Sample records for yangtze river sediments

  1. Embryotoxicity and genotoxicity evaluation of sediments from Yangtze River estuary using zebrafish (Danio rerio) embryos.

    PubMed

    Li, Qian; Chen, Ling; Liu, Li; Wu, Lingling

    2016-03-01

    Sediments function both as a sink and a source of pollutants in aquatic ecosystems and may impose serious effects on benthic organisms and human health. As one of the largest estuaries in the world, the Yangtze River estuary suffers from abundant wastewater from the coastal cities. In this study, the zebrafish (Danio rerio) embryos were employed in the fish embryo test and a comet assay to evaluate the embryotoxicity and genotoxicity of the sediments from the Yangtze River estuary, respectively. Results showed that the sediments from the Yangtze River estuary significantly increased mortality, induced development abnormalities, and reduced hatching rate and heart rate of zebrafish embryos after 96 h of exposure. Significant genotoxicity was observed in the samples relative to the controls. Relatively low-level embryotoxicity and genotoxicity of sediments were found in the Yangtze River compared with other river systems. Toxic responses were also discussed in relation to the analyzed organic contaminants in sediments. More attention should be paid to non-priority pollutant monitoring in the Yangtze River estuary.

  2. Effect of water flux and sediment discharge of the Yangtze River on PAHs sedimentation in the estuary.

    PubMed

    Li, Rufeng; Feng, Chenghong; Wang, Dongxin; He, Maozhi; Hu, Lijuan; Shen, Zhenyao

    2016-12-01

    Historical distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) and their carriers (i.e., organic matter and mineral particles) in the sediment cores of the Yangtze Estuary were investigated, with emphasis laid on the role of the Yangtze River. Grain size component of sediments (clay, silt, and sand) and organic carbon (black carbon and total organic carbon) in the sediment cores were markedly affected by water flux and sediment discharge of the Yangtze River. Qualitative and quantitative analysis results showed that sands and black carbon acted as the main carriers of PAHs. The sedimentation of two-ring to three-ring PAHs in the estuary had significant correlations with water flux and sediment discharge of the Yangtze River. The relative lower level of the four-ring and five-ring to six-ring PAHs concentrations appeared around the year 2003 and remained for the following several years. This time period accorded well with the water impoundment time of the Three Gorges Reservoir. The decreased level of two-ring to three-ring PAHs occurred in the year 1994, and the peak points around the year 2009 indicated that PAHs sedimentation in the estuary also had close relationship to severe drought and flood in the catchments. The findings presented in this paper could provide references for assessing the impacts of water flux and sediment discharge on the historical deposition of PAHs and their carriers in the Yangtze Estuary.

  3. Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River

    NASA Astrophysics Data System (ADS)

    Wang, Yuankun; Rhoads, Bruce L.; Wang, Dong; Wu, Jichun; Zhang, Xiao

    2018-03-01

    The Yangtze River is one of the largest and most important rivers in the world. Over the past several decades, the natural sediment regime of the Yangtze River has been altered by the construction of dams. This paper uses multi-scale entropy analysis to ascertain the impacts of large dams on the complexity of high-frequency suspended sediment dynamics in the Yangtze River system, especially after impoundment of the Three Gorges Dam (TGD). In this study, the complexity of sediment dynamics is quantified by framing it within the context of entropy analysis of time series. Data on daily sediment loads for four stations located in the mainstem are analyzed for the past 60 years. The results indicate that dam construction has reduced the complexity of short-term (1-30 days) variation in sediment dynamics near the structures, but that complexity has actually increased farther downstream. This spatial pattern seems to reflect a filtering effect of the dams on the on the temporal pattern of sediment loads as well as decreased longitudinal connectivity of sediment transfer through the river system, resulting in downstream enhancement of the influence of local sediment inputs by tributaries on sediment dynamics. The TGD has had a substantial impact on the complexity of sediment series in the mainstem of the Yangtze River, especially after it became fully operational. This enhanced impact is attributed to the high trapping efficiency of this dam and its associated large reservoir. The sediment dynamics "signal" becomes more spatially variable after dam construction. This study demonstrates the spatial influence of dams on the high-frequency temporal complexity of sediment regimes and provides valuable information that can be used to guide environmental conservation of the Yangtze River.

  4. Flux and fate of Yangtze River sediment delivered to the East China Sea

    NASA Astrophysics Data System (ADS)

    Liu, J. P.; Xu, K. H.; Li, A. C.; Milliman, J. D.; Velozzi, D. M.; Xiao, S. B.; Yang, Z. S.

    2007-03-01

    Numerous cores and dating show the Yangtze River has accumulated about 1.16 × 10 12 t sediment in its delta plain and proximal subaqueous delta during Holocene. High-resolution seismic profiling and coring in the southern East China Sea during 2003 and 2004 cruises has revealed an elongated (˜ 800 km) distal subaqueous mud wedge extending from the Yangtze River mouth southward off the Zhejiang and Fujian coasts into the Taiwan Strait. Overlying what appears to be a transgressive sand layer, this distal clinoform thins offshore, from ˜ 40 m thickness between the 20 and 30 m water depth to < 1-2 m between 60 and 90 m water depth, corresponding to an across shelf distance of less than 100 km. Total volume of this distal mud wedge is about 4.5 × 10 11 m 3, equivalent to ˜ 5.4 × 10 11 t of sediment. Most of the sediment in this mud wedge comes from the Yangtze River, with some input presumably coming from local smaller rivers. Thus, the total Yangtze-derived sediments accumulated in its deltaic system and East China Sea inner shelf have amounted to about 1.7 × 10 12 t. Preliminary analyses suggest this longshore and across-shelf transported clinoform mainly formed in the past 7000 yrs after postglacial sea level reached its mid-Holocene highstand, and after re-intensification of the Chinese longshore current system. Sedimentation accumulation apparently increased around 2000 yrs BP, reflecting the evolution of the Yangtze estuary and increased land erosion due to human activities, such as farming and deforestation. The southward-flowing China Coastal Current, the northward-flowing Taiwan Warm Current, and the Kuroshio Current appear to have played critical roles in transporting and trapping most of Yangtze-derived materials in the inner shelf, and hence preventing the sediment escape into the deep ocean.

  5. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China.

    PubMed

    Zhao, Yifei; Zou, Xinqing; Liu, Qing; Yao, Yulong; Li, Yali; Wu, Xiaowei; Wang, Chenglong; Yu, Wenwen; Wang, Teng

    2017-12-31

    The water discharge and sediment load of rivers are changing substantially under the impacts of climate change and human activities, becoming a hot issue in hydro-environmental research. In this study, the water discharge and sediment load in the mainstream and seven tributaries of the Yangtze River were investigated by using long-term hydro-meteorological data from 1953 to 2013. The non-parametric Mann-Kendall test and double mass curve (DMC) were used to detect trends and abrupt change-points in water discharge and sediment load and to quantify the effects of climate change and human activities on water discharge and sediment load. The results are as follows: (1) the water discharge showed a non-significant decreasing trend at most stations except Hukou station. Among these, water discharge at Dongting Lake and the Min River basin shows a significant decreasing trend with average rates of -13.93×10 8 m 3 /year and -1.8×10 8 m 3 /year (P<0.05), respectively. However, the sediment load exhibited a significant decreasing trend in all tributaries of the Yangtze River. (2) No significant abrupt change-points were detected in the time series of water discharge for all hydrological stations. In contrast, significant abrupt change-points were detected in sediment load, most of these changes appeared in the late 1980s. (3) The water discharge was mainly influenced by precipitation in the Yangtze River basin, whereas sediment load was mainly affected by climate change and human activities; the relative contribution ratios of human activities were above 70% for the Yangtze River. (4) The decrease of sediment load has directly impacted the lower Yangtze River and the delta region. These results will provide a reference for better resource management in the Yangtze River Basin. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A comparative study of the flux and fate of the Mississippi and Yangtze river sediments

    NASA Astrophysics Data System (ADS)

    Xu, K.; Yang, S. L.

    2015-03-01

    Large rivers play a key role in delivering water and sediment into the global oceans. Large-river deltas and associated coastlines are important interfaces for material fluxes that have a global impact on marine processes. In this study, we compare water and sediment discharge from Mississippi and Yangtze rivers by assessing: (1) temporal variation under varying climatic and anthropogenic impacts, (2) delta response of the declining sediment discharge, and (3) deltaic lobe switching and Holocene sediment dispersal patterns on the adjacent continental shelves. Dam constructions have decreased both rivers' sediment discharge significantly, leading to shoreline retreat along the coast. The sediment dispersal of the river-dominated Mississippi Delta is localized but for the tide-dominated Yangtze Delta is more diffuse and influenced by longshore currents. Sediment declines and relative sea level rises have led to coastal erosion, endangering the coasts of both rivers.

  7. Linkages between the spatial toxicity of sediments and sediment dynamics in the Yangtze River Estuary and neighboring East China Sea.

    PubMed

    Gao, Jinjuan; Shi, Huahong; Dai, Zhijun; Mei, Xuefei; Zong, Haibo; Yang, Hongwei; Hu, Lingling; Li, Shushi

    2018-02-01

    Anthropogenic activities are driving an increase in sediment contamination in coastal areas. This poses significant challenges for the management of estuarine ecosystems and their adjacent seas worldwide. However, few studies have been conducted on how dynamic mechanisms affect the sediment toxicity in the estuarine environment. This study was designed to investigate the linkages between sediment toxicity and hydrodynamics in the Yangtze River Estuary (YRE) area. High sediment toxicity was found in the Yangtze River mouth (Region I), the depocenter of the Yangtze River Delta (Region II), and the southeastern area of the adjacent sea (Region III), while low sediment toxicity was found in the northeastern offshore region (Region IV). A spatial comparison analysis and regression model indicated that the distributed pattern of sediment toxicity was likely related to hydrodynamics and circumfluence in the East China Sea (ECS) shelf. Specifically, high sediment toxicity in Region I may be affected by the Yangtze River Pump (YRP) and the low hydrodynamics there, and high toxicity in Region II can be influenced by the low sediment dynamics and fine sediment in the depocenter. The high sediment toxicity in Region III might be related to the combination of the YRP and Taiwan Warm Current, while the low toxicity in Region IV may be influenced by the local coarse-grained relict sand with strong sediment dynamics there. The present research results further suggest that it is necessary to link hydrodynamics and the spatial behavior of sediment and sediment-derived pollutants when assessing the pollution status of estuarine environments, especially for those mega-estuaries and their neighboring ocean environments with complex waves, tides and ocean currents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Human impacts on sediment in the Yangtze River: A review and new perspectives

    NASA Astrophysics Data System (ADS)

    Yang, H. F.; Yang, S. L.; Xu, K. H.; Milliman, J. D.; Wang, H.; Yang, Z.; Chen, Z.; Zhang, C. Y.

    2018-03-01

    Changes in riverine suspended and riverbed sediments have environmental, ecological and social implications. Here, we provide a holistic review of water and sediment transport and examine the human impacts on the flux, concentration and size of sediment in the Yangtze River in recent decades. We find that most of the fluvial sediment has been trapped in reservoirs, except for the finest portion. Furthermore, soil-conservation since the 1990s has reduced sediment yield. From 1956-1968 (pre-dam period) to 2013-2015 (post-dams and soil-conservation), the sediment discharge from the sub-basins decreased by 91%; in the main river, the sediment flux decreased by 99% at Xiangjiaba (upper reach), 97% at Yichang (transition between upper and middle reaches), 83% at Hankou (middle reach), and 77% at Datong (tidal limit). Because the water discharge was minimally impacted, the suspended sediment concentration decreased to the same extent as the sediment flux. Active erosion of the riverbed and coarsening of surficial sediments were observed in the middle and lower reaches. Fining of suspended sediments was identified along the river, which was counteracted by downstream erosion. Along the 700-km-long Three Gorges Reservoir, which retained 80% of the sediment from upstream, the riverbed gravel or rock was buried by mud because of sedimentation after impoundment. Along with these temporal variations, the striking spatial patterns of riverine suspended and riverbed sediments that were previously exhibited in this large basin were destroyed or reversed. Therefore, we conclude that the human impacts on sediment in the Yangtze River are strong and systematic.

  9. Risk and toxicity assessments of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake, China.

    PubMed

    Fu, Jie; Hu, Xin; Tao, Xiancong; Yu, Hongxia; Zhang, Xiaowei

    2013-11-01

    Heavy metal pollution is one of the most serous environmental issues globally. To evaluate the metal pollution in Jiangsu Province of China, the total concentrations of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake were analyzed. Ecological risk of sediments and human health risk of fish consumption were assessed respectively. Furthermore, toxicity of samples on expression of the stress responsive genes was evaluated using microbial live cell-array method. The results showed that the heavy metals concentrations in sediments from the Yangtze River were much higher than those in sediments from the Taihu Lake. However, the fishes from the Taihu Lake had higher concentrations of heavy metals than fishes from the Yangtze River. Ecological risk evaluation showed that the heavy metal contaminants in sediments from the Yangtze River posed higher risk of adverse ecological effects, while sediments from the study areas of Taihu Lake were relatively safe. Health risk assessment suggested that the heavy metals in fishes of both Yangtze River and Taihu Lake might have risk of adverse health effects to human. The toxicity assessment indicated that the heavy metals in these sediments and fishes showed transcriptional effects on the selected 21 stress responsive genes, which were involved in the pathways of DNA damage response, chemical stress, and perturbations of electron transport. Together, this field investigation combined with chemical analysis, risk assessment and toxicity bioassay would provide useful information on the heavy metal pollution in Jiangsu Province. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Spatio-temporal distribution and sources of Pb identified by stable isotopic ratios in sediments from the Yangtze River Estuary and adjacent areas.

    PubMed

    Chen, Bin; Liu, Jian; Hu, Limin; Liu, Ming; Wang, Liang; Zhang, Xilin; Fan, Dejiang

    2017-02-15

    To understand the spatio-temporal distribution and sources of Pb in the sediments of the Yangtze River Estuary and its adjacent areas, 25 surface sediments and 1 sediment core were collected from the study areas. The concentrations of Al and Pb of these sediments exhibit a decreasing trend from the nearshore towards the offshore, with higher concentrations in the coastal areas of the East China Sea (ECS) and southwest of Jeju Island. According to the stable isotopic ratios of Pb, in combination with the elemental ratios and clay mineral data, it is inferred that sedimentary Pb in the surface sediments of the coastal areas of the ECS may come primarily from the Yangtze River, while the Pb southwest of Jeju Island is probably derived from both the Yangtze and Yellow Rivers. The particulate Pb derived from the Yangtze River was possibly dispersed along two paths: the path southward along the coastline of the ECS and the path eastward associated with the Changjiang Diluted Water (CDW), which crosses the shelf of the ECS towards the area southeast of Jeju Island. Although the Yangtze River Basin witnessed rapid economic development during the period from the late 1970s to the middle 1990s, the influence of human activity on Pb concentration remained weak in the Yangtze River Estuary. Since the early 2000s, however, sedimentary Pb has been significantly increasing in the coastal mud areas of the ECS due to the increasing influence of human activity, such as the increase in atmospheric emission of anthropogenic Pb in China, construction of the Three Gorges Dam (TGD), and the construction of smaller dams in the upper reaches of the Yangtze River. Coal combustion and the smelting of non-ferrous metals are possible anthropogenic sources for the sedimentary Pb in the Yangtze River Estuary. Copyright © 2016. Published by Elsevier B.V.

  11. Pre-Miocene birth of the Yangtze River

    PubMed Central

    Zheng, Hongbo; Clift, Peter D.; Wang, Ping; Tada, Ryuji; Jia, Juntao; He, Mengying; Jourdan, Fred

    2013-01-01

    The development of fluvial systems in East Asia is closely linked to the evolving topography following India–Eurasia collision. Despite this, the age of the Yangtze River system has been strongly debated, with estimates ranging from 40 to 45 Ma, to a more recent initiation around 2 Ma. Here, we present 40Ar/39Ar ages from basalts interbedded with fluvial sediments from the lower reaches of the Yangtze together with detrital zircon U–Pb ages from sand grains within these sediments. We show that a river containing sediments indistinguishable from the modern river was established before ∼23 Ma. We argue that the connection through the Three Gorges must postdate 36.5 Ma because of evaporite and lacustrine sedimentation in the Jianghan Basin before that time. We propose that the present Yangtze River system formed in response to regional extension throughout eastern China, synchronous with the start of strike–slip tectonism and surface uplift in eastern Tibet and fed by strengthened rains caused by the newly intensified summer monsoon. PMID:23610418

  12. Variations of Runoff and Sediment Load in the Middle and Lower Reaches of the Yangtze River, China (1950-2013)

    PubMed Central

    Li, Na; Wang, Lachun; Zeng, Chunfen; Wang, Dong; Liu, Dengfeng; Wu, Xutong

    2016-01-01

    On the basis of monthly runoff series obtained in 1950–2013 and annual sediment load measured in 1956–-2013 at five key hydrological stations in the middle and lower reaches of the Yangtze River basin, this study used the Mann-Kendall methods to identify trend and abrupt changes of runoff and sediment load in relation to human activities. The results were as follows: (1) The annual and flood season runoffs showed significant decreasing trends at Yichang station, and showed slight downward trends at Hankou and Datong stations, while the abrupt changes of dry season runoff at Yichang, Hankou and Datong stations occurred in about 2007 and the change points were followed by significant increasing trends. The construction of the Three Gorges Dam, which began to operate in 2003, influenced the variations of runoff in the mainstream of Yangtze River, but the effect weakened with the distance along the downstream direction from TGD. (2) Since the 1990s, annual sediment loads at Yichang, Hankou, and Datong stations have been decreasing significantly, and after 2002, the annual sediment load at Yichang dropped below that of Hankou and Datong. The dams and deforestation/forestation contributed to the significant decreasing trend of the sediment load. In addition, the Three Gorges Dam aggravated the downward trend and caused the erosion of the riverbed and riverbanks in the middle and lower reaches. (3) The runoff and sediment load flowing from Dongting Lake into the mainstream of the Yangtze River showed significant decreasing trends at Chenglingji station after 1970s, and in contrast, slight increase in the sediment flow from Poyang Lake to the mainstream of the Yangtze River at Hukou station were detected over the post-TGD period (2003–2013). The result of the study will be an important foundation for watershed sustainable development of the Yangtze River under the human activities. PMID:27479591

  13. Variations of Runoff and Sediment Load in the Middle and Lower Reaches of the Yangtze River, China (1950-2013).

    PubMed

    Li, Na; Wang, Lachun; Zeng, Chunfen; Wang, Dong; Liu, Dengfeng; Wu, Xutong

    2016-01-01

    On the basis of monthly runoff series obtained in 1950-2013 and annual sediment load measured in 1956--2013 at five key hydrological stations in the middle and lower reaches of the Yangtze River basin, this study used the Mann-Kendall methods to identify trend and abrupt changes of runoff and sediment load in relation to human activities. The results were as follows: (1) The annual and flood season runoffs showed significant decreasing trends at Yichang station, and showed slight downward trends at Hankou and Datong stations, while the abrupt changes of dry season runoff at Yichang, Hankou and Datong stations occurred in about 2007 and the change points were followed by significant increasing trends. The construction of the Three Gorges Dam, which began to operate in 2003, influenced the variations of runoff in the mainstream of Yangtze River, but the effect weakened with the distance along the downstream direction from TGD. (2) Since the 1990s, annual sediment loads at Yichang, Hankou, and Datong stations have been decreasing significantly, and after 2002, the annual sediment load at Yichang dropped below that of Hankou and Datong. The dams and deforestation/forestation contributed to the significant decreasing trend of the sediment load. In addition, the Three Gorges Dam aggravated the downward trend and caused the erosion of the riverbed and riverbanks in the middle and lower reaches. (3) The runoff and sediment load flowing from Dongting Lake into the mainstream of the Yangtze River showed significant decreasing trends at Chenglingji station after 1970s, and in contrast, slight increase in the sediment flow from Poyang Lake to the mainstream of the Yangtze River at Hukou station were detected over the post-TGD period (2003-2013). The result of the study will be an important foundation for watershed sustainable development of the Yangtze River under the human activities.

  14. Evaluation of the ecotoxicity of sediments from Yangtze river estuary and contribution of priority PAHs to ah receptor--mediated activities.

    PubMed

    Liu, Li; Chen, Ling; Shao, Ying; Zhang, Lili; Floehr, Tilman; Xiao, Hongxia; Yan, Yan; Eichbaum, Kathrin; Hollert, Henner; Wu, Lingling

    2014-01-01

    In this study, in vitro bioassays were performed to assess the ecotoxicological potential of sediments from Yangtze River estuary. The cytotoxicity and aryl hydrocarbon receptor (AhR)-mediated toxicity of sediment extracts with rainbow trout (Oncorhynchus mykiss) liver cells were determined by neutral red retention and 7-ethoxyresorufin-O-deethylase assays. The cytotoxicity and AhR-mediated activity of sediments from the Yangtze River estuary ranged from low level to moderate level compared with the ecotoxicity of sediments from other river systems. However, Yangtze River releases approximately 14 times greater water discharge compared with Rhine, a major river in Europe. Thus, the absolute pollution mass transfer of Yangtze River may be detrimental to the environmental quality of estuary and East China Sea. Effect-directed analysis was applied to identify substances causing high dioxin-like activities. To identify unknown substances contributing to dioxin-like potencies of whole extracts, we fractionated crude extracts by open column chromatography. Non-polar paraffinic components (F1), weakly and moderately polar components (F2), and highly polar substances (F3) were separated from each crude extract of sediments. F2 showed the highest dioxin-like activities. Based on the results of mass balance calculation of chemical toxic equivalent concentrations (TEQs), our conclusion is that priority polycyclic aromatic hydrocarbons indicated a low portion of bio-TEQs ranging from 1% to 10% of crude extracts. Further studies should be conducted to identify unknown pollutants.

  15. Evaluation of the Ecotoxicity of Sediments from Yangtze River Estuary and Contribution of Priority PAHs to Ah Receptor-Mediated Activities

    PubMed Central

    Liu, Li; Chen, Ling; Shao, Ying; Zhang, Lili; Floehr, Tilman; Xiao, Hongxia; Yan, Yan; Eichbaum, Kathrin; Hollert, Henner; Wu, Lingling

    2014-01-01

    In this study, in vitro bioassays were performed to assess the ecotoxicological potential of sediments from Yangtze River estuary. The cytotoxicity and aryl hydrocarbon receptor (AhR)-mediated toxicity of sediment extracts with rainbow trout (Oncorhynchus mykiss) liver cells were determined by neutral red retention and 7-ethoxyresorufin-O-deethylase assays. The cytotoxicity and AhR-mediated activity of sediments from the Yangtze River estuary ranged from low level to moderate level compared with the ecotoxicity of sediments from other river systems. However, Yangtze River releases approximately 14 times greater water discharge compared with Rhine, a major river in Europe. Thus, the absolute pollution mass transfer of Yangtze River may be detrimental to the environmental quality of estuary and East China Sea. Effect-directed analysis was applied to identify substances causing high dioxin-like activities. To identify unknown substances contributing to dioxin-like potencies of whole extracts, we fractionated crude extracts by open column chromatography. Non-polar paraffinic components (F1), weakly and moderately polar components (F2), and highly polar substances (F3) were separated from each crude extract of sediments. F2 showed the highest dioxin-like activities. Based on the results of mass balance calculation of chemical toxic equivalent concentrations (TEQs), our conclusion is that priority polycyclic aromatic hydrocarbons indicated a low portion of bio-TEQs ranging from 1% to 10% of crude extracts. Further studies should be conducted to identify unknown pollutants. PMID:25111307

  16. Pu and 137Cs in the Yangtze River estuary sediments: distribution and source identification.

    PubMed

    Liu, Zhiyong; Zheng, Jian; Pan, Shaoming; Dong, Wei; Yamada, Masatoshi; Aono, Tatsuo; Guo, Qiuju

    2011-03-01

    Pu isotopes and (137)Cs were analyzed using sector field ICP-MS and γ spectrometry, respectively, in surface sediment and core sediment samples from the Yangtze River estuary. (239+240)Pu activity and (240)Pu/(239)Pu atom ratios (>0.18) shows a generally increasing trend from land to sea and from north to south in the estuary. This spatial distribution pattern indicates that the Pacific Proving Grounds (PPG) source Pu transported by ocean currents was intensively scavenged into the suspended sediment under favorable conditions, and mixed with riverine sediment as the water circulated in the estuary. This process is the main control for the distribution of Pu in the estuary. Moreover, Pu is also an important indicator for monitoring the changes of environmental radioactivity in the estuary as the river basin is currently the site of extensive human activities and the sea level is rising because of global climate changes. For core sediment samples the maximum peak of (239+240)Pu activity was observed at a depth of 172 cm. The sedimentation rate was estimated on the basis of the Pu maximum deposition peak in 1963-1964 to be 4.1 cm/a. The contributions of the PPG close-in fallout Pu (44%) and the riverine Pu (45%) in Yangtze River estuary sediments are equally important for the total Pu deposition in the estuary, which challenges the current hypothesis that the riverine Pu input was the major source of Pu budget in this area.

  17. Modal analysis of annual runoff volume and sediment load in the Yangtze river-lake system for the period 1956-2013.

    PubMed

    Chen, Huai; Zhu, Lijun; Wang, Jianzhong; Fan, Hongxia; Wang, Zhihuan

    2017-07-01

    This study focuses on detecting trends in annual runoff volume and sediment load in the Yangtze river-lake system. Times series of annual runoff volume and sediment load at 19 hydrological gauging stations for the period 1956-2013 were collected. Based on the Mann-Kendall test at the 1% significance level, annual sediment loads in the Yangtze River, the Dongting Lake and the Poyang Lake were detected with significantly descending trends. The power spectrum estimation indicated predominant oscillations with periods of 8 and 20 years are embedded in the runoff volume series, probably related to the El Niño Southern Oscillation (2-7 years) and Pacific Decadal Oscillation (20-30 years). Based on dominant components (capturing more than roughly 90% total energy) extracted by the proper orthogonal decomposition method, total change ratios of runoff volume and sediment load during the last 58 years were evaluated. For sediment load, the mean CRT value in the Yangtze River is about -65%, and those in the Dongting Lake and the Poyang Lake are -92.2% and -87.9% respectively. Particularly, the CRT value of the sediment load in the channel inflow of the Dongting Lake is even -99.7%. The Three Gorges Dam has intercepted a large amount of sediment load and decreased the sediment load downstream.

  18. Recent coarsening of sediments on the southern Yangtze subaqueous delta front: A response to river damming

    NASA Astrophysics Data System (ADS)

    Yang, H. F.; Yang, S. L.; Meng, Y.; Xu, K. H.; Luo, X. X.; Wu, C. S.; Shi, B. W.

    2018-03-01

    After more than 50,000 dams were built in the Yangtze basin, especially the Three Gorges Dam (TGD) in 2003, the sediment discharge to the East China Sea decreased from 470 Mt/yr before dams to the current level of 140 Mt/yr. The delta sediment's response to this decline has interested many researchers. Based on a dataset of repeated samplings at 44 stations in this study, we compared the surficial sediment grain sizes in the southern Yangtze subaqueous delta front for two periods: pre-TGD (1982) and post-TGD (2012). External factors of the Yangtze River, including water discharge, sediment discharge and suspended sediment grain size, were analysed, as well as wind speed, tidal range and wave height of the coastal ocean. We found that the average median size of the sediments in the delta front coarsened from 8.0 μm in 1982 to 15.4 μm in 2012. This coarsening was accompanied by a decrease of clay components, better sorting and more positive skewness. Moreover, the delta morphology in the study area changed from an overall accretion of 1.0 cm/yr to an erosion of - 0.6 cm/yr. At the same time, the riverine sediment discharge decreased by 70%, and the riverine suspended sediment grain size increased from 8.4 μm to 10.5 μm. The annual wind speed and wave height slightly increased by 2% and 3%, respectively, and the tidal range showed no change trend. Considering the increased wind speed and wave height, there was no evidence that the capability of the China Coastal Current to transport sediment southward has declined in recent years. The sediment coarsening in the Yangtze delta front was thus mainly attributed to the delta's transition from accumulation to erosion which was originally generated by river damming. These findings have important implications for sediment change in many large deltaic systems due to worldwide human impacts.

  19. Polychlorinated dibenzo-p-dioxins, dibenzofurans, and dioxin-like polychlorinated biphenyls in sediments from the Yellow and Yangtze Rivers, China.

    PubMed

    Gao, Lirong; Huang, Huiting; Liu, Lidan; Li, Cheng; Zhou, Xin; Xia, Dan

    2015-12-01

    Polychlorinated dibenzodioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) are toxic environmental pollutants that are often found in sediments. The Yangtze and Yellow rivers in China are two of the largest rivers in Asia and are therefore important aquatic ecosystems; however, few studies have investigated the PCDD/F and PCB content in the sediments of these rivers. Accordingly, this study was conducted to generate baseline data for future environmental risk assessments. In the present study, 26 surface sediments from the middle reaches of the Yellow and Yangtze rivers were analyzed for PCDD/Fs and dioxin-like (dl) PCBs by high-resolution gas chromatography and high-resolution mass spectrometry. The ranges of PCDD/F, dl-PCB, and WHO-TEQ content in sediments from the Yellow River were 2.1-19.8, 1.11-9.9, and 0.08-0.57 pg/g (dry weight), respectively. The ranges of PCDD/F, dl-PCB, and WHO-TEQ content in sediments from the Yangtze River were 6.1-84.9, 1.8-24.1, and 0.13-0.29 pg/g (dry weight), respectively. Total organic carbon and dl-PCB contents in the Yellow River were significantly correlated (Spearman's correlation coefficient, r = 0.64, P < 0.05). It is well known that total organic carbon plays a role in the transport and redistribution of dl-PCB. Principal component analysis indicated that PCDD/Fs may arise from pentachlorophenol, sodium pentachlorophenate, and atmospheric deposition, while dl-PCBs likely originate from burning of coal and wood for domestic heating. The dioxin levels in the river sediments examined in this study were relatively low. These findings advance our knowledge regarding eco-toxicity and provide useful information regarding contamination sources.

  20. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    PubMed

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  1. Solution by dilution?--A review on the pollution status of the Yangtze River.

    PubMed

    Floehr, Tilman; Xiao, Hongxia; Scholz-Starke, Björn; Wu, Lingling; Hou, Junli; Yin, Daqiang; Zhang, Xiaowei; Ji, Rong; Yuan, Xingzhong; Ottermanns, Richard; Roß-Nickoll, Martina; Schäffer, Andreas; Hollert, Henner

    2013-10-01

    The Yangtze River has been a source of life and prosperity for the Chinese people for centuries and is a habitat for a remarkable variety of aquatic species. But the river suffers from huge amounts of urban sewage, agricultural effluents, and industrial wastewater as well as ship navigation wastes along its course. With respect to the vast amounts of water and sediments discharged by the Yangtze River, it is reasonable to ask whether the pollution problem may be solved by simple dilution. This article reviews the past two decades of published research on organic pollutants in the Yangtze River and several adjacent water bodies connected to the main stream, according to a holistic approach. Organic pollutant levels and potential effects of water and sediments on wildlife and humans, measured in vitro, in vivo, and in situ, were critically reviewed. The contamination with organic pollutants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans, polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs), and others, of water and sediment along the river was described. Especially Wuhan section and the Yangtze Estuary exhibited stronger pollution than other sections. Bioassays, displaying predominantly the endpoints mutagenicity and endocrine disruption, applied at sediments, drinking water, and surface water indicated a potential health risk in several areas. Aquatic organisms exhibited detectable concentrations of toxic compounds like PCBs, OCPs, PBDEs, and PFCs. Genotoxic effects could also be assessed in situ in fish. To summarize, it can be stated that dilution reduces the ecotoxicological risk in the Yangtze River, but does not eliminate it. Keeping in mind an approximately 14 times greater water discharge compared to the major European river Rhine, the absolute pollution mass transfer of the Yangtze River is of severe concern for

  2. OSL dating of fine-grained quartz from Holocene Yangtze delta sediments

    NASA Astrophysics Data System (ADS)

    Sugisaki, S.; Buylaert, J. P.; Murray, A. S.; Tada, R.; Zheng, H.; Ke, W.; Saito, K.; Irino, T.; Chao, L.; Shiyi, L.; Uchida, M.

    2014-12-01

    Flood events in the Yangtze River are associated with variation in East Asian Summer Monsoon (EASM) precipitation. Understanding the frequency and scale of the EASM precipitation during the Holocene is a key to understanding the mechanism and cyclicity of floods and droughts. Because about 70% of the annual discharge occurs during the flood season, the Yangtze delta sediments provide a good archive of EASM precipitation. In this study, we investigate the possibility of applying OSL dating to establishing high-resolution chronologies for the Yangtze delta sediment cores YD13-1H and G3. The objectives of this study are: (1) test whether fine grained quartz in present day suspended particle matter (SPM) is fully bleached or reset before deposition, (2) where possible, test quartz fine- and coarse-grain OSL dating against radiocarbon shell ages, (3) interpret the sediment transport processes through the differential bleaching of quartz and feldspar OSL signals. We show that the SPM collected from the surface water column of the Yangtze River during the flood season is well-bleached (offset ~60 years). Fine-grained pro-delta sediments are thus potentially a good dosimeter for OSL dating. OSL ages sediment cores indicate a pronounced change in sedimentation rate at ~6 ka and ~2ka. These events are consistent with what is known of the evolution of the Yangtze catchment and delta. The delta began to build at ~6 ka (Zhao et al., 1979), and human activities increased significantly in the catchment at ~2ka (Chen et al., 1985). It is however surprising that the entire top 9 m of sediment only records these two events. The question of whether significant deposition was limited to 2 ka and 6 ka, or whether the record has been disturbed by erosion/reworking remains. These issues are discussed in terms of the reliability of the quartz OSL ages, the degree of bleaching by comparison with polymineral OSL signals, and the relationship of the OSL ages to the sedimentary record.

  3. The distribution of sediments grain size along the depth in source of the Yangtze River, Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Yao, S.; Zhou, S.; Liu, X.; Yan, X.; Lu, J.

    2017-12-01

    Sediment was the one result of river process, in alluvial rive, it can reflect the hydrodynamic characteristic, even the hydrology and climate. In the source region of the Yangtze River with few human activities, The Qumalai Reach of the Tongtianhe River was selected to research the distribution of sediments grain size along the depth. The vertical drilling tools were used to obtain 7 boreholes along the river cross section, and the sedimentary cores were made analysis of stratification and granularity. The results show: The sediments are dominated by sand and grail, the sediment transport capacity of river sources is strong; the grain size frequency distribution curve with 2 3 kurtosis, main peak is sharp, it is typical deposit sediment of the suspended load; The grain size coarsen from the stream terrace to the main channel, sediment transport capacity of main stream is bigger; There are several coarse and fine sediments layers in the sedimentary core of the terrace and flood plain, medium diameters of each layer are various from 0.4mm to 80mm, different layer with different grain size can reflect the different hydrodynamic characteristic of each historical period. This result can provide the original data and enlightenment to support the research for historical river process and hydrology so much as the climate change.

  4. [Nutrients Input Characteristics of the Yangtze River and Wangyu River During the "Water Transfers on Lake Taihu from the Yangtze River"].

    PubMed

    Pan, Xiao-xue; Ma, Ying-qun; Qin, Yan-wen; Zou, Hua

    2015-08-01

    Overall 20 surface water samples were collected from the Yangtze River, the Wangyu River and the Gonghu Bay (Lake Taihu) to clarify the pollution characteristics of nitrogen and phosphorus during 2 sample stages of "Water Transfers on Lake Taihu from the Yangtze River" in August and December of 2013 respectively. The results showed that the mass concentrations of NO2- -N, NO3- -N, NH4+ -N and TN in the Gonghu Bay were lower than those of the Yangtze River and Wangyu River during the 2 water transfer processes. However, there was higher level of DON content in the Gonghu Bay than that of the Yangtze River and Wangyu River. The percentages of various N species showed that NO3- -N was the major N species in the Yangtze River and Wangyu River during the 2 water transfer processes. TP contents in samples collected from the Yangtze River displayed a constant trend compared with the Wangyu River. However, the percentages of various P species were different with each other during the 2 water transfer processes. Mass concentrations of DON and TP in surface water in August were higher than those in December and the contents of NO3- -N and TDP were lower in August than those in December. In general, NO3- -N and TPP were the main N and P species in Wangyu River from the Yangtze River. NO3- -N, PO4(3-) -P and TPP were the main N and P species in Gonghu Bay from Wangyu River during the 2 water transfer processes.

  5. Spatiotemporal distribution and mass loadings of perfluoroalkyl substances in the Yangtze River of China.

    PubMed

    Pan, Chang-Gui; Ying, Guang-Guo; Zhao, Jian-Liang; Liu, You-Sheng; Jiang, Yu-Xia; Zhang, Qian-Qian

    2014-09-15

    A systematic investigation into contamination profiles of eighteen perfluoroalkyl substances (PFASs) in both surface water and sediments of Yangtze River was carried out by using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) in summer and winter of 2013. The total concentrations of the PFASs in the water and sediment of Yangtze River ranged from 2.2 to 74.56 ng/L and 0.05 to 1.44 ng/g dry weights (dw), respectively. The PFAS concentrations were correlated to some selected water quality parameters such as pH, total phosphorus (TP), total nitrogen (TN) and conductivity in water, and some sediment properties, such as total organic carbon (TOC), TP, and TN in sediment. The monitoring results for the water and sediment samples showed no obvious seasonal variations. Among the selected 18 PFASs, perfluorooctanoic acid (PFOA) was the dominant PFAS compound found both in water and sediment for the two seasons with its maximum concentration of 18.03 ng/L in water and 0.72 ng/g in sediment, followed by perfluorobutane sulfonic acid (PFBS) with its maximum concentration of 41.9 ng/L in water in Wuhan, whereas the lowest concentrations of PFASs were observed at Poyang lake. The annual loadings of PFOA, perfluorohexanoic acid (PFHxA), PFBS, perfluorooctane sulfonic acid (PFOS) and the total PFASs in the Yangtze River were 6.8 tons, 2.2 tons, 8.2 tons, 0.88 tons, and 20.7 tons, respectively. Wuhan and Er'zhou of Hubei contributed the most amounts of PFASs into the Yangtze River. A correlation was found between some PFASs, for example PFBS and PFOS, which suggests that both of these PFASs originate from common sources in the region. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Diagnostic heavy minerals in Plio-Pleistocene sediments of the Yangtze Coast, China with special reference to the Yangtze River connection into the sea

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Wang, Zhanghua; Chen, Zhongyuan; Wei, Zixin; Wei, Taoyuan; Wei, Wei

    2009-12-01

    This present study revealed five heavy mineral zones in the Yangtze coastal borehole sediments. Ilmenite, garnet and zircon suite of Zone I of the Pliocene characterizes the derivation of basaltic bedrock and local andesitic-granitic rocks. Indicative limonite in the Zone I sediments formed as alluvial fan facies shows strong chemical weathering. The assemblage of amphibole, straurolite, kyanite and idocrase of metamorphic derivation, together with a few zircon and tourmaline of andesitic-granitic origin in Zone II, represents the extension of sediment sources to the lower and middle Yangtze basin in Early Pleistocene as the study area subsided. Also, the braided to meandering riverine facies demonstrates a longer distance sediment transport. Few heavy minerals remained in Zone III of Mid-Pleistocene, when mottled thicker stiff mud occurred as the lacustrine facies, suggesting a quasi-coastal floodplain with lower capability of sediment transport. Heavy minerals appeared significant and continuous in Zone IV of Late Pleistocene, when changing to the shallow marine facies, inferring much extended sediment sources to the upper Yangtze. Hypersthene, identified primarily in Zone IV, was closely associated with the Er-Mei Mountain tholeiite basalt of the upper Yangtze. Heavy minerals of Zone V remained almost the same as IV during Holocene, when the modern delta evolved. The heavy minerals suggested the timing of the Yangtze connection to the sea at ca 0.12 Ma BP.

  7. Source identification, geochemical normalization and influence factors of heavy metals in Yangtze River Estuary sediment.

    PubMed

    Sun, Xueshi; Fan, Dejiang; Liu, Ming; Tian, Yuan; Pang, Yue; Liao, Huijie

    2018-06-18

    Sediment samples, including 40 surface samples and 12 sediment cores, were collected from 52 stations of the Yangtze River Estuary (YRE) in 2015 and 2016. The 95% linear prediction intervals (LPI) and principal components analysis (PCA), were conducted to evaluate the metal sources and grain-size effect (GSE). The in situ physico-chemical properties of pH, Eh, DO, salinity, temperature and turbidity were combined to elucidate the relationships between environmental factors and the fate of heavy metals in the river-estuary-shelf system. This study indicates a decreasing trend of metals in sediments from the estuary towards the adjacent shelf and the river channel and that Zn, Cu and Cr are mainly derived from natural processes throughout the catchment, whereas Pb appears to have anthropogenic inputs via atmospheric deposition. Furthermore, considering the best fit regression lines between the concentrations of Al and heavy metals as well as the deficiencies of the conventional C elements /C Al method, we introduce an approach (Al-SN: Al-scope normalization) that can eliminate the GSE on heavy metals and be applied to other estuaries. After Al-scope normalization, the relatively constant levels of Zn, Cu and Cr that remain in sediments from the river channel to the estuary and shelf confirmed that the variation of grain size in sediments almost entirely explained the distribution patterns of sediment toxicity in the YRE, while the enrichment of Pb in estuarine sediments could be attributed to its chemical species and physico-chemical properties. The results further suggest that the relationship between grain size and spatial behavior of sediment pollutants should be given priority over the contamination assessment and provenance discrimination in estuarine or similar environments with complex sediment compositions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Research Note:Effects of human activities on the Yangtze River suspended sediment flux into the estuary in the last century

    NASA Astrophysics Data System (ADS)

    Yang, S. L.; Shi, Z.; Zhao, H. Y.; Li, P.; Dai, S. B.; Gao, A.

    The surface erosion area in the Yangtze River basin increased from 364×103 km2 in the 1950s to 707×103 km2 in 2001 due to a great increase in population. Based on the regression relationship between surface erosion area and population, the surface erosion area was predicted to be about 280×103 km2 at the beginning of the 20th century. The sediment yield, which increased by about 30% during the first six decades of the 20th century, was closely related to the surface erosion area in this river basin. The Yangtze annual suspended sediment flux into the estuary was about 395×106 t a-1 at the beginning of the century, and this gradually increased to an average of 509×106 t a-1 in the 1960s. The increase in the suspended sediment flux into the estuary was accelerated in the 1950s and the 1960s due to the rapid increase in population and land use immediately after the Second World War and the Liberation War. After the riverine suspended sediment flux reached its maximum in the 1960s, it decreased to <206×106 t a-1 in 2003. Construction of dams was found to be the principal cause for this decreasing trend because, during the same period, (a) the riverine water discharge did not show a decreasing trend, (b) water diversion was not influential and (c) sedimentation in lakes and canals of the middle and lower reaches did not increase. The total storage capacity of reservoirs has increased dramatically over the past half century. The amount of sediment trapped in reservoirs has increased to more than half a billion t a-1. As a result, the suspended sediment flux into the estuary dramatically decreased, even though the sediment yield from many areas of the basin increased in recent decades. Human activities gradually increased the suspended sediment flux into the estuary before the 1960s and then rapidly decreased it. The last century was a period when the Yangtze suspended sediment flux into the estuary was dramatically affected by human activities.

  9. Distribution and risk assessment of trace metals in sediments from Yangtze River estuary and Hangzhou Bay, China.

    PubMed

    Li, Feipeng; Mao, Lingchen; Jia, Yubao; Gu, Zhujun; Shi, Weiling; Chen, Ling; Ye, Hua

    2018-01-01

    The Yangtze River estuary (YRE) and Hangzhou Bay (HZB) is of environmental significance because of the negative impact from industrial activities and rapid development of aquaculture on the south bank of HZB (SHZB) in recent years. This study investigated the distribution and risk assessments of trace metals (Cr, Cu, Zn, Hg, Pb, and Cd) accumulated in surface sediments by sampling in YRE, outer and south HZB. Copper and Zn concentration (avg. 35.4 and 98.7 mg kg -1 , respectively) in surface sediments were generally higher than the background suggesting a widespread of Cu and Zn in the coastal area of Yangtze River Delta. High concentrations of Cu (~ 42 mg kg -1 ), Zn (~ 111 mg kg -1 ), Cd (~ 0.27 mg kg -1 ), and Hg (~ 0.047 mg kg -1 ) were found in inner estuary of YRE and decreased offshore as a result of terrestrial input and dilution effect of total metal contents by "cleaner" sediments from the adjacent sea. In outer HZB, accumulation of terrestrial derived metal has taken place near the Zhoushan Islands. Increase in sediment metal concentration from the west (inner) to the east (outer) of SHZB gave rise to the input of fine-grained sediments contaminated with metals from outer bay. According the results from geoaccumulation index, nearly 75% of samples from YRE were moderately polluted (1.0 < I geo  < 2.0) by Cd. Cadmium and Hg contributed for 80~90% to the potential ecological risk index in the YRE and HZB, with ~ 72% sites in HZB under moderate risk (150 ≤ RI < 300) especially near Zhoushan Islands.

  10. [Ciliate diversity and spatiotemporal variation in surface sediments of Yangtze River estuary hypoxic zone].

    PubMed

    Feng, Zhao; Kui-Dong, Xu; Zhao-Cui, Meng

    2012-12-01

    By using denaturing gradient gel electrophoresis (DGGE) and sequencing as well as Ludox-QPS method, an investigation was made on the ciliate diversity and its spatiotemporal variation in the surface sediments at three sites of Yangtze River estuary hypoxic zone in April and August 2011. The ANOSIM analysis indicated that the ciliate diversity had significant difference among the sites (R = 0.896, P = 0.0001), but less difference among seasons (R = 0.043, P = 0.207). The sequencing of 18S rDNA DGGE bands revealed that the most predominant groups were planktonic Choreotrichia and Oligotrichia. The detection by Ludox-QPS method showed that the species number and abundance of active ciliates were maintained at a higher level, and increased by 2-5 times in summer, as compared with those in spring. Both the Ludox-QPS method and the DGGE technique detected that the ciliate diversity at the three sites had the similar variation trend, and the Ludox-QPS method detected that there was a significant variation in the ciliate species number and abundance between different seasons. The species number detected by Ludox-QPS method was higher than that detected by DGGE bands. Our study indicated that the ciliates in Yangtze River estuary hypoxic zone had higher diversity and abundance, with the potential to supply food for the polyps of jellyfish.

  11. Assessing the potential for change in the middle Yangtze River channel following impoundment of the Three Gorges Dam

    NASA Astrophysics Data System (ADS)

    Yuan, Wenhao; Yin, Daowei; Finlayson, Brian; Chen, Zhongyuan

    2012-04-01

    The geomorphic impacts of dams on downstream river channels are complex, not readily predictable for specific cases, but widely reported in the literature. For the Three Gorges Dam on the Yangtze (Changjiang) River in China, no studies of the impact of the changed flow and sediment conditions below the dam on the behaviour of the channel were included in the pre-dam feasibility report. We have assembled a database of flow and sediment data for the middle Yangtze River from Yichang to Hankou and used this to analyse changes following the closure of the dam. While total flow is little affected, the operating strategy for the dam that provides for storage of part of the summer high flows to maintain hydroelectric power generation in winter (the low flow season) is reflected in changes to the seasonal distribution of flow below the dam. We calculated potential sediment carrying capacity and compared it with measured sediment concentrations for both pre- and post-dam conditions. While channel sedimentation is indicated along the middle Yangtze for pre-dam conditions, scour is indicated for post-dam conditions, highest at Yichang immediately below the dam and decreasing downstream.

  12. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes

    PubMed Central

    Yang, S. L.; Xu, K. H.; Milliman, J. D.; Yang, H. F.; Wu, C. S.

    2015-01-01

    The increasing impact of both climatic change and human activities on global river systems necessitates an increasing need to identify and quantify the various drivers and their impacts on fluvial water and sediment discharge. Here we show that mean Yangtze River water discharge of the first decade after the closing of the Three Gorges Dam (TGD) (2003–2012) was 67 km3/yr (7%) lower than that of the previous 50 years (1950–2002), and 126 km3/yr less compared to the relatively wet period of pre-TGD decade (1993–2002). Most (60–70%) of the decline can be attributed to decreased precipitation, the remainder resulting from construction of reservoirs, improved water-soil conservation and increased water consumption. Mean sediment flux decreased by 71% between 1950–1968 and the post-TGD decade, about half of which occurred prior to the pre-TGD decade. Approximately 30% of the total decline and 65% of the decline since 2003 can be attributed to the TGD, 5% and 14% of these declines to precipitation change, and the remaining to other dams and soil conservation within the drainage basin. These findings highlight the degree to which changes in riverine water and sediment discharge can be related with multiple environmental and anthropogenic factors. PMID:26206169

  13. Biocides in the Yangtze River of China: spatiotemporal distribution, mass load and risk assessment.

    PubMed

    Liu, Wang-Rong; Zhao, Jian-Liang; Liu, You-Sheng; Chen, Zhi-Feng; Yang, Yuan-Yuan; Zhang, Qian-Qian; Ying, Guang-Guo

    2015-05-01

    Nineteen biocides were investigated in the Yangtze River to understand their spatiotemporal distribution, mass loads and ecological risks. Fourteen biocides were detected, with the highest concentrations up to 166 ng/L for DEET in surface water, and 54.3 ng/g dry weight (dw) for triclocarban in sediment. The dominant biocides were DEET and methylparaben, with their detection frequencies of 100% in both phases. An estimate of 152 t/y of 14 biocides was carried by the Yangtze River to the East China Sea. The distribution of biocides in the aquatic environments was significantly correlated to Gross Domestic Product (GDP), total phosphorus (TP) and total nitrogen (TN), suggesting dominant input sources from domestic wastewater of the cities along the river. Risk assessment showed high ecological risks posed by carbendazim in both phases and by triclosan in sediment. Therefore, proper measures should be taken to reduce the input of biocides into the river systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A magnetic record of heavy metal pollution in the Yangtze River subaqueous delta.

    PubMed

    Dong, Chenyin; Zhang, Weiguo; Ma, Honglei; Feng, Huan; Lu, Honghua; Dong, Yan; Yu, Lizhong

    2014-04-01

    The rapid industrial development in the Yangtze River watershed over the last several decades has drawn great attention with respect to heavy metal pollution to the Yangtze River estuary and nearby coastal areas. In this study, a 236 cm long sediment core was retrieved from the Yangtze River subaqueous delta (122°36' E, 31°00' N) in 2008 and analyzed for magnetic properties and geochemical compositions to investigate heavy metal pollution history. The activity of (137)Cs peaked at depth 140 cm, with a broad plateau between 120 cm and 140 cm, suggesting an average sedimentation rate of 3.11 cm yr(-1) for the upper 140 cm layer. Magnetic susceptibility (χ), saturation isothermal remanent magnetization (SIRM), anhysteretic remanent magnetization (χARM) and heavy metal enrichment factors (EF) all showed an upward increase trend above depth 140 cm, suggesting that increased ferrimagnetic mineral concentration was accompanied by heavy metal enrichment in the sediment. Geochemical and granolumetric analyses showed that sediment sources and particle sizes played minor roles in the variations of magnetic properties. The effect of diagenesis, which can lead to the selective removal of magnetic minerals, was noticeable in the lower part of the core (140-236 cm). Co-variation between magnetic properties (χ, SIRM and χARM) and EF of Cu and Pb suggests that the elevated ferrimagnetic mineral concentration can be used as an indicator of heavy metal pollution in the reconstruction of environmental changes in estuarine and coastal settings. Copyright © 2014. Published by Elsevier B.V.

  15. 40Ar/39Ar mica dating of late Cenozoic sediments in the upper Yangtze: Implications for sediment provenance and drainage evolution

    NASA Astrophysics Data System (ADS)

    Sun, Xilin; Li, Chang'an; Kuiper, Kuiper; Zhang, Zengjie; Wijbrans, Jan

    2017-04-01

    The development of the river systems in East Asia is closely linked to the uplift of the Tibetan plateau caused by collision of the India-Eurasia. The Yangtze River is the largest river in Asia and the timing and exact causes of its formation are still a matter of debate. Controversy exists for example on the start of the connection of the eastern Tibetan rivers to the eastward flowing Yangtze instead of the southward flowing Red River. Here we use the 40Ar/39Ar dating of detrital micas (muscovite and biotite) and muscovite geochemistry to constrain the sediment provenance in the eastern Tibetan Plateau. The remarkable spatial and temporal variation in sediment provenance allow us to extract information about the evolution of the upper Yangtze River. The combined data suggest that the upper Jinsha River upstream from Shigu town lost its connection with the southward flowing Red River at least earlier than the Pliocene. To the east of Shigu, the Yalong and Jinsha rivers flowed across the Yuanmou Basin into the Red River before 3.1 Ma, but abandoned this connection and turned east somewhere between 3.1 and 2.1 Ma. Our results rule out the possibility of a west-flowing Jinsha River since 1.58 Ma. The current stream directions between Shigu and Panzhihua go north, south and east and must have been formed at that time. Our data also shed new light on the evolution of the Dadu River. The Dadu River did not flow southward into Yuanmou Basin at least since 4.8 Ma but flowed into the Jinsha River along the Anninghe Fault. These capture events are closely linked to the tectonism of the eastern Tibetan Plateau and intensification of the East Asia monsoon.

  16. Assessment of the Mutagenicity of Sediments from Yangtze River Estuary Using Salmonella Typhimurium/Microsome Assay

    PubMed Central

    Liu, Li; Chen, Ling; Floehr, Tilman; Xiao, Hongxia; Bluhm, Kerstin; Hollert, Henner; Wu, Lingling

    2015-01-01

    Sediments in estuaries are of important environmental concern because they may act as pollution sinks and sources to the overlying water body. These sediments can be accumulated by benthic organisms. This study assessed the mutagenic potential of sediment extracts from the Yangtze River estuary by using the Ames fluctuation assay with the Salmonella typhimurium his (−) strain TA98 (frameshift mutagen indicator) and TA100 (baseshift mutagen indicator). Most of the sediment samples were mutagenic to the strain TA98, regardless of the presence or absence of exogenous metabolic activation (S9 induction by β-naphthoflavone/phenobarbital). However, none of the samples were mutagenic to the strain TA100. Thus, the mutagenicity pattern was mainly frameshift mutation, and the responsible toxicants were both direct (without S9 mix) and indirect (with S9 mix) mutagens. The mutagenicity of the sediment extracts increased when S9 was added. Chemical analysis showed a poor correlation between the content of priority polycyclic aromatic hydrocarbons and the detected mutagenicity in each sample. The concept of effect-directed analysis was used to analyze possible compounds responsible for the detected mutagenic effects. With regard to the mutagenicity of sediment fractions, non-polar compounds as well as weakly and moderately polar compounds played a main role. Further investigations should be conducted to identify the responsible components. PMID:26606056

  17. [Speciation and Risk Characteristics of Heavy Metals in the Sediments of the Yangtze Estuary].

    PubMed

    Yin, Su; Feng, Cheng-hong; Li, Yang-yang; Yin, Li-feng; Shen, Zhen-yao

    2016-03-15

    Based on the investigation on the distribution of total contents and speciation of 8 heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) in the surface sediments at 14 typical sites of the Yangtze Estuary during three hydrological seasons ( wet, normal, and dry seasons) , this study applied equilibrium partitioning approach to build the sediment quality guidelines (SQGs) of the Yangtze Estuary, and assessed ecological risks of the heavy metals. The relationship between ecological risk and speciation of heavy metals was also revealed. The results showed that, except for Cd, the residual fraction was the main speciation of heavy metals, especially for As, Cr and Hg, their residual fraction proportions were all over 90%. The sediment quality guidelines of the Yangtze Estuary for As, Cd, Cr, Cu, Hg, Ni, Pb, Zn were 43.29, 0.672, 79.65, 19.08, 0.569, 339.09, 30.87, 411.36 µg · g⁻¹, respectively. Cu had the highest ecological risk to aquatic organisms. The upstream of Yangtze Estuary was mainly affected by Yangtze River runoff, where the risks were relatively high in wet season and relatively low in normal and dry seasons. However, the downstream of the estuary was mainly affected by municipal sewage of cities like Shanghai, where the risks were relatively high, especially in normal and dry seasons. There were three different relationships between the ecological risks and speciation of the eight heavy metals.

  18. The capability of estuarine sediments to remove nitrogen: implications for drinking water resource in Yangtze Estuary.

    PubMed

    Liu, Lin; Wang, Dongqi; Deng, Huanguang; Li, Yangjie; Chang, Siqi; Wu, Zhanlei; Yu, Lin; Hu, Yujie; Yu, Zhongjie; Chen, Zhenlou

    2014-09-01

    Water in the Yangtze Estuary is fresh most of the year because of the large discharge of Yangtze River. The Qingcaosha Reservoir built on the Changxing Island in the Yangtze Estuary is an estuarine reservoir for drinking water. Denitrification rate in the top 10 cm sediment of the intertidal marshes and bare mudflat of Yangtze Estuarine islands was measured by the acetylene inhibition method. Annual denitrification rate in the top 10 cm of sediment was 23.1 μmol m(-2) h(-1) in marshes (ranged from 7.5 to 42.1 μmol m(-2) h(-1)) and 15.1 μmol m(-2) h(-1) at the mudflat (ranged from 6.6 to 26.5 μmol m(-2) h(-1)). Annual average denitrification rate is higher at mashes than at mudflat, but without a significant difference (p = 0.084, paired t test.). Taking into account the vegetation and water area of the reservoir, a total 1.42 × 10(8) g N could be converted into nitrogen gas (N2) annually by the sediment, which is 97.7 % of the dissolved inorganic nitrogen input through precipitation. Denitrification in reservoir sediment can control the bioavailable nitrogen level of the water body. At the Yangtze estuary, denitrification primarily took place in the top 4 cm of sediment, and there was no significant spatial or temporal variation of denitrification during the year at the marshes and mudflat, which led to no single factor determining the denitrification process but the combined effects of the environmental factors, hydrologic condition, and wetland vegetation.

  19. Water mass interaction in the confluence zone of the Daning River and the Yangtze River--a driving force for algal growth in the Three Gorges Reservoir.

    PubMed

    Holbach, Andreas; Wang, Lijing; Chen, Hao; Hu, Wei; Schleicher, Nina; Zheng, Binghui; Norra, Stefan

    2013-10-01

    Increasing eutrophication and algal bloom events in the Yangtze River Three Gorges Reservoir, China, are widely discussed with regard to changed hydrodynamics and nutrient transport and distribution processes. Insights into water exchange and interaction processes between water masses related to large-scale water level fluctuations in the reservoir are crucial to understand water quality and eutrophication dynamics. Therefore, confluence zones of tributaries with the Yangtze River main stream are dedicated key interfaces. In this study, water quality data were recorded in situ and on-line in varying depths with the MINIBAT towed underwater multi-sensor system in the confluence zone of the Daning River and the Yangtze River close to Wushan City during 1 week in August 2011. Geostatistical evaluation of the water quality data was performed, and results were compared to phosphorus contents of selective water samples. The strongly rising water level throughout the measurement period caused Yangtze River water masses to flow upstream into the tributary and supply their higher nutrient and particulate loads into the tributary water body. Rapid algal growth and sedimentation occurred immediately when hydrodynamic conditions in the confluence zone became more serene again. Consequently, water from the Yangtze River main stream can play a key role in providing nutrients to the algal bloom stricken water bodies of its tributaries.

  20. Variation of River Islands around a Large City along the Yangtze River from Satellite Remote Sensing Images

    PubMed Central

    Shi, Haiyun; Gao, Chao; Dong, Changming; Xia, Changshui; Xu, Guanglai

    2017-01-01

    River islands are sandbars formed by scouring and silting. Their evolution is affected by several factors, among which are runoff and sediment discharge. The spatial-temporal evolution of seven river islands in the Nanjing Section of the Yangtze River of China was examined using TM (Thematic Mapper) and ETM (Enhanced Thematic Mapper)+ images from 1985 to 2015 at five year intervals. The following approaches were applied in this study: the threshold value method, binarization model, image registration, image cropping, convolution and cluster analysis. Annual runoff and sediment discharge data as measured at the Datong hydrological station upstream of Nanjing section were also used to determine the roles and impacts of various factors. The results indicated that: (1) TM/ETM+ images met the criteria of information extraction of river islands; (2) generally, the total area of these islands in this section and their changing rate decreased over time; (3) sediment and river discharge were the most significant factors in island evolution. They directly affect river islands through silting or erosion. Additionally, anthropocentric influences could play increasingly important roles. PMID:28953218

  1. Adaptation of Arabidopsis thaliana to the Yangtze River basin.

    PubMed

    Zou, Yu-Pan; Hou, Xing-Hui; Wu, Qiong; Chen, Jia-Fu; Li, Zi-Wen; Han, Ting-Shen; Niu, Xiao-Min; Yang, Li; Xu, Yong-Chao; Zhang, Jie; Zhang, Fu-Min; Tan, Dunyan; Tian, Zhixi; Gu, Hongya; Guo, Ya-Long

    2017-12-28

    Organisms need to adapt to keep pace with a changing environment. Examining recent range expansion aids our understanding of how organisms evolve to overcome environmental constraints. However, how organisms adapt to climate changes is a crucial biological question that is still largely unanswered. The plant Arabidopsis thaliana is an excellent system to study this fundamental question. Its origin is in the Iberian Peninsula and North Africa, but it has spread to the Far East, including the most south-eastern edge of its native habitats, the Yangtze River basin, where the climate is very different. We sequenced 118 A. thaliana strains from the region surrounding the Yangtze River basin. We found that the Yangtze River basin population is a unique population and diverged about 61,409 years ago, with gene flows occurring at two different time points, followed by a population dispersion into the Yangtze River basin in the last few thousands of years. Positive selection analyses revealed that biological regulation processes, such as flowering time, immune and defense response processes could be correlated with the adaptation event. In particular, we found that the flowering time gene SVP has contributed to A. thaliana adaptation to the Yangtze River basin based on genetic mapping. A. thaliana adapted to the Yangtze River basin habitat by promoting the onset of flowering, a finding that sheds light on how a species can adapt to locales with very different climates.

  2. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China

    NASA Astrophysics Data System (ADS)

    Zhu, Yun-Mei; Lu, X. X.; Zhou, Yue

    2007-02-01

    Artificial neural network (ANN) was used to model the monthly suspended sediment flux in the Longchuanjiang River, the Upper Yangtze Catchment, China. The suspended sediment flux was related to the average rainfall, temperature, rainfall intensity and water discharge. It is demonstrated that ANN is capable of modeling the monthly suspended sediment flux with fairly good accuracy when proper variables and their lag effect on the suspended sediment flux are used as inputs. Compared with multiple linear regression and power relation models, ANN can generate a better fit under the same data requirement. In addition, ANN can provide more reasonable predictions for extremely high or low values, because of the distributed information processing system and the nonlinear transformation involved. Compared with the ANNs that use the values of the dependent variable at previous time steps as inputs, the ANNs established in this research with only climate variables have an advantage because it can be used to assess hydrological responses to climate change.

  3. Will river erosion below the Three Gorges Dam stop in the middle Yangtze?

    NASA Astrophysics Data System (ADS)

    Lai, X.; Yin, D.; Finlayson, B. L.; Wei, T.; Li, M.; Yuan, W.; Yang, S.; Dai, Z.; Gao, S.; Chen, Z.

    2017-11-01

    The environmental impact of the Three Gorges Dam has been a subject of vigorous academic, political and social debate since its inception. This includes the key issue of post-dam river channel erosion, which was predicted by the feasibility study to extend to the river mouth. In this paper we examine the geomorphic response of the channel of the middle Yangtze for 660 km downstream of the dam. Using data on channel characteristics, bed material and sediment transport, we show that in the decade following the dam closure, pre-dam seasonal erosion has been replaced by year-round erosion, a pattern most marked at the upstream end of the study area. The sediment carrying capacity of the river channel has been largely reduced below the dam. The locus of bed scour has moved progressively downstream, ceasing as the bed material became too coarse to be transported (e.g. D50: 0.29 mm pre-dam coarsened to 20 mm below the dam by 2008). About 400 km below the dam there is a reduction in channel slope that changes the sediment carrying capacity from 0.25 kg m-3 to only about 0.05 kg m-3, which is insufficient to move bed sediment. The new long-term hydro-morphological equilibrium that will be established in this section of the middle Yangtze will prevent the further incision downstream initiated by the Three Gorges Dam. The results suggest that the full extent of adverse environmental impact predicted by the pre-dam studies will not eventuate.

  4. Prediction and forecast of Suspended Sediment Concentration (SSC) on the Upper Yangtze basin

    NASA Astrophysics Data System (ADS)

    Matos, José Pedro; Hassan, Marwan; Lu, Xixi; Franca, Mário J.

    2017-04-01

    Sediment transport in suspension may represent 90% or more of the global annual flux of sediment. For instance, more than 99% of the sediment supplied to the sea by the Yangtze River is suspended load. Suspended load is an important component for understanding channel dynamics and landscape evolution. Sediments transported in suspension are a major source of nutrients for aquatic organisms in riparian and floodplain habitats, and play a beneficial role acting as a sink in the carbon cycle. Excess of fine sediments may also have adverse effects. It can impair fish spawning by riverbed clogging, disturb foraging efficiency of hunting of river fauna, cause algae and benthos scouring, reduce or inhibit exchanges through the hyporheic region. Accumulation of fine sediments in reservoirs reduces storage capacity. Although fine sediment dynamics has been the focus of many studies, the current knowledge of sediment sources, transfer, and storage is inadequate to address fine sediment dynamics in the landscape. The theoretical derivation of a complete model for suspended sediment transport at the basin scale, incorporating small scale processes of production and transport, is hindered because the underlying mechanisms are produced at different non-similar scales. Availability of long-term reliable data on suspended sediment dynamics is essential to improve our knowledge on transport processes and to develop reliable sediment prediction models. Over the last 60 years, the Yangtze River Commission has been measuring the daily Suspended Sediment Concentration (SSC) at the Pingshan station. This dataset provides a unique opportunity to examine temporal variability and controls of fine sediment dynamics in the Upper Yangtze basin. The objective of this study is to describe temporal variation of fine sediment dynamics at the Pingshan station making use of the extensive sediment monitoring program undertaken at that location. We test several strategies of prediction and forecast

  5. Pollution status of polycyclic aromatic hydrocarbons in surface sediments from the Yangtze River Estuary and its adjacent coastal zone.

    PubMed

    Wang, Chenglong; Zou, Xinqing; Gao, Jianhua; Zhao, Yifei; Yu, Wenwen; Li, Yali; Song, Qiaochu

    2016-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are mainly produced by incomplete combustion and are used as indicators of anthropogenic activities on the environment. This study analyses the PAHs level in the Yangtze River Estuary (YRE), an important component of Yangtze River and a developed and populated region in China. Surface sediments were collected from 77 sites at the YRE and its adjacent coastal zone (IACZ) for a comprehensive study of PAHs. Kriging interpolation technology and Positive matrix factorization (PMF) model were applied to explore the spatial distribution and sources of PAHs. Concentrations of 16 PAHs (ΣPAHs) varied from 27.2 ng g(-1) to 621.6 ng g(-1) dry weight, with an average value of 158.2 ng g(-1). Spatially, ΣPAHs exhibited wide fluctuation and exhibited an increasing tendency from north to south. In addition, ΣPAHs exhibited a decreasing trend with increasing distance between the estuary and IACZ. The deposition flux of PAHs indicated that more than 107.8 t a(-1) PAHs was deposited in the study area annually. The results of the PMF model revealed that anthropogenic activities were the main sources of PAHs in the study area. Vehicle emissions and marine engines were the most important sources and accounted for 40.9% of the pollution. Coal combustion, petrogenic sources, and wood combustion were other sources that contributed 23.9%, 23.6%, and 11.5%, respectively. The distribution patterns of PAHs in the YRE and IACZ were influenced by many complicated factors such as sediment grain size, hydrodynamics and so on. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Spatio-temporal distribution and environmental risk of sedimentary heavy metals in the Yangtze River Estuary and its adjacent areas.

    PubMed

    Chen, Bin; Liu, Jian; Qiu, Jiandong; Zhang, Xilin; Wang, Shuang; Liu, Jinqing

    2017-03-15

    Twenty-five surface sediments and one sediment core sample were collected from the study area. Grain size, major elements, and heavy metals were determined. The content of fine-grained sediments (silt and clay), as well as the concentrations of major elements and heavy metals, showed seaward decreasing trends, with high content in the coastal areas of the East China Sea (ECS) and south west of Jeju Island. Low enrichment factor (EF) and geoaccumulation index (Igeo) values were found, indicating that the ecological risk of heavy metals was low. The EF values obtained from the high-resolution sedimentary records of heavy metals in the Yangtze River Estuary could be divided into Stage 1 (1950s to the late 1970s) and Stage 2 (late 1970s to the current sampling day), which coincided with economic development of the Yangtze River Basin, implementation of environmental protection, and impoundment of the Three Gorges Dam. Copyright © 2016. Published by Elsevier Ltd.

  7. Trend and dynamic cause of sediment particle size on the adjacent continental shelf of the Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Yang, Yun-ping; Zhang, Ming-jin; Li, Yi-tian; Fan, Yong-yang

    2016-12-01

    Based on the measured data in recent 20 years, the variation trends of the median grain size of the surface sediment, the sand-silt boundary and the mud area on the adjacent continental shelf of the Yangtze Estuary were analyzed in depth, and the effects of natural mechanism and human activities were discussed. The results show that: (1) In recent years (2006-2013), the median grain size of sediment and the distribution pattern of grouped sediments in the adjacent continental shelf area to the Yangtze Estuary have presented no obvious change compared with those before 2006; (2) The median diameter of the surface sediment in the continental shelf area displayed a coarsening trend with the decrease of sediment discharge from the basin and the drop in suspended sediment concentration in the shore area; (3) In 2004-2007, the sand-silt boundary in the north part (31°30'N) of the continental shelf area presented no significant changes, while that in the south part (31°30'S) moved inwards; In 2008-2013, both the sand-silt boundaries in the north and south parts of the continental shelf area moved inwards, mainly due to the fact that in the dry season, a relatively enhanced hydrodynamic force of the tides was generated in the Yangtze River, as well as a decreased suspended sediment concentration and a flow along the banks in North Jiangsu; (4) The mud area where the maximum deposition rate is found in the Yangtze Estuary, tends to shrink due to the drop in sediment discharge from the basin, and the decrease in suspended sediment concentration in the shore area and erosion in the delta. Moreover, it tended to shift to the south at the same time because the implement of the training works on the deep-water channel of the North Passage changed the split ratio between the North and South Passages with an increase in the power of the discharged runoff in the South Passage.

  8. Contribution of the upper river, the estuarine region, and the adjacent sea to the heavy metal pollution in the Yangtze Estuary.

    PubMed

    Yin, Su; Wu, Yuehan; Xu, Wei; Li, Yangyang; Shen, Zhenyao; Feng, Chenghong

    2016-07-01

    To determine whether the discharge control of heavy metals in the Yangtze River basin can significantly change the pollution level in the estuary, this study analyzed the sources (upper river, the estuarine region, and the adjacent sea) of ten heavy metals (As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn) in dissolved and particulate phases in the surface water of the estuary during wet, normal, and dry seasons. Metal sources inferred from section fluxes agree with those in statistical analysis methods. Heavy metal pollution in the surface water of Yangtze Estuary primarily depends on the sediment suspension and the wastewater discharge from estuary cities. Upper river only constitutes the main source of dissolved heavy metals during the wet season, while the estuarine region and the adjacent sea (especially the former) dominate the dissolved metal pollution in the normal and dry seasons. Particulate metals are mainly derived from sediment suspension in the estuary and the adjacent sea, and the contribution of the upper river can be neglected. Compared with the hydrologic seasons, flood-ebb tides exert a more obvious effect on the water flow directions in the estuary. Sediment suspension, not the upper river, significantly affects the suspended particulate matter concentration in the estuary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Tidal impacts on the subtidal flow division at the main bifurcation in the Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Feng, Haochuan; Hoitink, A. J. F.; Zhu, Yuliang; Gong, Fei; Zheng, Jinhai

    2017-09-01

    Flow division at bifurcations in the Yangtze Estuary has received ample attention, since it may control the pathways of terrestrial sediments over downstream river branches including the 12.5 m Deepwater Navigation channel. While some efforts have been made to interpret flow division at the bifurcations of the Yangtze Estuary, little attention has been paid to the role of tides. Flow division at estuarine bifurcations is made complicated by tides that propagate from the outlet of the tidal channels into the delta. To quantify the tidal influence on the distribution of river discharge, and more generally, to understand the mechanisms governing the subtidal flow division at the tidally affected bifurcation in the Yangtze River Delta, a two-dimensional hydrodynamic model is employed. In this model, the landward boundary is chosen beyond the tidal limit, where the tidal motion has faded out entirely. The seaward boundary is chosen such that the river discharge does not influence the water level. Subtidal discharges are decomposed using the method of factor separation, to distinguish between the effects of tides, river discharge and river-tide interactions on the subtidal flow division. Results indicate that tides modify the river discharge distribution over distributary channels in the Yangtze River Delta, particularly in the dry season. A significant difference in the subtidal flow division during spring tide and neap tide shows that the tidally averaged flow division over the distributaries in the delta greatly depends on tidal amplitude. By varying the river discharge at the landward boundary and amplitudes and phases of the principal tidal constituents at the seaward boundary of the established model, the sensitivities of the subtidal flow division to the river discharge and tidal amplitude variation were investigated in detail. Generally, the tidal impacts on the subtidal flow division are around 12% to 22%, with river discharge varying from 30,000 m3s-1 to 20

  10. Diversity, abundance, and possible sources of fecal bacteria in the Yangtze River.

    PubMed

    Sun, Haohao; He, Xiwei; Ye, Lin; Zhang, Xu-Xiang; Wu, Bing; Ren, Hongqiang

    2017-03-01

    The fecal bacteria in natural waters may pose serious risks on human health. Although many source tracking methods have been developed and used to determine the possible sources of the fecal pollution, little is known about the overall diversity and abundance of fecal bacterial community in natural waters. In this study, a method based on fecal bacterial sequence library was introduced to evaluate the fecal bacterial profile in the Yangtze River (Nanjing section). Our results suggested that the Yangtze River water harbors diverse fecal bacteria. Fifty-eight fecal operational taxonomic units (97% identity level) were detected in the Yangtze River water samples and the relative abundance of fecal bacteria in these samples ranged from 0.1 to 8%. It was also found that the relative abundances of the fecal bacteria in locations near to the downstream of wastewater treatment plants were obviously higher than those in other locations. However, the high abundance of fecal bacteria could decrease to the normal level in 2~4 km in the river due to degradation or dilution, and the overall fecal bacteria level changed little when the Yangtze River flew through the Nanjing City. Moreover, the fecal bacteria in the Yangtze River water were found to be highly associated (Spearman rho = 0.804, P < 0.001) with the potential pathogenic bacteria. Collectively, the findings in this study reveal the diversity, abundance, and possible sources of fecal bacteria in the Yangtze River and advance our understandings of the fecal bacteria community in the natural waters.

  11. Trematode Aspidogastrea found in the freshwater mussels in the Yangtze River basin.

    PubMed

    Zhan, Xiaodong; Li, Chaopin; Wu, Hua

    2017-03-30

    To investigate the prevalence of trematode Aspidogastrea in the freshwater mussels in the Yangtze River basin within Anhui province, China. We initially harvested the freshwater mussels living in the Yangtze River running through Anhui area, and labeled them with corresponding number. Then the samples were dissected for isolating the flukes, which were identified by conventional staining. Infection rate of trematode Aspidogastrea in freshwater mussels in the Yangtze River basin within the territory of Anhui province was 30.38% (103/339) in general, and a total of 912 flukes of Aspidogastrea were detected in the 103 mussels, with average infection rate of 8.85 for each mussel. Trematode Aspidogastrea is prevalent in the freshwater bivalves living in the Yangtze River basin running through Anhui area, and the treamatode was identified as Aspidogaster sp. belong to Aspidogaste under Aspidogastridae of Aspidogastrea.

  12. Wastewater discharge impact on drinking water sources along the Yangtze River (China).

    PubMed

    Wang, Zhuomin; Shao, Dongguo; Westerhoff, Paul

    2017-12-01

    Unplanned indirect (de facto) wastewater reuse occurs when wastewater is discharged into surface waters upstream of potable drinking water treatment plant intakes. This paper aims to predict percentages and trends of de facto reuse throughout the Yangtze River watershed in order to understand the relative contribution of wastewater discharges into the river and its tributaries towards averting water scarcity concerns. The Yangtze River is the third longest in the world and supports more than 1/15 of the world's population, yet the importance of wastewater on the river remains ill-defined. Municipal wastewater produced in the Yangtze River Basin increased by 41% between 1998 and 2014, from 2580m 3 /s to 3646m 3 /s. Under low flow conditions in the Yangtze River near Shanghai, treated wastewater contributions to river flows increased from 8% in 1998 to 14% in 2014. The highest levels of de facto reuse appeared along a major tributary (Han River) of the Yangtze River, where de facto reuse can exceed 20%. While this initial analysis of de facto reuse used water supply and wastewater data from 110 cities in the basin and 11 gauging stations with >50years of historic streamflow data, the outcome was limited by the lack of gauging stations at more locations (i.e., data had to be predicted using digital elevation mapping) and lack of precise geospatial location of drinking water intakes or wastewater discharges. This limited the predictive capability of the model relative to larger datasets available in other countries (e.g., USA). This assessment is the first analysis of de facto wastewater reuse in the Yangtze River Basin. It will help identify sections of the river at higher risk for wastewater-related pollutants due to presence of-and reliance on-wastewater discharge that could be the focus of field studies and model predictions of higher spatial and temporal resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Occurrence, sources, and ecological risks of PBDEs, PCBs, OCPs, and PAHs in surface sediments of the Yangtze River Delta city cluster, China.

    PubMed

    Zhang, Ting; Yang, Wen-Long; Chen, She-Jun; Shi, Dian-Long; Zhao, Hu; Ding, Yi; Huang, Ye-Ru; Li, Nan; Ren, Yue; Mai, Bi-Xian

    2014-08-01

    Polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) in 25 surface sediments in three cities (Nantong, Wuxi, and Suzhou) in the Yangtze River Delta, eastern China were measured. The mean concentrations were 378, 45.8, 1.98, 4,002 ng/g for PBDEs, OCPs, PCBs, and PAHs, respectively. Their levels in the sediments in the three cities were generally consistent with the city industrialization. PBDEs and OCPs were markedly dominated by deca-BDE (>90 %) and DDTs (>70 %). A principle component analysis of the analytes identified three major factors suggesting different sources of the contaminants in the sediments. PBDEs and the organic carbon in the sediments have common sources from industrial activities; whereas OCPs and PCBs, correlated with the second factor, were mainly from historical sources. The third factor with loadings of PAHs is indicative of various combustion sources. Ecological risk assessment indicated that the potential highest risk is from DDTs, for which 22 sites exceed the effects range low (ERL) values and three sites exceed the effects range median (ERM) value.

  14. Human land uses enhance sediment denitrification and N2O production in Yangtze lakes primarily by influencing lake water quality

    NASA Astrophysics Data System (ADS)

    Liu, W.; Yao, L.; Wang, Z.; Xiong, Z.; Liu, G.

    2015-10-01

    Sediment denitrification in lakes alleviates the effects of eutrophication through the removal of nitrogen to the atmosphere as N2O and N2. However, N2O contributes notably to the greenhouse effect and global warming. Human land uses (e.g. agricultural and urban areas) strongly affect lake water quality and sediment characteristics, which, in turn, may regulate lake sediment denitrification and N2O production. In this study, we investigated sediment denitrification and N2O production and their relationships to within-lake variables and watershed land uses in 20 lakes from the Yangtze River basin in China. The results indicated that both lake water quality and sediment characteristics were significantly influenced by watershed land uses. N2O production rates increased with increasing background denitrification rates. Background denitrification and N2O production rates were positively related to water nitrogen concentrations but were not significantly correlated with sediment characteristics and plant community structure. A significant positive relationship was observed between background denitrification rate and percentage of human-dominated land uses (HDL) in watersheds. Structural equation modelling revealed that the indirect effects of HDL on sediment denitrification and N2O production in Yangtze lakes were mediated primarily through lake water quality. Our findings also suggest that although sediments in Yangtze lakes can remove large quantities of nitrogen through denitrification, they may also be an important source of N2O, especially in lakes with high nitrogen content.

  15. [Surveillance and forecast for schistosome infectivity of Yangtze River and Hanbeihe River during flooding in Hubei Province].

    PubMed

    Tu, Zu-Wu; Cai, Shun-Xiang; Huang, Xi-Bao; Su, Zheng-Ming; Gao, Hua; Chen, Yan-Yan; Cao, Mu-Min; Mao, Guan-Xiang; Xia, Ping-Feng

    2012-04-01

    To investigate the schistosome infectivity of the water body of the Yangtze River and Hanbeihe River during flooding in Hubei Province. The Oncomelania snail status was investigated in 17 sites of the Yangtze River and Hanbei River, and the infectivity of schistosome in sentinel mice was also determined. In the Yangtze River and Hanbei River, the average densities of living snails were 0.35 snails/0.1 m2 and 0.67 snails/0.1 m2 respectively, and the average infection rates of snails were 0.33% and 0.05%, respectively. The sentinel mouse surveillances were carried out twice in 10 sites of the Yangtze River. During the first surveillance the infection rate was 5.5% with 4 positive environment sites, and that was 5.5% with 7 positive environment sites in the second surveillance. The sentinel mouse surveillance was carried out once in 7 sites of the Hanbeihe River, and the infection rate was 11.9% with 4 positive environment sites. By monitoring schistosome infection of the water body, we can understand the threat of environment and provide warning information to prevent from the outbreak and spread of acute schistosomiasis. We can also indirectly get many messages about the quality of snail investigation and the effect of mollusciciding.

  16. [Oncomelania hupensis snail distribution in working areas of Yangtze River hydrologic agencies located in middle and lower reaches of Yangtze River in 2016].

    PubMed

    Min, Xu; Suo-Xin, Huang; Zheng-Yuan, Zhao; Ben-Jiao, Hu; Jun, Fu; Si-Min, Dai; Li-Hong, Wen

    2016-10-13

    To understand the Oncomelania hupensis snail distribution in the working areas of Yangtze River hydrologic agencies located in the middle and lower reaches of the Yangtze River in 2016, so as to provide the evidence for assessing the risk of schistosome infection of hydrological workers and establishing the control strategies. The suspicious environments with O. hupensis snails in the above working areas were selected as study areas, and the snail situation was surveyed by the system sampling method combined with the environmental sampling method. The survey data were collected and analyzed statistically. Totally 19 working areas from 17 hydrological agencies were selected as the investigation sites, among which, 10 working areas from 9 agencies were found with O. hupensis snail distribution. The constituent ratio of the areas with snails reached to 38.81% of the investigation areas, the occurrence rate of frames with snails was 3.08%, and the average density of living snails was 0.07 /0.1 m 2 . By comparison, the average density of living snails and occurrence rate of frames with snails in hydrological agencies under the jurisdiction of the Middle Reaches Administrative Bureau were the most serious among three administrative bureaus of the Yangtze River Water Resources Commission. There are various degrees of O. hupensis breeding in the working areas of hydrological agencies located in the middle and lower reaches of the Yangtze River, and the hydrological workers are facing with the risk of schistosome infection.

  17. Future Earth Coasts: The Mississippi and Yangtze Rivers as Examples

    NASA Astrophysics Data System (ADS)

    D'Elia, C.; Xu, K.; Chen, Z.; Day, J.; Le Tissier, M.

    2016-02-01

    Deltas and estuaries are productive and fertile links between the land and the sea. Deltas occupy only about 5% of the Earth's surface but sustain over a half billion people all around the world. Many river deltas are endangered because of extensive dam and levee construction, declining sediment supply, groundwater withdrawal, relative sea level rise and severe coastal erosion, leading to a variety of threats to natural, economic and social systems. About 630 million people now live at an elevation of 10 m or less above mean sea level, and maintaining sustainable land with a rising sea will be a challenging problem for many major deltaic coasts and cities in the next century. Stemming from 20 years of LOICZ (Land-Ocean Interactions in the Coastal Zone), Future Earth Coasts is a new global initiative that seeks to enable the scientific and social scientific communities to build knowledge through collaborative processes to better understand and address the profound and urgent changes occurring in vulnerable coastal zones. The topics of this comparative study are the Mississippi and Yangtze (Changjiang) Rivers, the largest in the United States and China, respectively. We use these two rivers as examples to evaluate current conditions and catalyze future discussion. The Mississippi and Yangtze both have had long-term observations of physical and biological processes that affect human activities, making it possible to quantify both natural and anthropogenic impacts. We also consider the limits to concept of sustainability for the Earth's biosphere and human civilization, and emphasize biophysical constraints and demographic challenges.

  18. Clay mineralogy indicates the muddy sediment provenance in the estuarine-inner shelf of the East China Sea

    NASA Astrophysics Data System (ADS)

    Zhao, Yifei; Zou, Xinqing; Liu, Qing; Wang, Chenglong; Ge, Chendong; Xu, Min

    2018-02-01

    The estuarine-inner shelf mud regions of the East China Sea (ECS) are valuable for studying the source-to-sink processes of fluvial sediments deposited since the Holocene. In this study, we present evidence of the provenance and environmental evolution of two cores (S5-2 and JC07) from the estuarine-inner shelf regions of the ECS over the past 100 years based on 210Pb dating, high-resolution grain size measurements and clay mineral analyses. The results indicate that the clay mineral assemblages of cores S5-2 and JC07 are dominated by illite, followed by kaolinite and chlorite, and present scarce amounts of smectite. A comparison of these clay mineral assemblages with several major sources reveals that the fine sediments on the estuarine-inner shelf of the ECS represent a mixture of provenances associated with the Yangtze and Yellow Rivers, as well as smaller rivers. However, the contribution of each provenance has varied greatly over the past hundred years, as indicated by the down-core variability due to strong sediment reworking and transport on the inner shelf and the reduction of the sediment load from the Yangtze River basin. In the mud region of the Yangtze River estuary, the sediment from 1930 to 1956 was primarily derived from the Yangtze River, although the Yellow River was also an important influence. From 1956 to 2013, the Yellow River contribution decreased, whereas the Yangtze River contribution correspondingly increased. In the Zhe-Min mud region, the Yangtze River contributed more sediment than did other rivers from 1910 to 1950; however, the Yangtze River contribution gradually decreased from 1950 to 2013. Moreover, the other small rivers accounted for minor contributions, and the East Asian winter monsoon (EAWM) played an important role in the sediment transport process in the ECS. Our results indicate that the weakening/strengthening of the EAWM and a decrease in the sediment load of the Yangtze River influenced the transport and fate of sediment

  19. Gross Nitrogen Mineralization in Surface Sediments of the Yangtze Estuary

    PubMed Central

    Liu, Min; Li, Xiaofei; Yin, Guoyu; Zheng, Yanling; Deng, Fengyu

    2016-01-01

    Nitrogen mineralization is a key biogeochemical process transforming organic nitrogen to inorganic nitrogen in estuarine and coastal sediments. Although sedimentary nitrogen mineralization is an important internal driver for aquatic eutrophication, few studies have investigated sedimentary nitrogen mineralization in these environments. Sediment-slurry incubation experiments combined with 15N isotope dilution technique were conducted to quantify the potential rates of nitrogen mineralization in surface sediments of the Yangtze Estuary. The gross nitrogen mineralization (GNM) rates ranged from 0.02 to 5.13 mg N kg-1 d-1 in surface sediments of the study area. The GNM rates were generally higher in summer than in winter, and the relative high rates were detected mainly at sites near the north branch and frontal edge of this estuary. The spatial and temporal distributions of GNM rates were observed to depend largely on temperature, salinity, sedimentary organic carbon and nitrogen contents, and extracellular enzyme (urease and L-glutaminase) activities. The total mineralized nitrogen in the sediments of the Yangtze Estuary was estimated to be about 6.17 × 105 t N yr-1, and approximately 37% of it was retained in the estuary. Assuming the retained mineralized nitrogen is totally released from the sediments into the water column, which contributed 12–15% of total dissolved inorganic nitrogen (DIN) sources in this study area. This result indicated that the mineralization process is a significant internal nitrogen source for the overlying water of the Yangtze Estuary, and thus may contribute to the estuarine and coastal eutrophication. PMID:26991904

  20. Identification and apportionment of hazardous elements in the sediments in the Yangtze River estuary.

    PubMed

    Wang, Jiawei; Liu, Ruimin; Wang, Haotian; Yu, Wenwen; Xu, Fei; Shen, Zhenyao

    2015-12-01

    In this study, positive matrix factorization (PMF) and principal components analysis (PCA) were combined to identify and apportion pollution-based sources of hazardous elements in the surface sediments in the Yangtze River estuary (YRE). Source identification analysis indicated that PC1, including Al, Fe, Mn, Cr, Ni, As, Cu, and Zn, can be defined as a sewage component; PC2, including Pb and Sb, can be considered as an atmospheric deposition component; and PC3, containing Cd and Hg, can be considered as an agricultural nonpoint component. To better identify the sources and quantitatively apportion the concentrations to their sources, eight sources were identified with PMF: agricultural/industrial sewage mixed (18.6 %), mining wastewater (15.9 %), agricultural fertilizer (14.5 %), atmospheric deposition (12.8 %), agricultural nonpoint (10.6 %), industrial wastewater (9.8 %), marine activity (9.0 %), and nickel plating industry (8.8 %). Overall, the hazardous element content seems to be more connected to anthropogenic activity instead of natural sources. The PCA results laid the foundation for the PMF analysis by providing a general classification of sources. PMF resolves more factors with a higher explained variance than PCA; PMF provided both the internal analysis and the quantitative analysis. The combination of the two methods can provide more reasonable and reliable results.

  1. Spatial distribution and pollution evaluation of heavy metals in Yangtze estuary sediment.

    PubMed

    Liu, Ruimin; Men, Cong; Liu, Yongyan; Yu, Wenwen; Xu, Fei; Shen, Zhenyao

    2016-09-15

    To analyze the spatial distribution patterns and ecological risks of heavy metals, 30 sediment samples were taken in the Yangtze River Estuary (YRE) in May 2011. The content of Al, As, Cr, Cu, Fe, Mn, Ni and Pb increased as follows: inner-region<river mouthriver mouth of the south branch of YRE. In Tucker 3, considering the fractions of metals, Mn turned to be the severest pollutant and As did not contribute too much to the contamination of the YRE. That was most probably because that Mn was closely related to the carbonate-associated (CARB) and As was related to organic-associated (OM) which is more stable than CARB. The fractions played an important role in the contamination assessment of heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Organic micropollutants in the Yangtze River: seasonal occurrence and annual loads.

