities together with geologic, volcanic, and seismic data to interpret extension, shear, and contraction within the Snake River Plain and the Northern Basin and Range Province, U.S.A. We estimate horizontal surface velocities using GPS data collected at 385 sites from 1994 to 2009 and present an updated velocity field within the Stable North American Reference Frame (SNARF). Our results show an ENE-oriented extensional strain rate of 5.9 {+-} 0.7 x 10{sup -9} yr{sup -1} in the Centennial Tectonic belt and an E-oriented extensional strain rate of 6.2 {+-} 0.3 x 10{sup -9} yr{supmore » -1} in the Intermountain Seismic belt combined with the northern Great Basin. These extensional strain rates contrast with the regional north-south contraction of -2.6 {+-} 1.1 x 10{sup -9} yr{sup -1} calculated in the Snake River Plain and Owyhee-Oregon Plateau over a 125 x 650 km region. Tests that include dike-opening reveal that rapid extension by dike intrusion in volcanic rift zones does not occur in the Snake River Plain at present. This slow internal deformation in the Snake River Plain is in contrast to the rapidly-extending adjacent Basin and Range provinces and implies shear along boundaries of the Snake River Plain. We estimate right-lateral shear with slip rates of 0.5-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic belt and left-lateral oblique extension with slip rates of <0.5 to 1.7 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic belt. The fastest lateral shearing occurs near the Yellowstone Plateau where strike-slip focal mechanisms and faults with observed strike-slip components of motion are documented. The regional GPS velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic belt, Idaho batholith, Snake River Plain, Owyhee-Oregon Plateau, and central Oregon, indicating that clockwise rotation is driven by extension to

  8. Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil

    USGS Publications Warehouse

    Dunne, T.; Mertes, L.A.K.; Meade, R.H.; Richey, J.E.; Forsberg, B.R.

    1998-01-01

    Sediment transport through the Brazilian sector of the Amazon River valley, a distance of 2010 km, involves exchanges between the channel and the flood plain that in each direction exceed the annual flux of sediment out of the river at O??bidos (???1200 Mt yr-1). The exchanges occur through bank erosion, bar deposition, settling from diffuse overbank flow, and sedimentation in flood-plain channels. We estimated the magnitude of these exchanges for each of 10 reaches of the valley, and combined them with calculations of sediment transport into and out of the reaches based on sediment sampling and flow records to define a sediment budget for each reach. Residuals in the sediment budget of a reach include errors of estimation and erosion or deposition within the channel. The annual supply of sediment entering the channel from bank erosion was estimated to average 1570 Mt yr-1 (1.3 ?? the O??bidos flux) and the amount transferred from channel transport to the bars (380 Mt yr-1) and the flood plain (460 Mt yr-1 in channelized flow; 1230 Mt yr-1 in diffuse overbank flow) totaled 2070 Mt yr-1 (1.7 ?? the O??bidos flux). Thus, deposition on the bars and flood plain exceeded bank erosion by 500 Mt yr-1 over a 10-16 yr period. Sampling and calculation of sediment loads in the channel indicate a net accumulation in the valley floor of approximately 200 Mt yr-1 over 16 yr, crudely validating the process-based calculations of the sediment budget, which in turn illuminate the physical controls on each exchange process. Another 300-400 Mt yr-1 are deposited in a delta plain downstream of O??bidos. The components of the sediment budget reflect hydrologie characteristics of the valley floor and geomorphic characteristics of the channel and flood plain, which in turn are influenced by tectonic features of the Amazon structural trough.

  9. Analysis of shallow-groundwater dynamic responses to water supply change in the Haihe River plain

    NASA Astrophysics Data System (ADS)

    Lin, Z.; Lin, W.; Pengfei, L.

    2015-05-01

    When the middle route of the South-to-North Water Diversion Project is completed, the water supply pattern of the Haihe River plain in North China will change significantly due to the replenishment of water sources and groundwater-exploitation control. The water-cycle-simulation model - MODCYCLE, has been used in simulating the groundwater dynamic balance for 2001-2010. Then different schemes of water supply in 2020 and 2030 were set up to quantitatively simulate the shallow-groundwater dynamic responses in the future. The results show that the total shallow-groundwater recharge is mainly raised by the increases in precipitation infiltration and surface-water irrigation infiltration. Meanwhile, the decrease of groundwater withdrawal contributes to reduce the total discharge. The recharge-discharge structure of local groundwater was still in a negative balance but improved gradually. The shallow-groundwater level in most parts was still falling before 2030, but more slowly. This study can benefit the rational exploitation of water resources in the Haihe River plain.

  10. The Snake River Plain Volcanic Province: Insights from Project Hotspot

    NASA Astrophysics Data System (ADS)

    Shervais, J. W.; Potter, K. E.; Hanan, B. B.; Jean, M. M.; Duncan, R. A.; Champion, D. E.; Vetter, S.; Glen, J. M. G.; Christiansen, E. H.; Miggins, D. P.; Nielson, D. L.

    2017-12-01

    The Snake River Plain (SRP) Volcanic Province is the best modern example of a time-transgressive hotspot track beneath continental crust. The SRP began 17 Ma with massive eruptions of Columbia River basalt and rhyolite. After 12 Ma volcanism progressed towards Yellowstone, with early rhyolite overlain by basalts that may exceed 2 km thick. The early rhyolites are anorogenic with dry phenocryst assemblages and eruption temperatures up to 950C. Tholeiitic basalts have major and trace element compositions similar to ocean island basalts (OIB). Project Hotspot cored three deep holes in the central and western Snake River Plain: Kimama (mostly basalt), Kimberly (mostly rhyolite), and Mountain Home (lake sediments and basaslt). The Kimberly core documents rhyolite ash flows up to 700 m thick, possibly filling a caldera or sag. Chemical stratigraphy in Kimama and other basalt cores document fractional crystallization in relatively shallow magma chambers with episodic magma recharge. Age-depth relations in the Kimama core suggest accumulation rates of roughly 305 m/Ma. Surface and subsurface basalt flows show systematic variations in Sr-Nd-Pb isotopes with distance from Yellowstone interpreted to reflect changes in the proportion of plume source and the underlying heterogeneous cratonic lithosphere, which varies in age, composition, and thickness from west to east. Sr-Nd-Pb isotopes suggest <5% lithospheric input into a system dominated by OIB-like plume-derived basalts. A major flare-up of basaltic volcanism occurred 75-780 ka throughout the entire SRP, from Yellowstone in the east to Boise in the west. The youngest western SRP basalts are transitional alkali basalts that range in age from circa 900 ka to 2 ka, with trace element and isotopic compositions similar to the plume component of Hawaiian basalts. These observations suggest that ancient SCLM was replaced by plume mantle after the North America passed over the hotspot in the western SRP, which triggered renewed

  11. Bromus tectorum expansion and biodiversity loss on the Snake River Plain, southern Idaho, USA

    Treesearch

    N. L. Shaw; V. A. Saab; S. B. Monsen; T. D. Rich

    1999-01-01

    The Snake River Plain forms a 6 million ha arc-shaped depression across southern Idaho. Basalt flows, fresh water sediments, loess and volcanic deposits cover its surface. Elevation increases eastward from 650 to 2,150 m altitude. Climate is semi-arid with annual precipitation ranging from 150 to 400 mm, arriving primarily in winter and spring. Native shrub steppe...

  12. A weighted higher-order network analysis of fine particulate matter (PM2.5) transport in Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Wang, Yufang; Wang, Haiyan; Zhang, Shuhua

    2018-04-01

    Specification of PM2.5 transmission characteristics is important for pollution control, policymaking and prediction. In this paper, we propose weights for motif instances, thereby to implement a weighted higher-order clustering algorithm for a weighted, directed PM2.5 network in the Yangtze River Delta (YRD) of China. The weighted, directed network we create in this paper includes information on meteorological conditions of wind speed and wind direction, plus data on geographic distance and PM2.5 concentrations. We aim to reveal PM2.5 mobility between cities in the YRD. Major potential PM2.5 contributors and closely interacted clusters are identified in the network of 178 air quality stations in the YRD. To our knowledge, it is the first work to incorporate weight information into the higher-order network analysis to study PM2.5 transport.

  13. Shifts in river-floodplain relationship reveal the impacts of river regulation: A case study of Dongting Lake in China

    NASA Astrophysics Data System (ADS)

    Lu, Cai; Jia, Yifei; Jing, Lei; Zeng, Qing; Lei, Jialin; Zhang, Shuanghu; Lei, Guangchun; Wen, Li

    2018-04-01

    Better understanding of the dynamics of hydrological connectivity between river and floodplain is essential for the ecological integrity of river systems. In this study, we proposed a regime-switch modelling (RSM) framework, which integrates change point analysis with dynamic linear regression, to detect and date change points in linear regression, and to quantify the relative importance of natural variations and anthropogenic disturbances. The approach was applied to the long-term hydrological time series to investigate the evolution of river-floodplain relation in Dongting Lake in the last five decades, during which the Yangtze River system experienced unprecedented anthropogenic manipulations. Our results suggested that 1) there were five distinct regimes during which the influence of inflows and local climate on lake water level changed significantly. The detected change points were well corresponding to the major events occurred upon the Yangtze; 2) although the importance of inflows from the Yangtze was greater than that of the tributaries flows over the five regimes, the relative contribution gradually decreased from regime 1 to regime 5. The weakening of hydrological forcing from the Yangtze was mainly attributed to the reduction in channel capacity resulting from sedimentation in the outfalls and water level dropping caused by river bed scour in the mainstream; 3) the effects of local climate was much smaller than these of inflows; and 4) since the operation of The Three Gorges Dam in 2006, the river-floodplain relationship entered a new equilibrium in that all investigated variables changed synchronously in terms of direction and magnitude. The results from this study reveal the mechanisms underlying the alternated inundation regime in Dongting Lake. The identified change points, some of which have not been previously reported, will allow a reappraisal of the current dam and reservoir operation strategies not only for flood/drought risk management but

  14. The geologic story of the Great Plains

    USGS Publications Warehouse

    Trimble, Donald E.

    1980-01-01

    For more than half a century after Lewis and Clark crossed the country in 1805-6, the Great Plains was the testing ground of frontier America here America grew to maturity (fig. 1). In 1805-7, explorer Zebulon Pike crossed the southcentral Great Plains, following the Arkansas River from near Great Bend, Kans., to the Rocky Mountains. In later years, Santa Fe traders, lured by the wealth of New Mexican trade, followed Pike's path as far as Bents Fort, Colo., where they turned southwestward away from the river route. Those pioneers who later crossed the plains on the Oregon Trail reached the Platte River near the place that would become Kearney, Nebr., by a nearly direct route from Independence, Mo., and followed the Platte across the central part of the Great Plains.

  15. Synchrotron X-ray microfluorescence measurement of metal distributions in Phragmites australis root system in the Yangtze River intertidal zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Huan; Zhang, Weiguo; Qian, Yu

    2016-06-15

    This study investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn inPhragmites australisroot system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X-ray microfluorescence, synchrotron transmission X-ray microscope measurement and synchrotron X-ray absorption near-edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils.Phragmites australissamples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in the root epidermis and thatmore » other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.« less

  16. Synchrotron X-ray microfluorescence measurement of metal distributions in Phragmites australis root system in the Yangtze River intertidal zone

    DOE PAGES

    Feng, Huan; Zhang, Weiguo; Qian, Yu; ...

    2016-06-15

    This paper investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn in Phragmites australis root system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X-ray microfluorescence, synchrotron transmission X-ray microscope measurement and synchrotron X-ray absorption near-edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils. Phragmites australis samples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in themore » root epidermis and that other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.« less

  17. Synchrotron X-ray microfluorescence measurement of metal distributions in Phragmites australis root system in the Yangtze River intertidal zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Huan; Zhang, Weiguo; Qian, Yu

    This paper investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn in Phragmites australis root system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X-ray microfluorescence, synchrotron transmission X-ray microscope measurement and synchrotron X-ray absorption near-edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils. Phragmites australis samples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in themore » root epidermis and that other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.« less

  18. Three Gorges Dam alters the Changjiang (Yangtze) river water cycle in the dry seasons: Evidence from H-O isotopes.

    PubMed

    Deng, Kai; Yang, Shouye; Lian, Ergang; Li, Chao; Yang, Chengfan; Wei, Hailun

    2016-08-15

    As the largest hydropower project in the world, the Three Gorges Dam (TGD) has attracted great concerns in terms of its impact on the Changjiang (Yangtze) River and coastal marine environments. In this study, we measured or collected the H-O isotopic data of river water, groundwater and precipitation in the mid-lower Changjiang catchment during the dry seasons of recent years. The aim was to investigate the changes of river water cycle in response to the impoundment of the TGD. Isotopic evidences suggested that the mid-lower Changjiang river water was ultimately derived from precipitation, but dominated by the mixing of different water masses with variable sources and isotopic signals as well. The isotopic parameter "deuterium excess" (d-excess) yielded large fluctuations along the mid-lower mainstream during the initial stage of the TGD impoundment, which was inherited from the upstream water with inhomogeneous isotopic signals. However, as the reservoir water level rising to the present stage, small variability of d-excess was observed along the mid-lower mainstream. This discrepancy could be explained that the TGD impoundment had significantly altered the water cycle downstream the dam, with the rising water level increasing the residence time and enhancing the mixing of reservoir water derived from upstream. This eventually resulted in the homogenization of reservoir water, and thus small fluctuations of d-excess downstream the dam after the quasi-normal stage (2008 to present). We infer that the retention effect of large reservoirs has greatly buffered the d-excess natural variability of water cycle in large river systems. Nevertheless, more research attention has to be paid to the damming effect on the water cycle in the river, estuarine and coastal areas, especially during the dry seasons. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Sediment records of Yellow River channel migration and Holocene environmental evolution of the Hetao Plain, northern China

    NASA Astrophysics Data System (ADS)

    Wang, Jingzhong; Wu, Jinglu; Pan, Baotian; Jia, Hongjuan; Li, Xiao; Wei, Hao

    2018-05-01

    The origin and evolution of lakes in the Hetao Plain, northern China, were influenced by climate variation, channel migration, and human activity. We analyzed a suite of sediment cores from the region to investigate Yellow River channel migration and environmental change in this region over the Holocene. Short sediment cores show that environmental indicators changed markedly around CE 1850, a time that corresponds to flood events, when large amounts of river water accumulated in the western part of the Hetao Plain, giving rise to abundant small lakes. Multiple sediment variables (environmental proxies) from two long cores collected in the Tushenze Paleolake area show that sediments deposited between 12.0 and 9.0 cal ka BP were yellow clay, indicative of fluvial deposition and channel migration. From 9.0 to 7.5 cal ka BP, sand was deposited, reflecting a desert environment. From 7.5 to 2.2 cal ka BP, however, the sediments were blue-gray clay that represents lacustrine facies of Lake Tushenze, which owes its origin to an increase in strength of the East Asian monsoon. At about 2.2 cal ka BP, the north branch of the Yellow River was flooded, and the Tushenze Paleolake developed further. Around 2.0 cal ka BP, the paleolake shrank and eolian sedimentation was recorded. The analyzed sediment records are consistent with the written history from the region, which documents channel migration and environmental changes in the Hetao Plain over the Holocene.

  20. Geomorphology and flood-plain vegetation of the Sprague and lower Sycan Rivers, Klamath Basin, Oregon

    USGS Publications Warehouse

    O'Connor, James E.; McDowell, Patricia F.; Lind, Pollyanna; Rasmussen, Christine G.; Keith, Mackenzie K.

    2015-01-01

    Despite these effects of human disturbances, many of the fundamental physical processes forming the Sprague River fluvial systems over the last several thousand years still function. In particular, flows are unregulated, sediment transport processes are active, and overbank flooding allows for floodplain deposition and erosion. Therefore, restoration of many of the native physical conditions and processes is possible without substantial physical manipulation of current conditions for much of the Sprague River study area. An exception is the South Fork Sprague River, where historical trends are not likely to reverse until it attains a more natural channel and flood-plain geometry and the channel aggrades to the extent that overbank flow becomes common.

  1. [Speciation and Risk Characteristics of Heavy Metals in the Sediments of the Yangtze Estuary].

    PubMed

    Yin, Su; Feng, Cheng-hong; Li, Yang-yang; Yin, Li-feng; Shen, Zhen-yao

    2016-03-15

    Based on the investigation on the distribution of total contents and speciation of 8 heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) in the surface sediments at 14 typical sites of the Yangtze Estuary during three hydrological seasons ( wet, normal, and dry seasons) , this study applied equilibrium partitioning approach to build the sediment quality guidelines (SQGs) of the Yangtze Estuary, and assessed ecological risks of the heavy metals. The relationship between ecological risk and speciation of heavy metals was also revealed. The results showed that, except for Cd, the residual fraction was the main speciation of heavy metals, especially for As, Cr and Hg, their residual fraction proportions were all over 90%. The sediment quality guidelines of the Yangtze Estuary for As, Cd, Cr, Cu, Hg, Ni, Pb, Zn were 43.29, 0.672, 79.65, 19.08, 0.569, 339.09, 30.87, 411.36 µg · g⁻¹, respectively. Cu had the highest ecological risk to aquatic organisms. The upstream of Yangtze Estuary was mainly affected by Yangtze River runoff, where the risks were relatively high in wet season and relatively low in normal and dry seasons. However, the downstream of the estuary was mainly affected by municipal sewage of cities like Shanghai, where the risks were relatively high, especially in normal and dry seasons. There were three different relationships between the ecological risks and speciation of the eight heavy metals.

  2. New evidence of Yangtze delta recession after closing of the Three Gorges Dam

    PubMed Central

    Luo, X. X.; Yang, S. L.; Wang, R. S.; Zhang, C. Y.; Li, P.

    2017-01-01

    Many deltas are likely undergoing net erosion because of rapid decreases in riverine sediment supply and rising global sea levels. However, detecting erosion in subaqueous deltas is usually difficult because of the lack of bathymetric data. In this study, by comparing bathymetric data between 1981 and 2012 and surficial sediment grain sizes from the Yangtze subaqueous delta front over the last three decades, we found severe erosion and significant sediment coarsening in recent years since the construction of Three Gorges Dam (TGD), the largest dam in the world. We attributed these morphological and sedimentary variations mainly to the human-induced drastic decline of river sediment discharge. Combined with previous studies based on bathymetric data from different areas of the same delta, we theorize that the Yangtze subaqueous delta is experiencing overall (net) erosion, although local accumulation was also noted. We expect that the Yangtze sediment discharge will further decrease in the near future because of construction of new dams and delta recession will continue to occur. PMID:28145520

  3. Modern Environmental Changes on Amapa Coastal Plain under Amazon River Influence

    NASA Astrophysics Data System (ADS)

    Santos, V. F.; Figueiredo, A. G.; Silveira, O. M.; Polidori, L.

    2007-05-01

    The Amazonian coastal environment is very dynamic compared to other coasts. It is situated at the edge of the Earth's largest forest, and is segmented by fluvial systems, with the biggest being the Amazon River. The rivers are particularly influenced by the Intertropical Convergence Zone (ITCZ), which controls the water and particle discharge, and the flooding regime. Moderate and strong El Nino conditions correlate with low-precipitation periods, and La Nina events cause precipitation to increase. These variables and others related to the Amazon dispersal system create an interesting area for the study of global and regional environmental changes. The Araguari River floodplain on the Amapa coast is influenced by natural processes of global scale such as ENSO events and ITCZ, and by local processes such as Amazon River discharge, tides and tidal bore (pororoca). Anthropogenic processes such as extensive water-buffalo farming also promote environmental changes. Time- series analyses of remote sensing images and suspended sediment have shown that the maximum turbidity zone inside Araguari River is related to the pororoca phenomenon. The pororoca remobilizes sediment from the river bottom and margins, developing sediment suspension >15 g/l as it passes - creating fluid muds. The pororoca also introduces Amazon- and shelf-derived sediment into the Araguari estuary. Measurements during eight spring-tide cycles indicate erosion of 3 cm of consolidated mud and deposition of 1 cm. The pororoca also influences the remobilization and cycling of nutrients and consequently affects the distribution of benthic organisms, including benthonic foraminifera and thecamoebians. For more than a century, the coastal plain has had water-buffalo farming (>42,000 animals today), which modifies the drainage system and affects sedimentary processes. Areas with more buffalo trails have higher suspended-sediment concentration (SSC) during the dry season and lower SSC during the rainy season

  4. 75 FR 26094 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... establishing a temporary safety zone from Brandon Road Lock and Dam to Lake Michigan. This temporary safety...

  5. A multidisciplinary, integrated approach for the elimination of schistosomiasis: a longitudinal study in a historically hyper-endemic region in the lower reaches of the Yangtze River, China from 2005 to 2014.

    PubMed

    Sun, Le-Ping; Wang, Wei; Zuo, Yin-Ping; Hong, Qing-Biao; Du, Guang-Lin; Ma, Yu-Cai; Wang, Jian; Yang, Guo-Jing; Zhu, Dao-Jian; Liang, You-Sheng

    2017-03-14

    Although great success has been achieved, schistosomiasis remains a major public health concern in China, and the remaining core endemic regions are concentrated along the middle and lower reaches of the Yangtze River. In this longitudinal study, we evaluated the effectiveness of a multidisciplinary, integrated approach for schistosomiasis elimination in a historically hyper-endemic region in the lower reaches of the Yangtze River, China over the 10-year period from 2005 through 2014. A three-step roadmap for schistosomiasis elimination was designed in the study site, and multidisciplinary, integrated interventions were implemented by the health, agriculture, water resources development, land and resources, and forestry sectors from 2005 to 2014, including chemotherapy for infected individuals, health education, management of the source of Schistosoma japonicum infection, and intermediate host snail control. The annual number of schistosomiasis patients, S. japonicum infection in humans, bovines and Oncomelania hupensis snails, and water infectivity were observed to assess the effectiveness of the multidisciplinary, integrated approach for the elimination of schistosomiasis. There was a tendency towards a gradual decline in both the number of schistosomiasis cases and the prevalence of S. japonicum human infection across the study period from 2005 through 2014. No S. japonicum human infection was detected since 2012, and no acute infection was seen since 2006. During the study period, no infection was found in bovines, and a 0.03% overall infection rate was observed in O. hupensis snails. Since 2009, no infected snails were identified, and the area of both snail habitats and infected snail habitats appeared a reduction over the study period. Following the 3-year multidisciplinary, integrated control, infection control was achieved, and transmission control was achieved after 6-year implementation, with all infected snails and water infectivity eliminated; in

  6. Antibiotics in the agricultural soils from the Yangtze River Delta, China.

    PubMed

    Sun, Jianteng; Zeng, Qingtao; Tsang, Daniel C W; Zhu, L Z; Li, X D

    2017-12-01

    This study focused on the occurrence and spatial distribution of 13 common antibiotics in the agricultural soils of the Yangtze River Delta (YRD), China. Antibiotics were detected in all the 241 soil samples (i.e., 100% detection rate) with the total concentrations ranging from 4.55 to 2,010 ng/g dry weight. The concentrations of three antibiotic classes decreased in the order: quinolones (mean 48.8 ng/g) > tetracyclines (mean 34.9 ng/g) > sulfonamides (mean 2.35 ng/g). Ciprofloxacin was the prevalent compound with a mean concentration of 27.7 ng/g, followed by oxytetracycline (mean of 18.9 ng/g). A distinct spatial distribution was observed, where high concentrations of antibiotics were detected in the sites adjacent to the livestock and poultry farms. The potential sources of antibiotics in the agricultural soils were the application of manure and wastewater irrigation in this region. Risk assessment for single antibiotic compound indicated that tetracyclines and quinolones could pose a potential risk, in which doxycycline and ciprofloxacin had the most severe ecological effect in the agricultural soils. Antibiotic resistance genes (ARGs), such as tetA, sulI, and qnrS, were detected in 15 analyzed soil samples, and sulI showed significant correlations with quinolones, tetracyclines, copper, and zinc. Further studies on the distribution of other ARGs in agricultural soil at a region-scale are needed for the risk management of extensively used antibiotics and major ARGs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Hydrology, vegetation, and soils of four north Florida River flood plains with an evaluation of state and federal wetland determinations

    USGS Publications Warehouse

    Light, H.M.; Darst, M.R.; MacLaughlin, M.T.; Sprecher, S.W.

    1993-01-01

    A study of hydrologic conditions, vegetation, and soils was made in wetland forests of four north Florida streams from 1987 to 1990. The study was conducted by the U.S. Geological Survey in cooperation with the Florida Department of Environmental Regulation to support State and Federal efforts to improve wetland delineation methodology in flood plains. Plant communities and soils were described and related to topographic position and long-term hydrologic conditions at 10 study plots located on 4 streams. Detailed appendixes give average duration, frequency, and depth of flooding; canopy, subcanopy, and ground-cover vegetation; and taxonomic classification, series, and profile descriptions of soils for each plot. Topographic relief, range in stage, and depth of flooding were greatest on the alluvial flood plain of the Ochlockonee River, the largest of the four streams. Soils were silty in the lower elevations of the flood plain, and tree communities were distinctly different in each topographic zone. The Aucilla River flood plain was dominated by levees and terraces with very few depressions or low backwater areas. Oaks dominated the canopy of both lower and upper terraces of the Aucilla flood plain. Telogia Creek is a blackwater stream that is a major tributary of the Ochlockonee River. Its low, wet flood plain was dominated by Wyssa ogeche (Ogeechee tupelo) trees, had soils with mucky horizons, and was inundated by frequent floods of very short duration. The St. Marks River, a spring-fed stream with high base flow, had the least topographic relief and lowest range in stage of the four streams. St. Marks soils had a higher clay content than the other streams, and limestone bedrock was relatively close to the surface. Wetland determinations of the study plots based on State and Federal regulatory criteria were evaluated. Most State and Federal wetland determinations are based primarily on vegetation and soil characteristics because hydrologic records are usually not

  8. Flood-plain and channel aggradation of selected bridge sites in the Iowa and Skunk River basins, Iowa

    USGS Publications Warehouse

    Eash, D.A.

    1996-01-01

    Flood-plain and channel-aggradation rates were estimated at 10 bridge sites on the Iowa River upstream of Coralville Lake and at two bridge sites in the central part of the Skunk River Basin. Four measurement methods were used to quantify aggradation rates: (1) a dendrogeomorphic method that used tree-age data and sediment-deposition depths, (2) a bridge-opening cross-section method that compared historic and recent cross sections of bridge openings, (3) a stage-discharge rating-curve method that compared historic and recent stages for the 5-year flood discharge and the average discharge, and (4) nine sediment pads that were installed on the Iowa River flood plain at three bridge sites in the vicinity of Marshalltown. The sediment pads were installed prior to overbank flooding in 1993. Sediments deposited on the pads as a result of the 1993 flood ranged in depth from 0.004 to 2.95 feet. Measurement periods used to estimate average aggradation rates ranged from 1 to 98 years and varied among methods and sites. The highest aggradation rates calculated for the Iowa River Basin using the dendrogeomorphic and rating- curve measurement methods were for the State Highway 14 crossing at Marshalltown, where these highest rates were 0.045 and 0.124 feet per year, respectively. The highest aggradation rates calculated for the Skunk River Basin were for the U.S. Highway 63 crossing of the South Skunk River near Oskaloosa, where these highest rates were 0.051 and 0.298 feet per year, respectively.

  9. Innovative trend analysis of annual and seasonal air temperature and rainfall in the Yangtze River Basin, China during 1960-2015

    NASA Astrophysics Data System (ADS)

    Cui, Lifang; Wang, Lunche; Lai, Zhongping; Tian, Qing; Liu, Wen; Li, Jun

    2017-11-01

    The variation characteristics of air temperature and precipitation in the Yangtze River Basin (YRB), China during 1960-2015 were analysed using a linear regression (LR) analysis, a Mann-Kendall (MK) test with Sen's slope estimator and Sen's innovative trend analysis (ITA). The results showed that the annual maximum, minimum and mean temperature significantly increased at the rate of 0.15°C/10yr, 0.23°C/10yr and 0.19°C/10yr, respectively, over the whole study area during 1960-2015. The warming magnitudes for the above variables during 1980-2015 were much higher than those during 1960-2015:0.38°C/10yr, 0.35°C/10yr and 0.36°C/10yr, respectively. The seasonal maximum, minimum and mean temperature significantly increased in the spring, autumn and winter seasons during 1960-2015. Although the summer temperatures also increased at some extent, only the minimum temperature showed a significant increasing trend. Meanwhile, the highest rate of increase of seasonal mean temperature occurred in winter (0.24°C/10yr) during 1960-2015 and spring (0.50°C/10yr) during 1980-2015, which indicated that the significant warming trend for the whole YRB could be attributed to the remarkable temperature increases in winter and spring months. However, both the annual and seasonal warming magnitudes showed large regional differences, and a higher warming rate was detected in the eastern YRB and the western source region of the Yangtze River on the Qinghai-Tibetan Plateau (QTP). Additionally, annual precipitation increased by approximately 12.02 mm/10yr during 1960-2015 but decreased at the rate of 19.63 mm/10yr during 1980-2015. There were decreasing trends for precipitation in all four seasons since 1980 in the YRB, and a significant increasing trend was only detected in summer since 1960 (12.37 mm/10yr). Overall, a warming-wetting trend was detected in the south-eastern and north-western YRB, while there was a warming-drying trend in middle regions.

  10. Influence of riparian and watershed alterations on sandbars in a Great Plains river

    USGS Publications Warehouse

    Fischer, Jeffrey M.; Paukert, Craig P.; Daniels, M.L.

    2014-01-01

    Anthropogenic alterations have caused sandbar habitats in rivers and the biota dependent on them to decline. Restoring large river sandbars may be needed as these habitats are important components of river ecosystems and provide essential habitat to terrestrial and aquatic organisms. We quantified factors within the riparian zone of the Kansas River, USA, and within its tributaries that influenced sandbar size and density using aerial photographs and land use/land cover (LULC) data. We developed, a priori, 16 linear regression models focused on LULC at the local, adjacent upstream river bend, and the segment (18–44 km upstream) scales and used an information theoretic approach to determine what alterations best predicted the size and density of sandbars. Variation in sandbar density was best explained by the LULC within contributing tributaries at the segment scale, which indicated reduced sandbar density with increased forest cover within tributary watersheds. Similarly, LULC within contributing tributary watersheds at the segment scale best explained variation in sandbar size. These models indicated that sandbar size increased with agriculture and forest and decreased with urban cover within tributary watersheds. Our findings suggest that sediment supply and delivery from upstream tributary watersheds may be influential on sandbars within the Kansas River and that preserving natural grassland and reducing woody encroachment within tributary watersheds in Great Plains rivers may help improve sediment delivery to help restore natural river function.

  11. Morphological adjustments in a meandering reach of the middle Yangtze River caused by severe human activities

    NASA Astrophysics Data System (ADS)

    Zhou, Meirong; Xia, Junqiang; Lu, Jinyou; Deng, Shanshan; Lin, Fenfen

    2017-05-01

    In the past 50 years, the Shishou reach in the middle Yangtze River underwent significant channel evolution owing to the implementation of an artificial cutoff, the construction of bank revetment works and the operation of the Three Gorges Project (TGP). Based on the measured hydrological data and topographic data, the processes of channel evolution in this reach were investigated mainly from the adjustments in planform and cross-sectional geometries. The variation in planform geometry obtained in this study indicates that (i) the artificial cutoff at Zhongzhouzi caused the river regime to adjust drastically, with the mean rate of thalweg migration at reach scale of 42.0 m/a over the period 1966-1975; (ii) then the effect of this artificial cutoff reduced gradually, with the mean migration rate decreasing to < 30 m/a in 1975-1993, while it increased to > 40 m/a owing to the occurrence of high water levels in 1993-1998; and (iii) the average annual rate of thalweg migration decreased to 29.3 m/a because of the impacts of various bank protection engineering and the TGP operation during the period 2002-2015. However, remarkable thalweg migration processes still occurred in local regions after the TGP operation, which resulted in significant bankline migration in local reaches of Beimenkou, Shijiatai, and Tiaoxiankou. In addition, the adjustments of bankfull channel geometry were investigated at section and reach scales after the TGP operation. Calculated results show that lateral channel migration in this reach was restricted by various river regulation works and that channel evolution was mainly characterized by an increase in bankfull depth and cross-sectional area. Empirical relationships were developed between the reach-scale bankfull dimensions (depth and area), the bankfull widths at specified sections, and the previous 5-year average fluvial erosion intensity during flood seasons, with high correlation degrees between them being obtained.

  12. Morphodynamic Evolution of Yangtze (Changjiang) Estuary in Decadal-timescale: Alteration from Natural Processes to Human Interferences

    NASA Astrophysics Data System (ADS)

    Luan, H.; Ding, P.; Ge, J.; Zong, H.; Zheng Bing, W.

    2016-02-01

    Morphodynamic development of river deltas has attracted intensive attention in the past several decades due to ecological and economic significance. Present study quantified the morphological evolution processes of the Yangtze Estuary in decadal-timescale (1958-2010) aiming at understanding the effects of natural processes (river inputs) on the estuary and its morphological responses to human interferences. Inner Estuary (IE) and Mouth Bar Area (MBA) underwent substantially different changes in the study period. The net accretion rate of IE was 36.2 mm/yr in 1958-1978 and -70.9 mm/yr in 1986-1997, indicating that the IE altered from deposition to erosion along with the decline of river sediment input. By contrast, the MBA showed sustained accretion throughout the study period. The results suggested that the IE is more sensitive to the river sediment reduction than the MBA. The river flood may induce erosion in IE which can explain the erosion peak in 1986-1997 since there are continuous flood years in 1990s. The majority of erosion within IE in 1986-1997 occurred in South Branch. The depocenter within MBA transferred between the North Channel and the South Passage. Specifically, the depocenter was in the South Passage during 1958-1978, in the North Channel during 1978-1986, and back to the South Passage during 1986-1997. This is thought to be caused by the change in sediment diversion between the South and North Channel, except 1986-1997. Highest accretion rate (48.9mm/yr) in 1997-2010 is found within the North Passage if excluding the effects of navigation channel dredging. Previous research has quantified the morphological changes along the North Passage and attributed high deposition to the construction of dikes and perpendicular groins. The fluvial-marine transition in terms of prevailing forcing and sediment property is the natural characteristics of river deltas and play an essential role on morphological development of Yangtze Estuary. Present evidence shows

  13. Identification and apportionment of hazardous elements in the sediments in the Yangtze River estuary.

    PubMed

    Wang, Jiawei; Liu, Ruimin; Wang, Haotian; Yu, Wenwen; Xu, Fei; Shen, Zhenyao

    2015-12-01

    In this study, positive matrix factorization (PMF) and principal components analysis (PCA) were combined to identify and apportion pollution-based sources of hazardous elements in the surface sediments in the Yangtze River estuary (YRE). Source identification analysis indicated that PC1, including Al, Fe, Mn, Cr, Ni, As, Cu, and Zn, can be defined as a sewage component; PC2, including Pb and Sb, can be considered as an atmospheric deposition component; and PC3, containing Cd and Hg, can be considered as an agricultural nonpoint component. To better identify the sources and quantitatively apportion the concentrations to their sources, eight sources were identified with PMF: agricultural/industrial sewage mixed (18.6 %), mining wastewater (15.9 %), agricultural fertilizer (14.5 %), atmospheric deposition (12.8 %), agricultural nonpoint (10.6 %), industrial wastewater (9.8 %), marine activity (9.0 %), and nickel plating industry (8.8 %). Overall, the hazardous element content seems to be more connected to anthropogenic activity instead of natural sources. The PCA results laid the foundation for the PMF analysis by providing a general classification of sources. PMF resolves more factors with a higher explained variance than PCA; PMF provided both the internal analysis and the quantitative analysis. The combination of the two methods can provide more reasonable and reliable results.

  14. Approximation and spatial regionalization of rainfall erosivity based on sparse data in a mountainous catchment of the Yangtze River in Central China.

    PubMed

    Schönbrodt-Stitt, Sarah; Bosch, Anna; Behrens, Thorsten; Hartmann, Heike; Shi, Xuezheng; Scholten, Thomas

    2013-10-01

    In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water pollution and eutrophication by excessive input of nitrogen and phosphorous from nonpoint sources is mostly linked to soil erosion from agricultural land. In order to prevent such water pollution by diffuse matter fluxes, knowledge about the extent of soil loss and the spatial distribution of hot spots of soil erosion is essential. In remote areas such as the mountainous regions of the upper and middle reaches of the Yangtze River, rainfall data are scarce. Since rainfall erosivity is one of the key factors in soil erosion modeling, e.g., expressed as R factor in the Revised Universal Soil Loss Equation model, a methodology is needed to spatially determine rainfall erosivity. Our study aims at the approximation and spatial regionalization of rainfall erosivity from sparse data in the large (3,200 km(2)) and strongly mountainous catchment of the Xiangxi River, a first order tributary to the Yangtze River close to the Three Gorges Dam. As data on rainfall were only obtainable in daily records for one climate station in the central part of the catchment and five stations in its surrounding area, we approximated rainfall erosivity as R factors using regression analysis combined with elevation bands derived from a digital elevation model. The mean annual R factor (R a) amounts for approximately 5,222 MJ mm ha(-1) h(-1) a(-1). With increasing altitudes, R a rises up to maximum 7,547 MJ mm ha(-1) h(-1) a(-1) at an altitude of 3,078 m a.s.l. At the outlet of the Xiangxi catchment erosivity is at minimum with approximate R a=1,986 MJ mm ha(-1) h(-1) a(-1). The comparison of our results with R factors from high-resolution measurements at comparable study sites close to the Xiangxi catchment shows good consistance and allows us to calculate grid-based R a as input for a spatially high-resolution and area-specific assessment of

  15. Dujiangyan: Could the ancient hydraulic engineering be a sustainable solution for Mississippi River diversions?

    NASA Astrophysics Data System (ADS)

    Xu, Y. J.

