Sample records for yankee meadow reservoir

  1. 77 FR 36298 - In the Matter of Maine Yankee Atomic Power Company; Maine Yankee Atomic Power Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... the Matter of Maine Yankee Atomic Power Company; Maine Yankee Atomic Power Station; Confirmatory Order... Regulatory Commission (NRC or the Commission) issued a Confirmatory Order to Maine Yankee Atomic Power...: (301) 492-3342; Email: [email protected] . I Maine Yankee Atomic Power Company (Maine Yankee or the...

  2. 77 FR 134 - In the Matter of Yankee Atomic Electric Company; Northeast Utilities; NSTAR (Yankee Nuclear Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-03

    ... Matter of Yankee Atomic Electric Company; Northeast Utilities; NSTAR (Yankee Nuclear Power Station); Order Approving Application Regarding Proposed Merger I Yankee Atomic Electric Company (Yankee Atomic or... (together, the [[Page 135

  3. 77 FR 36302 - Yankee Atomic Electric Company, Yankee Nuclear Power Station, Confirmatory Order Modifying...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... Atomic Electric Company, Yankee Nuclear Power Station, Confirmatory Order Modifying License (Effective... of 10 CFR part 72, Subpart K at the Yankee Nuclear Power Station. The facility is located at the... Facility Operating License for Yankee Nuclear Power Station must be modified to include provisions with...

  4. 75 FR 39057 - Entergy Nuclear Operations, Inc.; Entergy Nuclear Vermont Yankee, LLC; Vermont Yankee Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-271; NRC-2010-0243; License No. DPR-28] Entergy Nuclear Operations, Inc.; Entergy Nuclear Vermont Yankee, LLC; Vermont Yankee Nuclear Power Station... action with regard to the Vermont Yankee Nuclear Power Station. Mr. Mulligan requested in his petition...

  5. 76 FR 19148 - Entergy Nuclear Operations, Inc., Entergy Nuclear Vermont Yankee, LLC, Vermont Yankee Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-271; License No. DPR-28; NRC-2011-0074] Entergy Nuclear Operations, Inc., Entergy Nuclear Vermont Yankee, LLC, Vermont Yankee Nuclear Power Station... regard to the Vermont Yankee Nuclear Power Station (VY). Mr. Saporito requested in his petition that the...

  6. 78 FR 45984 - Yankee Atomic Electric Company, Yankee Nuclear Power Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... Electric Company, Yankee Nuclear Power Station AGENCY: Nuclear Regulatory Commission. ACTION: Environmental... (YAEC) is the holder of Possession-Only License DPR-3 for the Yankee Nuclear Power Station (YNPS... on the site of any nuclear power reactor. In its Statement of Considerations (SOC) for the Final Rule...

  7. Seagrass meadows as a globally significant carbonate reservoir

    NASA Astrophysics Data System (ADS)

    Mazarrasa, I.; Marbà, N.; Lovelock, C. E.; Serrano, O.; Lavery, P. S.; Fourqurean, J. W.; Kennedy, H.; Mateo, M. A.; Krause-Jensen, D.; Steven, A. D. L.; Duarte, C. M.

    2015-08-01

    There has been growing interest in quantifying the capacity of seagrass ecosystems to act as carbon sinks as a natural way of offsetting anthropogenic carbon emissions to the atmosphere. However, most of the efforts have focused on the particulate organic carbon (POC) stocks and accumulation rates and ignored the particulate inorganic carbon (PIC) fraction, despite important carbonate pools associated with calcifying organisms inhabiting the meadows, such as epiphytes and benthic invertebrates, and despite the relevance that carbonate precipitation and dissolution processes have in the global carbon cycle. This study offers the first assessment of the global PIC stocks in seagrass sediments using a synthesis of published and unpublished data on sediment carbonate concentration from 403 vegetated and 34 adjacent un-vegetated sites. PIC stocks in the top 1 m of sediment ranged between 3 and 1660 Mg PIC ha-1, with an average of 654 ± 24 Mg PIC ha-1, exceeding those of POC reported in previous studies by about a factor of 5. Sedimentary carbonate stocks varied across seagrass communities, with meadows dominated by Halodule, Thalassia or Cymodocea supporting the highest PIC stocks, and tended to decrease polewards at a rate of -8 ± 2 Mg PIC ha-1 per degree of latitude (general linear model, GLM; p < 0.0003). Using PIC concentrations and estimates of sediment accretion in seagrass meadows, the mean PIC accumulation rate in seagrass sediments is found to be 126.3 ± 31.05 g PIC m-2 yr-1. Based on the global extent of seagrass meadows (177 000 to 600 000 km2), these ecosystems globally store between 11 and 39 Pg of PIC in the top metre of sediment and accumulate between 22 and 75 Tg PIC yr-1, representing a significant contribution to the carbonate dynamics of coastal areas. Despite the fact that these high rates of carbonate accumulation imply CO2 emissions from precipitation, seagrass meadows are still strong CO2 sinks as demonstrated by the comparison of carbon (PIC

  8. Seagrass meadows as a globally significant carbonate reservoir

    NASA Astrophysics Data System (ADS)

    Mazarrasa, I.; Marbà, N.; Lovelock, C. E.; Serrano, O.; Lavery, P. S.; Fourqurean, J. W.; Kennedy, H.; Mateo, M. A.; Krause-Jensen, D.; Steven, A. D. L.; Duarte, C. M.

    2015-03-01

    There has been a growing interest in quantifying the capacity of seagrass ecosystems to act as carbon sinks as a natural way of offsetting anthropogenic carbon emissions to the atmosphere. However, most of the efforts have focused on the organic carbon (POC) stocks and accumulation rates and ignored the inorganic carbon (PIC) fraction, despite important carbonate pools associated with calcifying organisms inhabiting the meadows, such as epiphytes and benthic invertebrates, and despite the relevance that carbonate precipitation and dissolution processes have in the global carbon cycle. This study offers the first assessment of the global PIC stocks in seagrass sediments using a synthesis of published and unpublished data on sediment carbonate concentration from 402 vegetated and 34 adjacent un-vegetated sites. PIC stocks in the top 1 m sediments ranged between 3 and 1660 Mg PIC ha-1, with an average of 654 ± 24 Mg PIC ha-1, exceeding about 5 fold those of POC reported in previous studies. Sedimentary carbonate stocks varied across seagrass communities, with meadows dominated by Halodule, Thalassia or Cymodocea supporting the highest PIC stocks, and tended to decrease polewards at a rate of -8 ± 2 Mg PIC ha-1 degree-1 of latitude (GLM, p < 0.0003). Using PIC concentration and estimates of sediment accretion in seagrass meadows, mean PIC accumulation rates in seagrass sediments is 126.3 ± 0.7 g PIC m-2 y-1. Based on the global extent of seagrass meadows (177 000 to 600 000 km2), these ecosystems globally store between 11 and 39 Pg of PIC in the top meter of sediment and accumulate between 22 and 76 Tg PIC y-1, representing a significant contribution to the carbonate dynamics of coastal areas. Despite that these high rates of carbonate accumulation imply CO2 emissions from precipitation, seagrass meadows are still strong CO2 sinks as demonstrates the comparison of carbon (POC and POC) stocks between vegetated and adjacent un-vegetated sediments.

  9. Peach Bottom and Vermont Yankee Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1992-12-31

    A dramatic and extraordinary instance of state and local government control of nuclear power, the purchase by New York of the Shoreham plant is nonetheless indicative of the political demands that some states confront for additional involvement in the regulation of the radiological hazards associated with commercial nuclear power plants. Although the Supreme Court has appeared to expand, in the eight years since PG&E and Silkwood, the acceptable extent of state regulation, some states, in addition to New York, have acquired, with the acquiescence of the NRC, a degree of involvement that exceeds the role for state and local governmentsmore » provided by the Court. For example, the Commonwealth of Pennsylvania concluded with the Philadelphia Electric Company (PECO) in June 1989 an agreement that commits PECO to various initiatives, not otherwise required under NRC regulations, for the safe operation of the Peach Bottom nuclear power plant in Pennsylvania. In July 1991 the State of Vermont and Vermont Yankee Nuclear Power Corporation (Vermont Yankee) concluded an agreement similar to that concluded between Pennsylvania and PECO. The agreement also commits Vermont Yankee to certain initiatives, not otherwise required under NRC regulations, related to its operation of the Vermont Yankee nuclear power plant in Vermont. The agreement was precipitated by a challenge to an application, submitted to the NRC by Vermont Yankee in April 1989, to amend the Vermont Yankee plant license to extend its expiration date from December 11, 2007 to March 21, 2012. The amendment would allow the Vermont Yankee plant to operate for forty full years.« less

  10. 78 FR 71675 - License Amendment Application for Vermont Yankee Nuclear Power Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... Vermont Yankee Nuclear Power Station AGENCY: Nuclear Regulatory Commission. ACTION: License amendment... Vermont Yankee Nuclear Power Station, located in Windham County, VT. The proposed amendment would have... Vermont Yankee Nuclear Power Station, located in Windham County, VT. The proposed amendment would have...

  11. 75 FR 12311 - Entergy Nuclear Operations, Inc; Vermont Yankee Nuclear Power Station Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ...; Vermont Yankee Nuclear Power Station Environmental Assessment and Finding of No Significant Impact The U.S... licensee), for operation of Vermont Yankee Nuclear Power Station (Vermont Yankee), located in Windham... Statement for Vermont Yankee Nuclear Power Station, Docket No. 50-271, dated July 1972, as supplemented...

  12. Quantifying the Restorable Water Volume of California's Sierra Nevada Meadows

    NASA Astrophysics Data System (ADS)

    Emmons, J. D.; Yarnell, S. M.; Fryjoff-Hung, A.; Viers, J.

    2013-12-01

    The Sierra Nevada is estimated to provide over 66% of California's water supply, which is largely derived from snowmelt. Global climate warming is expected to result in a decrease in snow pack and an increase in melting rate, making the attenuation of snowmelt by any means, an important ecosystem service for ensuring water availability. Montane meadows are dispersed throughout the mountain range and can act like natural reservoirs, and also provide wildlife habitat, water filtration, and water storage. Despite the important role of meadows in the Sierra Nevada, a large proportion is degraded from stream incision, which increases volume outflows and reduces overbank flooding, thus reducing infiltration and potential water storage. Restoration of meadow stream channels would therefore improve hydrological functioning, including increased water storage. The potential water holding capacity of restored meadows has yet to be quantified, thus this research seeks to address this knowledge gap by estimating the restorable water volume due to stream incision. More than 17,000 meadows were analyzed by categorizing their erosion potential using channel slope and soil texture, ultimately resulting in six general erodibility types. Field measurements of over 100 meadows, stratified by latitude, elevation, and geologic substrate, were then taken and analyzed for each erodibility type to determine average depth of incision. Restorable water volume was then quantified as a function of water holding capacity of the soil, meadow area and incised depth. Total restorable water volume was found to be 120 x 10^6 m3, or approximately 97,000 acre-feet. Using 95% confidence intervals for incised depth, the upper and lower bounds of the total restorable water volume were found to be 107 - 140 x 10^6 m3. Though this estimate of restorable water volume is small in regards to the storage capacity of typical California reservoirs, restoration of Sierra Nevada meadows remains an important

  13. 77 FR 60482 - Yankee Atomic Electric Company; Yankee Rowe Independent Spent Fuel Storage Installation, Staff...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Company; Yankee Rowe Independent Spent Fuel Storage Installation, Staff Evaluation; Exemption 1.0... exemption requests, the NRC staff believes that YAEC should be granted exemptions from the following.... Additional information regarding the NRC (staff) evaluation is documented in a Safety Evaluation Report that...

  14. 77 FR 48565 - Maine Yankee Atomic Power Company, Maine Yankee Independent Spent Fuel Storage Installation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... Power Company, Maine Yankee Independent Spent Fuel Storage Installation, Exemption--Staff Evaluation 1.0... in its November 29, 2010, letter. After evaluating the exemption requests, the staff determined that... staff evaluation is documented in a Safety Evaluation Report that contains Sensitive Unclassified Non...

  15. An overview of ALARA considerations during Yankee Atomic`s Component Removal Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granados, B.; Babineau, G.; Colby, B.

    1995-03-01

    In Februrary 1992, Yankee Atomic Electric Company (YAEC) permanently shutdown Yankee Nuclear Power Station in Rowe, Massachusetts, after thirty-two years of efficient operation. Yankee`s plan decommissioning is to defer dismantlement until a low level radioactive waste (LLRW) disposal facility is available. The plant will be maintained in a safe storage condition until a firm contract for the disposal of LLRW generated during decommissioning can be secured. Limited access to a LLRW disposal facility may occur during the safe storage period. Yankee intends to use these opportunities to remove components and structures. A Component Removal Project (CRP) was initiated in 1993more » to take advantage of one of these opportunities. A Componenet Removal Project (CRP) was initiated in 1993 to take advantage of one of these opportunities. The CRP includes removal of four steam generators, the pressurizer, and segmentation of reactor vessel internals and preparation of LLRW for shipment and disposal at Chem-Nuclear`s Barnwell, South Carolina facility. The CRP is projected to be completed by June 1994 at an estimated total worker exposure of less than 160 person-rem.« less

  16. 76 FR 44376 - Vermont Yankee Nuclear Power Station; Notice of Withdrawal of Application for Amendment to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-271, NRC-2011-0168] Vermont Yankee Nuclear Power... Regulatory Commission (NRC or the Commission) has granted the request of Vermont Yankee Nuclear Power Station... Operating License No. DPR-28 for the Vermont Yankee Nuclear Power Station, located in Vernon, Vermont. The...

  17. Water budget and flow attenuation in a small montane meadow in the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Mancuso, L. A.; Cornwell, K.

    2011-12-01

    The purpose of this study was to assess how montane meadows aid in flow attenuation and store groundwater. The Van Vleck meadow, a 73 acre relatively healthy montane meadow in the Sierra Nevada of northern California was chosen for this analysis due to its protected status (in the Eldorado National Forest) and drainage infrastructure (culverts managing flow into and out of the meadow). A water budget for the meadow was developed to understand the quantity and timing of water entering and leaving the meadow throughout the 2009-2010 water year. The water storage capacity was estimated from data collected from piezometers, seismic refraction surveys and weirs. Flow attenuation parameters were assessed by comparing water reservoir increases and decreases during specific precipitation events. Results suggest that the meadow does slow down surface water pass through. An imbalance of surface flow in versus surface flow out suggests that surplus inflow waters may be recharging deeper aquifer systems via bedrock fractures although additional work is necessary to confirm this connection.

  18. 77 FR 36300 - In the Matter of Connecticut Yankee Atomic Power Company; Haddam Neck Plant; Confirmatory Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... the Matter of Connecticut Yankee Atomic Power Company; Haddam Neck Plant; Confirmatory Order Modifying... Commission (NRC or the Commission) issued a Confirmatory Order to Connecticut Yankee Atomic Power Company...: (301) 492-3342; Email: [email protected] . I Connecticut Yankee Atomic Power Company (Connecticut...

  19. 75 FR 10833 - In the Matter of Entergy Nuclear Operations; Vermont Yankee Nuclear Power Station; Demand for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 05000271; License No. DPR-28; EA-10-034; NRC-2010-0089] In the Matter of Entergy Nuclear Operations; Vermont Yankee Nuclear Power Station; Demand for.... The license authorizes the operation of the Vermont Yankee Nuclear Power Station (Vermont Yankee) in...

  20. 75 FR 44224 - Grant of Authority for Subzone Status; Yankee Candle Corporation (Candles and Gift Sets); Whately...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... Status; Yankee Candle Corporation (Candles and Gift Sets); Whately and South Deerfield, MA Pursuant to... special-purpose subzone at the candle and gift set manufacturing and distribution facilities of Yankee... activity related to the manufacturing and distribution of candles and gift sets at the facilities of Yankee...

  1. Wet meadows

    Treesearch

    Jonathan W. Long; Karen Pope

    2014-01-01

    Wet meadows help to sustain favorable water flows, biological diversity, and other values; consequently, restoration of degraded wet meadows is an important part of a strategy for promoting socioecological resilience. This chapter focuses on high-elevation wet meadows that are associated with streams; thus restoration of such meadows may be considered a subset of...

  2. 78 FR 50458 - Entergy Nuclear Operations, Inc., James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... Nuclear Operations, Inc., James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee Nuclear Power Station, Pilgrim Nuclear Power Station, Request for Action AGENCY: Nuclear Regulatory Commission. ACTION: Request... that the NRC take action with regard to James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee...

  3. Reservoir competence of Microtus pennsylvanicus (Rodentia: Cricetidae) for the Lyme disease spirochete, Borrelia burgdorferi

    USGS Publications Warehouse

    Markowski, D.; Ginsberg, H.S.; Hyland, K.E.; Hu, R.

    1998-01-01

    The reservoir competence of the meadow vole, Microtus pennsylvanicus Ord, for the Lyme disease spirochete, Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt & Brenner was established on Patience Island, RI. Meadow voles were collected from 5 locations throughout Rhode Island. At 4 of the field sites, M. pennsylvanicus represented only 4.0% (n = 141) of the animals captured. However, on Patience Island, M. pennsylvanicus was the sole small mammal collected (n = 48). Of the larval Ixodes scapularis Say obtained from the meadow voles on Patience Island, 62% (n = 78) was infected with B. burgdorferi. Meadow voles from all 5 locations were successfully infected with B. burgdorferi in the laboratory and were capable of passing the infection to xenodiagnostic I. scapularis larvae for 9 wk. We concluded that M. pennsylvanicus was physiologically capable of maintaining B. burgdorferi infection. However, in locations where Peromyscus leucopus (Rafinesque) is abundant, the role of M. pennsylvanicus as a primary reservoir for B. burgdorferi was reduced.

  4. 77 FR 133 - In the Matter of Connecticut Yankee Atomic Power Company; Northeast Utilities; NSTAR (Haddam Neck...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-03

    ... the Matter of Connecticut Yankee Atomic Power Company; Northeast Utilities; NSTAR (Haddam Neck Plant); Order Approving Application Regarding Proposed Merger I Connecticut Yankee Atomic Power Company..., pursuant to Section 184 of the Atomic Energy Act of 1954, as amended (AEA), and Title 10 of the Code of...

  5. Stream-Sediment Geochemistry in Mining-Impacted Drainages of the Yankee Fork of the Salmon River, Custer County, Idaho

    USGS Publications Warehouse

    Frost, Thomas P.; Box, Stephen E.

    2009-01-01

    This reconnaissance study was undertaken at the request of the USDA Forest Service, Region 4, to assess the geochemistry, in particular the mercury and selenium contents, of mining-impacted sediments in the Yankee Fork of the Salmon River in Custer County Idaho. The Yankee Fork has been the site of hard-rock and placer mining, primarily for gold and silver, starting in the 1880s. Major dredge placer mining from the 1930s to 1950s in the Yankee Fork disturbed about a 10-kilometer reach. Mercury was commonly used in early hard-rock mining and placer operations for amalgamation and recovery of gold. During the late 1970s, feasibility studies were done on cyanide-heap leach recovery of gold from low-grade ores of the Sunbeam and related deposits. In the mid-1990s a major open-pit bulk-vat leach operation was started at the Grouse Creek Mine. This operation shut down when gold values proved to be lower than expected. Mercury in stream sediments in the Yankee Fork ranges from below 0.02 ppm to 7 ppm, with the highest values associated with old mill locations and lode and placer mines. Selenium ranges from below the detection limit for this study of 0.2 ppm to 4 ppm in Yankee Fork sediment samples. The generally elevated selenium content in the sediment samples reflect the generally high selenium contents in the volcanic rocks that underlie the Yankee Fork and the presence of gold and silver selenides in some of the veins that were exploited in the early phases of mining.

  6. Restore McComas Meadows; Meadow Creek Watershed, 2005-2006 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRoberts, Heidi

    2006-07-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Meadow Creek watershed are coordinated and cost shared with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Meadow Creek watershed of the South Fork Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing, planting trees in riparian areas within the meadow and its tributaries, prioritizing culverts for replacement to accommodate fish passage, and decommissioning roads tomore » reduce sediment input. During this contract period work was completed on two culvert replacement projects; Doe Creek and a tributary to Meadow Creek. Additionally construction was also completed for the ditch restoration project within McComas Meadows. Monitoring for project effectiveness and trends in watershed conditions was also completed. Road decommissioning monitoring, as well as stream temperature, sediment, and discharge were completed.« less

  7. Anthropogenic Disturbance of Montane Meadows May Cause Substantial Loss of Soil Carbon to the Atmosphere

    NASA Astrophysics Data System (ADS)

    Reed, C. C.; Sullivan, B. W.; Hart, S. C.; Drew, M.; Merrill, A.

    2016-12-01

    High-elevation meadows are biological hotspots that contain high densities of soil carbon (C). The capacity of these ecosystems to sequester C depends on a combination of high primary productivity, seasonally low temperatures, and anaerobic soil conditions associated with water tables at or near the soil surface. However, anthropogenic disturbances in many montane meadows in California's Sierra Nevada have lowered water tables, decreased primary productivity, and created aerobic soil conditions - changes that may alter the balance of greenhouse gas (GHG) emissions and reverse meadows from a net C sink to a net source. Recently, C policy in California has spurred interest in the potential of hydrologic restoration to increase C sequestration in meadows. However, soil C pools and fluxes in degraded meadows must be quantified before the impacts of restoration can accurately be assessed. In this study, we measured soil C stocks in surface soil (1 m) and annual soil GHG fluxes (carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)) in three degraded, northern Sierra Nevada meadows. In a parallel laboratory incubation, we manipulated meadow soil water content to determine target goals for restoration of anaerobic conditions. Our results suggest that degraded meadows contain large reservoirs of existing C, but that this C may be vulnerable to decomposition under current conditions. Soil CO2 fluxes ranged from 26.7-33.1 Mg of CO2 ha-1 y-1, roughly equivalent to the amount of C sequestered annually by 70 acres of U.S. forests. These high rates of soil respiration, combined with low primary productivity, resulted in substantial losses of soil C with implications for climate change, ecosystem function, and restoration. Soils from these meadows were a net source of N2O and a net sink of CH4, but these fluxes were 4 orders of magnitude smaller than CO2. Also, we found substantial GHG emissions persist in these organic soils at peak soil moisture, suggesting that

  8. Restore McComas Meadows; Meadow Creek Watershed, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRoberts, Heidi

    2005-12-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Meadow Creek watershed are coordinated and cost shared with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Meadow Creek watershed of the South Fork Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing, planting trees in riparian areas within the meadow and its tributaries, prioritizing culverts for replacement to accommodate fish passage, and decommissioning roads tomore » reduce sediment input. During this contract period, bids were solicited and awarded for two culvert replacement projects on Doe Creek, and a tributary to Meadow Creek. Additionally, NEPA and permits were completed for the ditch restoration project within McComas Meadows. Due to delays in cultural resource surveys, the contract was not awarded for the performance of the ditch restoration. It will occur in 2005. Monitoring for project effectiveness and trends in watershed conditions was also completed. Road decommissioning monitoring, as well as stream temperature, sediment, and discharge were completed.« less

  9. DEVELOPMENT OF AGENTS AND PROCEDURES FOR DECONTAMINATION OF THE YANKEE REACTOR PRIMARY COOLANT SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, R.M.

    1959-03-01

    Developments relative to decontamination achieved under the Yankee Reasearch and Development program are reported. The decontamination of a large test loop which had been used to conduct corrosion rate studies for the Yankee reactor program is described. The basic permanganate-citrate decontamination procedure suggested for application in Yankee reactor primary system cleanup was used. A study of the chemistry of this decontamination operation is presented, together with conclusions pertaining to the effectiveness of the solutions under the conditions studied. In an attempt to further improve the efficiency of the procedure, an additional series of static and dynamic tests was performcd usingmore » contaminated sections of stainless steel tubing from the original SlW steam generator. Survival variables in the process (reagent composition, contact time, temperature, and flow velocity) were studied. The changes in decontamination efficiency produced by these variations are discussed and compared with results obtained throughthe use of similar procedures. Based on the observations made, conclusions are drawn concerning the optimum conditions for this cleanup process, a new set of suggested basic permanganate-citrate decontamination instructions is presented, and recommendations are made concerning future studies involving this procedure. (auth)« less

  10. Spring-summer diet of lake trout on Six Fathom Bank and Yankee Reef in Lake Huron

    USGS Publications Warehouse

    Madenjian, C.P.; Holuszko, J.D.; Desorcie, T.J.

    2006-01-01

    We examined the stomach contents of 1,045 lake trout (Salvelinus namaycush) caught on Six Fathom Bank and Yankee Reef, two offshore reef complexes in Lake Huron, during late spring and early summer 1998-2003. Lake trout ranged in total length from 213 to 858 mm, and in age from 2 to 14 years. In total, 742 stomachs contained food. On a wet-weight basis, alewife (Alosa pseudoharengus) dominated the spring-summer diet of lake trout on both of these offshore reef complexes. Alewives accounted for 75 to 90% of lake trout diet, depending on the lake trout size category. Size of alewives found in lake trout stomachs increased with increasing lake trout size. Faster growth of juvenile lake trout on Six Fathom Bank and Yankee Reef than on Sheboygan Reef in Lake Michigan was attributed to greater availability of small alewives on the offshore reefs in Lake Huron. Our findings indicated that alewives inhabited Six Fathom Bank and Yankee Reef during spring and summer months. Thus, our study provided support for the contention that alewives may have interfered with natural reproduction by lake trout on these offshore reef complexes in Lake Huron.

  11. Restore McComas Meadows; Meadow Creek Watershed, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRoberts, Heidi

    2006-08-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Meadow Creek watershed are coordinated and cost shared with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Meadow Creek watershed of the South Fork Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing, planting trees in riparian areas within the meadow and its tributaries, prioritizing culverts for replacement to accommodate fish passage, and decommissioning roads tomore » reduce sediment input. Designs for culvert replacements are being coordinated with the Nez Perce National Forest. 20 miles of roads were decommissioned. Tribal crews completed maintenance to the previously built fence.« less

  12. A Comparison of Sedimentary Environments in an Alpine Meadow and the Influence on Groundwater Availability, Applying Near Surface Geophysical Methods.

    NASA Astrophysics Data System (ADS)

    Ayers, M.; Galvin, J. L.; Blacic, T. M.; Yarnell, S. M.; Craig, M. S.

    2016-12-01

    Meadows are recognized for their value to the ecological, hydrologic, and aesthetic functions of a watershed as they attenuate floods, improve water quality and support herbaceous vegetation, promoting high biodiversity. During the dry summer growing season, Alpine meadow complexes are dependent on timely groundwater distribution of winter precipitation preserved in snowpack, and are therefore highly vulnerable to altered seasonal precipitation patterns. Comprehensive understanding of groundwater flux that supports meadow reaches relies on knowledge of their complex stratigraphic and structural subsurface framework. Hydrogeophysics has emphasized the combination of near surface geophysical techniques to qualitatively define these parameters. Van Norden meadow located in the Donner Summit area west of Lake Tahoe, one of the largest sub-alpine meadows in the Sierra Nevada mountain range of Northern California, provides a natural hydrologic laboratory. Previous field campaigns in 2014 and 2015 collected GPR frequencies of 50, 100, and 270 MHz as well as electrical resistivity profiles to better define the groundwater table, sedimentary, and structural features. Where the previous field campaigns yielded cross-sections characterizing the meadow proper as fluvial, fine grained alluvial plain to coarser stream gravels, positioned over glacial till, the 2016 transects aim to cover the proto meadow, before the anthropogenic creation of a reservoir Lake Van Norden. To facilitate transfer of this area from a local land trust to the Forestry Service, a drain in the dam supporting Lake Van Norden was opened in 2016, greatly reducing the water volume, exposing a significant area of previously inundated land and decades of lakebed sediments that will allow us to ascertain thickness and distribution to the underlying glacial till. Lakebed sediment accounts for differential infiltration rates and as in other meadow sites there are most likely buried channels that influence

  13. Micrometeorological Observations in a Sierra Nevada Meadow

    NASA Astrophysics Data System (ADS)

    Blackburn, D. A.; Oliphant, A. J.

    2016-12-01

    Mountain meadows play important roles on watershed and ecosystem services, including improving water quality, moderating runoff and providing biodiversity hotspots. In the Sierra Nevada, mountain meadows are an integral part of the mountain ecosystem and watersheds that impact more than 20 million people. Grazing, logging and other forms of anthropogenic land use in the Sierra Nevada have degraded the functioning of meadows, by altering the morphology, hydrology and vegetation. Existing meandering stream networks become incised and straightened by increased runoff, which effectively lowers the water table and completely alters the ecosystem from moist meadow sedges, grasses, and herbs to dryland grass and shrubs. Given the large growth cycle in healthy meadows, it is also expected that they sequester a significant amount of carbon and enhance atmospheric humidity through evapotranspiration, but relatively little work has been done on the bio-micrometeorology of meadows. The purpose of this study is to assess the growing season carbon, water and energy budgets of a partly degraded meadow in the northern Sierra Nevada. Loney Meadow, located at nearly 2,000 m in the Tahoe National Forest, has been identified as a degraded meadow and is scheduled to undergo restoration work to raise the water table in 2017. A micrometeorological tower with eddy covariance instruments was deployed at the site for most of the snow-free period from May to October 2016. The measurements include: fluxes of CO2, water vapor, surface radiation and energy budget components; ancillary meteorological and soil data; and an automated camera capturing daily images of the meadow surface. The poster will present diurnal and seasonal CO2 on a daily basis with a very rapid increase at the onset of the growing season.

  14. Hydrologic processes influencing meadow ecosystems [chapter 4

    Treesearch

    Mark L. Lord; David G. Jewett; Jerry R. Miller; Dru Germanoski; Jeanne C. Chambers

    2011-01-01

    The hydrologic regime exerts primary control on riparian meadow complexes and is strongly influenced by past and present geomorphic processes; biotic processes; and, in some cases, anthropogenic activities. Thus, it is essential to understand not only the hydrologic processes that operate within meadow complexes but also the interactions of meadow hydrology with other...

  15. The debate over re-licensing the Vermont Yankee nuclear power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, Richard; Hines, Paul; Dowds, Jonathan

    2010-05-15

    In 2009, the NRC's Atomic Safety and Licensing Board approved a 20-year license extension for the Vermont Yankee Nuclear Power plant. Less than seven months later, the Vermont State Senate voted 26-4 to block the required certificate for public good. How did a plant seen as likely to be re-licensed become the first in 20 years to be rejected in a public vote? (author)

  16. Watershed-scale modeling of streamflow change in incised montane meadows

    USGS Publications Warehouse

    Essaid, Hedeff I.; Hill, Barry R.

    2014-01-01

    Land use practices have caused stream channel incision and water table decline in many montane meadows of the Western United States. Incision changes the magnitude and timing of streamflow in water supply source watersheds, a concern to resource managers and downstream water users. The hydrology of montane meadows under natural and incised conditions was investigated using watershed simulation for a range of hydrologic conditions. The results illustrate the interdependence between: watershed and meadow hydrology; bedrock and meadow aquifers; and surface and groundwater flow through the meadow for the modeled scenarios. During the wet season, stream incision resulted in less overland flow and interflow and more meadow recharge causing a net decrease in streamflow and increase in groundwater storage relative to natural meadow conditions. During the dry season, incision resulted in less meadow evapotranspiration and more groundwater discharge to the stream causing a net increase in streamflow and a decrease in groundwater storage relative to natural meadow conditions. In general, for a given meadow setting, the magnitude of change in summer streamflow and long-term change in watershed groundwater storage due to incision will depend on the combined effect of: reduced evapotranspiration in the eroded meadow; induced groundwater recharge; replenishment of dry season groundwater storage depletion in meadow and bedrock aquifers by precipitation during wet years; and groundwater storage depletion that is not replenished by precipitation during wet years.

  17. Photosynthetic activity buffers ocean acidification in seagrass meadows

    NASA Astrophysics Data System (ADS)

    Hendriks, I. E.; Olsen, Y. S.; Ramajo, L.; Basso, L.; Steckbauer, A.; Moore, T. S.; Howard, J.; Duarte, C. M.

    2014-01-01

    Macrophytes growing in shallow coastal zones characterised by intense metabolic activity have the capacity to modify pH within their canopy and beyond. We observed diel pH changes in shallow (5-12 m) seagrass (Posidonia oceanica) meadows spanning 0.06 pH units in September to 0.24 units in June. The carbonate system (pH, DIC, and aragonite saturation state (ΩAr)) and O2 within the meadows displayed strong diel variability driven by primary productivity, and changes in chemistry were related to structural parameters of the meadow, in particular, the leaf surface area available for photosynthesis (LAI). LAI was positively correlated to mean, max and range pHNBS and max and range ΩAr. In June, vertical mixing (as Turbulent Kinetic Energy) influenced max and min ΩAr, while in September there was no effect of hydrodynamics on the carbonate system within the canopy. Max and range ΩAr within the meadow showed a positive trend with the calcium carbonate load of the leaves, pointing to a possible link between structural parameters, ΩAr and carbonate deposition. Calcifying organisms, e.g. epiphytes with carbonate skeletons, may benefit from the modification of the carbonate system by the meadow. There is, however, concern for the ability of seagrasses to provide modifications of similar importance in the future. The predicted decline of seagrass meadows may alter the scope for alteration of pH within a seagrass meadow and in the water column above the meadow, particularly if shoot density and biomass decline, on which LAI is based. Organisms associated with seagrass communities may therefore suffer from the loss of pH buffering capacity in degraded meadows.

  18. Montane meadow evapotranspiration: implications for restoration and impacts on downstream flow.

    NASA Astrophysics Data System (ADS)

    Lucas, R. G.; Conklin, M. H.; Goulden, M.

    2015-12-01

    Meadows comprise less than 1 percent of the area in the Sierra Nevada Mountains, CA, but play an important role in hydrologic processes of Sierra catchments. This study constrains meadow evapotranspiration (ET) and places meadow ET in the context of the greater watershed ET. Meadows in the Sierra Nevada range from pristine to restored to degraded—decades of stock grazing, road building, and logging, have left incised stream channels and lowered water tables in many meadow s. The State of California has prioritized meadow restoration; these efforts are motivated, at least in part, as a means to increase groundwater storage (California Water Action Plan; 2014). Information on how restoration affects meadow and catchment hydrology and ET is lacking. We combined eddy covariance measurements (2013 and 2014) and meteorological records (2008 to 2014) with an Artificial Neural Network to quantify meadow ET over a 7 year period. We focused on Long Meadow, which is a pristine meadow located at 2210 m in Sequoia National Park, CA. ET was highest in drought years 2012-2014 (532 mm in 2013) and lowest in a particularly wet year (470 mm), 2011. This trend is opposite that observed for nearby upland Sierra Nevada forest by the SSCZO eddy flux stations, where annual ET declined from wet to dry years. Meadow ET was generally lower and less variable than forest ET. Long Meadow ET is 25-50% greater than ET rates reported in systems similar to degraded meadows such as bitterbrush/sagebrush dominated areas (Mauer et al.; 2006); this ET discrepancy is consistent with previous studies that suggest healthy meadow ET can be 25-50% more than ET in a degraded meadow s (Hammersmark et al.; 2008). Because meadows are a small fraction of the land area, however, restoring meadows to healthy conditions results in only a small increase in ET in the greater watershed. Restoring a meadow similar in size (~4.6 hectares) and associated catchment size (~140 hectares) to Long Meadow from a degraded to

  19. Study of the relation between soil use, vegetation coverage, and the discharge of sediments from artificial reservoirs using MSS/LANDSAT images. Example: The Tres Marias reservoir and its supply basin

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Sausen, T. M.

    1981-01-01

    The land use and types of vegetation in the region of the upper Sao Francisco River, Brazil, are identified. This region comprises the supply basin of the Tres Marias reservoir. Imagery from channels 5 and 7 of the LANDSAT multispectral band scanner during wet and rainy seasons and ground truth data were employed to characterize and map the vegetation, land use, and sedimentary discharges from the reservoir. Agricultural and reforested lands, meadows, and forests are identified. Changes in land use due to human activity are demonstrated.

  20. Photosynthetic activity buffers ocean acidification in seagrass meadows

    NASA Astrophysics Data System (ADS)

    Hendriks, I. E.; Olsen, Y. S.; Ramajo, L.; Basso, L.; Steckbauer, A.; Moore, T. S.; Howard, J.; Duarte, C. M.

    2013-07-01

    Macrophytes growing in shallow coastal zones characterized by intense metabolic activity have the capacity to modify pH within their canopy and beyond. We observed diel pH ranges is in shallow (5-12 m) seagrass (Posidonia oceanica) meadows from 0.06 pH units in September to 0.24 units in June. The carbonate system (pH, DIC, and aragonite saturation state (ΩAr) and O2 within the meadows displayed strong diel variability driven by primary productivity, and changes in chemistry were related to structural parameters of the meadow, in particular, the leaf surface area available for photosynthesis (LAI). LAI was positively correlated to mean and max pHNBS and max ΩAr. Oxygen production positively influenced the range and maximum pHNBS and the range of ΩAr. In June, vertical mixing (as Turbulent Kinetic Energy) influenced ΩAr, while in September there was no effect of hydrodynamics on the carbonate system within the canopy. ΩAr was positively correlated with the calcium carbonate load of the leaves, demonstrating a direct link between structural parameters, ΩAr and carbonate deposition. There was a direct relationship between ΩAr, influenced directly by meadow LAI, and CaCO3 content of the leaves. Therefore, calcifying organisms, e.g. epiphytes with carbonate skeletons, might benefit from the modification of the carbonate system by the meadow. The meadow might be capable of providing refugia for calcifiers by increasing pH and ΩAr through metabolic activity. There is, however, concern for the ability of seagrasses to provide this refugia function in the future. The predicted decline of seagrass meadows may alter the scope for alteration of pH within a seagrass meadow and in the water column above the meadow, particularly if shoot density and biomass decline, both strongly linked to LAI. Organisms associated with seagrass communities may therefore suffer from the loss of pH buffering capacity in degraded meadows.

  1. Quantifying Current and Future Groundwater Storage in Snowmelt Dominated High Elevation Meadows of the Sierra Nevada Mountains, CA

    NASA Astrophysics Data System (ADS)

    Lowry, C.; Ciruzzi, D. M.

    2016-12-01

    In a warming climate, snowmelt dominated mountain systems such as the Sierra Nevada Mountains of California have limited water storage potential. Receding glaciers and recent drought in the Sierra Nevada Mountains has resulted in reduced stream flow, restricting water availability for mountain vegetation. These geologic settings provide limited opportunities for groundwater storage due to a thin soil layer overlying expansive granitic bedrock. Yet high elevation meadows, which have formed in small depressions within the granitic bedrock, represent the only long-term storage reservoirs for water within the region. Through the use of field observations and numerical modeling this research investigates the role of meadow geometry, sediment properties, and topographic gradient to retain snowmelt derived groundwater recharge. These controlling factors affecting groundwater storage dynamics and surface-water outflows are evaluated under both current and dryer climatic conditions. Results show differential changes in seasonal storage of snowmelt and surface-water outflow under varying climate scenarios. The magnitude and timing of water storage and release is highly dependent on bedrock geometry and position within the watershed. Results show decrease of up to 20% in groundwater storage under dryer future climates resulting in a shift from long-term storage to steady release of water from these meadows. Testing of prior assumptions, such as uniform thickness, on meadow groundwater storage are shown to overestimate storage, resulting in higher volumes of water being released to streams earlier than observed in previous simulations. These results have implications for predicting water availability for downstream users as well as providing water for root water uptake of meadow vegetation under both current and future conditions.

  2. Mountain Meadows and their contribution to Sierra Nevada Water Resources

    NASA Astrophysics Data System (ADS)

    Cornwell, K.; Brown, K.; Monohan, C.

    2007-12-01

    Human alterations of California's waterscape have exploited rivers, wetlands and meadows of the Sierra Nevada. A century of intensive logging, mining, railroad building, development, fire suppression, and grazing by sheep and cattle has left only 25 percent "intact" natural habitat in the Sierra Nevada (SNEP 1995). Much of this intact habitat occurs at higher elevations, often in non-forested alpine or in less productive forests and woodlands where mountain meadows exist. Mountain meadows serve many ecological functions including habitat for threatened and endangered terrestrial and aquatic species, and are considered to be essential physical components to watershed function and hydrology with significant water storage, filtration and flood attenuation properties. This study evaluates the physical characteristics and hydrologic function of Clarks Meadow located in northern Sierra Nevada, Plumas County, California. In 2001, Clarks Meadow received significant restoration work in the upstream half of the meadow which diverted the stream from an incised channel to a shallow remnant channel, creating a stable channel and reconnecting the groundwater table to the stream. No restoration work was done in the lower half of Clarks Meadow where the stream still flows through an incised channel. Clarks Meadow offers a unique opportunity to study both a restored, hydrologically functional meadow and an incised, hydrologically disconnected stretch of the same stream and meadow. The physical characteristics of Clarks Meadows that were measured include surface area, subsurface thickness, porosity and permeability of subsurface materials, potential water storage volume, and surface infiltration rates. The goal of this study is to refine hydrologic characterization methods, quantify water storage potential of a healthy, non-incised meadow and assess its role in attenuating flood flows during high discharge times. Initial results suggest that significant subsurface storage volume is

  3. Meadows in the Sierra Nevada of California: state of knowledge

    Treesearch

    Raymond D. Ratliff

    1985-01-01

    This state-of-knowledge report summarizes the best available information on maintenance, restoration, and management of meadows of the Sierra Nevada, California. Major topics discussed include how to classify meadows, meadow soils, productivity of meadows, management problems, and how to evaluate range conditions and trends. Current methods and standards are reviewed,...

  4. Sierra Nevada meadows: species alpha diversity

    Treesearch

    Raymond D. Ratliff

    1993-01-01

    Plant species diversity refers to variety and abundance; it does not necessarily relate to meadow health but may provide information important in an ecosystem context. Monitoring to detect change in diversity usually begins with estimating alpha (within) diversity of plant communities. Because few such estimates exist for meadow site classes or specific sites of the...

  5. 75 FR 3705 - Foreign-Trade Zone 201-Holyoke, MA; Application for Subzone; Yankee Candle Corporation (Candles...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-22

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Docket 2-2010] Foreign-Trade Zone 201--Holyoke, MA; Application for Subzone; Yankee Candle Corporation (Candles and Gift Sets); Whately and South Deerfield, MA An application has been submitted to the Foreign-Trade Zones Board (the Board) by the Holyoke...

  6. Twenty Years of "Plug-and-Pond" Meadow Restoration: A Geomorphic Review

    NASA Astrophysics Data System (ADS)

    Natali, J.

    2015-12-01

    Channel incision has degraded the ecological function of wet meadows across montane regions of California. Conservation groups estimate that half of the Sierra Nevada's 333,000 acres of meadow are entrenched in a degraded state that is characterized by a shift from groundwater­fed, herbaceous vegetation to more sparse, drought­tolerant woody vegetation. My poster will present results of field research on a prominent restoration technique in California's montane meadows, the "Plug­and­Pond." Fundamentally, the technique re­channelizes the meadow by blocking flow into incised stream channels. Spoils dug from meadow sediments plug the incised channel, creating ponds as a by­product. One of three approaches to re­channelization ensues: (1) construct a new shallow and sinuous channel, (2) redirect flows into a remnant channel, (3) or allow the channel to define itself over the meadow floodplain. Re­ channelization aims to support overbank flows at 1.5 to 3 year recurrence intervals. Field surveys of ten of the oldest "plug-and-pond" meadow restoration projects in California reveal that channel bed degradation caused by meadow-scale changes to channel slope (i.e. culverts concentrating flows, channel straightening, meadow grazing) may be more conducive to intensive restoration approaches like Plug-and-Pond.

  7. 76 FR 29721 - Lost River and Challis-Yankee Fork Ranger Districts, Salmon-Challis National Forest; ID; Lost...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ... DEPARTMENT OF AGRICULTURE Forest Service Lost River and Challis-Yankee Fork Ranger Districts... AGENCY: Forest Service, USDA. ACTION: Withdrawal of notice of intent to prepare an environmental impact statement. SUMMARY: The Forest Service proposed to prepare an Environmental Impact Statement for the Lost...

  8. Bacterial diversity of siliciclastic sediments in a Thalassia testudinum meadow and the implications for Lucinisca nassula chemosymbiosis

    NASA Astrophysics Data System (ADS)

    Green-García, Angela M.; Engel, Annette Summers

    2012-10-01

    Despite the ecological and economic importance of Thalassia testudinum (turtle grass) meadows along the Caribbean and Gulf of Mexico coasts, and recognition that microbial activities are critical to plant growth and health, the bacterial diversity of these habitats has been poorly studied. Based on comparative analyses of 16S rRNA gene sequences from sediments in a T. testudinum meadow, 25 major taxonomic groups (excluding candidate divisions) were retrieved, including Alpha- Delta-, and Gamma-proteobacteria, Chloroflexi, Bacteroidetes, Acidobacteria, Spirochaetes, and Firmicutes. The distribution of bacterial groups was linked to a strongly hypoxic and sulfidic redox gradient. The diversity is potentially novel because phylogenetic affinities of sediment sequences compared to contextually annotated environmental clones from different habitats or to cultured representatives indicated approximately 41% were more closely related to each other than to sequences retrieved from these other habitats. Of all the relationships, very few (2.4%) were to cultured organisms, but 27% were to environmental clones retrieved from shallow marine shelf and coastal sediments or from mangroves, estuarine, or wetland sediments. Rare sequences were closely related to endosymbiont groups of Lucinisca nassula (Lucinidea: Bivalvia) hosts collected from the same meadow, which may indicate that the sediment is a potential reservoir for free-living symbionts. This study provides insight into the ecological and evolutionary relationships of the Thalassia-lucinid-bacteria system in tropical to sub-tropical regions.

  9. Habitat characteristics provide insights of carbon storage in seagrass meadows.

    PubMed

    Mazarrasa, Inés; Samper-Villarreal, Jimena; Serrano, Oscar; Lavery, Paul S; Lovelock, Catherine E; Marbà, Núria; Duarte, Carlos M; Cortés, Jorge

    2018-02-16

    Seagrass meadows provide multiple ecosystem services, yet they are among the most threatened ecosystems on earth. Because of their role as carbon sinks, protection and restoration of seagrass meadows contribute to climate change mitigation. Blue Carbon strategies aim to enhance CO 2 sequestration and avoid greenhouse gasses emissions through the management of coastal vegetated ecosystems, including seagrass meadows. The implementation of Blue Carbon strategies requires a good understanding of the habitat characteristics that influence C org sequestration. Here, we review the existing knowledge on Blue Carbon research in seagrass meadows to identify the key habitat characteristics that influence C org sequestration in seagrass meadows, those factors that threaten this function and those with unclear effects. We demonstrate that not all seagrass habitats have the same potential, identify research priorities and describe the implications of the results found for the implementation and development of efficient Blue Carbon strategies based on seagrass meadows. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Seagrass meadows in a globally changing environment.

    PubMed

    Unsworth, Richard K F; van Keulen, Mike; Coles, Rob G

    2014-06-30

    Seagrass meadows are valuable ecosystem service providers that are now being lost globally at an unprecedented rate, with water quality and other localised stressors putting their future viability in doubt. It is therefore critical that we learn more about the interactions between seagrass meadows and future environmental change in the anthropocene. This needs to be with particular reference to the consequences of poor water quality on ecosystem resilience and the effects of change on trophic interactions within the food web. Understanding and predicting the response of seagrass meadows to future environmental change requires an understanding of the natural long-term drivers of change and how these are currently influenced by anthropogenic stress. Conservation management of coastal and marine ecosystems now and in the future requires increased knowledge of how seagrass meadows respond to environmental change, and how they can be managed to be resilient to these changes. Finding solutions to such issues also requires recognising people as part of the social-ecological system. This special issue aims to further enhance this knowledge by bringing together global expertise across this field. The special issues considers issues such as ecosystem service delivery of seagrass meadows, the drivers of long-term seagrass change and the socio-economic consequences of environmental change to seagrass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Meadow knapweed in the Northeast: Should I know this species?

    USDA-ARS?s Scientific Manuscript database

    Meadow knapweed (Centaurea x moncktonii) is increasingly prevalent in New York agricultural lands, including pastures, meadows and waste areas. It is a hybrid of black (C. nigra) and brown (C. jacea) knapweeds that can be similar in appearance to the parental species, and we believe that meadow kna...

  12. Characterizing meadow vegetation with multitemporal Landsat thematic mapper remote sensing.

    Treesearch

    Alan A. Ager; Karen E. Owens

    2004-01-01

    Wet meadows are important biological components in the Blue Mountains of eastern Oregon. Many meadows in the Blue Mountains and elsewhere in the Western United States are in a state of change owing to grazing, mining, logging, road development, and other factors. This project evaluated the utility of remotely sensed data to characterize and monitor meadow vegetation...

  13. Response of mountain meadows to grazing by recreational pack stock

    USGS Publications Warehouse

    Cole, David N.; Van Wagtendonk, Jan W.; McClaran, Mitchel P.; Moore, Peggy E.; McDougald, Neil K.

    2004-01-01

    Effects of recreational pack stock grazing on mountain meadows in Yosemite National Park were assessed in a 5-year study. Yosemite is a designated wilderness, to be managed such that its natural conditions are preserved. Studies were conducted in 3 characteristic meadow types: shorthair sedge (Carex filifolia Nutt.), Brewer's reed grass (Calamagrostis breweri Thurber), and tufted hairgrass [Deschampsia cespitosa (L.) Beauv.]. Horses and mules grazed experimental plots at intensities of 15 to 69% utilization for 4 seasons. In all 3 meadows, grazing caused decreases in productivity. The mean reduction after 4 years of grazing was 18% in the shorthair sedge meadow, 17% in the Brewer's reed grass meadow, and 22% in the tufted hairgrass meadow. Grazing also caused shifts in basal groundcover (usually a reduction in vegetation cover and increase in bare soil cover), and changes in species composition. Productivity and vegetation cover decreased as percent utilization increased, while bare soil cover increased as utilization increased. Changes in species composition were less predictably related to differences in grazing intensity. Passive management of grazing is insufficient in wilderness areas that are regularly used by groups with recreational stock. Wilderness managers need to monitor meadow conditions and the grazing intensities that occur. Our study suggests that biomass and ground cover are more sensitive indicators of grazing impact than species composition. Managers must make decisions about maximum acceptable levels of grazing impact and then develop guidelines for maximum use levels, based on data such as ours that relates grazing intensity to meadow response.

  14. The microbially mediated soil organic carbon loss under degenerative succession in an alpine meadow.

    PubMed

    Zhang, Yuguang; Liu, Xiao; Cong, Jing; Lu, Hui; Sheng, Yuyu; Wang, Xiulei; Li, Diqiang; Liu, Xueduan; Yin, Huaqun; Zhou, Jizhong; Deng, Ye

    2017-07-01

    Land-cover change has long been recognized as having marked effect on the amount of soil organic carbon (SOC). However, the microbially mediated processes and mechanisms on SOC are still unclear. In this study, the soil samples in a degenerative succession from alpine meadow to alpine steppe meadow in the Qinghai-Tibetan Plateau were analysed using high-throughput technologies, including Illumina sequencing and geochip functional gene arrays. The soil microbial community structure and diversity were significantly (p < .05) different between alpine meadow and alpine steppe meadow; the microbial ɑ-diversity in alpine steppe meadow was significantly (p < .01) higher than in alpine meadow. Molecular ecological network analysis indicated that the microbial community structure in alpine steppe meadow was more complex and tighter than in the alpine meadow. The relative abundance of soil microbial labile carbon degradation genes (e.g., pectin and hemicellulose) was significantly higher in alpine steppe meadow than in alpine meadow, but the relative abundance of soil recalcitrant carbon degradation genes (e.g., chitin and lignin) showed the opposite tendency. The Biolog Ecoplate experiment showed that microbially mediated soil carbon utilization was more active in alpine steppe meadow than in alpine meadow. Consequently, more soil labile carbon might be decomposed in alpine steppe meadow than in alpine meadow. Therefore, the degenerative succession of alpine meadow because of climate change or anthropogenic activities would most likely decrease SOC and nutrients medicated by changing soil microbial community structure and their functional potentials for carbon decomposition. © 2017 John Wiley & Sons Ltd.