    PubMed

    Qi, Weixiao; Müller, Beat; Pernet-Coudrier, Benoit; Singer, Heinz; Liu, Huijuan; Qu, Jiuhui; Berg, Michael

    2014-02-15

    Twenty percent of the water run-off from China's land surface drains into the Yangtze River and carries the sewage of approximately 400 million people out to sea. The lower stretch of the Yangtze therefore offers the opportunity to assess the pollutant discharge of a huge population. To establish a comprehensive assessment of micropollutants, river water samples were collected monthly from May 2009 to June 2010 along a cross-section at the lowermost hydrological station of the Yangtze River not influenced by the tide (Datong Station, Anhui province). Following a prescreening of 268 target compounds, we examined the occurrence, seasonal variation, and annual loads of 117 organic micropollutants, including 51 pesticides, 43 pharmaceuticals, 7 household and industrial chemicals, and 16 polycyclic aromatic hydrocarbons (PAHs). During the 14-month study, the maximum concentrations of particulate PAHs (1-5 μg/g), pesticides (11-284 ng/L), pharmaceuticals (5-224 ng/L), and household and industrial chemicals (4-430 ng/L) were generally lower than in other Chinese rivers due to the dilution caused of the Yangtze River's average water discharge of approximately 30,000 m(3)/s. The loads of most pesticides, anti-infectives, and PAHs were higher in the wet season compared to the dry season, which was attributed to the increased agricultural application of chemicals in the summer, an elevated water discharge through the sewer systems and wastewater treatment plants (WWTP) as a result of high hydraulic loads and the related lower treatment efficiency, and seasonally increased deposition from the atmosphere and runoff from the catchment. The estimated annual load of PAHs in the river accounted for some 4% of the total emission of PAHs in the whole Yangtze Basin. Furthermore, by using sucralose as a tracer for domestic wastewater, we estimate a daily disposal of approximately 47 million m(3) of sewage into the river, corresponding to 1.8% of its average hydraulic load. In summary

  3. Heavy Metal Pollution of Lakes along the Mid-Lower Reaches of the Yangtze River in China: Intensity, Sources and Spatial Patterns

    PubMed Central

    Zeng, Haiao; Wu, Jinglu

    2013-01-01

    Lakes in the middle and lower reaches of the Yangtze River form a shallow lake group unique in the World that is becoming increasingly polluted by heavy metals. Previous studies have largely focused on individual lakes, with limited exploration of the regional pattern of heavy metal pollution of the lake group in this area. This paper explores the sources, intensity and spatial patterns of heavy metal pollution of lake sediments. A total of 45 sample lakes were selected and the concentrations of key metal elements in the sediments of each lake were measured. The cluster analysis (CA), principal component analysis (PCA) and Geo-accumulation index (Ig) analysis permitted analysis of the source and pollution intensity of the target lakes. Results suggested a notable spatial variation amongst the sample lakes. Lakes in the upper part of the lower reach of the Yangtze River surrounded by typical urban landscapes were strongly or extremely polluted, with high concentrations of Pb, Zn, Cu and Cd in their sediments. This was attributed to large amount of untreated industrial discharges and municipal sewage produced within the lake catchments. In contrast, the heavy-metal pollution of lakes in the Taihu Delta area was notably lower due to industrial restructuring and implementation of effective environmental protection measures. Lakes along the middle reach of Yangtze River surrounded by agricultural areas were unpolluted to moderately polluted by heavy metals overall. Our results suggested that lakes in the central part of China require immediate attention and efforts should be made to implement management plans to prevent further degradation of water quality in these lakes. PMID:23442559

  4. Decline in suspended sediment concentration delivered by the Changjiang (Yangtze) River into the East China Sea between 1956 and 2013

    NASA Astrophysics Data System (ADS)

    Dai, Zhijun; Fagherazzi, Sergio; Mei, Xuefei; Gao, Jinjuan

    2016-09-01

    The temporal evolution of suspended sediment concentration (SSC) in a river debouching into the ocean provides vital insights into erosion processes in the watershed and dictates the evolution of the inner continental shelf. While the delivery of sediment from rivers to the ocean has received special attention in the recent past, few studies focused on the variability and dynamics of river SSC, especially in the Changjiang (Yangtze) river, China, the longest river in Asia. Here, variations in SSC delivered by the Changjiang River to the East China Sea and possible causes of its variability were detected based on a long-term time series of daily SSC and monthly water discharge measured at the Datong gauging station. The SSC data are further compared to a hydrological analysis of yearly precipitation covering the entire catchment. The results indicate the presence of a decline in SSC in the period 1956-2013, which can be divided into three phases: (i) high SSC (0.69 kg/m3) in the wet season and low SSC (0.2 kg/m3) in the dry season from 1956 to 1970; (ii) relative high SSC (0.58 kg/m3) in the wet season and low SSC (0.15 kg/m3) in the dry season from 1971 to 2002; and (iii) low SSC (0.19 kg/m3) in the wet season and very low SSC (0.09 kg/m3) in the dry season after 2002. These three periods have a mean yearly SSC values of 0.62, 0.42, and 0.18 kg/m3, respectively. Compared with 1956-1970, the slope of the rating curve between SSC and water discharge decreased, respectively, by 2% and 30% during the period 1971-2002 and 2002-2013. Soil erosion, dam construction, and banks reinforcement along the Changjiang River are the main causes of SSC variations. Fluctuations in water discharge are also controlling the SSC long-term variations. Specifically, from 1956 to 1970, the effect of soil erosion overrules that of dam impoundment, which is likely responsible for the high SSC; during the period 1970-2002, the influence of dam impoundment increases while that of soil erosion

  5. Response of PAH-degrading genes to PAH bioavailability in the overlying water, suspended sediment, and deposited sediment of the Yangtze River.

    PubMed

    Xia, Xinghui; Xia, Na; Lai, Yunjia; Dong, Jianwei; Zhao, Pujun; Zhu, Baotong; Li, Zhihuang; Ye, Wan; Yuan, Yue; Huang, Junxiong

    2015-06-01

    The degrading genes of hydrophobic organic compounds (HOCs) serve as indicators of in situ HOC degradation potential, and the existing forms and bioavailability of HOCs might influence the distribution of HOC-degrading genes in natural waters. However, little research has been conducted to study the relationship between them. In the present study, nahAc and nidA genes, which act as biomarkers for naphthalene- and pyrene-degrading bacteria, were selected as model genotypes to investigate the response of polycyclic aromatic hydrocarbon (PAH)-degrading genes to PAH bioavailability in the overlying water, suspended sediment (SPS), and deposited sediment of the Yangtze River. The freely dissolved concentration, typically used to reflect HOC bioavailability, and total dissolved, as well as sorbed concentrations of PAHs were determined. Phylogenetic analysis showed that all the PAH-ring hydroxylating dioxygenase gene sequences of Gram-negative bacteria (PAH-RHD[GN]) were closely related to nahAc, nagAc, nidA, and uncultured PAH-RHD genes. The PAH-RHD[GN] gene diversity as well as nahAc and nidA gene copy numbers decreased in the following order: deposited sediment>SPS>overlying water. The nahAc and nidA gene abundance was not significantly correlated with environmental parameters but was significantly correlated with the bioavailable existing forms of naphthalene and pyrene in the three phases. The nahAc gene copy numbers in the overlying water and deposited sediment were positively correlated with freely dissolved naphthalene concentrations in the overlying and pore water phases, respectively, and so were nidA gene copy numbers. This study suggests that the distribution and abundance of HOC-degrading bacterial population depend on the HOC bioavailability in aquatic environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Mapping Water Vulnerability of the Yangtze River Basin: 1994-2013.

    PubMed

    Sun, Fengyun; Kuang, Wenhui; Xiang, Weining; Che, Yue

    2016-11-01

    A holistic understanding of the magnitude and long-term trend of water vulnerability is essential for making management decisions in a given river basin. Existing procedures to assess the spatiotemporal dynamic of water vulnerability in complex mega-scale river basins are inadequate; a new method named ensemble hydrologic assessment was proposed in this study, which allows collection of data and knowledge about many aspects of water resources to be synthesized in a useful way for vulnerability assessment. The objective of this study is to illustrate the practical utility of such an integrated approach in examining water vulnerability in the Yangtze River Basin. Overall, the results demonstrated that the ensemble hydrologic assessment model could largely explain the spatiotemporal evolution of water vulnerability. This paper improves understanding of the status and trends of water resources in the Yangtze River Basin.

  7. [Analysis of trend of Oncomelania snail status in Yangtze River valley of Anhui Province, 1998-2009].

    PubMed

    He, Jia-Chang; Wang, Jia-Sheng; Lu, Jin-You; Li, Ting-Ting; Gao, Feng-Hu; Zhou, Ping; Zhu, Chuan-Ming; He, Long-Zhu; Yu, Bei-Bei; Zhang, Shi-Qing

    2011-04-01

    To understand the trend of Oncomelania hupensis snail distribution in Yangtze River valley of Anhui Province so as to provide an evidence for making out schistosomiasis prevention and control strategies in the future. The snail data from 1998 to 2009 of the Yangtze River valley in Anhui Province were collected including the snail area, newly occurred and re-occurred snail areas, densities of snails and infected snails, etc., and the trend and influence factors were analyzed. With several fluctuations, the snail area showed a trend of declining in general after the devastating summer flooding in 1998. From 1998 to 2009, 3 peaks of newly occurred snail areas appeared in 1998, 2004 and 2006 and 2 peaks of reoccurred snail areas appeared in 1998 and 2004. The densities of living snails and infected snails were more severe in banks of the Yangtze River than in islets of the Yangtze River. During 12 years, 1 peak of living snail density appeared in 2003, and 3 peaks of infected snail density appeared in 1999, 2003-2004 and 2006 in the islets of the Yangtze River. The densities of living snails and infected snails in banks of the Yangtze both appeared 1 peak in 1998. The distribution of snails in the Yangtze River valley is related to nature, society and financial circumstances, and it is hard to completely perform the snail control in a short-term. Therefore, at the same time of strengthening snail control, we should also strengthen infectious source control.

  8. Phenomena and characteristics of barrier river reaches in the middle and lower Yangtze River, China

    NASA Astrophysics Data System (ADS)

    You, Xingying; Tang, Jinwu

    2017-06-01

    Alluvial river self-adjustment describes the mechanism whereby a river that was originally in an equilibrium state of sediment transport encounters some disturbance that destroys the balance and results in responses such as riverbed deformation. A systematic study of historical and recent aerial photographs and topographic maps in the Middle and Lower Reaches of the Yangtze River (MLYR) shows that river self-adjustment has the distinguishing feature of transferring from upstream to downstream, which may affect flood safety, waterway morphology, bank stability, and aquatic environmental safety over relatively long reaches downstream. As a result, it is necessary to take measures to control or block this transfer. Using the relationship of the occurrence time of channel adjustments between the upstream and downstream, 34 single-thread river reaches in the MLYR were classified into four types: corresponding, basically corresponding, basically not corresponding, not corresponding. The latter two types, because of their ability to prevent upstream channel adjustment from transferring downstream, are called barrier river reaches in this study. Statistics indicate that barrier river reaches are generally single thread and slightly curved, with a narrow and deep cross-sectional morphology, and without flow deflecting nodes in the upper and middle parts of reaches. Moreover, in the MLYR, barrier river reaches have a hydrogeometric coefficient of {<}{4}, a gradient {>}1.2‱, a silty clay content of the concave bank {>}{9.5}%, and a median diameter of the bed sediment {>}{0.158} mm. The barrier river reach mechanism lies in that can effectively centralise the planimetric position of the main stream from different upstream directions, meaning that no matter how the upper channel adjusts, the main stream shows little change, providing relatively stable inflow conditions for the lower reaches. Regarding river regulation, it is necessary to optimise the benefits of barrier river

  9. Erosion potential of the Yangtze Delta under sediment starvation and climate change.

    PubMed

    Yang, H F; Yang, S L; Xu, K H; Wu, H; Shi, B W; Zhu, Q; Zhang, W X; Yang, Z

    2017-09-05

    Deltas are widely threatened by sediment starvation and climate change. Erosion potential is an important indicator of delta vulnerability. Here, we investigate the erosion potential of the Yangtze Delta. We found that over the past half century the Yangtze's sediment discharge has decreased by 80% due to the construction of >50,000 dams and soil conservation, whereas the wind speed and wave height in the delta region have increased by 5-7%, and the sea level has risen at a rate of 3 mm/yr. According to hydrodynamic measurements and analyses of seabed sediments, the period when bed shear stress due to combined current-wave action under normal weather conditions exceeds the critical bed shear stress for erosion (τ cr ) accounts for 63% of the total observed period on average and can reach 100% during peak storms. This explains why net erosion has occurred in some areas of the subaqueous delta. We also found that the increase with depth of τ cr is very gradual in the uppermost several metres of the depositional sequence. We therefore expect that the Yangtze subaqueous delta will experience continuous erosion under sediment starvation and climate change in the next decades of this century or even a few centuries.

  10. Sedimentation of the mud belt along the coast of China from the mouth of the Yangtze (Changjiang) River to northern Taiwan Strait: An Source-to-Sink Perspective

    NASA Astrophysics Data System (ADS)

    Chien, C. C.; Liu, J. T.; Yang, R.; Huh, C. A.; Su, C. C.

    2016-02-01

    Sediments in the Taiwan Strait are originated from Mainland China and Taiwan. The China Coastal Current, influenced by the northeast monsoon in winter, becomes enhanced, which caries the sediments exported from the Yangtze River to the southern East China Sea and the Taiwan Strait along the Zhemin-Taiwan Strait mud belt. The sediment transport process is also influenced by tidal current and Kuroshio Branch Current and Taiwan Warm Current, making the seafloor sediment signals complex. This study used R/V Ocean Researcher V (Cruise 0032), to collect six box cores and three gravity cores along the Zhemin mud belt and the mud belt in northern Taiwan Strait in the winter of 2014. From the core samples, grain-size distribution, Multi-Sensor Core Logger, and 7Be activity were measured to investigate the sedimentation process along the mud belts. The box core taken at the mouth of the Changjiang- is composed of homogeneous clay and rich in shell fragments. The core off the mouth of Ou River is composed of homogeneous clay, but showing horizontal laminations. Near the Taishan Island off the coast of Zhejiang the core is consisted of a homogeneous sandy sediments that turned into clay. Off the mouth of the Min River the core consists of clay with shell fragments. Off the coast of the Wu River on the west coast of the Taiwan, the core is mainly composed of muddy sediments, which has the siltstone layers of oblique bedding. Off the mouth of Zhuoshui River in central Taiwan, the core is composed of sandy sediments. From the mouth of the Changhjiang, Zhemin mud belt, the northern Taiwan Strait mud belt, to the central Taiwan Strait, 7Be activity in the seafloor sediment indicates that the freshness of the terrigenous sediments decreased. The Mass Magnetic Susceptiblity (MSI) demonstrates that the terrigenous sediments decreased from north to south. The MSI signals in the core off the mouth of the Minjiang are different from those in the neighboring cores. This is suspected due

  11. Modeling the impact of river discharge and wind on the hypoxia off Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Zheng, Jingjing; Gao, Shan; Liu, Guimei; Wang, Hui; Zhu, Xueming

    2016-12-01

    The phenomenon of low dissolved oxygen (known as hypoxia) in a coastal ocean system is closely related to a combination of anthropogenic and natural factors. Marine hypoxia occurs in the Yangtze Estuary, China, with high frequency and long persistence. It is related primarily to organic and nutrient enrichment influenced by river discharges and physical factors, such as water mixing. In this paper, a three-dimensional hydrodynamic model was coupled to a biological model to simulate and analyze the ecological system of the East China Sea. By comparing with the observation data, the model results can reasonably capture the physical and biochemical dynamics of the Yangtze Estuary. In addition, the sensitive experiments were also used to examine the role of physical forcing (river discharge, wind speed, wind direction) in controlling hypoxia in waters adjacent to the Yangtze Estuary. The results showed that the wind field and river discharge have significant impact on the hypoxia off the Yangtze Estuary. The seasonal cycle of hypoxia was relatively insensitive to synoptic variability in the river discharge, but integrated hypoxic areas were sensitive to the whole magnitude of river discharge. Increasing the river discharge was shown to increase hypoxic areas, while decreasing the river discharge tended to decrease hypoxic areas. The variations of wind speed and direction had a great impact on the integrated hypoxic areas.

  12. Genetic structure and diversity of Nodularia douglasiae (Bivalvia: Unionida) from the middle and lower Yangtze River drainage.

    PubMed

    Liu, Xiongjun; Cao, Yanling; Xue, Taotao; Wu, Ruiwen; Zhou, Yu; Zhou, Chunhua; Zanatta, David T; Ouyang, Shan; Wu, Xiaoping

    2017-01-01

    The Yangtze River drainage in China is among the most species rich rivers for freshwater mussels (order Unionida) on Earth with at least 68 species known. The freshwater mussels of the Yangtze River face a variety of threats with indications that species are declining in abundance and area of occupancy. This study represents the first analyses of the genetic structure and diversity for the common and widespread freshwater mussel Nodularia douglasiae based on microsatellite DNA genotypes and mitochondrial DNA sequences. Phylogenetic analysis a fragment of the COI mitochondrial gene indicated that N. douglasiae collected from across the middle and lower Yangtze River drainage are monophyletic with N. douglasiae from Japan, Russia, and South Korea. The results of the analysis of both the mtDNA and microsatellite datasets indicated that the seven collection locations of N. douglasiae in the middle and lower Yangtze River drainage showed high genetic diversity, significant genetic differentiation and genetic structure, and stable population dynamics over time. Moreover, we found that the connections among tributaries rivers and lakes in the Yangtze River drainage were important in maintaining gene flow among locations that N. douglasiae inhabits. An understanding of the genetic structure and diversity of a widespread species like N. douglasiae could be used as a surrogate to better understand the populations of other freshwater mussel species that are more rare in the Yangtze River drainage. At the same time, these results could provide a basis for the protection of genetic diversity and management of unionid mussels diversity and other aquatic organisms in the system.

  13. Genetic structure and diversity of Nodularia douglasiae (Bivalvia: Unionida) from the middle and lower Yangtze River drainage

    PubMed Central

    Liu, Xiongjun; Cao, Yanling; Xue, Taotao; Wu, Ruiwen; Zhou, Yu; Zhou, Chunhua; Zanatta, David T.; Ouyang, Shan

    2017-01-01

    The Yangtze River drainage in China is among the most species rich rivers for freshwater mussels (order Unionida) on Earth with at least 68 species known. The freshwater mussels of the Yangtze River face a variety of threats with indications that species are declining in abundance and area of occupancy. This study represents the first analyses of the genetic structure and diversity for the common and widespread freshwater mussel Nodularia douglasiae based on microsatellite DNA genotypes and mitochondrial DNA sequences. Phylogenetic analysis a fragment of the COI mitochondrial gene indicated that N. douglasiae collected from across the middle and lower Yangtze River drainage are monophyletic with N. douglasiae from Japan, Russia, and South Korea. The results of the analysis of both the mtDNA and microsatellite datasets indicated that the seven collection locations of N. douglasiae in the middle and lower Yangtze River drainage showed high genetic diversity, significant genetic differentiation and genetic structure, and stable population dynamics over time. Moreover, we found that the connections among tributaries rivers and lakes in the Yangtze River drainage were important in maintaining gene flow among locations that N. douglasiae inhabits. An understanding of the genetic structure and diversity of a widespread species like N. douglasiae could be used as a surrogate to better understand the populations of other freshwater mussel species that are more rare in the Yangtze River drainage. At the same time, these results could provide a basis for the protection of genetic diversity and management of unionid mussels diversity and other aquatic organisms in the system. PMID:29261733

  14. Effects of fish community on occurrences of Yangtze finless porpoise in confluence of the Yangtze and Wanhe Rivers.

    PubMed

    Zhang, Xiaoke; Yu, Daoping; Wang, Huili; Wan, An; Chen, Minmin; Tao, Feng; Song, Zunrong

    2015-06-01

    The Yangtze finless porpoise is a subspecies of narrow-ridged finless porpoise endemic to the middle and lower reaches of the Yangtze River and the adjoining Poyang and Dongting Lakes. With the depletion of fish stocks in the Yangtze River in recent decades, food availability has become the most important factor affecting the survival of this subspecies. Despite this, the relationships between fish community and occurrences of porpoise are far from being fully understood. Therefore, during September 2013 to August 2014, the occurrences of porpoise were investigated in confluence of the Yangtze and Wanhe Rivers; fish community was also surveyed synchronously in confluence and two adjacent transects. The results showed that (1) the confluence had maximum fish species richness, and the main dominant species was upper fish, while the other two transects were mainly dominated by demersal fish. ANOVA analyses showed that individual number and yield of upper fish which can be eaten by porpoise (upper edible fish) in the confluence were significantly higher than other two transects. (2) Average group size of the porpoise was 3.7 ± 1.8 individuals. The occurrences of porpoise in different seasons had great differences, and the porpoise was more likely to be detected in autumn and winter. (3) Fish community had significant effects on occurrences of porpoise, and the main influencing factors were fish species richness, individual number, and yield of edible fish, especially the upper edible fish. The results of this study will have important implications for the conservation of porpoise.

  15. Early Development of Four Cyprinids Native to the Yangtze River, China

    USGS Publications Warehouse

    Chapman, Duane C.

    2006-01-01

    Chapter 1 -- Notes on the Translation and Use of "A Study of the Early Development of Grass Carp, Black Carp, Silver Carp, and Bighead Carp in the Yangtze River, China" By Duane C. Chapman and Ning Wang Chapter 2 -- A Study of the Early Development of Grass Carp, Black Carp, Silver Carp, and Bighead Carp in the Yangtze River, China By Bolu Yi, Zhishen Liang, Zhitang Yu, Randuan Lin, and Mingjue HeTranslated by Duane C. Chapman and Ning Wang The document A Study of the Early Development of Grass Carp, Black Carp, Silver Carp, and Bighead Carp in the Yangtze River, China (Chapter 2 of this volume) was translated from the Chinese with the approval and assistance of the living authors of that study. It contains the most detailed description available, and approximately 200 drawings, of the early development of the subject fishes. Chapter 1 provides important instructions on the use of the translation, including a description of the Chinese morphometric conventions, which differ from those used by North American scientists. Chapter 1 also provides the historical context in which Chapter 2 was developed, and information on how the larvae of the subject fishes, which have invaded the Mississippi River basin, may be distinguished from other fishes present in the basin.

  16. Health risk assessment of heavy metals in fish and accumulation patterns in food web in the upper Yangtze River, China.

    PubMed

    Yi, Yujun; Tang, Caihong; Yi, Tieci; Yang, Zhifeng; Zhang, Shanghong

    2017-11-01

    This study aims to concern the distribution of As, Cr, Cd, Hg, Cu, Zn, Pb and Fe in surface sediment, zoobenthos and fishes, and quantify the accumulative ecological risk and human health risk of metals in river ecological system based on the field investigation in the upper Yangtze River. The results revealed high ecological risk of As, Cd, Cu, Hg, Zn and Pb in sediment. As and Cd in fish presented potential human health risk of metals by assessing integrated target hazard quotient results based on average and maximum concentrations, respectively. No detrimental health effects of heavy metals on humans were found by daily fish consumption. While, the total target hazard quotient (1.659) exceeding 1, it meant that the exposed population might experience noncarcinogenic health risks from the accumulative effect of metals. Ecological network analysis model was established to identify the transfer routes and quantify accumulative effects of metals on river ecosystem. Control analysis between compartments showed large predator fish firstly depended on the omnivorous fish. Accumulative ecological risk of metals indicated that zoobenthos had the largest metal propagation risk and compartments located at higher trophic levels were not easier affected by the external environment pollution. A potential accumulative ecological risk of heavy metal in the food web was quantified, and the noncarcinogenic health risk of fish consumption was revealed for the upper reach of the Yangtze River. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Effects of Yangtze River source water on genomic polymorphisms of male mice detected by RAPD.

    PubMed

    Zhang, Xiaolin; Zhang, Zongyao; Zhang, Xuxiang; Wu, Bing; Zhang, Yan; Yang, Liuyan; Cheng, Shupei

    2010-02-01

    In order to evaluate the environmental health risk of drinking water from Yangtze River source, randomly amplified polymorphic DNA (RAPD) markers were used to detect the effects of the source water on genomic polymorphisms of hepatic cell of male mice (Mus musculus, ICR). After the mice were fed with source water for 90 days, RAPD-polymerase chain reactions (PCRs) were performed on hepatic genomic DNA using 20 arbitrary primers. Totally, 189 loci were generated, including 151 polymorphic loci. On average, one PCR primer produced 5.3, 4.9 and 4.8 bands for each mouse in the control, the groups fed with source water and BaP solution, respectively. Compared with the control, feeding mice with Yangtze River source water caused 33 new loci to appear and 19 to disappear. Statistical analysis of RAPD printfingers revealed that Yangtze River source water exerted a significant influence on the hepatic genomic polymorphisms of male mice. This study suggests that RAPD is a reliable and sensitive method for the environmental health risk of Yangtze River source water.

  18. Short- and medium-chain chlorinated paraffins in sediments from the middle reaches of the Yangtze River: Spatial distributions, source apportionment and risk assessment.

    PubMed

    Qiao, Lin; Gao, Lirong; Xia, Dan; Huang, Huiting; Zheng, Minghui

    2017-01-01

    Chlorinated paraffins (CPs) are easily adsorbed into sediments where they pose potential risks to the ecosystem and human health. Few studies have investigated short- and medium-chain CPs (SCCPs and MCCPs) in sediments. The aim of the present study was to comprehensively investigate contamination levels, spatial distributions, sources and risks posed by CPs in sediments from the middle reaches of the Yangtze River. The sediment samples were analyzed by two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS). The concentrations of SCCPs and MCCPs ranged from 4.19 to 41.6ng/g dry weight (dw) and not detected to 14.6ng/g dw, respectively. No significant correlation was found between the total organic carbon contents and CP concentrations (P>0.05). The spatial distributions showed that CP contamination levels in the sediments were related to local human activities. The dominant congener groups were C 10-11 Cl 6-7 for SCCPs, and C 14 Cl 7-8 for MCCPs. Correspondence analysis revealed that likely sources of SCCPs were the production and use of CP-42 and CP-52. Principal component analysis indicated that SCCPs and MCCPs in the sediments may come from different sources. Moreover, CPs with nine carbon atoms were quantitated for the first time in sediment samples, and the results indicated they should not be neglected in future analyses. Risk assessments indicated that CPs in the sediments did not pose a great ecological risk currently. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. [Spatio-temporal variations of origin, distribution and diffusion of Oncomelania hupensis in Yangtze River Basin].

    PubMed

    Deng, Chen; Li-Yong, Wen

    2017-10-24

    As the only intermediate host of Schistosoma japonicum, Oncomelania hupensis in China is mainly distributed in the Yangtze River Basin. The origin of the O. hupensis and the spatio-temporal variations of its distribution and diffusion in the Yangtze River Basin and the influencing factors, as well as significances in schistosomiasis elimination in China are reviewed in this paper.

  20. An investigation of enhanced recessions in Poyang Lake: Comparison of Yangtze River and local catchment impacts

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Ye, Xu-chun; Werner, Adrian D.; Li, Yun-liang; Yao, Jing; Li, Xiang-hu; Xu, Chong-yu

    2014-09-01

    Changes in lake hydrological regimes and the associated impacts on water supplies and ecosystems are internationally recognized issues. During the past decade, the persistent dryness of Poyang Lake (the largest freshwater lake in China) has caused water supply and irrigation crises for the 12.4 million inhabitants of the region. There is conjecture as to whether this dryness is caused by climate variability and/or human activities. This study examines long-term datasets of catchment inflow and Lake outflow, and employs a physically-based hydrodynamic model to explore catchment and Yangtze River controls on the Lake's hydrology. Lake water levels fell to their lowest during 2001-2010 relative to previous decades. The average Lake size and volume reduced by 154 km2 and 11 × 108 m3 during the same period, compared to those for the preceding period (1970-2000). Model simulations demonstrated that the drainage effect of the Yangtze River was the primary causal factor. Modeling also revealed that, compared to climate variability impacts on the Lake catchment, modifications to Yangtze River flows from the Three Gorges Dam have had a much greater impact on the seasonal (September-October) dryness of the Lake. Yangtze River effects are attenuated in the Lake with distance from the River, but nonetheless propagate some 100 km to the Lake's upstream limit. Proposals to build additional dams in the upper Yangtze River and its tributaries are expected to impose significant challenges for the management of Poyang Lake. Hydraulic engineering to modify the flow regime between the Lake and the Yangtze River would somewhat resolve the seasonal dryness of the Lake, but will likely introduce other issues in terms of water quality and aquatic ecosystem health, requiring considerable further research.

  1. Estimation of nutrient discharge from the Yangtze River to the East China Sea and the identification of nutrient sources.

    PubMed

    Tong, Yindong; Bu, Xiaoge; Chen, Junyue; Zhou, Feng; Chen, Long; Liu, Maodian; Tan, Xin; Yu, Tao; Zhang, Wei; Mi, Zhaorong; Ma, Lekuan; Wang, Xuejun; Ni, Jing

    2017-01-05

    Based on a time-series dataset and the mass balance method, the contributions of various sources to the nutrient discharges from the Yangtze River to the East China Sea are identified. The results indicate that the nutrient concentrations vary considerably among different sections of the Yangtze River. Non-point sources are an important source of nutrients to the Yangtze River, contributing about 36% and 63% of the nitrogen and phosphorus discharged into the East China Sea, respectively. Nutrient inputs from non-point sources vary among the sections of the Yangtze River, and the contributions of non-point sources increase from upstream to downstream. Considering the rice growing patterns in the Yangtze River Basin, the synchrony of rice tillering and the wet seasons might be an important cause of the high nutrient discharge from the non-point sources. Based on our calculations, a reduction of 0.99Tg per year in total nitrogen discharges from the Yangtze River would be needed to limit the occurrences of harmful algal blooms in the East China Sea to 15 times per year. The extensive construction of sewage treatment plants in urban areas may have only a limited effect on reducing the occurrences of harmful algal blooms in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Genomic evidence for the population genetic differentiation of Misgurnus anguillicaudatus in the Yangtze River basin of China.

    PubMed

    Yi, Shaokui; Wang, Weimin; Zhou, Xiaoyun

    2018-02-21

    Misgurnus anguillicaudatus, an important aquatic species, is mainly distributed in the Yangtze River basin. To reveal the population genetic structure of M. anguillicaudatus distributed in the Yangtze River basin, genotyping by sequencing (GBS) technique was employed to detect the genome wide genetic variations of M. anguillicaudatus. A total of 30.03 Gb raw data were yielded from 70 samples collected from 15 geographic sites located in the Yangtze River basin. Subsequently, 2092 high quality SNPs were genotyped across these samples and used for a series of genetic analysis. The results of genetic analysis showed that high levels of genetic diversity were observed and the populations from upper reaches (UR) were significantly differentiated from the middle and lower reaches (MLR) of Yangtze River basin. Meanwhile, no significant isolation by distance was detected among the populations. Ecological factors (e.g. complicated topography and climatic environment) and anthropogenic factors (e.g. aquaculture and agriculture cultivation) might account for the genetic disconnectivity between UR and MLR populations. This study provided valuable genetic data for the future breeding program and also for the conversation and scientific utilization of those abundant genetic resources stored in the Yangtze River basin. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Forecasting the Amount of Waste-Sewage Water Discharged into the Yangtze River Basin Based on the Optimal Fractional Order Grey Model.

    PubMed

    Li, Shuliang; Meng, Wei; Xie, Yufeng

    2017-12-23

    With the rapid development of the Yangtze River economic belt, the amount of waste-sewage water discharged into the Yangtze River basin increases sharply year by year, which has impeded the sustainable development of the Yangtze River basin. The water security along the Yangtze River basin is very important for China, It is something aboutwater security of roughly one-third of China's population and the sustainable development of the 19 provinces, municipalities and autonomous regions among the Yangtze River basin. Therefore, a scientific prediction of the amount of waste-sewage water discharged into Yangtze River basin has a positive significance on sustainable development of industry belt along with Yangtze River basin. This paper builds the fractional DWSGM(1,1)(DWSGM(1,1) model is short for Discharge amount of Waste Sewage Grey Model for one order equation and one variable) model based on the fractional accumulating generation operator and fractional reducing operator, and calculates the optimal order of "r" by using particle swarm optimization(PSO)algorithm for solving the minimum average relative simulation error. Meanwhile, the simulation performance of DWSGM(1,1)model with the optimal fractional order is tested by comparing the simulation results of grey prediction models with different orders. Finally, the optimal fractional order DWSGM(1,1)grey model is applied to predict the amount of waste-sewage water discharged into the Yangtze River basin, and corresponding countermeasures and suggestions are put forward through analyzing and comparing the prediction results. This paper has positive significance on enriching the fractional order modeling method of the grey system.

  4. Measuring Bedload Sediment Flux in Large Rivers: New Data from the Mekong River and Its Applications in Assessing Geomorphic Change

    NASA Astrophysics Data System (ADS)

    Best, J.; Hackney, C. R.; Parsons, D. R.; Darby, S. E.; Leyland, J.; Aalto, R. E.; Nicholas, A. P.

    2014-12-01

    Many large rivers are undergoing renewed and increasing anthropogenic-induced change as water diversions, new dams and greater water demands place enhanced stresses on these river basins. Examples of rivers undergoing significant change include the Amazon, Madeira, Nile, Yangtze and Mekong, with considerable ongoing debate raging as to the long-term geomorphic and ecological effects of major anthropogenic interventions. Assessing the effects of such change in large rivers is demanding, one reason being that sediment transport is often exceedingly difficult to measure, and thus data needed to inform the debate on the impact of anthropogenic change is frequently lacking. Here, we report on one aspect of research being undertaken as part of STELAR-S2S - Sediment Transfer and Erosion on Large Alluvial Rivers - that is seeking to better understand the relationship between climate, anthropogenic impacts and sediment transport in some of the world's largest rivers. We are using the Lower Mekong River as our study site, with the Mekong delta being one of only three in the world classified by the IPCC as 'extremely vulnerable' to future changes in climate. Herein, we describe details of bedload sediment flux estimation using repeated high-resolution multibeam echo sounder (MBES) bathymetric mapping along the Lower Mekong and Tonle Sap rivers in Cambodia. We are using MBES to quantify the spatial variation in sediment transport both along and also across the river at 11 sites in the study area. Predicted increases in the extraction of sediment from the river through sand dredging are thought likely to cause a significant decrease in downstream sediment flux, and future dam construction along the Mekong main channel potentially offers another source of significant change. These field results will be set in the light of these anthropogenic drivers on sediment flux in the Mekong River and their possible future effects on bar formation and channel migration.

  5. New evidence of Yangtze delta recession after closing of the Three Gorges Dam

    PubMed Central

    Luo, X. X.; Yang, S. L.; Wang, R. S.; Zhang, C. Y.; Li, P.

    2017-01-01

    Many deltas are likely undergoing net erosion because of rapid decreases in riverine sediment supply and rising global sea levels. However, detecting erosion in subaqueous deltas is usually difficult because of the lack of bathymetric data. In this study, by comparing bathymetric data between 1981 and 2012 and surficial sediment grain sizes from the Yangtze subaqueous delta front over the last three decades, we found severe erosion and significant sediment coarsening in recent years since the construction of Three Gorges Dam (TGD), the largest dam in the world. We attributed these morphological and sedimentary variations mainly to the human-induced drastic decline of river sediment discharge. Combined with previous studies based on bathymetric data from different areas of the same delta, we theorize that the Yangtze subaqueous delta is experiencing overall (net) erosion, although local accumulation was also noted. We expect that the Yangtze sediment discharge will further decrease in the near future because of construction of new dams and delta recession will continue to occur. PMID:28145520

  6. Forecasting the Amount of Waste-Sewage Water Discharged into the Yangtze River Basin Based on the Optimal Fractional Order Grey Model

    PubMed Central

    Li, Shuliang; Meng, Wei; Xie, Yufeng

    2017-01-01

    With the rapid development of the Yangtze River economic belt, the amount of waste-sewage water discharged into the Yangtze River basin increases sharply year by year, which has impeded the sustainable development of the Yangtze River basin. The water security along the Yangtze River basin is very important for China, It is something about water security of roughly one-third of China’s population and the sustainable development of the 19 provinces, municipalities and autonomous regions among the Yangtze River basin. Therefore, a scientific prediction of the amount of waste-sewage water discharged into Yangtze River basin has a positive significance on sustainable development of industry belt along with Yangtze River basin. This paper builds the fractional DWSGM (1,1) (DWSGM (1,1) model is short for Discharge amount of Waste Sewage Grey Model for one order equation and one variable) model based on the fractional accumulating generation operator and fractional reducing operator, and calculates the optimal order of “r” by using particle swarm optimization (PSO) algorithm for solving the minimum average relative simulation error. Meanwhile, the simulation performance of DWSGM (1,1) model with the optimal fractional order is tested by comparing the simulation results of grey prediction models with different orders. Finally, the optimal fractional order DWSGM (1,1) grey model is applied to predict the amount of waste-sewage water discharged into the Yangtze River basin, and corresponding countermeasures and suggestions are put forward through analyzing and comparing the prediction results. This paper has positive significance on enriching the fractional order modeling method of the grey system. PMID:29295517

  7. Rhenium Concentration Variations in the Non-flood Period of the Yangtze River Water and Estimation of the Oxidation Rate of Organic Carbon

    NASA Astrophysics Data System (ADS)

    Xu, P.; Chen, Y.; Li, S.; Wang, K.

    2017-12-01

    In geological history, the uplift of the Tibet plateau has accelerated the silicate weathering and organic carbon burial at the same time, which made great influence on the global carbon cycle by increasing the carbon sink. Because of the vital connection between tectonic uplift and carbon cycle, more and more attention was casted on rivers originating from orogens. The Yangtze River, as an important large river in the world, is one of them. However, although silicate weathering has been studied thoroughly, researches on organic carbon cycle are much less, and oxidation of fossil organic carbon remained poorly constrained. In this study, we try to use rhenium(Re) as a proxy to estimate the oxidation rate of fossil organic carbon and thus proceed our understanding towards the carbon cycle, the silicate weathering. This is because Re has a close relationship with organic carbon in the sediments and will be released into hydrological network in the mountain river catchments by being oxidized and exist as soluble ReO4-, so that we can use Re concentration in river water to estimate the oxidation rate of organic carbon. We collected water samples from the Yangtze River fortnightly at Banqiao Ferry and the sampling date cover the non-flood period. In this way, we are able to have a rough estimate of the amount of carbon dioxide that released to the atmosphere by the oxidation of organic carbon, using the data of non-flood period we got. We found that Re concentration in Yangtze River ranges approximately from 45 to 85 pmol/L. The rate of organic carbon weathering is estimated using the expression, ΦCO2,fossil=[Re]×runoff×[OC/Re]rock, and according to researches on the black shale of Yangtze River, the value 2.86×106 is chosen as the ratio OC(organic carbon) to Re in the black shale. The result is a really high flux, up to 152×109mol/y, just a little less than of the CO2 consumption rates from silicate weathering which is 191×109mol/y and about 166×109mol/y in non

  8. Process-based, forecast modeling of decadal morphological evolution of the Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Luan, Hualong; Ding, Pingxing; Wang, Zhengbing; Ge, Jianzhong

    2017-04-01

    Understanding the decadal morphodynamic evolution of estuaries and deltas and their controls is of vital importance regarding management for estuarine function and sustainable development. This work addresses this issue by applying a process-based model system (Delft3D) to hindcast and then forecast the morphodynamic evolution of the Yangtze Estuary at a decadal time scale. Forced by the river and tides, the model considers sand-mud mixture and the seasonal variations of river water discharge and sediment discharge. The morphodynamic model is validated against three periods, i.e., an accretion period (1958-1978), an erosion period (1986-1997) and a recent accretion period with human activities (2002-2010). Model results show good performance with respect to spatial erosion and deposition patterns, sediment volume changes, and hypsometry curves. The model reveals quite different behaviors for mud transport between the dry and wet seasons, which is subject to prescription of river boundary conditions and bed composition. We then define four scenarios to project evolution to 2030 under decreased river inputs and increased relative sea-level. The simulations reveal that overwhelming amount of erosion will likely occur in the inner and mouth bar area of the estuary. Particularly, the mouth zone will shift from net deposition before 2010 to net erosion by 2030, mainly because of decreasing sediment supply. Changes in water discharge have minor effects on the projected trend. Net erosion will be considerable when the sediment supply is extremely low (100 Mt yr-1) due to the abundance of erodible modern sediment in the Yangtze Estuary. Erosion within the mouth bar area may be unexpected, including the deepening of the tidal inlet at East Chongming Mudflat and the formation of a flood channel on the seaward side of Jiuduan Shoal. Overall, the model results provide valuable information for sustainable delta management under changing conditions for both the Yangtze system and

  9. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments

    NASA Astrophysics Data System (ADS)

    Yang, Shou Ye; Jung, Hoi Soo; Choi, Man Sik; Li, Cong Xian

    2002-07-01

    Thirty-four samples from the Changjiang and Huanghe were analyzed to characterize their rare earth element (REE) compositions. Although REE concentrations in the Changjiang sediments are higher than those of the Huanghe sediments, the former are less variable. Bulk samples and acid-leachable fractions have convex REE patterns and middle REE enrichments relative to upper continental crust, whereas flat patterns are present in the residual fractions. Source rock composition is the primary control on REE composition, and weathering processes play a minor role. Grain size exerts some influence on REE composition, as demonstrated by the higher REE contents of clay minerals in sediments from both rivers. Heavy minerals contribute about 10-20% of the total REE in the sediments. Apatite is rare in the river sediments, and contributes less than 2% of the REE content, but other heavy minerals such as sphene, allanite and zircon are important reservoirs of residual REE fractions. The Fe-Mn oxides phase accounts for about 14% of bulk REE content in the Changjiang sediments, which could be one of the more important factors controlling REE fractionation in the leachable fraction.

  10. Outbreaks of the Brown Planthopper Nilaparvata lugens (Stål) in the Yangtze River Delta: Immigration or Local Reproduction?

    PubMed Central

    Zhai, Bao-Ping; Lu, Ming-Hong; Liu, Wan-Cai; Zhu, Feng; Wu, Xiang-Wen; Chen, Gui-Hua; Zhang, Xiao-Xi

    2014-01-01

    An effective control strategy for migratory pests is difficult to implement because the cause of infestation (i.e., immigration or local reproduction) is often not established. In particular, the outbreak mechanisms of the brown planthopper, Nilaparvata lugens (Stål), an insect causing massive losses in rice fields in the Yangtze River Delta in China, are frequently unclear. Field surveys of N. lugens were performed in Jiangsu and Zhejiang Provinces in 2008 to 2010 and related historical data from 2003 onwards were collected and analyzed to clarify the cause of these infestations. Results showed that outbreaks of N. lugens in the Yangtze River Delta were mostly associated with an extremely high increase in population. Thus, reproduction rather than immigration from distant sources were the cause of the infestations. Although mass migration occurred late in the season (late August and early September), the source areas of N. lugens catches in the Yangtze River Delta were mainly located in nearby areas, including the Yangtze River Delta itself, Anhui and northern Jiangxi Provinces. These regions collectively form the lower-middle reaches of the Yangtze River, and the late migration can thus be considered as an internal bioflow within one population. PMID:24558459

  11. Outbreaks of the brown planthopper Nilaparvata lugens (Stål) in the Yangtze River Delta: immigration or local reproduction?

    PubMed

    Hu, Gao; Lu, Fang; Zhai, Bao-Ping; Lu, Ming-Hong; Liu, Wan-Cai; Zhu, Feng; Wu, Xiang-Wen; Chen, Gui-Hua; Zhang, Xiao-Xi

    2014-01-01

    An effective control strategy for migratory pests is difficult to implement because the cause of infestation (i.e., immigration or local reproduction) is often not established. In particular, the outbreak mechanisms of the brown planthopper, Nilaparvata lugens (Stål), an insect causing massive losses in rice fields in the Yangtze River Delta in China, are frequently unclear. Field surveys of N. lugens were performed in Jiangsu and Zhejiang Provinces in 2008 to 2010 and related historical data from 2003 onwards were collected and analyzed to clarify the cause of these infestations. Results showed that outbreaks of N. lugens in the Yangtze River Delta were mostly associated with an extremely high increase in population. Thus, reproduction rather than immigration from distant sources were the cause of the infestations. Although mass migration occurred late in the season (late August and early September), the source areas of N. lugens catches in the Yangtze River Delta were mainly located in nearby areas, including the Yangtze River Delta itself, Anhui and northern Jiangxi Provinces. These regions collectively form the lower-middle reaches of the Yangtze River, and the late migration can thus be considered as an internal bioflow within one population.

  12. [Shifting path of industrial pollution gravity centers and its driving mechanism in Pan-Yangtze River Delta].

    PubMed

    Zhao, Hai-Xia; Jiang, Xiao-Wei; Cui, Jian-Xin

    2014-11-01

    Shifting path of industrial pollution gravity centers is the response of environmental special formation during the industry transfer process, in order to prove the responding of industrial pollution gravity centers to industry transfer in economically developed areas, this paper calculates the gravity centers of industrial wastewater, gas and solid patterns and reveals the shifting path and its driving mechanism, using the data of industrial pollution in the Pan-Yangtze River Delta from 2000 to 2010. The results show that the gravity center of the industrial waste in Pan-Yangtze River Delta shifts for sure in the last 10 years, and gravity center of solid waste shifts the maximum distance within the three wastes, which was 180.18 km, and shifting distances for waste gas and waste water were 109.51 km and 85.92 km respectively. Moreover, the gravity center of the industrial waste in Pan-Yangtze River Delta shifts westwards, and gravity centers of waste water, gas and solid shift for 0.40 degrees, 0.17 degrees and 0.03 degrees respectively. The shifting of industrial pollution gravity centers is driven by many factors. The rapid development of the heavy industry in Anhui and Jiangxi provinces results in the westward shifting of the pollutions. The optimization and adjustment of industrial structures in Yangtze River Delta region benefit to alleviating industrial pollution, and high-polluting industries shifted to Anhui and Jiangxi provinces promotes pollution gravity center shifting to west. While the development of massive clean enterprise, strong environmental management efforts and better environmental monitoring system slow the shifting trend of industrial pollution to the east in Yangtze River Delta. The study of industrial pollution gravity shift and its driving mechanism provides a new angle of view to analyze the relationship between economic development and environmental pollution, and also provides academic basis for synthetical management and control of

  13. Variation in MERRA-2 aerosol optical depth over the Yangtze River Delta from 1980 to 2016

    NASA Astrophysics Data System (ADS)

    Sun, Enwei; Che, Huizheng; Xu, Xiaofeng; Wang, Zhenzhu; Lu, Chunsong; Gui, Ke; Zhao, Hujia; Zheng, Yu; Wang, Yaqiang; Wang, Hong; Sun, Tianze; Liang, Yuanxin; Li, Xiaopan; Sheng, Zhizhong; An, Linchang; Zhang, Xiaoye; Shi, Guangyu

    2018-05-01

    In this study, 765 instantaneous MERRA-2 (second Modern-Era Retrospective analysis for Research and Applications) aerosol optical depth (AOD) values at 550 nm were compared with those of a sky radiometer in Hefei (31.90° N, 117.17° E) for the different seasons from March 2007 to February 2010. The correlation coefficients (R) were 0.88, 0.83, 0.88, and 0.80 in spring, summer, autumn, and winter, respectively. The MERRA-2 AOD is also compared with MODIS Aqua AOD in the entire Yangtze River Delta, and good agreement has been obtained. The MERRA-2 AOD product was used to analyze the spatial distribution and temporal variation of the annual, seasonal and monthly means of the AOD over the Yangtze River Delta region from 1980 to 2016 (37 years). The mean values of the MERRA-2 AOD during the study period show that the AOD (between 0.45 and 0.55) in the northern area of the Yangtze River Delta was higher than that (between 0.30 and 0.45) of the southern area. The northwest part of the Yangtze River Delta had the highest mean AOD values (between 0.50 and 0.55). The AOD increased slowly in the 1980s and 1990s, followed by a rapid increase between 2001 and 2010. An AOD decrease can be seen from 2011 to 2016. The mean AOD in each month is discussed. High AOD was observed in March, April, and June, while low AOD could be seen in September, October, November, and December. Three different area types (large cities, medium-sized cities, and remote areas) had nearly the same annual AOD variation. Large cities had the highest AOD (about 0.48), while remote areas had the lowest (about 0.42). In summer, the AOD in remote areas was much lower than that in cities. The AOD variational trend over the Yangtze River Delta was studied during two periods. The increasing trend could be seen over the entire Yangtze River Delta in each month from 1980 to 2009. A decreasing trend was found all over the Yangtze River Delta in January, February, March, July, October, and November, whereas in

  14. Climate Drivers of Spatiotemporal Variability of Precipitation in the Source Region of Yangtze River

    NASA Astrophysics Data System (ADS)

    Du, Y.; Berndtsson, R.; An, D.; Yuan, F.

    2017-12-01

    Variability of precipitation regime has significant influence on the environment sustainability in the source region of Yangtze River, especially when the vegetation degradation and biodiversity reduction have already occurred. Understanding the linkage between variability of local precipitation and global teleconnection patterns is essential for water resources management. Based on physical reasoning, indices of the climate drivers can provide a practical way of predicting precipitation. Due to high seasonal variability of precipitation, climate drivers of the seasonal precipitation also varies. However, few reports have gone through the teleconnections between large scale patterns with seasonal precipitation in the source region of Yangtze River. The objectives of this study are therefore (1) assessment of temporal trend and spatial variability of precipitation in the source region of Yangtze River; (2) identification of climate indices with strong influence on seasonal precipitation anomalies; (3) prediction of seasonal precipitation based on revealed climate indices. Principal component analysis and Spearman rank correlation were used to detect significant relationships. A feed-forward artificial neural network(ANN) was developed to predict seasonal precipitation using significant correlated climate indices. Different influencing climate indices were revealed for precipitation in each season, with significant level and lag times. Significant influencing factors were selected to be the predictors for ANN model. With correlation coefficients between observed and simulated precipitation over 0.5, the results were eligible to predict the precipitation of spring, summer and winter using teleconnections, which can improve integrated water resources management in the source region of Yangtze River.

  15. Suspended sediment diffusion mechanisms in the Yangtze Estuary influenced by wind fields

    NASA Astrophysics Data System (ADS)

    Wang, Lihua; Zhou, Yunxuan; Shen, Fang

    2018-01-01

    The complexity of suspended sediment concentration (SSC) distribution and diffusion has been widely recognized because it is influenced by sediment supply and various hydrodynamic forcing conditions that vary over space and over time. Sediment suspended by waves and transported by currents are the dominant sediment transport mechanisms in estuarine and coastal areas. However, it is unclear to what extent the SSC distribution is impacted by each hydrodynamic factor. Research on the quantitative influence of wind fields on the SSC diffusion range will contribute to a better understanding of the characteristics of sediment transport change and sedimentary geomorphic evolution. This study determined SSC from three Envisat Medium-Resolution Imaging Spectrometer acquisitions, covering the Yangtze Estuary and adjacent water area under the same season and tidal conditions but with varying wind conditions. SSC was examined based on the Semi-Empirical Radiative Transfer model, which has been well validated with the observation data. Integrating the corresponding wind field information from European Centre for Medium-Range Weather Forecasts further facilitated the discussion of wind fields affecting SSC, and in turn the influence of water and suspended sediment transportation and diffusion in the Yangtze estuarine and coastal area. The results demonstrated that the SSC present much more distinctive fluvial features in the inner estuary and wind fields are one of the major factors controlling the range of turbid water diffusion.

  16. Solanaceae plant malformation in Chongqing City, China, reveals a pollution threat to the Yangtze River.

    PubMed

    Zhang, Hongbo; Liu, Guanshan; Timko, Michael P; Li, Jiana; Wang, Wenjing; Ma, Haoran

    2014-10-21

    Water quality is under increasing threat from industrial and natural sources of pollutants. Here, we present our findings about a pollution incident involving the tap water of Chongqing City in China. In recent years, Solanaceae plants grown in greenhouses in this city have displayed symptoms of cupped, strappy leaves. These symptoms resembled those caused by chlorinated auxinic herbicides. We have determined that these symptoms were caused by the tap water used for irrigation. Using a bioactivity-guided fractionation method, we isolated a substance with corresponding auxinic activity from the tap water. The substance was named "solanicide" because of its strong bioactivity against Solanaceae plants. Further investigation revealed that the solanicide in the water system of Chongqing City is derived from the Jialing River, a major tributary of the Yangtze River. Therefore, it is also present in the Yangtze River downstream of Chongqing after the inflow of the Jialing River. Biological analyses indicated that solanicide is functionally similar to, but distinct from, other known chlorinated auxinic herbicides. Chemical assays further showed that solanicide structurally differs from those compounds. This study has highlighted a water pollution threat to the Yangtze River and its floodplain ecosystem.

  17. Scanning vertical distributions of typical aerosols along the Yangtze River using elastic lidar.

    PubMed

    Fan, Shidong; Liu, Cheng; Xie, Zhouqing; Dong, Yunsheng; Hu, Qihou; Fan, Guangqiang; Chen, Zhengyi; Zhang, Tianshu; Duan, Jingbo; Zhang, Pengfei; Liu, Jianguo

    2018-07-01

    In recent years, China has experienced heavy air pollution, especially haze caused by particulate matter (PM). The compositions, horizontal distributions, transport, and chemical formation mechanisms of PM and its precursors have been widely investigated in China based on near-ground measurements. However, the understanding of the distributions and physical and chemical processes of PM in the vertical direction remains limited. In this study, an elastic lidar was employed to investigate the vertical profiles of aerosols along the Yangtze River during the Yangtze River Campaign of winter 2015. Some typical aerosols were identified and some events were analyzed in three cases. Dust aerosols can be transported from the Gobi Desert to the Yangtze River basin across a long distance at both low and high altitudes in early December. The transport route was perpendicular to the ship track, suggesting that the dust aerosols may have affected a large area. Moreover, during transport, some dust was also affected by the areas below its transport route since some anthropogenic pollutants were mixed with the dust and changed some of its optical properties. Biomass-burning aerosols covering a distant range along the Yangtze River were identified. This result directly shows the impact areas of biomass-burning aerosols in some agricultural fields. Some directly emitted aerosol plumes were observed, and direct effects of such plumes were limited both temporally and spatially. In addition, an aerosol plume with very low linear depolarization ratios, probably formed through secondary processes, was also observed. These results can help us better understand aerosols in large spatial scales in China and can be useful to regional haze studies. Copyright © 2018. Published by Elsevier B.V.

  18. Bioanalytical and instrumental analysis of estrogenic activities in drinking water sources from Yangtze River Delta.

    PubMed

    Hu, Xinxin; Shi, Wei; Cao, Fu; Hu, Guanjiu; Hao, Yingqun; Wei, Si; Wang, Xinru; Yu, Hongxia

    2013-02-01

    The estrogenic activities of source water from Yangtze River, Huaihe River, Taihu Lake and groundwater in Yangtze River Delta in the dry and wet season were determined by use of reporter gene assays based on African green monkey kidney (CV-1) cell lines. Higher estrogenic activities were observed in the dry season, and the estrogenic potentials in water samples from Taihu Lake were greater than other river basins. None of the samples from groundwater showed estrogen receptor (ER) agonist activity. The 17β-Estradiol (E2) equivalents (EEQs) of water samples in the dry season ranged from 9.41×10(-1) to 1.20×10(1) ng E2 L(-1). In the wet season, EEQs of all the water samples were below the detection limit as 9.00×10(-1) ng E2 L(-1) except for one sample from Huaihe River. The highest contribution of E2 was detected in Yangtze River as 99% of estrogenic activity. Nonylphenol (NP, 100% detection rate) and octylphenol (OP, 100% detection rate) might also be responsible for the estrogenic activities in water sources. Potential health risk induced by the estrogenic chemicals in source water may be posed to the residents through water drinking. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Dynamics of the lakes in the middle and lower reaches of the Yangtze River basin, China, since late nineteenth century.

    PubMed

    Cui, Lijuan; Gao, Changjun; Zhao, Xinsheng; Ma, Qiongfang; Zhang, Manyin; Li, Wei; Song, Hongtao; Wang, Yifei; Li, Shengnan; Zhang, Yan

    2013-05-01

    The middle and lower reaches of the Yangtze River basin have the most representative and largest concentration of freshwater lakes in China. However, the size and number of these lakes have changed considerably over the past century due to the natural and anthropogenic impact. The lakes, larger than 10 km(2) in size, were chosen from relief maps and remotely sensed images in 1875, 1950, 1970, 1990, 2000, and 2008 to study the dynamics of lakes in the middle and lower reaches of the Yangtze River basin and to examine the causes and consequences of these changes. Results indicated that there was a dramatic reduction in lake areas, which decreased by 7,841.2 km(2) (42.64 %) during the study period (1875-2008), and the number of lakes in this region changed moderately. Meanwhile, a large number of lakes in the middle and lower reaches of the Yangtze River basin were directly converted into paddy fields, ponds, building lands, or other land-use types over the study period. Therefore, all kinds of lake reclamation should be identified as the major driving factors for the loss of lake in this region. Furthermore, flooding, soil erosion, and sedimentation were also the main factors which triggered lake changes in different periods. Some wetland conservation and restoration projects have been implemented since the 1970s, but they have not reversed the lake degradation. These findings were of great importance to managers involved in making policy for the conservation of lake ecosystems and the utilization of lake resources.

  20. Morphology and mechanism of the very large dunes in the tidal reach of the Yangtze River, China

    NASA Astrophysics Data System (ADS)

    Shuwei, Zheng; Heqin, Cheng; Shuaihu, Wu; Shengyu, Shi; Wei, Xu; Quanping, Zhou; Yuehua, Jiang

    2017-05-01

    High-resolution multibeam data was used to interpret the surface morphology of very large dunes (VLDs) in the tidal reach of the Yangtze River, China. These VLDs can be divided into three categories according to their surface morphological characteristics. (1) VLDs-I: those with a smooth surface and cross-section; (2) VLDs-II: those accompanied by secondary dunes; (3) VLDs-III: those accompanied by secondary dunes and numerous elliptical pits. Parameters and spatial distribution of VLDs, and bed surface sediment were analyzed in the laboratory. Overall, channel morphology is an important factor affecting the development of VLDs, and channels with narrow and straight and certain water surface slope are facilitating the development of VLDs by constraining stream power. Meanwhile, distribution density of VLDs depicts a decreasing trend from Chizhou towards the estuary, are probably influenced by channel morphology and width. Associated pits in VLDs-III change the 3D dune morphology by distributing in secondary dunes as beads. The Three Gorges Dam project (TGP) leads to the bed surface sediment activity frequently and leads to the riverbed surface sediment coarsens, which promotes the further development of dunes. Moreover, other human activities, such as river regulation project, sand mining and Deep Water Channel Regulation Project have changed the regional river boundary conditions and hydrodynamic conditions are influential on the development of VLDs.

  1. Assessment of heavy metal enrichment and its human impact in lacustrine sediments from four lakes in the mid-low reaches of the Yangtze River, China.

    PubMed

    Bing, Haijian; Wu, Yanhong; Liu, Enfeng; Yang, Xiangdong

    2013-07-01

    Sediments from four lakes in the mid-low reaches of the Yangtze River, Taibai Lake, Longgan Lake, Chaohu Lake and Xijiu Lake, were chosen to evaluate their enrichment state and history. The state of heavy metal enrichment was at a low level in the sediment of Taibai Lake and Longgan Lake. The enrichment state of Co, Cr and Ni was also low in the sediment of Chaohu Lake and Xijiu Lake, while Cu, Pb and Zn enrichment reached a higher level. Mass accumulation fluxes were calculated to quantitatively evaluate the anthropogenic contribution to heavy metals in the sediment. The anthropogenic accumulation fluxes were lower in the sediment of Taibai Lake and Longgan Lake compared with the other two lakes, where heavy metals, especially Cu, Pb and Zn, were mainly from anthropogenic sources. Heavy metal accumulation did not vary greatly in the sediment of Taibai Lake and Longgan Lake, while that in Chaohu Lake and Xijiu Lake increased since the 1950s and substantially increased since the 1980s, although a decrease occurred since 2000 AD in Xijiu Lake. Heavy metal enrichment was strongly related to human activities in the catchment. The development of urbanization and industrialization was much more rapid in the catchments of Chaohu Lake and Xijiu Lake than of the other two lakes, and thus large amounts of anthropogenically sourced heavy metals were discharged into the lakes, which resulted in a higher contamination risk. However, human activities in the Longgan Lake and Taibai Lake catchments mainly involved agriculture, which contributed a relatively small portion of heavy metals to the lakes.

  2. Exhumation Reconstruction of the Xiangcheng Area, SE Tibetan Plateau. Implication on the Evolution of the Yangtze River in the Cenozoic.

    NASA Astrophysics Data System (ADS)

    Gourbet, L.; Yang, R.; Fellin, M. G.; Gong, J.; Maden, C.

    2016-12-01

    Geodynamic processes associated with timing of river incision and river network reorganization on the Tibetan plateau margins remain controversial. In particular, hydrographic network modifications in SE Tibet have been interpreted as related with regional-scale uplift or fault motion. The paleocourse of the upper Yangtze river (Jinsha Sha) and the timing of the establishment of its modern course are highly debated, leading to conflicting models of the plateau evolution. For example, estimated ages for the formation of the Yangtze first bend (where the river shifts from flowing southward to northward) range from the Eocene to the Pliocene. River incision can be reconstructed using low-temperature thermochronometry. However, the lack of suitable rocks along the main riverbed of the Yangtze makes it challenging. To address this problem, we perform a local study of the Xiangcheng area, located in Sichuan, about 150 km upstream of the first bend and drained by tributaries of the upper Yangtze. We combine a tectono-geomorphic analysis to a reconstruction of exhumation rates using (U-Th-Sm)/He thermochronometry. The study area is characterized by the NW-SE trending, active left-lateral Xiangcheng fault, which is attested by crustal-depth seismic activity. Importantly, the courses of two tributaries of the Yangtze are deflected along the Xiangcheng fault, suggesting that the fault partly controls the evolution of the upper Yangtze course. Locally, the fault also exhibits triangular facets, suggesting normal motion probably related to the fault segmentation. Granite samples from the Xiangcheng pluton were collected along three altitudinal profiles and analyzed using zircon and apatite (U-Th-Sm)/He thermochronometry. We will discuss the results and their implications on exhumation and on the Yangtze river history during the Cenozoic.

  3. East Asian Summer Monsoon Rainfall: A Historical Perspective of the 1998 Flood over Yangtze River

    NASA Technical Reports Server (NTRS)

    Weng, H.-Y.; Lau, K.-M.

    1999-01-01

    One of the main factors that might have caused the disastrous flood in China during 1998 summer is long-term variations that include a trend indicating increasing monsoon rainfall over the Yangtze River Valley. China's 160-station monthly rainfall anomaly for the summers of 1955-98 is analyzed for exploring such long-term variations. Singular value decomposition (SVD) between the summer rainfall and the global sea surface temperature (SST) anomalies reveals that the rainfall over Yangtze River Valley is closely related to global and regional SST variabilities at both interannual and interdecadal timescales. SVD1 mode links the above normal rainfall condition in central China to an El Nino-like SSTA distribution, varying on interannual timescale modified by a trend during the period. SVD3 mode links positive rainfall anomaly in Yangtze River Valley to the warm SST anomaly in the subtropical western Pacific, varying on interannual timescales modified by interdecadal timescales. This link tends to be stronger when the Nino3 area becomes colder and the western subtropical Pacific becomes warmer. The 1998 summer is a transition season when the 1997/98 El Nino event was in its decaying phase, and the SST in the Nino3 area emerged below normal anomaly while the subtropical western Pacific SST above normal. Thus, the first and third SVD modes become dominant in 1998 summer, favoring more Asian summer monsoon rainfall over the Yangtze River Valley.

  4. The Yangtze-Project

    NASA Astrophysics Data System (ADS)

    Subklew, Günter; Ulrich, Julia; Fürst, Leander; Höltkemeier, Agnes

    2010-05-01

    then encounter considerably improved climatic conditions with higher temperatures during their physiologically active season in the summer months. This reversal of the flood pulse in the course of the year will exert an enormous influence on the fauna and flora and the associated processes. Other parameters resulting from the management of the reservoir are the sediment deposits and their varying extents in the different zones of the WFZ. For example, the different degrees of compaction of the sediment of the river bank will largely determine the exchange of oxygen, nutrients and metabolites between the plants and the water body and thus the major ecosystem functions. The locally different thicknesses of the sediment body will be decisive for the emergence of plant shoots through the sediment. In areas of high flow rates, in contrast, habitats will be established that are strongly characterized by the dynamics of the pebbles and boulders. The Three Gorges Project will thus bring about a significant change in habitat conditions for vegetation in the WFZ whose consequences cannot yet be predicted with any certainty. This also concerns the potential and long-term impacts of changed vegetation on the local population, who exploit the plant resources, and also on tourism and on the hydroregime and the sedimentation regime in the reservoir. Landslides and rock falls are the major geological events in the Three Gorges region. The mud and debris avalanches formed during such landslips represent a danger both for areas of settlement and also for land used industrially and agriculturally, as well as for infrastructure facilities, and may also considerably obstruct navigation. Furthermore, the analogous mass movements are one of the reasons for the silting up of the Yangtze and many of its tributaries. The region of the Three Gorges contains rapidly growing urban centres that will receive further impulses for growth from the dam project. The fact that the Chongqing conurbation

  5. Richness and diversity of helminth communities in the Japanese grenadier anchovy, Coilia nasus, during its anadromous migration in the Yangtze River, China.

    PubMed

    Li, Wen X; Zou, Hong; Wu, Shan G; Song, Rui; Wang, Gui T

    2012-06-01

    To determine the relationship between the species richness, diversity of helminth communities, and migration distance during upward migration from coast to freshwater, helminth communities in the anadromous fish Coilia nasus were investigated along the coast of the East China Sea, the Yangtze Estuary, and 3 localities on the Yangtze River. Six helminth species were found in 224 C. nasus . Changes in salinity usually reduced the survival time of parasites, and thus the number of helminth species and their abundance. Except for the 2 dominant helminths, the acanthocephalan Acanthosentis cheni and the nematode Contracaecum sp., mean abundance of other 4 species of helminths was rather low (<1.0) during the upward migration in the Yangtze River. Mean abundance of the 2 dominant helminths peaked in the Yangtze Estuary and showed no obvious decrease among the 3 localities on the Yangtze River. Mean species richness, Brillouin's index, and Shannon index were also highest in the estuary (1.93 ± 0.88, 0.28 ± 0.25, and 0.37 ± 0.34, respectively) and did not exhibit marked decline at the 3 localities on the Yangtze River. A significant negative correlation was not seen between the similarity and the geographical distance (R  =  -0.5104, P  =  0.1317). The strong salinity tolerance of intestinal helminths, relatively brief stay in the Yangtze River, and large amount of feeding on small fish and shrimp when commencing spawning migration perhaps were responsible for the results.

  6. Assessing dissolved inorganic nitrogen flux in the Yangtze River, China: Sources and scenarios

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Chen, Zhongyuan; Finlayson, Brian; Webber, Michael; Wu, Xiaodan; Li, Maotian; Chen, Jing; Wei, Taoyuan; Barnett, Jon; Wang, Mark

    2013-07-01

    This study gives a thorough assessment of the occurrences of dissolved inorganic nitrogen (DIN) in the Yangtze River in the past half century. The results have shown that nitrogen fertilizer, a major DIN source, has been replaced by domestic sewage in the last decade, which has dramatically driven up DIN loads in the Yangtze. DIN concentrations showed a rapid increase from < 0.5 mg L- 1 in the 1960s to nearly 1.5 mg L- 1 at the end of the 1990s. Since then DIN has remained steady at ca. 1.6-1.8 mg L- 1. A significant relationship between the historical DIN record at the downstream gauging station (Datong) and nitrogen (N) sources in the Yangtze River basin is established using principal components analysis. This allows us to apportion DIN loads for the year 2007 (the most recent year of measured DIN data available) to various N sources, listed here in order of weight: sewage (0.391 million tons); atmosphere (0.358 million tons); manure (0.318 million tons), N-fertilizer (0.271 million tons). Therefore, we estimated that a DIN load of 1.339 × 106 t was delivered to the lower Yangtze and its estuarine water in that year. We established scenarios to predict DIN concentrations in the lower Yangtze at 10 year intervals to 2050. For a dry year (20,000 m3 s- 1) DIN concentrations would range from 2.2-3.0 mg L- 1 for 2020-2050. This far exceeds the 2.0 mg L- 1 defined on the Chinese National Scale as the worst class for potable source water. The scenario results suggest that upgrading the sewage treatment systems throughout the basin will be an effective way to help reduce DIN concentrations to less than 2.0 mg L- 1 in the lower Yangtze. This would save the Shanghai megacity from the increasing threat of heavily polluted water sources, where > 23 million people are at present dependent on the Yangtze estuary for 70% of their freshwater intake.

  7. Temporal and Spatial Variation of Water Yield Modulus in the Yangtze River Basin in Recent 60 Years

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoqing; Weng, Baisha; Qin, Tianling

    2018-01-01

    The Yangtze River Basin is the largest river basin of Asia and the third largest river basin of the world, the gross water resources amount ranks first in the river basins of the country, and it occupies an important position in the national water resources strategic layout. Under the influence of climate change and human activities, the water cycle has changed. The temporal and spatial distribution of precipitation in the basin is more uneven and the floods are frequent. In order to explore the water yield condition in the Yangtze River Basin, we selected the Water Yield Modulus (WYM) as the evaluation index, then analyzed the temporal and spatial evolution characteristics of the WYM in the Yangtze River Basin by using the climate tendency method and the M-K trend test method. The results showed that the average WYM of the Yangtze River Basin in 1956-2015 are between 103,600 and 1,262,900 m3/km2, with an average value of 562,300 m3/km2, which is greater than the national average value of 295,000 m3/km2. The minimum value appeared in the northwestern part of the Tongtian River district, the maximum value appeared in the northeastern of Dongting Lake district. The rate of change in 1956-2015 is between -0.68/a and 0.79/a, it showed a downward trend in the western part but not significantly, an upward trend in the eastern part reached a significance level of α=0.01. The minimum value appeared in the Tongtian River district, the largest value appeared in the Hangjia Lake district, and the average tendency rate is 0.04/a in the whole basin.

  8. Sedimentary Facies and Stratigraphy of the Changjiang (Yangtze River) Delta

    NASA Astrophysics Data System (ADS)

    Dalrymple, R. W.; Zhang, X.; Lin, C. M.

    2017-12-01

    A disproportionate number of the world's largest deltas are tide-dominated or strongly tide-influenced, in part because the low gradient of these rivers allows the tide to penetrate far inland, generating strong tidal currents at the river mouth. These deltas also tend to be mud-dominated because a significant fraction of the bedload is trapped farther inland. Despite their great importance as sediment depo-centers, as analogues for ancient sedimentary successions, and as areas of intense human occupation, they are the most poorly understood coastal system. The Changjiang (Yangtze River), the 4th largest river in the world in terms of sediment discharge, is one such tide-dominated system, with a mean tidal range of 2.7 m and tidal-current speeds of 1 m/s at its mouth. It shows a fairly typical series of low-relief channels and bars in the mouth-bar area and passes seaward and down-drift into a coastal mud belt that extends 800 km to the south of the river mouth. The deposits from both the transgressive-phase and modern delta are all dominated by mud, except for the fluvial-channel deposits that are clean sand. Channel-floor deposits in areas with appreciable tidal influence contain abundant fluid-mud layers (1-3 cm thick), intercalated with relatively coarse sand; such mud layers show evidence of tidal cyclicity. The overlying tidal-bar deposits commonly become sandier upward because of the upward loss of fluid-mud layers. The tidal channels and bars that characterize the mouth-bar and delta-front area are dominated by randomly organized structureless mud layers, 5-30 cm thick, that are interpreted to be storm-generated fluid-mud deposits. These mud layers become less abundant upward, generating upward-sanding successions. These facies are very similar to those seen in the Amazon and Fly River deltas, suggesting that this is a common motif, and indicating the importance of fluid mud in the dynamics of such systems. Facies proximality can be determined by careful

  9. Assessing modern rates of river sediment discharge to the ocean using satellite gravimetry

    NASA Astrophysics Data System (ADS)

    Mouyen, Maxime; Longuevergne, Laurent; Steer, Philippe; Crave, Alain; Lemoine, Jean-Michel; Save, Himanshu; Robin, Cécile

    2017-04-01

    Worldwide rivers annually export about 19 Gigatons of sediments to the ocean that mostly accumulate in the coastal zones and on the continental shelves. This sediment discharge testifies of the intensity of continental erosion and records changes in climate, tectonics and human activity. However, natural and instrumental uncertainties inherent to the in-situ measurements of sediment discharge prevent from conclusive estimates to better understand these linkages. Here we develop a new method, using the Gravity Recovery and Climate Experiment (GRACE) satellite data, to infer mass-integrative estimates of sediment discharge of large rivers to the ocean. GRACE satellite provides global gravity time series that have proven useful for quantifying mass transport, including continental water redistribution at the Earth surface (ice sheets and glaciers melting, groundwater storage variations) but has been seldom used for monitoring sediment mass transfers so far. Here we pair the analysis of regularized GRACE solutions at high spatial resolution corrected from all known contributions (hydrology, ocean, atmosphere) to a particle tracking model that predicts the location of the sediment sinks for 13 rivers with the highest sediments loads in the world. We find that the resulting GRACE-derived sediment discharges off the mouth of the Amazon, Ganges-Brahmaputra, Changjiang (Yangtze), Indus, Magdalena, Godavari and Mekong rivers are consistent with in-situ measurements. Our results suggest that the lack of time continuity and of global coverage in terrestrial sediment discharge measurements could be reduced by using GRACE, which provides global and continuous data since 2002. GRACE solutions are regularly improved and new satellite gravity missions are being prepared hence making our approach even more relevant in a near future. The accumulation of sediments over time will keep increasing the signal to noise ratio of the gravity time series, which will improve the precision of

  10. Dynamics of the Sediment Plume Over the Yangtze Bank in the Yellow and East China Seas

    NASA Astrophysics Data System (ADS)

    Luo, Zhifa; Zhu, Jianrong; Wu, Hui; Li, Xiangyu

    2017-12-01

    A distinct sediment plume exists over the Yangtze Bank in the Yellow and East China Seas (YECS) in winter, but it disappears in summer. Based on satellite color images, there are two controversial viewpoints about the formation mechanism for the sediment plume. One viewpoint is that the sediment plume forms because of cross-shelf sediment advection of highly turbid water along the Jiangsu coast. The other viewpoint is that the formation is caused by local bottom sediment resuspension and diffused to the surface layer through vertical turbulent mixing. The dynamic mechanism of the sediment plume formation has been unclear until now. This issue was explored by using a numerical sediment model in the present paper. Observed wave, current, and sediment data from 29 December 2016 to 16 January 2017 were collected near the Jiangsu coast and used to validate the model. The results indicated that the model can reproduce the hydrodynamic and sediment processes. Numerical experiments showed that the bottom sediment could be suspended by the bottom shear stress and diffuse to the surface layer by vertical mixing in winter; however, the upward diffusion is restricted by the strong stratification in summer. The sediment plume is generated locally due to bottom sediment resuspension primarily via tide-induced bottom shear stress rather than by cross-shelf sediment advection over the Yangtze Bank.

  11. Channel morphology and its impact on flood passage, the Tianjiazhen reach of the middle Yangtze River

    NASA Astrophysics Data System (ADS)

    Shi, Yafeng; Zhang, Qiang; Chen, Zhongyuan; Jiang, Tong; Wu, Jinglu

    2007-03-01

    The Tianjiazhen reach of the middle Yangtze is about 8 km long, and characterized by a narrow river width of 650 m and local water depth of > 90 m in deep inner troughs, of which about 60 m is below the mean sea level. The troughs in the channel of such a large river are associated with regional tectonics and local lithology. The channel configuration plays a critical role in modifying the height and duration of river floods and erosion of the riverbed. The formation of the troughs in the bed of the Yangtze is considered to be controlled by sets of NW-SE-oriented neotectonic fault zones, in which some segments consist of highly folded thick Triassic limestone crossed by the Yangtze River. Several limestone hills, currently located next to the river channel, serve as nodes that create large vortices in the river, thereby accelerating downcutting on the riverbed composed of limestone highly susceptible to physical corrosion and chemical dissolution. Hydrological records indicate that the nodal hills and channel configuration at Tianjiazhen do not impact on normal flow discharges but discharges > 50,000 m 3s - 1 are slowed down for 2-3 days. Catastrophic floods are held up for even longer periods. These inevitably result in elevated flood stages upstream of prolonged duration, affecting large cities such as Wuhan and a very large number of people.

  12. [Study on distribution and countermeasures of Oncomelania snails in beach wetlands of Runzhou section of lower reaches of Yangtze River].

    PubMed

    Xia, Ai; Huang, Yixin; Jiang, Jun; Zhou, Ya-Min; Hang, De-rong; Tao, Heng-ye

    2014-04-01

    To understand the distribution of the river beach wetlands and Oncomelania snails in the lower reaches of the Yangtze River, and explore the countermeasures of snail control. The river beach wetlands outside the Yangtze River levee were investigated and classified according to the hierarchical and classification system of wetlands of China. The snail survey was carried out in the beach wetlands of Runzhou section of lower reaches of the Yangtze River from 2004 to 2013. The change trend of snail areas and the densities was analyzed in the wetlands. The river beach of Runzhou section of lower reaches of the Yangtze River belongs to the riverine wetland. There was Oncomelania snail breeding except the permanent water area. At present, there were natural wetlands of 1303.0 hm2, human-made wetlands of 1479.0 hmb2 and wetland function changes of 1059.0 hm2 in the river beach of Runzhou section. There was the snail area of 181.4 hm2 in the natural wetland in 2013. The area of snail control by the molluscicide and environmental modification was 4624.55 hm2 from 2004 to 2013. The decline rates of snail areas and densities were 66.53% and 77.66% respectively. The existing Oncomelania snails were distributed in the natural wetlands. The human-made wetland is helpful to snail control. The snail control in the river beach wetlands should attach a great importance to the protection of wetland ecology.

  13. Nitrogen Fixation in the Intertidal Sediments of the Yangtze Estuary: Occurrence and Environmental Implications

    NASA Astrophysics Data System (ADS)

    Hou, Lijun; Wang, Rong; Yin, Guoyu; Liu, Min; Zheng, Yanling

    2018-03-01

    Nitrogen fixation is a microbial-mediated process converting atmospheric dinitrogen gas to biologically available ammonia or other molecules, and it plays an important role in regulating nitrogen budgets in coastal marine ecosystems. In this study, nitrogen fixation in the intertidal sediments of the Yangtze Estuary was investigated using nitrogen isotope tracing technique. The abundance of nitrogen fixation functional gene (nifH) was also quantified. The measured rates of sediment nitrogen fixation ranged from 0.37 to 7.91 nmol N g-1 hr-1, while the abundance of nifH gene varied from 2.28 × 106 to 1.28 × 108 copies g-1 in the study area. The benthic nitrogen fixation was correlated closely to the abundance of nifH gene and was affected significantly by salinity, pH, and availability of sediment organic carbon and ammonium. It is estimated that sediment nitrogen fixation contributed approximately 9.3% of the total terrigenous inorganic nitrogen transported annually into the Yangtze estuarine and coastal environment. This result implies that the occurrence of benthic nitrogen fixation acts as an important internal source of reactive nitrogen and to some extent exacerbates nitrogen pollution in this aquatic ecosystem.

  14. Occurrence and ecological risk assessment of organic micropollutants in the lower reaches of the Yangtze River, China: A case study of water diversion.

    PubMed

    Yan, Zhenhua; Yang, Haohan; Dong, Huike; Ma, Binni; Sun, Hongwei; Pan, Ting; Jiang, Runren; Zhou, Ranran; Shen, Jie; Liu, Jianchao; Lu, Guanghua

    2018-08-01

    Water diversion has been increasingly applied to improve water quality in many water bodies. However, little is known regarding pollution by organic micropollutants (OMPs) in water diversion projects, especially at the supplier, and this pollution may threaten the quality of transferred water. In the present study, a total of 110 OMPs belonging to seven classes were investigated in water and sediment collected from a supplier of the Yangtze River within four water diversion projects. A total of 69 and 58 target OMPs were detected in water and sediment, respectively, at total concentrations reaching 1041.78 ng/L and 5942.24 ng/g dry weight (dw). Polycyclic aromatic hydrocarbons (PAHs) and pharmaceuticals were the predominant pollutants identified. When preliminarily compared with the pollution in the receiving water, the Yangtze River generally exhibited mild OMPs pollution and good water quality parameters, implying a clean water source in the water diversion project. However, in Zongyang and Fenghuangjing, PAHs pollution was more abundant than that in the corresponding receiving water in Chaohu Lake. Ammonia nitrogen pollution in the Wangyu River was comparable to that in Taihu Lake. These findings imply that water diversion may threaten receiving waters in some cases. In addition, the risks of all detected pollutants in both water and sediment were assessed. PAHs in water, especially phenanthrene and high-molecular-weight PAHs, posed high risks to invertebrates, followed by the risks to fish and algae. Pharmaceuticals, such as antibiotics and antidepressants, may also pose risks to algae and fish at a number of locations. To the best of our knowledge, this report is the first to describe OMPs pollution in water diversion projects, and the results provide a new perspective regarding the security of water diversion projects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Bacterial community structure in response to environmental impacts in the intertidal sediments along the Yangtze Estuary, China.

    PubMed

    Guo, Xing-Pan; Lu, Da-Pei; Niu, Zuo-Shun; Feng, Jing-Nan; Chen, Yu-Ru; Tou, Fei-Yun; Liu, Min; Yang, Yi

    2018-01-01

    This study was designed to investigate the characteristics of bacterial communities in intertidal sediments along the Yangtze Estuary and their responses to environmental factors. The results showed that bacterial abundance was significantly correlated with salinity, SO 4 2- and total organic carbon, while bacterial diversity was significantly correlated with SO 4 2- and total nitrogen. At different taxonomic levels, both the dominant taxa and their abundances varied among the eight samples, with Proteobacteria being the most dominant phylum in general. Cluster analysis revealed that the bacterial community structure was influenced by river runoff and sewerage discharge. Moreover, SO 4 2- , salinity and total phosphorus were the vital environmental factors that influenced the bacterial community structure. Quantitative PCR and sequencing of sulphate-reducing bacteria indicated that the sulphate reduction process occurs frequently in intertidal sediments. These findings are important to understand the microbial ecology and biogeochemical cycles in estuarine environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. [Prevalence of hypertension and its influencing factors in rural areas along the Yangtze River in Anhui Province in 2014-2015].

    PubMed

    Hu, Mingjun; Zhou, Mengmeng; Yang, Yuwei; Liang, Ling; Zhong, Qi; Qin, Qirong; Wang, Xiaodong; Huang, Fen

    2017-11-01

    To investigate the prevalence, awareness, treatment, control and related influence factors of hypertension among rural adult residents in areas along the Yangtze River in Anhui Province. Totally 2873 rural adult residents in seven typical towns along the Yangtze River of Chizhou, Tongling and Ma'anshan Cities, Anhui Province were selected, with multistage-stratified random cluster sampling, to perform questionnaires and physical measurements from year 2014 to 2015. The prevalence of hypertension was 30. 7%( standardized prevalence was 18. 4%), the awareness rate was 50. 6%( standardized rate was 29. 0%), the treatment rate was40. 4%( standardized rate was 18. 7%), the control rate was 17. 7%( standardized ratewas 9. 3%) in rural areas along the Yangtze River in Anhui Province. The prevalence, awareness, treatment and control rates of hypertension were increased with age increase. Abdominal obesity( OR = 1. 855, 95% CI 1. 467-2. 344), family history of hypertension( OR = 1. 594, 95% CI 1. 265-2. 008), the average annual household income < 60 000 yuan and increased BMI were risk factors of hypertension in rural areas along the Yangtze River. Female( OR = 0. 734, 95% CI 0. 604-0. 891) was its protective factors. While the factors of awareness, treatment and control rates of hypertension were not same. The prevalence of hypertension is higher in the areas along the Yangtze River in Anhui Province. However, the awareness, treatment and control rate of hypertension are lower.

  17. Impact of climate change on the streamflow hydrology of the Yangtze River in China

    USDA-ARS?s Scientific Manuscript database

    Tuotuo River basin, the source region of the Yangtze River, is the key area, where the impact of climate change has been observed on many of the hydrological processes of this central region of the Tibetan Plateau. In this study, we examined six global climate models (GCMs) under three Respectively ...

  18. DNA barcoding and evaluation of genetic diversity in Cyprinidae fish in the midstream of the Yangtze River.

    PubMed

    Shen, Yanjun; Guan, Lihong; Wang, Dengqiang; Gan, Xiaoni

    2016-05-01

    The Yangtze River is the longest river in China and is divided into upstream and mid-downstream regions by the Three Gorges (the natural barriers of the Yangtze River), resulting in a complex distribution of fish. Dramatic changes to habitat environments may ultimately threaten fish survival; thus, it is necessary to evaluate the genetic diversity and propose protective measures. Species identification is the most significant task in many fields of biological research and in conservation efforts. DNA barcoding, which constitutes the analysis of a short fragment of the mitochondrial cytochrome c oxidase subunit I (COI) sequence, has been widely used for species identification. In this study, we collected 561 COI barcode sequences from 35 fish from the midstream of the Yangtze River. The intraspecific distances of all species were below 2% (with the exception of Acheilognathus macropterus and Hemibarbus maculatus). Nevertheless, all species could be unambiguously identified from the trees, barcoding gaps and taxonomic resolution ratio values. Furthermore, the COI barcode diversity was found to be low (≤0.5%), with the exception of H. maculatus (0.87%), A. macropterus (2.02%) and Saurogobio dabryi (0.82%). No or few shared haplotypes were detected between the upstream and downstream populations for ten species with overall nucleotide diversities greater than 0.00%, which indicated the likelihood of significant population genetic structuring. Our analyses indicated that DNA barcoding is an effective tool for the identification of cyprinidae fish in the midstream of the Yangtze River. It is vital that some protective measures be taken immediately because of the low COI barcode diversity.

  19. Spatial-temporal distribution and risk assessment of mercury in different fractions in surface sediments from the Yangtze River estuary.

    PubMed

    Wang, Qingrui; Liu, Ruimin; Men, Cong; Xu, Fei; Guo, Lijia; Shen, Zhenyao

    2017-11-15

    The temporal and spatial distributions of mercury in different fractions and its potential ecological risk were investigated in sediments from the Yangtze River estuary (YRE) by analyzing data collected from the study area. The results showed that mercury in the organic and residual fractions had dominant proportions, from 15.2% to 48.52% and from 45.96% to 81.59%, respectively. The fractions were more susceptible to seasonal changes than other fractions. Higher proportions of mercury in organic fraction were found in wet seasons; the opposite was true for mercury in residual fraction. With respect to the spatial distribution, the concentration mercury in exchangeable, carbonate and Fe-Mn oxide fractions showed a decreasing trend from the inner estuary to the outer estuary, but no obvious trends were found in the distributions of mercury in the organic and residual fractions. The risk assessment code (RAC) was used to evaluate the potential ecological risk in the study area based on the proportions of exchangeable and carbonate fractions. The average RAC values during the four periods were 6.00%, 2.20%, 2.83%, and 0.61%. Although these values show that the risk in the study area is generally low, the distribution of RAC values indicates that the inner estuary has a medium risk, with a value up to 10%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Remote sensing of cloud distributions over the Bayanhar Mountains - Watershed of the Yangtze and Yellow rivers

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liu, J. M.; Dodge, J. C.; Smith, R. E.

    1986-01-01

    Although the two largest rivers in China originate in the same region separated only by the Bayanhar Mountains as a watershed, the Yangtze and Yellow rivers behave in quite different ways. Most of the warm and humid air currents from the Arabian sea and the Bay of Bengal are blocked by the Bayanhar Mountains. As a result the amount of water in the Yellow River is only 5 percent of that in the Yangtze river. Based on the cloud coverage area and the cloud volumetric distributions, and also the thickness above 9.4 km of the cumulus clouds located north and south of the Bayanhar Mountains from the geosynchronous satellite infrared imagery, the results suggest that a more detailed investigation is warranted in the hope that the proper modification of cumuli north of the Bayanhar Mountains would enhance the rainfall over the fountainhead of the Yellow River.

  1. Mutagenicity and estrogenicity of raw water and drinking water in an industrialized city in the Yangtze River Delta.

    PubMed

    Xiao, Sanhua; Lv, Xuemin; Zeng, Yifan; Jin, Tao; Luo, Lan; Zhang, Binbin; Zhang, Gang; Wang, Yanhui; Feng, Lin; Zhu, Yuan; Tang, Fei

    2017-10-01

    Public concern was aroused by frequently reported water pollution incidents in Taihu Lake and the Yangtze River. The pollution also caught and sustained the attention of the scientific community. From 2010 to 2016, raw water and drinking water samples were continually collected at Waterworks A and B (Taihu Lake) and Waterworks C (Yangtze River). The non-volatile organic pollutants in the water samples were extracted by solid phase extraction. Ames tests and yeast estrogen screen (YES) assays were conducted to evaluate the respective mutagenic and estrogenic effects. Water samples from the Yangtze River-based Waterworks C possessed higher mutagenicity than those from Taihu Lake-based Waterworks A (P<0.001) and Waterworks B (P = 0.026). Water treatment enhanced the direct mutagenicity (P = 0.022), and weakened the estrogenicity of the raw water (P<0.001) with a median removal rate of 100%. In fact, very few of the finished samples showed estrogenic activity. Raw water samples from Waterworks A showed weaker estrogenicity than those from Waterworks B (P = 0.034) and Waterworks C (P = 0.006). In summary, mutagenic effects in drinking water and estrogenic effects in raw water merited sustained attention. The Yangtze River was more seriously polluted by mutagenic and estrogenic chemicals than Taihu Lake was. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Predictability of current and future multi-river discharges: Ganges, Brahmaputra, Yangtze, Blue Nile, and Murray-Darling rivers

    NASA Astrophysics Data System (ADS)

    Jian, Jun

    2007-12-01

    Determining river discharge is of critical importance to many societies as they struggle with fresh water supply and risk of flooding. In Bangladesh, floods occur almost every year but with sufficient irregularity to have adverse social and economical consequences. Important goals are to predict the discharge to be used for the optimization of agricultural practices, disaster mitigation and water resource management. The aim of this study is to determine the predictability of river discharge in a number of major rivers on time scale varying from weeks to a century. We investigated predictability considering relationship between SST and discharge. Next, we consider IPCC model projections of river discharge while the models are statistically adjusted against observed discharges. In this study, we consider five rivers, the Ganges, the Brahmaputra, the Yangtze, the Blue Nile, and the Murray-Darling Rivers. On seasonal time scales, statistically significant correlations are found between mean monthly equatorial Pacific sea surface temperature (SST) and the summer Ganges discharge with lead times of 2-3 months due to oscillations of the El Nino-Southern Oscillation (ENSO) phenomena. In addition, there are strong correlations in the southwest and northeast Pacific. These, too, appear to be tied to the ENSO cycle. The Brahmaputra discharge, on the other hand, shows somewhat weaker relationships with tropical SST. Strong lagged correlations relationships are found with SST in the Bay of Bengal but these are the result of very warm SSTs and exceptional Brahmaputra discharge during the summer of 1998. When this year is removed from the time series, relationships weaken everywhere except in the northwestern Pacific for the June discharge and in areas of the central Pacific straddling the equator for the July discharge. The relationships are relative strong, but they are persistent from month to month and suggest that two different and sequential factors influence Brahmaputra

  3. Response of the turbidity maximum zone in the Yangtze River Estuary due to human activities during the dry season.

    PubMed

    Chen, Xiaofeng; Shen, Zhenyao; Yang, Ye

    2016-09-01

    The interaction between a river and the sea results in a turbidity maximum zone (TMZ) within the estuary, which has a great impact on the local ecosystem. In the Yangtze River Estuary, the magnitude and extent of the TMZ vary with water discharge. In this study, the cumulative human activity altered the water discharge regime from the river to the estuary. In the post-Three Gorges Dam (TGD) period, water discharge increased by 35.10 % at Datong in February compared with that in the pre-TGD period. The effects of water discharge variation on the characteristics of the TMZ were analyzed during spring and neap tidal periods using the three-dimensional environmental fluid dynamic code (EFDC) model. The area of the TMZ decreased by 3.11 and 17.39 % during neap and spring tides, respectively. In addition, the upper limit of the TMZ moved 11.68 km seaward during neap tide, whereas the upper limit of the TMZ in the upstream and downstream areas moved seaward 9.65 and 2.34 km, respectively, during spring tide. These findings suggest that the area and location of the TMZ are more sensitive to upstream runoff during spring tide than during neap tide. These changes in the TMZ will impact the biochemical processes in the Yangtze River Estuary. In the foreseeable future, the distribution characteristic of TMZ will inevitably change due to variations in the Yangtze River discharge resulting from new human activities (i.e., new dams), which are being constructed upstream in the Yangtze River system.

  4. Yangtze River, an insignificant genetic boundary in tufted deer (Elaphodus cephalophus): the evidence from a first population genetics study.

    PubMed

    Sun, Zhonglou; Pan, Tao; Wang, Hui; Pang, Mujia; Zhang, Baowei

    2016-01-01

    Great rivers were generally looked at as the geographical barrier to gene flow for many taxonomic groups. The Yangtze River is the third largest river in the world, and flows across South China and into the East China Sea. Up until now, few studies have been carried out to evaluate its effect as a geographical barrier. In this study, we attempted to determine the barrier effect of the Yangtze River on the tufted deer ( Elaphodus cephalophus ) using the molecular ecology approach. Using mitochondrial DNA control region (CR) sequences and 13 nuclear microsatellite loci, we explored the genetic structure and gene flow in two adjacent tufted deer populations (Dabashan and Wulingshan populations), which are separated by the Yangtze River. Results indicated that there are high genetic diversity levels in the two populations, but no distinguishable haplotype group or potential genetic cluster was detected which corresponded to specific geographical population. At the same time, high gene flow was observed between Wulingshan and Dabashan populations. The tufted deer populations experienced population decrease from 0.3 to 0.09 Ma BP, then followed by a distinct population increase. A strong signal of recent population decline ( T = 4,396 years) was detected in the Wulingshan population by a Markov-Switching Vector Autoregressions(MSVAR) process population demography analysis. The results indicated that the Yangtze River may not act as an effective barrier to gene flow in the tufted deer. Finally, we surmised that the population demography of the tufted deer was likely affected by Pleistocene climate fluctuations and ancient human activities.