    2016-02-01

    Dujiangyan, also known as the Dujiangyan Project, is a hydraulic engineering complex built more than 2260 years ago on the Mingjiang River near Chengdu in China's Sichuan Province. The complex splits the river into two channels, a so-called "inner river" (Leijiang) and an "outer river" (Waijiang) that carry variable water volumes and sediment loads under different river flow conditions. The inner river and its numerous distributary canals are primarily man-made for irrigation over the past 2000 years, while the outer river is the natural channel and flows southward before entering into the Yangtze River. Under normal flow, 60% of the Mingjiang River goes into the inner river for irrigating nearly 1 million hectares of agricultural land on the Chengdu plain. During floods, however, less than 40% of the Mingjiang River flows into the inner river. Under both flow conditions, about 80% of the riverine sediments is carried by the outer river and continues downstream. This hydrology is achieved through a weir work complex that comprises three major components: a V-shaped bypass dike in the center of the Mingjiang River (the Yuzui Bypass Dike, see photo below), a sediment diversion canal in the inner river below the bypass dike (the Feishayan Floodgate), and a flow control in the inner river below the sediment diversion canal (the Baopingkou Diversion Passage). Together with ancillary embankments, these structures have not only ensured a regular supply of silt-reduced water to the fertile Chengdu plain, but have provided great benefits in flood control, sediment transport, and water resources regulation over the past two thousand years. The design of this ancient hydraulic complex ingeniously conforms to the natural environment while incorporating many sophisticated techniques, reflecting the concept that humankind is an integral part of nature. As we are urgently seeking solutions today to save the sinking Mississippi River Delta, examination of the ancient engineering

  16. Kinematics of the Snake River Plain and Centennial Shear Zone, Idaho, from GPS and earthquatte data

    NASA Astrophysics Data System (ADS)

    Payne, Suzette J.

    occurring in the Snake River Plain. Alternatively, the preferred model reveals a low deforming region (-0.1 +/- 0.4 x 10-9 yr -1, which is not discernable from zero) covering 125 km x 650 km within the Snake River Plain and Owyhee-Oregon Plateau that is separated from the actively extending adjacent Basin and Range regions by narrow belts of localized shear. Velocities reveal rapid extension occurs to the north of the Snake River Plain in the Centennial Tectonic Belt (5.6 +/- 0.7 x 10 -9 yr-1) and to the south in the Intermountain Seismic Belt and Great Basin (3.5 +/- 0.2 x 10-9 yr-1). The "Centennial Shear Zone" is a NE-trending zone of up to 1.5 mm yr -1 of right-lateral shear and is the result of rapid extension in the Centennial Tectonic Belt adjacent to the low deforming region of the Snake River Plain. Variations of the preferred model that test the hypothesis of bookshelf faulting demonstrate shear does not drive Basin and Range extension in the Centennial Tectonic Belt. Instead, the velocity gradient across the Centennial Shear Zone indicates that shear is distributed and deformation is due to strike-slip faulting, distributed simple shear, regional-scale rotation, or any combination of these. Near the fastest rates of right-lateral slip, focal mechanisms are observed with strike-slip components of motion consistent with right-lateral shear. Here also, the segment boundary between two E-trending Basin and Range faults, which are oriented subparallel to the NE-trending shear zone, provides supporting Holocene to mid-Pleistocene geologic evidence for accommodation of right-lateral shear in the Centennial Shear Zone. The southernmost ends of NW-trending Basin and Range faults in the Centennial Tectonic Belt at their juncture with the eastern Snake River Plain could accommodate right-lateral shear through components of left-lateral oblique slip. Right-lateral shear may be accommodated by components of strike-slip motion on multiple NE-trending faults since geologic

  17. Effects of proposed highway embankment modifications on water-surface elevations in the lower Pearl River flood plain near Slidell, Louisiana

    USGS Publications Warehouse

    Gilbert, J.J.; Schuck-Kolben, R. E.

    1987-01-01

    Major flooding in the lower Pearl River basin in recent years has caused extensive damage to homes and highways in the area. In 1980 and 1983, Interstate Highway 10 and U.S. Highway 190 were overtopped. In 1983, the Interstate Highway 10 crossing was seriously damaged by the flood. The U.S. Geological Survey, in cooperation with the Louisiana Department of Transportation and Development, Office of Highways, used a two-dimensional finite-element surface-water flow model to evaluate the effects the proposed embankment modifications at Interstate Highway 10 and U.S. Highway 90 on the water-surface elevations in the lower Pearl River flood plain near Slidell, Louisiana. The proposed modifications that were considered for the 1983 flood are: (1) Removal of all highway embankments, the natural condition, (2) extension of the West Pearl River bridge by 1,000 feet at U.S. Highway 90, (3) construction of a new 250-foot bridge opening in the U.S. Highways 190 and 90, west of the intersection of the highways. The proposed highway bridge modifications also incorporated lowering of ground-surface elevations under the new bridges to sea level. The modification that provided the largest reduction in backwater, about 35 percent, was a new bridge in Interstate Highway 10. The modification of the West Pearl River bridge at U.S. Highway 90 and replacement of the bridge in U.S. Highway 190 provide about a 25% reduction in backwater each. For the other modification conditions that required structural modifications, maximum backwater computed on the west side of the flood plain ranges from 0.0 to 0.8 foot and on the east side from 0.0 to 0.6 foot. Results show that although backwater is greater on the west side of the flood plain than on the east side, upstream of highway embankments, backwater decreases more rapidly in the upstream direction on the west side of the flood plain than on the east side. Analysis of the proposed modifications indicates that backwater would still occur on

  18. Reevalution of background iodine-129 concentrations in water from the Snake River Plain Aquifer, Idaho, 2003

    USGS Publications Warehouse

    Cecil, L. DeWayne; Hall, L. Flint; Green, Jaromy R.

    2003-01-01

    Background concentrations of iodine-129 (129I, half-life = 15.7 million years) resulting from natural production in the earth?s atmosphere, in situ production in the earth by spontaneous fission of uranium-238(238U), and fallout from nuclear weapons tests conducted in the 1950s and 1960s were reevaluated on the basis of 52 analyses of ground- and surface-water samples collected from the eastern Snake River Plain in southeastern Idaho. The background concentration estimated using the results of a subset of 30 ground-water samples analyzed in this reevaluation is 5.4 attocuries per liter (aCi/L; 1 aCi = 10-18 curies) and the 95-percent nonparametric confidence interval is 5.2 to 10.0 aCi/L. In a previous study, a background 129I concentration was estimated on the basis of analyses of water samples from 16 sites on or tributary to the eastern Snake River Plain. At the 99-percent confidence level, background concentrations of 129I in that study were less than or equal to 8.2 aCi/L. During 1993?94, 34 water samples from 32 additional sites were analyzed for 129I to better establish the background concentrations in surface and ground water from the eastern Snake River Plain that is presumed to be unaffected by wastedisposal practices at the Idaho National Engineering and Environmental Laboratory (INEEL). Surface water contained larger 129I concentrations than water from springs and wells contained. Because surface water is more likely to be affected by anthropogenic fallout and evapotranspiration, background 129I concentrations were estimated in the current research using the laboratory results of ground-water samples that were assumed to be unaffected by INEEL disposal practices.

  19. Potential utility of tree ring δ18O series for reconstructing precipitation records from the lower reaches of the Yangtze River, southeast China

    NASA Astrophysics Data System (ADS)

    Xu, Chenxi; Ge, Junyi; Nakatsuka, Takeshi; Yi, Liang; Zheng, Huaizhou; Sano, Masaki

    2016-04-01

    In this study, we investigated the interannual and intraannual variabilities in the oxygen isotope composition (δ18O) preserved in the tree ring cellulose of Pinus taiwanensis in the lower reaches of the Yangtze River, southeast China, to explore its potential utility for precipitation reconstruction over the period of 1855-2013. Intraannual variations of tree ring cellulose δ18O show distinct annual cycles that are characterized by δ18O maxima in the early growth near the ring boundary and δ18O minima in the middle and late portions of the ring. Seasonal patterns of tree ring δ18O were influenced by August-October typhoons. The tree ring cellulose δ18O was measured in both young and old trees to test for the juvenile effect. The results revealed no significant differences in the mean values and long-term trends in δ18O in the old and young trees. A response analysis indicated that tree ring δ18O correlated significantly with precipitation and relative humidity between May and October, and the δ18O chronology accounted for 37.4% of the actual variation in the May-October precipitation between 1951 and 2013. The extremely dry and wet years revealed by the tree ring δ18O-based reconstructed precipitation also corresponded to actual local drought and flood events from the documentary records. Reconstructed precipitation showed significant relationship with central tropical Pacific sea surface temperature, which indicated that El Niño-Southern Oscillation (ENSO) exerted influences on May-October precipitation in the lower reaches of the Yangtze River. In addition, the relationship between ENSO and precipitation weakened between 1920 and 1940, and low variance of ENSO from 1920 to 1940 may result in the damped ENSO's influences on precipitation in southeast China.

  20. Inorganic aerosols responses to emission changes in Yangtze River Delta, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xinyi; Li, Juan; Fu, Joshua S.

    2014-05-15

    China announced the Chinese National Ambient Air Quality standards (CH-NAAQS) on Feb. 29th, 2012, and PM2.5 is for the very first time included in the standards as a criteria pollutant. In order to probe into PM2.5 pollution over Yangtze River Delta, which is one of the major urban clusters hosting more than 80 million people in China, the integrated MM5/CMAQ modeling system is applied for a full year simulation to examine the PM2.5 concentration and seasonality, and also the inorganic aerosols responses to precursor emission changes. Both simulation and observation demonstrated that, inorganic aerosols have substantial contributions to PM2.5 overmore » YRD, ranging from 37.1% in November to 52.8% in May. Nocturnal production of nitrate (NO3-) through heterogeneous hydrolysis of N2O5 was found significantly contribute to high NO3-concentration throughout the year. We also found that in winter NO3- was even increased under nitrogen oxides (NOx) emission reduction due to higher production of N2O5 from the excessive ozone (O3) introduced by attenuated titration, which further lead to increase of ammonium (NH4+) and sulfate (SO42-), while other seasons showed decrease response of NO3-. Sensitivity responses of NO3- under anthropogenic VOC emission reduction was examined and demonstrated that in urban areas over YRD, NO3- formation was actually VOC sensitive due to the O3-involved nighttime chemistry of N2O5, while a reduction of NOx emission may have counter-intuitive effect by increasing concentrations of inorganic aerosols.« less

  1. Long-term accumulation and transport of anthropogenic phosphorus in three river basins

    NASA Astrophysics Data System (ADS)

    Powers, Stephen M.; Bruulsema, Thomas W.; Burt, Tim P.; Chan, Neng Iong; Elser, James J.; Haygarth, Philip M.; Howden, Nicholas J. K.; Jarvie, Helen P.; Lyu, Yang; Peterson, Heidi M.; Sharpley, Andrew N.; Shen, Jianbo; Worrall, Fred; Zhang, Fusuo

    2016-05-01

    Global food production depends on phosphorus. Phosphorus is broadly applied as fertilizer, but excess phosphorus contributes to eutrophication of surface water bodies and coastal ecosystems. Here we present an analysis of phosphorus fluxes in three large river basins, including published data on fertilizer, harvested crops, sewage, food waste and river fluxes. Our analyses reveal that the magnitude of phosphorus accumulation has varied greatly over the past 30-70 years in mixed agricultural-urban landscapes of the Thames Basin, UK, the Yangtze Basin, China, and the rural Maumee Basin, USA. Fluxes of phosphorus in fertilizer, harvested crops, food waste and sewage dominate over the river fluxes. Since the late 1990s, net exports from the Thames and Maumee Basins have exceeded inputs, suggesting net mobilization of the phosphorus pool accumulated in earlier decades. In contrast, the Yangtze Basin has consistently accumulated phosphorus since 1980. Infrastructure modifications such as sewage treatment and dams may explain more recent declines in total phosphorus fluxes from the Thames and Yangtze Rivers. We conclude that human-dominated river basins may undergo a prolonged but finite accumulation phase when phosphorus inputs exceed agricultural demand, and this accumulated phosphorus may continue to mobilize long after inputs decline.

  2. Response surfaces of vulnerability to climate change: The Colorado River Basin, the High Plains, and California

    Treesearch

    Romano Foti; Jorge A. Ramirez; Thomas C. Brown

    2014-01-01

    We quantify the vulnerability of water supply to shortage for the Colorado River Basin and basins of the High Plains and California and assess the sensitivity of their water supply system to future changes in the statistical variability of supply and demand. We do so for current conditions and future socio-economic scenarios within a probabilistic framework that...

  3. Chemical weathering outputs from the flood plain of the Ganga

    NASA Astrophysics Data System (ADS)

    Bickle, Michael J.; Chapman, Hazel J.; Tipper, Edward; Galy, Albert; De La Rocha, Christina L.; Ahmad, Talat

    2018-03-01

    Transport of sediment across riverine flood plains contributes a significant but poorly constrained fraction of the total chemical weathering fluxes from rapidly eroding mountain belts which has important implications for chemical fluxes to the oceans and the impact of orogens on long term climate. We report water and bedload chemical analyses from the Ganges flood-plain, a major transit reservoir of sediment from the Himalayan orogen. Our data comprise six major southern tributaries to the Ganga, 31 additional analyses of major rivers from the Himalayan front in Nepal, 79 samples of the Ganga collected close to the mouth below the Farakka barrage every two weeks over three years and 67 water and 8 bedload samples from tributaries confined to the Ganga flood plain. The flood plain tributaries are characterised by a shallow δ18O - δD array, compared to the meteoric water line, with a low δDexcess from evaporative loss from the flood plain which is mirrored in the higher δDexcess of the mountain rivers in Nepal. The stable-isotope data confirms that the waters in the flood plain tributaries are dominantly derived from flood plain rainfall and not by redistribution of waters from the mountains. The flood plain tributaries are chemically distinct from the major Himalayan rivers. They can be divided into two groups. Tributaries from a small area around the Kosi river have 87Sr/86Sr ratios >0.75 and molar Na/Ca ratios as high as 6. Tributaries from the rest of the flood plain have 87Sr/86Sr ratios ≤0.74 and most have Na/Ca ratios <1. One sample of the Gomti river and seven small adjacent tributaries have elevated Na concentrations likely caused by dissolution of Na carbonate salts. The compositions of the carbonate and silicate components of the sediments were determined from sequential leaches of floodplain bedloads and these were used to partition the dissolved cation load between silicate and carbonate sources. The 87Sr/86Sr and Sr/Ca ratios of the carbonate

  4. Factors favorable to frequent extreme precipitation in the upper Yangtze River Valley

    NASA Astrophysics Data System (ADS)

    Tian, Baoqiang; Fan, Ke

    2013-08-01

    Extreme precipitation events in the upper Yangtze River Valley (YRV) have recently become an increasingly important focus in China because they often cause droughts and floods. Unfortunately, little is known about the climate processes responsible for these events. This paper investigates factors favorable to frequent extreme precipitation events in the upper YRV. Our results reveal that a weakened South China Sea summer monsoon trough, intensified Eurasian-Pacific blocking highs, an intensified South Asian High, a southward subtropical westerly jet and an intensified Western North Pacific Subtropical High (WNPSH) increase atmospheric instability and enhance the convergence of moisture over the upper YRV, which result in more extreme precipitation events. The snow depth over the eastern Tibetan Plateau (TP) in winter and sea surface temperature anomalies (SSTAs) over three key regions in summer are important external forcing factors in the atmospheric circulation anomalies. Deep snow on the Tibetan Plateau in winter can weaken the subsequent East Asian summer monsoon circulation above by increasing the soil moisture content in summer and weakening the land-sea thermal contrast over East Asia. The positive SSTA in the western North Pacific may affect southwestward extension of the WNPSH and the blocking high over northeastern Asia by arousing the East Asian-Pacific pattern. The positive SSTA in the North Atlantic can affect extreme precipitation event frequency in the upper YRV via a wave train pattern along the westerly jet between the North Atlantic and East Asia. A tripolar pattern from west to east over the Indian Ocean can strengthen moisture transport by enhancing Somali cross-equatorial flow.

  5. Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment.

    PubMed

    Yan, Caixia; Yang, Yi; Zhou, Junliang; Liu, Min; Nie, Minghua; Shi, Hao; Gu, Lijun

    2013-04-01

    The occurrence and distribution of five groups of antibiotics were investigated in the surface water of Yangtze Estuary over four seasons. Of the 20 antibiotics, only sulfamerazine was not detected at all sampling sites, indicating widespread occurrence of antibiotic residues in the study area. Detection frequencies and concentrations of antibiotics were generally higher in January, indicating that low flow conditions and low temperature might enhance the persistence of antibiotics in water. Antibiotic levels varied with location, with the highest concentrations being observed around river discharge and sewage outfall. Furthermore, a positive correlation between total antibiotic and DOC concentrations revealed the significant role played by DOC. Risk assessment based on single compound exposure showed that sulfapyridine and sulfamethoxazole could cause medium risk to daphnid in the Yangtze Estuary. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Geochemistry of Central Snake River Plain Basalts From Camas Prairie to Glenns Ferry, Southern Idaho

    NASA Astrophysics Data System (ADS)

    Vetter, S. K.; Johnston, S. A.; Shervais, J.; Hanan, B.

    2006-12-01

    The Snake River Plain (SRP) of southern Idaho represents the track of a hot-spot (mantle plume) which links voluminous flood basalts of the Miocene Columbia River province to Quaternary volcanic centers at Island Park and Yellowstone. However, much of the volcanism associated with this province either lies off the main volcanic trend or differs in age from the postulated plume passage. The Camas Prairie and the Mount Bennett Hills lie north of the Snake River-Yellowstone plume track, near the intersection of the eastern and western Snake River Plain trends. Young basalt flows cap highlands overlooking the Snake River near King Hill, but farther north in the Mount Bennett Hills and Camas Prairie these young lava flows are juxtaposed against older basalts along a series of WNW trending normal faults. These older basalt flows rest directly on rhyolite of the Mount Bennett Hills, making them the oldest basalts known in outcrop in this area. The older basalts in the Mount Bennett Hills include at least six major flows with a total thickness of 110 m. Although they have been strongly dissected by erosion, they still cover an outcrop area of 300 km2 . Eighty samples were collected as part of our petrologic survey of basaltic volcanism in the central Snake River Plain. These samples were studied petrographically and analyzed for their major elements, trace elements, and REE. The basalts consist of plagioclase and olivine microphenocrysts set in a groundmass of olivine, plagioclase, clinopyroxene, oxides and interstitial glass. The majority of samples have Mg# ranging from 50- 59. However there are samples that are more evolved as indicated by Mg# ranging from less than 50 to 29. The high Mg# samples have the following chemical ranges: TiO2 0.87 - 2.6 wt.%; FeO 9.95 - 13.7 wt.%; Nb 8 to 23 ppm; Zr 111 to 243 ppm; Ni 81 to 151 ppm; La 10.9 to 26.9 ppm. The more evolved samples have TiO2 1.4 3.93 wt.%; FeO 9.7 16.8 wt%; Nb 11 to 40 ppm; Zr 110 to 500 ppm; Ni 4 to 85 ppm; La

  7. Hydrology and digital simulation of the regional aquifer system, eastern Snake River Plain, Idaho

    USGS Publications Warehouse

    Garabedian, S.P.

    1992-01-01

    The transient model was used to simulate aquifer changes from 1981 to 2010 in response to three hypothetical development alternatives: (1) Continuation of 1980 hydrologic conditions, (2) increased pumpage, and (3) increased recharge. Simulation of continued 1980 hydrologic conditions for 30 years indicated that head declines of 2 to 8 feet might be expected in the central part of the plain. The magnitude of simulated head declines was con- sistent with head declines measured during the 1980 water year. Larger declines were calculated along model boundaries, but these changes may have resulted from underestimation of tribu- tary drainage-basin underflow and inadequate aquifer definition. Simulation of increased ground-water pumpage (an additional 2,400 cubic feet per second) for 30 years indicated head declines of 10 to 50 feet in the central part of the plain. These relatively large head declines were accompanied by increased simulated river leakage of 50 percent and decreased spring discharge of 20 percent. The effect of increased recharge (800 cubic feet per sec- ond) for 30 years was a rise in simulated heads of 0 to 5 feet in the central part of the plain.

  8. Long-term trend in ground-based air temperature and its responses to atmospheric circulation and anthropogenic activity in the Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Peng, Xia; She, Qiannan; Long, Lingbo; Liu, Min; Xu, Qian; Zhang, Jiaxin; Xiang, Weining

    2017-10-01

    The Yangtze River Delta (YRD), including Shanghai City, Jiangsu and Zhejiang Provinces, is the largest metropolitan region in China. In the past decades, the region has experienced massive urbanization and detrimentally affected the environment in the region. Identifying the spatio-temporal variations of climate change and its influencing mechanism in the YRD is an important task for assessing their impacts on the local society and ecosystem. Based on long-term (1958-2014) observation data of meteorological stations, three temperature indices, i.e. extreme maximum temperature (TXx), extreme minimum temperature (TNn), and mean temperature (TMm), were selected and spatialized with climatological calculations and spatial techniques. Evolution and spatial heterogeneity of three temperature indices over YRD as well as their links to atmospheric circulation and anthropogenic activity were investigated. In the whole YRD, a statistically significant overall uptrend could be detected in three temperature indices with the Mann-Kendall (M-K) trend test method. The linear increasing trend for TMm was 0.31 °C/10 a, which was higher than the global average (0.12 °C/10 a during 1951-2012). For TXx and TNn, the increasing rates were 0.41 °C/10 a and 0.52 °C/10 a. Partial correlation analysis indicated that TMm was more related with TXx (rp = 0.68, p < 0.001) than TNn (rp = 0.48, p < 0.001). Furthermore, it was detected with M-K analysis at pixel scale that 62.17%, 96.75% and 97.05% of the areas in the YRD showed significant increasing trends for TXx, TNn and TMm, respectively. The increasing trend was more obvious in the southern mountainous areas than the northern plains areas. Further analysis indicated that the variation of TXx over YRD was mainly influenced by anthropogenic activities (e.g. economic development), while TNn was more affected by atmospheric circulations (e.g., the Eurasian zonal circulation index (EAZ) and the cold air activity index (CA)). For TMm, it was a

  9. Asian river fishes in the Anthropocene: threats and conservation challenges in an era of rapid environmental change.

    PubMed

    Dudgeon, D

    2011-12-01

    This review compares and contrasts the environmental changes that have influenced, or will influence, fishes and fisheries in the Yangtze and Mekong Rivers. These two rivers have been chosen because they differ markedly in the type and intensity of prevailing threats. The Mekong is relatively pristine, whereas the Three Gorges Dam on the Yangtze is the world's largest dam representing the apotheosis of environmental alteration of Asian rivers thus far. Moreover, it is situated at the foot of a planned cascade of at least 12 new dams on the upper Yangtze. Anthropogenic effects of dams and pollution of Yangtze fishes will be exacerbated by plans to divert water northwards along three transfer routes, in part to supplement the flow of the Yellow River. Adaptation to climate change will undoubtedly stimulate more dam construction and flow regulation, potentially causing perfect storm conditions for fishes in the Yangtze. China has already built dams along the upper course of the Mekong, and there are plans for as many as 11 mainstream dams in People's Democratic Republic (Laos) and Cambodia in the lower Mekong Basin. If built, they could have profound consequences for biodiversity, fisheries and human livelihoods, and such concerns have stalled dam construction. Potential effects of dams proposed for other rivers (such as Nujiang-Salween) are also cause for concern. Conservation or restoration measures to sustain some semblance of the rich fish biodiversity of Asian rivers can be identified, but their implementation may prove problematic in a context of increasing Anthropocene alteration of these ecosystems. © 2011 The Author. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  10. 76 FR 65609 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship Canal... enforcement of regulation. SUMMARY: The Coast Guard will enforce a segment of the Safety Zone; Brandon Road....S. Army Corps of Engineers' dispersal barrier maintenance operations. During the enforcement period...

  11. Groundwater flow and hydrogeochemical evolution in the Jianghan Plain, central China

    NASA Astrophysics Data System (ADS)

    Gan, Yiqun; Zhao, Ke; Deng, Yamin; Liang, Xing; Ma, Teng; Wang, Yanxin

    2018-05-01

    Hydrogeochemical analysis and multivariate statistics were applied to identify flow patterns and major processes controlling the hydrogeochemistry of groundwater in the Jianghan Plain, which is located in central Yangtze River Basin (central China) and characterized by intensive surface-water/groundwater interaction. Although HCO3-Ca-(Mg) type water predominated in the study area, the 457 (21 surface water and 436 groundwater) samples were effectively classified into five clusters by hierarchical cluster analysis. The hydrochemical variations among these clusters were governed by three factors from factor analysis. Major components (e.g., Ca, Mg and HCO3) in surface water and groundwater originated from carbonate and silicate weathering (factor 1). Redox conditions (factor 2) influenced the geogenic Fe and As contamination in shallow confined groundwater. Anthropogenic activities (factor 3) primarily caused high levels of Cl and SO4 in surface water and phreatic groundwater. Furthermore, the factor score 1 of samples in the shallow confined aquifer gradually increased along the flow paths. This study demonstrates that enhanced information on hydrochemistry in complex groundwater flow systems, by multivariate statistical methods, improves the understanding of groundwater flow and hydrogeochemical evolution due to natural and anthropogenic impacts.

  12. Sedimentary facies and Holocene progradation rates of the Changjiang (Yangtze) delta, China

    NASA Astrophysics Data System (ADS)

    Hori, Kazuaki; Saito, Yoshiki; Zhao, Quanhong; Cheng, Xinrong; Wang, Pinxian; Sato, Yoshio; Li, Congxian

    2001-11-01

    The Changjiang (Yangtze) River, one of the largest rivers in the world, has formed a broad tide-dominated delta at its mouth during the Holocene sea-level highstand. Three boreholes (CM97, JS98, and HQ98) were obtained from the Changjiang delta plain in 1997-1998 to clarify the characteristics of tide-dominated delta sediments and architecture. Based on sediment composition and texture, and faunal content, core sediments were divided into six depositional units. In ascending order, they were interpreted as tidal sand ridge, prodelta, delta-front, subtidal to lower intertidal flat, upper intertidal flat, and surface soil deposits. The deltaic sequence from the prodelta deposits to the delta front deposits showed an upward-coarsening succession, overlain by an upward-fining succession from the uppermost part of the delta front deposits to the surface soil. Thinly interlaminated to thinly interbedded sand and mud (sand-mud couplets), and bidirectional cross laminations in these deposits show that tide is the key factor affecting the formation of Changjiang deltaic facies. Sediment facies and their succession combined with AMS 14C dating revealed that isochron lines cross unit boundaries clearly, and delta progradation has occurred since about 6000 to 7000 years BP, when the rising sea level neared or reached its present position. The average progradation rate of the delta front was approximately 50 km/kyear over the last 5000 years. The progradation rate, however, increased abruptly ca. 2000 years BP, going from 38 to 80 km/kyear. The possible causes for this active progradation could have been an increase in sediment production in the drainage basin due to widespread human interference and/or decrease in deposition in the middle reaches related to the channel stability caused by human activity and climatic cooling after the mid-Holocene.

  13. An Integrated Geophysical and Tectonic Study of the Structure and Evolution of the Crust in the Snake River Plain Region, Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Keller, G. R.; Khatiwada, M.

    2016-12-01

    The Snake River Plain region in the Pacific Northwest of North America has been the target of a number of recent studies that have revealed further complexities in its structure and tectonic evolution. Based on surface morphology and Late Cenozoic volcanic activity, the Snake River Plain consists of an eastern and western arm (ESRP and WSRP) that are similar in many respects but also quite different in other respects. Thus, its origin, evolution, structural complexities, the role of extension and magmatism in its formation, and the tectonic drivers are still subjects of debate. Numerous seismic studies have specifically focused on the structure of the ESRP and Yellowstone area. However, crustal-scale studies of the WSRP are limited. We added new gravity data to the existing coverage in the WSRP region and undertook a regional, integrated analysis approach that included magnetic, seismic reflection and refraction profiling, receiver function results, geological and geospatial data, and interpreted well logs. Our integrated geophysical modeling focused on the structure of the WSRP. We generated two crustal models across it at locations where the most existing geophysical and geological constraints were available. We observed both differences and similarities in the structure of the WSRP and ESRP. Although, the shallow crustal structures are different, a mid-crustal mafic intrusion is a major source of the high gravity anomaly values. Within the context of recent studies in the surrounding region, the intersection of the two arms of the Snake River Plain emerges as a major element of a complex tectonic intersection that includes the High Lava Plains of eastern Oregon, the Northern Nevada Rift, a southwestern extension of the ESRP into northern Nevada, as well as, faulting and volcanism extending northwestward to connect with the Columbia River Basalts region.

  14. Assessment of the national schistosomiasis control program in a typical region along the Yangtze River, China.

    PubMed

    Hu, Yi; Li, Si; Xia, Congcong; Chen, Yue; Lynn, Henry; Zhang, Tiejun; Xiong, Chenglong; Chen, Gengxin; He, Zonggui; Zhang, Zhijie

    2017-01-01

    Schistosomiasis remains a major public health problem in eastern China, particularly along the Yangtze River Basin. The latest national schistosomiasis control program (NSCP) was implemented in 2005 with the main goal of reducing the rate of infection to less than 5% by 2008 and 1% by 2015. To assess the progress, we applied a Bayesian spatio-temporal model to describe dynamics of schistosomiasis in Guichi, Anhui Province, China, using annual parasitological and environmental data collected within 41 sample villages for the period 2005-2011. Predictive maps of schistosomiasis showed that the disease prevalence remains constant and low. Results of uncertainty analysis, in the form of probability contour maps (PCMs), indicated that the first goal of "infection rate less than 5% by 2008" was fully achieved in the study area. More longitudinal data for schistosomiasis are needed for the assessment of the second goal of "infection rate less than 1% by 2015". Compared with the traditional way of mapping uncertainty (e.g., variance or mean-square error), our PCMs provide more realistic information for schistosomiasis control. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  15. How East Asian westerly jet's meridional position affects the summer rainfall in Yangtze-Huaihe River Valley?

    NASA Astrophysics Data System (ADS)

    Wang, Shixin; Zuo, Hongchao; Zhao, Shuman; Zhang, Jiankai; Lu, Sha

    2017-03-01

    Existing studies show that the change in the meridional position of East Asian westerly jet (EAWJ) is associated with rainfall anomalies in Yangtze-Huaihe River Valley (YHRV) in summer. However, the dynamic mechanism has not been resolved yet. The present study reveals underlying mechanisms for this impact for early summer and midsummer, separately. Mechanism1: associated with EAWJ's anomalously southward displacement, the 500-hPa westerly wind over YHRV is strengthened through midtropospheric horizontal circulation anomalies; the westerly anomalies are related to the formation of warm advection anomalies over YHRV, which cause increased rainfall through adiabatic ascent motion and convective activities; the major difference in these processes between early summer and midsummer is the midtropospheric circulation anomaly pattern. Mechanism 2: associated with EAWJ's anomalously southward displacement, the large day-to-day variability of midtropospheric temperature advection in midlatitudes is displaced southward by the jet's trapping transient eddies; this change enhances the day-to-day variability of temperature advection over YHRV, which in turn causes the increased rainfall in most part of YHRV through "lower-bound effect" (rainfall amount can not become negative); there is not much difference in these processes between early summer and midsummer.

  16. Using drift nets to capture early life stages and monitor spawning of the yangtze river chinese sturgeon (Acipenser sinensis)

    USGS Publications Warehouse

    Wei, Q.W.; Kynard, B.; Yang, D.G.; Chen, X.H.; Du, H.; Shen, L.; Zhang, H.

    2009-01-01

    A sampling system for capturing sturgeon eggs using a D-shaped bottom anchored drift net was used to capture early life stages (ELS) of Chinese sturgeon, Acipenser sinensis, and monitor annual spawning success at Yichang on the Yangtze River, 1996-2004, before and just after the Three Gorges Dam began operation. Captured were 96 875 ELS (early life stages: eggs, yolk-sac larvae = eleuthero embryos, and larvae); most were eggs and only 2477 were yolk-sac larvae. Most ELS were captured in the main river channel and inside the bend at the Yichang spawning reach. Yolk-sac larvae were captured for a maximum of 3 days after hatching began, indicating quick dispersal downstream. The back-calculated day of egg fertilization over the eight years indicated a maximum spawning window of 23 days (20 October-10 November). Spawning in all years was restricted temporally, occurred mostly at night and during one or two spawning periods, each lasting several days. The brief temporal spawning window may reduce egg predation by opportunistic predators by flooding the river bottom with millions of eggs. During 1996-2002, the percentage of fertilized eggs in an annual 20-egg sample was between 63.5 to 94.1%; however, in 2003 the percentage fertilized was only 23.8%. This sudden decline may be related to the altered environmental conditions at Yichang caused by operation of the Three Gorges Dam. Further studies are needed to monitor spawning and changes in egg fertilization in this threatened population. ?? 2009 Blackwell Verlag GmbH.

  17. Combined effects of multiple large-scale hydraulic engineering on water stages in the middle Yangtze River

    NASA Astrophysics Data System (ADS)

    Han, Jianqiao; Sun, Zhaohua; Li, Yitian; Yang, Yunping

    2017-12-01

    Investigation of water stages influenced by human projects provides better understanding of riverine geomorphological processes and river management. Based on hydrological data collected over 60 years, an extreme stage-extreme discharge analysis and a specific-gauge analysis were performed to research the individual and combined effects of multiple engineering projects on a long-term time series of water stages in the middle Yangtze River. Conclusions are as follows. (1) In accordance with the operation years of the Jingjiang cutoff (CF), the Gezhouba Dam (GD), and the Three Gorges Dam (TGD), the time series (1955-2012) was divided into periods of P1 (1955-1970), P2 (1971-1980), P3 (1981-2002), and P4 (2003 - 2012). Water stage changes during P1-P2, P2-P3, and P3-P4 are varied because of the differences in the types and scales of these projects. The stage decreased at Shashi and increased at Luoshan owing to the operation of the CF. Additionally, after the GD was constructed, the low-flow stage decreased in the upstream reach of Chenglingji and increased in its downstream reach, whereas the flood stage merely decreased at Yichang. Moreover, the TGD resulted in an overall decrease in low-flow stages and a limited increase in flood stages because of the differential adjustments of river geometry and resistance between the low-flow channel and flood channel. (2) Although differences existed in the scouring mechanisms between streamwise erosion associated with dams and headward erosion associated with cutoffs, particular bed textures in the gravel reach led to a similar adjustment that stage reduction at Shashi was the greatest of all stations, which caused the flow slope and sediment transport capacity to decrease in the sandy reach. (3) These engineering projects caused changes in average low-flow and flood stages that varied between Yichang (- 1.58 and - 0.08 m respectively), Shashi (- 3.54 and - 0.12 m), and Luoshan (1.15 and 0.97 m) from P1 to P4. However, less

  18. Inorganic aerosols responses to emission changes in Yangtze River Delta, China.

    PubMed

    Dong, Xinyi; Li, Juan; Fu, Joshua S; Gao, Yang; Huang, Kan; Zhuang, Guoshun

    2014-05-15

    The new Chinese National Ambient Air Quality standards (CH-NAAQS) published on Feb. 29th, 2012 listed PM2.5 as criteria pollutant for the very first time. In order to probe into PM2.5 pollution over Yangtze River Delta, the integrated MM5/CMAQ modeling system is applied for a full year simulation to examine the PM2.5 concentration and seasonality, and also the inorganic aerosols responses to precursor emission changes. Total PM2.5 concentration over YRD was found to have strong seasonal variation with higher values in winter months (up to 89.9 μg/m(3) in January) and lower values in summer months (down to 28.8 μg/m(3) in July). Inorganic aerosols were found to have substantial contribution to PM2.5 over YRD, ranging from 37.1% in November to 52.8% in May. Nocturnal production of nitrate (NO3(-)) through heterogeneous hydrolysis of N2O5 was found significantly contribute to high NO3(-) concentration throughout the year. In winter, NO3(-) was found to increase under nitrogen oxides (NOx) emission reduction due to higher production of N2O5 from the excessive ozone (O3) introduced by attenuated titration, which further lead to increase of ammonium (NH4(+)) and sulfate (SO4(2-)), while other seasons showed decrease response of NO3(-). Sensitivity responses of NO3(-) under anthropogenic VOC emission reduction was examined and demonstrated that in urban areas over YRD, NO3(-) formation was actually more sensitive to VOC than NOx due to the O3-involved nighttime chemistry of N2O5, while a reduction of NOx emission may have counter-intuitive effect by increasing concentrations of inorganic aerosols. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Sequence stratigraphy of the subaqueous Changjiang (Yangtze River) delta since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Xu, Taoyu; Wang, Guoqing; Shi, Xuefa; Wang, Xin; Yao, Zhengquan; Yang, Gang; Fang, Xisheng; Qiao, Shuqing; Liu, Shengfa; Wang, Xuchen; Zhao, Quanhong

    2016-01-01

    This study focuses on sedimentary research at the subaqueous Changjiang (Yangtze River) delta, based on five high-resolution seismic profiles and seven borehole cores with accurate AMS 14C datings. Three distinct seismic units were identified from the seismic profiles according to seismic reflection characteristics, and five sedimentary facies were recognized from borehole cores. These facies constituted a fining upward sedimentary sequence in relation to postglacial sea-level transgression. Three sequence surfaces (sequence boundary (SB), transgressive surface (TS), and maximum flooding surface (MFS)) demarcate the boundaries between early transgressive system tract (E-TST), late transgressive system tract (L-TST), early highstand system tract (E-HST) and late highstand system tract (L-HST), which constitute the sixth order sequence. These system tracts were developed coevally with postglacial sea-level rise. E-TST (~ 19-12 ka BP) corresponds to an incised-valley infilling in the early stages of postglacial transgression whereas L-TST (~ 12-7.5 ka BP) was formed during the last stage of postglacial transgression. The progradational structure of L-TST reflected in seismic profiles is possibly related to the intensification of the East Asian summer monsoon. E-HST (~ 7.5-2 ka BP) was deposited in response to the highstand after maximum postglacial transgression was reached, while L-HST (~ 2 ka BP-present) was initiated by accelerated progradation of the Changjiang delta.

  20. Source Identification and Apportionment of Trace Elements in Soils in the Yangtze River Delta, China.

    PubMed

    Shao, Shuai; Hu, Bifeng; Fu, Zhiyi; Wang, Jiayu; Lou, Ge; Zhou, Yue; Jin, Bin; Li, Yan; Shi, Zhou

    2018-06-12

    Trace elements pollution has attracted a lot of attention worldwide. However, it is difficult to identify and apportion the sources of multiple element pollutants over large areas because of the considerable spatial complexity and variability in the distribution of trace elements in soil. In this study, we collected total of 2051 topsoil (0⁻20 cm) samples, and analyzed the general pollution status of soils from the Yangtze River Delta, Southeast China. We applied principal component analysis (PCA), a finite mixture distribution model (FMDM), and geostatistical tools to identify and quantitatively apportion the sources of seven kinds of trace elements (chromium (Cr), cadmium (Cd), mercury (Hg), copper (Cu), zinc (Zn), nickel (Ni), and arsenic (As)) in soil. The PCA results indicated that the trace elements in soil in the study area were mainly from natural, multi-pollutant and industrial sources. The FMDM also fitted three sub log-normal distributions. The results from the two models were quite similar: Cr, As, and Ni were mainly from natural sources caused by parent material weathering; Cd, Cu, and Zu were mainly from mixed sources, with a considerable portion from anthropogenic activities such as traffic pollutants, domestic garbage, and agricultural inputs, and Hg was mainly from industrial wastes and pollutants.

  1. Emission Inventory Development and Application Based On an Atmospheric Emission Source Priority Control Classification Technology Method, a Case Study in the Middle Reaches of Yangtze River Urban Agglomerations, China

    NASA Astrophysics Data System (ADS)

    Sun, X.; Cheng, S.

    2017-12-01

    This paper presents the first attempt to investigate the emission source control of the Middle Reaches of Yangtze River Urban Agglomerations (MRYRUA), one of the national urban agglomerations in China. An emission inventory of the MRYRUA was the first time to be developed as inputs to the CAMx model based on county-level activity data obtained by full-coverage investigation and source-based spatial surrogates. The emission inventory was proved to be acceptable owing to the atmospheric modeling verification. A classification technology method for atmospheric pollution source priority control was the first time to be introduced and applied in the MRYRUA for the evaluation of the emission sources control on the region-scale and city-scale. MICAPS (Meteorological Information comprehensive Analysis and Processing System) was applied for the regional meteorological condition and sensitivity analysis. The results demonstrated that the emission sources in the Hefei-center Urban Agglomerations contributed biggest on the mean PM2.5 concentrations of the MRYRUA and should be taken the priority to control. The emission sources in the Ma'anshan city, Xiangtan city, Hefei city and Wuhan city were the bigger contributors on the mean PM2.5 concentrations of the MRYRUA among the cities and should be taken the priority to control. In addition, the cities along the Yangtze River and the tributary should be given the special attention for the regional air quality target attainments. This study provide a valuable preference for policy makers to develop effective air pollution control strategies.

  2. An integrated approach to model the biomagnification of organic pollutants in aquatic food webs of the Yangtze Three Gorges Reservoir ecosystem using adapted pollution scenarios.