  15. FACTORS AFFECTING CARBON ACCUMULATION IN NEW ENGLAND EELGRASS MEADOWS

    EPA Science Inventory

    As atmospheric and oceanic concentrations of carbon dioxide continue to increase, quantifying the carbon storage potential of seagrass meadows and improving the understanding of the factors controlling carbon sequestration in seagrass meadows is essential information for decision...

  16. Flooding tolerance of four floodplain meadow species depends on age.

    PubMed

    Gattringer, Johannes P; Donath, Tobias W; Eckstein, R Lutz; Ludewig, Kristin; Otte, Annette; Harvolk-Schöning, Sarah

    2017-01-01

    Numerous restoration campaigns focused on re-establishing species-rich floodplain meadows of Central Europe, whose species composition is essentially controlled by regular flooding. Climate change predictions expect strong alterations on the discharge regime of Europe's large rivers with little-known consequences on floodplain meadow plants. In this study, we aim to determine the effects of flooding on seedlings of different ages of four typical flood meadow species. To this end, we flooded seedlings of two familial pairs of flood meadow species of wetter and dryer microhabitats for 2 weeks each, starting 2, 4, 6, and 8 weeks after seedling germination, respectively. We show that a 2-week-flooding treatment had a negative effect on performance of seedlings younger than 6 weeks. Summer floods with high floodwater temperatures may have especially detrimental effects on seedlings, which is corroborated by previous findings. As expected, the plants from wet floodplain meadow microhabitats coped better with the flooding treatment than those from dryer microhabitats. In conclusion, our results suggest that restoration measures may perform more successfully if seedlings of restored species are older than the critical age of about 6 weeks before a spring flooding begins. Seasonal flow patterns may influence vegetation dynamics of floodplain meadows and should, therefore, be taken into account when timing future restoration campaigns.

  17. Controls on meadow distribution and characteristics [chapter 2

    Treesearch

    Dru Germanoski; Jerry R. Miller; Mark L. Lord

    2011-01-01

    Meadow complexes are located in distinct geomorphic and hydrologic settings that allow groundwater to be at or near the ground surface during at least part of the year. Meadows are manifestations of the subsurface flow system, and their distribution is controlled by factors that cause localized zones of groundwater discharge. Knowledge of the factors that serve as...

  18. Flooding tolerance of four floodplain meadow species depends on age

    PubMed Central

    Donath, Tobias W.; Eckstein, R. Lutz; Ludewig, Kristin; Otte, Annette; Harvolk-Schöning, Sarah

    2017-01-01

    Numerous restoration campaigns focused on re-establishing species-rich floodplain meadows of Central Europe, whose species composition is essentially controlled by regular flooding. Climate change predictions expect strong alterations on the discharge regime of Europe’s large rivers with little-known consequences on floodplain meadow plants. In this study, we aim to determine the effects of flooding on seedlings of different ages of four typical flood meadow species. To this end, we flooded seedlings of two familial pairs of flood meadow species of wetter and dryer microhabitats for 2 weeks each, starting 2, 4, 6, and 8 weeks after seedling germination, respectively. We show that a 2-week-flooding treatment had a negative effect on performance of seedlings younger than 6 weeks. Summer floods with high floodwater temperatures may have especially detrimental effects on seedlings, which is corroborated by previous findings. As expected, the plants from wet floodplain meadow microhabitats coped better with the flooding treatment than those from dryer microhabitats. In conclusion, our results suggest that restoration measures may perform more successfully if seedlings of restored species are older than the critical age of about 6 weeks before a spring flooding begins. Seasonal flow patterns may influence vegetation dynamics of floodplain meadows and should, therefore, be taken into account when timing future restoration campaigns. PMID:28467463

  19. Traditional Livelihoods, Conservation and Meadow Ecology in Jiuzhaigou National Park, Sichuan, China

    PubMed Central

    Urgenson, Lauren; Schmidt, Amanda H.; Combs, Julie; Harrell, Stevan; Hinckley, Thomas; Yang, Qingxia; Ma, Ziyu; Yongxian, Li; Hongliang, Lü; MacIver, Andrew

    2015-01-01

    Jiuzhaigou National Park (JNP) is a site of global conservation significance. Conservation policies in JNP include the implementation of two national reforestation programs to increase forest cover and the exclusion of local land-use. We use archaeological excavation, ethnographic interviews, remote sensing and vegetation surveys to examine the implications of these policies for non-forest, montane meadows. We find that Amdo Tibetan people cultivated the valley for >2,000 years, creating and maintaining meadows through land clearing, burning and grazing. Meadows served as sites for gathering plants and mushrooms and over 40 % of contemporary species are ethnobotanically useful. Remote sensing analyses indicate a substantial (69.6 %) decline in meadow area between 1974 and 2004. Respondents report a loss of their “true history” and connections to the past associated with loss of meadows. Conservation policies intended to preserve biodiversity are unintentionally contributing to the loss of these ecologically and culturally significant meadow habitats. PMID:26097267

  20. Response of Vegetation Greenness to Climate Change in Meadows of the Sierra Nevada Mountains

    NASA Astrophysics Data System (ADS)

    von Kaenel, M.

    2016-12-01

    Wet meadows in the Sierra Nevada Mountain Range provide crucial ecological and hydrological services such as groundwater recharge and habitat to both wildlife and human communities, yet they are one of the most at-risk landscapes of the Sierra Nevada, with 40-60% of meadows impacted by degradation. These meadows also face the threat of global climate warming, which will bring earlier snowmelt and a greater proportion of precipitation as rain rather than snow in the Sierra Nevada, leading to shifts in the hydrology that governs meadow health and function. To assess the vulnerability of meadows to potential climate-driven degradation, this research relied on remote sensing to track maximum annual vegetation greenness as an indicator for vegetation health and consequentially meadow function in 2,512 Sierra Nevada meadows from 1989 to 2015, and correlated these fluctuations with changes in local climate. Peak snow water content, April 1st snowpack depth, and total annual precipitation are all positively correlated with maximum meadow greenness, with precipitation being the best predictor of greenness. The extent to which meadow greenness varies with changes in climate differs significantly across elevation, latitude, vegetation type, and dominant rock type. Based on data-derived sensitivities, I conclude that restoration should be prioritized in grassland meadows and meadows at high elevations, due to their high vulnerability to changes in climate and a high risk of global warming induced hydrological shifts.

  1. Methane emission by plant communities in an alpine meadow on the Qinghai-Tibetan Plateau: a new experimental study of alpine meadows and oat pasture.

    PubMed

    Wang, Shiping; Yang, Xiaoxia; Lin, Xingwu; Hu, Yigang; Luo, Caiyun; Xu, Guangping; Zhang, Zhenhua; Su, Ailing; Chang, Xiaofen; Chao, Zengguo; Duan, Jichuang

    2009-08-23

    Recently, plant-derived methane (CH(4)) emission has been questioned because limited evidence of the chemical mechanism has been identified to account for the process. We conducted an experiment with four treatments (i.e. winter-grazed, natural alpine meadow; naturally restored alpine meadow eight years after cultivation; oat pasture and bare soil without roots) during the growing seasons of 2007 and 2008 to examine the question of CH(4) emission by plant communities in the alpine meadow. Each treatment consumed CH(4) in closed, opaque chambers in the field, but two types of alpine meadow vegetation reduced CH(4) consumption compared with bare soil, whereas oat pasture increased consumption. This result could imply that meadow vegetation produces CH(4). However, measurements of soil temperature and water content showed significant differences between vegetated and bare soil and appeared to explain differences in CH(4) production between treatments. Our study strongly suggests that the apparent CH(4) production by vegetation, when compared with bare soil in some previous studies, might represent differences in soil temperature and water-filled pore space and not the true vegetation sources of CH(4).

  2. Wet meadow ecosystems and the longevity of biologically-mediated geomorphic features

    NASA Astrophysics Data System (ADS)

    Nash, C.; Grant, G.; O'Connor, J. E.

    2016-12-01

    Upland meadows represent a ubiquitous feature of montane landscapes in the U.S. West and beyond. Characterized by flat valley floors flanked by higher-gradient hillslopes, these meadows are important features, both for the diverse ecosystems they support but also because they represent depositional features in what is primarily an erosional environment. As such, they serve as long-term chronometers of both geological and ecological processes in a portion of the landscape where such records are rare, and provide a useful microcosm for exploring many of the questions motivating critical zone science. Specifically, meadows can offer insights into questions regarding the longevity of theses biologically-mediated landscapes, and the geomorphic thresholds associated with transitions between metastable landscape states. Though categorically depositional, wet meadows have been shown to rapidly shift into erosional landscapes characterized by deep arroyos, declining water tables, and sparse, semi-arid ecosystems. Numerous hypotheses have been proposed explaining this shift: intensive ungulate usage, removal of beaver, climatic shifts, and intrinsic geomorphic evolution. Even less is known about the mechanisms controlling the construction of these meadow features. Evidence seems to suggest these channels oscillate between two metastable conditions: deeply incised, single-threaded channels and sheet-flow dominated valley-spanning wetlands. We present new evidence exploring the subsurface architecture of wet meadows and the bidirectional process cascades potentially responsible for their temporal evolution. Using a combination of near surface geophysical techniques and detailed stratigraphic descriptions of incised and un-incised meadows throughout the Silvies River Basin, OR, we examine mechanisms responsible both for the construction of these features and their apparently rapid transition from depositional to erosional. Our investigation focuses specifically on potential

  3. Detecting Montane Meadows in the Tahoe National Forest Using LiDAR and ASTER Imagery

    NASA Astrophysics Data System (ADS)

    Lorenz, A.; Blesius, L.; Davis, J. D.

    2016-12-01

    In the Sierra Nevada mountains, meadows provide numerous hydraulic and ecosystem functions such as flood attenuation, groundwater storage, and wildlife habitat. However, many meadows have been degraded from historical land use such as water diversion, grazing, and logging. Land managers have altered management strategies for restoration purposes, but there is a lack of comprehensive data on meadow locations. Previous attempts to inventory Sierra Nevada meadows have included several remote sensing techniques including heads up digitizing and pixel based image analysis, but this has been challenging due to geographic variability, seasonal changes, and meadow health. I present a remote sensing method using multiple return LiDAR (Light Detection and Ranging) and ASTER imagery to detect montane meadows in a subset of the Tahoe National Forest. The project used LiDAR data to create a digital terrain model and digital surface model. From these models, I derived canopy height, surface slope, and watercourse for the entire study area. Literature queries returned known values for canopy height and surface slope characteristic of montane meadows. These values were used to select for possible meadows within the study area. To filter out noise, only contiguous areas greater than one acre that satisfied the queries were used. Finally, 15-meter ASTER imagery was used to de-select for areas such as dirt patches or gravel bars that might have satisfied the previous queries and meadow criteria. When using high resolution aerial imagery to assess model accuracy, preliminary results show user accuracy of greater than 80%. Further validation is still needed to improve the accuracy of modeled meadow delineation. This method allows for meadows to be inventoried without discriminating based on geographic variability, seasonal changes, or meadow health.

  4. Quantification of carbon accumulation in eleven New England eelgrass meadows

    EPA Science Inventory

    As atmospheric and oceanic concentrations of carbon dioxide continue to increase, quantifying the carbon storage potential of seagrass meadows and improving the understanding of the factors controlling carbon sequestration in seagrass meadows is essential information for decision...

  5. Mercury and selenium concentrations in biofilm, macroinvertebrates, and fish collected in the Yankee Fork of the Salmon River, Idaho, USA, and their potential effects on fish health.

    PubMed

    Rhea, Darren T; Farag, Aïda M; Harper, David D; McConnell, Elizabeth; Brumbaugh, William G

    2013-01-01

    The Yankee Fork is a large tributary of the Salmon River located in central Idaho, USA, with an extensive history of placer and dredge-mining activities. Concentrations of selenium (Se) and mercury (Hg) in various aquatic trophic levels were measured in the Yankee Fork during 2001 and 2002. Various measurements of fish health were also performed. Sites included four on the mainstem of the Yankee Fork and two off-channel sites in partially reclaimed dredge pools used as rearing habitat for cultured salmonid eggs and fry. Hg concentrations in whole mountain whitefish and shorthead sculpin ranged from 0.28 to 0.56 μg/g dry weight (dw), concentrations that are generally less than those reported to have significant impacts on fish. Biofilm and invertebrates ranged from 0.05 to 0.43 μg Hg/g dw. Se concentrations measured in biota samples from the Yankee Fork were greater than many representative samples collected in the Snake and Columbia watersheds and often exceeded literature-based toxic thresholds. Biofilm and invertebrates ranged from 0.58 to 4.66 μg Se/g dw. Whole fish ranged from 3.92 to 7.10 μg Se/g dw, and gonads ranged from 6.91 to 31.84 μg Se/g dw. Whole-body Se concentrations exceeded reported toxicological thresholds at three of four sites and concentrations in liver samples were mostly greater than concentrations shown to have negative impacts on fish health. Histological examinations performed during this study noted liver abnormalities, especially in shorthead sculpin, a bottom-dwelling species.

  6. GEOMORPHIC CONTROLS ON MEADOW ECOSYSTEMS IN THE CENTRAL GREAT BASIN

    EPA Science Inventory

    Wet meadows, riparian corridor phreatophyte assemblages, and high-altitude spring-fed aspen meadows comprise a very small percentage of the total landscape of the mountain ranges in the central Great Basin however, they represent important ecological environments. We have used s...

  7. Using digital photography to examine grazing in montane meadows

    USGS Publications Warehouse

    McIlroy, Susan K.; Allen-Diaz, Barbara H.; Berg, Alexander C.

    2011-01-01

    Cattle (Bos taurus) numbers on national forests are allocated based on allotment grazing capacity, but spatial patterns of timing and density at smaller scales are difficult to assess. However, it is often in meadows or riparian areas that grazing may affect hydrology, biodiversity, and other important ecosystem characteristics. To explore real-time animal presence in montane meadows we distributed 18 digital cameras across nine sites in the Sierra National Forest, California. Our objectives were to document seasonal and diurnal presence of both cattle and mule deer (Odocoileus hemionus), identify the effects of three fencing treatments on animal distribution, and test digital photography as a tool for documenting cattle presence. We recorded 409 399 images during daylight hours for two grazing seasons, and we identified 5 084 and 24 482 cattle "marks" (instances of animal occurrence) in 2006 and 2007, respectively. Deer presence was much lower, with 331 marks in 2006 and 598 in 2007. Morning cattle presence was highest before 0800 hours both years (13.7% and 15.4% of total marks for 2006 and 2007, respectively). Marks decreased until 1100 hours and then increased around 1400 hours and remained relatively stable until 1900 hours. Marks then rose precipitously, with >20% of total marks recorded after 1900 hours both years. Deer presence was less than 10% per hour until 1800 hours, when >20% of total marks were recorded after this time both years. Among treatments, cattle marks were highest outside fences at partially fenced meadows, and deer were highest within completely fenced meadows. Our experience suggests that cameras are not viable tools for meadow monitoring due to variation captured within meadows and the time and effort involved in image processing and review.

  8. Upper Elk Meadows Research Natural Area: guidebook supplement 43

    Treesearch

    Reid Schuller; Cheshire Mayrsohn

    2013-01-01

    This guidebook describes Upper Elk Meadows Research Natural Area (RNA), a 90-ha (223-ac) area that supports a mixture of coniferous forest and open, shruband herb-dominated wetlands. The major forest plant association present within Upper Elk Meadows RNA is Pacific silver fir/vine maple/coolwort foamflower (Abies amabilis/Acer circinatum-Tiarella trifoliata...

  9. Experimental infection of meadow voles (Microtus pennsylvanicus) with sheep scrapie

    USGS Publications Warehouse

    Carlson, CM; Schneider, Jay R.; Pedersen, Janice C.; Heisey, Dennis M.; Johnson, Christopher J.

    2015-01-01

    Meadow voles (Microtus pennsylvanicus) are permissive to chronic wasting disease (CWD) infection, but their susceptibility to other transmissible spongiform encephalopathies (TSEs) is poorly characterized. In this initial study, we intracerebrally challenged 6 meadow voles with 2 isolates of sheep scrapie. Three meadow voles acquired a TSE after the scrapie challenge and an extended incubation period. The glycoform profile of proteinase K-resistant prion protein (PrP(res)) in scrapie-sick voles remained similar to the sheep inocula, but differed from that of voles clinically affected by CWD. Vacuolization patterns and disease-associated prion protein (PrP(Sc)) deposition were generally similar in all scrapie-affected voles, except in the hippocampus, where PrP(Sc) staining varied markedly among the animals. Our results demonstrate that meadow voles can acquire a TSE after intracerebral scrapie challenge and that this species could therefore prove useful for characterizing scrapie isolates.

  10. Review of reactor pressure vessel evaluation report for Yankee Rowe Nuclear Power Station (YAEC No. 1735)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheverton, R.D.; Dickson, T.L.; Merkle, J.G.

    1992-03-01

    The Yankee Atomic Electric Company has performed an Integrated Pressurized Thermal Shock (IPTS)-type evaluation of the Yankee Rowe reactor pressure vessel in accordance with the PTS Rule (10 CFR 50. 61) and a US Regulatory Guide 1.154. The Oak Ridge National Laboratory (ORNL) reviewed the YAEC document and performed an independent probabilistic fracture-mechnics analysis. The review included a comparison of the Pacific Northwest Laboratory (PNL) and the ORNL probabilistic fracture-mechanics codes (VISA-II and OCA-P, respectively). The review identified minor errors and one significant difference in philosophy. Also, the two codes have a few dissimilar peripheral features. Aside from these differences,more » VISA-II and OCA-P are very similar and with errors corrected and when adjusted for the difference in the treatment of fracture toughness distribution through the wall, yield essentially the same value of the conditional probability of failure. The ORNL independent evaluation indicated RT{sub NDT} values considerably greater than those corresponding to the PTS-Rule screening criteria and a frequency of failure substantially greater than that corresponding to the primary acceptance criterion'' in US Regulatory Guide 1.154. Time constraints, however, prevented as rigorous a treatment as the situation deserves. Thus, these results are very preliminary.« less

  11. Review of reactor pressure vessel evaluation report for Yankee Rowe Nuclear Power Station (YAEC No. 1735)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheverton, R.D.; Dickson, T.L.; Merkle, J.G.

    1992-03-01

    The Yankee Atomic Electric Company has performed an Integrated Pressurized Thermal Shock (IPTS)-type evaluation of the Yankee Rowe reactor pressure vessel in accordance with the PTS Rule (10 CFR 50. 61) and a US Regulatory Guide 1.154. The Oak Ridge National Laboratory (ORNL) reviewed the YAEC document and performed an independent probabilistic fracture-mechnics analysis. The review included a comparison of the Pacific Northwest Laboratory (PNL) and the ORNL probabilistic fracture-mechanics codes (VISA-II and OCA-P, respectively). The review identified minor errors and one significant difference in philosophy. Also, the two codes have a few dissimilar peripheral features. Aside from these differences,more » VISA-II and OCA-P are very similar and with errors corrected and when adjusted for the difference in the treatment of fracture toughness distribution through the wall, yield essentially the same value of the conditional probability of failure. The ORNL independent evaluation indicated RT{sub NDT} values considerably greater than those corresponding to the PTS-Rule screening criteria and a frequency of failure substantially greater than that corresponding to the ``primary acceptance criterion`` in US Regulatory Guide 1.154. Time constraints, however, prevented as rigorous a treatment as the situation deserves. Thus, these results are very preliminary.« less

  12. Impact of mooring activities on carbon stocks in seagrass meadows

    PubMed Central

    Serrano, O.; Ruhon, R.; Lavery, P. S.; Kendrick, G. A.; Hickey, S.; Masqué, P.; Arias-Ortiz, A.; Steven, A.; Duarte, C. M.

    2016-01-01

    Boating activities are one of the causes that threaten seagrass meadows and the ecosystem services they provide. Mechanical destruction of seagrass habitats may also trigger the erosion of sedimentary organic carbon (Corg) stocks, which may contribute to increasing atmospheric CO2. This study presents the first estimates of loss of Corg stocks in seagrass meadows due to mooring activities in Rottnest Island, Western Australia. Sediment cores were sampled from seagrass meadows and from bare but previously vegetated sediments underneath moorings. The Corg stores have been compromised by the mooring deployment from 1930s onwards, which involved both the erosion of existing sedimentary Corg stores and the lack of further accumulation of Corg. On average, undisturbed meadows had accumulated ~6.4 Kg Corg m−2 in the upper 50 cm-thick deposits at a rate of 34 g Corg m−2 yr−1. The comparison of Corg stores between meadows and mooring scars allows us to estimate a loss of 4.8 kg Corg m−2 in the 50 cm-thick deposits accumulated over ca. 200 yr as a result of mooring deployments. These results provide key data for the implementation of Corg storage credit offset policies to avoid the conversion of seagrass ecosystems and contribute to their preservation. PMID:26979407

  13. Continuous 1985-2012 Landsat monitoring to assess fire effects on meadows in Yosemite National Park, California

    USGS Publications Warehouse

    Soulard, Christopher E.; Albano, Christine M.; Villarreal, Miguel; Walker, Jessica

    2016-01-01

    To assess how montane meadow vegetation recovered after a wildfire that occurred in Yosemite National Park, CA in 1996, Google Earth Engine image processing was applied to leverage the entire Landsat Thematic Mapper archive from 1985 to 2012. Vegetation greenness (normalized difference vegetation index [NDVI]) was summarized every 16 days across the 28-year Landsat time series for 26 meadows. Disturbance event detection was hindered by the subtle influence of low-severity fire on meadow vegetation. A hard break (August 1996) was identified corresponding to the Ackerson Fire, and monthly composites were used to compare NDVI values and NDVI trends within burned and unburned meadows before, immediately after, and continuously for more than a decade following the fire date. Results indicate that NDVI values were significantly lower at 95% confidence level for burned meadows following the fire date, yet not significantly lower at 95% confidence level in the unburned meadows. Burned meadows continued to exhibit lower monthly NDVI in the dormant season through 2012. Over the entire monitoring period, the negative-trending, dormant season NDVI slopes in the burned meadows were also significantly lower than unburned meadows at 90% confidence level. Lower than average NDVI values and slopes in the dormant season compared to unburned meadows, coupled with photographic evidence, strongly suggest that evergreen vegetation was removed from the periphery of some meadows after the fire. These analyses provide insight into how satellite imagery can be used to monitor low-severity fire effects on meadow vegetation.

  14. L'Anse Aux Meadows, Newfoundland

    NASA Technical Reports Server (NTRS)

    2008-01-01

    L'Anse aux Meadows is a site on the northernmost tip of the island of Newfoundland, located in the Province of Newfoundland and Labrador, Canada, where the remains of a Viking village were discovered in 1960 by the Norwegians Helge and Anne Ingstad. The only authenticated Viking settlement in North America outside Greenland, it was the site of a multi-year archaeological dig that found dwellings, tools and implements that verified its time frame. The settlement, dating more than five hundred years before Christopher Columbus, contains the earliest European structures in North America. Named a World Heritage site by UNESCO, it is thought by many to be the semi-legendary 'Vinland' settlement of explorer Leif Ericson around AD 1000. The settlement at L'Anse aux Meadows consisted of at least eight buildings, including a forge and smelter, and a lumber yard that supported a shipyard. The largest house measured 28.8 by 15.6 m and consisted of several rooms. Sewing and knitting tools found at the site indicate women were present at L'Anse aux Meadows

    The image was acquired on September 14, 2007, covers an area of 14.2 x 14.6 km, and is located at 51.5 degrees north latitude, 55.6 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  15. Mercury and selenium concentrations in biofilm, macroinvertebrates, and fish collected in the Yankee Fork of the Salmon River, Idaho, USA, and their potential effects on fish health

    USGS Publications Warehouse

    Rhea, Darren T.; Farag, Aïda M.; Harper, David D.; McConnell, Elizabeth; Brumbaugh, William G.

    2013-01-01

    The Yankee Fork is a large tributary of the Salmon River located in central Idaho, USA, with an extensive history of placer and dredge-mining activities. Concentrations of selenium (Se) and mercury (Hg) in various aquatic trophic levels were measured in the Yankee Fork during 2001 and 2002. Various measurements of fish health were also performed. Sites included four on the mainstem of the Yankee Fork and two off-channel sites in partially reclaimed dredge pools used as rearing habitat for cultured salmonid eggs and fry. Hg concentrations in whole mountain whitefish and shorthead sculpin ranged from 0.28 to 0.56 μg/g dry weight (dw), concentrations that are generally less than those reported to have significant impacts on fish. Biofilm and invertebrates ranged from 0.05 to 0.43 μg Hg/g dw. Se concentrations measured in biota samples from the Yankee Fork were greater than many representative samples collected in the Snake and Columbia watersheds and often exceeded literature-based toxic thresholds. Biofilm and invertebrates ranged from 0.58 to 4.66 μg Se/g dw. Whole fish ranged from 3.92 to 7.10 μg Se/g dw, and gonads ranged from 6.91 to 31.84 μg Se/g dw. Whole-body Se concentrations exceeded reported toxicological thresholds at three of four sites and concentrations in liver samples were mostly greater than concentrations shown to have negative impacts on fish health. Histological examinations performed during this study noted liver abnormalities, especially in shorthead sculpin, a bottom-dwelling species.

  16. Cattle grazing and its long-term effects on sedge meadows

    USGS Publications Warehouse

    Middleton, Beth

    2004-01-01

    Most people think that wetlands are temporary, that they fill in by natural processes, and eventually become dry land. Some of these outdated ideas have come from the way that this subject has been covered in introductory textbooks in schools (Gibson, 1996). From these texts, we learned incorrectly that over time a lake fills with sediment or organic matter to become a wetland, which dries out to support shrubs and trees, and eventually it is no longer a wetland (Middleton, 1999; Middleton and others, 2004). These old ideas of how vegetation changes (succession) are no longer accepted. Wetland succession should be thought of as a cycle, with natural disturbance driving the changes, depending on the needs of the species. Succession is not something that changes a wetland into something that is not a wetland (Egler, 1978; van der Valk, 1981; Middleton and others, 1991; Klinger, 1996; Middleton, 1999).As an example of how disturbance changes wetlands, I have studied sedge meadows that have become invaded by shrubs after cattle (Bos sp.) have grazed them, in the Lodi Marsh State Natural Area, Wisconsin. Cattle disturbances allowed shrubs to invade sedge meadows, but the cattle also grazed on the shrubs, which kept them small. After the cows were removed, the plant species changed in the sedge meadow from the original sedges (fig. 1), to sedges mixed with growing small shrubs, and eventually to tall shrubs with very small amounts of sedge, called “shrub carr” (Middleton, 2002a). Even though there has been a succession of plant types, the meadows, which began as wetlands, have remained wetlands. The settlers originally found the sedge meadows to be open “sedge” lands and not shrubby. The settlers cut the sedges by hand to feed the cattle. Whitetailed deer (Odocoileus virginianus), though probably not bison (Bison bison), grazed these sedge meadows (Middleton 2002a).Subsequent studies have explored methods to control invasive shrubs to restore the biodiversity of

  17. Meadow contraction and extinction debt in meadow plants and moths in the Western Cascades

    EPA Science Inventory

    Meadows in the western Cascades have contracted and fragmented by approximately 50% in the past 60 years. These habitats occupy only about 5% of the landscape of the western Cascades but are important for the preservation of biodiversity and rare species. This habitat loss and ...

  18. RELATIONSHIPS OF MEADOW VEGETATION TO GROUNDWATER DEPTH: EFFECTS OF PRECIPITATION VARIABILITY AND STREAM INCISION

    EPA Science Inventory

    The composition of riparian meadow vegetation is controlled by access to groundwater. Depth to groundwater is controlled by meadow architecture and water source, and changes in either meadow architecture or water source through stream incision or changes in annual precipitation c...

  19. Registration of Azov meadow fescue

    USDA-ARS?s Scientific Manuscript database

    'Azov' meadow fescue [Schedonorus pratensis (Huds.) P. Beauv.; syn. Festuca pratensis Huds.; syn. Lolium pratense (Huds.) Darbysh.] is a synthetic population originating from 1000 parental genotypes. The parents of Azov were selected from ten Russian plant introductions, mostly originating from the...

  20. Riparian Meadow Response to Modern Conservation Grazing Management

    NASA Astrophysics Data System (ADS)

    Oles, Kristin M.; Weixelman, Dave A.; Lile, David F.; Tate, Kenneth W.; Snell, Laura K.; Roche, Leslie M.

    2017-09-01

    Riparian meadows occupy a small proportion of the public lands in the western United States but they provide numerous ecosystem services, including the production of high-quality forage for livestock grazing. Modern conservation management strategies (e.g., reductions in livestock stocking rates and adoption of new riparian grazing standards) have been implemented to better balance riparian conservation and livestock production objectives on publicly managed lands. We examined potential relationships between long-term changes in plant community, livestock grazing pressure and environmental conditions at two spatial scales in meadows grazed under conservation management strategies. Changes in plant community were not associated with either livestock stocking rate or precipitation at the grazing allotment (i.e., administrative) scale. Alternatively, both grazing pressure and precipitation had significant, albeit modest, associations with changes in plant community at the meadow (i.e., ecological site) scale. These results suggest that reductions in stocking rate have improved the balance between riparian conservation and livestock production goals. However, associations between elevation, site wetness, precipitation, and changes in plant community suggest that changing climate conditions (e.g., reduced snowpack and changes in timing of snowmelt) could trigger shifts in plant communities, potentially impacting both conservation and agricultural services (e.g., livestock and forage production). Therefore, adaptive, site-specific management strategies are required to meet grazing pressure limits and safeguard ecosystem services within individual meadows, especially under more variable climate conditions.

  1. Riparian Meadow Response to Modern Conservation Grazing Management.

    PubMed

    Oles, Kristin M; Weixelman, Dave A; Lile, David F; Tate, Kenneth W; Snell, Laura K; Roche, Leslie M

    2017-09-01

    Riparian meadows occupy a small proportion of the public lands in the western United States but they provide numerous ecosystem services, including the production of high-quality forage for livestock grazing. Modern conservation management strategies (e.g., reductions in livestock stocking rates and adoption of new riparian grazing standards) have been implemented to better balance riparian conservation and livestock production objectives on publicly managed lands. We examined potential relationships between long-term changes in plant community, livestock grazing pressure and environmental conditions at two spatial scales in meadows grazed under conservation management strategies. Changes in plant community were not associated with either livestock stocking rate or precipitation at the grazing allotment (i.e., administrative) scale. Alternatively, both grazing pressure and precipitation had significant, albeit modest, associations with changes in plant community at the meadow (i.e., ecological site) scale. These results suggest that reductions in stocking rate have improved the balance between riparian conservation and livestock production goals. However, associations between elevation, site wetness, precipitation, and changes in plant community suggest that changing climate conditions (e.g., reduced snowpack and changes in timing of snowmelt) could trigger shifts in plant communities, potentially impacting both conservation and agricultural services (e.g., livestock and forage production). Therefore, adaptive, site-specific management strategies are required to meet grazing pressure limits and safeguard ecosystem services within individual meadows, especially under more variable climate conditions.

  2. Restoration of floodplain meadows: Effects on the re-establishment of mosses.

    PubMed

    Michalska-Hejduk, Dorota; Wolski, Grzegorz J; Harnisch, Matthias; Otte, Annette; Bomanowska, Anna; Donath, Tobias W

    2017-01-01

    Vascular plants serve as target species for the evaluation of restoration success as they account for most of the plant species diversity and vegetation cover. Although bryophytes contribute considerably to the species diversity of meadows, they are rarely addressed in restoration projects. This project is a first step toward making recommendations for including mosses in alluvial floodplain restoration projects. The opportunity to assess the diversity and ecological requirements of mosses on floodplain meadows presented itself within the framework of a vegetation monitoring that took place in 2014 on meadows located along the northern Upper Rhine. In this area, large-scale meadow restoration projects have taken place since 1997 in both the functional and fossil floodplains. Other studies have shown that bryophytes are generally present in green hay used in restoration, providing inadvertent bryophyte introduction. We compared bryophyte communities in donor and restored communities and correlated these communities with environmental variables-taking into account that the mosses on the restoration sites possibly developed from green hay. This analysis provided insights as to which species of bryophytes should be included in future restoration projects, what diaspores should be used, and how they should be transferred. Data on bryophyte occurrence were gathered from old meadows, and from restoration sites. We found distinct differences in bryophyte composition (based on frequency) in restored communities in functional flood plains compared to donor communities. Generally, restoration sites are still characterized by a lower species-richness, with a significantly lower occurrence of rare and red listed species and a lower species-heterogeneity. In conclusion, our research establishes what mosses predominate in donor and restored alluvial meadows along the northern Upper River, and what microsite conditions favour particular species. This points the way to deliberate

  3. Restoration of floodplain meadows: Effects on the re-establishment of mosses

    PubMed Central

    Wolski, Grzegorz J.; Harnisch, Matthias; Otte, Annette; Bomanowska, Anna; Donath, Tobias W.

    2017-01-01

    Vascular plants serve as target species for the evaluation of restoration success as they account for most of the plant species diversity and vegetation cover. Although bryophytes contribute considerably to the species diversity of meadows, they are rarely addressed in restoration projects. This project is a first step toward making recommendations for including mosses in alluvial floodplain restoration projects. The opportunity to assess the diversity and ecological requirements of mosses on floodplain meadows presented itself within the framework of a vegetation monitoring that took place in 2014 on meadows located along the northern Upper Rhine. In this area, large-scale meadow restoration projects have taken place since 1997 in both the functional and fossil floodplains. Other studies have shown that bryophytes are generally present in green hay used in restoration, providing inadvertent bryophyte introduction. We compared bryophyte communities in donor and restored communities and correlated these communities with environmental variables—taking into account that the mosses on the restoration sites possibly developed from green hay. This analysis provided insights as to which species of bryophytes should be included in future restoration projects, what diaspores should be used, and how they should be transferred. Data on bryophyte occurrence were gathered from old meadows, and from restoration sites. We found distinct differences in bryophyte composition (based on frequency) in restored communities in functional flood plains compared to donor communities. Generally, restoration sites are still characterized by a lower species-richness, with a significantly lower occurrence of rare and red listed species and a lower species-heterogeneity. In conclusion, our research establishes what mosses predominate in donor and restored alluvial meadows along the northern Upper River, and what microsite conditions favour particular species. This points the way to deliberate

  4. Mountain meadows—here today, gone tomorrow? Meadow science and restoration.

    Treesearch

    Jonathan Thompson

    2007-01-01

    Mountain meadows in the Pacific Northwest are patches of remarkable biological diversity. Lush, forb-, grass-, and shrub-dominated communities attract rich assemblages of arthropods, support diverse communities of birds, and provide habitat for small mammals and other wildlife. Recent encroachment by conifers has reduced the extent and ecological integrity of meadows,...

  5. Net primary productivity of subalpine meadows in Yosemite National Park in relation to climate variability

    USGS Publications Warehouse

    Moore, Peggy E.; Van Wagtendonk, Jan W.; Yee, Julie L.; McClaran, Mitchel P.; Cole, David N.; McDougald, Neil K.; Brooks, Matthew L.

    2013-01-01

    Subalpine meadows are some of the most ecologically important components of mountain landscapes, and primary productivity is important to the maintenance of meadow functions. Understanding how changes in primary productivity are associated with variability in moisture and temperature will become increasingly important with current and anticipated changes in climate. Our objective was to describe patterns and variability in aboveground live vascular plant biomass in relation to climatic factors. We harvested aboveground biomass at peak growth from four 64-m2 plots each in xeric, mesic, and hydric meadows annually from 1994 to 2000. Data from nearby weather stations provided independent variables of spring snow water content, snow-free date, and thawing degree days for a cumulative index of available energy. We assembled these climatic variables into a set of mixed effects analysis of covariance models to evaluate their relationships with annual aboveground net primary productivity (ANPP), and we used an information theoretic approach to compare the quality of fit among candidate models. ANPP in the xeric meadow was negatively related to snow water content and thawing degree days and in the mesic meadow was negatively related to snow water content. Relationships between ANPP and these 2 covariates in the hydric meadow were not significant. Increasing snow water content may limit ANPP in these meadows if anaerobic conditions delay microbial activity and nutrient availability. Increased thawing degree days may limit ANPP in xeric meadows by prematurely depleting soil moisture. Large within-year variation of ANPP in the hydric meadow limited sensitivity to the climatic variables. These relationships suggest that, under projected warmer and drier conditions, ANPP will increase in mesic meadows but remain unchanged in xeric meadows because declines associated with increased temperatures would offset the increases from decreased snow water content.

  6. Response of mountain meadows to grazing by recreational pack stock

    Treesearch

    David N. Cole; Jan W. van Wagtendonk; Mitchel P. McClaran; Peggy E. Moore; Neil K. McDougald

    2004-01-01

    Effects of recreational pack stock grazing on mountain meadows in Yosemite National Park were assessed in a 5-year study. Yosemite is a designated wilderness, to be managed such that its natural conditions are preserved. Studies were conducted in 3 characteristic meadow types: shorthair sedge (Carex filifolia Nutt.), Brewer’s reed grass (...

  7. A multi-scale evaluation of pack stock effects on subalpine meadow plant communities in the Sierra Nevada

    PubMed Central

    Berlow, Eric L.; Ostoja, Steven M.; Brooks, Matthew L.; Génin, Alexandre; Matchett, John R.; Hart, Stephen C.

    2017-01-01

    We evaluated the influence of pack stock (i.e., horse and mule) use on meadow plant communities in Sequoia and Yosemite National Parks in the Sierra Nevada of California. Meadows were sampled to account for inherent variability across multiple scales by: 1) controlling for among-meadow variability by using remotely sensed hydro-climatic and geospatial data to pair stock use meadows with similar non-stock (reference) sites, 2) accounting for within-meadow variation in the local hydrology using in-situ soil moisture readings, and 3) incorporating variation in stock use intensity by sampling across the entire available gradient of pack stock use. Increased cover of bare ground was detected only within “dry” meadow areas at the two most heavily used pack stock meadows (maximum animals per night per hectare). There was no difference in plant community composition for any level of soil moisture or pack stock use. Increased local-scale spatial variability in plant community composition (species dispersion) was detected in “wet” meadow areas at the two most heavily used meadows. These results suggest that at the meadow scale, plant communities are generally resistant to the contemporary levels of recreational pack stock use. However, finer-scale within-meadow responses such as increased bare ground or spatial variability in the plant community can be a function of local-scale hydrological conditions. Wilderness managers can improve monitoring of disturbance in Sierra Nevada meadows by adopting multiple plant community indices while simultaneously considering local moisture regimes. PMID:28609464

  8. A multi-scale evaluation of pack stock effects on subalpine meadow plant communities in the Sierra Nevada

    USGS Publications Warehouse

    Lee, Steven R.; Berlow, Eric L.; Ostoja, Steven M.; Brooks, Matthew L.; Génin, Alexandre; Matchett, John R.; Hart, Stephen C.

    2017-01-01

    We evaluated the influence of pack stock (i.e., horse and mule) use on meadow plant communities in Sequoia and Yosemite National Parks in the Sierra Nevada of California. Meadows were sampled to account for inherent variability across multiple scales by: 1) controlling for among-meadow variability by using remotely sensed hydro-climatic and geospatial data to pair stock use meadows with similar non-stock (reference) sites, 2) accounting for within-meadow variation in the local hydrology using in-situ soil moisture readings, and 3) incorporating variation in stock use intensity by sampling across the entire available gradient of pack stock use. Increased cover of bare ground was detected only within “dry” meadow areas at the two most heavily used pack stock meadows (maximum animals per night per hectare). There was no difference in plant community composition for any level of soil moisture or pack stock use. Increased local-scale spatial variability in plant community composition (species dispersion) was detected in “wet” meadow areas at the two most heavily used meadows. These results suggest that at the meadow scale, plant communities are generally resistant to the contemporary levels of recreational pack stock use. However, finer-scale within-meadow responses such as increased bare ground or spatial variability in the plant community can be a function of local-scale hydrological conditions. Wilderness managers can improve monitoring of disturbance in Sierra Nevada meadows by adopting multiple plant community indices while simultaneously considering local moisture regimes.

  9. DISTRIBUTION AND QUALITY OF SEAGRASS MEADOWS IN THE PENSACOLA BAY SYSTEM

    EPA Science Inventory

    Abstract for oral presentation: Seagrass meadows have 22 ecological benefits and have an estimated value of $20,500 per acre in Florida. Seagrass meadows support a variety of marine life that includes macroalgae (148 species), epiphytes (1 13 species), macroinvertebrates (230 spe...

  10. Factors influencing carbon storage capacity of eelgrass meadows in New England

    EPA Science Inventory

    Seagrasses are known to accumulate and store large quantities of carbon although carbon accumulation and storage varies between and within meadows. In this study, we measured carbon accumulation and storage in sediments of 8 eelgrass (Zostera marina L.) meadows in New England an...

  11. Divergent Impacts of Two Cattle Types on Vegetation in Coastal Meadows: Implications for Management

    NASA Astrophysics Data System (ADS)

    Laurila, Marika; Huuskonen, Arto; Pesonen, Maiju; Kaseva, Janne; Joki-Tokola, Erkki; Hyvärinen, Marko

    2015-11-01

    The proportion of beef cattle in relation to the total number of cattle has increased in Europe, which has led to a higher contribution of beef cattle in the management of semi-natural grasslands. Changes in vegetation caused by this change in grazers are virtually unexplored so far. In the present study, the impacts of beef and dairy cattle on vegetation structure and composition were compared on Bothnian Bay coastal meadows. Vegetation parameters were measured in seven beef cattle, six dairy heifer pastures, and in six unmanaged meadows. Compared to unmanaged meadows, vegetation in grazed meadows was significantly lower in height and more frequently colonized by low-growth species. As expected, vegetation grazed by beef cattle was more open than that on dairy heifer pastures where litter cover and proportion of bare ground were in the same level as in the unmanaged meadows. However, the observed differences may have in part arisen from the higher cattle densities in coastal meadows grazed by beef cattle than by dairy heifers. The frequencies of different species groups and the species richness values of vegetation did not differ between the coastal meadows grazed by the two cattle types. One reason for this may be the relatively short management history of the studied pastures. The potential differences in grazing impacts of the two cattle types on vegetation structure can be utilized in the management of coastal meadows for species with divergent habitat requirements.

  12. Seagrass meadows (Posidonia oceanica) distribution and trajectories of change

    PubMed Central

    Telesca, Luca; Belluscio, Andrea; Criscoli, Alessandro; Ardizzone, Giandomenico; Apostolaki, Eugenia T.; Fraschetti, Simonetta; Gristina, Michele; Knittweis, Leyla; Martin, Corinne S.; Pergent, Gérard; Alagna, Adriana; Badalamenti, Fabio; Garofalo, Germana; Gerakaris, Vasilis; Louise Pace, Marie; Pergent-Martini, Christine; Salomidi, Maria

    2015-01-01

    Posidonia oceanica meadows are declining at alarming rates due to climate change and human activities. Although P. oceanica is considered the most important and well-studied seagrass species of the Mediterranean Sea, to date there has been a limited effort to combine all the spatial information available and provide a complete distribution of meadows across the basin. The aim of this work is to provide a fine-scale assessment of (i) the current and historical known distribution of P. oceanica, (ii) the total area of meadows and (iii) the magnitude of regressive phenomena in the last decades. The outcomes showed the current spatial distribution of P. oceanica, covering a known area of 1,224,707 ha, and highlighted the lack of relevant data in part of the basin (21,471 linear km of coastline). The estimated regression of meadows amounted to 34% in the last 50 years, showing that this generalised phenomenon had to be mainly ascribed to cumulative effects of multiple local stressors. Our results highlighted the importance of enforcing surveys to assess the status and prioritize areas where cost-effective schemes for threats reduction, capable of reversing present patterns of change and ensuring P. oceanica persistence at Mediterranean scale, could be implemented. PMID:26216526

  13. Climate and landscape drive the pace and pattern of conifer encroachment into subalpine meadows.

    PubMed

    Lubetkin, Kaitlin C; Westerling, Anthony LeRoy; Kueppers, Lara M

    2017-09-01

    Mountain meadows have high biodiversity and help regulate stream water release following the snowmelt pulse. However, many meadows are experiencing woody plant encroachment, threatening these ecosystem services. While there have been field surveys of individual meadows and remote sensing-based landscape-scale studies of encroachment, what is missing is a broad-scale, ground-based study to understand common regional drivers, especially at high elevations, where land management has often played a less direct role. With this study, we ask: What are the climate and landscape conditions conducive to woody plant encroachment at the landscape scale, and how has historical climate variation affected tree recruitment in subalpine meadows over time? We measured density of encroaching trees across 340 subalpine meadows in the central Sierra Nevada, California, USA, and used generalized additive models (GAMs) to determine the relationship between landscape-scale patterns of encroachment and meadow environmental properties. We determined ages of trees in 30 survey meadows, used observed climate and GAMs to model the relationship between timing of recruitment and climate since the early 1900s, and extrapolated recruitment patterns into the future using downscaled climate scenarios. Encroachment was high among meadows with lodgepole pine (Pinus contorta Douglas ex Loudon var. murrayana (Balf.) Engelm.) in the immediate vicinity, at lower elevations, with physical conditions favoring strong soil drying, and with maximum temperatures above or below average. Climatic conditions during the year of germination were unimportant, with tree recruitment instead depending on a 3-yr seed production period prior to germination and a 6-yr seedling establishment period following germination. Recruitment was high when the seed production period had high snowpack, and when the seedling establishment period had warm summer maximum temperatures, high summer precipitation, and high snowpack

  14. Habitat conditions of montane meadows associated with restored and unrestored stream channels of California

    Treesearch

    K. L. Pope; D. S. Montoya; J. N. Brownlee; J. Dierks; T. E. Lisle

    2015-01-01

    Mountain meadow habitats are valued for their ecological importance. They attenuate floods, improve water quality, and support high biodiversity. Many meadow habitats in the western US are degraded, and efforts are increasing to restore these montane meadow ecosystems. Rewatering projects such as pond-and-plug quickly raise the water table by blocking the existing...

  15. Meadow degradation, hydrological processes and rangeland management in Tibet

    NASA Astrophysics Data System (ADS)

    He, Siyuan; Richards, Keith

    2013-04-01

    Alpine meadow dominated by species of Kobresia is widely distributed in the Tibetan Plateau. Kobresia pygmaea is often a main species and the meadow has evolved as a result of long-term trampling, being a main rangeland resource for livestock grazing. This alpine meadow also plays an important role in regulating the water and energy balance through land-atmosphere interaction, leaving an impact on local hydrological processes and beyond. Therefore, alpine meadow degradation is detrimental to both the health of the ecosystems, and to pastoralism. This research therefore studies the hydrological process with regard to degradation of Kobresia pygmaea meadow, tracing the possible causes, detecting the impacts on soil and biological properties, and further considering the herders' role in future rangeland management. The study area is around the Kema village of the Nagqu Prefecture in Northern Tibet, where human population depends on livestock grazing for livelihood. Main driving factors of alpine meadow degradation are climatic variations and human disturbance. The periodical change in local climate may be related to quasi-oscillatory atmospheric circulations in this monsoon dominated area and the climatic trends with extreme weather conditions can make the whole system hard to recover. Along with climatic variations, overgrazing is predominant with an exceeding of the carrying capacity by almost every household in this village. This is related to the change of rangeland management by the policies of privatisation of pasture and sedentarisation. The acceleration of degradation since the 1980s results in a series of distinct soil-vegetation combination classified in this research as the normal meadow, compact crust and bare soil. The species composition, soil physical and chemical properties and the vertical water movement along the soil-plant-atmosphere continuum are significantly different at the sites representing stages of degradation, revealed by multiple methods

  16. Groundwater, springs, and stream flow generation in an alpine meadow of a tropical glacierized catchment

    NASA Astrophysics Data System (ADS)

    Gordon, R.; Lautz, L. K.; McKenzie, J. M.; Mark, B. G.; Chavez, D.

    2013-12-01

    Melting tropical glaciers supply approximately half of dry season stream discharge in glacierized valleys of the Cordillera Blanca, Peru. The remainder of streamflow originates as groundwater stored in alpine meadows, moraines and talus slopes. A better understanding of the dynamics of alpine groundwater, including sources and contributions to streamflow, is important for making accurate estimates of glacial inputs to the hydrologic budget, and for our ability to make predictions about future water resources as glaciers retreat. Our field study, conducted during the dry season in the Llanganuco valley, focused on a 0.5-km2 alpine meadow complex at 4400 m elevation, which includes talus slopes, terminal moraines, and a debris fan. Two glacial lakes and springs throughout the complex feed a network of stream channels that flow across the meadow (~2 km total length). We combined tracer measurements of stream and spring discharge and groundwater-surface water exchange with synoptic sampling of water isotopic and geochemical composition, in order to characterize and quantify contributions to streamflow from different geomorphic features. Surface water inputs to the stream channels totaled 58 l/s, while the stream gained an additional 57 l/s from groundwater inputs. Water chemistry is primarily controlled by flowpath type (surface/subsurface) and length, as well as bedrock lithology, while stable water isotopic composition appears to be controlled by water source (glacial lake, meadow or deep groundwater). Stream water chemistry is most similar to meadow groundwater springs, but isotopic composition suggests that the majority of stream water, which issues from springs at the meadow/fan interface, is from the same glacial source as the up-gradient lake. Groundwater sampled from piezometers in confined meadow aquifers is unique in both chemistry and isotopic composition, but does not contribute a large percentage of stream water exiting this small meadow, as quantified by

  17. Patterns and Drivers of Scattered Tree Loss in Agricultural Landscapes: Orchard Meadows in Germany (1968-2009)

    PubMed Central

    Plieninger, Tobias; Levers, Christian; Mantel, Martin; Costa, Augusta; Schaich, Harald; Kuemmerle, Tobias

    2015-01-01

    Scattered trees support high levels of farmland biodiversity and ecosystem services in agricultural landscapes, but they are threatened by agricultural intensification, urbanization, and land abandonment. This study aimed to map and quantify the decline of orchard meadows (scattered fruit trees of high nature conservation value) for a region in Southwestern Germany for the 1968 2009 period and to identify the driving forces of this decline. We derived orchard meadow loss from 1968 and 2009 aerial images and used a boosted regression trees modelling framework to assess the relative importance of 18 environmental, demographic, and socio-economic variables to test five alternative hypothesis explaining orchard meadow loss. We found that orchard meadow loss occurred in flatter areas, in areas where smaller plot sizes and fragmented orchard meadows prevailed, and in areas near settlements and infrastructure. The analysis did not confirm that orchard meadow loss was higher in areas where agricultural intensification was stronger and in areas of lower implementation levels of conservation policies. Our results demonstrated that the influential drivers of orchard meadow loss were those that reduce economic profitability and increase opportunity costs for orchards, providing incentives for converting orchard meadows to other, more profitable land uses. These insights could be taken up by local- and regional-level conservation policies to identify the sites of persistent orchard meadows in agricultural landscapes that would be prioritized in conservation efforts. PMID:25932914

  18. A constructed wet meadow model for forested lands in the Southwest

    Treesearch

    Dave Pawelek; Roy Jemison; Daniel Neary

    1999-01-01

    Improving primary roads in the Zuni Mountains of New Mexico must take into consideration the wet meadows and upland areas. This study looks at spring flow rates, erosion, channels and changes in plant cover and composition. The goal is to help planners design environmentally sensitive roadways for wet meadow areas.

  19. [Influences of land using patterns on the anti-wind erosion of meadow grassland].