  5. Distribution of heavy metals and environmental assessment of surface sediment of typical estuaries in eastern China.

    PubMed

    Bi, Shipu; Yang, Yuan; Xu, Chengfen; Zhang, Yong; Zhang, Xiaobo; Zhang, Xianrong

    2017-08-15

    Estuary sediment is a major pollutant enrichment medium and is an important biological habitat. This sediment has attracted the attention of the marine environmental scientists because it is a more stable and effective medium than water for monitoring regional environmental quality conditions and trends. Based on a large amount of measurement data, we analyzed the concentrations, distribution, and sources of seven heavy metals (As, Cd, Cr, Cu, Hg, Pb, and Zn) in the surface sediment of typical estuaries that empty into the sea in eastern China: the Liaohe River Estuary, Yellow River Estuary, Yangtze River Estuary, Minjiang River Estuary, and Pearl River Estuary. The heavy metal concentrations in the sediments vary considerably from one estuary to the next. The Liaohe River Estuary sediment contains elevated levels of Cd, Hg, and Zn. The Yellow River Estuary sediment contains elevated levels of As. The sediments in the Yangtze River and Minjiang River estuaries contain elevated levels of Cd and Cu and of Pb and Zn, respectively. The sediment in the Pearl River Estuary contains elevated levels of all seven heavy metals. We used the Nemerow index method to assess the environment quality. The heavy metal pollution in the Liaohe River and Pearl River estuaries is more severe than that in the other estuaries. Additional work indicates that the heavy metal pollution in the Liaohe River and Pearl River estuaries is caused mainly by human activity. Copyright © 2017. Published by Elsevier Ltd.

  6. Process-based morphodynamic modeling of the Yangtze Estuary at a decadal timescale: Controls on estuarine evolution and future trends

    NASA Astrophysics Data System (ADS)

    Luan, Hua Long; Ding, Ping Xing; Wang, Zheng Bing; Ge, Jian Zhong

    2017-08-01

    Understanding the decadal morphodynamic evolution of estuaries and deltas and their controls is of vital importance regarding management for estuarine function and sustainable development. This work addresses this issue by applying a process-based model system (Delft3D) to hindcast and then forecast the morphodynamic evolution of the Yangtze Estuary at a decadal timescale. Forced by the river and tides, the model considers sand-mud mixture and the variations of river water discharge and sediment discharge. The morphodynamic model is validated against three periods, i.e., an accretion period (1958-1978), an erosion period (1986-1997) and a recent accretion period with human activities (2002 - 2010). Model results show good performance with respect to spatial erosion and deposition patterns, sediment volume changes, and hypsometry curves. The model reveals quite different behaviors for mud transport between the dry and wet seasons, which is subject to the prescription of river boundary conditions and bed composition. We define six scenarios to project evolution to the year 2030 under decreased river inputs and increased relative sea level. The simulations reveal that overwhelming amount of erosion will likely occur in the inner and mouth bar area of the estuary. Particularly, the mouth zone will shift from net deposition before 2010 to net erosion by 2030, mainly because of decreasing sediment supply. Changes in water discharge have minor effects on the projected trend. Net erosion will be considerable when the sediment supply is extremely low (100 Mt yr- 1) due to the abundance of erodible modern sediment in the Yangtze Estuary. Erosion within the mouth bar area may be unexpected, including the deepening of the tidal inlet at East Chongming mudflat and the formation of a flood channel on the seaward side of Jiuduansha Shoal. Overall, the model results provide valuable information for sustainable delta management under changing conditions for both the Yangtze system

  7. Natural and Human Impacts on Recent Development of Asian Large Rivers and Deltas

    NASA Astrophysics Data System (ADS)

    Liu, P.; Lu, C.

    2014-12-01

    Most recent data analysis indicates sediment loads in most of Asian large rivers (like, Yellow, Yangtze, Pearl, Chao Phraya, Indus, Krishna, Godavari, etc) have decreased up to 80-90% in the past 60 years. Correspondingly, most of Asian large river deltas are facing severe sediment starving; delta shoreline comparisons indicate that some are under strong coastal erosion. For examples, the Yellow River Delta has been retreating since 1990s when its annual sediment load has kept below 300 million tons. The Yangtze River delta kept growing before Three Gorges Dams was operating, and began to be eroded from the year 2003 to 2009, and then prograded locally due to the Deep Water Navigation Project. The Mekong Delta shoreline has also been dynamically changing with the sediment flux variation, eroding from 1989 to 1996 and prograding from 1996 to 2002. More information is available at http://www.meas.ncsu.edu/sealevel

  8. Attribution of extreme precipitation in the lower reaches of the Yangtze River during May 2016

    NASA Astrophysics Data System (ADS)

    Li, Chunxiang; Tian, Qinhua; Yu, Rong; Zhou, Baiquan; Xia, Jiangjiang; Burke, Claire; Dong, Buwen; Tett, Simon F. B.; Freychet, Nicolas; Lott, Fraser; Ciavarella, Andrew

    2018-01-01

    May 2016 was the third wettest May on record since 1961 over central eastern China based on station observations, with total monthly rainfall 40% more than the climatological mean for 1961-2013. Accompanying disasters such as waterlogging, landslides and debris flow struck part of the lower reaches of the Yangtze River. Causal influence of anthropogenic forcings on this event is investigated using the newly updated Met Office Hadley Centre system for attribution of extreme weather and climate events. Results indicate that there is a significant increase in May 2016 rainfall in model simulations relative to the climatological period, but this increase is largely attributable to natural variability. El Niño years have been found to be correlated with extreme rainfall in the Yangtze River region in previous studies—the strong El Niño of 2015-2016 may account for the extreme precipitation event in 2016. However, on smaller spatial scales we find that anthropogenic forcing has likely played a role in increasing the risk of extreme rainfall to the north of the Yangtze and decreasing it to the south.

  9. Terrestrial Contributions to the Aquatic Food Web in the Middle Yangtze River

    PubMed Central

    Wang, Jianzhu; Gu, Binhe; Huang, Jianhui; Han, Xingguo; Lin, Guanghui; Zheng, Fawen; Li, Yuncong

    2014-01-01

    Understanding the carbon sources supporting aquatic consumers in large rivers is essential for the protection of ecological integrity and for wildlife management. The relative importance of terrestrial and algal carbon to the aquatic food webs is still under intensive debate. The Yangtze River is the largest river in China and the third longest river in the world. The completion of the Three Gorges Dam (TGD) in 2003 has significantly altered the hydrological regime of the middle Yangtze River, but its immediate impact on carbon sources supporting the river food web is unknown. In this study, potential production sources from riparian and the main river channel, and selected aquatic consumers (invertebrates and fish) at an upstream constricted-channel site (Luoqi), a midstream estuarine site (Huanghua) and a near dam limnetic site (Maoping) of the TGD were collected for stable isotope (δ13C and δ15N) and IsoSource analyses. Model estimates indicated that terrestrial plants were the dominant carbon sources supporting the consumer taxa at the three study sites. Algal production appeared to play a supplemental role in supporting consumer production. The contribution from C4 plants was more important than that of C3 plants at the upstream site while C3 plants were the more important carbon source to the consumers at the two impacted sites (Huanghua and Maoping), particularly at the midstream site. There was no trend of increase in the contribution of autochthonous production from the upstream to the downstream sites as the flow rate decreased dramatically along the main river channel due to the construction of TGD. Our findings, along with recent studies in rivers and lakes, are contradictory to studies that demonstrate the importance of algal carbon in the aquatic food web. Differences in system geomorphology, hydrology, habitat heterogeneity, and land use may account for these contradictory findings reported in various studies. PMID:25047656

  10. Terrestrial contributions to the aquatic food web in the middle Yangtze River.

    PubMed

    Wang, Jianzhu; Gu, Binhe; Huang, Jianhui; Han, Xingguo; Lin, Guanghui; Zheng, Fawen; Li, Yuncong

    2014-01-01

    Understanding the carbon sources supporting aquatic consumers in large rivers is essential for the protection of ecological integrity and for wildlife management. The relative importance of terrestrial and algal carbon to the aquatic food webs is still under intensive debate. The Yangtze River is the largest river in China and the third longest river in the world. The completion of the Three Gorges Dam (TGD) in 2003 has significantly altered the hydrological regime of the middle Yangtze River, but its immediate impact on carbon sources supporting the river food web is unknown. In this study, potential production sources from riparian and the main river channel, and selected aquatic consumers (invertebrates and fish) at an upstream constricted-channel site (Luoqi), a midstream estuarine site (Huanghua) and a near dam limnetic site (Maoping) of the TGD were collected for stable isotope (δ13C and δ15N) and IsoSource analyses. Model estimates indicated that terrestrial plants were the dominant carbon sources supporting the consumer taxa at the three study sites. Algal production appeared to play a supplemental role in supporting consumer production. The contribution from C4 plants was more important than that of C3 plants at the upstream site while C3 plants were the more important carbon source to the consumers at the two impacted sites (Huanghua and Maoping), particularly at the midstream site. There was no trend of increase in the contribution of autochthonous production from the upstream to the downstream sites as the flow rate decreased dramatically along the main river channel due to the construction of TGD. Our findings, along with recent studies in rivers and lakes, are contradictory to studies that demonstrate the importance of algal carbon in the aquatic food web. Differences in system geomorphology, hydrology, habitat heterogeneity, and land use may account for these contradictory findings reported in various studies.

  11. Chloroethene degradation and expression of Dehalococcoides dehalogenase genes in cultures originating from Yangtze sediments.

    PubMed

    Kranzioch, Irene; Ganz, Selina; Tiehm, Andreas

    2015-02-01

    The anaerobic Dehalococcoides spp. is the only microorganism known to completely dechlorinate the hazardous compounds tetrachloroethene (PCE) or trichloroethene (TCE) via dichloroethene (DCE) and vinyl chloride (VC) to the terminal product, ethene. In this study, growth of Dehalococcoides spp. (DHC) and the expression of DHC dehalogenase genes were demonstrated for Yangtze enrichment cultures. Reductive dechlorination of chloroethenes occurred in Yangtze sediment without the addition of any external auxiliary substrates. All Yangtze enrichment cultures completely dechlorinated PCE and cis-DCE to ethene. To investigate expression of the dehalogenase genes pceA, tceA, vcrA, and bvcA, a protocol for messenger RNA (mRNA) extraction followed by reverse transcription and quantitative PCR analysis was established. During dechlorination, an increase in gene copy numbers of pceA, tceA, and vcrA was observed. However, temporary formation of mRNA was only measured in the case of the dehalogenase genes tceA and vcrA. Comparison of DHC dehalogenase patterns indicated that the Yangtze DHC community does not match any of the previously published enrichment cultures that were obtained from contaminated areas in the USA or Europe.

  12. Morphodynamic Evolution of Yangtze (Changjiang) Estuary in Decadal-timescale: Alteration from Natural Processes to Human Interferences

    NASA Astrophysics Data System (ADS)

    Luan, H.; Ding, P.; Ge, J.; Zong, H.; Zheng Bing, W.

    2016-02-01

    Morphodynamic development of river deltas has attracted intensive attention in the past several decades due to ecological and economic significance. Present study quantified the morphological evolution processes of the Yangtze Estuary in decadal-timescale (1958-2010) aiming at understanding the effects of natural processes (river inputs) on the estuary and its morphological responses to human interferences. Inner Estuary (IE) and Mouth Bar Area (MBA) underwent substantially different changes in the study period. The net accretion rate of IE was 36.2 mm/yr in 1958-1978 and -70.9 mm/yr in 1986-1997, indicating that the IE altered from deposition to erosion along with the decline of river sediment input. By contrast, the MBA showed sustained accretion throughout the study period. The results suggested that the IE is more sensitive to the river sediment reduction than the MBA. The river flood may induce erosion in IE which can explain the erosion peak in 1986-1997 since there are continuous flood years in 1990s. The majority of erosion within IE in 1986-1997 occurred in South Branch. The depocenter within MBA transferred between the North Channel and the South Passage. Specifically, the depocenter was in the South Passage during 1958-1978, in the North Channel during 1978-1986, and back to the South Passage during 1986-1997. This is thought to be caused by the change in sediment diversion between the South and North Channel, except 1986-1997. Highest accretion rate (48.9mm/yr) in 1997-2010 is found within the North Passage if excluding the effects of navigation channel dredging. Previous research has quantified the morphological changes along the North Passage and attributed high deposition to the construction of dikes and perpendicular groins. The fluvial-marine transition in terms of prevailing forcing and sediment property is the natural characteristics of river deltas and play an essential role on morphological development of Yangtze Estuary. Present evidence shows

  13. Three-dimensional Virtual Simulation of Oil Spill of Yangtze River in Chongqing Area Based on Emergency Decision

    NASA Astrophysics Data System (ADS)

    Chen, Shuzhe; Huang, Liwen

    the river of Yangtze River in Chongqing area is continuous curved. Hydrology and channel situation is complex, and the transportation is busy. With the increasing of shipments of hazardous chemicals year by year, oil spill accident risk is rising. So establishment of three-dimensional virtual simulation of oil spill and its application in decision-making has become an urgent task. This paper detailed the process of three-dimensional virtual simulation of oil spill and established a system of three-dimensional virtual Simulation of oil spill of Yangtze River in Chongqing area by establishing an oil spill model of the Chongqing area based on oil particles model, and the system has been used in emergency decision to provide assistance for the oil spill response.

  14. Mid-Holocene palaeoflood events recorded at the Zhongqiao Neolithic cultural site in the Jianghan Plain, middle Yangtze River Valley, China

    NASA Astrophysics Data System (ADS)

    Wu, Li; Zhu, Cheng; Ma, Chunmei; Li, Feng; Meng, Huaping; Liu, Hui; Li, Linying; Wang, Xiaocui; Sun, Wei; Song, Yougui

    2017-10-01

    Palaeo-hydrological and archaeological investigations were carried out in the Jianghan Plain in the middle reaches of the Yangtze River. Based on a comparative analysis of modern flood sediments and multidisciplinary approaches such as AMS14C and archaeological dating, zircon micromorphology, grain size, magnetic susceptibility, and geochemistry, we identified palaeoflood sediments preserved at the Zhongqiao archaeological site. The results indicate that three palaeoflood events (i.e. 4800-4597, 4479-4367, and 4168-3850 cal. yr BP) occurred at the Zhongqiao Site. Comparisons of palaeoflood deposit layers at a number of Neolithic cultural sites show that two extraordinary palaeoflood events occurred in the Jianghan Plain during approximately 4900-4600 cal. yr BP (i.e.mid-late Qujialing cultural period) and 4100-3800 cal. yr BP (i.e. from late Shijiahe cultural period to the Xia Dynasty). Further analysis of the environmental context suggests that these flooding events might have been connected with great climate variability during approximately 5000-4500 cal. yr BP and at ca. 4000 cal. yr BP. These two palaeoflood events were closely related to the expansion of the Jianghan lakes driven by the climatic change, which in turn influenced the rise and fall of the Neolithic cultures in the middle reaches of the Yangtze River. Other evidence also suggests that the intensified discrepancy between social development and environmental change processes (especially the hydrological process) during the late Shijiahe cultural period might be the key factor causing the collapse of the Shijiahe Culture. The extraordinary floods related to the climatic anomaly at ca. 4000 cal. yr BP and political conflicts from internal or other cultural areas all accelerated the collapse of the Shijiahe Culture.

  15. Uncertainty in positive matrix factorization solutions for PAHs in surface sediments of the Yangtze River Estuary in different seasons.

    PubMed

    Liu, Ruimin; Men, Cong; Yu, Wenwen; Xu, Fei; Wang, Qingrui; Shen, Zhenyao

    2018-01-01

    To examine the variabilities of source contributions in the Yangtze River Estuary (YRE), the uncertainty based on the positive matrix factorization (PMF) was applied to the source apportionment of the 16 priority PAHs in 120 surface sediment samples from four seasons. Based on the signal-to-noise ratios, the PAHs categorized as "Bad" might drop out of the estimation of bootstrap. Next, the spatial variability of residuals was applied to determine which species with non-normal curves should be excluded. The median values from the bootstrapped solutions were chosen as the best estimate of the true factor contributions, and the intervals from 5th to 95th percentile represent the variability in each sample factor contribution. Based on the results, the median factor contributions of wood grass combustion and coke plant emissions were highly correlated with the variability (R 2  = 0.6797-0.9937) in every season. Meanwhile, the factor of coal and gasoline combustion had large variability with lower R 2 values in every season, especially in summer (0.4784) and winter (0.2785). The coefficient of variation (CV) values based on the Bootstrap (BS) simulations were applied to indicate the uncertainties of PAHs in every factor of each season. Acy, NaP and BgP always showed higher CV values, which suggested higher uncertainties in the BS simulations, and the PAH with the lowest concentration among all PAHs usually became the species with higher uncertainties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Low-angle dunes in the Changjiang (Yangtze) Estuary: Flow and sediment dynamics under tidal influence

    NASA Astrophysics Data System (ADS)

    Hu, Hao; Wei, Taoyuan; Yang, Zhongyong; Hackney, Christopher R.; Parsons, Daniel R.

    2018-05-01

    It has long been highlighted that important feedbacks exist between river bed morphology, sediment transport and the turbulent flow field and that these feedbacks change in response to forcing mechanisms. However, our current understanding of bedform dynamics is largely based on studies of steady flow environments and cohesionless bed conditions. Few investigations have been made under rapidly changing flows. Here, we examine flow and sediment dynamics over low-angle dunes in unsteady flows in the Changjiang (Yangtze) Estuary, China. Topography, flow and sediment data were collected over a reach ca 1.8 km long through a semi-diurnal tidal cycle in a moderate tide of flood season. The results show that: (1) roughness length derived from the upper flow changes little with the flow reversing and displays the same value on both the ebb and flood tide. Moreover, the variability of individual bedform features plays an important role in roughness length variation. (2) Shear stress over the crest of low-angle dunes roughly represents the total spatially averaged stress over dunes in this study area, which has significant implications for advancing numerical models. (3) Changes in morphology, flow and sediment dynamics over dunes through time reveal how low-angle dunes evolve within a tidal cycle. (4) The clockwise hysteresis loops between flow dynamics and bedform features (height and aspect ratio) are also observed. The combination of suspended sediment transport and bedload transport on dune transformation and migration attributes to the clockwise hysteresis. The specific sediment composition of the riverbed, in some extent, affects the mechanism of sediment transport related to the exchange between suspended sediment and riverbed, but further investigation is needed to figure out the mechanism behind this for extended series of tides, such as spring/neap tide and tides in flooding and dry season.

  17. Enhanced nitrogen loss from rivers through coupled nitrification-denitrification caused by suspended sediment.

    PubMed

    Xia, Xinghui; Liu, Ting; Yang, Zhifeng; Michalski, Greg; Liu, Shaoda; Jia, Zhimei; Zhang, Sibo

    2017-02-01

    Present-day estimations of global nitrogen loss (N-loss) are underestimated. Commonly, N-loss from rivers is thought to be caused by denitrification only in bed-sediments. However, coupled nitrification-denitrification occurring in overlying water with suspended sediments (SPS) where oxic and anoxic/low oxygen zones may coexist is ignored for N-loss in rivers. Here the Yellow and Yangtze Rivers were taken as examples to investigate the effect of SPS, which exists in many rivers of the world, on N loss through coupled nitrification-denitrification with nitrogen stable ( 15 N) isotopic tracer simulation experiments and in-situ investigation. The results showed even when SPS was surrounded by oxic waters, there were redox conditions that transitioned from an oxic surface layer to anoxic layer near the particle center, enabling coupled nitrification-denitrification to occur around SPS. The production rate of 15 N 2 from 15 NH 4 + -N (R 15N2-production ) increased with increasing SPS concentration ([SPS]) as a power function (R 15N2-production =a·[SPS] b ) for both the SPS-water and bed sediment-SPS-water systems. The power-functional increase of nitrifying and denitrifying bacteria population with [SPS] accounted for the enhanced coupled nitrification-denitrification rate in overlying water. SPS also accelerated denitrification in bed-sediment due to increased NO 3 - concentration caused by SPS-mediated nitrification. For these two rivers, 1gL -1 SPS will lead to N-loss enhancement by approximately 25-120%, and the enhancement increased with organic carbon content of SPS. Thus, we conclude that SPS in overlying water is a hot spot for nitrogen loss in river systems and current estimates of in-stream N-loss are underestimated without consideration of SPS; this may partially compensate for the current imbalance of global nitrogen inputs and sinks. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Impact of Yangtze River Water Transfer on the Water Quality of the Lixia River Watershed, China

    PubMed Central

    Ma, Xiaoxue; Wang, Lachun; Wu, Hao; Li, Na; Ma, Lei; Zeng, Chunfen; Zhou, Yi; Yang, Jun

    2015-01-01

    To improve water quality and reduce the negative impacts of sudden inputs of water pollution in the Lixia River watershed, China, a series of experimental water transfers from the Yangtze River to the Lixia River were conducted from 2 December 2006 to 7 January 2007. Water samples were collected every six days at 55 monitoring sites during this period. Eight water parameters (water temperature, pH, dissolved oxygen (DO), chemical oxygen demand (COD), potassium permanganate index (CODMn), ammonia nitrogen (NH4 +-N), electrical conductivity (EC), and water transparency (WT)) were analyzed to determine changes in nutrient concentrations during water transfers. The comprehensive pollution index (Pi) and single-factor (Si) evaluation methods were applied to evaluate spatio-temporal patterns of water quality during water transfers. Water quality parameters displayed different spatial and temporal distribution patterns within the watershed. Water quality was improved significantly by the water transfers, especially for sites closer to water intake points. The degree of improvement is positively related to rates of transfer inflow and drainage outflow. The effects differed for different water quality parameters at each site and at different water transfer times. There were notable decreases in NH4 +-N, DO, COD, and CODMn across the entire watershed. However, positive effects on EC and pH were not observed. It is concluded that freshwater transfers from the Yangtze River can be used as an emergency measure to flush pollutants from the Lixia River watershed. Improved understanding of the effects of water transfers on water quality can help the development and implementation of effective strategies to improve water quality within this watershed. PMID:25835525

  19. [Study of the fluorescence characteristics of DOM from the Yangtze River and Jialing River around Chongqing's urban areas].

    PubMed

    Ji, Fang-ying; Li, Si; Zhou, Guang-ming; Yu, Dan-ni; Wang, Tu-jin; Cao, Lin; Tan, Xue-mei; Yang, Da-cheng; Zhou, Xiao-yi

    2010-01-01

    The fluorescence emission and excitation emission matrix (EEM) technologies were used to characterize the dissolved organic matter (DOM) in the water body of the Yangtze River and Jialing River around the Chongqing urban areas from April to August 2008. Concerning about the accidents of the Wenchuan's Earthquake in May and Tangjiashan Yansaihu's effects in June, and the high water period time in the summer in two months of July and August, from the EEM obtained from each sampling station and time, the composition, distribution and their changing features of the DOM in the two rivers were investigated as combined with the water samples' environmental parameters such as pH, DO, DOC with EEM's fingerprint features, f(450/500) etc; finally the bio-environment behavior effects of the three types of fluorescence peaks were elaborated, where humic-like, fulvic-like, and protein-like from the five sampling stations' EEMs during the five months were given detailed representation. From the experimental results obtained, the fluorescence peaks are mainly composed of two types of fluorophores: humic-like and protein-like in the two rivers around the Chongqing urban areas during the investigation in five months, the protein-like's peaks value in Jialing River is higher than the values in the Yangtze River, and all the fluorescence peaks in the two Rivers' water body decrease more or less after the two Rivers join in Chun Tan sampling station; the protein-like peak is notably higher after the "5 x 12" earthquake period time including May and June and high water period time, which mainly originated from terrestrial sources, but its intensities decreased observably while the water bodies of the two rivers joining together in the Chao Tianmen and Chun Tan's sampling station.

  20. Case study on rehabilitation of a polluted urban water body in Yangtze River Basin.

    PubMed

    Wu, Juan; Cheng, Shuiping; Li, Zhu; Guo, Weijie; Zhong, Fei; Yin, Daqiang

    2013-10-01

    In the past three decades, the fast development of economy and urbanization has caused increasingly severe pollutions of urban water bodies in China. Consequently, eutrophication and deterioration of aquatic ecosystem, which is especially significant for aquatic vegetation, inevitably became a pervasive problem across the Yangtze River Basin. To rehabilitate the degraded urban water bodies, vegetation replanting is an important issue to improve water quality and to rehabilitate ecosystem. As a case study, a representative polluted urban river, Nanfeihe River, in Hefei City, Anhui Province, was chosen to be a rehabilitation target. In October 2009 and May 2010, 13 species of indigenous and prevalent macrophytes, including seven species emergent, one species floating leaved, and five species submersed macrophytes, were planted along the bank slopes and in the river. Through 1.5 years' replanting practice, the water quality and biodiversity of the river had been improved. The concentrations of total nitrogen (TN), total phosphorus (TP), and ammonia nitrogen (NH4 (+)-N) declined by 46.0, 39.5, and 60.4 %, respectively. The species of macrophytes increased from 14 to 60, and the biodiversity of phytoplankton rose significantly in the river (p<0.05). The biomasses of zooplankton and benthos were also improved after the vegetation replanting. The study confirmed that vegetation replanting could alleviate the increasing water pollution and rehabilitate the degraded aquatic ecosystem. The case study would be an example for polluted urban waters restoration in the middle-downstream area of Yangtze River Base.

  1. Variation of Temperature and Precipitation in Urban Agglomeration and Prevention Suggestion of Waterlogging in Middle and Lower Reaches of Yangtze River

    NASA Astrophysics Data System (ADS)

    Na, Liu; Youjie, Jin; Jiaqi, Dai

    2018-03-01

    The variation trend of temperature and precipitation during flood season in the middle and lower reaches of the Yangtze River basin in recent 50 years and change characteristics of rainfall in five typical flood prone cities are analysed. Aiming at waterlogging problems in the urban agglomeration of middle and lower reaches of the Yangtze River, the comprehensive prevention and control suggestions are put forward. The results showed that: the temperature trend in the basin decreased and then increased, and the precipitation showed a downward-rising-downward trend, no mutation occurred; The incidence of heavy rainfall events in the five typical cities with daily rainfall more than 50mm showed an upward trend, and increased significantly after 2002. The intensity of precipitation increased gradually. Climate change makes urban agglomeration waterlogging disasters become increasingly prominent in the middle and lower reaches of the Yangtze River.

  2. Occurrence of pharmaceuticals and personal care products and associated environmental risks in the central and lower Yangtze river, China.

    PubMed

    Wu, Chenxi; Huang, Xiaolong; Witter, Jason D; Spongberg, Alison L; Wang, Kexiong; Wang, Ding; Liu, Jiantong

    2014-08-01

    Pharmaceutical and personal care products (PPCPs) residues are being highlighted around the world as of emerging concern in surface waters. Here the occurrence of PPCPs in the central and lower Yangtze River, along with four large freshwater lakes within the river basin (Dongting, Poyang, Tai, and Chao) was reported. Fifteen out of twenty selected PPCPs were detected in the collected surface water samples. Caffeine, paraxanthine, sulfamethazine, and clindamycin were detected with 100 percent frequency in the Yangtze River. In the river, the highest average concentration was observed for erythromycin (296 ng L(-1)), followed by caffeine (142 ng L(-1)) and paraxanthine (41 ng L(-1)). In the four lakes, total PPCP concentrations were much higher in the Chao (1547 ng L(-1)) and Tai (1087 ng L(-1)) lakes compared to the Poyang (108 ng L(-1)) and Dongting (137 ng L(-1)) lakes. Lincomycin and clindamycin were most abundant in the lakes, especially in the Tai Lake. Environmental risk assessment for the worst case scenario was assessed using calculated risk quotients, and indicates a high environmental risk of erythromycin and clarithromycin in the Yangtze River, clarithromycin in the Chao Lake, and clindamycin in the Tai Lake. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Linking Ah receptor mediated effects of sediments and impacts on fish to key pollutants in the Yangtze Three Gorges Reservoir, China - A comprehensive perspective.

    PubMed

    Floehr, Tilman; Scholz-Starke, Björn; Xiao, Hongxia; Hercht, Hendrik; Wu, Lingling; Hou, Junli; Schmidt-Posthaus, Heike; Segner, Helmut; Kammann, Ulrike; Yuan, Xingzhong; Roß-Nickoll, Martina; Schäffer, Andreas; Hollert, Henner

    2015-12-15

    The Three Gorges Reservoir (TGR), created in consequence of the Yangtze River's impoundment by the Three Gorges Dam, faces numerous anthropogenic impacts that challenge its unique ecosystem. Organic pollutants, particularly aryl hydrocarbon receptor (AhR) agonists, have been widely detected in the Yangtze River, but only little research was yet done on AhR-mediated activities. Hence, in order to assess effects of organic pollution, with particular focus on AhR-mediated activities, several sites in the TGR area were examined applying the "triad approach". It combines chemical analysis, in vitro, in vivo and in situ investigations to a holistic assessment. Sediments and the benthic fish species Pelteobagrus vachellii were sampled in 2011/2012, respectively, to identify relevant endpoints. Sediment was tested in vitro with the ethoxyresorufin-O-deethylase (EROD) induction assay, and in vivo with the Fish Embryo Toxicity Test and Sediment Contact Assay with Danio rerio. Activities of phase I (EROD) and phase II (glutathione-S-transferase) biotransformation enzymes, pollutant metabolites and histopathological alterations were studied in situ in P. vachellii. EROD induction was tested in vitro and in situ to evaluate possible relationships. Two sites, near Chongqing and Kaixian city, were identified as regional hot-spots and further investigated in 2013. The sediments induced in the in vitro/in vivo bioassays AhR-mediated activities and embryotoxic/teratogenic effects - particularly on the cardiovascular system. These endpoints could be significantly correlated to each other and respective chemical data. However, particle-bound pollutants showed only low bioavailability. The in situ investigations suggested a rather poor condition of P. vachellii, with histopathological alterations in liver and excretory kidney. Fish from Chongqing city exhibited significant hepatic EROD induction and obvious parasitic infestations. The polycyclic aromatic hydrocarbon (PAH) metabolite 1

  4. The silicon isotopic composition of fine-grained river sediments and its relation to climate and lithology

    NASA Astrophysics Data System (ADS)

    Bayon, G.; Delvigne, C.; Ponzevera, E.; Borges, A. V.; Darchambeau, F.; De Deckker, P.; Lambert, T.; Monin, L.; Toucanne, S.; André, L.

    2018-05-01

    The δ30Si stable isotopic composition of silicon in soils and fine-grained sediments can provide insights into weathering processes on continents, with important implications on the Si budget of modern and past oceans. To further constrain the factors controlling the distribution of Si isotopes in sediments, we have analysed a large number (n = 50) of separate size-fractions of sediments and suspended particulate materials collected near the mouth of rivers worldwide. This includes some of the world's largest rivers (e.g. Amazon, Congo, Mackenzie, Mississippi, Murray-Darling, Nile, Yangtze) and rivers from the case study areas of the Congo River Basin and Northern Ireland. Silt-size fractions exhibit a mean Si isotopic composition (δ30Si = -0.21 ± 0.19‰; 2 s.d.) similar to that previously inferred for the upper continental crust. In contrast, clay-size fractions display a much larger range of δ30Si values from -0.11‰ to -2.16‰, which yield a global δ30Siclay of -0.57 ± 0.60‰ (2 s.d.) representative of the mean composition of the average weathered continental crust. Overall, these new data show that the Si isotopic signature transported by river clays is controlled by the degree of chemical weathering, as inferred from strong relationships with Al/Si ratios. At a global scale, the clay-bound Si isotopic composition of the world's largest river systems demonstrates a link with climate, defining a general correlation with mean annual temperature (MAT) in corresponding drainage basins. While the distribution of Si isotopes in river sediments also appears to be influenced by the tectonic setting, lithological effects and sediment recycling from former sedimentary cycles, our results pave the way for their use as paleo-weathering and paleo-climate proxies in the sedimentary record.

  5. Is ENSO related to 2015 Easter Star Capsized on the Yangtze River of China?

    NASA Astrophysics Data System (ADS)

    Xie, P.

    2015-12-01

    Natural disasters have profound effects on community security and economic damage of China's Hubei province. In June 1st, 2015, a cruise ship, Easter Star, capsized on Yangtze River in Hubei province with 442 died. What reason gives rise to such strong convection causing ship sunk? Based on the wind disasters of Hubei province happened in 1963-2015, this study analyzes their features bytime-series regression, and correlates them to global El Niño/Southern Oscillation (ENSO) events. The compared results demonstrated that the wind disasters shown an increasing tendency. There are two peaks corresponding to the strongest ENSO peaks during the past 50 years; each peak lasts two-three years. The facts demonstrated an essential linear relation between the ENSO phenomena and wind disasters in Hubei province. 2015 Easter Star capsized happened at current El Niño event in 2014-2015. We also observed that the historical wind disasters appeared in seasonal variation. Over 90% events concentrated in spring and summer; very few events happened in autumn and winter. Moreover, the disasters depend on the geographic conditions. Most disasters concentrated in four zones, named as Xingshan-Baokang, Xuanen, Wufeng-Yichang, Jingzhou-Gongan, in which Xingshan and Changyang are the two most density of zones. Yangtze River provides an air flowing conduct for strong convective winds. It can be concluded that the strong convection causing 2015 Easter Star capsized is related to current global ENSO phenomenon.Keywords: ENSO, wind disaster, time-series regression analysis, Easter Star, Yangtze River, Hubei Province,

  6. Geochemical constraints on provenance of the mid-Pleistocene red earth sediments in subtropical China

    NASA Astrophysics Data System (ADS)

    Hong, Hanlie; Wang, Chaowen; Zeng, Kefeng; Gu, Yansheng; Wu, Yuanbao; Yin, Ke; Li, Zhaohui

    2013-05-01

    The source of mid-Pleistocene red earth sediments in the middle to lower reaches of the Yangtze (Changjiang) River was investigated based on their geochemical characteristics. The Xuancheng and Jiujiang red earth sediments have similar major and trace element distribution patterns. Compared to the loess and paleosol deposits of the Chinese Loess Plateau, the upper continental crust (UCC), and the post-Archean Australian average shale (PAAS), the sediments display notable depletion of CaO, MgO, Na2O, and accumulation of TiO2, Al2O3, and Fe2O3(t). The trace element distribution patterns of the red earth sediments are also different from those of loess and the PAAS, but are similar to those of the loess deposits, except for lower values of mobile trace elements Sr, Ba, and Ni, and higher values of Zr and Y. The red earth samples have uniform La/Th ratios of ~ 2.8, compatible with those of the UCC, loess, and paleosol. They also have similar chondrite-normalized REE patterns, characterized by enriched LREE and relatively flat HREE profiles, and consistent negative Eu anomalies, similar to those of the UCC, the loess and paleosol, and the Yangtze deposits. These results suggest that the red earth sediments have been subject to considerable mixing prior to deposition and strong subsequent chemical weathering. The sediments have very uniform 143Nd/144Nd and 147Sm/144Nd ratios, this points to well-mixed and multi-recycled sediments. The 143Nd/144Nd and 87Sr/86Sr values of the red earth sediments match well with those of the deposits in the middle to lower reaches of the Yangtze River, but are different from those of the loess and paleosols. This suggests that the red earth sediments are derived from the drainage basins of the middle to lower Yangtze River and might have experienced more intense chemical weathering relative to the Yangtze deposits, as reflected by their higher Rb/Sr ratios, intense depletion of mobile elements and accumulation of immobile elements, as well

  7. Estimates of long-term water total phosphorus (TP) concentrations in three large shallow lakes in the Yangtze River basin, China.

    PubMed

    Wu, Pan; Qin, Boqiang; Yu, Ge

    2016-03-01

    The shallow lakes in the eastern China developed on alluvial plains with high-nutrient sediments, and most overflow into the Yangtze River with short hydraulic residence times, whereas they become eutrophic over long time periods. Assuming strong responses to hydrogeological changes in the basin, we attempted to determine the dynamic eutrophication history of these lakes. Although evaluation models for internal total phosphorus (TP) loading are widely used for deep lakes in Europe and North America, the accuracy of these models for shallow lakes that have smaller water volumes controlled by the geometrical morphology and greater basin area of alluvial plains is unknown. To describe the magnitude of changes in velocity of trophic state for the studied shallow lakes, we first evaluated the P retention model in relation to the major forces driving lake morphology, basin climate, and external discharge and then used the model to estimate changes in TP in three large shallow lakes (Taihu, Chao, and Poyang) over 60 years (1950-2009 AD). The observed levels of TP were verified against the relative error of the three lakes (<6.43 %) and Nash-Sutcliffe coefficients (0.67-0.75). The results showed that the predicted TP concentrations largely increased with hydraulic residence time, especially in extreme drought years, with a generally rising trend in trophic status. The simulated trophic state index showed that lakes Taihu and Poyang became eutrophic in the 1990s, whereas Lake Chao became eutrophic in the 1980s; lakes Taihu and Chao ultimately became hypereutrophic in the 2000s. The analysis suggested that the tropic status of the shallow lakes was affected by both the hydroclimate and geological sedimentation of the Yangtze River basin. This work will contribute to the development of an internal P loading model for further evaluating trophic states.

  8. River Network Reorganization along the Upper Yangzte, Eastern Tibet: Insights from Thermochronology and Sedimentology.

    NASA Astrophysics Data System (ADS)

    Gourbet, L.; Yang, R.; Fellin, M. G.; Maden, C.; Gong, J.; Jean-Louis, P.

    2017-12-01

    The high relief and high elevation of the southeastern margin of the Tibetan Plateau are related to tectonic uplift and the fluvial incision of the Salween, Mekong, and Yangtze rivers. The upper Yangtze is the subject of numerous debates on the evolution of its drainage area, particularly in regards to the timing and geodynamic processes, and therefore has an impact on models of the Tibetan plateau evolution. Today, portions of the course of the Yangtze are controlled by active strike-slip faults. In order to study the evolution of the Cenozoic paleoriver network, we use low-temperature thermochronometry to estimate fluvial incision and palaeoenvironmental information derived from the detrital record. The Jianchuan basin, between the Yangtze and the Red River, contains late Eocene fluvial sediments that may correspond to an ancient connection between these rivers. Sediments located further north (DongWang formation, Yunnan-Sichuan boundary) consist of unsorted conglomerates and sandstones. They are exposed on the flanks of deep valleys. These sediments do not correspond to a large riverbed such as the Yangtze but rather indicate an episode of intense sedimentation with a significant contribution from talus, followed by a >1.2 km incision by a tributary of the upper Yangtze. In the same area, we performed apatite and zircon (U-Th)/He dating on a granitic pluton that is offset by an active sinistral strike-slip fault. Mean ZHe cooling ages range from 50 to 70 Ma. Samples located above 3870 m yield mean apatite (U-Th)/He ages ranging from 30 to 40 Ma. AHe ages for samples at lower elevation range from 8 to 15 Ma. Given the crystallization age of the pluton (83 Ma, U/Pb, zircon), cooling ages reflect exhumation, not post-intrusion cooling. Further research will use thermal modeling to infer incision rates and compare results with published data.

  9. Genetic Diversity of Daphnia pulex in the Middle and Lower Reaches of the Yangtze River

    PubMed Central

    Wang, Wenping; Zhang, Kun; Deng, Daogui; Zhang, Ya-Nan; Peng, Shuixiu; Xu, Xiaoxue

    2016-01-01

    Increased human activities and environmental changes may lead to genetic diversity variations of Cladocerans in water. Daphnia pulex are distributed throughout the world and often regarded as a model organism. The 16S rDNA, cytochrome c oxidase subunit I (COI), and 18S genes were used as molecular marks. The genetic diversity and phylogeny of D. pulex obtained from 10 water bodies in the middle and lower reaches of the Yangtze River were studied. For 16S rDNA, COI gene, and 18S gene, the A+T content (65.4%, 58.4%, and 54.6%) was significantly higher than the G+C content (34.6%, 41.6% and 45.4%). This result was consistent with higher A and T contents among invertebrates. Based on the genetic distances of 16S rDNA and COI genes, the genetic differences of D. pulex from 10 water bodies located in the middle and lower reaches of the Yangtze River in China was minimal (0%–0.8% for 16S rDNA and 0%–1.5% for COI gene). However, D. pulex evolved into two branches in the phylogenetic trees, which coincided with its geographical distribution. Compared with D. pulex from other countries, the average genetic distance of D. pulex obtained from 10 water bodies in the middle and lower reaches of the Yangtze River reached 9.1%–10.5%, thereby indicating that D. pulex may have evolved into different subspecies. PMID:27015539

  10. Decreasing reference evapotranspiration in a warming climate - A case of Changjiang (Yangtze) River catchment during 1970-2000

    NASA Astrophysics Data System (ADS)

    Xu, C. Y.; Gong, L. B.; Tong, J.; Chen, D. L.

    2006-07-01

    This study deals with temporal trends in the Penman-Monteith reference evapotranspiration estimated from standard meteorological observations, observed pan evaporation, and four related meteorological variables during 1970-2000 in the Yangtze River catchment. Relative contributions of the four meteorological variables to changes in the reference evapotranspiration are quantified. The results show that both the reference evapotranspiration and the pan evaporation have significant. decreasing trends in the upper, the middle as well as in the whole Changjiang (Yangtze) River catchment at the 5% significance level, while the air temperature shows a significant increasing trend. The decreasing trend detected in the reference evapotranspiration can be attributed to the significant decreasing trends in the net radiation and the wind speed.

  11. Ship-based MAX-DOAS measurements of tropospheric NO2, SO2, and HCHO distribution along the Yangtze River

    NASA Astrophysics Data System (ADS)

    Hong, Qianqian; Liu, Cheng; Chan, Ka Lok; Hu, Qihou; Xie, Zhouqing; Liu, Haoran; Si, Fuqi; Liu, Jianguo

    2018-04-01

    In this paper, we present ship-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of tropospheric trace gases' distribution along the Yangtze River during winter 2015. The measurements were performed along the Yangtze River between Shanghai and Wuhan, covering major industrial areas in eastern China. Tropospheric vertical column densities (VCDs) of nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) were retrieved using the air mass factor calculated by the radiative transfer model. Enhanced tropospheric NO2 and SO2 VCDs were detected over downwind areas of industrial zones over the Yangtze River. In addition, spatial distributions of atmospheric pollutants are strongly affected by meteorological conditions; i.e., positive correlations were found between concentration of pollutants and wind speed over these areas, indicating strong influence of transportation of pollutants from high-emission upwind areas along the Yangtze River. Comparison of tropospheric NO2 VCDs between ship-based MAX-DOAS and Ozone Monitoring Instrument (OMI) satellite observations shows good agreement with each other, with a Pearson correlation coefficient (R) of 0.82. In this study, the NO2 / SO2 ratio was used to estimate the relative contributions of industrial sources and vehicle emissions to ambient NO2 levels. Analysis results of the NO2 / SO2 ratio show a higher contribution of industrial NO2 emissions in Jiangsu Province, while NO2 levels in Jiangxi and Hubei provinces are mainly related to vehicle emissions. These results indicate that different pollution control strategies should be applied in different provinces. In addition, multiple linear regression analysis of ambient carbon monoxide (CO) and odd oxygen (Ox) indicated that the primary emission and secondary formation of HCHO contribute 54.4 ± 3.7 % and 39.3 ± 4.3 % to the ambient HCHO, respectively. The largest contribution from primary emissions in winter suggested that

  12. Recent changes of sediment flux to the western Pacific Ocean from major rivers in East and Southeast Asia

    NASA Astrophysics Data System (ADS)

    Wang, Houjie; Saito, Yoshiki; Zhang, Yong; Bi, Naishuang; Sun, Xiaoxiao; Yang, Zuosheng

    2011-09-01

    The five largest rivers in East and Southeast Asia (Yellow, Yangtze, Pearl, Red and Mekong) are important contributors of terrigenous sediment to the western Pacific Ocean. Although they have annually delivered ~ 2000 × 10 9 kg of sediment to the ocean since 1000 yr BP, they presently contribute only ~ 600 × 10 9 kg/yr, which is reverting to a level typical of the relatively undisturbed watersheds before the rise in human activities in East and Southeast Asia at 2000 yr BP. During the most recent decades flow regulation by dams and sediment entrapment by reservoirs, as well as human-influenced soil erosion in the river basins, have sharply reduced the sediment delivered from the large river basins to the ocean. We constructed a time series of data on annual water discharges and sediment fluxes from these large rivers to the western Pacific Ocean covering the period 1950-2008. These data indicate that the short-term (interannual scale) variation of sediment flux is dominated by natural climatic oscillations such as the El Niño/La Niña cycle and that anthropogenic causes involving dams and land use control the long-term (decadal scale) decrease in sediment flux to the ocean. In contrast to the relatively slow historical increase in sediment flux during the period 2000-1000 yr BP, the recent sediment flux has been decreased at an accelerating rate over centennial scales. The alterations of these large river systems by both natural and anthropogenic forcing present severe environmental challenges in the coastal ocean, including the sinking of deltas and declines in coastal wetland areas due to the decreasing sediment supply. Our work thus provides a regional perspective on the large river-derived sediment flux to the ocean over millennial and decadal scales, which will be important for understanding and managing the present and future trends of delivery of terrigenous sediment to the ocean in the context of global change.

  13. Effect of conservation efforts and ecological variables on waterbird population sizes in wetlands of the Yangtze River

    PubMed Central

    Zhang, Yong; Jia, Qiang; Prins, Herbert H. T.; Cao, Lei; de Boer, Willem Frederik

    2015-01-01

    Forage quality and availability, climatic factors, and a wetland’s conservation status are expected to affect the densities of wetland birds. However, the conservation effectiveness is often poorly studied. Here, using twelve years’ census data collected from 78 wetlands in the Yangtze River floodplain, we aimed to understand the effect of these variables on five Anatidae species, and evaluate the effectiveness of the conservation measures by comparing population trends of these species among wetlands that differ in conservations status. We showed that the slope angle of a wetland and the variation thereof best explain the differences in densities of four species. We also found that the population abundances of the Anatidae species generally declined in wetlands along the Yangtze River floodplain over time, with a steeper decline in wetlands with a lower protection status, indicating that current conservation policies might deliver benefits for wintering Anatidae species in China, as population sizes of the species were buffered to some extent against decline in numbers in wetlands with a higher level protection status. We recommend several protection measures to stop the decline of these Anatidae species in wetlands along the Yangtze River floodplain, which are of great importance for the East Asian-Australasian Flyway. PMID:26601785

  14. Effect of conservation efforts and ecological variables on waterbird population sizes in wetlands of the Yangtze River

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Jia, Qiang; Prins, Herbert H. T.; Cao, Lei; de Boer, Willem Frederik

    2015-11-01

    Forage quality and availability, climatic factors, and a wetland’s conservation status are expected to affect the densities of wetland birds. However, the conservation effectiveness is often poorly studied. Here, using twelve years’ census data collected from 78 wetlands in the Yangtze River floodplain, we aimed to understand the effect of these variables on five Anatidae species, and evaluate the effectiveness of the conservation measures by comparing population trends of these species among wetlands that differ in conservations status. We showed that the slope angle of a wetland and the variation thereof best explain the differences in densities of four species. We also found that the population abundances of the Anatidae species generally declined in wetlands along the Yangtze River floodplain over time, with a steeper decline in wetlands with a lower protection status, indicating that current conservation policies might deliver benefits for wintering Anatidae species in China, as population sizes of the species were buffered to some extent against decline in numbers in wetlands with a higher level protection status. We recommend several protection measures to stop the decline of these Anatidae species in wetlands along the Yangtze River floodplain, which are of great importance for the East Asian-Australasian Flyway.

  15. Effect of conservation efforts and ecological variables on waterbird population sizes in wetlands of the Yangtze River.

    PubMed

    Zhang, Yong; Jia, Qiang; Prins, Herbert H T; Cao, Lei; de Boer, Willem Frederik

    2015-11-25

    Forage quality and availability, climatic factors, and a wetland's conservation status are expected to affect the densities of wetland birds. However, the conservation effectiveness is often poorly studied. Here, using twelve years' census data collected from 78 wetlands in the Yangtze River floodplain, we aimed to understand the effect of these variables on five Anatidae species, and evaluate the effectiveness of the conservation measures by comparing population trends of these species among wetlands that differ in conservations status. We showed that the slope angle of a wetland and the variation thereof best explain the differences in densities of four species. We also found that the population abundances of the Anatidae species generally declined in wetlands along the Yangtze River floodplain over time, with a steeper decline in wetlands with a lower protection status, indicating that current conservation policies might deliver benefits for wintering Anatidae species in China, as population sizes of the species were buffered to some extent against decline in numbers in wetlands with a higher level protection status. We recommend several protection measures to stop the decline of these Anatidae species in wetlands along the Yangtze River floodplain, which are of great importance for the East Asian-Australasian Flyway.

  16. [Temporal and spatial distribution of red tide in Yangtze River Estuary and adjacent waters].

    PubMed

    Liu, Lu-San; Li, Zi-Cheng; Zhou, Juan; Zheng, Bing-Hui; Tang, Jing-Liang

    2011-09-01

    The events of red tide were collected in Yangtze River Estuary and adjacent waters from 1972 to 2009. Based on geographic information system (GIS) analysis on the temporal and spatial distribution of red tide, the distribution map was generated accordingly. The results show: (1) There are three red tide-prone areas, which are outside the Yangtze River estuary and the eastern of Sheshan, Huaniaoshan-Shengshan-Gouqi, Zhoushan and the eastern of Zhujiajian. The red tide occurred 174 times in total, in which there were 25 times covered the area was larger than 1 000 km2. After 2000, the frequency of red tide were significantly increasing; (2) The frequent occurrence of red tide was in May (51% of total occurrence) and June (20% of total occurrence); (3) In all of the red tide plankton, the dominant species were Prorocentrum danghaiense, Skeletonema costatum, Prorocentrum dantatum, Nactiluca scientillans. The red tides caused by these species were 38, 35, 15, 10 times separately.

  17. Direct Detection of Potential Pyrethroids in Yangtze River via an Imprinted Multilayer Phosphorescence Probe.

    PubMed

    Chen, Li; Lv, Xiaodong; Dai, Jiangdong; Sun, Lin; Huo, Pengwei; Li, Chunxiang; Yan, Yongsheng

    2018-01-01

    A novel tailored multilayer probe for monitoring potential pyrethroids in the Yangtze River was proposed. The room-temperature phosphorescence method was applied to realize a detection strategy that is superior to the fluorescence method. Efficient Mn-doped ZnS quantum dots with uniform size of 4.6 nm were firstly coated with a mesoporous silica to obtain a suitable intermediate transition layer, then an imprinted layer containing bifenthrin specific recognition sites was anchored. Characterizations verified the multilayer structure convincingly and the detection process relied on the electron transfer-induced fluorescence quenching mechanism. Optional detection time and standard detection curve were obtained within a concentration range from 5.0 to 50 μmol L -1 . The stability was verified to be good after 12 replicates. Feasibility of the probe was proved by monitoring water samples from the Zhenjiang reach of the Yangtze River. The probe offers promise for direct bifenthrin detection in unknown environmental water with an accurate and stable phosphorescence analysis strategy.

  18. Integrated magnetostratigraphy and lithostratigraphy of five cores in Yangtze delta, China : significance of sedimentary evolution

    NASA Astrophysics Data System (ADS)

    Peng, Jie; Yang, XiaoQiang; Qiang, XiaoKe; Liu, YeBo; Zhou, QiXian

    2017-04-01

    The sedimentary history and characteristics of the Yangtze delta help us understand the tectonic evolution and geological formation process in the Eastern coastal area of China since the Cenozoic Era. Previous chronology of sediments in this area are not detailed or precise. Furthermore, when the delta area reached the maximum is still debatable. Palaeomagnetic polarity reversal and excursions, AMS14C dating, optically stimulated luminescence (OSL) dating, and the hard clay marker layer analysis were integrated to establish the chronostratigraphic framework of five drilling cores from the south Yangtze delta. Results from the bottom part of core CSB6 suggested Gauss normal polarity chron, an age of more than about 2600 ka. The other four cores showed initial deposition time between 200-60 ka B.P., significantly later than CSB6. We infer the reason is that CSB6 locating in the Changxin-Fenghua Fracture. Combined with data from referenced magnetostratigraphic cores in the Yangtze River Delta, we suggest that tectonic movement resulted in a much longer depositional age in some parts of the Yangtze River Delta and influenced the sedimentary characteristics of thick (North) to thin (South) and thick (East) to thin (West). In conclusion, a relatively wide range of deposition in the Yangtze River Delta occurred since about 200 ka B.P. The deposition of fine particles (clay-silt), which was controlled by slow tectonic subsidence and sea-level changes, expanded to the whole delta region after about 60 ka B.P. We propose that this time scale maybe used for further study on the evolution of the Yangtze delta's paleoclimate and paleoenvironment. References [1]Peng J,Yang X Q,Qiang X K,et al.Magnetostratigraphy characteristics of several cores around the Qiantang River mouth and its significance.Chinese J.Geophys.(in Chinese),2016,59(8):2949-2964. [2]Li C X, Chen Q Q, Zhang J Q,et al. Stratigraphy and paleoenvironmental changes in the Yangtze Delta during the Late Quaternary

  19. DDTs and HCHs in sediment cores from the coastal East China Sea.

    PubMed

    Lin, Tian; Nizzetto, Luca; Guo, Zhigang; Li, Yuanyuan; Li, Jun; Zhang, Gan

    2016-01-01

    Four sediment cores were collected along the Yangtze-derived sediment transport pathway in the inner shelf of the East China Sea (ECS) for OCP analysis. The sediment records of HCHs and DDTs in estuarine environment reflected remobilization of chemicals from enhanced soil erosion associated to extreme flood events or large scale land use transformation. The sediment records in the open sea, instead, reflected long-term historical trends of OCP application in the source region. Unlike the so-called mud wedge distribution of sediment, inventories of HCHs and DDTs slightly increased from the mouth of Yangtze River alongshore toward south, suggesting the sediment deposition rate was one of factors on the exposure of chemicals within the inner shelf of the ECS. Re-suspension and transport of the Yangtze-derived sediment and consequent fractionation in grain size and TOC were also responsible for the spatial variation of inventories of catchment derived OCPs in a major repository area of the Yangtze suspended sediment. The total burdens of HCHs and DDTs in the inner shelf of the ECS were 35tons and 110tons, respectively. After 1983 (year of the official ban in China), those values were 13tons and 50tons, respectively. It appears that the Yangtze still delivers relatively high inputs of DDTs more than 30years after the official ban. High proportions of DDD+DDE and β-HCH suggested those OCPs mainly originated from historical usage in the catchment recent years. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Tide-Dominated Tract (TDT) as a key sedimentary zone characterizing tide-dominated large-river delta and estuary systems

    NASA Astrophysics Data System (ADS)

    Saito, Y.

    2017-12-01

    Large rivers in continents have a characteristic of slow rise and fall in water levels during floods or the wet season due to a wide drainage basin. A gentle river gradient and large water discharge have relatively large tidal ranges at the river mouth, resulting in large backwater effects further upstream. The result of the Mekong River survey (386 riverbed sediments, river topography, CTD, and biofacies) shows that the distributary channels of the Mekong River delta in Vietnam are divided into two parts: the landward river-dominated tract (RDT) and seaward tide-dominated tract (TDT). The RDT is characterized by a highly variable and deepening trend in water depth and coarse-grained sediments with a fining trend downstream. The TDT is characterized by a shallowing trend in water depth with river-widening, smooth riverbeds, a straight shape, and heterolithic f- to vf-sand and mud alternation (tidal thythmite). The boundary of both tracts is sharply identified by sediment facies and river morphology. Sediment facies indicates that the dominant sedimentary process of bottom sediments is "bedload" in the RDT and "suspension" in the TDT. Daily tidal changes are observed through the year, while water-level changes during the flood/wet season are limited in the TDT. Saltwater intrusion is limited within the seaward part of the TDT alone ( 50 km), close to final bifurcation points. However, brackish-water biofacies is observed in the TDT mainly due to diluted brackish water and/or tolerance to the freshwater environment. These characteristics are also found in the Yangtze; the distance of the TDT/RDT boundary from the river mouth is ca. 100 km in the Mekong, and 200 km in the Yangtze. The preservation potential of sediments in a TDT is low in a progradational system, and high in abandoned channels. The early Holocene transgressive estuary system in the incised valley of the Yangtze formed during the Last Glacial Maximum was composed of 20 m-thick fine-grained heterolithic

  1. Identification of long-term trends and seasonality in high-frequency water quality data from the Yangtze River basin, China

    PubMed Central

    He, Bin; Chen, Yaning; Zou, Shan; Wang, Yi; Nover, Daniel; Chen, Wen; Yang, Guishan

    2018-01-01

    Comprehensive understanding of the long-term trends and seasonality of water quality is important for controlling water pollution. This study focuses on spatio-temporal distributions, long-term trends, and seasonality of water quality in the Yangtze River basin using a combination of the seasonal Mann-Kendall test and time-series decomposition. The used weekly water quality data were from 17 environmental stations for the period January 2004 to December 2015. Results show gradual improvement in water quality during this period in the Yangtze River basin and greater improvement in the Uppermost Yangtze River basin. The larger cities, with high GDP and population density, experienced relatively higher pollution levels due to discharge of industrial and household wastewater. There are higher pollution levels in Xiang and Gan River basins, as indicated by higher NH4-N and CODMn concentrations measured at the stations within these basins. Significant trends in water quality were identified for the 2004–2015 period. Operations of the three Gorges Reservoir (TGR) enhanced pH fluctuations and possibly attenuated CODMn, and NH4-N transportation. Finally, seasonal cycles of varying strength were detected for time-series of pollutants in river discharge. Seasonal patterns in pH indicate that maxima appear in winter, and minima in summer, with the opposite true for CODMn. Accurate understanding of long-term trends and seasonality are necessary goals of water quality monitoring system efforts and the analysis methods described here provide essential information for effectively controlling water pollution. PMID:29466354

  2. Identification of long-term trends and seasonality in high-frequency water quality data from the Yangtze River basin, China.

    PubMed

    Duan, Weili; He, Bin; Chen, Yaning; Zou, Shan; Wang, Yi; Nover, Daniel; Chen, Wen; Yang, Guishan

    2018-01-01

    Comprehensive understanding of the long-term trends and seasonality of water quality is important for controlling water pollution. This study focuses on spatio-temporal distributions, long-term trends, and seasonality of water quality in the Yangtze River basin using a combination of the seasonal Mann-Kendall test and time-series decomposition. The used weekly water quality data were from 17 environmental stations for the period January 2004 to December 2015. Results show gradual improvement in water quality during this period in the Yangtze River basin and greater improvement in the Uppermost Yangtze River basin. The larger cities, with high GDP and population density, experienced relatively higher pollution levels due to discharge of industrial and household wastewater. There are higher pollution levels in Xiang and Gan River basins, as indicated by higher NH4-N and CODMn concentrations measured at the stations within these basins. Significant trends in water quality were identified for the 2004-2015 period. Operations of the three Gorges Reservoir (TGR) enhanced pH fluctuations and possibly attenuated CODMn, and NH4-N transportation. Finally, seasonal cycles of varying strength were detected for time-series of pollutants in river discharge. Seasonal patterns in pH indicate that maxima appear in winter, and minima in summer, with the opposite true for CODMn. Accurate understanding of long-term trends and seasonality are necessary goals of water quality monitoring system efforts and the analysis methods described here provide essential information for effectively controlling water pollution.

  3. [Distribution and source of particulate organic carbon and particulate nitrogen in the Yangtze River Estuary in summer 2012].

    PubMed

    Xing, Jian-Wei; Xian, Wei-Wei; Sheng, Xiu-Zhen

    2014-07-01

    Based on the data from the cruise carried out in August 2012 in the Yangtze River Estuary and its adjacent waters, spatial distributions of particulate organic carbon (POC), particulate nitrogen (PN) and their relationships with environmental factors were studied, and the source of POC and the contribution of phytoplankton to POC were analyzed combined with n (C)/n (N) ratio and chlorophyll a (Chl a) in the Yangtze River Estuary in summer 2012. The results showed that the concentrations of POC in the Yangtze River Estuary ranged from 0.68 mg x L(-1) to 34.80 mg x L(-1) in summer and the average content was 3.74 mg x L(-1), and PN contents varied between 0.03 mg x L(-1) and 9.13 mg x L(-1) with an average value of 0.57 mg x L(-1). Both of them presented that the concentrations in bottom layers were higher than those in the surface. POC and PN as well as total suspended matter (TSM) showed a extremel similar horizontal distribution trend that the highest values appeared in the near of the mouth and southwest of the survey waters, and decreased rapidly as toward the open seas, both of them showed higher contents in coastal zones and lower in outer sea. There was a fairly good positive linear relationship between POC and PN, which indicated that they had the same source. POC and PN expressed significantly positive correlations with TSM and chemical oxygen demand (COD), but showed relatively weak correlations with salinit and chlorophyll a, which demonstrated that terrestrial inputs had a strong influence on the distribution of POC and PN, and phytoplankton production was not the major source of organic matters in the Yangtze River Estuary. Both the n (C)/n (N) ratio and POC/Chl a analysis showed that the main source of POC was terrestrial inputs, and organic debris was the main existence form of POC. Quantitative analysis showed the biomass of phytoplankton only made an average of 2.54% contribution to POC in the Yangtze Rive Estuary in summer and non-living POC

  4. Effects of dam construction and increasing pollutants on the ecohydrological evolution of a shallow freshwater lake in the Yangtze floodplain.

    PubMed

    Zeng, Linghan; McGowan, Suzanne; Cao, Yanmin; Chen, Xu

    2018-04-15

    Large river-floodplain systems which provide a variety of societal, economic and biological benefits are undergoing extensive and intensive human disturbance. However, floodplain lakes responses to multiple stressors are poorly understood. The Yangtze River and its floodplain which provide water and food resources for more than 300 million people are an important region in China. Hydrological regulation as well as socio-economic development have brought profound negative influence on this ecologically important area. To improve understanding of decadal-scale responses of floodplain lakes to multiple stressors, lake sediment proxies including particle size, geochemical elements, diatoms and chironomids were analysed in a lead-210 dated core from Futou Lake. The analyses show that dams constructed in 1935 and the early 1970s stabilized hydrological conditions in Futou Lake and impeded the interaction with the Yangtze River, resulting in a decrease in major elements (e.g., Mg, Al, Fe) transported into the lake and an increase of macrophyte-related chironomids (C. sylvestris-type, P. penicillatus-type and Paratanytarsus sp.). After the late 1990s, further decreases in major elements and increases in median grain size are attributed to the erosion of the Yangtze riverbed and declining supply of major elements-enriched sediments from the upper Yangtze caused by the impoundment of the Three Gorges Dam. Chironomid and diatom assemblages indicate that hydrological stabilization caused by dam constructions stimulated the growth of macrophytes, which may be important in buffering against an ecosystem state change towards a phytoplankton-dominated and turbid state with ongoing eutrophication. However, a recent increase in Zn, TP and the emergence of eutrophic diatom and chironomid species indicate initial signs of water quality deterioration which may be related to the combined effects of hydrological stabilization and aquaculture. Over all, the sediment record from Futou Lake

  5. Cyclic Sediment Trading Between Channel and River Bed Sediments

    NASA Astrophysics Data System (ADS)

    Haddadchi, A.

    2015-12-01

    Much of the previous work on sediment tracing has focused on determining either the initial sources of the sediment (soils derive from a particular rock type) or the erosion processes generating the sediment. However, alluvial stores can be both a source and sink for sediment transported by streams. Here geochemical and fallout radionuclide tracing of river-bed and alluvial sediments are used to determine the role of secondary sources, sediment stores, as potential sources of sediment leaving Emu Creek catchment, southeastern Queensland, Australia. Activity concentrations of 137Cs on the river sediments are consistent with channel erosion being the dominant source at all sites sampled along the river. To characterise the deposition and remobilisation cycles in the catchment, a novel geochemical tracing approach was used. Successive pockets of alluvium were treated as discrete sink terms within geochemical mixing models and their source contributions compared with those of river bed sediments collected adjacent to each alluvial pocket. Three different size fractions were examined; silts and clays (<10 μm), silts (10-63 μm), and fine sands (63-212 μm). The contribution of the initial soil/rock type sources to river bed and alluvial sediments at each sampling site was identical for all three different size fractions, but varied along the stream. Combining these findings it is concluded that proximal alluvial stores dominated the supply of sediment to the river at each location, with this being particularly evident at the catchment outlet. Identical contribution of rock type sources to both river bed and alluvial pockets together with the dominant erosion being from channel banks indicates a high degree of 'trading' between the fluvial space and the alluvial space. Hence, management works aimed at primarily reducing the supply of sediments to the outlet of Emu Creek should focus on rehabilitation of channel banks in the lower catchment.

  6. Distribution and ecological risk of organic pollutants in the sediments and seafood of Yangtze Estuary and Hangzhou Bay, East China Sea.

    PubMed

    Adeleye, Adedayo O; Jin, Haiyan; Di, Yanan; Li, Donghao; Chen, Jianfang; Ye, Ying

    2016-01-15

    A wide variety of persistent organic pollutants (POPs) in the surface marine sediments and seafood from four geographic areas of the East China Sea were investigated. The POP concentrations were analyzed and their possible ecotoxicological risks assessed. The total concentrations of hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) in the sediments were found to be ND-22.40, ND-5.10, 32.10-171.70, and 0.60-63.00 ng/g dry weight (dw), respectively. Low-chlorinated biphenyl congeners and HCHs were predominantly found at the Hangzhou Bay and Yangtze River areas. The sediment ecotoxicological risk was assessed, indicating the toxic effect of PCBs and DDTs on benthic organisms. In marine organisms of economic importance, the concentration of total PAHs, PCBs, and organochlorine pesticides (OCPs) ranged from 43.20 to 291.20, 2.60 to 96.20, and 12.70 to 235.20 μg/kg dw, respectively. The bioaccumulation in marine organisms did not pose a significant health risk to consumers. As indicated by the POP residues in both marine sediments and organisms, POPs were persistent over time, posing a long-term risk to the local ecosystem and human health via the food chain. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Predicting assemblages and species richness of endemic fish in the upper Yangtze River.

    PubMed

    He, Yongfeng; Wang, Jianwei; Lek-Ang, Sithan; Lek, Sovan

    2010-09-01

    The present work describes the ability of two modeling methods, Classification and Regression Tree (CART) and Random Forest (RF), to predict endemic fish assemblages and species richness in the upper Yangtze River, and then to identify the determinant environmental factors contributing to the models. The models included 24 predictor variables and 2 response variables (fish assemblage and species richness) for a total of 46 site units. The predictive quality of the modeling approaches was judged with a leave-one-out validation procedure. There was an average success of 60.9% and 71.7% to assign each site unit to the correct assemblage of fish, and 73% and 84% to explain the variance in species richness, by using CART and RF models, respectively. RF proved to be better than CART in terms of accuracy and efficiency in ecological applications. In any case, the mixed models including both land cover and river characteristic variables were more powerful than either individual one in explaining the endemic fish distribution pattern in the upper Yangtze River. For instance, altitude, slope, length, discharge, runoff, farmland and alpine and sub-alpine meadow played important roles in driving the observed endemic fish assemblage structure, while farmland, slope grassland, discharge, runoff, altitude and drainage area in explaining the observed patterns of endemic species richness. Therefore, the various effects of human activity on natural aquatic ecosystems, in particular, the flow modification of the river and the land use changes may have a considerable effect on the endemic fish distribution patterns on a regional scale. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Trends and variability of daily precipitation extremes during 1960-2012 in the Yangtze River Basin, China

    USDA-ARS?s Scientific Manuscript database

    Trends and variability of extreme precipitation events are important for water-related disaster prevention and mitigation as well as water resource management. Based on daily precipitation dataset from 143 meteorological stations in the Yangtze River Basin (YRB), a suite of precipitation indices rec...

  9. Autumn ichthyoplankton assemblage in the Yangtze Estuary shaped by environmental factors.

    PubMed

    Zhang, Hui; Xian, Weiwei; Liu, Shude

    2016-01-01

    This study investigated the response of the ichthyoplankton community to environmental changes in the Yangtze Estuary using canonical correspondence analysis. Ichthyoplankton community and environmental data were recorded during the autumns of 1998, 2000, 2002, 2003, 2004, 2007 and 2009. Among the ichthyoplankton, the dominant larval and juvenile families were the Engraulidae, Gobiidae and Salangidae, and the most common eggs were from Trichiurus lepturus. The ichthyoplankton was identified via canonical correspondence analysis to three assemblages: an estuary assemblage dominated by Chaeturichthys stigmatias, a coastal assemblage dominated by Engraulis japonicus and Stolephorus commersonii, and an offshore assemblage dominated by Trichiurus lepturus. Regarding environmental factors in the Yangtze Estuary, suspended matter and surface seawater salinity were the main factors influencing the distributions of the different assemblages, while sediment from the Yangtze River during the rainy season and chlorophyll a were the principle drivers of the annual variances in the distribution of ichthyoplankton assemblages. Our aims in this study were to provide detailed characterizations of the ichthyoplankton assemblage in the autumns of seven years, examine the long-term dynamics of autumn ichthyoplankton assemblages, and evaluate the influence of environmental factors on the spatial distribution and inter-annual variations of ichthyoplankton assemblages associated with the Yangtze Estuary.

  10. Autumn ichthyoplankton assemblage in the Yangtze Estuary shaped by environmental factors

    PubMed Central

    Liu, Shude

    2016-01-01

    This study investigated the response of the ichthyoplankton community to environmental changes in the Yangtze Estuary using canonical correspondence analysis. Ichthyoplankton community and environmental data were recorded during the autumns of 1998, 2000, 2002, 2003, 2004, 2007 and 2009. Among the ichthyoplankton, the dominant larval and juvenile families were the Engraulidae, Gobiidae and Salangidae, and the most common eggs were from Trichiurus lepturus. The ichthyoplankton was identified via canonical correspondence analysis to three assemblages: an estuary assemblage dominated by Chaeturichthys stigmatias, a coastal assemblage dominated by Engraulis japonicus and Stolephorus commersonii, and an offshore assemblage dominated by Trichiurus lepturus. Regarding environmental factors in the Yangtze Estuary, suspended matter and surface seawater salinity were the main factors influencing the distributions of the different assemblages, while sediment from the Yangtze River during the rainy season and chlorophyll a were the principle drivers of the annual variances in the distribution of ichthyoplankton assemblages. Our aims in this study were to provide detailed characterizations of the ichthyoplankton assemblage in the autumns of seven years, examine the long-term dynamics of autumn ichthyoplankton assemblages, and evaluate the influence of environmental factors on the spatial distribution and inter-annual variations of ichthyoplankton assemblages associated with the Yangtze Estuary. PMID:27114877

  11. Modeling the spatial-temporal dynamics of net primary production in Yangtze River Basin using IBIS model

    USGS Publications Warehouse

    Zhang, Z.; Jiang, H.; Liu, J.; Zhu, Q.; Wei, X.; Jiang, Z.; Zhou, G.; Zhang, X.; Han, J.

    2011-01-01

    The climate change has significantly affected the carbon cycling in Yangtze River Basin. To better understand the alternation pattern for the relationship between carbon cycling and climate change, the net primary production (NPP) were simulated in the study area from 1956 to 2006 by using the Integrated Biosphere Simulator (IBIS). The results showed that the average annual NPP per square meter was about 0.518 kg C in Yangtze River Basin. The high NPP levels were mainly distributed in the southeast area of Sichuan, and the highest value reached 1.05 kg C/m2. The NPP increased based on the simulated temporal trends. The spatiotemporal variability of the NPP in the vegetation types was obvious, and it was depended on the climate and soil condition. We found the drought climate was one of critical factor that impacts the alterations of the NPP in the area by the simulation. ?? 2011 IEEE.

  12. Satellite remote sensing of water resources in the Yangtze and Yellow Rivers of China based on infrared imagery of cloud distributions

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Dodge, James C.

    1990-01-01

    Although the two largest rivers in China originate in the same region, separated only by the Bayanhar Mountains as a watershed, the Yangtze and Yellow Rivers behave in quite different ways. Most of the warm and humid air currents from the Arabian Sea and Bay of Bengal are blocked by the Bayanhar Mountains. As a result, the amount of water in the Yellow River is only 5 percent of that in the Yangtze River. Based on the cloud coverage area and the cloud volumetric distributions, and also the thickness above 9.4 kms of the cumulus clouds located north and south of the Bayanhar Mountains, from GEO satellite IR imagery, the results suggest that a more detailed investigation is warranted in the hope that the proper modification of cumuli north of the Bayanhar Mountains would enhance the rainfall over the fountainhead of the Yellow River.

  13. Capacity of humic substances to complex with iron at different salinities in the Yangtze River estuary and East China Sea.

    PubMed

    Yang, Rujun; Su, Han; Qu, Shenglu; Wang, Xuchen

    2017-05-03

    The iron binding capacities (IBC) of fulvic acid (FA) and humic acid (HA) were determined in the salinity range from 5 to 40. The results indicated that IBC decreased while salinity increased. In addition, dissolved iron (dFe), FA and HA were also determined along the Yangtze River estuary's increasing salinity gradient from 0.14 to 33. The loss rates of dFe, FA and HA in the Yangtze River estuary were up to 96%, 74%, and 67%, respectively. The decreases in dFe, FA and HA, as well as the change in IBC of humic substances (HS) along the salinity gradient in the Yangtze River estuary were all well described by a first-order exponential attenuation model: y(dFe/FA/HA, S) = a 0 × exp(kS) + y 0 . These results indicate that flocculation of FA and HA along the salinity gradient resulted in removal of dFe. Furthermore, the exponential attenuation model described in this paper can be applied in the major estuaries of the world where most of the removal of dFe and HS occurs where freshwater and seawater mix.

  14. Genetic diversity of the Chinese goat in the littoral zone of the Yangtze River as assessed by microsatellite and mtDNA.

    PubMed

    E, Guang-Xin; Zhao, Yong-Ju; Chen, Li-Peng; Ma, Yue-Hui; Chu, Ming-Xing; Li, Xiang-Long; Hong, Qiong-Hua; Li, Lan-Hui; Guo, Ji-Jun; Zhu, Lan; Han, Yan-Guo; Gao, Hui-Jiang; Zhang, Jia-Hua; Jiang, Huai-Zhi; Jiang, Cao-De; Wang, Gao-Fu; Ren, Hang-Xing; Jin, Mei-Lan; Sun, Yuan-Zhi; Zhou, Peng; Huang, Yong-Fu

    2018-05-01

    The objective of this study was to assess the genetic diversity and population structure of goats in the Yangtze River region using microsatellite and mtDNA to better understand the current status of those goat genetic diversity and the effects of natural landscape in fashion of domestic animal genetic diversity. The genetic variability of 16 goat populations in the littoral zone of the Yangtze River was estimated using 21 autosomal microsatellites, which revealed high diversity and genetic population clustering with a dispersed geographical distribution. A phylogenetic analysis of the mitochondrial D-loop region (482 bp) was conducted in 494 goats from the Yangtze River region. In total, 117 SNPs were reconstructed, and 173 haplotypes were identified, 94.5% of which belonged to lineages A and B. Lineages C, D, and G had lower frequencies (5.2%), and lineage F haplotypes were undetected. Several high-frequency haplotypes were shared by different ecogeographically distributed populations, and the close phylogenetic relationships among certain low-frequency haplotypes indicated the historical exchange of genetic material among these populations. In particular, the lineage G haplotype suggests that some west Asian goat genetic material may have been transferred to China via Muslim migration.

  15. Urban Household Carbon Emission and Contributing Factors in the Yangtze River Delta, China

    PubMed Central

    Xu, Xibao; Tan, Yan; Chen, Shuang; Yang, Guishan; Su, Weizhong

    2015-01-01

    Carbon reduction at the household level is an integral part of carbon mitigation. This study analyses the characteristics, effects, contributing factors and policies for urban household carbon emissions in the Yangtze River Delta of China. Primary data was collected through structured questionnaire surveys in three cities in the region – Nanjing, Ningbo, and Changzhou in 2011. The survey data was first used to estimate the magnitude of household carbon emissions in different urban contexts. It then examined how, and to what extent, each set of demographic, economic, behavioral/cognitive and spatial factors influence carbon emissions at the household level. The average of urban household carbon emissions in the region was estimated to be 5.96 tonnes CO2 in 2010. Energy consumption, daily commuting, garbage disposal and long-distance travel accounted for 51.2%, 21.3%, 16.0% and 11.5% of the total emission, respectively. Regulating rapidly growing car-holdings of urban households, stabilizing population growth, and transiting residents’ low-carbon awareness to household behavior in energy saving and other spheres of consumption in the context of rapid population aging and the growing middle income class are suggested as critical measures for carbon mitigation among urban households in the Yangtze River Delta. PMID:25884853

  16. Characterizing hydrological activities over Yangtze River basin using the new HUST-Grace2016 model, MODIS, and NCEP/NCAR data

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Luo, Z.; Tangdamrongsub, N.; He, L.

    2017-12-01

    Accurate TWS estimation is important to evaluate the situation of the water resource over the Yangtze River basin. This study exploits the TWS observation from the new gravity model, HUST-Grace06, which is developed by a new low-frequency noise processing strategy. A novel GRACE post-processing approach is proposed to enhance the quality of the TWS estimate, and the improved TWS is used to characterize the hydrological activities over the Yangtze River basin. The approach includes the effective noise reduction and the leakage error mitigation based on forward modeling. The HUST-Grace06 derived TWS presents good agreement with the CSR mascon solution as well as the PCR-GLOBWB hydrological model. Particularly, our solution provides remarkable performance in identifying the extreme climate events e.g., flood and drought over the Yangtze River basin. In addition, for the first time, the NCEP/NCAR reanalysis data is incorporated with GRACE in the exploration of the climate induced hydrological activities. The comparison between GRACE and the MODIS-derived NDVI data is also conducted to investigate their connection regarding temporal and spatial distribution. The analysis suggests that the terrestrial reflectance data can be used to represent the TWS information. Importantly, such information can be used to fill the missing data in case of the early termination of GRACE or during the prelaunch of the GRACE Follow-On mission.

  17. Shift in the microbial community composition of surface water and sediment along an urban river.

    PubMed

    Wang, Lan; Zhang, Jing; Li, Huilin; Yang, Hong; Peng, Chao; Peng, Zhengsong; Lu, Lu

    2018-06-15

    Urban rivers represent a unique ecosystem in which pollution occurs regularly, leading to significantly altered of chemical and biological characteristics of the surface water and sediments. However, the impact of urbanization on the diversity and structure of the river microbial community has not been well documented. As a major tributary of the Yangtze River, the Jialing River flows through many cities. Here, a comprehensive analysis of the spatial microbial distribution in the surface water and sediments in the Nanchong section of Jialing River and its two urban branches was conducted using 16S rRNA gene-based Illumina MiSeq sequencing. The results revealed distinct differences in surface water bacterial composition along the river with a differential distribution of Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes and Acidobacteria (P < 0.05). The bacterial diversity in sediments was significantly higher than their corresponding water samples. Additionally, archaeal communities showed obvious spatial variability in the surface water. The construction of the hydropower station resulted in increased Cyanobacteria abundance in the upstream (32.2%) compared to its downstream (10.3%). Several taxonomic groups of potential fecal indicator bacteria, like Flavobacteria and Bacteroidia, showed an increasing trend in the urban water. PICRUSt metabolic inference analysis revealed a growing number of genes associated with xenobiotic metabolism and nitrogen metabolism in the urban water, indicating that urban discharges might act as the dominant selective force to alter the microbial communities. Redundancy analysis suggested that the microbial community structure was influenced by several environmental factors. TP (P < 0.01) and NO 3 - (P < 0.05), and metals (Zn, Fe) (P < 0.05) were the most significant drivers determining the microbial community composition in the urban river. These results highlight that river microbial communities exhibit

  18. The asymmetric response of Yangtze river basin summer rainfall to El Niño/La Niña

    NASA Astrophysics Data System (ADS)

    Hardiman, Steven C.; Dunstone, Nick J.; Scaife, Adam A.; Bett, Philip E.; Li, Chaofan; Lu, Bo; Ren, Hong-Li; Smith, Doug M.; Stephan, Claudia C.

    2018-02-01

    The Yangtze river basin, in South East China, experiences anomalously high precipitation in summers following El Niño. This can lead to extensive flooding and loss of life. However, the response following La Niña has not been well documented. In this study, the response of Yangtze summer rainfall to El Niño/La Niña is found to be asymmetric, with no significant response following La Niña. The nature of this asymmetric response is found to be in good agreement with that simulated by the Met Office seasonal forecast system. Yangtze summer rainfall correlates positively with spring sea surface temperatures in the Indian Ocean and northwest Pacific. Indian Ocean sea surface temperatures are found to respond linearly to El Niño/La Niña, and to have a linear impact on Yangtze summer rainfall. However, northwest Pacific sea surface temperatures respond much more strongly following El Niño and, further, correlate more strongly with positive rainfall years. It is concluded that, whilst delayed Indian Ocean signals may influence summer Yangtze rainfall, it is likely that they do not lead to the asymmetric nature of the rainfall response to El Niño/La Niña.

  19. [Challenges and countermeasures of forestry schistosomiasis control programs in ecological priority of Yangtze River economic belt development].

    PubMed

    Ning, Su; Yong-Jie, Xu

    2016-12-13

    Relevant projects carried out within the Yangtze River economic belt on the impact of schistosomiasis epidemic and transmission are important issues for "ecological priority" in the process of implementing the strategy. The key problems of schistosomiasis epidemic risk, epidemic happening repeatedly, difficulty of rehabilitating Oncomelania hupensis snail control and schistosomiasis prevention forest, lag of evaluation system and platform construction, lack of basic research, et al. were analyzed in the Yangtze River economic belt taking "ecological priority" as the basis in this paper. Then corresponding countermeasures to these challenges were put forward so as to provide the reference for the national forestry schistosomiasis control programs, which include: execution of the comprehensive prevention and control strategy, scheming of the new round of forestry schistosomiasis control programs, strengthening schistosomiasis prevention and control, promoting productivity in existing forestry to consolidate and improve the achievements of previous forestry schistosomiasis control programs, and promoting the intensity of technological innovation to improve the technological level of forestry schistosomiasis control programs.

  20. Spatio-temporal pattern of schistosomiasis in Anhui Province, East China: Potential effect of the Yangtze River - Huaihe River Water Transfer Project.

    PubMed

    Cao, Zhi-Guo; Li, Si; Zhao, Ya-E; Wang, Tian-Ping; Bergquist, Robert; Huang, Yin-Yin; Gao, Feng-Hua; Hu, Yi; Zhang, Zhi-Jie

    2018-05-09

    Anhui Province has been one of typical epidemic areas of schistosomiasis in East China as a wide range of large lake and marshland regions provide an ideal environment for growth and reproduction of the intermediate snail host. With the completion of the Yangtze River-Huaihe River Water Transfer Project (YHWTP), launched by the end of 2016, the epidemic areas are expected to expand and controlling schistosomiasis remains a challenge. Based on annual surveillance data at the county level in Anhui for the period 2006-2015, spatial and temporal cluster analyses were conducted to assess the pattern of risk through spatial (Local Moran's I and flexible scan statistic) and space-time scan statistic (Kulldorff). It was found that schistosomiasis sero-prevalence was dramatically reduced and maintained at a low level. Cluster results showed that spatial extent of schistosomiasis contracted, but snail distribution remained geographically stable across the study area. Clusters, both for schistosomiasis and snail presence, were common along the Yangtze River. Considering the effect of the ongoing YHWTP on the potential spread of schistosomiasis, Zongyang County and Anqing, which will be transected by the new water-transfer route, should be given a priority for strengthened surveillance and control. Attention should also be paid to Guichi since it is close to one of the planned inlets of the YHWTP. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Study on the Evaluation of Economic Support Index for Pig Breeding in Water Network Area of Middle Reaches of Yangtze River

    NASA Astrophysics Data System (ADS)

    Leng, Bi-Bin; Zhang, Qi-zhen; Lai, Wen-wei; Tang, Xin-Fan

    2018-06-01

    The central region of China boasts a long history, abundant resources, convenient transportation, advanced economy, a strong industrial and agricultural foundation and a rapid development of modern service industry, with about 10.7% of the country's total land area, 26.5% of the country's population and a GDP of about 21.4% of the country's total . As the population center, transportation hub, economic hinterland and important market, it is the second echelon of China's economic development; the central region of China plays an important role in the division of labor in China. The middle reaches of the Yangtze River water network includes four neighboring provinces- Hubei, Hunan, Anhui and Jiangxi. Although all four provinces are located in the middle of the Yangtze River Basin, there are still quite some differences. Based on the 2017 Statistical Yearbook data, this paper studies the economic supportive index of pig breeding in four provinces located in the water network area of the middle reaches of the Yangtze River in Jiangxi, Hubei, Hunan and Anhui. The evaluation results show that among the four provinces, the socio-economic conditions of Hubei Province can most support the large-scale cultivation of live pigs, and the support of Jiangxi Province is the weakest.

  2. Atmospheric deposition and air-sea gas exchange fluxes of DDT and HCH in the Yangtze River Estuary, East China Sea

    NASA Astrophysics Data System (ADS)

    Li, Zhongxia; Lin, Tian; Li, Yuanyuan; Jiang, Yuqing; Guo, Zhigang

    2017-07-01

    The Yangtze River Estuary (YRE) is strongly influenced by the Yangtze River and lies on the pathway of the East Asian Monsoon. This study examined atmospheric deposition and air-sea gas exchange fluxes of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) to determine whether the YRE is a sink or source of selected pesticides at the air-water interface under the influences of river input and atmospheric transport. The air-sea gas exchange of DDT was characterized by net volatilization with a marked difference in its fluxes between summer (140 ng/m2/d) and the other three seasons (12 ng/m2/d), possibly due to the high surface seawater temperatures and larger riverine input in summer. However, there was no obvious seasonal variation in the atmospheric HCH deposition, and the air-sea gas exchange reached equilibrium because of low HCH levels in the air and seawater after the long-term banning of HCH and the degradation. The gas exchange flux of HCH was comparable to the dry and wet deposition fluxes at the air-water interface. This suggests that the influences from the Yangtze River input and East Asian continental outflow on the fate of HCH in the YRE were limited. The gas exchange flux of DDT was about fivefold higher than the total dry and wet deposition fluxes. DDT residues in agricultural soil transported by enhanced riverine runoff were responsible for sustaining such a high net volatilization in summer. Moreover, our results indicated that there were fresh sources of DDT from the local environment to sustain net volatilization throughout the year.

  3. Air-Seawater Exchange of Organochlorine Pesticides along the Sediment Plume of a Large Contaminated River.

    PubMed

    Lin, Tian; Guo, Zhigang; Li, Yuanyuan; Nizzetto, Luca; Ma, Chuanliang; Chen, Yingjun

    2015-05-05

    Gaseous exchange fluxes of organochlorine pesticides (OCPs) across the air-water interface of the coastal East China Sea were determined in order to assess whether the contaminated plume of the Yangtze River could be an important regional source of OCPs to the atmosphere. Hexachlorocyclohexanes (HCHs), chlordane compounds (CHLs), and dichlorodiphenyltrichloroethanes (DDTs) were the most frequently detected OCPs in air and water. Air-water exchange was mainly characterized by net volatilization for all measured OCPs. The net gaseous exchange flux ranged 10-240 ng/(m2·day) for γ-HCH, 60-370 ng/(m2·day) for trans-CHL, 97-410 ng/(m2·day) for cis-CHL, and ∼0 (e.g., equilibrium) to 490 ng/(m2·day) for p,p'-DDE. We found that the plume of the large contaminated river can serve as a significant regional secondary atmospheric source of legacy contaminants released in the catchment. In particular, the sediment plume represented the relevant source of DDT compounds (especially p,p'-DDE) sustaining net degassing when clean air masses from the open ocean reached the plume area. In contrast, a mass balance showed that, for HCHs, contaminated river discharge (water and sediment) plumes were capable of sustaining volatilization throughout the year. These results demonstrate the inconsistencies in the fate of HCHs and DDTs in this large estuarine system with declining primary sources.

  4. Formation of A-type granites in the Lower Yangtze River Belt: A perspective from apatite geochemistry

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Yan; Li, He; Ding, Xing; Wu, Kai; Guo, Jia; Liu, Ji-Qiang; Sun, Wei-Dong

    2018-04-01

    Apatite is ubiquitous in A-type granites, and can be used to elucidate the volatile contents of the silicate melt, which reflect its source characteristics. A-type granites have been recognized as a distinct group of granites. A1- and A2-type subgroups are produced under different extensional settings. However, the details of the mechanisms behind the distinctive geochemical characteristics of A1- and A2-type granites remain obscure. Belts of Cretaceous A1- and A2-type granites occur along the Lower Yangtze River Belt in eastern China. Here we investigated the major and trace element compositions of apatites from contemporary A1- and A2-type granites at different localities along the Lower Yangtze River Belt, in order to decipher their discrepant source processes. Apatites from A1- and A2-type granites show similar major and trace elements, but differ in their F and Cl concentrations. Apatites from A1-type granites in the eastern part of the Lower Yangtze River Belt have much lower F and higher Cl concentrations compared to A2-type granites in the western part. Moreover, from the east to the west, the F concentrations of apatites from A1-type granites increase, while the Cl concentrations decline. In a subducted plate, F is retained by amphibole, chlorite, serpentine and mica minerals through the amphibolite stage, and finally by phengite and lawsonite during the eclogite stage, whereas, Cl is controlled by amphibole, chlorite and serpentine. The high and varied Cl concentrations in A1 subgroup apatites, therefore, may be attributed to the breakdown of amphibole, chlorite and/or serpentine decomposition during partial melting of subducted oceanic crust releasing a large amount of Cl at shallower depth. In contrast, F is transported to deeper depths in the subducted oceanic crust, and released through breakdown of phengite and lawsonite, making an important contribution to the formation of A2-type granites. Apatites from A1- and A2-type granite samples show regular

  5. Thyroid hormone disrupting activities associated with phthalate esters in water sources from Yangtze River Delta.

    PubMed

    Shi, Wei; Zhang, Feng-Xian; Hu, Guan-Jiu; Hao, Ying-Qun; Zhang, Xiao-Wei; Liu, Hong-Ling; Wei, Si; Wang, Xin-Ru; Giesy, John P; Yu, Hong-Xia

    2012-07-01

    Thyroid hormone disrupting compounds in water sources is a concern. Thyroid hormone (TH) agonist and antagonist activities of water sources from the Yangtze River, Huaihe River, Taihu Lake and ground water in the Yangtze River Delta region were evaluated by use of a TH reporter gene assay based on the green monkey kidney fibroblast (CV-1). While weak TH receptor (TR) agonist potency was observed in only one of 15 water sources, antagonist potency was present in most of the water sources. TR antagonist equivalents could be explained by the presence of dibutyl phthalate (DBP), with concentrations ranging from 2.8×10(1) to 1.6×10(3) μg DBP /L (ATR-EQ(50)s). None of the ground waters exhibited TH agonist potencies while all of the samples from Taihu Lake displayed notable TR antagonist potencies. To identify the responsible thyroid active compounds, instrumental analysis was conducted to measure a list of potential thyroid-disrupting chemicals, including organochlorine (OC) pesticides and phthalate esters. Combining the results of the instrumental analysis with those of the bioassay, DBP was determined to account for 17% to 144% of ATR-EQ(50)s in water sources. Furthermore, ATR-EQ(20-80) ranges for TR antagonist activities indicated that samples from locations WX-1 and WX-2 posed the greatest health concern and the associated uncertainty may warrant further investigation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Temporal and spatial distribution of red tide outbreaks in the Yangtze River Estuary and adjacent waters, China.