    PubMed

    Scholz-Starke, Björn; Ottermanns, Richard; Rings, Ursula; Floehr, Tilman; Hollert, Henner; Hou, Junli; Li, Bo; Wu, Ling Ling; Yuan, Xingzhong; Strauch, Katrin; Wei, Hu; Norra, Stefan; Holbach, Andreas; Westrich, Bernhard; Schäffer, Andreas; Roß-Nickoll, Martina

    2013-10-01

    The impounding of the Three Gorges Reservoir (TGR) at the Yangtze River caused large flooding of urban, industrial, and agricultural areas, and profound land use changes took place. Consequently, substantial amounts of organic and inorganic pollutants were released into the reservoir. Additionally, contaminants and nutrients are entering the reservoir by drift, drainage, and runoff from adjacent agricultural areas as well as from sewage of industry, aquacultures, and households. The main aim of the presented research project is a deeper understanding of the processes that determines the bioaccumulation and biomagnification of organic pollutants, i.e., mainly pesticides, in aquatic food webs under the newly developing conditions of the TGR. The project is part of the Yangtze-Hydro environmental program, financed by the German Ministry of Education and Science. In order to test combinations of environmental factors like nutrients and pollution, we use an integrated modeling approach to study the potential accumulation and biomagnification. We describe the integrative modeling approach and the consecutive adaption of the AQUATOX model, used as modeling framework for ecological risk assessment. As a starting point, pre-calibrated simulations were adapted to Yangtze-specific conditions (regionalization). Two exemplary food webs were developed by a thorough review of the pertinent literature. The first typical for the flowing conditions of the original Yangtze River and the Daning River near the city of Wushan, and the second for the stagnant reservoir characteristics of the aforementioned region that is marked by an intermediate between lake and large river communities of aquatic organisms. In close cooperation with German and Chinese partners of the Yangtze-Hydro Research Association, other site-specific parameters were estimated. The MINIBAT project contributed to the calibration of physicochemical and bathymetric parameters, and the TRANSMIC project delivered

  3. Flood-plain study of the Upper Iowa River in the vicinity of Decorah, Iowa

    USGS Publications Warehouse

    Christiansen, Daniel E.; Eash, David A.

    2008-01-01

    The city of Decorah, Iowa, has experienced severe flooding from the Upper Iowa River resulting in property damage to homes and businesses. Streamflow data from two U.S. Geological Survey (USGS) streamflow-gaging stations, the Upper Iowa River at Decorah, Iowa (station number 05387500), located upstream from the College Drive bridge; and the Upper Iowa River near Decorah, Iowa (station number 05388000), at the Clay Hill Road bridge (locally known as the Freeport bridge) were used in the study. The three largest floods on the Upper Iowa River at Decorah occurred in 1941, 1961, and 1993, for which the estimated peak discharges were 27,200 cubic feet per second (ft3/s), 20,200 ft3/s, and 20,500 ft3/s, respectively. Flood-discharge information can be obtained from the World Wide Web at URL (uniform resource locator) http://waterdata.usgs.gov/nwis/. In response to the need to provide the City of Decorah and other flood-plain managers with an assessment of the risks of flooding to properties and facilities along an 8.5-mile (mi) reach of the Upper Iowa River, the USGS, in cooperation with the City of Decorah, initiated a study to map 100- and 500-year flood-prone areas.

  4. Spatiotemporal Distribution and Assemblages of Fishes below the Lowermost Dam in Protected Reach in the Yangtze River Main Stream: Implications for River Management.

    PubMed

    Li, Junyi; Zhang, Hui; Lin, Danqing; Wu, Jinming; Wang, Chengyou; Xie, Xuan; Wei, Qiwei

    2016-01-01

    Now more and more ecologists concern about the impacts of dam construction on fish. However, studies of fishes downstream Gezhouba Dam were rarely reported except Chinese sturgeon ( Acipenser sinensis Gray). In this study, catch investigations and five hydroacoustic detections were completed from 2015 to 2016 to understand the distribution, size, and categories of fishes and their relationship with the environmental factors below Gezhouba Dam in protected reach in the Yangtze River main stream. Results showed significant differences in fish distribution and TS (target strength) between wet and flood seasons. Mean TS in five hydroacoustic detections were -59.98 dB, -54.70 dB, -56.16 dB, -57.90 dB, and -59.17 dB, respectively, and dominant fish species are Coreius guichenoti (Bleeker), Siniperca chuatsi (Basilewsky), and Pelteobagrus vachelli (Richardson). In the longitudinal direction, fish preferred to stay in some specific sections like reaches 2, 4, 7, 8, 11, and 16. Since hydrology factors change greatly in different seasons, environmental characteristics vary along the reaches, and human activities play an important role in the fish behavior, it is concluded that great cross-season changes in hydrology lead to the differences in TS and fish assemblages and that geography characteristics, especially channel geography, together with human activities influence fish longitudinal distribution. This finding provides basic knowledge of spatiotemporal distribution and assemblages of fishes in the extended reaches downstream Gezhouba Dam. In addition, it offers implications for river management. It could also serve as reference of future research on fish habitat.

  5. The capability of estuarine sediments to remove nitrogen: implications for drinking water resource in Yangtze Estuary.

    PubMed

    Liu, Lin; Wang, Dongqi; Deng, Huanguang; Li, Yangjie; Chang, Siqi; Wu, Zhanlei; Yu, Lin; Hu, Yujie; Yu, Zhongjie; Chen, Zhenlou

    2014-09-01

    Water in the Yangtze Estuary is fresh most of the year because of the large discharge of Yangtze River. The Qingcaosha Reservoir built on the Changxing Island in the Yangtze Estuary is an estuarine reservoir for drinking water. Denitrification rate in the top 10 cm sediment of the intertidal marshes and bare mudflat of Yangtze Estuarine islands was measured by the acetylene inhibition method. Annual denitrification rate in the top 10 cm of sediment was 23.1 μmol m(-2) h(-1) in marshes (ranged from 7.5 to 42.1 μmol m(-2) h(-1)) and 15.1 μmol m(-2) h(-1) at the mudflat (ranged from 6.6 to 26.5 μmol m(-2) h(-1)). Annual average denitrification rate is higher at mashes than at mudflat, but without a significant difference (p = 0.084, paired t test.). Taking into account the vegetation and water area of the reservoir, a total 1.42 × 10(8) g N could be converted into nitrogen gas (N2) annually by the sediment, which is 97.7 % of the dissolved inorganic nitrogen input through precipitation. Denitrification in reservoir sediment can control the bioavailable nitrogen level of the water body. At the Yangtze estuary, denitrification primarily took place in the top 4 cm of sediment, and there was no significant spatial or temporal variation of denitrification during the year at the marshes and mudflat, which led to no single factor determining the denitrification process but the combined effects of the environmental factors, hydrologic condition, and wetland vegetation.

  6. Potentiometric-surface map of water in the Judith River Formation in the Northern Great Plains area of Montana

    USGS Publications Warehouse

    Levings, Gary W.

    1982-01-01

    The potentiometric surface of the Judith River Formation is mapped at a scale of 1:1,000,000. The map is one of a series produced as part of a regional study of aquifers of Cenozoic and Mesozoic age in the northern Great Plains of Montana. The contour interval is 200 feet. Water in the Judith River Formation occurs under water-table and artesian conditions. The direction of regional ground-water movement is from west to east. Water is discharged from the Judith River Formation to the Milk River from near Havre, Montana, to Malta and to the Missouri River south of the Bearpaw and Little Rocky Mountains. The average discharge from 236 wells is about 10 gallons per minute, and the specific capacity of 186 wells averages 0.66 gallon per minute per foot of drawdown. (USGS)

  7. [Growth analysis on modules of Cynodon dactylon clones in Yili River Valley Plain of Xinjiang].

    PubMed

    Zhao, Yu; Janar; Li, Hai-Yan; Liu, Ying; Yang, Yun-Fei

    2009-04-01

    By the method of randomly digging up whole ramet tuft while maintaining natural integrity, large samples of Cynodon dactylon clones were collected from a grape orchard abandoned for 2 years without any management in the Yili River Valley Plain of Xinjiang, aimed to quantitatively analyze the growth patterns of their modules. The results showed that the average ramet number of test 30 clones reached 272.6 +/- 186. 6, among which, vegetative ramets occupied 82.3%, being 4.3 times higher than reproductive ones. The total biomass of the clones was 45.4 +/- 40.0 g, in which, rhizomes accounted for 54.4%, while the vegetative ramets, stolons, and reproductive ramets occupied 21.0%, 14.8%, and 9.4% of the total, respectively. The accumulative length of rhizomes and stolons reached 5.1 + 4.7 m and 3.3 +/- 3.4 m, while the bud number on stolons and rhizomes was 291.5 +/- 246.8 and 78.8 +/- 87.4, respectively. The bud number on stolons and rhizomes was positively correlated to the quantitative characters of vegetative ramets, reproductive ramets, stolons, and rhizomes (P < 0.01), indicating that in Yili River Valley Plain, C. dactylon clone could achieve and maintain its continuous renovation via rhizome buds.

  8. Effects of dam construction and increasing pollutants on the ecohydrological evolution of a shallow freshwater lake in the Yangtze floodplain.

    PubMed

    Zeng, Linghan; McGowan, Suzanne; Cao, Yanmin; Chen, Xu

    2018-04-15

    Large river-floodplain systems which provide a variety of societal, economic and biological benefits are undergoing extensive and intensive human disturbance. However, floodplain lakes responses to multiple stressors are poorly understood. The Yangtze River and its floodplain which provide water and food resources for more than 300 million people are an important region in China. Hydrological regulation as well as socio-economic development have brought profound negative influence on this ecologically important area. To improve understanding of decadal-scale responses of floodplain lakes to multiple stressors, lake sediment proxies including particle size, geochemical elements, diatoms and chironomids were analysed in a lead-210 dated core from Futou Lake. The analyses show that dams constructed in 1935 and the early 1970s stabilized hydrological conditions in Futou Lake and impeded the interaction with the Yangtze River, resulting in a decrease in major elements (e.g., Mg, Al, Fe) transported into the lake and an increase of macrophyte-related chironomids (C. sylvestris-type, P. penicillatus-type and Paratanytarsus sp.). After the late 1990s, further decreases in major elements and increases in median grain size are attributed to the erosion of the Yangtze riverbed and declining supply of major elements-enriched sediments from the upper Yangtze caused by the impoundment of the Three Gorges Dam. Chironomid and diatom assemblages indicate that hydrological stabilization caused by dam constructions stimulated the growth of macrophytes, which may be important in buffering against an ecosystem state change towards a phytoplankton-dominated and turbid state with ongoing eutrophication. However, a recent increase in Zn, TP and the emergence of eutrophic diatom and chironomid species indicate initial signs of water quality deterioration which may be related to the combined effects of hydrological stabilization and aquaculture. Over all, the sediment record from Futou Lake

  9. Temporal Variation Analysis on Climate of Dry-Hot Valley Since 1950s in Upper Yangtze River Basin, China

    NASA Astrophysics Data System (ADS)

    Sun, L.; Cai, Y.

    2017-12-01

    Climate of dry-hot valley areas regarding their long term temporal changes are seldom studied. In this paper, climate change in lower reach of Yalongjiang River, a typical dry-hot valley area locating in upper Yangtze River Basin, was analyzed. Ten single meteorological factors were used to investigate basic climatic characteristics, and two integrated index (i.e. relative evapotranspiration(AET/P), standard precipitation evapotranspiration index(SPEI)) were selected to reflect changes from human activities and gauge climate drought regime. Mann-Kendall mutation test was applied to identify mutation year, and variation trends were diagnosed with linear regression and distance average analysis. Mean values were tested to find if there were significant changes resulting from a large artificial reservoir constructed in 1999. Results of mutation test showed that minimum temperature, relative humidity, and AET/P in two stations changed significantly in 2000s. Temperature increased since 1990s, and other single index fluctuated in recent 50 years. Precipitation decreased and temperature increased in autumn significantly, while precipitation in summer decreased slightly. The variation of SPEI implied that the area was humid from 1980s to 2000s, but drought in 2010s. The results of mean test indicated that 56% meteorological index changed significantly, which might be related to the construction of the large reservoir. This research not only reveals the climate change in a dry-hot valley, but also helps study concerning human activities especially the construction of cascade reservoirs in the future in this area.

  10. Contemporary Deformation within the Snake River Plain and Northern Basin and Range Province, USA

    NASA Astrophysics Data System (ADS)

    Payne, S. J.; McCaffrey, R.; King, R. W.

    2007-05-01

    GPS velocities, earthquakes, faults, and volcanic features are used to evaluate contemporary deformation within the Snake River Plain (SRP) and surrounding northern Basin and Range Province. The SRP is a prominent low- relief physiographic feature that extends from eastern Oregon through southern Idaho and into northwestern Wyoming, USA. The Eastern Snake River Plain (ESRP) is a 400-km long, NE-trending volcanic province that is characterized by bimodal volcanism, which represents the track of the Yellowstone Hotspot currently located in Wyoming. The Western Snake River Plain (WSRP) is a 300-km long, NW-trending graben that extends into eastern Oregon. The WSRP is an extensional basin that formed adjacent to an earlier position of the Yellowstone Hotspot in southern Idaho. Previous geodetic investigations suggest the ESRP and, perhaps the WSRP, have GPS velocities indicative of rigid block motion of the SRP along its physiographic boundaries. GPS data compiled for this study are used to test this hypothesis. Several institutions including the National Geodetic Survey, Idaho National Laboratory, Rensselaer Polytechnic Institute, and University of Utah observed GPS stations from 1994 to 2006 within the SRP and surrounding region. Horizontal velocities show generally consistent N110°W orientations with an average rate of 1.5 ± 0.3 mm/yr (for 11 stations) along most of the ESRP and adjacent northwest Basin and Range, although some Basin and Range velocities are less and may be influenced by post viscoelastic relaxation following the 1983 Mw 6.9 normal-faulting Borah Peak, Idaho earthquake. GPS velocities with an average rate of 1.9 ± 0.3 mm/yr (for 5 stations) change orientation to N95°W at a distance of 190 km from the Yellowstone Hotspot within the southern region of the ESRP and adjacent Basin and Range. Within the WSRP, GPS velocities have an average rate of 2.0 ± 0.5 mm/yr (for 7 stations) and change orientation to N40°W. These GPS velocities are more

  11. 76 FR 23524 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago... safety zone from Brandon Road Lock and Dam to Lake Michigan. This proposed safety zone will cover 77.... This TIR established a 77 mile long safety zone from Brandon Road Lock to Lake Michigan in Chicago, IL...

  12. Reconstructing the paleo-topography and paleo-environmental features of the Sarno River plain (Italy) before the AD 79 eruption of Somma-Vesuvius volcanic complex

    NASA Astrophysics Data System (ADS)

    Vogel, Sebastian; Märker, Michael

    2010-05-01

    SSP1.4 Understanding mixed siliciclastic-volcaniclastic depositional systems and their relationships with geodynamics or GD2.3/CL4.14/GM5.8/MPRG22/SSP3.5 Reconstruction of ancient continents: Dating and characterization of paleosurfaces Reconstructing the paleo-topography and paleo-environmental features of the Sarno River plain (Italy) before the AD 79 eruption of Somma-Vesuvius volcanic complex Sebastian Vogel[1] & Michael Märker[1] [1] Heidelberg Academy of Sciences and Humanities c/o University of Tübingen, Rümelinstraße 19-23, D-72070 Tübingen, Germany. Within the geoarchaeological research project "Reconstruction of the Ancient Cultural Landscape of the Sarno River Plain" undertaken by the German Archaeological Institute in cooperation with the Heidelberg Academy of Sciences and Humanities/University of Tübingen a methodology was developed to model the spatial dispersion of volcanic deposits of Somma-Vesuvius volcanic complex since its Plinian eruption AD 79. Eventually, this was done to reconstruct the paleo-topography and paleo-environment of the Sarno River plain before the eruption AD 79. We collected, localized and digitized more than 1,800 core drillings to gain a representative network of stratigraphical information covering the entire plain. Besides other stratigraphical data including the characteristics of the pre-AD 79 stratum, the depth to the pre-AD 79 paleo-surface was identified from the available drilling documentation. Instead of applying a simple interpolation of the drilling data, we reconstructed the pre-AD 79 paleo-surface with a sophisticated geostatistical methodology using a machine based learning approach based on classification and regression trees. We hypothesize that the present-day topography reflects the ancient topography, because the eruption of AD 79 coated the ancient topography, leaving ancient physiographic elements of the Sarno River plain still recognizable in the present-day topography. Therefore, a high resolution

  13. Source apportionment of fine particles and its chemical components over the Yangtze River Delta, China during a heavy haze pollution episode

    NASA Astrophysics Data System (ADS)

    Li, L.; An, J. Y.; Zhou, M.; Yan, R. S.; Huang, C.; Lu, Q.; Lin, L.; Wang, Y. J.; Tao, S. K.; Qiao, L. P.; Zhu, S. H.; Chen, C. H.

    2015-12-01

    An extremely high PM2.5 pollution episode occurred over the eastern China in January 2013. In this paper, the particulate matter source apportionment technology (PSAT) method coupled within the Comprehensive air quality model with extensions (CAMx) is applied to study the source contributions to PM2.5 and its major components at six receptors (Urban Shanghai, Chongming, Dianshan Lake, Urban Suzhou, Hangzhou and Zhoushan) in the Yangtze River Delta (YRD) region. Contributions from 4 source areas (including Shanghai, South Jiangsu, North Zhejiang and Super-region) and 9 emission sectors (including power plants, industrial boilers and kilns, industrial processing, mobile source, residential, volatile emissions, dust, agriculture and biogenic emissions) to PM2.5 and its major components (sulfate, nitrate, ammonia, organic carbon and elemental carbon) at the six receptors in the YRD region are quantified. Results show that accumulation of local pollution was the largest contributor during this air pollution episode in urban Shanghai (55%) and Suzhou (46%), followed by long-range transport (37% contribution to Shanghai and 44% to Suzhou). Super-regional emissions play an important role in PM2.5 formation at Hangzhou (48%) and Zhoushan site (68%). Among the emission sectors contributing to the high pollution episode, the major source categories include industrial processing (with contributions ranging between 12.7 and 38.7% at different receptors), combustion source (21.7-37.3%), mobile source (7.5-17.7%) and fugitive dust (8.4-27.3%). Agricultural contribution is also very significant at Zhoushan site (24.5%). In terms of the PM2.5 major components, it is found that industrial boilers and kilns are the major source contributor to sulfate and nitrate. Volatile emission source and agriculture are the major contributors to ammonia; transport is the largest contributor to elemental carbon. Industrial processing, volatile emissions and mobile source are the most significant

  14. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China

    NASA Astrophysics Data System (ADS)

    Zhu, Yun-Mei; Lu, X. X.; Zhou, Yue

    2007-02-01

    Artificial neural network (ANN) was used to model the monthly suspended sediment flux in the Longchuanjiang River, the Upper Yangtze Catchment, China. The suspended sediment flux was related to the average rainfall, temperature, rainfall intensity and water discharge. It is demonstrated that ANN is capable of modeling the monthly suspended sediment flux with fairly good accuracy when proper variables and their lag effect on the suspended sediment flux are used as inputs. Compared with multiple linear regression and power relation models, ANN can generate a better fit under the same data requirement. In addition, ANN can provide more reasonable predictions for extremely high or low values, because of the distributed information processing system and the nonlinear transformation involved. Compared with the ANNs that use the values of the dependent variable at previous time steps as inputs, the ANNs established in this research with only climate variables have an advantage because it can be used to assess hydrological responses to climate change.

  15. Spatiotemporal Distribution and Assemblages of Fishes below the Lowermost Dam in Protected Reach in the Yangtze River Main Stream: Implications for River Management

    PubMed Central

    Li, Junyi; Zhang, Hui; Lin, Danqing; Wu, Jinming; Wang, Chengyou; Xie, Xuan

    2016-01-01

    Now more and more ecologists concern about the impacts of dam construction on fish. However, studies of fishes downstream Gezhouba Dam were rarely reported except Chinese sturgeon (Acipenser sinensis Gray). In this study, catch investigations and five hydroacoustic detections were completed from 2015 to 2016 to understand the distribution, size, and categories of fishes and their relationship with the environmental factors below Gezhouba Dam in protected reach in the Yangtze River main stream. Results showed significant differences in fish distribution and TS (target strength) between wet and flood seasons. Mean TS in five hydroacoustic detections were −59.98 dB, −54.70 dB, −56.16 dB, −57.90 dB, and −59.17 dB, respectively, and dominant fish species are Coreius guichenoti (Bleeker), Siniperca chuatsi (Basilewsky), and Pelteobagrus vachelli (Richardson). In the longitudinal direction, fish preferred to stay in some specific sections like reaches 2, 4, 7, 8, 11, and 16. Since hydrology factors change greatly in different seasons, environmental characteristics vary along the reaches, and human activities play an important role in the fish behavior, it is concluded that great cross-season changes in hydrology lead to the differences in TS and fish assemblages and that geography characteristics, especially channel geography, together with human activities influence fish longitudinal distribution. This finding provides basic knowledge of spatiotemporal distribution and assemblages of fishes in the extended reaches downstream Gezhouba Dam. In addition, it offers implications for river management. It could also serve as reference of future research on fish habitat. PMID:27843943

  16. Simulating the responses of a low-trophic ecosystem in the East China Sea to decadal changes in nutrient load from the Changjiang (Yangtze) River

    NASA Astrophysics Data System (ADS)

    Wang, Yucheng; Guo, Xinyu; Zhao, Liang

    2018-01-01

    Using a three-dimensional coupled biophysical model, we simulated the responses of a lowtrophic ecosystem in the East China Sea (ECS) to long-term changes in nutrient load from the Changjiang (Yangtze) River over the period of 1960-2005. Two major factors affected changes in nutrient load: changes in river discharge and the concentration of nutrients in the river water. Increasing or decreasing Changjiang discharge induced different responses in the concentrations of nutrients, phytoplankton, and detritus in the ECS. Changes in dissolved inorganic nitrogen (DIN), silicate (SIL), phytoplankton, and detritus could be identified over a large area of the ECS shelf, but changes in dissolved inorganic phosphate (DIP) were limited to a small area close to the river mouth. The high DIN:DIP and SIL:DIP ratios in the river water were likely associated with the different responses in DIN, DIP, and SIL. As DIP is a candidate limiting nutrient, perturbations in DIP resulting from changes in the Changjiang discharge are quickly consumed through primary production. It is interesting that an increase in the Changjiang discharge did not always lead to an increase in phytoplankton levels in the ECS. Phytoplankton decreases could be found in some areas close to the river mouth. A likely cause of the reduction in phytoplankton was a change in the hydrodynamic field associated with the river plume, although the present model is not suitable for examining the possibility in detail. Increases in DIN and DIP concentrations in the river water primarily led to increases in DIN, DIP, phytoplankton, and detritus levels in the ECS, whereas decreases in the SIL concentration in river water led to lower SIL concentrations in the ECS, indicating that SIL is not a limiting nutrient for photosynthesis, based on our model results from 1960 to 2005. In both of the above-mentioned cases, the sediment accumulation rate of detritus exhibited a large spatial variation near the river mouth, suggesting

  17. Geostatistical analysis of regional hydraulic conductivity variations in the Snake River Plain aquifer, eastern Idaho

    USGS Publications Warehouse

    Welhan, J.A.; Reed, M.F.

    1997-01-01

    The regional spatial correlation structure of bulk horizontal hydraulic conductivity (Kb) estimated from published transmissivity data from 79 open boreholes in the fractured basalt aquifer of the eastern Snake River Plain was analyzed with geostatistical methods. The two-dimensional spatial correlation structure of In Kb shows a pronounced 4:1 range anisotropy, with a maximum correlation range in the north-northwest- south-southeast direction of about 6 km. The maximum variogram range of In Kb is similar to the mean length of flow groups exposed at the surface. The In Kb range anisotropy is similar to the mean width/length ratio of late Quaternary and Holocene basalt lava flows and the orientations of the major volcanic structural features on the eastern Snake River Plain. The similarity between In Kb correlation scales and basalt flow dimensions and between basalt flow orientations and correlation range anisotropy suggests that the spatial distribution of zones of high hydraulic conductivity may be controlled by the lateral dimensions, spatial distribution, and interconnection between highly permeable zones which are known to occur between lava flows within flow groups. If hydraulic conductivity and lithology are eventually shown to be cross correlative in this geologic setting, it may be possible to stochastically simulate hydraulic conductivity distributions, which are conditional on a knowledge of volcanic stratigraphy.

  18. Quantifying seining detection probability for fishes of Great Plains sand‐bed rivers

    USGS Publications Warehouse

    Mollenhauer, Robert; Logue, Daniel R.; Brewer, Shannon K.

    2018-01-01

    Species detection error (i.e., imperfect and variable detection probability) is an essential consideration when investigators map distributions and interpret habitat associations. When fish detection error that is due to highly variable instream environments needs to be addressed, sand‐bed streams of the Great Plains represent a unique challenge. We quantified seining detection probability for diminutive Great Plains fishes across a range of sampling conditions in two sand‐bed rivers in Oklahoma. Imperfect detection resulted in underestimates of species occurrence using naïve estimates, particularly for less common fishes. Seining detection probability also varied among fishes and across sampling conditions. We observed a quadratic relationship between water depth and detection probability, in which the exact nature of the relationship was species‐specific and dependent on water clarity. Similarly, the direction of the relationship between water clarity and detection probability was species‐specific and dependent on differences in water depth. The relationship between water temperature and detection probability was also species dependent, where both the magnitude and direction of the relationship varied among fishes. We showed how ignoring detection error confounded an underlying relationship between species occurrence and water depth. Despite imperfect and heterogeneous detection, our results support that determining species absence can be accomplished with two to six spatially replicated seine hauls per 200‐m reach under average sampling conditions; however, required effort would be higher under certain conditions. Detection probability was low for the Arkansas River Shiner Notropis girardi, which is federally listed as threatened, and more than 10 seine hauls per 200‐m reach would be required to assess presence across sampling conditions. Our model allows scientists to estimate sampling effort to confidently assess species occurrence, which

  19. Variations in early life history traits of Japanese anchovy Engraulis japonicus in the Yangtze River Estuary.

    PubMed

    Liu, Chunlong; Xian, Weiwei; Liu, Shude; Chen, Yifeng

    2018-01-01

    Resources of Japanese anchovy ( Engraulis japonicus Temminck & Schlegel, 1846) are undergoing dramatic recessions in China as the consequence of intensifying anthropogenic activities. Elucidating the influences of local-scale environmental factors on early life history traits is of great importance to design strategies conserving and restoring the declining anchovy resources. In this research, we studied hatching date and early growth of anchovy in the Yangtze River Estuary (YRE) using information obtained from otolith microstructure. Onset of hatching season and growth rates of anchovy was compared to populations in Japan and Taiwan. In YRE, the hatching date of anchovy ranged from February 26th to April 6th and mean growth rate ranged from 0.27 to 0.77 mm/d. Anchovies hatching later had higher growth rates than individuals hatching earlier before the 25th day. Among populations, hatching onsets of anchovy from the higher latitude were later than populations in the lower latitude, and growth rates of anchovy in YRE were much lower than populations in Japan and Taiwan. Variations in hatching onsets and early growth patterns of anchovy thus provide important knowledge on understanding the adaptation of anchovy in YRE and designing management strategies on conserving China's anchovy resources.

  20. [Soil particle size distribution and its fractal dimension among degradation sequences of the alpine meadow in the source region of the Yangtze and Yellow River, Qinghai-Tibetan Plateau, China].

    PubMed

    Wei, Mao-Hong; Lin, Hui-Long

    2014-03-01

    The alpine meadow in the source region of the Yangtze and Yellow River is suffering serious deterioration. Though great efforts have been put into, the restoration for the degraded grassland is far from being effective, mainly due to poor understanding of the degradation mechanism of alpine meadow in this region. In order to clarify the formation mechanism of degradation grassland and provide the new ideas for restoration, degradation sequences of the alpine meadow in the source region of the Yangtze and Yellow River were taken as target systems to analyze the soil particle size distribution, the fractal dimension of the soil particle size, and the relationship between soil erosion modulus and fractal dimension. The results showed that, with increasing grassland degradation, the percentage contents of clay increased while the percentage contents of silt sand and very fine sand showed a decreasing trend. The fractal dimension presented a positive correlation with clay among the degradation sequences while negative correlations were found with very fine sand and silt sand. The curvilinear regression of fractal dimension and erosion modulus fitted a quadratic function. Judged by the function, fractal dimension 2.81 was the threshold value of soil erosion. The threshold value has an indicative meaning on predicting the breakout of grazing-induced erosion and on restoration of the degraded grassland. Taking fractal dimension of 2.81 as the restoration indicator, adoption of corresponding measures to make fractal dimension less than 2.81, would an effective way to restore the degradation grassland.

  1. Evaluation of a pumping test of the Snake River Plain aquifer using axial-flow numerical modeling

    NASA Astrophysics Data System (ADS)

    Johnson, Gary S.; Frederick, David B.; Cosgrove, Donna M.

    2002-06-01

    The Snake River Plain aquifer in southeast Idaho is hosted in a thick sequence of layered basalts and interbedded sediments. The degree to which the layering impedes vertical flow has not been well understood, yet is a feature that may exert a substantial control on the movement of contaminants. An axial-flow numerical model, RADFLOW, was calibrated to pumping test data collected by a straddle-packer system deployed at 23 depth intervals in four observation wells to evaluate conceptual models and estimate properties of the Snake River Plain aquifer at the Idaho National Engineering and Environmental Laboratory. A delayed water-table response observed in intervals beneath a sediment interbed was best reproduced with a three-layer simulation. The results demonstrate the hydraulic significance of this interbed as a semi-confining layer. Vertical hydraulic conductivity of the sediment interbed was estimated to be about three orders of magnitude less than vertical hydraulic conductivity of the lower basalt and upper basalt units. The numerical model was capable of representing aquifer conceptual models that could not be represented with any single analytical technique. The model proved to be a useful tool for evaluating alternative conceptual models and estimating aquifer properties in this application.

  2. The inhabited environment, infrastructure development and advanced urbanization in China’s Yangtze River Delta Region

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoqing; Gao, Weijun; Zhou, Nan; Kammen, Daniel M.; Wu, Yiqun; Zhang, Yao; Chen, Wei

    2016-12-01

    This paper analyzes the relationship among the inhabited environment, infrastructure development and environmental impacts in China’s heavily urbanized Yangtze River Delta region. Using primary human environment data for the period 2006-2014, we examine factors affecting the inhabited environment and infrastructure development: urban population, GDP, built-up area, energy consumption, waste emission, transportation, real estate and urban greenery. Then we empirically investigate the impact of advanced urbanization with consideration of cities’ differences. Results from this study show that the growth rate of the inhabited environment and infrastructure development is strongly influenced by regional development structure, functional orientations, traffic network and urban size and form. The effect of advanced urbanization is more significant in large and mid-size cities than huge and mega cities. Energy consumption, waste emission and real estate in large and mid-size cities developed at an unprecedented rate with the rapid increase of economy. However, urban development of huge and mega cities gradually tended to be saturated. The transition development in these cities improved the inhabited environment and ecological protection instead of the urban construction simply. To maintain a sustainable advanced urbanization process, policy implications included urban sprawl control polices, ecological development mechanisms and reforming the economic structure for huge and mega cities, and construct major cross-regional infrastructure, enhance the carrying capacity and improvement of energy efficiency and structure for large and mid-size cities.

  3. Assessment of the Mutagenicity of Sediments from Yangtze River Estuary Using Salmonella Typhimurium/Microsome Assay

    PubMed Central

    Liu, Li; Chen, Ling; Floehr, Tilman; Xiao, Hongxia; Bluhm, Kerstin; Hollert, Henner; Wu, Lingling

    2015-01-01

    Sediments in estuaries are of important environmental concern because they may act as pollution sinks and sources to the overlying water body. These sediments can be accumulated by benthic organisms. This study assessed the mutagenic potential of sediment extracts from the Yangtze River estuary by using the Ames fluctuation assay with the Salmonella typhimurium his (−) strain TA98 (frameshift mutagen indicator) and TA100 (baseshift mutagen indicator). Most of the sediment samples were mutagenic to the strain TA98, regardless of the presence or absence of exogenous metabolic activation (S9 induction by β-naphthoflavone/phenobarbital). However, none of the samples were mutagenic to the strain TA100. Thus, the mutagenicity pattern was mainly frameshift mutation, and the responsible toxicants were both direct (without S9 mix) and indirect (with S9 mix) mutagens. The mutagenicity of the sediment extracts increased when S9 was added. Chemical analysis showed a poor correlation between the content of priority polycyclic aromatic hydrocarbons and the detected mutagenicity in each sample. The concept of effect-directed analysis was used to analyze possible compounds responsible for the detected mutagenic effects. With regard to the mutagenicity of sediment fractions, non-polar compounds as well as weakly and moderately polar compounds played a main role. Further investigations should be conducted to identify the responsible components. PMID:26606056

  4. Study on ecological regulation of coastal plain sluice

    NASA Astrophysics Data System (ADS)

    Yu, Wengong; Geng, Bing; Yu, Huanfei; Yu, Hongbo

    2018-02-01

    Coastal plains are densely populated and economically developed, therefore their importance is self-evident. However, there are some problems related with water in coastal plains, such as low flood control capacity and severe water pollution. Due to complicated river network hydrodynamic force, changeable flow direction and uncertain flood concentration and propagation mechanism, it is rather difficult to use sluice scheduling to realize flood control and tackle water pollution. On the base of the measured hydrological data during once-in-a-century Fitow typhoon in 2013 in Yuyao city, by typical analysis, theoretical analysis and process simulation, some key technologies were researched systematically including plain river network sluice ecological scheduling, “one tide” flood control and drainage scheduling and ecological running water scheduling. In the end, single factor health diagnostic evaluation, unit hydrograph of plain water level and evening tide scheduling were put forward.

  5. Probability of detecting atrazine/desethyl-atrazine and elevated concentrations of nitrate plus nitrate as nitrogen in ground water in the Idaho part of the western Snake River Plain

    USGS Publications Warehouse

    Donato, Mary M.

    2000-01-01

    As ground water continues to provide an ever-growing proportion of Idaho?s drinking water, concerns about the quality of that resource are increasing. Pesticides (most commonly, atrazine/desethyl-atrazine, hereafter referred to as atrazine) and nitrite plus nitrate as nitrogen (hereafter referred to as nitrate) have been detected in many aquifers in the State. To provide a sound hydrogeologic basis for atrazine and nitrate management in southern Idaho—the largest region of land and water use in the State—the U.S. Geological Survey produced maps showing the probability of detecting these contaminants in ground water in the upper Snake River Basin (published in a 1998 report) and the western Snake River Plain (published in this report). The atrazine probability map for the western Snake River Plain was constructed by overlaying ground-water quality data with hydrogeologic and anthropogenic data in a geographic information system (GIS). A data set was produced in which each well had corresponding information on land use, geology, precipitation, soil characteristics, regional depth to ground water, well depth, water level, and atrazine use. These data were analyzed by logistic regression using a statistical software package. Several preliminary multivariate models were developed and those that best predicted the detection of atrazine were selected. The multivariate models then were entered into a GIS and the probability maps were produced. Land use, precipitation, soil hydrologic group, and well depth were significantly correlated with atrazine detections in the western Snake River Plain. These variables also were important in the 1998 probability study of the upper Snake River Basin. The effectiveness of the probability models for atrazine might be improved if more detailed data were available for atrazine application. A preliminary atrazine probability map for the entire Snake River Plain in Idaho, based on a data set representing that region, also was produced

  6. River Network Reorganization along the Upper Yangzte, Eastern Tibet: Insights from Thermochronology and Sedimentology.

    NASA Astrophysics Data System (ADS)

    Gourbet, L.; Yang, R.; Fellin, M. G.; Maden, C.; Gong, J.; Jean-Louis, P.

    2017-12-01

    The high relief and high elevation of the southeastern margin of the Tibetan Plateau are related to tectonic uplift and the fluvial incision of the Salween, Mekong, and Yangtze rivers. The upper Yangtze is the subject of numerous debates on the evolution of its drainage area, particularly in regards to the timing and geodynamic processes, and therefore has an impact on models of the Tibetan plateau evolution. Today, portions of the course of the Yangtze are controlled by active strike-slip faults. In order to study the evolution of the Cenozoic paleoriver network, we use low-temperature thermochronometry to estimate fluvial incision and palaeoenvironmental information derived from the detrital record. The Jianchuan basin, between the Yangtze and the Red River, contains late Eocene fluvial sediments that may correspond to an ancient connection between these rivers. Sediments located further north (DongWang formation, Yunnan-Sichuan boundary) consist of unsorted conglomerates and sandstones. They are exposed on the flanks of deep valleys. These sediments do not correspond to a large riverbed such as the Yangtze but rather indicate an episode of intense sedimentation with a significant contribution from talus, followed by a >1.2 km incision by a tributary of the upper Yangtze. In the same area, we performed apatite and zircon (U-Th)/He dating on a granitic pluton that is offset by an active sinistral strike-slip fault. Mean ZHe cooling ages range from 50 to 70 Ma. Samples located above 3870 m yield mean apatite (U-Th)/He ages ranging from 30 to 40 Ma. AHe ages for samples at lower elevation range from 8 to 15 Ma. Given the crystallization age of the pluton (83 Ma, U/Pb, zircon), cooling ages reflect exhumation, not post-intrusion cooling. Further research will use thermal modeling to infer incision rates and compare results with published data.

  7. Process-based morphodynamic modeling of the Yangtze Estuary at a decadal timescale: Controls on estuarine evolution and future trends

    NASA Astrophysics Data System (ADS)

    Luan, Hua Long; Ding, Ping Xing; Wang, Zheng Bing; Ge, Jian Zhong

    2017-08-01

    Understanding the decadal morphodynamic evolution of estuaries and deltas and their controls is of vital importance regarding management for estuarine function and sustainable development. This work addresses this issue by applying a process-based model system (Delft3D) to hindcast and then forecast the morphodynamic evolution of the Yangtze Estuary at a decadal timescale. Forced by the river and tides, the model considers sand-mud mixture and the variations of river water discharge and sediment discharge. The morphodynamic model is validated against three periods, i.e., an accretion period (1958-1978), an erosion period (1986-1997) and a recent accretion period with human activities (2002 - 2010). Model results show good performance with respect to spatial erosion and deposition patterns, sediment volume changes, and hypsometry curves. The model reveals quite different behaviors for mud transport between the dry and wet seasons, which is subject to the prescription of river boundary conditions and bed composition. We define six scenarios to project evolution to the year 2030 under decreased river inputs and increased relative sea level. The simulations reveal that overwhelming amount of erosion will likely occur in the inner and mouth bar area of the estuary. Particularly, the mouth zone will shift from net deposition before 2010 to net erosion by 2030, mainly because of decreasing sediment supply. Changes in water discharge have minor effects on the projected trend. Net erosion will be considerable when the sediment supply is extremely low (100 Mt yr- 1) due to the abundance of erodible modern sediment in the Yangtze Estuary. Erosion within the mouth bar area may be unexpected, including the deepening of the tidal inlet at East Chongming mudflat and the formation of a flood channel on the seaward side of Jiuduansha Shoal. Overall, the model results provide valuable information for sustainable delta management under changing conditions for both the Yangtze system

  8. New Chronologies of Dune Activation Extracted from the Central Great Plains

    NASA Astrophysics Data System (ADS)

    Johnson, W. C.; Halfen, A. F.