    PubMed

    Zhou, Yao-Zhi; Wang-Xu; Yang, Gui-Xia; Xin, Xiao-Ping

    2008-05-01

    In order to analyse the effects of the human disturbances to the ability of anti-wind erosion of the Hulunbuir meadow grassland, the methods of vegetation investigation and the wind tunnel experiment were made to research the changes of vegetation and the abilities of anti-wind erosion of meadow grassland under different using patterns of meadow grassland. The results indicate that, under different grazing intensities of meadow grassland, the critical wind velocity of soil erosion (v) changes with the vegetation cover according to the relation of second power function. Along with the grazing intensities increasing and the vegetation cover reducing, the velocity of soil erosion rapidly increased on the condition of similar wind velocity which is speedier than the critical wind velocity of soil erosion. When the meadow grassland is mildly grazed which the vegetation cover maintains 63%, the velocity of soil erosion is small even there is gale that the wind velocity reach 25 m/s. When the vegetation cover of meadow grassland reduced to less than 35%, the velocity of soil erosion rapidly increased with the vegetation cover's reducing on the condition of the wind velocity is among 20-25 m/s. And owing to the no-tillage cropland of meadow grassland is completely far from the protection of the vegetation, the soil wind erosion quantity achieves 682.1 kg/hm2 in a minute when the wind velocity is 25 m/s, which approaches the average formation quantity of soil (1 000 kg/hm2) in a year.

  20. How sedge meadow soils, microtopography, and vegetation respond to sedimentation

    USGS Publications Warehouse

    Werner, K.J.; Zedler, Joy B.

    2002-01-01

    The expansion of urban and agricultural activities in watersheds of the Midwestern USA facilitates the conversion of species-rich sedge meadows to stands of Phalaris arundinacea and Typha spp. We document the role of sediment accumulation in this process based on field surveys of three sedge meadows dominated by Carex stricta, their adjacent Phalaris or Typha stands, and transitions from Carex to these invasive species. The complex microtopography of Carex tussocks facilitates the occurrence of other native species. Tussock surface area and species richness were positively correlated in two marshes (r2 = 0.57 and 0.41); on average, a 33-cm-tall tussock supported 7.6 species. Phalaris also grew in tussock form in wetter areas but did not support native species. We found an average of 10.5 Carex tussocks per 10-m transect, but only 3.5 Phalaris tussocks. Microtopographic relief, determined with a high-precision GPS, measured 11% greater in Carex meadows than Phalaris stands. Inflowing sediments reduced microtopographic variation and surface area for native species. We calculated a loss of one species per 1000 cm2 of lost tussock surface area, and loss of 1.2 species for every 10-cm addition of sediment over the sedge meadow surface. Alluvium overlying the sedge meadow soil had a smaller proportion of organic matter content and higher dry bulk density than the buried histic materials. We conclude that sedimentation contributes to the loss of native species in remnant wetlands. ?? 2002, The Society of Wetland Scientists.

  1. RIVERBANK AND MEADOW, LOOKING SOUTHEAST. PA148 AND PA149 CAN BE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RIVERBANK AND MEADOW, LOOKING SOUTHEAST. PA-1-48 AND PA-1-49 CAN BE PAIRED TO FORM A PANORAMA SHOWING THE RELATIONSHIP BETWEEN THE RIVERBANK AND THE MEADOW - John Bartram House & Garden, 54th Street & Lindbergh Boulevard, Philadelphia, Philadelphia County, PA

  2. Hydroclimatic alteration increases vulnerability of montane meadows in the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Viers, J. H.; Peek, R.; Purdy, S. E.; Emmons, J. D.; Yarnell, S. M.

    2012-12-01

    Meadow ecosystems of the Sierra Nevada (California, USA) have been maintained by the interplay of biotic and abiotic forces, where hydrological functions bridge aquatic and terrestrial realms. Meadows are not only key habitat for fishes, amphibians, birds, and mammals alike, but also provide enumerable ecosystem services to humans, not limited to regulating services (eg, water filtration), provisioning services (eg, grazing), and aesthetics. Using hydroclimatic models and spatial distribution models of indicator species, a range wide assessment was conducted to assess and synthesize the vulnerability of meadow ecosystems to hydroclimatic alteration, a result of regional climate change. Atmospheric warming is expected to result in a greater fraction of total precipitation falling as winter rain (rather than snow) and earlier snowmelt. These predicted changes will likely cause more precipitation-driven runoff in winter and reduced snowmelt runoff in spring, leading to reduced annual runoff and a general shift in runoff timing to earlier in the year. These profound effects have consequences for hydrological cycling and meadow functioning, though such changes will not occur steadily through time or uniformly across the range, and each individual meadow will respond as a function of its composition and land use history. Most vulnerable is groundwater recharge, a fundamental component of meadow hydrology. As a result of shortened snow melt period and absence of diel snowmelt fluxes that would otherwise gradually refill meadow aquifers, recharge is expected to decline due to less infiltration. Diminished water tables will likely stress hydric and mesic vegetation, promoting more xeric conditions. Coupled with greater magnitude stream flows, these conditions promote channel incision and ultimate state shift to non-meadow conditions. The biological effects of hydroclimatic alteration, such as lower mean annual flow and earlier timing, will result in an overall decrease in

  3. GROUND WATER/SURFACE WATER INTERACTIONS IN A GREAT BASIN WET MEADOW ECOSYSTEM

    EPA Science Inventory

    Riparian corridors within upland watersheds of the Great Basin locally contain wet meadow ecosystems that support much of the region's biodiversity. Plant communities in these riparian and wet meadow ecosystems can be highly dependent on the depth to and fluctuations in the water...

  4. Man-induced transformation of mountain meadow soils of Aragats mountain massif (Armenia)

    NASA Astrophysics Data System (ADS)

    Avetisyan, M. H.

    2018-01-01

    The article considers issues of degradation of mountain meadow soils of the Aragats mountain massif of the Republic of Armenia and provides the averaged research results obtained for 2013 and 2014. The present research was initiated in the frames of long-term complex investigations of agroecosystems of Armenia’s mountain massifs and covered sod soils of high mountain meadow pasturelands and meadow steppe grasslands lying on southern slope of Mt. Aragats. With a purpose of studying the peculiarities of migration and transformation of flows of major nutrients namely carbon, nitrogen, phosphorus in study mountain meadow and meadow steppe belts of the Aragats massif we investigated water migration of chemical elements and regularities of their leaching depending on different belts. Field measurement data have indicated that organic carbon and humus in a heavily grazed plot are almost twice as low as on a control site. Lysimetric data analysis has demonstrated that heavy grazing and illegal deforestation have brought to an increase in intrasoil water acidity. The results generated from this research support a conclusion that a man’s intervention has brought to disturbance of structure and nutrient and water regimes of soils and loss of significant amounts of soil nutrients throughout the studied region.

  5. Modeling Alpine Meadow Restoration Techniques and their Effects on Stream Stage Regimes

    NASA Astrophysics Data System (ADS)

    Moore, C. E.; Lundquist, J. D.; Loheide, S. P.

    2010-12-01

    Meadow ecosystems in the Sierra Nevada of California often suffer from negative anthropogenic impacts, resulting in stream incision and meadow aridification. Groundwater dependent ecosystems, such as meadows, are especially vulnerable to channel degradation because alteration of stream stage propagates through the groundwater system to affect riparian vegetation. Restoration aimed at raising water table elevation of degraded meadow systems is becoming a salient and viable option as managers recognize the importance of intact headwaters. Stream stage controls groundwater levels and thus, vegetation communities, more dramatically than stream discharge in groundwater dependent ecosystems. Here we use a one dimensional hydraulic model, Hydraulic Engineering Center - River Analysis System (HEC-RAS) to model stream stage along the Tuolumne River, given a time series of stream discharge. Extensive hydroclimatic monitoring since 2001, and groundwater monitoring since 2006, make Tuolumne Meadows, in Yosemite National Park, California a prime location for a validated case study, applicable to other snow dominated basins. In order to determine the most plausible, efficient and effective strategy of restoring impacted meadows, different management scenarios are modeled. HEC-RAS modeling provides critical stream stage boundary conditions for groundwater modeling. Scenarios are chosen that are most effective at increasing stream stage and therefore water table levels. The effectiveness is quantified by modeling how each scenario changes the rating curve for a particular channel. Additionally, surface stage modeling allows decision makers to see under what flow conditions and what time period of the hydrograph is affected by restoration. Quantification of stream stage alterations is key for understanding restoration impacts during the short growing season in alpine meadows. Results of HEC-RAS modeling at Tuolumne Meadows are presented in the following formats to highlight the

  6. Groundwater Controls on Vegetation Composition and Patterning in Mountain Meadows

    NASA Astrophysics Data System (ADS)

    Loheide, S. P.; Lowry, C.; Moore, C. E.; Lundquist, J. D.

    2010-12-01

    Mountain meadows are groundwater dependent ecosystems that are hotspots of biodiversity and productivity in the Sierra Nevada of California. Meadow vegetation relies on shallow groundwater during the region’s dry summer growing season. Vegetation composition in this environment is influenced both by 1) oxygen stress that occurs when portions of the root zone are saturated and anaerobic conditions are created that limit root respiration and 2) water stress that occurs when the water table drops and water-limited conditions are created in the root zone. A watershed model that explicitly accounts for snowmelt processes was linked to a fine resolution groundwater flow model of Tuolumne Meadows in Yosemite National Park, CA to simulated spatially distributed water table dynamics. This linked hydrologic model was calibrated to observations from a well observation network for 2006-2008, and validated using data from 2009. A vegetation survey was also conducted at the site in which the three dominant species were identified at more than 200 plots distributed across the meadow. Nonparametric multiplicative regression was performed to create and select the best models for predicting vegetation dominance based on simulated hydrologic regime. The hydrologic niche of three vegetation types representing wet, moist, and dry meadow vegetation communities was best described using both 1) a sum exceedance value calculated as the integral of water table position above a threshold of oxygen stress and 2) a sum deceedance value calculated as the integral of water table position below a threshold of water stress. This linked hydrologic and vegetative modeling framework advances our ability to predict the propagation of human-induced climatic and land-use/-cover changes through the hydrologic system to the ecosystem.

  7. Ecohydrological controls over water budgets in floodplain meadows

    NASA Astrophysics Data System (ADS)

    Morris, Paul J.; Verhoef, Anne; Macdonald, David M. J.; Gardner, Cate M.; Punalekar, Suvarna M.; Tatarenko, Irina; Gowing, David

    2013-04-01

    Floodplain meadows are important ecosystems, characterised by high plant species richness including rare species. Fine-scale partitioning along soil hydrological gradients allows many species to co-exist. Concerns exist that even modest changes to soil hydrological regime as a result of changes in management or climate may endanger floodplain meadows communities. As such, understanding the interaction between biological and physical controls over floodplain meadow water budgets is important to understanding their likely vulnerability or resilience. Floodplain meadow plant communities are highly heterogeneous, leading to patchy landscapes with distinct vegetation. However, it is unclear whether this patchiness in plant distribution is likely to translate into heterogeneous soil-vegetation-atmosphere transfer (SVAT) rates of water and heat, or whether floodplain meadows can reasonably be treated as internally homogeneous in physical terms despite this patchy vegetation. We used a SVAT model, the Soil-Water-Atmosphere-Plants (SWAP) model by J.C. van Dam and co-workers, to explore the controls over the partitioning of water budgets in floodplain meadows. We conducted our research at Yarnton Mead on the River Thames in Oxfordshire, one of the UK's best remaining examples of a floodplain meadow, and which is still managed and farmed in a low-intensity mixed-use manner. We used soil and plant data from our site to parameterise SWAP; we drove the model using in-situ half-hourly meteorological data. We analysed the model's sensitivity to a range of soil and plant parameters - informed by our measurements - in order to assess the effects of different plant communities on SVAT fluxes. We used a novel method to simulate water-table dynamics at the site; the simulated water tables provide a lower boundary condition for SWAP's hydrological submodel. We adjusted the water-table model's parameters so as to represent areas of the mead with contrasting topography, and so different

  8. Registration of 'Hidden Valley' meadow fescue

    USDA-ARS?s Scientific Manuscript database

    'Hidden Valley' (Reg. No. CV-xxxx, PI xxxxxx) meadow fescue [Schedonorus pratensis (Huds.) P. Beauv.; syn. Festuca pratensis Huds.; syn. Lolium pratense (Huds.) Darbysh.] is a synthetic population originating from 561 parental genotypes. The original germplasm is of unknown central or northern Europ...

  9. 75 FR 29700 - Endangered and Threatened Wildlife and Plants; Revised Critical Habitat for the Preble's Meadow...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ... Habitat for the Preble's Meadow Jumping Mouse AGENCY: Fish and Wildlife Service, Interior. ACTION... for the Preble's meadow jumping mouse (Zapus hudsonius preblei) under the Endangered Species Act of... our proposed revision of critical habitat for the Preble's Meadow jumping mouse (PMJM) that was...

  10. Simulated effects of proposed reservoir-development alternatives on streamflow quantity in the White River, Colorado and Utah

    USGS Publications Warehouse

    Kuhn, Gerhard; Ellis, S.R.

    1984-01-01

    Numerous reservoirs have been proposed for the White River basin in Colorado and Utah, primarily to provide water for oil-shale development. A multireservoir-flow model was used to simulate the effects of streamflow withdrawal at four of the proposed reservoirs using historical streamflow data from the 1932-81 water years. The proposed reservoirs considered in the study were Avery, Powell Park, Taylor Draw, and White River Reservoirs; construction of Taylor Draw Dam was completed during the study. Annual streamflow depletions from the White River ranging from about 93,000 to 226,000 acre-feet were simulated for the 50 year period. Simulated streamflow throughout the year generally became smaller and more constant as streamflow throughout the year generally became smaller and more constant as streamflow depletion increased. Minimum streamflow requirements would not have been met for a maximum of 13 years and water-use requirements associated with the proposed reservoirs would not have been met for a maximum of 3 years. The current water-use pattern, which depletes about 40,000 acre-feet per year and is dominated by irrigation of hay meadows and pastureland, was maintained in the simulation. Relations between reservoir active capacity and yield applicable to the White River also were developed. These relations show that reservoir storage of about 400,000 acre-feet is the maximum practicable for the White River. (USGS)

  11. Geochemistry of Mine Waste and Mill Tailings, Meadow Deposits, Streambed Sediment, and General Hydrology and Water Quality for the Frohner Meadows Area, Upper Lump Gulch, Jefferson County, Montana

    USGS Publications Warehouse

    Klein, Terry L.; Cannon, Michael R.; Fey, David L.

    2004-01-01

    Frohner Meadows, an area of low-topographic gradient subalpine ponds and wetlands in glaciated terrane near the headwaters of Lump Gulch (a tributary of Prickly Pear Creek), is located about 15 miles west of the town of Clancy, Montana, in the Helena National Forest. Mining and ore treatment of lead-zinc-silver veins in granitic rocks of the Boulder batholith over the last 120 years from two sites (Frohner mine and the Nellie Grant mine) has resulted in accumulations of mine waste and mill tailings that have been distributed downslope and downstream by anthropogenic and natural processes. This report presents the results of an investigation of the geochemistry of the wetlands, streams, and unconsolidated-sediment deposits and the hydrology, hydrogeology, and water quality of the area affected by these sources of ore-related metals. Ground water sampled from most shallow wells in the meadow system contained high concentrations of arsenic, exceeding the Montana numeric water-quality standard for human health. Transport of cadmium and zinc in ground water is indicated at one site near Nellie Grant Creek based on water-quality data from one well near the creek. Mill tailings deposited in upper Frohner Meadow contribute large arsenic loads to Frohner Meadows Creek; Nellie Grant Creek contributes large arsenic, cadmium, and zinc loads to upper Frohner Meadows. Concentrations of total-recoverable cadmium, copper, lead, and zinc in most surface-water sites downstream from the Nellie Grant mine area exceeded Montana aquatic-life standards. Nearly all samples of surface water and ground water had neutral to slightly alkaline pH values. Concentrations of arsenic, cadmium, lead, and zinc in streambed sediment in the entire meadow below the mine waste and mill tailings accumulations are highly enriched relative to regional watershed-background concentrations and exceed consensus-based, probable-effects concentrations for streambed sediment at most sites. Cadmium, copper, and

  12. Cuticular waxes in alpine meadow plants: climate effect inferred from latitude gradient in Qinghai-Tibetan Plateau.

    PubMed

    Guo, Yanjun; Guo, Na; He, Yuji; Gao, Jianhua

    2015-09-01

    Alpine meadow ecosystems are susceptible to climate changes. Still, climate impact on cuticular wax in alpine meadow plants is poorly understood. Assessing the variations of cuticular wax in alpine meadow plants across different latitudes might be useful for predicting how they may respond to climate change. We studied nine alpine meadows in a climate gradient in the east side of Qinghai-Tibetan Plateau, with mean annual temperature ranging from -7.7 to 3.2°C. In total, 42 plant species were analyzed for cuticular wax, averaged 16 plant species in each meadow. Only four plant species could be observed in all sampling meadows, including Kobresia humilis,Potentilla nivea,Anaphalis lacteal, and Leontopodium nanum. The amounts of wax compositions and total cuticular wax in the four plant species varied among sampling meadows, but no significant correlation could be observed between them and temperature, precipitation, and aridity index based on plant species level. To analyze the variations of cuticular wax on community level, we averaged the amounts of n-alkanes, aliphatic acids, primary alcohols, and total cuticular wax across all investigated plant species in each sampling site. The mean annual temperature, mean temperature in July, and aridity index were significantly correlated with the averaged amounts of wax compositions and total cuticular wax. The average chain length of n-alkanes in both plant and soil linearly increased with increased temperature, whereas reduced with increased aridity index. No significant correlation could be observed between mean annual precipitation and mean precipitation from June to August and the cuticular wax amounts and average chain length. Our results suggest that the survival of some alpine plants in specific environments might be depended on their abilities in adjusting wax deposition on plant leaves, and the alpine meadow plants as a whole respond to climate change, benefiting the stability of alpine meadow ecosystem.

  13. Shorthair meadows in the high Sierra Nevada...an hypothesis of their development

    Treesearch

    Raymond D. Ratliff

    1973-01-01

    Bands of shorthair meadow are found around lakes in the high Sierra Nevada of California. A hypothesis, based on observations in the Kings Canyon National Park, to explain the development of these meadows is offered: Boulders form the foundation upon which American-laurel, Sierra bilberry, and moss combine to produce thick mats. The lower layers of the mats are...

  14. Carbon stores from a tropical seagrass meadow in the midst of anthropogenic disturbance.

    PubMed

    Rozaimi, Mohammad; Fairoz, Mohammad; Hakimi, Tuan Mohamad; Hamdan, Nur Hidayah; Omar, Ramlan; Ali, Masni Mohd; Tahirin, Siti Aishah

    2017-06-30

    Seagrass meadows provide important carbon sequestration services but anthropogenic activities modify the natural ecosystem and inevitably lower carbon storage capacity. The tropical mixed-species meadows in the Sungai Pulai Estuary (Johor, Malaysia) are impacted by such activities. In this study, we provide baseline estimates for carbon stores analysed from sediment cores. In sediment depths up to 100cm, organic (OC) and inorganic carbon (IC) stores were 43-101MgCha -1 and 46-83MgCha -1 , respectively, and are in the lower end of global average values. The bulk of OC (53-98%) originated from seston suggesting that the meadows had low capacity to retain seagrass-derived organic matter. The species factor resulted in some variability in OC stores but did not appear to influence IC values. The low carbon stores in the meadow may be a direct result of sediment disturbances but natural biogeochemical processes are not discounted as possible causal factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Seagrass meadows globally as a coupled social-ecological system: implications for human wellbeing.

    PubMed

    Cullen-Unsworth, Leanne C; Nordlund, Lina Mtwana; Paddock, Jessica; Baker, Susan; McKenzie, Len J; Unsworth, Richard K F

    2014-06-30

    Seagrass ecosystems are diminishing worldwide and repeated studies confirm a lack of appreciation for the value of these systems. In order to highlight their value we provide the first discussion of seagrass meadows as a coupled social-ecological system on a global scale. We consider the impact of a declining resource on people, including those for whom seagrass meadows are utilised for income generation and a source of food security through fisheries support. Case studies from across the globe are used to demonstrate the intricate relationship between seagrass meadows and people that highlight the multi-functional role of seagrasses in human wellbeing. While each case underscores unique issues, these examples simultaneously reveal social-ecological coupling that transcends cultural and geographical boundaries. We conclude that understanding seagrass meadows as a coupled social-ecological system is crucial in carving pathways for social and ecological resilience in light of current patterns of local to global environmental change. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. A multi-scale evaluation of pack stack effects on subalpine meadow plant communities in the Sierra Nevada

    USDA-ARS?s Scientific Manuscript database

    We evaluated the influence of pack stock (i.e., horse and mule) use on meadow plant communities in Sequoia and Yosemite National Parks in the Sierra Nevada mountains of California. Meadows were sampled to account for inherent variability across multiple scales by: 1) controlling for among-meadow var...

  17. Restore McComas Watershed; Meadow Creek Watershed, 2002-2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRoberts, Heidi

    2004-01-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Meadow Creek watershed are coordinated with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Meadow Creek watershed of the South Fork Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing. During years 2000-2003, trees were planted in riparian areas within the meadow and its tributaries. Culverts have been prioritized for replacement to accommodate fish passage throughoutmore » the watershed. Designs for replacement are being coordinated with the Nez Perce National Forest. Twenty miles of road were contracted for decommissioning. Tribal crews completed maintenance to the previously built fence.« less

  18. Holocene dune formation at Ash Meadows National Wildlife Area, Nevada, USA

    USGS Publications Warehouse

    Lancaster, Nicholas; Mahan, Shannon

    2012-01-01

    Small isolated dune fields in the northern Mojave Desert are important centers of biodiversity and archaeological occupation sites. Currently dunes at Ash Meadows, Nevada, are stabilized by vegetation and are experiencing erosion of their upwind margins, indicating a negative sediment budget. New OSL ages from dunes at Ash Meadows indicate continuous eolian accumulation from 1.5 to 0.8 ka, with further accumulation around 0.2 ka. Prior studies (e.g., Mehringer and Warren, 1976) indicate periods of dune accumulation prior to 3.3 ka; 1.9–1 ka; and after 0.9 ka. These periods of eolian accumulation are largely synchronous with those identified elsewhere in the Mojave Desert. The composition of the Ash Meadows dunes indicates their derivation from regional fluvial sources, most likely during periods when axial washes were active as a result of enhanced winter precipitation.

  19. UTILIZATION OF IN-STREAM STRUCTURES FOR WET MEADOW STABILIZATION IN THE CENTRAL GREAT BASIN: A PROCESS-ORIENTED APPROACH

    EPA Science Inventory

    Wet meadows, riparian corridor phreatophyte assemblages, and high-altitude spring-fed aspen meadows all serve as important habitats in the Great Basin of central Nevada. Geomorphic and biotic characterization of the wet meadow complexes demonstrates that most terminate downvalle...

  20. Characteristics of organic carbon accumulation in subtropical seagrass meadows

    NASA Astrophysics Data System (ADS)

    Tanaya, T.; Watanabe, K.; Yamamoto, S.; Hongo, C.; Kayanne, H.; Kuwae, T.

    2016-02-01

    The carbon sequestrated in marine ecosystems has been termed "blue carbon", and seagrass meadows are one of the most dominant blue carbon stocks. Globally, the major distribution sites of seagrass meadows are coral reef flats, where it is technically difficult to quantify organic carbon in carbonate sediments. Since blue carbon stocks have been estimated to date based on seagrass biomass and fine sediments (<1 mm), no studies have measured total carbon stocks, including coarse sediments (1> mm) in seagrass meadows. To solve this problem, we developed a new box corer which can facilitate to obtain the intact cores structured by both sediments and seagrass bodies. Using the core samples taken in subtropical seagrass meadows, located off Ishigaki Island, Japan, we measured total organic carbon mass (TOCmass) and stable isotope ratios (δ13C) of total sedimentary organic matter (SOM) and estimated their sources and controlling factors. The averaged TOCmass of top 15 cm SOM including living seagrasses was 940±480 gC/m2. The live seagrass biomass accounted for only 14±14wt%, whereas the dead biomass (>2 mm), coarse sediments (>1 mm except for dead plant structures >2 mm) and fine sediments (<1 mm) accounted for 3±4wt%, 19±13wt%, and 63±14wt%, respectively. The dead biomass and coarse sediments, which have not yet been included in the past estimations, accounted for about 22wt% of the averaged TOCmass. Total organic carbon content (TOC%) of mixture of the dead biomass, coarse sediments and fine sediments increased with increasing the live seagrass biomass (R = 0.66, n = 13, p = 0.014). The live seagrass biomass was one of the controlling factors of blue carbon stocks at the sites. Using a Bayesian isotopic mixing model, we estimated that the contribution of seagrass-derived carbon to total sedimentary organic carbon was about 70%. The enrichment of sediment organic carbon with increasing the live seagrass biomass was mainly due to the increase of seagrass

  1. Groundwater controls on vegetation composition and patterning in mountain meadows

    NASA Astrophysics Data System (ADS)

    Lowry, Christopher S.; Loheide, Steven P., II; Moore, Courtney E.; Lundquist, Jessica D.

    2011-10-01

    Mountain meadows are groundwater-dependent ecosystems that are hot spots of biodiversity and productivity. In the Sierra Nevada mountains of California, these ecosystems rely on shallow groundwater to support their vegetation communities during the dry summer growing season in the region's Mediterranean montane climate. Vegetation composition in this environment is influenced by both (1) oxygen stress that occurs when portions of the root zone are saturated and anaerobic conditions limit root respiration and (2) water stress that occurs when the water table drops and the root zone becomes water limited. A spatially distributed watershed model that explicitly accounts for snowmelt processes was linked to a fine-resolution groundwater flow model of Tuolumne Meadows in Yosemite National Park, California, to simulate water table dynamics. This linked hydrologic model was calibrated to observations from a well observation network for 2006-2009. A vegetation survey was also conducted at the site in which the three dominant species were identified at more than 200 plots distributed across the meadow. Nonparametric multiplicative regression was performed to create and select the best models for predicting vegetation dominance on the basis of the simulated hydrologic regime. The hydrologic niches of three vegetation types representing wet, moist, and dry meadow vegetation communities were found to be best described using both (1) a sum exceedance value calculated as the integral of water table position above a depth threshold of oxygen stress and (2) a sum exceedance value calculated as the integral of water table position below a depth threshold of water stress. This linked hydrologic and vegetative modeling framework advances our ability to predict the propagation of human-induced climatic and land use or land cover changes through the hydrologic system to the ecosystem. The hydroecologic functioning of meadows provides an example of the extent to which cascading

  2. Blue carbon stocks in Baltic Sea eelgrass (Zostera marina) meadows

    NASA Astrophysics Data System (ADS)

    Röhr, Maria Emilia; Boström, Christoffer; Canal-Vergés, Paula; Holmer, Marianne

    2016-11-01

    Although seagrasses cover only a minor fraction of the ocean seafloor, their carbon sink capacity accounts for nearly one-fifth of the total oceanic carbon burial and thus play a critical structural and functional role in many coastal ecosystems. We sampled 10 eelgrass (Zostera marina) meadows in Finland and 10 in Denmark to explore seagrass carbon stocks (Corg stock) and carbon accumulation rates (Corg accumulation) in the Baltic Sea area. The study sites represent a gradient from sheltered to exposed locations in both regions to reflect expected minimum and maximum stocks and accumulation. The Corg stock integrated over the top 25 cm of the sediment averaged 627 g C m-2 in Finland, while in Denmark the average Corg stock was over 6 times higher (4324 g C m-2). A conservative estimate of the total organic carbon pool in the regions ranged between 6.98 and 44.9 t C ha-1. Our results suggest that the Finnish eelgrass meadows are minor carbon sinks compared to the Danish meadows, and that majority of the Corg produced in the Finnish meadows is exported. Our analysis further showed that > 40 % of the variation in the Corg stocks was explained by sediment characteristics, i.e. dry density, porosity and silt content. In addition, our analysis show that the root : shoot ratio of Z. marina explained > 12 % and the contribution of Z. marina detritus to the sediment surface Corg pool explained > 10 % of the variation in the Corg stocks. The mean monetary value for the present carbon storage and carbon sink capacity of eelgrass meadows in Finland and Denmark, were 281 and 1809 EUR ha-1, respectively. For a more comprehensive picture of seagrass carbon storage capacity, we conclude that future blue carbon studies should, in a more integrative way, investigate the interactions between sediment biogeochemistry, seascape structure, plant species architecture and the hydrodynamic regime.

  3. Plant biomass and species composition along an environmental gradient in montane riparian meadows

    Treesearch

    Kathleen A. Dwire; J. Boone Kauffman; E. N. Jack Brookshire; John E. Baham

    2004-01-01

    In riparian meadows, narrow zonation of the dominant vegetation frequently occurs along the elevational gradient from the stream edge to the floodplain terrace. We measured plant species composition and above- and belowground biomass in three riparian plant communities - a priori defined as wet, moist, and dry meadow - along short streamside topographic gradients in...

  4. Organic farming favours insect-pollinated over non-insect pollinated forbs in meadows and wheat fields.

    PubMed

    Batáry, Péter; Sutcliffe, Laura; Dormann, Carsten F; Tscharntke, Teja

    2013-01-01

    The aim of this study was to determine the relative effects of landscape-scale management intensity, local management intensity and edge effect on diversity patterns of insect-pollinated vs. non-insect pollinated forbs in meadows and wheat fields. Nine landscapes were selected differing in percent intensively used agricultural area (IAA), each with a pair of organic and conventional winter wheat fields and a pair of organic and conventional meadows. Within fields, forbs were surveyed at the edge and in the interior. Both diversity and cover of forbs were positively affected by organic management in meadows and wheat fields. This effect, however, differed significantly between pollination types for species richness in both agroecosystem types (i.e. wheat fields and meadows) and for cover in meadows. Thus, we show for the first time in a comprehensive analysis that insect-pollinated plants benefit more from organic management than non-insect pollinated plants regardless of agroecosystem type and landscape complexity. These benefits were more pronounced in meadows than wheat fields. Finally, the community composition of insect-pollinated and non-insect-pollinated forbs differed considerably between management types. In summary, our findings in both agroecosystem types indicate that organic management generally supports a higher species richness and cover of insect-pollinated plants, which is likely to be favourable for the density and diversity of bees and other pollinators.

  5. Organic Farming Favours Insect-Pollinated over Non-Insect Pollinated Forbs in Meadows and Wheat Fields

    PubMed Central

    Batáry, Péter; Sutcliffe, Laura; Dormann, Carsten F.; Tscharntke, Teja

    2013-01-01

    The aim of this study was to determine the relative effects of landscape-scale management intensity, local management intensity and edge effect on diversity patterns of insect-pollinated vs. non-insect pollinated forbs in meadows and wheat fields. Nine landscapes were selected differing in percent intensively used agricultural area (IAA), each with a pair of organic and conventional winter wheat fields and a pair of organic and conventional meadows. Within fields, forbs were surveyed at the edge and in the interior. Both diversity and cover of forbs were positively affected by organic management in meadows and wheat fields. This effect, however, differed significantly between pollination types for species richness in both agroecosystem types (i.e. wheat fields and meadows) and for cover in meadows. Thus, we show for the first time in a comprehensive analysis that insect-pollinated plants benefit more from organic management than non-insect pollinated plants regardless of agroecosystem type and landscape complexity. These benefits were more pronounced in meadows than wheat fields. Finally, the community composition of insect-pollinated and non-insect-pollinated forbs differed considerably between management types. In summary, our findings in both agroecosystem types indicate that organic management generally supports a higher species richness and cover of insect-pollinated plants, which is likely to be favourable for the density and diversity of bees and other pollinators. PMID:23382979

  6. Methodological comparison of alpine meadow evapotranspiration on the Tibetan Plateau, China.

    PubMed

    Chang, Yaping; Wang, Jie; Qin, Dahe; Ding, Yongjian; Zhao, Qiudong; Liu, Fengjing; Zhang, Shiqiang

    2017-01-01

    Estimation of evapotranspiration (ET) for alpine meadow areas in the Tibetan Plateau (TP) is essential for water resource management. However, observation data has been limited due to the extreme climates and complex terrain of this region. To address these issues, four representative methods, Penman-Monteith (PM), Priestley-Taylor (PT), Hargreaves-Samani (HS), and Mahringer (MG) methods, were adopted to estimate ET, which were then compared with ET measured using Eddy Covariance (EC) for five alpine meadow sites during the growing seasons from 2010 to 2014. And each site was measured for one growing season during this period. The results demonstrate that the PT method outperformed at all sites with a coefficient of determination (R2) ranging from 0.76 to 0.94 and root mean square error (RMSE) ranging from 0.41 to 0.62 mm d-1. The PM method showed better performance than HS and MG methods, and the HS method produced relatively acceptable results with higher R2 (0.46) and lower RMSE (0.89 mm d-1) compared to MG method with R2 of 0.16 and RMSE of 1.62 mm d-1, while MG underestimated ET at all alpine meadow sites. Therefore, the PT method, being the simpler approach and less data dependent, is recommended to estimate ET for alpine meadow areas in the Tibetan Plateau. The PM method produced reliable results when available data were sufficient, and the HS method proved to be a complementary method when variables were insufficient. On the contrary, the MG method always underestimated ET and is, thus, not suitable for alpine meadows. These results provide a basis for estimating ET on the Tibetan Plateau for annual data collection, analysis, and future studies.

  7. Methodological comparison of alpine meadow evapotranspiration on the Tibetan Plateau, China

    PubMed Central

    Chang, Yaping; Wang, Jie; Qin, Dahe; Ding, Yongjian; Zhao, Qiudong; Liu, Fengjing

    2017-01-01

    Estimation of evapotranspiration (ET) for alpine meadow areas in the Tibetan Plateau (TP) is essential for water resource management. However, observation data has been limited due to the extreme climates and complex terrain of this region. To address these issues, four representative methods, Penman-Monteith (PM), Priestley-Taylor (PT), Hargreaves-Samani (HS), and Mahringer (MG) methods, were adopted to estimate ET, which were then compared with ET measured using Eddy Covariance (EC) for five alpine meadow sites during the growing seasons from 2010 to 2014. And each site was measured for one growing season during this period. The results demonstrate that the PT method outperformed at all sites with a coefficient of determination (R2) ranging from 0.76 to 0.94 and root mean square error (RMSE) ranging from 0.41 to 0.62 mm d-1. The PM method showed better performance than HS and MG methods, and the HS method produced relatively acceptable results with higher R2 (0.46) and lower RMSE (0.89 mm d-1) compared to MG method with R2 of 0.16 and RMSE of 1.62 mm d-1, while MG underestimated ET at all alpine meadow sites. Therefore, the PT method, being the simpler approach and less data dependent, is recommended to estimate ET for alpine meadow areas in the Tibetan Plateau. The PM method produced reliable results when available data were sufficient, and the HS method proved to be a complementary method when variables were insufficient. On the contrary, the MG method always underestimated ET and is, thus, not suitable for alpine meadows. These results provide a basis for estimating ET on the Tibetan Plateau for annual data collection, analysis, and future studies. PMID:29236754

  8. Shrimp burrow in tropical seagrass meadows: An important sink for litter

    NASA Astrophysics Data System (ADS)

    Vonk, Jan Arie; Kneer, Dominik; Stapel, Johan; Asmus, Harald

    2008-08-01

    The abundance, burrow characteristics, and in situ behaviour of the burrowing shrimps Neaxius acanthus (Decapoda: Strahlaxiidae) and Alpheus macellarius (Decapoda: Alpheidae) were studied to quantify the collection of seagrass material, to identify the fate of this collected material, and to determine the importance of these burrowing crustaceans in the nutrient (nitrogen and phosphorus) cycling of two tropical seagrass meadows on Bone Batang, South Sulawesi, Indonesia. Alpheus macellarius harvested 0.70 g dry weight (DW) burrow -1 d -1 seagrass material, dominantly by active cutting of fresh seagrass leaves. Neaxius acanthus collected 1.66 g DW burrow -1 d -1, mainly detached leaves which floated past the burrow opening. The A. macellarius and N. acanthus communities together collected in their burrows an amount of seagrass leaf material corresponding to more than 50% of the leaf production in the meadows studied. The crustacean species studied might therefore fulfil an important function in the nutrient cycling of tropical meadows. In the burrow most of the collected material is shredded into pieces. The burrows of both species had special chambers which serve as a storage for seagrass leaf material. Neaxius acanthus incorporated most of the material into the burrow wall lining, which is made of small sediment particles and macerated seagrass leaves. Phosphate concentrations measured in N. acanthus burrows compared with pore-water and water-column concentrations suggests that a substantial amount of the seagrass material undergoes decomposition in the burrows. Oxygen levels measured in these water bodies are indicative for a possible exchange of water between the burrow and its surroundings, most likely supported by the shrimps irrigating their burrows. By collecting leaf material in their burrows, nutrients that are otherwise lost from the seagrass meadow associated with detached leaves and leaf fragments carried away in the water column, are maintained in the

  9. Decadal changes in the structure of Cymodocea nodosa seagrass meadows: Natural vs. human influences

    NASA Astrophysics Data System (ADS)

    Tuya, Fernando; Ribeiro-Leite, Luís; Arto-Cuesta, Noelia; Coca, Josep; Haroun, Ricardo; Espino, Fernando

    2014-01-01

    Seagrass meadows are deteriorating worldwide. However, numerous declines are still unreported, which avoid accurate evaluations of seagrass global trends. This is particularly relevant for the western African coast and nearby oceanic archipelagos in the eastern Atlantic. The seagrass Cymodocea nodosa is an 'ecological engineer' on shallow soft bottoms of the Canary Islands. A comparative decadal study was conducted in 21 C. nodosa seagrass meadows at Gran Canaria Island to compare the structure (shoot density, leaf length and cover) between 2003 and 2012. Overall, 11 meadows exhibited a severe regression, while 10 remained relatively stable. During this period, natural influences (sea surface temperature, Chlorophyll-a concentration and PAR light, as well as the number of storm episodes detaching seagrasses) had a low predictive power on temporal patterns in seagrass structure. In contrast, proximity from a range of human-mediated influences (e.g. the number of outfalls and ports) seem to be related to the loss of seagrass; the rate of seagrass erosion between 2003 and 2012 was significantly predicted by the number of human-mediated impacts around each meadow. This result highlights promoting management actions to conserve meadows of C. nodosa at the study region through efficient management of local impacts.

  10. Food for Pollinators: Quantifying the Nectar and Pollen Resources of Urban Flower Meadows.

    PubMed

    Hicks, Damien M; Ouvrard, Pierre; Baldock, Katherine C R; Baude, Mathilde; Goddard, Mark A; Kunin, William E; Mitschunas, Nadine; Memmott, Jane; Morse, Helen; Nikolitsi, Maria; Osgathorpe, Lynne M; Potts, Simon G; Robertson, Kirsty M; Scott, Anna V; Sinclair, Frazer; Westbury, Duncan B; Stone, Graham N

    2016-01-01

    Planted meadows are increasingly used to improve the biodiversity and aesthetic amenity value of urban areas. Although many 'pollinator-friendly' seed mixes are available, the floral resources these provide to flower-visiting insects, and how these change through time, are largely unknown. Such data are necessary to compare the resources provided by alternative meadow seed mixes to each other and to other flowering habitats. We used quantitative surveys of over 2 million flowers to estimate the nectar and pollen resources offered by two exemplar commercial seed mixes (one annual, one perennial) and associated weeds grown as 300m2 meadows across four UK cities, sampled at six time points between May and September 2013. Nectar sugar and pollen rewards per flower varied widely across 65 species surveyed, with native British weed species (including dandelion, Taraxacum agg.) contributing the top five nectar producers and two of the top ten pollen producers. Seed mix species yielding the highest rewards per flower included Leontodon hispidus, Centaurea cyanus and C. nigra for nectar, and Papaver rhoeas, Eschscholzia californica and Malva moschata for pollen. Perennial meadows produced up to 20x more nectar and up to 6x more pollen than annual meadows, which in turn produced far more than amenity grassland controls. Perennial meadows produced resources earlier in the year than annual meadows, but both seed mixes delivered very low resource levels early in the year and these were provided almost entirely by native weeds. Pollen volume per flower is well predicted statistically by floral morphology, and nectar sugar mass and pollen volume per unit area are correlated with flower counts, raising the possibility that resource levels can be estimated for species or habitats where they cannot be measured directly. Our approach does not incorporate resource quality information (for example, pollen protein or essential amino acid content), but can easily do so when suitable data

  11. Food for Pollinators: Quantifying the Nectar and Pollen Resources of Urban Flower Meadows

    PubMed Central

    Hicks, Damien M.; Ouvrard, Pierre; Baldock, Katherine C. R.; Baude, Mathilde; Goddard, Mark A.; Kunin, William E.; Mitschunas, Nadine; Memmott, Jane; Morse, Helen; Nikolitsi, Maria; Osgathorpe, Lynne M.; Potts, Simon G.; Robertson, Kirsty M.; Scott, Anna V.; Sinclair, Frazer; Westbury, Duncan B.; Stone, Graham N.

    2016-01-01

    Planted meadows are increasingly used to improve the biodiversity and aesthetic amenity value of urban areas. Although many ‘pollinator-friendly’ seed mixes are available, the floral resources these provide to flower-visiting insects, and how these change through time, are largely unknown. Such data are necessary to compare the resources provided by alternative meadow seed mixes to each other and to other flowering habitats. We used quantitative surveys of over 2 million flowers to estimate the nectar and pollen resources offered by two exemplar commercial seed mixes (one annual, one perennial) and associated weeds grown as 300m2 meadows across four UK cities, sampled at six time points between May and September 2013. Nectar sugar and pollen rewards per flower varied widely across 65 species surveyed, with native British weed species (including dandelion, Taraxacum agg.) contributing the top five nectar producers and two of the top ten pollen producers. Seed mix species yielding the highest rewards per flower included Leontodon hispidus, Centaurea cyanus and C. nigra for nectar, and Papaver rhoeas, Eschscholzia californica and Malva moschata for pollen. Perennial meadows produced up to 20x more nectar and up to 6x more pollen than annual meadows, which in turn produced far more than amenity grassland controls. Perennial meadows produced resources earlier in the year than annual meadows, but both seed mixes delivered very low resource levels early in the year and these were provided almost entirely by native weeds. Pollen volume per flower is well predicted statistically by floral morphology, and nectar sugar mass and pollen volume per unit area are correlated with flower counts, raising the possibility that resource levels can be estimated for species or habitats where they cannot be measured directly. Our approach does not incorporate resource quality information (for example, pollen protein or essential amino acid content), but can easily do so when suitable

  12. Seed germination ecology of meadow knapweed (Centaurea x moncktonii) populations in New York State

    USDA-ARS?s Scientific Manuscript database

    The introduced meadow knapweed (Centaurea x moncktonii), a hybrid of black (C. nigra) and brown (C. jacea) knapweeds, appears to be common and expanding in New York agricultural lands, including pastures, meadows and waste areas. The biology and ecology of the hybrid is mostly unstudied, such as its...

  13. Welcome mats? The role of seagrass meadow structure in controlling post-settlement survival in a keystone sea-urchin species

    NASA Astrophysics Data System (ADS)

    Prado, Patricia; Romero, Javier; Alcoverro, Teresa

    2009-11-01

    Processes acting on the early-life histories of marine organisms can have important consequences for the structuring of benthic communities. In particular, the degree of coupling between larval supply and adult abundances can wield considerable influence on the strength of trophic interactions in the ecosystem. These processes have been relatively well described in rocky systems and soft-sediment communities, and it is clear that they are governed by very different bottlenecks. Seagrass meadows make interesting study systems because they bear structural affinities to both soft sediments as well as rocky substrates. We examined the early-life history of Paracentrotus lividus, one of the dominant herbivores in Mediterranean seagrass meadows, to identify the drivers of population dynamics in this species. We measured spatial and temporal variability in sea urchin post-settlement in 10 Posidonia oceanica meadows in the North-Western Mediterranean over a period of two years, and compared the numbers with the one-year old cohort a year later (i.e. the new population recruitment) as well as between successive size-age groups. Urchin post-settlers differed substantially between meadows but were present in both years in all meadows surveyed, suggesting that larval supply was not limiting for any of the studied sites. However, in six of the studied meadows, the one-year cohort of urchins was absent in both years, indicating that post-settlement processes strongly affected urchins in these meadows. In contrast, in four of the studied meadows, there was a strong coupling between post-settlers and one-year cohort individuals. These meadows were structurally different from the others in that they were characterised by an exposed matrix of rhizomes forming a dense seagrass mat. This mat apparently strongly mediates post-settlement mortality, and its presence or absence dictates the successful establishment of urchin populations in seagrass meadows. As the population aged, the

  14. Changes in plant biomass and species composition of alpine Kobresia meadows along altitudinal gradient on the Qinghai-Tibetan Plateau.

    PubMed

    Wang, ChangTing; Cao, GuangMin; Wang, QiLan; Jing, ZengChun; Ding, LuMing; Long, RuiJun

    2008-01-01

    Alpine Kobresia meadows are major vegetation types on the Qinghai-Tibetan Plateau. There is growing concern over their relationships among biodiversity, productivity and environments. Despite the importance of species composition, species richness, the type of different growth forms, and plant biomass structure for Kobresia meadow ecosystems, few studies have been focused on the relationship between biomass and environmental gradient in the Kobresia meadow plant communities, particularly in relation to soil moisture and edaphic gradients. We measured the plant species composition, herbaceous litter, aboveground and belowground biomass in three Kobresia meadow plant communities in Haibei Alpine Meadow Ecosystem Research Station from 2001 to 2004. Community differences in plant species composition were reflected in biomass distribution. The total biomass showed a decrease from 13196.96+/-719.69 g/m(2) in the sedge-dominated K. tibetica swamp to 2869.58+/-147.52 g/m(2) in the forb and sedge dominated K. pygmaea meadow, and to 2153.08+/-141.95 g/m(2) in the forbs and grasses dominated K. humilis along with the increase of altitude. The vertical distribution of belowground biomass is distinct in the three meadow communities, and the belowground biomass at the depth of 0-10 cm in K. tibetica swamp meadow was significantly higher than that in K. humilis and K. pygmaea meadows (P<0.01). The herbaceous litter in K. tibetica swamp was significantly higher than those in K. pygnaeca and K. humilis meadows. The effects of plant litter are enhanced when ground water and soil moisture levels are raised. The relative importance of litter and vegetation may vary with soil water availability. In the K. tibetica swamp, total biomass was negatively correlated to species richness (P<0.05); aboveground biomass was positively correlated to soil organic matter, soil moisture, and plant cover (P<0.05); belowground biomass was positively correlated with soil moisture (P<0.05). However, in

  15. Interaction between Posidonia oceanica meadows upper limit and hydrodynamics of four Mediterranean beaches

    NASA Astrophysics Data System (ADS)

    De Muro, Sandro; Ruju, Andrea; Buosi, Carla; Porta, Marco; Passarella, Marinella; Ibba, Angelo

    2017-04-01

    Posidonia oceanica meadow is considered to play an important role in the coastal geomorphology of Mediterranean beach systems. In particular, the importance of the meadow in protecting the coastline from erosion is well-recognized. Waves are attenuated by greater friction across seagrass meadows, which have the capacity to reduce water flow and therefore increase sediment deposition and accumulation as well as beach stability. The P. oceanica meadow upper limit usually occurs within the most dynamic zone of the beach system. Considering the great attention paid in the literature to the connection between the growth of P. oceanica and coastal hydrodynamics (Infantes et al., 2009; Vacchi et al., 2014; De Muro et al., 2016, 2017), this study aims at extending the previous work by investigating the combined influence of hydrodynamic parameters (e.g., wave-induced main currents and wave orbital velocity at the bottom) and different types of sea bottom (e.g., soft sediment, rocky substrates) on the position of the upper limit of the P. oceanica meadow. We applied this approach to 4 Mediterranean beach systems located on the Sardinian coastline (3 on the South and 1 on the North) and characterized by a wide range of orientations and incoming wave conditions. On these beaches, the extension of the P. oceanica meadows and the bathymetry have been obtained through detailed surveying campaigns and aerial photo analysis. In addition, high spatial resolution wave hydrodynamics have been reconstructed by running numerical simulations with Delft 3D. Offshore wave climate has been reconstructed by using measured datasets for those beaches that have a nearby buoy whose dataset is representative of the incoming wave conditions for that particular stretch of coast. Whereas, for those beaches with no availability of a representative measured dataset, wave climate has been analyzed from the NOAA hindcast dataset. From the whole range of incoming wave directions in deep waters, we

  16. Restoration potential of sedge meadows in hand-cultivated soybean fields in northeastern China

    USGS Publications Warehouse

    Wang, Guodong; Middleton, Beth; Jiang, Ming

    2013-01-01

    Sedge meadows can be difficult to restore from farmed fields if key structural dominants are missing from propagule banks. In hand-cultivated soybean fields in northeastern China, we asked if tussock-forming Carex and other wetland species were present as seed or asexual propagules. In the Sanjiang Plain, China, we compared the seed banks, vegetative propagules (below-ground) and standing vegetation of natural and restored sedge meadows, and hand-cultivated soybean fields in drained and flooded conditions. We found that important wetland species survived cultivation as seeds for some time (e.g. Calamogrostis angustifolia and Potamogeton crispus) and as field weeds (e.g. C. angustifolia and Phragmites australis). Key structural species were missing in these fields, for example, Carex meyeriana. We also observed that sedge meadows restored without planting or seeding lacked tussock-forming sedges. The structure of the seed bank was related to experimental water regime, and field environments of tussock height, thatch depth, and presence of burning as based on Nonmetric Multidimensional Scaling analysis. To re-establish the structure imposed by tussock sedges, specific technologies might be developed to encourage the development of tussocks in restored sedge meadows.

  17. AxIOM: Amphipod crustaceans from insular Posidonia oceanica seagrass meadows

    PubMed Central

    Heughebaert, André; Lepoint, Gilles

    2016-01-01

    Abstract Background The Neptune grass, Posidonia oceanica (L.) Delile, 1813, is the most widespread seagrass of the Mediterranean Sea. This foundation species forms large meadows that, through habitat and trophic services, act as biodiversity hotspots. In Neptune grass meadows, amphipod crustaceans are one of the dominant groups of vagile invertebrates, forming an abundant and diverse taxocenosis. They are key ecological components of the complex, pivotal, yet critically endangered Neptune grass ecosystems. Nevertheless, comprehensive qualitative and quantitative data about amphipod fauna found in Mediterranean Neptune grass meadows remain scarce, especially in insular locations. New information Here, we provide in-depth metadata about AxIOM, a sample-based dataset published on the GBIF portal. AxIOM is based on an extensive and spatially hierarchized sampling design with multiple years, seasons, day periods, and methods. Samples were taken along the coasts of Calvi Bay (Corsica, France) and of the Tavolara-Punta Coda Cavallo Marine Protected Area (Sardinia, Italy). In total, AxIOM contains 187 samples documenting occurrence (1775 records) and abundance (10720 specimens) of amphipod crustaceans belonging to 72 species spanning 29 families. The dataset is available at http://ipt.biodiversity.be/resource?r=axiom. PMID:27660521

  18. Evaluating mountain meadow groundwater response to Pinyon-Juniper and temperature in a great basin watershed

    USGS Publications Warehouse

    Carroll, Rosemary W.H.; Huntington, Justin L.; Snyder, Keirith A.; Niswonger, Richard G.; Morton, Charles; Stringham, Tamzen K.

    2017-01-01

    This research highlights development and application of an integrated hydrologic model (GSFLOW) to a semiarid, snow-dominated watershed in the Great Basin to evaluate Pinyon-Juniper (PJ) and temperature controls on mountain meadow shallow groundwater. The work used Google Earth Engine Landsat satellite and gridded climate archives for model evaluation. Model simulations across three decades indicated that the watershed operates on a threshold response to precipitation (P) >400 mm/y to produce a positive yield (P-ET; 9%) resulting in stream discharge and a rebound in meadow groundwater levels during these wetter years. Observed and simulated meadow groundwater response to large P correlates with above average predicted soil moisture and with a normalized difference vegetation index threshold value >0.3. A return to assumed pre-expansion PJ conditions or an increase in temperature to mid-21st century shifts yielded by only ±1% during the multi-decade simulation period; but changes of approximately ±4% occurred during wet years. Changes in annual yield were largely dampened by the spatial and temporal redistribution of evapotranspiration across the watershed: Yet the influence of this redistribution and vegetation structural controls on snowmelt altered recharge to control water table depth in the meadow. Even a small-scale removal of PJ (0.5 km2) proximal to the meadow will promote a stable, shallow groundwater system resilient to droughts, while modest increases in temperature will produce a meadow susceptible to declining water levels and a community structure likely to move toward dry and degraded conditions.