    PubMed

    Liu, Lusan; Zhou, Juan; Zheng, Binghui; Cai, Wenqian; Lin, Kuixuan; Tang, Jingliang

    2013-07-15

    Between 1972 and 2009, evidence of red tide outbreaks in the Yangtze River Estuary and adjacent waters was collected. A geographic information system (GIS) was used to analyze the temporal and spatial distribution of these red tides, and it was subsequently used to map the distribution of these events. The results show that the following findings. (1) There were three red tide-prone areas: outside the Yangtze River Estuary and the eastern coast of Sheshan, the Huaniaoshan-Shengshan-Gouqi waters, and the Zhoushan areas and eastern coast of Zhujiajian. In these areas, red tides occurred 174 total times, 25 of which were larger than 1000 km(2) in areal extent. After 2000, the frequency of red tide outbreaks increased significantly. (2) During the months of May and June, the red tide occurrence in these areas was 51% and 20%, respectively. (3) Outbreaks of the dominant red tide plankton species Prorocentrum dong-haiense, Skeletonema costatum, Prorocentrum dantatum, and Noctiluca scientillan occurred 38, 35, 15, and 10 times, respectively, during the study interval. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Fine sediment trapping in river lateral cavities

    NASA Astrophysics Data System (ADS)

    Juez, C.; Maechler, G.; Schleiss, A. J.; Franca, M. J.

    2016-12-01

    River restoration is nowadays a major issue in the field of hydraulics. The natural course and geometry of the rivers have been artificially changed by human activities for different purposes (land gaining, flood protection, agriculture). From a morphologic point of view, channelized rivers often display a straight path and monotonous river banks. This is in contradiction with natural morphology, where a high diversity can be found across the channel path (meanders) and the banks (pools, riffles). One way to restore rivers consist of transforming the artificial banks by adding macro-roughness elements in the lateral river banks (also called cavities and lateral embayments). The creation of irregularities on the banks causes new flow patterns that diversify the river habitat. However, these lateral cavities may be also responsible of the change of the river morphology, since they may trap the fine sediments travelling within the water. This is particularly important in glacier-fed streams such as the upper Rhone River in Switzerland. These are charged with fine sediments resulting from the erosion of the underlying glaciers bottom. The creation of lateral cavities may affect the sediment and morphological equilibrium of the river since these may trap sediments. This work aims to study the influence of the lateral cavities on the transport of fine sediments in the main channel. A set of laboratory experiments were done which covered a wide range of rectangular cavity configurations. Key parameters such as the flow discharge, the aspect ratio of the cavities and the initial sediment concentration were tested. Surface PIV, sediment samples and turbidity temporal records were collected during the experiments. The trapping efficiency of the cavities and the associated flow patterns were analyzed. The resulting conclusions provide a useful information for the future design of river restoration projects.

  8. Study on Spatial Spillover Effects of Logistics Industry Development for Economic Growth in the Yangtze River Delta City Cluster Based on Spatial Durbin Model

    PubMed Central

    Xu, Xinxing

    2017-01-01

    The overall entropy method is used to evaluate the development level of the logistics industry in the city based on a mechanism analysis of the spillover effect of the development of the logistics industry on economic growth, according to the panel data of 26 cities in the Yangtze River delta. On this basis, the paper uses the spatial durbin model to study the direct impact of the development of the logistics industry on economic growth and the spatial spillover effect. The results show that the direct impact coefficient of the development of the logistics industry in the Yangtze River Delta urban agglomeration on local economic growth is 0.092, and the significant spatial spillover effect on the economic growth in the surrounding area is 0.197. Compared with the labor force input, capital investment and the degree of opening to the world, and government functions, the logistics industry’s direct impact coefficient is the largest, other than capital investment; the coefficient of the spillover effect is higher than other control variables, making it a “strong engine” of the Yangtze River Delta urban agglomeration economic growth. PMID:29207555

  9. Study on Spatial Spillover Effects of Logistics Industry Development for Economic Growth in the Yangtze River Delta City Cluster Based on Spatial Durbin Model.

    PubMed

    Xu, Xinxing; Wang, Yuhong

    2017-12-04

    The overall entropy method is used to evaluate the development level of the logistics industry in the city based on a mechanism analysis of the spillover effect of the development of the logistics industry on economic growth, according to the panel data of 26 cities in the Yangtze River delta. On this basis, the paper uses the spatial durbin model to study the direct impact of the development of the logistics industry on economic growth and the spatial spillover effect. The results show that the direct impact coefficient of the development of the logistics industry in the Yangtze River Delta urban agglomeration on local economic growth is 0.092, and the significant spatial spillover effect on the economic growth in the surrounding area is 0.197. Compared with the labor force input, capital investment and the degree of opening to the world, and government functions, the logistics industry's direct impact coefficient is the largest, other than capital investment; the coefficient of the spillover effect is higher than other control variables, making it a "strong engine" of the Yangtze River Delta urban agglomeration economic growth.

  10. Effects of Spartina alterniflora invasion on soil respiration in the Yangtze River estuary, China.

    PubMed

    Bu, Naishun; Qu, Junfeng; Li, Zhaolei; Li, Gang; Zhao, Hua; Zhao, Bin; Li, Bo; Chen, Jiakuan; Fang, Changming

    2015-01-01

    Many studies have found that plant invasion can enhance soil organic carbon (SOC) pools, by increasing net primary production (NPP) and/or decreased soil respiration. While most studies have focused on C input, little attention has been paid to plant invasion effects on soil respiration, especially in wetland ecosystems. Our study examined the effects of Spartina alterniflora invasion on soil respiration and C dynamics in the Yangtze River estuary. The estuary was originally occupied by two native plant species: Phragmites australis in the high tide zone and Scirpus mariqueter in the low tide zone. Mean soil respiration rates were 185.8 and 142.3 mg CO2 m(-2) h(-1) in S. alterniflora and P. australis stands in the high tide zone, and 159.7 and 112.0 mg CO2 m(-2) h(-1) in S. alterniflora and S. mariqueter stands in the low tide zone, respectively. Aboveground NPP (ANPP), SOC, and microbial biomass were also significantly higher in the S. alterniflora stands than in the two native plant stands. S. alterniflora invasion did not significantly change soil inorganic carbon or pH. Our results indicated that enhanced ANPP by S. alterniflora exceeded invasion-induced C loss through soil respiration. This suggests that S. alterniflora invasion into the Yangtze River estuary could strengthen the net C sink of wetlands in the context of global climate change.

  11. Effects of Spartina alterniflora Invasion on Soil Respiration in the Yangtze River Estuary, China

    PubMed Central

    Bu, Naishun; Qu, Junfeng; Li, Zhaolei; Li, Gang; Zhao, Hua; Zhao, Bin; Li, Bo; Chen, Jiakuan; Fang, Changming

    2015-01-01

    Many studies have found that plant invasion can enhance soil organic carbon (SOC) pools, by increasing net primary production (NPP) and/or decreased soil respiration. While most studies have focused on C input, little attention has been paid to plant invasion effects on soil respiration, especially in wetland ecosystems. Our study examined the effects of Spartina alterniflora invasion on soil respiration and C dynamics in the Yangtze River estuary. The estuary was originally occupied by two native plant species: Phragmites australis in the high tide zone and Scirpus mariqueter in the low tide zone. Mean soil respiration rates were 185.8 and 142.3 mg CO2 m−2 h−1 in S. alterniflora and P. australis stands in the high tide zone, and 159.7 and 112.0 mg CO2 m−2 h−1 in S. alterniflora and S. mariqueter stands in the low tide zone, respectively. Aboveground NPP (ANPP), SOC, and microbial biomass were also significantly higher in the S. alterniflora stands than in the two native plant stands. S. alterniflora invasion did not significantly change soil inorganic carbon or pH. Our results indicated that enhanced ANPP by S. alterniflora exceeded invasion-induced C loss through soil respiration. This suggests that S. alterniflora invasion into the Yangtze River estuary could strengthen the net C sink of wetlands in the context of global climate change. PMID:25799512

  12. [Terrain gradient effect of ecosystem service value in middle reach of Yangtze River, China].

    PubMed

    Yang, Suo Hua; Hu, Shou Geng; Qu, Shi Jin

    2018-03-01

    Using land use data in the year 1995, 2005 and 2014, this study estimated the ecosystem service value (ESV) in each county located in the middle reach of Yangtze River and analyzed its spatiotemporal variation features and terrain gradient effects based on "the equivalent value per unit area of ecosystem services in China". The results showed that ESV in the middle reach of Yangtze River was generally higher in mountainous area but lower in plain region, with an obvious terrain gradient effect. Specifically, the relationship of the relief degree of land surface (RDLS) and the ESV showed significant logarithm function at county scale with a high curve fitting degree of 0.53. The ESV increased from 400.35×10 4 yuan·km -2 to 554.57×10 4 yuan·km -2 with the increasing RDLS (grade 1-5) in 2014. During 1995-2004, the ecosystem service value variation changed from decreasing to stable with the increases of the RDLS. With a perspective of ecosystem service values, the value of food production and waste treatment service value decreased with the increase of the RDLS, while the others increased in general, such as the production of raw materials and gas regulation service value, because of the influences of dynamic land use structure in varied topography and distinct dominant ecosystem services from different land types.

  13. GF-1 and Landsat observed a 40-year wetland spatiotemporal variation and its coupled environmental factors in Yangtze River estuary

    NASA Astrophysics Data System (ADS)

    Sun, Nan; Zhu, Weining; Cheng, Qian

    2018-07-01

    Wetlands are health indicators of aquatic ecosystems and also vulnerable to regional environmental and socio-economic changes. For exploring wetland spatiotemporal variations in estuarine and coastal regions of the Yangtze River, we extracted wetland information from 40-year time-series images of Landsat, GF-1, and other satellites, using the classification method of decision tree. Potential environmental and socio-economic factors which may drive wetland variations were analyzed. Results show that the wetland area in Yangtze River estuary has increased 663 km2, but it was only contributed by the increasing of human-made wetlands (767 km2), which were mostly caused by economic growth and constructions of human-made hydro-projects in Yangtze Delta. In comparison, natural wetlands, such as tidal flats and marshes, have decreased 163 km2. Land reclamation has changed these natural wetlands into reservoirs, aquaculture ponds and paddy fields. Wetlands in Shanghai and Qidong urban regions were mainly affected by human activities, while wetland variations in Chongming Island were mainly controlled by natural factors such as the upstream discharge, precipitation, diurnal variation of tidal level and long-term sea level rising. The general trend is that the natural wetland was transformed into the human-made wetland, and the human-made wetland was transformed into construction land.

  14. Dispersal of river sediment in the Southern California Bight

    USGS Publications Warehouse

    Warrick, J.A.; Farnsworth, K.L.

    2009-01-01

    The rivers of Southern California deliver episodic pulses of water, sediment, nutrients, and pollutants to the region's coastal waters. Although river-sediment dispersal is observed in positively buoyant (hypopycnal) turbid plumes extending tens of kilometers from river mouths, very little of the river sediment is found in these plumes. Rather, river sediment settles quickly from hypopycnal plumes to the seabed, where transport is controlled by bottom-boundary layer processes, presumably including fluid-mud (hyperpycnal) gravity currents. Here we investigate the geographical patterns of river-sediment dispersal processes by examining suspended-sediment concentrations and loads and the continental shelf morphology offshore river mouths. Throughout Southern California, river sediment is discharged at concentrations adequately high to induce enhanced sediment settling, including negative buoyancy. The rivers draining the Western Transverse Range produce suspended-sediment concentrations that are orders of magnitude greater than those in the urbanized region and Peninsular Range to the south, largely due to differences in sediment yield. The majority of sediment discharge from the Santa Clara River and Calleguas Creek occurs above the theoretical negative buoyancy concentration (>40 g/l). These rivers also produce event sediment loading as great as the Eel River, where fluid-mud gravity currents are observed. The continental shelf of Southern California has variable morphology, which influences the ability to transport via gravity currents. Over half of the rivers examined are adjacent to shelf slopes greater than 0.01, which are adequately steep to sustain auto-suspending gravity currents across the shelf, and have little (<10 m) Holocene sediment accumulation. Shelf settings of the Ventura, Santa Clara, and Tijuana Rivers are very broad and low sloped (less than 0.004), which suggests that fluid-mud gravity currents could transport across these shelves, albeit slowly

  15. Shifts in river-floodplain relationship reveal the impacts of river regulation: A case study of Dongting Lake in China

    NASA Astrophysics Data System (ADS)

    Lu, Cai; Jia, Yifei; Jing, Lei; Zeng, Qing; Lei, Jialin; Zhang, Shuanghu; Lei, Guangchun; Wen, Li

    2018-04-01

    Better understanding of the dynamics of hydrological connectivity between river and floodplain is essential for the ecological integrity of river systems. In this study, we proposed a regime-switch modelling (RSM) framework, which integrates change point analysis with dynamic linear regression, to detect and date change points in linear regression, and to quantify the relative importance of natural variations and anthropogenic disturbances. The approach was applied to the long-term hydrological time series to investigate the evolution of river-floodplain relation in Dongting Lake in the last five decades, during which the Yangtze River system experienced unprecedented anthropogenic manipulations. Our results suggested that 1) there were five distinct regimes during which the influence of inflows and local climate on lake water level changed significantly. The detected change points were well corresponding to the major events occurred upon the Yangtze; 2) although the importance of inflows from the Yangtze was greater than that of the tributaries flows over the five regimes, the relative contribution gradually decreased from regime 1 to regime 5. The weakening of hydrological forcing from the Yangtze was mainly attributed to the reduction in channel capacity resulting from sedimentation in the outfalls and water level dropping caused by river bed scour in the mainstream; 3) the effects of local climate was much smaller than these of inflows; and 4) since the operation of The Three Gorges Dam in 2006, the river-floodplain relationship entered a new equilibrium in that all investigated variables changed synchronously in terms of direction and magnitude. The results from this study reveal the mechanisms underlying the alternated inundation regime in Dongting Lake. The identified change points, some of which have not been previously reported, will allow a reappraisal of the current dam and reservoir operation strategies not only for flood/drought risk management but

  16. Trend analyses with river sediment rating curves

    USGS Publications Warehouse

    Warrick, Jonathan A.

    2015-01-01

    Sediment rating curves, which are fitted relationships between river discharge (Q) and suspended-sediment concentration (C), are commonly used to assess patterns and trends in river water quality. In many of these studies it is assumed that rating curves have a power-law form (i.e., C = aQb, where a and b are fitted parameters). Two fundamental questions about the utility of these techniques are assessed in this paper: (i) How well to the parameters, a and b, characterize trends in the data? (ii) Are trends in rating curves diagnostic of changes to river water or sediment discharge? As noted in previous research, the offset parameter, a, is not an independent variable for most rivers, but rather strongly dependent on b and Q. Here it is shown that a is a poor metric for trends in the vertical offset of a rating curve, and a new parameter, â, as determined by the discharge-normalized power function [C = â (Q/QGM)b], where QGM is the geometric mean of the Q values sampled, provides a better characterization of trends. However, these techniques must be applied carefully, because curvature in the relationship between log(Q) and log(C), which exists for many rivers, can produce false trends in â and b. Also, it is shown that trends in â and b are not uniquely diagnostic of river water or sediment supply conditions. For example, an increase in â can be caused by an increase in sediment supply, a decrease in water supply, or a combination of these conditions. Large changes in water and sediment supplies can occur without any change in the parameters, â and b. Thus, trend analyses using sediment rating curves must include additional assessments of the time-dependent rates and trends of river water, sediment concentrations, and sediment discharge.

  17. Development of river sediment monitoring in Croatia

    NASA Astrophysics Data System (ADS)

    Frančišković-Bilinski, Stanislav; Bilinski, Halka; Mlakar, Marina; Maldini, Krešimir

    2017-04-01

    Establishment of regular river sediment monitoring, in addition to water monitoring, is very important. Unlike water, which represents the current state of a particular watercourse, sediment represents a sort of record of the state of pollution in the long run. Sediment monitoring is crucial to gain a real insight into the status of pollution of particular watercourses and to determine trends over a longer period of time. First scientific investigations of river sediment geochemistry in Croatia started 1989 in the Krka River estuary [1], while first systematic research of a river basin in Croatia was performed 2005 in Kupa River drainage basin [2]. Up to now, several detailed studies of both toxic metals and organic pollutants have been conducted in this drainage basin and some other rivers, also Croatian scientists participated in river sediment research in other countries. In 2008 Croatian water authorities (Hrvatske Vode) started preliminary sediment monitoring program, what was successfully conducted. In the first year of preliminary program only 14 stations existed, while in 2014 number of stations increased to 21. Number of monitored watercourses and of analysed parameters also increased. Current plan is to establish permanent monitoring network of river sediments throughout the state. The goal is to set up about 80 stations, which will cover all most important and most contaminated watercourses in all parts of the country [3]. Until the end of the year 2016, regular monitoring was conducted at 31 stations throughout the country. Currently the second phase of sediment monitoring program is in progress. At the moment parameters being determined on particular stations are not uniform. From inorganic compounds it is aimed to determine Cd, Pb, Ni, Hg, Cu, Cr, Zn and As on all stations. The ratio of natural concentrations of those elements vs. anthropogenic influence is being evaluated on all stations. It was found that worse situation is with Ni, Hg and Cr, who

  18. Sediment regime constraints on river restoration - An example from the lower Missouri river

    USGS Publications Warehouse

    Jacobson, R.B.; Blevins, D.W.; Bitner, C.J.

    2009-01-01

    Dammed rivers are subject to changes in their flow, water-quality, and sediment regimes. Each of these changes may contribute to diminished aquatic habitat quality and quantity. Of the three factors, an altered sediment regime is a particularly unyielding challenge on many dammed rivers. The magnitude of the challenge is illustrated on the Lower Missouri River, where the largest water storage system in North America has decreased the downriver suspended-sediment load to 0.2%–17% of pre-dam loads. In response to the altered sediment regime, the Lower Missouri River channel has incised as much as 3.5 m just downstream of Gavins Point Dam, although the bed has been stable to slightly aggrading at other locations farther downstream. Effects of channel engineering and commercial dredging are superimposed on the broad-scale adjustments to the altered sediment regime.The altered sediment regime and geomorphic adjustments constrain restoration and management opportunities. Incision and aggradation limit some objectives of flow-regime management: In incising river segments, ecologically desirable reconnection of the floodplain requires discharges that are beyond operational limits, whereas in aggrading river segments, small spring pulses may inundate or saturate low-lying farmlands. Lack of sediment in the incising river segment downstream of Gavins Point Dam also limits sustainable restoration of sand-bar habitat for bird species listed under the Endangered Species Act. Creation of new shallow-water habitat for native fishes involves taking sediment out of floodplain storage and reintroducing most or all of it to the river, raising concerns about increased sediment, nutrient, and contaminant loads. Calculations indicate that effects of individual restoration projects are small relative to background loads, but cumulative effects may depend on sequence and locations of projects. An understanding of current and historical sediment fluxes, and how they vary along the river

  19. In vitro assessment of thyroid hormone disrupting activities in drinking water sources along the Yangtze River.

    PubMed

    Hu, Xinxin; Shi, Wei; Zhang, Fengxian; Cao, Fu; Hu, Guanjiu; Hao, Yingqun; Wei, Si; Wang, Xinru; Yu, Hongxia

    2013-02-01

    The thyroid hormone disrupting activities of drinking water sources from the lower reaches of Yangtze River were examined using a reporter gene assay based on African green monkey kidney fibroblast (CV-1) cells. None of the eleven tested samples showed thyroid receptor (TR) agonist activity. Nine water samples exhibited TR antagonist activities with the equivalents referring to Di-n-butyl phthalate (DNBP) (TR antagonist activity equivalents, ATR-EQ(50)s) ranging from 6.92 × 10(1) to 2.85 × 10(2) μg DNBP/L. The ATR-EQ(50)s and TR antagonist equivalent ranges (ATR-EQ(30-80) ranges) for TR antagonist activities indicated that the water sample from site WX-8 posed the greatest health risks. The ATR-EQ(80)s of the water samples ranging from 1.56 × 10(3) to 6.14 × 10(3) μg DNBP/L were higher than the NOEC of DNBP. The results from instrumental analysis showed that DNBP might be responsible for the TR antagonist activities in these water samples. Water sources along Yangtze River had thyroid hormone disrupting potential. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Nontarget Mass Spectrometry Reveals New Perfluoroalkyl Substances in Fish from the Yangtze River and Tangxun Lake, China.

    PubMed

    Liu, Yanna; Qian, Manli; Ma, Xinxin; Zhu, Lingyan; Martin, Jonathan W

    2018-05-15

    Nontarget high-resolution mass spectrometry (Nt-HRMS) has been proven useful for the identification of unknown poly- and perfluoroalkyl substances (PFASs) in commercial products and water, but applications to biological samples are limited. China is the major PFAS-manufacturing nation; thus, here, we adapted our Nt-HRMS methods to fish collected from the Yangtze River and Tangxun Lake to discover potentially bioaccumulative PFASs in aquatic organisms destined for human consumption. In addition to traditional PFASs, over 330 other fluorinated analytes belonging to 10 classes of PFASs were detected among the pooled fish livers, including 6 sulfonate classes, 2 amine classes, 1 carboxylate class, and 1 N-heterocycle class. One class was detected in samples from both locations, 8 classes were detected exclusively in Tangxun Lake fish, and 1 class was detected exclusively in Yangtze River fish, 10 km downstream of a fluorochemical manufacturing site where we first reported these substances in wastewater 3 years ago. Overall, 4 of the PFAS classes (>165 analytes) are reported for the first time here. Wider monitoring and toxicological testing should be a priority for understanding the health risks posed to people and wildlife exposed to these substances.

  1. A comparative study of golf industry between Yangtze River Delta, China and Central Japan

    NASA Astrophysics Data System (ADS)

    Yang, Yangfan; Jin, Pingbin; Gong, Huiwen

    2018-03-01

    As a competition event of the 2016 Olympic Game, golf sport has aroused great attention around the world. And the Yangtze River Delta(YRD) in China, has already got certain basis and qualifications of developing golf industry, but somehow far from meeting the great potential demand of the market. This research selects the Yangtze River Delta (YRD) and Central Japan (CJ), which are indifferent golf developing stages, as the objectives. Comparative studies are being carried out with an aim of revealing the discrepancies of golf industry in selected regions. The correlations between golf industry and regional economic developing level have been explored as well. Mainly based on a geographical perspective, this research presents an initial effort to combine approaches of setting comparative indexes and spatial analysis, so that golf industry of selected regions will be compared in all directions. The results reveal that great gaps exist in YRD and CJ in terms of golf construction, service, and golf consumption. Problems in developing golf industry in YRD are identified based on the empirical results. A long-term golf development in YRD that deviating from the realistic demand is attributed to both government policies and the operational principles that the market subjects hold. Based on a comparative empirical study, suggestions relating to the government as well as the market players are put forward, with an aim of guiding the golf industry to develop in a sustainable way.

  2. Occurrence of organotins in the Yangtze River and the Jialing River in the urban section of Chongqing, China.

    PubMed

    Gao, Jun-Min; Zhang, Ying; Guo, Jin-Song; Jin, Fen; Zhang, Ke

    2013-05-01

    The occurrence of organotins in the Yangtze River and the Jialing River in the urban section of Chongqing, China and their impact on drinking water waterworks are reported in this study. Water samples were extracted by solid-phase microextraction and measured using a gas chromatograph with mass spectrometer. The results showed that the rivers studied were polluted by both butyltins and phenyltins and that the butyltin species was the dominant pollutant. Butyltins, especially monobutyltin, were detected in all 18 sampling stations, and phenyltins were detected only in 11 sampling stations. Majority of the organotins were MBTs with concentrations varying from 27.3 to 1,145.8 ng Sn L(-1). Diphenyltin and dibutyltin were the second most common with the highest levels of 113.7 and 202.5 ng Sn L(-1), respectively. Monophenyltin, tributyltin, and triphenyltin had the lowest detection rates with concentration levels of 9.7, 161.8, and 37.2 ng Sn L(-1), respectively. Some of the organotins were also detected in drinking water waterworks, which posed a threat to the water quality of Chongqing.

  3. Bioavailability and preservation of organic phosphorus in freshwater sediments and its role in lake eutrophication

    USDA-ARS?s Scientific Manuscript database

    Lake eutrophication in China is a serious environmental concern, especially in lakes from the middle and lower reaches of Yangtze River region and Southwestern China Plateau. The dissolution of organic matter can result in release of phosphorus (P) from lake sediments and organic phosphate (Po) itse...

  4. [Surveillance and risk assessment system of schistosomiasis in Jiangsu Province Ⅲ Risk of schistosomiasis transmission in the area along the Yangtze River in Yangzhou City].

    PubMed

    Yin-Ping, Zuo; Dao-Jian, Zhu; Guang-Lin, Du; Kai, Tang; Yu-Cai, Ma; Zheng-Qiu, Zhang; Shao-Zhou, Chen; Fubiao, Wang; Hong-Ping, Tang; Jin, Zhang; Le-Ping, Sun

    2016-08-02

    To evaluate the potential risk of schistosomiasis transmission in the area along the Yangtze River in Yangzhou City, so as to provide evidences for establishing a post-transmission surveillance system for schistosomiasis in marshland regions. The water infectivity, floating boatmen and fishermen infection, reservoir host infection and wild feces contamination were investigated in five districts/counties along the Yangtze River in Yangzhou City, including Guangling, Hanjiang, Jiangdu, Yizheng and Development Zone, and the transmission factors and risky characteristics were assessed after interruption of schistosomiasis transmission in marshland regions. A total of 15 key water regions were identified in the area along the Yangtze River in Yangzhou City in 2015. A total of 1 500 sentinel mice were placed, after breeding, their overall survival rate was 99.33%; 1 490 were dissected, with no schistosome infection. Of the 5 576 floating boatmen and fishermen examined, no schistosome infection was observed, and among the 3 566 domestic animals (including 171 cattle, 1 895 sheep and 1 500 pigs), no infections were detected. During the period between January and March, 2016, there were 3 200 mouse traps placed on 8 marshlands, and 62 wild mice were captured from 6 marshlands, with a capture rate of 1.94%, and no schistosomeinfected wild mice were seen. In addition, there were 35 pieces of fresh wild feces captured from 7 marshlands, including 11 pieces of bovine feces (31.43%), 17 pieces of sheep feces (48.57%), 2 pieces of dog feces (5.71%) and 5 pieces of other feces (14.29%), and no infections were detected. There is a low risk of schistosomiasis transmission in the area along the Yangtze River in Yangzhou City. However, the contamination of feces from bovine and sheep that are freely pastured on marshlands is a big threat to schistosomiasis control.

  5. Role of hydrological events in sediment and sediment-associated heavy metals transport within a continental transboundary river system - Tuul River case study (Mongolia)

    NASA Astrophysics Data System (ADS)

    Pietroń, Jan; Jarsjö, Jerker

    2013-04-01

    The concentration of heavy metals in rivers is often greater in the sediment load than in the water solution. Overall, heavy metal conveyance with sediment transport is a significant contributor to the global transport of heavy metals. Heavy metals once released to a river system may remain in the deposits of the river from short to very long times, for instance depending on to which extent erosion and deposition can influence the sediment mass stored in the river bed. In general, the mobility of contaminated sediments to downstream water recipients may to large extent be governed by natural sediment transport dynamics during hydrological events, such as flow peaks following heavy rainfalls. The Tuul River (Northern Mongolia) belongs to a Tuul River-Orkhon River-Selenga River- transboundary river system that discharges into Lake Baikal. The river system is largely characterized by its natural hydrological regime with numerous rapid peak flow events of the spring-summer periods. However, recent studies indicate contamination of fine sediment with heavy metals coming from placer gold mining area (Zaamar Goldfield) located along the downstream Tuul River. In this work, the general idea is to create a one-dimensional sediment transport model of the downstream Tuul River, and use field-data supported modeling to investigate natural erosion-deposition rates and the role of peak flows in natural sediment transport at 14 km reach just downstream the gold mining area. The model results show that the sediment load of the finest investigated grain size has a great potential to be eroded from the bed of the studied reach, especially during the main peak flow events. However, the same events are associated with a significant deposition of the finest material. The model results also show different hysteresis behavior of the sediment load rating curves (clockwise and counter-clockwise) during the main peak flow events. These are interpreted as effects of changing in

  6. Wood and Sediment Dynamics in River Corridors

    NASA Astrophysics Data System (ADS)

    Wohl, E.; Scott, D.

    2015-12-01

    Large wood along rivers influences entrainment, transport, and storage of mineral sediment and particulate organic matter. We review how wood alters sediment dynamics and explore patterns among volumes of instream wood, sediment storage, and residual pools for dispersed pieces of wood, logjams, and beaver dams. We hypothesized that: volume of sediment per unit area of channel stored in association with wood is inversely proportional to drainage area; the form of sediment storage changes downstream; sediment storage correlates most strongly with wood load; and volume of sediment stored behind beaver dams correlates with pond area. Lack of data from larger drainage areas limits tests of these hypotheses, but analyses suggest a negative correlation between sediment volume and drainage area and a positive correlation between wood and sediment volume. The form of sediment storage in relation to wood changes downstream, with wedges of sediment upstream from jammed steps most prevalent in small, steep channels and more dispersed sediment storage in lower gradient channels. Use of a published relation between sediment volume, channel width, and gradient predicted about half of the variation in sediment stored upstream from jammed steps. Sediment volume correlates well with beaver pond area. Historically more abundant instream wood and beaver populations likely equated to greater sediment storage within river corridors. This review of the existing literature on wood and sediment dynamics highlights the lack of studies on larger rivers.

  7. Hyperspectral Imaging of River Systems

    DTIC Science & Technology

    2010-09-30

    98) Prescribed by ANSI Std Z39-18 2 2. As soon as it is available we will collect HICOTM data for the Yangtze River and adjacent coastal...the Yangtze and other river systems. The goal is to validate our algorithms and to further our understanding of this important river and the East...For the past year we have been collecting HICOTM data for the Columbia (Fig. 3) and Yangtze Rivers (Fig. 4). There are many constraints on data

  8. An integrated environmental improvement of marshlands: impact on control and elimination of schistosomiasis in marshland regions along the Yangtze River, China.

    PubMed

    Sun, Le-Ping; Wang, Wei; Zuo, Yin-Ping; Zhang, Zheng-Qiu; Hong, Qing-Biao; Yang, Guo-Jing; Zhu, Hong-Ru; Liang, You-Sheng; Yang, Hai-Tao

    2017-03-22

    Schistosomiasis is a global snail-transmitted infectious disease of poverty. Transmission control had been achieved in China in 2015 after the control efforts for over 60 years. Currently, the remaining core regions endemic for Schistosoma japonicum are mainly located in the marshland and lake regions along the Yangtze River basin. During the period from 2001 through 2015, an integrated environmental improvement of the marshlands was carried out through the implementation of industrial, agricultural and resources development projects in Yizheng County along the Yangtze River. S. japonicum infection in humans, livestock and snails was estimated by serology, stool examination, hatching technique and microscopy during the 15-year study period to evaluate the effect of the integrated environmental improvement on control and elimination of schistosomiasis. A 0.05% overall rate of S. japonicum infection was observed in snails during the 15-year study period, and no infected snails were detected since 2012. The overall prevalence of S. japonicum infection was 0.09% in humans during the study period, and no human infection was found since 2012. In addition, only 13 bovines were identified with S. japonicum infection in 2003 during the 15-year study period, and since 2004, no infection was found in livestock. The results of the present study demonstrate that the implementation of industrial, agricultural and water resources development projects, not only alters snail habitats in marshland regions, and promotes local economic development, which appears a win-to-win strategy to block the transmission of S. japonicum and accelerate socio-economic development along the Yangtze River.

  9. Dependence of Wetland Vegetation on Hydrological Regime in a Large Floodplain Lake (Poyang Lake) in the Middle Yangtze River

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Tan, Z.; Xu, X.

    2017-12-01

    Exemplified in the Yangtze River floodplain lake, Poyang Lake, investigations were carried out to examine the dependence of vegetation on hydrological variables. The Lake is one of the few lakes that remain naturally connected to the Yangtze River. The Lake surface expanses to 4000 km2 in wet seasons, and reduces to less than 1000 km2 in dry seasons, creating some 3000 km2 vital wetland habitats for many animals. Remote sensing was used to obtain the spatial distribution of wetland vegetations. A lake hydrodynamic model using MIKE 21 was employed to determine the variability of wetland inundation. In-situ high time frequency observations of climate, soil moisture, and groundwater depth were also conducted in a typical wetland transect of 1 km long. Vegetations were sampled periodically to obtain species composition, diversity and biomass. Results showed that the spatial distribution of vegetation highly depended on the inundation duration and depth. Optimal hydrological variables existed for the typical vegetations in Poyang Lake wetland. Numerical simulations using HYDRUS-1D further demonstrated that both groundwater depth and soil moisture had significant effects on the growth of vegetation and the water demand in terms of transpiration, even in a wet climate zone such as middle Yangtze River. It was found that the optimal groundwater depths existed for both above- and belowground biomass. Simulation scenarios indicated that climate changes and human modification of hydrology would affect the water usage of vegetation and may cause a strategic adaptation of the vegetation to the stressed hydrological conditions. The study revealed new knowledge on the high dependence of wetland vegetation on both surface water regime and groundwater depths, in wet climate zone. Outcomes of this study may provide support for an integrated management of balancing water resources development and wetland sustainability maintenance in Poyang Lake, and other floodplain wetlands, with

  10. Quantitative tolerance values for common stream benthic macroinvertebrates in the Yangtze River Delta, Eastern China.

    PubMed

    Qin, Chun-Yan; Zhou, Jin; Cao, Yong; Zhang, Yong; Hughes, Robert M; Wang, Bei-Xin

    2014-09-01

    Aquatic organisms' tolerance to water pollution is widely used to monitor and assess freshwater ecosystem health. Tolerance values (TVs) estimated based on statistical analyses of species-environment relationships are more objective than those assigned by expert opinion. Region-specific TVs are the basis for developing accurate bioassessment metrics particularly in developing countries, where both aquatic biota and their responses to human disturbances have been poorly documented. We used principal component analysis to derive a synthetic gradient for four stressor variables (total nitrogen, total phosphorus, dissolved oxygen, and % silt) based on 286 sampling sites in the Taihu Lake and Qiantang River basins (Yangtze River Delta), China. We used the scores of taxa on the first principal component (PC1), which explained 49.8% of the variance, to estimate the tolerance values (TV(r)) of 163 macroinvertebrates taxa that were collected from at least 20 sites, 81 of which were not included in the Hilsenhoff TV lists (TV(h)) of 1987. All estimates were scaled into the range of 1-10 as in TV(h). Of all the taxa with different TVs, 46.3% of TV(r) were lower and 52.4% were higher than TV(h). TV(r) were significantly (p < 0.01, Fig. 2), but weakly (r(2) = 0.34), correlated with TVh. Seven biotic metrics based on TVr were more strongly correlated with the main stressors and were more effective at discriminating references sites from impacted sites than those based on TV(h). Our results highlight the importance of developing region-specific TVs for macroinvertebrate-based bioassessment and to facilitate assessment of streams in China, particularly in the Yangtze River Delta.

  11. Revealing Sources and Distribution Changes of Dissolved Organic Matter (DOM) in Pore Water of Sediment from the Yangtze Estuary

    PubMed Central

    Wang, Ying; Zhang, Di; Shen, Zhenyao; Feng, Chenghong; Chen, Jing

    2013-01-01

    Dissolved organic matter (DOM) in sediment pore waters from Yangtze estuary of China based on abundance, UV absorbance, molecular weight distribution and fluorescence were investigated using a combination of various parameters of DOM as well as 3D fluorescence excitation emission matrix spectra (F-EEMS) with the parallel factor and principal component analysis (PARAFAC-PCA). The results indicated that DOM in pore water of Yangtze estuary was very variable which mainly composed of low aromaticity and molecular weight materials. Three humic-like substances (C1, C2, C4) and one protein-like substance (C3) were identified by PARAFAC model. C1, C2 and C4 exhibited same trends and were very similar. The separation of samples on both axes of the PCA showed the difference in DOM properties. C1, C2 and C4 concurrently showed higher positive factor 1 loadings, while C3 showed highly positive factor 2 loadings. The PCA analysis showed a combination contribution of microbial DOM signal and terrestrial DOM signal in the Yangtze estuary. Higher and more variable DOM abundance, aromaticity and molecular weight of surface sediment pore water DOM can be found in the southern nearshore than the other regions primarily due to the influence of frequent and intensive human activities and tributaries inflow in this area. The DOM abundance, aromaticity, molecular weight and fluorescence intensity in core of different depth were relative constant and increased gradually with depth. DOM in core was mainly composed of humic-like material, which was due to higher release of the sedimentary organic material into the porewater during early diagenesis. PMID:24155904

  12. Ephemeral seafloor sedimentation during dam removal: Elwha River, Washington

    USGS Publications Warehouse

    Foley, Melissa M.; Warrick, Jonathan

    2017-01-01

    The removal of the Elwha and Glines Canyon dams from the Elwha River in Washington, USA, resulted in the erosion and transport of over 10 million m3 of sediment from the former reservoirs and into the river during the first two years of the dam removal process. Approximately 90% of this sediment was transported through the Elwha River and to the coast at the Strait of Juan de Fuca. To evaluate the benthic dynamics of increased sediment loading to the nearshore, we deployed a tripod system in ten meters of water to the east of the Elwha River mouth that included a profiling current meter and a camera system. With these data, we were able to document the frequency and duration of sedimentation and turbidity events, and correlate these events to physical oceanographic and river conditions. We found that seafloor sedimentation occurred regularly during the heaviest sediment loading from the river, but that this sedimentation was ephemeral and exhibited regular cycles of deposition and erosion caused by the strong tidal currents in the region. Understanding the frequency and duration of short-term sediment disturbance events is instrumental to interpreting the ecosystem-wide changes that are occurring in the nearshore habitats around the Elwha River delta.

  13. Ephemeral seafloor sedimentation during dam removal: Elwha River, Washington

    NASA Astrophysics Data System (ADS)

    Foley, Melissa M.; Warrick, Jonathan A.

    2017-11-01

    The removal of the Elwha and Glines Canyon dams from the Elwha River in Washington, USA, resulted in the erosion and transport of over 10 million m3 of sediment from the former reservoirs and into the river during the first two years of the dam removal process. Approximately 90% of this sediment was transported through the Elwha River and to the coast at the Strait of Juan de Fuca. To evaluate the benthic dynamics of increased sediment loading to the nearshore, we deployed a tripod system in ten meters of water to the east of the Elwha River mouth that included a profiling current meter and a camera system. With these data, we were able to document the frequency and duration of sedimentation and turbidity events, and correlate these events to physical oceanographic and river conditions. We found that seafloor sedimentation occurred regularly during the heaviest sediment loading from the river, but that this sedimentation was ephemeral and exhibited regular cycles of deposition and erosion caused by the strong tidal currents in the region. Understanding the frequency and duration of short-term sediment disturbance events is instrumental to interpreting the ecosystem-wide changes that are occurring in the nearshore habitats around the Elwha River delta.

  14. Historical changes in organic matter input to the muddy sediments along the Zhejiang-Fujian Coast, China over the past 160 years

    USGS Publications Warehouse

    Chen, Li-lei; Liu, Jian; Xing, Lei; Krauss, Ken W.; Wang, Jia-sheng; Xu, Gang; Li, Li

    2017-01-01

    The burial of sedimentary organic matter (SOM) in the large river-influenced estuarine-coastal regions is affected by hydrodynamic sorting, diagenesis and human activities. Typically, the inner shelf region of the East China Sea is a major carbon sink of the Yangtze River-derived fine-grained sediments. Most of the previous work concentrated on the studies of surface sediments or used a single-proxy in this region. In this study, two cores from the Zhejiang-Fujian Coast were analyzed using bulk (TOC, TN and δ13CTOC) and molecular biomarker (n-alkane, brassicasterol, dinosterol and glycerol dialkyl glycerol tetraether lipids) techniques to clarify the sources, spatiotemporal distribution and fate of SOM in the Yangtze River Estuary and adjacent shelf. Results from this study indicated that the effects of diagenesis and diffusion on different sedimentary biomarkers resulted in overestimation of the relative contribution of terrestrial organic matter (%OMterr), compared with those based on δ13CTOC. The amounts of terrestrial plant organic matter (OMplant) and%OMterr in sediments decreased offshore. In contrast, the amounts of marine organic matter (OMmarine) increased offshore, but closer to the Yangtze River mouth, the amounts of soil organic matter (OMsoil) increased. Moreover, the amounts of TOC, OMplant and OMmarine biomarkers increased, but OMsoil and%OMterrdecreased over time in recent decades. Our study suggests that spatial organic matter distribution patterns in marine shelf sediments were controlled primarily by hydrodynamic sorting and nutrient concentrations, and temporally diverse patterns were controlled predominantly by anthropogenic influence (e.g., dam construction and soil conservation, reclamation and agricultural plantations, anthropogenic nutrient input, dust storms, eutrophication, etc) and climate events (e.g., interdecadal climatic jump and heavy rain events) in the geological period.

  15. Sediment oxygen demand in the Saddle River and Salem River watersheds, New Jersey, July-August 2008

    USGS Publications Warehouse

    Heckathorn, Heather A.; Gibs, Jacob

    2010-01-01

    Many factors, such as river depth and velocity, biochemical oxygen demand, and algal productivity, as well as sediment oxygen demand, can affect the concentration of dissolved oxygen in the water column. Measurements of sediment oxygen demand, in conjunction with those of other water-column water-quality constituents, are useful for quantifying the mechanisms that affect in-stream dissolved-oxygen concentrations. Sediment-oxygen-demand rates are also needed to develop and calibrate a water-quality model being developed for the Saddle River and Salem River Basins in New Jersey to predict dissolved-oxygen concentrations. This report documents the methods used to measure sediment oxygen demand in the Saddle River and Salem River watersheds along with the rates of sediment oxygen demand that were obtained during this investigation. In July and August 2008, sediment oxygen demand was measured in situ in the Saddle River and Salem River watersheds. In the Saddle River Basin, sediment oxygen demand was measured twice at two sites and once at a third location; in the Salem River Basin, sediment oxygen demand was measured three times at two sites and once at a third location. In situ measurements of sediment oxygen demand in the Saddle River and Salem River watersheds ranged from 0.8 to 1.4 g/m2d (grams per square meter per day) and from 0.6 to 7.1 g/m2d at 20 degrees Celsius, respectively. Except at one site in this study, rates of sediment oxygen demand generally were low. The highest rate of sediment oxygen demand measured during this investigation, 7.1 g/m2d, which occurred at Courses Landing in the Salem River Basin, may be attributable to the consumption of oxygen by a large amount of organic matter (54 grams per kilogram as organic carbon) in the streambed sediments or to potential error during data collection. In general, sediment oxygen demand increased with the concentration of organic carbon in the streambed sediments. Repeated measurements made 6 to 7 days apart

  16. The response of grain production to changes in quantity and quality of cropland in Yangtze River Delta, China.

    PubMed

    Liu, Guilin; Zhang, Luocheng; Zhang, Qian; Musyimi, Zipporah

    2015-02-01

    Cropland in Yangtze River Delta has declined drastically since economic reforms in 1978 that led to rapid economic development. Such cropland loss due to population growth has led to a decline in grain production. This study aimed at analyzing the impact of land use changes on grain production. To achieve this, the spatiotemporal dynamics of cropland during 1980-2010 were analyzed. Irrigation and soil fertility data were used as additional lines of evidence. Cropland loss had negative impacts on grain production. About 80 and 66% of grain production decreased during 1980-2005 and 2005-2010 respectively. This decline was attributed to the conversion of cropland to built-up areas. Abandoned cropland areas were mainly concentrated in regions with high irrigation capability and high soil fertility, while cropland reclamation was mainly in areas with low irrigation and soil fertility, implying that, although cropland was reclaimed, production remained low. The decline in cropland area has reinforced the chronic food insecurity in Yangtze River Delta. This study demonstrated the response of grain production to the changes in cropland quantity and quality. It also provides scientific evidence for decision makers to protect cropland and enhance grain production. © 2014 Society of Chemical Industry.

  17. Sources of suspended sediment in the Lower Roanoke River, NC

    NASA Astrophysics Data System (ADS)

    Jalowska, A. M.; McKee, B. A.; Rodriguez, A. B.; Laceby, J. P.

    2015-12-01

    The Lower Roanoke River, NC, extends 220 km from the fall line to the bayhead delta front in the Albemarle Sound. The Lower Roanoke is almost completely disconnected from the upper reaches by a series of dams, with the furthest downstream dam located at the fall line. The dams effectively restrict the suspended sediment delivery from headwaters, making soils and sediments from the Lower Roanoke River basin, the sole source of suspended sediment. In flow-regulated rivers, bank erosion, especially mass wasting, is the major contributor to the suspended matter. Additional sources of the suspended sediment considered in this study are river channel, surface soils, floodplain surface sediments, and erosion of the delta front and prodelta. Here, we examine spatial and temporal variations in those sources. This study combined the use of flow and grain size data with a sediment fingerprinting method, to examine the contribution of surface and subsurface sediments to the observed suspended sediment load along the Lower Roanoke River. The fingerprinting method utilized radionuclide tracers 210Pb (natural atmospheric fallout), and 137Cs (produced by thermonuclear bomb testing). The contributions of surface and subsurface sources to the suspended sediment were calculated with 95% confidence intervals using a Monte-Carlo numerical mixing model. Our results show that with decreasing river slope and changing hydrography along the river, the contribution of surface sediments increases and becomes a main source of sediments in the Roanoke bayhead delta. At the river mouth, the surface sediment contribution decreases and is replaced by sediments eroded from the delta front and prodelta. The area of high surface sediment contribution is within the middle and upper parts of the delta, which are considered net depositional. Our study demonstrates that floodplains, often regarded to be a sediment sink, are also a sediment source, and they should be factored into sediment, carbon and

  18. Bed Degradation and Sediment Export from the Missouri River after Dam Construction and River Training: Significance to Lower Mississippi River Sediment Loads

    NASA Astrophysics Data System (ADS)

    Blum, M. D.; Viparelli, E.; Sulaiman, Z. A.; Pettit, B. S.

    2016-12-01

    More than 40,000 dams have been constructed in the Mississippi River drainage basin, which has had a dramatic impact on suspended sediment load for the Mississippi delta. The most significant dams were constructed in the 1950s on the Missouri River in South Dakota, after which total suspended loads for the lower Mississippi River, some 2500 km downstream, were cut in half: gauging station data from the Missouri-Mississippi system show significant load reductions immediately after dam closure, followed by a continued downward trend since that time. The delta region is experiencing tremendous land loss in response to acceleration of global sea-level rise, and load reductions of this magnitude may place severe limits on mitigation efforts. Here we examine sediment export from the Missouri system due to bed scour. The US Army Corps of Engineers has compiled changes in river stage at constant discharge for 8 stations between the lowermost dam at Yankton, South Dakota and the Missouri-Mississippi confluence at St. Louis (a distance of 1250 river km), for the period 1930-2010, which we have updated to 2015. These data show two general reaches of significant bed degradation. The first extends from the last major dam at Yankton, South Dakota downstream 300 km to Omaha, Nebraska, where degradation in response to the dam exceeds 3 m. The second reach, with >2.5 m of degradation, occurs in and around Kansas City, Missouri, and has been attributed to river training activities. The reach between Omaha and Kansas City, as well as the lower Missouri below Kansas City, show <1 m of net bed elevation change over the entire 75-year period of record. Integrating bed elevation changes over the period of record, we estimate a total of 1.1-1.2 billion tons of sediment have been exported from the Missouri River due to bed scour following dam construction and river training. This number equates to 20-25 million tons per year, which is sufficient to account for 30% of the total Missouri

  19. Contrasts in Sediment Delivery and Dispersal from River Mouth to Accumulation Zones in High Sediment Load Systems: Fly River, Papua New Guinea and Waipaoa River, New Zealand

    NASA Astrophysics Data System (ADS)

    Ogston, A. S.; Walsh, J. P.; Hale, R. P.

    2011-12-01

    The relationships between sediment-transport processes, short-term sedimentary deposition, subsequent burial, and long-term accumulation are critical to understanding the morphological development of the continental margin. This study focuses on processes involved in formation and evolution of the clinoform in the Gulf of Papua, Papua New Guinea in which much of the riverine sediment accumulates, and comparison to those processes active off the Waipaoa River, New Zealand that form mid-shelf deposits and export sediment to the slope. In tidally dominated deltas, sediment discharged from the river sources must transit through an estuarine region located within the distributary channels, where particle pathways can undergo significant transformations. Within the distributaries of the Fly River tidally dominated delta, near-bed fluid-mud concentrations were observed at the estuarine turbidity maximum and sediment delivery to the nearshore was controlled by the morphology and gradient of the distributary. El Niño results in anonymously low flow and sediment discharge conditions, which limits transport of sediment from the distributaries to the nearshore zone of temporary storage. Because the sediment stored nearshore feeds the prograding clinoform, this perturbation propagates throughout the dispersal system. In wave-dominated regions, transport mechanisms actively move sediment away from the river source, separating the site of deposition and accumulation from the river mouth. River-flood and storm-wave events each create discrete deposits on the Waipaoa River shelf and data has been collected to determine their form, distribution, and relationship to factors such as flood magnitude or wave energy. In this case, transport pathways appear to be influenced by structurally controlled shelf bathymetry. In both cases, the combined fluvial and marine processes can initiate and maintain gravity-driven density flows, and although their triggers and controls differ vastly

  20. Genome Sequence of the Freshwater Yangtze Finless Porpoise.

    PubMed

    Yuan, Yuan; Zhang, Peijun; Wang, Kun; Liu, Mingzhong; Li, Jing; Zheng, Jingsong; Wang, Ding; Xu, Wenjie; Lin, Mingli; Dong, Lijun; Zhu, Chenglong; Qiu, Qiang; Li, Songhai

    2018-04-16

    The Yangtze finless porpoise ( Neophocaena asiaeorientalis ssp. asiaeorientalis ) is a subspecies of the narrow-ridged finless porpoise ( N. asiaeorientalis ). In total, 714.28 gigabases (Gb) of raw reads were generated by whole-genome sequencing of the Yangtze finless porpoise, using an Illumina HiSeq 2000 platform. After filtering the low-quality and duplicated reads, we assembled a draft genome of 2.22 Gb, with contig N50 and scaffold N50 values of 46.69 kilobases (kb) and 1.71 megabases (Mb), respectively. We identified 887.63 Mb of repetitive sequences and predicted 18,479 protein-coding genes in the assembled genome. The phylogenetic tree showed a relationship between the Yangtze finless porpoise and the Yangtze River dolphin, which diverged approximately 20.84 million years ago. In comparisons with the genomes of 10 other mammals, we detected 44 species-specific gene families, 164 expanded gene families, and 313 positively selected genes in the Yangtze finless porpoise genome. The assembled genome sequence and underlying sequence data are available at the National Center for Biotechnology Information under BioProject accession number PRJNA433603.

  1. Genome Sequence of the Freshwater Yangtze Finless Porpoise

    PubMed Central

    Yuan, Yuan; Zhang, Peijun; Wang, Kun; Liu, Mingzhong; Li, Jing; Zheng, Jinsong; Wang, Ding; Xu, Wenjie; Lin, Mingli; Dong, Lijun; Zhu, Chenglong; Qiu, Qiang

    2018-01-01

    The Yangtze finless porpoise (Neophocaena asiaeorientalis ssp. asiaeorientalis) is a subspecies of the narrow-ridged finless porpoise (N. asiaeorientalis). In total, 714.28 gigabases (Gb) of raw reads were generated by whole-genome sequencing of the Yangtze finless porpoise, using an Illumina HiSeq 2000 platform. After filtering the low-quality and duplicated reads, we assembled a draft genome of 2.22 Gb, with contig N50 and scaffold N50 values of 46.69 kilobases (kb) and 1.71 megabases (Mb), respectively. We identified 887.63 Mb of repetitive sequences and predicted 18,479 protein-coding genes in the assembled genome. The phylogenetic tree showed a relationship between the Yangtze finless porpoise and the Yangtze River dolphin, which diverged approximately 20.84 million years ago. In comparisons with the genomes of 10 other mammals, we detected 44 species-specific gene families, 164 expanded gene families, and 313 positively selected genes in the Yangtze finless porpoise genome. The assembled genome sequence and underlying sequence data are available at the National Center for Biotechnology Information under BioProject accession number PRJNA433603. PMID:29659530

  2. Sediment Transport Over Run-of-River Dams

    NASA Astrophysics Data System (ADS)

    O'Brien, M.; Magilligan, F. J.; Renshaw, C. E.

    2016-12-01

    Dams have numerous documented effects that can degrade river habitat downstream. One significant effect of large dams is their ability to trap sediment delivered from upstream. This trapping can alter sediment transport and grain size downstream - effects that often motivate dam removal decisions. However, recent indirect observations and modeling studies indicate that small, run-of-river (ROR) dams, which do not impede discharge, may actually leak sediment downstream. However, there are no direct measurements of sediment flux over ROR dams. This study investigates flow and sediment transport over four to six different New England ROR dams over a summer-fall field season. Sediment flux was measured using turbidity meters and tracer (RFID) cobbles. Sediment transport was also monitored through an undammed control site and through a river where two ROR dams were recently removed. These data were used to predict the conditions that contribute to sediment transport and trapping. Year 1 data show that tracer rocks of up to 61 mm were transported over a 3 m ROR dam in peak flows of 84% of bankfull stage. These tracer rocks were transported over and 10 m beyond the dam and continue to move downstream. During the same event, comparable suspended sediment fluxes of up to 81 g/s were recorded both upstream and downstream of the dam at near-synchronous timestamps. These results demonstrate the potential for sediment transport through dammed rivers, even in discharge events that do not exceed bankfull. This research elucidates the effects of ROR dams and the controls on sediment transport and trapping, contributions that may aid in dam management decisions.

  3. The internal strength of rivers: autogenic processes in control of the sediment load (Tana River, Kenya)

    NASA Astrophysics Data System (ADS)

    Geeraert, Naomi; Ochieng Omengo, Fred; Tamooh, Fredrick; Paron, Paolo; Bouillon, Steven; Govers, Gerard

    2014-05-01

    The construction of sediment rating curves for monitoring stations is a widely used technique to budget sediment fluxes. Changes in the relationship between discharge and sediment concentrations over time are often attributed to human-induced changes in catchment characteristics, such as land use change, dam construction or soil conservation measures and many models have been developed to quantitatively link catchment characteristics and river sediment load. Conversely, changes in river sediment fluxes are often interpreted as indications of major changes in the catchment. By doing so, autogenic processes, taking place within the river channel, are overlooked despite the increasing awareness of their importance. We assessed the role of autogenic processes on the sediment load of Tana River (Kenya). The Tana river was impacted by major dam construction between 1968 and 1988, effectively blocking at least 80% of the sediment transfer from the highlands to the lower river reaches. However, a comparison of pre-dam sediment fluxes at Garissa (located 250 km downstream of the dams) with recent measurements shows that sediment fluxes have not changed significantly. This suggests that most of the sediment in the post-dam period has to originate from inside the alluvial plain of the river, as tributaries downstream of the dams are scarce and intermittent. Several observations are consistent with this hypothesis. We observed that, during the wet season, sediment concentrations rapidly increased below the dams and are not controlled by inputs from tributaries. Also, sediment concentrations were high at the beginning of the wet season, which can be attributed to channel adjustment to the higher discharges. The river sediment does not contain significant amounts of 137Cs or 210Pbxs, suggesting that sediments are not derived from topsoil erosion. Furthermore, we observed a counter clockwise hysteresis during individual events which can be explained by the fact that sediment

  4. Optimization of sample preparation and chromatography for the determination of perfluoroalkyl acids in sediments from the Yangtze Estuary and East China Sea.

    PubMed

    Wang, Qian-Wen; Yang, Gui-Peng; Zhang, Ze-Ming; Zhang, Jing

    2018-08-01

    Perfluoroalkyl acids (PFAAs) are ubiquitous pollutants present in various environmental media, including marine sediments. A method was proposed for the determination of 17 target PFAA analytes in marine sediment samples (n = 49) collected from the Yangtze Estuary and East China Sea. The proposed method involves the use of an optimized pretreatment procedure and ultrahigh-performance liquid chromatography electrospray ionization-tandem mass spectrometry in dynamic multiple reaction monitoring mode. The method relied on extraction cycles using methanol followed by concentration, filtration, and small volume injection to UHPLC-MS/MS. The recovery, time efficiency, and detection limit of the proposed method are improved relative to those of traditional methods. Limits of detection varied from 0.003 to 0.045 ng/g, and spike recoveries to sediment ranged from 90% to 110% with suitable precisions (1.7%-14.6%). PFAAs were widely present in the samples, and ΣPFAAs ranged from 0.67 ng/g dw to 36.75 ng/g dw. Results indicated that terrigenous input strongly influences PFAA distribution in sediments from the study areas. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) were identified as the dominant perfluorocarboxylic acid (PFCA) and perfluoroalkylsulfonate (PFSA) in sediment samples from the Yangtze Estuary and the East China Sea. Preliminary environmental risk assessment indicated that PFOS may pose a higher environmental risk than PFOA. Furthermore, risk quotient values indicated that PFOS poses a significant risk to the aquatic ecosystem of the study areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. On extracting sediment transport information from measurements of luminescence in river sediment

    USGS Publications Warehouse

    Gray, Harrison J.; Tucker, Gregory E.; Mahan, Shannon; McGuire, Chris; Rhodes, Edward J.

    2017-01-01

    Accurately quantifying sediment transport rates in rivers remains an important goal for geomorphologists, hydraulic engineers, and environmental scientists. However, current techniques for measuring long-time scale (102–106 years) transport rates are laborious, and formulae to predict transport are notoriously inaccurate. Here we attempt to estimate sediment transport rates by using luminescence, a property of common sedimentary minerals that is used by the geoscience community for geochronology. This method is advantageous because of the ease of measurement on ubiquitous quartz and feldspar sand. We develop a model from first principles by using conservation of energy and sediment mass to explain the downstream pattern of luminescence in river channel sediment. We show that the model can accurately reproduce the luminescence observed in previously published field measurements from two rivers with very different sediment transport styles. The model demonstrates that the downstream pattern of river sand luminescence should show exponential-like decay in the headwaters which asymptotes to a constant value with further downstream distance. The parameters from the model can then be used to estimate the time-averaged virtual velocity, characteristic transport lengthscale, storage time scale, and floodplain exchange rate of fine sand-sized sediment in a fluvial system. The sediment transport values predicted from the luminescence method show a broader range than those reported in the literature, but the results are nonetheless encouraging and suggest that luminescence demonstrates potential as a sediment transport indicator. However, caution is warranted when applying the model as the complex nature of sediment transport can sometimes invalidate underlying simplifications.

  6. Precursory strong-signal characteristics of the convective clouds of the Central Tibetan Plateau detected by radar echoes with respect to the evolutionary processes of an eastward-moving heavy rainstorm belt in the Yangtze River Basin

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Xu, Xiangde; Ruan, Zheng; Chen, Bin; Wang, Fang

    2018-03-01

    The integrated analysis of the data from a C-band frequency-modulated continuous-wave (C-FMCW) radar site in Naqu obtained during a rainstorm over the middle and lower reaches of the Yangtze River and the data concerning the three-dimensional structure of the circulation of the precipitation system that occurred over the lower reaches of the Yangtze River Basin during the Third Tibetan Plateau (TP) Atmospheric Experiment from August 15th to 19th, 2014, was carried out. The changes in the echo intensity at the C-FMCW radar site in Naqu were of regional indicative significance for the characteristics of the whole-layer apparent heat source Q1 in local areas and the region of the adjacent river source area, including the Yangtze River, Yellow River, and Lancang River (hereinafter referred to as the "source area of three rivers"), as well as to the vertical speeds due to the development of convection. This study indicates that the C-FMCW radar echo intensity of the plateau convection zone and the related power structures of the coupled dipole circulations in the middle layer of the atmosphere, as well as in the upper atmospheric level divergence and lower atmospheric level convergence, are important stimuli for convective clouds in this region. Furthermore, these radar data provided a physical image of the development and maintenance mechanisms of an eastward-moving heavy rainstorm belt. This study also shows that changes in the echo intensities at the C-FMCW radar site of Naqu can provide strong signals related to heavy rainstorm processes in the upper reaches of the Yangtze River.

  7. Atmospheric nitrogen deposition in the Yangtze River basin: Spatial pattern and source attribution.

    PubMed

    Xu, Wen; Zhao, Yuanhong; Liu, Xuejun; Dore, Anthony J; Zhang, Lin; Liu, Lei; Cheng, Miaomiao

    2018-01-01

    The Yangtze River basin is one of the world's hotspots for nitrogen (N) deposition and likely plays an important role in China's riverine N output. Here we constructed a basin-scale total dissolved inorganic N (DIN) deposition (bulk plus dry) pattern based on published data at 100 observational sites between 2000 and 2014, and assessed the relative contributions of different reactive N (N r ) emission sectors to total DIN deposition using the GEOS-Chem model. Our results show a significant spatial variation in total DIN deposition across the Yangtze River basin (33.2 kg N ha -1 yr -1 on average), with the highest fluxes occurring mainly in the central basin (e.g., Sichuan, Hubei and Hunan provinces, and Chongqing municipality). This indicates that controlling N deposition should build on mitigation strategies according to local conditions, namely, implementation of stricter control of N r emissions in N deposition hotspots but moderate control in the areas with low N deposition levels. Total DIN deposition in approximately 82% of the basin area exceeded the critical load of N deposition for semi-natural ecosystems along the basin. On the basin scale, the dominant source of DIN deposition is fertilizer use (40%) relative to livestock (11%), industry (13%), power plant (9%), transportation (9%), and others (18%, which is the sum of contributions from human waste, residential activities, soil, lighting and biomass burning), suggesting that reducing NH 3 emissions from improper fertilizer (including chemical and organic fertilizer) application should be a priority in curbing N deposition. This, together with distinct spatial variations in emission sector contributions to total DIN deposition also suggest that, in addition to fertilizer, major emission sectors in different regions of the basin should be considered when developing synergistic control measures. Copyright © 2017. Published by Elsevier Ltd.

  8. A monitoring study of the 1998 rainstorm along the Yangtze River of China by using TIPEX data

    NASA Astrophysics Data System (ADS)

    Wang, Jizhi; Yang, Yuanqin; Xu, Xiangde; Zhang, Guangzhi

    2003-05-01

    By using data from the Secondary Tibetan Plateau Science Experiment (TIPEX) in 1998, including enhanced soundings, surface observations, data from captive balloons, remote sensing, and Doppler radar (China and Japan cooperative study of GAME/ Tibet), a monitoring study on the generation and moving track of the cumulus convective systems over the Tibetan Plateau is made, and the relationship between the evolution of cloud systems over the Tibetan Plateau and 1998 flooding in China is studied. The results are as follows. 1) Analyzing the image animation and Hovmoller diagram of satellite TBB data shows that the rainstorms for the Yangtze River in the last ten days of July 1998 can be tracked regionally to the Tibetan Plateau. 2) For the period of cloud clusters passing through the Amdo station (18 19 July), monitoring observations by Doppler radar is made. The monitoring of radar echoes shows that the developing, eastward motion, and strengthening of the echoes can be frequently observed in the middle of the Tibetan Plateau. An integrated analysis and tracking of the generation, disappearance, development, and eastward motion of these convective systems by using multiple instruments is very valuable for diagnosing and predicting the influence of the plateau systems on the downstream weather situation. 3) The integrated analysis of space-time cross sections of the enhanced upper air and surface observations from TIPEX during the intensified observation period shows that the frequent development of convective clouds over the Tibetan Plateau is related with the quasi-stationary convergence of surface winds. The dynamic convergence of surface winds, the vertical shear in the upper air, and transportation of water vapor due to increasing humidity over the Tibetan Plateau played an important role in the developing and strengthening of rainstorms over the Yangtze River in 1998. 4) Meso-sale filtration analysis of the vertical distribution of water vapor over the Tibetan

  9. Elements patterns of soil and river sediments as a tracer of sediment migration

    NASA Astrophysics Data System (ADS)

    Dordevic, Dragana; Pétursdóttir, Þórunn; Halldórsson, Guðmundur; Sakan, Sanja; Škrivalj, Sandra; Finger, David Christian

    2017-04-01

    Iceland is the small island on the mid Atlantic ridge, with strong natural catastrophes, such as floods, droughts, landslides, storms and volcanic eruptions that can have devastating impacts on natural and build environment. Rangárvellir area next to Mt Hekla and the glacier Tindfjallajökul has impacted by severe erosion processes but also rich of surface water that play a crucial role in sediment transport processes in the watersheds of the two rivers Eystri-Rangá and Ytri-Rangá. Their sediments consist of various materials originating from volcanoes ash and lava. Difference of contents of various chemical components in sediments and surrounding soil could be bases for identification of erosion processes and watersheds connectivity. River sediment is accumulator of chemical constituents from water in water-sediment interaction, making it as an important material for investigation their migration routes. In order to develop of methods for investigating of sediment migration using their chemical patterns the STSM of Connecteur COST Action ES1306-34336 have been approved. Samples of river sediments and surrounding soils of the Eystri-Rangá and Ytri-Rangá rivers in watersheds of Rangárvellir area as well as primarily volcanic ash from Eyafjallajökull were taken. Sequential extraction of heavy metals and trace elements from collected samples has been applied using the optimized procedure proposed by European Community Bureau of reference (BCR) in the next fractions: 1) soluble in acid - metals that are exchangeable or associated with carbonates; 2) reducible fraction - metals associated with oxides of Fe and Mn; 3) oxidizable fraction - metals associated with organic matter and sulfides and 4) residual fraction - metals strongly associated with the crystalline structure of minerals. Extracted solutions have analyzed by ICP/OES on next elements: Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Sb, Si, Sr, V, Zn. Distributions

  10. Hyperpycnal sediment discharge from semiarid southern California rivers: Implications for coastal sediment budgets

    USGS Publications Warehouse

    Warrick, J.A.; Milliman, John D.

    2003-01-01

    Southern California rivers discharge hyperpycnal (river density greater than ocean density) concentrations of suspended sediment (>40 g/L, according to buoyancy theory) during flood events, mostly during El Nin??o-Southern Oscillation (ENSO) conditions. Because hyperpycnal river discharge commonly occurs during brief periods (hours to occasionally days), mean daily flow statistics often do not reveal the magnitude of these events. Hyperpycnal events are particularly important in rivers draining the Transverse Range and account for 75% of the cumulative sediment load discharged by the Santa Clara River over the past 50 yr. These events are highly pulsed, totaling only ??? 30 days (??? 0.15% of the total 50 yr period). Observations of the fate of sediment discharge, although rare, are consistent with hyperpycnal river dynamics and the high likelihood of turbidity currents during these events. We suggest that much of the sediment load initially bypasses the littoral circulation cells and is directly deposited on the adjacent continental shelf, thus potentially representing a loss of immediate beach sand supply. During particularly exceptional events (>100 yr recurrence intervals), flood underflows may extend past the shelf and escape to offshore basins.

  11. Dating sediment cores from Hudson River marshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robideau, R.; Bopp, R.F.

    1993-03-01

    There are several methods for determining sediment accumulation rates in the Hudson River estuary. One involves the analysis of the concentration of certain radionuclides in sediment core sections. Radionuclides occur in the Hudson River as a result of: natural sources, fallout from nuclear weapons testing and low level aqueous releases from the Indian Point Nuclear Power Facility. The following radionuclides have been studied in the authors work: Cesium-137, which is derived from global fallout that started in the 1950's and has peaked in 1963. Beryllium-7, a natural radionuclide with a 53 day half-life and found associated with very recently depositedmore » sediments. Another useful natural radionuclide is Lead-210 derived from the decay of Radon-222 in the atmosphere. Lead-210 has a half-life of 22 years and can be used to date sediments up to about 100 years old. In the Hudson River, Cobalt-60 is a marker for Indian Point Nuclear Reactor discharges. The author's research involved taking sediment core samples from four sites in the Hudson River Estuarine Research Reserve areas. These core samples were sectioned, dried, ground and analyzed for the presence of radionuclides by the method of gamma-ray spectroscopy. The strength of each current pulse is proportional to the energy level of the gamma ray absorbed. Since different radionuclides produce gamma rays of different energies, several radionuclides can be analyzed simultaneously in each of the samples. The data obtained from this research will be compared to earlier work to obtain a complete chronology of sediment deposition in these Reserve areas of the river. Core samples may then by analyzed for the presence of PCB's, heavy metals and other pollutants such as pesticides to construct a pollution history of the river.« less

  12. Fluvial bar dynamics in large meandering rivers with different sediment supply in the Amazon River basin

    NASA Astrophysics Data System (ADS)

    Monegaglia, Federico; Zolezzi, Guido; Tubino, Marco; Henshaw, Alex

    2017-04-01

    Sediments in the large meandering rivers of the Amazon basin are known to be supplied by sources providing highly different magnitudes of sediment input and storage, ranging from the sediment-rich Andean region to the sediment-poor Central Trough. Recent observations have highlighted how such differences in sediment supply have an important, net effect on the rates of planform activity of meandering rivers in the basin, in terms of meander migration and frequency of cutoffs. In this work we quantify and discuss the effect of sediment supply on the organization of macroscale sediment bedforms on several large meandering rivers in the Amazon basin, and we link our findings with those regarding the rates of planform activity. Our analysis is conducted through the newly developed software PyRIS, which enables us to perform extensive multitemporal analysis of river morphodynamics from multispectral remotely sensed Landsat imagery in a fully automated fashion. We show that large rivers with low sediment supply tend to develop alternate bars that consistently migrate through long reaches, characterized at the same time by limited planform development. On the contrary, high sediment supply is associated with the development of point bars that are well-attached to the evolving meander bends and that follow temporal oscillations around the bend apexes, which in turn show rapid evlution towards complex meander shapes. Finally, rivers with intermediate rates of sediment supply develop rather steady point bars associated with slowly migrating, regular meanders. We finally discuss the results of the image analysis in the light of the properties of river planform metrics (like channel curvature and width) for the examined classes of river reaches with different sediment supply rates.

  13. Magnetic properties of Surabaya river sediments, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Mariyanto, Bijaksana, Satria

    2017-07-01

    Surabaya river is one of urban rivers in East Java Province, Indonesia that is a part of Brantas river that flows in four urban and industrial cities of Mojokerto, Gresik, Sidoarjo, and Surabaya. The urban populations and industries along the river pose serious threat to the river mainly for their anthropogenic pollutants. This study aims to characterize the magnetic properties of sediments in various locations along Surabaya river and correlate these magnetic properties to the level of pollution along the river. Samples are taken and measured through a series of magnetic measurements. The mass-specific magnetic susceptibility of sediments ranges from 259.4 to 1134.8 × 10-8 m3kg-1. The magnetic minerals are predominantly PSD to MD magnetite with the grain size range from 6 to 14 μm. The mass-specific magnetic susceptibility tends to decreases downstream as accumulation of magnetic minerals in sediments is affected not only by the amount of household and industrial wastes but also by sediment dredging, construction of embankments, and extensive erosion arround the river. Sediments located in the industrial zone on the upstream area tend to have higher mass-specific magnetic susceptibility than in the non-industrial zones on the downstream area.

  14. Improving simulations of snow water equivalent and total water storage changes over the Upper Yangtze River basin using multi-source remote sensing data

    NASA Astrophysics Data System (ADS)

    Han, P.; Long, D.

    2017-12-01

    Snow water equivalent (SWE) and total water storage (TWS) changes are important hydrological state variables over cryospheric regions, such as China's Upper Yangtze River (UYR) basin. Accurate simulation of these two state variables plays a critical role in understanding hydrological processes over this region and, in turn, benefits water resource management, hydropower development, and ecological integrity over the lower reaches of the Yangtze River, one of the largest rivers globally. In this study, an improved CREST model coupled with a snow and glacier melting module was used to simulate SWE and TWS changes over the UYR, and to quantify contributions of snow and glacier meltwater to the total runoff. Forcing, calibration, and validation data are mainly from multi-source remote sensing observations, including satellite-based precipitation estimates, passive microwave remote sensing-based SWE, and GRACE-derived TWS changes, along with streamflow measurements at the Zhimenda gauging station. Results show that multi-source remote sensing information can be extremely valuable in model forcing, calibration, and validation over the poorly gauged region. The simulated SWE and TWS changes and the observed counterparts are highly consistent, showing NSE coefficients higher than 0.8. The results also show that the contributions of snow and glacier meltwater to the total runoff are 8% and 6%, respectively, during the period 2003‒2014, which is an important source of runoff. Moreover, from this study, the TWS is found to increase at a rate of 5 mm/a ( 0.72 Gt/a) for the period 2003‒2014. The snow melting module may overestimate SWE for high precipitation events and was improved in this study. Key words: CREST model; Remote Sensing; Melting model; Source Region of the Yangtze River

  15. Sediment Transport in the Lower Yampa River, Northwestern Colorado

    USGS Publications Warehouse

    Elliott, John G.; Kircher, James E.; Von Guerard, Paul

    1984-01-01

    Discharge measurements and sediment samples were taken at streamflow-gaging station 09260050 Yampa River at Deerlodge Park in 1982 and 1983 to determine the annual sediment supply to the Yampa Canyon in Dinosaur National Monument. Forty-three years of discharge records at two tributary sites were combined to determine the historic discharge of the Yampa River at Deerlodge Park. A mean annual hydrograph and flow-duration curve were derived from these data. Sediment-transport equations were derived for total sediment discharge, suspended-sediment discharge, bedload dischagre, and the discharge of sediment in several particle-sizes. Annual sediment discharge were determined by the flow-duration, sediment-rating-curve method and indicated annual total sediment discharge was approximately 2.0 million tons per year of which 0.8 million tons per year was sand-sized material. Bedload was almost entirely sand, and annual bedload discharge was 0.1 million tons per year. Development of water resources in the Yampa River basin could effect the geomorphic character of the Yampa River at Deerlodge Park and the Yampa Canyon. Several scenarios of altered streamflow frequency distribution, reduced streamflow volume, and reduced sediment supply are examined to estimate the effect on the sediment budget at Deerlodge Park. (USGS)

  16. Multi-timescale sediment responses across a human impacted river-estuary system

    NASA Astrophysics Data System (ADS)

    Chen, Yining; Chen, Nengwang; Li, Yan; Hong, Huasheng

    2018-05-01

    Hydrological processes regulating sediment transport from land to sea have been widely studied. However, anthropogenic factors controlling the river flow-sediment regime and subsequent response of the estuary are still poorly understood. Here we conducted a multi-timescale analysis on flow and sediment discharges during the period 1967-2014 for the two tributaries of the Jiulong River in Southeast China. The long-term flow-sediment relationship remained linear in the North River throughout the period, while the linearity showed a remarkable change after 1995 in the West River, largely due to construction of dams and reservoirs in the upland watershed. Over short timescales, rainstorm events caused the changes of suspended sediment concentration (SSC) in the rivers. Regression analysis using synchronous SSC data in a wet season (2009) revealed a delayed response (average 5 days) of the estuary to river input, and a box-model analysis established a quantitative relationship to further describe the response of the estuary to the river sediment input over multiple timescales. The short-term response is determined by both the vertical SSC-salinity changes and the sediment trapping rate in the estuary. However, over the long term, the reduction of riverine sediment yield increased marine sediments trapped into the estuary. The results of this study indicate that human activities (e.g., dams) have substantially altered sediment delivery patterns and river-estuary interactions at multiple timescales.

  17. [Effects of macro-jellyfish abundance dynamics on fishery resource structure in the Yangtze River estuary and its adjacent waters].

    PubMed

    Shan, Xiu-Juan; Zhuang, Zhi-Meng; Jin, Xian-Shi; Dai, Fang-Qun

    2011-12-01

    Based on the bottom trawl survey data in May 2007 and May and June 2008, this paper analyzed the effects of the abundance dynamics of macro-jellyfish on the species composition, distribution, and abundance of fishery resource in the Yangtze River estuary and its adjacent waters. From May 2007 to June 2008, the average catch per haul and the top catch per haul of macro-jellyfish increased, up to 222.2 kg x h(-1) and 1800 kg x h(-1) in June 2008, respectively. The macro-jellyfish were mainly distributed in the areas around 50 m isobath, and not beyond 100 m isobath where was the joint front of the coastal waters of East China Sea, Yangtze River runoff, and Taiwan Warm Current. The main distribution area of macro-jellyfish in June migrated northward, as compared with that in May, and the highest catches of macro-jellyfish in May 2007 and May 2008 were found in the same sampling station (122.5 degrees E, 28.5 degrees N). In the sampling stations with higher abundance of macro-jellyfish, the fishery abundance was low, and the fishery species also changed greatly, mainly composed by small-sized species (Trachurus japonicus, Harpadon nehereus, and Acropoma japonicum) and pelagic species (Psenopsis anomala, Octopus variabilis) and Trichiurus japonicus, and P. anomala accounted for 23.7% of the total catch in June 2008. Larimichthys polyactis also occupied higher proportion of the total catch in sampling stations with higher macro-jellyfish abundance, but the demersal species Lophius litulon was not found, and a few crustaceans were collected. This study showed that macro-jellyfish had definite negative effects on the fishery community structure and abundance in the Yangtze River estuary fishery ecosystem, and further, changed the energy flow patterns of the ecosystem through cascading trophic interactions. Therefore, macro-jellyfish was strongly suggested to be an independent ecological group when the corresponding fishery management measures were considered.

  18. Sediment-quality assessment of the Lower Oconee River

    USGS Publications Warehouse

    Lasier, P.J.; Winger, P.V.; Shelton, J.L.; Bogenrieder, K.J.

    2004-01-01

    Sediment quality was assessed at multiple sites in the lower Oconee River, GA to identify contaminants potentially affecting the survival of an endemic ?At-Risk? species of fish, the robust redhorse (Moxostoma robustum). Five major tributaries that drain urban and agricultural watersheds enter this stretch of river and several carry permitted municipal and industrial effluents containing Cd, Cu, and Zn. Sediments for chemical analyses and toxicity tests with Hyalella azteca (Amphipoda) were collected at 12 locations that included sites above and below the major tributaries. Compared to national data bases and to the nearby Apalachicola-Chattahoochee-Flint watershed, sediments from the Oconee River had elevated concentrations of Cr, Cu, Hg and Zn. Zinc concentrations showed a marked increase in sediment downstream of the confluence of Buffalo Creek demonstrating contributions from permitted municipal and industrial effluents discharged to that tributary. When exposed to these sediments, growth of H. azteca was significantly reduced. Amphipod growth was also reduced when exposed to sediments collected from another site due to toxicity from Cr. Sediments in the lower Oconee River appear to be impaired due to metal contamination and could pose a threat to organisms, such as the robust redhorse, that are closely associated with this matrix during their life cycle.

  19. Association analysis between spatiotemporal variation of vegetation greenness and precipitation/temperature in the Yangtze River Basin (China).

    PubMed

    Cui, Lifang; Wang, Lunche; Singh, Ramesh P; Lai, Zhongping; Jiang, Liangliang; Yao, Rui

    2018-05-23

    The variation in vegetation greenness provides good understanding of the sustainable management and monitoring of land surface ecosystems. The present paper discusses the spatial-temporal changes in vegetation and controlling factors in the Yangtze River Basin (YRB) using Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) for the period 2001-2013. Theil-Sen Median trend analysis, Pearson correlation coefficients, and residual analysis have been used, which shows decreasing trend of the annual mean NDVI over the whole YRB. Spatially, the regions with significant decreasing trends were mainly located in parts of central YRB, and pronounced increasing trends were observed in parts of the eastern and western YRB. The mean NDVI during spring and summer seasons increased, while it decreased during autumn and winter seasons. The seasonal mean NDVI shows spatial heterogeneity due to the vegetation types. The correlation analysis shows a positive relation between NDVI and temperature over most of the YRB, whereas NDVI and precipitation show a negative correlation. The residual analysis shows an increase in NDVI in parts of eastern and western YRB and the decrease in NDVI in the small part of Yangtze River Delta (YRD) and the mid-western YRB due to human activities. In general, climate factors were the principal drivers of NDVI variation in YRB in recent years.

  20. The influence of seasonal climate on the morphology of the mouth-bar in the Yangtze Estuary, China

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Townend, Ian; Cai, Huayang; He, Jiawei; Mei, Xuefei

    2018-02-01

    The geomorphology of the Yangtze Estuary in the Changjiang River Delta in Eastern China has been the subject of extensive research. This study extends previous work to examine the influence of wind-waves on the mouth-bar, where about half of the river-borne material settles to the bed. The site is located just outside of Changjiang River mouth, which is meso-tidal and subject to seasonally varying river flows and wind-wave conditions. Modeling was performed with a coupled wave-current hydrodynamic model using TELEMAC and TOMAWAC and validated against observed data. Bottom Shear Stress (BSS) from river, tide and waves based on the numerical model output was used to infer the respective contribution to the evolution of the subaqueous delta. Our examination did not however extend to modeling the sediment transport or the morphological bed changes. The results suggest that (i) the dominance of river discharge is limited to an area inside the mouth, while outside, the mouth-bar is tide-wave dominant; (ii) considering just the tide, the currents on the shallow shoals are flood dominant and deep channels are ebb dominant, which induces continued accretion over the shallows and erodes the deeper parts of the mouth-bar until the tidal currents become too weak to transport sediment; (iii) whereas waves are very efficient at reshaping the shallow shoals, with the effect being subtly dependent on the depth distribution over the mouth-bar; (iv) the stability of shallow shoal morphology is highly dependent on the presence of seasonal wind-waves and characterized as "summer storing and winter erosion", while deep channels perform like corridors of water and sediment, exporting sediment all year round. The nature of the mouth-bar response has important implications for coastal management, such as the ongoing deep water channel maintenance, reclamations and coastal defense measures.

  1. A Regional Survey of River-plume Sedimentation on the Mississippi River Delta Front

    NASA Astrophysics Data System (ADS)

    Courtois, A. J.; Bentley, S. J.; Xu, K.; Georgiou, I. Y.; Maloney, J. M.; Miner, M. D.; Chaytor, J. D.; Smith, J.

    2017-12-01

    Many studies of the Mississippi River and Delta (MRD) have shown historic declines in sediment load reaching the main river distributaries over the last few decades. Recent studies also reported that 50% of the suspended load during floods is sequestered within the delta. While the impact of declining sediment load on wetland loss is well documented, submarine sedimentary processes on the delta front during this recent period of declining sediment load are understudied. To better understand modern sediment dispersal and deposition across the Mississippi River Delta Front, 31 multicores were collected in June 2017 from locations extending offshore from Southwest Pass, South Pass, and Pass a Loutre (the main river outlets) in water depths of 25-280 m. Core locations were selected based on multibeam bathymetry and morphology collected by the USGS in May 2017; the timing of collection coincided with the end of annual peak discharge on the Mississippi River. This multi-agency survey is the first to study delta-front sedimentary processes regionally with such a wide suite of tools. Target locations for coring included the dominant depositional environments: mudflow lobes, gullies, and undisturbed prodelta. Cores were subsampled at 2 cm intervals and analyzed for Beryllium-7 activity via gamma spectrometry; in such settings, Be-7 can be used as a tracer of sediment recently delivered from fluvial origin. Results indicate a general trend of declining Be-7 activity with increasing distance from source, and in deeper water. Inshore samples near Southwest Pass show the deepest penetration depth of Be-7 into the sediment (24-26 cm), which is a preliminary indicator of rapid seasonal sedimentation. Nearshore samples from South Pass exhibited similar Be-7 penetration depths, with results near Pass a Loutre to 14-16 cm depth. Be-7 remains detectable to 2 cm in water 206 m deep, approximately 20 km from South Pass. Sediment dispersal remains impressive offshore from all three

  2. Phosphorus sorption and buffering mechanisms in suspended sediments from the Yangtze Estuary and Hangzhou Bay, China

    NASA Astrophysics Data System (ADS)

    Li, M.; Whelan, M. J.; Wang, G.; White, S. M.

    2012-12-01

    The adsorption isotherm and the mechanism of the buffering effect are important controls on phosphorus behaviors in estuaries and are important for estimating phosphate concentrations in aquatic environments. In this paper, we derive phosphate adsorption isotherms in order to investigate sediment adsorption and buffering capacity for phosphorus discharged from sewage outfalls in the Yangtze Estuary and Hangzhou Bay near Shanghai, China. Experiments were also carried out at different temperatures in order to explore the buffering effects for phosphate. The results show that P sorption in sediments with low fine particle fractions was best described using exponential equations. Some P interactions between water and sediment may be caused by the precipitation of CaHPO4 from Ca2+ and HPO42- when the phosphate concentration in the liquid phase is high. Results from the buffering experiments suggest that the Zero Equilibrium Phosphate Concentrations (EPC0) vary from 0.014 mg l-1 to 0.061 mg l-1, which are consistent with measured phosphate concentrations in water samples collected at the same time as sediment sampling. Values of EPC0 and linear sorption coefficients (K) in sediments with high fine particle and organic matter contents are relatively high, which implies that they have high buffering capacity. Both EPC0 and K increase with increasing temperature, indicating a higher P buffering capacity at high temperatures.

  3. Phosphorus sorption and buffering mechanisms in suspended sediments from the Yangtze Estuary and Hangzhou Bay, China

    NASA Astrophysics Data System (ADS)

    Li, M.; Whelan, M. J.; Wang, G. Q.; White, S. M.

    2013-05-01

    The adsorption isotherm and the mechanism of the buffering effect are important controls on phosphorus (P) behaviors in estuaries and are important for estimating phosphate concentrations in aquatic environments. In this paper, we derive phosphate adsorption isotherms in order to investigate sediment adsorption and buffering capacity for phosphorus discharged from sewage outfalls in the Yangtze Estuary and Hangzhou Bay near Shanghai, China. Experiments were also carried out at different temperatures in order to explore the buffering effects for phosphate. The results show that P sorption in sediments with low fine particle fractions was best described using exponential equations. Some P interactions between water and sediment may be caused by the precipitation of CaHPO4 from Ca2+ and HPO42- when the phosphate concentration in the liquid phase is high. Results from the buffering experiments suggest that the Zero Equilibrium Phosphate Concentrations (EPC0) vary from 0.014 mg L-1 to 0.061 mg L-1, which are consistent with measured phosphate concentrations in water samples collected at the same time as sediment sampling. Values of EPC0 and linear sorption coefficients (K) in sediments with high fine particle and organic matter contents are relatively high, which implies that they have high buffering capacity. Both EPC0 and K increase with increasing temperature, indicating a higher P buffering capacity at high temperatures.

  4. Experiments on sediment pulses in mountain rivers

    Treesearch

    Y. Cui; T. E. Lisle; J. E. Pizzuto; G. Parker

    1998-01-01

    Pulses of sediment can be introduced into mountain rivers from such mechanisms as debris flows, landslides and fans at tributary confluences. These processes can be natural or associated with the activities of humans, as in the case of a pulse created by sediment derived from timber harvest or the removal of a dam. How does the river digest these pulses?

  5. Linking the historic 2011 Mississippi River flood to coastal wetland sedimentation

    USGS Publications Warehouse

    Falcini, Federico; Khan, Nicole S.; Macelloni, Leonardo; Horton, Benjamin P.; Lutken, Carol B.; McKee, Karen L.; Santoleri, Rosalia; Colella, Simone; Li, Chunyan; Volpe, Gianluca; D’Emidio, Marco; Salusti, Alessandro; Jerolmack, Douglas J.

    2012-01-01

    Wetlands in the Mississippi River deltaic plain are deteriorating in part because levees and control structures starve them of sediment. In Spring of 2011 a record-breaking flood brought discharge on the lower Mississippi River to dangerous levels, forcing managers to divert up to 3500 m3/s-1 of water to the Atchafalaya River Basin. Here we quantify differences between the Mississippi and Atchafalaya River inundation and sediment-plume patterns using field-calibrated satellite data, and assess the impact these outflows had on wetland sedimentation. We characterize hydrodynamics and suspended sediment patterns of the Mississippi River plume using in-situ data collected during the historic flood. We show that the focused, high-momentum jet from the leveed Mississippi delivered sediment far offshore. In contrast, the plume from the Atchafalaya was more diffuse; diverted water inundated a large area; and sediment was trapped within the coastal current. Maximum sedimentation (up to several centimetres) occurred in the Atchafalaya Basin despite the larger sediment load carried by the Mississippi. Minimum accumulation occurred along the shoreline between these river sources. Our findings provide a mechanistic link between river-mouth dynamics and wetland sedimentation patterns that is relevant for plans to restore deltaic wetlands using artificial diversions.

  6. Seasonal variation in drifting eggs and larvae in the upper Yangtze, China.

    PubMed

    Jiang, Wei; Liu, Huan-Zhang; Duan, Zhong-Hua; Cao, Wen-Xuan

    2010-05-01

    From 5 March to 25 July 2008, ichthyoplankton drifting into the Three Gorges Reservoir from the upper reaches of the Yangtze River were sampled daily to investigate the species composition, abundance, and seasonal variation in early-stage fishes in this area. Twenty-eight species belonging to five orders and 17 families or subfamilies were identified by analyzing fish eggs and larvae, and a total of 14.16 billion individuals were estimated drifting through the sampling section during the investigation. Among the ichthyoplankton sampled, species in Cultrinae, Cobitidae, Gobioninae and Gobiidae, along with the common carp (Cyprinus carpio Linnaeus), comprised 89.6% of the total amount. Six peaks of drift density were identified during the sampling period, and a significant correlation was found between drift density with water discharge. The dominant species were different in each drift peak, indicating different spawning times for the major species. The total amount of the four major Chinese carps that drifted through the sampling section was estimated as 0.88 billion, indicating an increase in the population sizes of these species in the upper reaches of the Yangtze River after construction of the Three Gorges Dam. Actually, these reaches have become the largest spawning area for the four major Chinese carps in the Yangtze River. The large total amount of eggs and larvae drifting through this section demonstrated that the upper reaches of the Yangtze River provided important spawning sites for many fish species, and that conservation of this area should be of great concern.

  7. Land claim and loss of tidal flats in the Yangtze Estuary.

    PubMed

    Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun

    2016-04-01

    Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world's largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km(2), a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics.

  8. Land claim and loss of tidal flats in the Yangtze Estuary

    PubMed Central

    Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun

    2016-01-01

    Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world’s largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km2, a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics. PMID:27035525

  9. Land claim and loss of tidal flats in the Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun

    2016-04-01

    Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world’s largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km2, a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics.

  10. Purus River suspended sediment variability and contributions to the Amazon River from satellite data (2000-2015)

    NASA Astrophysics Data System (ADS)

    Santos, Andre Luis Martinelli Real dos; Martinez, Jean Michel; Filizola, Naziano Pantoja; Armijos, Elisa; Alves, Luna Gripp Simões

    2018-01-01

    The Purus River is one of the major tributaries of Solimões River in Brazil, draining an area of 370,091 km2 and stretching over 2765 km. Unlike those of the other main tributaries of the Amazon River, the Purus River's sediment discharge is poorly characterized. In this study, as an alternative to the logistic difficulties and considering high monitoring costs, we report an experiment where field measurement data and 2700 satellite (MODIS) images are combined to retrieve both seasonal and interannual dynamics in terms of the Purus river sediment discharge near its confluence with the Solimões River. Field radiometric and hydrologic measurements were acquired during 18 sampling trips, including 115 surface water samples and 61 river discharge measurements. Remote sensing reflectance gave important results in the red and infrared levels. They were very well correlated with suspended sediment concentration. The values of R2 are greater than 0.8 (red band) and 0.9 (NIR band). A retrieval algorithm based on the reflectance in both the red and the infrared was calibrated using the water samples collected for the determination of the surface-suspended sediment concentration (SSS). The algorithm was used to calculate 16 years of SSS time series with MODIS images at the Purus River near its confluence with the Solimões River. Results from satellite data correlated with in situ SSS values validate the use of satellite data to be used as a tool to monitor SSS in the Purus River. We evidenced a very short and intense sediment discharge pulse with 55% of the annual sediment budget discharged during the months of January and February. Using river discharge records, we calculated the mean annual sediment discharge of the Purus River at about of 17 Mt·yr-1.

  11. [Effect of water conservancy schistosomiasis control projects combined with molluscicide to control Oncomelania hupensis snails in rivers connecting with Yangtze River in Pukou District, Nanjing City].