    2011-12-01

    Recent investigations of dunefield activation histories in the Great Plains of North America have documented many long-duration, spatially-extensive, Holocene droughts. These "megadroughts" have been documented mostly in the larger dunefields of the Great Plains, e.g., the Nebraska Sand Hills, making it difficult for researchers to characterize these events region-wide. Several studies being conducted by the authors aim to extract a better spatial and temporal representation of megadroughts across the region by investigating smaller, less known dunefields of the Central Great Plains. Thus far, these studies have yielded new activation histories from three dunefields, the Kansas River, Hutchinson, and Arkansas Valley dunefields, which together span the precipitation gradient from eastern Kansas to eastern Colorado. While each of these dunefields have a unique history, collectively their activation chronologies yield new and important information on Holocene megadrought activity in the Great Plains, which may have been more spatially diverse and complex than previously thought. The Kansas River dunefield mantles a remnant high terrace of the lower Kansas River valley in the east-Central Great Plains and is one of the most easterly dunefields in the Great Plains. Optically stimulated luminescence (OSL) ages indicate dune activation last occurred ~36-31 ka, i.e., during MIS 3 between Heinrich Events 4 and 3 and was coincidental with loess deposition (Gillman Canyon Formation). The Kansas River dunefield also shows some evidence of minor activation during the middle Holocene, however this activity was likely limited to erosion of the dune surface and not full activation. About 200 km southwest of the Kansas River dunefield is the Hutchinson dunefield (HD), located immediately northeast of the Big Bend of the Arkansas River. OSL ages document dunefield-wide activity in the HD between ~1200 and 120 years ago, with peaks of activity centered after the Medieval Climatic

  9. Role of sectoral and multi-pollutant emission control strategies in improving atmospheric visibility in the Yangtze River Delta, China.

    PubMed

    Huang, Kan; Fu, Joshua S; Gao, Yang; Dong, Xinyi; Zhuang, Guoshun; Lin, Yanfen

    2014-01-01

    The Community Multi-scale Air Quality modeling system is used to investigate the response of atmospheric visibility to the emission reduction from different sectors (i.e. industries, traffic and power plants) in the Yangtze River Delta, China. Visibility improvement from exclusive reduction of NOx or VOC emission was most inefficient. Sulfate and organic aerosol would rebound if NOx emission was exclusively reduced from any emission sector. The most efficient way to improve the atmospheric visibility was proven to be the multi-pollutant control strategies. Simultaneous emission reductions (20-50%) on NOx, VOC and PM from the industrial and mobile sectors could result in 0.3-1.0 km visibility improvement. And the emission controls on both NOx (85%) and SO2 (90%) from power plants gained the largest visibility improvement of up to 4.0 km among all the scenarios. The seasonal visibility improvement subject to emission controls was higher in summer while lower in the other seasons. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Carbon, nitrogen, and phosphorus accumulation in floodplains of Atlantic Coastal Plain rivers, USA

    USGS Publications Warehouse

    Noe, G.B.; Hupp, C.R.

    2005-01-01

    Net nutrient accumulation rates were measured in riverine floodplains of the Atlantic Coastal Plain in Virginia, Maryland, and Delaware, USA. The floodplains were located in watersheds with different land use and included two sites on the Chickahominy River (urban), one site on the Mattaponi River (forested), and five sites on the Pocomoke River (agricultural). The Pocomoke River floodplains lie along reaches with natural hydrogeomorphology and on reaches with restricted flooding due to channelization and levees. A network of feldspar clay marker horizons was placed on the sediment surface of each floodplain site 3-6 years prior to sampling. Sediment cores were collected from the material deposited over the feldspar clay pads. This overlying sediment was separated from the clay layer and then dried, weighed, and analyzed for its total carbon (C), nitrogen (N), and phosphorus (P) content. Mean C accumulation rates ranged from 61 to 212 g??m-2??yr-1, N accumulation rates ranged from 3.5 to 13.4 g??m -2??yr-1, and P accumulation rates ranged from 0.2 to 4.1 g??m-2??yr-1 among the eight floodplains. Patterns of intersite variation in mineral sediment and P accumulation rates were similar to each other, as was variation in organic sediment and C and N accumulation rates. The greatest sediment and C, N, and P accumulation rates were observed on Chickahominy River floodplains downstream from the growing metropolitan area of Richmond, Virginia. Nutrient accumulation rates were lowest on Pocomoke River floodplains that have been hydraulically disconnected from the main channel by channelization and levees. Sediment P concentrations and P accumulation rates were much greater on the hydraulically connected floodplain immediately downstream of the limit of channelization and dense chicken agriculture of the upper Pocomoke River watershed. These findings indicate that (1) watershed land use has a large effect on sediment and nutrient retention in floodplains, and (2) limiting

  11. Iodine-129 in the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory, Idaho, 1990-91

    USGS Publications Warehouse

    Mann, L.J.; Beasley, T.M.

    1994-01-01

    From 1953 to 1990, an estimated 0.56 to 1.18 curies of iodine-129 were contained in wastewater generated by the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory. The waste- water was discharged directly to the Snake River Plain aquifer through a deep disposal well prior to February 1984 and through unlined disposal ponds in 1984-90. The wastewater did not contain measurable concentrations of iodine-129 in 1989-90. Samples were collected from 51 wells that obtain water from the Snake River Plain aquifer and 1 well that obtains water from a perched ground-water zone. The samples were analyzed for iodine-129 using an accelerator mass spectrometer which is two to six orders of magnitude more sensitive than neutron- activation methods. Therefore, iodine-129 was detectable in samples from a larger number of wells distributed over a larger area than previously was possible. Ground-water flow velocities calculated using iodine-129 data are estimated to be at least 6 feet per day. These velocities compare favorably with those of 4 to 10 feet per day calculated from tritium data and tracer studies at wells down- gradient from the ICPP. In 1990-91, concentrations of iodine-129 in water samples from wells that obtain water from the Snake River Plain aquifer ranged from less than 0.0000006+0.0000002 to 3.82.+0.19 picocuries per liter (pCi/L). The mean concentration in water from 18 wells was 0.81+0.19 pCi/L as compared with 1.30+0.26 pCi/L in 1986. The decrease in the iodine-l29 concentrations from 1986 to 1990-91 chiefly was the result of a decrease in the amount of iodine-129 disposed of annually, and changes in disposal techniques.

  12. Spatial distribution and pollution evaluation of heavy metals in Yangtze estuary sediment.

    PubMed

    Liu, Ruimin; Men, Cong; Liu, Yongyan; Yu, Wenwen; Xu, Fei; Shen, Zhenyao

    2016-09-15

    To analyze the spatial distribution patterns and ecological risks of heavy metals, 30 sediment samples were taken in the Yangtze River Estuary (YRE) in May 2011. The content of Al, As, Cr, Cu, Fe, Mn, Ni and Pb increased as follows: inner-region<river mouthriver mouth of the south branch of YRE. In Tucker 3, considering the fractions of metals, Mn turned to be the severest pollutant and As did not contribute too much to the contamination of the YRE. That was most probably because that Mn was closely related to the carbonate-associated (CARB) and As was related to organic-associated (OM) which is more stable than CARB. The fractions played an important role in the contamination assessment of heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Understanding the external pressure and behavior of commercial banks' environmental risk management: an empirical study undertaken in the Yangtze River delta of China.

    PubMed

    Liu, Yong; Lin, Zhongguo

    2014-04-01

    The present study employed a quantitative survey to ascertain whether the external pressure of environmental risk management (ERM) on commercial banks was a contributing factor to their ERM behavior. Data was obtained using questionnaires from 204 branches of commercial banks located in the Yangtze River Delta of China. The relationship between external pressure and behavior was tested using a linear structural relations model through path analysis. The results revealed that external pressure of ERM was significantly and positively related to the behavior and that pressure from governmental regulations was the most important contributing factor in the passive feedback behavior and preventive behavior of commercial banks. The pressure from markets was the most important contributing factor in banks' active participation behavior; the pressure from community and NGOs was the most important contributing factor in their enthusiastic behavior.

  14. Project plan-Surficial geologic mapping and hydrogeologic framework studies in the Greater Platte River Basins (Central Great Plains) in support of ecosystem and climate change research

    USGS Publications Warehouse

    Berry, Margaret E.; Lundstrom, Scott C.; Slate, Janet L.; Muhs, Daniel R.; Sawyer, David A.; VanSistine, D. Paco

    2011-01-01

    The Greater Platte River Basin area spans a central part of the Midcontinent and Great Plains from the Rocky Mountains on the west to the Missouri River on the east, and is defined to include drainage areas of the Platte, Niobrara, and Republican Rivers, the Rainwater Basin, and other adjoining areas overlying the northern High Plains aquifer. The Greater Platte River Basin contains abundant surficial deposits that were sensitive to, or are reflective of, the climate under which they formed: deposits from multiple glaciations in the mountain headwaters of the North and South Platte Rivers and from continental ice sheets in eastern Nebraska; fluvial terraces (ranging from Tertiary to Holocene in age) along the rivers and streams; vast areas of eolian sand in the Nebraska Sand Hills and other dune fields (recording multiple episodes of dune activity); thick sequences of windblown silt (loess); and sediment deposited in numerous lakes and wetlands. In addition, the Greater Platte River Basin overlies and contributes surface water to the High Plains aquifer, a nationally important groundwater system that underlies parts of eight states and sustains one of the major agricultural areas of the United States. The area also provides critical nesting habitat for birds such as plovers and terns, and roosting habitat for cranes and other migratory birds that travel through the Central Flyway of North America. This broad area, containing fragile ecosystems that could be further threatened by changes in climate and land use, has been identified by the USGS and the University of Nebraska-Lincoln as a region where intensive collaborative research could lead to a better understanding of climate change and what might be done to adapt to or mitigate its adverse effects to ecosystems and to humans. The need for robust data on the geologic framework of ecosystems in the Greater Platte River Basin has been acknowledged in proceedings from the 2008 Climate Change Workshop and in draft

  15. Hydrologic risk analysis in the Yangtze River basin through coupling Gaussian mixtures into copulas

    NASA Astrophysics Data System (ADS)

    Fan, Y. R.; Huang, W. W.; Huang, G. H.; Li, Y. P.; Huang, K.; Li, Z.

    2016-02-01

    In this study, a bivariate hydrologic risk framework is proposed through coupling Gaussian mixtures into copulas, leading to a coupled GMM-copula method. In the coupled GMM-Copula method, the marginal distributions of flood peak, volume and duration are quantified through Gaussian mixture models and the joint probability distributions of flood peak-volume, peak-duration and volume-duration are established through copulas. The bivariate hydrologic risk is then derived based on the joint return period of flood variable pairs. The proposed method is applied to the risk analysis for the Yichang station on the main stream of the Yangtze River, China. The results indicate that (i) the bivariate risk for flood peak-volume would keep constant for the flood volume less than 1.0 × 105 m3/s day, but present a significant decreasing trend for the flood volume larger than 1.7 × 105 m3/s day; and (ii) the bivariate risk for flood peak-duration would not change significantly for the flood duration less than 8 days, and then decrease significantly as duration value become larger. The probability density functions (pdfs) of the flood volume and duration conditional on flood peak can also be generated through the fitted copulas. The results indicate that the conditional pdfs of flood volume and duration follow bimodal distributions, with the occurrence frequency of the first vertex decreasing and the latter one increasing as the increase of flood peak. The obtained conclusions from the bivariate hydrologic analysis can provide decision support for flood control and mitigation.

  16. Comparison among the microbial communities in the lake, lake wetland, and estuary sediments of a plain river network.

    PubMed

    Huang, Wei; Chen, Xing; Wang, Kun; Chen, Junyi; Zheng, Binghui; Jiang, Xia

    2018-06-10

    Sediment microbial communities from plain river networks exert different effects on pollutant transformation and migration in lake basins. In this study, we examined millions of Illumina reads (16S rRNA gene amplicons) to compare lake, lake wetland, and estuary bacterial communities through a technically consistent approach. Results showed that bacterial communities in the sampled lake sediments had the highest alpha-diversity (Group B), than in sampled lake wetland sediments and estuary sediments. Proteobacteria was the most abundant (more than 30%) phyla in all the sediments. The lake sediments had more Nitrospirae (1.63%-11.75%) and Acidobacteria (3.46%-10.21%) than the lake wetland and estuary sediments, and estuary sediments had a greater abundance of the phylum Firmicutes (mean of 22.30%). Statistical analysis (LEfSe) revealed that lake wetland sediments contained greater abundances of the class Anaerolineaceae, orders Xanthomonadales, Pseudomonadales, and genera Flavobacterium, Acinetobacter. The lake sediments had a distinct community of diverse primary producers, such as phylum Acidobacteria, order Ignavibacteriales, and families Nitrospiraceae, Hydrogenophilaceae. Total phosphorus and organic matter were the main factors influencing the bacterial communities in sediments from several parts of the lake wetland and river estuary (p < .05). The novel insights into basin pollution control in plain river networks may be obtained from microbial distribution in sediments from different basin regions. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  17. Sele coastal plain flood risk due to wave storm and river flow interaction

    NASA Astrophysics Data System (ADS)

    Benassai, Guido; Aucelli, Pietro; Di Paola, Gianluigi; Della Morte, Renata; Cozzolino, Luca; Rizzo, Angela

    2016-04-01

    Wind waves, elevated water levels and river discharge can cause flooding in low-lying coastal areas, where the water level is the interaction between wave storm elevated water levels and river flow interaction. The factors driving the potential flood risk include weather conditions, river water stage and storm surge. These data are required to obtain inputs to run the hydrological model used to evaluate the water surface level during ordinary and extreme events regarding both the fluvial overflow and storm surge at the river mouth. In this paper we studied the interaction between the sea level variation and the river hydraulics in order to assess the location of the river floods in the Sele coastal plain. The wave data were acquired from the wave buoy of Ponza, while the water level data needed to assess the sea level variation were recorded by the tide gauge of Salerno. The water stages, river discharges and rating curves for Sele river were provided by Italian Hydrographic Service (Servizio Idrografico e Mareografico Nazionale, SIMN).We used the dataset of Albanella station (40°29'34.30"N, 15°00'44.30"E), located around 7 km from the river mouth. The extreme river discharges were evaluated through the Weibull equation, which were associated with their return period (TR). The steady state river water levels were evaluated through HEC-RAS 4.0 model, developed by Hydrologic Engineering Center (HEC) of the United States Army Corps of Engineers Hydrologic Engineering Center (USACE,2006). It is a well-known 1D model that computes water surface elevation (WSE) and velocity at discrete cross-sections by solving continuity, energy and flow resistance (e.g., Manning) equation. Data requirements for HEC-RAS include topographic information in the form of a series of cross-sections, friction parameter in the form of Manning's n values across each cross-section, and flow data including flow rates, flow change locations, and boundary conditions. For a steady state sub

  18. Application of remote sensing data to land use and land cover assessment in the Tubarao River coastal plain, Santa Catarina, Brazil

    NASA Technical Reports Server (NTRS)

    1982-01-01

    By means of aerial photography and MSS-LANDSAT data a land use/land cover classification was applied to the Tubarao River coastal plain. The following classes were identified: coal related areas, permanently flooded wetlands, periodically flooded wetlands, agricultural lands, bare soils, water bodies, urban areas, forestlands.

  19. Gravity survey in part of the Snake River Plain, Idaho - a preliminary report

    USGS Publications Warehouse

    Baldwin, Harry L.; Hill, David P.

    1960-01-01

    During the early summer of 1959, a total of 1,187 gravity stations were occupied on the western part of the Snake River plain in Idaho. An area of 2,000 square miles extending from Glenns Ferry, Idaho, to Caldwell, Idaho, was covered with a station density of one station per two square miles. An additional 1,200 square miles of surrounding area, mainly from Caldwell, Idaho, to the Oregon-Idaho state line, was covered with a density of one station per seven square miles. The mean reproducibility of the observed gravities of these stations was 0.05 milligal, with a maximum discrepancy of 0.2 milligal. Gravity data were reduced to simple Bouguer values using a combined free-air and Bouguer correction of 0.06 milligal per foot. The only anomalies found with closure in excess of 10 milligals are two elongated highs, orientated northwest-southeast, with the northwestern high offset to the northeast by 10 miles. The smaller of these highs extends from Meridian, Idaho, to Nyssa, Oregon, and the larger extends from Swan Falls, Idaho, to Glenns Ferry, Idaho. The maximum value recorded is a simple Bouguer value of -66.5 milligals with respect to the International Ellipsoid. Gradients on the sides of these highs are largest on the northeast sides, reaching six milligals per mile in places. Graticule interpretations of a profile across the southeastern high using a density contrast of 0.3 gm per cubic centimeter indicate an accumulation of lava reaching a thickness of at least 28,000 feet. The Snake River investigation was made for the purpose of searching out, defining, and interpreting gravity anomalies present on the western part of the Snake River lava plain in Idaho. In particular, it was desired to further define gradients associated with the gravity high shown by the regional work of Bonini and Lavin (1957). It was not planned to cover any specific area, but rather to let the observed anomalies determine the course of the field work. The study was undertaken as part of a

  20. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China.

    PubMed

    Liu, Zhouping; Zhang, Qiaofen; Han, Tiqian; Ding, Yanfei; Sun, Junwei; Wang, Feijuan; Zhu, Cheng

    2015-12-22

    Heavy metals are regarded as toxic trace elements in the environment. Heavy metal pollution in soil or rice grains is of increasing concern. In this study, 101 pairs of soil and rice samples were collected from the major rice-producing areas along the Yangtze River in China. The soil properties and heavy metal (i.e., Cd, Hg, Pb and Cr) concentrations in the soil and rice grains were analyzed to evaluate the heavy metal accumulation characteristics of the soil-rice systems. The results showed that the Cd, Hg, Pb and Cr concentrations in the soil ranged from 0.10 to 4.64, 0.01 to 1.46, 7.64 to 127.56, and 13.52 to 231.02 mg·kg(-)¹, respectively. Approximately 37%, 16%, 60% and 70% of the rice grain samples were polluted by Cd, Hg, Pb, and Cr, respectively. The degree of heavy metal contamination in the soil-rice systems exhibited a regional variation. The interactions among the heavy metal elements may also influence the migration and accumulation of heavy metals in soil or paddy rice. The accumulation of heavy metals in soil and rice grains is related to a certain extent to the pH and soil organic matter (SOM). This study provides useful information regarding heavy metal accumulation in soil to support the safe production of rice in China. The findings from this study also provide a robust scientific basis for risk assessments regarding ecological protection and food safety.

  1. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China

    PubMed Central

    Liu, Zhouping; Zhang, Qiaofen; Han, Tiqian; Ding, Yanfei; Sun, Junwei; Wang, Feijuan; Zhu, Cheng

    2015-01-01

    Heavy metals are regarded as toxic trace elements in the environment. Heavy metal pollution in soil or rice grains is of increasing concern. In this study, 101 pairs of soil and rice samples were collected from the major rice-producing areas along the Yangtze River in China. The soil properties and heavy metal (i.e., Cd, Hg, Pb and Cr) concentrations in the soil and rice grains were analyzed to evaluate the heavy metal accumulation characteristics of the soil-rice systems. The results showed that the Cd, Hg, Pb and Cr concentrations in the soil ranged from 0.10 to 4.64, 0.01 to 1.46, 7.64 to 127.56, and 13.52 to 231.02 mg·kg−1, respectively. Approximately 37%, 16%, 60% and 70% of the rice grain samples were polluted by Cd, Hg, Pb, and Cr, respectively. The degree of heavy metal contamination in the soil-rice systems exhibited a regional variation. The interactions among the heavy metal elements may also influence the migration and accumulation of heavy metals in soil or paddy rice. The accumulation of heavy metals in soil and rice grains is related to a certain extent to the pH and soil organic matter (SOM). This study provides useful information regarding heavy metal accumulation in soil to support the safe production of rice in China. The findings from this study also provide a robust scientific basis for risk assessments regarding ecological protection and food safety. PMID:26703698

  2. Drought evaluation using the GRACE terrestrial water storage deficit over the Yangtze River Basin, China.

    PubMed

    Sun, Zhangli; Zhu, Xiufang; Pan, Yaozhong; Zhang, Jinshui; Liu, Xianfeng

    2018-09-01

    Droughts are some of the worst natural disasters that bring significant water shortages, economic losses, and adverse social consequences. Gravity Recovery and Climate Experiment (GRACE) satellite data are widely used to characterize and evaluate droughts. In this work, we evaluate drought situations in the Yangtze River Basin (YRB) using the GRACE Texas Center for Space Research (CSR) mascon (mass concentration) data from 2003 to 2015. Drought events are identified by water storage deficits (WSDs) derived from GRACE data, while the drought severity evaluation is based on the water storage deficit index (WSDI), standardized WSD time series, and total water storage deficit (TWSD). The WSDI is subsequently compared with the Palmer drought severity index (PDSI), standardized precipitation index (SPI), standardized precipitation evapotranspiration index (SPEI), and standardized runoff index (SRI). The results indicate the YRB experienced increased wetness during the study period, with WSD values increasing at a rate of 5.20mm/year. Eight drought events are identified, and three major droughts occurred in 2004, 2006, and 2011, with WSDIs of -2.05, -2.38, and -1.30 and TWSDs of -620.96mm, -616.81mm, and -192.44mm, respectively. Our findings suggest that GRACE CSR mascon data can be used effectively to assess drought features in the YRB and that the WSDI facilitates robust and reliable characterization of droughts over large-scale areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Decline in suspended sediment concentration delivered by the Changjiang (Yangtze) River into the East China Sea between 1956 and 2013

    NASA Astrophysics Data System (ADS)

    Dai, Zhijun; Fagherazzi, Sergio; Mei, Xuefei; Gao, Jinjuan

    2016-09-01

    The temporal evolution of suspended sediment concentration (SSC) in a river debouching into the ocean provides vital insights into erosion processes in the watershed and dictates the evolution of the inner continental shelf. While the delivery of sediment from rivers to the ocean has received special attention in the recent past, few studies focused on the variability and dynamics of river SSC, especially in the Changjiang (Yangtze) river, China, the longest river in Asia. Here, variations in SSC delivered by the Changjiang River to the East China Sea and possible causes of its variability were detected based on a long-term time series of daily SSC and monthly water discharge measured at the Datong gauging station. The SSC data are further compared to a hydrological analysis of yearly precipitation covering the entire catchment. The results indicate the presence of a decline in SSC in the period 1956-2013, which can be divided into three phases: (i) high SSC (0.69 kg/m3) in the wet season and low SSC (0.2 kg/m3) in the dry season from 1956 to 1970; (ii) relative high SSC (0.58 kg/m3) in the wet season and low SSC (0.15 kg/m3) in the dry season from 1971 to 2002; and (iii) low SSC (0.19 kg/m3) in the wet season and very low SSC (0.09 kg/m3) in the dry season after 2002. These three periods have a mean yearly SSC values of 0.62, 0.42, and 0.18 kg/m3, respectively. Compared with 1956-1970, the slope of the rating curve between SSC and water discharge decreased, respectively, by 2% and 30% during the period 1971-2002 and 2002-2013. Soil erosion, dam construction, and banks reinforcement along the Changjiang River are the main causes of SSC variations. Fluctuations in water discharge are also controlling the SSC long-term variations. Specifically, from 1956 to 1970, the effect of soil erosion overrules that of dam impoundment, which is likely responsible for the high SSC; during the period 1970-2002, the influence of dam impoundment increases while that of soil erosion

  4. Potential hydrothermal resource temperatures in the Eastern Snake River Plain, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghanashayam Neupane; Earl D. Mattson; Cody J. Cannon

    The Eastern Snake River Plain (ESRP) in southern Idaho is a region of high heat flow. Sustained volcanic activities in the wake of the passage of the Yellowstone Hotspot have turned this region into an area with great potential for geothermal resources as evidenced by numerous hot springs scattered along the margins of the plain and several hot-water producing wells and hot springs within the plain. Despite these thermal expressions, it is hypothesized that the pervasive presence of an overlying groundwater aquifer in the region effectively masks thermal signatures of deep-seated geothermal resources. The dilution of deeper thermal water andmore » re-equilibration at lower temperature are significant challenges for the evaluation of potential resource areas in the ESRP. Over the past several years, we collected approximately 100 water samples from springs/wells for chemical analysis as well as assembled existing water chemistry data from literature. We applied several geothermometric and geochemical modeling tools to these chemical compositions of ESRP water samples. Geothermometric calculations based on principles of multicomponent equilibrium geothermometry with inverse geochemical modeling capability (e.g., Reservoir Temperature Estimator, RTEst) have been useful for the evaluation of reservoir temperatures. RTEst geothermometric calculations of ESRP thermal water samples indicated numerous potential geothermal areas with elevated reservoir temperatures. Specifically, areas around southern/southwestern side of the Bennett Hills and within the Camas Prairies in the western-northwestern regions of the ESRP and its margins suggest temperatures in the range of 140-200°C. In the northeastern portions of the ESRP, Lidy Hot Springs, Ashton, Newdale, and areas east of Idaho Falls have expected reservoir temperature =140 °C. In the southern ERSP, areas near Buhl and Twin Falls are found to have elevated temperatures as high as 160 °C. These areas are likely to host

  5. Synchrotron micro-scale study of trace metal transport and distribution in Spartina alterniflora root system in Yangtze River intertidal zone

    DOE PAGES

    Feng, Huan; Tappero, Ryan; Zhang, Weiguo; ...

    2015-07-26

    This study is focused on micro-scale measurement of metal (Ca, Cl, Fe, K, Mn, Cu, Pb, and Zn) distributions in Spartina alterniflora root system. The root samples were collected in the Yangtze River intertidal zone in July 2013. Synchrotron X-ray fluorescence (XRF), computed microtomography (CMT), and X-ray absorption near-edge structure (XANES) techniques, which provide micro-meter scale analytical resolution, were applied to this study. Although it was found that the metals of interest were distributed in both epidermis and vascular tissue with the varying concentrations, the results showed that Fe plaque was mainly distributed in the root epidermis. Other metals (e.g.,more » Cu, Mn, Pb, and Zn) were correlated with Fe in the epidermis possibly due to scavenge by Fe plaque. Relatively high metal concentrations were observed in the root hair tip. As a result, this micro-scale investigation provides insights of understanding the metal uptake and spatial distribution as well as the function of Fe plaque governing metal transport in the root system.« less

  6. Distribution of human papilloma virus genotype prevalence in invasive cervical carcinomas and precancerous lesions in the Yangtze River Delta area, China.

    PubMed

    Wang, Hongyun; Cheng, Xiaodong; Ye, Jing; Xu, Xiuyun; Hong, Ying; Sui, Long; You, Zhixue; Xie, Xing

    2018-04-27

    This study aimed to provide more information for cancer prevention strategies by determining the distribution of human papilloma virus (HPV) genotype prevalence in invasive cervical carcinoma (ICC) and precancerous lesion patients in the Yangtze River Delta area in China. This multi-centre descriptive cross-sectional study involves four university hospitals in the Jiangzhehu area. Women with histologically confirmed cervical intraepithelial neoplasia (CIN) 1, CIN2, CIN3 or ICC who were diagnosed and treated in the four selected hospitals between February 2012 and April 2014 were eligible for recruitment. The average age of the patients was 40.93 ± 11.87 years old, among whom the youngest was 17 years old and the oldest was 76 years old.Those with immunodeficiency diseases or a previous history of cancer or CIN were excluded. HPV genotyping was performed by a central laboratory. The distribution and age and disease specificity of the HPV genotype prevalence were analysed. Of the 2181 collected samples, 251 were ICC and 1930 were CIN. The mean age of cervical cancer and CIN patients was 40.93 ± 11.8 years (range, 17-76 years). The five most commonly identified HPV types in each lesion class were as follows: CIN1: 52, 58, 16, 33, and CP; CIN2: 16, 58, 52, 33, and 31; CIN3: 16, 58, 33, 52, and 31; and ICC: 16, 58, 18, 52, and 33. CIN1 had an earlier age of onset (30-40 years) than CIN2, CIN3, and cervical cancer. The age of onset of cervical cancer exhibited two peaks at 40-44 and 50-54 years of age. In all infected patients, the frequency of HPV infection with a single type was 62.9%, and with multiple types, it was 38.1%. There was no difference in the frequencies of multiple types amongst the different cervical lesions. The most prevalent genotypes in the investigated area (52, 58, 16 and 18) justify the necessity of anti-HPV vaccination in teenagers and young girls under 24 years old in the Yangtze River Delta area in China. Infection with

  7. Constraining rates and trends of historical wetland loss, Mississippi River Delta Plain, south-central Louisiana

    USGS Publications Warehouse

    Bernier, Julie C.; Morton, Robert A.; Barras, John A.

    2006-01-01

    The timing, magnitude, and rate of wetland loss were described for five wetland-loss hotspots in the Terrebonne Basin of the Mississippi River delta plain. Land and water areas were mapped for 34 dates between 1956 and 2004 from historical National Wetlands Inventory (NWI) datasets, aerial photographs, and Landsat Thematic Mapper (TM) satellite images. Since 1956, the emergent land area at the five study areas in south-central Louisiana has decreased by about 50%. Comparison of the water-area curve derived from the 29 TM images with water-level records from the nearby Grand Isle, Louisiana tide gauge (NOS #8761724) clearly shows that changes in land and water areas fluctuate in response to variations in regional water levels. The magnitude of water-area fluctuations decreased from the 1980s to the 1990s as former areas of wet marsh within and immediately adjacent to the wetland-loss hotspots became permanently submerged. The most rapid wetland loss occurred during the late 1960s and 1970s. Peak wetland-loss rates during this period were two to four times greater than both the pre-1970s background rates and the most recent wetland-loss rates. These results provide constraints on predicting future delta-plain wetland losses and identify Landsat TM imagery as an important source for analyzing land- and water-area changes across the entire delta plain.

  8. [Composition and Regional Characteristics of Atmosphere Aerosol and Its Water Soluble Ions over the Yangtze River Delta Region in a Winter Haze Period].

    PubMed

    Wang, Man-ting; Zhu, Bin; Wang, Hong-lei; Xue, Guo-qiang; He, Jun; Xu, Hong-hui; Cao, Jin-fei

    2015-07-01

    To investigate the pollution characteristics of water soluble ions in fine atmospheric particles in Yangtze River Delta during the haze period from 18th to 24th Jan 2013, a joint sampling campaign using Andersen sampler was conducted at five cities (including Nanjing, Suzhou, Hangzhou, Lin'an and Ningbo). The analysis of size distribution of these ionic species coupled with the local meteorological conditions may shed some insightful light on the haze formation mechanism in this region. The result has shown: firstly, during the observation period, when Yangtze River Delta located at high pressure or in the front of high pressure, and has a large pressure gradient, the lower atmosphere has a significant airflow divergence in favor of pollutant dispersion; while located in weak low pressure and weak high pressure, the equalizing pressure field is not favorable for pollutant dispersion, especially accompanied with lower atmosphere convergence airflow. Secondly, during the hazy period, the concentration of fine particles and total water-soluble inorganic ions (TWSS) has increased dramatically; the increasing proportions of TWSS in fine particles are: Hangzhou 0. 9%, Lin'an 4. 2%, Nanjing 8. 1%. The particle size of secondary ions of SO(4)2-, NO3-, NH4+ complies fine mode(particle size <2. 1 µm), whose peaks migrates from 0. 43-0. 65 µm to 0. 65-1. 1 µm during the observation period, the peak of particle size of Ca2+ , Mg2+ appears at 4.7-5. 8 µm, while the ions of Na+, Cl-, K+ show a bimodal distribution. Moreover, secondary inorganic ions play a significant role in the formation of haze pollution, where the concentrations of secondary inorganic ions of NH4+, SO2- and NO3 have higher increasing rates; their relative proportions of increasing from each monitoring points are: Hangzhou 3%, Lin'an 55% and Nanjing 64.9%. Finally, SO(4)2- has the highest mass contribution to SNA, up to 45% ; also, the NO-/SO- ratios in each monitoring points are always higher than a fair

  9. Natural and Human Impacts on Recent Development of Asian Large Rivers and Deltas

    NASA Astrophysics Data System (ADS)

    Liu, P.; Lu, C.

    2014-12-01

    Most recent data analysis indicates sediment loads in most of Asian large rivers (like, Yellow, Yangtze, Pearl, Chao Phraya, Indus, Krishna, Godavari, etc) have decreased up to 80-90% in the past 60 years. Correspondingly, most of Asian large river deltas are facing severe sediment starving; delta shoreline comparisons indicate that some are under strong coastal erosion. For examples, the Yellow River Delta has been retreating since 1990s when its annual sediment load has kept below 300 million tons. The Yangtze River delta kept growing before Three Gorges Dams was operating, and began to be eroded from the year 2003 to 2009, and then prograded locally due to the Deep Water Navigation Project. The Mekong Delta shoreline has also been dynamically changing with the sediment flux variation, eroding from 1989 to 1996 and prograding from 1996 to 2002. More information is available at http://www.meas.ncsu.edu/sealevel

  10. Bayesian operational modal analysis of Jiangyin Yangtze River Bridge

    NASA Astrophysics Data System (ADS)

    Brownjohn, James Mark William; Au, Siu-Kui; Zhu, Yichen; Sun, Zhen; Li, Binbin; Bassitt, James; Hudson, Emma; Sun, Hongbin

    2018-09-01

    Vibration testing of long span bridges is becoming a commissioning requirement, yet such exercises represent the extreme of experimental capability, with challenges for instrumentation (due to frequency range, resolution and km-order separation of sensor) and system identification (because of the extreme low frequencies). The challenge with instrumentation for modal analysis is managing synchronous data acquisition from sensors distributed widely apart inside and outside the structure. The ideal solution is precisely synchronised autonomous recorders that do not need cables, GPS or wireless communication. The challenge with system identification is to maximise the reliability of modal parameters through experimental design and subsequently to identify the parameters in terms of mean values and standard errors. The challenge is particularly severe for modes with low frequency and damping typical of long span bridges. One solution is to apply 'third generation' operational modal analysis procedures using Bayesian approaches in both the planning and analysis stages. The paper presents an exercise on the Jiangyin Yangtze River Bridge, a suspension bridge with a 1385 m main span. The exercise comprised planning of a test campaign to optimise the reliability of operational modal analysis, the deployment of a set of independent data acquisition units synchronised using precision oven controlled crystal oscillators and the subsequent identification of a set of modal parameters in terms of mean and variance errors. Although the bridge has had structural health monitoring technology installed since it was completed, this was the first full modal survey, aimed at identifying important features of the modal behaviour rather than providing fine resolution of mode shapes through the whole structure. Therefore, measurements were made in only the (south) tower, while torsional behaviour was identified by a single measurement using a pair of recorders across the carriageway. The

  11. Health risk assessment of fluoride in drinking water from Anhui Province in China.

    PubMed

    Gao, Hong-jian; Jin, You-qian; Wei, Jun-ling

    2013-05-01

    This study analyzes the concentrations and health risks of fluoride in 249 drinking water samples collected from different regions of Anhui Province in China. Results indicated that fluoride content in drinking water ranged from 0.12 to 1.94 mg L(-1) (mean = 0.57 mg L(-1)) in the following order: Huaibei plain region > Jianghuai hill region ≈ Dabieshan mountainous region > plain along the Yangtze River region > southern Anhui mountainous region. The fluoride contents were less than 0.50 mg L(-1) in 66.66 % of the drinking water samples, 0.51-1.0 mg L(-1) in 23.29 %, and higher than 1.0 mg L(-1) in 12.04 %. The fluoride levels in some samples were lower than the recommended values for controlling dental caries (0.50-1.0 mg L(-1)). The total fluoride intake from drinking water was between 0.14 and 2.33 mg per day in different regions of the province, supposing an individual consumes 1.2 L of water per day. Therefore, measures should be taken to increase fluoride intake in the Jianghuai hill region, Dabieshan mountainous region, plain along the Yangtze River, and southern Anhui mountainous region to control dental caries. On the other hand, the fluoride levels must be reduced in the Huaibei plain region to decrease endemic fluorosis. The results serve as crucial guidelines for managing fluoride safety in drinking water and controlling endemic fluorosis in different regions of Anhui Province.

  12. Late Holocene evolution of a coupled, mud-dominated delta plain-chenier plain system, coastal Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Hijma, Marc P.; Shen, Zhixiong; Törnqvist, Torbjörn E.; Mauz, Barbara

    2017-11-01

    Major deltas and their adjacent coastal plains are commonly linked by means of coast-parallel fluxes of water, sediment, and nutrients. Observations of the evolution of these interlinked systems over centennial to millennial timescales are essential to understand the interaction between point sources of sediment discharge (i.e. deltaic distributaries) and adjacent coastal plains across large spatial (i.e. hundreds of kilometres) scales. This information is needed to constrain future generations of numerical models to predict coastal evolution in relation to climate change and other human activities. Here we examine the coastal plain (Chenier Plain, CP) adjacent to the Mississippi River delta, one of the world's largest deltas. We use a refined chronology based on 22 new optically stimulated luminescence and 22 new radiocarbon ages to test the hypothesis that cyclic Mississippi subdelta shifting has influenced the evolution of the adjacent CP. We show that over the past 3 kyr, accumulation rates in the CP were generally 0-1 Mt yr-1. However, between 1.2 and 0.5 ka, when the Mississippi River shifted to a position more proximal to the CP, these rates increased to 2.9 ±1.1 Mt yr-1 or 0.5-1.5 % of the total sediment load of the Mississippi River. We conclude that CP evolution during the past 3 kyr was partly a direct consequence of shifting subdeltas, in addition to changing regional sediment sources and modest rates of relative sea-level (RSL) rise. The RSL history of the CP during this time period was constrained by new limiting data points from the base of overwash deposits associated with the cheniers. These findings have implications for Mississippi River sediment diversions that are currently being planned to restore portions of this vulnerable coast. Only if such diversions are located in the western portion of the Mississippi Delta plain could they potentially contribute to sustaining the CP shoreline. Our findings highlight the importance of a better

  13. The Upper Mississippi River System—Topobathy

    USGS Publications Warehouse

    Stone, Jayme M.; Hanson, Jenny L.; Sattler, Stephanie R.

    2017-03-23

    The Upper Mississippi River System (UMRS), the navigable part of the Upper Mississippi and Illinois Rivers, is a diverse ecosystem that contains river channels, tributaries, shallow-water wetlands, backwater lakes, and flood-plain forests. Approximately 10,000 years of geologic and hydrographic history exist within the UMRS. Because it maintains crucial wildlife and fish habitats, the dynamic ecosystems of the Upper Mississippi River Basin and its tributaries are contingent on the adjacent flood plains and water-level fluctuations of the Mississippi River. Separate data for flood-plain elevation (lidar) and riverbed elevation (bathymetry) were collected on the UMRS by the U.S. Army Corps of Engineers’ (USACE) Upper Mississippi River Restoration (UMRR) Program. Using the two elevation datasets, the U.S. Geological Survey (USGS) Upper Midwest Environmental Sciences Center (UMESC) developed a systemic topobathy dataset.

  14. Project HOTSPOT: Borehole geophysics log interpretation from the Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Lee, M. D.; Schmitt, D. R.; Chen, X.; Shervais, J. W.; Liberty, L. M.; Potter, K. E.; Kessler, J. A.

    2013-12-01

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberely, and (3) Mountain Home. The most eastern drill hole is Kimama located along the central volcanic axis of the SRP and documents basaltic volcanism. The Kimberely drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama drill hole and is located near the margin of the plain. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. A suite of ground and borehole geophysical surveys were carried out within the SRP between 2010 and 2012. The borehole geophysics logs included gamma ray (spectral and natural), neutron hydrogen index, electrical resistivity, magnetic susceptibility, ultrasonic borehole televiewer imaging, full waveform sonic, and vertical seismic profile. The borehole geophysics logs were qualitatively assessed through visual interpretation of lithological horizons and quantitatively through physical property specialized software and digital signal processing automated filtering process to identify step functions and high frequency anomalies. Preliminary results were published by Schmitt et al. (2012), Potter et al. (2012), and Shervais et al. (2013). The results are continuously being enhanced as more information is qualitatively and quantitatively delineated from the borehole geophysics logs. Each drill hole encounters three principal units: massive basalt flows, rhyolite, and sediments. Basalt has a low to moderate porosity and is

  15. Dynamics of spatial clustering of schistosomiasis in the Yangtze River Valley at the end of and following the World Bank Loan Project.