  19. Spatial Variability of Soil Water and Soil Organic Carbon Contents Under Different Degradation Degrees of Alpine Meadow Soil over the Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zeng, C.; Zhang, F.

    2014-12-01

    Alpine meadow is one of widespread vegetation types of the Qinghai-Tibetan Plateau. However, alpine meadow ecosystem is undergoing degradation in recent years. The degradation of alpine meadow can changes soil physical and chemical properties as well as it's spatial variability. However, little research has been done that address the spatial patterns of soil properties under different degradation degrees of alpine meadow of the Qinghai-Tibetan Plateau although these changes were important to water and heat study and modelling of land surface. 296 soil surface (0-10 cm) samples were collected using grid sampling design from three different degraded alpine meadow regions (1 km2). Then soil water content (SWC) and organic carbon content (OCC) were measured. Classical statistical and geostatistical methods were employed to study the spatial heterogeneities of SWC and OCC under different degradation degrees (Non-degraded ND, moderately degraded MD, extremely degraded ED) of alpine meadow. Results show that both SWC and OCC of alpine meadow were normally distributed with the exception of SWC under ED. On average, both SWC and OCC of alpine meadow decreased in the order that ND > MD > ED. For nugget ratios, SWC and OCC of alpine meadow showed increasing spatial dependence tendency from ND to ED. For the range of spatial variation, both SWC and OCC of alpine meadow showed increasing tendency in distance with the increasing degree of degradation. In all, the degradation of alpine meadow has significant impact on spatial heterogeneities of SWC and OCC of alpine meadow. With increasing of alpine meadow degradation, soil water condition and nutrient condition become worse, and their distributions in spatial become unevenly.

  20. Meadow management and treatment options [chapter 8

    Treesearch

    Jeanne C. Chambers; Jerry R. Miller

    2011-01-01

    Restoration and management objectives and approaches are most effective when based on an understanding of ecosystem processes and the long- and short-term causes of disturbance (Wohl and others 2005). As detailed in previous chapters, several factors are critical in developing effective management strategies for streams and their associated meadow ecosystems in the...

  1. Ten Years of Change in Sierran Stringer Meadows: An Evaluation of Range Condition Models

    Treesearch

    Barbara H. Allen

    1989-01-01

    Grazed Sierra Nevada stringer meadow systems were sampled on Blodgett Forest Research Station in northern California between 1977 and 1987 to determine cattle use, and to examine changes in production and species composition over time. Utilization of meadow species averaged 61 percent over the 10 years, but use increased to more than 80 percent utilization after 1985....

  2. The Economic Benefits of Elk Viewing at the Jewell Meadows Wildlife Area in Oregon

    Treesearch

    Geoffrey Donovan; Patricia Champ

    2009-01-01

    In this study, a travel cost model is used to estimate the value of elk viewing at the Jewell Meadows Wildlife Area in Oregon. Jewell Meadows was originally established to provide winter browse and supplemental feeding for elk to reduce damage to nearby agricultural and forest land. However, because visitors are virtually guaranteed the opportunity to see large numbers...

  3. Mediating Water Temperature Increases Due to Livestock and Global Change in High Elevation Meadow Streams of the Golden Trout Wilderness

    PubMed Central

    Nusslé, Sébastien; Matthews, Kathleen R.; Carlson, Stephanie M.

    2015-01-01

    Rising temperatures due to climate change are pushing the thermal limits of many species, but how climate warming interacts with other anthropogenic disturbances such as land use remains poorly understood. To understand the interactive effects of climate warming and livestock grazing on water temperature in three high elevation meadow streams in the Golden Trout Wilderness, California, we measured riparian vegetation and monitored water temperature in three meadow streams between 2008 and 2013, including two “resting” meadows and one meadow that is partially grazed. All three meadows have been subject to grazing by cattle and sheep since the 1800s and their streams are home to the imperiled California golden trout (Oncorhynchus mykiss aguabonita). In 1991, a livestock exclosure was constructed in one of the meadows (Mulkey), leaving a portion of stream ungrazed to minimize the negative effects of cattle. In 2001, cattle were removed completely from two other meadows (Big Whitney and Ramshaw), which have been in a “resting” state since that time. Inside the livestock exclosure in Mulkey, we found that riverbank vegetation was both larger and denser than outside the exclosure where cattle were present, resulting in more shaded waters and cooler maximal temperatures inside the exclosure. In addition, between meadows comparisons showed that water temperatures were cooler in the ungrazed meadows compared to the grazed area in the partially grazed meadow. Finally, we found that predicted temperatures under different global warming scenarios were likely to be higher in presence of livestock grazing. Our results highlight that land use can interact with climate change to worsen the local thermal conditions for taxa on the edge and that protecting riparian vegetation is likely to increase the resiliency of these ecosystems to climate change. PMID:26565706

  4. Mediating Water Temperature Increases Due to Livestock and Global Change in High Elevation Meadow Streams of the Golden Trout Wilderness.

    PubMed

    Nusslé, Sébastien; Matthews, Kathleen R; Carlson, Stephanie M

    2015-01-01

    Rising temperatures due to climate change are pushing the thermal limits of many species, but how climate warming interacts with other anthropogenic disturbances such as land use remains poorly understood. To understand the interactive effects of climate warming and livestock grazing on water temperature in three high elevation meadow streams in the Golden Trout Wilderness, California, we measured riparian vegetation and monitored water temperature in three meadow streams between 2008 and 2013, including two "resting" meadows and one meadow that is partially grazed. All three meadows have been subject to grazing by cattle and sheep since the 1800s and their streams are home to the imperiled California golden trout (Oncorhynchus mykiss aguabonita). In 1991, a livestock exclosure was constructed in one of the meadows (Mulkey), leaving a portion of stream ungrazed to minimize the negative effects of cattle. In 2001, cattle were removed completely from two other meadows (Big Whitney and Ramshaw), which have been in a "resting" state since that time. Inside the livestock exclosure in Mulkey, we found that riverbank vegetation was both larger and denser than outside the exclosure where cattle were present, resulting in more shaded waters and cooler maximal temperatures inside the exclosure. In addition, between meadows comparisons showed that water temperatures were cooler in the ungrazed meadows compared to the grazed area in the partially grazed meadow. Finally, we found that predicted temperatures under different global warming scenarios were likely to be higher in presence of livestock grazing. Our results highlight that land use can interact with climate change to worsen the local thermal conditions for taxa on the edge and that protecting riparian vegetation is likely to increase the resiliency of these ecosystems to climate change.

  5. [Relationships between horqin meadow NDVI and meteorological factors].

    PubMed

    Qu, Cui-ping; Guan, De-xin; Wang, An-zhi; Jin, Chang-jie; Wu, Jia-bing; Wang, Ji-jun; Ni, Pan; Yuan, Feng-hui

    2009-01-01

    Based on the 2000-2006 MODIS 8-day composite NDVI and day-by-day meteorological data, the seasonal and inter-annual variations of Horqin meadow NDVI as well as the relationships between the NDVI and relevant meteorological factors were studied. The results showed that as for the seasonal variation, Horqin meadow NDVI was more related to water vapor pressure than to precipitation. Cumulated temperature and cumulated precipitation together affected the inter-annual turning-green period significantly, and the precipitation in growth season (June and July), compared with that in whole year, had more obvious effects on the annual maximal NDVI. The analysis of time lag effect indicated that water vapor pressure had a persistent (about 12 days) prominent effect on the NDVI. The time lag effect of mean air temperature was 11-15 days, and the cumulated dual effect of the temperature and precipitation was 36-52 days.

  6. Net primary productivity of subalpine meadows in Yosemite National Park in relation to climate variability

    Treesearch

    Peggy E. Moore; Jan W. van Wagtendonk; Julie L. Yee; Mitchel P. McClaran; David N. Cole; Neil K. McDougald; Matthew L. Brooks

    2013-01-01

    Subalpine meadows are some of the most ecologically important components of mountain landscapes, and primary productivity is important to the maintenance of meadow functions. Understanding how changes in primary productivity are associated with variability in moisture and temperature will become increasingly important with current and anticipated changes in climate....

  7. [Soil seed bank in Keerqin meadow grassland under grazing and harvesting].

    PubMed

    Jiang, Deming; Li, Rongping; Liu, Zhimin; Yan, Qiaoling

    2004-10-01

    This study on the size and composition of seed bank and its relationship with vegetation showed in Keerqin meadow grassland, the density of soil seed bank was 6158 +/- 1647 grains x m(-2) under grazing and 8312 +/- 2540 grains m(-2) under harvesting. Under grazing, the seed bank was mainly composed of some dwarf and short-life annuals. The seeds of the annuals and biennials accounted for 81.66% of the seeds in seed bank. The four species with largest proportion of seed bank were Chloris virgata, Chenopodium glaucum, Digitaria cilliaris and Setaria viridis, and the proportions were 38.55%, 15.42%, 14.95%, and 9.83%, respectively. The density of perennials in soil seed bank was 1129 +/- 302 grains x m(-2). Under harvesting, the seeds of annuals and biennials accounted for 68.08% of the seed in seed bank, and the proportion of Setaria viridis was 52.7%. In the harvesting meadow grassland, the seed density of perennials was 2653 +/- 811 grains x m(-2). There was no significant correlation between the seed density in soil and the vegetation under grazing, but a significant correlation between the seed density in soil and the species abundance of vegetation under harvesting (r = 0.76, P < 0.01). The index of Shannon-Wiener and richness of grazing meadow grassland were 2.96 and 2.98, respectively, distinctly smaller than 3.10 and 5.09 of harvesting meadow, which showed that free grazing made the diversity of seed bank decrease easily.

  8. Dugong dugon feeding in tropical Australian seagrass meadows: implications for conservation planning.

    PubMed

    Tol, Samantha J; Coles, Rob G; Congdon, Bradley C

    2016-01-01

    Dugongs (Dugong dugon) are listed as vulnerable to extinction due to rapid population reductions caused in part by loss of seagrass feeding meadows. Understanding dugong feeding behaviour in tropical Australia, where the majority of dugongs live, will assist conservation strategies. We examined whether feeding patterns in intertidal seagrass meadows in tropical north-eastern Australia were related to seagrass biomass, species composition and/or nitrogen content. The total biomass of each seagrass species removed by feeding dugongs was measured and compared to its relative availability. Nitrogen concentrations were also determined for each seagrass species present at the sites. Dugongs consumed seagrass species in proportion to their availability, with biomass being the primary determining factor. Species composition and/or nitrogen content influenced consumption to a lesser degree. Conservation plans focused on protecting high biomass intertidal seagrass meadows are likely to be most effective at ensuring the survival of dugong in tropical north-eastern Australia.

  9. Savonarola at the stake: the rise and fall of Roy Meadow.

    PubMed

    Kaplan, Robert

    2008-06-01

    The aim of this paper is to describe the role of prominent paediatrician Professor Sir Roy Meadow in the controversy surrounding the diagnosis of Munchausen Syndrome by Proxy (MSBP) in mothers accused of murdering their children. The MSBP saga is a further chapter of an era of moral panic that started several decades ago with repressed memory therapy, satanic ritual abuse and multiple personalities. The fall of medieval sage Savonarola is an apt analogy for the fate of Roy Meadow. The history of medicine is rife with figures who become their own authority and rule by force of personality.

  10. Livestock grazing not detrimental to meadow wildflowers

    Treesearch

    Raymond D. Ratliff

    1972-01-01

    Wildflower growth, meadow conditions, and grazing methods were compared in the Bogard area, Lassen National Forest, northeastern California. The two grazing methods were rest-rotation, in which range units are periodically rested from grazing, and free-choice, in which range units are not provided any rest periods from use. The results suggest that grazing per se need...

  11. Geomorphic processes affecting meadow ecosystems [chapter 3

    Treesearch

    Jerry R. Miller; Dru Germanoski; Mark L. Lord

    2011-01-01

    Three geomorphic processes are of primary concern with respect to the current and future state of wet meadow ecosystems: channel incision, avulsion (the abrupt movement of the channel to a new location on the valley floor), and gully formation. Gully formation often is accompanied by upvalley headcut migration and a phenomenon referred to as "groundwater sapping...

  12. English Water Meadows: historic relics or focus for environmental management and inter-disciplinary research?

    NASA Astrophysics Data System (ADS)

    Cook, Hadrian

    2015-04-01

    Irrigated water meadows are found across Europe, from southern Scandinavia to Spain and in the Alpine regions and Italy. While the practice of engineering 'floated' meadow land for deliberate irrigation on hillsides and floodplains is widespread and ancient, since about 1600 AD the practice was widely adopted on floodplains in southern England where they improved the timing and productivity of grazing land and produced hay crops. They also became a part of English consciousness through art and literature. To some, water meadows are a relic of an agrarian past, to others they are the object of a range of foci for conservation, education, sustainable grass production, community engagement and recent research suggests water returned from meadow irrigation is beneficial to river water quality. Historically floodplain 'bedwork' water meadows grew from, and were integral in, the farming system of 'Wessex' involving sheep which produced dung for arable land and later supporting dairy and beef production, as well as hay. Where systems remain, this is largely due to the whim of individuals, the outcome of agri-environmental schemes. Water meadows may be managed by public, voluntary or private sector bodies. What is needed is a fresh look at how land owners, or communities, might micro-target them for heritage, habitat and grassland management. There are therefore interesting questions concerning their future: Who might invest in their restoration and maintenance? How might they be integrated into commercial farming? Are they of sufficient interest to restore en masse to become (once more) a major feature of the English chalk stream valleys? Do they provide a way into academic and public perception, combining environmental science, history, cultural heritage and environmental management? How might restoration and management become vehicles for public engagement? While each of these questions represents a major topic for discussion, this paper is an attempt to consolidate

  13. A meadow site classification for the Sierra Nevada, California

    Treesearch

    Raymond D. Ratliff

    1982-01-01

    This report describes 14 meadow site classes derived through techniques of agglomerative cluster analysis. The class names are: Carex rostrata (beaked sedge), Poa (Kentucky bluegrass), Heleocharis/Heleocharis (ephemeral-lake), Hypericum/Polygonum/ Viola (hillside bog), Trifolium/...

  14. Vole-driven restoration of a parariparian meadow complex on the Colorado Plateau (south-central Utah)

    Treesearch

    Dennis M. Bramble; Jean C. Bramble

    2008-01-01

    Rapid and substantial reductions in the local density of invasive rubber rabbitbrush (Chrysothamnus nauseosus) have been achieved on a shrub-infested meadow complex solely by manipulating grazing so as to benefit the native meadow vole, Microtus montanus. The key adjustment has been a shift from spring-summer to late season grazing...

  15. Inshore capture-based tuna aquaculture impact on Posidonia oceanica meadows in the eastern part of the Adriatic Sea.

    PubMed

    Kružić, Petar; Vojvodić, Vjeročka; Bura-Nakić, Elvira

    2014-09-15

    Mapping and monitoring of the seagrass Posidonia oceanica in the eastern (Croatian) part of the Adriatic Sea since 2004 indicates a significant decline in meadow density in an area impacted by inshore capture-based tuna aquaculture. The density and overall condition of P. oceanica meadows impacted by tuna farms near Fulija Islet was compared to two reference sites (Iž Island and Mrtovnjak Islet). The factors with the most significant influence on P. oceanica meadows were found to be the input of organic matter originating from the cages, as well as high epiphyte biomass caused by nutrient enrichment. Significant differences in nutrient concentrations were found between the sites impacted by tuna farms (Fulija Islet) and the control stations. Shoot density of the P. oceanica meadows decreased at the stations in close vicinity to the tuna farm, which suggests that the tuna farm activity strongly affected the surrounding meadows. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Status of lake trout rehabilitation on Six Fathom Bank and Yankee Reef in Lake Huron

    USGS Publications Warehouse

    Madenjian, Charles P.; DeSorcie, Timothy J.; McClain, Jerry R.; Woldt, Aaron P.; Holuszko, Jeffrey D.; Bowen, Charles A.

    2004-01-01

    Six Fathom Bank, an offshore reef in the central region of Lake Huron's main basin, was stocked annually with hatchery-reared lake trout Salvelinus namaycush during 1985–1998, and nearby Yankee Reef was stocked with hatchery-reared lake trout in 1992, 1997, and annually during 1999–2001. We conducted gill-net surveys during spring and fall to evaluate performances of each of the various strains of lake trout, as well as the performance of the entire lake trout population (all strains pooled), on these two offshore reefs during 1992–2000. Criteria to evaluate performance included the proportion of “wild” fish within the population, spawner density, adult survival, growth, maturity, and wounding rate by sea lamprey Petromyzon marinus. Although naturally reproduced age-0 lake trout fry were caught on Six Fathom Bank and Yankee Reef, wild lake trout did not recruit to the adult population to any detectable degree. The density of spawning lake trout on Six Fathom Bank (>100 fish/305 m of gill net) during 1995–1998 appeared to be sufficiently high to initiate a self-sustaining population. However, annual mortality estimates for all lake trout strains pooled from catch curve analyses ranged from 0.48 to 0.62, well exceeding the target level of 0.40 suggested for lake trout rehabilitation. Annual mortality rate for the Seneca Lake strain (0.34) was significantly lower than that for the Superior–Marquette (0.69) and Lewis Lake (0.69) strains. This disparity in survival among strains was probably attributable to the lower sea-lamprey-induced mortality experienced by the Seneca Lake strain. The relatively high mortality experienced by adult lake trout partly contributed to the lack of successful natural recruitment to the adult population on these offshore reefs, but other factors were probably also involved. We recommend that both stocking of the Seneca Lake strain and enhanced efforts to reduce sea lamprey abundance in Lake Huron be continued.

  17. Grazing exclusion increases soil CO2 emission during the growing season in alpine meadows on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Guo, Na; Wang, Aidong; Allan Degen, A.; Deng, Bin; Shang, Zhanhuan; Ding, Luming; Long, Ruijun

    2018-02-01

    Soil CO2 emission is a key part of the terrestrial carbon cycle. Grazing exclusion by fencing is often considered a beneficial grassland management option to restore degraded grassland, but its effect on soil CO2 emission on the northeastern Tibetan Plateau is equivocal and is the subject of this study. Using a closed static chamber, we measured diurnal soil CO2 flux weekly from July, 2008, to April, 2009, in response to grazing and grazing exclusion in the alpine meadow and alpine shrub meadow. Concomitantly, soil temperature was measured at depths of 5 cm, 10 cm, 15 cm and 20 cm with digital temperature sensors. It emerged that: 1) non-grazed grasslands emitted more soil CO2 than grazed grasslands over the growing season; 2) the alpine shrub meadow emitted more soil CO2 than the alpine meadow; the annual cumulative soil CO2 emissions of alpine meadow and alpine shrub meadow were 241.5-326.5 g C/m2 and 429.0-512.5 g C/m2, respectively; 3) seasonal patterns were evident with more soil CO2 flux in the growing than in the non-growing season; and 4) the diurnal soil CO2 flux exhibited a single peak across all sampling sites. In addition, soil CO2 flux was correlated positively with soil temperature at 5 cm, but not at the other depths. We concluded that grazing exclusion enhanced soil CO2 emission over the growing season, and decreased carbon sequestration of alpine meadow and alpine shrub meadow on the northeastern Tibetan Plateau. Since an increase in soil temperature increased soil CO2 flux, global warming could have an effect on soil CO2 emission in the future.

  18. Assessing Carbon Storage and Sequestration of Seagrass Meadows on the Pacific Coast of Canada

    NASA Astrophysics Data System (ADS)

    Postlethwaite, V. R.; McGowan, A. E.; Robinson, C.; Kohfeld, K. E.; Pellatt, M. G.; Yakimishyn, J.; Chastain, S. G.

    2016-12-01

    Recent estimates suggest that seagrasses are highly efficient carbon sinks, storing a disproportionate amount of carbon for their relatively small area (only approximately 0.2% of the global ocean), and that they may bury carbon up to 12 times faster than terrestrial forests. Unfortunately, seagrass meadows are being lost at a rate of 0.4-2.6% yr-1, potentially releasing 0.15-1.02 Pg (billion tonnes) carbon dioxide into the atmosphere annually. Research on seagrass carbon stocks has been mainly limited to areas in the Mediterranean, Southeast Asia, and Western Australia, and specifically has been very limited in the Northeast Pacific. We aim to characterize the carbon storage and sequestration occurring in the Pacific Rim National Park Reserve and the Clayoquot Sound area, off the western coast of Vancouver Island, British Columbia (BC). Each of our sites varied in environmental characteristics representative of BC's seagrass meadows, including freshwater influence. Six cores, plus one from a "reference" site were taken from each meadow. Loss on ignition (LOI) and elemental analysis will be used to determine organic C and carbonate content. Additionally, we will use dry bulk density, 210Pb dating and seagrass density data to determine carbon accumulation rates and total meadow carbon stocks to provide a comprehensive picture of carbon storage and sequestration in BC's seagrass meadows. Carbon storage results will contribute to global estimates of seagrass carbon stocks via the Commission for Environmental Cooperation, as well as assist in marine ecosystem conservation planning and help in understanding the value of these ecosystems, especially as a means of climate change mitigation.

  19. Aeroelastic analysis and ground vibration survey of the NASA, Grumman American Yankee modified for spin testing

    NASA Technical Reports Server (NTRS)

    Kroeger, R. A.

    1977-01-01

    A complete ground vibration and aeroelastic analysis was made of a modified version of the Grumman American Yankee. The aircraft had been modified for four empennage configurations, a wing boom was added, a spin chute installed and provisions included for large masses in the wing tip to vary the lateral and directional inertia. Other minor changes were made which have much less influence on the flutter and vibrations. Neither static divergence nor aileron reversal was considered since the wing structure was not sufficiently changed to affect its static aeroelastic qualities. The aircraft was found to be free from flutter in all of the normal modes explored in the ground shake test. The analysis demonstrated freedom from flutter up to 214 miles per hour.

  20. Evapotranspiration Calculations for an Alpine Marsh Meadow Site in Three-river Headwater Region

    NASA Astrophysics Data System (ADS)

    Zhou, B.; Xiao, H.

    2016-12-01

    Daily radiation and meteorological data were collected at an alpine marsh meadow site in the Three-river Headwater Region(THR). Use them to assess radiation models determined after comparing the performance between Zuo model and the model recommend by FAO56P-M.Four methods, FAO56P-M, Priestley-Taylor, Hargreaves, and Makkink methods were applied to determine daily reference evapotranspiration( ETr) for the growing season and built the empirical models for estimating daily actual evapotranspiration ETa between ETr derived from the four methods and evapotranspiration derived from Bowen Ratio method on alpine marsh meadow in this region. After comparing the performance of four empirical models by RMSE, MAE and AI, it showed these models all can get the better estimated daily ETaon alpine marsh meadow in this region, and the best performance of the FAO56 P-M, Makkink empirical model were better than Priestley-Taylor and Hargreaves model.

  1. Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations.

    PubMed

    Girlanda, Mariangela; Segreto, Rossana; Cafasso, Donata; Liebel, Heiko Tobias; Rodda, Michele; Ercole, Enrico; Cozzolino, Salvatore; Gebauer, Gerhard; Perotto, Silvia

    2011-07-01

    We investigated whether four widespread, photosynthetic Mediterranean meadow orchids (Ophrys fuciflora, Anacamptis laxiflora, Orchis purpurea, and Serapias vomeracea) had either nutritional dependency on mycobionts or mycorrhizal fungal specificity. Nonphotosynthetic orchids generally engage in highly specific interactions with fungal symbionts that provide them with organic carbon. By contrast, fully photosynthetic orchids in sunny, meadow habitats have been considered to lack mycorrhizal specificity. We performed both culture-dependent and culture-independent ITS sequence analysis to identify fungi from orchid roots. By analyzing stable isotope ((13)C and (15)N) natural abundances, we also determined the degree of autotrophy and mycoheterotrophy in the four orchid species. Phylogenetic and multivariate comparisons indicated that Or. purpurea and Oph. fuciflora featured lower fungal diversity and more specific mycobiont spectra than A. laxiflora and S. vomeracea. All orchid species were significantly enriched in (15)N compared with neighboring non-orchid plants. Orchis purpurea had the most pronounced N gain from fungi and differed from the other orchids in also obtaining C from fungi. These results indicated that even in sunny Mediterranean meadows, orchids may be mycoheterotrophic, with correlated mycorrhizal fungal specificity.

  2. Resilience and stability of Cymodocea nodosa seagrass meadows over the last four decades in a Mediterranean lagoon

    NASA Astrophysics Data System (ADS)

    Garrido, Marie; Lafabrie, Céline; Torre, Franck; Fernandez, Catherine; Pasqualini, Vanina

    2013-09-01

    Understanding what controls the capacity of a coastal lagoon ecosystem to recover following climatic and anthropogenic perturbations and how these perturbations can alter this capacity is critical to efficient environmental management. The goal of this study was to examine the resilience and stability of Cymodocea nodosa-dominated seagrass meadows in Urbino lagoon (Corsica, Mediterranean Sea) by characterizing the spatio-temporal dynamics of seagrass meadows over a 40-year period and comparing (anthropogenic and climatic) environmental fluctuations. The spatio-temporal evolution of seagrass meadows was investigated using previous maps (1973, 1979, 1990, 1994, 1996, 1999) and a 2011 map realized by aerial photography-remote sensing combined with GIS technology. Environmental fluctuation was investigated via physical-chemical parameters (rainfall, water temperature, salinity, turbidity, dissolved oxygen) and human-impact changes (aquaculture, artificial channel). The results showed a severe decline (estimated at -49%) in seagrass meadows between 1973 and 1994 followed by a period of strong recovery (estimated to +42%) between 1994 and 2011. Increased turbidity, induced either by rainfall events, dredging or phytoplankton growth, emerged as the most important driver of the spatio-temporal evolution of Cymodocea nodosa-dominated meadows in Urbino lagoon over the last four decades. Climate events associated to increased turbidity and reduced salinity and temperature could heavily impact seagrass dynamics. This study shows that Urbino lagoon, a system relatively untouched by human impact, shelters seagrass meadows that exhibit high resilience and stability.

  3. Effects of tourism and topography on vegetation diversity in the subalpine meadows of the Dongling Mountains of Beijing, China.

    PubMed

    Zhang, Jin-Tun; Xiang, ChunLing; Li, Min

    2012-02-01

    Subalpine meadows in the Dongling Mountains (located at E115º26'-115º40', N40º00'-40º05') of Beijing, China are important for tourism and the provision of ecosystem services. However, because of poor management serious degradation has occurred on these subalpine meadows. The aim of this paper is to present a quantitative analysis of effects of tourism disturbance and topography on the status and diversity of montane meadow communities and to provide direction for improved management. Sixty quadrats of 2 × 2 m(2) along 10 transects were set up to collect data on site characteristics and vegetation status. The relationships between community composition and structure, species diversity, and tourism disturbance and topographic variables were analyzed by multivariate methods (TWINSPAN and CCA). The results showed that eight meadow communities were identified by TWINSPAN. Most of them were seriously degraded. The first CCA axis identified an elevation and tourism disturbance intensity gradient, which illustrated that tourism disturbance and elevation were most important factors influencing meadow types, composition and structure. Some resistant species and response species to tourism disturbance were identified and can be used as indicator species of tourism disturbance. Species richness, heterogeneity and evenness were closely related to tourism disturbance and elevation. It is concluded that tourism disturbance must be controlled to enable grassland rehabilitation to occur in the meadows. Measures of effective management of the meadows were discussed.

  4. The Impact of Artificial Forest Plantations on Mountain-Meadow Soils of Crimea

    NASA Astrophysics Data System (ADS)

    Kostenko, I. V.

    2018-05-01

    A significant change in the properties of mountainous meadow soils of the Ai-Petri Plateau has taken place under the impact of artificial plantations of pine, birch, and larch created in the Crimean highlands in the middle of the 20th century. In comparison with the soils under meadow vegetation, the soils under forest vegetation are characterized by an increased content of large aggregates, a decrease in the humus content, and an increase in the soil acidity and in the iron content of the organomineral compounds. The most dramatic changes in the structural state of the soils are observed under the plantations of pine. The changes in the acidity and the iron content are most pronounced under larch stands. The decrease in the humus content is observed under all tree species. Thus, in the soil layer of 0-10 cm under pine, birch, and larch stands, the content of Corg is 1.2, 1.3, and 1.4 times lower, respectively, than that in the soil under meadow vegetation.

  5. Predicted effects of proposed new regulation plans on sedge/grass meadows of Lake Ontario

    USGS Publications Warehouse

    Wilcox, D.A.; Xie, Y.

    2008-01-01

    Previously described models for predicting the percent of Lake Ontario wetlands that would be occupied by sedge/grass-dominated meadow marsh were used to test four proposed new plans for regulation of lake levels and to make comparisons with the current plan and unregulated conditions. The models for drowned river mouth, barrier beach, open embayment, and protected embayment wetlands assessed responses to lake levels that would be generated by each plan under net total supplies modified from those that occurred from1900 to 2000. In years when reduced supplies would allow meadow marsh regeneration, simulated unregulated lake levels produced the most meadow marsh in all wetland geomorphic types; current Plan 1958DD produced the least. Overall predicted percent meadow marsh under the test plans decreased in the order B+, 2007, D+, and A+, and the latter three plans produced rather similar results in many cases. Lower percentages of meadow marsh under some plans were due to insufficient low lake levels that could allow soils to dry and restrict invasion by cattails, as well as lack of periodic high lake levels that could kill invading upland plants. An assessment of seasonal lake-level characteristics demonstrated that Plan 2007 would reduce mean winter lake levels by 13 cm or more than Plan B+ and springtime lake levels by more than 10 cm. These seasonal differences could result in less winter habitat for muskrats and reduced access to spring spawning habitats for fish such as northern pike. Our model results provide important information for use in the process of selecting a new regulation plan for Lake Ontario.

  6. 24. STREAM AND THREE MEADOW FALLS, LOOKING NORTHWEST Photocopy of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. STREAM AND THREE MEADOW FALLS, LOOKING NORTHWEST Photocopy of photograph, 1930s National Park Service, National Capital Region files - Dumbarton Oaks Park, Thirty-second & R Streets Northwest, Washington, District of Columbia, DC

  7. Impacts of urban wastewater discharge on seagrass meadows ( Zostera noltii)

    NASA Astrophysics Data System (ADS)

    Cabaço, Susana; Machás, Raquel; Vieira, Vasco; Santos, Rui

    2008-06-01

    The abiotic disturbance of urban wastewater discharge and its effects in the population structure, plant morphology, leaf nutrient content, epiphyte load and macroalgae abundance of Zostera noltii meadows were investigated in Ria Formosa coastal lagoon, southern Portugal using both univariate and multivariate analysis. Four sites were assessed, on a seasonal basis, along a gradient from a major Waste Water Treatment Works (WWTW) discharge to a main navigation channel. The wastewater discharge caused an evident environmental disturbance through the nutrient enrichment of the water and sediment, particularly of ammonium. Zostera noltii of the sites closest to the nutrient source showed higher leaf N content, clearly reflecting the nitrogen load. The anthropogenic nutrient enrichment resulted in higher biomass, and higher leaf and internode length, except for the meadow closest to the wastewater discharge (270 m). The high ammonium concentration (158-663 μM) in the water at this site resulted in the decrease of biomass, and both the leaf and internode length, suggesting a toxic effect on Z. noltii. The higher abundance of macroalgae and epiphytes found in the meadow closest to the nutrient source may also affect the species negatively. Shoot density was higher at the nutrient-undisturbed site. Two of the three abiotic processes revealed by Principal Component Analysis were clearly related to the WWTW discharge, a contrast between water column salinity and nutrient concentration and a sediment contrast between both porewater nutrients and temperature and redox potential. A multiple regression analysis showed that these abiotic processes had a significant effect on the biomass-density dynamics of meadows and on the overall size of Z. noltii plants, respectively. Results show that the wastewater discharge is an important source of environmental disturbance and nutrients availability in Ria Formosa lagoon affecting the population structure, morphology and N content of Z

  8. Interoperability challenges for the Sustainable Management of seagrass meadows (Invited)

    NASA Astrophysics Data System (ADS)

    Nativi, S.; Pastres, R.; Bigagli, L.; Venier, C.; Zucchetta, M.; Santoro, M.

    2013-12-01

    Seagrass meadows (marine angiosperm plants) occupy less than 0.2% of the global ocean surface, annually store about 10-18% of the so-called 'Blue Carbon', i.e. the Carbon stored in coastal vegetated areas. Recent literature estimates that the flux to the long-term carbon sink in seagrasses represents 10-20% of seagrasses global average production. Such figures can be translated into economic benefits, taking into account that a ton of carbon dioxide in Europe is paid at around 15 € in the carbon market. This means that the organic carbon retained in seagrass sediments in the Mediterranean is worth 138 - 1128 billion €, which represents 6-23 € per square meter. This is 9-35 times more than one square meter of tropical forest soil (0.66 € per square meter), or 5-17 times when considering both the above and the belowground compartments in tropical forests. According the most conservative estimations, about 10% of the Mediterranean meadows have been lost during the last century. In the framework of the GEOSS (Global Earth Observation System of Systems) initiative, the MEDINA project (funded by the European Commission and coordinated by the University of Ca'Foscari in Venice) prepared a showcase as part of the GEOSS Architecture Interoperability Pilot -phase 6 (AIP-6). This showcase aims at providing a tool for the sustainable management of seagrass meadows along the Mediterranean coastline. The application is based on an interoperability framework providing a set of brokerage services to easily ingest and run a Habitat Suitability model (a model predicting the probability a given site to provide a suitable habitat for the development of seagrass meadow and the average coverage expected). The presentation discusses such a framework explaining how the input data is discovered, accessed and processed to ingest the model (developed in the MEDINA project). Furthermore, the brokerage framework provides the necessary services to run the model and visualize results

  9. 22. MEADOW, LOOKING EAST WITH STREAM ARBOR ON RIGHT Photocopy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. MEADOW, LOOKING EAST WITH STREAM ARBOR ON RIGHT Photocopy of photograph, 1930s National Park Service, National Capital Region files - Dumbarton Oaks Park, Thirty-second & R Streets Northwest, Washington, District of Columbia, DC

  10. [Actinomycetes of the genus Micromonospora in meadow ecosystems].

    PubMed

    Zenova, G M; Zviagintsev, D G

    2002-01-01

    Investigations showed that micromonosporas, along with streptomycetes, are the major inhabitants of floodplain meadow ecosystems, where their population varies from tens of thousands to hundreds of thousands of CFU per g substrate. In spring, the population of micromonosporas in soil and on the plant roots was found to be denser than that of streptomycetes.

  11. A comparison between energy transfer and atmospheric turbulent exchanges over alpine meadow and banana plantation

    NASA Astrophysics Data System (ADS)

    Ding, Zhangwei; Ma, Yaoming; Wen, Zhiping; Ma, Weiqiang; Chen, Shiji

    2017-07-01

    Banana plantation and alpine meadow ecosystems in southern China and the Tibetan Plateau (TP) are unique in the underlying surfaces they exhibit. In this study, we used eddy covariance and a micrometeorological tower to examine the characteristics of land surface energy exchanges over a banana plantation in southern China and an alpine meadow in the Tibetan Plateau from May 2010 to August 2012. The results showed that the diurnal and seasonal variations in upward shortwave radiation flux and surface soil heat flux were larger over the alpine meadow than over the banana plantation surface. Dominant energy partitioning varied with season. Latent heat flux was the main consumer of net radiation flux in the growing season, whereas sensible heat flux was the main consumer during other periods. The Monin-Obukhov similarity theory was employed for comparative purposes, using sonic anemometer observations of flow over the surfaces of banana plantations in the humid southern China monsoon region and the semi-arid areas of the TP, and was found to be applicable. Over banana plantation and alpine meadow areas, the average surface albedo and surface aerodynamic roughness lengths under neutral atmospheric conditions were ˜0.128 and 0.47 m, and ˜0.223 and 0.01 m, respectively. During the measuring period, the mean annual bulk transfer coefficients for momentum and sensible heat were 1.47 × 10-2 and 7.13 × 10-3, and 2.91 × 10-3 and 1.96 × 10-3, for banana plantation and alpine meadow areas, respectively.

  12. A physical framework for evaluating net effects of wet meadow restoration on late summer streamflow

    NASA Astrophysics Data System (ADS)

    Grant, G.; Nash, C.; Selker, J. S.; Lewis, S.; Noël, P.

    2017-12-01

    Restoration of degraded wet meadows that develop on upland valley floors is intended to achieve a range of ecological benefits. A widely cited benefit is the potential for meadow restoration to augment late-season streamflow; however, there has been little field data demonstrating increased summer flows following restoration. Instead, the hydrologic consequences of restoration have typically been explored using coupled groundwater and surface water flow models at instrumented sites. The expected magnitude and direction of change provided by models has, however, been inconclusive. Here, we assess the streamflow benefit that can be obtained by wet meadow restoration using a parsimonious, physically-based approach. We use a one-dimensional linearized Boussinesq equation with a superimposed solution for changes in storage due to groundwater upwelling and and explicitly calculate evapotranspiration using the White Method. The model accurately predicts water table elevations from field data in the Middle Fork John Day watershed in Oregon, USA. The full solution shows that while raising channel beds can increase total water storage via increases in water table elevation in upland valley bottoms, the contributions of both lateral and longitudinal drainage from restored floodplains to late summer streamflow are undetectably small, while losses in streamflow due to greater transpiration, lower hydraulic gradients, and less drainable pore volume are substantial. Although late-summer streamflow increases should not be expected as a direct result of wet meadow restoration, these approaches offer benefits for improving the quality and health of riparian and meadow vegetation that would warrant considering such measures, even at the cost of increased water demand and reduced streamflow.

  13. Baltic Sea Blue Carbon: Role of environmental factors influencing the carbon sink capacity of eelgrass (Zostera marina) meadows.

    NASA Astrophysics Data System (ADS)

    Röhr, E.; Holmer, M.; Boström, C.

    2016-02-01

    Although the global seagrass coverage area is less than 0.2 % of the worlds ocean floor, the carbon sink capacity of seagrasses may account up to 18 % of oceanic carbon burial and thus play a critical structural and functional role in many coastal ecosystems. Recent studies have shown considerable variation in the global estimates for seagrass meadow Corg accumulation rates and stocks, and indicate lack of understanding the factors influencing this variability. We sampled 20 eelgrass (Zostera marina) meadows in Finland and Denmark to study the variation in Corg accumulation rates and stocks within the Baltic Sea area. The study sites in both regions spanned a gradient from sheltered to exposed locations. The estimates for Corg accumulation rates at the Finnish eelgrass meadows were two orders of magnitude lower than the estimates for the Danish sites. The Corg stock integrated over the top 25 cm of sediment showed similar pattern, suggesting that the Finnish eelgrass meadows are carbon sources rather than carbon sinks, and the produced Corg is exported from the meadows. In contrast, at the Danish sites both Corg accumulation rates and areal Corg stock was more varying suggesting, that in this region the meadows function both as carbon sinks and sources. Our analysis further showed that a large percentage (> 55 %) of the variation in the Corg stocks was explained by sediment characteristics (density, fraction of silt and grain size distribution). In addition, the contribution of Zostera marina detritus to the sediment Corg pool explained >14 % of the variation in the Corg stocks. In order to get more reliable regional and global estimates of the role of seagrass meadows in the ocean carbon cycle, more studies accounting for the full range of environmental and species characteristics are urgently needed.

  14. Processes affecting the spatial distribution of seagrass meadow sedimentary material on Yao Yai Island, Thailand

    NASA Astrophysics Data System (ADS)

    Quak, Michelle S. Y.; Ziegler, Alan D.; Benner, Shawn G.; Evans, Sam; Todd, Peter A.; Gillis, Lucy G.; Vongtanaboon, Sukanya; Jachowski, Nick; Bouma, Tjeerd J.

    2016-12-01

    Many islands throughout SE Asia are experiencing rapid development and land-cover conversion that potentially threaten sensitive coastal ecosystems, such as seagrasses, through increased loading of sediment and nutrients originating from disturbed catchments draining to the sea. To evaluate this threat for one such island in Southern Thailand (Yao Yai), we perform sediment source tracing via end-member mixing analysis using stable isotopes δ13C and δ15N in organic matter to explore sediment loading in a seagrass meadow. The analysis indicates that sedimentary material in the meadow originates mostly from ocean-associated sources (∼62% from seagrass detritus, seston, and ocean sediments). Terrestrial material comprises ∼19% of the organic material found in the seagrass meadow, with another 20% originating from an adjacent mangrove forest. Approximately one-fourth of the seagrass meadow material (24%) is detritus that has been (re)deposited internally. The high contribution of terrestrial-derived organic matter deposited near the river mouth demonstrates that substantial quantities of sediment are being transferred from upslope erosion sources into the seagrass meadow. However, only a small amount of this material is deposited throughout the entire bay because much of the terrestrial- and mangrove-derived sediment is transferred to the open ocean via channels that are periodically dredged to allow boat access to two small inland harbours. This positive affect of dredging has not received very much attention in existing literature. River water flowing to the channels during falling tide delivers sediment to these efficient pathways, where much of it bypasses the seagrass meadow at periods of time when sediment deposition would normally be the greatest. There is growing concern that ongoing land-cover changes and planned urbanization related to tourism and agriculture on the island may boost sediment/nutrients above a critical threshold, beyond that revealed in

  15. 71. Meadow Creek Culvert. This is an example of a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. Meadow Creek Culvert. This is an example of a triple arch concrete box culvert with stone facing mimicking rigid frame structures. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  16. Site Guide to Sunken Meadow State Park. Revised.

    ERIC Educational Resources Information Center

    Palma, Alfred J.

    Sunken Meadow State Park provides a year round three-fold ecosystem (marine beach, salt marsh, and wooded upland) of 1,266 acres for Suffolk County (NY) teachers and students to use as a site for outdoor education activities. While teachers can rely on the support of the Outdoor Learning Laboratories' staff for aid in emergencies, for clarifying…

  17. Soil changes after hay meadow abandonment in southwestern Wisconsin.

    Treesearch

    M. Dean Knighton

    1977-01-01

    Soil properties were monitored in early spring and late fall for 3 years following hay meadow abandonment. Bulk density decreased, organic carbon increased, total porosity increased in the large pore fraction, and infiltration rate increased 100%. Earthworm activity was considered to be primarily responsible for the improvement.

  18. Using MODIS data for understanding changes in seagrass meadow health: a case study in the Great Barrier Reef (Australia).

    PubMed

    Petus, Caroline; Collier, Catherine; Devlin, Michelle; Rasheed, Michael; McKenna, Skye

    2014-07-01

    Stretching more than 2000 km along the Queensland coast, the Great Barrier Reef Marine Park (GBR) shelters over 43,000 square km of seagrass meadows. Despite the status of marine protected area and World Heritage listing of the GBR, local seagrass meadows are under stress from reduced water quality levels; with reduction in the amount of light available for seagrass photosynthesis defined as the primary cause of seagrass loss throughout the GBR. Methods have been developed to map GBR plume water types by using MODIS quasi-true colour (hereafter true colour) images reclassified in function of their dominant colour. These data can be used as an interpretative tool for understanding changes in seagrass meadow health (as defined in this study by the seagrass area and abundance) at different spatial and temporal scales. We tested this method in Cleveland Bay, in the northern GBR, where substantial loss in seagrass area and biomass was detected by annual monitoring from 2007 to 2011. A strong correlation was found between bay-wide seagrass meadow area and biomass and exposure to turbid Primary (sediment-dominated) water type. There was also a strong correlation between the changes of biomass and area of individual meadows and exposure of seagrass ecosystems to Primary water type over the 5-year period. Seagrass meadows were also grouped according to the dominant species within each meadow, irrespective of location within Cleveland Bay. These consolidated community types did not correlate well with the exposure to Primary water type, and this is likely to be due to local environmental conditions with the individual meadows that comprise these groupings. This study proved that remote sensing data provide the synoptic window and repetitivity required to investigate changes in water quality conditions over time. Remote sensing data provide an opportunity to investigate the risk of marine-coastal ecosystems to light limitation due to increased water turbidity when in situ

  19. Hazardous Waste Cleanup: Southland Corporation in Great Meadows, New Jersey

    EPA Pesticide Factsheets

    The Southland Corporation site is located on Alphano Road, 277 acres in Great Meadows, Independence Township, Warren County, New Jersey. Gamma Chemical Company owned and operated the facility from 1950 to 1966, followed by Ashland Chemical Company from

  20. Light-intensity grazing improves alpine meadow productivity and adaption to climate change on the Tibetan Plateau.

    PubMed

    Zhang, Tao; Zhang, Yangjian; Xu, Mingjie; Zhu, Juntao; Wimberly, Michael C; Yu, Guirui; Niu, Shuli; Xi, Yi; Zhang, Xianzhou; Wang, Jingsheng

    2015-10-30

    To explore grazing effects on carbon fluxes in alpine meadow ecosystems, we used a paired eddy-covariance (EC) system to measure carbon fluxes in adjacent fenced (FM) and grazed (GM) meadows on the Tibetan plateau. Gross primary productivity (GPP) and ecosystem respiration (Re) were greater at GM than FM for the first two years of fencing. In the third year, the productivity at FM increased to a level similar to the GM site. The higher productivity at GM was mainly caused by its higher photosynthetic capacity. Grazing exclusion did not increase carbon sequestration capacity for this alpine grassland system. The higher optimal photosynthetic temperature and the weakened ecosystem response to climatic factors at GM may help to facilitate the adaption of alpine meadow ecosystems to changing climate.

  1. Experimental Warming Aggravates Degradation-Induced Topsoil Drought in Alpine Meadows of The Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xue, X.

    2017-12-01

    Climatic warming is presumed to cause topsoil drought by increasing evapotranspiration and water infiltration, and by progressively inducing land degradation in alpine meadows of the Qinghai-Tibetan Plateau. However, how soil moisture and temperature patterns of degraded alpine meadows respond to climate warming remains unclear. A six-year continuous warming experiment was carried out in both degraded and undegraded alpine meadows in the source region of the Yangtze River. The goal was to identify the effects of climatic warming and land degradation on soil moisture (θ), soil surface temperature (Tsfc), and soil temperature (Ts). In the present study, land degradation significantly reduced θ by 4.5-6.1% at a depth of 0-100 cm (P < 0.001), and increased the annual mean Tsfc by 0.8°C. Warming with an infrared heater (radiation output of 150 W m-2) significantly increased the annual mean Tsfc by 2.5°C (P < 0.001) and significantly increased θ by 4.7% at a depth of 40-60 cm. Experimental warming in degraded land reversed the positive effects of the infrared heater and caused the yearly average θ to decrease significantly by 3.7-8.1% at a depth of 0-100 cm. Our research reveals that land degradation caused a significant water deficit near the soil surface. Experimental warming aggravated topsoil drought caused by land degradation, intensified the magnitude of degradation, and caused a positive feedback in the degraded alpine meadow ecosystem. Therefore, an immediate need exists to restore degraded alpine meadow grasslands in the Qinghai-Tibetan Plateau in anticipation of a warmer future.

  2. Alluvial Mountain Meadow Source-Sink Dynamics: Land-Cover Effects on Water and Fluvial Carbon Export

    NASA Astrophysics Data System (ADS)

    Weiss, T.; Covino, T. P.; Wohl, E.; Rhoades, C.; Fegel, T.; Clow, D. W.

    2017-12-01

    Fluvial networks of historically glaciated mountain landscapes alternate between confined and unconfined valley segments. In low-gradient unconfined reaches, river-connected wet meadows commonly establish, and have been recognized as important locations of long-term water, carbon, and nutrient storage. Among connected meadow floodplains, sink-source behavior shifts as a function of flow state; storing water at high flows (snowmelt) and contributing toward higher late-season baseflows. Despite these benefits, historical and contemporary land-use practices often result in the simplification of wet meadow systems, leading to reduced river-floodplain connectivity, lower water-tables and reductions in hydrologic buffering capacity. In this study, we are exploring hydrologic-carbon relationships across a gradient of valley confinement and river-floodplain connectivity (connected, n=3; disconnected, n=4) within the Colorado Rockies. Our approach includes hydrologic analysis, fluorometric assays, water chemistry, instream metabolic measures, and land-cover assessment to examine patterns between land-form, carbon quantity and quality, and stream ecosystem productivity. Between different meadow types, preliminary results suggest differences between instream productivity, carbon qualities, and hydrologic-carbon sink-source dynamics across the season. These data and analyses will provide insight into water, carbon and nutrient flux dynamics as a function of land-cover in mountain headwaters.

  3. Herbicide contamination and the potential impact to seagrass meadows in Hervey Bay, Queensland, Australia.

    PubMed

    McMahon, Kathryn; Bengtson Nash, Susan; Eaglesham, Geoff; Müller, Jochen F; Duke, Norman C; Winderlich, Steve

    2005-01-01

    Low concentrations of herbicides (up to 70 ng l(-1)), chiefly diuron (up to 50 ng l(-1)) were detected in surface waters associated with inter-tidal seagrass meadows of Zostera muelleri in Hervey Bay, south-east Queensland, Australia. Diuron and atrazine (up to 1.1 ng g(-1) dry weight of sediment) were detected in the sediments of these seagrass meadows. Concentration of the herbicides diuron, simazine and atrazine increased in surface waters associated with seagrass meadows during moderate river flow events indicating herbicides were washed from the catchment to the marine environment. Maximum herbicide concentration (sum of eight herbicides) in the Mary River during a moderate river flow event was 4260 ng l(-1). No photosynthetic stress was detected in seagrass in this study during low river flow. However, with moderate river flow events, nearshore seagrasses are at risk of being exposed to concentrations of herbicides that are known to inhibit photosynthesis.

  4. 66. BIG MEADOWS. VIEW OF PARKING AREA AT THE GATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    66. BIG MEADOWS. VIEW OF PARKING AREA AT THE GATED ENTRANCE TO RAPIDAN FIRE ROAD, THE ACCESS ROAD TO CAMP HOOVER. LOOKING SOUTH, MILE 51.3. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  5. RELATIONSHIPS AMONG GEOMORPHOLOGY, HYDROLOGY, AND VEGETATION IN RIPARIAN MEADOWS: RESTORATION IMPLICATIONS

    EPA Science Inventory

    Vegetation patterns and dynamics within riparian corridors are controlled largely by geomorphic position, substrate characteristics and hydrologic regimes. Understanding management and restoration options for riparian meadow complexes exhibiting stream incision requires knowledge...

  6. 75 FR 63505 - Crane Meadows National Wildlife Refuge, Morrison County, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... including oak savanna, sand prairie, and sedge meadow, it also provides key habitat for local and migratory... for quality fishing experiences will be evaluated as new lands are acquired. Background The National...

  7. Artificial Warming of Arctic Meadow under Pollution Stress: Experimental design

    NASA Astrophysics Data System (ADS)

    Moni, Christophe; Silvennoinen, Hanna; Fjelldal, Erling; Brenden, Marius; Kimball, Bruce; Rasse, Daniel

    2014-05-01

    Boreal and arctic terrestrial ecosystems are central to the climate change debate, notably because future warming is expected to be disproportionate as compared to world averages. Likewise, greenhouse gas (GHG) release from terrestrial ecosystems exposed to climate warming is expected to be the largest in the arctic. Artic agriculture, in the form of cultivated grasslands, is a unique and economically relevant feature of Northern Norway (e.g. Finnmark Province). In Eastern Finnmark, these agro-ecosystems are under the additional stressor of heavy metal and sulfur pollution generated by metal smelters of NW Russia. Warming and its interaction with heavy metal dynamics will influence meadow productivity, species composition and GHG emissions, as mediated by responses of soil microbial communities. Adaptation and mitigation measurements will be needed. Biochar application, which immobilizes heavy metal, is a promising adaptation method to promote positive growth response in arctic meadows exposed to a warming climate. In the MeadoWarm project we conduct an ecosystem warming experiment combined to biochar adaptation treatments in the heavy-metal polluted meadows of Eastern Finnmark. In summary, the general objective of this study is twofold: 1) to determine the response of arctic agricultural ecosystems under environmental stress to increased temperatures, both in terms of plant growth, soil organisms and GHG emissions, and 2) to determine if biochar application can serve as a positive adaptation (plant growth) and mitigation (GHG emission) strategy for these ecosystems under warming conditions. Here, we present the experimental site and the designed open-field warming facility. The selected site is an arctic meadow located at the Svanhovd Research station less than 10km west from the Russian mining city of Nikel. A splitplot design with 5 replicates for each treatment is used to test the effect of biochar amendment and a 3oC warming on the Arctic meadow. Ten circular

  8. 75 FR 26747 - Meadow Lake Wind Farm IV LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-1177-000] Meadow Lake Wind Farm IV LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... proceeding of Meadow Lake Wind Farm IV LLC's application for market-based rate authority, with an...