    PubMed

    Qiang, Zhou; Li-Xin, Wan; De-Rong, Hang; Qi-Hui, You; Jun, You; Yu-Lin, Zhang; Zhao-Feng, Zhu; Yi-Xin, Huang

    2017-12-07

    To evaluate the effect of the water conservancy schistosomiasis control projects combined with molluscicide to control Oncomelania hupensis snails in the rivers connecting with the Yangtze River. The water conservancy schistosomiasis control projects of Zhujiashan River, Qili River and Gaowang River were chosen as the study objects in Pukou District, Nanjing City. The data review method and field investigation were used to evaluate the effect of the water conservancy schistosomiasis control projects combined with molluscicide to control O. hupensis snails. After the projects of the water level control and concrete slope protection and mollusciciding were implemented, the snails in the project river sections were completely eliminated. The snail diffusion did not happen in the inland irrigation area too. In the outside of the river beach, though the snails still existed, the snail densities plunged below 1.0 snail per 1.0 m 2 . The comprehensive measures of the combination of water level control, concrete slope protection and mollusciciding can effectively control and eliminate the snails, and prevent the snails from spreading.

  12. Fractionation of rare earth elements in the Mississippi River estuary and river sediments

    NASA Astrophysics Data System (ADS)

    Adebayo, S. B.; Johannesson, K. H.

    2017-12-01

    This study presents the first set of data on the fractionation of rare earth elements (REE) in the mixing zone between the Mississippi River and the Gulf of Mexico, as well as the fractionation of REE in the operationally defined fractions of Mississippi River sediments. This subject is particularly important because the Mississippi river is one of the world's major rivers, and contributes a substantial amount of water and sediment to the ocean. Hence, it is a major source of trace elements to the oceans. The geochemistry of the REE in natural systems is principally important because of their unique chemical properties, which prompt their application as tracers of mass transportation in modern and paleo-ocean environments. Another important consideration is the growth in the demand and utilization of REE in the green energy and technology industries, which has the potential to bring about a change in the background levels of these trace elements in the environment. The results of this study show a heavy REE enrichment of both the Mississippi River water and the more saline waters of the mixing zone. Our data demonstrate that coagulation and removal of REE in the low salinity region of the estuary is more pronounced among the Light REE ( 35% for Nd) compared to the Heavy REE. Remarkably, our data also indicate that REE removal in the Mississippi River estuary is significantly less than that observed in other estuaries, including the Amazon River system. We propose that the high pH/alkalinity of the Mississippi River is responsible for the greater stability of REE in the Mississippi River estuary. The results of sequential extraction of river sediments reveal different Sm/Nd ratios for the various fractions, which we submit implies different 143Nd/144Nd ratios of the labile fractions of the sediments. The possible impact of such hypothesized different Nd isotope signatures of labile fractions of the river sediments on Gulf of Mexico seawater is under investigation.

  13. Spatial-Temporal Variations of Chlorophyll-a in the Adjacent Sea Area of the Yangtze River Estuary Influenced by Yangtze River Discharge.

    PubMed

    Wang, Ying; Jiang, Hong; Jin, Jiaxin; Zhang, Xiuying; Lu, Xuehe; Wang, Yueqi

    2015-05-20

    Carrying abundant nutrition, terrigenous freshwater has a great impact on the spatial and temporal heterogeneity of phytoplankton in coastal waters. The present study analyzed the spatial-temporal variations of Chlorophyll-a (Chl-a) concentration under the influence of discharge from the Yangtze River, based on remotely sensed Chl-a concentrations. The study area was initially zoned to quantitatively investigate the spatial variation patterns of Chl-a. Then, the temporal variation of Chl-a in each zone was simulated by a sinusoidal curve model. The results showed that in the inshore waters, the terrigenous discharge was the predominant driving force determining the pattern of Chl-a, which brings the risk of red tide disasters; while in the open sea areas, Chl-a was mainly affected by meteorological factors. Furthermore, a diversity of spatial and temporal variations of Chl-a existed based on the degree of influences from discharge. The diluted water extended from inshore to the east of Jeju Island. This process affected the Chl-a concentration flowing through the area, and had a potential impact on the marine environment. The Chl-a from September to November showed an obvious response to the discharge from July to September with a lag of 1 to 2 months.

  14. Spatial-Temporal Variations of Chlorophyll-a in the Adjacent Sea Area of the Yangtze River Estuary Influenced by Yangtze River Discharge

    PubMed Central

    Wang, Ying; Jiang, Hong; Jin, Jiaxin; Zhang, Xiuying; Lu, Xuehe; Wang, Yueqi

    2015-01-01

    Carrying abundant nutrition, terrigenous freshwater has a great impact on the spatial and temporal heterogeneity of phytoplankton in coastal waters. The present study analyzed the spatial-temporal variations of Chlorophyll-a (Chl-a) concentration under the influence of discharge from the Yangtze River, based on remotely sensed Chl-a concentrations. The study area was initially zoned to quantitatively investigate the spatial variation patterns of Chl-a. Then, the temporal variation of Chl-a in each zone was simulated by a sinusoidal curve model. The results showed that in the inshore waters, the terrigenous discharge was the predominant driving force determining the pattern of Chl-a, which brings the risk of red tide disasters; while in the open sea areas, Chl-a was mainly affected by meteorological factors. Furthermore, a diversity of spatial and temporal variations of Chl-a existed based on the degree of influences from discharge. The diluted water extended from inshore to the east of Jeju Island. This process affected the Chl-a concentration flowing through the area, and had a potential impact on the marine environment. The Chl-a from September to November showed an obvious response to the discharge from July to September with a lag of 1 to 2 months. PMID:26006121

  15. Characteristics of sediment discharge in the subarctic Yukon River, Alaska

    USGS Publications Warehouse

    Chikita, K.A.; Kemnitz, R.; Kumai, R.

    2002-01-01

    The characteristics of sediment discharge in the Yukon River, Alaska were investigated by monitoring water discharge, water turbidity and water temperature. The river-transported sediment, 90 wt.% or more, consists of silt and clay (grain size ??? 62.5 ??m), which probably originated in the glacier-covered mountains mostly in the Alaska Range. For early June to late August 1999, we continuously measured water turbidity and temperature near the estuary and in the middle of Yukon River by using self-recording turbidimeters and temperature data loggers. The water turbidity (ppm) was converted to suspended sediment concentration (SSC; mg/l) of river water, using a relation between simultaneous turbidity and SSC at each of the two sites, and then, the suspended sediment discharge, approximately equal to water discharge times SSC, was numerically obtained every 1 or 2 h. It should be noted that the sediment discharge in the Yukon River is controlled by SSC rather than water discharge. As a result, a peak sediment discharge occurred in mid or late August by local sediment runoffs due to glacier-melt (or glacier-melt plus rainfall), while a peak water discharge was produced by snowmelt in late June or early July. Application of the "extended Shields diagram" indicates that almost all the river-transported sediments are under complete suspension. ?? 2002 Elsevier Science B.V. All rights reserved.

  16. Generalized sediment budgets of the Lower Missouri River, 1968–2014

    USGS Publications Warehouse

    Heimann, David C.

    2016-09-13

    Sediment budgets of the Lower Missouri River were developed in a study led by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers. The scope of the study included the development of a long-term (post-impoundment, 1968–2014) average annual sediment budget and selected annual, monthly, and daily sediment budgets for a reach and period that adequate data were available. Included in the analyses were 31 main-stem and tributary stations of the Lower Missouri River and two Mississippi River stations—the Mississippi River below Grafton, Illinois, and the Mississippi River at St. Louis, Missouri.Long-term average annual suspended-sediment loads of Missouri River main-stem stations ranged from 0.33 million tons at the Missouri River at Yankton, South Dakota, station to 71.2 million tons at Missouri River at Hermann, Mo., station. Gaged tributary gains accounted for 9–36 percent of the local reach budgets and cumulative gaged tributary contributions accounted for 84 percent of the long-term average suspended-sediment load of the Missouri River at Hermann, Mo., station. Although the sediment budgets for seven defined main-stem reaches generally were incomplete—missing bedload, reach storage, and ungaged tributary contributions—the budget residuals (net result of sediment inputs and outputs) for six of the seven reaches ranged from -7.0 to 1.7 million tons, or from -9.2 to 4.0 percent of the reach output suspended-sediment load, and were within the 10 percent reported measurement error of annual suspended-sediment loads for large rivers. The remaining reach, downstream from Gavin’s Point Dam, extended from Yankton, S. Dak., to Sioux City, Iowa, and had a budget residual of -9.8 million tons, which was -88 percent of the suspended-sediment load at Sioux City.The Lower Missouri River reach from Omaha, Nebraska, to Nebraska City, Nebr., had periods of concurrent sediment data for each primary budget component with which to analyze and

  17. [Distributions and air-sea fluxes of dissolved nitrous oxide in the Yangtze River estuary and its adjacent marine area in spring and summer].

    PubMed

    Wang, Lan; Zhang, Gui-ling; Sun, Ming-shuang; Ren, Jing-ling

    2014-12-01

    Distributions and air-sea fluxes of nitrous oxide (N2O) in the seawaters of the Yangtze River estuary and its adjacent marine area were investigated during two cruises in March and July 2012. Dissolved N2O concentrations in surface waters ranged from 9.34 to 49.08 nmol x L(-1) with an average of (13.27 ± 6.40) nmol x L(-1) in spring and ranged from 7.27 to 27.81 nmol x L(-1) with an average of (10.62 ± 5.03) nmol x L(-1) in summer. There was no obvious difference between surface and bottom N2O concentrations. N2O concentrations in both surface and bottom waters decreased along the freshwater plume from the river mouth to the open sea. High values of dissolved N2O were found in turbidity maximum zone, which suggests that maximal turbidity enhances nitrification. Temperature had dual effects on dissolved N2O concentrations. N2O saturations in surface waters ranged from 86.9% to 351.3% with an average of (111.5 ± 41.4)% in spring and ranged from 111.7% to 396.0% with an average of (155.9 ± 68.4)% in summer. N2O were over-saturated at most stations. The sea-to-air fluxes of N2O were estimated to be (3.2 ± 10.9), (5.5 ± 19.3) and (12.2 ±52.3) μmol x (m2 x d)(-1) in spring and (7.3 ± 12.4), (12.7 ± 20.4) and (20.4 ± 35.9) μmol x (m2 x d)(-1) in summer using the LM86, W92 and RC01 relationships, respectively. The annual emissions of N2O from the Yangtze River estuary and its adjacent marine area were estimated to be 0.6 x 10(-2) Tg x a(-1) (LM86), 1.1 x 10(-2) Tg x a(-1) (W92) and 2.0 x 10(-2) Tg x a(-1) (RC01). Although the area of the Yangtze River estuary and its adjacent marine area only accounts for 0.02% of the total area of the world's oceans, their emission of N2O accounts for 0.06% of global oceanic N2O emission, indicating that the Yangtze River estuary and its adjacent marine area is an active area to produce and emit N2O.

  18. Modeling of the Contaminated Sediment in the Erft River

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Westrich, Bernhard; Rode, Michael

    2010-05-01

    Sediment transport processes play an important role in the surface water systems coupled with rainfall-runoff and contaminant transport. Pollutants like heavy metals adsorbed mainly by fine sediment particles can be deposited, eroded or transported further downstream. When the toxic pollutants deposited before and covered by cleaner sediment are remobilized by large flow events such as floods, they pose a hidden threat to the human health and environment. In the Erft River, due to mining activities in the past, the heavy metals release from the tributary Veybach on the downstream water and sediment quality is significant. Recent measurements prove the decreasing concentration trend of heavy metals in the river bed sediment from the Veybach. One-dimensional hydrodynamic model COSMOS is used to model the complicated water flow, sediment erosion, deposition and contaminant mixing and transport in the mainstream of the Erft River. It is based on a finite-difference formulation and consists of one-dimensional, unsteady sub-model of flow and transport, coupled with a sub-model of the layered sediment bed. The model accounts for the following governing physical-chemical processes: convective and dispersive transport, turbulent mixing deposited sediment surface, deposition, consolidation, aging and erosion of sediment, adsorption-desorption of pollutants to suspended particles and losses of pollutants due to decay or volatilization. The results reproduce the decreasing profile of the pollutant concentration in the river bed sediment nicely. Further modeling is to analysis the influence of the mixing process at the water-riverbed interface on the contaminant transport, hydrological scenarios impact on the remobilization of the sink of pollutant and its negative consequences on the river basin.

  19. Tidal river sediments in the Washington, D.C. area. 111 Biological effects associated with sediment contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlekat, C.E.; McGee, B.L.; Boward, D.M.

    1994-06-01

    Sediment toxicity and benthic marcroinvertebrate community structure were measured as one component of a study conceived to determine the distribution and effect of sediment contamination in tidal freshwater portions of the Potomac and Anacostia rivers in the Washington, D.C., area. Samples were collected at 15 sites. Analyses included a partial life cycle (28 d) whole sediment test using the amphipod Hyalella azteca (Talitridae) and an assessment of benthic community structure. Survival and growth (as estimated by amphipod length) were experimental endpoints for the toxicity test. Significant mortality was observed in 5 to 10 sites in the lower Anacostia River basinmore » and at the main channel Potomac River site. Sublethal toxicity, as measured by inhibition of amphipod growth, was not observed. Toxicity test results were in general agreement with synoptically measured sediment contaminant concentrations. Porewater total ammonia (NH{sub 3} + NH{sub 4}{sup +}) appears to be responsible for the toxicity of sediments from the Potomac River, while correlation analysis and simultaneously extracted metals: acid volatile sulfide (SEM:AVA) results suggest that the toxicity associated with Anacostia River sediments was due to organic compounds. Twenty-eight macroinvertebrate taxa were identified among all sites, with richness varying from 5 to 17 taxa per site. Groups of benthic assemblages identified by group-average cluster analysis exhibited variable agreement with sediment chemical and sediment toxicity results. Integration of toxicological, chemical, and ecological components suggests that adverse environmental effects manifest in lower Anacostia River benthos result from chemical contamination of sediment. 37 refs., 2 figs., 7 tabs.« less

  20. The natural sediment regime in rivers: broadening the foundation for ecosystem management

    USGS Publications Warehouse

    Wohl, Ellen E.; Bledsoe, Brian P.; Jacobson, Robert B.; Poff, N. LeRoy; Rathburn, Sara L.; Walters, David M.; Wilcox, Andrew C.

    2015-01-01

    Water and sediment inputs are fundamental drivers of river ecosystems, but river management tends to emphasize flow regime at the expense of sediment regime. In an effort to frame a more inclusive paradigm for river management, we discuss sediment inputs, transport, and storage within river systems; interactions among water, sediment, and valley context; and the need to broaden the natural flow regime concept. Explicitly incorporating sediment is challenging, because sediment is supplied, transported, and stored by nonlinear and episodic processes operating at different temporal and spatial scales than water and because sediment regimes have been highly altered by humans. Nevertheless, managing for a desired balance between sediment supply and transport capacity is not only tractable, given current geomorphic process knowledge, but also essential because of the importance of sediment regimes to aquatic and riparian ecosystems, the physical template of which depends on sediment-driven river structure and function.

  1. Perfluoroalkyl and polyfluoroalkyl substances in the lower atmosphere and surface waters of the Chinese Bohai Sea, Yellow Sea, and Yangtze River estuary.

    PubMed

    Zhao, Zhen; Tang, Jianhui; Mi, Lijie; Tian, Chongguo; Zhong, Guangcai; Zhang, Gan; Wang, Shaorui; Li, Qilu; Ebinghaus, Ralf; Xie, Zhiyong; Sun, Hongwen

    2017-12-01

    Polyfluoroalkyl and perfluoroalkyl substances (PFASs), in the forms of neutral polyfluoroalkyl substances in the gas phase of air and ionic perfluoroalkyl substances in the dissolved phase of surface water, were investigated during a sampling campaign in the Bohai Sea, Yellow Sea, and Yangtze River estuary in May 2012. In the gas phase, the concentrations of neutral ∑PFASs were within the range of 76-551pg/m 3 . Higher concentrations were observed in the South Yellow Sea. 8:2 fluorotelomer alcohol (FTOH) was the predominant compound as it accounted for 92%-95% of neutral ∑PFASs in all air samples. Air mass backward trajectory analysis indicated that neutral ∑PFASs came mainly from the coast of the Yellow Sea, including the Shandong, Jiangsu, and Zhejiang provinces of China, and the coastal region of South Korea. The fluxes of gas phase dry deposition were simulated for neutral PFASs, and neutral ∑PFASs fluxes varied from 0.37 to 2.3pg/m 2 /s. In the dissolved phase of the surface water, concentrations of ionic ∑PFASs ranged from 1.6 to 118ng/L, with the Bohai Sea exhibiting higher concentrations than both the Yellow Sea and the Yangtze River estuary. Perfluorooctanoic acid (PFOA) was the predominant compound accounting for 51%-90% of the ionic ∑PFAS concentrations. Releases from industrial and domestic activities as well as the semiclosed geographical conditions increased the level of ionic ∑PFASs in the Bohai Sea. The spatial distributions of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs) were different significantly. The Laizhou Bay was the major source region of PFCAs and the Yangtze River estuary was the major source of PFSAs. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Multivariate analysis of heavy metal contamination using river sediment cores of Nankan River, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, An-Sheng; Lu, Wei-Li; Huang, Jyh-Jaan; Chang, Queenie; Wei, Kuo-Yen; Lin, Chin-Jung; Liou, Sofia Ya Hsuan

    2016-04-01

    Through the geology and climate characteristic in Taiwan, generally rivers carry a lot of suspended particles. After these particles settled, they become sediments which are good sorbent for heavy metals in river system. Consequently, sediments can be found recording contamination footprint at low flow energy region, such as estuary. Seven sediment cores were collected along Nankan River, northern Taiwan, which is seriously contaminated by factory, household and agriculture input. Physico-chemical properties of these cores were derived from Itrax-XRF Core Scanner and grain size analysis. In order to interpret these complex data matrices, the multivariate statistical techniques (cluster analysis, factor analysis and discriminant analysis) were introduced to this study. Through the statistical determination, the result indicates four types of sediment. One of them represents contamination event which shows high concentration of Cu, Zn, Pb, Ni and Fe, and low concentration of Si and Zr. Furthermore, three possible contamination sources of this type of sediment were revealed by Factor Analysis. The combination of sediment analysis and multivariate statistical techniques used provides new insights into the contamination depositional history of Nankan River and could be similarly applied to other river systems to determine the scale of anthropogenic contamination.

  3. Distributions of organochlorine compounds in sediments from Jiulong River Estuary and adjacent Western Taiwan Strait: Implications of transport, sources and inventories.

    PubMed

    Wu, Yuling; Wang, Xinhong; Ya, Miaolei; Li, Yongyu; Hong, Huasheng

    2016-12-01

    Estuaries and coastal areas strongly influenced by terrestrial inputs resulted from anthropogenic activities. To study the distributions, origins, potential transport and burden of organochlorine compounds (OCs) from river to marginal sea, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were investigated in surface sediments collected from a subtropical estuary (Jiulong River Estuary, JRE) and the inner shelf of adjacent Western Taiwan Strait (WTS). The concentrations of OCPs and PCBs were from 5.2 to 551.7 and 1.0-8.1 ng g -1 (dry weight), respectively. OCP concentrations in the JRE were higher than in adjacent WTS, and a decreasing trend with the ascending distance from the estuary to the open sea was observed. Concentrations of DDTs were quite high in the upper reach of the estuary, inferred from antifouling paint on fishing boats of a local shipping company. According to established sediment quality guidelines, DDTs in the JRE posed potential ecological risk. HCHs in the estuary were mainly derived from the weathered HCHs preserved in the agriculture soils via local major river runoffs. OCPs patterns showed that OCPs in the south coast of WTS were resulted from local sources via river input, while OCPs in the north coast attributed to the long-range transport derived by the Fujian-Zhejiang Coastal Current. Minor variations of PCB concentrations and homologs indicated that PCBs were not the main pollutant in the agricultural region, consistent lighter PCBs reflected industrial PCBs were transported via atmospheric deposition derived by East Asia Monsoon. Moreover, the primary distribution pattern founded for DDTs and the considerable mass inventories and burdens calculated (258.1 ng cm -2 and 10.4 tones for OCPs) that higher than Pearl River Delta and Yangtze River Delta, together suggested that the contaminated sediments in the study area may be a potential source of OCPs to the global ocean. Copyright © 2016 Elsevier Ltd. All rights

  4. Suspended-sediment data in the Salt River basin, Missouri

    USGS Publications Warehouse

    Berkas, Wayne R.

    1983-01-01

    Suspended-sediment data collected at six stations in the Salt River basin during 1980-82 are presented. The estimated average annual suspended-sediment load is 1,390,000 tons per year from a geomorphic examination, and 1,330,000 tons per year from periodic sampling at Salt River near Monroe City, Mo. The suspended-sediment load from the major tributaries of the Salt River during 1981 was 1,610,000 tons, which is larger than the estimated values due to above-normal rainfall and runoff. (USGS)

  5. Thermochronology of mineral grains in the Red and Mekong Rivers, Vietnam: Provenance and exhumation implications for Southeast Asia

    NASA Astrophysics Data System (ADS)

    Clift, Peter D.; Carter, Andrew; Campbell, Ian H.; Pringle, Malcolm S.; van Lap, Nguyen; Allen, Charlotte M.; Hodges, Kip V.; Tan, Mai Thanh

    2006-10-01

    Sand samples from the mouths of the Red and Mekong Rivers were analyzed to determine the provenance and exhumation history of their source regions. U-Pb dating of detrital zircon grains shows that the main sources comprise crust formed within the Yangtze Craton and during the Triassic Indosinian Orogeny. Indosinian grains in the Mekong are younger (210-240 Ma) than those in the Red River (230-290 Ma), suggesting preferential erosion of the Qiangtang Block of Tibet into the Mekong. The Red River has a higher proportion of 700-800 Ma grains originally derived from the Yangtze Craton. 40Ar/39Ar dating of muscovite grains demonstrates that rocks cooled during the Indosinian Orogeny are dominant in both rivers, although the Mekong also shows a grain population cooling at 150-200 Ma that is not seen in the Red River and which is probably of original Qiangtang Block origin. Conversely, the Red River contains a significant mica population (350-500 Ma) eroded from the Yangtze Craton. High-grade metamorphic rocks exposed in the Cenozoic shear zones of southeast Tibet-Yunnan are minority sources to the rivers. However, apatite and zircon fission track ages show evidence for the dominant sources, especially in the Red River, only being exhumed through the shallowest 5-3 km of the crust since ˜25 Ma. The thermochronology data are consistent with erosion of recycled sediment from the inverted Simao and Chuxiong Basins, from gorges that incise the eastern flank of the plateau. Average Neogene exhumation rates are 104-191 m/Myr in the Red River basin, which is within error of the 178 ± 35 m/Myr estimated from Pleistocene sediment volumes. Sparse fission track data from the Mekong River support the Ar-Ar and U-Pb ages in favoring tectonically driven rock uplift and gorge incision as the dominant control on erosion, with precipitation being an important secondary influence.

  6. Suspended sediment load below open-cast mines for ungauged river basin

    NASA Astrophysics Data System (ADS)

    Kuksina, L.

    2011-12-01

    Placer mines are located in river valleys along river benches or river ancient channels. Frequently the existing mining sites are characterized by low contribution of the environmental technologies. Therefore open-pit mining alters stream hydrology and sediment processes and enhances sediment transport. The most serious environmental consequences of the sediment yield increase occur in the rivers populated by salmon fish community because salmon species prefer clean water with low turbidity. For instance, placer mining located in Kamchatka peninsula (Far East of Russia) which is regarded to be the last global gene pool of wild salmon Oncorhynchus threatens rivers ecosystems significantly. Impact assessment is limited by the hydrological observations scarcity. Gauging network is rare and in many cases whole basins up to 200 km length miss any hydrological data. The main purpose of the work is elaboration of methods for sediment yield estimation in rivers under mining impact and implementation of corresponding calculations. Subjects of the study are rivers of the Vivenka river basin where open-cast platinum mine is situated. It's one of the largest platinum mines in Russian Federation and in the world. This mine is the most well-studied in Kamchatka (research covers a period from 2003 to 2011). Empirical - analytical model of suspended sediment yield estimation was elaborated for rivers draining mine's territories. Sediment delivery at the open-cast mine happens due to the following sediment processes: - erosion in the channel diversions; - soil erosion on the exposed hillsides; - effluent from settling ponds; - mine waste water inflow; - accident mine waste water escape into rivers. Sediment washout caused by erosion was estimated by repeated measurements of the channel profiles in 2003, 2006 and 2008. Estimation of horizontal deformation rates was carried out on the basis of erosion dependence on water discharge rates, slopes and composition of sediments. Soil

  7. Summary of Bed-Sediment Measurements Along the Platte River, Nebraska, 1931-2009

    USGS Publications Warehouse

    Kinzel, P.J.; Runge, J.T.

    2010-01-01

    Rivers are conduits for water and sediment supplied from upstream sources. The sizes of the sediments that a river bed consists of typically decrease in a downstream direction because of natural sorting. However, other factors can affect the caliber of bed sediment including changes in upstream water-resource development, land use, and climate that alter the watershed yield of water or sediment. Bed sediments provide both a geologic and stratigraphic record of past fluvial processes and quantification of current sediment transport relations. The objective of this fact sheet is to describe and compare longitudinal measurements of bed-sediment sizes made along the Platte River, Nebraska from 1931 to 2009. The Platte River begins at the junction of the North Platte and South Platte Rivers near North Platte, Nebr. and flows east for approximately 500 kilometers before joining the Missouri River at Plattsmouth, Nebr. The confluence of the Loup River with the Platte River serves to divide the middle (or central) Platte River (the Platte River upstream from the confluence with the Loup River) and lower Platte River (the Platte River downstream from the confluence with Loup River). The Platte River provides water for a variety of needs including: irrigation, infiltration to public water-supply wells, power generation, recreation, and wildlife habitat. The Platte River Basin includes habitat for four federally listed species including the whooping crane (Grus americana), interior least tern (Sterna antillarum), piping plover (Charadrius melodus), and pallid sturgeon (Scaphirhynchus albus). A habitat recovery program for the federally listed species in the Platte River was initiated in 2007. One strategy identified by the recovery program to manage and enhance habitat is the manipulation of streamflow. Understanding the longitudinal and temporal changes in the size gradation of the bed sediment will help to explain the effects of past flow regimes and anticipated

  8. Biological thresholds of nitrogen and phosphorus in a typical urban river system of the Yangtz delta, China.

    PubMed

    Liang, Xinqiang; Zhu, Sirui; Ye, Rongzhong; Guo, Ru; Zhu, Chunyan; Fu, Chaodong; Tian, Guangming; Chen, Yingxu

    2014-09-01

    River health and associated risks are fundamentally dependent on the levels of the primary productivities, i.e., sestonic and benthic chlorophyll-a. We selected a typical urban river system of the Yangtz delta to investigate nutrient and non-nutrient responses of chlorophyll-a contents and to determine biological thresholds of N and P. Results showed the mean contents of sestonic and benthic chlorophyll-a across all sampling points reached 10.2 μg L(-1) and 149.3 mg m(-2). The self-organized mapping analysis suggested both chlorophyll-a contents clearly responded to measurements of N, P, and water temperature. Based on the chlorophyll-a criteria for fresh water and measured variables, we recommend the biological thresholds of N and P for our river system be set at 2.4 mg N L(-1) and 0.2 mg P L(-1), and these be used as initial nutrient reference values for local river managers to implement appropriate strategies to alleviate nutrient loads and trophic status. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Combined effects of multiple large-scale hydraulic engineering on water stages in the middle Yangtze River

    NASA Astrophysics Data System (ADS)

    Han, Jianqiao; Sun, Zhaohua; Li, Yitian; Yang, Yunping

    2017-12-01

    Investigation of water stages influenced by human projects provides better understanding of riverine geomorphological processes and river management. Based on hydrological data collected over 60 years, an extreme stage-extreme discharge analysis and a specific-gauge analysis were performed to research the individual and combined effects of multiple engineering projects on a long-term time series of water stages in the middle Yangtze River. Conclusions are as follows. (1) In accordance with the operation years of the Jingjiang cutoff (CF), the Gezhouba Dam (GD), and the Three Gorges Dam (TGD), the time series (1955-2012) was divided into periods of P1 (1955-1970), P2 (1971-1980), P3 (1981-2002), and P4 (2003 - 2012). Water stage changes during P1-P2, P2-P3, and P3-P4 are varied because of the differences in the types and scales of these projects. The stage decreased at Shashi and increased at Luoshan owing to the operation of the CF. Additionally, after the GD was constructed, the low-flow stage decreased in the upstream reach of Chenglingji and increased in its downstream reach, whereas the flood stage merely decreased at Yichang. Moreover, the TGD resulted in an overall decrease in low-flow stages and a limited increase in flood stages because of the differential adjustments of river geometry and resistance between the low-flow channel and flood channel. (2) Although differences existed in the scouring mechanisms between streamwise erosion associated with dams and headward erosion associated with cutoffs, particular bed textures in the gravel reach led to a similar adjustment that stage reduction at Shashi was the greatest of all stations, which caused the flow slope and sediment transport capacity to decrease in the sandy reach. (3) These engineering projects caused changes in average low-flow and flood stages that varied between Yichang (- 1.58 and - 0.08 m respectively), Shashi (- 3.54 and - 0.12 m), and Luoshan (1.15 and 0.97 m) from P1 to P4. However, less

  10. Simulating the responses of a low-trophic ecosystem in the East China Sea to decadal changes in nutrient load from the Changjiang (Yangtze) River

    NASA Astrophysics Data System (ADS)

    Wang, Yucheng; Guo, Xinyu; Zhao, Liang

    2018-01-01

    Using a three-dimensional coupled biophysical model, we simulated the responses of a lowtrophic ecosystem in the East China Sea (ECS) to long-term changes in nutrient load from the Changjiang (Yangtze) River over the period of 1960-2005. Two major factors affected changes in nutrient load: changes in river discharge and the concentration of nutrients in the river water. Increasing or decreasing Changjiang discharge induced different responses in the concentrations of nutrients, phytoplankton, and detritus in the ECS. Changes in dissolved inorganic nitrogen (DIN), silicate (SIL), phytoplankton, and detritus could be identified over a large area of the ECS shelf, but changes in dissolved inorganic phosphate (DIP) were limited to a small area close to the river mouth. The high DIN:DIP and SIL:DIP ratios in the river water were likely associated with the different responses in DIN, DIP, and SIL. As DIP is a candidate limiting nutrient, perturbations in DIP resulting from changes in the Changjiang discharge are quickly consumed through primary production. It is interesting that an increase in the Changjiang discharge did not always lead to an increase in phytoplankton levels in the ECS. Phytoplankton decreases could be found in some areas close to the river mouth. A likely cause of the reduction in phytoplankton was a change in the hydrodynamic field associated with the river plume, although the present model is not suitable for examining the possibility in detail. Increases in DIN and DIP concentrations in the river water primarily led to increases in DIN, DIP, phytoplankton, and detritus levels in the ECS, whereas decreases in the SIL concentration in river water led to lower SIL concentrations in the ECS, indicating that SIL is not a limiting nutrient for photosynthesis, based on our model results from 1960 to 2005. In both of the above-mentioned cases, the sediment accumulation rate of detritus exhibited a large spatial variation near the river mouth, suggesting

  11. Impact of the operation of cascade reservoirs in upper Yangtze River on hydrological variability of the mainstream

    NASA Astrophysics Data System (ADS)

    Changjiang, Xu; Dongdong, Zhang

    2018-06-01

    As the impacts by climate changes and human activities are intensified, variability may occur in river's annual runoff as well as flood and low water characteristics. In order to understand the characteristics of variability in hydrological series, diagnosis and identification must be conducted specific to the variability of hydrological series, i.e., whether there was variability and where the variability began to occur. In this paper, the mainstream of Yangtze River was taken as the object of study. A model was established to simulate the impounding and operation of upstream cascade reservoirs so as to obtain the runoff of downstream hydrological control stations after the regulation by upstream reservoirs in different level years. The Range of Variability Approach was utilized to analyze the impact of the operation of upstream reservoirs on the variability of downstream. The results indicated that the overall hydrologic alterations of Yichang hydrological station in 2010 level year, 2015 level year and the forward level year were 68.4, 72.5 and 74.3 % respectively, belonging to high alteration in all three level years. The runoff series of mainstream hydrological stations presented variability in different degrees, where the runoff series of the four hydrological stations including Xiangjiaba, Gaochang and Wulong belonged to high alteration in the three level years; and the runoff series of Beibei hydrological station in 2010 level year belonged to medium alteration, and high alteration in 2015 level year and the forward level year. The study on the impact of the operation of cascade reservoirs in Upper Yangtze River on hydrological variability of the mainstream had important practical significance on the sustainable utilization of water resources, disaster prevention and mitigation, safe and efficient operation and management of water conservancy projects and stable development of the economic society.

  12. Sediment load from major rivers into Puget Sound and its adjacent waters

    USGS Publications Warehouse

    Czuba, Jonathan A.; Magirl, Christopher S.; Czuba, Christiana R.; Grossman, Eric E.; Curran, Christopher A.; Gendaszek, Andrew S.; Dinicola, Richard S.

    2011-01-01

    Each year, an estimated load of 6.5 million tons of sediment is transported by rivers to Puget Sound and its adjacent waters—enough to cover a football field to the height of six Space Needles. This estimated load is highly uncertain because sediment studies and available sediment-load data are sparse and historically limited to specific rivers, short time frames, and a narrow range of hydrologic conditions. The largest sediment loads are carried by rivers with glaciated volcanoes in their headwaters. Research suggests 70 percent of the sediment load delivered to Puget Sound is from rivers and 30 percent is from shoreline erosion, but the magnitude of specific contributions is highly uncertain. Most of a river's sediment load occurs during floods.

  13. Early Holocene groundwater table fluctuations in relation to rice domestication in the middle Yangtze River basin, China

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Liu, Yan; Sun, Qianli; Zong, Yongqiang; Finlayson, Brian; Chen, Zhongyuan

    2017-01-01

    The early Holocene environmental amelioration stimulated the trajectory of Neolithic farming cultures and specific geographic settings played a role in determining the nature of these cultures. Using microfossil evidence, the present study reveals that the fluctuations of the groundwater table substantially influenced rice domestication in the Dongting Lake area of the middle Yangtze River basin in the early Holocene. Our 14C-dated sediment core taken from the Bashidang (BSD) Neolithic site contains evidence that the site was a floodplain prior to human occupation ca. 8600 years ago. Poaceae, which contained wild rice (Oryza sp.) as indicated by combined pollen and phytolith evidence, and low counts of freshwater algae indicated a moist site condition. The area then gradually evolved into wetlands as the water table rose, in response to the increasing monsoon precipitation during the early Holocene. This favored rice domestication, assisted by firing and clearing, that continued to flourish for several hundred years. Finally, rice domestication declined during the late stage of the Pengtoushan culture, accompanied by evidence of the expansion of wetlands reflecting the effects of a rising groundwater table that had caused the cessation of rice farming at the Bashidang site after ca. 8000-7900 cal yr BP. This study shows that there are local effects at particular sites that may differ from the trend at the regional scale, necessitating a careful interpretation of the available evidence.

  14. Exhumation history of the Anqing Orefield in the Lower Yangtze River Metallogenic Belt: Evidence from apatite fission-track thermochronology

    NASA Astrophysics Data System (ADS)

    Li, X.; Yang, X.

    2017-12-01

    The Lower Yangtze River Metallogenic Belt (LYRMB) is one of the most important Cu-Au-Fe polymetallic belts in China. These deposits along the Yangtze River region have been related to the Yanshanian intrusive rocks in the Mesozoic. The Anqing orefield is located in the northwestern Anqing, southwestern Anhui Province, eastern China, along the Lower Yangtze River Belt. Here, we report new apatite fission-track (AFT) thermochronology of the granitoids ( 130 Ma for zircon U-Pb age) associated with the Anqing orefields to reveal the exhumation history of the Anqing orefields in LYRMB, eastern China. AFT ages from 54.4±2.1 to 63.9±3.4 Ma with mean measured track lengths between 12.4±1.8 and 13.1±1.4 μm, were obtained for the granitoids sampled from the ore fields in the Anqing orefield, and AFT age of 36.3±1.3 Ma with mean track length of 12.3±2.3μm for the granitoids adjacent to the south Tan-Lu fault. A long, slow exhumation ( 60-15 Ma), and a short, rapid tectonic exhumation (15-0 Ma) have been identified in the study region based on the AFT data and modeling results for the samples from the ore fields. The results show that the granitoids underwent roughly similar cooling, and inferred exhumation pattern. Assuming a steady-state paleogeothermal gradient of 35ºC/km founded on geological setting, the exhumations of 570 m and 1140 m, were achieved in the Anqing orefield, during 60-15 Ma and 15-0 Ma, respectively. Further, the AFT age of the granitoids adjacent to the south Tan-Lu fault is less than the AFT ages of the granitoids associated with the ore fields, possibly owing to the activation of the Tan-Lu fault in the Cenozoic. The exhumation history of the Anqing orefields may be closely response to the Pacific Plate subduction in the Cenozoic, which could be implications for the preservation potential of ore bodies in the Anqing orefield. This work is supported by the National Natural Science Foundation of China (41372227), and the DREAM project of MOST

  15. Sediment Spews from Connecticut River

    NASA Image and Video Library

    2017-12-08

    NASA image acquired September 2, 2011 To download the full high res go to: earthobservatory.nasa.gov/IOTD/view.php?id=52059 Nearly a week after Hurricane Irene drenched New England with rainfall in late August 2011, the Connecticut River was spewing muddy sediment into Long Island Sound and wrecking the region's farmland just before harvest. The Thematic Mapper on the Landsat 5 satellite acquired this true-color satellite image on September 2, 2011. With its headwaters near the Canadian border, the Connecticut River drains nearly 11,000 square miles (28,500 square kilometers) and receives water from at least 33 tributaries in Vermont, New Hampshire, Massachusetts, and Connecticut. The 410-mile river—New England's longest—enters Long Island Sound near Old Lyme, Connecticut, and is estimated to provide 70 percent of the fresh water entering the Sound. When Irene blew through the region on August 27-28, substantial portions of the Connecticut River watershed received more than 6 to 8 inches (15-20 centimeters) of rainfall, and several locations received more than 10 inches (25 centimeters). Whole towns were cut off from overland transportation—particularly upstream in Vermont, which suffered its worst flooding in 80 years. Thousands of people saw their homes flooded, if not washed off their foundations, at a time of year when rivers are usually at their lowest. Preliminary estimates of river flow at Thompsonville, Connecticut, (not shown in this image) reached 128,000 cubic feet per second (cfs) on August 30, nearly 64 times the usual flow (2,000 cfs) for early fall and the highest flow rate since May 1984. At the mouth of the river—where flow is tidal, and therefore not gauged—the peak water height reached 6.9 feet (2.1 meters) above sea level, almost a foot higher than at any time in the past 10 years. According to Suzanne O'Connell, an environmental scientist working along the Connecticut River at Wesleyan University, the torrent of water coursing through

  16. Geochemical characteristics of Heavy metals of river sediment from the main rivers at Texas, USA.

    NASA Astrophysics Data System (ADS)

    Matsumoto, I.; Hoffman, D.; MacAlister, J.; Ishiga, H.

    2008-12-01

    Trinity River is one of the biggest rivers which flows through Dallas and Fort Worth two big cities of USA and are highly populated. Trinity river drains into the Gulf of Mexico. Sediment samples collected from various points along the upper and lower streams were subjected to content analysis and elution analysis (using liquate (flow) out test) on the heavy metals like Cd, CN, Pb, Cr, As, Hg, Ni, Zn and Cu from the river sediment for the purpose of environment assessment. A total of 22 sample points were identified from upper stream to lower stream and samples were collected such that almost the whole stream length of Trinity River is covered. Results show that heavy metal content through out the river stream is below the recommended limits posing no immediate environmental threat. However, the experimental results show clear impact of human population in bigger cities on heavy metal concentrations in the river sediments as compared to smaller cities with low human population. It could be seen from the analysis that all the heavy metals show relatively high content and high elution value in Dallas and Fort Worth. As we move away from the big cities, the value of content and elution of sediment decreased by natural dilution effect by the river. And we also present the data of the Colorado and San Antonio rivers.

  17. Chlorinated organic compounds in urban river sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soma, Y.; Shiraishi, H.; Inaba, K.

    1995-12-31

    Among anthropogenic chemicals, many chlorinated organic compounds have been used as insecticides and detected frequently as contaminants in urban river sediments so far. However, the number and total amount of chemicals produced commercially and used are increasing year by year, though each amount of chemicals is not so high. New types of contaminants in the environment may be detected by the use of newly developed chemicals. Chlorinated organic compounds in the urban river sediments around Tokyo and Kyoto, large cities in Japan, were surveyed and recent trends of contaminants were studied. Contaminants of the river sediments in industrial areas hadmore » a variety, but PCB (polychlorinated biphenyls) was detected in common in industrial areas. Concentration of PCB related well to the number of factories on both sides of rivers, although the use of PCB was stopped 20 years ago. In domestic areas, Triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol) and Triclocarban (3,4,4{prime}-trichlorocarbanilide)(both are contained in soap or shampoo for fungicides), p-dichlorobenzene (insecticides for wears) and TCEP(tris-chloroethyl phosphate) were detected. EOX(extracted organic halogen) in the sediments was 5 to 10 times of chlorinated organic compounds detected by GC/MS. Major part of organic halogen was suggested to be included in chlorinated organics formed by bleaching or sterilization.« less

  18. The Recent Microrelief Features of the Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Wu, S. H.

    2016-02-01

    Based on the bedforms date were made in the Yangtze estuary, China, during January 2010 and July 2015 with the acoustic multi-beam bathymetric and shallow sediment profiler and surface sediment samples collected recently, the microrelief features of the Yangtze Estuary under the human interference recently is studied. Results show that in addition to four types of common microrelief (smooth bedfloors , sandwaves, hollow and gully), but also there are two types of microrelief under the human interference (sand and dredging mark).Restricted by the nature of sediment, sand waves exist only in the local region of the South Channel, the North Channel the South Passage and the Hengsha passage whose main types of the surface sediment was fine sand. Under the combined effect of a series of large-scale engineering with watershed and estuary, the upper reach of North Channel, the Hengsha passage, the upper reach of south Channel and the upper reach of the South passage are subject to different degrees of erosion recently, so there are varying degrees of erosive microrelief (hollow and gully). Due to dredging engineering and artificial disordered mining, there are a huge range of dredging mark in the lower reach of South Channel, Yuanyuansha channel and North passage and there are a degree of sand in the main channel of south side of Ruifengsha.

  19. Sedimentation Impacts Modeling for the Lower Elwha River

    NASA Astrophysics Data System (ADS)

    Beggs, M.; Kosaka, M.; Sigel, A.; Vandermause, R.; Lauer, J. W.

    2012-12-01

    The removal of Glines Canyon and Elwha Dams from the Elwha River, northwest Washington, is intended to restore natural geomorphic and ecological processes to the Elwha River basin. Prior to the start of dam removal, over 16 million cubic meters of sediment had accumulated in the reservoirs above the two dams. As dam removal progresses, a portion of this sediment will erode and then be deposited on the downstream river bed and floodplain. To address uncertainty in downstream response to the project, the United States Bureau of Reclamation is implementing an adaptive management plan that relies upon continuous monitoring of water levels at a set of stream gages along the river. To interpret the monitoring data and allow for rapid assessment of the rate of downstream sedimentation, we developed rating curves at several locations along the lower Elwha River. The curves consider a range of possible sedimentation scenarios, each involving different sedimentation levels and/or locations. One scenario considers sedimentation primarily in the river channel, another considers sedimentation primarily on the floodplain, and a third considers both possibilities in tandem. We modeled these scenarios using two separate approaches. First, we modified the cross sections in an existing U.S. Army Corps of Engineers HEC-RAS model to represent possible changes associated with geomorphic adjustment to the dam removals. In-channel sedimentation was assumed to occur as a constant fraction of the bankfull depth at any given section, thereby focusing geomorphic change in relatively deep pool areas. In the HEC-RAS model, off-channel sedimentation was assumed uniform. The HEC-RAS model showed that both low-flow and flood hydraulics are much more sensitive to plausible levels of in-channel sedimentation than to plausible levels of overbank sedimentation. The wide floodplain, complex secondary channels, and geomorphic evolution since the original cross sections were surveyed raise some

  20. Sedimentary facies and Holocene progradation rates of the Changjiang (Yangtze) delta, China

    NASA Astrophysics Data System (ADS)

    Hori, Kazuaki; Saito, Yoshiki; Zhao, Quanhong; Cheng, Xinrong; Wang, Pinxian; Sato, Yoshio; Li, Congxian

    2001-11-01

    The Changjiang (Yangtze) River, one of the largest rivers in the world, has formed a broad tide-dominated delta at its mouth during the Holocene sea-level highstand. Three boreholes (CM97, JS98, and HQ98) were obtained from the Changjiang delta plain in 1997-1998 to clarify the characteristics of tide-dominated delta sediments and architecture. Based on sediment composition and texture, and faunal content, core sediments were divided into six depositional units. In ascending order, they were interpreted as tidal sand ridge, prodelta, delta-front, subtidal to lower intertidal flat, upper intertidal flat, and surface soil deposits. The deltaic sequence from the prodelta deposits to the delta front deposits showed an upward-coarsening succession, overlain by an upward-fining succession from the uppermost part of the delta front deposits to the surface soil. Thinly interlaminated to thinly interbedded sand and mud (sand-mud couplets), and bidirectional cross laminations in these deposits show that tide is the key factor affecting the formation of Changjiang deltaic facies. Sediment facies and their succession combined with AMS 14C dating revealed that isochron lines cross unit boundaries clearly, and delta progradation has occurred since about 6000 to 7000 years BP, when the rising sea level neared or reached its present position. The average progradation rate of the delta front was approximately 50 km/kyear over the last 5000 years. The progradation rate, however, increased abruptly ca. 2000 years BP, going from 38 to 80 km/kyear. The possible causes for this active progradation could have been an increase in sediment production in the drainage basin due to widespread human interference and/or decrease in deposition in the middle reaches related to the channel stability caused by human activity and climatic cooling after the mid-Holocene.

  1. Impacts of Declining Mississippi River Sediment Load on Subaqueous Delta Front Sedimentation and Geomorphology

    NASA Astrophysics Data System (ADS)

    Maloney, J. M.; Bentley, S. J.; Xu, K.; Georgiou, I. Y.; Miner, M. D.

    2016-02-01

    The Mississippi River delta system is undergoing unprecedented changes due to the effects of climate change and anthropogenic alterations to the river and its delta. Since the 1950s, the suspended sediment load of the Mississippi River has decreased by approximately 50% due to the construction of >50,000 dams in the Mississippi basin. The impact of this decreased sediment load has been observed in subaerial environments, but the impact on sedimentation and geomorphology of the subaqueous delta front has yet to be examined. To identify historic trends in sedimentation patterns, we compiled bathymetric datasets, including historical charts, industry and academic surveys, and NOAA data, collected between 1764 and 2009. Sedimentation rates are variable across the delta front, but are highest near the mouth of Southwest Pass, which carries the largest percentage of Mississippi River flow and sediment into the Gulf of Mexico. The progradation rate of Southwest Pass (measured at the 10 m depth contour) has slowed from 67 m/yr between 1764 and 1940 to 26 m/yr between 1940 and 1979, with evidence of further deceleration from 1979-2009. Decreased rates of progradation are also observed at South Pass and Pass A Loutre, with the 10 m contour retreating at rates >20 m/yr at both passes. Advancement of the delta front also decelerated in deeper water (15-90 m) offshore from Southwest Pass. In this area, from 1940-1979, depth contours advanced seaward 30 m/yr, but rates declined from 1979-2005. Furthermore, over the same area, the sediment accumulation rate decreased by 81% for the same period. The Mississippi River delta front appears to be entering a phase of decline, which will likely be accelerated by future upstream management practices. This decline has implications for offshore ecosystems, biogeochemical cycling, pollutant dispersal, mudflow hazard, and the continued use of the delta as an economic and population center.

  2. Recent (1995-1998) Canadian research on contemporary processes of river erosion and sedimentation, and river mechanics

    NASA Astrophysics Data System (ADS)

    Ashmore, P.; Conly, F. M.; Deboer, D.; Martin, Y.; Petticrew, E.; Roy, A.

    2000-06-01

    Canadian research on contemporary erosion and sedimentation processes covers a wide range of scales, processes, approaches and environmental problems. This review of recent research focuses on the themes of sediment yield, land-use impact, fine-sediment transport, bed material transport and river morphology and numerical modelling of fluvial landscape development.Research on sediment yield and denudation has confirmed that Canadian rivers are often dominated by riparian sediment sources. Studies of the effects of forestry on erosion, in-stream sedimentation and habitat are prominent, including major field experimental studies in coastal and central British Columbia. Studies of fine-sediment transport mechanisms have focused on the composition of particles and the dynamics of flocculation. In fluvial dynamics there have been important contributions to problems of turbulence-scale flow structure and entrainment processes, and the characteristics of bedload transport in gravel-bed rivers. Although much of the work has been empirical and field-based, results of numerical modelling of denudational processes and landscape development also have begun to appear.The nature of research in Canada is driven by the progress of the science internationally, but also by the nature of the Canadian landscape, its history and resource exploitation. Yet knowledge of Canadian rivers is still limited, and problems of, for example, large pristine rivers or rivers in cold climates, remain unexplored. Research on larger scale issues of sediment transfer or the effects of hydrological change is now hampered by reductions in national monitoring programmes. This also will make it difficult to test theory and assess modelling results. Monitoring has been replaced by project- and issues-based research, which has yielded some valuable information on river system processes and opened opportunities for fluvial scientists. However, future contributions will depend on our ability to continue with

  3. Heavy metal partitioning of suspended particulate matter-water and sediment-water in the Yangtze Estuary.

    PubMed

    Feng, Chenghong; Guo, Xiaoyu; Yin, Su; Tian, Chenhao; Li, Yangyang; Shen, Zhenyao

    2017-10-01

    The partitioning of ten heavy metals (As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn) between the water, suspended particulate matter (SPM), and sediments in seven channel sections during three hydrologic seasons in the Yangtze Estuary was comprehensively investigated. Special attention was paid to the role of tides, influential factors (concentrations of SPM and dissolved organic carbon, and particle size), and heavy metal speciation. The SPM-water and sediment-water partition coefficients (K p ) of the heavy metals exhibited similar changes along the channel sections, though the former were larger throughout the estuary. Because of the higher salinity, the K p values of most of the metals were higher in the north branch than in the south branch. The K p values of Cd, Co, and As generally decreased from the wet season to the dry season. Both the diagonal line method and paired samples t-test showed that no specific phase transfer of heavy metals existed during the flood and ebb tides, but the sediment-water K p was more concentrated for the diagonal line method, owing to the relatively smaller tidal influences on the sediment. The partition coefficients (especially the K p for SPM-water) had negative correlations with the dissolved organic carbon (DOC) but positive correlations were noted with the particle size for most of the heavy metals in sediment. Two types of significant correlations were observed between K p and metal speciation (i.e., exchangeable, carbonate, reducible, organic, and residual fractions), which can be used to identify the dominant phase-partition mechanisms (e.g., adsorption or desorption) of heavy metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Sediment Transport in Streams in the Umpqua River Basin, Oregon

    USGS Publications Warehouse

    Onions, C. A.

    1969-01-01

    This report presents tables of suspended-sediment data collected from 1956 to 1967 at 10 sites in the Umpqua River basin. Computations based on these data indicate that average annual suspended-sediment yields at these sites range from 137 to 822 tons per square mile. Because available data for the Umpqua River basin are generally inadequate for accurate determinations of sediment yield and for the definition of characteristics of fluvial sediments, recommendations are made for the collection and analysis of additional sediment data.

  5. Suspended sediment chemistry from large Himalayan Rivers

    NASA Astrophysics Data System (ADS)

    Tipper, E.; Bickle, M.; Bohlin, M.; Andermann, C.

    2016-12-01

    Recent work has demonstrated that weathering in areas with the highest physical erosion rates are the most sensitive to climatic feedback parameters (both rainfall and temperature) because they are not limited by a supply of material. The Himalayan region is central to this work because of 1) the high erosion rates, 2) high monsoonal rainfall, and 3) high temperatures in the Ganges plain in front of the main range, where much of the weathering takes place. The material that is weathered in the Ganges plain is delivered as sediment from the mountain front. Therefore, detailed understanding of the chemistry of the sediment leaving the high mountains is essential. Interest has been renewed not least because of the magnitude 7.8 (25/4/15) and 7.3 (12/5/2015) earthquakes in Nepal in 2015 which triggered thousands of landslides, likely causing major perturbations to sediment and chemical loads carried by the local Himalayan rivers. We collected both sediment and water samples in 2015 and 2016 in a transect across Nepal, including depth profiles of suspended sediment in the Narayani, Kosi and Karnali Rivers. The Narayani and Kosi rivers which drain the earthquake-hit area carry > 40% of the total bicarbonate flux input to the Ganges from the Himalayan mountains. Here we present our initial findings on the chemistry of the sediment from the 2015 and 2016 field seasons and compare it to published data sets.

  6. Geomorphic analysis of the river response to sedimentation downstream of Mount Rainier, Washington

    USGS Publications Warehouse

    Czuba, Jonathan A.; Magirl, Christopher S.; Czuba, Christiana R.; Curran, Christopher A.; Johnson, Kenneth H.; Olsen, Theresa D.; Kimball, Halley K.; Gish, Casey C.

    2012-01-01

    A study of the geomorphology of rivers draining Mount Rainier, Washington, was completed to identify sources of sediment to the river network; to identify important processes in the sediment delivery system; to assess current sediment loads in rivers draining Mount Rainier; to evaluate if there were trends in streamflow or sediment load since the early 20th century; and to assess how rates of sedimentation might continue into the future using published climate-change scenarios. Rivers draining Mount Rainier carry heavy sediment loads sourced primarily from the volcano that cause acute aggradation in deposition reaches as far away as the Puget Lowland. Calculated yields ranged from 2,000 tonnes per square kilometer per year [(tonnes/km2)/yr] on the upper Nisqually River to 350 (tonnes/km2)/yr on the lower Puyallup River, notably larger than sediment yields of 50–200 (tonnes/km2)/yr typical for other Cascade Range rivers. These rivers can be assumed to be in a general state of sediment surplus. As a result, future aggradation rates will be largely influenced by the underlying hydrology carrying sediment downstream. The active-channel width of rivers directly draining Mount Rainier in 2009, used as a proxy for sediment released from Mount Rainier, changed little between 1965 and 1994 reflecting a climatic period that was relatively quiet hydrogeomorphically. From 1994 to 2009, a marked increase in geomorphic disturbance caused the active channels in many river reaches to widen. Comparing active-channel widths of glacier-draining rivers in 2009 to the distance of glacier retreat between 1913 and 1994 showed no correlation, suggesting that geomorphic disturbance in river reaches directly downstream of glaciers is not strongly governed by the degree of glacial retreat. In contrast, there was a correlation between active-channel width and the percentage of superglacier debris mantling the glacier, as measured in 1971. A conceptual model of sediment delivery processes

  7. Feasibility of estimate sediment yield in the non-sediment monitoring station area - A case study of Alishan River watershed,Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, ChiaChi; Chan, HsunChuan; Jia, YaFei; Zhang, YaoXin

    2017-04-01

    Due to the steep topography, frail geology and concentrated rainfall in wet season, slope disaster occurred frequently in Taiwan. In addition, heavy rainfall induced landslides in upper watersheds. The sediment yield on the slopeland affects the sediment transport in the river. Sediment deposits on the river bed reduce the river cross section and change the flow direction. Furthermore, it generates risks to residents' lives and property in the downstream. The Taiwanese government has been devoting increasing efforts on the sedimentary management issues and on reduction in disaster occurrence. However, due to the limited information on the environmental conditions in the upper stream, it is difficult to set up the sedimentary monitoring equipment. This study used the upper stream of the Qingshuei River, the Alishan River, as a study area. In August 2009, Typhoon Morakot caused the sedimentation of midstream and downstream river courses in the Alishan River. Because there is no any sediment monitoring stations within the Alishan River watershed, the sediment yield values are hard to determine. The objective of this study is to establish a method to analyze the event-landslide sediment transport in the river on the upper watershed. This study numerically investigated the sediment transport in the Alishan River by using the KINEROS 2 model developed by the United States Department of Agriculture and the CCHE1D model developed by the National Center for Computational Hydroscience and Engineering. The simulated results represent the morphology changes in the Alishan River during the typhoon events. The results consist of a critical strategy reference for the sedimentary management for the Alishan River watershed.

  8. Colorado River sediment transport: 1. Natural sediment supply limitation and the influence of Glen Canyon Dam

    USGS Publications Warehouse

    Topping, David J.; Rubin, David M.; Vierra, L.E.

    2000-01-01

    Analyses of flow, sediment‐transport, bed‐topographic, and sedimentologic data suggest that before the closure of Glen Canyon Dam in 1963, the Colorado River in Marble and Grand Canyons was annually supply‐limited with respect to fine sediment (i.e., sand and finer material). Furthermore, these analyses suggest that the predam river in Glen Canyon was not supply‐limited to the same degree and that the degree of annual supply limitation increased near the head of Marble Canyon. The predam Colorado River in Grand Canyon displays evidence of four effects of supply limitation: (1) seasonal hysteresis in sediment concentration, (2) seasonal hysteresis in sediment grain size coupled to the seasonal hysteresis in sediment concentration, (3) production of inversely graded flood deposits, and (4∥ development or modification of a lag between the time of a flood peak and the time of either maximum or minimum (depending on reach geometry) bed elevation. Analyses of sediment budgets provide additional support for the interpretation that the predam river was annually supply‐limited with respect to fine sediment, but it was not supply‐limited with respect to fine sediment during all seasons. In the average predam year, sand would accumulate and be stored in Marble Canyon and upper Grand Canyon for 9 months of the year (from July through March) when flows were dominantly below 200–300 m3/s; this stored sand was then eroded during April through June when flows were typically higher. After closure of Glen Canyon Dam, because of the large magnitudes of the uncertainties in the sediment budget, no season of substantial sand accumulation is evident. Because most flows in the postdam river exceed 200–300 m3/s, substantial sand accumulation in the postdam river is unlikely.

  9. Sediment Transport at River Lima Estuary: Developing a Sound Methodology to Assess Sediment River Basin Input to an Erosion Prone Coast (NW Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Pinho, J.; Costa, N.; Venâncio, S.; Martins, M.; Vieira, J.; Granja, H.

    2016-12-01

    The NW coast of Iberian Peninsula is mainly formed by rocky cliffs northern of the river Minho mouth and by narrow sandy beaches south of this river. These beaches are mainly in a sedimentary deficit status resulting from the north-south longitudinal drift driven by the dominant wave climate that acts from the NW direction. In this scenario understand and quantify river sediment inputs to the coast is crucial in order to follow a sustainable management policy to mitigate erosion impacts both in the natural and social environments. This work will present results from research conducted at rive Lima Estuary, one of the rivers flowing to the NW Iberian coast, based on both numerical modeling and field data acquisition. A hydrological model of the river basin and a detailed morphodynamic model of the estuary were implemented. Instrumentation of the estuary that is being conducted comprises traditional sensor pressures and new ones that are being designed and assembled to be installed at different measurement stations within the estuary. Modelling results for flood events showed that the river is capable of remove all the sediments that are deposited in the narrow estuarine canal located near the river mouth. Some of these sediments are immediately deposited downstream, within the interior of the harbor. Here, there is a strong possibility of silting of the river mouth and the central area of the harbor. Since the river flows during extreme events are controlled by an upstream reservoir, the capacity of the river to transport sediments to the coast was lowered during the last decades, which, moreover, requires dredging works over the years to maintain navigation depth requirements. Dredging sediments should be correctly deposited at the coast in order to properly feed the longitudinal drift, otherwise they will be out of the system, which aggravate the installed erosion tendency.

  10. Wavelike movement of bedload sediment, East Fork River, Wyoming

    USGS Publications Warehouse

    Meade, R.H.

    1985-01-01

    Bedload is moved down the East Fork River in distinct wavelike pulses that have the form of composite dune fields The moving material consists mostly of coarse sand and fine gravel The wavelengths of the pulses are about 500-600 m, a distance that is predetermined by the pattern of stoage of bed sediment in the river during low water As the river discharge increases, the bed sediment is scoured from the storage areas, and it is moved onto and across the interventing riffles As the river discharge decreases, the bed sediment is scoured off the riffles and moved into the next storage area downstream Each successive pulse of water discharge sets into motion a wave of bedload that continues to move unitil it reaches the next storage area ?? 1985 Springer-Verlag New York Inc.

  11. Sedimentation within the batture lands of the middle Mississippi River, USA

    NASA Astrophysics Data System (ADS)

    Remo, J. W.; Ryherd, J. K.

    2017-12-01

    The suspended sediment load of the Mississippi River has continued to decline after the construction of several hundred large dams within the basin during the mid-20th century. Previous investigators have attributed the post-dam decline in suspended sediment loads to improvements in soil conservation practices and dredging. However, the role batture lands (areas between the river channel and levee) play as potential sinks for suspend sediments has largely been overlooked. In this study, we explored the rates and volume of sedimentation within the batture lands along the middle Mississippi River (MMR; between the confluence of the Missouri and Ohio Rivers). We assessed sedimentation rates using three approaches: 1) comparison of historical to modern elevation data in order to estimate long-term (>100-years) sedimentation rates; 2) estimation of medium- to short-term (<50-years) sedimentation rates using dendrogeomorphological methods; and 3) geomorphic change detection software (GCDS) to estimate short-term sedimentation rates (12 years). We also used GCDS to estimate the volume of sedimentation within the batture lands between 1998 and 2011. Comparison of long- to short-term sedimentation rates suggests up to a 400% increase in batture land sedimentation rates (from 6.2 to 25.4 mm y-1) despite a substantial decrease in the suspended sediment load (>70%). The increase in MMR batture land sedimentation rates are attributed to three mechanisms: 1) the above average frequency and duration of low-magnitude floods (≤5-year flood) during the short-term assessment periods, which allowed for more suspended sediment to be transported into and deposited within, the batture lands; 2) the construction of levees which substantially reduced ( 75%) floodplain areas available for storage of overbank deposits; and 3) river engineering which has reduced bank erosion allowing sediment to be stored for longer periods of time in the batture lands. The estimated batture land sediment

  12. [Mutagenicity study of water samples from a waterworks taking Yangtze River as its water source in Jiangsu Province].

    PubMed

    Xiao, Sanhua; Luo, Lan; Qiao, Qian; Lü, Xuemin; Wang, Yanhui; Feng, Lin; Tang, Fei; Wang, Haiyong; Bie, Nana; Wang, Yuehong

    2017-05-01

    To understand the occurrence and change of mutagencity of water samples in the process of drinking water treatment and distribution in a waterworks taking Yangtze River as its water source in Jiangsu Province. Large volume of inlet water, finished water and tap water samples were extracted by XAD-2 resin. Mutagencities were assessed by Ames test and a mutation ratio( MR) of 2 or greater was judged as a positive result. Compared with the samples with S9, samples without S9 presented more positive results( P = 0. 005). That water treatment elevated MR values( P = 0. 007) while the pipe transport made MR values down( P = 0. 038) was observed in samples without S9. The tap water showed weaker mutagenicities than the raw water in samples with S9( P = 0. 008). Compared to the raw water samples, the finished water samples showed more positive results(-S9) and lower MR values( + S9, P =0. 002). Significant mutagenicities of water samples from the Yangtze Riverand its processed water were presented, and frame shit and direct mutagens deserved special concern.

  13. Mid-Holocene hydrology change in the south Taihu area of the Yangtze delta plain, China, and its relationship to the development of Neolithic cultures

    NASA Astrophysics Data System (ADS)

    Chen, T.; Ryves, D.; Wang, Z.; Lewis, J.

    2017-12-01

    During the middle Holocene, the hydrological environments in the Taihu Plain, Yangtze Delta, China, varied tremendously under the influence of sea-level and climate change. Simultaneously, several Neolithic cultures, such as, the Majiabang, Songze, and Liangzhu culture, developed in this region. Basing on AMS14C dating, diatom identification, measurements of C-N elements and their stable isotopes of sediments from core DTX4 and DTX10, obtained in the East Tiaoxi Plain, south Taihu plain, we discussed the influence of hydrology changes on the development of Neolithic cultures. The results revealed that the East Tiaoxi River plain was in an estuary (the Palaeo-Taihu Estuary) condition at 7500 cal. yr BP, undergoing elevated in-fill in response to rapid sea-level rise. After 7500 cal. yr BP, low salinity conditions occurred, likely influenced by the Yangtze freshwater evidenced by constant occurrence of Aulacoseira granulata, which implied Yangtze runoff discharged along the channel of Palaeo-incised Taihu valley into the Hangzhou Bay during the middle Holocene. Sea-water penetration interrupted after 7000 cal. yr BP caused by an abrupt sea-level rise. During 6500-5600 cal. yr BP, sea-water retreated gradually, corresponding to the infilling of Palaeo-Taihu Estuary. Combing records from previously studied cores in the Taihu plain, stable freshwater condition (or dry land) established in most area of the Taihu plain after 5600 cal. yr BP due to the closure of the Palaeo-Taihu Estuary. We speculate that the low-salinity marsh started at about 7500-7000 cal. yr BP probably attracted the early Majiabang people to live around the Palaeo-Taihu Estuary. The sea water penetration between 7000-6500 cal. yr BP matches the left of the late Majiabang and the early-middle Songze people lived in the east of the Palaeo-Taihu Estuary, to the north and east of the Taihu Plain. The context of stable freshwater condition (or dry land) in the East Tiaoxi River plain promoted the

  14. Sedimentary record and luminescence chronology of palaeoflood events along the Gold Gorge of the upper Hanjiang River, middle Yangtze River basin, China

    NASA Astrophysics Data System (ADS)

    Guo, Yongqiang; Huang, Chun Chang; Zhou, Yali; Pang, Jiangli; Zha, Xiaochun; Fan, Longjiang; Mao, Peini

    2018-05-01

    Palaeoflood slackwater deposits (SWDs) along the river banks have important implications for the reconstruction of the past hydro-climatic events. Two palaeoflood SWD beds were identified in the Holocene loess-soil sequences on the cliff river banks along the Gold Gorge of the upper Hanjiang River by field investigation and laboratory analysis. They have recorded two palaeoflood events which were dated by optically stimulated luminescence to 3.2-2.8 ka and 2.1-1.8 ka, respectively. The reliability of the ages obtained for the two events are further confirmed by the presence of archaeological remains and good regional pedostratigraphic correlation. The peak discharges of two palaeoflood events at the studied sites were estimated to be 16,560-17,930 m3/s. A correlation with the palaeoflood events identified in the other reaches shows that great floods occurred frequently during the episodes of 3200-2800 and 2000-1700 a BP along the upper Hanjiang River valley during the last 4000 years. These phases of palaeoflood events in central China are well correlated with the climatic variability identified by δ18O record in the stalagmites from the middle Yangtze River Basin and show apparent global linkages. Palaeoflood studies in a watershed scale also imply that strengthened human activities during the Shang dynasty (BCE 1600-1100) and Han dynasty (BCE206-CE265) may have caused accelerated soil erosion along the upper Hanjiang River valley.

  15. Role of river bank erosion in sediment budgets of catchments within the Loire river basin (France)

    NASA Astrophysics Data System (ADS)

    Gay, Aurore; Cerdan, Olivier; Poisvert, Cecile; Landemaine, Valentin

    2014-05-01

    Quantifying volumes of sediments produced on hillslopes or in channels and transported or stored within river systems is necessary to establish sediment budgets. If research efforts on hillslope erosion processes have led to a relatively good understanding and quantification of local sources, in-channel processes remain poorly understood and quasi inexistent in global budgets. However, profound landuse changes and agricultural practices have altered river functioning, caused river bank instability and stream incision. During the past decades in France, river channelization has been perfomed extensively to allow for new agricultural practices to take place. Starting from a recent study on the quantification of sediment fluxes for catchments within the Loire river basin (Gay et al. 2013), our aim is to complete sediment budgets by taking into account various sources and sinks both on hillslope and within channel. The emphasis of this study is on river bank erosion and how bank erosion contributes to global budgets. A model of bank retreat is developed for the entire Loire river basin. In general, our results show that bank retreat is on average quite low with approximately 1 cm.yr-1. However, a strong variability exists within the study area with channels displaying values of bank retreat up to ~10 cm.yr-1. Our results corroborate those found by Landemaine et al. in 2013 on a small agricultural catchment. From this first step, quantification of volumes of sediment eroded from banks and available for transport should be calculated and integrated in sediment budgets to allow for a better understanding of basin functioning. Gay A., Cerdan O., Delmas M., Desmet M., Variability of sediment yields in the Loire river basin (France): the role of small scale catchments (under review). Landemaine V., Gay A., Cerdan O., Salvador-Blanes S., Rodriguez S. Recent morphological evolution of a headwater stream in agricultural context after channelization in the Ligoire river (France

  16. How have the river discharges and sediment loads changed in the Changjiang River basin downstream of the Three Gorges Dam?

    NASA Astrophysics Data System (ADS)

    Guo, Leicheng; Su, Ni; Zhu, Chunyan; He, Qing

    2018-05-01

    Streamflow and sediment loads undergo remarkable changes in worldwide rivers in response to climatic changes and human interferences. Understanding their variability and the causes is of vital importance regarding river management. With respect to the Changjiang River (CJR), one of the largest river systems on earth, we provide a comprehensive overview of its hydrological regime changes by analyzing long time series of river discharges and sediment loads data at multiple gauge stations in the basin downstream of Three Gorges Dam (TGD). We find profound river discharge reduction during flood peaks and in the wet-to-dry transition period, and slightly increased discharges in the dry season. Sediment loads have reduced progressively since 1980s owing to sediment yield reduction and dams in the upper basin, with notably accelerated reduction since the start of TGD operation in 2003. Channel degradation occurs in downstream river, leading to considerable river stage drop. Lowered river stages have caused a 'draining effect' on lakes by fostering lake outflows following TGD impoundments. The altered river-lake interplay hastens low water occurrence inside the lakes which can worsen the drought given shrinking lake sizes in long-term. Moreover, lake sedimentation has decreased since 2002 with less sediment trapped in and more sediment flushed out of the lakes. These hydrological changes have broad impacts on river flood and drought occurrences, water security, fluvial ecosystem, and delta safety.

  17. Source, transport and fluxes of Amazon River particulate organic carbon: Insights from river sediment depth-profiles

    NASA Astrophysics Data System (ADS)

    Bouchez, Julien; Galy, Valier; Hilton, Robert G.; Gaillardet, Jérôme; Moreira-Turcq, Patricia; Pérez, Marcela Andrea; France-Lanord, Christian; Maurice, Laurence

    2014-05-01

    In order to reveal particulate organic carbon (POC) source and mode of transport in the largest river basin on Earth, we sampled the main sediment-laden tributaries of the Amazon system (Solimões, Madeira and Amazon) during two sampling campaigns, following vertical depth-profiles. This sampling technique takes advantage of hydrodynamic sorting to access the full range of solid erosion products transported by the river. Using the Al/Si ratio of the river sediments as a proxy for grain size, we find a general increase in POC content with Al/Si, as sediments become finer. However, the sample set shows marked variability in the POC content for a given Al/Si ratio, with the Madeira River having lower POC content across the measured range in Al/Si. The POC content is not strongly related to the specific surface area (SSA) of the suspended load, and bed sediments have a much lower POC/SSA ratio. These data suggest that SSA exerts a significant, yet partial, control on POC transport in Amazon River suspended sediment. We suggest that the role of clay mineralogy, discrete POC particles and rock-derived POC warrant further attention in order to fully understand POC transport in large rivers.

  18. Concentrations and annual fluxes of sediment-associated chemical constituents from conterminous US coastal rivers using bed sediment data

    USGS Publications Warehouse

    Horowitz, Arthur J.; Stephens, Verlin C.; Elrick, Kent A.; Smith, James J.

    2012-01-01

    Coastal rivers represent a significant pathway for the delivery of natural and anthropogenic sediment-associated chemical constituents to the Atlantic, Pacific and Gulf of Mexico coasts of the conterminous USA. This study entails an accounting segment using published average annual suspended sediment fluxes with published sediment-associated chemical constituent concentrations for (1) baseline, (2) land-use distributions, (3) population density, and (4) worldwide means to estimate concentrations/annual fluxes for trace/major elements and total phosphorus, total organic and inorganic carbon, total nitrogen, and sulphur, for 131 coastal river basins. In addition, it entails a sampling and subsequent chemical analysis segment that provides a level of ‘ground truth’ for the calculated values, as well as generating baselines for sediment-associated concentrations/fluxes against which future changes can be evaluated. Currently, between 260 and 270 Mt of suspended sediment are discharged annually from the conterminous USA; about 69% is discharged from Gulf rivers (n = 36), about 24% from Pacific rivers (n = 42), and about 7% from Atlantic rivers (n = 54). Elevated sediment-associated chemical concentrations relative to baseline levels occur in the reverse order of sediment discharges:Atlantic rivers (49%)>Pacific rivers (40%)>Gulf rivers (23%). Elevated trace element concentrations (e.g. Cu, Hg, Pb, Zn) frequently occur in association with present/former industrial areas and/or urban centres, particularly along the northeast Atlantic coast. Elevated carbon and nutrient concentrations occur along both the Atlantic and Gulf coasts but are dominated by rivers in the urban northeast and by southeastern and Gulf coast (Florida) ‘blackwater’ streams. Elevated Ca, Mg, K, and Na distributions tend to reflect local petrology, whereas elevated Ti, S, Fe, and Al concentrations are ubiquitous, possibly because they have substantial natural as well as anthropogenic sources

  19. Impact of beaver ponds on river discharge and sediment deposition along the Chevral River, Ardennes, Belgium

    NASA Astrophysics Data System (ADS)

    Nyssen, Jan; Frankl, Amaury; Pontzeele, Jolien; De Visscher, Maarten; Billi, Paolo

    2013-04-01

    With the recovery of the European beaver (Castor fiber) and their capacity to engineer fluvial landscapes, questions arise as to how they influence river discharge and sediment transport. The Chevral river (Ardennes, Belgium) contains two beaver dam sequences which appeared in 2004 and count now about 30 dams. Flow discharges and sediment fluxes were measured at the in- and outflow of each dam sequence. Volumes of sediment deposited behind the dams were measured. Between 2004 and 2011, peak flows were topped off, and the magnitude of extreme events decreased. 1710 m³ of sediment were deposited behind the beaver dams, with an average sediment thickness of 25 cm. The thickness of the sediment layer is related to the area of the beaver ponds. Along the stream, beaver pond sediment thickness displayed a sinusoidal deposition pattern, in which ponds with thick sediment layers were preceded by a series of ponds with thinner sediment layers. A downstream textural coarsening in the dam sequences was also observed, probably due to dam failures subsequent to surges. Differences in sediment flux between the in- and outflow at the beaver pond sequence were related to the river hydrograph, with deposition taking place during the rising limbs and slight erosion during the falling limbs. The seven-year-old sequences have filtered 190 tons of sediment out of the Chevral river, which is of the same order of magnitude as the 374 tons measured in pond deposits, with the difference between the values corresponding to beaver excavations (60 tons), inflow from small tributaries, and runoff from the valley flanks. Hydrogeomorphic effects of C. fiber and C. canadensis activity are similar in magnitude. The detailed analysis of changes to hydrology in beaver pond sequences confirms the potential of beavers to contribute to river and wetland restoration and catchment management.

  20. A high-resolution genetic linkage map and QTL fine mapping for growth-related traits and sex in the Yangtze River common carp (Cyprinus carpio haematopterus).

    PubMed

    Feng, Xiu; Yu, Xiaomu; Fu, Beide; Wang, Xinhua; Liu, Haiyang; Pang, Meixia; Tong, Jingou

    2018-04-02

    A high-density genetic linkage map is essential for QTL fine mapping, comparative genome analysis, identification of candidate genes and marker-assisted selection for economic traits in aquaculture species. The Yangtze River common carp (Cyprinus carpio haematopterus) is one of the most important aquacultured strains in China. However, quite limited genetics and genomics resources have been developed for genetic improvement of economic traits in such strain. A high-resolution genetic linkage map was constructed by using 7820 2b-RAD (2b-restriction site-associated DNA) and 295 microsatellite markers in a F2 family of the Yangtze River common carp (C. c. haematopterus). The length of the map was 4586.56 cM with an average marker interval of 0.57 cM. Comparative genome mapping revealed that a high proportion (70%) of markers with disagreed chromosome location was observed between C. c. haematopterus and another common carp strain (subspecies) C. c. carpio. A clear 2:1 relationship was observed between C. c. haematopterus linkage groups (LGs) and zebrafish (Danio rerio) chromosomes. Based on the genetic map, 21 QTLs for growth-related traits were detected on 12 LGs, and contributed values of phenotypic variance explained (PVE) ranging from 16.3 to 38.6%, with LOD scores ranging from 4.02 to 11.13. A genome-wide significant QTL (LOD = 10.83) and three chromosome-wide significant QTLs (mean LOD = 4.84) for sex were mapped on LG50 and LG24, respectively. A 1.4 cM confidence interval of QTL for all growth-related traits showed conserved synteny with a 2.06 M segment on chromosome 14 of D. rerio. Five potential candidate genes were identified by blast search in this genomic region, including a well-studied multi-functional growth related gene, Apelin. We mapped a set of suggestive and significant QTLs for growth-related traits and sex based on a high-density genetic linkage map using SNP and microsatellite markers for Yangtze River common carp. Several

  1. Effect of human activities on overall trend of sedimentation in the lower Yellow River, China.

    PubMed

    Jiongxin, Xu

    2004-05-01

    The Yellow River has been intensively affected by human activities, particularly in the past 50 years, including soil-water conservation in the upper and middle drainage basin, flood protection in the lower reaches, and flow regulation and water diversion in the whole drainage basin. All these changes may impact sedimentation process of the lower Yellow River in different ways. Assessing these impacts comprehensively is important for more effective environmental management of the drainage basin. Based on the data of annual river flow, sediment load, and channel sedimentation in the lower Yellow River between 1950 and 1997, the purpose of this paper is to analyze the overall trend of channel sedimentation rate at a time scale of 50 years, and its formative cause. It was found in this study that erosion control measures and water diversion have counteractive impacts on sedimentation rate in the lower Yellow River. Although both annual river flow and sediment decreased, there was no change in channel sedimentation rate. A regression analysis indicated that the sedimentation in the lower Yellow River decreased with the sediment input to the lower Yellow River but increased with the river flow input. In the past 30-40 years, the basin-wide practice of erosion and sediment control measures resulted in a decline in sediment supply to the Yellow River; at the same time, the human development of water resources that required river flow regulation and water diversion caused great reduction in river flow. The former may reduce the sedimentation in the lower Yellow River, but the reduction of river flow increased the sedimentation. When their effects counterbalanced each other, the overall trend of channel sedimentation in the lower Yellow River remained unchanged. This fact may help us to better understand the positive and negative effects of human activities in the Yellow River basin and to pay more attention to the negative effect of the development of water resources. The

  2. Suspended sediments of the modern Amazon and Orinoco rivers

    USGS Publications Warehouse

    Meade, R.H.

    1994-01-01

    The Amazon and Orinoco Rivers are massive transcontinental conveyance systems for suspended sediment. They derive about 90% of their sediment from the Andes that support their western headwaters, transport it for thousands of kilometers across the breadth of the continent and deposit it in the coastal zones of the Atlantic. At their points of maximum suspended-sediment discharge, the Amazon transports an average of 1100-1300 ?? 106 tons per year and the Orinoco transports about 150 ?? 106 tons per year. Relations of sediment discharge to water discharge are complicated by unusual patterns of seasonal storage and remobilization, increased storage and reduced transport of sediment in the middle Orinoco during periods of peak water discharge, and storage of suspended sediment in the lower Amazon during rising discharge and resuspension during falling discharge. Spatial distributions of suspended sediment in cross-sections of both rivers are typically heterogeneous, not only in the vertical sense but also in the lateral. The cross-channel mixing of tributary inputs into the mainstem waters is a slow process that requires several hundred kilometers of downriver transport to complete. Considerable fine-grained sediment is exchanged between rivers and floodplains by the combination of overbank deposition and bank erosion. ?? 1994.

  3. Temporal and spatial distributions of sediment total organic carbon in an estuary river.

    PubMed

    Ouyang, Y; Zhang, J E; Ou, L-T

    2006-01-01

    Understanding temporal and spatial distributions of naturally occurring total organic carbon (TOC) in sediments is critical because TOC is an important feature of surface water quality. This study investigated temporal and spatial distributions of sediment TOC and its relationships to sediment contaminants in the Cedar and Ortega Rivers, Florida, USA, using three-dimensional kriging analysis and field measurement. Analysis of field data showed that large temporal changes in sediment TOC concentrations occurred in the rivers, which reflected changes in the characteristics and magnitude of inputs into the rivers during approximately the last 100 yr. The average concentration of TOC in sediments from the Cedar and Ortega Rivers was 12.7% with a maximum of 22.6% and a minimum of 2.3%. In general, more TOC accumulated at the upper 1.0 m of the sediment in the southern part of the Ortega River although the TOC sedimentation varied with locations and depths. In contrast, high concentrations of sediment contaminants, that is, total polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were found in sediments from the Cedar River. There was no correlation between TOC and PAHs or PCBs in these river sediments. This finding is in contradiction to some other studies which reported that the sorption of hydrocarbons is highly related to the organic matter content of sediments. This discrepancy occurred because of the differences in TOC and hydrocarbon source input locations. It was found that more TOC loaded into the southern part of the Ortega River, while almost all of the hydrocarbons entered into the Cedar River. This study suggested that the locations of their input sources as well as the land use patterns should also be considered when relating hydrocarbons to sediment TOC.

  4. [Investigation on knowledge, attitude, and practice of schistosomiasis prevention and control and infection status in Armed Police Forces stationed along Yangtze River].

    PubMed

    Ming-Zhen, He; Yi-Qing, Xie; Yan-Li, Guo; Hong, Chen; Yong-Gen, Zou; Shi-Ying, Zhu; You, Zhang

    2016-12-21

    To understand the status of knowledge, attitude, and practice of schistosomiasis prevention and control and infection status in Armed Police Forces stationed along the Yangtze River, so as to provide the reference for formulating the schistosomiasis prevention and control measures in Armed Police Forces. A questionnaire survey was conducted in the Armed Police Forces along the Yangtze River in Jiangsu Province, and the investigation content included social demographic data, schistosomiasis prevention knowledge, attitude and behavior. All the subjects were examined for Schistosoma japonicum infection. Totally 376 soldiers were investigated in 2 sites. The total passing rate of schistosomiasis knowledge was 72.87%. The passing rate among different age groups had no significant difference ( χ 2 =0.26, P > 0.05). The passing rate of soldiers from endemic areas was significantly higher than that of the soldiers from non-endemic areas ( χ 2 =4.71, P < 0.05). The passing rate of officers was significantly higher than that of the soldiers ( χ 2 = 4.21, P < 0.05). The passing rate of soldiers with the education levels of junior school, high school, college, undergraduate and above increased gradually, with a significant difference ( χ 2 =8.16, P < 0.05). The soldiers with positive attitude accounted for 93.88%. Among the water contact behaviors, training accounted for 17.55% and participating in the task (such as flood fighting and water work) accounted for 86.44%. When launching, the rate of taking protective measures was 52.93%. The rate of taking protective measures in the knowledge passing group was much higher than that in the knowledge failed group ( χ 2 =10.55, P < 0.05). The stool was harmlessly treated in the two camps. Among 376 soldiers, the positive rate of blood examinations was 0.53%, but the stool examinations were all negative. The overall level of knowledge and correct behavior of schistosomiasis prevention in the Armed Police Forces along the Yangtze

  5. Sediment pollution of the Elbe River side structures - current research

    NASA Astrophysics Data System (ADS)

    Chalupova, Dagmar; Janský, Bohumír

    2016-04-01

    The contribution brings the summarized results of a long-term research on sediment pollution of side structures of the Elbe River over the last 14 years. The investigation has been focused on old anthropogenic pollution of sediment cores taken from fluvial lakes and floodplain, as the sampling of deeper sediments outside the riverbed is not a part of systematic monitoring of sediment pollution of the Elbe. The Elbe River floodplain has been influenced by human activities since the Middle Ages, but the main anthropogenic pollution have been produced in the 20th century. The studied localities were chosen with the respect to the distance from the source of industrial pollution, the intensity of hydrological communication with the river and the surrounding landuse to determine the extend and the level of anthropogenic contamination in the Elbe River floodplain ecosystem. Apart from bathymetric measurements, observation of the hydrological regime in several fluvial lakes or water quality sampling at some localities, the research was focused above all on determination of metal concentrations (Ag, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Zn) in all taken sediment cores, specific organic compounds (PCBs, DDT, HCH, HCB, PAHs etc.), total organic carbon at some localities and grain structure analyses. The data were also compared with the results of systematic sediment monitoring from the nearest riverbed sampling stations on the Elbe River. The highest concentrations of metals and specific organic compounds were determined in the sediments taken from fluvial lakes and floodplain (Zimní přístav PARAMO, Rosice fuvial Lake, Libiš pool etc.) situated in the vicinity of the main Elbe River polluters - Synthesia chemical plant and PARAMO refinery in Pardubice or Spolana chemical plant near Neratovice. However, there was also determined a significant role of the hydrological communication with the river proved with lower sediment pollution in separated localities. The realization of the

  6. Spatial distribution of planktonic bacterial and archaeal communities in the upper section of the tidal reach in Yangtze River

    PubMed Central

    Fan, Limin; Song, Chao; Meng, Shunlong; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Li, Dandan; Zhang, Cong; Hu, Gengdong; Chen, Jiazhang

    2016-01-01

    Bacterioplankton and archaeaplankton communities play key roles in the biogeochemical processes of water, and they may be affected by many factors. In this study, we used high-throughput 16S rRNA gene sequencing to profile planktonic bacterial and archaeal community compositions in the upper section of the tidal reach in Yangtze River. We found that the predominant bacterial phyla in this river section were Proteobacteria, Firmicutes, and Actinobacteria, whereas the predominant archaeal classes were Halobacteria, Methanomicrobia, and unclassified Euryarchaeota. Additionally, the bacterial and archaeal community compositions, richnesses, functional profiles, and ordinations were affected by the spatial heterogeneity related to the concentration changes of sulphate or nitrate. Notably, the bacterial community was more sensitive than the archaeal community to changes in the spatial characteristics of this river section. These findings provide important insights into the distributions of bacterial and archaeal communities in natural water habitats. PMID:27966673

  7. Spatial distribution of planktonic bacterial and archaeal communities in the upper section of the tidal reach in Yangtze River

    NASA Astrophysics Data System (ADS)

    Fan, Limin; Song, Chao; Meng, Shunlong; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Li, Dandan; Zhang, Cong; Hu, Gengdong; Chen, Jiazhang

    2016-12-01

    Bacterioplankton and archaeaplankton communities play key roles in the biogeochemical processes of water, and they may be affected by many factors. In this study, we used high-throughput 16S rRNA gene sequencing to profile planktonic bacterial and archaeal community compositions in the upper section of the tidal reach in Yangtze River. We found that the predominant bacterial phyla in this river section were Proteobacteria, Firmicutes, and Actinobacteria, whereas the predominant archaeal classes were Halobacteria, Methanomicrobia, and unclassified Euryarchaeota. Additionally, the bacterial and archaeal community compositions, richnesses, functional profiles, and ordinations were affected by the spatial heterogeneity related to the concentration changes of sulphate or nitrate. Notably, the bacterial community was more sensitive than the archaeal community to changes in the spatial characteristics of this river section. These findings provide important insights into the distributions of bacterial and archaeal communities in natural water habitats.

  8. Rapid formation of hyperpycnal sediment gravity currents offshore of a semi-arid California river

    USGS Publications Warehouse

    Warrick, J.A.; Xu, Jie; Noble, M.A.; Lee, H.J.

    2008-01-01

    Observations of sediment dispersal from the Santa Clara River of southern California during two moderately sized river discharge events suggest that river sediment rapidly formed a negatively buoyant (hyperpycnal) bottom plume along the seabed within hours of peak discharge. An array of acoustic and optical sensors were placed at three stations 1 km from the Santa Clara River mouth in 10-m water depth during January-February 2004. These combined observations suggest that fluid mud concentrations of suspended sediment (>10 g/l) and across-shore gravity currents (???5 cm/s) were observed in the lower 20-40 cm of the water column 4-6 h after discharge events. Gravity currents were wave dominated, rather than auto-suspending, and appeared to consist of silt-to-clay sized sediment from the river. Sediment mass balances suggest that 25-50% of the discharged river sediment was transported by these hyperpycnal currents. Sediment settling purely by flocs (???1 mm/s) cannot explain the formation of the observed hyperpycnal plumes, therefore we suggest that some enhanced sediment settling from mixing, convective instabilities, or diverging plumes occurred that would explain the formation of the gravity currents. These combined results provide field evidence that high suspended-sediment concentrations from rivers (>1 g/l) may rapidly form hyperpycnal sediment gravity currents immediately offshore of river mouths, and these pathways can explain a significant portion of the river-margin sediment budget. The fate of this sediment will be strongly influenced by bathymetry, whereas the fate of the remaining sediment will be much more influenced by ocean currents.

  9. Modern Sedimentation off the Kaoping River, SW Taiwan: A Comparison with Eel River's S2S System

    NASA Astrophysics Data System (ADS)

    Huh, C.; Lin, H.; Lin, S.

    2006-12-01

    The Kaoping (KP) River in SW Taiwan has a watershed area of 3257 km2 and an annual sediment discharge of 49 MT. Although the sediment yield of the KP River basin (1.5×104 ton km-2 yr^{- 1}) is the 4th highest among Taiwan's catchment basins, it is nearly one order of magnitude higher than that of the Eel River's basin (~1.8×103 ton km-2 yr-1; the highest in the U.S.). The KP canyon extends almost immediately seaward from the river's mouth and terminates in the northwestern corner of the South China Sea. The head of the canyon is characterized by high and steep walls exceeding 600 m. The KP river's source-to-sink system offers a dramatic case of mountainous rivers at active margins for S2S study. Here we report some results about modern sedimentation in KP river's dispersal system. Seventy-six sediment cores collected from an area of ~3000 km2 were analyzed for fallout nuclides 7Be, 137Cs and 210Pb by gamma spectrometry. From profiles of excess 210Pb and 137Cs sediment accumulation rates in the coring sites were estimated, which vary from 0.06 to 1.6 cm/yr, with the highest rates (>1 cm/yr) distributed in the upper slope (<600 m) on both sides of the KP canyon. The area with high sedimentation rates on Pb-210 time scale coincides with the area covered by a flood layer resulting from Typhoon Haitang during July 18-20, 2005. This suggests that the open margin on the upper slope is a depocenter for sediment dispersed via a surface component of the river's plume on various timescales (from events to centennial). With a total of 76 sampling points laid out, a framework consisting of 105 triangular grids is configured to calculate the budget of sediment in the study area. The calculated budget, at 7.2 MT/yr, accounts for only ~15% of KP river's sediment discharge. We speculate that most of the remainder is exported out of the study area via the KP canyon to the deep sea by gravity-driven turbidity or hyperpycnal flows.

  10. Chemical weather forecasting for the Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Xu, J.; Zhou, G.; Chang, L.; Chen, B.

    2016-12-01

    Shanghai is one of the largest megacities in the world. With rapid economic growth of the city and its surrounding areas in recent years, air pollution has posed adverse effects on public health and ecosystem. In winter heavy pollution episodes are often associated with PM exceedances under stagnant conditions or transport events, whereas in summer the region frequently experiences elevated O3 levels. Chemical weather prediction systems with the WRF-Chem and CMAQ models are being developed to support air quality and haze forecasting for Shanghai and the Yangtze River Delta region. We will present main components of the modeling system, forecasting products, as well as evaluation results. Evaluation of the WRF-Chem forecasts show the model has generally good ability to capture the temporal variations of O3 and PM2.5. Substantial regional differences exist, with the best performance in Shanghai. Meanwhile, the forecasts tend to degrade during highly polluted episodes and transitional time periods, which highlights the need to improve model representation of key process (e.g. meteorological fields and formation of secondary pollutants). Recent work includes using the ECMWF global model forecasts as chemical boundary conditions for our regional model. We investigate the impact of chemical downscaling, and also compare the results from different models participated in the PANDA (PArtnership with chiNa on space Data) project. Results from ongoing efforts (e.g. chemical weather forecasting driven by SMS regional high resolution NWP) will also be presented.

  11. [Characteristic of ammonia nitrogen adsorption on karst underground river sediments].