    PubMed

    Hu, Yi; Xiong, Chenglong; Zhang, Zhijie; Luo, Can; Ward, Michael; Gao, Jie; Zhang, Lijuan; Jiang, Qingwu

    2014-06-01

    The 10-year (1992-2001) World Bank Loan Project (WBLP) contributed greatly to schistosomiasis control in China. However, the re-emergence of schistosomiasis in recent years challenged the long-term progress of the WBLP strategy. In order to gain insight in the long-term progress of the WBLP, the spatial pattern of the epidemic was investigated in the Yangtze River Valley between 1999-2001 and 2007-2008. Two spatial cluster methods were jointly used to identify spatial clusters of cases. The magnitude and number of clusters varied during 1999-2001. It was found that prevalence of schistosomiasis had been greatly reduced and maintained at a low level during 2007-2008, with little change. Besides, spatial clusters most frequently occurred within 16 counties in the Dongting Lake region and within 5 counties in the Poyang Lake region. These findings precisely pointed out the prior places for future public health planning and resource allocation of schistosomiasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Crustal Deformation in the Eastern Snake River Plain and Yellowstone Plateau Observed by SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Aly, M. H.; Hughes, S. S.; Rodgers, D. W.; Glenn, N. F.; Thackray, G. D.

    2007-12-01

    The Snake River Plain-Yellowstone tectono-volcanic province was created when North America migrated over a fixed hotspot in the mantle. Synthetic Aperture Radar Interferometry (InSAR) has been applied in this study to address the recent tectono-volcanic activity in the Eastern Snake River Plain (ESRP) and the southwestern part of Yellowstone Plateau. InSAR results show that crustal deformation across the tectono-volcanic province is episodic. An episode of uplift (about 1 cm/yr) along the ESRP axial volcanic zone, directly southwest of Island Park, has been detected from a time-series of independent differential interferograms created for the 1993-2000 period. Episodes of subsidence (1 cm/yr) during 1997-2000 and uplift (3 cm/yr) during 2004-2006 have been also detected in the active Yellowstone caldera, just northeast of Island Park. The detected interferometric signals indicate that deformation across the axial volcanic zone near Island Park is inversely linked to deformation in the active Yellowstone caldera. One explanation is that the inverse motions reflect a flexure response of the ESRP crust to magma chamber activity beneath the active caldera, although other interpretations are possible. The time-series of differential interferograms shows that no regional deformation has occurred across the central part of ESRP during the periods of observations, but local surface displacements of 1-3 cm magnitude have been detected in the adjacent Basin-Range province. Differential surface movements of varying rates have been also detected along Centennial, Madison, and Hebgen faults between 1993 and 2006.

  17. Independent technical review and analysis of hydraulic modeling and hydrology under low-flow conditions of the Des Plaines River near Riverside, Illinois

    USGS Publications Warehouse

    Over, Thomas M.; Straub, Timothy D.; Hortness, Jon E.; Murphy, Elizabeth A.

    2012-01-01

    The U.S. Geological Survey (USGS) has operated a streamgage and published daily flows for the Des Plaines River at Riverside since Oct. 1, 1943. A HEC-RAS model has been developed to estimate the effect of the removal of Hofmann Dam near the gage on low-flow elevations in the reach approximately 3 miles upstream from the dam. The Village of Riverside, the Illinois Department of Natural Resources-Office of Water Resources (IDNR-OWR), and the U. S. Army Corps of Engineers-Chicago District (USACE-Chicago) are interested in verifying the performance of the HEC-RAS model for specific low-flow conditions, and obtaining an estimate of selected daily flow quantiles and other low-flow statistics for a selected period of record that best represents current hydrologic conditions. Because the USGS publishes streamflow records for the Des Plaines River system and provides unbiased analyses of flows and stream hydraulic characteristics, the USGS served as an Independent Technical Reviewer (ITR) for this study.

  18. Influence of the characteristics of atmospheric boundary layer on the vertical distribution of air pollutant in China's Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Wang, Chenggang; Cao, Le

    2016-04-01

    Air pollution occurring in the atmospheric boundary layer is a kind of weather phenomenon which decreases the visibility of the atmosphere and results in poor air quality. Recently, the occurrence of the heavy air pollution events has become more frequent all over Asia, especially in Mid-Eastern China. In December 2015, the most severe air pollution in recorded history of China occurred in the regions of Yangtze River Delta and Beijing-Tianjin-Hebei. More than 10 days of severe air pollution (Air Quality Index, AQI>200) appeared in many large cities of China such as Beijing, Tianjin, Shijiazhuang and Baoding. Thus, the research and the management of the air pollution has attracted most attentions in China. In order to investigate the formation, development and dissipation of the air pollutions in China, a field campaign has been conducted between January 1, 2015 and January 28, 2015 in Yangtze River Delta of China, aiming at a intensive observation of the vertical structure of the air pollutants in the atmospheric boundary layer during the time period with heavy pollution. In this study, the observation data obtained in the field campaign mentioned above is analyzed. The characteristics of the atmospheric boundary layer and the vertical distribution of air pollutants in the city Dongshan located in the center of Lake Taihu are shown and discussed in great detail. It is indicated that the stability of the boundary layer is the strongest during the nighttime and the early morning of Dongshan. Meanwhile, the major air pollutants, PM2.5 and PM10 in the boundary layer, reach their maximum values, 177.1μg m-3 and 285μg m-3 respectively. The convective boundary layer height in the observations ranges from approximately 700m to 1100m. It is found that the major air pollutants tend to be confined in a relatively shallow boundary layer, which represents that the boundary layer height is the dominant factor for controlling the vertical distribution of the air pollutants. In

  19. Water resources of the Yellow Medicine River Watershed, Southwestern Minnesota

    USGS Publications Warehouse

    Novitzki, R.P.; Van Voast, Wayne A.; Jerabek, L.A.

    1969-01-01

    The Yellow Medicine and Minnesota Rivers are the major sources of surface water. For physiographic regions – Upland Plain, Slope, Lowland Plain, and Minnesota River Flood Plain – influence surface drainage, and the flow of ground water through the aquifers. The watershed comprises 1070 square miles, including the drainage basin of the Yellow Medicine River (665 square miles) and 405 square miles drained by small streams tributary to the Minnesota River.

  20. River-corridor habitat dynamics, Lower Missouri River

    USGS Publications Warehouse

    Jacobson, Robert B.

    2010-01-01

    Intensive management of the Missouri River for navigation, flood control, and power generation has resulted in substantial physical changes to the river corridor. Historically, the Missouri River was characterized by a shifting, multithread channel and abundant unvegetated sandbars. The shifting channel provided a wide variety of hydraulic environments and large areas of connected and unconnected off-channel water bodies.Beginning in the early 1800s and continuing to the present, the channel of the Lower Missouri River (downstream from Sioux City, Iowa) has been trained into a fast, deep, single-thread channel to stabilize banks and maintain commercial navigation. Wing dikes now concentrate the flow, and revetments and levees keep the channel in place and disconnect it from the flood plain. In addition, reservoir regulation of the Missouri River upstream of Yankton, South Dakota, has substantially changed the annual hydrograph, sediment loads, temperature regime, and nutrient budgets.While changes to the Missouri River have resulted in broad social and economic benefits, they have also been associated with loss of river-corridor habitats and diminished populations of native fish and wildlife species. Today, Missouri River stakeholders are seeking ways to restore some natural ecosystem benefits of the Lower Missouri River without compromising traditional economic uses of the river and flood plain.

  1. Flood Plain Lakes Along the Elbe River - a Forgotten Risk

    NASA Astrophysics Data System (ADS)

    Heise, Susanne

    2014-05-01

    Flood Plain Lakes Along the Elbe River - a Forgotten Risk Introduction: Along the German part of the Elbe River, more than 1000 "side structures" form potential sinks of contaminated sediment. They are mostly remains of previous river courses which have been cut off by natural causes or anthropogenic alterations of the river (oxbow lakes), or are floodplain lakes that were formed during high water conditions. These water bodies sometimes have a small opening towards the Elbe, or are hydrodynamically connected only in situations of high discharges. High discharges in the Elbe River, however, are mainly responsible for transporting historic contaminants along with suspended matter from former historic sources in the middle Elbe downstream. As these may settle when the current dies down at the end of a high discharge period, side structures have been under suspicion to have accumulated contaminated material over the last decades. Until this study was conducted, nothing was known about erodibility and contamination of sediment in these lakes even though they could have a large impact on the Elbe River itself: A preliminary investigation showed that the total surface of side structures in the Elbe floodplain adds up to about 50 km2. In case that deposited sediment is contaminated and only the upper 20 cm are prone to resuspension and transport during flooding, 10 Mio m3 of contaminated sediment could potentially be added to the contaminant load during a high water event. This study was carried out to evaluate the risk from these side structures for the environmental quality of the Elbe River. Methods: 15 side structures were investigated. Sediment cores were taken on 1 to 3 locations per water body in order to obtain the following information: • Depth of sediment layer • Erodibility of surface sediment, measured immediately after sampling - using the "Gust Microcosm", • Eroded mass at over-critical shear stress, measured in the lab by eroding a sediment core for

  2. City-specific vehicle emission control strategies to achieve stringent emission reduction targets in China's Yangtze River Delta region.

    PubMed

    Zhang, Shaojun; Wu, Ye; Zhao, Bin; Wu, Xiaomeng; Shu, Jiawei; Hao, Jiming

    2017-01-01

    The Yangtze River Delta (YRD) region is one of the most prosperous and densely populated regions in China and is facing tremendous pressure to mitigate vehicle emissions and improve air quality. Our assessment has revealed that mitigating vehicle emissions of NOx would be more difficult than reducing the emissions of other major vehicular pollutants (e.g., CO, HC and PM 2.5 ) in the YRD region. Even in Shanghai, where the emission control implemented are more stringent than in Jiangsu and Zhejiang, we observed little to no reduction in NOx emissions from 2000 to 2010. Emission-reduction targets for HC, NOx and PM 2.5 are determined using a response surface modeling tool for better air quality. We design city-specific emission control strategies for three vehicle-populated cities in the YRD region: Shanghai and Nanjing and Wuxi in Jiangsu. Our results indicate that even if stringent emission control consisting of the Euro 6/VI standards, the limitation of vehicle population and usage, and the scrappage of older vehicles is applied, Nanjing and Wuxi will not be able to meet the NOx emissions target by 2020. Therefore, additional control measures are proposed for Nanjing and Wuxi to further mitigate NOx emissions from heavy-duty diesel vehicles. Copyright © 2016. Published by Elsevier B.V.

  3. Role of neotectonics and climate in development of the Holocene geomorphology and soils of the Gangetic Plains between the Ramganga and Rapti rivers

    NASA Astrophysics Data System (ADS)

    Srivastava, Pankaj; Parkash, B.; Sehgal, J. L.; Kumar, Sudhir

    1994-12-01

    Fifteen soil-geomorphic units have been delineated from the Gangetic Plains between the Ramganga and Rapti rivers. They were identified by remote sensing and field checks. On the basis of degree of profile development, their soils are grouped into five members (QGH1 to QGH5, QGH5 being the oldest) of a soil chrono-association. Tentative ages assigned to QGH1 to QGH5 are <500, > 500, > 2500, 8000 and 13,5000 yr B.P., respectively. From the early Holocene to about 6500 yr. B.P. a cold, arid to semi-arid climate prevailed and pedogenic calcrete developed over large areas in the Gangetic Plains. Later, a warm and humid climate and improved drainage resulted in complete removal of calcrete from soil profiles in some areas or its dissolution and re-precipitation in lower horizons in other areas. Neotectonics seems to have played a significant role in the evolution of the geomorphology and soils of the area. It determined areas of active sedimentation, pedogenesis and erosion (in upland regions). It led to tilting and sagging of large blocks resulting in shifting and increase in sinuosity of the rivers. Tectonic slopes/faults determined the courses of large rivers.

  4. Subsidence driving forces in large Delta Plain

    NASA Astrophysics Data System (ADS)

    Grall, C.; Steckler, M. S.

    2017-12-01

    Recent studies show large variability in subsidence rates among large delta plains that directly impact coastal management of these highly vulnerable environments. Observations show both significant spatial variation in subsidence across each delta, as well as large differences in magnitude between different deltas. This variability raises the question of what are the driving forces that control subsidence in large delta plains that this study aims to address. Subsidence and sediment compaction is studied in 4 end-member large Delta Plains: the Ganges-Brahmaputra, the Mekong, the Mississippi and the Nile. Those large delta plains drastically contrast in subsidence rates (from values to several mm/yr to several cm/yr), in the nature of the sediment (notably in clay and organic matter content), and in the volume of sediment supplied by the large rivers that feed those coastal environments. The volume of sediment deposited in each delta plain during the Holocene is estimated and the compaction of the underlying sedimentary column is computed by using a backstripping approach. Sediment compaction behaviors are defined accordingly to the observed clay, silt and organic contents, and the rate of subsidence associated with compaction is determined. Results suggest that about 2/3 of observed Holocene subsidence may be associated with the mechanical and chemical compaction of the underlying sedimentary column due to the load of sediment deposited. The compaction appears to be significantly higher in delta plains characterized by a high sediment input and a high organic matter and clay content. Thus, the observed subsidence rates in the (muddy) Mekong delta appear to be one order of magnitude higher than other delta plains. In contrast, subsidence rates are modest in the Ganges-Brahmaputra, the Mississippi and the Nile delta plains, except away from the major rivers where deposits are muddier.

  5. Sources and fate of high levels of ammonium in surface water and shallow groundwater of the Jianghan Plain, Central China.

    PubMed

    Du, Yao; Ma, Teng; Deng, Yamin; Shen, Shuai; Lu, Zongjie

    2017-02-22

    High levels of ammonium from anthropogenic sources threaten the quality of surface waters and groundwaters in some areas worldwide, but elevated ammonium levels of natural sources also have been identified. High levels of ammonium have been detected in both surface water and shallow groundwater of the Jianghan Plain, an alluvial plain of the Yangtze River. This study used N isotopes coupled with ancillary chemistry to identify ammonium in this region. Ammonium in the Tongshun River (up to 10.25 mg L -1 ) showed a sharp accumulation in the upstream and gradual attenuation in the downstream. The δ 15 N values of ammonium in the TSR were high and ranged narrowly from +12.5 to +15.4‰, suggesting an anthropogenic source that was septic effluent from industrial waste discharge. Sorption and nitrification were likely to respectively serve as the principal processes contributing to ammonium attenuation in different reaches of the downstream TSR. In shallow groundwater, high levels of ammonium (up to 14.10 mg L -1 ) occurred in a reducing environment. The narrow δ 15 N variation with low values (+2.3 to +4.5‰) in the lower aquifer suggested a natural source that was organic N mineralization. The δ 15 N values in the shallow aquitard exhibited a wide range from -1.8 to +9.4‰, owing to various sources. Two types of water in the shallow aquitard could be identified: (1) type-1 water with relatively longer residence time was similar to those in the aquifer where ammonium was mainly sourced from organic N mineralization; (2) type-2 water with shorter residence time was jointly affected by surface input, chemical attenuation and mineralization of organic N. The aquitard prevents prompt ammonium exchange between the surface and aquifer, and the shallower part of the aquitard provides a sufficient reaction time and an active reaction rate for ammonium removal.

  6. Early Holocene groundwater table fluctuations in relation to rice domestication in the middle Yangtze River basin, China

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Liu, Yan; Sun, Qianli; Zong, Yongqiang; Finlayson, Brian; Chen, Zhongyuan

    2017-01-01

    The early Holocene environmental amelioration stimulated the trajectory of Neolithic farming cultures and specific geographic settings played a role in determining the nature of these cultures. Using microfossil evidence, the present study reveals that the fluctuations of the groundwater table substantially influenced rice domestication in the Dongting Lake area of the middle Yangtze River basin in the early Holocene. Our 14C-dated sediment core taken from the Bashidang (BSD) Neolithic site contains evidence that the site was a floodplain prior to human occupation ca. 8600 years ago. Poaceae, which contained wild rice (Oryza sp.) as indicated by combined pollen and phytolith evidence, and low counts of freshwater algae indicated a moist site condition. The area then gradually evolved into wetlands as the water table rose, in response to the increasing monsoon precipitation during the early Holocene. This favored rice domestication, assisted by firing and clearing, that continued to flourish for several hundred years. Finally, rice domestication declined during the late stage of the Pengtoushan culture, accompanied by evidence of the expansion of wetlands reflecting the effects of a rising groundwater table that had caused the cessation of rice farming at the Bashidang site after ca. 8000-7900 cal yr BP. This study shows that there are local effects at particular sites that may differ from the trend at the regional scale, necessitating a careful interpretation of the available evidence.

  7. Evaluating indirect and direct effects of eco-restoration policy on soil conservation service in Yangtze River Basin.

    PubMed

    Kong, Lingqiao; Zheng, Hua; Rao, Enming; Xiao, Yi; Ouyang, Zhiyun; Li, Cong

    2018-08-01

    The conservation impacts of policies that promote large-scale ecological restoration of ecosystem services and socio-economic development are well documented around the world. However, the effect of socio-economic development resulting from such policies on ecosystem services is rarely analysed, although it is important to do so if these policies are to be sustainable. We analysed the socio-economic impacts of soil conservation services from 2000 to 2015 in the Yangtze River Basin under the Grain to Green Programme (GTGP). Also we assessed the driving forces behind the programme: conservation policies, urbanization, agricultural development, and population growth. Our results show that during 2000-2015, cultivated area decreased by 7.5%, urban area increased by 67.5%, forest area increased by 2.1%, and soil erosion was reduced by 19.5%. The programme not only contributed significantly to an improvement in soil conservation services but also enhanced them significantly through faster urbanization. Furthermore, vegetation cover and crop yields increased synergistically, mainly due to high-efficiency agriculture that reduced the negative effect of the GTGP on agricultural production. Overall determining the indirect and direct effects of the GTGP on soil conservation and agricultural production are important for furthering our understanding of the long-term effects of ecological restoration policies, and the present study offers practical insights for ecological restoration of other watersheds. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Mixing state of ambient aerosols during different fog-haze pollution episodes in the Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Hu, Rui; Wang, Honglei; Yin, Yan; Chen, Kui; Zhu, Bin; Zhang, Zefeng; Kang, Hui; Shen, Lijuan

    2018-04-01

    The mixing state of aerosol particles were investigated using a single particle aerosol mass spectrometer (SPAMS) during a regional fog-haze episode in the Yangtze River Delta (YRD) on 16-28 Dec., 2015. The aerosols were analyzed and clustered into 12 classes: aged elemental carbon (Aged-EC), internally mixed organics and elemental carbon (ECOC), organic carbon (OC), Biomass, Amine, Ammonium, Na-K, V-rich, Pb-rich, Cu-rich, Fe-rich and Dust. Results showed that particles in short-term rainfalls mixed with more nitrate and oxidized organics, while they mixed with more ammonium and sulfate in long-term rainfall. Due to anthropogenic activities, stronger winds and solar radiation, the particle counts increased and the size ranges of particles broadened in haze. Carbonaceous particles and Na-K mixed with enhanced secondary species during haze, and obviously were more acidic, especially for the ones with a size range of 0.6-1.2 μm. For local and long-range transported pollution, OC had distinct size distributions while the changes of ECOC were uniform. The secondary formation of ECOC contributed significantly in local pollution and affected much smaller particles (as small as 0.5 μm) in long-range transported pollution. And long-range transported pollution was more helpful for the growth of OC. Particles mixed with more chloride and nitrate/sulfate in local/long-range transported pollution.

  9. Flood-inundation maps for a nine-mile reach of the Des Plaines River from Riverwoods to Mettawa, Illinois

    USGS Publications Warehouse

    Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2012-01-01

    Digital flood-inundation maps for a 9-mile reach of the Des Plaines River from Riverwoods to Mettawa, Illinois, were created by the U.S. Geological Survey (USGS) in cooperation with the Lake County Stormwater Management Commission and the Villages of Lincolnshire and Riverwoods. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Des Plaines River at Lincolnshire, Illinois (station no. 05528100). Current conditions at the USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?05528100. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. The NWS forecasted peak-stage information, also shown on the Des Plaines River at Lincolnshire inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was then used to determine seven water-surface profiles for flood stages at roughly 1-ft intervals referenced to the streamgage datum and ranging from the 50- to 0.2-percent annual exceedance probability flows. The simulated water-surface profiles were then combined with a Geographic Information System (GIS) Digital Elevation Model (DEM) (derived from Light Detection And Ranging (LiDAR) data) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage height from USGS streamgages and forecasted stream stages from

  10. Assessment of bridge scour in the lower, middle, and upper Yangtze River estuary with riverbed sonar profiling techniques.

    PubMed

    Zheng, Shuwei; Xu, Y Jun; Cheng, Heqin; Wang, Bo; Lu, Xuejun

    2017-12-12

    Riverbed scour of bridge piers can cause rapid loss in foundation strength, leading to sudden bridge collapse. This study used multi-beam echo sounders (Seabat 7125) to map riverbed surrounding the foundations of four major bridges in the lower, middle, and upper reaches of the 700-km Yangtze River Estuary (YRE) during June 2015 and September 2016. The high-resolution data were utilized to analyze the morphology of the bridge scour and the deformation of the wide-area riverbed (i.e., 5-18 km long and 1.3-8.3 km wide). In addition, previous bathymetric measurements collected in 1998, 2009, and 2013 were used to determine riverbed erosion and deposition at the bridge reaches. Our study shows that the scour depth surrounding the bridge foundations progressed up to 4.4-19.0 m in the YRE. Over the past 5-15 years, the total channel erosion in some river reaches was up to 15-17 m, possessing a threat to the bridge safety in the YRE. Tide cycles seemed to have resulted in significant variation in the scour morphology in the lower and middle YRE. In the lower YRE, the riverbed morphology displayed one long erosional ditch on both sides of the bridge foundations and a long-strip siltation area distributed upstream and downstream of the bridge foundations; in the middle YRE, the riverbed morphology only showed erosional morphology surrounding the bridge foundations. Large dunes caused deep cuts and steeper contours in the bridge scour. Furthermore, this study demonstrates that the high-resolution grid model formed by point cloud data of multi-beam echo sounders can clearly display the morphology of the bridge scour in terms of wide areas and that the sonar technique is a very useful tool in the assessment of bridge scours.

  11. 33 CFR 165.T09-0166 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone, Brandon Road Lock... Areas Ninth Coast Guard District § 165.T09-0166 Safety Zone, Brandon Road Lock and Dam to Lake Michigan.... waters of the Des Plaines River located between mile marker 286.0 (Brandon Road Lock and Dam) and mile...

  12. Preventing and controlling land subsidence in Shanghai -towards more integrated and effective land use and ground water governance in the Yangtze Delta

    NASA Astrophysics Data System (ADS)

    Dai, Liping

    2016-04-01

    The Yangtze Delta, covers 210,700 square kilometers and with 156 million inhabitants (NRDC, 2010; The National Bureau of Statistics, 2011), is one of the areas most severely affected by land subsidence in China. Up to 2012, the area with cumulative subsidence above 200 mm in Yangtze Delta has been closed to 10,000 square kilometers. Shanghai, located at the estuary of the Yangtze River and with a population of 23 million, is the most densely populated city in Yangtze Delta (The National Bureau of Statistics, 2011). Since 1921, the recorded cumulative subsidence has been 200 to 300 mm in the central area of the city (Chai, Shen, Zhu, & Zhang, 2005). Excessive pumping of groundwater is considered to be the leading reason, accounts for nearly 70%, of the city's land subsidence, the weight of skyscrapers and global warming also play hefty roles (30%) (Springer, 2012). Research has shown that the main method to control land subsidence in Shanghai is to prevent groundwater from dropping (Chai, Shen, Zhu, & Zhang, 2005), the city has made great efforts in this regard since 1965 (the beginning of the so-called "control period"), for example, it has been recharging underground water through 121 wells with more than 60,000 tons every day since 2012 (Chinadaily, 2012). It is a huge burden considering the city has been suffering from a shortage of fresh water. In 2013, with the other two provinces of Jiangsu and Zhejiang in Yangtze Delta, Shanghai signed a delta cooperation agreement on the prevention and control of land subsidence and jointly issued a Prevention and Control Planning on Land Subsidence in Yangtze Delta (2014-2020), which aims to establish a long-effect mechanism in the delta scope. This research aims to analyze and assess the land and groundwater governance arrangements related to land subsidence in the Yangtze Delta in general and Shanghai in specific, in order to develop optimizing adaptation strategies and associated governance arrangements. It examines the

  13. Assessment of short-term PM2.5-related mortality due to different emission sources in the Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Wang, Jiandong; Wang, Shuxiao; Voorhees, A. Scott; Zhao, Bin; Jang, Carey; Jiang, Jingkun; Fu, Joshua S.; Ding, Dian; Zhu, Yun; Hao, Jiming

    2015-12-01

    Air pollution is a major environmental risk to health. In this study, short-term premature mortality due to particulate matter equal to or less than 2.5 μm in aerodynamic diameter (PM2.5) in the Yangtze River Delta (YRD) is estimated by using a PC-based human health benefits software. The economic loss is assessed by using the willingness to pay (WTP) method. The contributions of each region, sector and gaseous precursor are also determined by employing brute-force method. The results show that, in the YRD in 2010, the short-term premature deaths caused by PM2.5 are estimated to be 13,162 (95% confidence interval (CI): 10,761-15,554), while the economic loss is 22.1 (95% CI: 18.1-26.1) billion Chinese Yuan. The industrial and residential sectors contributed the most, accounting for more than 50% of the total economic loss. Emissions of primary PM2.5 and NH3 are major contributors to the health-related loss in winter, while the contribution of gaseous precursors such as SO2 and NOx is higher than primary PM2.5 in summer.

  14. Deriving Scaling Factors Using a Global Hydrological Model to Restore GRACE Total Water Storage Changes for China's Yangtze River Basin

    NASA Technical Reports Server (NTRS)

    Long, Di; Yang, Yuting; Yoshihide, Wada; Hong, Yang; Liang, Wei; Chen, Yaning; Yong, Bin; Hou, Aizhong; Wei, Jiangfeng; Chen, Lu

    2015-01-01

    This study used a global hydrological model (GHM), PCR-GLOBWB, which simulates surface water storage changes, natural and human induced groundwater storage changes, and the interactions between surface water and subsurface water, to generate scaling factors by mimicking low-pass filtering of GRACE signals. Signal losses in GRACE data were subsequently restored by the scaling factors from PCR-GLOBWB. Results indicate greater spatial heterogeneity in scaling factor from PCR-GLOBWB and CLM4.0 than that from GLDAS-1 Noah due to comprehensive simulation of surface and subsurface water storage changes for PCR-GLOBWB and CLM4.0. Filtered GRACE total water storage (TWS) changes applied with PCR-GLOBWB scaling factors show closer agreement with water budget estimates of TWS changes than those with scaling factors from other land surface models (LSMs) in China's Yangtze River basin. Results of this study develop a further understanding of the behavior of scaling factors from different LSMs or GHMs over hydrologically complex basins, and could be valuable in providing more accurate TWS changes for hydrological applications (e.g., monitoring drought and groundwater storage depletion) over regions where human-induced interactions between surface water and subsurface water are intensive.

  15. Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze River

    PubMed Central

    Wang, Wenhui; Wang, Hui; Feng, Youzhi; Wang, Lei; Xiao, Xingji; Xi, Yunguan; Luo, Xue; Sun, Ruibo; Ye, Xianfeng; Huang, Yan; Zhang, Zhengguang; Cui, Zhongli

    2016-01-01

    Soil microorganisms play a crucial role in the biogeochemical cycling of nutrient elements and maintaining soil health. We aimed to investigate the response of bacteria communities to organic farming over different crops (rice, tea and vegetable) along the middle and lower reaches of the Yangtze River of China. Compared with conventional farming, organic farming significantly increased soil nutrients, soil enzyme activities, and bacterial richness and diversity. A Venn diagram and principal component analysis revealed that the soils with 3 different crops under organic farming have more number and percent of shared OTUs (operational taxonomic units), and shared a highly similar microbial community structure. Under organic farming, several predominant guilds and major bacterial lineages (Rhizobiales, Thiotrichaceae, Micromonosporaceae, Desulfurellaceae and Myxococcales) contributing to nutrient (C, N, S and P) cycling were enriched, whereas the relative abundances of acid and alkali resistant microorganisms (Acidobacteriaceae and Sporolactobacillaceae) were increased under conventional farming practices. Our results indicated that, for all three crops, organic farming have a more stable microflora and the uniformity of the bacterial community structure. Organic agriculture significantly increased the abundance of some nutrition-related bacteria, while reducing some of the abundance of acid and alkali resistant bacteria. PMID:27725750

  16. Exploring spatiotemporal changes of the Yangtze River (Changjiang) nitrogen and phosphorus sources, retention and export to the East China Sea and Yellow Sea.

    PubMed

    Liu, Xiaochen; Beusen, Arthur H W; Van Beek, Ludovicus P H; Mogollón, José M; Ran, Xiangbin; Bouwman, Alexander F

    2018-06-04

    Nitrogen (N) and phosphorus (P) flows from land to sea in the Yangtze River basin were simulated for the period 1900-2010, by combining models for hydrology, nutrient input to surface water, and an in-stream retention. This study reveals that the basin-wide nutrient budget, delivery to surface water, and in-stream retention increased during this period. Since 2004, the Three Gorges Reservoir has contributed 5% and 7% of N and P basin-wide retention, respectively. With the dramatic rise in nutrient delivery, even this additional retention was insufficient to prevent an increase of riverine export from 337 Gg N yr -1 and 58 Gg P yr -1 (N:P molar ratio = 13) to 5896 Gg N yr -1 and 381 Gg P yr -1 (N:P molar ratio = 35) to the East China Sea and Yellow Sea (ECSYS). The midstream and upstream subbasins dominate the N and P exports to the ECSYS, respectively, due to various human activities along the river. Our spatially explicit nutrient source allocation can aid in the strategic targeting of nutrient reduction policies. We posit that these should focus on improving the agricultural fertilizer and manure use efficiency in the upstream and midstream and better urban wastewater management in the downstream subbasin. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Seasonal variation, flux estimation, and source analysis of dissolved emerging organic contaminants in the Yangtze Estuary, China.

    PubMed

    Zhao, Heng; Cao, Zhen; Liu, Xue; Zhan, Yi; Zhang, Jing; Xiao, Xi; Yang, Yi; Zhou, Junliang; Xu, Jiang

    2017-12-15

    The occurrence and seasonal variation of 24 dissolved emerging organic contaminants in the Yangtze Estuary were studied, including 12 non-antibiotic pharmaceuticals, seven sulfonamides, two macrolides and three chloramphenicols. Sulfadiazine, erythromycin, thiamphenicol and paracetamol were the primary contaminants in sulfonamides, macrolides, chloramphenicols and non-antibiotic pharmaceutical groups, respectively. Compared to the concentrations at Datong, chloramphenicols at Xuliujing were significantly higher in autumn and winter, while macrolides were lower in spring. Based on the flux estimation, approximately 37.1 tons of sulfonamides, 17.4 tons of macrolides, 79.2 tons of chloramphenicols and 14.1 tons of non-antibiotic pharmaceuticals were discharged into the Yangtze Estuary from June 2013 to May 2014. However, the total flux from the Huangpu River only represented 5% of the total. The pharmaceutical sources were speculated on by analyzing the seasonal variations in pharmaceutical concentrations and fluxes at various sites. Both environmental and social factors might affect the fluxes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Risk-based prioritization among air pollution control strategies in the Yangtze River Delta, China.

    PubMed

    Zhou, Ying; Fu, Joshua S; Zhuang, Guoshun; Levy, Jonathan I

    2010-09-01

    The Yangtze River Delta (YRD) in China is a densely populated region with recent dramatic increases in energy consumption and atmospheric emissions. We studied how different emission sectors influence population exposures and the corresponding health risks, to inform air pollution control strategy design. We applied the Community Multiscale Air Quality (CMAQ) Modeling System to model the marginal contribution to baseline concentrations from different sectors. We focused on nitrogen oxide (NOx) control while considering other pollutants that affect fine particulate matter [aerodynamic diameter < or = 2.5 mum (PM2.5)] and ozone concentrations. We developed concentration-response (C-R) functions for PM2.5 and ozone mortality for China to evaluate the anticipated health benefits. In the YRD, health benefits per ton of emission reductions varied significantly across pollutants, with reductions of primary PM2.5 from the industry sector and mobile sources showing the greatest benefits of 0.1 fewer deaths per year per ton of emission reduction. Combining estimates of health benefits per ton with potential emission reductions, the greatest mortality reduction of 12,000 fewer deaths per year [95% confidence interval (CI), 1,200-24,000] was associated with controlling primary PM2.5 emissions from the industry sector and reducing sulfur dioxide (SO2) from the power sector, respectively. Benefits were lower for reducing NOx emissions given lower consequent reductions in the formation of secondary PM2.5 (compared with SO2) and increases in ozone concentrations that would result in the YRD. Although uncertainties related to C-R functions are significant, the estimated health benefits of emission reductions in the YRD are substantial, especially for sectors and pollutants with both higher health benefits per unit emission reductions and large potential for emission reductions.

  19. Relationship between ancient bridges and population dynamics in the lower Yangtze River Basin, China.

    PubMed

    Zhao, Yang; Jia, Xin; Lee, Harry F; Zhao, Hongqiang; Cai, Shuliang; Huang, Xianjin

    2017-01-01

    It has been suggested that population growth dynamics may be revealed by the geographic distribution and the physical structure of ancient bridges. Yet, this relationship has not been empirically verified. In this study, we applied the archaeological records for ancient bridges to reveal the population growth dynamics in the lower Yangtze River Basin in late imperial China. We investigated 89 ancient bridges in Yixing that were built during the Ming and Qing dynasties (AD1368-1911). Global Position System information and structure (length, width, and span) of those bridges was measured during our field investigations. Their distribution density was calculated by ArcGIS. The historical socio-economic dynamics of Yixing was inferred from the distribution and structure of ancient bridges. Based on the above information, the population growth dynamics in Yixing was projected. Our results show that 77 bridges were built in Yixing during the Qing dynasty, which is 6.41 times more than the number built during the Ming dynasty. In the Ming dynasty, bridges were built on pivotal routes; in the Qing dynasty, bridges were scattered across various places. Over the period, the density distribution of bridges shifted northwestward, while the average length and width of bridges decreased. The increasing number of bridges corresponded to population growth, largely attributable to massive clan migration from northern China during the Little Ice Age. The shift in the density distribution of bridges corresponded to the formation of settlements of large clans and the blossoming of Yixing Teapot handicrafts. The scattering and the reduction in average length and width of bridges was due to the dispersal of population and the associated formation of small settlements in the latter period. Our approach is innovative and robust, and could be employed to recover long-term historical population growth dynamics in other parts of China.

  20. Relationship between ancient bridges and population dynamics in the lower Yangtze River Basin, China

    PubMed Central

    Zhao, Yang; Lee, Harry F.; Zhao, Hongqiang; Cai, Shuliang; Huang, Xianjin

    2017-01-01

    It has been suggested that population growth dynamics may be revealed by the geographic distribution and the physical structure of ancient bridges. Yet, this relationship has not been empirically verified. In this study, we applied the archaeological records for ancient bridges to reveal the population growth dynamics in the lower Yangtze River Basin in late imperial China. We investigated 89 ancient bridges in Yixing that were built during the Ming and Qing dynasties (AD1368–1911). Global Position System information and structure (length, width, and span) of those bridges was measured during our field investigations. Their distribution density was calculated by ArcGIS. The historical socio-economic dynamics of Yixing was inferred from the distribution and structure of ancient bridges. Based on the above information, the population growth dynamics in Yixing was projected. Our results show that 77 bridges were built in Yixing during the Qing dynasty, which is 6.41 times more than the number built during the Ming dynasty. In the Ming dynasty, bridges were built on pivotal routes; in the Qing dynasty, bridges were scattered across various places. Over the period, the density distribution of bridges shifted northwestward, while the average length and width of bridges decreased. The increasing number of bridges corresponded to population growth, largely attributable to massive clan migration from northern China during the Little Ice Age. The shift in the density distribution of bridges corresponded to the formation of settlements of large clans and the blossoming of Yixing Teapot handicrafts. The scattering and the reduction in average length and width of bridges was due to the dispersal of population and the associated formation of small settlements in the latter period. Our approach is innovative and robust, and could be employed to recover long-term historical population growth dynamics in other parts of China. PMID:28792976

  1. Anthropogenic CO2 emissions from a megacity in the Yangtze River Delta of China.

    PubMed

    Hu, Cheng; Liu, Shoudong; Wang, Yongwei; Zhang, Mi; Xiao, Wei; Wang, Wei; Xu, Jiaping

    2018-06-03

    Anthropogenic CO 2 emissions from cities represent a major source contributing to the global atmospheric CO 2 burden. Here, we examined the enhancement of atmospheric CO 2 mixing ratios by anthropogenic emissions within the Yangtze River Delta (YRD), China, one of the world's most densely populated regions (population greater than 150 million). Tower measurements of CO 2 mixing ratios were conducted from March 2013 to August 2015 and were combined with numerical source footprint modeling to help constrain the anthropogenic CO 2 emissions. We simulated the CO 2 enhancements (i.e., fluctuations superimposed on background values) for winter season (December, January, and February). Overall, we observed mean diurnal variation of CO 2 enhancement of 23.5~49.7 μmol mol -1 , 21.4~52.4 μmol mol -1 , 28.1~55.4 μmol mol -1 , and 29.5~42.4 μmol mol -1 in spring, summer, autumn, and winter, respectively. These enhancements were much larger than previously reported values for other countries. The diurnal CO 2 enhancements reported here showed strong similarity for all 3 years of the study. Results from source footprint modeling indicated that our tower observations adequately represent emissions from the broader YRD area. Here, the east of Anhui and the west of Jiangsu province contributed significantly more to the anthropogenic CO 2 enhancement compared to the other sectors of YRD. The average anthropogenic CO 2 emission in 2014 was 0.162 (± 0.005) mg m -2  s -1 and was 7 ± 3% higher than 2010 for the YRD. Overall, our emission estimates were significantly smaller (9.5%) than those estimated (0.179 mg m -2  s -1 ) from the EDGAR emission database.

  2. Characteristics and Mechanisms of Low-Level Jets in the Yangtze River Delta of China

    NASA Astrophysics Data System (ADS)

    Wei, W.; Wu, B. G.; Ye, X. X.; Wang, H. X.; Zhang, H. S.

    2013-12-01

    A dataset obtained using a wind-profile radar located at the Yangtze River Delta in China (N, E) in 2009 was used to investigate the characteristics and evolution of low-level jets (LLJs) along the east China coast. The study investigated the daily and seasonal structures of LLJs as well as several possible causes. A total of 1,407 1-h LLJ periods were detected based on an adaptive definition that enabled determination of four LLJ categories. The majority (77 %) of LLJs were found to have speeds 14.0 m s (maximum of 34.6 m s and occur at an average altitude below 600 m (76 % of the observed LLJs). The dominant direction of the LLJs was from the south-south-west, which accounted for nearly 32 %, with the second most common wind direction ranging from to , albeit with a number of stronger LLJs from the west-south-west. A comparison of LLJs and South-west Jets revealed that the frequencies of occurrence in summer are totally different. Results also revealed that in spring and summer, most LLJs originate from the south-south-west, whereas in autumn and winter, north-east is the dominant direction of origin. The peak heights of LLJs tended to be higher in winter than in other seasons. The horizontal wind speed and peak height of the LLJs displayed pronounced diurnal cycles. The Hilbert-Huang transform technique was applied to demonstrate that the intrinsic mode functions with a cycle of nearly 23 h at levels below 800 m, and the instantaneous amplitudes of inertial events (0.0417-0.0476 h frequencies) have large values at 300-600 m. The variations in the occurrences of LLJs suggested connections between the formation mechanisms of LLJs and the South-west Jet stream, steady occupation of synoptic-scale pressure system, and land-sea temperature contrasts.