  9. 75 FR 26747 - Meadow Lake Wind Farm III LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Docket No. ER10-1176-000] Meadow Lake Wind Farm III LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... proceeding of Meadow Lake Wind Farm III LLC's application for market-based rate authority, with an...

  10. 6. VIEW OF COULTERVILLE ROAD AT BIG MEADOW IN FORESTA. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF COULTERVILLE ROAD AT BIG MEADOW IN FORESTA. INTERSECTION WITH DAVIS CUT-OFF ROAD AT LEFT. LOOKING W. GIS: N-37 42 09.3 / W-119 44 59.8 - Coulterville Road, Between Foresta & All-Weather Highway, Yosemite Village, Mariposa County, CA

  11. Light-intensity grazing improves alpine meadow productivity and adaption to climate change on the Tibetan Plateau

    PubMed Central

    Zhang, Tao; Zhang, Yangjian; Xu, Mingjie; Zhu, Juntao; Wimberly, Michael C.; Yu, Guirui; Niu, Shuli; Xi, Yi; Zhang, Xianzhou; Wang, Jingsheng

    2015-01-01

    To explore grazing effects on carbon fluxes in alpine meadow ecosystems, we used a paired eddy-covariance (EC) system to measure carbon fluxes in adjacent fenced (FM) and grazed (GM) meadows on the Tibetan plateau. Gross primary productivity (GPP) and ecosystem respiration (Re) were greater at GM than FM for the first two years of fencing. In the third year, the productivity at FM increased to a level similar to the GM site. The higher productivity at GM was mainly caused by its higher photosynthetic capacity. Grazing exclusion did not increase carbon sequestration capacity for this alpine grassland system. The higher optimal photosynthetic temperature and the weakened ecosystem response to climatic factors at GM may help to facilitate the adaption of alpine meadow ecosystems to changing climate. PMID:26515954

  12. Predation risk of artificial ground nests in managed floodplain meadows

    NASA Astrophysics Data System (ADS)

    Arbeiter, Susanne; Franke, Elisabeth

    2018-01-01

    Nest predation highly determines the reproductive success in birds. In agricultural grasslands, vegetation characteristics and management practices influences the predation risk of ground breeders. Little is known so far on the predation pressure on non-passerine nests in tall swards. Investigations on the interaction of land use with nesting site conditions and the habitat selection of nest predators are crucial to develop effective conservation measures for grassland birds. In this study, we used artificial nests baited with quail and plasticine eggs to identify potential predators of ground nests in floodplain meadows and related predation risk to vegetation structure and grassland management. Mean daily predation rate was 0.01 (±0.012) after an exposure duration of 21 days. 70% of all observed nest predations were caused by mammals (Red Fox and mustelids) and 17.5% by avian predators (corvids). Nest sites close to the meadow edge and those providing low forb cover were faced with a higher daily predation risk. Predation risk also increased later in the season. Land use in the preceding year had a significant effect on predation risk, showing higher predation rates on unmanaged sites than on mown sites. Unused meadows probably attract mammalian predators, because they provide a high abundance of small rodents and a more favourable vegetation structure for foraging, increasing also the risk of incidental nest predations. Although mowing operation is a major threat to ground-nesting birds, our results suggest that an annual removal of vegetation may reduce predation risk in the subsequent year.

  13. Turbulent mixing and fluid transport within Florida Bay seagrass meadows

    NASA Astrophysics Data System (ADS)

    Hansen, Jennifer C. R.; Reidenbach, Matthew A.

    2017-10-01

    Seagrasses serve an important function in the ecology of Florida Bay, providing critical nursery habitat and a food source for a variety of organisms. They also create significant benthic structure that induces drag, altering local hydrodynamics that can influence mixing and nutrient dynamics. Thalassia testudinum seagrass meadows were investigated to determine how shoot density and morphometrics alter local wave conditions, the generation of turbulence, and fluid exchange above and within the canopy. Sparsely vegetated and densely vegetated meadows were monitored, with shoot densities of 259 ± 26 and 484 ± 78 shoots m-2, respectively. The temporal and spatial structure of velocity and turbulence were measured using acoustic Doppler velocimeters and an in situ particle image velocimetry (PIV) system positioned both above and within the seagrass canopy. The retention of fluid within the canopy was determined by examining e-folding times calculated from the concentration curves of dye plumes released within the seagrass canopy. Results show that a shear layer with an inflection point develops at the top of the seagrass canopy, which generates instabilities that impart turbulence into the seagrass meadow. Compared to the overlying water column, turbulence was enhanced within the sparse canopy due to flow interaction with the seagrass blades, but reduced within the dense canopy. Wave generated oscillatory motion penetrated deeper into the canopy than unidirectional currents, enhancing fluid exchange. Both shoot density and the relative magnitude of wave- versus current-driven flow conditions were found to be important controls on turbulent exchange of water masses across the canopy-water interface.

  14. Lake trout spawning habitat in the Six Fathom Bank-Yankee Reef lake trout sanctuary, Lake Huron

    USGS Publications Warehouse

    Edsall, Thomas A.; Brown, Charles L.; Kennedy, Gregory W.; Poe, Thomas P.

    1992-01-01

    Attempts to reestablish self-sustaining stocks of lake trout (Salvelinus namaycush) in the lower four Great Lakes, where the species was extinguished in the 1950s and 1960s, have been largely unsuccessful. To avoid many of the problems believed to be contributing to this failure, the fishery management community recently established several sanctuaries in the offshore waters of the Great Lakes where the development and protection of self-sustaining stocks of lake trout would be a primary management objective. One of these, the Six Fathom Bank-Yankee Reef sanctuary, was created in the south-central portion of Lake Huron. This sanctuary covers 168,000 ha and includes the shallower portions of the Six Fathom and Ipperwash scarps, which are major bathymetric features in the southern half of the lake. Historical accounts describe Six Fathom Bank as the most important lake trout spawning ground in the lake. Here we present the results of lake bed surveys conducted in the sanctuary with side-scan sonar, underwater videocamera systems, and a small research submarine. Our observations of the lake bed are consistent with what is known of the bedrock stratigraphy, glacial history, and karst geomorphology of the Lake Huron basin. Most of the loose rock we found seemed to be derived from local carbonate bedrock formations, although non-carbonate rock probably from Precambrian sources to the north was also present in some areas. Much of the bedrock and loose rock displayed karst solution features described for the Bruce Peninsula on the Ontario shoreline. Our surveys revealed substantial areas of lake bed at water depths of 20–36 m that resembled suitable spawning and fry production habitat for the shallow-water strains of lake trout that are the focus of the rehabilitation effort. Low mid-lake nutrient levels documented recently by others and the extremely high abundance of Mysis relicta (an important item in the diet of young lake trout) that we documented on Yankee Reef

  15. Long-Term Hydrological Reconstruction From a Beaver Meadow Using Testate Amoebae

    NASA Astrophysics Data System (ADS)

    Von Ness, K.; Loisel, J.; Karran, D. J.; Westbrook, C.; Kohlmeyer, C.

    2016-12-01

    Beaver ponds contribute up to 0.8 Tg/yr of atmospheric methane (CH4) globally (Whitfield et al., 2014) and were found to be the largest CH4 emitters among all the wetland types in boreal environments (Roulet et al., 1992). However, the sources and underlying mechanisms of carbon emission and sequestration in beaver ponds requires further elucidation. Here we present the historical development of a beaver meadow located in the Sibbald Research Wetland in the Rocky Mountains of Kananaskis Provincial Park, Alberta, Canada. We use a combination of testate amoebae, plant macrofossils, and other geochemical proxies to provide high-resolution reconstructions along three peat cores extracted in hydrologically distinct portions of the meadow. To our knowledge, this is the first attempt at reconstructing long-term hydrological conditions in these systems. Testate amoebae (Protozoa: Rhizopoda) are single-celled organisms that inhabit moist substrates and produce a decay-resistant test. As each taxon generally occupies a discrete ecological niche related to soil moisture and pH, testate amoebae are good indicators of past and ongoing hydrological change. Preliminary analysis of testate amoebae assemblages downcore suggests that this proxy is suitable to reconstruct hydrological changes in meadows, with wetter and drier communities being in good agreement with wetter and drier plant macrofossil assemblages. The nitrogen isotopic signature of peat samples (ongoing) will be used as a proxy for changes in nutrient input; it could become a proxy for past beaver activity.

  16. A survey of fishes associated with Hawaiian deep-water Halimeda kanaloana (Bryopsidales: Halimedaceae) and Avrainvillea sp. (Bryopsidales: Udoteaceae) meadows.

    PubMed

    Langston, Ross C; Spalding, Heather L

    2017-01-01

    The invasive macroalgal species Avrainvillea sp. and native species Halimeda kanaloana form expansive meadows that extend to depths of 80 m or more in the waters off of O'ahu and Maui, respectively. Despite their wide depth distribution, comparatively little is known about the biota associated with these macroalgal species. Our primary goals were to provide baseline information on the fish fauna associated with these deep-water macroalgal meadows and to compare the abundance and diversity of fishes between the meadow interior and sandy perimeters. Because both species form structurally complex three-dimensional canopies, we hypothesized that they would support a greater abundance and diversity of fishes when compared to surrounding sandy areas. We surveyed the fish fauna associated with these meadows using visual surveys and collections made with clove-oil anesthetic. Using these techniques, we recorded a total of 49 species from 25 families for H. kanaloana meadows and surrounding sandy areas, and 28 species from 19 families for Avrainvillea sp. habitats. Percent endemism was 28.6% and 10.7%, respectively. Wrasses (Family Labridae) were the most speciose taxon in both habitats (11 and six species, respectively), followed by gobies for H. kanaloana (six species). The wrasse Oxycheilinus bimaculatus and cardinalfish Apogonichthys perdix were the most frequently-occurring species within the H. kanaloana and Avrainvillea canopies, respectively. Obligate herbivores and food-fish species were rare in both habitats. Surprisingly, the density and abundance of small epibenthic fishes were greater in open sand than in the meadow canopy. In addition, species richness was also higher in open sand for Avrainvillea sp. We hypothesize that the dense holdfasts and rhizoids present within the meadow canopy may impede benthic-dwelling or bioturbator species, which accounted for 86% and 57% of individuals collected in sand adjacent to H. kanaloana and Avrainvillea sp. habitats

  17. Assessment and physiological state of the Posidonia oceanica meadows in Porto Cristo (Manacor, Spain)

    NASA Astrophysics Data System (ADS)

    Sureda, Antoni; Box, Antonio; Tejada, Silvia

    2015-12-01

    In the Mediterranean Sea, Posidonia oceanica is the main seagrass meadow that brings food and shelter to many species. The P. oceanica deterioration is an indicator of its own status, since it is sensitive to many disturbances, such as human impacts or alien species. Lately, oxidative stress has been pointed out as another possible biomarker of the animal and plant status. The aim of this work was to evaluate the physiological status of the P. oceanica meadows in the Porto Cristo bay (Manacor, Mallorca, Balearic Islands, Western Mediterranean), evaluating the possible impact induced by human activity performed in the area. In situ measurements were quantified (shoot density, and the maximum length and width of P. oceanica leaves) by scuba divers. Leaf samples were collected to determine the catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. The malondialdehyde (MDA) level as marker of lipid peroxidation was also evaluated. Shoot density, and length and width measurements of the leaves in the inner locations of the bay showed inferior structural features than the leaves from the outer areas. CAT, SOD and GPx enzymatic activities and lipid peroxidation were higher in leaves from the internal zones than in the outer placements. In conclusion, the general status of the of P. oceanica meadows on the Porto Cristo Bay according to structural and oxidative biomarkers evidenced a good physiological condition, although the areas nearest to the harbour and the beach reflect signs of human affection. Altogether, it reflects a good physiological condition of the meadows in the external areas of the Porto Cristo Bay.

  18. Long-term effect of beach replenishment on natural recovery of shallow Posidonia oceanica meadows

    NASA Astrophysics Data System (ADS)

    González-Correa, José M.; Torquemada, Yolanda Fernández; Sánchez Lizaso, José Luis

    2008-03-01

    The recovery capacity of shallow Posidonia oceanica meadows degraded by beach replenishment eighteen years before was assessed in two impacted meadows and compared with other two undisturbed localities. Inside each locality, we selected randomly three sites separated by 500-1000 m. At site level we study the vitality of P. oceanica meadow assessing the vegetative growth, leaf characteristics, and non-structural carbohydrates of the plants. Additionally, at locality level, silt-clay fraction, organic matter, pH and light intensity incident on the sea bottom were measured to evaluate the environmental conditions. Covering of P. oceanica was significantly lower at the impacted localities while amount of dead "matte" was higher. Leaf production of horizontal rhizomes (14.6 ± 1.11 vs 19.47 ± 1.45 leaves y -1), net total rhizomes recruitment (2.33 ± 0.17 vs 4.3 ± 0.33 branches y -1) and starch concentration (43.625 ± 0.67 vs 54.45 ± 0.74 mg per g of rhizome) at impacted meadows were significantly lower than controls. Leaf features, epiphytes biomass, colonization, elongation and horizontal and vertical rhizome production did not show significant differences. Sediments at impacted localities contained higher silt-clay fraction and higher organic matter load while pH was lower. Light intensity on the sea bottom measured at all localities was over the minimum light requirements estimated for P. oceanica. Our results show that the press impact produced by beach replenishment was enduring in the time slowing natural recovery by 45%. This impact may be related with changes in the sediment features.

  19. 86. Round Meadow Creek Viaduct. This steel girder bridge, built ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    86. Round Meadow Creek Viaduct. This steel girder bridge, built in 1939, has a reinforced concrete deck and piers. It is an example of a major in-line, or straight, viaduct over a deep ravine. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  20. Spatio-temporal patterns of tree establishment are indicative of biotic interactions during early invasion of a montane meadow

    Treesearch

    J.M. Rice; C.B. Halpern; J.A. Antos; J.A. Jones

    2012-01-01

    Tree invasions of grasslands are occurring globally, with profound consequences for ecosystem structure and function. We explore the spatio-temporal dynamics of tree invasion of a montane meadow in the Cascade Mountains of Oregon, where meadow loss is a conservation concern. We examine the early stages of invasion, where extrinsic and intrinsic processes can be clearly...

  1. Leaf unfolding of Tibetan alpine meadows captures the arrival of monsoon rainfall

    PubMed Central

    Li, Ruicheng; Luo, Tianxiang; Mölg, Thomas; Zhao, Jingxue; Li, Xiang; Cui, Xiaoyong; Du, Mingyuan; Tang, Yanhong

    2016-01-01

    The alpine meadow on the Tibetan Plateau is the highest and largest pasture in the world, and its formation and distribution are mainly controlled by Indian summer monsoon effects. However, little is known about how monsoon-related cues may trigger spring phenology of the vast alpine vegetation. Based on the 7-year observations with fenced and transplanted experiments across lower to upper limits of Kobresia meadows in the central plateau (4400–5200 m), we found that leaf unfolding dates of dominant sedge and grass species synchronized with monsoon onset, regardless of air temperature. We also found similar patterns in a 22-year data set from the northeast plateau. In the monsoon-related cues for leaf unfolding, the arrival of monsoon rainfall is crucial, while seasonal air temperatures are already continuously above 0 °C. In contrast, the early-emerging cushion species generally leafed out earlier in warmer years regardless of precipitation. Our data provide evidence that leaf unfolding of dominant species in the alpine meadows senses the arrival of monsoon-season rainfall. These findings also provide a basis for interpreting the spatially variable greening responses to warming detected in the world’s highest pasture, and suggest a phenological strategy for avoiding damages of pre-monsoon drought and frost to alpine plants. PMID:26856260

  2. Sustainable Management of Seagrass Meadows: the GEOSS AIP-6 Pilot

    NASA Astrophysics Data System (ADS)

    Santoro, Mattia; Pastres, Roberto; Zucchetta, Matteo; Venier, Chiara; Roncella, Roberto; Bigagli, Lorenzo; Mangin, Antoine; Amine Taji, Mohamed; Gonzalo Malvarez, Gonzalo; Nativi, Stefano

    2014-05-01

    Seagrass meadows (marine angiosperm plants) occupy less than 0.2% of the global ocean surface, annually store about 10-18% of the so-called "Blue Carbon", i.e. the Carbon stored in coastal vegetated areas. Recent literature estimates that the flux to the long-term carbon sink in seagrasses represents 10-20% of seagrasses global average production. Such figures can be translated into economic benefits, taking into account that a ton of carbon dioxide in Europe is paid at around 15 € in the carbon market. This means that the organic carbon retained in seagrass sediments in the Mediterranean is worth 138 - 1128 billion €, which represents 6-23 € per square meter. This is 9-35 times more than one square meter of tropical forest soil (0.66 € per square meter), or 5-17 times when considering both the above and the belowground compartments in tropical forests. According the most conservative estimations, about 10% of the Mediterranean meadows have been lost during the last century. To estimate seagrass meadows distribution, a Species Distribution Model (SDM) can be used. SDM is a tool that is used to evaluate the potential distribution of a given species (e.g. Posidonia oceanica for seagrass) on the basis of the features (bio-chemical-physical parameters) of the studied environment. In the framework of the GEOSS (Global Earth Observation System of Systems) initiative, the FP7 project MEDINA developed a showcase as part of the GEOSS Architecture Interoperability Pilot - phase 6 (AIP-6). The showcase aims at providing a tool for the sustainable management of seagrass meadows along the Mediterranean coastline by integrating the SDM with available GEOSS resources. This way, the required input data can be searched, accessed and ingested into the model leveraging the brokering framework of the GEOSS Common Infrastructure (GCI). This framework is comprised of a set of middle-ware components (Brokers) that are in charge of implementing the needed interoperability

  3. Plant community responses to prescribed burning in Wisconsin sedge meadows

    Treesearch

    Michael A. Kost; Diane De Steven

    2000-01-01

    In northern temperate regions, sedge meadows dominated by the tussock-sedge Carex stricta Lam. (Cyperaceae) were historically a fire-maintained community type. In two Wisconsin natural areas (Lulu Lake and Summerton), the authors assessed the effects of time since prescribed spring burning on plant composition and aboveground biomass in eight sedge...

  4. MANAGING AND RESTORING UPLAND RIPARIAN MEADOWS IN THE CENTRAL GREAT BASIN

    EPA Science Inventory

    Riparian meadow ecosystems in upland watersheds are of local and regional importance in the Great Basin. Covering only 1-3% of the total land area, these ecosystems contain a disproportionally large percentage of the region's biodiversity. Stream incision, due to natural and anth...

  5. Effects of hydrological regime on development of Carex wet meadows in East Dongting Lake, a Ramsar Wetland for wintering waterbirds

    PubMed Central

    Jing, Lei; Lu, Cai; Xia, Yan; Shi, Linlu; Zuo, Aojie; Lei, Jialing; Zhang, Hong; Lei, Guangchun; Wen, Li

    2017-01-01

    Wet meadows are one of the most important ecological components in floodplain, and are among the most dynamic ecosystems. Understanding the development of wet meadows and contributing environmental factors can provide better support for wetland management. Carex meadows in East Dongting Lake National Nature Reserve (EDLNNR) provide vital wintering ground for thousands of migratory waterbirds, and their ecological functions are under threated due to hydrological alternation. We measured wet meadow expansion in EDLNNR from 1989 to 2014, and explored its responses to hydrological and climatic factors within the generalised additive models (GAM) framework. We found an overall expansion of wet meadows over the study period. However, in contrast to many previous studies, our results showed that water level fluctuations at the hydrologic indicator site had only limited impacts on their development. Instead, sampling year, timing of water level recession, and local rainfall exerted significant effects. The effects of sampling year reflected the changes in sedimentation within Dongting Lake; and effects of timing of water withdrawal might be explained by the life history of the dominant sedge species. Our study suggested that the impacts of large scale hydrological alternation on vegetation may operate indirectly through its effects on sediment balance. PMID:28165508

  6. Carbon storage in subalpine forests and meadows of the Olympic Mountains, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prichard, S.J.; Peterson, D.L.

    1995-06-01

    We investigated carbon storage in high elevation ecosystems of the Olympic Mountains. A sharp precipitation gradient created by the Olympic mountain range allows for comparison of carbon storage in different climatic regimes and vegetation types. Carbon in soils, vegetation, and woody debris was examined in subalpine forests and meadows of the northeast (dry) and southwest (wet) Olympics. Soil carbon storage in high elevation sites appears to be considerably greater than most low elevation forests. Above-ground carbon storage is generally greater in southwest sites. Meadow soils contained high carbon concentrations in upper horizons, while forests also stored a substantial amount ofmore » carbon in lower horizons. Information gained from this study will provide a better understanding of soil-vegetation relationships in subalpine ecosystems, especially with respect to potential climatic change impacts.« less

  7. Regional groundwater flow in structurally-complex extended terranes: An evaluation of the sources of discharge at Ash Meadows, Nevada

    NASA Astrophysics Data System (ADS)

    Bushman, Michelle; Nelson, Stephen T.; Tingey, David; Eggett, Dennis

    2010-05-01

    SummaryAsh Meadows, Nevada, USA is a site of major groundwater discharge (˜38,000 L/min) in the arid Mojave Desert, and hosts a number of endemic and threatened wetland species. In addition to these resources, Ash Meadows may also represent the future discharge location of radionuclide-laden waters from nuclear weapons testing at the Nevada Test Site. More importantly, however, Ash Meadows provides the opportunity to understand the controls on water transfer between basins through fractured bedrock. 4000+ solute analyses were assembled from the literature into a single database. The data were screened for spatial distribution, completeness, charge balance, and elevated temperatures (⩾20 °C and within regional flow systems), with 246 candidate up-gradient water remaining distributed among six potential source areas in addition to and Ash Meadows itself. These potential sources include both carbonate, volcanic and perhaps valley-fill aquifer systems. These waters were characterized by cluster analysis in order to sort similar waters in an objective fashion into potential flow paths and to establish representative endmember waters for inverse geochemical models and other modes of analysis. Isotopic tracers, both conservative and those reflecting water-rock interaction, all suggest that waters at Ash Meadows are derived by southward flow from volcanic terranes, parallel to the preferred permeability structure induced by active regional east-west extension. Solute balances support this conclusion. However, this runs counter to the prevailing model that waters at Ash Meadows are derived from easterly and northeasterly flows from the Spring Mountains and Pahranagat Valley areas by interbasin flow through a continuous fractured carbonate aquifer. This work suggests that carbonate aquifer systems in extended terranes are more compartmentalized than previously appreciated and that anisotropy in fracture permeability is key to compartmentalization and the control of flow

  8. Legal protection is not enough: Posidonia oceanica meadows in marine protected areas are not healthier than those in unprotected areas of the northwest Mediterranean Sea.

    PubMed

    Montefalcone, Monica; Albertelli, Giancarlo; Morri, Carla; Parravicini, Valeriano; Bianchi, Carlo Nike

    2009-04-01

    Using the Conservation Index, which measures the proportional amount of dead matte relative to live Posidonia oceanica, we assessed the health of 15 P. oceanica meadows at a regional scale along the coast of Liguria (NW Mediterranean). These areas were characterized by different degrees of anthropization, from highly urbanized sites to marine protected areas. Two different scenarios were identified according to depth: in shallow zones, the health of P. oceanica meadows was related to the degree of anthropization along the coastline. In contrast, in deep zones, most meadows exhibited poor health, independent of both the degree of disturbance and the legal measures protecting the area. Working synergistically with the regional impact of increased water turbidity, local impacts from the coast were recognized as the main causes of the severe regression of most Ligurian P. oceanica meadows. We conclude that marine protected areas alone are not sufficient to guarantee the protection of P. oceanica meadows. We emphasize the need for a management network involving the Sites of Community Interest (SCIs) containing P. oceanica meadows.

  9. Results of two years of a mooring over a Posidonia Oceanica seagrass meadow (Corsica, France)

    NASA Astrophysics Data System (ADS)

    Champenois, W.; Delille, B.; Beckers, J.-M.; Grégoire, M.; Borges, A. V.

    2009-04-01

    We report the first two year of results from a 10m deep mooring over a Posidonia Oceanica seagrass meadow (Corsica, France) where we deployed from August 2006 to August 2008 an array of 3 optodes, a fluorometer and a sensor for measurements of the partial pressure of CO2 (pCO2). The oxygen data are used to compute by mass balance ecosystem metabolic performance rates (gross primary production, community respiration, net community production). The comparison with rates derived from discrete benthic incubations (every 2 months) is very satisfactory. The pCO2 data are used to assess the sink or source of atmospheric CO2 of the Posidonia Oceanica seagrass meadow. An application of such a mooring is to detect changes in the productivity of the Posidonia meadow that can be used as indicators of overall ecosystem "health" or degradation by human activities. Such a mooring can be used as an affordable and simple tool for management and sustainable development of coastal areas in the Mediterranean.

  10. HYDROLOGY OF CENTRAL GREAT BASIN MEADOW ECOSYSTEMS – EFFECTS OF STREAM INCISION

    EPA Science Inventory

    Riparian wet meadow complexes in the mountains of the central Great Basin are scarce, ecologically important systems that are threatened by stream incision. Our interdisciplinary group has investigated 1) the interrelationships of geomorphology, hydrology, and vegetation; and 2) ...

  11. Using simple structures for flow dispersion in wet meadow restoration

    Treesearch

    Bill Zeedyk; Benjamin Romero; Steven K. Albert

    1996-01-01

    Historically, wet meadow recovery projects have relied on heavy earth moving equipment to harden nick points and install gully plugs or terraces to trap and detain sediments. We experimented with a variety of simple hand-built structures fashioned of logs, rocks, geotextile fabrics and/or sandbags designed to disperse runoff, rewet surface and subsurface soils and...

  12. Using GIS technology to analyze and understand wet meadow ecosystems

    Treesearch

    Joy Rosen; Roy Jemison; David Pawelek; Daniel Neary

    1999-01-01

    A Cibola National Forest wet meadow restoration was implemented as part of the Forest Road 49 enhancement near Grants, New Mexico. An Arc/View 3.0 Geographic Information System (GIS) was used to track the recovery of this ecosystem. Layers on topography, hydrology, vegetation, soils and human alterations were compiled using a GPS and commonly available data....

  13. Seven year effects of meadow vole herbivory on oak survival

    Treesearch

    Andrew B. Self

    2016-01-01

    Seedling mortality due to meadow vole herbivory is often thought to be small scale in nature in hardwood afforestation efforts. However, in some instances, this source of mortality may play a more important role than typically realized. A total of 1,440 bare-root Nuttall oak (Quercus texana Buckley), Shumard oak (Quercus shumardii...

  14. Cattail invasion of sedge/grass meadows in Lake Ontario: Photointerpretation analysis of sixteen wetlands over five decades

    USGS Publications Warehouse

    Wilcox, D.A.; Kowalski, K.P.; Hoare, H.L.; Carlson, M.L.; Morgan, H.N.

    2008-01-01

    Photointerpretation studies were conducted to evaluate vegetation changes in wetlands of Lake Ontario and the upper St. Lawrence River associated with regulation of water levels since about 1960. The studies used photographs from 16 sites (four each from drowned river mouth, barrier beach, open embayment, and protected embayment wetlands) and spanned a period from the 1950s to 2001 at roughly decadal intervals. Meadow marsh was the most prominent vegetation type in most wetlands in the late 1950s when water levels had declined following high lake levels in the early 1950s. Meadow marsh increased at some sites in the mid-1960s in response to low lake levels and decreased at all sites in the late 1970s following a period of high lake levels. Typha increased at nearly all sites, except wave-exposed open embayments, in the 1970s. Meadow marsh continued to decrease and Typha to increase at most sites during sustained higher lake levels through the 1980s, 1990s, and into 2001. Most vegetation changes could be correlated with lake-level changes and with life-history strategies and physiological tolerances to water depth of prominent taxa. Analyses of GIS coverages demonstrated that much of the Typha invasion was landward into meadow marsh, largely by Typha x glauca. Lesser expansion toward open water included both T. x glauca and T. angustifolia. Although many models focus on the seed bank as a key component of vegetative change in wetlands, our results suggest that canopy-dominating, moisture-requiring Typha was able to invade meadow marsh at higher elevations because sustained higher lake levels allowed it to survive and overtake sedges and grasses that can tolerate periods of drier soil conditions.

  15. The temporal dynamics of carbon dioxide under snow in a high elevation Rocky Mountain subalpine forest and meadow

    Treesearch

    R. C. Musselman; W. J. Massman; J. M. Frank; J. L. Korfmacher

    2005-01-01

    Carbon dioxide (CO2) concentration under snow was examined through two winter seasons at a 3100 m elevation subalpine site in the Snowy Range of Wyoming. CO2 was monitored every half hour at the soil/snow interface, and at about 25 cm soil depth the second year, in a meadow and in an adjacent forest. CO2 under snow in the meadow was significantly higher than that in...

  16. First year results from an experimental study of the ecohydrologic benefits of beaver and beaver dam analogue restoration techniques in Childs Meadow, CA

    NASA Astrophysics Data System (ADS)

    Yarnell, S. M.; Pope, K.; Podolak, K.; Wolf, E.; Burnett, R.

    2016-12-01

    Due to extensive livestock grazing and widespread removal of beaver and willows, headwater meadows have transformed from multi-thread channels with seasonally active floodplains into single thread, incised channels that store less carbon, retain less water, and are lower in habitat quality for a diverse suite of meadow-dependent wildlife. Meadow restoration techniques often include willow planting and cattle exclosures; however, few studies have rigorously tested the long-term efficacy of these methods or evaluated alternative restoration techniques such as reintroduction of beaver or installation of beaver dam analogues (BDAs). This project seeks to evaluate the installation of BDAs as a restoration technique in Childs Meadow, a heavily grazed meadow in the Cascade Range representative of low-gradient meadows across northern California. Using a before-after-control-impact study design, the study tests the impacts of two restoration techniques (willow planting with cattle exclusion and willow planting with cattle exclusion and BDAs) on hydrology, carbon sequestration, and sensitive species. Results will be compared with measurements in an unrestored section of the meadow that currently supports an active beaver population and two imperiled species (Cascades Frog and Willow Flycatcher). One specific project objective is to measure the response of hydrogeomorphic conditions (e.g. groundwater, surface water, temperature, habitat) and Cascades Frog and Willow Flycatcher to restorative actions. Pre-treatment data was collected in summer 2015, a cattle exclosure was established and willows were planted in fall 2015, and installation of the BDAs is planned for fall 2016. Three years of post-implementation monitoring will be completed to assess impacts of the treatments. Here, we will present our sampling design and first year results following initiation of the treatments.

  17. AN INTERDISCIPLINARY APPROACH TO RIPARIAN MEADOW CHARACTERIZATION AND PRIORITIZATION, CENTRAL GREAT BASIN

    EPA Science Inventory

    The Great Basin Ecosystem Management Research group has described the hydrological, geophysical, and geomorphic conditions that lead to the formation and maintenance of riparian meadows of central Nevada. Previous work on these systems has focused on understanding a few study mea...

  18. Health hazard evaluation report HETA 96-0137-2607, Yankee Atomic Electric Company, Rowe, Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sylvain, D.C.

    1996-10-01

    In response to a request from the Health and Safety Supervisor at the Yankee Nuclear Power Station (SIC-4911), Rowe, Massachusetts, an investigation was begun into ozone (10028156) exposure during plasma arc cutting and welding. Welders had reported chest tightness, dry cough, and throat and bronchial irritation. The nuclear power station was in the process of being decommissioned, and workers were dismantling components using welding and cutting methods. Of the operations observed during the site visit, the highest ozone concentrations were generated during plasma arc cutting, followed by metal inert gas (MIG) welding and arc welding. During plasma arc cutting themore » average and peak concentrations exceeded the NIOSH ceiling recommended exposure limit of 0.1 part per million. The author concludes that ozone exposure during plasma arc cutting and MIG welding presented a health hazard to welders. The author recommends that improvements be made in the local exhaust ventilation, that nitrogen-dioxide levels be monitored during hot work, and that many exposed workers wear protective clothing, use ultraviolet blocking lotion, and continue the use appropriate shade of eye protection.« less

  19. Geologic characteristics and movement of the Meadow Creek landslide, part of the Coal Hill landslide complex, western Kane County, Utah

    USGS Publications Warehouse

    Ashland, Francis X.; McDonald, Greg N.; Carney, Stephanie M.; Tabet, David E.; Johnson, Cari L.

    2010-01-01

    The Meadow Creek landslide, part of the Coal Hill landslide complex in western Kane County, Utah, is about 1.7 miles (2.7 km) wide and 1.3 miles (2.1 km) long and contains six smaller historical slides. The upper part of the Meadow Creek landslide is gently sloping and consists of displaced and back-rotated blocks of Cretaceous Dakota and Cedar Mountain Formations that form northeast- to locally east-trending ridges that are separated by sediment-filled half-grabens. The lower part of the landslide is gently to moderately sloping, locally incised, and consists of heterogeneous debris that overrides the Jurassic Carmel Formation near Meadow Creek. Monitoring using a survey-grade Global Positioning System (GPS) instrument detected movement of the southern part of the Meadow Creek landslide between October 2005 and October 2008, including movement of two of the historical slides-landslides 1 and 2. The most movement during the measurement period occurred within the limits of persistently moving landslide 1 and ranged from about 24 to 64 inches (61-163 cm). Movement of the abutting southern part of the Meadow Creek landslide ranged from approximately 6 to 10 inches (15-25 cm). State Route 9 crosses over approximately a mile (1.6 km) of the southern part of the Meadow Creek landslide, including landslide 1. The highway and its predecessor (State Route 15) have been periodically displaced and damaged by persistent movement of landslide 1. Most of the landslide characteristics, particularly its size, probable depth, and the inferred weak strength and low permeability of clay-rich gouge derived from the Dakota and Cedar Mountain Formations, are adverse to and pose significant challenges to landslide stabilization. Secondary hazards include piping-induced sinkholes along scarps and ground cracks, and debris flows and rock falls from the main-scarp escarpment.

  20. Effects of Spring Drought on Carbon Sequestration, Evapotranspiration and Water Use Efficiency in the Songnen Meadow Steppe in Northeast China.

    Treesearch

    Gang Dong; Jixun Guo; Jiquan Chen; Ge Sun; Song Gao; et al

    2011-01-01

    Global climate change projections suggest an increasing frequency of droughts and extreme rain events in the steppes of the Eurasian region. Using the eddy covariance method, we measured carbon and water balances of a meadow steppe ecosystem in Northeast China during 2 years which had contrasting precipitation patterns in spring seasons in 2007 and 2008. The meadow...

  1. Biophysical regulation of carbon fluxes over an alpine meadow ecosystem in the eastern Tibetan Plateau.

    PubMed

    Wang, Shaoying; Zhang, Yu; Lü, Shihua; Su, Peixi; Shang, Lunyu; Li, Zhaoguo

    2016-06-01

    The eddy covariance method was used to measure net ecosystem CO2 exchange (NEE) between atmosphere and an alpine meadow ecosystem in the eastern Tibetan Plateau of China in 2010. Our results show that photosynthesis was reduced under low air temperature (T a), high vapor pressure deficit (VPD), and medium soil water content (SWC) conditions, when compared to that under other T a (i.e., medium and high), VPD (i.e., low and medium), and SWC (i.e., low and high) conditions. The apparent temperature sensitivity of ecosystem respiration (Q 10) declined with progressing phenology during the growing season and decreased with an increase of soil temperature (T s) during the non-growing season. Increased ecosystem respiration (R eco) was measured during spring soil thawing. By the path analysis, T a, T s, and VPD were the main control factors of CO2 exchange at 30-min scale in this alpine meadow. Integrated NEE, gross primary production (GPP), and R eco over the measured year were -156.4, 1164.3, and 1007.9 g C m(-2), respectively. Zoige alpine meadow was a medium carbon sink based on published data for grassland ecosystems.

  2. Irrigated mountain meadow fertilizer application timing effects on overland flow water quality.

    PubMed

    White, Shawn K; Brummer, Joe E; Leininger, Wayne C; Frasier, Gary W; Waskom, Reagan M; Bauder, Troy A

    2003-01-01

    Nonpoint-source pollution from agricultural activities is currently the leading cause of degradation of waterways in the United States. Applying best management practices to flood-irrigated mountain meadows may improve agricultural runoff and return flow water quality. Prior research has focused on fertilizer use for increased hay yields, while few studies have investigated the environmental implications of this practice. We examined the effects of fertilizer application timing on overland flow water quality from an irrigated mountain meadow near Gunnison, Colorado. Application of 40 kg phosphorus (P) and 19 kg nitrogen (N) ha(-1) using monoammonium phosphate (11-52-0, N-P-K) fertilizer to plots in the fall significantly reduced concentrations of reactive P and ammonium N in irrigation overland flow compared with early or late spring fertilization. Reactive P loading was 9 to almost 16 times greater when fertilizer was applied in the early or late spring, respectively, compared with in the fall. Ammonium N followed a similar trend with early spring loading more than 18 times greater and late spring loading more than 34 times greater than loads from fall-fertilized plots. Losses of 45% of the applied P and more than 17% of the N were measured in runoff when fertilizer was applied in the late spring. These results, coupled with those from previous studies, suggest that mountain meadow hay producers should apply fertilizer in the fall, especially P-based fertilizers, to improve hay yields, avoid economic losses from loss of applied fertilizers, and reduce the potential for impacts to water quality.

  3. Genotype by environment interaction effects of propagation and defoliation on meadow bromegrass

    USDA-ARS?s Scientific Manuscript database

    Sixty-three meadow bromegrass (Bromus riparius Rehm.) half-sib families were evaluated over two years at Millville, UT location for biomass production and nutritive value. Families were evaluated under either space-plant or sward conditions combined with either grazed or cut management. The objectiv...

  4. INTEGRATING GEOPHYSICS, GEOLOGY, AND HYDROLOGY TO DETERMINE BEDROCK GEOMETRY CONTROLS ON THE ORIGIN OF ISOLATED MEADOW COMPLEXES WITHIN THE CENTRAL GREAT BASIN, NEVADA

    EPA Science Inventory

    Riparian meadow complexes found in mountain ranges of the Central Great Basin physiographic region (western United States) are of interest to researchers as they contain significant biodiversity relative to the surrounding basin areas. These meadow complexes are currently degradi...

  5. Using multi-temporal Sentinal-2 imagery for mapping Andean meadows and surface soil moisture in central Chile

    NASA Astrophysics Data System (ADS)

    Araya, Rocio; Fassnacht, Fabian E.; Lopatin, Javier; Hernández, H. Jaime

    2017-04-01

    In the Rio Maipo watershed, situated in central Chile, mining activities are the main factor impacting Andean meadows, through the consumption and exploitation of water and land. As wetlands are vulnerable and particularly susceptible to changes of water supply, alterations and modifications in the hydrological regime have direct effects on vegetation cover. In order to better understand this ecosystem, as well as for conservation planning and resource management, there is a strong need for spatially explicit and update wetland ecosystem assessment. However, there is a lack of baseline dataset and state of knowledge on these habitats. During the last decades remote sensing as evolve as an efficient tool for mapping and monitoring wetland ecosystems at different temporal and spatial scales. Accurate and up-to-date mapping and assessment of wetlands allows monitoring the changes in wetlands' vegetation due to natural and/or anthropogenic disturbances. New freely available spaceborne imagery, like Sentinel-2, supports long term monitoring on a high spatial resolution (10 m). The main aim of this work was to evaluate the potential of multi-temporal Sentinel-2 images in the detection and monitoring of water status of Andean meadows with anthropic disturbances. For these tasks we used bias support vector machines (BSVM), a one-class classifier to map and monitor meadow areas, and the support vector machines regression (SVMR) to estimate surface soil moisture (i.e. top 30 cm). BSVM produces probability maps of the class of interest, were only data of this class is needed as input of the model. One-class classifiers are well suited for situations where the numbers of the training samples from the class of interest is small and/or cover a small fraction of the area to be classified. We found that BSVM was capable to classify the meadow areas with an overall accuracy between 65% and 96%. Meanwhile, surface soil moisture prediction using SVMR reached r2 values between 0.2 and

  6. The melliferous potential of forest and meadow plant communities on Mount Tara (Serbia).

    PubMed

    Jarić, Snežana; Mačukanović-Jocić, Marina; Mitrović, Miroslava; Pavlović, Pavle

    2013-08-01

    The apiflora of 34 forest and meadow plant communities in Tara National Park was studied with the aim of assessing their melliferous potential and their contribution to bee pasture during the vegetation period. The melliferous plants were analyzed individually from the aspect of their flowering phenology, abundance, and the intensity of nectar and pollen production, as well as the production of honeydew. The melliferous potential of each investigated plant community was theoretically assessed on the basis of the coenotic coefficient of melliferousness incorporating a phytocoenotic analysis, the coenotic coefficients of nectar and pollen production, and the percentage of melliferous species in relation to the total number of species that characterize the association. The highest percentage of the melliferous species was noted in the meadow association Petasitetum hybridi (70%) and the forest association Piceetum-Abietis serpentinicum (63.6%). The highest values of the coenotic coefficient of melliferousness were established for the forest association Querco-Carpinetum iliricum, and the meadow association Rhinantho-Cynosuretum cristati. Trees notable for their honeydew production in good quantities were Pinus nigra Arnold, Picea sp. Fagus sylvatica Linnaeus, Populus tremula Linnaeus, and Quercus cerris Linnaeus. Because, the vegetation in the study area is forest dominated, forest bee pasture including early flowering herbaceous and woody plants, is of the greatest significance for the honey bee, both in the early spring because of pollen and nectar production, and in the autumn as a source of honeydew.

  7. 58. View of the big meadow at the Billings Farm ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. View of the big meadow at the Billings Farm & Museum, looking west toward Mount Tom. The view illustrates the relation of the forested hillside lands to the agicultural fields in the valley, and includes the east facade of the mansion, visible as a small gap in the distant trees at center. - Marsh-Billings-Rockefeller National Historical Park, 54 Elm Street, Woodstock, Windsor County, VT

  8. Sediment deposition and production in SE-Asia seagrass meadows

    NASA Astrophysics Data System (ADS)

    Gacia, E.; Duarte, C. M.; Marbà, N.; Terrados, J.; Kennedy, H.; Fortes, M. D.; Tri, N. H.

    2003-04-01

    Seagrass meadows play an important role in the trapping and binding of particles in coastal sediments. Yet seagrass may also contribute to sediment production directly, through the deposition of detritus and also the deposition of the associated mineral particles. This study aims at estimating the contribution of different seagrass species growing across an extensive range of deposition to inorganic (carbonate and non-carbonate) and organic sediment production. Total daily deposition measured with sediment traps varied from 18.8 (±2.0) g DW m -2 d -1 in Silaqui (Philippines) to 681.1 (±102) g DW m -2 d -1 in Bay Tien (Vietnam). These measurements correspond to a single sampling event and represent sedimentation conditions during the dry season in SE-Asia coastal areas. Enhalus acoroides was the most common species in the seagrass meadows visited and, together with Thalassia hemprichii, was present at sites from low to very high deposition. Halodule uninervis and Cymodocea species were present in sites from low to medium deposition. The mineral load in seagrass leaves increased with age, and was high in E. acoroides because it had the largest and long-lived leaves (up to 417 mg calcium carbonate per leaf and 507 mg non-carbonate minerals per leaf) and low in H. uninervis with short-lived leaves (4 mg calcium carbonate per leaf and 2 mg non-carbonate minerals per leaf). In SE-Asia seagrass meadows non-carbonate minerals accumulate at slower rates than the production of calcium carbonate by the epiphytic community, consequently the final loads supported by fully grown leaves were, as average, lower than calcium carbonate loads. Our results show that organic and inorganic production of the seagrasses in SE-Asia represents a small contribution (maximum of 15%) of the materials sedimented on a daily base by the water column during the sampling period. The contribution of the carbonate fraction can be locally significant (i.e. 34% in Silaqui) in areas where the

  9. Twelve Months of Air Quality Monitoring at Ash Meadows National Wildlife Refuge, Southwestern Rural Nevada, U.S.A (EMSI April 2007)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelbrecht, Johann P; Shafer, David S; Campbell, Dave

    The one year of air quality monitoring data collected at the Ash Meadows National Wildlife Refuge (NWR) was the final part of the air quality "Scoping Studies" for the Environmental Monitoring Systems Initiative (EMSI) in southern and central Nevada. The objective of monitoring at Ash Meadows was to examine aerosol and meteorological data, seasonal trends in aerosol and meteorological parameters as well as to examine evidence for long distance transport of some constituents. The 9,307 hectare refuge supports more than 50 springs and 24 endemic species, including the only population of the federally listed endangered Devil’s Hole pupfish (Cyprinodon diabolis)more » (U.S. Fish and Wildlife Service, 1990). Ash Meadows NWR is located in a Class II air quality area, and the aerosol measurements collected with this study are compared to those of Interagency Monitoring of Protected Visual Environments (IMPROVE) sites. Measurements taken at Ash Meadows NWR over a period of 12 months provide new baseline air quality and meteorological information for rural southwestern Nevada, specifically Nye County and the Amargosa Valley.« less

  10. Species differences in behavior and cell proliferation/survival in the adult brains of female meadow and prairie voles

    PubMed Central

    Pan, Yongliang; Liu, Yan; Lieberwirth, Claudia; Zhang, Zhibin; Wang, Zuoxin

    2016-01-01

    Microtine rodents display diverse patterns of social organization and behaviors, and thus provide a useful model for studying the effects of the social environment on physiology and behavior. The current study compared the species differences and the effects of oxytocin (OT) on anxiety-like, social affiliation, and social recognition behaviors in female meadow voles (Microtus pennsylvanicus) and prairie voles (M. ochrogaster). Furthermore, cell proliferation and survival in the brains of adult female meadow and prairie voles were compared. We found that female meadow voles displayed a higher level of anxiety-like behavior but lower levels of social affiliation and social recognition compared to female prairie voles. In addition, meadow voles showed lower levels of cell proliferation (measured by Ki67 staining) and cell survival (measured by BrdU staining) in the ventromedial hypothalamus (VMH) and amygdala (AMY), but not the dentate gyrus of the hippocampus (DG), than prairie voles. Interestingly, the numbers of new cells in the VMH and AMY, but not DG, also correlated with anxiety-like, social affiliation, and social recognition behaviors in a brain region-specific manner. Finally, central OT treatment (200 ng/kg, icv) did not lead to changes in behavior or cell proliferation/survival in the brain. Together, these data indicate a potential role of cell proliferation/survival in selected brain areas on different behaviors between vole species with distinct life strategies. PMID:26708743

  11. Meadow Restoration in the Sawtooth National Recreation Area in Southern Idaho

    Treesearch

    John Sloan

    2006-01-01

    High elevation sites are ecologically fragile. When disturbed, these sites can take a long time to recover. However, native plant seeds are often unavailable and little is known about growing many of these plant species. This paper describes the cooperative restoration of a high elevation meadow in the Sawtooth National Recreation Area after a severe disturbance. The...

  12. Solar Radiation and Tidal Exposure as Environmental Drivers of Enhalus acoroides Dominated Seagrass Meadows

    PubMed Central

    Unsworth, Richard K. F.; Rasheed, Michael A.; Chartrand, Kathryn M.; Roelofs, Anthony J.

    2012-01-01

    There is strong evidence of a global long-term decline in seagrass meadows that is widely attributed to anthropogenic activity. Yet in many regions, attributing these changes to actual activities is difficult, as there exists limited understanding of the natural processes that can influence these valuable ecosystem service providers. Being able to separate natural from anthropogenic causes of seagrass change is important for developing strategies that effectively mitigate and manage anthropogenic impacts on seagrass, and promote coastal ecosystems resilient to future environmental change. The present study investigated the influence of environmental and climate related factors on seagrass biomass in a large ≈250 ha meadow in tropical north east Australia. Annual monitoring of the intertidal Enhalus acoroides (L.f.) Royle seagrass meadow over eleven years revealed a declining trend in above-ground biomass (54% significant overall reduction from 2000 to 2010). Partial Least Squares Regression found this reduction to be significantly and negatively correlated with tidal exposure, and significantly and negatively correlated with the amount of solar radiation. This study documents how natural long-term tidal variability can influence long-term seagrass dynamics. Exposure to desiccation, high UV, and daytime temperature regimes are discussed as the likely mechanisms for the action of these factors in causing this decline. The results emphasise the importance of understanding and assessing natural environmentally-driven change when interpreting the results of seagrass monitoring programs. PMID:22479541

  13. Faunal communities and habitat characteristics of the Big Bend seagrass meadows, 2009-2010.

    EPA Science Inventory

    Seagrass meadows are important habitats that serve as nursery, feeding, and sheltering grounds for many marine species. In addition to the ecosystem functions and services they provide, seagrass habitats and associated fauna are commonly observed to have naturally high levels of...

  14. Soil acidity, temperature, and water relationships of four clovers in Sierra Nevada meadows

    Treesearch

    Raymond D. Ratliff; Ethelynda E. Harding

    1993-01-01

    Sites in meadows of the Sierra Nevada near Fresno, California, were studied to learn whether Bolander's (Trifolium holanderi Gray.), longstalked (T. longipes Nutt.), carpet (T. monanthum Gray.), and mountain (T. wormskioldii Lehm.) clovers occurred under the same soil acidity, temperature...

  15. Effect of Polonite used for phosphorus removal from wastewater on soil properties and fertility of a mountain meadow.

    PubMed

    Cucarella, Victor; Mazurek, Ryszard; Zaleski, Tomasz; Kopeć, Michał; Renman, Gunno

    2009-07-01

    Reactive filter materials used for phosphorus (P) removal from wastewater can be disposed of as soil amendments after treatment, thus recycling P and other macro- and micro-nutrients to plants. In addition, materials with a high pH and Ca content, such as Polonite, are potential soil conditioners, which can be particularly beneficial for acid soils. Polonite previously used for on-site wastewater treatment was applied as a soil amendment to a mountain meadow. The amendment significantly increased soil pH and decreased the hydrolytic acidity, thus reducing Al toxicity risks. The effects were comparable to those of liming. No difference in yield and P uptake by meadow plants was observed. The uptake of metals was lower for amended soils, especially the uptake of Mn. Using Polonite after wastewater treatment as a soil amendment is thus a viable disposal alternative that can replace liming, when necessary, being capable of recycling P and other nutrients to meadow plants.

  16. Hydrologic and hydraulic analyses of Great Meadow wetland, Acadia National Park, Maine

    USGS Publications Warehouse

    Lombard, Pamela J.

    2017-01-26

    The U.S. Geological Survey completed hydrologic and hydraulic analyses of Cromwell Brook and the Sieur de Monts tributary in Acadia National Park, Maine, to better understand causes of flooding in complex hydrologic and hydraulic environments, like those in the Great Meadow wetland and Sieur de Monts Spring area. Regional regression equations were used to compute peak flows with from 2 to 100-year recurrence intervals at seven locations. Light detection and ranging data were adjusted for bias caused by dense vegetation in the Great Meadow wetland; and then combined with local ground surveys used to define the underwater topography and hydraulic structures in the study area. Hydraulic modeling was used to evaluate flood response in the study area to a variety of hydrologic and hydraulic scenarios.Hydraulic modeling indicates that enlarging the culvert at Park Loop Road could help mitigate flooding near the Sieur de Monts Nature Center that is caused by streamflows with large recurrence intervals; however, hydraulic modeling also indicates that the Park Loop Road culvert does not aggravate flooding near the Nature Center caused by the more frequent high intensity rainstorms. That flooding is likely associated with overland flow resulting from (1) quick runoff from the steep Dorr Mountain hitting the lower gradient Great Meadow wetland area and (2) poor drainage aggravated by beaver dams holding water in the wetland.Rapid geomorphic assessment data collected in June 2015 and again in April 2016 indicate that Cromwell Brook has evidence of aggradation, degradation, and channel widening throughout the drainage basin. Two of five reference cross sections developed for this report also indicate channel aggradation.