    PubMed

    Guo, Fang; Chen, Kun-Kun; Jiang, Guang-Hui

    2011-02-01

    Karst aquifers are one of the most important aquifers in Southwestern China. One of the characteristics of karst aquifers is the enhanced permeability permits high flow velocities are capable of transporting suspended and bedload sediments. Mobile sediment in karst may act as a vector for the transport of contaminates. 14 sediment samples were collected from two underground rivers in two typical karst areas in Liuzhou city, Guangxi Autonomous Region, China. According to simulated experiment methods, characteristic of adsorption of ammonia nitrogen on sediment was studied. The results of ammonia nitrogen adsorption dynamics on sediments showed that the maximum adsorption velocity was less than 2 h. The adsorption balance quantity in 5 h accounted for 71% - 98% of the maximum adsorption quantity. The maximum adsorption quantity of ammonia nitrogen was 385.5 mg/kg, which was sediment from a cave in the middle areas of Guancun underground river system. The study of isotherm adsorption indicated adsorption quantity of NH4+ increase followed by incremental balance concentration of NH4+ in the aquatic phase. Adsorption quantity of ammonia nitrogen in sediments has a relative linear relationship with adsorption balance concentrations. Adsorption-desorption balance concentrations were all low, indicating sediments from underground rivers have great adsorption potential. Under the condition of low and high concentrations of ammonia nitrogen in overlying water, Langmuir and Tempkin couldn't simulate or simulate results couldn't reach remarkable level, whilst Linear and Freundlich models could simulate well. Research on different type sediments, sampling times and depths from two underground rivers shows characteristic of ammonia nitrogen adsorption on karst underground river sediments doesn't have good correspondence with the type of sediments. One of the reasons is there is no big difference between sediments in the development of climate, geology, hydrological conditions

  12. Sediment supply as a driver of river evolution in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Ahmed, Joshua; Constantine, José Antonio; Dunne, Thomas; Legleiter, Carl; Lazarus, Eli D.

    2015-04-01

    The Amazon represents the only large river basin in the world where there is a sufficient range of sediment supplies and a lack of engineering controls to assess how sediment supply drives the evolution of meandering rivers. Despite recent analytical advances (Asahi et al., 2013; Pittaluga and Seminara, 2011), modern theory does not yet identify or explain the effects of externally imposed sediment supplies, a fundamental river characteristic, on meandering river evolution. These sediment supplies would be radically reduced by the construction of large dams proposed for the Amazon Basin (Finer and Jenkins, 2012). Here, we demonstrate that the sediment loads imposed by their respective drainage basins determine planform changes in lowland rivers across the Amazon. Our analysis, based on Landsat image sequences, indicates that rivers with high sediment loads draining the Andes and associated foreland basin experience annual migration rates that are on average four times faster than rivers with lower sediment loads draining the Central Amazon Trough and shields. Incidents of meander cutoff also occur more frequently along the rivers of the Andes and foreland basin, where the number of oxbows in the floodplains is more than twice that observed in the floodplains of the Central Amazon Trough and shields. Our results, which cannot be explained by differences in channel slope or hydrology, highlight the importance of sediment supply in modulating the ability of meandering alluvial rivers to reshape the floodplain environment through river migration. Asahi, K., Shimizu, Y., Nelson, J., Parker, G., 2013. Numerical simulation of river meandering with self-evolving banks. Journal of Geophysical Research: Earth Surface, 118(4), 2013JF002752. Finer, M., Jenkins, C.N., 2012. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLOS One, 7(4), e35126. Pittaluga, M.B., Seminara, G., 2011. Nonlinearity and unsteadiness in river

  13. A SEDIMENT TOXICITY EVALUATION OF THREE LARGE RIVER SYSTEMS

    EPA Science Inventory

    Sediment toxicity samples were collected from selected sites on the Ohio River, Missouri River and upper Mississippi River as part of the 2004 and 2005 Environmental Monitoring and Assessment Program-Great Rivers Ecosystems Study (EMAP-GRE). Samples were collected by compositing...

  14. Influence of the South-to-North Water Transfer and the Yangtze River Mitigation Projects on the water quality of Han River, China

    NASA Astrophysics Data System (ADS)

    Liu, W.; Kuo, Y. M.

    2016-12-01

    The Middle Route of China's South-to-North Water Transfer (MSNW) and Yangtze-Han River Water Diversion (YHWD) Projects have been operated since 2014, which may deteriorate water quality in Han River. The 11 water sampling sites distributed from the middle and down streams of Han River watershed were monitored monthly between July 2014 and December 2015. Factor analysis and cluster analysis were applied to investigate the major pollution types and main variables influencing water quality in Han River. The factor analysis distinguishes three main pollution types (agricultural nonpoint source, organic, and phosphorus point source pollution) affecting water quality of Han River. Cluster analysis classified all sampling sites into four groups and determined their pollution source for both Dry and Wet seasons. The sites located at central city receive point source pollution in both seasons. The water quality in downstream Han River (excluding central city sites) was influenced by nonpoint source pollution from Jianghan Plain. Variations of water qualities are associated with hydrological conditions varied from operations of engineering projects and seasonal variability especially in Dry season. Good water quality as Class III mainly occurred when flow rate is greater than 800 cms in Dry season. The low average flow rate below 583 cms will degrade water quality as Class V at almost all sites. Elevating the flow rate discharged from MSNW and YHWD Projects to Han River can avoid degrading water quality especially in low flow conditions and may decrease the probability of algal bloom occurrence in Han River. Increasing the flow rate from 400 cms to 700 cms in main Han River can obviously improve the water quality of Han River. The investigation of relationships between water quality and flow rate in both projects can provide management strategies of water quality for various flow conditions.

  15. Sediment dynamics in the lower Mekong River: Transition from tidal river to estuary

    NASA Astrophysics Data System (ADS)

    Nowacki, Daniel J.; Ogston, Andrea S.; Nittrouer, Charles A.; Fricke, Aaron T.; Van, Pham Dang Tri

    2015-09-01

    A better understanding of flow and sediment dynamics in the lowermost portions of large-tropical rivers is essential to constraining estimates of worldwide sediment delivery to the ocean. Flow velocity, salinity, and suspended-sediment concentration were measured for 25 h at three cross sections in the tidal Song Hau distributary of the Mekong River, Vietnam. Two campaigns took place during comparatively high-seasonal and low-seasonal discharge, and estuarine conditions varied dramatically between them. The system transitioned from a tidal river with ephemeral presence of a salt wedge during high flow to a partially mixed estuary during low flow. The changing freshwater input, sediment sources, and estuarine characteristics resulted in seaward sediment export during high flow and landward import during low flow. The Dinh An channel of the Song Hau distributary exported sediment to the coast at a rate of about 1 t s-1 during high flow and imported sediment in a spatially varying manner at approximately 0.3 t s-1 during low flow. Scaling these values results in a yearly Mekong sediment discharge estimate about 65% smaller than a generally accepted estimate of 110 Mt yr-1, although the limited temporal and spatial nature of this study implies a relatively high degree of uncertainty for the new estimate. Fluvial advection of sediment was primarily responsible for the high-flow sediment export. Exchange-flow and tidal processes, including local resuspension, were principally responsible for the low-flow import. The resulting bed-sediment grain size was coarser and more variable during high flow and finer during low, and the residual flow patterns support the maintenance of mid-channel islands. This article was corrected on 7 OCT 2015. See the end of the full text for details.

  16. What are the contemporary sources of sediment in the Mississippi River?

    NASA Astrophysics Data System (ADS)

    Hassan, M. A.; Roberge, L.; Church, M.; More, M.; Donner, S. D.; Leach, J.; Ali, K. F.

    2017-09-01

    Within the last two centuries, the Mississippi River basin has been transformed by changes in land use practices, dam construction, and training of the rivers for navigation. Here we analyze the contemporary patterns of fluvial sediment yield in the Mississippi River basin using all available data in order to assess the influence of regional land condition on the variation of sediment yield within the basin. We develop regional-scale relations between specific sediment yield (yield per unit area) and drainage area to reveal contemporary regional sediment yield patterns and source areas of riverine sediments. Extensive upland erosion before the development of soil conservation practices exported large amounts of sediment to the valleys and floodplains. We show that sediment today is sourced primarily along the river valleys from arable land, and from stream bank and channel erosion, with sediment yields from areas dominated by arable land 2 orders of magnitude greater than that of grassland dominated areas. Comparison with the "T factor," a commonly quoted measure of agricultural soil resilience suggests that the latter may not reflect contemporary soil loss from the landscape.

  17. Trends in the suspended-sediment yields of coastal rivers of northern California, 1955–2010

    USGS Publications Warehouse

    Warrick, J.A.; Madej, Mary Ann; Goñi, M. A.; Wheatcroft, R.A.

    2013-01-01

    Time-dependencies of suspended-sediment discharge from six coastal watersheds of northern California – Smith River, Klamath River, Trinity River, Redwood Creek, Mad River, and Eel River – were evaluated using monitoring data from 1955 to 2010. Suspended-sediment concentrations revealed time-dependent hysteresis and multi-year trends. The multi-year trends had two primary patterns relative to river discharge: (i) increases in concentration resulting from both land clearing from logging and the flood of record during December 1964 (water year 1965), and (ii) continual decreases in concentration during the decades following this flood. Data from the Eel River revealed that changes in suspended-sediment concentrations occurred for all grain-size fractions, but were most pronounced for the sand fraction. Because of these changes, the use of bulk discharge-concentration relationships (i.e., “sediment rating curves”) without time-dependencies in these relationships resulted in substantial errors in sediment load estimates, including 2.5-fold over-prediction of Eel River sediment loads since 1979. We conclude that sediment discharge and sediment discharge relationships (such as sediment rating curves) from these coastal rivers have varied substantially with time in response to land use and climate. Thus, the use of historical river sediment data and sediment rating curves without considerations for time-dependent trends may result in significant errors in sediment yield estimates from the globally-important steep, small watersheds.

  18. Coastal change from a massive sediment input: Dam removal, Elwha River, Washington, USA

    USGS Publications Warehouse

    Warrick, Jonathan A.; Gelfenbaum, Guy R.; Stevens, Andrew; Miller, Ian M.; Kaminsky, George M.; Foley, Melissa M.

    2015-01-01

    The removal of two large dams on the Elwha River, Washington, provides an ideal opportunity to study coastal morphodynamics during increased sediment supply. The dam removal project exposed ~21 million cubic meters (~30 million tonnes) of sediment in the former reservoirs, and this sediment was allowed to erode by natural river processes. Elevated rates of sand and gravel sediment transport in the river occurred during dam removal. Most of the sediment was transported to the coast, and this renewed sediment supply resulted in hundreds of meters of seaward expansion of the river delta since 2011. Our most recent survey in January 2015 revealed that a cumulative ~3.5 million m3 of sediment deposition occurred at the delta since the beginning of the dam removal project, and that aggradation had exceeded 8 m near the river mouth. Some of the newly deposited sediment has been shaped by waves and currents into a series of subaerial berms that appear to move shoreward with time.

  19. Summary of sediment data from the Yampa river and upper Green river basins, Colorado and Utah, 1993-2002

    USGS Publications Warehouse

    Elliott, John G.; Anders, Steven P.

    2004-01-01

    The water resources of the Upper Colorado River Basin have been extensively developed for water supply, irrigation, and power generation through water storage in upstream reservoirs during spring runoff and subsequent releases during the remainder of the year. The net effect of water-resource development has been to substantially modify the predevelopment annual hydrograph as well as the timing and amount of sediment delivery from the upper Green River and the Yampa River Basins tributaries to the main-stem reaches where endangered native fish populations have been observed. The U.S. Geological Survey, in cooperation with the Colorado Division of Wildlife and the U.S. Fish and Wildlife Service, began a study to identify sediment source reaches in the Green River main stem and the lower Yampa and Little Snake Rivers and to identify sediment-transport relations that would be useful in assessing the potential effects of hydrograph modification by reservoir operation on sedimentation at identified razorback spawning bars in the Green River. The need for additional data collection is evaluated at each sampling site. Sediment loads were calculated at five key areas within the watershed by using instantaneous measurements of streamflow, suspended-sediment concentration, and bedload. Sediment loads were computed at each site for two modes of transport (suspended load and bedload), as well as for the total-sediment load (suspended load plus bedload) where both modes were sampled. Sediment loads also were calculated for sediment particle-size range (silt-and-clay, and sand-and-gravel sizes) if laboratory size analysis had been performed on the sample, and by hydrograph season. Sediment-transport curves were developed for each type of sediment load by a least-squares regression of logarithmic-transformed data. Transport equations for suspended load and total load had coefficients of determination of at least 0.72 at all of the sampling sites except Little Snake River near

  20. The diel rhythms of biosonar behavior in the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) in the port of the Yangtze River: The correlation between prey availability and boat traffic.

    PubMed

    Wang, Zhitao; Akamatsu, Tomonari; Wang, Kexiong; Wang, Ding

    2014-01-01

    Information on the habitat use of the critically endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) is critical for its conservation. The diel biosonar behavior of the porpoise in the port areas of the Yangtze River was examined along with simultaneous observations of fish density and boat traffic. Biosonar pulses from the porpoises were detected for 1233 min (5.77%) over a 21,380 min duration of effective observations. In total, 190 (5.63%) buzzes (an indication of prey capture attempts) were recorded among the 3372 identified click trains. Of the 168 echolocation encounters (bouts of click trains less than eight min apart), 150 (89.3%) involved single animals, indicating that solitary porpoises were frequently present and feeding in the port areas. Significant diel patterns were evident involving the biosonar behavior of the porpoises (including click trains and buzzes), fish density and boat traffic. The frequencies of the click trains and buzzes were significantly lower during the day than in the evening and at night, which suggests that porpoises in this region are primarily engaged in crepuscular and nocturnal foraging. The lack of a significant diel pattern in the echolocation encounters indicates the importance of the port in porpoise conservation. A forced feeding schedule may be associated with the lack of a significant correlation between porpoise acoustics and boat traffic. Overall, prey availability appears to be the primary factor that attracts porpoises. Additionally, porpoises tend to migrate or remain downstream in the morning and migrate or remain upstream in the evening, most likely to follow their prey. The findings of this study can be used to improve the conservation of the Yangtze finless porpoise.

  1. The Diel Rhythms of Biosonar Behavior in the Yangtze Finless Porpoise (Neophocaena asiaeorientalis asiaeorientalis) in the Port of the Yangtze River: The Correlation between Prey Availability and Boat Traffic

    PubMed Central

    Wang, Zhitao; Akamatsu, Tomonari; Wang, Kexiong; Wang, Ding

    2014-01-01

    Information on the habitat use of the critically endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) is critical for its conservation. The diel biosonar behavior of the porpoise in the port areas of the Yangtze River was examined along with simultaneous observations of fish density and boat traffic. Biosonar pulses from the porpoises were detected for 1233 min (5.77%) over a 21,380 min duration of effective observations. In total, 190 (5.63%) buzzes (an indication of prey capture attempts) were recorded among the 3372 identified click trains. Of the 168 echolocation encounters (bouts of click trains less than eight min apart), 150 (89.3%) involved single animals, indicating that solitary porpoises were frequently present and feeding in the port areas. Significant diel patterns were evident involving the biosonar behavior of the porpoises (including click trains and buzzes), fish density and boat traffic. The frequencies of the click trains and buzzes were significantly lower during the day than in the evening and at night, which suggests that porpoises in this region are primarily engaged in crepuscular and nocturnal foraging. The lack of a significant diel pattern in the echolocation encounters indicates the importance of the port in porpoise conservation. A forced feeding schedule may be associated with the lack of a significant correlation between porpoise acoustics and boat traffic. Overall, prey availability appears to be the primary factor that attracts porpoises. Additionally, porpoises tend to migrate or remain downstream in the morning and migrate or remain upstream in the evening, most likely to follow their prey. The findings of this study can be used to improve the conservation of the Yangtze finless porpoise. PMID:24823945

  2. Quantifying the impact of the Three Gorges Dam on the thermal dynamics of the Yangtze River

    NASA Astrophysics Data System (ADS)

    Cai, Huayang; Piccolroaz, Sebastiano; Huang, Jingzheng; Liu, Zhiyong; Liu, Feng; Toffolon, Marco

    2018-05-01

    This study examines the impact of the world’s largest dam, the Three Gorges Dam (TGD), on the thermal dynamics of the Yangtze River (China). The analysis uses long-term observations of river water temperature (RWT) in four stations and reconstructs the RWT that would have occurred in absence of the TGD. Relative to pre-TGD conditions, RWT consistently warmed in the region due to air temperature (AT) increase. In addition, the analysis demonstrates that the TGD significantly affected RWT in the downstream reach. At the closest downstream station (Yichang) to the TGD, the annual cycle of RWT experienced a damped response to AT and a marked seasonal alteration: warming during all seasons except for spring and early summer which were characterized by cooling. Both effects were a direct consequence of the larger thermal inertia of the massive water volume stored in the TGD reservoir, causing the downstream reach to be more thermally resilient. The approach used here to quantify the separate contributions of climate and human interventions on RWT can be used to set scientific guidelines for river management and conservation planning strategies.

  3. Simulation of relationship between river discharge and sediment yield in the semi-arid river watersheds

    NASA Astrophysics Data System (ADS)

    Khaleghi, Mohammad Reza; Varvani, Javad

    2018-02-01

    Complex and variable nature of the river sediment yield caused many problems in estimating the long-term sediment yield and problems input into the reservoirs. Sediment Rating Curves (SRCs) are generally used to estimate the suspended sediment load of the rivers and drainage watersheds. Since the regression equations of the SRCs are obtained by logarithmic retransformation and have a little independent variable in this equation, they also overestimate or underestimate the true sediment load of the rivers. To evaluate the bias correction factors in Kalshor and Kashafroud watersheds, seven hydrometric stations of this region with suitable upstream watershed and spatial distribution were selected. Investigation of the accuracy index (ratio of estimated sediment yield to observed sediment yield) and the precision index of different bias correction factors of FAO, Quasi-Maximum Likelihood Estimator (QMLE), Smearing, and Minimum-Variance Unbiased Estimator (MVUE) with LSD test showed that FAO coefficient increases the estimated error in all of the stations. Application of MVUE in linear and mean load rating curves has not statistically meaningful effects. QMLE and smearing factors increased the estimated error in mean load rating curve, but that does not have any effect on linear rating curve estimation.

  4. Holocene delta evolution and sediment discharge of the Mekong River, southern Vietnam

    NASA Astrophysics Data System (ADS)

    Ta, Thi Kim Oanh; Nguyen, Van Lap; Tateishi, Masaaki; Kobayashi, Iwao; Tanabe, Susumu; Saito, Yoshiki

    2002-09-01

    Evolutionary changes, delta progradation, and sediment discharge of the Mekong River Delta, southern Vietnam, during the late Holocene are presented based on detailed analyses of samples from six boreholes on the lower delta plain. Sedimentological and chronostratigraphic analyses indicate clearly that the last 3 kyr were characterized by delta progradation under increasing wave influence, southeastward sediment dispersal, decreasing progradation rates, beach-ridge formation, and steepening of the face of the delta front. Estimated sediment discharge of the Mekong River for the last 3 kyr, based on sediment-volume analysis, was 144±36 million t yr -1 on average, or almost the same as the present level. The constant rate of delta front migration and stable sediment discharge during the last 3 kyr indicate that a dramatic increase in sediment discharge owing to human activities, as has been suggested for the Yellow River watershed, did not occur. Although Southeast Asian rivers have been considered candidates for such dramatic increases in discharge during the last 2 kyr, the Mekong River example, although it is a typical, large river of this region, does not support this hypothesis. Therefore, estimates of the millennial-scale global pristine sediment flux to the oceans must be revised.

  5. Improvement of suspended sediment concentration estimation for the Yarlung Zangbo river

    NASA Astrophysics Data System (ADS)

    Zeng, C.; Zhang, F.

    2017-12-01

    Suspended sediment load of a river represents integrated results of soil erosion, ecosystem variation and landform change occurring within basin over a specified period. Accurate estimation of suspended sediment concentration is important for calculating suspended sediment load, therefore is helpful for evaluating the impact of natural and anthropogenic factors on earth system processes under the background of global climate change. However, long-term observation of suspended sediment concentration usually very difficult in harsh condition areas e.g. rivers on the Tibet Plateau. This study proposed two sediment rating curve subdivision methods, the flood rank method and suspended sediment concentration stages method, to improve the estimations of daily suspended sediment concentration of the Yarlung Zangbo river during 2007 to 2009. The flood rank method, hypothesized that the higher water flow with larger erosive power can mobilize sediment sources not available during lower flows, suitable for application where sediments were mainly transported by first few flood events. The suspended sediment concentration stages method, assumed that precipitation is the dominating driving force of sediment erosion and transport processes during the flooding periods, suitable for application where soil erosion was closely related to precipitation events. Compared to traditional sediment rating curve and subdivision methods, results showed that the proposed methods can improve suspended sediment concentration and subsequent suspended sediment load estimations in the middle reach of the Yarlung Zangbo river with higher coefficients of determination (R2) and Nash-Sutcliffe efficiency coefficients (NSE), and yielded smaller bias (BIAS) and root-mean-square errors (RMSE). This study can provide guidelines for regional ecological and environmental management.

  6. Source apportionment of surface ozone in the Yangtze River Delta, China in the summer of 2013

    NASA Astrophysics Data System (ADS)

    Li, L.; An, J. Y.; Shi, Y. Y.; Zhou, M.; Yan, R. S.; Huang, C.; Wang, H. L.; Lou, S. R.; Wang, Q.; Lu, Q.; Wu, J.

    2016-11-01

    We applied ozone source apportionment technology (OSAT) with tagged tracers coupled within the Comprehensive Air Quality Model with Extensions (CAMx) to study the region and source category contribution to surface ozone in the Yangtze River Delta area in summer of 2013. Results indicate that the daytime ozone concentrations in the YRD region are influenced by emissions both locally, regionally and super-regionally. At urban Shanghai, Hangzhou and Suzhou receptors, the ozone formation is mainly VOC-limited, precursor emissions form Zhejiang province dominate their O3 concentrations. At the junction area among two provinces and Shanghai city, the ozone is usually influenced by all the three areas. The daily max O3 at the Dianshan Lake in July are contributed by Zhejiang (48.5%), Jiangsu (11.7%), Anhui (11.6%) and Shanghai (7.4%), long-range transport constitutes around 20.9%. At Chongming site, the BVOC emissions rate is higher than urban region. Regional contribution results show that Shanghai constitutes 15.6%, Jiangsu contributes 16.2% and Zhejiang accounts for 25.5% of the daily max O3. The analysis of the source category contribution to high ozone in the Yangtze River Delta region indicates that the most significant anthropogenic emission source sectors contributing to O3 pollution include industry, vehicle exhaust, although the effects vary with source sector and selected pollution episodes. Emissions of NOx and VOCs emitted from the fuel combustion of industrial boilers and kilns, together with VOCs emissions from industrial process contribute a lot to the high concentrations in urban Hangzhou, Suzhou and Shanghai. The contribution from regional elevated power plants cannot be neglected, especially to Dianshan Lake. Fugitive emissions of volatile pollution sources also have certain contribution to regional O3. These results indicate that the regional collaboration is of most importance to reduce ambient ozone pollution, particularly during high ozone episodes.

  7. Chemical characteristics of PM2.5 during summer at a background site of the Yangtze River Delta in China

    NASA Astrophysics Data System (ADS)

    Liang, Linlin; Engling, Guenter; Zhang, Xiaoye; Sun, Junying; Zhang, Yangmei; Xu, Wanyun; Liu, Chang; Zhang, Gen; Liu, Xuyan; Ma, Qianli

    2017-12-01

    With rapid economic development and urbanization, particular attention has been paid to atmospheric chemical studies in the Yangtze River Delta in China. PM2.5 samples were collected by a MiniVol™ air sampler in summer time at a background site of the Yangtze River Delta in China. Carbonaceous components, i.e., OC and EC, levoglucosan and water-soluble inorganic ions, including sulfate, nitrate, ammonium, etc., were quantified. The average concentration of PM2.5 in summer at Lin'an was 30.19 ± 8.86 μg m-3, lower than previous studies reported, confirming that air pollution in China is improving, e.g., by emission control measures and subsequent reduction in PM emissions in China. Investigating the relationship among sulfate, nitrate and ammonium showed that SO42- existed as (NH4)2SO4, while NO3- may have been present as NaNO3 and KNO3. Based on molecular tracers, synoptic data as well as air mass back trajectory analysis, it was revealed that regional transport and stable synoptic conditions both play an important role in controlling the variations of aerosol chemical components. The comparison of chemical species between clean and hazy days showed that secondary organic and inorganic aerosols have different production processes. Secondary organic carbon (SOC) was much more important during clean days, while secondary inorganic aerosol species were readily produced and consequently became more important during polluted periods in Lin'an during summer time.

  8. Recent sediments of the St. Marks River coast, northwest Florida, a low-energy, sediment-starved estuary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Highly, A.B.; Donoghue, J.F.; Garrett, C.

    1994-03-01

    The St. Marks river of northwest Florida drains parts of the central panhandle of northwestern Florida, and a small area in southwestern Georgia. It traverses nearly 56.3 kilometers through a watershed of 1,711 square kilometers. The slow-moving river carries little sediment and terminates in Apalachee Bay, a low-energy embayment in the northeasternmost Gulf of Mexico. The coastal region is characterized by mudflats, seagrass beds, and an absence of sandy beaches and barrier islands. Clastic sediments of the coast and shelf rest on a shallow-dipping carbonate platform. The upper surface of the platform is locally karstic. As a result, like othermore » rivers in this region of northwest Florida, the St. Marks watershed is marked by sinkholes and disappearing streams. The fact that the river travels underground through part of its lower watershed serves to trap or sieve some of its clastic load. In the estuary, the undulating karst topography causes the estuarine sediments to vary in thickness from 0 to 4+ meters. The concave shape of the coastline and its orientation with respect to prevailing winds result in low average wave energy. Sedimentation is therefore controlled by riverine and tidal forces. The relatively low energy conditions result in good preservation of the sedimentary record in the St. Marks estuary. A suite of sediment cores has been collected in the lower river, estuary and adjacent Gulf of Mexico. Lead-210 dating results indicate a slow average sedimentation rate ([approximately] 1mm/yr). Investigation of sedimentation rates and sediment characteristics over time in the St. Marks estuary indicate that sedimentologic conditions in this low-energy environment have been relatively stable during the recent geologic history of the estuary.« less

  9. Blood lead level is associated with non-alcoholic fatty liver disease in the Yangtze River Delta region of China in the context of rapid urbanization.

    PubMed

    Zhai, Hualing; Chen, Chi; Wang, Ningjian; Chen, Yi; Nie, Xiaomin; Han, Bing; Li, Qin; Xia, Fangzhen; Lu, Yingli

    2017-08-31

    China has undergone rapid urbanization in the past three decades. We aimed to report blood lead level (B-Pb) in the most rapidly urbanized Yangtze River Delta Region of China, and explore the association B-Pb and non-alcoholic fatty liver disease (NAFLD). Our data source was the SPECT-China study. We enrolled 2011 subjects from 6 villages in the Yangtze River Delta Region. Lead was measured by atomic absorption spectrometry. According to abdominal ultrasound, residents were divided into normal and NAFLD groups. In total, 824 (41.0%) were diagnosed with NAFLD. Medians (interquartile range) of B-Pb were 5.29 μg/dL (3.60-7.28) [0.25 μmol/L (0.17-0.35)] for men and 4.49 μg/dL (2.97-6.59) [0.22 μmol/L (0.14-0.32)] for women. In both genders, the NAFLD group had significantly greater B-Pb than normal group (both P < 0.001). The prevalence of NAFLD significantly increased with increasing B-Pb quartiles in men (P for trend = 0.032) and women (P for trend = 0.001). Residents in Shanghai had significantly greater B-Pb (P < 0.001) and a higher prevalence of NAFLD (P < 0.001). Compared with women in the lowest quartile of BLL, OR of NAFLD in women in the highest quartile was 1.613 (95%CI 1.082-2.405) (P for trend = 0.019) after multivariable adjustment. In men, this association showed marginal significance (OR 2.168, 95%CI 0.989-4.750, P for trend = 0.063). B-Pb in Chinese residents in the Yangtze River Delta Region were much higher than in developed countries. Elevated B-Pb was associated with an increased risk of NAFLD, especially in women.

  10. Sediment and water chemistry of the San Juan River and Escalante River deltas of Lake Powell, Utah, 2010-2011

    USGS Publications Warehouse

    Hornewer, Nancy J.

    2014-01-01

    Recent studies have documented the presence of trace elements, organic compounds including polycyclic aromatic hydrocarbons, and radionuclides in sediment from the Colorado River delta and from sediment in some side canyons in Lake Powell, Utah and Arizona. The fate of many of these contaminants is of significant concern to the resource managers of the National Park Service Glen Canyon National Recreation Area because of potential health impacts to humans and aquatic and terrestrial species. In 2010, the U.S. Geological Survey began a sediment-core sampling and analysis program in the San Juan River and Escalante River deltas in Lake Powell, Utah, to help the National Park Service further document the presence or absence of contaminants in deltaic sediment. Three sediment cores were collected from the San Juan River delta in August 2010 and three sediment cores and an additional replicate core were collected from the Escalante River delta in September 2011. Sediment from the cores was subsampled and composited for analysis of major and trace elements. Fifty-five major and trace elements were analyzed in 116 subsamples and 7 composited samples for the San Juan River delta cores, and in 75 subsamples and 9 composited samples for the Escalante River delta cores. Six composited sediment samples from the San Juan River delta cores and eight from the Escalante River delta cores also were analyzed for 55 low-level organochlorine pesticides and polychlorinated biphenyls, 61 polycyclic aromatic hydrocarbon compounds, gross alpha and gross beta radionuclides, and sediment-particle size. Additionally, water samples were collected from the sediment-water interface overlying each of the three cores collected from the San Juan River and Escalante River deltas. Each water sample was analyzed for 57 major and trace elements. Most of the major and trace elements analyzed were detected at concentrations greater than reporting levels for the sediment-core subsamples and composited

  11. The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China.

    PubMed

    Huang, Qunfang; Lu, Yuqi

    2015-07-27

    The Yangtze River Delta (YRD) has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA) has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI) effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime) and maximal (daytime) air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 ± 0.030, 0.282 ± 0.042, 0.225 ± 0.044 and 0.179 ± 0.046 °C/decade during the period of 1957-2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05). Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001). The average warming rate of average air temperature attributable to urbanization is 0.124 ± 0.074 °C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming.

  12. The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China

    PubMed Central

    Huang, Qunfang; Lu, Yuqi

    2015-01-01

    The Yangtze River Delta (YRD) has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA) has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI) effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime) and maximal (daytime) air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 ± 0.030, 0.282 ± 0.042, 0.225 ± 0.044 and 0.179 ± 0.046 °C/decade during the period of 1957–2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05). Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001). The average warming rate of average air temperature attributable to urbanization is 0.124 ± 0.074 °C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming. PMID:26225986

  13. Interplay between spatially explicit sediment sourcing, hierarchical river-network structure, and in-channel bed material sediment transport and storage dynamics

    NASA Astrophysics Data System (ADS)

    Czuba, Jonathan A.; Foufoula-Georgiou, Efi; Gran, Karen B.; Belmont, Patrick; Wilcock, Peter R.

    2017-05-01

    Understanding how sediment moves along source to sink pathways through watersheds—from hillslopes to channels and in and out of floodplains—is a fundamental problem in geomorphology. We contribute to advancing this understanding by modeling the transport and in-channel storage dynamics of bed material sediment on a river network over a 600 year time period. Specifically, we present spatiotemporal changes in bed sediment thickness along an entire river network to elucidate how river networks organize and process sediment supply. We apply our model to sand transport in the agricultural Greater Blue Earth River Basin in Minnesota. By casting the arrival of sediment to links of the network as a Poisson process, we derive analytically (under supply-limited conditions) the time-averaged probability distribution function of bed sediment thickness for each link of the river network for any spatial distribution of inputs. Under transport-limited conditions, the analytical assumptions of the Poisson arrival process are violated (due to in-channel storage dynamics) where we find large fluctuations and periodicity in the time series of bed sediment thickness. The time series of bed sediment thickness is the result of dynamics on a network in propagating, altering, and amalgamating sediment inputs in sometimes unexpected ways. One key insight gleaned from the model is that there can be a small fraction of reaches with relatively low-transport capacity within a nonequilibrium river network acting as "bottlenecks" that control sediment to downstream reaches, whereby fluctuations in bed elevation can dissociate from signals in sediment supply.

  14. Spatial distribution of bisphenol S in surface water and human serum from Yangtze River watershed, China: Implications for exposure through drinking water.

    PubMed

    Wan, Yanjian; Xia, Wei; Yang, Shunyi; Pan, Xinyun; He, Zhenyu; Kannan, Kurunthachalam

    2018-05-01

    Bisphenol S (BPS) is an emerging environmental contaminant. The occurrence of this compound in humans and the environment is not well described. In this study, 120 surface water samples and 240 human serum samples were collected along the Yangtze River in 2015 for the determination of the occurrence of BPS. Surface water and human serum samples were extracted by solid phase extraction and liquid-liquid extraction, respectively, and analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). BPS was detected in all river water samples at concentrations that ranged from 0.18 to 14.9 ng/L (median: 0.98 ng/L), with higher concentrations in spring than summer. The median estimated daily intake (EDI) of BPS through water ingestion by infants in spring and summer was 0.12 and 0.06 ng/kg body weight (bw)/day, respectively. BPS was detected in human serum with the highest concentrations in samples from Nanjing (median: 0.65 ng/mL, maximum: 169 ng/mL) among the four cities studied. No significant gender related difference in BPS concentrations was observed in human sera, while higher concentrations were found in younger individuals than elderly. The EDI of BPS calculated based on serum concentrations of adults in Nanjing was 22.8 ng/kg bw/day. Ingestion of water accounted for <1% of the total BPS intake by the Chinese population. This is the first report of the occurrence of BPS in water from the Yangtze River and human serum from several cities located along this river in China. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. A study of in-situ sediment flocculation in the turbidity maxima of the Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Guo, Chao; He, Qing; Guo, Leicheng; Winterwerp, Johan C.

    2017-05-01

    In order to improve our understandings of temporal and vertical variations of sediment flocculation dynamics within the turbidity maxima (TM) of the highly turbid Yangtze Estuary (YE), we deployed LISST-100C, a laser instrument for in-situ monitor of the sizes and concentrations of flocculated particles in a wet season. Field data in terms of vertical profiles of flow velocity, suspended sediment concentration (SSC), salinity, flocculated particle size distribution and volume concentration were obtained, based on field works conducted at consecutive spring, moderate, and neap tides. Data analyses show that the mean floc diameters (DM) were in the range of 14-95 μm, and flocculation exhibited strong temporal and vertical variations within a tidal cycle and between spring-neap cycles. Larger DM were observed during high and low slack waters, and the averaged floc size at neap tide was found 57% larger than at spring tide. Effective density of flocs decreased with the increase of floc size, and fractal dimension of flocs in the YE was mainly between 1.5 and 2.1. We also estimated the settling velocity of flocs by 0.04-0.6 mm s-1 and the largest settling velocity occurred also at slack waters. Moreover, it is found that turbulence plays a dominant role in the flocculation process. Floc size decreases significantly when the shear rate parameter G is > 2-3 s-1, suggesting the turbulence breaking force. Combined effects of fine sediment flocculation, enhanced settling process, and high sediment concentration resulted in a large settling flux around high water, which can in part explain the severe siltation in the TM of the YE, thus shedding lights on the navigation channel management.

  16. Dispersal of suspended sediments in the turbid and highly stratified Red River plume

    NASA Astrophysics Data System (ADS)

    van Maren, D. S.; Hoekstra, P.

    2005-03-01

    The Red River, annually transporting 100 million tons of sediment, flows into a shallow shelf sea where it rapidly deposits most of its sediment on a prograding delta front. Oceanographic cruises were carried out in February-March and July-August 2000 to determine the vertical structure of the Ba Lat river plume and sediment transport patterns on the delta front. The surface waters in the coastal zone were strongly stratified with a low density and high sediment concentration during the larger part of the wet season, caused by low mixing rates of river plumes with ambient water. The river plume is advected to the south by a well-developed coastal current which originates from the river plumes that enter the Gulf of Tonkin North of the Ba Lat and are deflected southward by the Coriolis force. Sediment predominantly leaves the surface plume by settling from suspension and less by mixing of fresh and marine water. A one-dimensional model for plume deposition valid for fair weather conditions indicates that most sediment is deposited within 10 km and southward of the river mouth. Of prime importance for this depositional pattern is the phase relation between river outflow and tidal currents, in combination with the southward surface flow; alongshore advection is very low during outflow of the turbid river plume. The agreement of modeled plume sedimentation patterns with long-term bathymetric changes strongly suggests that fair weather depositional processes determine delta front development. This may be related to the fact that reworking of sediment mainly occurs several months after the peak deposition period; in the meantime sediment compaction and consolidation have increased the shear strength of deposited sediments.

  17. [Effect of water storage and aquaculture on Oncomelania hupensis control in tidal flats wetlands of islet-beach type area of Dantu section of lower reaches of Yangtze River].

    PubMed

    Li, Ye-fang; Huang, Yi-xin; Wang, He-sheng; Hang, De-rong; Chen, Xiang-ping; Xie, Yi-feng; Zhang, Lian-heng

    2015-12-01

    To evaluate the effect and the benefits of the projects of water storage and aquaculture on Oncomelania hupensis snail control in the tidal flats wetlands of islet-beach type area of lower reaches of the Yangtze River. The projects of water storage and aquaculture on 0. hupensis snail control were implemented in the tidal flats wetlands of islet-beach type of lower reaches of the Yangtze River. The breed situation of the snails was investigated by the conventional method before and after the project implementation and the effect of control and elimination of the snails by the projects were evaluated. At the same time, the cost-benefit analysis of two projects among them was performed by the static benefit-cost ratio method. All of 0. hupensis snails were eliminated in the first year after the implementation of seven water storage and aquaculture projects. The costs of detection and control of snails saved by each project was 69.20 thousand yuan a year on average. The annual net benefits of the "Nanhao Group 10 beach" project and "Wutao Group 6-14 beach" project were 2 039.40 thousand yuan and 955.00 thousand yuan respectively, and the annual net benefit-cost ratios were 1.09: 1 and 1.07: 1 respectively. The O. hupensis snails could be rapidly eliminated by the water storage and aquaculture, and the economic benefit is obvious, but the wetland ecological protection and flood control safety should be considered in the tidal flats wetlands of islet-beach type area of lower reaches of the Yangtze River.

  18. River-plume sedimentation and 210Pb/7Be seabed delivery on the Mississippi River delta front

    NASA Astrophysics Data System (ADS)

    Keller, Gregory; Bentley, Samuel J.; Georgiou, Ioannis Y.; Maloney, Jillian; Miner, Michael D.; Xu, Kehui

    2017-06-01

    To constrain the timing and processes of sediment delivery and submarine mass-wasting events spanning the last few decades on the Mississippi River delta front, multi-cores and gravity cores (0.5 and <3 m length respectively) were collected seaward of the Mississippi River Southwest Pass in 25-75 m water depth in 2014. The cores were analyzed for radionuclide activity (7Be, 210Pb, 137Cs), grain size, bulk density, and fabric (X-radiography). Core sediments are faintly bedded, sparsely bioturbated, and composed mostly of clay and fine silt. Short-term sedimentation rates (from 7Be) are 0.25-1.5 mm/day during river flooding, while longer-term accumulation rates (from 210Pb) are 1.3-7.9 cm/year. In most cores, 210Pb activity displays undulatory profiles with overall declining activity versus depth. Undulations are not associated with grain size variations, and are interpreted to represent variations in oceanic 210Pb scavenging by river-plume sediments. The 210Pb profile of one gravity core from a mudflow gully displays uniform basal excess activity over a zone of low and uniform bulk density, interpreted to be a mass-failure event that occurred 9-18 years before core collection. Spatial trends in sediment deposition (from 7Be) and accumulation (from 210Pb) indicate that proximity to the river mouth has stronger influence than local facies (mudflow gully, depositional lobe, prodelta) over the timeframe and seabed depth represented by the cores (<40 years, <3 m length). This may be explained by rapid proximal sediment deposition from river plumes coupled with infrequent tropical cyclone activity near the delta in the last 7 years (2006-2013), and by the location of most sediment failure surfaces (from mass flows indicated by parallel geophysical studies) deeper than the core-sampling depths of the present study.

  19. Assessment of the Efficiency of Sediment Deposition Reduction in the Zengwen River Watershed in Taiwan

    NASA Astrophysics Data System (ADS)

    Wu, M.; Tan, H. N.; Lo, W. C.; Tsai, C. T.

    2015-12-01

    The river upstream of watersheds in Taiwan is very steep, where soil and rock are often unstable so that the river watershed typically has the attribute of high sand yield and turbid runoff due to the excessive erosion in the heavy rainfall seasons. If flood water overflows the river bank, it would lead to a disaster in low-altitude plains. When flood retards or recesses, fine sediment would deposit. Over recent decades, many landslides arise in the Zengwen river watershed due to climate changes, earthquakes, and typhoons. The rocks and sands triggered by these landslides would move to the river channel through surface runoff, which may induce sediment disasters and also render an impact on the stability and sediment transport of the river channel. The risk of the sediment disaster could be reduced by implementing dredging works. However, because of the nature of the channel, the dredged river sections may have sediment depositions back; thus, causing an impact on flood safety. Therefore, it is necessary to evaluate the effectiveness of dredged works from the perspectives of hydraulic, sediment transport, and flood protection to achieve the objective of both disaster prevention and river bed stability. We applied the physiographic soil erosion-deposition (PSED) model to simulate the sediment yield, the runoff, and sediment transport rate of the Zengwen river watershed corresponding to one-day rainstorms of the return periods of 25, 50, and 100 year. The potential of sediment deposition and erosion in the river sections of the Zengwen river could be simulated by utilizing the alluvial river-movable bed two dimensional (ARMB-2D) model. The results reveal that the tendency for the potential of river sediment deposition and erosion obtained from these two models is agreeable. Furthermore, in order to evaluate the efficiency of sediment deposition reduction, two quantized values, the rate of sediment deposition reduction and the ratio of sediment deposition reduction

  20. Reconstructing Sediment Supply, Transport and Deposition Behind the Elwha River Dams

    NASA Astrophysics Data System (ADS)

    Beveridge, C.

    2017-12-01

    The Elwha River watershed in Olympic National Park of Washington State, USA is predominantly a steep, mountainous landscape where dominant geomorphic processes include landslides, debris flows and gullying. The river is characterized by substantial variability of channel morphology and fluvial processes, and alternates between narrow bedrock canyons and wider alluvial reaches for much of its length. Literature suggests that the Elwha watershed is topographically and tectonically in steady state. The removal of the two massive hydropower dams along the river in 2013 marked the largest dam removal in history. Over the century long lifespan of the dams, approximately 21 million cubic meters of sediment was impounded behind them. Long term erosion rates documented in this region and reservoir sedimentation data give unprecedented opportunities to test watershed sediment yield models and examine dominant processes that control sediment yield over human time scales. In this study, we aim to reconstruct sediment supply, transport and deposition behind the Glines Canyon Dam (most upstream dam) over its lifespan using a watershed modeling approach. We developed alternative models of varying complexity for sediment production and transport at the network scale driven by hydrologic forcing. We simulate sediment supply and transport in tributaries upstream of the dam. The modeled sediment supply and transport dynamics are based on calibrated formulae (e.g., bedload transport is simulated using Wilcock-Crowe 2003 with modification based on observed bedload transport in the Elwha River). Observational data that aid in our approach include DEM, channel morphology, meteorology, and streamflow and sediment (bedload and suspended load) discharge. We aim to demonstrate how the observed sediment yield behind the dams was influenced by upstream transport supply and capacity limitations, thereby demonstrating the scale effects of flow and sediment transport processes in the Elwha River

  1. Simulation of Flow, Sediment Transport, and Sediment Mobility of the Lower Coeur d'Alene River, Idaho

    USGS Publications Warehouse

    Berenbrock, Charles; Tranmer, Andrew W.

    2008-01-01

    A one-dimensional sediment-transport model and a multi-dimensional hydraulic and bed shear stress model were developed to investigate the hydraulic, sediment transport, and sediment mobility characteristics of the lower Coeur d?Alene River in northern Idaho. This report documents the development and calibration of those models, as well as the results of model simulations. The one-dimensional sediment-transport model (HEC-6) was developed, calibrated, and used to simulate flow hydraulics and erosion, deposition, and transport of sediment in the lower Coeur d?Alene River. The HEC-6 modeled reach, comprised of 234 cross sections, extends from Enaville, Idaho, on the North Fork of the Coeur d?Alene River and near Pinehurst, Idaho, on the South Fork of the river to near Harrison, Idaho, on the main stem of the river. Bed-sediment samples collected by previous investigators and samples collected for this study in 2005 were used in the model. Sediment discharge curves from a previous study were updated using suspended-sediment samples collected at three sites since April 2000. The HEC-6 was calibrated using river discharge and water-surface elevations measured at five U.S. Geological Survey gaging stations. The calibrated HEC-6 model allowed simulation of management alternatives to assess erosion and deposition from proposed dredging of contaminated streambed sediments in the Dudley reach. Four management alternatives were simulated with HEC-6. Before the start of simulation for these alternatives, seven cross sections in the reach near Dudley, Idaho, were deepened 20 feet?removing about 296,000 cubic yards of sediments?to simulate dredging. Management alternative 1 simulated stage-discharge conditions from 2000, and alternative 2 simulated conditions from 1997. Results from alternatives 1 and 2 indicated that about 6,500 and 12,300 cubic yards, respectively, were deposited in the dredged reach. These figures represent 2 and 4 percent, respectively, of the total volume of

  2. Analysis of Fluvial Bed Sediments Along the Apalachicola River, Florida through Field Reconnaissance Studies

    NASA Astrophysics Data System (ADS)

    Passeri, D.; Hagen, S. C.; Daranpob, A.; Smar, D. E.

    2011-12-01

    River competence is an important parameter in understanding sediment transport in fluvial systems. Competence is defined as the measure of a stream's ability to transport a certain maximum grain size of sediment. Studies have shown that bed sediment particle size in rivers and streams tends to vary spatially along the direction of stream flow. Over a river section several reaches long, variability of sediment particle sizes can be seen, often becoming finer downstream. This phenomenon is attributed to mechanisms such as local control of stream gradient, coarse tributary sediment supply or particle breakdown. Average particle size may also be smaller in tributary sections of rivers due to river morphology. The relationship between river mean velocity and particle size that can be transported has also been explored. The Hjulstrom curve classifies this relationship by relating particle size to velocity, dividing the regions of sedimentation, transportation, and erosion. The curve can also be used to find values such as the critical erosion velocity (the velocity required to transport particles of various sizes in suspension) and settling velocity (the velocity at which particles of a given size become too heavy to be transported and fall out of suspension, consequently causing deposition). The purpose of this research is to explore the principles of river competence through field reconnaissance collection and laboratory analysis of fluvial sediment core samples along the Apalachicola River, FL and its distributaries. Sediment core samples were collected in the wetlands and estuarine regions of the Apalachicola River. Sieve and hydrometer analyses were performed to determine the spatial distribution of particle sizes along the river. An existing high resolution hydrodynamic model of the study domain was used to simulate tides and generate river velocities. The Hjulstrom curve and the generated river velocities were used to define whether sediment was being transported

  3. Sediment heterogeneity and mobility in the morphodynamic modelling of gravel-bed braided rivers

    NASA Astrophysics Data System (ADS)

    Singh, Umesh; Crosato, Alessandra; Giri, Sanjay; Hicks, Murray

    2017-06-01

    The effects of sediment heterogeneity and sediment mobility on the morphology of braided rivers are still poorly studied, especially when the partial sediment mobility occurs. Nevertheless, increasing the bed sediment heterogeneity by coarse sediment supply is becoming a common practice in river restoration projects and habitat improvement all over the world. This research provides a step forward in the identification of the effects of sediment sorting on the evolution of sediment bars and braiding geometry of gravel-bed rivers. A two-dimensional morphodynamic model was used to simulate the long-term developments of a hypothetical braided system with discharge regime and morphodynamic parameters derived from the Waimakariri River, New Zealand. Several scenarios, differing in bed sediment heterogeneity and sediment mobility, were considered. The results agree with the tendencies already identified in linear analyses and experimental studies, showing that a larger sediment heterogeneity increases the braiding indes and reduces the bars length and height. The analyses allowed identifying the applicability limits of uniform sediment and variable discharge modelling approaches.

  4. Impacts of sewer deposits on the urban river sediment after rainy season and bioremediation of polluted sediment.

    PubMed

    Chang, Suyun; Tang, Yinqi; Dong, Lixin; Zhan, Qiang; Xu, Wei

    2018-05-01

    Impacts of deposits discharged from a municipal pipe on urban river sediment were investigated in the Hucang River in Tianjin, China. At the outlet of the pump station, the average concentrations of total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC) in the sediment increased sharply from 2390, 799, and 14,600 mg/kg to 6500, 3700, and 153,000 mg/kg, respectively, and remained stable at high level after the rainy season. A portion of pollutants would migrate along the river, and the concentration was usually in a negative relationship with the distance. The average Shannon-Wiener value on the upstream section was higher than those on the downstream sections. This revealed that the deposits discharged decreased the bacterial diversity in the sediment, and high concentrations of pollutants may markedly change the bacterial community structure in the sediment. To reduce the pollution of the urban river after rainy season, four kinds of microbial consortiums A (Zhangda), B (Aiersi), C (Qinghe), and D (Inpipe) were applied to bioremediate the polluted sediment in lab scale. Bioaugmentation with microbial consortium A showed good performance on the bioremediation of the polluted sediment. The average removal efficiency of TN, TP, and organic matter reached 35.5, 43.7, and 39.1%, respectively, after 22 days of treatment. Moreover, the bacterial evenness and diversity in the sediment markedly increased, indicating that the microbial environment was more favourable after bioaugmentation and sustainable development would be guaranteed. This study improves our understanding of the impacts of deposits discharged from a stormwater drain system on urban river sediment, and explores the effectiveness of bioaugmentation for the bioremediation of polluted sediment, which will provide the basis of sewer deposit pollution control.

  5. What Role do Hurricanes Play in Sediment Delivery to Subsiding River Deltas?

    NASA Astrophysics Data System (ADS)

    Smith, J. E., IV

    2016-02-01

    James E. Smith IV1, Samuel J. Bentley, Sr.1, Gregg A. Snedden2, Crawford White1 Department of Geology and Geophysics and Coastal Studies Institute, Louisiana State University, Baton Rouge, LA 70803 USA United States Geological Survey, National Wetlands Research Center, Baton Rouge LA 70803 USA The Mississippi River Delta has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50-100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply, accumulation, and delta geomorphology. In the Mississippi River Delta, hurricanes have been paradoxically identified as both agents of widespread land loss, and positive influences for marsh vertical sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the Mississippi River Delta that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Twenty seven cores have been analyzed for radioisotope geochronology and organic content to establish the chronology of mineral sediment supply to the wetlands over the past 70 years. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads.

  6. What role do hurricanes play in sediment delivery to subsiding river deltas?

    USGS Publications Warehouse

    Smith, James E.; Bentley, Samuel J.; Snedden, Gregg; White, Crawford

    2015-01-01

    The Mississippi River Delta (MRD) has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50–100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply and delta geomorphology. In the MRD, hurricanes have been paradoxically identified as both substantial agents of widespread land loss, and vertical marsh sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the MRD that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads.

  7. What Role do Hurricanes Play in Sediment Delivery to Subsiding River Deltas?

    NASA Astrophysics Data System (ADS)

    Smith, James E.; Bentley, Samuel J.; Snedden, Gregg A.; White, Crawford

    2015-12-01

    The Mississippi River Delta (MRD) has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50-100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply and delta geomorphology. In the MRD, hurricanes have been paradoxically identified as both substantial agents of widespread land loss, and vertical marsh sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the MRD that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads.

  8. Evolution of Metallic Trace Elements in Contaminated River Sediments: Geochemical Variation Along River Linear and Vertical Profile

    NASA Astrophysics Data System (ADS)

    Kanbar, Hussein; Montarges-Pelletier, Emmanuelle; Mansuy-Huault, Laurence; Losson, Benoit; Manceau, Luc; Bauer, Allan; Bihannic, Isabelle; Gley, Renaud; El Samrani, Antoine; Kobaissi, Ahmad; Kazpard, Veronique; Villieras, Frédéric

    2015-04-01

    Metal pollution in riverine systems poses a serious threat that jeopardizes water and sediment quality, and hence river dwelling biota. Since those metallic pollutants can be transported for long distances via river flow, river management has become a great necessity, especially in times where industrial activities and global climate change are causing metal release and spreading (by flooding events). These changes are able to modify river hydrodynamics, and as a consequence natural physico-chemical status of different aquatic system compartments, which in turn alter metal mobility, availability and speciation. Vertical profiles of sediments hold the archive of what has been deposited for several tenths of years, thus they are used as a tool to study what had been deposited in rivers beds. The studied area lies in the Orne river, northeastern France. This river had been strongly modified physically and affected by steelmaking industrial activities that had boosted in the middle of the last century. This study focuses on several sites along the linear of the Orne river, as well as vertical profiles of sediments. Sediment cores were collected at sites where sedimentation is favoured, and in particular upstream two dams, built in the second half of the XXth century for industrial purposes. Sediment cores were sliced into 2-5cm layers, according to suitability, and analysed for physical and physico-chemical properties, elemental content and mineralogy. Data of the vertical profile in a sediment core is important to show the evolution of sediments as a function of depth, and hence age, in terms of nature, size and constituents. The physical properties include particle size distribution (PSD) and water content. In addition, the physico-chemical properties, such as pH and oxido-reduction potential (ORP) of interstitial water from undisturbed cores were also detected. Total elemental content of sediment and available ones of extracted interstitial waters was detected using

  9. Dredged Illinois River Sediments: Plant Growth and Metal Uptake

    USGS Publications Warehouse

    Darmody, R.G.; Marlin, J.C.; Talbott, J.; Green, R.A.; Brewer, E.F.; Stohr, C.

    2004-01-01

    Sedimentation of the Illinois River in central Illinois has greatly diminished the utility and ecological value of the Peoria Lakes reach of the river. Consequently, a large dredging project has been proposed to improve its wildlife habitat and recreation potential, but disposal of the dredged sediment presents a challenge. Land placement is an attractive option. Previous work in Illinois has demonstrated that sediments are potentially capable of supporting agronomic crops due to their high natural fertility and water holding capacity. However, Illinois River sediments have elevated levels of heavy metals, which may be important if they are used as garden or agricultural soil. A greenhouse experiment was conducted to determine if these sediments could serve as a plant growth medium. A secondary objective was to determine if plants grown on sediments accumulated significant heavy metal concentrations. Our results indicated that lettuce (Lactuca sativa L.), barley (Hordeum vulgare L.), radish (Raphanus sativus L.), tomato (Lycopersicon lycopersicum L.), and snap bean (Phaseolus vulagaris L. var. humillis) grown in sediment and a reference topsoil did not show significant or consistent differences in germination or yields. In addition, there was not a consistent statistically significant difference in metal content among tomatoes grown in sediments, topsoil, or grown locally in gardens. In the other plants grown on sediments, while Cd and Cu in all cases and As in lettuce and snap bean were elevated, levels were below those considered excessive. Results indicate that properly managed, these relatively uncontaminated calcareous sediments can make productive soils and that metal uptake of plants grown in these sediments is generally not a concern.

  10. Sorption of selected pharmaceuticals and pesticides on different river sediments.

    PubMed

    Radović, Tanja T; Grujić, Svetlana D; Kovačević, Srđan R; Laušević, Mila D; Dimkić, Milan A

    2016-12-01

    In the present work, the sorption ability of 17 pharmaceutical compounds, two metabolites, and 15 pesticides (34 target compounds in total) onto four different river sediments was investigated separately. Selected compounds present the most frequently prescribed pharmaceuticals in human and animal medicine and the most frequently used pesticides in agriculture. Their presence into the surface, ground, and waste waters was confirmed into the numerous papers in literature, as well as their presence into the river sediments (for some of them). However, investigations of their sorption onto the river sediments, as major natural protection from potential pollution of ground water by them is missing. Sorption in this study was investigated onto river sediments taken from rivers in the Republic of Serbia, where only less than 10 % of total generated waste water passes through mainly basic treatment processes. Experiments were based on batch equilibrium procedures and obtained solutions were analyzed by previously developed and validated sensitive high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analytical methods. All results were modeled by Freundlich isotherms. Obtained results have shown that Kf coefficient values are in correlation with organic carbon content. Kd sorption coefficient values were relatively low and ranged in wide ranges for almost all compounds and sediments. That implicates on the conclusion that capacities of the investigated sorbents are not large for those compounds.

  11. Sinks and sources: Assessing microplastic abundance in river sediment and deposit feeders in an Austral temperate urban river system.

    PubMed

    Nel, Holly A; Dalu, Tatenda; Wasserman, Ryan J

    2018-01-15

    Microplastics are important novel pollutants in freshwaters but their behaviour in river sediments is poorly understood due to the large amounts of coloured dissolved organic matter that impede sample processing. The present study aimed to 1.) estimate the microplastic pollution dynamics in an urban river system experiencing temporal differences in river flow, and 2.) investigate the potential use of chironomids as indicators of microplastic pollution levels in degraded freshwater environments. Microplastic levels were estimated from sediment and Chironomus spp. larvae collected from various sites along the Bloukrans River system, in the Eastern Cape South Africa during the summer and winter season. River flow, water depth, channel width, substrate embeddedness and sediment organic matter were simultaneously collected from each site. The winter season was characterised by elevated microplastic abundances, likely as a result of lower energy and increased sediment deposition associated with reduced river flow. In addition, results showed that particle distribution may be governed by various other external factors, such as substrate type and sediment organic matter. The study further highlighted that deposit feeders associated with the benthic river habitats, namely Chironomus spp. ingest microplastics and that the seasonal differences in sediment microplastic dynamics were reflected in chironomid microplastic abundance. There was a positive, though weakly significant relationship between deposit feeders and sediment suggesting that deposit feeders such as Chironomus spp. larvae could serve as an important indicator of microplastic loads within freshwater ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Spatio-temporal monitoring of suspended sediments in the Solimões River (2000-2014)

    NASA Astrophysics Data System (ADS)

    Espinoza-Villar, Raul; Martinez, Jean-Michel; Armijos, Elisa; Espinoza, Jhan-Carlo; Filizola, Naziano; Dos Santos, Andre; Willems, Bram; Fraizy, Pascal; Santini, William; Vauchel, Philippe

    2018-01-01

    The Amazon River sediment discharge has been estimated at between 600 and 1200 Mt/year, of which more than 50% comes from the Solimões River. Because of the area's inaccessibility, few studies have examined the sediment discharge spatial and temporal pattern in the upper Solimões region. In this study, we use MODIS satellite images to retrieve and understand the spatial and temporal behaviour of suspended sediments in the Solimões River from Peru to Brazil. Six virtual suspended sediment gauging stations were created along the Solimões River on a 2050-km-long transect. At each station, field-derived river discharge estimates were available and field-sampling trips were conducted for validation of remote-sensing estimates during different periods of the annual hydrological cycle between 2007 and 2014. At two stations, 10-day surface suspended sediment data were available from the SO-HYBAM monitoring program (881 field SSS samples). MODIS-derived sediment discharge closely matched the field observations, showing a relative RMSE value of 27.3% (0.48 Mtday) overall. Satellite-retrieved annual sediment discharge at the Tamshiyacu (Peru) and Manacapuru (Brazil) stations is estimated at 521 and 825 Mt/year, respectively. While upstream the river presents one main sediment discharge peak during the hydrological cycle, a secondary sediment discharge peak is detected downstream during the declining water levels, which is induced by sediment resuspension from the floodplain, causing a 72% increase on average from June to September.

  13. Morphodynamics and Sediment Transport on the Huanghe (Yellow River) Delta: Work in Progress

    NASA Astrophysics Data System (ADS)

    Kineke, G. C.; Calson, B.; Chadwick, A. J.; Chen, L.; Hobbs, B. F.; Kumpf, L. L.; Lamb, M. P.; Ma, H.; Moodie, A. J.; Mullane, M.; Naito, K.; Nittrouer, J. A.; Parker, G.

    2017-12-01

    Deltas are perhaps the most dynamic of coastal landforms with competing processes that deliver and disperse sediment. As part of the NSF Coastal SEES program, an interdisciplinary team of scientists from the US and China are investigating processes that link river and coastal sediment transport responsible for morphodynamic change of the Huanghe delta- an excellent study site due to its high sediment load and long history of natural and engineered avulsions, that is, abrupt shifts in the river course. A fundamental component of the study is a better understanding of sediment transport physics in a river system that transports mostly silt. Through theory and data analysis, we find that fine-grained rivers fail to develop full scale dunes, which results in faster water flow and substantially larger sediment fluxes as compared to sandy rivers (e.g. the Mississippi River). We also have developed new models for sediment-size dependent entrainment that are needed to make longer term predictions of river sedimentation patterns. On the delta front, we are monitoring the high sediment flux to the coast, which results in steep foresets and ideal conditions for off-shore sediment delivery via gravity flows. These constraints on sediment transport are being used to develop new theory for where and when rivers avulse - including the effects of variable flood discharge, sediment supply, and sea level rise -and how deltas ultimately grow through repeated cycles of lobe development. Flume experiments and field observations are being used to test these models, both in the main channel of the Huanghe and in channels abandoned after historic avulsions. Abandoned channels and floodplains are now dominated by coastal sediment transport through a combination of wave resuspension and tidal transport, settling lag and reverse estuarine circulation. Finally, the field and laboratory tested numerical models are being used as inputs to define a cost curve for efficient avulsion management of

  14. Modeling the influence of river rehabilitation scenarios on bed material sediment flux in a large river over decadal timescales

    USGS Publications Warehouse

    Singer, Michael B.; Dunne, Thomas

    2006-01-01

    A stochastic flood generator and calibrated sediment transport formulae were used to assess the decadal impact of major river rehabilitation strategies on two fraction bed material sediment flux and net storage, first‐order indicators of aquatic riverine habitat, in a large river system. Model boundary conditions were modified to reflect the implementation of three major river rehabilitation strategies being considered in the Sacramento River Valley: gravel augmentation, setting back of levees, and flow alteration. Fifty 30‐year model simulations were used to compute probabilities of the response in sediment flux and net storage to these strategies. Total annual average bed material sediment flux estimates were made at six gauged river cross sections, and ∼60 km reach‐scale sediment budgets were evaluated between them. Gravel augmentation to improve spawning habitat induced gravel accumulation locally and/or downstream, depending on the added mixture. Levee setbacks to recreate the river corridor reduced flow stages for most flows and hence lowered sediment flux. Flow alteration to mimic natural flow regimes systematically decreased total annual average flux, suggesting that high‐magnitude low‐frequency transport events do not affect long‐term trends in bed material flux. The results indicate that each rehabilitation strategy reduces sediment transport in its target reaches and modulates imbalances in total annual bed material sediment budgets at the reach scale. Additional risk analysis is necessary to identify extreme conditions associated with variable hydrology that could affect rehabilitation over decades. Sensitivity analysis suggests that sorting of bed material sediment is the most important determinant of modeled transport and storage patterns.

  15. Estimating sediment budgets at the interface between rivers and estuaries with application to the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Wright, S.A.; Schoellhamer, D.H.

    2005-01-01

    [1] Where rivers encounter estuaries, a transition zone develops where riverine and tidal processes both affect sediment transport processes. One such transition zone is the Sacramento-San Joaquin River Delta, a large, complex system where several rivers meet to form an estuary (San Francisco Bay). Herein we present the results of a detailed sediment budget for this river/estuary transitional system. The primary regional goal of the study was to measure sediment transport rates and pathways in the delta in support of ecosystem restoration efforts. In addition to achieving this regional goal, the study has produced general methods to collect, edit, and analyze (including error analysis) sediment transport data at the interface of rivers and estuaries. Estimating sediment budgets for these systems is difficult because of the mixed nature of riverine versus tidal transport processes, the different timescales of transport in fluvial and tidal environments, and the sheer complexity and size of systems such as the Sacramento-San Joaquin River Delta. Sediment budgets also require error estimates in order to assess whether differences in inflows and outflows, which could be small compared to overall fluxes, are indeed distinguishable from zero. Over the 4 year period of this study, water years 1999-2002, 6.6 ?? 0.9 Mt of sediment entered the delta and 2.2 ?? 0.7 Mt exited, resulting in 4.4 ?? 1.1 Mt (67 ?? 17%) of deposition. The estimated deposition rate corresponding to this mass of sediment compares favorably with measured inorganic sediment accumulation on vegetated wetlands in the delta.

  16. Kankakee River Basin: Evaluation of Sediment Management Strategies

    DTIC Science & Technology

    2013-09-01

    extends from South Bend, Indiana, to its confluence with the Illinois River near Wilmington, Illinois. The river has a 5,165- square-mile drainage area and...confluence with the Illinois River near Wilmington, IL (Figure 1.1). It has a 5,165-square-mile drainage area and a river length of approximately 150 miles...Yellow River drainage area is overlain by sand-sized sediment. The Rock Island, St. Louis, Chicago, and Detroit Districts collaborated to produce the

  17. Use of sediment rating curves and optical backscatter data to characterize sediment transport in the Upper Yuba River watershed, California, 2001-03

    USGS Publications Warehouse

    Curtis, Jennifer A.; Flint, Lorraine E.; Alpers, Charles N.; Wright, Scott A.; Snyder, Noah P.

    2006-01-01

    Sediment transport in the upper Yuba River watershed, California, was evaluated from October 2001 through September 2003. This report presents results of a three-year study by the U.S. Geological Survey, in cooperation with the California Ecosystem Restoration Program of the California Bay-Delta Authority and the California Resources Agency. Streamflow and suspended-sediment concentration (SSC) samples were collected at four gaging stations; however, this report focuses on sediment transport at the Middle Yuba River (11410000) and the South Yuba River (11417500) gaging stations. Seasonal suspended-sediment rating curves were developed using a group-average method and non-linear least-squares regression. Bed-load transport relations were used to develop bed-load rating curves, and bed-load measurements were collected to assess the accuracy of these curves. Annual suspended-sediment loads estimated using seasonal SSC rating curves were compared with previously published annual loads estimated using the Graphical Constituent Loading Analysis System (GCLAS). The percent difference ranged from -85 percent to +54 percent and averaged -7.5 percent. During water year 2003 optical backscatter sensors (OBS) were installed to assess event-based suspended-sediment transport. Event-based suspended-sediment loads calculated using seasonal SSC rating curves were compared with loads calculated using calibrated OBS output. The percent difference ranged from +50 percent to -369 percent and averaged -79 percent. The estimated average annual sediment yield at the Middle Yuba River (11410000) gage (5 tons/mi2) was significantly lower than that estimated at the South Yuba River (11417500) gage (14 tons/mi2). In both rivers, bed load represented 1 percent or less of the total annual load throughout the project period. Suspended sediment at the Middle Yuba River (11410000) and South Yuba River (11417500) gages was typically greater than 85 percent silt and clay during water year 2003, and

  18. Predicting the distribution of bed material accumulation using river network sediment budgets

    NASA Astrophysics Data System (ADS)

    Wilkinson, Scott N.; Prosser, Ian P.; Hughes, Andrew O.

    2006-10-01

    Assessing the spatial distribution of bed material accumulation in river networks is important for determining the impacts of erosion on downstream channel form and habitat and for planning erosion and sediment management. A model that constructs spatially distributed budgets of bed material sediment is developed to predict the locations of accumulation following land use change. For each link in the river network, GIS algorithms are used to predict bed material supply from gullies, river banks, and upstream tributaries and to compare total supply with transport capacity. The model is tested in the 29,000 km2 Murrumbidgee River catchment in southeast Australia. It correctly predicts the presence or absence of accumulation in 71% of river links, which is significantly better performance than previous models, which do not account for spatial variability in sediment supply and transport capacity. Representing transient sediment storage is important for predicting smaller accumulations. Bed material accumulation is predicted in 25% of the river network, indicating its importance as an environmental problem in Australia.

  19. The influence of the macro-sediment from the mountainous area to the river morphology in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, S. C.; Wu, C.; Shih, P.

    2012-12-01

    Chen, Su-Chin scchen@nchu.edu.tw Wu, Chun-Hung* chwu@mail.nchu.edu.tw Dept. Soil & Water Conservation, National Chung Hsing University, Taichung, Taiwan. The Chenyulan River was varied changed with the marco-sediment yielded source area, Shenmu watershed, with 10 debris flow events in the last decade, in Central Taiwan. Multi-term DEMs, the measurement data of the river topographic profile and aerial photos are adopted to analyze the decade influences of the marco-sediment to the river morphology in Chenyulan River. The changes of river morphology by observing the river pattern, calculating the multi-term braided index, and estimating the distribution of sediment deposition and main channel in the river. The response for the macro-sediment from the mountainous areas into the river in the primary stage is the increase in river width, the depth of sediment deposition and volume of sediment transport. The distribution of sediment deposition from upstream landslide and river bank erosion along the river dominates the change of river morphology in the primary stage. The river morphology achieves stable gradually as the river discharge gradually decreases in the later stage. Both of the braided index and the volume of sediment transport decrease, and the river flow maintains in a main channel instead of the braided pattern in this stage. The decade sediment deposition depth is estimated as > 0.5 m, especially > 3.5 m in the sections closed to the sediment-yield source areas, the mean river width increases 15%, and the sediment with a total volume of 8×107 tons has been transported in last decade in Chenyulan River. The river morphology in Chenyulan River maintains a short-term stable, i.e. 2 or 3 years, and changes again because of the flooding events with a large amount of sediment caused by frequently heavy rainfall events in Taiwan. Furthermore, the response of river morphology in Chenyulan River due to the heavy rainfall with a total precipitation of around 860 mm

  20. Sediment discharge into a subsiding Louisiana deltaic estuary through a Mississippi River diversion

    USGS Publications Warehouse

    Snedden, G.A.; Cable, J.E.; Swarzenski, C.; Swenson, E.

    2007-01-01

    Wetlands of the Mississippi River deltaic plain in southeast Louisiana have been hydrologically isolated from the Mississippi River by containment levees for nearly a century. The ensuing lack of fluvial sediment inputs, combined with natural submergence processes, has contributed to high coastal land loss rates. Controlled river diversions have since been constructed to reconnect the marshes of the deltaic plain with the river. This study examines the impact of a pulsed diversion management plan on sediment discharge into the Breton Sound estuary, in which duplicate 185 m3 s-1-diversions lasting two weeks each were conducted in the spring of 2002 and 2003. Sediment delivery during each pulse was highly variable (11,300-43,800 metric tons), and was greatest during rising limbs of Mississippi River flood events. Overland flow, a necessary transport mechanism for river sediments to reach the subsiding backmarsh regions, was induced only when diversion discharge exceeded 100 m3 s-1. These results indicate that timing and magnitude of diversion events are both important factors governing marsh sediment deposition in the receiving basins of river diversions. Though the diversion serves as the primary source of river sediments to the estuary, the inputs observed here were several orders of magnitude less than historical sediment discharge through crevasses and uncontrolled diversions in the region, and are insufficient to offset present rates of relative sea level rise. ?? 2006 Elsevier Ltd. All rights reserved.

  1. Organochlorine pesticide residues in bed sediments of the San Joaquin River, California

    USGS Publications Warehouse

    Gilliom, Robert J.; Clifton, Daphne G.

    1990-01-01

    Bed sediments of the San Joaquin River and its tributaries were sampled during October 7–11, 1985, and analyzed for organochiorine pesticide residues in order to determine their areal distribution and to evaluate and prioritize needs for further study. Residues of DDD, DDE, DDT, and dieldrin are widespread in the fine-grained bed sediments of the San Joaquin River and its tributaries despite little or no use of these pesticides for more than 15 years. The San Joaquin River has among the highest bed-sediment concentrations of DDD, DDE, DDT, and dieldrin residues of major rivers in the United States. Concentrations of all four pesticides were correlated with each other and with the amount of organic carbon and fine-grained particles in the bed sediments. The highest concentrations occurred in bed sediments of westside tributary streams. Potential tributary loads of DDD, DDE, DDT, and dieldrin to the San Joaquin River were computed from bed-sediment concentrations and data on streamfiow and suspended-sediment concentration in order to identify the general magnitude of differences between streams and to determine study priorities. The estimated loads indicate that the most important sources of residues during the study period were Salt Slough because of a high load of fine sediment, and Newman Wasteway, Orestimba Creek, and Hospital Creek because of high bed-sediment concentrations. Generally, the highest estimated loads of DDD, DDE, DDT, and dieldrin were in Orestimba and Hospital Creeks.

  2. TRENTON CHANNEL/DETROIT RIVER SEDIMENT ASSESSMENT AND REMEDIATION

    EPA Science Inventory

    The Detroit River has experienced over a century of discharges from industry and municipalaties. Demonstrable improvements have been made in water quality, loadings, and biota. Common with other International Joint Commission Areas of Concern, sediment of the Detroit River still...

  3. Background Radioactivity in River and Reservoir Sediments near Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.G.McLin; D.W. Lyons

    2002-05-05

    As part of its continuing Environmental Surveillance Program, regional river and lake-bottom sediments have been collected annually by Los Alamos National Laboratory (the Laboratory) since 1974 and 1979, respectively. These background samples are collected from three drainage basins at ten different river stations and five reservoirs located throughout northern New Mexico and southern Colorado. Radiochemical analyses for these sediments include tritium, strontium-90, cesium-137, total uranium, plutonium-238, plutonium-239,-240, americium-241, gross alpha, gross beta, and gross gamma radioactivity. Detection-limit radioactivity originates as worldwide fallout from aboveground nuclear weapons testing and satellite reentry into Earth's atmosphere. Spatial and temporal variations in individual analytemore » levels originate from atmospheric point-source introductions and natural rate differences in airborne deposition and soil erosion. Background radioactivity values on sediments reflect this variability, and grouped river and reservoir sediment samples show a range of statistical distributions that appear to be analyte dependent. Traditionally, both river and reservoir analyte data were blended together to establish background levels. In this report, however, we group background sediment data according to two criteria. These include sediment source (either river or reservoir sediments) and station location relative to the Laboratory (either upstream or downstream). These grouped data are statistically evaluated through 1997, and background radioactivity values are established for individual analytes in upstream river and reservoir sediments. This information may be used to establish the existence and areal extent of trace-level environmental contamination resulting from historical Laboratory research activities since the early 1940s.« less

  4. Development of emissions inventory and identification of sources for priority control in the middle reaches of Yangtze River Urban Agglomerations.

    PubMed

    Sun, Xiaowei; Cheng, Shuiyuan; Lang, Jianlei; Ren, Zhenhai; Sun, Chao

    2018-06-01

    This paper presents the first attempt to investigate the emission source control of the Middle Reaches of Yangtze River Urban Agglomerations (MRYRUA), one of the national urban agglomerations in China. An emission inventory of the MRYRUA was developed as inputs to the CAMx model based on county-level activity data obtained by full-coverage investigation and source-based spatial surrogates. A classification technology method for priority control of atmospheric emission sources was introduced and applied in the MRYRUA for the evaluation of the emission sources control on the region-scale and city-scale, respectively. The results demonstrated that the emission sources in the Hefei-centered urban agglomerations contributed the biggest on the mean PM 2.5 concentrations of the MRYRUA and should be taken the priority to control. The emission sources in the Ma'anshan city, Xiangtan city, Hefei city and Wuhan city were the bigger contributors on the mean PM 2.5 concentrations of the MRYRUA among the cities and should be taken the priority to control. In generally, emission sources in cities along the Yangtze River and the tributary should be given the special attention for the regional air quality target attainments. This study can give an understanding of Chinese emissions and provide a valuable preference to policy makers for finding effective mitigation measures and control strategies for reducing national and regional air pollution in China. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Large shift in source of fine sediment in the upper Mississippi River

    USGS Publications Warehouse

    Belmont, P.; Gran, K.B.; Schottler, S.P.; Wilcock, P.R.; Day, S.S.; Jennings, C.; Lauer, J.W.; Viparelli, E.; Willenbring, J.K.; Engstrom, D.R.; Parker, G.

    2011-01-01

    Although sediment is a natural constituent of rivers, excess loading to rivers and streams is a leading cause of impairment and biodiversity loss. Remedial actions require identification of the sources and mechanisms of sediment supply. This task is complicated by the scale and complexity of large watersheds as well as changes in climate and land use that alter the drivers of sediment supply. Previous studies in Lake Pepin, a natural lake on the Mississippi River, indicate that sediment supply to the lake has increased 10-fold over the past 150 years. Herein we combine geochemical fingerprinting and a suite of geomorphic change detection techniques with a sediment mass balance for a tributary watershed to demonstrate that, although the sediment loading remains very large, the dominant source of sediment has shifted from agricultural soil erosion to accelerated erosion of stream banks and bluffs, driven by increased river discharge. Such hydrologic amplification of natural erosion processes calls for a new approach to watershed sediment modeling that explicitly accounts for channel and floodplain dynamics that amplify or dampen landscape processes. Further, this finding illustrates a new challenge in remediating nonpoint sediment pollution and indicates that management efforts must expand from soil erosion to factors contributing to increased water runoff. ?? 2011 American Chemical Society.

  6. Shallow stratigraphy of the Skagit River Delta, Washington, derived from sediment cores

    USGS Publications Warehouse

    Grossman, Eric E.; George, Douglas A.; Lam, Angela

    2011-01-01

    Sedimentologic analyses of 21 sediment cores, ranging from 0.4 to 9.6 m in length, reveal that the shallow geologic framework of the Skagit River Delta, western Washington, United States, has changed significantly since 1850. The cores collected from elevations of 3.94 to -2.41 m (relative to mean lower low water) along four cross-shore transects between the emergent marsh and delta front show relatively similar environmental changes across an area spanning ~75 km2. Offshore of the present North Fork Skagit River and South Fork Skagit River mouths where river discharge is focused by diked channels through the delta, the entire 5–7-km-wide tidal flats are covered with 1–2 m of cross-bedded medium-to-coarse sands. The bottoms of cores, collected in these areas are composed of mud. A sharp transition from mud to a cross-bedded sand unit indicates that the tidal flats changed abruptly from a calm environment to an energetic one. This is in stark contrast to the Martha's Bay tidal flats north of the Skagit Bay jetty that was completed in the 1940s to protect the newly constructed Swinomish Channel from flooding and sedimentation. North of the jetty, mud ranging from 1 to 2 m thick drapes a previously silt- and sand-rich tidal flat. The silty sand is a sediment facies that would be expected there where North Fork Skagit River sedimentation occurred prior to jetty emplacement. This report describes the compositional and textural properties of the sediment cores by using geophysical, photographic, x-radiography, and standard sediment grain-size and carbon-analytical methods. The findings help to characterize benthic habitat structure and sediment transport processes and the environmental changes that have occurred across the nearshore of the Skagit River Delta. The findings will be useful for quantifying changes to nearshore marine resources, including impacts resulting from diking, river-delta channelization, shoreline development, and natural variations in fluvial-sediment

  7. Sediment Transport Dynamic in a Meandering Fluvial System: Case Study of Chini River

    NASA Astrophysics Data System (ADS)

    Nazir, M. H. M.; Awang, S.; Shaaban, A. J.; Yahaya, N. K. E. M.; Jusoh, A. M.; Arumugam, M. A. R. M. A.; Ghani, A. A.

    2016-07-01

    Sedimentation in river reduces the flood carrying capacity which lead to the increasing of inundation area in the river basin. Basic sediment transport can predict the fluvial processes in natural rivers and stream through modeling approaches. However, the sediment transport dynamic in a small meandering and low-lying fluvial system is considered scarce in Malaysia. The aim of this study was to analyze the current riverbed erosion and sedimentation scenarios along the Chini River, Pekan, Pahang. The present study revealed that silt and clay has potentially been eroded several parts of the river. Sinuosity index (1.98) indicates that Chini River is very unstable and continuous erosion process in waterways has increase the riverbank instability due to the meandering factors. The riverbed erosional and depositional process in the Chini River is a sluggish process since the lake reduces the flow velocity and causes the deposited particles into the silt and clay soil at the bed of the lake. Besides, the bed layer of the lake comprised of cohesive silt and clayey composition that tend to attach the larger grain size of sediment. The present study estimated the total sediment accumulated along the Chini River is 1.72 ton. The HEC-RAS was employed in the simulations and in general the model performed well, once all parameters were set within their effective ranges.

  8. Suspended-sediment concentrations, bedload, particle sizes, surrogate measurements, and annual sediment loads for selected sites in the lower Minnesota River Basin, water years 2011 through 2016

    USGS Publications Warehouse

    Groten, Joel T.; Ellison, Christopher A.; Hendrickson, Jon S.

    2016-12-20

    Accurate measurements of fluvial sediment are important for assessing stream ecological health, calculating flood levels, computing sediment budgets, and managing and protecting water resources. Sediment-enriched rivers in Minnesota are a concern among Federal, State, and local governments because turbidity and sediment-laden waters are the leading impairments and affect more than 6,000 miles of rivers in Minnesota. The suspended sediment in the lower Minnesota River is deleterious, contributing about 75 to 90 percent of the suspended sediment being deposited into Lake Pepin. The Saint Paul District of the U.S. Army Corps of Engineers and the Lower Minnesota River Watershed District collaborate to maintain a navigation channel on the lower 14.7 miles of the Minnesota River through scheduled dredging operations. The Minnesota Pollution Control Agency has adopted a sediment-reduction strategy to reduce sediment in the Minnesota River by 90 percent by 2040.The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, the Minnesota Pollution Control Agency, and the Lower Minnesota River Watershed District, collected suspended-sediment, bedload, and particle-size samples at five sites in the lower Minnesota River Basin during water years 2011 through 2014 and surrogate measurements of acoustic backscatter at one of these sites on the lower Minnesota River during water years 2012 through 2016 to quantify sediment loads and improve understanding of sediment-transport relations. Annual sediment loads were computed for calendar years 2011 through 2014.Data collected from water years 2011 through 2014 indicated that two tributaries, Le Sueur River and High Island Creek, had the highest sediment yield and concentrations of suspended sediment. These tributaries also had greater stream gradients than the sites on the Minnesota River. Suspended fines were greater than suspended sand at all sites in the study area. The range of median particle sizes matched

  9. Prediction of Suspended Sediment in Rivers Using Artificial Neural Networks: Implications for Development of Sediment Budgets

    NASA Astrophysics Data System (ADS)

    Hamshaw, S. D.; Underwood, K.; Rizzo, D.; Wemple, B. C.; Dewoolkar, M.

    2013-12-01

    Over 1,000 river miles in Vermont are either impaired or stressed by excessive sedimentation. The higher streamflows and incised river channels have resulted in increased bed and bank erosion. As the climate in Vermont is expected to feature greater and more frequent precipitation events and winter rainfall, the potential for increased sediment loading from erosion processes in the watershed and along the channel are high and a major concern for water resource managers. Typical sediment monitoring comprises periodic sampling during storm events and is often limited to gauged streams with flow data. Continuous turbidity monitoring enhances our understanding of river dynamics by offering high-resolution, temporal measurements to better quantify the total sediment loading occurring during and between storm events. Artificial neural networks, that mimic learning patterns of the human brain, have been effective at predicting flow in small, ungauged rivers using local climate data. This study advances this technology by using an ANN algorithm known as a counter-propagation neural network (CPNN) to predict discharge and suspended sediment in small streams. The first distributed network of continuous turbidity sensors (DTS-12) was deployed in Vermont in the Mad River Watershed, located in Central Vermont. The Mad River and five tributaries were selected as a test bed because seven years of periodic turbidity sampling data are available, it represents a range of watershed characteristics, and because the watershed is also being used for hydrologic model development using the Distributed-Hydrology-Soils-Vegetation Model (DHSVM). Comparison with the DHSVM simulations will allow estimation of the most-likely sources of sediment from the entire watershed and individual subwatersheds. In addition, recent field studies have commenced the quantification of erosion occurring from unpaved roads and streambanks in the same watershed. Periodic water quality sampling during storm

  10. Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam

    NASA Astrophysics Data System (ADS)

    Clift, Peter D.; Blusztajn, Jerzy; Nguyen, Anh Duc

    2006-10-01

    Current models of drainage evolution suggest that the non-dendritic patterns seen in rivers in SE Asia reflect progressive capture of headwaters away from the Red River during and as a result of surface uplift of Eastern Asia. Mass balancing of eroded and deposited rock volumes demonstrates that the Red River catchment must have been much larger in the past. In addition, the Nd isotope composition of sediments from the Hanoi Basin, Vietnam, interpreted as paleo-Red River sediments, shows rapid change during the Oligocene, before ~24 Ma. We interpret this change to reflect large-scale drainage capture away from the Red River, possibly involving loss of the middle Yangtze River. Reorganization was triggered by regional tilting of the region towards the east. This study constrains initial surface uplift in eastern Tibet and southwestern China to be no later than 24 Ma, well before major surface uplift and gorge incision after 13 Ma.

  11. Influences of hydrological regime on heavy metal and salt ion concentrations in intertidal sediment from Chongming Dongtan, Changjiang River estuary, China

    NASA Astrophysics Data System (ADS)

    Zhao, Jiale; Gao, Xiaojiang; Yang, Jin

    2017-11-01

    The tidal flat along the Changjiang (Yangtze) River estuary has long been reclaimed for the agricultural purposes, with the prevailing hydrological conditions during such pedogenic transformations being of great importance to their successful development. In this study, samples of surface sediment from Chongming Dongtan, situated at the mouth of the Changjiang River estuary, were collected and analyzed in order to understand how hydrological management can influence the concentrations of heavy metals and salt ions in pore water, and chemical fractionation of heavy metals during the reclamation process. We performed a series of experiments that simulated three different hydrological regimes: permanent flooding (R1), alternative five-day periods of wetting and drying (R2), continuous field capacity (R3). Our results exhibited good Pearson correlations coefficients between heavy metals and salt ions in the pore water for both R1 and R2. In particular, the concentrations of salt ions in the pore water decreased in all three regimes, but showed the biggest decline in R2. With this R2 experiment, the periodic concentration patterns in the pore water varied for Fe and Mn, but not for Cr, Cu, Pb and Zn. Neither the fractionation of Ni nor the residual fractions of any metals changed significantly in any regime. In R1, the reducible fractions of heavy metals (Cr, Cu, Zn and Pb) in the sediment decreased, while the acid extractable fractions increased. In R2, the acid extractable and the reducible fractions of Cr, Cu, Zn and Pb both decreased, as did the oxidizable fraction of Cu. These data suggest that an alternating hydrological regime can reduce both salinity and the availability of heavy metals in sediments.

  12. Sediment toxicity in mid-continent great rivers (USA)

    EPA Science Inventory

    In this study, 530 sediment samples were collected from 447 sites between 2004 and 2006 at randomly selected shoreline sites along the main channel of the Ohio, Missouri and Upper Mississippi Rivers as part of the Environmental Monitoring and Assessment Program for Great Rivers E...

  13. Sediment Budgeting in Dam-Affected Rivers: Assessing the Influence of Damming, Tributaries, and Alluvial Valley Sediment Storage on Sediment Regimes

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.; Dekker, F. J.; Riebe, C. S.

    2014-12-01

    Although sediment supply is recognized as a fundamental driver of fluvial processes, measuring how dams affect sediment regimes and incorporating such knowledge into management strategies remains challenging. To determine the influences of damming, tributary supply, and valley morphology and sediment storage on downstream sediment supply in a dryland river, the Bill Williams River (BWR) in western Arizona, we measured basin erosion rates using cosmogenic nuclide analysis of beryllium-10 (10Be) at sites upstream and downstream of a dam along the BWR, as well as from tributaries downstream of the dam. Riverbed sediment mixing calculations were used to test if the dam, which blocks sediment supply from the upper 85% of the basin's drainage area, increases the proportion of tributary sediment to residual upstream sediment in mainstem samples downstream of the dam. Erosion rates in the BWR watershed are more than twice as large in the upper catchment (136 t km-2 yr-1) than in tributaries downstream of Alamo Dam (61 t km-2 yr-1). Tributaries downstream of the dam have little influence on mainstem sediment dynamics. The effect of the dam on reducing sediment supply is limited, however, because of the presence of large alluvial valleys along the mainstem BWR downstream of the dam that store substantial sediment and mitigate supply reductions from the upper watershed. These inferences, from our 10Be derived erosion rates and mixing calculations, are consistent with field observations of downstream changes in bed material size, which suggest that sediment-deficit conditions are restricted to a 10 km reach downstream of the dam, and limited reservoir bathymetry data. Many studies have suggested that tributary sediment inputs downstream of dams play a key role in mitigating dam-induced sediment deficits, but here we show that in a dryland river with ephemeral tributaries, sediment stored in alluvial valleys can also play a key role and in some cases trumps the role of

  14. The German-Chinese research collaboration YANGTZE-GEO: Assessing the geo-risks in the Three Gorges Reservoir area

    NASA Astrophysics Data System (ADS)

    Schönbrodt, S.; Behrens, T.; Bieger, K.; Ehret, D.; Frei, M.; Hörmann, G.; Seeber, C.; Schleier, M.; Schmalz, B.; Fohrer, N.; Kaufmann, H.; King, L.; Rohn, J.; Subklew, G.; Xiang, W.

    2012-04-01

    The river impoundment by The Three Gorges Dam leads to resettlement and land reclamation on steep slopes. As a consequence, ecosystem changes such as soil erosion, mass movements, and diffuse sediment and matter fluxes are widely expected to increase rapidly. In order to assess and analyse those ecosystem changes, the German-Chinese joint research project YANGTZE-GEO was set up in 2008. Within the framework of YANGTZE-GEO five German universities (Tuebingen, Erlangen, Giessen, Kiel, Potsdam) conducted studies on soil erosion, mass movements, diffuse matter inputs, and land use change and vulnerability in close collaboration with Chinese scientists. The Chinese partners and institutions are according to their alphabetic order of hometown the Chinese Research Academy of Environmental Sciences (CRAES; Beijing), the Standing Office of the State Council Three Gorges Project Construction Committee (Beijing), the National Climate Centre (NCC) of the China Meteorological Administration (CMA; Beijing), the Aero Geophysical Survey and Remote Sensing for Land and Resources (AES; Beijing), the Nanjing University, the CAS Institute of Soil Science (Nanjing), the Nanjing Institute of Geography and Limnology at CAS (NIGLAS; Nanjing), the China University of Geosciences (CUG; Wuhan), the CAS Institute of Hydrobiology (Wuhan), and the China Three Gorges University (Yichang). The overall aim of YANGTZE-GEO is the development of a risk assessment and forecasting system to locate high risk areas using GIS-based erosion modelling, data mining tools for terrace condition analysis and landslide recognition, eco-hydrological modelling for diffuse matter inputs, and state-of-the-art remote sensing to assess the landscape's vulnerability. Furthermore, the project aims at the recommendation of sustainable land management systems. YANGTZE-GEO showed the relevance of such research and crucially contributes to the understanding of the dimension and dynamics of the ecological consequences of

  15. Sediment accumulation and mixing in the Penobscot River and estuary, Maine.

    PubMed

    Yeager, K M; Schwehr, K A; Schindler, K J; Santschi, P H

    2018-04-16

    Mercury (Hg) was discharged in the late 1960s into the Penobscot River by the Holtra-Chem chlor-alkali production facility, which was in operation from 1967 to 2000. To assess the transport and distribution of total Hg, and recovery of the river and estuary system from Hg pollution, physical and radiochemical data were assembled from sediment cores collected from 58 of 72 coring stations sampled in 2009. These stations were located throughout the lower Penobscot River, and included four principal study regions, the Penobscot River (PBR), Mendall Marsh (MM), the Orland River (OR), and the Penobscot estuary (ES). To provide the geochronology required to evaluate sedimentary total Hg profiles, 58 of 72 sediment cores were dated using the atmospheric radionuclide tracers 137 Cs, 210 Pb, and 239,240 Pu. Sediment cores were assessed for depths of mixing, and for the determination of sediment accumulation rates using both geochemical (total Hg) and radiochemical data. At most stations, evidence for significant vertical mixing, derived from profiles of 7 Be (where possible) and porosity, was restricted to the upper ~1-3cm. Thus, historic profiles of both total Hg and radionuclides were only minimally distorted, allowing a reconstruction of their depositional history. The pulse input tracers 137 Cs and 239,240 Pu used to assess sediment accumulation rates agreed well, while the steady state tracer 210 Pb exhibited weaker agreement, likely due to irregular lateral sediment inputs. Copyright © 2018. Published by Elsevier B.V.