  3. Characteristics of soil C:N ratio and δ13C in wheat-maize cropping system of the North China Plain and influences of the Yellow River.

    PubMed

    Shi, Huijin; Wang, Xiujun; Xu, Minggang; Zhang, Haibo; Luo, Yongming

    2017-12-04

    To better understand the characteristics of soil organic matter (SOM) in the North China Plain, we evaluate the large scale variations of soil organic carbon (SOC), total nitrogen (TN), carbon to nitrogen (C:N) ratio and stable carbon isotopic compositions (δ 13 C) in SOC over 0-100 cm. To assess the influence of the Yellow River, 31 sites are selected from the wheat-maize double cropping system, and grouped into two: 10 sites near and 21 sites far from the river. Our data show that mean soil C:N ratio is low (7.6-9.9) across the region, and not affected by the Yellow River. However, SOC and TN are significantly (P < 0.05) lower in subsoil near the Yellow River (2.0 and 0.2-0.3 g kg -1 for SOC and TN) than far away (3.1 and 0.4 g kg -1 ); δ 13 C is significantly more negative below 60 cm near the river (-23.3 to -22.6‰) than far away (-21.8 to -21.4‰). We estimate that the contributions of wheat and maize to SOC are 61.3-68.1% and 31.9-38.8%, respectively. Our analyses indicate that the overall low levels of SOC in the North China Plain may be associated with the low soil C:N ratio and less clay content. The hydrological processes may also partly be responsible, particularly for those near the Yellow River.

  4. [Toxicity evaluation of sewage treatment plant effluent of chemical industrial park along the Yangtze River on rat testicular germ cells in vitro].

    PubMed

    Hu, Guan-Jiu; Wang, Xiao-Yi; Shi, Wei; Bai, Chou-Yong; Wu, Jiang; Liu, Hong-Ling; Yu, Hong-Xia

    2009-05-15

    By using rat testicular germ cells in vitro toxicity testing method based on original cells culture, the reproduction toxicity of sewage treatment plant effluent of Chemical Industrial Park along the Yangtze River was evaluated, through cells changes in morphologic, activity and viability parameters. The results showed that both of the effluents from new developed Chemical Industrial Park A and provincial Chemical Industrial Park B contain reproductive toxic substances. The toxicity of Park A has more significant undergone changes in cells activity of sertoli cells (p < 0.01), spermatogenic cells (p < 0.05) and leyding cells (p < 0.05), lactate dehydrogenase activity (p < 0.01) and testosterone secretion (p < 0.01) than that of Park B. Sepermatogenic cells are more sensitive in indicating reproduction toxicity for testicular, compared with leyding cells and sertoli cells. This study demonstrated that, as an indispensable and complementary tool for water quality assessment, rat testicular germ cells in vitro toxicity testing based on original cells culture can be used to comprehensively evaluate the reproduction toxicity of sewage treatment plant effluent, and provide prompt and useful discharge quality information.

  5. Occurrence, sources, and ecological risks of PBDEs, PCBs, OCPs, and PAHs in surface sediments of the Yangtze River Delta city cluster, China.

    PubMed

    Zhang, Ting; Yang, Wen-Long; Chen, She-Jun; Shi, Dian-Long; Zhao, Hu; Ding, Yi; Huang, Ye-Ru; Li, Nan; Ren, Yue; Mai, Bi-Xian

    2014-08-01

    Polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) in 25 surface sediments in three cities (Nantong, Wuxi, and Suzhou) in the Yangtze River Delta, eastern China were measured. The mean concentrations were 378, 45.8, 1.98, 4,002 ng/g for PBDEs, OCPs, PCBs, and PAHs, respectively. Their levels in the sediments in the three cities were generally consistent with the city industrialization. PBDEs and OCPs were markedly dominated by deca-BDE (>90 %) and DDTs (>70 %). A principle component analysis of the analytes identified three major factors suggesting different sources of the contaminants in the sediments. PBDEs and the organic carbon in the sediments have common sources from industrial activities; whereas OCPs and PCBs, correlated with the second factor, were mainly from historical sources. The third factor with loadings of PAHs is indicative of various combustion sources. Ecological risk assessment indicated that the potential highest risk is from DDTs, for which 22 sites exceed the effects range low (ERL) values and three sites exceed the effects range median (ERM) value.

  6. Strengthen the collaboration between the River Basin Management Organization of China and International Environmental Specimen Bank Group.

    PubMed

    Tan, Lingzhi; Liu, Hui; Shu, Jinxiang; Xia, Fan

    2015-02-01

    Several types of emerging organic contaminants were investigated in many recent researches, such as persistent toxic substance (PTS), persistent organic pollutants (POPs), endocrine disrupters (EDs), and volatile organic compounds (VOCs). But the Chinese country standard detection methods of emerging organic pollutants were not developed with the dramatic increasing of the organic substances production. Hence, it is necessary to obtain the latest informations about the long-term storage of representative environmental specimens, which could provide scientific basis for environmental management and environmental decision-making of the water resources protection and management organization. As the significant water resource conservation organization, the Water Environment Monitoring Center of Yangtze River Basin is experienced in water environmental monitoring and records many useful water resources and environment informations. It is also our responsibility to monitor all the pollutants in water environment of the Yangtze River valley, especially the emerging organic contaminants. Meanwhile, the International Environmental Specimen Bank (IESB) accumulates lots environmental organic pollution specimens and plays a significant role in environmental monitoring. Thus, the collaboration between the two parties will be greatly helpful for each further researches and monitoring work of organic contaminants in Yangtze River Basin.

  7. BIOCHEM-ORCHESTRA: a tool for evaluating chemical speciation and ecotoxicological impacts of heavy metals on river flood plain systems.

    PubMed

    Vink, J P M; Meeussen, J C L

    2007-08-01

    The chemical speciation model BIOCHEM was extended with ecotoxicological transfer functions for uptake of metals (As, Cd, Cu, Ni, Pb, and Zn) by plants and soil invertebrates. It was coupled to the object-oriented framework ORCHESTRA to achieve a flexible and dynamic decision support system (DSS) to analyse natural or anthropogenic changes that occur in river systems. The DSS uses the chemical characteristics of soils and sediments as input, and calculates speciation and subsequent uptake by biota at various scenarios. Biotic transfer functions were field-validated, and actual hydrological conditions were derived from long-term monitoring data. The DSS was tested for several scenarios that occur in the Meuse catchment areas, such as flooding and sedimentation of riverine sediments on flood plains. Risks are expressed in terms of changes in chemical mobility, and uptake by flood plain key species (flora and fauna).

  8. Functional and Taxonomic Differentiation of Macrophyte Assemblages Across the Yangtze River Floodplain Under Human Impacts

    PubMed Central

    Zhang, Min; García Molinos, Jorge; Zhang, Xiaolin; Xu, Jun

    2018-01-01

    Human activities and the consequent extirpations of species have been changing the composition of species assemblages worldwide. These anthropogenic impacts alter not only the richness of assemblages but also the biological dissimilarity among them. One of the main gaps in the assessment of biodiversity change in freshwater ecosystems is our limited understanding regarding how taxonomic and functional facets of macrophyte assemblages respond to human impacts on regional scales. Here, we assess the temporal (before 1970s against after 2000s) changes in taxonomic and functional richness and compositional dissimilarities, partitioned into its turnover and nestedness components, of freshwater macrophyte assemblages across the floodplain lakes of the Yangtze River in China. We found that functional and taxonomic assemblage differentiation occurred simultaneously under increasing human impact, concomitant to a general decrease in functional and taxonomic richness. However, this effect weakened when the historical level of taxonomic dissimilarity among assemblages was high. Macrophyte species with large dispersal range and submersed life form were significantly more susceptible to extirpation. The impact of human activities on differentiation was complex but habitat loss and fishery intensity were consistently the main drivers of assemblage change in these lakes, whereas water quality (i.e., light pollution and nutrient enrichment) had weaker effects. Further, macrophyte taxonomic and functional differentiation was mainly driven by the nestedness component of dissimilarity, accounting for changes in assemblage composition related to changes in species richness independent of species replacement. This result, markedly different from previous studies on freshwater fish assemblages conducted in these lakes, represents a novel contribution toward achieving a more holistic understanding of how human impacts contribute to shape community assemblages in natural ecosystems. PMID

  9. Two Late Pleistocene climate-driven incision/aggradation rhythms in the middle Dnieper River basin, west-central Russian Plain

    NASA Astrophysics Data System (ADS)

    Panin, Andrei; Adamiec, Grzegorz; Buylaert, Jan-Pieter; Matlakhova, Ekaterina; Moska, Piotr; Novenko, Elena

    2017-06-01

    In valleys of the River Seim and its tributaries in the middle Dnieper basin (west-central Russian Plain), two low terraces (T1, 10-16 m, and T0, 5-7 m above the river) and a floodplain (2-4 m) with characteristic large and small palaeochannels exist. A range of field and laboratory techniques was applied and ∼30 new numerical ages (OSL and 14C dates) were obtained to establish a chronology of incision and aggradation events that resulted in the current valley morphology. Two full incision/aggradation rhythms and one additional aggradation phase from the previous rhythm were recognized in the Late Pleistocene - Holocene climate cycle. The following events were detected. (1) Late MIS 5 - early MIS 4: aggradation of Terrace T1 following the deep incision at the end of MIS 6. (2) Late MIS 4 (40-30 ka): incision into Terrace T1 below the present-day river, formation of the main scarp in the bottom of the valley between Terrace T1 and Terrace T0/Floodplain levels. (3) MIS 2: aggradation of Terrace T0, lateral migrations of a shallow braided channel located few meters above the present-day river since ∼25 ka through the LGM. (4) 18-13 ka: incision into Terrace T0 below the modern river. Multiple-thread channels concentrated in a single flow that at some places formed large meanders. In the period 15-13 ka, high floods that rose above the present-day floods left large levees and overbank loams on Terrace T0. (5) Younger Dryas - Holocene transition: aggradation up to the modern channel level, transformation of large Late Glacial to small Holocene meanders. The established incision/aggradation rhythms are believed to be manifested over the Central Russian Plain outside the influence of ice sheets in the north and base level changes in the south. The two-phase deepening of the valley occurred in the last quarter of the last glacial epoch but can not be attributed directly to the glacial-interglacial transition. Both the detected incision events correspond to relatively

  10. Quantifying the contribution of land use change to surface temperature in the lower reaches of the Yangtze River

    NASA Astrophysics Data System (ADS)

    Wang, Xueqian; Guo, Weidong; Qiu, Bo; Liu, Ye; Sun, Jianning; Ding, Aijun

    2017-04-01

    Anthropogenic land use has a significant impact on climate change. Located in the typical East Asian monsoon region, the land-atmosphere interaction in the lower reaches of the Yangtze River is even more complicated due to intensive human activities and different types of land use in this region. To better understand these effects on microclimate change, we compare differences in land surface temperature (Ts) for three land types around Nanjing from March to August, 2013, and then quantify the contribution of land surface factors to these differences (ΔTs) by considering the effects of surface albedo, roughness length, and evaporation. The atmospheric background contribution to ΔTs is also considered based on differences in air temperature (ΔTa). It is found that the cropland cooling effect decreases Ts by 1.76° and the urban heat island effect increases Ts by 1.25°. They have opposite impacts but are both significant in this region. Various changes in surface factors affect radiation and energy distribution and eventually modify Ts. It is the evaporative cooling effect that plays the most important role in this region and accounts for 1.40° of the crop cooling and 2.29° of the urban warming. Moreover, the background atmospheric circulation is also an indispensable part in land-atmosphere feedback induced by land use change and reinforces both these effects.

  11. Trends of tropospheric NO2 over the Yangtze River Delta region and the possible linkage to rapid urbanization

    NASA Astrophysics Data System (ADS)

    Ma, Mingliang; Zhang, Deying; Liu, Qiyang; Song, Yue; Zhou, Jiayuan; Shi, Runhe; Gao, Wei

    2017-09-01

    Over the past decade, China has experienced a rapid increase in urbanization. The urban built-up areas (population) of Shanghai increased by 16.1% (22.9%) from 2006 to 2015. This study aims to analyze the variations of tropospheric NO2 over Yangtze River Delta region and the impacts of rapid urbanization during 2006-2015. The results indicate that tropospheric NO2 vertical column density (VCD) of all cities in the study area showed an increasing trend during 2006-2011 whereas a decreasing trend during 2011-2015. Most cities showed a lower tropospheric NO2 VCD value in 2015 compared to that in 2006, except for Changzhou and Nantong. Shanghai and Ningbo are two hotspots where the tropospheric NO2 VCD decreased most significantly, at a rate of 22% and 19%, respectively. This effect could be ascribed to the implementation of harsh emission control policies therein. Similar seasonal variability was observed over all cities, with larger values observed in the summer and smaller values shown in the winter. Further investigations show that the observed increasing trend of tropospheric NO2 during 2006-2011 could be largely explained by rapid urbanization linked to car ownership, GDP, power consumption, population and total industrial output. Such effect was not prominent after 2011, mainly due to the implementation of emission control strategies.

  12. Simulation of Runoff Changes Caused by Cropland to Forest Conversion in the Upper Yangtze River Region, SW China

    PubMed Central

    Yu, Pengtao; Wang, Yanhui; Coles, Neil; Xiong, Wei; Xu, Lihong

    2015-01-01

    The "Grain for Green Project" is a country-wide ecological program to converse marginal cropland to forest, which has been implemented in China since 2002. To quantify influence of this significant vegetation change, Guansihe Hydrological (GSH) Model, a validated physically-based distributed hydrological model, was applied to simulate runoff responses to land use change in the Guansihe watershed that is located in the upper reaches of the Yangtze River basin in Southwestern China with an area of only 21.1 km2. Runoff responses to two single rainfall events, 90 mm and 206 mm respectively, were simulated for 16 scenarios of cropland to forest conversion. The model simulations indicated that the total runoff generated after conversion to forest was strongly dependent on whether the land was initially used for dry croplands without standing water in fields or constructed (or walled) paddy fields. The simulated total runoff generated from the two rainfall events displayed limited variation for the conversion of dry croplands to forest, while it strongly decreased after paddy fields were converted to forest. The effect of paddy terraces on runoff generation was dependent on the rainfall characteristics and antecedent moisture (or saturation) conditions in the fields. The reduction in simulated runoff generated from intense rainfall events suggested that afforestation and terracing might be effective in managing runoff and had the potential to mitigate flooding in southwestern China. PMID:26192181

  13. Evolutionary dynamics of ecological niche in three Rhinogobio fishes from the upper Yangtze River inferred from morphological traits

    PubMed Central

    Wang, Meirong; Liu, Fei; Lin, Pengcheng; Yang, Shaorong; Liu, Huanzhang

    2015-01-01

    In the past decades, it has been debated whether ecological niche should be conserved among closely related species (phylogenetic niche conservatism, PNC) or largely divergent (traditional ecological niche theory and ecological speciation) and whether niche specialist and generalist might remain in equilibrium or niche generalist could not appear. In this study, we employed morphological traits to describe ecological niche and test whether different niche dimensions exhibit disparate evolutionary patterns. We conducted our analysis on three Rhinogobio fish species (R. typus,R. cylindricus, and R. ventralis) from the upper Yangtze River, China. Among the 32 measured morphological traits except body length, PCA extracted the first four principal components with their loading scores >1.000. To find the PNC among species, Mantel tests were conducted with the Euclidean distances calculated from the four principal components (representing different niche dimensions) against the pairwise distances calculated from mitochondrial cytochrome b sequence variations. The results showed that the second and the third niche dimension, both related to swimming ability and behavior, exhibited phylogenetic conservatism. Further comparison on niche breadth among these three species revealed that the fourth dimension of R. typus showed the greatest width, indicating that this dimension exhibited niche generalism. In conclusion, our results suggested that different niche dimensions could show different evolutionary dynamic patterns: they may exhibit PNC or not, and some dimensions may evolve generalism. PMID:25691981

  14. Photobleaching of chromophoric dissolved organic matter (CDOM) in the Yangtze River estuary: kinetics and effects of temperature, pH, and salinity.

    PubMed

    Song, Guisheng; Li, Yijie; Hu, Suzheng; Li, Guiju; Zhao, Ruihua; Sun, Xin; Xie, Huixiang

    2017-06-21

    The kinetics and temperature-, pH- and salinity-dependences of photobleaching of chromophoric dissolved organic matter (CDOM) in the Yangtze River estuary (YRE) were evaluated using laboratory solar-simulated irradiation and compared to those of Suwannee River humic substances (SRHSs). Nearly all CDOM in water at the head of the estuary (headwater herein) was photobleachable in both summer and winter, while significant fractions of CDOM (13-29%) were resistant to photobleaching in saltier waters. The photobleaching rate constant in the headwater was 25% higher in summer than that in winter. The absorbed photon-based photobleaching efficiency (PE) increased with temperature following the linear Arrhenius equation. For a 20 °C increase in temperature, PE increased by ∼45% in the headwater and by 70-81% in the saltier waters. PE for YRE samples exhibited minima at pH from 6 to 7 and increased with both lower and higher pH values, contrasting the consistent increase in PE with pH shown by SRHSs. No consistent effect of salinity on PE was observed for both SRHSs and YRE samples. Photobleaching increased the spectral slope coefficient between 275 nm and 295 nm in summer, consistent with the behavior of SRHSs, but decreased it in winter, implying a difference in the molecular composition of chromophores between the two seasons. Temperature, salinity, and pH modified the photoalteration of the spectral shape but their effects varied spatially and seasonally. This study demonstrates that CDOM quality, temperature, and pH should be incorporated into models involving quantification of photobleaching.

  15. Atrazine contamination in agricultural soils from the Yangtze River Delta of China and associated health risks.

    PubMed

    Sun, J T; Pan, L L; Zhan, Yu; Tsang, Daniel C W; Zhu, L Z; Li, X D

    2017-04-01

    Atrazine is one of the most widely applied and persistent herbicides in the world. In view of limited information on the regional contamination of atrazine in soils in China, this study investigated the spatial distribution and environmental impacts of atrazine in agricultural soils collected from the Yangtze River Delta (YRD) as an illustrative analysis of rapidly developing regions in the country. The results showed that the concentrations of atrazine in the YRD agricultural soils ranged from <1.0 to 113 ng/g dry weight, with a mean of 5.7 ng/g, and a detection rate of 57.7 % in soils. Pesticide factory might be a major source for the elevated levels of atrazine in Zhejiang Province. The contamination of atrazine was closely associated with land use types. The concentrations and detection rates of atrazine were higher in corn fields and mulberry fields than in rice paddy fields. There was no significant difference in compositions of soil microbial phospholipids fatty acids among the areas with different atrazine levels. Positive relationship (R = 0.417, p < 0.05, n = 30) was observed between atrazine and total microbial biomass. However, other factors, such as soil type and land management practice, might have stronger influences on soil microbial communities. Human health risks via exposure to atrazine in soils were estimated according to the methods recommended by the US EPA. Atrazine by itself in all the soil samples imposed very low carcinogenic risks (<10 -6 ) and minimal non-cancer risks (hazard index <1) to adults and children.

  16. Middle-Holocene sea-level fluctuations interrupted the developing Hemudu culture in the lower Yangtze River, China

    NASA Astrophysics Data System (ADS)

    He, Keyang; Lu, Houyuan; Zheng, Yunfei; Zhang, Jianping; Xu, Deke; Huan, Xiujia; Wang, Jiehua; Lei, Shao

    2018-05-01

    The eastern coastal zone of China is densely populated and widely recognized as a center of rice domestication, which has undergone dramatic sea-level fluctuation during the Holocene epoch. Hemudu culture is distributed mainly in the eastern coastal area and was once presumed as a mature agricultural economy based on rice, making it an ideal case for examining the remarkable human-environment interaction in the Lower Yangtze River. Though numerous studies have been conducted on the cultural evolution, ecological environment, and rice domestication of Hemudu culture, the impact of sea-level fluctuation on human settlement and food production remains controversial. In this study, we report high-resolution pollen, phytolith, and diatom records, and accurately measured elevation from the Yushan site, which is the closest site of Hemudu culture to the modern coastline. Based on the data gathered, we suggest that the Hemudu culture and subsequent Liangzhu culture developed in the context of regression and were interrupted by two transgressions that occurred during 6300-5600 BP and 5000-4500 BP. The regional ecological environment of the Yushan site alternated between intertidal mudflat and freshwater wetlands induced by sea-level fluctuations in the mid-late Holocene. Though rice was cultivated in the wetland as early as 6700 BP, this cultivation was subsequently discontinued due to the transgression; thus, full domestication of rice did not occur until 5600 BP in this region. Comprehensive analysis of multiple proxies in this study promote the understanding of the relationship between environmental evolution, cultural interruption, and rice domestication.

  17. Mineralogy and geothermometry of high-temperature rhyolites from the central and western Snake River Plain

    USGS Publications Warehouse

    Honjo, N.; Bonnichsen, B.; Leeman, W.P.; Stormer, J.C.

    1992-01-01

    Voluminous mid-Miocene rhyolitic ash-flow tuffs and lava flows are exposed along the northern and southern margins of the central and western Snake River Plain. These rhyolites are essentially anhydrous with the general mineral assemblage of plagioclase ??sanidine ?? quartz + augite + pigeonite ?? hypersthene ?? fayalitic olivine + Fe-Ti oxides + apatite + zircon which provides an opportunity to compare feldspar, pyroxene, and Fe-Ti oxide equilibration temperatures for the same rocks. Estimated pyroxene equilibration temperatures (based on the geothermometers of Lindsley and coworkers) range from 850 to 1000??C, and these are well correlated with whole-rock compositions. With the exception of one sample, agreement between the two-pyroxene thermometers tested is well within 50??C. Fe-Ti oxide geothermometers applied to fresh magnetite and ilmenite generally yield temperatures about 50 to 100??C lower than the pyroxene temperatures, and erratic results are obtained if these minerals exhibit effects of subsolidus oxidation and exsolution. Results of feldspar thermometry are more complicated, and reflect uncertainties in the thermometer calibrations as well as in the degree of attainment of equilibrium between plagioclase and sanidine. In general, temperatures obtained using the Ghiorso (1984) and Green and Usdansky (1986) feldspar thermometers agree with the pyroxene temperatures within the respective uncertainties. However, uncertainties in the feldspar temperatures are the larger of the two (and exceed ??60??C for many samples). The feldspar thermometer of Fuhrman and Lindsley (1988) produces systematically lower temperatures for many of the samples studied. The estimated pyroxene temperatures are considered most representative of actual magmatic temperatures for these rhyolites. This range of temperatures is significantly higher than those for rhyolites from many other suites, and is consistent with the hypothesis that the Snake River Plain rhyolitic magmas formed

  18. Short-, Medium-, and Long-Chain Chlorinated Paraffins in Wildlife from Paddy Fields in the Yangtze River Delta.

    PubMed

    Du, Xinyu; Yuan, Bo; Zhou, Yihui; Benskin, Jonathan P; Qiu, Yanling; Yin, Ge; Zhao, Jianfu

    2018-02-06

    Short-chain chlorinated paraffins (SCCPs) were added to Annex A of the Stockholm Convention on Persistent Organic Pollutants in April, 2017. As a consequence of this regulation, increasing production and usage of alternatives, such as medium- and long-chain chlorinated paraffins (MCCPs and LCCPs, respectively), is expected. Little is known about the environmental fate and behavior of MCCPs and LCCPs. In the present study, SCCPs, MCCPs, and LCCPs were analyzed in nine wildlife species from paddy fields in the Yangtze River Delta, China, using atmospheric pressure chemical ionization-quadrupole time-of-flight mass spectrometry. SCCPs, MCCPs, and LCCPs were detected in all samples at concentrations ranging from <91-43 000, 96-33 000, and 14-10 000 ng/g lipid, respectively. Most species contained primarily MCCPs (on average 44%), with the exception of collared scops owl and common cuckoo, in which SCCPs (43%) accumulated to a significantly (i.e., p < 0.05) greater extent than MCCPs (40%). Cl 6 groups were dominant in most species except for yellow weasel and short-tailed mamushi, which contained primarily Cl 7 groups. Principal components analysis, together with CP concentrations and carbon stable isotope analysis showed that habitat and feeding habits were key factors driving CP accumulation and congener group patterns in wildlife. This is the first report of LCCP exposure in wildlife and highlights the need for data on risks associated with CP usage.

  19. Import and export fluxes of macrozooplankton are taxa- and season-dependent at Jiuduansha marsh, Yangtze River estuary

    NASA Astrophysics Data System (ADS)

    Qin, Haiming; Sheng, Qiang; Chu, Tianjiang; Wang, Sikai; Wu, Jihua

    2015-09-01

    Macrozooplankton may play important roles in influencing nutrient exchange between salt marsh and nearby estuarine ecosystems through predator-prey interactions and their transport by tidal flows. In this study, macrozooplankton transport through year-round monthly sampling was investigated in a salt marsh creek of the Yangtze River estuary. Twenty-one orders of macrozooplankton were captured. Calanoida and Decapoda were dominant and numerically comprised 59.59% and 37.59% respectively of the total captured macrozooplankton throughout the year. Decapoda mainly occurred in April, May and June. In other months, the Calanoida contributed over 90% of the total individuals. The annual Ferrari index (I) for total individual number of macrozooplankton was 0.27, which generally supports the viewpoint that salt marshes are sources of zooplankton. The salt marsh was mainly a source for decapods and mysids, possibly because of larval release in their breeding seasons. The marsh was also a source for amphipods, probably because some benthic forms became transient planktonic forms during tidal water flushing. Copepods and fish larvae exhibited net import into the salt marsh, which may result from predation from salt marsh settlers or retention in the salt marsh. Monthly Ferrari index (I) estimations revealed that the role of the salt marsh as a sink or source of macrozooplankton was time-dependent, which is related to the life history of animals. This study showed that whether the salt marsh zooplankton act as energy importers or exporters is group/taxa-dependent and time-dependent.

  20. Organophosphate pesticide in agricultural soils from the Yangtze River Delta of China: concentration, distribution, and risk assessment.

    PubMed

    Pan, Lili; Sun, Jianteng; Li, Zhiheng; Zhan, Yu; Xu, Shen; Zhu, Lizhong

    2018-01-01

    Organophosphorus pesticides (OPPs) are used worldwide and pose great risks to human health. However, information on their presence in agricultural soils at regional scale and the associated risks is limited. In this study, an extensive investigation on agricultural soils was conducted throughout the Yangtze River Delta (YRD) of China to reveal the status of OPP pollution. The total concentrations of the nine OPPs ranged from <3.0 to 521 ng g -1 dry weight, with a mean of 64.7 ng g -1 dry weight and a detection rate of 93 %. Dimethoate was found to be the primary compound, followed by methyl parathion and parathion. The highest concentrations of OPPs were found in Jiangsu province due to the intensive agricultural activities. The pollution of OPPs is also highly associated with the land use types. The lower concentrations of OPPs found in vegetable fields could be attributed to their easy photodegradation and hydrolysis in aerobic soils. There was no significant difference in microbial communities among the sample sites, indicating that OPPs in agricultural soils of the YRD region cause negligible effects on microbiota. The risks of OPPs in the soils to human health were further evaluated. The hazard indexes in all the soil samples were below 1, suggesting absence of non-cancer risks. This study provides valuable information for a better understanding of the pollution status of OPPs in agricultural soils and a scientific basis for soil quality assessments.

  1. [Characteristics of soil water infiltration in sub-alpine dark coniferous ecosystem of upper reaches of Yangtze River].

    PubMed

    Yu, Xinxiao; Zhao, Yutao; Zhang, Zhiqiang; Cheng, Genwei

    2003-01-01

    Dark coniferous forest is the predominant type of vegetation in the upper reaches of Yangtze River. Difference among different types of soil exists. The sand content of soil is higher and the soil texture is coarser in the early stage of forest succession. The sand content of soil decreases with the advancement of the forest succession while that of soil in Abies fabri over-mature forest is the lowest. In slope wash soil, the sand content of soil decreases with the increasing soil depth. The soil porosity and soil water-holding capacity increases and soil bulk density decreases with the advancement of forest succession and decrease of soil depth. The deeper soil depth or the smaller soil water content are, the smaller the unsaturated hydraulic conductivity of soil measured by CGA method. Moreover, the correlation of soil water content with unsaturated hydraulic conductivity of soil can be simulated by an exponential function. The saturated hydraulic conductivity of soil decreases exponentially with the increasing soil depth. The time to attain the stable infiltration rate is different among different soil depth, while the deeper the soil depth is, the longer the time needs. The variation in soil texture, soil physical properties and the high infiltration rate of soil there implicated that there are scarce surface runoff, but abundant in subsurface flow, return flow and seepage, which is the result of regulation by dark coniferous forest on hydrological processes.

  2. The forecasting research of early warning systems for atmospheric pollutants: A case in Yangtze River Delta region

    NASA Astrophysics Data System (ADS)

    Song, Yiliao; Qin, Shanshan; Qu, Jiansheng; Liu, Feng

    2015-10-01

    The issue of air quality regarding PM pollution levels in China is a focus of public attention. To address that issue, to date, a series of studies is in progress, including PM monitoring programs, PM source apportionment, and the enactment of new ambient air quality index standards. However, related research concerning computer modeling for PM future trends estimation is rare, despite its significance to forecasting and early warning systems. Thereby, a study regarding deterministic and interval forecasts of PM is performed. In this study, data on hourly and 12 h-averaged air pollutants are applied to forecast PM concentrations within the Yangtze River Delta (YRD) region of China. The characteristics of PM emissions have been primarily examined and analyzed using different distribution functions. To improve the distribution fitting that is crucial for estimating PM levels, an artificial intelligence algorithm is incorporated to select the optimal parameters. Following that step, an ANF model is used to conduct deterministic forecasts of PM. With the identified distributions and deterministic forecasts, different levels of PM intervals are estimated. The results indicate that the lognormal or gamma distributions are highly representative of the recorded PM data with a goodness-of-fit R2 of approximately 0.998. Furthermore, the results of the evaluation metrics (MSE, MAPE and CP, AW) also show high accuracy within the deterministic and interval forecasts of PM, indicating that this method enables the informative and effective quantification of future PM trends.

  3. Flood information for flood-plain planning

    USGS Publications Warehouse

    Bue, Conrad D.

    1967-01-01

    Floods are natural and normal phenomena. They are catastrophic simply because man occupies the flood plain, the highwater channel of a river. Man occupies flood plains because it is convenient and profitable to do so, but he must purchase his occupancy at a price-either sustain flood damage, or provide flood-control facilities. Although large sums of money have been, and are being, spent for flood control, flood damage continues to mount. However, neither complete flood control nor abandonment of the flood plain is practicable. Flood plains are a valuable resource and will continue to be occupied, but the nature and degree of occupancy should be compatible with the risk involved and with the degree of protection that is practicable to provide. It is primarily to meet the needs for defining the risk that the flood-inundation maps of the U.S. Geological Survey are prepared.

  4. Seasonal atmospheric deposition and air-sea gaseous exchange of polycyclic aromatic hydrocarbons over the Yangtze River Estuary, East China Sea: Implication for the source-sink processes

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Guo, Z.

    2017-12-01

    As the home of the largest port in the world, the Yangtze River Estuary (YRE) in the East China Sea (ECS) is adjacent to the largest economic zone in China with more than 10% of Chinese population and provides one-fifth of national GDP. The YRE is under the path of contaminated East Asian continental outflow. These make the YRE unique for the pollutant biogeochemical cycling in the world. In this work, 94 pairs of air samples and 20 surface seawater samples covering four seasons were collected from a remote receptor site in the YRE from March 2014 to January 2015, in order to explore the seasonal fluxes of air-sea gaseous exchange and atmospheric dry and wet deposition of 15 polycyclic aromatic hydrocarbons (PAHs) and their source-sink processes at the air-sea interface. The average dry and wet deposition fluxes of 15 PAHs were estimated as 879 ± 1393 ng m-2 d-1 and 755 ± 545 ng m-2 d-1, respectively. The gaseous PAHs were released from seawater to atmosphere during the whole year with an average of 3039 ± 2030 ng m-2 d-1. The gaseous exchange of PAHs was referred as the dominant process at the air-sea interface in the YRE as the magnitude of volatilization flux of PAHs exceeded that of the total dry and wet deposition. The gaseous PAH exchange flux was dominated by 3-ring PAHs, with the highest value in summer while lowest in winter, depicting a strong seasonal variation due to temperature, wind speed and air-sea concentration gradient difference among seasons. Based on the simplified mass balance estimation, net 9.6 tons/y of PAHs was volatilized from seawater to atmosphere with an area of approximately 20000 km2 in the YRE. Apart from Yangtze River input and ocean ship emissions in the entire year, the selective release of low molecular weight PAHs from sediments in winter due to re-suspension triggered by the East Asian winter monsoon could be another possible source for dissolved PAHs. This work suggests that the source-sink processes of PAHs at air

  5. The German-Chinese research collaboration YANGTZE-GEO: Assessing the geo-risks in the Three Gorges Reservoir area

    NASA Astrophysics Data System (ADS)

    Schönbrodt, S.; Behrens, T.; Bieger, K.; Ehret, D.; Frei, M.; Hörmann, G.; Seeber, C.; Schleier, M.; Schmalz, B.; Fohrer, N.; Kaufmann, H.; King, L.; Rohn, J.; Subklew, G.; Xiang, W.

    2012-04-01

    The river impoundment by The Three Gorges Dam leads to resettlement and land reclamation on steep slopes. As a consequence, ecosystem changes such as soil erosion, mass movements, and diffuse sediment and matter fluxes are widely expected to increase rapidly. In order to assess and analyse those ecosystem changes, the German-Chinese joint research project YANGTZE-GEO was set up in 2008. Within the framework of YANGTZE-GEO five German universities (Tuebingen, Erlangen, Giessen, Kiel, Potsdam) conducted studies on soil erosion, mass movements, diffuse matter inputs, and land use change and vulnerability in close collaboration with Chinese scientists. The Chinese partners and institutions are according to their alphabetic order of hometown the Chinese Research Academy of Environmental Sciences (CRAES; Beijing), the Standing Office of the State Council Three Gorges Project Construction Committee (Beijing), the National Climate Centre (NCC) of the China Meteorological Administration (CMA; Beijing), the Aero Geophysical Survey and Remote Sensing for Land and Resources (AES; Beijing), the Nanjing University, the CAS Institute of Soil Science (Nanjing), the Nanjing Institute of Geography and Limnology at CAS (NIGLAS; Nanjing), the China University of Geosciences (CUG; Wuhan), the CAS Institute of Hydrobiology (Wuhan), and the China Three Gorges University (Yichang). The overall aim of YANGTZE-GEO is the development of a risk assessment and forecasting system to locate high risk areas using GIS-based erosion modelling, data mining tools for terrace condition analysis and landslide recognition, eco-hydrological modelling for diffuse matter inputs, and state-of-the-art remote sensing to assess the landscape's vulnerability. Furthermore, the project aims at the recommendation of sustainable land management systems. YANGTZE-GEO showed the relevance of such research and crucially contributes to the understanding of the dimension and dynamics of the ecological consequences of

  6. Agriculture on the Chaco Plain, Paraguay, South America

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This view of extensive agriculture on the Chaco Plain, Paraguay, (22.5S, 60.5W) depicts the fertility of the soils between the Andes Mountains and the Paraguay - Parana Rivers in the northwestern Paraguay. The Gran Chaco Plain is flat landscape built up by sediments. Frontier settlements like Marsical Estigarribia, seen in the image, are dominated by agriculture along the stream courses that abound in the area.

  7. Tide-Dominated Tract (TDT) as a key sedimentary zone characterizing tide-dominated large-river delta and estuary systems

    NASA Astrophysics Data System (ADS)

    Saito, Y.

    2017-12-01

    Large rivers in continents have a characteristic of slow rise and fall in water levels during floods or the wet season due to a wide drainage basin. A gentle river gradient and large water discharge have relatively large tidal ranges at the river mouth, resulting in large backwater effects further upstream. The result of the Mekong River survey (386 riverbed sediments, river topography, CTD, and biofacies) shows that the distributary channels of the Mekong River delta in Vietnam are divided into two parts: the landward river-dominated tract (RDT) and seaward tide-dominated tract (TDT). The RDT is characterized by a highly variable and deepening trend in water depth and coarse-grained sediments with a fining trend downstream. The TDT is characterized by a shallowing trend in water depth with river-widening, smooth riverbeds, a straight shape, and heterolithic f- to vf-sand and mud alternation (tidal thythmite). The boundary of both tracts is sharply identified by sediment facies and river morphology. Sediment facies indicates that the dominant sedimentary process of bottom sediments is "bedload" in the RDT and "suspension" in the TDT. Daily tidal changes are observed through the year, while water-level changes during the flood/wet season are limited in the TDT. Saltwater intrusion is limited within the seaward part of the TDT alone ( 50 km), close to final bifurcation points. However, brackish-water biofacies is observed in the TDT mainly due to diluted brackish water and/or tolerance to the freshwater environment. These characteristics are also found in the Yangtze; the distance of the TDT/RDT boundary from the river mouth is ca. 100 km in the Mekong, and 200 km in the Yangtze. The preservation potential of sediments in a TDT is low in a progradational system, and high in abandoned channels. The early Holocene transgressive estuary system in the incised valley of the Yangtze formed during the Last Glacial Maximum was composed of 20 m-thick fine-grained heterolithic

  8. The mosaic accessory gene structures of the SXT/R391-like integrative and conjugative elements derived from Vibrio spp. isolated from aquatic products and environment in the Yangtze River estuary, China

    PubMed Central

    2013-01-01

    Background The emergence, resurgence and spread of human food-borne pathogenic Vibrios are one of the major contributors to disease burden and mortality particularly in developing countries with disputable sanitary conditions. Previous research on pathogenic Vibrio cholerae and Vibrio parahaemolitycus derived from clinical samples has proposed links between acquisition of virulence and multiple drug resistance traits and intercellular transmissibility of mobile genetic elements in the environment. To date, very few information is available on environmental Vibrio isolates. In this study, we characterized eleven Vibrio strains bearing the SXT/R391-like integrative and conjugative elements (ICEs) derived from aquatic products and environment in the Yangtze River Estuary, China. Results The eleven Vibrio strains were isolated in 2010 to 2011, and taxonomically identified, which included six Vibrio cholerae, three Vibrio parahaemolyticus, one Vibrio alginolyticus and one Vibrio natriegens. Most of the strains displayed strong resistance phenotypes to ampicillin, mercury and chromium. The majority of their ICEs, which belong to S and R exclusion system groups, contain ICEs-chromosome junction sequences and highly conserved core-genes required for ICE transfer. However, comparative sequence analysis uncovered interesting diversity in their mosaic accessory gene structures, which carry many novel genes that have not been described in any known ICEs to date. In addition, antibiotic resistance was transmitted by ICEVchChn6 and ICEVpaChn1 from V. cholerae, V. parahaemolyticus to E. coli MG1655 via conjugation, respectively. Our data also revealed that the ICEs characterized in this study are phylogenetically distant from most of the SXT/R391 ICEs reported previously, which may represent a novel cluster likely shaped by the ecological environment in the Yangtze River Estuary, China. Conclusions This study constitutes the first investigation of ICEs-positive Vibrio spp. in the

  9. Multiconfiguration electromagnetic induction survey for paleochannel internal structure imaging: a case study in the alluvial plain of the River Seine, France

    NASA Astrophysics Data System (ADS)

    Rejiba, Fayçal; Schamper, Cyril; Chevalier, Antoine; Deleplancque, Benoit; Hovhannissian, Gaghik; Thiesson, Julien; Weill, Pierre

    2018-01-01

    The La Bassée floodplain area is a large groundwater reservoir controlling most of the water exchanged between local aquifers and hydrographic networks within the Seine River basin (France). Preferential flows depend essentially on the heterogeneity of alluvial plain infilling, whose characteristics are strongly influenced by the presence of mud plugs (paleomeander clayey infilling). These mud plugs strongly contrast with the coarse sand material that composes most of the alluvial plain, and can create permeability barriers to groundwater flows. A detailed knowledge of the global and internal geometry of such paleomeanders can thus lead to a comprehensive understanding of the long-term hydrogeological processes of the alluvial plain. A geophysical survey based on the use of electromagnetic induction was performed on a wide paleomeander, situated close to the city of Nogent-sur-Seine in France. In the present study we assess the advantages of combining several spatial offsets, together with both vertical and horizontal dipole orientations (six apparent conductivities), thereby mapping not only the spatial distribution of the paleomeander derived from lidar data but also its vertical extent and internal variability.