  17. Flow Sorting and Sequencing Meadow Fescue Chromosome 4F1[C][W

    PubMed Central

    Kopecký, David; Martis, Mihaela; Číhalíková, Jarmila; Hřibová, Eva; Vrána, Jan; Bartoš, Jan; Kopecká, Jitka; Cattonaro, Federica; Stočes, Štěpán; Novák, Petr; Neumann, Pavel; Macas, Jiří; Šimková, Hana; Studer, Bruno; Asp, Torben; Baird, James H.; Navrátil, Petr; Karafiátová, Miroslava; Kubaláková, Marie; Šafář, Jan; Mayer, Klaus; Doležel, Jaroslav

    2013-01-01

    The analysis of large genomes is hampered by a high proportion of repetitive DNA, which makes the assembly of short sequence reads difficult. This is also the case in meadow fescue (Festuca pratensis), which is known for good abiotic stress resistance and has been used in intergeneric hybridization with ryegrasses (Lolium spp.) to produce Festulolium cultivars. In this work, we describe a new approach to analyze the large genome of meadow fescue, which involves the reduction of sample complexity without compromising information content. This is achieved by dissecting the genome to smaller parts: individual chromosomes and groups of chromosomes. As the first step, we flow sorted chromosome 4F and sequenced it by Illumina with approximately 50× coverage. This provided, to our knowledge, the first insight into the composition of the fescue genome, enabled the construction of the virtual gene order of the chromosome, and facilitated detailed comparative analysis with the sequenced genomes of rice (Oryza sativa), Brachypodium distachyon, sorghum (Sorghum bicolor), and barley (Hordeum vulgare). Using GenomeZipper, we were able to confirm the collinearity of chromosome 4F with barley chromosome 4H and the long arm of chromosome 5H. Several new tandem repeats were identified and physically mapped using fluorescence in situ hybridization. They were found as robust cytogenetic markers for karyotyping of meadow fescue and ryegrass species and their hybrids. The ability to purify chromosome 4F opens the way for more efficient analysis of genomic loci on this chromosome underlying important traits, including freezing tolerance. Our results confirm that next-generation sequencing of flow-sorted chromosomes enables an overview of chromosome structure and evolution at a resolution never achieved before. PMID:24096412

  18. Climate, geography, and tree establishment in Subalpine Meadows of the Olympic Mountains, Washington, U.S.A.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, A.; Silsbee, D.G.; Schreiner, E.G.

    1995-08-01

    Noticeable changes in vegetation distribution have occurred in the Pacific Northwest during the last century as trees have established in some subalpine meadows. To study the relationship of this process to climate, recently established trees were aged in six subalpine meadows in the Olympic Mountains, Washington. The sites represent three points along a steep precipitation gradient. Subalpine fir (Abies lasiocarpa) has been establishing at the dry end of the gradient, mountain hemlock (Tsuga mertensiana) at the wet end, and both species in the center. Establishment patterns were compared with deviations from the century-long average for these weather variables: winter precipitation,more » Palmer Drought Severity Index, and winter, October and May temperatures. Results show that establishment occurred in dry areas when weather conditions were wetter than average, and in wet areas under drier than average conditions. Establishment at central sites did not show consistent relationships with climate. If future climatic conditions continue to warm, establishment of subalpine fir in subalpine meadows in dry areas may cease and mountain hemlock may resume in wet areas. 34 refs., 5 figs., 3 tabs.« less

  19. 39. View of the big meadow of the Billings Farm ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. View of the big meadow of the Billings Farm & Museum, looking east from Vt. Route 12 (Elm Street). The view includes Blake Hill on the horizon, the Billings Farm & Museum's restored historic apple orchard at left, and the property of the Octagon Cottage at 4 Moore Place, beyond the split rail fence at right. - Marsh-Billings-Rockefeller National Historical Park, 54 Elm Street, Woodstock, Windsor County, VT

  20. 60. View of the big meadow of the Billings Farm ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. View of the big meadow of the Billings Farm & Museum, looking east from Vt. Route 12 (Elm Street). The view includes Blake Hill on the horizon, the Billings Farm & Museum's restored historic apple orchard at left, and the property of the Octagon Cottage at 4 Moore Place, beyond the split rail fence at right. - Marsh-Billings-Rockefeller National Historical Park, 54 Elm Street, Woodstock, Windsor County, VT

  1. 35. View of the big meadow at the Billings Farm ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. View of the big meadow at the Billings Farm & Museum, looking west toward Mount Tom (more distant view). The view illustrates the relation of the forested hillside lands to the agricultural fields in the valley, and includes the east facade of the mansion, visible as a small gap in the distant trees at center. - Marsh-Billings-Rockefeller National Historical Park, 54 Elm Street, Woodstock, Windsor County, VT

  2. Redefining the trophic importance of seagrasses for fauna in tropical Indo-Pacific meadows

    NASA Astrophysics Data System (ADS)

    Vonk, Jan Arie; Christianen, Marjolijn J. A.; Stapel, Johan

    2008-09-01

    Fauna species living in seagrass meadows depend on different food sources, with seagrasses often being marginally important for higher trophic levels. To determine the food web of a mixed-species tropical seagrass meadow in Sulawesi, Indonesia, we analyzed the stable isotope ( δ13C and δ15N) signatures of primary producers, particulate organic matter (POM) and fauna species. In addition invertebrates, both infauna and macrobenthic, and fish densities were examined to identify the important species in the meadow. The aims of this study were to identify the main food sources of fauna species by comparing isotopic signatures of different primary producers and fauna, and to estimate qualitatively the importance of seagrass material in the food web. Phytoplankton and water column POM were the most depleted primary food sources for δ13C (range -23.1 to -19.6‰), but no fauna species depended only on these sources for carbon. Epiphytes and Sargassum sp. had intermediate δ13C values (-14.2 to -11.9‰). Sea urchins, gastropods and certain fish species were the main species assimilating this material. Seagrasses and sedimentary POM had the least depleted values (-11.5 to -5.7‰). Between the five seagrass species significant differences in δ13C were measured. The small species Halophila ovalis and Halodule uninervis were most depleted, the largest species Enhalus acoroides was least depleted, while Thalassia hemprichii and Cymodocea rotundata had intermediate values. Fourteen fauna species, accounting for ˜10% of the total fauna density, were shown to assimilate predominantly (>50%) seagrass material, either directly or indirectly by feeding on seagrass consumers. These species ranged from amphipods up to the benthic top predator Taeniura lymma. Besides these species, about half of the 55 fauna species analyzed had δ13C values higher than the least depleted non-seagrass source, indicating they depended at least partly for their food on seagrass material. This study

  3. Fatty acid profiles indicate the habitat of mud snails Hydrobia ulvae within the same estuary: Mudflats vs. seagrass meadows

    NASA Astrophysics Data System (ADS)

    Coelho, Helena; Lopes da Silva, Teresa; Reis, Alberto; Queiroga, Henrique; Serôdio, João; Calado, Ricardo

    2011-03-01

    Mud snails Hydrobia ulvae occupy different habitats in complex estuarine ecosystems. In order to determine if fatty acid profiles displayed by mud snails can be used to identify the habitat that they occupy within the same estuary, fatty acids of H. ulvae from one mudflat and one seagrass meadow in the Ria de Aveiro (Portugal) were analyzed and compared to those displayed by microphytobenthos (MPB), the green leaves (epiphyte-free) of Zostera noltii, as well as those exhibited by the epiphytic community colonizing this seagrass. MPB and epiphytic diatom-dominated samples displayed characteristic fatty acids, such as 16:1 n-7 and 20:5 n-3, while 18:2 n-6 and 18:3 n-3 were the dominant fatty acids in the green leaves of Z. noltii. Significant differences between the fatty acid profiles of H. ulvae specimens sampled in the mudflat and the seagrass meadow could be identified, with those from the mudflat displaying higher levels of fatty acids known to be characteristic of MPB. This result points towards the well known existence of grazing activity on MPB by mud snails. The fatty acid profiles displayed by H. ulvae inhabiting the seagrass meadows show no evidence of direct bioaccumulation of the two most abundant polyunsaturated fatty acids of Z. noltii (18:2 n-6 and 18:3 n-3) in the mud snails, which probably indicates that either these compounds can be metabolized to produce energy, used as precursors for the synthesis of essential fatty acids, or that the snails do not consume seagrass leaves at all. Moreover, the fatty acid profiles of mud snails inhabiting the seagrass meadows revealed the existence of substantial inputs from microalgae, suggesting that the epiphytic community colonizing the leaves of Z. noltii displays an important role on the diet of these organisms. This assumption is supported by the high levels of 20:5 n-3 and 22:6 n-3 recorded in mud snails sampled from seagrass meadows. In conclusion, fatty acid analyses of H. ulvae can be successfully used

  4. Genetic relationships of meadow vole (Microtus pennsylvanicus) populations in central Appalachian wetlands

    Treesearch

    K. E. Francl; T. C. Glenn; S. B. Castleberry; W. M. Ford

    2008-01-01

    We sequenced and compared variation within a 375-base-pair segment of the mitochondrial DNA control region of 323 meadow voles (Microtus pennsylvanicus (Ord. 1815)) among 14 populations to determine the influence of past and present landscape connectivity among isolated wetlands in the central Appalachian Mountains. To best explain observed...

  5. Impacts of a fuel oil spill on seagrass meadows in a subtropical port, Gladstone, Australia--the value of long-term marine habitat monitoring in high risk areas.

    PubMed

    Taylor, Helen A; Rasheed, Michael A

    2011-01-01

    We used an established seagrass monitoring programme to examine the short and longer-term impacts of an oil spill event on intertidal seagrass meadows. Results for potentially impacted seagrass areas were compared with existing monitoring data and with control seagrass meadows located outside of the oil spill area. Seagrass meadows were not significantly affected by the oil spill. Declines in seagrass biomass and area 1month post-spill were consistent between control and impact meadows. Eight months post-spill, seagrass density and area increased to be within historical ranges. The declines in seagrass meadows were likely attributable to natural seasonal variation and a combination of climatic and anthropogenic impacts. The lack of impact from the oil spill was due to several mitigating factors rather than a lack of toxic effects to seagrasses. The study demonstrates the value of long-term monitoring of critical habitats in high risk areas to effectively assess impacts. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  6. Spatial water maze learning using celestial cues by the meadow vole, Microtus pennsylvanicus.

    PubMed

    Kavaliers, M; Galea, L A

    1994-03-31

    The Morris water maze is widely used to evaluate to evaluate the spatial learning ability of rodents under laboratory settings. The present study demonstrates that reproductive male meadow voles, Microtus pennsylvanicus, are able to acquire and retain a spatial water maze task using celestial cues. Voles were able to acquire a modified outdoor Morris water maze task over 4 trials per day, whereby they had to learn and remember the location of a submerged hidden platform, using the position of the sun and associated celestial cues. Their proficiency on this task was related to the availability of the celestial cues, with voles displaying significantly poorer spatial navigation on overcast than clear days and when the testing time (and position of the sun and associated celestial cues) was shifted from morning to afternoon. These findings with meadow voles support the ecological relevance of the water maze task.

  7. Meadow Fire in Yosemite National Park, California

    NASA Image and Video Library

    2017-12-08

    The Meadow Fire in Yosemite National Park is a remote, hold-over lightning caused fire which began on September 4 and is located five miles east of Yosemite Valley, CA. The fuel burning is timber and brush. There is active fire behavior with long range spotting. The National Park Service reports that a fire, that may be a spot fire, from the Meadow lightning-caused fire, was discovered at approximately 12:30 PM, Sunday September 7. The fire is approximately 2,582 acres. It is burning within the Little Yosemite Valley on both sides of the Merced River. All trails in the area are closed. Approximately 100 hikers and backpackers were evacuated from the fire area in Little Yosemite Valley. Half-Dome, a popular tourist destination, has been closed. The fire is burning in Yosemite Wilderness. Eighty-five hikers and climbers were also evacuated from the summit of Half Dome by helicopters from the California Highway Patrol, US Department of Agriculture Forest Service, Sequoia Kings Canyon National Park, and CAL Fire. This natural-color satellite image was collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite on Sept. 07, 2014. Actively burning areas, detected by MODIS’s thermal bands, are outlined in red. NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team. Caption: NASA/Goddard, Lynn Jenner with information from the National Park Service and the National Interagency Coordination Center. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Effectiveness and consistency of a suite of descriptors for assessing the ecological status of seagrass meadows (Posidonia oceanica L. Delile)

    NASA Astrophysics Data System (ADS)

    Rotini, Alice; Belmonte, Alessandro; Barrote, Isabel; Micheli, Carla; Peirano, Andrea; Santos, Rui O.; Silva, João; Migliore, Luciana

    2013-09-01

    The increasing rate of human-induced environmental changes on coastal marine ecosystems has created a demand for effective descriptors, in particular for those suitable for monitoring the status of seagrass meadows. Growing evidence has supported the useful application of biochemical and genetic descriptors such as secondary metabolite synthesis, photosynthetic activity and genetic diversity. In the present study, we have investigated the effectiveness of different descriptors (traditional, biochemical and genetic) in monitoring seagrass meadow conservation status. The Posidonia oceanica meadow of Monterosso al Mare (Ligurian sea, NW Mediterranean) was subjected to the measurement of bed density, leaf biometry, total phenols, soluble protein and photosynthetic pigment content as well as to RAPD marker analysis. This suite of descriptors provided evidence of their effectiveness and convenient application as markers of the conservation status of P. oceanica and/or other seagrasses. Biochemical/genetic descriptors and those obtained by traditional methods depicted a well conserved meadow with seasonal variability and, particularly in summer, indicated a healthier condition in a portion of the bed (station C), which was in agreement with the physical and sedimentological features of the station. Our results support the usefulness of introducing biochemical and genetic approaches to seagrass monitoring programs since they are effective indicators of plant physiological stress and environmental disturbance.

  9. Restoration of dry, montane meadows through prescribed fire, vegetation and fuels management: a program of research and adaptive management in western Oregon

    Treesearch

    Frederick J. Swanson; Charles B. Halpern; John H. Cissel

    2007-01-01

    Mountain meadows in the Pacific Northwest, as in much of western North America, have experienced recent and rapid invasion by conifers. Changes in climate, cessation of sheep grazing, and long-term suppression of wildfire likely contribute to the observed replacement of meadow by forest. Faced by gradual loss of these habitats, land managers in the western Cascades of...

  10. Reservoir Simulations of Low-Temperature Geothermal Reservoirs

    NASA Astrophysics Data System (ADS)

    Bedre, Madhur Ganesh

    The eastern United States generally has lower temperature gradients than the western United States. However, West Virginia, in particular, has higher temperature gradients compared to other eastern states. A recent study at Southern Methodist University by Blackwell et al. has shown the presence of a hot spot in the eastern part of West Virginia with temperatures reaching 150°C at a depth of between 4.5 and 5 km. This thesis work examines similar reservoirs at a depth of around 5 km resembling the geology of West Virginia, USA. The temperature gradients used are in accordance with the SMU study. In order to assess the effects of geothermal reservoir conditions on the lifetime of a low-temperature geothermal system, a sensitivity analysis study was performed on following seven natural and human-controlled parameters within a geothermal reservoir: reservoir temperature, injection fluid temperature, injection flow rate, porosity, rock thermal conductivity, water loss (%) and well spacing. This sensitivity analysis is completed by using ‘One factor at a time method (OFAT)’ and ‘Plackett-Burman design’ methods. The data used for this study was obtained by carrying out the reservoir simulations using TOUGH2 simulator. The second part of this work is to create a database of thermal potential and time-dependant reservoir conditions for low-temperature geothermal reservoirs by studying a number of possible scenarios. Variations in the parameters identified in sensitivity analysis study are used to expand the scope of database. Main results include the thermal potential of reservoir, pressure and temperature profile of the reservoir over its operational life (30 years for this study), the plant capacity and required pumping power. The results of this database will help the supply curves calculations for low-temperature geothermal reservoirs in the United States, which is the long term goal of the work being done by the geothermal research group under Dr. Anderson at

  11. Heat waves reduce ecosystem carbon sink strength in a Eurasian meadow steppe.

    PubMed

    Qu, Luping; Chen, Jiquan; Dong, Gang; Jiang, Shicheng; Li, Linghao; Guo, Jixun; Shao, Changliang

    2016-01-01

    As a consequence of global change, intensity and frequency of extreme events such as heat waves (HW) have been increasing worldwide. By using a combination of continuous 60-year meteorological and 6-year tower-based carbon dioxide (CO2) flux measurements, we constructed a clear picture of a HWs effect on the dynamics of carbon, water, and vegetation on the Eurasian Songnen meadow steppe. The number of HWs in the Songnen meadow steppe began increasing since the 1980s and the rate of occurrence has advanced since the 2010s to higher than ever before. HWs can reduce the grassland carbon flux, while net ecosystem carbon exchange (NEE) will regularly fluctuate for 4-5 days during the HW before decreasing. However, ecosystem respiration (Re) and gross ecosystem production (GEP) decline from the beginning of the HW until the end, where Re and GEP will decrease 30% and 50%, respectively. When HWs last five days, water-use efficiency (WUE) will decrease by 26%, soil water content (SWC) by 30% and soil water potential (SWP) will increase by 38%. In addition, the soil temperature will still remain high after the HW although the air temperature will recover to its previous state. HWs, as an extreme weather event, have increased during the last two decades in the Songnen meadow steppe. HWs will reduce the carbon flux of the steppe and will cause a sustained impact. Drought may be the main reason why HWs decrease carbon flux. At the later stages of or after a HW, the ecosystem usually lacks water and the soil becomes so hot and dry that it prevents roots from absorbing enough water to maintain their metabolism. This is the main reason why this grassland carbon exchange decreases during and after HWs. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Evaluation of hydrogeology and hydrogeochemistry of Truckee Meadows area, Washoe County, Nevada

    USGS Publications Warehouse

    Cohen, Philip M.; Loeltz, Omar J.

    1964-01-01

    Practically all the ground water of economic importance in the Truckee Meadows area, an alluviated intermontane basin in western Nevada is in the valley fill, which consists of unconsolidated and partially consolidated sedimentary deposits. The Mesozoic and Cenozoic consolidated rocks of the mountains bordering the valley contain some water in fractures and other openings, but they have virtually no interstitial permeability. The permeability of the valley fill is extremely variable. The Truckee Formation, which is the oldest deposit of the valley fill, yields very little water to wells. Permeable lenses of sand and gravel in the valley fill that are younger than the Truckee Formation yield moderate to large amounts of water to wells. The estimated average annual recharge to and discharge from the groundwater reservoir is 35,000 acre-feet. About 25,000 acre-feet of the recharge is from the infiltration of irrigation water diverted from the Truckee River. Most of the discharge is by evapotranspiration and by seepage to ditches and streams. Some water in the area is unsuitable for many uses because of its poor chemical quality. Water in the Steamboat Springs area is hot and has high concentrations of chloride and dissolved solids. Both water draining areas of bleached rock and ground water downgradient from areas of leached rock have high concentrations of sulfate and dissolved solids. Surface water of low dissolved-solids content mixes with and dilutes some highly mineralized ground water. Increased pumping in discharge areas will help to alleviate waterlogged conditions and will decrease ground-water losses by evapotranspiration. Increased pumping near the Truckee River may induce recharge from the river to the ground-water system.

  13. Effects of Yak grazing on plant community characteristics of meadow grasslands in the Qinghai-Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Chai, Linrong; Hou, Fujiang; Bowatte, Saman; Cheng, Yunxiang

    2017-04-01

    The Qinghai-Tibetan Plateau (QTP) is an important part of the global terrestrial ecosystem that provides many ecological roles such as biodiversity protection, upper watersheds for large rivers, circulation of materials, energy balance and provision of forage and habitat for livestock and wildlife. Approximately 40% of the QTP is alpine meadow grasslands and yak farming is one of the dominant land use activities. In recent years, the rapid increase in the number of yaks grazing on meadow grasslands has raised concerns about grassland degradation. In this study we examined the effects of yak grazing on the grassland community characteristics to evaluate the degradation potential of alpine meadow in the QTP. The experiment was carried out on three farms, in close proximity to each other, that were operating at different grazing intensities in Maqu county (N35°58', E101°53', altitude 3650m) of the QTP in the Gansu province in China. We tested 4 levels of yak grazing intensities; control (no grazing), light (2.6yak/ha), moderate (3.5yak/ha) and high (6.5yak/ha ). We hypothesized that greater intensity of grazing would significantly impact the plant community characteristics through trampling effects above and below ground. We found grazing significantly (P<0.05) impacted the above and below ground biomass. Above ground biomass was highest in the non grazed area and lowest in the high grazing farm. In contrast, below ground biomass was significantly greater (p<0.05) in the moderate grazing farm compared to the non grazed area. The plant community density and the proportion of edible grass biomass were not significantly affected by the grazing treatments. The species richness was significantly reduced (p<0.05) in the moderate and high intensity grazing farms compared to the non grazed area. The soil moisture at 0-10 cm depth was significantly lower at the high grazing intensity farm compared to the non grazed area and in contrast soil temperature was significantly

  14. Information to support to monitoring and habitat restoration on Ash Meadows National Wildlife Refuge

    USGS Publications Warehouse

    Scoppettone, G. Gary

    2013-01-01

    The Ash Meadows National Wildlife Refuge staff focuses on improving habitat for the highest incidence of endemic species for an area of its size in the continental United States. Attempts are being made to restore habitat to some semblance of its pre-anthropogenic undisturbed condition, and to provide habitat conditions to which native plant and animal species have evolved. Unfortunately, restoring the Ash Meadows’ Oases to its pre-anthropogenic undisturbed condition is almost impossible. First, there are constraints on water manipulation because there are private holdings within the refuge boundary; second, there has been at least one species extinction—the Ash Meadows pool fish (Empetrichthys merriami). It is also quite possible that thermal endemic invertebrate species were lost before ever being described. Perhaps the primary obstacle to restoring Ash Meadows to its pre-anthropogenic undisturbed conditions is the presence of invasive species. However, invasive species, such as red swamp crayfish (Procambarus clarki) and western mosquitofish (Gambusia affinis), are a primary driving force in restoring Ash Meadows’ spring systems, because under certain habitat conditions they can all but replace native species. Returning Ash Meadows’ physical landscape to some semblance of its pre-anthropogenic undisturbed condition through natural processes may take decades. Meanwhile, the natural dissolution of concrete and earthen irrigation channels threatens to allow cattail marshes to flourish instead of spring-brooks immediately downstream of spring discharge. This successional stage favors non-native crayfish and mosquitofish over the native Amargosa pupfish (Cyprinodon nevadensis). Thus, restoration is needed to control non-natives and to promote native species, and without such intervention the probability of native fish reduction or loss, is anticipated. The four studies in this report are intended to provide information for restoring native fish habitat and

  15. Aspen encroachment on meadows of the North Rim, Grand Canyon National Park

    Treesearch

    Margaret M. Moore; David W. Huffman

    2001-01-01

    Composition and structure data were analyzed to determine the characteristics of trees encroaching on the montane meadows and subalpine grasslands of the North Rim, Grand Canyon National Park. Tree invasion in the 1900s showed a pattern of increasing establishment, with quaking aspen comprising the majority (52%) of encroaching trees. Most aspen established in the last...

  16. Big Spring spinedace and associated fish populations and habitat conditions in Condor Canyon, Meadow Valley Wash, Nevada

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.; Munz, Carrie S.; Dixon, Chris

    2011-01-01

    Executive Summary: This project was designed to document habitat conditions and populations of native and non-native fish within the 8-kilometer Condor Canyon section of Meadow Valley Wash, Nevada, with an emphasis on Big Spring spinedace (Lepidomeda mollispinis pratensis). Other native fish present were speckled dace (Rhinichthys osculus) and desert sucker (Catostomus clarki). Big Spring spinedace were known to exist only within this drainage and were known to have been extirpated from a portion of their former habitat located downstream of Condor Canyon. Because of this extirpation and the limited distribution of Big Spring spinedace, the U.S. Fish and Wildlife Service listed this species as threatened under the Endangered Species Act in 1985. Prior to our effort, little was known about Big Spring spinedace populations or life histories and habitat associations. In 2008, personnel from the U.S. Geological Survey's Columbia River Research Laboratory began surveys of Meadow Valley Wash in Condor Canyon. Habitat surveys characterized numerous variables within 13 reaches, thermologgers were deployed at 9 locations to record water temperatures, and fish populations were surveyed at 22 individual sites. Additionally, fish were tagged with Passive Integrated Transponder (PIT) tags, which allowed movement and growth information to be collected on individual fish. The movements of tagged fish were monitored with a combination of recapture events and stationary in-stream antennas, which detected tagged fish. Meadow Valley Wash within Condor Canyon was divided by a 12-meter (m) waterfall known as Delmue Falls. About 6,100 m of stream were surveyed downstream of the falls and about 2,200 m of stream were surveyed upstream of the falls. Although about three-quarters of the surveyed stream length was downstream of Delmue Falls, the highest densities and abundance of native fish were upstream of the falls. Big Spring spinedace and desert sucker populations were highest near the

  17. Impact of alpine meadow degradation on soil hydraulic properties over the Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zeng, Chen; Zhang, Fan; Wang, Quanjiu; Chen, Yingying; Joswiak, Daniel R.

    2013-01-01

    SummaryAlpine meadow soil is an important ecosystem component of the Qinghai-Tibetan Plateau. However, the alpine meadow soil is undergoing serious degradation mainly due to global climate change, overgrazing, human activities and rodents. In this paper, spatial sequencing was chosen over time succession sequencing to study the changes of soil hydraulic properties under different degrees of alpine meadow degradation. Soil saturated hydraulic conductivity (Ks) and Gardner α both at the surface and at 40-50 cm depth were investigated in the field using tension infiltrometers. Soil physical and chemical properties, together with the root index at 0-10 cm and 40-50 cm soil layer depths were also analyzed. Pearson correlations were adopted to study the relationships among the investigated factors and principal component analysis was performed to identify the dominant factor. Results show that with increasing degree of degradation, soil sand content increased while soil Ks and Gardner α as well as soil clay content, soil porosity decreased in the 0-10 cm soil layers, and organic matter and root gravimetric density decreased in both the 0-10 cm and 40-50 cm soil layers. However, soil moisture showed no significant changes with increasing degradation. With decreasing pressure head, soil unsaturated hydraulic conductivity reduced more slowly under degraded conditions than non-degraded conditions. Soil Ks and Gardner α were significantly correlated (P = 0.01) with bulk density, soil porosity, soil organic matter and root gravimetric density. Among these, soil porosity is the dominant factor explaining about 90% of the variability in total infiltration flow. Under non-degraded conditions, the infiltration flow principally depended on the presence of macropores. With increasing degree of degradation, soil macropores quickly changed to mesopores or micropores. The proportion of total infiltration flow through macropores and mesopores significantly decreased with the most

  18. Extensive contemporary pollen-mediated gene flow in two herb species, Ranunculus bulbosus and Trifolium montanum, along an altitudinal gradient in a meadow landscape

    PubMed Central

    Matter, Philippe; Kettle, Chris J.; Ghazoul, Jaboury; Pluess, Andrea R.

    2013-01-01

    Background and Aims Genetic connectivity between plant populations allows for exchange and dispersal of adaptive genes, which can facilitate plant population persistence particularly in rapidly changing environments. Methods Patterns of historic gene flow, flowering phenology and contemporary pollen flow were investigated in two common herbs, Ranunculus bulbosus and Trifolium montanum, along an altitudinal gradient of 1200–1800 m a.s.l. over a distance of 1 km among five alpine meadows in Switzerland. Key Results Historic gene flow was extensive, as revealed by Fst values of 0·01 and 0·007 in R. bulbosus and T. montanum, respectively, by similar levels of allelic richness among meadows and by the grouping of all individuals into one genetic cluster. Our data suggest contemporary pollen flow is not limited across altitudes in either species but is more pronounced in T. montanum, as indicated by the differential decay of among-sibships correlated paternity with increasing spatial distance. Flowering phenology among meadows was not a barrier to pollen flow in T. montanum, as the large overlap between meadow pairs was consistent with the extensive pollen flow. The smaller flowering overlap among R. bulbosus meadows might explain the slightly more limited pollen flow detected. Conclusions High levels of pollen flow among altitudes in both R. bulbosus and T. montanum should facilitate exchange of genes which may enhance adaptive responses to rapid climate change. PMID:23408831

  19. The effects of matrix structure on movement decisions of meadow voles (Microtus pennsylvanicus)

    Treesearch

    Robin E. Russell; Robert K. Swihart; Bruce A. Craig

    2007-01-01

    The composition of the landscape between patches (the matrix) can have important effects on movement rates that potentially outweigh the effects of patch size and isolation. We conducted a small-scale experiment with radiocollared meadow voles (Microtus pennsylvanicus) to quantify the effects of matrix habitat on movement behavior of voles. Habitat...

  20. Soil microclimate monitoring in forested and meadow sites

    NASA Astrophysics Data System (ADS)

    Freyerova, Katerina; Safanda, Jan

    2016-04-01

    It is well known fact that forest microclimate differs from open area microclimate (Geiger 1965). Less attention is paid to soil temperatures and their long-term monitoring. To evaluate and compare these two environments from the soil microclimate point of view, Institute of Geophysics in Prague monitors soil and air temperatures in Bedřichov in the Jizerské Hory Mountains (Czech Republic). The soil temperatures are measured in three depths (20, 50 and 100 cm) in forest (700 m a. s. l.) and meadow (750 m a. s. l.). Air temperatures are measured at 2m height both in forest and meadow. Nowadays, we have more than three years long time series. The most of studies and experiments described in literature are short-term ones (in order of days or weeks). However, from short-term experiments the seasonal behaviour and trends can be hardly identified and conclusions on soil temperature reaction to climatic extremes such as heat waves, drought or freeze cannot be done with confidence. These drawbacks of the short-term experiments are discussed in literature (eg. Morecroft et al. 1998; Renaud et al. 2011). At the same, with progression of the global warming, the expected increasing frequency of climatic extremes will affect the future form of forest vegetation (Von Arx et al. 2012). The soil and air temperature series, both from the forest and meadow sites, are evaluated and interpreted with respect to long term temperature characteristics and seasonal trends. The emphasis is given on the soil temperature responses to extreme climatic situations. We examine variability between the localities and depths and spatial and temporal changes in this variability. This long-term monitoring allows us to better understand and examine the behaviour of the soil temperature in extreme weather situations. Therefore, we hope to contribute to better prediction of future reactions of this specific environments to the climate change. Literature Geiger, R., 1965. The climate near the ground

  1. Compositional and functional stability of aerobic methane consuming communities in drained and rewetted peat meadows.

    PubMed

    Krause, Sascha; Niklaus, Pascal A; Badwan Morcillo, Sara; Meima Franke, Marion; Lüke, Claudia; Reim, Andreas; Bodelier, Paul L E

    2015-11-01

    The restoration of peatlands is an important strategy to counteract subsidence and loss of biodiversity. However, responses of important microbial soil processes are poorly understood. We assessed functioning, diversity and spatial organization of methanotrophic communities in drained and rewetted peat meadows with different water table management and agricultural practice. Results show that the methanotrophic diversity was similar between drained and rewetted sites with a remarkable dominance of the genus Methylocystis. Enzyme kinetics depicted no major differences, indicating flexibility in the methane (CH4) concentrations that can be used by the methanotrophic community. Short-term flooding led to temporary elevated CH4 emission but to neither major changes in abundances of methane-oxidizing bacteria (MOB) nor major changes in CH4 consumption kinetics in drained agriculturally used peat meadows. Radiolabeling and autoradiographic imaging of intact soil cores revealed a markedly different spatial arrangement of the CH4 consuming zone in cores exposed to near-atmospheric and elevated CH4. The observed spatial patterns of CH4 consumption in drained peat meadows with and without short-term flooding highlighted the spatial complexity and responsiveness of the CH4 consuming zone upon environmental change. The methanotrophic microbial community is not generally altered and harbors MOB that can cover a large range of CH4 concentrations offered due to water-table fluctuations, effectively mitigating CH4 emissions. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Ecology of eelgrass meadows of the Atlantic Coast: a community profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thayer, G.W.; Kenworthy, W.J.; Fonseca, M.S.

    1984-07-01

    Eelgrass, Zostera marina, dominates the ecologically important but fragile seagrass communities along the east coast of the United States from North Carolina to Nova Scotia. Grasslike leaves and an extensive root and rhizome system enable eelgrass to exist in a shallow aquatic environment subject to waves, tides, and shifting sediments. Eelgrass meadows are highly productive, frequently rivaling agricultural croplands. They provide shelter and a rich variety of primary and secondary food resources, and form a nursery habitat for the life history stages of numerous fishery organisms. The leaves absorb and release nutrients, provide surfaces for attachment, reduce water current velocity,more » turbulence and scour, and promote accumulation of detritus. Rhizomes provide protection for benthic infauna and enhance sediment stability. Roots absorb and release nutrients to interstitial waters. Because of their shallow, subtidal existence, seagrasses are susceptible to perturbations of both the water column and sediments. Eelgrass meadows are impacted by dredging and filling, some commercial fishery harvest techniques, modification of normal temperature and salinity regimes, and addition of chemical wastes. Techniques have been developed to successfully restore eelgrass habitats, but a holistic approach to planning research and environmentally-related decisions is needed to avoid cumulative environmental impacts on these vital nursery areas. 64 figures, 16 tables.« less

  3. Relative abundance and distribution of fishes and crayfish at Ash Meadows National Wildlife Refuge, Nye County, Nevada, 2007-08

    USGS Publications Warehouse

    Scoppettone, G. Gary; Rissler, Peter; Johnson, Danielle; Hereford, Mark

    2011-01-01

    This study provides baseline data of native and non-native fish populations in Ash Meadows National Wildlife Refuge (NWR), Nye County, Nevada, that can serve as a gauge in native fish enhancement efforts. In support of Carson Slough restoration, comprehensive surveys of Ash Meadows NWR fishes were conducted seasonally from fall 2007 through summer 2008. A total of 853 sampling stations were created using Geographic Information Systems and National Agricultural Imagery Program. In four seasons of sampling, Amargosa pupfish (genus Cyprinodon) was captured at 388 of 659 stations. The number of captured Amargosa pupfish ranged from 5,815 (winter 2008) to 8,346 (summer 2008). The greatest success in capturing Amargosa pupfish was in warm water spring-pools with temperature greater than 25 degrees C, headwaters of warm water spring systems, and shallow (depths less than 10 centimeters) grassy marshes. In four seasons of sampling, Ash Meadows speckled dace (Rhinichthys osculus nevadesis) was captured at 96 of 659 stations. The number of captured Ash Meadows speckled dace ranged from 1,009 (summer 2008) to 1,552 (winter 2008). The greatest success in capturing Ash Meadows speckled dace was in cool water spring-pools with temperature less than 20 degrees C and in the high flowing water outflows. Among 659 sampling stations within the range of Amargosa pupfish, red swamp crayfish (Procambarus clarkii) was collected at 458 stations, western mosquitofish (Gambusia affinis) at 374 stations, and sailfin molly (Poecilia latipinna) at 128 stations. School Springs was restored during the course of this study. Prior to restoration of School Springs, maximum Warm Springs Amargosa pupfish (Cyprinodon nevadensis pectoralis) captured from the six springs of the Warm Springs Complex was 765 (fall 2007). In four seasons of sampling, Warm Springs Amargosa pupfish were captured at 85 of 177 stations. The greatest success in capturing Warm Springs Amargosa pupfish when co-occurring with red

  4. Temperature sensitivity of soil carbon dioxide and nitrous oxide emissions in mountain forest and meadow ecosystems in China

    NASA Astrophysics Data System (ADS)

    Zhang, Junjun; Peng, Changhui; Zhu, Qiuan; Xue, Wei; Shen, Yan; Yang, Yanzheng; Shi, Guohua; Shi, Shengwei; Wang, Meng

    2016-10-01

    An incubation experiment was conducted at three temperature levels (8, 18 and 28 °C) to quantify the response of soil CO2 and N2O emissions to temperature in three ecosystems (pine forest, oak forest, and meadow) located in the Qinling Mountains of China, which are considered to be susceptible to disturbance and climate changes, especially global warming. The soil CO2 emission rates increased with temperature and decreased with soil depth; they were the highest in the oak forest (broadleaf forest) and were lower in the pine forest (coniferous forest) and the meadow ecosystem. However, there was no significant difference in the soil N2O emission rates among the three ecosystems. The temperature sensitivity of CO2 and N2O was higher in the forest than in the meadow ecosystem. The Q10 values (temperature sensitivity coefficient) for CO2 and N2O were 1.07-2.25 and 0.82-1.22, respectively, for the three ecosystems. There was also evidence that the CO2 and N2O emission rates were positively correlated. The soil characteristics exhibited different effects on CO2 and N2O emissions among different ecosystems at the three temperature levels. Moreover, the soil dissolved organic carbon (DOC), specific ultraviolet absorbance (SUVA) and nitrate (NO3-) were important factors for CO2 emissions, whereas the soil ammonium (NH4+) and pH were the major controllers of N2O emissions. Unexpectedly, our results indicated that CO2 emissions are more sensitive to increasing temperature than N2O, noting the different feedback of CO2 and N2O emissions to global warming in this region. The different responses of greenhouse gas emissions in different forest types and a meadow ecosystem suggest that it is critical to conduct a comprehensive investigation of the complex mountain forest and meadow ecosystem in the transitional climate zone under global warming. Our research results provide new insight and advanced understanding of the variations in major greenhouse gas emissions (CO2 and N2O

  5. Short-term effect of nitrogen addition on nitric oxide emissions from an alpine meadow in the Tibetan Plateau.

    PubMed

    Gao, Yongheng; Ma, Xingxing; Cooper, David J

    2016-06-01

    Little information is available on nitric oxide (NO) fluxes from alpine ecosystems. We measured NO fluxes in control and nitrogen (N) addition (NH4NO3, 6 g N m(-2) year(-1)) plots from early June through October 2013 in an alpine meadow on the Tibetan Plateau, China. During the sample period, NO fluxes varied from -0.71 to 3.12 ug m(-2) h(-1) and -0.46 to 7.54 ug m(-2) h(-1) for control and N treatment plots. The mean NO emission in N addition plots (1.68 ug m(-2) h(-1)) was 2.15 times higher than the control plots (0.78 ug m(-2) h(-1)), indicating that alpine meadows may be a source of atmospheric NO, and N additions stimulated NO flux. A positive correlation was found between NO flux and soil temperature, water-filled pore space (WFPS), nitrate (NO3 (-)-N) content but no correlation with soil ammonium (NH4 (+)-N). These results suggest that denitrification is a principal process producing NO flux from alpine meadows.

  6. Influence of submarine springs and wastewater on nutrient dynamics of Caribbean seagrass meadows

    NASA Astrophysics Data System (ADS)

    Carruthers, T. J. B.; van Tussenbroek, B. I.; Dennison, W. C.

    2005-08-01

    The east coast of the Yucatan Peninsula, Mexico, consists of highly permeable limestone, such that surface flow and rivers are absent in this region. Extensive underground cave systems connect sink holes (cenotes) to submarine springs (ojos de aqua), which vent into the seagrass meadows of the adjacent oligotrophic coastal lagoons. This study investigated the potential for these submarine springs to influence nutrient processes within seagrass meadows, by assessing nutrient status of Thalassia testudinum meadows in two contrasting coastal lagoons along the north eastern Yucatan peninsula. Tissue nutrient concentrations as well as δ 15N values of T. testudinum were surveyed in the Puerto Morelos Reef Lagoon and the Nichupte Lagoon System, Cancun Hotel Zone, during an extended dry period and again following heavy rainfall. After a period of heavy rainfall, T. testudinum near submarine springs in Puerto Morelos Reef Lagoon had exceptionally high leaf tissue phosphorus concentrations of 0.38±0.06%. These submarine springs may have been a direct source of phosphorus and/or a source of iron to this very iron limited carbonate system. Thalassia testudinum nutrient concentrations suggest that nitrogen loading to the Nichupte Lagoon System is regionally high and has increased over the past decade (mean leaf N: 2.04% N in 1991 to 2.71% N in 2002). Nitrogen content in leaf tissue of T. testudinum was significantly higher within the poorly flushed Nichupte Lagoon System (2.93±0.12% N) than in the well-flushed Puerto Morelos Reef Lagoon (1.80±0.07% N). Stable isotope ratios of nitrogen suggest that this high and increasing nitrogen loading within the Nichupte Lagoon System is a result of wastewater nitrogen (δ 15N 9.06±0.07 in northern Nichupte Lagoon System vs. 1.69±0.07 in Puerto Morelos Reef Lagoon).

  7. Effects of common seagrass restoration methods on ecosystem structure in subtropical seagrass meadows.

    PubMed

    Bourque, Amanda S; Fourqurean, James W

    2014-06-01

    Seagrass meadows near population centers are subject to frequent disturbance from vessel groundings. Common seagrass restoration methods include filling excavations and applying fertilizer to encourage seagrass recruitment. We sampled macrophytes, soil structure, and macroinvertebrate infauna at unrestored and recently restored vessel grounding disturbances to evaluate the effects of these restoration methods on seagrass ecosystem structure. After a year of observations comparing filled sites to both undisturbed reference and unrestored disturbed sites, filled sites had low organic matter content, nutrient pools, and primary producer abundance. Adding a nutrient source increased porewater nutrient pools at disturbed sites and in undisturbed meadows, but not at filled sites. Environmental predictors of infaunal community structure across treatments included soil texture and nutrient pools. At the one year time scale, the restoration methods studied did not result in convergence between restored and unrestored sites. Particularly in filled sites, soil conditions may combine to constrain rapid development of the seagrass community and associated infauna. Our study is important for understanding early recovery trajectories following restoration using these methods. Published by Elsevier Ltd.

  8. Promoting Pollinating Insects in Intensive Agricultural Matrices: Field-Scale Experimental Manipulation of Hay-Meadow Mowing Regimes and Its Effects on Bees

    PubMed Central

    Buri, Pierrick; Humbert, Jean-Yves; Arlettaz, Raphaël

    2014-01-01

    Bees are a key component of biodiversity as they ensure a crucial ecosystem service: pollination. This ecosystem service is nowadays threatened, because bees suffer from agricultural intensification. Yet, bees rarely benefit from the measures established to promote biodiversity in farmland, such as agri-environment schemes (AES). We experimentally tested if the spatio-temporal modification of mowing regimes within extensively managed hay meadows, a widespread AES, can promote bees. We applied a randomized block design, replicated 12 times across the Swiss lowlands, that consisted of three different mowing treatments: 1) first cut not before 15 June (conventional regime for meadows within Swiss AES); 2) first cut not before 15 June, as treatment 1 but with 15% of area left uncut serving as a refuge; 3) first cut not before 15 July. Bees were collected with pan traps, twice during the vegetation season (before and after mowing). Wild bee abundance and species richness significantly increased in meadows where uncut refuges were left, in comparison to meadows without refuges: there was both an immediate (within year) and cumulative (from one year to the following) positive effect of the uncut refuge treatment. An immediate positive effect of delayed mowing was also evidenced in both wild bees and honey bees. Conventional AES could easily accommodate such a simple management prescription that promotes farmland biodiversity and is likely to enhance pollination services. PMID:24416434

  9. Very high-resolution seismo-acoustic imaging of seagrass meadows (Mediterranean Sea): Implications for carbon sink estimates

    NASA Astrophysics Data System (ADS)

    Lo Iacono, Claudio; Mateo, Miguel Angel; Gràcia, Eulàlia; Guasch, Lluis; Carbonell, Ramon; Serrano, Laura; Serrano, Oscar; Dañobeitia, Juanjo

    2008-09-01

    Posidonia oceanica is a widespread coastal Mediterranean seagrass which accumulates in its subsurface large quantities of organic material derived from its roots, rhizomes and leaf sheaths embedded in sandy sediments. These organic deposits may be up to several meters thick as they accumulate over thousands of years forming the matte, whose high content in organic carbon plays a major role in the global ocean carbon cycle. In this study, very high-resolution seismo-acoustic methods were applied to image the subsurface features of a P. oceanica seagrass meadow at Portlligat (Cadaqués, Girona, Spain), in the NW-Mediterranean Sea. Our findings yield fresh insights into the settling of the P. oceanica meadow in the study area, and define with unprecedented detail the potential volume occupied by the matte. A strong reflector, located from 4.3 to 11.7 m depth, was recognized in several seismo-acoustic profiles as the substratum on which P. oceanica first settled in the study area. A 3D bathymetric model of this substratum allowed us to reconstruct the Portlligat palaeo-environment prior to the settling of P. oceanica, which corresponded to a shallow coastal setting protected from the open sea. A core drilled in the meadow at Portlligat revealed the presence of a 6 m thick dense matte composed of medium to coarse sandy sediments mixed with plant debris and bioclasts. Radiocarbon datings revealed a constant accretion rate of the matte of about 1.1 m/kyr. Gravelly bioclastic deposits observed at the base of the core correspond to the base of the matte and gave a date of 5616 +/- 46 Cal yr BP. For the first time, very high-resolution marine geophysical techniques allowed us to accurately define the volume occupied by P. oceanica matte, which in the study area reaches up to almost 220,000 +/- 17,400 m3. This result is an important step forward in our efforts to estimate the size of the carbon sink represented by P. oceanica meadows along the Mediterranean coasts

  10. Invasive perennial grasses in Quercus garryana meadows of southwestern British Columbia: prospects for restoration

    Treesearch

    Andrew MacDougall

    2002-01-01

    Garry oak (Quercus garryana) meadows of the Pacific Northwest are heavily invaded but the dynamics surrounding this ecosystem transformation are poorly understood. Of particular uncertainty is the role of the invasive species in structuring the community, and the potential stability of this invasive-dominated system when disturbed. Clarifying such...

  11. Meadow vole-induced mortality of oak seedlings in a former agricultural field planting

    Treesearch

    Andrew B. Self; Andrew W. Ezell; Dennis Rowe; Emily B. Schultz; John D. Hodges

    2015-01-01

    Seedling mortality due to meadow vole herbivory is an often acknowledged but relatively unstudied aspect of hardwood afforestation. Vole-induced mortality is not typically a major item of concern in afforestation attempts. However, damage has been extreme in some plantings. A total of 4,320 bare-root Nuttall oak (Quercus texana Buckley), Shumard oak (Quercus shumardii...

  12. Spatial assessment of intertidal seagrass meadows using optical imaging systems and a lightweight drone

    NASA Astrophysics Data System (ADS)

    Duffy, James P.; Pratt, Laura; Anderson, Karen; Land, Peter E.; Shutler, Jamie D.

    2018-01-01

    Seagrass ecosystems are highly sensitive to environmental change. They are also in global decline and under threat from a variety of anthropogenic factors. There is now an urgency to establish robust monitoring methodologies so that changes in seagrass abundance and distribution in these sensitive coastal environments can be understood. Typical monitoring approaches have included remote sensing from satellites and airborne platforms, ground based ecological surveys and snorkel/scuba surveys. These techniques can suffer from temporal and spatial inconsistency, or are very localised making it hard to assess seagrass meadows in a structured manner. Here we present a novel technique using a lightweight (sub 7 kg) drone and consumer grade cameras to produce very high spatial resolution (∼4 mm pixel-1) mosaics of two intertidal sites in Wales, UK. We present a full data collection methodology followed by a selection of classification techniques to produce coverage estimates at each site. We trialled three classification approaches of varying complexity to investigate and illustrate the differing performance and capabilities of each. Our results show that unsupervised classifications perform better than object-based methods in classifying seagrass cover. We also found that the more sparsely vegetated of the two meadows studied was more accurately classified - it had lower root mean squared deviation (RMSD) between observed and classified coverage (9-9.5%) compared to a more densely vegetated meadow (RMSD 16-22%). Furthermore, we examine the potential to detect other biotic features, finding that lugworm mounds can be detected visually at coarser resolutions such as 43 mm pixel-1, whereas smaller features such as cockle shells within seagrass require finer grained data (<17 mm pixel-1).

  13. 76 FR 14984 - Sunkhaze Meadows National Wildlife Refuge, Penobscot, Kennebec, and Waldo Counties, ME, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ..., wildlife observation and photography, and environmental education and interpretation. We will review and... Sunkhaze Meadows NWR and Carlton Pond WPA. We will conduct the environmental review of this project and..., including American woodcock, red-winged blackbird, and bobolink. The Sandy Stream Unit is mainly comprised...

  14. Evaluating mountain meadow groundwater response to pinyon-juniper and temperature in a great basin watershed

    USDA-ARS?s Scientific Manuscript database

    Expansion of deeply-rooted Pinyon-Juniper (PJ) has altered water partitioning and reduced water availability to discharging meadows. Research highlights the development and application of GSFLOW to a semi-arid, snow-dominated watershed in the Great Basin to evaluate PJ and temperature controls on mo...

  15. Macroecological analysis of the fish fauna inhabiting Cymodocea nodosa seagrass meadows.

    PubMed

    Espino, F; Brito, A; Haroun, R; Tuya, F

    2015-10-01

    In this study, patterns in the taxonomic richness and composition of the fish fauna inhabiting Cymodocea nodosa seagrass meadows were described across their entire distribution range in the Mediterranean Sea and adjacent Atlantic Ocean. Specifically, the study tested whether there are differences in the composition of fish assemblages between those ecoregions encompassed by the distribution range of C. nodosa, and whether these differences in composition are connected with differences in bioclimatic affinities of the fish faunas. A literature review resulted in a total of 19 studies, containing 22 fish assemblages at 18 locations. The ichthyofauna associated with C. nodosa seagrass meadows comprises 59 families and 188 species. The western Mediterranean (WM) Sea has the highest species richness (87 species). Fish assemblages from the Macaronesia-Canary Islands, the Sahelian Upwelling, South European Atlantic Shelf and the WM differ, in terms of assemblage composition, relative to other ecoregions. In contrast, the composition of the fish fauna from the central and eastern Mediterranean overlaps. There is a significant serial correlation in fish assemblage composition between adjacent ecoregions along the distribution range of C. nodosa. Dissimilarities in assemblage composition are connected with the geographical separation between locations, and the mean minimum annual seawater temperature is the environmental factor that explains most variation in fish assemblage composition. © 2015 The Fisheries Society of the British Isles.

  16. Stream channel designs for riparian and wet meadow rangelands in the southwestern United States

    Treesearch

    Roy Jemison; Daniel G. Neary

    2000-01-01

    Inappropriate land uses have degraded wetland and riparian ecosystems throughout the Southwestern United States. In 1996, the Cibola National Forest in New Mexico implemented a channel relocation project, as part of a road improvement project, to determine the feasibility of restoring wet meadow and riparian ecosystems degraded by inappropriately located roads and...

  17. Tree age and tree species shape positive and negative interactions in a montane meadow

    Treesearch

    Ryan D. Haugo; Charles Halpern

    2010-01-01

    Few studies have considered how interactions between woody and herbaceous species change in direction or magnitude over time or with traits of the dominant woody species. We used a chronosequence approach to explore these interactions in a montane meadow in which Pinus contorta Dougl. ex Loud. and Abies grandis (Dougl. ex. D....

  18. Two-year effects of aminopyralid on an invaded meadow in the Washington Cascades

    Treesearch

    Timothy B. Harrington; David H. Peter; Warren D. Devine

    2014-01-01

    Four rates of aminopyralid (30, 60, 90, and 120 g ae ha-1 [0.4, 0.9, 1.3, and 1.8 oz ae acre-1]) were compared for their ability to reduce abundance of nonnative dicot species and favor native species in an invaded Cascade Mountain meadow near Trout Lake, WA. Treatments were applied in two replicated studies (June 2009 and...