  16. Suspended-sediment and fresh-water discharges in the Ob and Yenisey rivers, 1960-1988

    USGS Publications Warehouse

    Meade, R.H.; Bobrovitskaya, N.N.; Babkin, V.I.

    2000-01-01

    Of the world's great rivers, the Ob and Yenisey rank among the largest suppliers of fresh water and among the smallest suppliers of suspended sediment to the coastal ocean. Sediment in the middle reaches of the rivers is mobilized from bordering terraces and exchanged between channels and flood plains. Sediment in the lower reaches of these great rivers is deposited and stored (permanently, on a millennial time scale) in flood plains. Sediment discharges, already small under natural conditions, are diminished further by large manmade reservoirs that trap significant proportions of the moving solids. The long winter freeze and sudden spring breakup impose a peakedness in seasonal water runoff and sediment discharge that contrasts markedly with that in rivers of the tropics and more temperate climates. Very little sediment from the Ob and Yenisey rivers is being transported to the open waters of the Arctic Ocean under present conditions.

  17. Effect of microbially mediated iron mineral transformation on temporal variation of arsenic in the Pleistocene aquifers of the central Yangtze River basin.

    PubMed

    Deng, Yamin; Zheng, Tianliang; Wang, Yanxin; Liu, Lun; Jiang, Hongchen; Ma, Teng

    2018-04-01

    Significant seasonal variation of groundwater arsenic (As) concentrations in shallow aquifers of the Jianghan Plain, central Yangtze River Basin has been reported recently, but the underlying mechanisms remain not well understood. To elaborate biogeochemical processes responsible for the observed As concentration variation, 42-day incubation experiments were done using sediment samples collected respectively from the depth of 26, 36 and 60m of the As-affected aquifer which were labeled respectively as JH26, JH36, JH60. Where JH denotes Jianghan Plain, and the number indicates the depth of the sediment sample. The results indicated that As could be mobilized from the sediments of 26m and 36m depth under the stimulation of exogenous organic carbon, with the maximum As release amount of 1.60 and 1.03mgkg -1 , respectively, while the sediments at 60m depth did not show As mobilization. The microbially mediated reductive dissolution of amorphous iron oxides and reduction of As(V) to As(III) could account for the observed As mobilization. The 16S rRNA high-throughput sequencing results indicated that the variation of microbial community correlated with the released As concentration (R=0.7, P<0.05) and the iron-reducing bacteria, including Pseudomonas, Clostridium and Geobacter, were the main drivers for the As mobilization from the sediments at 26m and 36m depth. The increase of arsC gene abundance (up to 1.4×10 5 copies g -1 ) during As release suggested that As reduction was mediated by the resistant reduction mechanism. By contrast, in the 60m sediments where the Fe and As release was absent, the iron-reducing bacteria accounted for a very minor proportion and sulfate-reducing bacteria were predominant in the microbial community. In addition, after 30days of incubation, the released As in the 26m sediments was immobilized via co-precipitation with or adsorption onto the Fe-sulfide mineral newly-formed by the bacterial sulfate reduction. These results are consistent

  18. Sediment conditions in the San Antonio River Basin downstream from San Antonio, Texas, 2000-13

    USGS Publications Warehouse

    Ockerman, Darwin J.; Banta, J. Ryan; Crow, Cassi L.; Opsahl, Stephen P.

    2015-01-01

    Sediment plays an important role in the ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. To better understand sediment characteristics in the San Antonio River Basin, the U.S. Geological Survey, in cooperation with the San Antonio River Authority, completed a two-part study in the San Antonio River Basin downstream from San Antonio, Texas, to (1) collect and analyze sediment data to characterize sediment conditions and (2) develop and calibrate a watershed model to simulate hydrologic conditions and suspended-sediment loads during 2000–12.

  19. Sedimentary record of plutonium in the North Yellow Sea and the response to catchment environmental changes of inflow rivers.

    PubMed

    Xu, Yihong; Pan, Shaoming; Gao, Jianhua; Hou, Xiaolin; Ma, Yongfu; Hao, Yongpei

    2018-09-01

    Plutonium (Pu) isotopes were first determined in surface and core sediment samples collected from the northern North Yellow Sea (NYS) to elucidate their source terms and deposition process as well as the response to catchment environmental changes of inflow rivers. 240 Pu/ 239 Pu atom ratios in all sediments showed the typical global fallout value of ∼0.18 without any influences from the nuclear weapons tests conducted recently in the North Korea or early in the Pacific Proving Ground. The large variation of 239+240 Pu activities (0.022-0.515 mBq/g) observed in surface sediments should be mainly attributed to the re-suspension and transportation of fine sediments influenced by the Liaonan Costal Current. Based on the two 239+249 Pu depth profiles with easily observed onset fallout levels (1952) and global fallout peaks (1963), 239+240 Pu served as a valid time mark in the coastal sedimentary system. Riverine input Pu contributed only 15-27% to the total global fallout inventory (92.5-108.8 Bq/m 2 ) in the northern NYS, much lower than that in the Yangtze River estuary (77-80%), indicating a better soil conservation in the northeast China due to higher forest coverage compared to the Yangtze River's drainage basin. The increase of riverine input Pu after 1980s reflected the more intense soil erosion degree caused by the land use and cover change due to the increment of human activities in the northeast China at the same period. Our results demonstrated that plutonium is a good indicator for studying sedimentary process and its response to the environment in the coastal area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Heavy metals in sediments, soils, and aquatic plants from a secondary anabranch of the three gorges reservoir region, China.

    PubMed

    Gao, Jun-Min; Sun, Xiu-Qian; Jiang, Wen-Chao; Wei, Yun-Mei; Guo, Jin-Song; Liu, Yuan-Yuan; Zhang, Ke

    2016-06-01

    We investigated the occurrence of cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), Znic (Zn), iron (Fe), manganese (Mn), and magnesium (Mg) in sediments, as well as in related soils and aquatic plants in the Liangtan River, a typical secondary anabranch of the Yangtze River in the Three Gorges Reservoir Region (TGRR) of China. We found that sediments accumulated more metals than soils and aquatic plants. Concentrations of the nine metals in sediments and soils followed the same sequence, while their concentrations in aquatic plants followed a different sequence. Potential adverse effects of contaminated sediments on benthic fauna were evaluated, and the results showed that the toxic effect on benthic organisms followed the sequence Zn > Ni > Cr > Cu > Cd > Pb. The potential ecological risk index analysis indicated that Cd in sediments had considerable ecological risk, whereas Cr, Cu, Zn, Ni, and Pb had low ecological risk. The potential ecological risk index (RI) of the heavy metals in sediments of the Liangtan River was 174.9, indicating moderate ecological risk. The transfer factor trend of metals for aquatic plants showed that Cd and Ni had the most and least accumulation, respectively. For Cu, Cd, Mg, Pb, and Cr, a significant positive correlation of the metal concentrations was observed between sediments and soils, but no correlations (excluding Cr) were detected between sediments and aquatic plants. Our study indicated that anthropogenic input may be the primary source of metal contamination in the Liangtan River, and that Zn and Cd pollution in the Liangtan River should be further explored.

  1. Asian Carp Survivability Experiments and Water Transport Surveys in the Illinois River. Volume 2

    DTIC Science & Technology

    2013-01-01

    Reference 3)) have documented the egg and larval stages of grass, black, silver and bighead carps in the Yangtze River. This early paper also reported...rates at controlled tempera- tures to better understand the early egg and larval stages of silver and bighead carp. In the Yangtze River, after the...translated by Duane Chapman 2006, Gezhouba Water Control Project and four famous fishes in Yangtze River, Hubei Science and Technology Press, Wuhan

  2. Assessing overland sediment transport to the Apalachicola River/Bay in Florida

    NASA Astrophysics Data System (ADS)

    Smar, D. E.; Hagen, S.; Daranpob, A.; Passeri, D.

    2011-12-01

    An ongoing study in Franklin County, Florida is focused on classifying the mechanisms of sediment transport from the overland areas to eventual deposition in the Apalachicola River and surrounding estuaries. Sediment cores and water column samples were collected at various locations along the Apalachicola River, its tributaries, and distributaries over a two-week period during the wet season. A preliminary particle size distribution analysis of the sediment cores and water column samples demonstrates decreasing particle sizes as the river and wetlands progress toward the ocean. Daily water samples from the mouth of the Apalachicola River and two distributaries reveal fluctuating total suspended solid (TSS) concentrations. To understand these deviations, flow rate and water level at each location is inspected. Because the nearest USGS gage is approximately 16 miles upstream from these sites, investigation of the hydrodynamic influences of sediment transport is conducted by developing a hydrodynamic model simulating river flow and tides in the Apalachicola River and bay system. With spatially accurate flow rates and water levels, an attempt can be made to correlate flow rate with fluctuating TSS concentrations. Precipitation events during the sampling period also support spikes in the TSS concentrations as expected. Assessing sediment transport to the river/bay system will lead to a better understanding of the regression or accretion of the river's alluvial fan and the marsh platform. High flow periods following extreme rain events (which are expected to intensify under global climate change) transport more sediment downstream, however, the interaction with tidal and sea level effects are still being analyzed. With rising sea levels, it is expected that the alluvial fan will recede and wetland areas may migrate inland gradually transforming existing dry lands such as pine forests into new wetland regions. Future work will include an analysis of the tidal cycle during

  3. Stream-sediment geochemistry in mining-impacted streams : sediment mobilized by floods in the Coeur d'Alene-Spokane River system, Idaho and Washington

    USGS Publications Warehouse

    Box, Stephen E.; Bookstrom, Arthur A.; Ikramuddin, Mohammed

    2005-01-01

    Environmental problems associated with the dispersion of metal-enriched sediment into the Coeur d'Alene-Spokane River system downstream from the Coeur d'Alene Mining District in northern Idaho have been a cause of litigation since 1903, 18 years after the initiation of mining for lead, zinc, and silver. Although direct dumping of waste materials into the river by active mining operations stopped in 1968, metal-enriched sediment continues to be mobilized during times of high runoff and deposited on valley flood plains and in Coeur d'Alene Lake (Horowitz and others, 1993). To gauge the geographic and temporal variations in the metal contents of flood sediment and to provide constraints on the sources and processes responsible for those variations, we collected samples of suspended sediment and overbank deposits during and after four high-flow events in 1995, 1996, and 1997 in the Coeur d'Alene-Spokane River system with estimated recurrence intervals ranging from 2 to 100 years. Suspended sediment enriched in lead, zinc, silver, antimony, arsenic, cadmium, and copper was detected over a distance of more than 130 mi (the downstream extent of sampling) downstream of the mining district. Strong correlations of all these elements in suspended sediment with each other and with iron and manganese are apparent when samples are grouped by reach (tributaries to the South Fork of the Coeur d'Alene River, the South Fork of the Coeur d'Alene River, the main stem of the Coeur d'Alene River, and the Spokane River). Elemental correlations with iron and manganese, along with observations by scanning electron microscopy, indicate that most of the trace metals are associated with Fe and Mn oxyhydroxide compounds. Changes in elemental correlations by reach suggest that the sources of metal-enriched sediment change along the length of the drainage. Metal contents of suspended sediment generally increase through the mining district along the South Fork of the Coeur d'Alene River, decrease

  4. Heavy metal contamination in river water and sediments of the Swarnamukhi River Basin, India: risk assessment and environmental implications.

    PubMed

    Patel, Priyanka; Raju, N Janardhana; Reddy, B C Sundara Raja; Suresh, U; Sankar, D B; Reddy, T V K

    2018-04-01

    The concentration of heavy metals was analyzed each of 20 river water, suspended sediments and bed sediments along the stretch of Swarnamukhi River Basin. River water is not contaminated with heavy metals except Fe and Mn. Contamination factor in sediments shows considerable to very high degree contamination with Cr, Cu, Pb and Zn. The sources of these metals could be residential wastes, sewer outfall, fertilizers, pesticides (M-45 + carbondine) and traffic activities apart from natural weathering of granitic rocks present in the basin area. Principal component analyses indicate the interaction between metals in different media. The comparison of metals (Cu, Pb and Zn) in bed sediments of Swarnamukhi River with the Indian and world averages indicates that the values obtained in the basin are above the Indian averages and far below to the world averages. Average shale values and sediment quality guidelines point toward the enrichment and contamination of Cu, Cr, Pb and Zn to several fold leading to eco-toxicological risks in basin.

  5. High prevalence of multiple-antibiotic-resistant (MAR) Escherichia coli in river bed sediments of the Apies River, South Africa.

    PubMed

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Momba, Maggy Ndombo Benteke

    2015-10-01

    This study aimed at investigating the presence of antibiotic-resistant Escherichia coli in river bed sediments of the Apies River, Gauteng, South Africa, in order to better inform health management decisions designed to protect users of the river. Overall, 180 water and sediment samples were collected at 10 sites along the Apies River from January to February 2014. E. coli was enumerated using the Colilert® 18/Quanti-Tray® 2000 (IDEXX). Isolates were purified by streaking on eosin methylene blue agar followed by the indole test. Pure E. coli isolates were tested for resistance to nine antibiotics by the Kirby-Bauer disc diffusion method. Over 98% of the isolates were resistant to at least one of the antibiotics tested. The highest resistance was observed against nitrofurantoin (sediments) and ampicillin (water). Over 80% of all resistant isolates showed multiple antibiotic resistance (resistance to ≥3 antibiotics). The abundance of E. coli in the sediments not only adds to the evidence that sediments are a reservoir for bacteria and possibly other pathogens including antibiotic-resistant bacteria but also suggests that antibiotic-resistant genes could be transferred to pathogens due to the high prevalence of multiple-antibiotic-resistant (MAR) strains of E. coli observed in the sediment. Using untreated water from the Apies River following resuspension for drinking and other household purposes could pose serious health risks for users. Our results suggest that river bed sediments could serve as reservoirs for MAR bacteria including pathogens under different climatic conditions and their analysis could provide information of public health concerns.

  6. Legacy Sediments in U.S. River Environments: Atrazine and Aggradation to Zinc and Zoobenthos

    NASA Astrophysics Data System (ADS)

    Wohl, E.

    2014-12-01

    Legacy sediments are those that are altered by human activities. Alterations include (i) human-caused aggradation (and subsequent erosion), such as sediment accumulating upstream from relict or contemporary dams, (ii) human-caused lack of continuing deposition that results in changing moisture and nutrient levels within existing sediments, such as on floodplains that no longer receive lateral or vertical accretion deposits because of levees, bank stabilization, and other channel engineering, and (iii) human-generated contaminants such as PCBs and pesticides that adsorb to fine sediment. Existing estimates of human alterations of river systems suggest that legacy sediments are ubiquitous. Only an estimated 2% of river miles in the United States are not affected by flow regulation that alters sediment transport, for example, and less than half of major river basins around the world are minimally altered by flow regulation. Combined with extensive but poorly documented reduction in floodplain sedimentation, as well as sediment contamination by diverse synthetic compounds, excess nutrients, and heavy metals, these national and global estimates suggest that legacy sediments now likely constitute a very abundant type of fluvial sediment. Because legacy sediments can alter river form and function for decades to centuries after the cessation of the human activity that created the legacy sediments, river management and restoration must be informed by accurate knowledge of the distribution and characteristics of legacy sediments. Geomorphologists can contribute understanding of sediment dynamics, including: the magnitude, frequency, and duration of flows that mobilize sediments with adsorbed contaminants; sites where erosion and deposition are most likely to occur under specified flow and sediment supply; residence time of sediments; and the influence of surface and subsurface water fluxes on sediment stability and geochemistry.

  7. Acoustic parameters inversion and sediment properties in the Yellow River reservoir

    NASA Astrophysics Data System (ADS)

    Li, Chang-Zheng; Yang, Yong; Wang, Rui; Yan, Xiao-Fei

    2018-03-01

    The physical properties of silt in river reservoirs are important to river dynamics. Unfortunately, traditional techniques yield insufficient data. Based on porous media acoustic theory, we invert the acoustic parameters for the top river-bottom sediments. An explicit form of the acoustic reflection coefficient at the water-sediment interface is derived based on Biot's theory. The choice of parameters in the Biot model is discussed and the relation between acoustic and geological parameters is studied, including that between the reflection coefficient and porosity and the attenuation coefficient and permeability. The attenuation coefficient of the sound wave in the sediments is obtained by analyzing the shift of the signal frequency. The acoustic reflection coefficient at the water-sediment interface is extracted from the sonar signal. Thus, an inversion method of the physical parameters of the riverbottom surface sediments is proposed. The results of an experiment at the Sanmenxia reservoir suggest that the estimated grain size is close to the actual data. This demonstrates the ability of the proposed method to determine the physical parameters of sediments and estimate the grain size.

  8. Sediment transport patterns and climate change: the downstream Tuul River case study, Northern Mongolia.

    NASA Astrophysics Data System (ADS)

    Pietroń, Jan; Jarsjö, Jerker

    2014-05-01

    Ongoing changes in the Central Asian climate including increasing temperatures can influence the hydrological regimes of rivers and the waterborne transport of sediments. Changes in the latter, especially in combination with adverse human activities, may severely impact water quality and aquatic ecosystems. However, waterborne transport of sediments is a result of complex processes and varies considerably between, and even within, river systems. There is therefore a need to increase our general knowledge about sediment transport under changing climate conditions. The Tuul River, the case site of this study, is located in the upper part of the basin of the Selenga River that is the main tributary to Lake Baikal, a UNESCO World Heritage Site. Like many other rivers located in the steppes of Northern Mongolia, the Tuul River is characterized by a hydrological regime that is not disturbed by engineered structures such as reservoirs and dams. However, the water quality of the downstream Tuul River is increasingly affected by adverse human activities - including placer gold mining. The largest contribution to the annual river discharge occurs during the relatively warm period in May to August. Typically, there are numerous rainfall events during this period that cause considerable river flow peaks. Parallel work has furthermore shown that due to climate change, the daily variability of discharge and numbers of peak flow events in the Tuul River Basin has increased during the past 60 years. This trend is expected to continue. We here aim at increasing our understanding of future sediment transport patterns in the Tuul River, specifically considering the scenario that peak flow events may become more frequent due to climate change. We use a one-dimensional sediment transport model of the downstream reach of the river to simulate natural patterns of sediment transport for a recent hydrological year. In general, the results show that sediment transport varies considerably

  9. Predicting the fate of sediment and pollutants in river floodplains.

    PubMed

    Malmon, Daniel V; Dunne, Thomas; Reneau, Steven L

    2002-05-01

    Geological processes such as erosion and sedimentation redistribute toxic pollutants introduced to the landscape by mining, agriculture, weapons development, and other human activities. A significant portion of these contaminants is insoluble, adsorbing to soils and sediments after being released. Geologists have long understood that much of this sediment is stored in river floodplains, which are increasingly recognized as important nonpoint sources of pollution in rivers. However, the fate of contaminated sediment has generally been analyzed using hydrodynamic models of in-channel processes, ignoring particle exchange with the floodplain. Here, we present a stochastic theory of sediment redistribution in alluvial valley floors that tracks particle-bound pollutants and explicitly considers sediment storage within floodplains. We use the theory to model the future redistribution and radioactive decay of 137Cs currently stored on sediment in floodplains at the Los Alamos National Laboratory (LANL) in New Mexico. Model results indicate that floodplain storage significantly reduces the rate of sediment delivery from upper Los Alamos Canyon, allowing 50% of the 137Cs currently residing in the valley floor to decay radioactively before leaving LANL. A sensitivity analysis shows that the rate of sediment overturn in the valley (and hence, the total amount of radioactive 137Cs predicted to leave LANL) is significantly controlled by the rate of sediment exchange with the floodplain. Our results emphasize that flood plain sedimentation and erosion processes can strongly influence the redistribution of anthropogenic pollutants in fluvial environments. We introduce a new theoretical framework for examining this interaction, which can provide a scientific basis for decision-making in a wide range of river basin management scenarios.

  10. Tidal oscillation of sediment between a river and a bay: A conceptual model

    USGS Publications Warehouse

    Ganju, N.K.; Schoellhamer, D.H.; Warner, J.C.; Barad, M.F.; Schladow, S.G.

    2004-01-01

    A conceptual model of fine sediment transport between a river and a bay is proposed, based on observations at two rivers feeding the same bay. The conceptual model consists of river, transitional, and bay regimes. Within the transitional regime, resuspension, advection, and deposition create a mass of sediment that oscillates landward and seaward. While suspended, this sediment mass forms an estuarine turbidity maximum. At slack tides this sediment mass temporarily deposits on the bed, creating landward and seaward deposits. Tidal excursion and slack tide deposition limit the range of the sediment mass. To verify this conceptual model, data from two small tributary rivers of San Pablo Bay are presented. Tidal variability of suspended-sediment concentration markedly differs between the landward and seaward deposits, allowing interpretation of the intratidal movement of the oscillating sediment mass. Application of this model in suitable estuaries will assist in numerical model calibration as well as in data interpretation. A similar model has been applied to some larger-scale European estuaries, which bear a geometric resemblance to the systems analyzed in this study. ?? 2004 Elsevier Ltd. All rights reserved.

  11. Semi-volatile organic compounds and trace elements in the Yangtze River source of drinking water.

    PubMed

    Wu, Bing; Zhang, Xuxiang; Zhang, Xiaolin; Yasun, Aishangjiang; Zhang, Yan; Zhao, Dayong; Ford, Tim; Cheng, Shupei

    2009-08-01

    Determination of 24 semi-volatile organic compounds (SVOCs) and 24 trace elements in water samples was conducted in order to investigate the quality of the Nanjing source of drinking water taken from Yangtze River. The total concentrations of SVOCs and trace elements were in the range of 1,951-11,098 ng/l and 51,274-72,384 microg/l, respectively. No significant seasonal changes were found for the pollutants' concentrations. A primary health risk assessment was carried out to evaluate potential health effects. Risk quotients involving carcinogenic effects for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, bis(2-ethylhexyl)phthalate and arsenic were >1 under the worst-case scenario. The results of this study demonstrate the importance of further studies on the environmental health effects of exposure to the source water.

  12. A Gridded Daily Min/Max Temperature Dataset With 0.1° Resolution for the Yangtze River Valley and its Error Estimation

    NASA Astrophysics Data System (ADS)

    Xiong, Qiufen; Hu, Jianglin

    2013-05-01

    The minimum/maximum (Min/Max) temperature in the Yangtze River valley is decomposed into the climatic mean and anomaly component. A spatial interpolation is developed which combines the 3D thin-plate spline scheme for climatological mean and the 2D Barnes scheme for the anomaly component to create a daily Min/Max temperature dataset. The climatic mean field is obtained by the 3D thin-plate spline scheme because the relationship between the decreases in Min/Max temperature with elevation is robust and reliable on a long time-scale. The characteristics of the anomaly field tend to be related to elevation variation weakly, and the anomaly component is adequately analyzed by the 2D Barnes procedure, which is computationally efficient and readily tunable. With this hybridized interpolation method, a daily Min/Max temperature dataset that covers the domain from 99°E to 123°E and from 24°N to 36°N with 0.1° longitudinal and latitudinal resolution is obtained by utilizing daily Min/Max temperature data from three kinds of station observations, which are national reference climatological stations, the basic meteorological observing stations and the ordinary meteorological observing stations in 15 provinces and municipalities in the Yangtze River valley from 1971 to 2005. The error estimation of the gridded dataset is assessed by examining cross-validation statistics. The results show that the statistics of daily Min/Max temperature interpolation not only have high correlation coefficient (0.99) and interpolation efficiency (0.98), but also the mean bias error is 0.00 °C. For the maximum temperature, the root mean square error is 1.1 °C and the mean absolute error is 0.85 °C. For the minimum temperature, the root mean square error is 0.89 °C and the mean absolute error is 0.67 °C. Thus, the new dataset provides the distribution of Min/Max temperature over the Yangtze River valley with realistic, successive gridded data with 0.1° × 0.1° spatial resolution and

  13. Bronx River bed sediments phosphorus pool and phosphorus compound identification

    NASA Astrophysics Data System (ADS)

    Wang, J.; Pant, H. K.

    2008-12-01

    Phosphorus (P) transport in the Bronx River degraded water quality, decreased oxygen levels, and resulted in bioaccumulation in sediment potentially resulting in eutrophication, algal blooms and oxygen depletion under certain temperature and pH conditions. The anthropogenic P sources are storm water runoff, raw sewage discharge, fertilizer application in lawn, golf course and New York Botanical Garden; manure from the Bronx zoo; combined sewoverflows (CSO's) from parkway and Hunts Point sewage plant; pollutants from East River. This research was conducted in the urban river system in New York City area, in order to control P source, figure out P transport temporal and spatial variations and the impact on water quality; aimed to regulate P application, sharing data with Bronx River Alliance, EPA, DEP and DEC. The sediment characteristics influence the distribution and bioavailbility of P in the Bronx River. The P sequential extraction gave the quantitative analysis of the P pool, quantifying the inorganic and organic P from the sediments. There were different P pool patterns at the 15 sites, and the substantial amount of inorganic P pool indicated that a large amount P is bioavailable. The 31P- NMR (Nuclear Magnetic Resonance Spectroscopy) technology had been used to identify P species in the 15 sites of the Bronx River, which gave a qualitative analysis on phosphorus transport in the river. The P compounds in the Bronx River bed sediments are mostly glycerophophate (GlyP), nucleoside monophosphates (NMP), polynucleotides (PolyN), and few sites showed the small amount of glucose-6-phosphate (G6P), glycerophosphoethanoamine (GPEA), phosphoenopyruvates (PEP), and inosine monophosphate (IMP). The land use spatial and temporal variations influence local water P levels, P distributions, and P compositions.

  14. Sediment investigations of the Platte River near Overton, Nebraska

    USGS Publications Warehouse

    Albert, C.D.; Guy, H.P.

    1955-01-01

    This report contains results of sediment-transport investigations on the Platte River near Overton,. Nebr. from January 1950 to September 1953. The basic data of suspended-sediment studies, results of bed-material analyses, and determinations of water-surface slopes from staff readings are given. The data indicate that a reliable determination of suspended sediment, hence total load, is difficult. Because of the nature of the river at the station and the limited scope of the investigations, the suspended-sediment data may not be representative. The Platte River is characterized by a wide braided channel, a small hydraulic radius, low banks, and a wide flood plain. (See figs. 1 and 2.,) The river bed is composed of coarse to fine sands. Near Overton, natural flow of the river is controlled or modified by diversions, storage reservoirs, power development, return flow from irrigation, and withdrawals of ground water. A temporary jetty was extended into the river below the bridge during the summer of 1952 as part of commercial sand pumping operations. Beavers carry on active construction in the narrows and shallows, particularly upstream from the sampling section. Daily fluctuations in water discharge at the gaging station at the bridge are caused by regulation of the flow, mainly from the generation of power by release of water from a reservoir The water discharge at the station begins increasing about 9:30 a.m., reaches a crest about 2:00 p.m and then immediately recede. Weekly water-discharge measurements of alternate high and low stages indicate a daily variation from 200 to more than 1,000 cfs. During spring summer, and fall increases in water dis charge are also caused by thunderstorm activity in the area.

  15. Middle Pleistocene infill of Hinkley Valley by Mojave River sediment and associated lake sediment: Depositional architecture and deformation by strike-slip faults

    USGS Publications Warehouse

    Miller, David; Haddon, Elizabeth; Langenheim, Victoria; Cyr, Andrew J.; Wan, Elmira; Walkup, Laura; Starratt, Scott W.

    2018-01-01

    Hinkley Valley in the Mojave Desert, near Barstow about 140 km northeast of Los Angeles and midway between Victorville Valley and the Lake Manix basin, contains a thick sedimentary sequence delivered by the Mojave River. Our study of sediment cores drilled in the valley indicates that Hinkley Valley was probably a closed playa basin with stream inflow from four directions prior to Mojave River inflow. The Mojave River deposited thick and laterally extensive clastic wedges originating from the southern valley that rapidly filled much of Hinkley Valley. Sedimentary facies representing braided stream, wetland, delta, and lacustrine depositional environments all are found in the basin fill; in some places, the sequence is greater than 74 m (245 ft) thick. The sediment is dated in part by the presence of the ~631 ka Lava Creek B ash bed low in the section, and thus represents sediment deposition after Victorville basin was overtopped by sediment and before the Manix basin began to be filled. Evidently, upstream Victorville basin filled with sediment by about 650 ka, causing the ancestral Mojave River to spill to the Harper and Hinkley basins, and later to Manix basin.Initial river sediment overran wetland deposits in many places in southern Hinkley Valley, indicating a rapidly encroaching river system. These sediments were succeeded by a widespread lake (“blue” clay) that includes the Lava Creek B ash bed. Above the lake sediment lies a thick section of interlayered stream sediment, delta and nearshore lake sediment, mudflat and/or playa sediment, and minor lake sediment. This stratigraphic architecture is found throughout the valley, and positions of lake sediment layers indicate a successive northward progression in the closed basin. A thin overlapping sequence at the north end of the valley contains evidence for a younger late Pleistocene lake episode. This late lake episode, and bracketing braided stream deposits of the Mojave River, indicate that the river

  16. Use of surrogate technologies to estimate suspended sediment in the Clearwater River, Idaho, and Snake River, Washington, 2008-10

    USGS Publications Warehouse

    Wood, Molly S.; Teasdale, Gregg N.

    2013-01-01

    Elevated levels of fluvial sediment can reduce the biological productivity of aquatic systems, impair freshwater quality, decrease reservoir storage capacity, and decrease the capacity of hydraulic structures. The need to measure fluvial sediment has led to the development of sediment surrogate technologies, particularly in locations where streamflow alone is not a good estimator of sediment load because of regulated flow, load hysteresis, episodic sediment sources, and non-equilibrium sediment transport. An effective surrogate technology is low maintenance and sturdy over a range of hydrologic conditions, and measured variables can be modeled to estimate suspended-sediment concentration (SSC), load, and duration of elevated levels on a real-time basis. Among the most promising techniques is the measurement of acoustic backscatter strength using acoustic Doppler velocity meters (ADVMs) deployed in rivers. The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Walla Walla District, evaluated the use of acoustic backscatter, turbidity, laser diffraction, and streamflow as surrogates for estimating real-time SSC and loads in the Clearwater and Snake Rivers, which adjoin in Lewiston, Idaho, and flow into Lower Granite Reservoir. The study was conducted from May 2008 to September 2010 and is part of the U.S. Army Corps of Engineers Lower Snake River Programmatic Sediment Management Plan to identify and manage sediment sources in basins draining into lower Snake River reservoirs. Commercially available acoustic instruments have shown great promise in sediment surrogate studies because they require little maintenance and measure profiles of the surrogate parameter across a sampling volume rather than at a single point. The strength of acoustic backscatter theoretically increases as more particles are suspended in the water to reflect the acoustic pulse emitted by the ADVM. ADVMs of different frequencies (0.5, 1.5, and 3 Megahertz) were tested to

  17. Determining the contributions of urbanisation and climate change to NPP variations over the last decade in the Yangtze River Delta, China.

    PubMed

    Wu, Shaohua; Zhou, Shenglu; Chen, Dongxiang; Wei, Zongqiang; Dai, Liang; Li, Xingong

    2014-02-15

    Terrestrial net primary production (NPP) is an important measure of global change, and identifying the relative contributions of urbanisation and climate change to NPP is important for understanding the impact of human and natural influences on terrestrial systems and the carbon cycle. The objective of this study was to reveal how urbanisation and climate drive changes in NPP. Satellite-based estimates of NPP collected over a 12-year period (1999-2010) were analysed to identify NPP variations in the Yangtze River Delta. Temporal and spatial analysis methods were used to identify the relationships among NPP, nighttime light urbanisation index values, and climatic factors from pixel to regional scales. The NPP of the entire Yangtze River Delta decreased slightly at a rate of -0.5 g C m(-2)a(-1) from 1999 to 2010, but this change was not significant. However, in the urban region, NPP decreased significantly (p<0.05) at a rate of -4.7 g C m(-2)a(-1) due to urbanisation processes. A spatially explicit method was proposed to partition the relative contributions of urbanisation and climate change to NPP variation. The results revealed that the urbanisation factor is the main driving force for NPP change in high-speed urbanisation areas, and the factor accounted for 47% of the variations. However, in the forest and farm regions, the NPP variation was mainly controlled by climate change and residual factors. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Old River Control Complex Sedimentation Investigation

    DTIC Science & Technology

    2015-06-01

    efforts to describe the shoaling processes and sediment transport in the two-river system. Geomorphic analysis The geomorphic assessment utilized...District, New Orleans. The investigation was conducted via a combination of field data collection and laboratory analysis, geomorphic assessments, and...6 Geomorphic analysis

  19. Changing trends of rainfall and sediment fluxes in the Kinta River catchment, Malaysia

    NASA Astrophysics Data System (ADS)

    Ismail, W. R.; Hashim, M.

    2015-03-01

    The Kinta River, draining an area of 2566 km2, originates in the Korbu Mountain in Perak, Malaysia, and flows through heterogeneous, mixed land uses ranging from extensive forests to mining, rubber and oil palm plantations, and urban development. A land use change analysis of the Kinta River catchment was carried out together with assessment of the long-term trend in rainfall and sediment fluxes. The Mann-Kendall test was used to examine and assess the long-term trends in rainfall and its relationship with the sediment discharge trend. The land use analysis shows that forests, water bodies and mining land declined whilst built and agricultural land use increased significantly. This has influenced the sediment flux of the catchment. However, most of the rainfall stations and river gauging stations are experiencing an increasing trends, except at Kinta river at Tg. Rambutan. Sediment flux shows a net erosion for the period from 1961 to 1969. The total annual sediment discharge in the Kinta River catchment was low with an average rate of 1,757 t/km2/year. From 1970 to 1985, the annual sediment yield rose to an average rate of 4062 t/km2/year. Afterwards, from 1986 to 1993, the total annual sediment discharge decreased to an average rate of 1,306 t/km2/year and increased back during the period 1994 to 2000 to 2109 t/km2/year. From 2001 to 2006 the average sediment flux rate declined to 865 t/km2/year. The decline was almost 80% from the 1970s. High sediment flux in the early 1970s is partly associated with reduced tin mining activities in the area. This decreasing trend in sediment delivery leaving the Kinta River catchment is expected to continue dropping in the future.

  20. Unravelling the relative contribution of bed and suspended sediment load on a large alluvial river

    NASA Astrophysics Data System (ADS)

    Darby, S. E.; Hackney, C. R.; Parsons, D. R.; Leyland, J.; Aalto, R. E.; Nicholas, A. P.; Best, J.

    2017-12-01

    The world's largest rivers transport 19 billion tonnes of sediment to the coastal zone annually, often supporting large deltas that rely on this sediment load to maintain their elevation in the face of rising sea level, and to sustain high levels of agricultural productivity and biodiversity. However, the majority of estimates of sediment delivery to coastal regions pertain solely to the suspended fraction of the sediment load, with the bedload fraction often being neglected due to the difficulty in estimating bedload flux and the assumption that bedload contributes a minor (<10%) fraction of the total sediment load. In large rivers, capturing accurate estimates of the suspended- and bed- load fractions is difficult given the large channel widths and depths and the intrusive nature of typical methodologies. Yet, for the successful implementation of sustainable river, and delta, management plans, improved estimates of all fractions of the sediment load are essential. Recent advances in non-intrusive, high-resolution, technology have begun to enable more accurate estimates of bedload transport rates. However, the characterisation of the holistic sediment transport regime of large alluvial rivers is still lacking. Here, we develop a sediment transport rating curve, combining both suspended- and bed- load sediment fractions, for the Lower Mekong River. We define suspended sediment rating curves using the inversion of acoustic return data from a series of acoustic Doppler current profiler surveys conducted through the Lower Mekong River in Cambodia, and into the bifurcating channels of the Mekong delta in Vietnam. Additionally, we detail estimates of bed-load sediment transport determined using repeat multibeam echo sounder surveys of the channel bed. By combining estimates of both fractions of the sediment load, we show the spatial and temporal contribution of bedload to the total sediment load of the Mekong and refine estimates of sediment transport to the Mekong

  1. Natural radioactivity in stream sediments of Oltet River, Romania

    NASA Astrophysics Data System (ADS)

    Ion, Adriana

    2017-04-01

    The concentration of naturally occurring radionuclides (U-238, Th-232 and K-40) in stream sediments of the Oltet River was measured in order to establish the primary sources of radionuclides, the transport pathways and the geochemical factors favouring their mobilisation and concentration in the existing geological context. The Oltet River has a length of 185 Km and crosses the southern central part of the country, being the right tributary of the Olt River. The range in elevation of the watercourse varies between 1963 m in the springs area (Parîng Mountains) and 200 m at the confluence with the Olt River, whereas the relief of the Oltet Basin has a varied character, manifested by the presence of diverse forms of relief, starting with major mountainous heights and ending with low-lying plains regions. In cross section from North to South, the Olteț River cuts metamorphic rocks (schist, gneisses, quartzite, marble, mica-schist's), magmatic rocks (granite and granitoid massifs - intruded by veins of microgranite, aplite, pegmatite and lamprophyre) and limestone, followed by deposits composed of clays, marls, sands and gravels, that are characterized by the presence of lignite seams. 44 stream sediment samples were collected in summer of 2016 from sampling points distributed along the river with an equidistance of about 4 - 5 km. The activity concentrations of the U-238, Th-232 and K-40 were measured by gamma ray spectrometry using HPGe detector (ORTEC) with 26% relative efficiency in multilayer shielding. The reference materials used were IAEA - RGK-1 and IAEA - 314. Analysis was performed on the <2 mm fraction of sediment sample, each sample was counted for 24,000 s. U-238 specific activity in the stream sediments varies between 6.18 and 68.76 Bq/Kg and Th-232 specific activity from 8.12 to 89.28 Bq/Kg, whereas the K-40 specific activity in sediments ranges from 99.01 to 312.16 Bq/Kg. In the upper sector of the Oltet River, concentrations of U-238, Th-232 and K-40

  2. Using Elemental Abundances and Petrophysical Properties to Trace Sediment Transport in the Hudson River

    NASA Astrophysics Data System (ADS)

    Chang, C.; Kenna, T. C.; Nitsche, F. O.

    2016-12-01

    The IPCC predicts that the frequency and severity of storms worldwide will increase due to climate change, a growing concern for the highly populated coastal areas near the Hudson River estuary. Storms have the potential to change the river's sediment budget, and it is necessary to update the current understanding of the effect of storms on sediment dynamics. In 2011, Tropical Storm Lee and Hurricane Irene delivered over 2.7 million tons of sediment to the Hudson River including over 1.5 million tons from the Mohawk River, a freshwater tributary, in addition to record amounts contributed from other major tributaries. The goals of this project are to use sediment elemental compositions to trace the major tributaries contributing to this storm-deposited sediment and to determine where sediment is accumulating as a result of storm activity. Chemical analysis of over 800 archived sediment samples are compiled to provide a pre-storm background level. These samples are compared to newly deposited sediment and material from specific tributaries. Elemental abundances (K, Ca, Ti, Cr, Mn, Fe, Co, Cu, Zn, Rb, Sr, Zr, Pb, and U) are measured using a field portable X-Ray Fluorescence (XRF) unit and core scanning XRF unit. Bulk matrix density is measured using a pycnometer. The measurements are used to identify elemental signatures from tributary sediment and to trace the influence of specific tributaries on deposition through the river. Our results suggests measureable signatures in sediment from individual tributaries. The Mohawk River contributes high concentrations of Ca due to the calcite deposits in its watershed. XRF measurements also show the effect of human activity on sediment deposition; variations in Rb and Zr indicate changes in deposition due to dredging in Haverstraw Bay. The salt wedge front, where ocean and fresh water meets is evident in areas of below average matrix density. This project shows significant geochemical variability between sediment from different

  3. The characteristics changes of pH and EC of atmospheric precipitation and analysis on the source of acid rain in the source area of the Yangtze River from 2010 to 2015

    NASA Astrophysics Data System (ADS)

    Zong-Jie, Li; Song, Ling-Ling; Jing-zhu, Ma; Li, Yong-ge

    2017-05-01

    Through the analysis of pH value, EC, precipitation and wind speed of 402 precipitation samples in the source region of the Yangtze River from January 1, 2010 to December 31, 2015, especially for the analysis of the 14 acid rain events. The results showed that: the acid rain in the source region of the Yangtze River was mainly affected by the southwest monsoon and the westerly circulation. The occurrence of acid rain mainly controlled by industrial pollution and other pollutants coming from India and other surrounding areas. And the other cause was that because of the Qinghai Tibet highway and the Qinghai Tibet railway, there were a lot of cars coming and going. And there were people in the summer to plateau tourism increased year by year, and more for self-driving travelling. This added additional pollutants (automobile exhaust) for the source of the Yangtze River. During the period of sampling, the variation range of pH value was from 4.0 to 8.57, with the mean was 6.37. And the range of EC was from 5.2 to 124.4 μs/cm, the average was 27.59 μs/cm. The order of conductivity in the four seasons was Spring > Winter > Summer > Autumn. And the order of pH in four seasons was Summer > Spring = Winter > Autumn. The results are also helpful for further understanding the acid rain in the Tibetan Plateau and providing scientific basis for the effective prevention and control of acid rain.

  4. Multivariate analysis for source identification of pollution in sediment of Linggi River, Malaysia.

    PubMed

    Elias, Md Suhaimi; Ibrahim, Shariff; Samuding, Kamarudin; Rahman, Shamsiah Ab; Wo, Yii Mei; Daung, Jeremy Andy Dominic

    2018-03-29

    Rapid socioeconomic development in the Linggi River Basin has contributed to the significant increase of pollution discharge into the Linggi River and its adjacent coastal areas. The toxic element contents and distributions in the sediment samples collected along the Linggi River were determined using neutron activation analysis (NAA) and inductively coupled plasma-mass spectrometry (ICP-MS) techniques. The measured mean concentration of As, Cd, Pb, Sb, U, Th and Zn is relatively higher compared to the continental crust value of the respective element. Most of the elements (As, Cr, Fe, Pb, Sb and Zn) exceeded the freshwater sediment quality guideline-threshold effect concentration (FSQG-TEC) value. Downstream stations of the Linggi River showed that As concentrations in sediment exceeded the freshwater sediment quality guideline-probable effect concentration (FSQG-PEC) value. This indicates that the concentration of As will give an adverse effect to the growth of sediment-dwelling organisms. Generally, the Linggi River sediment can be categorised as unpolluted to strongly polluted and unpolluted to strongly to extremely polluted. The correlation matrix of metal-metal relationship, principle component analysis (PCA) and cluster analysis (CA) indicates that the pollution sources of Cu, Ni, Zn, Cd and Pb in sediments of the Linggi River originated from the industry of electronics and electroplating. Elements of As, Cr, Sb and Fe mainly originated from motor-vehicle workshops and metal work, whilst U and Th originated from natural processes such as terrestrial runoff and land erosion.

  5. Sediment analyses for selected sites on the South Platte River in Colorado and Nebraska, and the North Platte and Platte rivers in Nebraska; suspended sediment, bedload, and bed material

    USGS Publications Warehouse

    Kircher, J.E.

    1981-01-01

    Sediment samples were collected on the South Platte, North Platte, and Platte Rivers in Colorado and Nebraska during the 1979 and 1980 runoff seasons. Suspended-sediment concentrations ranged from 62 to 3,705 milligrams per liter and the maximum load was 45,547 metric tons per day. The percentage of suspended sediment samller than sand (less than 0.062 millimeter) was as follows: 23 to 78 percent for the South Platte River, 9 to 30 percent for the North Platte River, and 2 to 89 percent for the Platte River. Bedload-transport rates ranged from 0.0085 to 0.67 kilogram per second per meter of channel width for the entire study area. The median grain size of bedload ranged from 0.6 to 2.6 millimeters for the South Platte River, 0.5 to 0.8 millimeter for the North Platte River, and 0.6 to 1.2 millimeters for th Platte River. The median grain size of bed material for the South Platte River ranged from 0.3 to 2.4 millimeters, compared to 0.5 to 0.9 millimeter for the North Platte River, and 0.4 to 3.1 millimeters for the Platte River. (USGS)

  6. Arctic River Discharge and Sediment Loads --- an Overview

    NASA Astrophysics Data System (ADS)

    Syvitski, J. P.; Overeem, I.; Brakenridge, G. R.; Hudson, B.; Cohen, S.

    2014-12-01

    Evidence suggests that river discharge has been increasing (+10%) over the last 30 years (1977-2007) for most arctic rivers. The peak melt month occurs earlier in the season in 66% of the studied rivers. Cold season flow is also increasing. Satellite discharge estimates, daily, based on microwave radiometry, are now possible from 1998 onwards. Daily river discharge hindcasts over the last 60 years using the water balance model WBMsed at a 10km spatial resolution are now available. The WBMsed model can be used in forecast mode assuming valid input climatology. The challenge here has been the accuracy of sub-polar precipitation grids. While each of these three methods (gauging, orbital sensing, modeling) has temporal and spatial coverage limitations, the combination of all three methods provides for a realistic way forward for estimating local discharge across the pan arctic. Flood inundation products are routinely produced for the pan-arctic using automated mapping algorithms developed by the Dartmouth Flood Observatory. The determination of artic river sediment loads is less than ideal. Some rivers have only been monitored for a short number of years, and many have not been monitored at all. The WBMsed model is perhaps the best method of estimating the daily sediment flux to the Arctic Ocean, at least for rivers where the mean discharge is greater than 30 m3/s. Additionally there is limited-duration field monitoring by national surveys. New methods are being explored, including back calculating the delivery of sediment to the coastal ocean by plume dimensions observed from space (MODIS, LandSat). These methods have had moderate success when applied to plumes extending in the Greenland fjords. Canada maintains an active circa 7-y satellite program (ArcticNet) to track the Mackenzie discharge during the spring-summer runoff period when turbid river water is apt to flow under and over marginal sea ice in the Beaufort Sea.

  7. Analysis of mutagenic activity of biohazardous organics in Kanawha River sediments. Technical completion report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, A.R.; Waldron, M.C.

    1988-01-01

    Residual chemical contamination of Kanawha River sediments may constitute a health hazard. Sediment cores have been analyzed using a coupled bioassay/chemical fractionation procedure. Both bacterial mutagenicity and sister chromatid exchange (SCE) analyses were conducted on sediment samples. Pocatalico River sediments extracts showed no response in either bacterial mutagenicity assay or SCE assay. Extracts from Armour Creek and the Kanawha River induced mutagenicities in the presence of S9 enzymes. The same extracts produced a significant increase in human chromosomal cross-over events.

  8. Storage and remobilization of suspended sediment in the lower amazon river of Brazil

    USGS Publications Warehouse

    Meade, R.H.; Dunne, T.; Richey, J.E.; Santos, U.De. M.; Salati, E.

    1985-01-01

    In the lower Amazon River, suspended sediment is stored during rising stages of the river and resuspended during falling river stages. The storage and resuspension in the reach are related to the mean slope of the flood wave on the river surface; this slope is smaller during rising river stages than during falling stages. The pattern of storage and resuspension damps out the extreme values of high and low sediment discharge and tends to keep them near the mean value between 3.0 ?? 106 and 3.5 ?? 106 metric tons per day. Mean annual discharge of suspended sediment in the lower Amazon is between 1.1 ?? 109 and 1.3 ?? 109 metric tons per year.

  9. Sr and Nd isotopes of suspended sediments from rivers of the Amazon basin

    NASA Astrophysics Data System (ADS)

    Hatting, Karina; Santos, Roberto V.; Sondag, Francis

    2014-05-01

    The Rb-Sr and Sm-Nd isotopic systems are important tools to constrain the provenance of sediment load in river systems. This study presents the isotopic composition of Sr and Nd isotopes and major and minor elements in suspended sediments from the Marañón-Solimões, Amazonas and Beni-Madeira rivers. The data were used to constrain the source region of the sediments and to better understand the main seasonal and spatial transport processes within the basin based on the variations of the chemical and isotopic signals. They also allow establishing a relationship between sediment concentrations and flow rate values. The study presents data collected during a hydrological year between 2009 and 2010. The Marañón-Solimões River presents low Sr isotopic values (0.7090-0.7186), broad EpslonNd(0) range (-15.17 to -8.09) and Nd model (TDM) ages varying from 0.99 to 1.81 Ga. Sources of sediments to the Marañón-Solimões River include recent volcanic rocks in northern Peru and Ecuador, as well as rocks with long crustal residence time and carbonates from the Marañón Basin, Peru. The Beni-Madeira River has more radiogenic Sr isotope values (0.7255-0.7403), more negative EpslonNd(0) values (-20.46 to -10.47), and older Nd isotope model ages (from 1.40 to 2.35 Ga) when compared to the Marañón-Solimões River. These isotope data were related to the erosion of Paleozoic and Cenozoic foreland basins that are filled with Precambrian sediments derived from the Amazonian Craton. These basins are located in Bolivian Subandina Zone. The Amazon River presents intermediate isotopic values when compared to those found in the Marañón-Solimões and Beni-Madeira rivers. Its Sr isotope ratios range between 0.7193 and 0.7290, and its EpslonNd(0) values varies between -11.09 and -9.51. The Nd isotope model ages of the suspended sediments vary between 1.28 and 1.77 Ga. Concentrations of soluble and insoluble elements indicate a more intense weathering activity in sediments of the Beni

  10. Effect of high sedimentation rates on surface sediment dynamics and mangrove growth in the Porong River, Indonesia.

    PubMed

    Sidik, Frida; Neil, David; Lovelock, Catherine E

    2016-06-15

    Large quantities of mud from the LUSI (Lumpur Sidoarjo) volcano in northeastern Java have been channeled to the sea causing high rates of sediment delivery to the mouth of the Porong River, which has a cover of natural and planted mangroves. This study investigated how the high rates of sediment delivery affected vertical accretion, surface elevation change and the growth of Avicennia sp., the dominant mangrove species in the region. During our observations in 2010-2011 (4-5years after the initial volcanic eruption), very high rates of sedimentation in the forests at the mouth of the river gave rise to high vertical accretion of over 10cmy(-1). The high sedimentation rates not only resulted in reduced growth of Avicennia sp. mangrove trees at the two study sites at the Porong River mouth, but also gave rise to high soil surface elevation gains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Analysis of the Sediment Hydrograph of the alluvial deltas in the Apalachicola River, Florida

    NASA Astrophysics Data System (ADS)

    Daranpob, A.; Hagen, S.; Passeri, D.; Smar, D. E.

    2011-12-01

    Channel and alluvial characteristics in lowlands are the products of boundary conditions and driving forces. The boundary conditions normally include materials and land cover types, such as soil type and vegetation cover. General driving forces include discharge rate, sediment loadings, tides and waves. Deltas built up of river-transported sediment occur in depositional zones of the river mouth in flat terrains and slow currents. Total sediment load depends on two major abilities of the river, the river shear stress and capacity. The shear stress determines transport of a given sediment grain size, normally expressed as tractive force. The river capacity determines the total load or quantity of total sediments transported across a section of the river, generally expressed as the sediment loading rate. The shear stress and sediment loading rate are relatively easy to measure in the headwater and transfer zones where streams form a v-shape valley and the river begins to form defined banks compared to the deposition zone where rivers broaden across lower elevation landscapes creating alluvial forms such as deltas. Determinations of deposition and re-suspension of sediment in fluvial systems are complicated due to exerting tidal, wind, and wave forces. Cyclic forces of tides and waves repeatedly change the sediment transport and deposition rate spatially and temporally in alluvial fans. However, the influence decreases with water depth. Understanding the transport, deposition, and re-suspension of sediments in the fluvial zone would provide a better understanding of the morphology of landscape in lowland estuaries such as the Apalachicola Bay and its estuary systems. The Apalachicola River system is located in the Florida Panhandle. Shelf sedimentation process is not a strong influence in this region because it is protected by barrier islands from direct ocean forces of the Gulf of Mexico. This research explores the characteristic of suspended sediment loadings in

  12. Risk Assessment on Dietary Exposure to Aflatoxin B1 in Post-Harvest Peanuts in the Yangtze River Ecological Region

    PubMed Central

    Ding, Xiaoxia; Wu, Linxia; Li, Peiwu; Zhang, Zhaowei; Zhou, Haiyan; Bai, Yizhen; Chen, Xiaomei; Jiang, Jun

    2015-01-01

    Based on the 2983 peanut samples from 122 counties in six provinces of China’s Yangtze River ecological region collected between 2009–2014, along with the dietary consumption data in Chinese resident nutrition and health survey reports from 2002 and 2004, dietary aflatoxin exposure and percentiles in the corresponding statistics were calculated by non-parametric probability assessment, Monte Carlo simulation and bootstrap sampling methods. Average climatic conditions in the Yangtze River ecological region were calculated based on the data from 118 weather stations via the Thiessen polygon method. The survey results found that the aflatoxin contamination of peanuts was significantly high in 2013. The determination coefficient (R2) of multiple regression reflected by the aflatoxin B1 content with average precipitation and mean temperature in different periods showed that climatic conditions one month before harvest had the strongest impact on aflatoxin B1 contamination, and that Hunan and Jiangxi provinces were greatly influenced. The simulated mean aflatoxin B1 intake from peanuts at the mean peanut consumption level was 0.777–0.790 and 0.343–0.349 ng/(kg·d) for children aged 2–6 and standard adults respectively. Moreover, the evaluated cancer risks were 0.024 and 0.011/(100,000 persons·year) respectively, generally less than China’s current liver cancer incidence of 24.6 cases/(100,000 persons·year). In general, the dietary risk caused by peanut production and harvest was low. Further studies would focus on the impacts of peanut circulation and storage on aflatoxin B1 contamination risk assessment in order to protect peanut consumers’ safety and boost international trade. PMID:26501322

  13. Sediment supply controls equilibrium channel geometry in gravel rivers

    PubMed Central

    Finnegan, Noah J.; Willenbring, Jane K.

    2017-01-01

    In many gravel-bedded rivers, floods that fill the channel banks create just enough shear stress to move the median-sized gravel particles on the bed surface (D50). Because this observation is common and is supported by theory, the coincidence of bankfull flow and the incipient motion of D50 has become a commonly used assumption. However, not all natural gravel channels actually conform to this simple relationship; some channels maintain bankfull stresses far in excess of the critical stress required to initiate sediment transport. We use a database of >300 gravel-bedded rivers and >600 10Be-derived erosion rates from across North America to explore the hypothesis that sediment supply drives the magnitude of bankfull shear stress relative to the critical stress required to mobilize the median bed surface grain size (τbf*/τc*). We find that τbf*/τc* is significantly higher in West Coast river reaches (2.35, n = 96) than in river reaches elsewhere on the continent (1.03, n = 245). This pattern parallels patterns in erosion rates (and hence sediment supplies). Supporting our hypothesis, we find a significant correlation between upstream erosion rate and local τbf*/τc* at sites where this comparison is possible. Our analysis reveals a decrease in bed surface armoring with increasing τbf*/τc*, suggesting channels accommodate changes in sediment supply through adjustments in bed surface grain size, as also shown through numerical modeling. Our findings demonstrate that sediment supply is encoded in the bankfull hydraulic geometry of gravel bedded channels through its control on bed surface grain size. PMID:28289212

  14. Characterization and spacial distribution variability of chromophoric dissolved organic matter (CDOM) in the Yangtze Estuary.

    PubMed

    Wang, Ying; Zhang, Di; Shen, Zhenyao; Chen, Jing; Feng, Chenghong

    2014-01-01

    The spatial characteristics and the quantity and quality of the chromophoric dissolved organic matter (CDOM) in the Yangtze Estuary, based on the abundance, degree of humification and sources, were studied using 3D fluorescence excitation emission matrix spectra (F-EEMs) with parallel factor and principal component analysis (PARAFAC-PCA). The results indicated that the CDOM abundance decreased and the aromaticity increased from the upstream to the downstream areas of the estuary. Higher CDOM abundance and degrees of humification were observed in the pore water than that in the surface and bottom waters. Two humic-like components (C1 and C3) and one tryptophan-like component (C2) were identified using the PARAFAC model. The separation of the samples by PCA highlighted the differences in the DOM properties. Components C1 and C3 concurrently displayed positive factor 1 loadings with nearly zero factor 2 loadings, while C2 showed highly positive factor 2 loadings. The C1 and C3 were very similar and exhibited a direct relationship with A355 and DOC. The CDOM in the pore water increased along the river to the coastal area, which was mainly influenced by C1 and C3 and was significantly derived from sediment remineralization and deposition from the inflow of the Yangtze River. The CDOM in the surface and bottom waters was dominated by C2, especially in the inflows of multiple tributaries that were affected by intensive anthropogenic activities. The microbial degradation of exogenous wastes from the tributary inputs and shoreside discharges were dominant sources of the CDOM in the surface and bottom waters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Global scale modeling of riverine sediment loads: tropical rivers in a global context

    NASA Astrophysics Data System (ADS)

    Cohen, Sagy; Syvitski, James; Kettner, Albert

    2015-04-01

    A global scale riverine sediment flux model (termed WBMsed) is introduced. The model predicts spatially and temporally explicit water, suspended sediment and nutrients flux in relatively high resolutions (6 arc-min and daily). Modeled riverine suspended sediment flux through global catchments is used in conjunction with observational data for 35 tropical basins to highlight key basin scaling relationships. A 50 year, daily model simulation illuminates how precipitation, relief, lithology and drainage basin area affect sediment load, yield and concentration. Tropical river systems, wherein much of a drainage basin experiences tropical climate are strongly influenced by the annual and inter-annual variations of the Inter-tropical Convergence Zone (ITCZ) and its derivative monsoonal winds, have comparatively low inter-annual variation in sediment yield. Rivers draining rainforests and those subjected to tropical monsoons typically demonstrate high runoff, but with notable exceptions. High rainfall intensities from burst weather events are common in the tropics. The release of rain-forming aerosols also appears to uniquely increase regional rainfall, but its geomorphic manifestation is hard to detect. Compared to other more temperate river systems, climate-driven tropical rivers do not appear to transport a disproportionate amount of particulate load to the world's oceans, and their warmer, less viscous waters are less competent. Multiple-year hydrographs reveal that seasonality is a dominant feature of most tropical rivers, but the rivers of Papua New Guinea are somewhat unique being less seasonally modulated. Local sediment yield within the Amazon is highest near the Andes, but decreases towards the ocean as the river's discharge is diluted by water influxes from sediment-deprived rainforest tributaries

  16. Determining Sediment Sources in the Anacostia River Watershed

    NASA Astrophysics Data System (ADS)

    Devereux, O. H.; Needelman, B. A.; Prestegaard, K. L.; Gellis, A. C.; Ritchie, J. C.

    2005-12-01

    Suspended sediment is a water-quality problem in the Chesapeake Bay. This project is designed to identify sediment sources in an urban watershed, the Northeast Branch of the Anacostia River (in Washington, D.C. and Maryland - drainage area = 188.5 km2), which delivers sediment directly to the Bay. This watershed spans two physiographic regions - the Piedmont and Coastal Plain. Bank sediment and suspended-sediment deposits were characterized using the following techniques: radionuclide (Cs-137) analysis by gamma ray spectrometry, trace-element analysis by ICP-MS, clay mineralogy by XRD, and particle-size analysis by use of a laser particle-size analyzer. Sampling of bank and suspended sediment was designed to: a) characterize tributary inputs from both Piedmont and Coastal Plain sources, and b) differentiate tributary inputs from bank erosion along the main stem of the Northeast Branch. Thirteen sample sites were chosen that represent tributary source areas of each physiographic region and the main stem where mixing occurs. Surface samples of the banks were compared to overbank deposits from a ten year storm (a proxy for the suspended sediments). Fingerprint components are selected from these data. Cesium-137 concentrations were analyzed for bank and overbank deposits for each physiographic region. No clear differences were seen between the two physiographic regions. Significant differences were observed between upland tributaries and the main stem of the Anacostia River. The average activity of Cs-137 for the tributaries was 5.4 bq/kg and the average for the main stem was 1.1 bq/kg. This suggests that there is significant erosion and storage of sediment in the tributaries. The low activity from Cs-137 in the main stem suggests a lack of storage of sediment along the main stem of the river. For the trace-element data, we focused on elements that showed significant variation among the sites. For the bank sediment, these elements include: Sr, V, Y, Ce, and Nd. For the

  17. Changes in river discharge and hydrograph separation in the upper basins of Yangtze and Yellow Rivers on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ding, Y.

    2017-12-01

    Systematic changes of river discharge and the concentration-discharge relation were explored to elucidate the response of river discharge to climate change as well as the connectivity of hydrologic and hydrochemical processes using hydrological data during 1956-2015 and chemical data during 2013-2015 at Yanshiping (YSP, 4,538 km2), Tuotuohe (TTH, 15,924 km2) and Zhimenda (ZMD, 137,704 km2) gauging sections in the upper basin of Yangtze River (UBYA), and at Huangheyan (HHY, 20,930 km2), Jimai (JM, 45,019 km2), Jungong (JG, 98,414 km2) and Tangnaihai (TNH, 121,972 km2) gauging sections in the upper basin of Yellow River (UBYE) on the Tibetan Plateau (TP). Results showed that annual discharge in UBYA presents a decreasing trend from 1950s to late 1970s and exhibits an increasing trend since 1970s due to increased temperature and precipitation. However, discharge in UBYE increases from 1950s to 1980s and decrease since late 1980s due to increased temperature and decreased precipitation. Snow/ice meltwater may play an important role on changes in river discharge from the most upper catchments, particularly for periods with increasing temperature, where snow cover, glaciers and frozen soils are widely distributed. Concentration/flux-discharge in discharge was dominated by a well-defined power law relation, with R2 values lower on rising than falling limbs. This finding has important implications for efforts to estimate annual concentrations and export of major solutes from similar catchments in cold regions where only river discharge is available. Concentrations of conservative solutes in discharge resulted from mixing of two end-members at the most upper gauging sections (YSP, TTH and HHY), and three end-members at the lower gauging sections (ZMD, JM, JG and TNH), with relatively constant solute concentrations in end-members. Relationship between the fractional contributions of meltwater and/or precipitation and groundwater and river discharge followed the same relation

  18. Asian Carp Survivability Experiments and Water Transport Surveys in the Illinois River, Volume 1

    DTIC Science & Technology

    2013-01-01

    developmental stages of the eggs and larvae of the four species of Asian carp in the Yangtze River. These stages begin with egg fertilization and end with the...hatching in the Yangtze River after about 38 hours. Development to the juvenile stage in silver and bighead carp was estimated to take about 60-70 days...Native to the Yangtze River, China. U.S. Geological Survey Data Series 239, 51 pp. Coulter, A. & Goforth, R. R. 2011. Silver and Bighead Carp

  19. Reactive transport modeling of nitrogen in Seine River sediments

    NASA Astrophysics Data System (ADS)

    Akbarzadeh, Z.; Laverman, A.; Raimonet, M.; Rezanezhad, F.; Van Cappellen, P.

    2016-02-01

    Biogeochemical processes in sediments have a major impact on the fate and transport of nitrogen (N) in river systems. Organic matter decomposition in bottom sediments releases inorganic N species back to the stream water, while denitrification, anammox and burial of organic matter remove bioavailable N from the aquatic environment. To simulate N cycling in river sediments, a multi-component reactive transport model has been developed in MATLAB®. The model includes 3 pools of particulate organic N, plus pore water nitrate, nitrite, nitrous oxide and ammonium. Special attention is given to the production and consumption of nitrite, a N species often neglected in early diagenetic models. Although nitrite is usually considered to be short-lived, elevated nitrite concentrations have been observed in freshwater streams, raising concerns about possible toxic effects. We applied the model to sediment data sets collected at two locations in the Seine River, one upstream, the other downstream, of the largest wastewater treatment plant (WWTP) of the Paris conurbation. The model is able to reproduce the key features of the observed pore water depth profiles of the different nitrogen species. The modeling results show that the presence of oxygen in the overlying water plays a major role in controlling the exchanges of nitrite between the sediments and the stream water. In August 2012, sediments upstream of the WWTP switch from being a sink to a source of nitrite as the overlying water becomes anoxic. Downstream sediments remain a nitrite sink in oxic and anoxic conditions. Anoxic bottom waters at the upstream location promote denitrification, which produces nitrite, while at the downstream site, anammox and DNRA are important removal processes of nitrite.

  20. Channel Width Change as a Potential Sediment Source, Minnesota River Basin

    NASA Astrophysics Data System (ADS)

    Lauer, J. W.; Echterling, C.; Lenhart, C. F.; Rausch, R.; Belmont, P.

    2017-12-01

    Turbidity and suspended sediment are important management considerations along the Minnesota River. The system has experience large and relatively consistent increases in both discharge and channel width over the past century. Here we consider the potential role of channel cross section enlargement as a sediment source. Reach-average channel width was digitized from aerial images dated between 1937 and 2015 along multiple sub-reaches of the Minnesota River and its major tributaries. Many of the sub-reaches include several actively migrating bends. The analysis shows relatively consistent increases in width over time, with average increase rates of 0.4 percent per year. Extrapolation to the river network using a regional relationship for cross-sectional area vs. drainage area indicates that large tributaries and main-stem reaches account for most of the bankfull cross-sectional volume in the basin. Larger tributaries and the main stem thus appear more important for widening related sediment production than small tributaries. On a basin-wide basis, widening could be responsible for a gross supply of more sediment than has been gaged at several main-stem sites, indicating that there may be important sinks for both sand and silt/clay size material distributed throughout the system. Sediment storage is probably largest along the lowest-slope reaches of the main stem. While channel width appears to have adjusted relatively quickly in response to discharge and other hydraulic modifications, net storage of sediment in floodplains probably occurs sufficiently slowly that depth adjustment will lag width adjustment significantly. Detailed analysis of the lower Minnesota River using a river segmenting approach allows for a more detailed assessment of reach-scale processes. Away from channel cutoffs, elongation of the channel at eroding bends is consistent with rates observed on other actively migrating rivers. However, the sinuosity increase has been more than compensated by

  1. Feeding the hungry river: Fluvial morphodynamics and the entrainment of artificially inserted sediment at the dammed river Isar, Eastern Alps, Germany

    NASA Astrophysics Data System (ADS)

    Heckmann, Tobias; Haas, Florian; Abel, Judith; Rimböck, Andreas; Becht, Michael

    2017-08-01

    Dams interrupt the sediment continuum in rivers by retaining the bedload; combined with flow diversion, bedload retention in tributaries and river engineering measures, this causes a bedload deficit leading to changes in river planform and morphodynamics, with potentially detrimental downstream effects. As part of the SedAlp joint project (Sediment management in Alpine basins: integrating sediment continuum, risk mitigation and hydropower), this study investigates changes within a section of the dammed river Isar between the Sylvenstein reservoir and the city of Bad Tölz. We use a multi-method approach on a range of spatial and temporal scales. First, we analysed historical maps and aerial photos to analyse river planform and landcover changes within the river corridor of the whole study area on a temporal scale of over 100 years. Results show that major changes occurred before the construction of the Sylvenstein reservoir, suggesting that present morphodynamics represent the reaction to different disturbances on different time scales. Second, changes in mean bed elevation of cross profiles regularly surveyed by the water authorities are analysed in light of artificial sediment insertion and floods; they are also used to estimate the sediment budget of river reaches between consecutive cross profiles. Results suggest stability and a slight tendency towards incision, especially near the Sylvenstein reservoir; further downstream, the sediment balance was positive. Third, we acquired multitemporal aerial photos using an unmanned aerial vehicle and generated high-resolution digital elevation models to show how sediment artificially inserted in the river corridor is entrained. Depending on the position of the artificial deposits in relation to the channel, the deposits are entrained during floods of different return periods.

  2. The fate of large sediment inputs in rivers: Implications for watershed and waterway management

    Treesearch

    Thomas E. Lisle

    2000-01-01

    Valued resources in and along stream channels are commonly many river miles downstream of large sediment inputs such as landslides. Evaluating and predicting the arrival, severity, and duration of sediment impacts thus requires an understanding of how river channels digest elevated sediment loads.

  3. Anoxia stimulates microbially catalyzed metal release from Animas River sediments.

    PubMed

    Saup, Casey M; Williams, Kenneth H; Rodríguez-Freire, Lucía; Cerrato, José M; Johnston, Michael D; Wilkins, Michael J

    2017-04-19

    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amended with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2- -reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.

  4. Anoxia stimulates microbially catalyzed metal release from Animas River sediments

    DOE PAGES

    Saup, Casey M.; Williams, Kenneth H.; Rodríguez-Freire, Lucía; ...

    2017-03-06

    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amendedmore » with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2-reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.« less

  5. Anoxia stimulates microbially catalyzed metal release from Animas River sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saup, Casey M.; Williams, Kenneth H.; Rodríguez-Freire, Lucía

    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amendedmore » with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2-reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.« less

  6. The significance of sediment contamination in the Elbe River floodplain (Czech Republic)

    NASA Astrophysics Data System (ADS)

    Chalupová, Dagmar; Janský, Bohumír; Langhammer, Jakub; Šobr, Miroslav; Jiři, Medek; Král, Stanislav; Jiřinec, Petr; Kaiglova, Jana; Černý, Michal; Žáček, Miroslav; Leontovyčova, Drahomíra; Halířová, Jarmila

    2015-04-01

    The abstract brings the information about the research that was focused on anthropogenic pollution of river and lake sediments in the middle course of the Elbe River (Czech Republic). The main aim was to identify and to evaluate the significance of old polluted sediments in the river and its side structures (old meanders, cut lakes, oxbow lakes) between Hradec Králové and Mělník (confluence with the Moldau River) and to assess the risk coming from the remobilization of the contaminated matter. The Elbe River floodplain has been highly inhabited since the Middle Ages, and, especially in the 20th century, major industrial plants were founded here. Since that time, the anthropogenic load of the river and it`s floodplain has grown. Although the contaminants bound to the sediment particles are usually stable, the main risk is coming from the fact that under changes in hydrological regime and water quality (floods, changes in pH, redox-potential, presence of complex substances etc.), the pollution can be released and remobilized again. The most endangered areas are: the surroundings of Pardubice (chemical factory Synthesia, Inc.; refinery PARAMO), and Neratovice (chemical factory Spolana, Inc.). The chemical factories situated close to these towns represented the most problematic polluters of the Elbe River especially during 2nd half of 20th century. In the research, the main attention was aimed at subaquatic sediments of selected cut lakes situated in the vicinity of the above mentioned sources of pollution. To describe the outreach of contamination, several further fluvial lakes were taken into account too. Sediment sampling was carried out from boats on lakes and with the help of drilling rig in the floodplain. Gained sediment cores were divided into several parts which were analysed separately. Chemical analyses included substances identified by ICPER (International Commission for the Protection of the Elbe River) as well as chemicals considered as significant in

  7. Source apportionment of trace metals in river sediments: A comparison of three methods.

    PubMed

    Chen, Haiyang; Teng, Yanguo; Li, Jiao; Wu, Jin; Wang, Jinsheng

    2016-04-01

    Increasing trace metal pollution in river sediment poses a significant threat to watershed ecosystem health. Identifying potential sources of sediment metals and apportioning their contributions are of key importance for proposing prevention and control strategies of river pollution. In this study, three advanced multivariate receptor models, factor analysis with nonnegative constraints (FA-NNC), positive matrix factorization (PMF), and multivariate curve resolution weighted-alternating least-squares (MCR-WALS), were comparatively employed for source apportionment of trace metals in river sediments and applied to the Le'an River, a main tributary of Poyang Lake which is the largest freshwater lake in China. The pollution assessment with contamination factor and geoaccumulation index suggested that the river sediments in Le'an River were contaminated severely by trace metals due to human activities. With the three apportionment tools, similar source profiles of trace metals in sediments were extracted. Especially, the MCR-WALS and PMF models produced essentially the same results. Comparatively speaking, the weighted schemes might give better solutions than the unweighted FA-NNC because the uncertainty information of environmental data was considered by PMF and MCR-WALS. Anthropogenic sources were apportioned as the most important pollution sources influencing the sediment metals in Le'an River with contributions of about 90%. Among them, copper tailings occupied the largest contribution (38.4-42.2%), followed by mining wastewater (29.0-33.5%), and agricultural activities (18.2-18.7%). To protect the ecosystem of Le'an River and Poyang Lake, special attention should be paid to the discharges of mining wastewater and the leachates of copper tailing ponds in that region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Impact of rapid urbanisation and industrialisation on river sediment metal contamination.

    PubMed

    Hayzoun, H; Garnier, C; Durrieu, G; Lenoble, V; Bancon-Montigny, C; Ouammou, A; Mounier, S

    2014-05-01

    This study aimed at evidencing contaminant inputs from a rapidly growing population and the accompanying anthropogenic activities to river sediments. The Fez metropolitan area and its impacts on the Sebou's sediments (the main Moroccan river) were chosen as a case study. The Fez agglomeration is surrounded by the river Fez, receiving the wastewaters of this developing city and then flowing into the Sebou. The sediment cores from the Fez and Sebou Rivers were extracted and analysed for major elements, butyltins and toxic metals. Normalised enrichment factors and geoaccumulation index were calculated. Toxicity risk was assessed by two sets of sediment quality guideline (SQG) indices. A moderate level of contamination by butyltins was observed, with monobutyltin being the dominant species across all sites and depths. The lowest level of metal pollution was identified in the Sebou's sediments in upstream of Fez city, whilst the Fez' sediments were heavily polluted and exhibited bottom-up accumulation trends, which is a clear signature of recent inputs from the untreated wastewaters of Fez city. Consequently, the sediments of Fez and Sebou at the downstream of the confluence were found to be potentially toxic, according to the SQG levels. This finding is concerned with aquatic organisms, as well as to the riverside population, which is certainly exposed to these pollutants through the daily use of water. This study suggests that although Morocco has adopted environmental regulations aiming at restricting pollutant discharges into the natural ecosystems, such regulations are neither well respected by the main polluters nor efficiently enforced by the authorities.

  9. Seasonal atmospheric deposition and air-sea gaseous exchange of polycyclic aromatic hydrocarbons over the Yangtze River Estuary, East China Sea: Implication for the source-sink processes

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Guo, Z.

    2017-12-01

    As the home of the largest port in the world, the Yangtze River Estuary (YRE) in the East China Sea (ECS) is adjacent to the largest economic zone in China with more than 10% of Chinese population and provides one-fifth of national GDP. The YRE is under the path of contaminated East Asian continental outflow. These make the YRE unique for the pollutant biogeochemical cycling in the world. In this work, 94 pairs of air samples and 20 surface seawater samples covering four seasons were collected from a remote receptor site in the YRE from March 2014 to January 2015, in order to explore the seasonal fluxes of air-sea gaseous exchange and atmospheric dry and wet deposition of 15 polycyclic aromatic hydrocarbons (PAHs) and their source-sink processes at the air-sea interface. The average dry and wet deposition fluxes of 15 PAHs were estimated as 879 ± 1393 ng m-2 d-1 and 755 ± 545 ng m-2 d-1, respectively. The gaseous PAHs were released from seawater to atmosphere during the whole year with an average of 3039 ± 2030 ng m-2 d-1. The gaseous exchange of PAHs was referred as the dominant process at the air-sea interface in the YRE as the magnitude of volatilization flux of PAHs exceeded that of the total dry and wet deposition. The gaseous PAH exchange flux was dominated by 3-ring PAHs, with the highest value in summer while lowest in winter, depicting a strong seasonal variation due to temperature, wind speed and air-sea concentration gradient difference among seasons. Based on the simplified mass balance estimation, net 9.6 tons/y of PAHs was volatilized from seawater to atmosphere with an area of approximately 20000 km2 in the YRE. Apart from Yangtze River input and ocean ship emissions in the entire year, the selective release of low molecular weight PAHs from sediments in winter due to re-suspension triggered by the East Asian winter monsoon could be another possible source for dissolved PAHs. This work suggests that the source-sink processes of PAHs at air

  10. Change in Sediment Provenance Near the Current Estuary of Yellow River Since the Holocene Transgression

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Feng, Xiuli; Li, Guogang; Liu, Xiao; Xiao, Xiao; Feng, Li

    2018-06-01

    Sedimentary sequence and sediment provenance are important factors when it comes to the studies on marine sedimentation. This paper studies grain size distribution, lithological characteristics, major and rare earth elemental compositions, micropaleontological features and 14C ages in order to examine sedimentary sequence and sediment provenance of the core BH6 drilled at the mouth of the Yellow River in Bohai Sea. According to the grain size and the micropaleontological compositions, 4 sedimentary units have been identified. Unit 1 (0-8.08 mbsf) is of the delta sedimentary facies, Unit 2 (8.08-12.08 mbsf) is of the neritic shelf facies, Unit 3 (12.08-23.85 mbsf) is of near-estuary beach-tidal facies, and Unit 4 (23.85 mbsf-) is of the continental lake facies. The deposits from Unit 1 to Unit 3 have been found to be marine strata formed after the Holocene transgression at about 10 ka BP, while Unit 4 is continental lacustrine deposit formed before 10 ka BP. The provenances of core BH6 sediments show properties of the continental crust and vary in different sedimentary periods. For Unit 4 sediments, the source regions are dispersed while the main provenance is not clear, although the parent rock characteristics of a few samples are similar to the Luanhe River sediments. For Unit 3, sediments at 21.1-23.85 mbsf have been mainly transported from the Liaohe River, while sediments above 21.1 mbsf are mainly from the Yellow River and partially from the Liaohe River. For Unit 2, the sediments have been mainly transported from the Yellow River, with a small amount from other rivers. For Unit 1, the provenance is mainly the Yellow River catchment. These results help in better understanding the evolution of the Yellow River Delta.

  11. Conceptual model of sedimentation in the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Schoellhamer, David H.; Wright, Scott A.; Drexler, Judith Z.

    2012-01-01

    Sedimentation in the Sacramento–San Joaquin River Delta builds the Delta landscape, creates benthic and pelagic habitat, and transports sediment-associated contaminants. Here we present a conceptual model of sedimentation that includes submodels for river supply from the watershed to the Delta, regional transport within the Delta and seaward exchange, and local sedimentation in open water and marsh habitats. The model demonstrates feedback loops that affect the Delta ecosystem. Submerged and emergent marsh vegetation act as ecosystem engineers that can create a positive feedback loop by decreasing suspended sediment, increasing water column light, which in turn enables more vegetation. Sea-level rise in open water is partially countered by a negative feedback loop that increases deposition if there is a net decrease in hydrodynamic energy. Manipulation of regional sediment transport is probably the most feasible method to control suspended sediment and thus turbidity. The conceptual model is used to identify information gaps that need to be filled to develop an accurate sediment transport model.

  12. [Distribution and sources of polycyclic aromatic hydrocarbons in sediments from rivers of Pearl River Delta and its nearby South China Sea].

    PubMed

    Luo, Xiao-Jun; Chen, She-Jun; Mai, Bi-Xian; Zeng, Yong-Ping; Sheng, Guo-Ying; Fu, Jia-Mo

    2005-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are measured in surface sediments from rivers and estuary of Pearl River Delta and its nearby South China Sea. Total PAH concentration varied from 255.9 - 16 670.3 ng/g and a moderate to low level compare to relevant areas worldwide. The order of PAHs concentration in sediments was: rivers of Pearl River Delta > estuary > South China Sea, and the most significant PAH contamination was at Guangzhou channel of Zhujiang river. A decrease trend for PAHs concentration with distance from estuary to open sea can be sees in South China Sea. Coal and biomass combustion is the major source of PAHs in nearshore of South China Sea, and petroleum combustion is the main source of pyrolytic PAHs in rivers and estuary of Pearl River Delta according to PAHs diagnostic ratios. Petroleum PAHs are revealed have a high contribution to PAHs in Xijiang River, estuary and some stations in Zhujiang River. A comparison of data from study in 1997 with data from present study indicates that there is no clear change in the PAH concentration over time but the source of PAHs in Pearl River Delta have been change from a main coal combustion to petroleum combustion and being reflect in the sediments in rivers and estuary of Pearl River Delta where there have high sedimentation rate.

  13. Morphodynamics and Sediment connectivity in the Kosi River basin in the Himalaya and their implications for river management

    NASA Astrophysics Data System (ADS)

    Sinha, R.; Mishra, K.; Swrankar, S.; Jain, V.; Nepal, S.; Uddin, K.

    2017-12-01

    Sediment flux of large tropical rivers is strongly influenced by the degree of linkage between the sediments sources and sink (i.e. sediment connectivity). Sediment connectivity, especially at the catchment scale, depends largely on the morphological characteristics of the catchment such as relief, terrain roughness, slope, elevation, stream network density and catchment shape and the combined effects of land use, particularly vegetation. Understanding the spatial distribution of sediment connectivity and its temporal evolution can be useful for the characterization of sediment source areas. Specifically, these areas represent sites of instability and their connectivity influences the probability of sediment transfer at a local scale that will propagate downstream through a feedback system. This paper evaluates the morphodynamics and sediment connectivity of the Kosi basin in Nepal and India at various spatial and temporal scales. Our results provide the first order assessment of the spatial sediment connectivity in terms of the channel connectivity (IC outlet) and source to channel connectivity (IC channel) of the upstream and midstream Kosi basin. This assessment helped in the characterization of sediment dynamics in the complex morphological settings and in a mixed environment. Further, Revised Universal Soil Loss Equation (RUSLE) was used to quantify soil erosion and sediment transport capacity equation is used to quantify sediment flux at each cell basis. Sediment Delivery Ratio (SDR) was calculated for each sub-basin to identify the sediment production and transport capacity limited sub-basin. We have then integrated all results to assess the sediment flux in the Kosi basin in relation to sediment connectivity and the factors controlling the pathways of sediment delivery. Results of this work have significant implications for sediment management of the Kosi river in terms of identification of hotspots of sediment accumulation that will in turn be manifested

  14. Sediment pulses in mountain rivers. Part 1. Experiments

    Treesearch

    Y. Cui; G. Parker; T. E. Lisle; J. Gott; M. E. Hansler; J. E. Pizzuto; N. E. Almendinger; J. M. Reed

    2003-01-01

    Sediment often enters rivers in discrete pulses associated with landslides and debris flows. This is particularly so in the case of mountain streams. The topographic disturbance created on the bed of a stream by a single pulse must be gradually eliminated if the river is to maintain its morphological integrity. Two mechanisms for elimination have been identified:...

  15. Ascribing soil erosion of hillslope components to river sediment yield.

    PubMed

    Nosrati, Kazem

    2017-06-01

    In recent decades, soil erosion has increased in catchments of Iran. It is, therefore, necessary to understand soil erosion processes and sources in order to mitigate this problem. Geomorphic landforms play an important role in influencing water erosion. Therefore, ascribing hillslope components soil erosion to river sediment yield could be useful for soil and sediment management in order to decrease the off-site effects related to downstream sedimentation areas. The main objectives of this study were to apply radionuclide tracers and soil organic carbon to determine relative contributions of hillslope component sediment sources in two land use types (forest and crop field) by using a Bayesian-mixing model, as well as to estimate the uncertainty in sediment fingerprinting in a mountainous catchment of western Iran. In this analysis, 137 Cs, 40 K, 238 U, 226 Ra, 232 Th and soil organic carbon tracers were measured in 32 different sampling sites from four hillslope component sediment sources (summit, shoulder, backslope, and toeslope) in forested and crop fields along with six bed sediment samples at the downstream reach of the catchment. To quantify the sediment source proportions, the Bayesian mixing model was based on (1) primary sediment sources and (2) combined primary and secondary sediment sources. The results of both approaches indicated that erosion from crop field shoulder dominated the sources of river sediments. The estimated contribution of crop field shoulder for all river samples was 63.7% (32.4-79.8%) for primary sediment sources approach, and 67% (15.3%-81.7%) for the combined primary and secondary sources approach. The Bayesian mixing model, based on an optimum set of tracers, estimated that the highest contribution of soil erosion in crop field land use and shoulder-component landforms constituted the most important land-use factor. This technique could, therefore, be a useful tool for soil and sediment control management strategies. Copyright

  16. The dominant erosion processes supplying fine sediment to three major rivers in tropical Australia, the Daly (NT), Mitchell (Qld) and Flinders (Qld) Rivers

    NASA Astrophysics Data System (ADS)

    Caitcheon, Gary G.; Olley, Jon M.; Pantus, Francis; Hancock, Gary; Leslie, Christopher

    2012-05-01

    The tropics of northern Australia have received relatively little attention with regard to the impact of soil erosion on the many large river systems that are an important part of Australia's water resource, especially given the high potential for erosion when long dry seasons are followed by intense wet season rain. Here we use 137Cs concentrations to determine the erosion processes supplying sediment to two major northern Australian Rivers; the Daly River (Northern Territory), and the Mitchell River (Queensland). We also present data from five sediment samples collected from a 100 km reach of the Cloncurry River, a major tributary of the Flinders River (Queensland). Concentrations of 137Cs in the surface soil and subsurface (channel banks and gully) samples were used to derive 'best fit' probability density functions describing their distributions. These modelled distributions are then used to estimate the relative contribution of these two components to the river sediments. Our results are consistent with channel and gully erosion being the dominant source of sediment, with more than 90% of sediment transported along the main stem of these rivers originating from subsoil. We summarize the findings of similar studies on tropical Australian rivers and conclude that the primary source of sediment delivered to these systems is gully and channel bank erosion. Previously, as a result of catchment scale modelling, sheet-wash and rill erosion was considered to be the major sediment source in these rivers. Identifying the relative importance of sediment sources, as shown in this paper, will provide valuable information for land management planning in the region. This study also reinforces the importance of testing model predictions before they are used to target investment in remedial action.

  17. Sediment yields of streams in the Umpqua River Basin, Oregon

    USGS Publications Warehouse

    Curtiss, D.A.

    1975-01-01

    This report summarizes sediment data collected at 11 sites in the Umpqua River basin from 1956 to 1973 and updates a report by C. A. Onions (1969) of estimated sediment yields in the basin from 1956-67.  Onions' report points out that the suspended-sediment data, collected during the 1956-67 period, were insufficient to compute reliable sediment yields.  Therefore, the U.S, Geological Survey, in cooperation with Douglas County, collected additional data from 1969 to 1973 to improve the water discharge-sediment discharge relationships at these sites.  These data are published in "Water resources data for Oregon, Part 2, Water quality records," 1970 through 1973 water years.  In addition to the 10 original sites, data were collected during this period from the Umpqua River near Elkton station, and a summary of the data for that station is included in table 1.

  18. Linking hysteresis patterns and variations in suspended sediment sources in a highly urbanized river: a case of the River Aire, UK

    NASA Astrophysics Data System (ADS)

    Vercruysse, Kim; Grabowski, Robert

    2017-04-01

    The natural sediment balance of rivers is often disturbed as a result of increased fine sediment influx from soil erosion and/or modifications to the river channel and floodplains, causing numerous problems related to ecology, water quality, flood risk and infrastructure. It is of great importance to understand fine sediment dynamics in rivers in order to manage the problems appropriately. However, despite decades of research, our understanding of fine sediment transport is not yet sufficient to fully explain the spatial and temporal variability in sediment concentrations in rivers. To this end, the study aims to investigate the importance of sediment source variations to explain hysteresis patterns in suspended sediment transport. A sediment fingerprinting technique based on infrared spectrometry was applied in the highly urbanized River Aire catchment in northern England to identify the dominant sources of suspended sediment. Three types of potential sediment source samples were collected: soil samples from pasture in three lithological areas (limestone, millstone grit and coal measures), eroding riverbanks and urban street dust. All source samples were analyzed with Diffuse Reflectance Infrared Fourier Transform spectrometry (DRIFTS). Discriminant analysis demonstrated that the source materials could be discriminated based on their respective infrared spectra. Infrared spectra of experimental mixtures were then used to develop statistical models to estimate relative source contributions from suspended sediment samples. Suspended sediment samples were collected during a set of high flow events between 2015 and 2016, showing different hysteresis patterns between suspended sediment concentration and discharge. The fingerprinting results suggest that pasture from the limestone area is the dominant source of fine sediment. However, significant variations in source contributions during and between events are present. Small events, in terms of discharge, are marked by

  19. Dujiangyan: Could the ancient hydraulic engineering be a sustainable solution for Mississippi River diversions?

    NASA Astrophysics Data System (ADS)

    Xu, Y. J.

    2016-02-01

    Dujiangyan, also known as the Dujiangyan Project, is a hydraulic engineering complex built more than 2260 years ago on the Mingjiang River near Chengdu in China's Sichuan Province. The complex splits the river into two channels, a so-called "inner river" (Leijiang) and an "outer river" (Waijiang) that carry variable water volumes and sediment loads under different river flow conditions. The inner river and its numerous distributary canals are primarily man-made for irrigation over the past 2000 years, while the outer river is the natural channel and flows southward before entering into the Yangtze River. Under normal flow, 60% of the Mingjiang River goes into the inner river for irrigating nearly 1 million hectares of agricultural land on the Chengdu plain. During floods, however, less than 40% of the Mingjiang River flows into the inner river. Under both flow conditions, about 80% of the riverine sediments is carried by the outer river and continues downstream. This hydrology is achieved through a weir work complex that comprises three major components: a V-shaped bypass dike in the center of the Mingjiang River (the Yuzui Bypass Dike, see photo below), a sediment diversion canal in the inner river below the bypass dike (the Feishayan Floodgate), and a flow control in the inner river below the sediment diversion canal (the Baopingkou Diversion Passage). Together with ancillary embankments, these structures have not only ensured a regular supply of silt-reduced water to the fertile Chengdu plain, but have provided great benefits in flood control, sediment transport, and water resources regulation over the past two thousand years. The design of this ancient hydraulic complex ingeniously conforms to the natural environment while incorporating many sophisticated techniques, reflecting the concept that humankind is an integral part of nature. As we are urgently seeking solutions today to save the sinking Mississippi River Delta, examination of the ancient engineering

  20. Monitoring suspended sediment transport in an ice-affected river using acoustic Doppler current profilers

    NASA Astrophysics Data System (ADS)

    Moore, S. A.; Ghareh Aghaji Zare, S.; Rennie, C. D.; Ahmari, H.; Seidou, O.

    2013-12-01

    Quantifying sediment budgets and understanding the processes which control fluvial sediment transport is paramount to monitoring river geomorphology and ecological habitat. In regions that are subject to freezing there is the added complexity of ice. River ice processes impact flow distribution, water stage and sediment transport. Ice processes typically have the largest impact on sediment transport and channel morphodynamics when ice jams occur during ice cover formation and breakup. Ice jams may restrict flow and cause local acceleration when released. Additionally, ice can mechanically scour river bed and banks. Under-ice sediment transport measurements are lacking due to obvious safety and logistical reasons, in addition to a lack of adequate measurement techniques. Since some rivers can be covered in ice during six months of the year, the lack of data in winter months leads to large uncertainty in annual sediment load calculations. To address this problem, acoustic profilers are being used to monitor flow velocity, suspended sediment and ice processes in the Lower Nelson River, Manitoba, Canada. Acoustic profilers are ideal for under-ice sediment flux measurements since they can be operated autonomously and continuously, they do not disturb the flow in the zone of measurement and acoustic backscatter can be related to sediment size and concentration. In March 2012 two upward-facing profilers (1200 kHz acoustic Doppler current profiler, 546 KHz acoustic backscatter profiler) were installed through a hole in the ice on the Nelson River, 50 km downstream of the Limestone Generating Station. Data were recorded for four months, including both stable cover and breakup periods. This paper presents suspended sediment fluxes calculated from the acoustic measurements. Velocity data were used to infer the vertical distribution of sediment sizes and concentrations; this information was then used in the interpretation of the backscattered intensity data. It was found that

  1. Historical trend of nitrogen and phosphorus loads from the upper Yangtze River basin and their responses to the Three Gorges Dam.

    PubMed

    Sun, Chengchun; Shen, Zhenyao; Liu, Ruimin; Xiong, Ming; Ma, Fangbing; Zhang, Ouyang; Li, Yangyang; Chen, Lei

    2013-12-01

    Excessive inputs of nitrogen and phosphorus (N and P) degrade surface water quality worldwide. Impoundment of reservoirs alters the N and P balance of a basin. In this study, riverine nutrient loads from the upper Yangtze River basin (YRB) at the Yichang station were estimated using Load Estimator (LOADEST). Long-term load trends and monthly variabilities during three sub-periods based on the construction phases of the Three Gorges Dam (TGD) were analyzed statistically. The dissolved inorganic nitrogen (DIN) loads from the upper YRB for the period from 1990 to 2009 ranged from 30.47 × 10(4) to 78.14 × 10(4) t, while the total phosphorus (TP) loads ranged from 2.54 × 10(4) to 7.85 × 10(4) t. DIN increased rapidly from 1995 to 2002 mainly as a result of increased fertilizer use. Statistics of fertilizer use in the upper YRB agreed on this point. However, the trend of the TP loads reflected the combined effect of removal by sedimentation in reservoirs and increased anthropogenic inputs. After the TGD impoundment in 2003, decreasing trends in both DIN and TP loads were found. The reduction in DIN was mainly caused by ammonium consumption and transference. From an analysis of monthly loads, it was found that DIN had a high correlation to discharges. For TP loads, an average decrease of 4.91 % in October was found when the TGD impoundment occurred, but an increase of 4.23 % also occurred in July, corresponding to the washout from sediment deposited in the reservoir before July. Results of this study revealed the TGD had affected nutrient loads in the basin, and it had played a role in nutrient reduction after its operation.