  10. Impact of extreme oxygen consumption by pollutants on macroinvertebrate assemblages in plain rivers of the Ziya River Basin, north China.

    PubMed

    Ding, Yuekui; Rong, Nan; Shan, Baoqing

    2016-07-01

    The aim of the study was to estimate the impact of oxygen depletion on macroinvertebrate community structure in benthic space. Macroinvertebrate assemblages and potential of dissolved oxygen (DO) consumption were investigated simultaneously in the plain rivers of the Ziya River Basin. The degree of DO depletion was represented by sediment oxygen demand (SOD) and DO, chemical oxygen demand (CODCr), and ammonia nitrogen (NH4 (+)-N) in the overlying water. The results showed an all-around hypoxia environment formed, and the values of DO, SOD, CODCr, and NH4 (+)-N were separately 0.11-4.03 mg L(-1), 0.41-2.60 g m(-2) day(-1), 27.50-410.00 mg L(-1), and 1.79-101.41 mg L(-1). There was an abnormal macroinvertebrate assemblage, and only 3 classes, Insecta, Gastropoda, and Oligochaeta, were found, which included 9 orders, 30 families, and 54 genera. The biodiversity was at a low level, and Shannon-Wiener index was 0.00-1.72. SOD, and NH4 (+)-N had major impact on the macroinvertebrate community, and the former had negative effect on most taxa, for instance, Nais, Branchiura, Paraleptophlebia, etc., which were sensitive or had a moderate-high tolerance to pollution. NH4 (+)-N had both positive and negative impacts on benthic animals, for instance, Dicrotendipes, Gomphus, Cricotopus, etc., for the former, and Procladius, Limnodrilus, Hippeutis, etc., for the latter. They all had a moderate-high tolerance to pollution. It is significant to improve DO condition and macroinvertebrate diversity in river harnessing and management.

  11. Identifying the hydrochemical characteristics of rivers and groundwater by multivariate statistical analysis in the Sanjiang Plain, China

    NASA Astrophysics Data System (ADS)

    Cao, Yingjie; Tang, Changyuan; Song, Xianfang; Liu, Changming; Zhang, Yinghua

    2016-06-01

    Two multivariate statistical technologies, factor analysis (FA) and discriminant analysis (DA), are applied to study the river and groundwater hydrochemistry and its controlling processes in the Sanjiang Plain of the northeast China. Factor analysis identifies five factors which account for 79.65 % of the total variance in the dataset. Four factors bearing specific meanings as the river and groundwater hydrochemistry controlling processes are divided into two groups, the "natural hydrochemistry evolution" group and the "pollution" group. The "natural hydrochemistry evolution" group includes the salinity factor (factor 1) caused by rock weathering and the residence time factor (factor 2) reflecting the groundwater traveling time. The "pollution" group represents the groundwater quality deterioration due to geogenic pollution caused by elevated Fe and Mn (factor 3) and elevated nitrate (NO3 -) introduced by human activities such as agriculture exploitations (factor 5). The hydrochemical difference and hydraulic connection among rivers (surface water, SW), shallow groundwater (SG) and deep groundwater (DG) group are evaluated by the factor scores obtained from FA and DA (Fisher's method). It is showed that the river water is characterized as low salinity and slight pollution, and the shallow groundwater has the highest salinity and severe pollution. The SW is well separated from SG and DG by Fisher's discriminant function, but the SG and DG can not be well separated showing their hydrochemical similarities, and emphasize hydraulic connections between SG and DG.

  12. Characteristics and origin of Earth-mounds on the Eastern Snake River Plain, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tullis, J.A.

    1995-09-01

    Earth-mounds are common features on the Eastern Snake River Plain, Idaho. The mounds are typically round or oval in plan view, <0.5 m in height, and from 8 to 14 m in diameter. They are found on flat and sloped surfaces, and appear less frequently in lowland areas. The mounds have formed on deposits of multiple sedimentary environments. Those studied included alluvial gravel terraces along the Big Lost River (late Pleistocene/early Holocene age), alluvial fan segments on the flanks of the Lost River Range (Bull Lake and Pinedale age equivalents), and loess/slopewash sediments overlying basalt flows. Backhoe trenches were dugmore » to allow characterization of stratigraphy and soil development. Each mound has features unique to the depositional and pedogenic history of the site; however, there are common elements to all mounds that are linked to the history of mound formation. Each mound has a {open_quotes}floor{close_quotes} of a sediment or basement rock of significantly different hydraulic conductivity than the overlying sediment. These paleosurfaces are overlain by finer-grained sediments, typically loess or flood-overbank deposits. Mounds formed in environments where a sufficient thickness of fine-grained sediment held pore water in a system open to the migration to a freezing front. Heaving of the sediment occurred by the growth of ice lenses. Mound formation occurred at the end of the Late Pleistocene or early in the Holocene, and was followed by pedogenesis. Soils in the mounds were subsequently altered by bioturbation, buried by eolian deposition, and eroded by slopewash runoff. These secondary processes played a significant role in maintaining or increasing the mound/intermound relief.« less

  13. Contamination of phthalate esters, organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China.

    PubMed

    Sun, Jianteng; Pan, Lili; Zhan, Yu; Lu, Hainan; Tsang, Daniel C W; Liu, Wenxin; Wang, Xilong; Li, Xiangdong; Zhu, Lizhong

    2016-02-15

    To reveal the pollution status associated with rapid urbanization and economic growth, extensive areas of agricultural soils (approximately 45,800 km(2)) in the Yangtze River Delta of China were investigated with respect to selected endocrine disruptor compounds (EDCs), including phthalate esters (PAEs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs). The residues of sum of 15 PAEs, sum of 15 OCPs and sum of 13 PBDEs were in the range of 167-9370 ng/g, 1.0-3520 ng/g, and <1.0-382 ng/g, respectively. The OCPs residuals originated from both historical usage and recent input. Agricultural plastic film was considered to be an important source of PAEs. Discharge from furniture industry was potential major source of PBDEs in this region. The selected pollutants showed quite different spatial distributions within the studied region. It is worth noting that much higher concentrations of the EDCs were found on the borders between Shanghai and the two neighboring provinces, where agriculture and industry developed rapidly in recent years. Contaminants from both agricultural and industrial activities made this area a pollution hotspot, which should arouse more stringent regulation to safeguard the environment and food security. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Early summer precipitation in the lower Yangtze River basin for AD 1845-2011 based on tree-ring cellulose oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Xu, Chenxi; Shi, Jiangfeng; Zhao, Yesi; Nakatsuka, Takeshi; Sano, Masaki; Shi, Shiyuan; Guo, Zhengtang

    2018-04-01

    Precipitation from June to August is generally used to reflect the East Asian summer monsoon (EASM) variability. However, the principal modes of the EASM rainfall are different between May-June (MJ) and July-August due to the seasonal march of East Asian subtropical front. Therefore, it is necessary to study them separately. In this study, we reconstruct a 167-year MJ precipitation time series using tree-ring cellulose δ18O that explains 46.9% of the variance in the lower Yangtze River basin, Southeast China, that extends the meteorological data back more than 100 years and makes the precipitation study at decadal scales possible. The decades with 5 or more anomalously dry or wet years are the 1880s, 1890s, and 1910s, and the 1980s and 2000s have only one anomalous year per decade. MJ precipitation shows a significantly negative relationship with absolute Niño 3.4 sea surface temperature, especially during the developing phases of El Niño-Southern Oscillation, indicating that there is less rainfall during El Niño events. However, the relationship is not uniform throughout the period. Further analyses show that it is stronger when the Pacific Decadal Oscillation is in its positive phases.

  15. Genetic Improvements in Rice Yield and Concomitant Increases in Radiation- and Nitrogen-Use Efficiency in Middle Reaches of Yangtze River

    PubMed Central

    Zhu, Guanglong; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Nie, Lixiao; Wang, Fei

    2016-01-01

    The yield potential of rice (Oryza sativa L.) has experienced two significant growth periods that coincide with the introduction of semi-dwarfism and the utilization of heterosis. In present study, we determined the annual increase in the grain yield of rice varieties grown from 1936 to 2005 in Middle Reaches of Yangtze River and examined the contributions of RUE (radiation-use efficiency, the conversion efficiency of pre-anthesis intercepted global radiation to biomass) and NUE (nitrogen-use efficiency, the ratio of grain yield to aboveground N accumulation) to these improvements. An examination of the 70-year period showed that the annual gains of 61.9 and 75.3 kg ha−1 in 2013 and 2014, respectively, corresponded to an annual increase of 1.18 and 1.16% in grain yields, respectively. The improvements in grain yield resulted from increases in the harvest index and biomass, and the sink size (spikelets per panicle) was significantly enlarged because of breeding for larger panicles. Improvements were observed in RUE and NUE through advancements in breeding. Moreover, both RUE and NUE were significantly correlated with the grain yield. Thus, our study suggests that genetic improvements in rice grain yield are associated with increased RUE and NUE. PMID:26876641

  16. Regression models evaluating THMs, HAAs and HANs formation upon chloramination of source water collected from Yangtze River Delta Region, China.

    PubMed

    Lin, Jiajia; Chen, Xi; Ansheng, Zhu; Hong, Huachang; Liang, Yan; Sun, Hongjie; Lin, Hongjun; Chen, Jianrong

    2018-09-30

    Present study aimed to generate multiple regression models to estimate the formation of trihalomethanes (THMs), haloacetonitriles (HANs) and haloacetic acids (HAAs) during chloramination of source water obtained from Yangtze River Delta Region, China. The results showed that the regression models for trichloromethane (TCM), dichloroacetonitrile (DCAN), dichloroacetic acid (DCAA), dihaloacetic acids (DHAAs), 5 HAAs species regulated by U.S. EPA (HAA 5 ) and total haloacetic acids (HAA 9 ) have good evaluation ability (prediction accuracy reached 81-94%), while the models for total haloacetonitriles (HAN 4 ), trichloroacetic acid (TCAA), trihaloacetic acids (THAAs) and total trihalomethanes (THM 4 ), they appeared relative low prediction accuracy (58-72%). For THMs, dissolved organic nitrogen (DON) was their key organic precursor, yet for HAN, DHAAs and THAAs, UVA 254 played the dominant role. The other key factors influencing DBP formation included the bromide (THM 4 , DHAAs and HAA 9 ), reaction time (DCAN, HAN 4 ), chloramine dose (TCM, DCAA, TCAA, HAA 5 and THAAs). These results provided important information for water works to optimize the water treatment process to control DBPs, and give an evaluating method for DBPs levels when estimating the health risks related with DBP exposure during chloramination. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Retroposon analysis of major cetacean lineages: The monophyly of toothed whales and the paraphyly of river dolphins

    PubMed Central

    Nikaido, Masato; Matsuno, Fumio; Hamilton, Healy; Brownell, Robert L.; Cao, Ying; Ding, Wang; Zuoyan, Zhu; Shedlock, Andrew M.; Fordyce, R. Ewan; Hasegawa, Masami; Okada, Norihiro

    2001-01-01

    SINE (short interspersed element) insertion analysis elucidates contentious aspects in the phylogeny of toothed whales and dolphins (Odontoceti), especially river dolphins. Here, we characterize 25 informative SINEs inserted into unique genomic loci during evolution of odontocetes to construct a cladogram, and determine a total of 2.8 kb per taxon of the flanking sequences of these SINE loci to estimate divergence times among lineages. We demonstrate that: (i) Odontocetes are monophyletic; (ii) Ganges River dolphins, beaked whales, and ocean dolphins diverged (in this order) after sperm whales; (iii) three other river dolphin taxa, namely the Amazon, La Plata, and Yangtze river dolphins, form a monophyletic group with Yangtze River dolphins being the most basal; and (iv) the rapid radiation of extant cetacean lineages occurred some 28–33 million years B.P., in strong accord with the fossil record. The combination of SINE and flanking sequence analysis suggests a topology and set of divergence times for odontocete relationships, offering alternative explanations for several long-standing problems in cetacean evolution. PMID:11416211

  18. Impact of permafrost development on groundwater flow patterns: a numerical study considering freezing cycles on a two-dimensional vertical cut through a generic river-plain system

    NASA Astrophysics Data System (ADS)

    Grenier, Christophe; Régnier, Damien; Mouche, Emmanuel; Benabderrahmane, Hakim; Costard, François; Davy, Philippe

    2013-02-01

    The impact of glaciation cycles on groundwater flow was studied within the framework of nuclear waste storage in underground geological formations. The eastern section of the Paris Basin (a layered aquifer with impervious/pervious alternations) in France was considered for the last 120 ka. Cold periods corresponded with arid climates. The issue of talik development below water bodies was addressed. These unfrozen zones can maintain open pathways for aquifer recharge. Transient thermal evolution was simulated on a small-scale generic unit of the landscape including a "river" and "plain". Coupled thermo-hydraulic modeling and simplified conductive heat transfer were considered for a broad range of scenarios. The results showed that when considering the current limited river dimensions and purely conductive heat transfer, taliks are expected to close within a few centuries. However, including coupled advection for flows from the river to the plain (probably pertinent for the eastern Paris Basin aquifer recharge zones) strongly delays talik closure (millennium scale). The impact on regional underground flows is expected to vary from a complete stop of recharge to a reduced recharge, corresponding to the talik zones. Consequences for future modeling approaches of the Paris Basin are discussed.

  19. Scientific Drilling in the Snake River Plain: Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Shervais, J. W.; Hanan, B. B.; Hughes, S. S.; Geist, D.; Vetter, S. K.

    2006-12-01

    The Snake River-Yellowstone volcanic province has long been linked to the concept of lithospheric drift over a fixed mantle thermal anomaly or hotspot. This concept is reinforced by seismic tomography that images this anomaly to depths around 500 km, but alternative proposals still present a serious challenge. Basaltic volcanism spans a significant age range and basaltic volcanism in the western SRP lies well off the hotspot track and cannot be related directly to the hotspot in any simple way. The plume-track age progression is documented by rhyolite volcanic centers, but even these represent extended time periods that overlap in age with adjacent centers. Scientific drilling projects carried out over the last two decades have made significant contributions to our understanding of both basaltic and rhyolitic volcanism associated with the Snake River-Yellowstone hotspot system. Because these drill holes also intercept sedimentary interbeds or, in the case of the western SRP, thick sections of Pliocene and Pleistocene sediments, they have also contributed to our understanding of basin formation by thermal collapse in the wake of the hotspot passage or by rifting, paleoclimate of the interior west, and groundwater systems in volcanic rocks. Many of these drill holes are associated with the Idaho National Laboratory (INL) in the eastern plain; others were drilled for geothermal or petroleum exploration. The latter include older holes that were not instrumented or logged in detail, but which still provide valuable stratigraphic controls. We focus here on the result of basalt drilling, which have been high-lighted in recent publications. Basaltic volcanism in the Snake River plain is dominated by olivine tholeiites that have major and trace element characteristics of ocean island basalt: the range in MgO is similar to MORB, but Ti, Fe, P, K, Sr, Zr and LREE/HREE ratios are all higher. Recent studies of basalts from the drill holes show that they evolved by fractionation

  20. Decreased runoff response to precipitation, Little Missouri River Basin, northern Great Plains, USA

    USGS Publications Warehouse

    Griffin, Eleanor R.; Friedman, Jonathan M.

    2017-01-01

    High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976-2012 compared to 1939-1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (<5%) in annual or growing season precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (p < 0.10) 27% decrease in the annual runoff response to precipitation (runoff ratio). Surface-water withdrawals for various uses appear to account for <12% of the reduction in average annual flow volume, and we found no published or reported evidence of substantial flow reduction caused by groundwater pumping in this basin. Results of our analysis suggest that increases in monthly average maximum and minimum temperatures, including >1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.

  1. Spatial-temporal distribution and risk assessment of mercury in different fractions in surface sediments from the Yangtze River estuary.

    PubMed

    Wang, Qingrui; Liu, Ruimin; Men, Cong; Xu, Fei; Guo, Lijia; Shen, Zhenyao

    2017-11-15

    The temporal and spatial distributions of mercury in different fractions and its potential ecological risk were investigated in sediments from the Yangtze River estuary (YRE) by analyzing data collected from the study area. The results showed that mercury in the organic and residual fractions had dominant proportions, from 15.2% to 48.52% and from 45.96% to 81.59%, respectively. The fractions were more susceptible to seasonal changes than other fractions. Higher proportions of mercury in organic fraction were found in wet seasons; the opposite was true for mercury in residual fraction. With respect to the spatial distribution, the concentration mercury in exchangeable, carbonate and Fe-Mn oxide fractions showed a decreasing trend from the inner estuary to the outer estuary, but no obvious trends were found in the distributions of mercury in the organic and residual fractions. The risk assessment code (RAC) was used to evaluate the potential ecological risk in the study area based on the proportions of exchangeable and carbonate fractions. The average RAC values during the four periods were 6.00%, 2.20%, 2.83%, and 0.61%. Although these values show that the risk in the study area is generally low, the distribution of RAC values indicates that the inner estuary has a medium risk, with a value up to 10%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The Spatial and Temporal Distribution of Dissolved Organic Carbon Exported from Three Chinese Rivers to the China Sea

    PubMed Central

    Shi, Guohua; Peng, Changhui; Wang, Meng; Shi, Shengwei; Yang, Yanzheng; Chu, Junyao; Zhang, Junjun; Lin, Guanghui; Shen, Yan; Zhu, Qiuan

    2016-01-01

    The lateral transport of dissolved organic carbon (DOC) plays an important role in linking the carbon cycles of terrestrial and aquatic ecosystems. Neglecting the lateral flow of dissolved organic carbon can lead to an underestimation of the organic carbon budget of terrestrial ecosystems. It is thus necessary to integrate DOC concentrations and flux into carbon cycle models, particularly with regard to the development of models that are intended to directly link terrestrial and ocean carbon cycles. However, to achieve this goal, more accurate information is needed to better understand and predict DOC dynamics. In this study, we compiled an inclusive database of available data collected from the Yangtze River, Yellow River and Pearl River in China. The database is collected based on online literature survey and analysed by statistic method. Overall, our results revealed a positive correlation between DOC flux and discharge in all three rivers, whereas the DOC concentration was more strongly correlated with the regional net primary productivity (NPP). We estimated the total DOC flux exported by the three rivers into the China Sea to be approximately 2.73 Tg yr-1. Specifically, the annual flux of DOC from the Yangtze River, Yellow River and Pearl River was estimated to be 1.85 Tg yr-1, 0.06 Tg yr-1 and 0.82 Tg yr-1, respectively, and the average annual DOC concentrations were estimated to be 2.24 ± 0.53 mg L-1, 2.70 ± 0.38 mg L-1 and 1.51 ± 0.09 mg L-1, respectively. Seasonal variations in DOC concentrations are greatly influenced by the interaction between temperature and precipitation. NPP is significantly and positively related to the DOC concentration in the Yangtze River and the Pearl River. In addition, differences in climate and the productivity of the vegetation may influence both the flux and concentrations of DOC transported by the rivers and thus potentially affect estuarine geochemistry. PMID:27755581

  3. Laboratory-Measured and Property-Transfer Modeled Saturated Hydraulic Conductivity of Snake River Plain Aquifer Sediments at the Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Perkins, Kim S.

    2008-01-01

    Sediments are believed to comprise as much as 50 percent of the Snake River Plain aquifer thickness in some locations within the Idaho National Laboratory. However, the hydraulic properties of these deep sediments have not been well characterized and they are not represented explicitly in the current conceptual model of subregional scale ground-water flow. The purpose of this study is to evaluate the nature of the sedimentary material within the aquifer and to test the applicability of a site-specific property-transfer model developed for the sedimentary interbeds of the unsaturated zone. Saturated hydraulic conductivity (Ksat) was measured for 10 core samples from sedimentary interbeds within the Snake River Plain aquifer and also estimated using the property-transfer model. The property-transfer model for predicting Ksat was previously developed using a multiple linear-regression technique with bulk physical-property measurements (bulk density [pbulk], the median particle diameter, and the uniformity coefficient) as the explanatory variables. The model systematically underestimates Ksat,typically by about a factor of 10, which likely is due to higher bulk-density values for the aquifer samples compared to the samples from the unsaturated zone upon which the model was developed. Linear relations between the logarithm of Ksat and pbulk also were explored for comparison.

  4. Hydrology and ecology of the Apalachicola River, Florida : a summary of the river quality assessment

    USGS Publications Warehouse

    Elder, John F.; Flagg, Sherron D.; Mattraw, Harold C.

    1988-01-01

    During 1979-81, the U.S. Geological Survey conducted a large-scale study of the Apalachicola River in northwest Florida, the largest and one of the most economically important rivers in the State. Termed the Apalachicola River Quality Assessment, the study emphasized interrelations among hydrodynamics, the flood-plain forest, and the nutrient-detritus flow through the river system to the estuary. This report summarizes major findings of the study. Data on accumulation of toxic substances in sediments and benthic organisms in the river were also collected. Because of the multiple uses of the Apalachicola River system, there are many difficult management decisions. The river is a waterway for shipping; hence there is an economic incentive for modification to facilitate movement of barge traffic. Such modifications include the proposed construction of dams, levees, bend easings, and training dikes; ditching and draining in the flood plain; and dredging and snagging in the river channel. The river is also recognized as an important supplier of detritus, nutrients, and freshwater to the Apalachicola Bay, which maintains an economically important shellfish industry. The importance of this input to the bay creates an incentive to keep the river basin in a natural state. Other values, such as timber harvesting, recreation, sport hunting, nature appreciation, and wildlife habitat, add even more to the difficulty of selecting management strategies. Water and nutrient budgets based on data collected during the river assessment study indicate the relative importance of various inputs and outflows in the system. Waterflow is controlled primarily by rainfall in upstream watersheds and is not greatly affected by local precipitation, ground-water exchanges, or evapotranspiration in the basin. On an annual basis, the total nutrient inflow to the system is nearly equal in quantity to total outflow, but there is a difference between inflow and outflow in the chemical and physical

  5. Source Apportionment of Volatile Organic Compounds in an Urban Environment at the Yangtze River Delta, China.

    PubMed

    An, Junlin; Wang, Junxiu; Zhang, Yuxin; Zhu, Bin

    2017-04-01

    Volatile organic compounds (VOCs) were collected continuously during June-August 2013 and December 2013-February 2014 at an urban site in Nanjing in the Yangtze River Delta. The positive matrix factorization receptor model was used to analyse the sources of VOCs in different seasons. Eight and seven sources were identified in summer and winter, respectively. In summer and winter, the dominant sources of VOCs were vehicular emissions, liquefied petroleum gas/natural gas (LPG/NG) usage, solvent usage, biomass/biofuel burning, and industrial production. In summer, vehicular emissions made the most significant contribution to ambient VOCs (38%), followed by LPG/NG usage (20%), solvent usage (19%), biomass/biofuel burning (13%), and industrial production (10%). In winter, LPG/NG usage accounted for 36% of ambient VOCs, whereas vehicular emissions, biomass/biofuel burning, industrial production and solvent usage contributed 30, 18, 9, and 6%, respectively. The contribution of LPG/NG usage in winter was approximately four times that in summer, whereas the contribution from biomass/biofuel burning in winter was more than twice that in summer. The sources related to vehicular emissions and LPG/NG usages were important. Using conditional probability function analysis, the VOC sources were mainly associated with easterly, northeasterly and southeasterly directions, pointing towards the major expressway and industrial area. Using the propylene-equivalent method, paint and varnish (23%) was the highest source of VOCs in summer and biomass/biofuel burning (36%) in winter. Using the ozone formation potential method, the most important source was biomass/biofuel burning (32% in summer and 47% in winter). The result suggests that the biomass/biofuel burning and paint and varnish play important roles in controlling ozone chemical formation in Nanjing.

  6. In Situ Production of Chlorine-36 in the Eastern Snake River Plain Aquifer, Idaho: Implications for Describing Ground-Water Contamination Near a Nuclear Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. D. Cecil; L. L. Knobel; J. R. Green

    2000-06-01

    The purpose of this report is to describe the calculated contribution to ground water of natural, in situ produced 36Cl in the eastern Snake River Plain aquifer and to compare these concentrations in ground water with measured concentrations near a nuclear facility in southeastern Idaho. The scope focused on isotopic and chemical analyses and associated 36Cl in situ production calculations on 25 whole-rock samples from 6 major water-bearing rock types present in the eastern Snake River Plain. The rock types investigated were basalt, rhyolite, limestone, dolomite, shale, and quartzite. Determining the contribution of in situ production to 36Cl inventories inmore » ground water facilitated the identification of the source for this radionuclide in environmental samples. On the basis of calculations reported here, in situ production of 36Cl was determined to be insignificant compared to concentrations measured in ground water near buried and injected nuclear waste at the INEEL. Maximum estimated 36Cl concentrations in ground water from in situ production are on the same order of magnitude as natural concentrations in meteoric water.« less

  7. Land surface phenology and land surface temperature changes along an urban-rural gradient in Yangtze River Delta, china.

    PubMed

    Han, Guifeng; Xu, Jianhua

    2013-07-01

    Using SPOT/VGT NDVI time series images (2002-2009) and MODIS/LST images (2002-2009) smoothed by a Savitzky-Golay filter, the land surface phenology (LSP) and land surface temperature (LST), respectively, are extracted for six cities in the Yangtze River Delta, China, including Shanghai, Hangzhou, Nanjing, Changzhou, Wuxi, and Suzhou. The trends of the averaged LSP and LST are analyzed, and the relationship between these values is revealed along the urban-rural gradient. The results show that urbanization advances the start of the growing season, postpones the end of the growing season, prolongs the growing season length (GSL), and reduces the difference between maximal NDVI and minimal NDVI in a year (NDVIamp). More obvious changes occur in surface vegetation phenology as the urbanized area is approached. The LST drops monotonously and logarithmically along the urban-rural gradient. Urbanization generally affects the LSP of the surrounding vegetation within 6 km to the urban edge. Except for GSL, the difference in the LSP between urban and rural areas has a significant logarithmic relationship with the distance to the urban edge. In addition, there is a very strong linear relationship between the LSP and the LST along the urban-rural gradient, especially within 6 km to the urban edge. The correlations between LSP and gross domestic product and population density reveal that human activities have considerable influence on the land surface vegetation growth.

  8. Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China.

    PubMed

    Zhang, Lifei; Dong, Liang; Ren, Lijun; Shi, Shuangxin; Zhou, Li; Zhang, Ting; Huang, Yeru

    2012-01-01

    The pollution from polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs) in the surface water of the rapidly urbanized Yangtze River Delta region was investigated. Fourteen surface water samples were collected in June 2010. Water samples were liquid-liquid extracted using methylene chloride and analyzed by gas chromatography-mass spectrometry. Concentrations of PAHs and PAEs ranged 12.9-638.1 ng/L and 61-28550 ng/L, respectively. Fluoranthene, naphthalene, pyrene, phenanthrene, di-2-ethylhexyl phthalate, and di-n-butyl phthalate were the most abundant compounds in the samples. The water samples were moderately polluted with benzo[a]pyrene according to China's environmental quality standard for surface water. The two highest concentrations of PAHs and PAEs occurred in samples from Taihu Lake, Wuxi City and the western section of Yangchenghu Lake. Potential sources of pollution at S7 were petroleum combustion and the plastics industry, and at Yangchenghu Lake were petroleum combustion and domestic waste. Pollution in samples from the Beijing-Hangzhou Grand Canal originated from diesel engines. There were no obvious sources of pollution for the other water samples. These results can be used as reference levels for future monitoring programs of pollution from PAHs and PAEs.

  9. Nutrient and detritus transport in the Apalachicola River, Florida

    USGS Publications Warehouse

    Mattraw, Harold C.; Elder, John F.

    1984-01-01

    The Apalachicola River in northwest Florida flows 172 kilometers southward from Jim Woodruff Dam near the Florida-Georgia border to Apalachicola Bay on the Gulf of Mexico. The basin is composed of two 3,100-squarekilometer subbasins, the Chipola and the Apalachicola. The Apalachicola subbasin includes a 454-square-kilometer bottom-land hardwood flood plain that is relatively undeveloped. The flood plain contains more than 1,500 trees per hectare that annually produce approximately 800 metric tons of litter fall per square kilometer. Spring floods of March and April 1980 carried 35,000 metric tons of particulate organic carbon derived from litter fall into Apalachicola Bay. The estuarine food web is predominantly detrital based and represents an important commercial source of oyster, shrimp, blue crab, and various species of fish. The water budget of the Apalachicola basin is heavily dominated by streamflow. For a 1-year period in 1979-80, 28.6 cubic kilometers of water flowed past the Sumatra gage on the lower river. Eighty percent of this volume flowed into the upper river near Chattahoochee, Fla., and 11 percent was contributed by its major tributary, the Chipola River. Contributions from ground water and overland runoff were less than 10 percent. Streamflow increases downstream were accompanied by equivalent increases in nitrogen and phosphorus transport. The nutrients were released to the river by the flood-plain vegetation, but also were subject to recycling. The increase in the amount of organic carbon transport downstream was greater than streamflow increases. The flood plain is an important source of organic carbon, especially in detrital form. Several methods for measurement of detritus in the river and flood plain were developed and tested. The detritus data from the flood plain added semiquantitative evidence for transport of detritus from the flood plain to the river flow, probably accounting for most of the coarse particulate organic material carried

  10. River dolphins can act as population trend indicators in degraded freshwater systems.

    PubMed

    Turvey, Samuel T; Risley, Claire L; Barrett, Leigh A; Yujiang, Hao; Ding, Wang

    2012-01-01

    Conservation attention on charismatic large vertebrates such as dolphins is often supported by the suggestion that these species represent surrogates for wider biodiversity, or act as indicators of ecosystem health. However, their capacity to act as indicators of patterns or trends in regional biodiversity has rarely been tested. An extensive new dataset of >300 last-sighting records for the Yangtze River dolphin or baiji and two formerly economically important fishes, the Yangtze paddlefish and Reeves' shad, all of which are probably now extinct in the Yangtze, was collected during an interview survey of fishing communities across the middle-lower Yangtze drainage. Untransformed last-sighting date frequency distributions for these species show similar decline curves over time, and the linear gradients of transformed last-sighting date series are not significantly different from each other, demonstrating that these species experienced correlated population declines in both timing and rate of decline. Whereas species may be expected to respond differently at the population level even in highly degraded ecosystems, highly vulnerable (e.g. migratory) species can therefore display very similar responses to extrinsic threats, even if they represent otherwise very different taxonomic, biological and ecological groupings. Monitoring the status of river dolphins or other megafauna therefore has the potential to provide wider information on the status of other threatened components of sympatric freshwater biotas, and so represents a potentially important monitoring tool for conservation management. We also show that interview surveys can provide robust quantitative data on relative population dynamics of different species.

  11. Evapotranspiration Estimation over Yangtze River Basin from GRACE satellite measurement and in situ data

    NASA Astrophysics Data System (ADS)

    Li, Qiong; Luo, Zhicai; Zhong, Bo; Wang, Haihong; Zhou, Zebing

    2016-04-01

    As the critical component of hydrologic cycle, evapotranspiration (ET) plays an important role in global water exchanges and energy flow across the hydrosphere, atmosphere and biosphere. Influenced by the Asian monsoon, the Yangtze River Basin (YRB) suffer from the several severe floods and droughts over the last decades due to the significant difference between temporal and spatial distribution terrestrial water storages. As an indispensable part, it is practically important to assessment ET in the YRB accompany with increased population and rapid economic and agriculture development. Average ET over the YRB is computed as the residual of terrestrial water budget using the Gravity Recovery and Climate Experiment (GRACE) satellite-based measurements and the ground-based observations. The GRACE-based ET were well coincidence with the ET from MODIS, with the correlation coefficient of 0.853, and the correlation coefficient is 0.696 while comparing with the ET ground-based observation. The mean monthly average of ET from these various estimates is 56.9 mm/month over the whole YRB, and peak between June and August. Monthly variations of ET reach a maximum in Wujiang with 69.11 mm/month and a minimum in Jinshajiang with 39.01 mm/month. Based on the correlation between ET and independent estimates of near-surface temperature and soil moisture, it is showed that as the temperature increased, the ET of the seven sub-catchment were rising except for the Poyang Lake and Donting Lake. And we also can infer that the midstream of YRB is significant correlated with ESON especially in the Hanjiang basin. The Surface Humidity Index over the YRB was gradually decreased and its variations in each sub-catchment showed a significant decreasing trend in Jinshajiang and Mingjiang. This research has important potential for use in large-scale water budget assessments and intercomparison studies. Acknowledgements: This research is supported by the National Natural Science Foundation of

  12. Aquifer recharge from infiltration basins in a highly urbanized area: the river Po Plain (Italy)

    NASA Astrophysics Data System (ADS)

    Masetti, M.; Nghiem, S. V.; Sorichetta, A.; Stevenazzi, S.; Santi, E. S.; Pettinato, S.; Bonfanti, M.; Pedretti, D.

    2015-12-01

    Due to the extensive urbanization in the Po Plain in northern Italy, rivers need to be managed to alleviate flooding problems while maintaining an appropriate aquifer recharge under an increasing percentage of impermeable surfaces. During the PO PLain Experiment field campaign in July 2015 (POPLEX 2015), both active and under-construction infiltration basins have been surveyed and analyzed to identify appropriate satellite observations that can be integrated to ground based monitoring techniques. A key strategy is to have continuous data time series on water presence and level within the basin, for which ground based monitoring can be costly and difficult to be obtained consistently.One of the major and old infiltration basin in the central Po Plain has been considered as pilot area. The basin is active from 2003 with ground based monitoring available since 2009 and supporting the development of a calibrated unsaturated-saturated two-dimensional numerical model simulating the infiltration dynamics through the basin.A procedure to use satellite data to detect surface water change is under development based on satellite radar backscatter data with an appropriate incidence angle and polarization combination. An advantage of satellite radar is that it can observe surface water regardless of cloud cover, which can be persistent during rainy seasons. Then, the surface water change is correlated to the reservoir water stage to determine water storage in the basin together with integrated ground data and to give quantitative estimates of variations in the local water cycle.We evaluated the evolution of the infiltration rate, to obtain useful insights about the general recharge behavior of basins that can be used for informed design and maintenance. Results clearly show when the basin becomes progressively clogged by biofilms that can reduce the infiltration capacity of the basin by as much as 50 times compared to when it properly works under clean conditions.

  13. Digital geospatial presentation of geoelectrical and geotechnical data for the lower American River and flood plain, east Sacramento, California

    USGS Publications Warehouse

    Ball, Lyndsay B.; Burton, Bethany L.; Powers, Michael H.; Asch, Theodore H.

    2015-01-01

    To characterize the extent and thickness of lithologic units that may have differing scour potential, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, has performed several geoelectrical surveys of the lower American River channel and flood plain between Cal Expo and the Rio Americano High School in east Sacramento, California. Additional geotechnical data have been collected by the U.S. Army Corps of Engineers and its contractors. Data resulting from these surveys have been compiled into similar database formats and converted to uniform geospatial datums and projections. These data have been visualized in a digital three-dimensional framework project that can be viewed using freely available software. These data facilitate a comprehensive analysis of the resistivity structure underlying the lower American River corridor and assist in levee system management.

  14. Thermochronology of mineral grains in the Red and Mekong Rivers, Vietnam: Provenance and exhumation implications for Southeast Asia

    NASA Astrophysics Data System (ADS)

    Clift, Peter D.; Carter, Andrew; Campbell, Ian H.; Pringle, Malcolm S.; van Lap, Nguyen; Allen, Charlotte M.; Hodges, Kip V.; Tan, Mai Thanh

    2006-10-01

    Sand samples from the mouths of the Red and Mekong Rivers were analyzed to determine the provenance and exhumation history of their source regions. U-Pb dating of detrital zircon grains shows that the main sources comprise crust formed within the Yangtze Craton and during the Triassic Indosinian Orogeny. Indosinian grains in the Mekong are younger (210-240 Ma) than those in the Red River (230-290 Ma), suggesting preferential erosion of the Qiangtang Block of Tibet into the Mekong. The Red River has a higher proportion of 700-800 Ma grains originally derived from the Yangtze Craton. 40Ar/39Ar dating of muscovite grains demonstrates that rocks cooled during the Indosinian Orogeny are dominant in both rivers, although the Mekong also shows a grain population cooling at 150-200 Ma that is not seen in the Red River and which is probably of original Qiangtang Block origin. Conversely, the Red River contains a significant mica population (350-500 Ma) eroded from the Yangtze Craton. High-grade metamorphic rocks exposed in the Cenozoic shear zones of southeast Tibet-Yunnan are minority sources to the rivers. However, apatite and zircon fission track ages show evidence for the dominant sources, especially in the Red River, only being exhumed through the shallowest 5-3 km of the crust since ˜25 Ma. The thermochronology data are consistent with erosion of recycled sediment from the inverted Simao and Chuxiong Basins, from gorges that incise the eastern flank of the plateau. Average Neogene exhumation rates are 104-191 m/Myr in the Red River basin, which is within error of the 178 ± 35 m/Myr estimated from Pleistocene sediment volumes. Sparse fission track data from the Mekong River support the Ar-Ar and U-Pb ages in favoring tectonically driven rock uplift and gorge incision as the dominant control on erosion, with precipitation being an important secondary influence.

  15. Snake River Plain Geothermal Play Fairway Analysis - Phase 1 Raster Files

    DOE Data Explorer

    John Shervais

    2015-10-09

    Snake River Plain Play Fairway Analysis - Phase 1 CRS Raster Files. This dataset contains raster files created in ArcGIS. These raster images depict Common Risk Segment (CRS) maps for HEAT, PERMEABILITY, AND SEAL, as well as selected maps of Evidence Layers. These evidence layers consist of either Bayesian krige functions or kernel density functions, and include: (1) HEAT: Heat flow (Bayesian krige map), Heat flow standard error on the krige function (data confidence), volcanic vent distribution as function of age and size, groundwater temperature (equivalue interval and natural breaks bins), and groundwater T standard error. (2) PERMEABILTY: Fault and lineament maps, both as mapped and as kernel density functions, processed for both dilational tendency (TD) and slip tendency (ST), along with data confidence maps for each data type. Data types include mapped surface faults from USGS and Idaho Geological Survey data bases, as well as unpublished mapping; lineations derived from maximum gradients in magnetic, deep gravity, and intermediate depth gravity anomalies. (3) SEAL: Seal maps based on presence and thickness of lacustrine sediments and base of SRP aquifer. Raster size is 2 km. All files generated in ArcGIS.