  19. Large reservoirs: Chapter 17

    USGS Publications Warehouse

    Miranda, Leandro E.; Bettoli, Phillip William

    2010-01-01

    Large impoundments, defined as those with surface area of 200 ha or greater, are relatively new aquatic ecosystems in the global landscape. They represent important economic and environmental resources that provide benefits such as flood control, hydropower generation, navigation, water supply, commercial and recreational fisheries, and various other recreational and esthetic values. Construction of large impoundments was initially driven by economic needs, and ecological consequences received little consideration. However, in recent decades environmental issues have come to the forefront. In the closing decades of the 20th century societal values began to shift, especially in the developed world. Society is no longer willing to accept environmental damage as an inevitable consequence of human development, and it is now recognized that continued environmental degradation is unsustainable. Consequently, construction of large reservoirs has virtually stopped in North America. Nevertheless, in other parts of the world construction of large reservoirs continues. The emergence of systematic reservoir management in the early 20th century was guided by concepts developed for natural lakes (Miranda 1996). However, we now recognize that reservoirs are different and that reservoirs are not independent aquatic systems inasmuch as they are connected to upstream rivers and streams, the downstream river, other reservoirs in the basin, and the watershed. Reservoir systems exhibit longitudinal patterns both within and among reservoirs. Reservoirs are typically arranged sequentially as elements of an interacting network, filter water collected throughout their watersheds, and form a mosaic of predictable patterns. Traditional approaches to fisheries management such as stocking, regulating harvest, and in-lake habitat management do not always produce desired effects in reservoirs. As a result, managers may expend resources with little benefit to either fish or fishing. Some locally

  20. GEOMORPHIC AND HYDROGEOLOGICAL CONTROLS ON THE DISTRIBUTION OF WET MEADOWS IN THE CENTRAL GREAT BASIN

    EPA Science Inventory

    The Great Basin is an arid landscape dominated by dryland vegetation such as big sage and xeric grasses. Meadow complexes occur in mountain drainages and consist of discrete parcels of land up to several hectares in area that are characterized by high water tables and that primar...

  1. Effects of warming and nitrogen fertilization on GHG flux in the permafrost region of an alpine meadow

    NASA Astrophysics Data System (ADS)

    Chen, Xiaopeng; Wang, Genxu; Zhang, Tao; Mao, Tianxu; Wei, Da; Hu, Zhaoyong; Song, Chunlin

    2017-05-01

    The limited number of in situ measurements of greenhouse gas (GHG) flux during soil freeze-thaw cycles in permafrost regions limits our ability to accurately predict how the alpine ecosystem carbon sink or source function will vary under future warming and increased nitrogen (N) deposition. An alpine meadow in the permafrost region of the Qinghai-Tibet Plateau was selected, and a simulated warming with N fertilization experiment was carried out to investigate the key GHG fluxes (ecosystem respiration [Re], CH4 and N2O) in the early (EG), mid (MG) and late (LG) growing seasons. The results showed that: (i) warming (4.5 °C) increased the average seasonal Re, CH4 uptake and N2O emission by 73.5%, 65.9% and 431.6%, respectively. N fertilization (4 g N m-2) alone had no significant effect on GHG flux; the interaction of warming and N fertilization enhanced CH4 uptake by 10.3% and N2O emissions by 27.2% than warming, while there was no significant effect on the Re; (ii) the average seasonal fluxes of Re, CH4 and N2O were MG > LG > EG, and Re and CH4 uptake were most sensitive to the soil freezing process instead of soil thawing process; (iii) surface soil temperature was the main driving factor of the Re and CH4 fluxes, and the N2O flux was mainly affected by daily rainfall; (iv) in the growing season, warming increased greenhouse warming potential (GWP) of the alpine meadow by 74.5%, the N fertilization decreased GWP of the warming plots by 13.9% but it was not statistically significant. These results indicate that (i) relative to future climate warming (or permafrost thawing), there could be a hysteresis of GHG flux in the alpine meadow of permafrost region; (ii) under the scenario of climate warming, increasing N deposition has limited impacts on the feedback of GHG flux of the alpine meadow.

  2. Ecohydrology of an Embanked Lowland UK River Meadow and the Effects of Embankment Removal

    NASA Astrophysics Data System (ADS)

    Clilverd, H.; Thompson, J.; Sayer, C.; Heppell, K.; Axmacher, J.

    2012-12-01

    Pristine riparian and floodplain ecosystems are in a state of dynamic balance due to the regular floods that continuously reshape river channels and their banks, and transport water, sediment and nutrients onto the floodplain. However, the natural flow regime of many rivers has been altered by channelization and artificial embankments designed to protect agricultural and urban developments from flooding. This has had a lasting impact on the hydrological characteristics of floodplain ecosystems and the biological communities that inhabit them. Floodplain restoration, through embankment removal and the reconfiguration of river channels, is now being increasingly employed to re-establish river-floodplain connections and assist the recovery of lost or declining species. In order to manage a river restoration site for plant biodiversity, it is necessary to understand the physical and nutritional status of the root environment. We conducted fine scale (10 × 10 m) botanical and chemical sampling on a 3 ha embanked grassland meadow in Norfolk (Eastern England) and assessed the spatial pattern of plant communities in relation to soil physicochemical conditions. Continuous measurements of groundwater depth and river stage were collectively used to determine changes in the hydrological regime following embankment-removal. Prior to the restoration the meadow plant community was dominated by Holcus lanatus, Ranunculus repens and Agrostis stolonifera. Species richness was fairly low (mean: 8 spp. per m2), and indices of alpha-diversity suggest low heterogeneity of the plant assemblages (mean values for Shannon's Diversity and 1/Simpson's Diversity = 1.4 and 3.4, respectively). Top soils were moderately fertile, with mean respective Olsen P and plant available potassium concentrations of 9.1 mg P kg-1and 1.6 mg K+g-1. Plant available ammonium and nitrate concentrations were on average 31.7 mg NH4+-N kg-1 and 2.8 mg NO3--N kg-1, respectively. River water was enriched in nitrate

  3. SUBSURFACE CHARACTERIZATION OF UPLAND RIPARIAN MEADOWS IN CENTRAL NEVADA USING AN INNOVATIVE DIRECT-PUSH EXPLORATION RIG

    EPA Science Inventory

    The U.S. EPA and the USDA Forest Service are conducting a joint investigation to better understand the interactions between geomorphology, hydrology, and vegetation associated with riparian meadow ecosystems in upland watersheds in central Nevada. Stream incision is a major threa...

  4. Beyond the replication-competent HIV reservoir: transcription and translation-competent reservoirs.

    PubMed

    Baxter, Amy E; O'Doherty, Una; Kaufmann, Daniel E

    2018-02-02

    Recent years have seen a substantial increase in the number of tools available to monitor and study HIV reservoirs. Here, we discuss recent technological advances that enable an understanding of reservoir dynamics beyond classical assays to measure the frequency of cells containing provirus able to propagate a spreading infection (replication-competent reservoir). Specifically, we focus on the characterization of cellular reservoirs containing proviruses able to transcribe viral mRNAs (so called transcription-competent) and translate viral proteins (translation-competent). We suggest that the study of these alternative reservoirs provides complementary information to classical approaches, crucially at a single-cell level. This enables an in-depth characterization of the cellular reservoir, both following reactivation from latency and, importantly, directly ex vivo at baseline. Furthermore, we propose that the study of cellular reservoirs that may not contain fully replication-competent virus, but are able to produce HIV mRNAs and proteins, is of biological importance. Lastly, we detail some of the key contributions that the study of these transcription and translation-competent reservoirs has made thus far to investigations into HIV persistence, and outline where these approaches may take the field next.

  5. Biodiversity loss in seagrass meadows due to local invertebrate fisheries and harbour activities

    NASA Astrophysics Data System (ADS)

    Nordlund, Lina Mtwana; Gullström, Martin

    2013-12-01

    Seagrass meadows provide a wide variety of ecosystem services, but their distribution and health are adversely affected by man. In the present study, we examined the influence of coastal exploitation in terms of invertebrate harvesting and harbour activity on invertebrate community composition in subtropical seagrass meadows at Inhaca Island, Mozambique, in the Western Indian Ocean. There was a fivefold higher invertebrate density and biomass, and clearly higher invertebrate species richness, in the protected (control) site compared to the two exploited sites. The causes for the clear differences between protected and exploited sites were probably a result of (1) the directional outtake of large edible or saleable invertebrates (mostly molluscs) and the absence of boat traffic in the harvested site, and (2) harbour activities. Invertebrate community composition in the two exploited sites also differed (although less clear), which was likely due to inherent distinction in type of disturbance. Our findings revealed that protection of seagrass habitat is necessary and that disturbances of different origin might require different forms of management and conservation. Designing protected areas is however a complex process due to competition for use and space with activities such as invertebrate harvesting and harbours.

  6. Estimates of ground-water discharge as determined from measurements of evapotranspiration, Ash Meadows area, Nye County, Nevada

    USGS Publications Warehouse

    Laczniak, R.J.; DeMeo, G.A.; Reiner, S.R.; Smith, J. LaRue; Nylund, W.E.

    1999-01-01

    Ash Meadows is one of the major discharge areas within the regional Death Valley ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Ash Meadows is replenished from inflow derived from an extensive recharge area that includes the eastern part of the Nevada Test Site (NTS). Currently, contaminants introduced into the subsurface by past nuclear testing at NTS are the subject of study by the U.S. Department of Energy's Environmental Restoration Program. The transport of any contaminant in contact with ground water is controlled in part by the rate and direction of ground-water flow, which itself depends on the location and quantity of ground water discharging from the flow system. To best evaluate any potential risk associated with these test-generated contaminants, studies were undertaken to accurately quantify discharge from areas downgradient from the NTS. This report presents results of a study to refine the estimate of ground-water discharge at Ash Meadows. The study estimates ground-water discharge from the Ash Meadows area through a rigorous quantification of evapotranspiration (ET). To accomplish this objective, the study identifies areas of ongoing ground-water ET, delineates unique areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computes ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite images recorded in 1992 identified seven unique units representing areas of ground-water ET. The total area classified encompasses about 10,350 acres dominated primarily by lush desert vegetation. Each unique area, referred to as an ET unit, generally consists of one or more assemblages of local phreatophytes. The ET units identified range from sparse grasslands to open water. Annual ET rates are computed by energy-budget methods from micrometeorological measurements made at 10 sites within six

  7. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensormore » packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and

  8. Spatial structure of seagrass suggests that size-dependent plant traits have a strong influence on the distribution and maintenance of tropical multispecies meadows.

    PubMed

    Ooi, Jillian L S; Van Niel, Kimberly P; Kendrick, Gary A; Holmes, Karen W

    2014-01-01

    Seagrass species in the tropics occur in multispecies meadows. How these meadows are maintained through species co-existence and what their ecological drivers may be has been an overarching question in seagrass biogeography. In this study, we quantify the spatial structure of four co-existing species and infer potential ecological processes from these structures. Species presence/absence data were collected using underwater towed and dropped video cameras in Pulau Tinggi, Malaysia. The geostatistical method, utilizing semivariograms, was used to describe the spatial structure of Halophila spp, Halodule uninervis, Syringodium isoetifolium and Cymodocea serrulata. Species had spatial patterns that were oriented in the along-shore and across-shore directions, nested with larger species in meadow interiors, and consisted of multiple structures that indicate the influence of 2-3 underlying processes. The Linear Model of Coregionalization (LMC) was used to estimate the amount of variance contributing to the presence of a species at specific spatial scales. These distances were <2.5 m (micro-scale), 2.5-50 m (fine-scale) and >50 m (broad-scale) in the along-shore; and <2.5 m (micro-scale), 2.5-140 m (fine-scale) and >140 m (broad-scale) in the across-shore. The LMC suggests that smaller species (Halophila spp and H. uninervis) were most influenced by broad-scale processes such as hydrodynamics and water depth whereas large, localised species (S. isoetifolium and C. serrulata) were more influenced by finer-scale processes such as sediment burial, seagrass colonization and growth, and physical disturbance. In this study, we provide evidence that spatial structure is distinct even when species occur in well-mixed multispecies meadows, and we suggest that size-dependent plant traits have a strong influence on the distribution and maintenance of tropical marine plant communities. This study offers a contrast from previous spatial models of seagrasses which have largely focused

  9. On the balance between niche and neutral processes as drivers of community structure along a successional gradient: insights from alpine and sub-alpine meadow communities.

    PubMed

    Chu, Cheng-Jin; Wang, You-Shi; Du, Guo-Zhen; Maestre, Fernando T; Luo, Yan-Jiang; Wang, Gang

    2007-10-01

    Neutral theory predicts that the diversity and relative abundance of species in ecological communities do not depend on their specific traits. This prediction remains controversial, as many studies suggest that variations in the niches of species determine the structure of communities. The aim of this study was to test empirically the relative importance of niche and neutral processes as drivers of species abundance within plant communities along a successional gradient. Information on the abundance (density and frequency) and traits (aboveground individual biomass and seed mass) of > 90 species was collected in alpine and sub-alpine meadows of the Tibet Plateau (China). A successional gradient (1, 3, 15 and 30 years after abandonment) was established in a sub-alpine meadow. The relationships between species traits and their abundance were evaluated using regression models. Seed mass was negatively related to both species density (r = -0.6270, P < 0.001) and frequency (r = -0.5335, P = 0.005) in the 1-year meadow. Such relationships disappeared along the successional gradient evaluated (P > 0.07 in the 3-, 15- and 30-year meadows). Data gathered in all sites showed a significant negative relationship between the average individual biomass of a given species and its density within the community (r < -0.30, P < 0.025 in all cases). The results show that seed mass was a key driver of species abundance in early successional communities, and that niche forces may become more important as succession progresses. They also indicate that predictions from neutral theory, in its current form, do not hold for the meadow communities studied.

  10. Restoration of multiple-rut trails in the Tuolumne meadows of Yosemite National Park

    Treesearch

    Sean Eagan; Peter Newman; Susan Fritzke; Louise Johnson

    2000-01-01

    This study presents the techniques used in a restoration project in Tuolumne Meadows on the old Glen Aulin trail in Yosemite National Park from 1990 to 1994 and the results of follow-up monitoring in the summer of 1998. The project restored the natural hydrology and soils to a 4,200-foot section of abandoned trail which had two to six one-foot deep ruts. The project...

  11. Geomorphology, hydrology, and ecology of Great Basin meadow complexes - implications for management and restoration

    Treesearch

    Jeanne C. Chambers; Jerry R. Miller

    2011-01-01

    This report contains the results of a 6-year project conducted by the U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station and U.S. Environmental Protection Agency, Office of Research and Development on stream incision and meadow ecosystem degradation in the central Great Basin. The project included a coarse-scale assessment of 56 different...

  12. Handbook for Students, Teachers and Parents. BOCES/SCOPE Outdoor Learning Laboratory at Sunken Meadow.

    ERIC Educational Resources Information Center

    Long Island State Park and Recreation Commission, NY.

    Since 1971 a fully equipped learning laboratory building and the open fields, woodlands, salt water marshes, and beaches of Sunken Meadow State Park have been available for year round day use by students and educators in New York's Suffolk and Nassau counties. Funded by the New York Office of Parks and Recreation and local Boards of Cooperative…

  13. Invertebrates of Meadow Creek, Union County, Oregon, and their use as food by trout.

    Treesearch

    Carl E. McLemore; William R. Meehan

    1988-01-01

    From 1976 to 1980, invertebrates were collected three times each year from several reaches of Meadow Creek in eastern Oregon. Five sampling methods were used: benthos, drift, sticky traps, water traps, and fish stomachs. A total of 372 taxa were identified, of which 239 were used as food by rainbow trout (steelhead; Salmo gairdneri Richardson). Of...

  14. Simulations of dredged sediment spreading on a Posidonia oceanica meadow off the Ligurian coast, Northwestern Mediterranean.

    PubMed

    Capello, M; Cutroneo, L; Ferranti, M P; Budillon, G; Bertolotto, R M; Ciappa, A; Cotroneo, Y; Castellano, M; Povero, P; Tucci, S

    2014-02-15

    The sandy deposits from dredging can have negative effects on the environment such as increase in suspended solids in the water column and their consequent transport. An experimental study was conducted to characterize water masses, dynamics, and sedimentation rates on the Ligurian continental shelf (Italy), where both a sand deposit, that could be used for beach nourishment, and a nearby Posidonia oceanica meadow coexist. The environmental plan provides a mathematical simulation of the sediment-dispersion to evaluate the possible impact on the meadow. It has been calculated that the dredging could double the concentration of suspended particles, but its scheduling will preclude a sediment accumulation. All the information obtained from this work will be used to study the environmental feasibility of the sand deposit exploitation and as starting point for drawing up the monitoring plan in case of dredging. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurhandoko, Bagus Endar B., E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com; Rock Fluid Imaging Lab., Bandung; Susilowati, E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com

    2015-04-16

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied aboutmore » the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.« less

  16. HYDROGEOLOGIC SETTING AND CHARACTERISTICS OF RIPARIAN MEADOW COMPLEXES IN THE MOUNTAINS OF CENTRAL NEVADA: A CASE STUDY

    EPA Science Inventory

    Riparian wet meadow complexes in the mountains of the central Great Basin are scarce, ecologically important systems threatened by stream incision. An interdisciplinary team from government and academia is investigating the origin, setting, and biological--physical interrelations...

  17. Developmental changes in spatial learning in the Morris water-maze in young meadow voles, Microtus pennsylvanicus.

    PubMed

    Galea, L A; Ossenkopp, K P; Kavaliers, M

    1994-01-31

    Spatial learning in pre- and postweaning meadow voles, (Microtus pennsylvanicus) was examined in a Morris water-maze task. The learning performance of 10-day-old (preweaning) and 15-, 20- and 25-day-old (postweaning) male and female voles was assessed by measuring the latency to reach a hidden platform by each animal twice a day for 5 days. Voles of all age groups were able to learn the spatial task with Day 10 and Day 15 voles acquiring the task more slowly than did Day 20 and Day 25 voles. There were no significant sex differences in task acquisition in any of the four age groups. In addition, although swimming speed was related to age, with older animals swimming faster than younger ones, differences in swim speed did not account for the faster acquisition by the older animals. These results show that both preweaning and postweaning voles can successfully learn a spatial task. This is in contrast to preweaning laboratory rats which cannot successfully acquire a similar spatial task. These findings indicate that there are species differences in the ontogeny of spatial learning, which are likely related to the ecological and behavioural developmental characteristics of the species. Furthermore, in contrast to the sex difference in water-maze performance obtained in adult, breeding meadow voles who demonstrate a sex difference, there were no significant sex differences in the spatial performance of the juvenile voles. This suggests that sex differences in spatial learning in the meadow vole do not appear until voles reach reproductive adulthood.

  18. Charcterization of meadow ecosystems based on watershed and valley segment/reach scale characteristics [chapter 7

    Treesearch

    Wendy Trowbridge; Jeanne C. Chambers; Dru Germanoski; Mark L. Lord; Jerry R. Miller; David G. Jewett

    2011-01-01

    Great Basin riparian meadows are highly sensitive to both natural and anthropogenic disturbance. As detailed in earlier chapters, streams in the central Great Basin have a natural tendency to incise due to their geomorphic history (Miller and others 2001, 2004). Anthropogenic disturbances, including overgrazing by livestock, mining activities, and roads in the valley...

  19. Geothermal Potential of Marine Corps Mountain Warfare Training Center at Pickel Meadow, California.

    DTIC Science & Technology

    1983-05-01

    even electrical power generation, since throughout these areas warm wells, hot springs, and warm springs occur. The Pickel Meadow area is U.S. Forest...are Mesozoic granitic and Cretaceous rocks. Warm wells occur at the town of Walker (Antelope Valley), which probably indi- cates that hot water is...These sediments were deposited during tile erosional interval between Oligocene volcanism and late Miocene volcanism. Tile Mio-Pliocene andesitic rocks

  20. Impact of Reservoir Operation to the Inflow Flood - a Case Study of Xinfengjiang Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, L.

    2017-12-01

    Building of reservoir shall impact the runoff production and routing characteristics, and changes the flood formation. This impact, called as reservoir flood effect, could be divided into three parts, including routing effect, volume effect and peak flow effect, and must be evaluated in a whole by using hydrological model. After analyzing the reservoir flood formation, the Liuxihe Model for reservoir flood forecasting is proposed. The Xinfengjiang Reservoir is studied as a case. Results show that the routing effect makes peak flow appear 4 to 6 hours in advance, volume effect is bigger for large flood than small one, and when rainfall focus on the reservoir area, this effect also increases peak flow largely, peak flow effect makes peak flow increase 6.63% to 8.95%. Reservoir flood effect is obvious, which have significant impact to reservoir flood. If this effect is not considered in the flood forecasting model, the flood could not be forecasted accurately, particularly the peak flow. Liuxihe Model proposed for Xinfengjiang Reservoir flood forecasting has a good performance, and could be used for real-time flood forecasting of Xinfengjiang Reservoir.Key words: Reservoir flood effect, reservoir flood forecasting, physically based distributed hydrological model, Liuxihe Model, parameter optimization

  1. Lower Red River Meadow Restoration Project : Biennial Report 1996-97.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LRK Communications; Wildlife Habitat Institute; Pocket Water, Inc.

    2003-07-01

    The Red River has been straightened and the riparian vegetation corridor eliminated in several reaches within the watershed. The river responded by incision resulting in over-steepened banks, increased sedimentation, elevated water temperatures, depressed groundwater levels, reduced floodplain function, and degraded fish habitat. The Lower Red River Meadow Restoration Project is a multi-phase ecosystem enhancement effort that restores natural physical and biological processes and functions to stabilize the stream channel and establish high quality habitats for fish and wildlife. A natural channel restoration philosophy guides the design and on the ground activities, allowing the channel to evolve into a state ofmore » dynamic equilibrium. Two years of planning, two years of restoration in Phases I and II, and one year post-restoration monitoring are complete. By excavating new bends and reconnecting historic meanders, Phase I and II channel realignment increased channel length by 3,060 feet, decreased channel gradient by 25 percent, and increased sinuosity from 1.7 to 2.3. Cross-sectional shapes and point bars were modified to maintain deep pool habitat at low flow and to reconnect the meadow floodplain. Improved soil moisture conditions will help sustain the 31,500 native riparian plantings reestablished within these two phases. Overall, short-term restoration performance was successful. Analyses of long-term parameters document either post-restoration baseline conditions or early stages of evolution toward desired conditions. An adaptive management strategy has helped to improve restoration designs, methods, and monitoring. Lessons learned are being transferred to a variety of audiences to advance the knowledge of ecological restoration and wise management of watersheds.« less

  2. Three years of results from a mooring over a Posidonia Oceanica seagrass meadow (Corsica, France)

    NASA Astrophysics Data System (ADS)

    Champenois, Willy; Delille, Bruno; Lepoint, Gilles; Beckers, Jean-Marie; Grégoire, Marilaure; Borges Alberto, V.

    2010-05-01

    We report the first three years of results from a 10m deep mooring over a Posidonia Oceanica seagrass meadow (Corsica, France) where we deployed from August 2006 to November 2009 an array of 3 optodes. The oxygen data are used to compute by mass balance ecosystem metabolic performance rates (gross primary production (GPP), community respiration (CR), net community production (NCP)), allowing a detailed analysis of seasonal and year-to-year variability of GPP, CR and NCP. The comparison of GPP and CR values derived from the O2 mass balance with rates derived from discrete benthic incubations (every 2 months in 2006-2007, every 4 months in 2008-2009) is very satisfactory. An application of such a mooring is to detect changes in the productivity of the Posidonia meadow that can be used as indicators of overall ecosystem "health" or degradation by human activities. Such a mooring can be used as an affordable and simple tool for management and sustainable development of coastal areas in the Mediterranean.

  3. Distribution and movement of Big Spring spinedace (Lepidomeda mollispinis pratensis) in Condor Canyon, Meadow Valley Wash, Nevada

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.

    2013-01-01

    Big Spring spinedace (Lepidomeda mollispinis pratensis) is a cyprinid whose entire population occurs within a section of Meadow Valley Wash, Nevada. Other spinedace species have suffered population and range declines (one species is extinct). Managers, concerned about the vulnerability of Big Spring spinedace, have considered habitat restoration actions or translocation, but they have lacked data on distribution or habitat use. Our study occurred in an 8.2-km section of Meadow Valley Wash, including about 7.2 km in Condor Canyon and 0.8 km upstream of the canyon. Big Spring spinedace were present upstream of the currently listed critical habitat, including in the tributary Kill Wash. We found no Big Spring spinedace in the lower 3.3 km of Condor Canyon. We tagged Big Spring spinedace ≥70 mm fork length (range 70–103 mm) with passive integrated transponder tags during October 2008 (n = 100) and March 2009 (n = 103) to document movement. At least 47 of these individuals moved from their release location (up to 2 km). Thirty-nine individuals moved to Kill Wash or the confluence area with Meadow Valley Wash. Ninety-three percent of movement occurred in spring 2009. Fish moved both upstream and downstream. We found no movement downstream over a small waterfall at river km 7.9 and recorded only one fish that moved downstream over Delmue Falls (a 12-m drop) at river km 6.1. At the time of tagging, there was no significant difference in fork length or condition between Big Spring Spinedace that were later detected moving and those not detected moving. We found no significant difference in fork length or condition at time of tagging of Big Spring spinedace ≥70 mm fork length that were detected moving and those not detected moving. Kill Wash and its confluence area appeared important to Big Spring spinedace; connectivity with these areas may be key to species persistence. These areas may provide a habitat template for restoration or translocation. The lower 3.3 km of

  4. Public attitudes and opinions as dimensions of efficient management with extensive meadows in Natura 2000 area.

    PubMed

    Šorgo, Andrej; Špur, Natalija; Škornik, Sonja

    2016-12-01

    Over time, grassland use has changed from traditional (extensive) to intensive agricultural management, a change which has caused biodiversity loss in the European grassland area. To save Europe's biodiversity, the most important measure was the establishment of the Natura 2000 network. Goričko Landscape Park in Slovenia is in Natura 2000 to preserve its traditional and extensive small-scale farming. The aims of this research were to identify potential obstacles to proper management of the extensively used meadows in this region and identify major factors that would affect such management in order to prepare more appropriate strategies for habitat conservation. The data was collected by online survey and in paper and pencil format. Based on Principal Component Analysis (PCA), Confirmatory Factor Analysis and Structural Equation Modelling, we can conclude that less than a half of 228 respondents can identify what activities are permitted in a Natura 2000 area, which indicates a lack of knowledge about Natura 2000. The majority agree with meadow management in the welfare of protected plants and animals but would accept management under stricter regulations only if accompanied by higher subsidies in for management under stricter regulations. These respondents are not prepared to participate in measures for preserving biodiversity without beneficiaries. Respondents have in average a positive opinion toward protected plants and animals, but the procedure for obtaining environmental subsidies for meadows seems to them too complicated. Although the majority of respondents do not see a Natura 2000 area as a place for quality living, it is the factor with the highest significant effect on willingness to participate in measures to preserve biodiversity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Change in extent of meadows and shrub fields in the central western cascade Range, Oregon

    Treesearch

    Sadao Takaoka; Frederick J. Swanson

    2008-01-01

    We examined change in areal extent of mountain meadows and fields of deciduous shrubs and conifer saplings in the central western Cascade Range of Oregon, based on analysis of aerial photographs taken in 1946 and 2000. These nonforest vegetation patches are distinctive habitats in dominantly forested landscapes, such as the Cascades, and change in extent of these...

  6. Reservoirs in the United States

    USGS Publications Warehouse

    Thomas, N.O.; Harbeck, G. Earl

    1956-01-01

    Reservoir storage facilities in the United States play an important part in the national economy. Storage facilities have enabled the country to utilize to a much fuller extent one of the most valuable natural resources: water. During recent years the construction of reservoirs has continued at a high rate. This report shows the status of these facilities on January 1, 1954, and describes briefly some of the reasons for growth of reservoir facilities in the United States. Descriptive data are given for reservoirs having a capacity of 5, 000 acre-feet or more and for natural lakes having a usable capacity of 5,000 acre-feet or more. Included are reservoirs and lakes completed as of January 1, 1954, and reservoirs under construction on that date. The total number of such reservoirs and lakes is 1, 300. A descriptive list of reservoirs in the United States was first published by the United States Geological Survey in March 1948. That report, Geological Survey Circular 23, entitled Reservoirs in the United States, included reservoirs completed as of January 1, 1947. Since January 1, 1947, reservoirs representing a total usable capacity of 115,000,000 acre-feet, or an increase of 71 percent, have been constructed or are under construction. Data about these new reservoirs are presented herein, and the data shown for reservoirs constructed before 1947 have been corrected on the basis of the latest available survey to determine reservoir capacity. The total usable capacity of reservoirs and lakes included in this compilation amounts to 278, 120, 000 acre-feet, and the corresponding surface area totals 11, 046, 000 acres.

  7. Butterfly Density and Behaviour in Uncut Hay Meadow Strips: Behavioural Ecological Consequences of an Agri-Environmental Scheme.

    PubMed

    Lebeau, Julie; Wesselingh, Renate A; Van Dyck, Hans

    2015-01-01

    Sparing zones from mowing has been proposed, and applied, to improve local conditions for survival and reproduction of insects in hay meadows. However, little is known about the efficiency of refuge zones and the consequences for local populations. We studied population densities of butterflies before and after mowing in the refuge zone of 15 meadows in 2009 and 2011. We also studied the behaviour of the meadow brown (Maniola jurtina) comparing nectar use, interactions and flights in the refuge zone before and after mowing. Densities of grassland butterflies in this zone doubled on average after mowing. The density of females of M. jurtina increased on average fourfold, while males showed a more modest increase. In line with the idea of increased scramble competition in the refuge zone after mowing, M. jurtina increased the time spent on nectar feeding, the preferred nectar source was visited more frequently, and females made more use of non-preferred nectar sources. Maniola jurtina did not interact more with conspecifics after mowing, but interactions lasted longer. Flight tracks did not change in linearity, but were faster and shorter after mowing. After mowing, only a part of the local grassland butterflies moved to the uncut refuge zone. The resulting concentration effect alters the time allocated to different activities, nectar use and movements. These aspects have been largely ignored for agri-environmental schemes and grassland management in nature reserves and raise questions about optimal quantities and quality of uncut refuge sites for efficient conservation of grassland arthropods in agricultural landscapes.

  8. Butterfly Density and Behaviour in Uncut Hay Meadow Strips: Behavioural Ecological Consequences of an Agri-Environmental Scheme

    PubMed Central

    Lebeau, Julie; Wesselingh, Renate A.; Van Dyck, Hans

    2015-01-01

    Sparing zones from mowing has been proposed, and applied, to improve local conditions for survival and reproduction of insects in hay meadows. However, little is known about the efficiency of refuge zones and the consequences for local populations. We studied population densities of butterflies before and after mowing in the refuge zone of 15 meadows in 2009 and 2011. We also studied the behaviour of the meadow brown (Maniola jurtina) comparing nectar use, interactions and flights in the refuge zone before and after mowing. Densities of grassland butterflies in this zone doubled on average after mowing. The density of females of M. jurtina increased on average fourfold, while males showed a more modest increase. In line with the idea of increased scramble competition in the refuge zone after mowing, M. jurtina increased the time spent on nectar feeding, the preferred nectar source was visited more frequently, and females made more use of non-preferred nectar sources. Maniola jurtina did not interact more with conspecifics after mowing, but interactions lasted longer. Flight tracks did not change in linearity, but were faster and shorter after mowing. After mowing, only a part of the local grassland butterflies moved to the uncut refuge zone. The resulting concentration effect alters the time allocated to different activities, nectar use and movements. These aspects have been largely ignored for agri-environmental schemes and grassland management in nature reserves and raise questions about optimal quantities and quality of uncut refuge sites for efficient conservation of grassland arthropods in agricultural landscapes. PMID:26284618

  9. Spatial Structure of Seagrass Suggests That Size-Dependent Plant Traits Have a Strong Influence on the Distribution and Maintenance of Tropical Multispecies Meadows

    PubMed Central

    Ooi, Jillian L. S.; Van Niel, Kimberly P.; Kendrick, Gary A.; Holmes, Karen W.

    2014-01-01

    Background Seagrass species in the tropics occur in multispecies meadows. How these meadows are maintained through species co-existence and what their ecological drivers may be has been an overarching question in seagrass biogeography. In this study, we quantify the spatial structure of four co-existing species and infer potential ecological processes from these structures. Methods and Results Species presence/absence data were collected using underwater towed and dropped video cameras in Pulau Tinggi, Malaysia. The geostatistical method, utilizing semivariograms, was used to describe the spatial structure of Halophila spp, Halodule uninervis, Syringodium isoetifolium and Cymodocea serrulata. Species had spatial patterns that were oriented in the along-shore and across-shore directions, nested with larger species in meadow interiors, and consisted of multiple structures that indicate the influence of 2–3 underlying processes. The Linear Model of Coregionalization (LMC) was used to estimate the amount of variance contributing to the presence of a species at specific spatial scales. These distances were <2.5 m (micro-scale), 2.5–50 m (fine-scale) and >50 m (broad-scale) in the along-shore; and <2.5 m (micro-scale), 2.5–140 m (fine-scale) and >140 m (broad-scale) in the across-shore. The LMC suggests that smaller species (Halophila spp and H. uninervis) were most influenced by broad-scale processes such as hydrodynamics and water depth whereas large, localised species (S. isoetifolium and C. serrulata) were more influenced by finer-scale processes such as sediment burial, seagrass colonization and growth, and physical disturbance. Conclusion In this study, we provide evidence that spatial structure is distinct even when species occur in well-mixed multispecies meadows, and we suggest that size-dependent plant traits have a strong influence on the distribution and maintenance of tropical marine plant communities. This study offers a contrast from previous spatial

  10. Impact of alpine meadow degradation on soil hydraulic properties over the Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zeng, Chen; Zhang, Fan

    2015-04-01

    Alpine meadow is one of widespread vegetation types of the Qinghai-Tibetan Plateau. It is undergoing degradation under the background of global climate change, human activities and overgrazing. Soil moisture is important to alpine meadow ecology for its water and energy transfer processes, therefore soil hydraulic properties become key parameters for local eco-hydrological processes studies. However, little research focus on the changes and it's mechanisms of soil hydraulic properties during the degradation processes. In this study, soil basic and hydraulic properties at 0-10 cm and 40-50 cm soil layer depths under different degraded alpine meadow were analyzed. Pearson correlations were adopted to study the relationships among the investigated factors and principal component analysis was performed to identify the dominant factor. Results show that with increasing degree of degradation, soil sand content increased while soil saturated hydraulic conductivity (Ks) as well as soil clay content, soil porosity decreased in the 0-10 cm soil layers, and organic matter and root gravimetric density decreased in both the 0-10 cm and 40-50 cm soil layers. For soil unsaturated hydraulic conductivity, it reduced more slowly with decreasing pressure head under degraded conditions than non-degraded conditions. However, soil moisture showed no significant changes with increasing degradation. Soil Ks was significantly correlated (P = 0.01) with bulk density, soil porosity, soil organic matter and root gravimetric density. Among these, soil porosity is the dominant factor explaining about 90% of the variability in total infiltration flow. Under non-degraded conditions, the infiltration flow principally depended on the presence of macropores. With increasing degree of degradation, soil macropores quickly changed to mesopores or micropores. The proportion of total infiltration flow through macropores and mesopores significantly decreased with the most substantial decrease observed for

  11. Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem.

    PubMed

    Zhang, Tao; Guo, Rui; Gao, Song; Guo, Jixun; Sun, Wei

    2015-01-01

    Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China.

  12. Responses of Plant Community Composition and Biomass Production to Warming and Nitrogen Deposition in a Temperate Meadow Ecosystem

    PubMed Central

    Gao, Song; Guo, Jixun; Sun, Wei

    2015-01-01

    Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China. PMID:25874975

  13. Diurnal characteristics of ecosystem respiration of alpine meadow on the Qinghai-Tibetan Plateau: implications for carbon budget estimation.

    PubMed

    Qin, Yu; Yi, Shuhua

    2013-01-01

    Accurately estimating daily mean ecosystem respiration rate (Re) is important for understanding how ecosystem carbon budgets will respond to climate change. Usually, daily mean Re is represented by measurement using static chamber on alpine meadow ecosystems from 9:00 to 11:00 h a.m. local time directly. In the present study, however, we found that the calculated daily mean Re from 9:00 to 11:00 h a.m. local time was significantly higher than that from 0:00 to 23:30 h local time in an alpine meadow site, which might be caused by special climate condition on the Qinghai-Tibetan Plateau. Our results indicated that the calculated daily mean Re from 9:00 to 11:00 h a.m. local time cannot be used to represent daily mean Re directly.

  14. Relative abundance and distribution of fishes and crayfish at Ash Meadows National Wildlife Refuge, Nye County, Nevada, 2010-11

    USGS Publications Warehouse

    Scoppettone, G.G.; Johnson, D.M.; Hereford, M.E.; Rissler, Peter; Fabes, Mark; Salgado, Antonio; Shea, Sean

    2012-01-01

    Habitat restoration that favors native species can help control non-native species (McShane and others, 2004; Scoppettone and others, 2005; Kennedy and others, 2006). Restoration of Carson Slough and its tributaries present an opportunity to promote habitat types that favor native species over non-natives. Historically, the majority of Ash Meadows spring systems were tributaries to Carson Slough. In 2007 and 2008, a survey of Ash Meadows spring systems was conducted to generate baseline information on the distribution of fishes throughout AMNWR (Scoppettone and others, 2011b). In this study, we conducted a follow-up survey with emphasis on upper Carson Slough. This permitted us to gauge the early effects of spring system restoration on fish populations and to generate further baseline data relevant to future restoration efforts. 

  15. Food supply depends on seagrass meadows in the coral triangle

    NASA Astrophysics Data System (ADS)

    Unsworth, Richard K. F.; Hinder, Stephanie L.; Bodger, Owen G.; Cullen-Unsworth, Leanne C.

    2014-09-01

    The tropical seascape provides food and livelihoods to hundreds of millions of people, but the support of key habitats to this supply remains ill appreciated. For fisheries and conservation management actions to help promote resilient ecosystems, sustainable livelihoods, and food supply, knowledge is required about the habitats that help support fisheries productivity and the consequences of this for food security. This paper provides an interdisciplinary case study from the coral triangle of how seagrass meadows provide support for fisheries and local food security. We apply a triangulated approach that utilizes ecological, fisheries and market data combined with over 250 household interviews. Our research demonstrates that seagrass associated fauna in a coral triangle marine protected area support local food supply contributing at least 50% of the fish based food. This formed between 54% and 99% of daily protein intake in the area. Fishery catch was found to significantly vary with respect to village (p < 0.01) with habitat configuration a probable driver. Juvenile fish comprised 26% of the fishery catch and gear type significantly influenced this proportion (<0.05). Limited sustainability of fishery practices (high juvenile catch and a 51% decline in CPUE for the biggest fishery) and poor habitat management mean the security of this food supply has the potential to be undermined in the long-term. Findings of this study have implications for the management and assessment of fisheries throughout the tropical seascape. Our study provides an exemplar for why natural resource management should move beyond biodiversity and consider how conservation and local food security are interlinked processes that are not mutually exclusive. Seagrass meadows are under sustained threat worldwide, this study provides evidence of the need to conserve these not just to protect biodiversity but to protect food security.

  16. Seasonal dynamics of the plant community and soil seed bank along a successional gradient in a subalpine meadow on the Tibetan Plateau.

    PubMed

    Ma, Miaojun; Zhou, Xianhui; Qi, Wei; Liu, Kun; Jia, Peng; Du, Guozhen

    2013-01-01

    Knowledge about how change the importance of soil seed bank and relationship between seed mass and abundance during vegetation succession is crucial for understanding vegetation dynamics. Many studies have been conducted, but their ecological mechanisms of community assembly are not fully understood. We examined the seasonal dynamics of the vegetation and soil seed bank as well as seed size distribution along a successional gradient. We also explored the potential role of the soil seed bank in plant community regeneration, the relationship between seed mass and species abundance, and the relative importance of deterministic and stochastic processes along a successional gradient. Species richness of seed bank increased (shallow layer and the total) and seed density decreased (each layer and the total) significantly with succession. Species richness and seed density differed significantly between different seasons and among soil depths. Seed mass showed a significant negative relationship with relative abundance in the earliest successional stage, but the relationships were not significant in later stages. Seed mass showed no relationship with relative abundance in the whole successional series in seed bank. Results were similar for both July 2005 and April 2006. The seed mass and abundance relationship was determined by a complex interaction between small and larger seeded species and environmental factors. Both stochastic processes and deterministic processes were important determinants of the structure of the earliest stage. The importance of seed bank decreased with succession. The restoration of abandoned farmed and grazed meadows to the species-rich subalpine meadow in Tibetan Plateau can be successfully achieved from the soil seed bank. However, at least 20 years are required to fully restore an abandoned agricultural meadow to a natural mature subalpine meadow.

  17. A modified MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Chang, Yaping; Qin, Dahe; Ding, Yongjian; Zhao, Qiudong; Zhang, Shiqiang

    2018-06-01

    The long-term change of evapotranspiration (ET) is crucial for managing water resources in areas with extreme climates, such as the Tibetan Plateau (TP). This study proposed a modified algorithm for estimating ET based on the MOD16 algorithm on a global scale over alpine meadow on the TP in China. Wind speed and vegetation height were integrated to estimate aerodynamic resistance, while the temperature and moisture constraints for stomatal conductance were revised based on the technique proposed by Fisher et al. (2008). Moreover, Fisher's method for soil evaporation was adopted to reduce the uncertainty in soil evaporation estimation. Five representative alpine meadow sites on the TP were selected to investigate the performance of the modified algorithm. Comparisons were made between the ET observed using the Eddy Covariance (EC) and estimated using both the original and modified algorithms. The results revealed that the modified algorithm performed better than the original MOD16 algorithm with the coefficient of determination (R2) increasing from 0.26 to 0.68, and root mean square error (RMSE) decreasing from 1.56 to 0.78 mm d-1. The modified algorithm performed slightly better with a higher R2 (0.70) and lower RMSE (0.61 mm d-1) for after-precipitation days than for non-precipitation days at Suli site. Contrarily, better results were obtained for non-precipitation days than for after-precipitation days at Arou, Tanggula, and Hulugou sites, indicating that the modified algorithm may be more suitable for estimating ET for non-precipitation days with higher accuracy than for after-precipitation days, which had large observation errors. The comparisons between the modified algorithm and two mainstream methods suggested that the modified algorithm could produce high accuracy ET over the alpine meadow sites on the TP.

  18. Soil Fauna Affects Dissolved Carbon and Nitrogen in Foliar Litter in Alpine Forest and Alpine Meadow

    PubMed Central

    Liao, Shu; Yang, Wanqin; Tan, Yu; Peng, Yan; Li, Jun; Tan, Bo; Wu, Fuzhong

    2015-01-01

    Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) are generally considered important active biogeochemical pools of total carbon and nitrogen. Many studies have documented the contributions of soil fauna to litter decomposition, but the effects of the soil fauna on labile substances (i.e., DOC and TDN) in litter during early decomposition are not completely clear. Therefore, a field litterbag experiment was carried out from 13th November 2013 to 23rd October 2014 in an alpine forest and an alpine meadow located on the eastern Tibetan Plateau. Litterbags with different mesh sizes were used to provide access to or prohibit the access of the soil fauna, and the concentrations of DOC and TDN in the foliar litter were measured during the winter (the onset of freezing, deep freezing and thawing stage) and the growing season (early and late). After one year of field incubation, the concentration of DOC in the litter significantly decreased, whereas the TDN concentration in the litter increased. Similar dynamic patterns were detected under the effects of the soil fauna on both DOC and TDN in the litter between the alpine forest and the alpine meadow. The soil fauna showed greater positive effects on decreasing DOC concentration in the litter in the winter than in the growing season. In contrast, the dynamics of TND in the litter were related to seasonal changes in environmental factors, rather than the soil fauna. In addition, the soil fauna promoted a decrease in litter DOC/TDN ratio in both the alpine forest and the alpine meadow throughout the first year of decomposition, except for in the late growing season. These results suggest that the soil fauna can promote decreases in DOC and TDN concentrations in litter, contributing to early litter decomposition in these cold biomes. PMID:26406249

  19. Soil Fauna Affects Dissolved Carbon and Nitrogen in Foliar Litter in Alpine Forest and Alpine Meadow.

    PubMed

    Liao, Shu; Yang, Wanqin; Tan, Yu; Peng, Yan; Li, Jun; Tan, Bo; Wu, Fuzhong

    2015-01-01

    Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) are generally considered important active biogeochemical pools of total carbon and nitrogen. Many studies have documented the contributions of soil fauna to litter decomposition, but the effects of the soil fauna on labile substances (i.e., DOC and TDN) in litter during early decomposition are not completely clear. Therefore, a field litterbag experiment was carried out from 13th November 2013 to 23rd October 2014 in an alpine forest and an alpine meadow located on the eastern Tibetan Plateau. Litterbags with different mesh sizes were used to provide access to or prohibit the access of the soil fauna, and the concentrations of DOC and TDN in the foliar litter were measured during the winter (the onset of freezing, deep freezing and thawing stage) and the growing season (early and late). After one year of field incubation, the concentration of DOC in the litter significantly decreased, whereas the TDN concentration in the litter increased. Similar dynamic patterns were detected under the effects of the soil fauna on both DOC and TDN in the litter between the alpine forest and the alpine meadow. The soil fauna showed greater positive effects on decreasing DOC concentration in the litter in the winter than in the growing season. In contrast, the dynamics of TND in the litter were related to seasonal changes in environmental factors, rather than the soil fauna. In addition, the soil fauna promoted a decrease in litter DOC/TDN ratio in both the alpine forest and the alpine meadow throughout the first year of decomposition, except for in the late growing season. These results suggest that the soil fauna can promote decreases in DOC and TDN concentrations in litter, contributing to early litter decomposition in these cold biomes.

  20. Baseline water quality of Long Meadow Lake, Ponds AP-9 and AP-10, and Black Dog Creek, Hennepin and Dakota counties, Minnesota

    USGS Publications Warehouse

    Payne, G.A.

    1977-01-01

    Long Meadow Lake, Black Dog Creek, and Ponds AP-9 and AP-10 which lie in an area designated for a trunk highway bridge crossing the Minnesota River, were sampled for baseline water quality prior to construction of the bridge. Data collected show that dissolved solids fluctuate seasonally. Dissolved oxygen:/ranged from less than 1 milligram per liter under an ice cover to 13-9 milligrams per liter in the September sample at site 4 in Long Meadow Lake. The phytoplankton analyses showed pulses in algae populations, blue-green algae being the dominant type in at least one sample from each of the water courses.

  1. [Effect of degradation succession process on the temperature sensitivity of ecosystem respiration in alpine Potentilla fruticosa scrub meadow].

    PubMed

    Li, Dong; Luo, Xu-Peng; Cao, Guang-Min; Wu, Qin; Hu, Qi-Wu; Zhuo, Ma-Cuo; Li, Hui-Mei

    2015-03-01

    Grazing is one of the main artificial driving forces for the degradation succession process of alpine meadow. In order to quantitatively study the temperature sensitivity of alpine meadow ecosystem respiration in different degradation stages, we conducted the research in Haibei Alpine Meadow Ecosystem Research Station, CAS from July 2003 to July 2004. The static chamber-chromatography methodology was used to observe the seasonal changes of alpine scrub ecosystem respiration flux during different degradation stages. The results showed that: (1) The seasonal changes of ecosystem respiration flux in different degradation stages of alpine shrub presented a unimodal curve. The maximum appeared in August and the minimum appeared during the period from October to next April. The degradation succession process significantly decreased the ecosystem respiratory CO2 release rate. The respiratory rate ranges of alpine Potentilla fruticosa scrub (GG), Kobresia capillifolia meadow (GC) and bare land (GL) were 34.21-1 168.23, 2.30-1 112.38 and 20.40-509.72 mg (m2 x h)(-1), respectively. The average respiration rate of GG was 1.29 and 2.56 times of that of GC and GL, respectively; (2) Temperature was the main factor that affected the ecosystem respiration rate, and contributed 25% - 79% of the variation of the ecosystem respiration. The degradation succession process significantly changed the correlation between ecosystem respiration rate and temperature. The correlation (R2) between ecosystem respiration rate and each temperature indicator (T(s), T(d) and T(a)) was reduced by 47.23%, 46.95% and 55.28%, respectively when the ground vegetation disappeared and the scrub was degraded into secondary bare land; (3) The difference of Q10 between warm and cool seasons was significant (P < 0.05), and the value of cold season was larger than that of warm season. Degradation succession process apparently changed the temperature sensitivity of ecosystem respiration. The Q10 values of GG, GC

  2. Annual N2O emissions from conventionally grazed typical alpine grass meadows in the eastern Qinghai-Tibetan Plateau.

    PubMed

    Zhang, Han; Yao, Zhisheng; Wang, Kai; Zheng, Xunhua; Ma, Lei; Wang, Rui; Liu, Chunyan; Zhang, Wei; Zhu, Bo; Tang, Xiangyu; Hu, Zhenghua; Han, Shenghui

    2018-06-01

    Annual nitrous oxide (N 2 O) emissions from high-altitude alpine meadow grasslands have not been effectively characterized because of the scarcity of whole-year measurements. The authors performed a year-round measurement of N 2 O fluxes from three conventionally grazed alpine meadows that represent the typical meadow landscape in the eastern Qinghai-Tibetan Plateau (QTP). The results showed that annual N 2 O emissions averaged 0.123±0.053 (2SD, i.e., the double standard deviation indicating the 95% confidence interval) kgNha -1 yr -1 across the three meadow sites. N 2 O flux pulses during the spring freezing-thawing period (FTP) were observed at only one site, indicating a large spatial variability in association with soil moisture differences. Approximately 34-57% (mean: 46%) of the annual N 2 O emissions occurred in the non-growing season, highlighting the substantial importance of accurate flux observations during this period. The simultaneous observations showed conservative, marginal nitric oxide (NO) fluxes of 0.058±0.032 (2SD) kgNha -1 yr -1 . The N 2 O fluxes across the three field sites correlated negatively with the soil nitrate concentrations during the entire year-round period (P<0.05). Furthermore, a significant joint regulatory effect of topsoil temperature and moisture on the N 2 O and NO fluxes was observed during the relatively warm periods. Based on the results of the present and previous studies, a simple extrapolation roughly estimated the annual total N 2 O emission from Chinese grasslands to be 73±15 (2SD) GgNyr -1 (1Gg=10 9 g). A linear dependence of the annual N 2 O fluxes on the aboveground net primary productivity (ANPP) was also found. This result may provide a simple approach for estimating the N 2 O emission inventories of frigid alpine or temperate grasslands that are ungrazed either in the summer or year round. However, further confirmation of this relationship with a wider ANPP range is still needed in the future studies

  3. Cholinesterase inhibition in meadow voles Microtus pennsylvanicus following field applications of Orthene

    USGS Publications Warehouse

    Jett, David A.

    1986-01-01

    Brain acetylcholinesterase activity in field-caught meadow voles (Microtus pennsylvanicus) was depressed after a field-spray of Orthene (acephate: acetylphosphoramidothioic acid O,S-dimethyl ester) by as much as 32% in 1982 and 38% in 1983. Short-term recovery was demonstrated and occurred in a time-dependent fashion in 1982. Plasma cholinesterase levels were move variable but also were depressed. Residues were detected in vegetation samples and in the gastrointestinal tracts of exposed voles. Residues in vegetation were diluted or absent 7 to 8 d following the treatment.

  4. Effects of herbage removal on productivity of selected high-Sierra meadow community types

    USGS Publications Warehouse

    Stohlgren, Thomas J.; DeBenedetti, Steven H.; Parsons, David J.

    1989-01-01

    We investigated the effects of herbage removal on three subalpine meadow plant communities in the Rock Creek drainage of Sequoia National Park, California, USA. In the xeric Carex exserta Mkze. (short-hair sedge) type, annual aboveground productivity averaged 19 g/m2 in control plots (clipped once after plant senescence in late September) over a five-year period. Annual aboveground productivity was enhanced about 30%–35% when plots in this community type were clipped more frequently (i.e., “additional” herbage removal in the early, mid, and late seasons) during each of four treatment years but was reduced by 13%–19% during a fifth (recovery) year in which all but late September clipping was suspended. In a moderately mesic Eleocharis pauciflora (Lightf.) Link. (few-flowered spike rush)-Calamagrostis breweri Thurb. (short-hair grass) type, control plot productivity averaged 115 g/m2/yr and was reduced by 20–30% by the additional herbage removal. A more mesic Deschampsia caespitosa (L.) Beauv. (tufted hairgrass)-Carex rostrata Stokes, (beaked sedge) type had the greatest mean above-ground productivity (169 g/m2/yr) but also showed damage (i.e., decrease in productivity by 15%–20%) caused by the additional herbage removal. These data suggest that long-term, intensive herbage removal may be more detrimental to moderately mesic and mesic subalpine meadow community types than to xeric types.