  2. Water and sediment dynamics in the Red River mouth and adjacent coastal zone

    NASA Astrophysics Data System (ADS)

    van Maren, D. S.

    2007-02-01

    The coastline of the Red River Delta is characterized by alternating patterns of rapid accretion and severe erosion. The main branch of the Red River, the Ba Lat, is presently expanding seaward with a main depositional area several km downstream and offshore the Ba Lat River mouth. Sediment deposition rates are approximately 6 m in the past 50 years. Field measurements were done to determine the processes that regulate marine dispersal and deposition of sediment supplied by the Ba Lat. These measurements reveal that the waters surrounding the Ba Lat delta are strongly stratified with a pronounced southward-flowing surface layer. This southward-flowing surface layer is a coastal current which is generated by river plumes that flow into the coastal zone north of the Ba Lat. However, outflow of turbid river water is not continuous and most sediment enters the coastal zone when the alongshore surface velocities are low. As a consequence, most sediment settles from suspension close to the river mouth. In addition to the southward surface flow, the southward near-bottom currents are also stronger than northward currents. Contrasting with the residual flow near-surface, this southward flow component near-bottom is caused by tidal asymmetry. Because most sediment is supplied by the Ba Lat when wave heights are low, sediment is able to consolidate and therefore the long-term deposition is southward of, but still close to, the Ba Lat mouth.

  3. Transport and deposition of asbestos-rich sediment in the Sumas River, Whatcom County, Washington

    USGS Publications Warehouse

    Curran, Christopher A.; Anderson, Scott W.; Barbash, Jack E.; Magirl, Christopher S.; Cox, Stephen E.; Norton, Katherine K.; Gendaszek, Andrew S.; Spanjer, Andrew R.; Foreman, James R.

    2016-02-08

    Heavy sediment loads in the Sumas River of Whatcom County, Washington, increase seasonal turbidity and cause locally acute sedimentation. Most sediment in the Sumas River is derived from a deep-seated landslide of serpentinite that is located on Sumas Mountain and drained by Swift Creek, a tributary to the Sumas River. This mafic sediment contains high amounts of naturally occurring asbestiform chrysotile. A known human-health hazard, asbestiform chrysotile comprises 0.25–37 percent, by mass, of the total suspended sediment sampled from the Sumas River as part of this study, which included part of water year 2011 and all of water years 2012 and 2013. The suspended-sediment load in the Sumas River at South Pass Road, 0.6 kilometers (km) downstream of the confluence with Swift Creek, was 22,000 tonnes (t) in water year 2012 and 49,000 t in water year 2013. The suspended‑sediment load at Telegraph Road, 18.8 km downstream of the Swift Creek confluence, was 22,000 t in water year 2012 and 27,000 t in water year 2013. Although hydrologic conditions during the study were wetter than normal overall, the 2-year flood peak was only modestly exceeded in water years 2011 and 2013; runoff‑driven geomorphic disturbance to the watershed, which might have involved mass wasting from the landslide, seemed unexceptional. In water year 2012, flood peaks were modest, and the annual streamflow was normal. The fact that suspended-sediment loads in water year 2012 were equivalent at sites 0.6 and 18.8 km downstream of the sediment source indicates that the conservation of suspended‑sediment load can occur under normal hydrologic conditions. The substantial decrease in suspended-sediment load in the downstream direction in water year 2013 was attributed to either sedimentation in the intervening river reach, transfer to bedload as an alternate mode of sediment transport, or both.The sediment in the Sumas River is distinct from sediment in most other river systems because of the

  4. Geomorphic evolution of the Le Sueur River, Minnesota, USA, and implications for current sediment loading

    USGS Publications Warehouse

    Gran, K.B.; Belmont, P.; Day, S.S.; Jennings, C.; Johnson, Aaron H.; Perg, L.; Wilcock, P.R.

    2009-01-01

    There is clear evidence that the Minnesota River is the major sediment source for Lake Pepin and that the Le Sueur River is a major source to the Minnesota River. Turbidity levels are high enough to require management actions. We take advantage of the well-constrained Holocene history of the Le Sueur basin and use a combination of remote sensing, fi eld, and stream gauge observations to constrain the contributions of different sediment sources to the Le Sueur River. Understanding the type, location, and magnitude of sediment sources is essential for unraveling the Holocene development of the basin as well as for guiding management decisions about investments to reduce sediment loads. Rapid base-level fall at the outlet of the Le Sueur River 11,500 yr B.P. triggered up to 70 m of channel incision at the mouth. Slope-area analyses of river longitudinal profi les show that knickpoints have migrated 30-35 km upstream on all three major branches of the river, eroding 1.2-2.6 ?? 109 Mg of sediment from the lower valleys in the process. The knick zones separate the basin into an upper watershed, receiving sediment primarily from uplands and streambanks, and a lower, incised zone, which receives additional sediment from high bluffs and ravines. Stream gauges installed above and below knick zones show dramatic increases in sediment loading above that expected from increases in drainage area, indicating substantial inputs from bluffs and ravines.

  5. Sediment dynamics in the restored reach of the Kissimmee River Basin, Florida: A vast subtropical riparian wetland

    USGS Publications Warehouse

    Schenk, E.R.; Hupp, C.R.; Gellis, A.

    2012-01-01

    Historically, the Kissimmee River Basin consisted of a broad nearly annually inundated riparian wetland similar in character to tropical Southern Hemisphere large rivers. The river was channelized in the 1960s and 1970s, draining the wetland. The river is currently being restored with over 10 000 hectares of wetlands being reconnected to 70 river km of naturalized channel. We monitored riparian wetland sediment dynamics between 2007 and 2010 at 87 sites in the restored reach and 14 sites in an unrestored reference reach. Discharge and sediment transport were measured at the downstream end of the restored reach. There were three flooding events during the study, two as annual flood events and a third as a greater than a 5-year flood event. Restoration has returned periodic flood flow to the riparian wetland and provides a mean sedimentation rate of 11.3 mm per year over the study period in the restored reach compared with 1.7 mm per year in an unrestored channelized reach. Sedimentation from the two annual floods was within the normal range for alluvial Coastal Plain rivers. Sediment deposits consisted of over 20% organics, similar to eastern blackwater rivers. The Kissimmee River is unique in North America for its hybrid alluvial/blackwater nature. Fluvial suspended-sediment measurements for the three flood events indicate that a majority of the sediment (70%) was sand, which is important for natural levee construction. Of the total suspended sediment load for the three flood events, 3%–16% was organic and important in floodplain deposition. Sediment yield is similar to low-gradient rivers draining to the Chesapeake Bay and alluvial rivers of the southeastern USA. Continued monitoring should determine whether observed sediment transport and floodplain deposition rates are normal for this river and determine the relationship between historic vegetation community restoration, hydroperiod restoration, and sedimentation.

  6. Do predator-prey relationships on the river bed affect fine sediment ingress?

    NASA Astrophysics Data System (ADS)

    Mathers, Kate; Rice, Stephen; Wood, Paul

    2016-04-01

    Ecosystem engineers are organisms that alter their physical environment and thereby influence the flow of resources through ecosystems. In rivers, several ecosystem engineers are also important geomorphological agents that modify fluvial sediment dynamics. By altering channel morphology and bed material characteristics, such modifications can affect the availability of habitats for other organisms, with implications for ecosystem health and wider community composition. In this way geomorphological and ecological systems are intimately interconnected. This paper focuses on one element of this intricate abiotic-biotic coupling: the interaction between fine sediment ingress into the river bed and the predator-prey relationships of aquatic organisms living on and in the river bed. Signal crayfish (Pacifastacus leniusculus) have been shown to modify fine sediment fluxes in rivers, but their effect on fine sediment ingress into riverbeds remains unclear. Many macroinvertebrate taxa have adapted avoidance strategies to avoid predation by crayfish, with one example being the freshwater shrimp (Gammarus pulex) which relies on open interstitial spaces within subsurface sediments as a refuge from crayfish predation. Fine sedimentation that fills gravelly frameworks may preclude access to those spaces, therefore leaving freshwater shrimp susceptible to predation. Ex-situ experiments were conducted which sought to examine: i) if freshwater shrimps and signal crayfish, alone and in combination, influenced fine sediment infiltration rates; and ii) whether modifications to substratum composition, specifically the introduction of fine sediment, modified predator-prey interactions. The results demonstrate that crayfish are significant geomorphic agents and that fine sediment ingress rates were significantly enhanced in their presence compared to control conditions or the presence of only freshwater shrimps. The combination of both organisms (i.e. allowing the interaction between

  7. Spatio-temporal variation of water flow and sediment discharge in the Mahanadi River, India

    NASA Astrophysics Data System (ADS)

    Bastia, Fakira; Equeenuddin, Sk. Md.

    2016-09-01

    The transport of sediments by rivers to the oceans represents an important link between the terrestrial and marine ecosystem. Therefore, this work aims to study spatio-temporal variation of the sediment discharge and erosion rate in the Mahanadi river, one of the biggest rivers in India, over past three decades vis-à-vis their controlling factors. To understand the sediment load variation, the trend analysis in the time series data of rainfall, water and sediment discharge of the Mahanadi river were also attempted. The non-parametric Mann-Kendall and Sen's methods were used to determine whether there was a positive or negative trend in the time series data with their statistical significance. The occurrence of abrupt changes was detected using Pettitt test. The trend test result represents that sediment load delivered from the Mahanadi river to the global ocean has decreased sharply at the rate of 0.515 × 106 tons/year between 1980 and 2010. Water discharge and rainfall in the basin showed no significant decreasing trend except at only one tributary. The decline in sediment discharge from the basin to the Bay of Bengal is mainly due to the increase in the number of dams, which has recorded the increase from 70 to 253 during the period of 1980 to 2010. Over the past 30 years the Mahanadi river has discharged about 49.0 ± 20.5 km3 of water and 17.4 ± 12.7 × 106 tons of sediment annually to the Bay of Bengal whereas the mean erosional rate is 265 ± 125 tons/km2/year over the period of 30 years in the basin. Based on the current data (2000-2001 to 2009-2010), sediment flux and water discharge to the ocean are 12 ± 5 × 106 tons/year and 49 ± 16 km3/year respectively; and ranking Mahanadi river second in terms of water discharge and sediment flux to the ocean among the peninsular rivers in India.

  8. Legacy sediment storage in New England river valleys: anthropogenic processes in a postglacial landscape

    NASA Astrophysics Data System (ADS)

    Snyder, N. P.; Johnson, K. M.; Waltner, M.; Hopkins, A. J.; Dow, S.; Ames, E.; Merritts, D. J.; Walter, R. C.; Rahnis, M. A.

    2016-12-01

    Walter and Merritts (2008, and subsequent papers) show that legacy sediment associated with deposition in millponds is a common feature in river valleys of the Mid-Atlantic Piedmont region, with 1-5 m of fine sand and silt overlying Holocene soil and Pleistocene periglacial deposits. For this project, we seek to test the hypothesis that these field relationships are seen in New England, a formerly glaciated region with similar history and intensity of forest clearing and milldam construction during the 17-19th centuries. We study three watersheds, using field observations of bank stratigraphy, radiocarbon dating, and mapping of terraces and floodplains using lidar digital elevation models and other GIS datasets. The 68 km2 South River watershed in western Massachusetts exhibits the most extensive evidence for legacy sediment storage. We visited 17 historic dam sites in the watershed and found field evidence for fine sand and silt legacy sediment storage at 14, up to 2.2 m thick. In the 558 km2 Sheepscot River watershed in coastal Maine, we visited 12 historic dam sites, and found likely legacy sediment at six, up to 2.3 m thick. In the 171 km2 upper Charles River watershed in eastern Massachusetts, we investigated 14 dam sites, and found legacy sediment at two, up to 1.8 m thick. Stratigraphically, we identified the base of legacy sediment from a change in grain size to gravel at most sites, or to Pleistocene marine clay at some Sheepscot River sites. In the Sheepscot River, we observed cut timbers underlying historic sediment at several locations, likely associated with sawmill activities. Only at the Charles River were we able to radiocarbon date the underlying gravel (1281-1391 calibrated CE). At no site did we find a buried Holocene soil, in contrast to the field relations commonly observed in the Mid-Atlantic region. This may indicate that the New England sites have eroded to the pre-historic river bed, not floodplain surfaces. We attribute the variation in

  9. Source identification and ecological impact evaluation of PAHs in urban river sediments: A case study in Taiwan.

    PubMed

    Tu, Y T; Ou, J H; Tsang, D C W; Dong, C D; Chen, C W; Kao, C M

    2018-03-01

    The Love River and Ho-Jin River, two major urban rivers in Kaohsiung City, Taiwan, are moderately to heavily polluted because different types of improperly treated wastewaters are discharged into the rivers. In this study, sediment and river water samples were collected from two rivers to investigate the river water quality and accumulation of polycyclic aromatic hydrocarbons (PAHs) in sediments. The spatial distribution, composition, and source appointment of PAHs of the sediments were examined. The impacts of PAHs on ecological system were assessed using toxic equivalence quotient (TEQ) of potentially carcinogenic PAHs (TEQ carc ) and sediment quality guidelines. The average PAHs concentrations ranged from 2161 ng/g in Love River sediment to 160 ng/g in Ho-Jin River sediment. This could be due to the fact that Love River Basin had much higher population density and pyrolytic activities. High-ring PAHs (4-6 rings) contributed to 59-90% of the total PAHs concentrations. Benzo(a)pyrene (BaP) had the highest toxic equivalence quotient (up to 188 ng TEQ/g). Moreover, the downstream sediments contained higher TEQ of total TPHs than midstream and upstream sediment samples. The PAHs were adsorbed onto the fine particles with high organic content. Results from diagnostic ratio analyses indicate that the PAHs in two urban river sediments might originate from oil/coal combustion, traffic-related emissions, and waste combustion (pyrogenic activities). Future pollution prevention and management should target the various industries, incinerators, and transportation emission in this region to reduce the PAHs pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Prediction of hydrological responds to climate changes in the Upper Yangtze River Basin, China

    NASA Astrophysics Data System (ADS)

    Yang, X.; Ren, L.; Wang, Y.; Zhang, M.; Liu, Y.; Jiang, S.; Yuan, F.

    2017-12-01

    Climate changes have direct effects on hydrological cycle, with the increasing temperature and seasonal shift of precipitation. Therefore, understanding of how climate change may affect the population and water resources and economic development is critical to the water and food security for China. This study aims to evaluate the potential impacts of future climate changes on water resources of the upper basin of Yangtze River (the area controlled by the Yichang hydrological station) using the variable infiltration capacity (VIC) model driven by composite observations (1961-2005) and projections of eight CMIP5 models under scenarios RCP4.5 and RCP8.5 from 2006 to 2099. The raw eight CMIP5 models have been downscaled by the equidistant cumulative distribution functions (EDCDF) statistical downscaling approach from 1961 to 2099. The assessment of the performance of model simulated precipitation and temperature were calculated by comparing to the observations during the historical period (1961-2005). For the same variables, eight CMIP5 models for RCP 4.5 and RCP 8.5 downscaled by EDCDF method were generated during the future period (2006-2099). Overall, the VIC model performed well in monthly streamflow simulation, with the Nash-Sutcliffe coefficient of efficiency (NSCE) 0.92 and 0.97 for calibration and validation, respectively. The annual precipitation is projected to increase by 6.3mm and 8.6mm per decade and the annual temperature will increase by 0.22 °C and 0.53°C per decade (2006-2099) for RCP4.5 and RCP8.5, respectively. In the future period, The total runoff of the study basins would either remain stable or moderately increase by 2.7% and 22.4% per decade, the evapotranspiration increase by 2mm and 13mm per decade, and the soil moisture will reduce by -0.1% and -7.4% per decade under RCP4.5 and RCP8.5, respectively. The changes of model-simulated soil moisture, runoff, and evapotranspiration suggest that there probably be an increasing risk of drought in

  11. Application of dimensionless sediment rating curves to predict suspended-sediment concentrations, bedload, and annual sediment loads for rivers in Minnesota

    USGS Publications Warehouse

    Ellison, Christopher A.; Groten, Joel T.; Lorenz, David L.; Koller, Karl S.

    2016-10-27

    Consistent and reliable sediment data are needed by Federal, State, and local government agencies responsible for monitoring water quality, planning river restoration, quantifying sediment budgets, and evaluating the effectiveness of sediment reduction strategies. Heightened concerns about excessive sediment in rivers and the challenge to reduce costs and eliminate data gaps has guided Federal and State interests in pursuing alternative methods for measuring suspended and bedload sediment. Simple and dependable data collection and estimation techniques are needed to generate hydraulic and water-quality information for areas where data are unavailable or difficult to collect.The U.S. Geological Survey, in cooperation with the Minnesota Pollution Control Agency and the Minnesota Department of Natural Resources, completed a study to evaluate the use of dimensionless sediment rating curves (DSRCs) to accurately predict suspended-sediment concentrations (SSCs), bedload, and annual sediment loads for selected rivers and streams in Minnesota based on data collected during 2007 through 2013. This study included the application of DSRC models developed for a small group of streams located in the San Juan River Basin near Pagosa Springs in southwestern Colorado to rivers in Minnesota. Regionally based DSRC models for Minnesota also were developed and compared to DSRC models from Pagosa Springs, Colorado, to evaluate which model provided more accurate predictions of SSCs and bedload in Minnesota.Multiple measures of goodness-of-fit were developed to assess the effectiveness of DSRC models in predicting SSC and bedload for rivers in Minnesota. More than 600 dimensionless ratio values of SSC, bedload, and streamflow were evaluated and delineated according to Pfankuch stream stability categories of “good/fair” and “poor” to develop four Minnesota-based DSRC models. The basis for Pagosa Springs and Minnesota DSRC model effectiveness was founded on measures of goodness

  12. The fluvial sediment budget of a dammed river (upper Muga, southern Pyrenees)

    NASA Astrophysics Data System (ADS)

    Piqué, G.; Batalla, R. J.; López, R.; Sabater, S.

    2017-09-01

    Many rivers in the Mediterranean region are regulated for urban and agricultural purposes. Reservoir presence and operation results in flow alteration and sediment discontinuity, altering the longitudinal structure of the fluvial system. This study presents a 3-year sediment budget of a highly dammed Mediterranean river (the Muga, southern Pyrenees), which has experienced flow regulation since the 1969 owing to a 61-hm3 reservoir. Flow discharge and suspended sediment concentration were monitored immediately upstream and downstream from the reservoir, whereas bedload transport was estimated by means of bedload formulae and estimated from regional data. Results show how the dam modifies river flow, reducing the magnitude of floods and shortening its duration. At the same time, duration of low flows increases. The downstream flow regime follows reservoir releases that are mostly driven by the irrigation needs in the lowlands. Likewise, suspended sediment and bedload transport are shown to be notably affected by the dam. Sediment transport upstream was mainly associated with floods and was therefore concentrated in short periods of time (i.e., > 90% of the sediment load occurred in < 1% of the time). Downstream from the dam, sediments were transported more constantly (i.e., 90% of the load was carried during 50% of the time). Total sediment load upstream from the dam equalled 23,074 t, while downstream it was < 1000 t. Upstream, sediment load was equally distributed between suspension and bedload (i.e., 10,278 and 12,796 t respectively), whereas suspension dominated sediment transport downstream. More than 95% of the sediments transported from the upstream basins were trapped in the reservoir, a fact that explains the sediment deficit and the river bed armouring observed downstream. Overall, the dam disrupted the natural water and sediment fluxes, generating a highly modified environment downstream. Below the dam, the whole ecosystem shifted to stable conditions owing

  13. Quantitative mineralogy of the Yukon River system: Changes with reach and season, and determining sediment provenance

    USGS Publications Warehouse

    Eberl, D.D.

    2004-01-01

    The mineralogy of Yukon River basin sediment has been studied by quantitative X-ray diffraction. Bed, beach, bar, and suspended sediments were analyzed using the RockJock computer program. The bed sediments were collected from the main stem and from selected tributaries during a single trip down river, from Whitehorse to the Yukon River delta, during the summer of 2001. Beach and bar sediments were collected from the confluence region of the Tanana and Yukon Rivers during the summer of 2003. Suspended sediments were collected at three stations on the Yukon River and from a single station on the Tanana River at various times during the summers of 2001 through 2003, with the most complete set of samples collected during the summer of 2002. Changes in mineralogy of Yukon River bed sediments are related to sediment dilution or concentration effects from tributary sediment and to chemical weathering during transport. Carbonate minerals compose about 2 wt% of the bed sediments near Whitehorse, but increase to 14 wt% with the entry of the White River tributary above Dawson. Thereafter, the proportion of carbonate minerals decreases downstream to values of about 1 to 7 wt% near the mouth of the Yukon River. Quartz and feldspar contents of bed sediments vary greatly with the introduction of Pelly River and White River sediments, but thereafter either increase irregularly (quartz from 20 to about 50 wt%) or remain relatively constant (feldspar at about 35 wt%) with distance downstream. Clay mineral content increases irregularly downstream from about 15 to about 30 wt%. The chief clay mineral is chlorite, followed by illite + smectite; there is little to no kaolinite. The total organic carbon content of the bed sediments remains relatively constant with distance for the main stem (generally 1 to 2 wt%, with one exception), but fluctuates for the tributaries (1 to 6 wt%). The mineralogies of the suspended sediments and sediment flow data were used to calculate the amount of

  14. An approach for modeling sediment budgets in supply-limited rivers

    USGS Publications Warehouse

    Wright, Scott A.; Topping, David J.; Rubin, David M.; Melis, Theodore S.

    2010-01-01

    Reliable predictions of sediment transport and river morphology in response to variations in natural and human-induced drivers are necessary for river engineering and management. Because engineering and management applications may span a wide range of space and time scales, a broad spectrum of modeling approaches has been developed, ranging from suspended-sediment "rating curves" to complex three-dimensional morphodynamic models. Suspended sediment rating curves are an attractive approach for evaluating changes in multi-year sediment budgets resulting from changes in flow regimes because they are simple to implement, computationally efficient, and the empirical parameters can be estimated from quantities that are commonly measured in the field (i.e., suspended sediment concentration and water discharge). However, the standard rating curve approach assumes a unique suspended sediment concentration for a given water discharge. This assumption is not valid in rivers where sediment supply varies enough to cause changes in particle size or changes in areal coverage of sediment on the bed; both of these changes cause variations in suspended sediment concentration for a given water discharge. More complex numerical models of hydraulics and morphodynamics have been developed to address such physical changes of the bed. This additional complexity comes at a cost in terms of computations as well as the type and amount of data required for model setup, calibration, and testing. Moreover, application of the resulting sediment-transport models may require observations of bed-sediment boundary conditions that require extensive (and expensive) observations or, alternatively, require the use of an additional model (subject to its own errors) merely to predict the bed-sediment boundary conditions for use by the transport model. In this paper we present a hybrid approach that combines aspects of the rating curve method and the more complex morphodynamic models. Our primary objective

  15. Inverse modelling of fluvial sediment connectivity identifies characteristics and spatial distribution of sediment sources in a large river network.

    NASA Astrophysics Data System (ADS)

    Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.; Rubin, Z.; Castelletti, A.

    2016-12-01

    Field and laboratory evidence indicates that the spatial distribution of transport in both alluvial and bedrock rivers is an adaptation to sediment supply. Sediment supply, in turn, depends on spatial distribution and properties (e.g., grain sizes and supply rates) of individual sediment sources. Analyzing the distribution of transport capacity in a river network could hence clarify the spatial distribution and properties of sediment sources. Yet, challenges include a) identifying magnitude and spatial distribution of transport capacity for each of multiple grain sizes being simultaneously transported, and b) estimating source grain sizes and supply rates, both at network scales. Herein, we approach the problem of identifying the spatial distribution of sediment sources and the resulting network sediment fluxes in a major, poorly monitored tributary (80,000 km2) of the Mekong. Therefore, we apply the CASCADE modeling framework (Schmitt et al. (2016)). CASCADE calculates transport capacities and sediment fluxes for multiple grainsizes on the network scale based on remotely-sensed morphology and modelled hydrology. CASCADE is run in an inverse Monte Carlo approach for 7500 random initializations of source grain sizes. In all runs, supply of each source is inferred from the minimum downstream transport capacity for the source grain size. Results for each realization are compared to sparse available sedimentary records. Only 1 % of initializations reproduced the sedimentary record. Results for these realizations revealed a spatial pattern in source supply rates, grain sizes, and network sediment fluxes that correlated well with map-derived patterns in lithology and river-morphology. Hence, we propose that observable river hydro-morphology contains information on upstream source properties that can be back-calculated using an inverse modeling approach. Such an approach could be coupled to more detailed models of hillslope processes in future to derive integrated models

  16. Lead contamination in sediments in the past 20 years: A challenge for China.

    PubMed

    Han, Lanfang; Gao, Bo; Hao, Hong; Zhou, Huaidong; Lu, Jin; Sun, Ke

    2018-06-04

    Lead (Pb) contamination was recognized in China early in the 1920s. However, the response of Pb contamination in sediments to China's rapid economic and social development remains uncertain to date. We conducted a literature review of over 1000 articles from 1990 to 2016 and the first national-scale survey of Pb contamination in China. A literature review showed that available research in China focused on the economically highly developed river basins, including the Pearl River Basin (PRB), Yellow River Basin (YRB), and Yangtze River Basin (YtRB), whereas those in the less developed southeastern, southwestern, and northwestern river basins received limited attention. The YtRB and YRB had higher Pb contamination levels than other basins, corresponding with the rapid economic development in those regions. However, the less economically developed river basins in the southeastern and northwestern regions of China were also contaminated by Pb. Analysis of 146 studies in the PRB, YRB, and YtRB revealed that Pb contamination in PRB sediments showed a tendency to improve over time, whereas that from the YtRB exhibited a tendency to worsen. For the YRB, there was a slight increase from 1990 to 2006 and a decreasing trend from 2007 to 2014. The overall temporal trend in Pb levels in PRB and YRB sediments corresponded with that of the Pb discharged in wastewater in the surrounding cities, indicating that industrial wastewater discharge was possibly one of the main anthropogenic sources of Pb in those sediments. For the YtRB, the increasing trend in Pb concentrations was related to the considerably high atmospheric Pb emissions in the surrounding cities and its geographical characteristics. These findings suggested that China should develop systematic and consistent approaches for monitoring Pb contents in sediments and adopt a regional economic development policy focusing on pollution prevention. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Mutagenicity of drinking water sampled from the Yangtze River and Hanshui River (Wuhan section) and correlations with water quality parameters.

    PubMed

    Lv, Xuemin; Lu, Yi; Yang, Xiaoming; Dong, Xiaorong; Ma, Kunpeng; Xiao, Sanhua; Wang, Yazhou; Tang, Fei

    2015-03-31

    A total of 54 water samples were collected during three different hydrologic periods (level period, wet period, and dry period) from Plant A and Plant B (a source for Yangtze River and Hanshui River water, respectively), and several water parameters, such as chemical oxygen demand (COD), turbidity, and total organic carbon (TOC), were simultaneously analyzed. The mutagenicity of the water samples was evaluated using the Ames test with Salmonella typhimurium strains TA98 and TA100. According to the results, the organic compounds in the water were largely frame-shift mutagens, as positive results were found for most of the tests using TA98. All of the finished water samples exhibited stronger mutagenicity than the relative raw and distribution water samples, with water samples collected from Plant B presenting stronger mutagenic strength than those from Plant A. The finished water samples from Plant A displayed a seasonal-dependent variation. Water parameters including COD (r = 0.599, P = 0.009), TOC (r = 0.681, P = 0.02), UV254 (r = 0.711, P = 0.001), and total nitrogen (r = 0.570, P = 0.014) exhibited good correlations with mutagenicity (TA98), at 2.0 L/plate, which bolsters the argument of the importance of using mutagenicity as a new parameter to assess the quality of drinking water.

  18. Mutagenicity of drinking water sampled from the Yangtze River and Hanshui River (Wuhan section) and correlations with water quality parameters

    PubMed Central

    Lv, Xuemin; Lu, Yi; Yang, Xiaoming; Dong, Xiaorong; Ma, Kunpeng; Xiao, Sanhua; Wang, Yazhou; Tang, Fei

    2015-01-01

    A total of 54 water samples were collected during three different hydrologic periods (level period, wet period, and dry period) from Plant A and Plant B (a source for Yangtze River and Hanshui River water, respectively), and several water parameters, such as chemical oxygen demand (COD), turbidity, and total organic carbon (TOC), were simultaneously analyzed. The mutagenicity of the water samples was evaluated using the Ames test with Salmonella typhimurium strains TA98 and TA100. According to the results, the organic compounds in the water were largely frame-shift mutagens, as positive results were found for most of the tests using TA98. All of the finished water samples exhibited stronger mutagenicity than the relative raw and distribution water samples, with water samples collected from Plant B presenting stronger mutagenic strength than those from Plant A. The finished water samples from Plant A displayed a seasonal-dependent variation. Water parameters including COD (r = 0.599, P = 0.009), TOC (r = 0.681, P = 0.02), UV254 (r = 0.711, P = 0.001), and total nitrogen (r = 0.570, P = 0.014) exhibited good correlations with mutagenicity (TA98), at 2.0 L/plate, which bolsters the argument of the importance of using mutagenicity as a new parameter to assess the quality of drinking water. PMID:25825837

  19. Sediment transport in the lower Snake and Clearwater River Basins, Idaho and Washington, 2008–11

    USGS Publications Warehouse

    Clark, Gregory M.; Fosness, Ryan L.; Wood, Molly S.

    2013-01-01

    Sedimentation is an ongoing maintenance problem for reservoirs, limiting reservoir storage capacity and navigation. Because Lower Granite Reservoir in Washington is the most upstream of the four U.S. Army Corps of Engineers reservoirs on the lower Snake River, it receives and retains the largest amount of sediment. In 2008, in cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey began a study to quantify sediment transport to Lower Granite Reservoir. Samples of suspended sediment and bedload were collected from streamgaging stations on the Snake River near Anatone, Washington, and the Clearwater River at Spalding, Idaho. Both streamgages were equipped with an acoustic Doppler velocity meter to evaluate the efficacy of acoustic backscatter for estimating suspended-sediment concentrations and transport. In 2009, sediment sampling was extended to 10 additional locations in tributary watersheds to help identify the dominant source areas for sediment delivery to Lower Granite Reservoir. Suspended-sediment samples were collected 9–15 times per year at each location to encompass a range of streamflow conditions and to capture significant hydrologic events such as peak snowmelt runoff and rain-on-snow. Bedload samples were collected at a subset of stations where the stream conditions were conducive for sampling, and when streamflow was sufficiently high for bedload transport. At most sampling locations, the concentration of suspended sediment varied by 3–5 orders of magnitude with concentrations directly correlated to streamflow. The largest median concentrations of suspended sediment (100 and 94 mg/L) were in samples collected from stations on the Palouse River at Hooper, Washington, and the Salmon River at White Bird, Idaho, respectively. The smallest median concentrations were in samples collected from the Selway River near Lowell, Idaho (11 mg/L), the Lochsa River near Lowell, Idaho (11 mg/L), the Clearwater River at Orofino, Idaho (13 mg

  20. [Effects of Long-term Implementation of the Flow-Sediment Regulation Scheme on Grain and Clay Compositions of Inshore Sediments in the Yellow River Estuary].

    PubMed

    Wang, Miao-miao; Sun, Zhi-gao; Lu, Xiao-ning; Wang, Wei; Wang, Chuan-yuan

    2015-04-01

    Based on the laser particle size and X-ray diffraction (XRD) analysis, 28 sediment samples collected from the inshore region of the Yellow River estuary in October 2013 were determined to discuss the influence of long-term implementation of the flow-sediment regulation scheme (FSRS, initiated in 2002) on the distributions of grain size and clay components (smectite, illite, kaolinite and chlorite) in sediments. Results showed that, after the FSRS was implemented for more than 10 years, although the proportion of sand in inshore sediments of the Yellow River estuary was higher (average value, 23.5%) than those in sediments of the Bohai Sea and the Yellow River, silt was predominated (average value, 59.1%) and clay components were relatively low (average value, 17.4%). The clay components in sediments of the inshore region in the Yellow River estuary were close with those in the Yellow River. The situation was greatly changed due to the implementation of FSRS since 2002, and the clay components were in the order of illite > smectite > chlorite > kaolinite. This study also indicated that, compared to large-scale investigation in Bohai Sea, the local study on the inshore region of the Yellow River estuary was more favorable for revealing the effects of long-term implementation of the FSRS on sedimentation environment of the Yellow River estuary.

  1. Distribution and pollution, toxicity and risk assessment of heavy metals in sediments from urban and rural rivers of the Pearl River delta in southern China.

    PubMed

    Xiao, Rong; Bai, Junhong; Huang, Laibin; Zhang, Honggang; Cui, Baoshan; Liu, Xinhui

    2013-12-01

    Sediments were collected from the upper, middle and lower reaches of both urban and rural rivers in a typical urbanization zone of the Pearl River delta. Six heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) were analyzed in all sediment samples, and their spatial distribution, pollution levels, toxicity and ecological risk levels were evaluated to compare the characteristics of heavy metal pollution between the two rivers. Our results indicated that the total contents of the six metals in all samples exceeded the soil background value in Guangdong province. Based on the soil quality thresholds of the China SEPA, Cd levels at all sites exceeded class III criteria, and other metals exhibited pollution levels exceeding class II or III criteria at both river sites. According to the sediment quality guidelines of the US EPA, all samples were moderately to heavily polluted by Cr, Cu, Ni, Pb and Zn. Compared to rural river sites, urban river sites exhibited heavier pollution. Almost all sediment samples from both rivers exhibited moderate to serious toxicity to the environment, with higher contributions from Cr and Ni. A "hot area" of heavy metal pollution being observed in the upper and middle reaches of the urban river area, whereas a "hot spot" was identified at a specific site in the middle reach of the rural river. Contrary metal distribution patterns were also observed along typical sediment profiles from urban and rural rivers. However, the potential ecological risk indices of rural river sediments in this study were equal to those of urban river sediments, implying that the ecological health issues of the rivers in the undeveloped rural area should also be addressed. Sediment organic matter and grain size might be important factors influencing the distribution profiles of these heavy metals.

  2. Sediment characteristics in the San Antonio River Basin downstream from San Antonio, Texas, and at a site on the Guadalupe River downstream from the San Antonio River Basin, 1966-2013

    USGS Publications Warehouse

    Crow, Cassi L.; Banta, J. Ryan; Opsahl, Stephen P.

    2014-01-01

    San Antonio and surrounding municipalities in Bexar County, Texas, are in a rapidly urbanizing region in the San Antonio River Basin. The U.S. Geological Survey, in cooperation with the San Antonio River Authority and the Texas Water Development Board, compiled historical sediment data collected between 1996 and 2004 and collected suspended-sediment and bedload samples over a range of hydrologic conditions in the San Antonio River Basin downstream from San Antonio, Tex., and at a site on the Guadalupe River downstream from the San Antonio River Basin during 2011–13. In the suspended-sediment samples collected during 2011–13, an average of about 94 percent of the particles was less than 0.0625 millimeter (silt and clay sized particles); the 50 samples for which a complete sediment-size analysis was performed indicated that an average of about 69 percent of the particles was less than 0.002 millimeter. In the bedload samples collected during 2011–13, an average of 51 percent of sediment particles was sand-sized particles in the 0.25–0.5 millimeter-size range. In general, the loads calculated from the samples indicated that bedload typically composed less than 1 percent of the total sediment load. A least-squares log-linear regression was developed between suspended-sediment concentration and instantaneous streamflow and was used to estimate daily mean suspended-sediment loads based on daily mean streamflow. The daily mean suspended-sediment loads computed for each of the sites indicated that during 2011–12, the majority of the suspended-sediment loads originated upstream from the streamflow-gaging station on the San Antonio River near Elmendorf, Tex. A linear regression relation was developed between turbidity and suspended-sediment concentration data collected at the San Antonio River near Elmendorf site because the high-resolution data can facilitate understanding of the complex suspended-sediment dynamics over time and throughout the river basin.

  3. Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China.

    PubMed

    Zhang, Guangliang; Bai, Junhong; Xiao, Rong; Zhao, Qingqing; Jia, Jia; Cui, Baoshan; Liu, Xinhui

    2017-10-01

    Rapid urbanization and reclamation processes in coastal areas have resulted in serious pollution to the aquatic environment. Less is known on the geochemical fractions and ecological risks in river sediment under various human activities pressures, which is essential for addressing the connections between heavy metal pollution and anthropogenic influences. River sediments were collected from different landscapes (i.e., urban, rural and reclamation areas) to investigate the impacts of urbanization and reclamation on the metallic pollution levels and ecological risks in the Pear River Estuary of China. Results showed that Cd, Zn and Cu with high total contents and geoaccumulation index (I geo ) were the primary metals in the Peal River sediments. Generally, urban river sediments, especially the surface sediment layer (0-10 cm), exhibited higher metallic pollution levels. As for geochemical fractions, reducible and residual fractions were the dominant forms for six determined metals. And the percentage of heavy metals bound to Fe-Mn oxides decreased with increasing soil depth but the reverse tendency was observed for residual fractions. Compared with rural river sediments, heavy metals were highly associated with the exchangeable and carbonate fractions in both urban and reclamation-affected river sediments, suggesting that anthropogenic activities mainly increased the active forms of metals. Approximately 80% of Cd existed in the non-residual fraction and posed medium to high ecological risk according to the risk assessment code (RAC) values. The redundancy analysis (RDA) revealed that both urbanization and reclamation processes would cause similar metallic characteristics, and sediment organic matter (SOC) might be the prominent influencing factor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Anthropogenic sediment retention: major global impact from registered river impoundments

    NASA Astrophysics Data System (ADS)

    Vörösmarty, Charles J.; Meybeck, Michel; Fekete, Balázs; Sharma, Keshav; Green, Pamela; Syvitski, James P. M.

    2003-10-01

    In this paper, we develop and apply a framework for estimating the potential global-scale impact of reservoir construction on riverine sediment transport to the ocean. Using this framework, we discern a large, global-scale, and growing impact from anthropogenic impoundment. Our study links information on 633 of the world's largest reservoirs (LRs) (≥0.5 km 3 maximum storage capacity) to the geography of continental discharge and uses statistical inferences to assess the potential impact of the remaining >44,000 smaller reservoirs (SRs). Information on the LRs was linked to a digitized river network at 30' (latitude×longitude) spatial resolution. A residence time change (Δ τR) for otherwise free-flowing river water is determined locally for each reservoir and used with a sediment retention function to predict the proportion of incident sediment flux trapped within each impoundment. The discharge-weighted mean Δ τR for individual impoundments distributed across the globe is 0.21 years for LRs and 0.011 years for SRs. More than 40% of global river discharge is intercepted locally by the LRs analyzed here, and a significant proportion (≈70%) of this discharge maintains a theoretical sediment trapping efficiency in excess of 50%. Half of all discharge entering LRs shows a local sediment trapping efficiency of 80% or more. Analysis of the recent history of river impoundment reveals that between 1950 and 1968, there was tripling from 5% to 15% in global LR sediment trapping, another doubling to 30% by 1985, and stabilization thereafter. Several large basins such as the Colorado and Nile show nearly complete trapping due to large reservoir construction and flow diversion. From the standpoint of sediment retention rates, the most heavily regulated drainage basins reside in Europe. North America, Africa, and Australia/Oceania are also strongly affected by LRs. Globally, greater than 50% of basin-scale sediment flux in regulated basins is potentially trapped in

  5. U-Th-Ra variations in Himalayan river sediments (Gandak river, India): Weathering fractionation and/or grain-size sorting?

    NASA Astrophysics Data System (ADS)

    Bosia, Clio; Chabaux, François; Pelt, Eric; France-Lanord, Christian; Morin, Guillaume; Lavé, Jérôme; Stille, Peter

    2016-11-01

    Understanding the origin of U-Th-Ra variations in the Ganga river sediments is a prerequisite for correctly using U-series nuclides to constrain the sediment transport times in Himalayan rivers. For this purpose, U, Th, and Ra concentrations, along with 238U-234U-230Th-226Ra radioactive disequilibria, were analyzed in bank, bedload and suspended sediments from the Gandak river, one of the main tributaries of the Ganga river. The data confirm that U and Th budgets of the Himalayan sediments are significantly influenced by minor resistant minerals, such as zircon, garnet and Ti-bearing minerals, the dissolution of which required the use of a high-pressure acid digestion process. Most importantly, the results indicate that the variations in (238U/232Th) and (230Th/232Th) activity ratios and 238U-234U-230Th-226Ra disequilibria in sediments along the river alluvial plain mainly reflect modifications in the mineralogical and grain-size compositions rather than the degree of weathering during transport. The (238U/232Th) and (230Th/232Th) activity ratios in the bank and bed sediments are related to variations in the minor primary minerals strongly enriched in U and Th (i.e., zircon, REE-bearing minerals and Ti-bearing minerals), whereas the activity ratios in the suspended load are related to variations in the proportions of clay, Fe-oxyhydroxides and the silt-sand fraction, which contains U- and Th-bearing minor minerals. The data also indicate that 238U-234U-230Th-226Ra disequilibria are strongly influenced by secondary mineral phases: the 230Th budget is likely mainly controlled by Fe-oxyhydroxides, and the 226Ra budget is likely mainly controlled by clay minerals. Therefore, the variations in the 238U-234U-230Th-232Th system in the sediments of the Gandak river cannot simply be interpreted as the result of fractionation due to chemical transformation of the bulk sediment during its transport within the alluvial plain and/or the result of radioactive decay. Consequently

  6. Sediment transport and deposition on a river-dominated tidal flat: An idealized model study

    USGS Publications Warehouse

    Sherwood, Christopher R.; Chen, Shih-Nan; Geyer, W. Rockwell; Ralston, David K.

    2010-01-01

    A 3-D hydrodynamic model is used to investigate how different size classes of river-derived sediment are transported, exported and trapped on an idealized, river-dominated tidal flat. The model is composed of a river channel flanked by sloping tidal flats, a configuration motivated by the intertidal region of the Skagit River mouth in Washington State, United States. It is forced by mixed tides and a pulse of freshwater and sediment with various settling velocities. In this system, the river not only influences stratification but also contributes a significant cross-shore transport. As a result, the bottom stress is strongly ebb-dominated in the channel because of the seaward advance of strong river flow as the tidal flats drain during ebbs. Sediment deposition patterns and mass budgets are sensitive to settling velocity. The lateral sediment spreading scales with an advective distance (settling time multiplied by lateral flow speed), thereby confining the fast settling sediment classes in the channel. Residual sediment transport is landward on the flats, because of settling lag, but is strongly seaward in the channel. The seaward transport mainly occurs during big ebbs and is controlled by a length scale ratio Ld/XWL, where Ld is a cross-shore advective distance (settling time multiplied by river outlet velocity), and XWL is the immersed cross-shore length of the intertidal zone. Sediment trapping requires Ld/XWL < 1, leading to more trapping for the faster settling classes. Sensitivity studies show that including stratification and reducing tidal range both favor sediment trapping, whereas varying channel geometries and asymmetry of tides has relatively small impacts. Implications of the modeling results on the south Skagit intertidal region are discussed.

  7. A comprehensive sediment dynamics study of a major mud belt system on the inner shelf along an energetic coast.

    PubMed

    Liu, James T; Hsu, Ray T; Yang, Rick J; Wang, Ya Ping; Wu, Hui; Du, Xiaoqin; Li, Anchun; Chien, Steven C; Lee, Jay; Yang, Shouye; Zhu, Jianrong; Su, Chih-Chieh; Chang, Yi; Huh, Chih-An

    2018-03-09

    Globally mud areas on continental shelves are conduits for the dispersal of fluvial-sourced sediment. We address fundamental issues in sediment dynamics focusing on how mud is retained on the seabed on shallow inner shelves and what are the sources of mud. Through a process-based comprehensive study that integrates dynamics, provenance, and sedimentology, here we show that the key mechanism to keep mud on the seabed is the water-column stratification that forms a dynamic barrier in the vertical that restricts the upward mixing of suspended sediment. We studied the 1000 km-long mud belt that extends from the mouth of the Changjiang (Yangtze) River along the coast of Zhejiang and Fujian Provinces of China and ends on the west coast of Taiwan. This mud belt system is dynamically attached to the fluvial sources, of which the Changjiang River is the primary source. Winter is the constructive phase when active deposition takes place of fine-grained sediment carried mainly by the Changjiang plume driven by Zhe-Min Coastal Currents southwestward along the coast.

  8. Comparative study of carbonic anhydrase activity in waters among different geological eco-environments of Yangtze River basin and its ecological significance.

    PubMed

    Nzung'a, Sila Onesmus; Pan, Weizhi; Shen, Taiming; Li, Wei; Qin, Xiaoqun; Wang, Chenwei; Zhang, Liankai; Yu, Longjiang

    2018-04-01

    This study provides the presence of carbonic anhydrase (CA) activity in waters of the Yangtze River basin, China, as well as the correlation of CA activity with HCO 3 - concentration and CO 2 sink flux. Different degrees of CA activity could be detected in almost all of the water samples from different geological eco-environments in all four seasons. The CA activity of water samples from karst areas was significantly higher than from non-karst areas (PP3 - concentration (r=0.672, P2 sink flux (r=0.602, P=0.076) in karst areas. This suggests that CA in waters might have a promoting effect on carbon sinks for atmospheric CO 2 in karst river basins. In conditions of similar geological type, higher CA activity was generally detected in water samples taken from areas that exhibited better eco-environments, implying that the CA activity index of waters could be used as an indicator for monitoring ecological environments and protection of river basins. These findings suggest that the role of CA in waters in the karst carbon sink potential of river basins is worthy of further in-depth studies. Copyright © 2017. Published by Elsevier B.V.

  9. PBDD/Fs in surface sediments from the East River, China.

    PubMed

    Ren, M; Peng, P A; Chen, D Y; Chen, P; Zhou, L

    2009-09-01

    The contamination status of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) was preliminarily investigated in surface sediments from the East River. The concentrations of eight 2,3,7,8-substituted tetra- to hexa- PBDD/Fs were found to be in the range of 0.32-110 (mean 13) pg g(-1) and the corresponding TEQ concentrations were 0.087-18 (mean 2) pg I-TEQ g(-1). All sediments were characterized by the dominant PBDFs. 2,3,4,7,8-PeBDF was the most important TEQ contributor, accounting for 47%-77% of the total I-TEQ of PBDD/Fs. PCDD/Fs contributed dominantly to the total TEQs of PCDD/Fs, PBDD/Fs and dioxin-like PCBs in most samples except of the sediment from the Shima River. The higher PBDD/F concentrations in the Shima River may be attributed to the use of BFRs in the electrical and electronics industries, which posed a potential risk of dioxins on ecological system.

  10. Sorption of selected pharmaceuticals by a river sediment: role and mechanisms of sediment or Aldrich humic substances.

    PubMed

    Le Guet, Thibaut; Hsini, Ilham; Labanowski, Jérôme; Mondamert, Leslie

    2018-05-01

    Sorption of pharmaceuticals onto sediments is frequently related to organic matter content. Thus, the present work aimed to compare the effect of humic substances (HS) extracted from a river sediment versus Aldrich (HS) on the sorption of selected pharmaceuticals onto this river sediment. The results exhibited no "unique" effect of the presence of HS from the same origin. Thus, the sediment HS increased the sorption of sulfamethoxazole (SMX), diclofenac (DCF), and trimethoprim (TMP), but reduced the sorption of atenolol (ATN). The presence of Aldrich HS increased the sorption of TMP and ATN and decreased the sorption of SMX and DCF. Fluorescence quenching measurements revealed that these effects cannot be explained only by the presence of pharmaceutical HS associations. The use of several sorption models suggested that the sorption of SMX, DCF, and ATN involves multilayer mechanisms. Furthermore, it was pointed out that the presence of HS does not change the sorption mechanisms although it was observed interaction between HS and the sediment. Indeed, the sediment HS sorbs onto the sediment whereas the Aldrich HS tends to mobilize organic compounds from the sediment to the solution.

  11. Sediment load and distribution in the lower Skagit River, Skagit County, Washington

    USGS Publications Warehouse

    Curran, Christopher A.; Grossman, Eric E.; Mastin, Mark C.; Huffman, Raegan L.

    2016-08-17

    The Skagit River delivers about 40 percent of all fluvial sediment that enters Puget Sound, influencing flood hazards in the Skagit lowlands, critically important estuarine habitat in the delta, and some of the most diverse and productive agriculture in western Washington. A total of 175 measurements of suspended-sediment load, made routinely from 1974 to 1993, and sporadically from 2006 to 2009, were used to develop and evaluate regression models of sediment transport (also known as “sediment-rating curves”) for estimating suspended-sediment load as a function of river discharge. Using a flow-range model and 75 years of daily discharge record (acquired from 1941 to 2015), the mean annual suspended-sediment load for the Skagit River near Mount Vernon, Washington, was estimated to be 2.5 teragrams (Tg, where 1 Tg = 1 million metric tons). The seasonal model indicates that 74 percent of the total annual suspended‑sediment load is delivered to Puget Sound during the winter storm season (from October through March), but also indicates that discharge is a poor surrogate for suspended‑sediment concentration (SSC) during the summer low-flow season. Sediment-rating curves developed for different time periods revealed that the regression model slope of the SSC-discharge relation increased 66 percent between the periods of 1974–76 and 2006–09 when suspended-sediment samples were collected, implying that changes in sediment supply, channel hydraulics, and (or) basin hydrology occurred between the two time intervals. In the relatively wet water year 2007 (October 1, 2006, through September 30, 2007), an automated sampler was used to collect daily samples of suspended sediment from which an annual load of 4.5 Tg was calculated, dominated by a single large flood event that contributed 1.8 Tg, or 40 percent of the total. In comparison, the annual load calculated for water year 2007 using the preferred flow-range model was 4.8 Tg (+6.7 percent), in close agreement with

  12. Upper Washita River experimental watersheds: Sediment Database

    USDA-ARS?s Scientific Manuscript database

    Improving the scientific understanding of the effectiveness of watershed conservation practices and floodwater-retardation structures to control floods and soil erosion is one of the primary objectives for sediment studies in the upper Washita River Experimental Watersheds. This paper summarizes se...

  13. River turbidity and sediment loads during dam removal

    USGS Publications Warehouse

    Warrick, Jonathan A.; Duda, Jeffrey J.; Magirl, Christopher S.; Curran, Chris A.

    2012-01-01

    Dam decommissioning has become an important means for removing unsafe or obsolete dams and for restoring natural fluvial processes, including discharge regimes, sediment transport, and ecosystem connectivity [Doyle et al., 2003]. The largest dam-removal project in history began in September 2011 on the Elwha River of Washington State (Figure 1a). The project, which aims to restore the river ecosystem and increase imperiled salmon populations that once thrived there, provides a unique opportunity to better understand the implications of large-scale river restoration.

  14. Integrated assessment of contaminated sediments in the lower Fox River and Green Bay, Wisconsin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ankley, G.T.; Lodge, K.; Call, D.J.

    Samples of sediment and biota were collected from sites in the lower Fox River and southern Green Bay to determine existing or potential impacts of sediment-associated contaminants on different ecosystem components of this Great Lakes area of concern. Evaluation of benthos revealed a relatively depauperate community, particularly at the lower Fox River sites. Sediment pore water and bulk sediments from several lower Fox River sites were toxic to a number of test species including Pimephales promelas, Ceriodaphnia dubia, Hexagenia limbata, Selenastrum capricornutum, and Photobacterium phosphorum. An important component of the observed toxicity appeared to be due to ammonia. Evaluation ofmore » three bullhead (Ictalurus) species from the lower Fox River revealed an absence of preneoplastic or neoplastic liver lesions, and the Salmonella typhimurium bioassay indicated relatively little mutagenicity in sediment extracts. Apparent adverse reproductive effects were noted in two species of birds nesting along the lower Fox River and on a confined disposal facility for sediments near the mouth of the river, and there were measurable concentrations of potentially toxic 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), and planar polychlorinated biphenyls (PCBs) both in the birds and in sediments from several of the study sites. Based on toxic equivalency factors and the results of an in vitro bioassay with H4IIE rat hepatoma cells, it appeared that the majority of potential toxicity of the PCB/PCDF/PCDD mixture in biota from the lower Fox River/Green Bay system was due to the planar PCBs. The results of these studies are discussed in terms of an integrated assessment focused on providing data for remedial action planning.« less

  15. Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China.

    PubMed

    Zheng, Na; Wang, Qichao; Liang, Zhongzhu; Zheng, Dongmei

    2008-07-01

    Wuli River, Cishan River, and Lianshan River are three freshwater rivers flowing through Huludao City, in a region of northeast China strongly affected by industrialization. Contamination assessment has never been conducted in a comprehensive way. For the first time, the contamination of three rivers impacted by different sources in the same city was compared. This work investigated the distribution and sources of Hg, Pb, Cd, Zn and Cu in the surface sediments of Wuli River, Cishan River, and Lianshan River, and assessed heavy metal toxicity risk with the application of two different sets of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM; and threshold effect level/probable effect level, TEL/PEL). Furthermore, this study used a toxic unit approach to compare and gauge the individual and combined metal contamination for Hg, Pb, Cd, Zn and Cu. Results showed that Hg contamination in the sediments of Wuli River originated from previous sediment contamination of the chlor-alkali producing industry, and Pb, Cd, Zn and Cu contamination was mainly derived from atmospheric deposition and unknown small pollution sources. Heavy metal contamination to Cishan River sediments was mainly derived from Huludao Zinc Plant, while atmospheric deposition, sewage wastewater and unknown small pollution were the primary sources for Lianshan River. The potential acute toxicity in sediment of Wuli River may be primarily due to Hg contamination. Hg is the major toxicity contributor, accounting for 53.3-93.2%, 7.9-54.9% to total toxicity in Wuli River and Lianshan River, respectively, followed by Cd. In Cishan River, Cd is the major sediment toxicity contributor, however, accounting for 63.2-66.9% of total toxicity.

  16. Suspended-Sediment Budget for the North Santiam River Basin, Oregon, Water Years 2005-08

    USGS Publications Warehouse

    Bragg, Heather M.; Uhrich, Mark A.

    2010-01-01

    Significant Findings An analysis of sediment transport in the North Santiam River basin during water years 2005-08 indicated that: Two-thirds of sediment input to Detroit Lake originated in the upper North Santiam River subbasin. Two-thirds of the sediment transported past Geren Island originated in the Little North Santiam River subbasin. The highest annual suspended-sediment load at any of the monitoring stations was the result of a debris flow on November 6, 2006, on Mount Jefferson. About 86 percent of the total sediment input to Detroit Lake was trapped in the lake, whereas 14 percent was transported farther downstream. More than 80 percent of the sediment transport in the basin was in November, December, and January. The variance in the annual suspended-sediment loads was better explained by the magnitude of the annual peak streamflow than by the annual mean streamflow.

  17. Temporal variability in the suspended sediment load and streamflow of the Doce River

    NASA Astrophysics Data System (ADS)

    Oliveira, Kyssyanne Samihra Santos; Quaresma, Valéria da Silva

    2017-10-01

    Long-term records of streamflow and suspended sediment load provide a better understanding of the evolution of a river mouth, and its adjacent waters and a support for mitigation programs associated with extreme events and engineering projects. The aim of this study is to investigate the temporal variability in the suspended sediment load and streamflow of the Doce River to the Atlantic Ocean, between 1990 and 2013. Streamflow and suspended sediment load were analyzed at the daily, seasonal, and interannual scales. The results showed that at the daily scale, Doce River flood events are due to high intensity and short duration rainfalls, which means that there is a flashy response to rainfall. At the monthly and season scales, approximately 94% of the suspended sediment supply occurs during the wet season. Extreme hydrological events are important for the interannual scale for Doce River sediment supply to the Atlantic Ocean. The results suggest that a summation of anthropogenic interferences (deforestation, urbanization and soil degradation) led to an increase of extreme hydrological events. The findings of this study shows the importance of understanding the typical behavior of the Doce River, allowing the detection of extreme hydrological conditions, its causes and possible environmental and social consequences.

  18. Spatial-temporal evolution of the eastern Nanhui mudflat in the Changjiang (Yangtze River) Estuary under intensified human activities

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Zhang, Yexin; Zhu, Longhai; Chi, Wanqing; Yang, Zuosheng; Wang, Biying; Lv, Kai; Wang, Hongmin; Lu, Zhiyong

    2018-05-01

    The eastern Nanhui mudflat (ENM), located in the southern flank of the Changjiang (Yangtze River) Estuary, plays a key role in storm protection, defense against sea level rise, and land resource provision for Shanghai, China's largest city. Recently, there has been a great deal of concern for its evolutionary fate, since a drastic reduction in the Changjiang sediment discharge rate and an increased number of estuarine enclosures might negatively impact the environmental protection functions that this mudflat provides. In this paper, a novel method, which employed the envelope lines of instantaneous shoreline positions identified in 436 Landsat satellite images from 1975 to 2016, was used to demonstrate the evolution of the mudflat high and low tide lines in a detailed, quantitative way. Our study reveals the southeast progradation rate of the mudflat doubled from 24 m/yr in 713-1974 CE to 49 m/yr in 1975-1995 CE, probably due to the influence of the estuarine turbidity maximum zone shifting to the ENM. Under the ample sediment input directly from the turbidity maximum zone, the spatial evolution of the ENM was governed predominantly by the changing morphology of the South Passage due to the quick progradation of the ENM, which narrowed the South Passage by pushing the South Passage Trumpet southeastward. Therefore, the ENM experienced rapid accretion during 1975-2016. The accretion rate of the high tide line increased 2-13 times due to vegetation and intertidal enclosures, resulting in the rapid reduction of the intertidal area. The area decreased from 97 km2 in 1976 to 66 km2 in 1995, mainly due to vegetation, and continued decreasing to 12 km2 in 2006 due to the intertidal enclosures. In contrast, the accretion rate of the low tide line increased by 25 times due to subtidal enclosures and caused the intertidal area increased to 78 km2 in 2015. The almost disappeared intertidal zones in 2006 reappeared. However, this reappearance might be a temporary transitional

  19. Effective Discharge and Annual Sediment Yield on Brazos River

    NASA Astrophysics Data System (ADS)

    Rouhnia, M.; Salehi, M.; Keyvani, A.; Ma, F.; Strom, K. B.; Raphelt, N.

    2012-12-01

    Geometry of an alluvial river alters dynamically over the time due to the sediment mobilization on the banks and bottom of the river channel in various flow rates. Many researchers tried to define a single representative discharge for these morphological processes such as "bank-full discharge", "effective discharge" and "channel forming discharge". Effective discharge is the flow rate in which, the most sediment load is being carried by water, in a long term period. This project is aimed to develop effective discharge estimates for six gaging stations along the Brazos River from Waco, TX to Rosharon, TX. The project was performed with cooperation of the In-stream Flow Team of the Texas Water Development Board (TWDB). Project objectives are listed as: 1) developing "Flow Duration Curves" for six stations based on mean-daily discharge by downloading the required, additional data from U.S Geological Survey website, 2) developing "Rating Curves" for six gaging stations after sampling and field measurements in three different flow conditions, 3) developing a smooth shaped "Sediment Yield Histogram" with a well distinguished peak as effective discharge. The effective discharge was calculated using two methods of manually and automatic bin selection. The automatic method is based on kernel density approximation. Cross-sectional geometry measurements, particle size distributions and water field samples were processed in the laboratory to obtain the suspended sediment concentration associated with flow rate. Rating curves showed acceptable trends, as the greater flow rate we experienced, the more sediment were carried by water.

  20. Climate and land-use changes affecting river sediment and brown trout in alpine countries--a review.

    PubMed

    Scheurer, Karin; Alewell, Christine; Bänninger, Dominik; Burkhardt-Holm, Patricia

    2009-03-01

    Catch decline of freshwater fish has been recorded in several countries. Among the possible causes, habitat change is discussed. This article focuses on potentially increased levels of fine sediments going to rivers and their effects on gravel-spawning brown trout. Indications of increased erosion rates are evident from land-use change in agriculture, changes in forest management practices, and from climate change. The latter induces an increase in air and river water temperatures, reduction in permafrost, changes in snow dynamics and an increase in heavy rain events. As a result, an increase in river sediment is likely. Suspended sediment may affect fish health and behaviour directly. Furthermore, sediment loads may clog gravel beds impeding fish such as brown trout from spawning and reducing recruitment rates. To assess the potential impact on fine sediments, knowledge of brown trout reproductive needs and the effects of sediment on brown trout health were evaluated. We critically reviewed the literature and included results from ongoing studies to answer the following questions, focusing on recent decades and rivers in alpine countries. Have climate change and land-use change increased erosion and sediment loads in rivers? Do we have indications of an increase in riverbed clogging? Are there indications of direct or indirect effects on brown trout from increased suspended sediment concentrations in rivers or from an increase in riverbed clogging? Rising air temperatures have led to more intensive precipitation in winter months, earlier snow melt in spring, and rising snow lines and hence to increased erosion. Intensification of land use has supported erosion in lowland and pre-alpine areas in the second half of the twentieth century. In the Alps, however, reforestation of abandoned land at high altitudes might reduce the erosion risk while intensification on the lower, more easily accessible slopes increases erosion risk. Data from laboratory experiments show

  1. Reactor-released radionuclides in Susquehanna River sediments

    USGS Publications Warehouse

    Olsen, C.R.; Larsen, I.L.; Cutshall, N.H.; Donoghue, J.F.; Bricker, O.P.; Simpson, H.J.

    1981-01-01

    Three Mile Island (TMI) and Peach Bottom (PB) reactors have introduced 137Cs, 134Cs, 60Co, 58Co and several other anthropogenic radionuclides into the lower Susquehanna River. Here we present the release history for these nuclides (Table 1) and radionuclide concentration data (Table 2) for sediment samples collected in the river and upper portions of the Chesapeake Bay (Fig. 1) within a few months after the 28 March 1979 loss-of-coolant-water problem at TMI. Although we found no evidence for nuclides characteristic of a ruptured fuel element, we did find nuclides characteristic of routine operations. Despite the TMI incident, more than 95% of the total 134Cs input to the Susquehanna has been a result of controlled low-level releases from the PB site. 134Cs activity released into the river is effectively trapped by sediments with the major zones of reactor-nuclide accumulation behind Conowingo Dam and in the upper portions of Chesapeake Bay. The reported distributions document the fate of reactor-released radionuclides and their extent of environmental contamination in the Susquehanna-Upper Chesapeake Bay System. ?? 1981 Nature Publishing Group.

  2. Impacts of the Indian Rivers Inter-link Project on Sediment Transport to River Deltas

    NASA Astrophysics Data System (ADS)

    Higgins, S.; Overeem, I.; Syvitski, J. P.

    2015-12-01

    The Indian Rivers Inter-link project is a proposal by the Indian government to link several of India's major rivers via a network of reservoirs and canals. Variations of the IRI have been discussed since 1980, but the current plan has recently received increased support from the Indian government. Construction on three canals has controversially begun. If the Inter-link project moves forward, fourteen canals will divert water from tributaries of the Ganges and Brahmaputra rivers to areas in the west, where fresh water is needed for irrigation. Additional canals would transport Himalayan sediments 500 km south to the Mahanadi delta and more than 1000 km south to the Godavari and Krishna deltas. We investigate the impacts of the proposed diversions on sediment transport to the Mahanadi/Brahmani, Godavari, and Krishna deltas in India and the Ganges-Brahmaputra Delta in Bangladesh. We map the entire river network and the proposed new nodes and connections. Changing watersheds are delineated using the Terrain Analysis Using Digital Elevation Models (TauDEM) Suite. Climate data comes from interpolation between observed precipitation stations located in China, Nepal, India, Bhutan and Bangladesh. Changes in water discharge due to the proposed canals are simulated using HydroTrend, a climate-driven hydrological water balance and transport model that incorporates drainage area, discharge, relief, temperature, basin-average lithology, and anthropogenic influences. Simulated river discharge is validated against observations from gauging stations archived by the Global Runoff Data Center (GRDC). HydroTrend is then used to investigate sediment transport changes that may result from the proposed canals. We also quantify changes in contributing areas for the outlets of nine major Indian rivers, showing that more than 50% of the land in India will contribute a portion of its runoff to a new outlet should the entire canal system be constructed.

  3. Heavy metal enrichment and ecological risk assessment of surface sediments in Khorramabad River, West Iran.

    PubMed

    Rastmanesh, F; Safaie, S; Zarasvandi, A R; Edraki, M

    2018-04-11

    The ecological health of rivers has often been threatened in urbanized catchments due to the expansion of industrial activities and the population growth. Khorramabad River which flows through Khorramabad city, west of Iran, is an example of such settings. The river water is used for agricultural purposes downstream. In this study, the effect of Khorramabad city on heavy metal and metalloid (Cu, Pb, Zn, Ni, Cr, and As) loads in Khorramabad River sediments was investigated. To evaluate sediment pollution and potential adverse biological effects, surface sediment samples were collected at selected locations along the river and were characterized for their geochemical properties. Contamination factor (CF), pollution load index (PLI), and ecological risk assessment (RI) were calculated. Also, sediment quality guidelines (SQGs) were used to screen contaminants of concern in the study area. The results showed that sediments were moderately polluted, with stations located in more densely populated areas showing higher pollution indicators. Copper, Zn, and Pb sources could be attributed to urban wastewater, whereas Ni, Cr, and As had both natural and anthropogenic sources. Moreover, ecological risk assessments showed that sediments could be classified in the category of low risk. The results of the present study showed the effect of anthropogenic activities on heavy metal loads of the river sediments and these findings can be used to mitigate potential impacts on the environment and human health.

  4. Field data describing the movement and storage of sediment in the East Fork River, Wyoming; Part I, River hydraulics and sediment transport, 1979

    USGS Publications Warehouse

    Emmett, William W.; Myrick, Robert M.; Meade, Robert H.

    1980-01-01

    Bed-material gradation and water-surface slope were determined for a 3.3-kilometer reach of East Fork River, Wyo. During peak snowmelt runoff, frequent measurements of water discharge and sediment-transport rate provided data describing the inflow and outflow of water and sediment. In spring 1979, bankfull stage was exceeded on 8 days. Maximum discharge was about 32 cubic meters per second, which has a recurrence interval of about 2 years. The median particle size of bed material is 1.28 millimeters; the 35 and 65 percentiles are represented by diameters of 0.50 and 2.88 millimeters, respectively. The average water-surface slope in the reach is 0.0007 and varies little with river stage. Bedload-transport rates ranged from a little less than 0.001 to a little more than 0.1 kilograms per meter of channel width per second. Median bedload grain size, with several exceptions, ranged from 0.4 to 1.5 millimeters. Gravel-size particles generally constituted 10 to 40% of the bedload. Suspended-sediment concentrations ranged from 6 to 95 milligrams per liter. Suspended sediment smaller than sand constited about half the measured suspended sediment, ranging from 17 to 81%. (USGS)

  5. Measuring Density Stratification and Understanding its Impact on Sediment Transport in Fine-grained Rivers, Based on Observations from the Lower Yellow River, China

    NASA Astrophysics Data System (ADS)

    Moodie, A. J.; Nittrouer, J. A.; Ma, H.; Lamb, M. P.; Carlson, B.; Kineke, G. C.; Parker, G.

    2017-12-01

    High concentrations of suspended sediment in channelized fluid flow produces density stratification that can alter the turbulent flow structure, thus limiting fluid momentum redistribution and affecting sediment transport capacity. A low channel-bed slope and large flow depth are hypothesized to be additional important factors contributing to density stratification. However, there are limited observations of density stratification in large rivers, especially those that carry significant fluxes of mud, and so the conditions leading to the development of density stratification are poorly constrained. The Yellow River, China, is a fine-grained and low-sloping river that maintains some of the highest suspended sediment concentrations in large rivers worldwide, making it an ideal natural laboratory for studying density stratification and its impact on sediment transport. Suspended sediment samples from the lower Yellow River, collected over a range of discharge conditions, produced sediment concentration profiles that are used in conjunction with velocity profiles to determine the threshold shear velocity for density stratification effects to develop. Comparing measured and predicted concentration and velocity profiles demonstrates that, there is no significant density stratification for base flow conditions; however, above a shear velocity value of 0.05 m/s, there is a progressive offset between the measured and predicted profiles, indicating that density stratification is increasingly important with higher shear stress values. The analyses further indicate that sediment entrainment from the bed and sediment diffusivity within the water column are significantly impacted by density stratification, suggesting that shear stress and sediment transport rates are inhibited by the development of density stratification. Near-bed concentration measurements are used to assess a stress-to-entrainment relationship, accounting for density stratification. These measurements are

  6. Geomorphic response to large-dam removal: Impacts of a massive sediment release to the Elwha River, Washington

    NASA Astrophysics Data System (ADS)

    Magirl, C. S.; Ritchie, A.; Bountry, J.; Randle, T. J.; East, A. E.; Hilldale, R. C.; Curran, C. A.; Pess, G. R.

    2015-12-01

    The 2011-2014 staged removals of two nearly century-old dams on the Elwha River in northwest Washington State, the largest dam-removal project in the United States, exposed 21 million m3 of reservoir-trapped sand and gravel to potential fluvial transport. The river downstream from the dams is gravel bedded with a pool-riffle morphology. The river flows 20 km to the marine environment through a riparian corridor lined with large wood and having relatively few anthropogenic alterations. This moderately natural pre-dam-removal condition afforded an unprecedented opportunity to study river response to an anticipated massive sediment release. Four years into the project, 12 million m3 of sediment eroded from the former reservoirs with about 90% of the total load transported to the marine environment. Annualized sediment discharge was as great as 20 times the background natural load. Initial river response to the arrival of the first large sediment pulse was the nearly complete filling of the river's previously sediment-starved pools, widespread filling of side channels, and increased braiding index. In year 2, during maximum aggradation, the river graded to a plane-bedded system, efficiently conveying sediment to the marine environment. Modest peak flows (<2-yr return period) in year 2 promoted sediment transport but caused little large-scale geomorphic disturbance by channel migration or avulsions. As the river processed the sediment pulse, pools returned and the braiding index decreased in years 3-4. Higher peak flows in year 4 caused localized channel widening and migration but no major avulsions. Gauging indicated sand dominated the first stages of sediment release, but fluvial loads coarsened through time with progressive arrival of larger material. The literature suggests the Elwha River sediment wave should have evolved through dispersion with little translation. However, morphologic measurements and data from a stage-gauge network indicated patterns of

  7. Particulate Matter and Gaseous Pollutions in Three Metropolises along the Chinese Yangtze River: Situation and Implications.

    PubMed

    Mao, Mao; Zhang, Xiaolin; Yin, Yan

    2018-05-28

    The situation of criteria atmospheric pollutants, including particulate matter and trace gases (SO₂, NO₂, CO and O₃), over three metropolises (Chongqing, Wuhan, and Nanjing), representing the upstream, midstream and downstream portions of the Yangtze River Basin from September 2015 to August 2016 were analyzed. The maximum annual mean PM 2.5 and PM 10 concentrations were 61.3 and 102.7 μg/m³ in Wuhan, while highest annual average gaseous pollutions occurred in Nanjing, with 49.6 and 22.9 ppb for 8 h O₃ and NO₂, respectively. Compared to a few years ago, SO₂ and CO mass concentrations have dropped to well below the qualification standards, and the O₃ and NO₂ concentrations basically meet the requirements though occasionally is still high. In contrary, about 13%, 25%, 22% for PM 2.5 , and 4%, 17%, 15% for PM 10 exceed the Chinese Ambient Air Quality Standard (CAAQS) Grade II. Particulate matter, especially PM 2.5 , is the most frequent major pollutant to poor air quality with 73%, 64% and 88% accounting for substandard days. Mean PM 2.5 concentrations on PM 2.5 episode days are 2⁻3 times greater than non-episode days. On the basis of calculation of PM 2.5 /PM 10 and PM 2.5 /CO ratios, the enhanced particulate matter pollution on episode days is closely related to secondary aerosol production. Except for O₃, the remaining five pollutants exhibit analogous seasonal patterns, with the highest magnitude in winter and lowest in summer. The results of back trajectories show that air pollution displays synergistic effects on local emissions and long range transport. O₃ commonly demonstrated negative correlations with other pollutants, especially during winter, while moderate to strong positive correlation between particulate matter and NO₂, SO₂, CO were seen. Compared to pollutant substandard ratios over three megacities in eastern China (Beijing, Shanghai, and Guangzhou), the situation in our studied second-tier cities are also severe. The

  8. Characterizing and simulating sediment loads and transport in the lower part of the San Antonio River Basin

    USGS Publications Warehouse

    Banta, J. Ryan; Ockerman, Darwin J.; Crow, Cassi; Opsahl, Stephen P.

    2015-01-01

    This extended abstract is based on the U.S. Geological Survey Scientific Investigations Reports by Crow et al. (2013) and Banta and Ockerman (2014). Suspended sediment in rivers and streams can play an important role in ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. The quantity and type of suspended sediment can affect the biological communities (Wood and Armitage, 1997), the concentration and movement of natural constituents and anthropogenic contaminants (Moran and others, 2012), and the amount of sediment deposition in coastal environments (Milliman and Meade, 1983). To better understand suspended-sediment characteristics in the San Antonio River Basin, the U.S. Geological Survey (USGS), in cooperation with the San Antonio River Authority and Texas Water Development Board, conducted a two-phase study to (1) collect and analyze sediment data to characterize sediment conditions in the San Antonio River downstream of San Antonio, Texas, and (2) develop and calibrate a watershed model to simulate hydrologic conditions and suspended-sediment loads for four watersheds in the San Antonio River Basin, downstream from San Antonio, Texas.

  9. Acetoclastic methane formation from Eucalyptus detritus in pristine hydrocarbon-rich river sediments by Methanosarcinales.

    PubMed

    Beckmann, Sabrina; Manefield, Mike

    2014-12-01

    Pristine hydrocarbon-rich river sediments in the Greater Blue Mountains World Heritage Area (Australia) release substantial amounts of methane. The present study aimed to unravel for the first time the active methanogens mediating methane formation and exploiting the bacterial diversity potentially involved in the trophic network. Quantitative PCR of 16S rRNA gene and functional genes as well as 454 pyrosequencing were used to address the unknown microbial diversity and abundance. Methane-releasing sediment cores derived from three different river sites of the Tootie River. Highest methane production rates of 10.8 ± 0.5 μg g(-1)(wet weight) day(-1) were detected in 40 cm sediment depth being in congruence with the detection of the highest abundances of the archaeal 16S rRNA gene and the methyl-coenzyme M reductase (mcrA) genes. Stable carbon and hydrogen isotopic signatures of the produced methane indicated an acetoclastic origin. Long-term enrichment cultures amended with either acetate or H2/CO2 revealed acetoclastic methanogenesis as key methane-formation process mediated by members of the order Methanosarcinales. Conditions prevailing in the river sediments might be suitable for hydrocarbon-degrading bacteria observed in the river sediments that were previously unclassified or closely related to the Bacteroidetes/Chlorobi group, the Firmicutes and the Chloroflexi group fuelling acetoclastic methanogensis in pristine river sediments. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Relationship between Dongting Lake and surrounding rivers under the operation of the Three Gorges Reservoir, China.

    PubMed

    Zhan, Lucheng; Chen, Jiansheng; Zhang, Shiyin; Huang, Dewen; Li, Ling

    2015-01-01

    The natural flow properties of the Yangtze River have been changed completely following the construction of the Three Gorges Dam. The dam's operation has affected the resources and environment in the middle and lower reaches of the Yangtze River, changing the hydrological conditions and ecological environment of the Dongting Lake. During three different dispatching periods of the reservoir, we took triplicate samples of the river and lake water. All the samples were analysed for δ(2)H and δ(18)O to determine the relationship between the lake and the Yangtze River (and other rivers), and to evaluate objectively the influence of the dam's operation on the lake. During the period of water-supply dispatch, the Four Rivers and Miluo River are the main recharge sources of the lake. During the flood-storage dispatching period, the Dongting Lake is recharged largely by the Three Outlets and the Four Rivers, whereas during the period of water-storage dispatch, most of the lake's water originates from the Miluo, Xiang, Zi, and Yuan rivers. Although the Yangtze River only contributes significantly to the lake's recharge through the Three Outlets during the flood-storage dispatching period, the lake discharges large amounts of water into the Yangtze River during all three periods. Through the operation of the reservoir, it should be ensured that the water level of the Dongting Lake is not too low during the dry season, nor too high during the wet season, thus preventing the lake region from future flood and drought disasters.

  11. Agricultural land use doubled sediment yield of western China's rivers

    NASA Astrophysics Data System (ADS)

    Schmidt, A. H.; Bierman, P. R.; Sosa-Gonzalez, V.; Neilson, T. B.; Rood, D. H.; Martin, J.; Hill, M.

    2017-12-01

    Land use changes, such as deforestation and agriculture, increase soil erosion rates on the scale of hillslopes and small drainage basins; however, the effects of these changes on the sediment load in larger rivers is poorly quantified, with a few studies scattered globally, and only 10 data points in the world's most populous nation, China. At 20 different sites in western China, we compare contemporary (1945-1987) fluvial sediment yield data collected daily over 4 to 26 years (median = 19 years) to long-term measures of erosion (sediment generation) based on new isotopic measurements of in situ 10Be in river sediments. We find that median sediment transport at these sites exceeds background sediment generation rates by a factor of two (from 0.13 to 5.79 times, median 1.85 times) and that contemporary sediment yield is statistically significantly different from long-term sediment yield (p < 0.05). Agricultural land use is directly and significantly proportional to the ratio of contemporary sediment yield to long term sediment generation rates (Spearman correlation coefficient rho = 0.52, p < 0.05). We support these findings by calculating erosion indices (following Brown et al., 1988), which compare the delivery of meteoric 10Be to each watershed with the export of meteoric 10Be bound to riverine sediment. Erosion indices are also directly and significantly proportional to agricultural land use (rho = 0.58, p < 0.05). We measured unsupported 210Pb and 137Cs in 130 detrital samples from throughout the region. We find that only 4 samples (those from high elevation, low relief watersheds) have detectable 137Cs and 31 samples have detectable unsupported 210Pb. The lack of 137Cs in most samples suggests high rates of erosion in the 1950s-1960s when 137Cs would have been delivered to the landscape. Detectable 210Pb in 25% of the watersheds suggests that in some areas erosion rates have slowed since that time allowing 210Pb to accumulate to measurable levels. Together

  12. Changes in sediment volume in Alder Lake, Nisqually River Basin, Washington, 1945-2011

    USGS Publications Warehouse

    Czuba, Jonathan A.; Olsen, Theresa D.; Czuba, Christiana R.; Magirl, Christopher S.; Gish, Casey C.

    2012-01-01

    The Nisqually River drains the southwest slopes of Mount Rainier, a glaciated stratovolcano in the Cascade Range of western Washington. The Nisqually River was impounded behind Alder Dam when the dam was completed in 1945 and formed Alder Lake. This report quantifies the volume of sediment deposited by the Nisqually and Little Nisqually Rivers in their respective deltas in Alder Lake since 1945. Four digital elevation surfaces were generated from historical contour maps from 1945, 1956, and 1985, and a bathymetric survey from 2011. These surfaces were used to compute changes in sediment volume since 1945. Estimates of the volume of sediment deposited in Alder Lake between 1945 and 2011 were focused in three areas: (1) the Nisqually River delta, (2) the main body of Alder Lake, along a 40-meter wide corridor of the pre-dam Nisqually River, and (3) the Little Nisqually River delta. In each of these areas the net deposition over the 66-year period was 42,000,000 ± 4,000,000 cubic meters (m3), 2,000,000 ± 600,000 m3, and 310,000 ± 110,000 m3, respectively. These volumes correspond to annual rates of accumulation of 630,000 ± 60,000 m3/yr, 33,000 ± 9,000 m3/yr, and 4,700 ± 1,600 m3/yr, respectively. The annual sediment yield of the Nisqually (1,100 ± 100 cubic meters per year per square kilometer [(m3/yr)/km2]) and Little Nisqually River basins [70 ± 24 (m3/yr)/km2] provides insight into the yield of two basins with different land cover and geomorphic processes. These estimates suggest that a basin draining a glaciated stratovolcano yields approximately 15 times more sediment than a basin draining forested uplands in the Cascade Range. Given the cumulative net change in sediment volume in the Nisqually River delta in Alder Lake, the total capacity of Alder Lake since 1945 decreased about 3 percent by 1956, 8 percent by 1985, and 15 percent by 2011.

  13. Transport of Water, Carbon, and Sediment Through the Yukon River Basin

    USGS Publications Warehouse

    Brabets, Timothy P.; Schuster, Paul F.

    2008-01-01

    INTRODUCTION In 2001, the U.S. Geological Survey (USGS) began a water-quality study of the Yukon River. The Yukon River Basin (YRB), which encompasses 330,000 square miles in northwestern Canada and central Alaska (fig. 1), is one of the largest and most diverse ecosystems in North America. The Yukon River is more than 1,800 miles long and is one of the last great uncontrolled rivers in the world, and is essential to the eastern Bering Sea and Chukchi Sea ecosystems, providing freshwater runoff, sediments, and nutrients (Brabets and others, 2000). Despite its remoteness, recent studies (Hinzman and others, 2005; Walvoord and Striegl, 2007) indicate the YRB is changing. These changes likely are in response to a warming trend in air temperature of 1.7i??C from 1951 to 2001 (Hartmann and Wendler, 2005). As a result of this warming trend, permafrost is thawing in the YRB, ice breakup occurs earlier on the main stem of the Yukon River and its tributaries, and timing of streamflow and movement of carbon and sediment through the basin is changing (Hinzman and others, 2005; Walvoord and Striegl, 2007). One of the most striking characteristics in the YRB is its seasonality. In the YRB, more than 75 percent of the annual streamflow runoff occurs during a five month period, May through September. This is important because streamflow determines when, where, and how much of a particular constituent will be transported. As an example, more than 95 percent of all sediment transported during an average year also occurs during this period (Brabets and others, 2000). During the other 7 months, streamflow, concentrations of sediment and other water-quality constituents are low and little or no sediment transport occurs in the Yukon River and its tributaries. Streamflow and water-quality data have been collected at more than 50 sites in the YRB (Dornblaser and Halm, 2006; Halm and Dornblaser, 2007). Five sites have been sampled more than 30 times and others have been sampled twice

  14. Sediment and water discharge rates of Turkish Black Sea rivers before and after hydropower dam construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, B.J.

    1994-06-01

    Presently, the water discharge rate to the Black Sea by Turkish rivers is approximately 41 km[sup 3]/yr. The sediment discharge rate of Turkish rivers to the Black Sea is 28 x 10[sup 6] t/yr. Before construction of the hydroelectric dams, the sediment discharge rate was approximately 70 x 10[sup 6] t/yr. The sharp reduction in sediment load is largely a result of the dams near the mouths of the Yesil Irmak and Kizil Irmak rivers. Before the construction of dams, Turkish rivers contributed approximately one third of the total amount of sediment received by the Black Sea from all surroundingmore » rivers. The life-span of the major reservoirs varies from approximately only one century (Yesil Irmak river reservoirs) to several thousand years (Sakarya river reservoirs). Life-span for the large Altinkaya Dam reservoir is estimated with approximately 500 yr.« less

  15. Lead-rich sediments, Coeur d'Alene River Valley, Idaho: area, volume, tonnage, and lead content

    USGS Publications Warehouse

    Bookstrom, Arthur A.; Box, Stephen E.; Campbell, Julie K.; Foster, Kathryn I.; Jackson, Berne L.

    2001-01-01

    In north Idaho, downstream from the Coeur d?Alene (CdA) silver-lead-zinc mining district, lead-rich sediments, containing at least 1,000 ppm of lead, cover approximately 61 km2 (or 73 percent) of the 84-km2 floor of the CdA River valley, from the confluence of its North and South Forks to the top of its delta-front slope, in CdA Lake. Concentrations of lead (Pb) in surface sediments range from 15 to about 38,500 ppm, and average 3,370 ppm, which is 112 times the mean background concentration (30 ppm) of Pb in uncontaminated sediments of the CdA and St. Joe River valleys. Most of the highest concentrations of Pb are in sediments within or near the river channel, or near the base of the stratigraphic section of Pb-rich sediments. Ranges of Pb concentration in Pb-rich sediments gradually decrease with increasing distance from the river and its distributaries. Ranges of thickness of Pb-rich sediments generally decrease abruptly with increasing distance from the river, from about 3 + 3 m in the river channel to about 1 + 1m on upland riverbanks, levees and sand splays, to about 0.3 + 0.3 m in back-levee marshes and lateral lakes. Thickness of Pb-rich dredge spoils (removed from the river and deposited on Cataldo-Mission Flats) is mostly in the range 4 + 4 m, thinning away from an outfall zone north and west of the river, near the formerly dredged channel reach near Cataldo Landing. We attribute lateral variation in ranges of thickness and Pb content of Pb-rich sediments to the dynamic balance between decreasing floodwater flow velocity with increasing distance from the river and the quantity, size, density, and Pb content of particles mobilized, transported, and deposited. We present alternative median- and mean-based estimates of the volume of Pbrich sediments, their wet and dry tonnage, and their tonnage of contained Pb. We calculate separate pairs of estimates for 23 Estimation Units, each of which corresponds to a major depositional environment, divided into down

  16. Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China.

    PubMed

    Mai, Bi-Xian; Fu, Jia-Mo; Sheng, Guo-Ying; Kang, Yue-Hui; Lin, Zheng; Zhang, Gan; Min, Yu-Shuan; Zeng, Eddy Y

    2002-01-01

    Spatial distribution of chlorinated hydrocarbons [chlorinated pesticides (CPs) and polychlorinated biphenyls (PCBs)] and polycyclic aromatic hydrocarbons (PAHs) was measured in riverine and estuarine sediment samples from Pearl River Delta, China, collected in 1997. Concentrations of CPs of the riverine sediment samples range from 12 to 158 ng/g, dry weight, while those of PCBs range from 11 to 486 ng/g. The CPs concentrations of the estuarine sediment samples are in the range 6-1658 ng/g, while concentrations of PCBs are in the range 10-339 ng/g. Total PAH concentration ranges from 1168 to 21,329 ng/g in the riverine sediment samples, whereas the PAH concentration ranges from 323 to 14,812 ng/g in the sediment samples of the Estuary. Sediment samples of the Zhujiang River and Macao harbor around the Estuary show the highest concentrations of CPs, PCBs, and PAHs. Possible factors affecting the distribution patterns are also discussed based on the usage history of the chemicals, hydrologic condition, and land erosion due to urbanization processes. The composition of PAHs is investigated and used to assess petrogenic, combustion and naturally derived PAHs of the sediment samples of the Pearl River Delta. In addition, the concentrations of a number of organic compounds of the Pearl River Delta samples indicate that sediments of the Zhujiang river and Macao harbor are most likely to pose biological impairment.

  17. Influence of a dam on fine-sediment storage in a canyon river

    USGS Publications Warehouse

    Hazel, J.E.; Topping, D.J.; Schmidt, J.C.; Kaplinski, M.

    2006-01-01

    Glen Canyon Dam has caused a fundamental change in the distribution of fine sediment storage in the 99-km reach of the Colorado River in Marble Canyon, Grand Canyon National Park, Arizona. The two major storage sites for fine sediment (i.e., sand and finer material) in this canyon river are lateral recirculation eddies and the main-channel bed. We use a combination of methods, including direct measurement of sediment storage change, measurements of sediment flux, and comparison of the grain size of sediment found in different storage sites relative to the supply and that in transport, in order to evaluate the change in both the volume and location of sediment storage. The analysis shows that the bed of the main channel was an important storage environment for fine sediment in the predam era. In years of large seasonal accumulation, approximately 50% of the fine sediment supplied to the reach from upstream sources was stored on the main-channel bed. In contrast, sediment budgets constructed for two short-duration, high experimental releases from Glen Canyon Dam indicate that approximately 90% of the sediment discharge from the reach during each release was derived from eddy storage, rather than from sandy deposits on the main-channel bed. These results indicate that the majority of the fine sediment in Marble Canyon is now stored in eddies, even though they occupy a small percentage (???17%) of the total river area. Because of a 95% reduction in the supply of fine sediment to Marble Canyon, future high releases without significant input of tributary sediment will potentially erode sediment from long-term eddy storage, resulting in continued degradation in Marble Canyon. Copyright 2006 by the American Geophysical Union.

  18. Heavy metals relationship with water and size-fractionated sediments in rivers using canonical correlation analysis (CCA) case study, rivers of south western Caspian Sea.

    PubMed

    Vosoogh, Ali; Saeedi, Mohsen; Lak, Raziyeh

    2016-11-01

    Some pollutants can qualitatively affect aquatic freshwater such as rivers, and heavy metals are one of the most important pollutants in aquatic fresh waters. Heavy metals can be found in the form of components dissolved in these waters or in compounds with suspended particles and surface sediments. It can be said that heavy metals are in equilibrium between water and sediment. In this study, the amount of heavy metals is determined in water and different sizes of sediment. To obtain the relationship between heavy metals in water and size-fractionated sediments, a canonical correlation analysis (CCA) was utilized in rivers of the southwestern Caspian Sea. In this research, a case study was carried out on 18 sampling stations in nine rivers. In the first step, the concentrations of heavy metals (Cu, Zn, Cr, Fe, Mn, Pb, Ni, and Cd) were determined in water and size-fractionated sediment samples. Water sampling sites were classified by hierarchical cluster analysis (HCA) utilizing squared Euclidean distance with Ward's method. In addition, for interpreting the obtained results and the relationships between the concentration of heavy metals in the tested river water and sample sediments, canonical correlation analysis (CCA) was utilized. The rivers were grouped into two classes (those having no pollution and those having low pollution) based on the HCA results obtained for river water samples. CCA results found numerous relationships between rivers in Iran's Guilan province and their size-fractionated sediments samples. The heavy metals of sediments with 0.038 to 0.125 mm size in diameter are slightly correlated with those of water samples.

  19. Declining sediment loads from Redwood Creek and the Klamath River, north coastal California

    Treesearch

    Randy D. Klein; Jeffrey K. Anderson

    2012-01-01

    River basin sediment loads are affected by several factors, with flood magnitude and watershed erosional stability playing dominant and dynamic roles. Long-term average sediment loads for northern California river basins have been computed by several researchers by several methods. However, characterizing the dynamic nature of climate and watershed stability requires...

  20. River capture and sediment redistribution in northern Tunisia: The doom of Utica

    NASA Astrophysics Data System (ADS)

    Booth-Rea, Guillermo; Camafort, Miquel; Pérez-Peña, J. Vicente; Melki, Fetheddine; Ranero, César; Azañón, José Miguel; Gracia, Eulalia; Ouadday, Mohamed

    2016-04-01

    Utica was a flourishing port city in northern Tunisia since the Phoenician times, 12-9th century B.C., until the 4th century A.D.. However, at present it is located 10 km from the coastline after very fast late Holocene progradation of the Mejerda River delta into the bay of Utica. This fast delta progradation occurred after Mejerda River captured Tine River increasing 140 % the river catchment area. Charcoal fragments present in the youngest Tine river terrace at the wind gap give a conventional radiocarbon age of 3240 +/- 30yr BP, indicating that the capture occurred after this date. Quaternary fluvial terraces located in the Tine River paleovalley have been folded and uplifted above a fold related to the active El Alia Tebousouk reverse fault (ETF). Continued uplift of the Tine River valley above the ETF favoured headward erosion of the Medjerda river tributaries creating a transverse drainage that captured Tine River. This capture produced an important change in sediment discharge along the northern Tunisia coast driving sediments to the Gulf of Tunis instead of feeding the Tyrrhenian Sea through the Ichkeul and Bizerte lakes. Although anthropogenic derived degradation of northern Tunisia land for agricultural purposes probably influenced the increase in sediment into the Utica bay, the main cause of rapid progradation of the Medjerda River delta during the late Holocene is related to its increase in drainage area after capturing the Tine River. This process was mostly driven by local contractive tectonics linked to the seismogenic Alia Tebousouk reverse fault.