  16. Chlorine-36 in the Snake River Plain Aquifer at the Idaho National Engineering Laboratory; origin and implications

    USGS Publications Warehouse

    Beasley, T.M.; Cecil, L.D.; Sharma, P.; Kubik, P.W.; Fehn, U.; Mann, L.J.; Gove, H.E.

    1993-01-01

    Between 1952 and 1984, low-level radioactive waste was introduced directly into the Snake River Plain aquifer at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These wastes were generated, principally, at the nuclear fuel reprocessing facility on the site. Our measurements of 36C1 in monitoring and production well waters, downgradient from disposal wells and seepage ponds, found easily detectable, nonhazardous concentrations of this radionuclide from the point of injection to the INEL southern site boundary. Comparisons are made between 3H and 36Cl concentrations in aquifer water and the advantages of 36C1 as a tracer of subsurface-water dynamics at the site are discussed.

  17. Addressing extreme precipitation change under future climates in the Upper Yangtze River Basin

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Yuan, Z.; Gao, X.

    2017-12-01

    Investigating the impact of climate change on extreme precipitation accurately is of importance for application purposes such as flooding mitigation and urban drainage system design. In this paper, a systematical analysis framework to assess the impact of climate change on extreme precipitation events is developed and practiced in the Upper Yangtze River Basin (UYRB) in China. Firstly, the UYRB is gridded and five extreme precipitation indices (annual maximum 3- 5- 7- 15- and 30-day precipitation) are selected. Secondly, with observed precipitation from China's Ground Precipitation 0.5°×0.5° Gridded Dataset (V2.0) and simulated daily precipitation from ten general circulation models (GCMs) of CMIP5, A regionally efficient GCM is selected for each grid by the skill score (SS) method which maximizes the overlapped area of probability density functions of extreme precipitation indices between observations and simulations during the historical period. Then, simulations of assembled efficient GCMs are bias corrected by Equidistant Cumulative Distribution Function method. Finally, the impact of climate change on extreme precipitation is analyzed. The results show that: (1) the MRI-CGCM3 and MIROC-ESM perform better in the UYRB. There are 19.8 to 20.9% and 14.2 to 18.7% of all grids regard this two GCMs as regionally efficient GCM for the five indices, respectively. Moreover, the regionally efficient GCMs are spatially distributed. (2) The assembled GCM performs much better than any single GCM, with the SS>0.8 and SS>0.6 in more than 65 and 85 percent grids. (3) Under the RCP4.5 scenario, the extreme precipitation of 50-year and 100-year return period is projected to increase in most areas of the UYRB in the future period, with 55.0 to 61.3% of the UYRB increasing larger than 10 percent for the five indices. The changes are spatially and temporal distributed. The upstream region of the UYRB has a relatively significant increase compared to the downstream basin, while

  18. Trace gases, aerosols and their interactions with synoptic weather: An overview of in-situ measurements at the SORPES Station in the western Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Ding, A.; Fu, C.; Yang, X.; Petaja, T.; Kerminen, V.; Kulmala, M. T.

    2011-12-01

    This work presents an overview of 1 yr measurements of ozone (O3) and fine particular matter (PM2.5) and related trace gases at a recently developed regional background site, the Station for Observing Regional Processes of the Earth System (SORPES), in the western part of the Yangtze River Delta (YRD) in eastern China. Ozone and PM2.5 showed strong seasonal cycles but with contrast patterns: O3 reached a maximum in warm seasons but PM2.5 in cold seasons. Correlation analysis suggests a VOC-sensitive regime for O3 chemistry and a formation of secondary aerosols under conditions of high O3 in summer. Compared with the National Ambient Air Quality Standards in China, our measurements report 15 days of O3 exceedance and 148 days of PM2.5 exceedance during the 1 yr period, suggesting a severe air pollution situation in this region. A calculation of potential source contributions based on Lagrangian dispersion simulations suggests that emissions from the YRD contributed to over 70% of the O3 precursor CO, with a majority from the mid-YRD. North-YRD and the North China Plain are the main contributors to PM2.5pollution in this region. Case studies for typical O3 and PM2.5 episodes showed that synoptic weather played an important role in air pollution, especially for O3. Observation during the typical biomass burning seasons also shows clear air pollution - weather interactions. For the typical episode occurred on 10 June, 2012, the measurement suggest that the mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease of solar radiation by more than 70 %, of sensible heat flux over 85 %, a temperature drop by almost 10 K, and a change 10 of rainfall during daytime and nighttime. This work shows an important environmental impact from industrialization and urbanization in the YRD region, and suggests an urgent need for improving air quality in these areas through collaborative control measures among different administrative regions, and

  19. Trace gases, aerosols and their interactions with synoptic weather: An overview of in-situ measurements at the SORPES Station in the western Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Ding, A.; Fu, C.; Yang, X.; Petaja, T.; Kerminen, V.; Kulmala, M. T.

    2013-12-01

    This work presents an overview of 1 yr measurements of ozone (O3) and fine particular matter (PM2.5) and related trace gases at a recently developed regional background site, the Station for Observing Regional Processes of the Earth System (SORPES), in the western part of the Yangtze River Delta (YRD) in eastern China. Ozone and PM2.5 showed strong seasonal cycles but with contrast patterns: O3 reached a maximum in warm seasons but PM2.5 in cold seasons. Correlation analysis suggests a VOC-sensitive regime for O3 chemistry and a formation of secondary aerosols under conditions of high O3 in summer. Compared with the National Ambient Air Quality Standards in China, our measurements report 15 days of O3 exceedance and 148 days of PM2.5 exceedance during the 1 yr period, suggesting a severe air pollution situation in this region. A calculation of potential source contributions based on Lagrangian dispersion simulations suggests that emissions from the YRD contributed to over 70% of the O3 precursor CO, with a majority from the mid-YRD. North-YRD and the North China Plain are the main contributors to PM2.5pollution in this region. Case studies for typical O3 and PM2.5 episodes showed that synoptic weather played an important role in air pollution, especially for O3. Observation during the typical biomass burning seasons also shows clear air pollution - weather interactions. For the typical episode occurred on 10 June, 2012, the measurement suggest that the mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease of solar radiation by more than 70 %, of sensible heat flux over 85 %, a temperature drop by almost 10 K, and a change 10 of rainfall during daytime and nighttime. This work shows an important environmental impact from industrialization and urbanization in the YRD region, and suggests an urgent need for improving air quality in these areas through collaborative control measures among different administrative regions, and

  20. Characterization and spacial distribution variability of chromophoric dissolved organic matter (CDOM) in the Yangtze Estuary.

    PubMed

    Wang, Ying; Zhang, Di; Shen, Zhenyao; Chen, Jing; Feng, Chenghong

    2014-01-01

    The spatial characteristics and the quantity and quality of the chromophoric dissolved organic matter (CDOM) in the Yangtze Estuary, based on the abundance, degree of humification and sources, were studied using 3D fluorescence excitation emission matrix spectra (F-EEMs) with parallel factor and principal component analysis (PARAFAC-PCA). The results indicated that the CDOM abundance decreased and the aromaticity increased from the upstream to the downstream areas of the estuary. Higher CDOM abundance and degrees of humification were observed in the pore water than that in the surface and bottom waters. Two humic-like components (C1 and C3) and one tryptophan-like component (C2) were identified using the PARAFAC model. The separation of the samples by PCA highlighted the differences in the DOM properties. Components C1 and C3 concurrently displayed positive factor 1 loadings with nearly zero factor 2 loadings, while C2 showed highly positive factor 2 loadings. The C1 and C3 were very similar and exhibited a direct relationship with A355 and DOC. The CDOM in the pore water increased along the river to the coastal area, which was mainly influenced by C1 and C3 and was significantly derived from sediment remineralization and deposition from the inflow of the Yangtze River. The CDOM in the surface and bottom waters was dominated by C2, especially in the inflows of multiple tributaries that were affected by intensive anthropogenic activities. The microbial degradation of exogenous wastes from the tributary inputs and shoreside discharges were dominant sources of the CDOM in the surface and bottom waters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Insights into the interaction between carbamazepine and natural dissolved organic matter in the Yangtze Estuary using fluorescence excitation-emission matrix spectra coupled with parallel factor analysis.

    PubMed

    Wang, Ying; Zhang, Manman; Fu, Jun; Li, Tingting; Wang, Jinggang; Fu, Yingyu

    2016-10-01

    The interaction between carbamazepine (CBZ) and dissolved organic matter (DOM) from three zones (the nearshore, the river channel, and the coastal areas) in the Yangtze Estuary was investigated using fluorescence quenching titration combined with excitation emission matrix spectra and parallel factor analysis (PARAFAC). The complexation between CBZ and DOM was demonstrated by the increase in hydrogen bonding and the disappearance of the C=O stretch obtained from the Fourier transform infrared spectroscopy analysis. The results indicated that two protein-like substances (component 2 and component3) and two humic-like substances (component 1 and 4) were identified in the DOM from the Yangtze Estuary. The fluorescence quenching curves of each component with the addition of CBZ and the Ryan and Weber model calculation results both demonstrated that the different components exhibited different complexation activities with CBZ. The protein-like components had a stronger affinity with CBZ than did the humic-like substances. On the other hand, the autochthonous tyrosine-like C2 played an important role in the complexation with DOM from the river channel and coastal areas, while C3 influenced by anthropogenic activities showed an obvious effect in the nearshore area. DOMs from the river channel have the highest binding capacity for CBZ, which may ascribe to the relatively high phenol content group in the DOM.

  2. Geocode of River Networks in Global Plateaus

    NASA Astrophysics Data System (ADS)

    Ni, J.; Wang, Y.; Wang, T.

    2017-12-01

    As typical hierarchical systems, river networks are of great significance to aquatic organisms and its diversity. Different aspects of river networks have been investigated in previous studies such as network structure, formation cause, material transport, nutrient cycle and habitat variation. Nevertheless, river networks function as biological habitat is far from satisfactory in plateau areas. This paper presents a hierarchical method for habitat characterization of plateau river networks with the geocode extracted from abiotic factors including historical geologic period, climate zone, water source and geomorphic process at different spatial scales. As results, characteristics of biological response with vertical differentiation within typical plateau river networks are elucidated. Altitude, climate and landform are of great influence to habitat and thereby structure of aquatic community, while diverse water source and exogenic action would influence biological abundance or spatiotemporal distribution. Case studies are made in the main stream of the Yellow River and the Yangtze River, respectively extended to the river source to Qinghai-Tibet Plateau, which demonstrate high potentials for decision making support to river protection, ecological rehabilitation and sustainable management of river ecosystems.

  3. Prediction and forecast of Suspended Sediment Concentration (SSC) on the Upper Yangtze basin

    NASA Astrophysics Data System (ADS)

    Matos, José Pedro; Hassan, Marwan; Lu, Xixi; Franca, Mário J.

    2017-04-01

    Sediment transport in suspension may represent 90% or more of the global annual flux of sediment. For instance, more than 99% of the sediment supplied to the sea by the Yangtze River is suspended load. Suspended load is an important component for understanding channel dynamics and landscape evolution. Sediments transported in suspension are a major source of nutrients for aquatic organisms in riparian and floodplain habitats, and play a beneficial role acting as a sink in the carbon cycle. Excess of fine sediments may also have adverse effects. It can impair fish spawning by riverbed clogging, disturb foraging efficiency of hunting of river fauna, cause algae and benthos scouring, reduce or inhibit exchanges through the hyporheic region. Accumulation of fine sediments in reservoirs reduces storage capacity. Although fine sediment dynamics has been the focus of many studies, the current knowledge of sediment sources, transfer, and storage is inadequate to address fine sediment dynamics in the landscape. The theoretical derivation of a complete model for suspended sediment transport at the basin scale, incorporating small scale processes of production and transport, is hindered because the underlying mechanisms are produced at different non-similar scales. Availability of long-term reliable data on suspended sediment dynamics is essential to improve our knowledge on transport processes and to develop reliable sediment prediction models. Over the last 60 years, the Yangtze River Commission has been measuring the daily Suspended Sediment Concentration (SSC) at the Pingshan station. This dataset provides a unique opportunity to examine temporal variability and controls of fine sediment dynamics in the Upper Yangtze basin. The objective of this study is to describe temporal variation of fine sediment dynamics at the Pingshan station making use of the extensive sediment monitoring program undertaken at that location. We test several strategies of prediction and forecast

  4. Forcing, properties, structure, and antecedent synoptic climatology of the Snake River Plain Convergence Zone of eastern Idaho: Analyses of observations and numerical simulations

    NASA Astrophysics Data System (ADS)

    Andretta, Thomas A.

    The Snake River Plain Convergence Zone (SPCZ) is a convergent shear zone generated by synoptic-scale post cold-frontal winds in the planetary boundary layer (PBL) interacting with the complex topography of eastern Idaho. The SPCZ produces clouds and occasional precipitation over time scales of 6--12 hours in a significant area of mesoscale dimensions (10--50 x 10 3 km2). This meso-beta-scale feature also contributes to the precipitation climatology in a semi-arid plain. The SPCZ is climatologically linked to the passage of synoptic-scale cold fronts and typically occurs in the fall and winter months with the highest frequencies in October, November, and January. The Snake River Plain of eastern Idaho is covered by a dense surface mesonetwork of towers with sensible weather measurements, single Doppler weather radar, regional soundings, and operational model sources. The ability of numerical weather prediction models to simulate the SPCZ depends on several factors: the accuracy of the large scale flow upstream of the zone, terrain resolution, grid scale, boundary layer parameterizations of stability, cumulus parameterizations, and microphysics schemes. This dissertation explores several of these issues with the aforementioned observations and with the Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) model simulations of selected SPCZ events. This dissertation first explains the conceptual models of the flow patterns related to the genesis of the SPCZ in light of other well-documented topographically-generated zones. The study then explores the links between the theoretical models and observations of the SPCZ in several episodes. With this foundation, the dissertation then tests several hypotheses relating to the horizontal and vertical zone structure, topographic sensitivity on the zone structure, and boundary layer evolution of the zone through the use of high resolution nested grid numerical simulations. The SPCZ consists of windward and leeward

  5. Meandering down to the Sea: The Wandering Ways of Rivers.

    ERIC Educational Resources Information Center

    Aslamazov, Lev

    1992-01-01

    Discusses the hydrodynamic reasons why a riverbed meanders through a plain. Describes how water movement at a bend in a river causes erosion and changes in the riverbed. Provides a mathematical model to explain the periodic shape of meanders of a river in a plain. (MDH)

  6. Trend and dynamic cause of sediment particle size on the adjacent continental shelf of the Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Yang, Yun-ping; Zhang, Ming-jin; Li, Yi-tian; Fan, Yong-yang

    2016-12-01

    Based on the measured data in recent 20 years, the variation trends of the median grain size of the surface sediment, the sand-silt boundary and the mud area on the adjacent continental shelf of the Yangtze Estuary were analyzed in depth, and the effects of natural mechanism and human activities were discussed. The results show that: (1) In recent years (2006-2013), the median grain size of sediment and the distribution pattern of grouped sediments in the adjacent continental shelf area to the Yangtze Estuary have presented no obvious change compared with those before 2006; (2) The median diameter of the surface sediment in the continental shelf area displayed a coarsening trend with the decrease of sediment discharge from the basin and the drop in suspended sediment concentration in the shore area; (3) In 2004-2007, the sand-silt boundary in the north part (31°30'N) of the continental shelf area presented no significant changes, while that in the south part (31°30'S) moved inwards; In 2008-2013, both the sand-silt boundaries in the north and south parts of the continental shelf area moved inwards, mainly due to the fact that in the dry season, a relatively enhanced hydrodynamic force of the tides was generated in the Yangtze River, as well as a decreased suspended sediment concentration and a flow along the banks in North Jiangsu; (4) The mud area where the maximum deposition rate is found in the Yangtze Estuary, tends to shrink due to the drop in sediment discharge from the basin, and the decrease in suspended sediment concentration in the shore area and erosion in the delta. Moreover, it tended to shift to the south at the same time because the implement of the training works on the deep-water channel of the North Passage changed the split ratio between the North and South Passages with an increase in the power of the discharged runoff in the South Passage.

  7. Development of a regional groundwater flow model for the area of the Idaho National Engineering Laboratory, Eastern Snake River Plain Aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, J.M.; Arnett, R.C.; Neupauer, R.M.

    This report documents a study conducted to develop a regional groundwater flow model for the Eastern Snake River Plain Aquifer in the area of the Idaho National Engineering Laboratory. The model was developed to support Waste Area Group 10, Operable Unit 10-04 groundwater flow and transport studies. The products of this study are this report and a set of computational tools designed to numerically model the regional groundwater flow in the Eastern Snake River Plain aquifer. The objective of developing the current model was to create a tool for defining the regional groundwater flow at the INEL. The model wasmore » developed to (a) support future transport modeling for WAG 10-04 by providing the regional groundwater flow information needed for the WAG 10-04 risk assessment, (b) define the regional groundwater flow setting for modeling groundwater contaminant transport at the scale of the individual WAGs, (c) provide a tool for improving the understanding of the groundwater flow system below the INEL, and (d) consolidate the existing regional groundwater modeling information into one usable model. The current model is appropriate for defining the regional flow setting for flow submodels as well as hypothesis testing to better understand the regional groundwater flow in the area of the INEL. The scale of the submodels must be chosen based on accuracy required for the study.« less

  8. An Overview of the Origin of A-type Silicic Magmatism Along the Snake River Plain-Yellowstone Hotspot Track

    NASA Astrophysics Data System (ADS)

    Christiansen, E. H.; Bindeman, I. N.; Leishman, J. R.

    2015-12-01

    Disparate models have been proposed for the origin of A-type rhyolites--a volumetrically minor part of modern terrestrial magmatism. But understanding the origin of A-type granites and rhyolites has significance for understanding the formation of the Earth's first silicic crust and for planetary magmatism--small volumes of such granitic materials have been found in lunar rocks, martian and asteroidal meteorites, and have been speculated to have formed on Venus. On other planets, vertical tectonics and plume-like mantle convection dominate, not the recycling of wet, oxidized plates of lithosphere as on Earth. Thus, understanding the origins of A-type silicic magma is important on multiple levels. Voluminous A-type rhyolite were produced on the Snake River Plain-Yellowstone hotspot track and provide the opportunity to better understand these important silicic magmas. Detailed petrologic studies suggest that most Snake River Plain rhyolites ultimately formed by partially melting of previously emplaced basaltic intrusions rather than by fractional crystallization of basalt or melting of Archean crust. This hypothesis is favored because of the bimodal association of rhyolite and basalt without linking intermediate compositions. In addition, incompatible element ratios (e.g., La/Nb, Pb/Ce), a lack of old zircon antecrysts, low-U inherited zircon, high ɛNd and ɛHf values, high eruption temperatures (1050°C to 850°C), low fO2 (near QFM), and H2O (as low as 1.5%), link the rhyolites to a plume-derived basaltic parent through partial melting with lesser incorporation of the Archean to Mesozoic crust that underlies the plain. Moreover, the contrast with wetter, lower temperature rhyolites that must have formed by direct crustal melting (e.g., Arbon Valley Tuff) strengthens this interpretation. Many of the rhyolites also have low δ18O values that must be produced in two stages: first by partial melting of already hydrothermally altered basalt, and subsequently in single

  9. Uncertainty in positive matrix factorization solutions for PAHs in surface sediments of the Yangtze River Estuary in different seasons.

    PubMed

    Liu, Ruimin; Men, Cong; Yu, Wenwen; Xu, Fei; Wang, Qingrui; Shen, Zhenyao

    2018-01-01

    To examine the variabilities of source contributions in the Yangtze River Estuary (YRE), the uncertainty based on the positive matrix factorization (PMF) was applied to the source apportionment of the 16 priority PAHs in 120 surface sediment samples from four seasons. Based on the signal-to-noise ratios, the PAHs categorized as "Bad" might drop out of the estimation of bootstrap. Next, the spatial variability of residuals was applied to determine which species with non-normal curves should be excluded. The median values from the bootstrapped solutions were chosen as the best estimate of the true factor contributions, and the intervals from 5th to 95th percentile represent the variability in each sample factor contribution. Based on the results, the median factor contributions of wood grass combustion and coke plant emissions were highly correlated with the variability (R 2  = 0.6797-0.9937) in every season. Meanwhile, the factor of coal and gasoline combustion had large variability with lower R 2 values in every season, especially in summer (0.4784) and winter (0.2785). The coefficient of variation (CV) values based on the Bootstrap (BS) simulations were applied to indicate the uncertainties of PAHs in every factor of each season. Acy, NaP and BgP always showed higher CV values, which suggested higher uncertainties in the BS simulations, and the PAH with the lowest concentration among all PAHs usually became the species with higher uncertainties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Estimating SGD flux in the Pingtung Plain coastal area by using Radon and Radium isotopes

    NASA Astrophysics Data System (ADS)

    Li Chang, Yao; Chieh Su, Chih

    2015-04-01

    In the past two decades, submarine groundwater discharge (SGD) has been recognized as an important pathway to transport material into coastal area. Our study area is located at Pingtung Plain which is the second largest plain in Taiwan with three major rivers, including Gaoping, Donggang and Linbian Rivers, flow through the plain. The Gaoping River, which has the largest drainage area, flows throughout the central part of the plain. The Pingtung Plain composed by four aquifers in different depths (0, 50, 100, and 200 m) and each layer extends to coastal area. Groundwater is an important water resource for local agriculture and aquaculture. However, the long-term over-pumping induced subsidence problem makes salinization at some coastal area. Some previous studies pointed out the SGD accounts for 80% or more of the mass of freshwater in Fangshan coast, depends on salinity and stable isotopes research. In this study, the radioactive tracers, Radon (222Rn, T1/2=3.8 d) and short-lived Ra isotopes (223Ra, T1/2=11.4 d & 224Ra, T1/2=3.6 d) are used in tracing SGD off the Pingtung Plain. During 2013 to 2014, the terrestrial water samples were collected from Gaoping, Donggang, Linbian Rivers and springs in different seasons. We also conducted two coastal waters cruises by using R/V Ocean Researcher 3 (OR3-1768 and 1799 cruises in May and September 2014). Continuous 222Rn was measured by RAD7 equipped with RAD-AQUA system and large volume (20 L) seawater samples were collected by CTD/Rosette water sampler with Niskin sterile bottles. Water samples were flow through Mn-fiber (flow rate < 1 LPM) to concentrate the Ra isotopes, and counted via RaDeCC system. In spatial variation, our result shows the excess 224Ra in the downstream of Gaoping River (2.39 dpm 100L-1) is higher than upstream (1.09 dpm 100L-1). It indicates the groundwater input may play an important role at the downstream of Gaoping River. For temporal variation, excess 224Ra in the Gaoping River are higher in wet

  11. Heavy Metal Pollution Delineation Based on Uncertainty in a Coastal Industrial City in the Yangtze River Delta, China

    PubMed Central

    Zhao, Ruiying; Chen, Songchao; Zhou, Yue; Jin, Bin; Li, Yan

    2018-01-01

    Assessing heavy metal pollution and delineating pollution are the bases for evaluating pollution and determining a cost-effective remediation plan. Most existing studies are based on the spatial distribution of pollutants but ignore related uncertainty. In this study, eight heavy-metal concentrations (Cr, Pb, Cd, Hg, Zn, Cu, Ni, and Zn) were collected at 1040 sampling sites in a coastal industrial city in the Yangtze River Delta, China. The single pollution index (PI) and Nemerow integrated pollution index (NIPI) were calculated for every surface sample (0–20 cm) to assess the degree of heavy metal pollution. Ordinary kriging (OK) was used to map the spatial distribution of heavy metals content and NIPI. Then, we delineated composite heavy metal contamination based on the uncertainty produced by indicator kriging (IK). The results showed that mean values of all PIs and NIPIs were at safe levels. Heavy metals were most accumulated in the central portion of the study area. Based on IK, the spatial probability of composite heavy metal pollution was computed. The probability of composite contamination in the central core urban area was highest. A probability of 0.6 was found as the optimum probability threshold to delineate polluted areas from unpolluted areas for integrative heavy metal contamination. Results of pollution delineation based on uncertainty showed the proportion of false negative error areas was 6.34%, while the proportion of false positive error areas was 0.86%. The accuracy of the classification was 92.80%. This indicated the method we developed is a valuable tool for delineating heavy metal pollution. PMID:29642623

  12. Quantitative diagnosis of moisture sources and transport pathways for summer precipitation over the mid-lower Yangtze River Basin

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Zeng, Xin-Min; Guo, Wei-Dong; Chen, Chaohui; You, Wei; Zheng, Yiqun; Zhu, Jian

    2018-04-01

    Using a moisture tracking model with 32-year reanalysis data and station precipitation observations, we diagnosed the sources of moisture for summer (June 1-August 31) precipitation in mid-lower reaches of the Yangtze River Basin (YRB). Results indicate the dominant role of oceanic evaporation compared to terrestrial evapotranspiration, and the previously overlooked southern Indian Ocean, as a source region, is found to contribute more moisture than the well-known Arabian Sea or Bay of Bengal. Terrestrial evapotranspiration appears to be important for summer precipitation, especially in early June when moisture contribution is more than 50%. The terrestrial contribution then decreases and is generally less than 40% after late June. The Indian Ocean is the most important oceanic source before mid-July, with its largest contribution during the period of heavy precipitation, while the Pacific Ocean becomes the more important oceanic source after mid-July. To quantitatively analyze paths of moisture transport to YRB, we proposed the Trajectory Frequency Method. The most intense branch of water vapor transport to YRB stretches from the Arabian Sea through the Bay of Bengal, the Indochina Peninsula, the South China Sea, and South China. The other main transport branches are westerly moisture fluxes to the south of the Tibetan Plateau, cross-equatorial flows north of Australia, and separate branches located in the north and equatorial Pacific Ocean. Significant intraseasonal variability for these branches is presented. Additionally, the importance of the South China Sea for moisture transport to YRB, especially from the sea areas, is emphasized.

  13. Heavy Metal Pollution Delineation Based on Uncertainty in a Coastal Industrial City in the Yangtze River Delta, China.

    PubMed

    Hu, Bifeng; Zhao, Ruiying; Chen, Songchao; Zhou, Yue; Jin, Bin; Li, Yan; Shi, Zhou

    2018-04-10

    Assessing heavy metal pollution and delineating pollution are the bases for evaluating pollution and determining a cost-effective remediation plan. Most existing studies are based on the spatial distribution of pollutants but ignore related uncertainty. In this study, eight heavy-metal concentrations (Cr, Pb, Cd, Hg, Zn, Cu, Ni, and Zn) were collected at 1040 sampling sites in a coastal industrial city in the Yangtze River Delta, China. The single pollution index (PI) and Nemerow integrated pollution index (NIPI) were calculated for every surface sample (0-20 cm) to assess the degree of heavy metal pollution. Ordinary kriging (OK) was used to map the spatial distribution of heavy metals content and NIPI. Then, we delineated composite heavy metal contamination based on the uncertainty produced by indicator kriging (IK). The results showed that mean values of all PIs and NIPIs were at safe levels. Heavy metals were most accumulated in the central portion of the study area. Based on IK, the spatial probability of composite heavy metal pollution was computed. The probability of composite contamination in the central core urban area was highest. A probability of 0.6 was found as the optimum probability threshold to delineate polluted areas from unpolluted areas for integrative heavy metal contamination. Results of pollution delineation based on uncertainty showed the proportion of false negative error areas was 6.34%, while the proportion of false positive error areas was 0.86%. The accuracy of the classification was 92.80%. This indicated the method we developed is a valuable tool for delineating heavy metal pollution.

  14. Gap Analysis and Conservation Network for Freshwater Wetlands in Central Yangtze Ecoregion

    PubMed Central

    Xiaowen, Li; Haijin, Zhuge; Li, Mengdi

    2013-01-01

    The Central Yangtze Ecoregion contains a large area of internationally important freshwater wetlands and supports a huge number of endangered waterbirds; however, these unique wetlands and the biodiversity they support are under the constant threats of human development pressures, and the prevailing conservation strategies generated based on the local scale cannot adequately be used as guidelines for ecoregion-based conservation initiatives for Central Yangtze at the broad scale. This paper aims at establishing and optimizing an ecological network for freshwater wetland conservation in the Central Yangtze Ecoregion based on large-scale gap analysis. A group of focal species and GIS-based extrapolation technique were employed to identify the potential habitats and conservation gaps, and the optimized conservation network was then established by combining existing protective system and identified conservation gaps. Our results show that only 23.49% of the potential habitats of the focal species have been included in the existing nature reserves in the Central Yangtze Ecoregion. To effectively conserve over 80% of the potential habitats for the focal species by optimizing the existing conservation network for the freshwater wetlands in Central Yangtze Ecoregion, it is necessary to establish new wetland nature reserves in 22 county units across Hubei, Anhui, and Jiangxi provinces. PMID:24062632

  15. Gap analysis and conservation network for freshwater wetlands in Central Yangtze Ecoregion.

    PubMed

    Xiaowen, Li; Haijin, Zhuge; Li, Mengdi

    2013-01-01

    The Central Yangtze Ecoregion contains a large area of internationally important freshwater wetlands and supports a huge number of endangered waterbirds; however, these unique wetlands and the biodiversity they support are under the constant threats of human development pressures, and the prevailing conservation strategies generated based on the local scale cannot adequately be used as guidelines for ecoregion-based conservation initiatives for Central Yangtze at the broad scale. This paper aims at establishing and optimizing an ecological network for freshwater wetland conservation in the Central Yangtze Ecoregion based on large-scale gap analysis. A group of focal species and GIS-based extrapolation technique were employed to identify the potential habitats and conservation gaps, and the optimized conservation network was then established by combining existing protective system and identified conservation gaps. Our results show that only 23.49% of the potential habitats of the focal species have been included in the existing nature reserves in the Central Yangtze Ecoregion. To effectively conserve over 80% of the potential habitats for the focal species by optimizing the existing conservation network for the freshwater wetlands in Central Yangtze Ecoregion, it is necessary to establish new wetland nature reserves in 22 county units across Hubei, Anhui, and Jiangxi provinces.

  16. Geomorphology and bank erosion of the Matanuska River, southcentral Alaska

    USGS Publications Warehouse

    Curran, Janet H.; McTeague, Monica L.

    2011-01-01

    Bank erosion along the Matanuska River, a braided, glacial river in southcentral Alaska, has damaged or threatened houses, roadways, and public facilities for decades. Mapping of river geomorphology and bank characteristics for a 65-mile study area from the Matanuska Glacier to the river mouth provided erodibility information that was assessed along with 1949-2006 erosion to establish erosion hazard data. Braid plain margins were delineated from 1949, 1962, and 2006 orthophotographs to provide detailed measurements of erosion. Bank material and height and geomorphic features within the Matanuska River valley (primarily terraces and tributary fans) were mapped in a Geographic Information System (GIS) from orthophotographs and field observations to provide categories of erodibility and extent of the erodible corridor. The braid plain expanded 861 acres between 1949 and 2006. Erosion in the highest category ranged from 225 to 1,043 feet at reaches of bank an average of 0.5 mile long, affecting 8 percent of the banks but accounting for 64 percent of the erosion. Correlation of erosion to measurable predictor variables was limited to bank height and material. Streamflow statistics, such as peak streamflow or mean annual streamflow, were not clearly linked to erosion, which can occur during the prolonged period of summer high flows where channels are adjacent to an erodible braid plain margin. The historical braid plain, which includes vegetated braid plain bars and islands and active channels, was identified as the greatest riverine hazard area on the basis of its historical occupation. In 2006, the historical braid plain was an average of 15 years old, as determined from the estimated age of vegetation visible in orthophotographs. Bank erosion hazards at the braid plain margins can be mapped by combining bank material, bank height, and geomorphology data. Bedrock bluffs at least 10 feet high (31 percent of the braid plain margins) present no erosion hazard. At

  17. Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China.

    PubMed

    Hu, Bifeng; Jia, Xiaolin; Hu, Jie; Xu, Dongyun; Xia, Fang; Li, Yan

    2017-09-10

    Heavy metal (HM) contamination and accumulation is a serious problem around the world due to the toxicity, abundant sources, non-biodegradable properties, and accumulative behaviour of HMs. The degree of soil HM contamination in China, especially in the Yangtze River Delta, is prominent. In this study, 1822 pairs of soil and crop samples at corresponding locations were collected from the southern Yangtze River Delta of China, and the contents of Ni, Cr, Zn, Cd, As, Cu, Hg, and Pb were measured. The single pollution index in soil (SPI) and Nemerow composite pollution index (NCPI) were used to assess the degree of HM pollution in soil, and the crop pollution index (CPI) was used to explore the degree of HM accumulation in crops. The bioaccumulation factor (BAF) was used to investigate the translocation of heavy metals in the soil-crop system. The health risks caused by HMs were calculated based on the model released by the U.S. Environmental Protection Agency. The SPIs of all elements were at the unpolluted level. The mean NCPI was at the alert level. The mean CPIs were in the following decreasing order: Ni (1.007) > Cr (0.483) > Zn (0.335) > Cd (0.314) > As (0.232) > Cu (0.187) > Hg (0.118) > Pb (0.105). Only the mean content of Ni in the crops exceeded the national standard value. The standard exceeding rates were used to represent the percentage of samples whose heavy metal content is higher than the corresponding national standard values. The standard exceeding rates of Cu, Hg, and Cd in soil were significantly higher than corresponding values in crops. Meanwhile, the standard exceeding rates of Ni, As, and Cr in crops were significantly higher than corresponding values in soil. The chronic daily intake (CDI) of children (13.8 × 10 -3 ) was the largest among three age groups, followed by adults (6.998 × 10 -4 ) and seniors (5.488 × 10 -4 ). The bioaccumulation factors (BAFs) of all crops followed the order Cd (0.249) > Zn (0.133) > As (0.076) > Cu (0.064) > Ni

  18. Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China

    PubMed Central

    Hu, Bifeng; Jia, Xiaolin; Hu, Jie; Xu, Dongyun; Xia, Fang; Li, Yan

    2017-01-01

    Heavy metal (HM) contamination and accumulation is a serious problem around the world due to the toxicity, abundant sources, non-biodegradable properties, and accumulative behaviour of HMs. The degree of soil HM contamination in China, especially in the Yangtze River Delta, is prominent. In this study, 1822 pairs of soil and crop samples at corresponding locations were collected from the southern Yangtze River Delta of China, and the contents of Ni, Cr, Zn, Cd, As, Cu, Hg, and Pb were measured. The single pollution index in soil (SPI) and Nemerow composite pollution index (NCPI) were used to assess the degree of HM pollution in soil, and the crop pollution index (CPI) was used to explore the degree of HM accumulation in crops. The bioaccumulation factor (BAF) was used to investigate the translocation of heavy metals in the soil-crop system. The health risks caused by HMs were calculated based on the model released by the U.S. Environmental Protection Agency. The SPIs of all elements were at the unpolluted level. The mean NCPI was at the alert level. The mean CPIs were in the following decreasing order: Ni (1.007) > Cr (0.483) > Zn (0.335) > Cd (0.314) > As (0.232) > Cu (0.187) > Hg (0.118) > Pb (0.105). Only the mean content of Ni in the crops exceeded the national standard value. The standard exceeding rates were used to represent the percentage of samples whose heavy metal content is higher than the corresponding national standard values. The standard exceeding rates of Cu, Hg, and Cd in soil were significantly higher than corresponding values in crops. Meanwhile, the standard exceeding rates of Ni, As, and Cr in crops were significantly higher than corresponding values in soil. The chronic daily intake (CDI) of children (13.8 × 10−3) was the largest among three age groups, followed by adults (6.998 × 10−4) and seniors (5.488 × 10−4). The bioaccumulation factors (BAFs) of all crops followed the order Cd (0.249) > Zn (0.133) > As (0.076) > Cu (0.064) > Ni

  19. Geology and ground-water features of salt springs, seeps, and plains in the Arkansas and Red River basins of western Oklahoma and adjacent parts of Kansas and Texas

    USGS Publications Warehouse

    Ward, P.E.

    1963-01-01

    The salt springs, seeps, and plains described in this report are in the Arkansas and Red River basins in western Oklahoma and adjacent areas in Kansas and Texas. The springs and seeps contribute significantly to the generally poor water quality of the rivers by bringing salt (HaCI) to the surface at an estimated daily rate of more than 8,000 tons. The region investigated is characterized by low hills and rolling plains. Many of the rivers are eroded 100 feet or more below the .surrounding upland surface and in places the valleys are bordered by steep bluffs. The alluvial plains of the major rivers are wide and the river channels are shallow and unstable. The flow of many surface streams is intermittent, especially in the western part of the area. All the natural salt-contributing areas studied are within the outcrop area of rocks of Permian age. The Permian rocks, commonly termed red beds, are composed principally of red and gray gypsiferous shale, siltstone, sandstone, gypsum, anhydrite, and dolomite. Many of the formations contain halite in the subsurface. The halite occurs mostly as discontinuous lenses in shale, although some of the thicker, more massive beds are extensive. It underlies the entire region studied at depths ranging from about 30 feet to more than 2,000 feet. The salt and associated strata show evidence of extensive removal of salt through solution by ground water. Although the salt generally occurs in relatively impervious shale small joints and fractures ,allow the passage of small quantities of water which dissolves the salt. Salt water occurs in the report area at depths ranging from less than 100 feet to more than 1,000 feet. Salt water occurs both as meteoric and connate, but the water emerging as salt springs is meteoric. Tritium analyses show that the age of the water from several springs is less than 20 years. The salt springs, seeps, and plains are confined to 13 local areas. The flow of the springs and seeps is small, but the chloride

  20. Geologic map and profiles of the north wall of the Snake River Canyon, Pasadena Valley and Ticeska quadrangles, Idaho

    USGS Publications Warehouse

    Covington, H.R.; Weaver, Jean N.

    1990-01-01

    The Snake River Plain is a broad, arcuate region of low relief that extends more than 300 mi across southern Idaho. The Snake River enters the plain near Idaho Falls and flows westward along the southern margin of the eastern Snake River Plain (fig. 1), a position mainly determined by the basaltic lava flows that erupted near the axis of the plain. The highly productive Snake River Plain aquifer north of the Snaked River underlies the most of the eastern plain. The aquifer is composed of basaltic ricks that are interbedded with fluvial and lacustrine sedimentary rocks. The top of the aquifer (water table) is typically less than 500 ft below the land surface, but is deeper than 1,000 ft in few areas. The Snake River had excavated a canyon into the nearly flat-lying basaltic and sedimentary rocks of the eastern Snake River Plain between Milner Dam and King Hill (fig. 2), a distance of almost 90 mi. For much of its length the canyon intersects the Snake River Plain aquifer, which discharges from the north canyon wall as springs of variable size, spacing, and altitude. Geologic controls on springs are of importance because nearly 60 percent of the aquifer's discharge occurs as spring flow along this reach of the canyon. This report is one of several that describes the geologic occurrence of springs along the northern wall of the Snake River canyon from Milner Dam to King Hill. To understand the local geologic controls on springs, the Water Resources Division of the U.S. Geological Survey initiated a geologic mapping project as part of their Snake River Plain Regional Aquifer System-Analysis Program. Objectives of the project were (1) to prepare a geologic map of a strip of land immediately north of the Snake River canyon, (2) to map the geology of the north canyon wall in profile, (3) to locate spring occurrences along the north side of the Snake River between Milner Dam and King Hill, and (4) to estimate spring discharge from the north wall of the canyon.