  5. Geothermal reservoir engineering research

    NASA Technical Reports Server (NTRS)

    Ramey, H. J., Jr.; Kruger, P.; Brigham, W. E.; London, A. L.

    1974-01-01

    The Stanford University research program on the study of stimulation and reservoir engineering of geothermal resources commenced as an interdisciplinary program in September, 1972. The broad objectives of this program have been: (1) the development of experimental and computational data to evaluate the optimum performance of fracture-stimulated geothermal reservoirs; (2) the development of a geothermal reservoir model to evaluate important thermophysical, hydrodynamic, and chemical parameters based on fluid-energy-volume balances as part of standard reservoir engineering practice; and (3) the construction of a laboratory model of an explosion-produced chimney to obtain experimental data on the processes of in-place boiling, moving flash fronts, and two-phase flow in porous and fractured hydrothermal reservoirs.

  6. Daily reservoir sedimentation model: Case study from the Fena Valley Reservoir, Guam

    USGS Publications Warehouse

    Marineau, Mathieu D.; Wright, Scott A.

    2017-01-01

    A model to compute reservoir sedimentation rates at daily timescales is presented. The model uses streamflow and sediment load data from nearby stream gauges to obtain an initial estimate of sediment yield for the reservoir’s watershed; it is then calibrated to the total deposition calculated from repeat bathymetric surveys. Long-term changes to reservoir trapping efficiency are also taken into account. The model was applied to the Fena Valley Reservoir, a water supply reservoir on the island of Guam. This reservoir became operational in 1951 and was recently surveyed in 2014. The model results show that the highest rate of deposition occurred during two typhoons (Typhoon Alice in 1953 and Typhoon Tingting in 2004); each storm decreased reservoir capacity by approximately 2–3% in only a few days. The presented model can be used to evaluate the impact of an extreme event, or it can be coupled with a watershed runoff model to evaluate potential impacts to storage capacity as a result of climate change or other hydrologic modifications.

  7. Small mammal populations in Maryland meadows during four years of herbicide (brominal®) applications

    USGS Publications Warehouse

    Clark, D.R.; Moulton, C.A.; Hines, J.E.; Hoffman, D.J.

    1996-01-01

    The herbicide Brominal® was applied at the recommended rate to one plot in each of three paired 0.6-ha plots; the other three plots were used as controls. Plots were sprayed once in the fall of 1988 and 1989 and twice in the spring of 1990 and 1991. Small mammals were trapped three times during each activity season (April-October) to obtain population estimates before and after spraying and in the spring preceding fall spraying or the fall following spring spraying. Population estimates immediately after spraying gave no evidence of direct mortality. By 1991, dicot vegetation on treated plots was suppressed and mean numbers of meadow voles (Microtus pennsylvanicus) were less than on control plots. Because meadow voles favor dicots over monocots in their diet, reduced availability of dicots may have been related to the smaller vole population estimates. Species diversity of small mammals was negatively correlated with size of vole populations, but was not different between treated and control plots. Brominal apparently induced opaque corneas in nine voles. The condition was found in two voles too small to have been conceived at the time of the last previous spray nearly 8 months earlier, suggesting exposure to residue alone.

  8. Spatially characterizing visitor use and its association with informal trails in Yosemite Valley meadows.

    PubMed

    Walden-Schreiner, Chelsey; Leung, Yu-Fai

    2013-07-01

    Ecological impacts associated with nature-based recreation and tourism can compromise park and protected area goals if left unrestricted. Protected area agencies are increasingly incorporating indicator-based management frameworks into their management plans to address visitor impacts. Development of indicators requires empirical evaluation of indicator measures and examining their ecological and social relevance. This study addresses the development of the informal trail indicator in Yosemite National Park by spatially characterizing visitor use in open landscapes and integrating use patterns with informal trail condition data to examine their spatial association. Informal trail and visitor use data were collected concurrently during July and August of 2011 in three, high-use meadows of Yosemite Valley. Visitor use was clustered at statistically significant levels in all three study meadows. Spatial data integration found no statistically significant differences between use patterns and trail condition class. However, statistically significant differences were found between the distance visitors were observed from informal trails and visitor activity type with active activities occurring closer to trail corridors. Gender was also found to be significant with male visitors observed further from trail corridors. Results highlight the utility of integrated spatial analysis in supporting indicator-based monitoring and informing management of open landscapes. Additional variables for future analysis and methodological improvements are discussed.

  9. Spatially Characterizing Visitor Use and Its Association with Informal Trails in Yosemite Valley Meadows

    NASA Astrophysics Data System (ADS)

    Walden-Schreiner, Chelsey; Leung, Yu-Fai

    2013-07-01

    Ecological impacts associated with nature-based recreation and tourism can compromise park and protected area goals if left unrestricted. Protected area agencies are increasingly incorporating indicator-based management frameworks into their management plans to address visitor impacts. Development of indicators requires empirical evaluation of indicator measures and examining their ecological and social relevance. This study addresses the development of the informal trail indicator in Yosemite National Park by spatially characterizing visitor use in open landscapes and integrating use patterns with informal trail condition data to examine their spatial association. Informal trail and visitor use data were collected concurrently during July and August of 2011 in three, high-use meadows of Yosemite Valley. Visitor use was clustered at statistically significant levels in all three study meadows. Spatial data integration found no statistically significant differences between use patterns and trail condition class. However, statistically significant differences were found between the distance visitors were observed from informal trails and visitor activity type with active activities occurring closer to trail corridors. Gender was also found to be significant with male visitors observed further from trail corridors. Results highlight the utility of integrated spatial analysis in supporting indicator-based monitoring and informing management of open landscapes. Additional variables for future analysis and methodological improvements are discussed.

  10. Herbivory more limiting than competition on early and established native plants in an invaded meadow.

    PubMed

    Gonzales, Emily K; Arcese, Peter

    2008-12-01

    The dominance of nonnative plants coupled with declines of native plants suggests that competitive displacement drives extinctions, yet empirical examples are rare. Herbivores, however, can alter vegetation structure and reduce diversity when abundant. Herbivores may act on mature, reproductive life stages whereas some of the strongest competitive effects might occur at early life stages that are difficult to observe. For example, competition by perennial nonnative grasses can interfere with the establishment of native seeds. We contrasted the effects of ungulate herbivory and competition by neighboring plants on the performance of native plant species at early and established life stages in invaded oak meadows. We recorded growth, survival, and flowering in two native species transplanted as established plants, six native species grown from seed, and five extant lily species as part of two 2 x 2 factorial experiments that manipulated herbivory and competition. Herbivory reduced the performance of nearly all focal native species at early and established life stages, whereas competition had few measurable effects. Our results suggest that herbivory has a greater local influence on native plant species than competition and that reducing herbivore impacts will be required to successfully restore endangered oak meadows where ungulates are now abundant.

  11. Contribution of different functional groups to the diet of major predatory fishes at a seagrass meadow in northeastern Japan

    NASA Astrophysics Data System (ADS)

    Yamada, Katsumasa; Hori, Masakazu; Tanaka, Yoshiyuki; Hasegawa, Natsuki; Nakaoka, Masahiro

    2010-01-01

    We examined the variation in habitat use and diet of three dominant fish species ( Myoxocephalus brandti, Pholidapus dybowskii, and Pholis crassispina) in a seagrass meadow in the Akkeshi-ko estuary in northeastern Japan, where broad and dense Zostera marina beds exist, using a semi-quantitative census of the fishes and analyses of their stomach contents. Differences among the three fish species in the temporal variation in abundance of each age class (mainly 1- and 2-year age classes) indicated that the temporal pattern of utilization of the seagrass meadow were different among them. In the semi-quantitative dietary analysis, two prey categories, i.e., taxonomic group (order and suborder) and functional group, were used to explain the variation in prey composition with size-dependent changes. The six prey functional groups were classified based on the ecological traits of the prey, i.e., trophic level, size, and life type (habitat and behavior). Ontogenetic shifts in prey of the three fish species could be fully explained by a combination of the two prey categories, and not by the use of only one category (taxonomic or functional group). The pattern of ontogenetic shifts in prey differed among the fish species and size (age) classes. These results indicate that segregation of habitat (seagrass meadow) and prey group (taxonomic and functional group) is performed among the three species, which may contribute to their coexistence in this estuary.

  12. Effects of rodent-induced land degradation on ecosytem carbon fluxes in alpine meadow in the Qinghai-Tibet Plateau, China

    NASA Astrophysics Data System (ADS)

    Peng, F.; Quangang, Y.; Xue, X.; Guo, J.; Wang, T.

    2014-10-01

    Land degradation induced by rodent activities is extensively occurred in alpine meadow ecosystem in the Qinghai-Tibet Plateau that would affect the ecosystem carbon (C) balance. We conducted a field experiment with six levels of land degradation (D1-D6, degradation aggravates from D1 to D6) to investigate the effects of land degradation on ecosystem C fluxes. Soil respiration (Rs), net ecosystem exchange (NEE), ecosystem respiration (ER) and gross ecosystem production (GEP) were measured from June to September 2012. Soil respiration, ER, GEP and above-ground biomass (AGB) was significantly higher in slightly degraded (D3 and D6) than in severely degraded land (D1, D2, D4 and D5). Positive averages of NEE in the growing season indicate that alpine meadow ecosystem is a weak C sink during the growing season. Net ecosystem exchange had no significant difference among different degraded levels, but the average NEE in slightly degraded group was 33.6% higher than in severely degraded group. Soil respiration, ER and NEE were positively correlated with AGB whereas soil organic C, labile soil C, total nitrogen (N) and inorganic nitrogen were associated with root biomass (RB). Our results highlight the decline of vegetation C storage of alpine meadow ecosystem with increasing number of rodent holes and suggest the control of AGB on ecosystem C fluxes, and the control of RB on soil C and N with development of land degradation.

  13. The effect of nitrogen deposition rather than warming on CH4 flux in alpine meadows depends on precipitation variations

    NASA Astrophysics Data System (ADS)

    Chen, X.; Genxu, W.

    2017-12-01

    Uncertainties remain regarding the effects of climate warming and increasing nitrogen (N) deposition on GHG flux in alpine grasslands due to a lack of knowledge about how hydrological characteristics control GHGs fluxes. Therefore, a simulated warming and N fertilization experiment was conducted in a non-wetland (alpine meadow, AM) and a wetland (alpine swamp meadow, SM) of a permafrost region. We measured and analysed the CH4 and N2O fluxes of each treatment during two contrasting hydrological growing seasons. The results showed that: (i) warming increased the CH4 uptake in the AM but had no effect in the SM, and warming increased the N2O emissions from the AM and resulted in a change of the SM from a N2O sink into a source; (ii) N fertilization increased the CH4 uptake of the AM during the dry growing season, and had no effect on the CH4 and N2O fluxes of the SM; and (iii) the interaction between warming and N fertilization increased the CH4 uptake of the AM over the two growing seasons while increasing the CH4 uptake and N2O emissions of the SM during the dry growing season. Our results suggest that (i) the GHG flux of wetland ecosystems is more sensitive to precipitation variations than that of non-wetlands and (ii) precipitation controls the CH4 flux response to increasing N deposition of these alpine meadows.

  14. Reparation for a Violent Boyhood: Pedagogies of Mourning in Shane Meadow's "This Is England"

    ERIC Educational Resources Information Center

    Dyer, Hannah

    2017-01-01

    This article turns to Shane Meadow's film "This is England" (2006) to describe the impact that losing a parent can have on a child's development. In doing so it also, more broadly, makes a case for creative fiction as a resource for teaching about children's mourning. The film's protagonist is a boy named Shaun Fields whose father has…

  15. Transit losses and traveltimes of reservoir releases along the Arkansas River from Pueblo Reservoir to John Martin Reservoir, southeastern Colorado

    USGS Publications Warehouse

    Livingston, Russell K.

    1978-01-01

    The need for accurate information regarding the transit losses and traveltimes associated with releases from Pueblo Reservoir has been stimulated by construction of the U.S. Bureau of Reclamation's Fryingpan-Arkansas Project and a proposed winter-water storage program in Pueblo Reservoir. To meet this need, the U.S. Geological Survey, in cooperation with the Southeastern Colorado Water Conservancy District, studied the Arkansas River from Pueblo Reservoir to John Martin Reservoir, a distance of 142 river miles.The volumes of reservoir releases are decreased or delayed during tran-sit by bank storage, channel storage, and evaporation. Results from a com-puter model, calibrated by a controlled-test release from Pueblo Reservoir, indicate transit losses are greatest for small releases of short duration that are made during periods of low antecedent streamflow. For equivalent releases, transit losses during the winter are about 7 percent less than losses during the summer.Based on available streamflow records, the traveltime of reservoir releases in the study reach ranges from about 1.67 hours per mile at the downstream end of the study reach when antecedent streamflow is 10 cubic feet per second, to about 0.146 hour per mile at the upstream end of the study reach when antecedent streamflow is 3,000 cubic feet per second. Consequently, the traveltime of a release increases as antecedent streamflow diminishes.Management practices that may be used to benefit water users in the study area include selection of the optimum time, rate, and duration of a reservoir release to minimize the transit losses, determination of an accurate traveltime, and diversion at several incremental rates.

  16. Geologic setting and stratigraphy of the Ziegler Reservoir fossil site, Snowmass Village, Colorado

    USGS Publications Warehouse

    Pigati, Jeff S.; Miller, Ian M.; Johnson, Kirk R.; Honke, Jeffrey S.; Carrara, Paul E.; Muhs, Daniel R.; Skipp, Gary; Bryant, Bruce

    2014-01-01

    The geologic setting of the Ziegler Reservoir fossil site is somewhat unusual – the sediments containing the Pleistocene fossils were deposited in a lake on top of a ridge. The lake basin was formed near the Town of Snowmass Village, Colorado when a glacier flowing down Snowmass Creek Valley became thick enough to overtop a low point in the eastern valley wall and entered the head of Brush Creek Valley. When the glacier retreated at the end of the marine isotope stage (MIS) 6, ~155-130 ka (thousands of years before present), the Brush Creek Valley lobe left behind a moraine that impounded a small alpine lake. The lake was initially ~10 m deep and was highly productive during most of its existence based on the abundant and exquisitely preserved organic material present in the sediments. Over time, the basin slowly filled with (mostly) eolian sediment such that by ~85 ka it contained more of a marsh or wetland than a true lake. Open water conditions returned briefly between ~75 and 55 ka before the impoundment was finally breached to the east, establishing ties with the Brush Creek drainage system and creating an alpine meadow that persisted until historic times.

  17. Contributions of gopher mound and casting disturbances to plant community structure in a Cascade Range meadow complex

    Treesearch

    M. Case; C.B. Halpern; S.A. Levin

    2013-01-01

    Pocket gophers (Geomyidae) are major agents of disturbance in North American grasslands. Gopher mounds bury existing plants and influence community structure through various mechanisms. However, in mountain meadows that experience winter snowpack, gophers also create winter castings, smaller tube-shaped deposits, previously ignored in studies of plant–gopher...

  18. Abundance of the tick Dermacentor reticulatus in an ecosystem of abandoned meadows: Experimental intervention and the critical importance of mowing.

    PubMed

    Bajer, Anna; Rodo, Anna; Alsarraf, Mohammed; Dwużnik, Dorota; Behnke, Jerzy M; Mierzejewska, Ewa J

    2017-11-15

    The effect of agricultural activities on the environment has been falling in many areas of Europe in recent years and the associated abandonment of crop fields, meadows and pastures may enable an increase in tick densities. In the present study we assessed whether regular mowing would have a negative effect on Dermacentor reticulatus populations and whether the cessation of regular mowing would cause an increase in abundance of D. reticulatus ticks. Two field experiments were conducted during a five-year period (2012-2016) in the Mazowieckie (Mazovia) region of Central Poland. Experiment 1: The long-term effect of mowing on tick population was tested in the meadow ecosystem of Stoski, an old fallow land plot that was mowed three times a year. Experiment 2: Neglecting the cultivation by abandonment of arable land was evaluated in Kury village. Four areas (2 experimental 'fallow lands', 2 control meadows) were selected. The first fallow land plot was a fenced off area comprising mostly of a horse pasture and the second fallow land plot was designated in an old abandoned orchard. At each site, ticks were collected in consecutive springs and autumns by dragging at least twice during each season from experimental and control areas. Altogether 1452 D. reticulatus ticks were collected and their densities were compared by multifactorial ANOVA. In the end of the first experiment, a significant decrease (6 times) in tick abundance was observed in the mowed area in comparison to old fallow land. In the end of the second experiment, tick abundance was three times higher in the experimental fallow lands in comparison to the control meadows. In conclusion it was found that regular mowing significantly reduced the density of questing D. reticulatus ticks in open areas. Cessation of mowing may enhance the number of ticks and the associated risk of acquiring tick-borne diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Surrogate Reservoir Model

    NASA Astrophysics Data System (ADS)

    Mohaghegh, Shahab

    2010-05-01

    Surrogate Reservoir Model (SRM) is new solution for fast track, comprehensive reservoir analysis (solving both direct and inverse problems) using existing reservoir simulation models. SRM is defined as a replica of the full field reservoir simulation model that runs and provides accurate results in real-time (one simulation run takes only a fraction of a second). SRM mimics the capabilities of a full field model with high accuracy. Reservoir simulation is the industry standard for reservoir management. It is used in all phases of field development in the oil and gas industry. The routine of simulation studies calls for integration of static and dynamic measurements into the reservoir model. Full field reservoir simulation models have become the major source of information for analysis, prediction and decision making. Large prolific fields usually go through several versions (updates) of their model. Each new version usually is a major improvement over the previous version. The updated model includes the latest available information incorporated along with adjustments that usually are the result of single-well or multi-well history matching. As the number of reservoir layers (thickness of the formations) increases, the number of cells representing the model approaches several millions. As the reservoir models grow in size, so does the time that is required for each run. Schemes such as grid computing and parallel processing helps to a certain degree but do not provide the required speed for tasks such as: field development strategies using comprehensive reservoir analysis, solving the inverse problem for injection/production optimization, quantifying uncertainties associated with the geological model and real-time optimization and decision making. These types of analyses require hundreds or thousands of runs. Furthermore, with the new push for smart fields in the oil/gas industry that is a natural growth of smart completion and smart wells, the need for real time

  20. Cultivation-dependent analysis of the microbial diversity associated with the seagrass meadows in Xincun Bay, South China Sea.

    PubMed

    Jiang, Yu-Feng; Ling, Juan; Wang, You-Shao; Chen, Biao; Zhang, Yan-Ying; Dong, Jun-De

    2015-10-01

    Microbial communities have largely existed in the seagrass meadows. A total of 496 strains of the bacteria in the seagrass meadows, which belonged to 50 genera, were obtained by the plate cultivation method from three sites of Xincun Bay, South China Sea. The results showed that Bacillales and Vibrionales accounted for the highest proportions of organisms in all communities. The diversity of the bacteria in the sediment was higher than that associated with seagrass. Thalassia hemperichii possessed the highest abundance of bacteria, followed by Enhalus acoroides and Cymodocea rotundata. Robust seasonal dynamics in microbial community composition were also observed. It was found that microbial activities were closely tied to the growth stage of the seagrass. The microbial distribution was the lowest in site 3. The abundance of the bacteria was linked to the interactions between bacteria and plants, the condition of plant and even the coastal water quality and the nutrition level in the sediment.

  1. The aging of America's reservoirs: In-reservoir and downstream physical changes and habitat implications

    USGS Publications Warehouse

    Juracek, Kyle E.

    2015-01-01

    Reservoirs are important for various purposes including flood control, water supply, power generation, and recreation. The aging of America's reservoirs and progressive loss of water storage capacity resulting from ongoing sedimentation, coupled with increasing societal needs, will cause the social, economic, environmental, and political importance of reservoirs to continually increase. The short- and medium-term (<50 years) environmental consequences of reservoir construction and operation are well known and include an altered flow regime, lost connectivity (longitudinal, floodplain), an altered sediment regime, substrate compositional change, and downstream channel degradation. In general, reservoir-related changes have had adverse consequences for the natural ecosystem. Longer term (>50 years) environmental changes as reservoirs enter “old” age are less understood. Additional research is needed to help guide the future management of aging reservoir systems and support the difficult decisions that will have to be made. Important research directions include assessment of climate change effects on aging and determination of ecosystem response to ongoing aging and various management actions that may be taken with the intent of minimizing or reversing the physical effects of aging.

  2. Grade 9 Astronomy Study: Interests of Boys and Girls Studying Astronomy at Fletcher's Meadow Secondary School

    ERIC Educational Resources Information Center

    Krstovic, Mirjan; Brown, Laura; Chacko, Merin; Trinh, Brenda

    2008-01-01

    In this report, we discuss the interests of Grade 9 boys and girls studying astronomy at Fletcher's Meadow Secondary School in Brampton, Ontario. A total of 152 Grade 9 academic students were asked to rate their interest levels in various astronomy topics on a scale of 0-3, where 0 represented no interest and 3 represented a high level of…

  3. Effects of urban development on direct runoff to East Meadow Brook, Nassau County, Long Island, New York

    USGS Publications Warehouse

    Seaburn, G.E.

    1969-01-01

    The study described in this report is concerned with the effects of intensive urban development on direct runoff to East Meadow Brook, a southward-flowing stream in central Nassau County, N.Y., during the period 1937-66. The specific objectives of the study were (a) to relate indices of urban development to increases in the volume of annual direct runoff to the stream; (b) to compare hydrograph features at different periods during the transition of the drainage basin from rural to urban conditions; and (c) to compare the rainfall-runoff relations for periods before and after urban development.Periods of housing and street construction in the drainage basin correspond to three distinct periods of increased direct runoff after the base period 1937-43-namely, 1944-51, 1952-59, and 1960-62. During each period, the average annual direct runoff increased because of an increase in the area served by storm sewers that discharged into East Meadow Brook. The amount of land served by sewers increased from about 570 acres in 1943 to about 3,600 acres in 1962, or about 530 percent. During this same period, the average annual direct runoff increased from about 920 acre-feet per year to about 3,400 acre-feet per year, or about 270 percent.The shape of direct-runoff unit hydrographs of East Meadow Brook also changed during the period of study. The average peak discharge of a 1-hour-duration unit hydrograph increased from 313 cubic feet per second, for storms in 1937-43, to 776 cubic feet per second, for storms in 1960-62, or about 2.5 times. In addition, the widths of the unit hydrographs for 1960-62 at values of 50 and 75 percent of the peak discharge were 38 and 28 percent, respectively, the comparable widths of the unit hydrographs for 1937-43.An analysis of the rainfall-runoff relations for both preurban and urban conditions indicates that the direct runoff for both periods increased with the magnitude of the storm. However, the direct runoff during a period of urbanized

  4. AN INTEGRATED, SCIENCE-BASED APPROACH TO MANAGING AND RESTORING UPLAND RIPARIAN MEADOWS IN THE GREAT BASIN OF CENTRAL NEVADA

    EPA Science Inventory

    Riparian corridor and meadow ecosystems in upland watersheds are of local and regional importance in the Great Basin. Covering only 1-3% of the total land area, these ecosystems contain a disproportionally large percentage of the region's biodiversity. Stream incision is a major ...

  5. A Study of the Optimal Planning Model for Reservoir Sustainable Management- A Case Study of Shihmen Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Ho, C. C.; Chang, L. C.

    2017-12-01

    The reservoir management in Taiwan faces lots of challenge. Massive sediment caused by landslide were flushed into reservoir, which will decrease capacity, rise the turbidity, and increase supply risk. Sediment usually accompanies nutrition that will cause eutrophication problem. Moreover, the unevenly distribution of rainfall cause water supply instability. Hence, how to ensure sustainable use of reservoirs has become an important task in reservoir management. The purpose of the study is developing an optimal planning model for reservoir sustainable management to find out an optimal operation rules of reservoir flood control and sediment sluicing. The model applies Genetic Algorithms to combine with the artificial neural network of hydraulic analysis and reservoir sediment movement. The main objective of operation rules in this study is to prevent reservoir outflow caused downstream overflow, minimum the gap between initial and last water level of reservoir, and maximum sluicing sediment efficiency. A case of Shihmen reservoir was used to explore the different between optimal operating rule and the current operation of the reservoir. The results indicate optimal operating rules tended to open desilting tunnel early and extend open duration during flood discharge period. The results also show the sluicing sediment efficiency of optimal operating rule is 36%, 44%, 54% during Typhoon Jangmi, Typhoon Fung-Wong, and Typhoon Sinlaku respectively. The results demonstrate the optimal operation rules do play a role in extending the service life of Shihmen reservoir and protecting the safety of downstream. The study introduces a low cost strategy, alteration of operation reservoir rules, into reservoir sustainable management instead of pump dredger in order to improve the problem of elimination of reservoir sediment and high cost.

  6. Landscape context and long-term tree influences shape the dynamics of forest-meadow ecotones in mountain ecosystems

    Treesearch

    R.E. Haugo; C.B. Halpern; J.D. Bakker

    2011-01-01

    Forest-meadow ecotones are prominent and dynamic features of mountain ecosystems. Understanding how vegetation changes are shaped by long-term interactions with trees and are mediated by the physical environment is critical to predicting future trends in biological diversity across these landscapes. We examined 26 yr of vegetation change (1983-2009) across 20 forest-...

  7. Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows

    Treesearch

    Kathleen A. Dwire; J. Boone Kauffman; John E. Baham

    2006-01-01

    The distribution of riparian plant species is largely driven by hydrologic and soil variables, and riparian plant communities frequently occur in relatively distinct zones along streamside elevational and soil textural gradients. In two montane meadows in northeast Oregon, USA, we examined plant species distribution in three riparian plant communities¡ªdefined as wet,...

  8. Eddy covariance measurements of carbon dioxide, latent and sensible energy fluxes above a meadow on a mountain slope

    PubMed Central

    Hammerle, Albin; Haslwanter, Alois; Schmitt, Michael; Bahn, Michael; Tappeiner, Ulrike; Cernusca, Alexander; Wohlfahrt, Georg

    2014-01-01

    Carbon dioxide, latent and sensible energy fluxes were measured by means of the eddy covariance method above a mountain meadow situated on a steep slope in the Stubai Valley/Austria, based on the hypothesis that, due to the low canopy height, measurements can be made in the shallow equilibrium layer where the wind field exhibits characteristics akin to level terrain. In order to test the validity of this hypothesis and to identify effects of complex terrain in the turbulence measurements, data were subjected to a rigorous testing procedure using a series of quality control measures established for surface layer flows. The resulting high-quality data set comprised 36 % of the original observations, the substantial reduction being mainly due to a change in surface roughness and associated fetch limitations in the wind sector dominating during nighttime and transition periods. The validity of the high-quality data set was further assessed by two independent tests: i) a comparison with the net ecosystem carbon dioxide exchange measured by means of ecosystem chambers and ii) the ability of the eddy covariance measurements to close the energy balance. The net ecosystem CO2 exchange measured by the eddy covariance method agreed reasonably with ecosystem chamber measurements. The assessment of the energy balance closure showed that there was no significant difference in the correspondence between the meadow on the slope and another one situated on flat ground at the bottom of the Stubai Valley, available energy being underestimated by 28 and 29 %, respectively. We thus conclude that, appropriate quality control provided, the eddy covariance measurements made above a mountain meadow on a steep slope are of similar quality as compared to flat terrain. PMID:24465032

  9. Stable Water Use Efficiency of Tibetan Alpine Meadows in Past Half Century: Evidence from Wool δ13C Values

    PubMed Central

    Yang, Hao; He, Nianpeng; He, Yongtao; Li, Shenggong; Shi, Peili; Zhang, Xianzhou

    2015-01-01

    Understanding the influences of climatic changes on water use efficiency (WUE) of Tibetan alpine meadows is important for predicting their long-term net primary productivity (NPP) because they are considered very sensitive to climate change. Here, we collected wool materials produced from 1962 to 2010 and investigated the long-term WUE of an alpine meadow in Tibet on basis of the carbon isotope values of vegetation (δ 13Cveg). The values of δ 13Cveg decreased by 1.34‰ during 1962–2010, similar to changes in δ 13C values of atmospheric CO2. Carbon isotope discrimination was highly variable and no trend was apparent in the past half century. Intrinsic water use efficiency (W i) increased by 18 μmol·mol–1 (approximately 23.5%) during 1962–2010 because the increase in the intercellular CO2 concentration (46 μmol·mol–1) was less than that in the atmospheric CO2 concentration (C a, 73 μmol·mol–1). In addition, W i increased significantly with increasing growing season temperature and C a. However, effective water use efficiency (W e) remained relatively stable, because of increasing vapor pressure deficit. C a, precipitation, and growing season temperature collectively explained 45% of the variation of W e. Our findings indicate that the W e of alpine meadows in the Tibetan Plateau remained relatively stable by physiological adjustment to elevated C a and growing season temperature. These findings improve our understanding and the capacity to predict NPP of these ecosystems under global change scenarios. PMID:26660306

  10. Hydromechanics of Reservoir Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Dura-Gomez, Inmaculada

    Data from five reservoirs were analyzed to investigate the various factors and possible pore pressure thresholds associated with Reservoir Induced Seismicity (RIS). Data was obtained from the following reservoirs: Koyna and Warna Reservoirs in India, Itoiz Reservoir in the western Pyrenees, Spain, and Jocassee and Monticello Reservoirs in South Carolina, U.S.A. Koyna Reservoir is one out of four reservoirs in the world where M≥6.0 induced earthquakes have occurred, whereas Warna Reservoir accounts for one out of ten cases with 5.0≤M≤5.9 induced earthquakes. Induced seismicity in the Koyna-Warna region is associated with annual filling cycles in the two reservoirs, large water level changes (30 to 45 m) and the presence of regional scale fractures. The Koyna-Warna case includes 19 M≥5.0 earthquakes at non-repeating hypocenters. The calculation of excess pore pressures associated with these earthquakes suggests values >300 kPa or >600 kPa, before or after 1993 respectively. The need for larger pore pressures from 1993 suggests that M≥5 earthquakes were induced on stronger faults in the region. The exceedance of the previous water level maxima (stress memory) is the most important, although not determining factor in inducing these M≥5.0 earthquakes. Itoiz Reservoir is one of twenty nine reservoirs with 4.0≤M≤4.9 induced earthquakes. The analysis of the RIS associated with the Itoiz Reservoir impoundment, between January 2004 and the end of 2008, shows that that pore pressures diffuse away from Itoiz Reservoir through the carbonate megabreccia systems of the Early to Middle Eocene Hecho Group, and a series of near-vertical thrust faults above the gently dipping Gavarnie thrust. Excess diffused pore pressures destabilize saturated critically stressed seismogenic fractures where RIS takes place. In particular, M≥3.0 earthquakes in the region are associated with excess pore pressures of the order of 100 to 200 kPa. Jocassee and Monticello Reservoirs in

  11. Assessing the potential of reservoir outflow management to reduce sedimentation using continuous turbidity monitoring and reservoir modelling

    USGS Publications Warehouse

    Lee, Casey; Foster, Guy

    2013-01-01

    In-stream sensors are increasingly deployed as part of ambient water quality-monitoring networks. Temporally dense data from these networks can be used to better understand the transport of constituents through streams, lakes or reservoirs. Data from existing, continuously recording in-stream flow and water quality monitoring stations were coupled with the two-dimensional hydrodynamic CE-QUAL-W2 model to assess the potential of altered reservoir outflow management to reduce sediment trapping in John Redmond Reservoir, located in east-central Kansas. Monitoring stations upstream and downstream from the reservoir were used to estimate 5.6 million metric tons of sediment transported to John Redmond Reservoir from 2007 through 2010, 88% of which was trapped within the reservoir. The two-dimensional model was used to estimate the residence time of 55 equal-volume releases from the reservoir; sediment trapping for these releases varied from 48% to 97%. Smaller trapping efficiencies were observed when the reservoir was maintained near the normal operating capacity (relative to higher flood pool levels) and when average residence times were relatively short. An idealized, alternative outflow management scenario was constructed, which minimized reservoir elevations and the length of time water was in the reservoir, while continuing to meet downstream flood control end points identified in the reservoir water control manual. The alternative scenario is projected to reduce sediment trapping in the reservoir by approximately 3%, preventing approximately 45 000 metric tons of sediment from being deposited within the reservoir annually. This article presents an approach to quantify the potential of reservoir management using existing in-stream data; actual management decisions need to consider the effects on other reservoir benefits, such as downstream flood control and aquatic life.

  12. Trap efficiency of reservoirs

    USGS Publications Warehouse

    Brune, Gunnar M.

    1953-01-01

    Forty-four records of reservoir trap efficiency and the factors affecting trap efficiency are analyzed. The capacity-inflow (C/I) ratio is found to offer a much closer correlation with trap efficiency than the capacity-watershed (C/W) ratio heretofore widely used. It appears likely from the cases studied that accurate timing of venting or sluicing operations to intercept gravity underflows can treble or quadruple the amount of sediment discharged from a reservoir. Desilting basins, because of their shape and method of operation, may have trap efficiencies above 90 pct even with very low C/I ratios.Semi-dry reservoirs with high C/I ratios, like John Martin Reservoir, may have trap efficiencies as low as 60 pct. Truly “dry” reservoirs, such as those in the Miami Conservancy District, probably have trap efficiencies in the 10 to 40 pct range, depending upon C/I ratio

  13. All-optical reservoir computing.

    PubMed

    Duport, François; Schneider, Bendix; Smerieri, Anteo; Haelterman, Marc; Massar, Serge

    2012-09-24

    Reservoir Computing is a novel computing paradigm that uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible.

  14. GEOMORPHIC CONTROLS ON MEADOW ECOSYSTEMS – INSIGHTS INTO LOCAL PROCESSES USING NEAR-SURFACE SEISMIC TECHNIQUES AND GROUND PENETRATING RADAR

    EPA Science Inventory

    Geomorphic controls on riparian meadows in the Central Great Basin of Nevada are an important aspect in determining the formation of and planning the management of these systems. The current hypothesis is that both alluvial fan sediment and faulted bedrock steps interact to cont...

  15. Effects of environmental complexity and temporary captivity on foraging behavior of wild-caught meadow voles.

    PubMed

    Kozuch, Amaranta E; McPhee, M Elsbeth

    2014-01-01

    Increased housing of wild nonhuman animals in captivity for conservation, research, and rehabilitation has revealed the importance of systematically analyzing effects of the captive environment on behavior. This study focused on the effects of complexity and time held in captivity on foraging behaviors of wild-caught, adult meadow voles (Microtus pennsylvanicus). Forty-six individuals captured from a meadow outside Oshkosh, WI, were assigned to 1 of 4 captive treatment groups: simple/<50 days (SS), simple/>50 days, complex/<50 days, and complex/>50 days. Number of dish visits, proportion foraging, and frequency of nonforaging behaviors recorded during a 15-min foraging trial were measured for all subjects. Kruskal-Wallis and Mann-Whitney U Tests were conducted to analyze 4 different comparisons within this behavioral data. Overall, neither time in captivity or environmental complexity affected nonforaging behaviors. In contrast, foraging behaviors did change with treatment: Voles were less active at food dishes and visited control dishes more in treatment group SS than in the other treatment groups. In addition, sex-related differences in foraging behaviors were maintained when voles were exposed to environmental complexity. This article includes options for wildlife managers to adapt captive environments to meet the welfare and behavioral needs of translocated wild nonhuman mammals.

  16. Disentangling the role of management, vegetation structure, and plant quality for Orthoptera in lowland meadows.

    PubMed

    Schirmel, Jens; Gerlach, Rebekka; Buhk, Constanze

    2017-08-17

    Seminatural grasslands provide habitats for various species and are important for biodiversity conservation. The understanding of the diverse responses of species and traits to different grassland management methods is therefore urgently needed. We disentangled the role of grassland management (fertilization and irrigation), vegetation structure (biomass, sward height) and plant quality (protein and fiber content) for Orthoptera communities in lowland hay meadows in Germany. We found vegetation structure to be the most important environmental category in explaining community structure of Orthoptera (species richness, total individuals, functional diversity and species composition). Intensively used meadows (fertilized, irrigated, high plant biomass) were characterized by assemblages with few species, low functional diversity, and low conservation value. Thereby, the relatively moderate fertilizer inputs in our study system of up to ∼75 kg N/ha/year reduced functional diversity of Orthoptera, while this negative effect of fertilization was not detectable when solely considering taxonomic aspects. We found strong support for a prominent role of plant quality in shaping Orthoptera communities and especially the trait composition. Our findings demonstrate the usefulness of considering both taxonomic and functional components (functional diversity) in biodiversity research and we suggest a stronger involvement of plant quality measures in Orthoptera studies. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  17. Climatic, landform, microtopographic, and overstory canopy controls of tree invasion in a subalpine meadow landscape, Oregon Cascades, USA

    Treesearch

    Harold S.J. Zald; Thomas A. Spies; Manuela Huso; Demetrios Gatziolis

    2012-01-01

    Tree invasions have been documented throughout Northern Hemisphere high elevation meadows, as well as globally in many grass and forb-dominated ecosystems. Tree invasions are often associated with large-scale changes in climate or disturbance regimes, but are fundamentally driven by regeneration processes influenced by interactions between climatic, topographic, and...

  18. Methane and nitrous oxide exchange over a managed hay meadow

    PubMed Central

    Hörtnagl, L.; Wohlfahrt, G.

    2015-01-01

    The methane (CH4) and nitrous oxide (N2O) exchange of a temperate mountain grassland near Neustift, Austria, was measured during 2010–2012 over a time period of 22 months using the eddy covariance method. Exchange rates of both compounds at the site were low, with 97% of all half-hourly CH4 and N2O fluxes ranging between ±200 and ±50 ng m−2 s−1, respectively. The meadow acted as a sink for both compounds during certain time periods, but was a clear source of CH4 and N2O on an annual timescale. Therefore, both gases contributed to an increase of the global warming potential (GWP), effectively reducing the sink strength in terms of CO2 equivalents of the investigated grassland site. In 2011, our best guess estimate showed a net greenhouse gas (GHG) sink of −32 g CO2 equ. m−2 yr−1 for the meadow, whereby 55% of the CO2 sink strength of −71 g CO2m−2 yr−1 was offset by CH4 (N2O) emissions of 7 (32) g CO2 equ. m−2 yr−1. When all data were pooled, the ancillary parameters explained 27 (42)% of observed CH4 (N2O) flux variability, and up to 62 (76)% on shorter timescales in-between management dates. In the case of N2O fluxes, we found the highest emissions at intermediate soil water contents and at soil temperatures close to 0 or above 14 °C. In comparison to CO2, H2O and energy fluxes, the interpretation of CH4 and N2O exchange was challenging due to footprint heterogeneity regarding their sources and sinks, uncertainties regarding post-processing and quality control. Our results emphasize that CH4 and N2O fluxes over supposedly well-aerated and moderately fertilized soils cannot be neglected when evaluating the GHG impact of temperate managed grasslands. PMID:25821473

  19. HYDROGEOMORPHIC SETTING, CHARACTERISTICS, AND RESPONSE TO STREAM INCISION OF MONTANA RIPARIAN MEADOWS IN THE CENTRAL GREAT BASIN--IMPLICATIONS FOR RESTORATION

    EPA Science Inventory

    Riparian wet meadow complexes in the mountains of the central Great Basin are scarce, ecologically important systems that are threatened by stream incision. An interdisciplinary group has investigated 1) the origin, characteristics, and controls on the evolution of these riparian...

  20. Biological availability of (238)U, (234)U and (226)Ra for wild berries and meadow grasses in natural ecosystems of Belarus.

    PubMed

    Sokolik, G A; Ovsiannikova, S V; Voinikava, K V; Ivanova, T G; Papenia, M V

    2014-01-01

    This work is devoted to investigation of behavior of (234)U, (238)U and (226)Ra by determining the soil to plant transfer under different natural conditions such as forest or swamped areas and meadow lands with different soil types. The paper summarizes the data on investigation of uranium and radium uptake by wild berries and natural meadow grasses in the typical conditions of Belarus. Parameters characterizing the biological availability of (234)U, (238)U and (226)Ra for bilberry (Vaccinium myrtillus), lingonberry (Vaccinium viti-idaea), blueberry (Vaccinium iliginosum) and cranberry (Vaccinium oxycoccus palustris) as well as for widely occurring mixed meadow vegetation, which belongs to the sedge-grass or grass-sedge associations and forbs, have been established. In the sites under investigation, the deposition levels of (238+239+240)Pu were less than 0.37 kBq m(-2) and (137)Cs deposition ranged between less than 0.37 and 37 kBq m(-2). It was found that activity concentrations of radionuclides in berries varied in the ranges of 0.037-0.11 for (234)U, 0.036-0.10 for (238)U and 0.11-0.43 Bq kg(-1) for (226)Ra, but in the mixed meadow grasses they were 0.32-4.4, 0.24-3.9 and 0.14-6.9 Bq kg(-1) accordingly. The (234)U/(238)U activity ratios were 1.02 ± 0.01 for wild berries, 1.20 ± 0.09 for underground meadow grasses and 1.02 ± 0.02 for proper soils. The concentration ratios (CRs, dry weight basis) of (234)U and (238)U for mixed meadow grasses were 0.036-0.42 and 0.041-0.46 respectively. The correspondent geometric means (GM) were 0.13 and 0.15 with geometric standard deviations (GSD) of 2.4. The CRs of (226)Ra for meadow grasses were 0.031-1.0 with GM 0.20 and GSD 2.6. The CRs of (234)U, (238)U and (226)Ra for wild berries ranged within 0.0018-0.008 (GM is 0.0034, GSD is 1.8), 0.0018-0.008 (GM is 0.0035, GSD is 1.8) and 0.005-0.033 (GM is 0.016, GSD is 2.1) accordingly. The highest CR values of uranium for mixed meadow grasses were found in the

  1. Modeling Reservoir-River Networks in Support of Optimizing Seasonal-Scale Reservoir Operations

    NASA Astrophysics Data System (ADS)

    Villa, D. L.; Lowry, T. S.; Bier, A.; Barco, J.; Sun, A.

    2011-12-01

    HydroSCOPE (Hydropower Seasonal Concurrent Optimization of Power and the Environment) is a seasonal time-scale tool for scenario analysis and optimization of reservoir-river networks. Developed in MATLAB, HydroSCOPE is an object-oriented model that simulates basin-scale dynamics with an objective of optimizing reservoir operations to maximize revenue from power generation, reliability in the water supply, environmental performance, and flood control. HydroSCOPE is part of a larger toolset that is being developed through a Department of Energy multi-laboratory project. This project's goal is to provide conventional hydropower decision makers with better information to execute their day-ahead and seasonal operations and planning activities by integrating water balance and operational dynamics across a wide range of spatial and temporal scales. This presentation details the modeling approach and functionality of HydroSCOPE. HydroSCOPE consists of a river-reservoir network model and an optimization routine. The river-reservoir network model simulates the heat and water balance of river-reservoir networks for time-scales up to one year. The optimization routine software, DAKOTA (Design Analysis Kit for Optimization and Terascale Applications - dakota.sandia.gov), is seamlessly linked to the network model and is used to optimize daily volumetric releases from the reservoirs to best meet a set of user-defined constraints, such as maximizing revenue while minimizing environmental violations. The network model uses 1-D approximations for both the reservoirs and river reaches and is able to account for surface and sediment heat exchange as well as ice dynamics for both models. The reservoir model also accounts for inflow, density, and withdrawal zone mixing, and diffusive heat exchange. Routing for the river reaches is accomplished using a modified Muskingum-Cunge approach that automatically calculates the internal timestep and sub-reach lengths to match the conditions of

  2. Sensitivity analysis of a soil-vegetation-atmosphere transfer (SVAT) model parameterised for a British floodplain meadow

    NASA Astrophysics Data System (ADS)

    Morris, P. J.; Verhoef, A.; Van der Tol, C.; Macdonald, D.

    2011-12-01

    Rationale: Floodplain meadows are highly species-rich grassland ecosystems, unique in that their vegetation and soil structures have been shaped and maintained by ~1,000 yrs of traditional, low-intensity agricultural management. Widespread development on floodplains over the last two centuries has left few remaining examples of these once commonplace ecosystems and they are afforded high conservation value by British and European agencies. Increased incidences and severity of summer drought and winter flooding in Britain in recent years have placed floodplain plant communities under stress through altered soil moisture regimes. There is a clear need for improved management strategies if the last remaining British floodplain meadows are to be conserved under changing climates. Aim: As part of the Floodplain Underground Sensors Experiment (FUSE, a 3-year project funded by the Natural Environment Research Council) we aim to understand the environmental controls over soil-vegetation-atmosphere transfers (SVAT) of water, CO2 and energy at Yarnton Mead, a floodplain meadow in southern England. An existing model, SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes; van der Tol et al., 2009), uses remotely-sensed infrared radiance spectra to predict heat and water transfers between a vegetation canopy and the atmosphere. We intend to expand SCOPE by developing a more realistic, physically-based representation of water, gas and energy transfers between soil and vegetation. This improved understanding will eventually take the form of a new submodel within SCOPE, allowing more rigorous estimation of soil-canopy-atmosphere exchanges for the site using predominantly remotely-sensed data. In this context a number of existing SVAT models will be tested and compared to ensure that only reliable and robust underground model components will be coupled to SCOPE. Approach: For this study, we parameterised an existing and widely-used SVAT model (CoupModel; Jansson, 2011

  3. Biodegradable plastic bags on the seafloor: A future threat for seagrass meadows?

    PubMed

    Balestri, Elena; Menicagli, Virginia; Vallerini, Flavia; Lardicci, Claudio

    2017-12-15

    Marine plastic litter is a global concern. Carrier bags manufactured from non-biodegradable polymers constitute a large component of this litter. Because of their adverse impact on marine life, non-biodegradable bags have recently been replaced by biodegradable ones. However, growing evidence shows that these latter are not readily degradable in marine sediments and can alter benthic assemblages. The potential impact of biodegradable bags on seagrasses inhabiting sandy bottoms, which are the most widespread and productive ecosystems of the coastal zones, has been ignored. Mesocosm experiments were conducted to assess the effect of a commercialized biodegradable bag on a common seagrass species of the Mediterranean, Cymodocea nodosa, both at the level of individual plant (clonal growth) and of plant community (plant-plant relationships), under three culture regimes (plant alone, in combination with a neighbour of the same species or of the co-existing seagrass Zostera noltei) simulating different natural conditions (bare substrate, monospecific meadows or mixed meadows). The bag behaviour in marine sediment and sediment physical/chemical variables were also examined. After six months of sediment exposure, the bag retained considerable mass (85% initial weight) and reduced sediment pore-water oxygen concentration and pH. In the presence of bag, C. nodosa root spread and vegetative recruitment increased compared to controls, both intra- and interspecific interactions shifted from neutral to competitive, and the growth form changed from guerrilla (loosely arranged group of widely spaced ramets) to phalanx form (compact structure of closed spaced ramets) but only with Z. noltei. These findings suggest that biodegradable bags altering sediment geochemistry could promote the spatial segregation of seagrass clones and influence species coexistence. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Longitudinal gradients along a reservoir cascade

    USGS Publications Warehouse

    Miranda, L.E.; Habrat, M.D.; Miyazono, S.

    2008-01-01

    Reservoirs have traditionally been regarded as spatially independent entities rather than as longitudinal segments of a river system that are connected upstream and downstream to the river and other reservoirs. This view has frustrated advancement in reservoir science by impeding adequate organization of available information and by hindering interchanges with allied disciplines that often consider impounded rivers at the basin scale. We analyzed reservoir morphology, water quality, and fish assemblage data collected in 24 reservoirs of the Tennessee River; we wanted to describe longitudinal changes occurring at the scale of the entire reservoir series (i.e., cascade) and to test the hypothesis that fish communities and environmental factors display predictable gradients like those recognized for unimpounded rivers. We used a data set collected over a 7-year period; over 3 million fish representing 94 species were included in the data set. Characteristics such as reservoir mean depth, relative size of the limnetic zone, water retention time, oxygen stratification, thermal stratification, substrate size, and water level fluctuations increased in upstream reservoirs. Conversely, reservoir area, extent of riverine and littoral zones, access to floodplains and associated wetlands, habitat diversity, and nutrient and sediment inputs increased in downstream reservoirs. Upstream reservoirs included few, largely lacustrine, ubiquitous fish taxa that were characteristic of the lentic upper reaches of the basin. Fish species richness increased in a downstream direction from 12 to 67 species/ reservoir as riverine species became more common. Considering impoundments at a basin scale by viewing them as sections in a river or links in a chain may generate insight that is not always available when the impoundments are viewed as isolated entities. Basin-scale variables are rarely controllable but constrain the expression of processes at smaller scales and can facilitate the

  5. Pre- and postprocessing for reservoir simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, W.L.; Ingalls, L.J.; Prasad, S.J.

    1991-05-01

    This paper describes the functionality and underlying programing paradigms of Shell's simulator-related reservoir-engineering graphics system. THis system includes the simulation postprocessing programs Reservoir Display System (RDS) and Fast Reservoir Engineering Displays (FRED), a hypertext-like on-line documentation system (DOC), and a simulator input preprocessor (SIMPLSIM). RDS creates displays of reservoir simulation results. These displays represent the areal or cross-section distribution of computer reservoir parameters, such as pressure, phase saturation, or temperature. Generation of these images at real-time animation rates is discussed. FRED facilitates the creation of plot files from reservoir simulation output. The use of dynamic memory allocation, asynchronous I/O, amore » table-driven screen manager, and mixed-language (FORTRAN and C) programming are detailed. DOC is used to create and access on-line documentation for the pre-and post-processing programs and the reservoir simulators. DOC can be run by itself or can be accessed from within any other graphics or nongraphics application program. DOC includes a text editor, which is that basis for a reservoir simulation tutorial and greatly simplifies the preparation of simulator input. The use of sharable images, graphics, and the documentation file network are described. Finally, SIMPLSIM is a suite of program that uses interactive graphics in the preparation of reservoir description data for input into reservoir simulators. The SIMPLSIM user-interface manager (UIM) and its graphic interface for reservoir description are discussed.« less

  6. Application of Fractal Geometry in Evaluation of Effective Stimulated Reservoir Volume in Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Sheng, Guanglong; Su, Yuliang; Wang, Wendong; Javadpour, Farzam; Tang, Meirong

    According to hydraulic-fracturing practices conducted in shale reservoirs, effective stimulated reservoir volume (ESRV) significantly affects the production of hydraulic fractured well. Therefore, estimating ESRV is an important prerequisite for confirming the success of hydraulic fracturing and predicting the production of hydraulic fracturing wells in shale reservoirs. However, ESRV calculation remains a longstanding challenge in hydraulic-fracturing operation. In considering fractal characteristics of the fracture network in stimulated reservoir volume (SRV), this paper introduces a fractal random-fracture-network algorithm for converting the microseismic data into fractal geometry. Five key parameters, including bifurcation direction, generating length (d), deviation angle (α), iteration times (N) and generating rules, are proposed to quantitatively characterize fracture geometry. Furthermore, we introduce an orthogonal-fractures coupled dual-porosity-media representation elementary volume (REV) flow model to predict the volumetric flux of gas in shale reservoirs. On the basis of the migration of adsorbed gas in porous kerogen of REV with different fracture spaces, an ESRV criterion for shale reservoirs with SRV is proposed. Eventually, combining the ESRV criterion and fractal characteristic of a fracture network, we propose a new approach for evaluating ESRV in shale reservoirs. The approach has been used in the Eagle Ford shale gas reservoir, and results show that the fracture space has a measurable influence on migration of adsorbed gas. The fracture network can contribute to enhancement of the absorbed gas recovery ratio when the fracture space is less than 0.2 m. ESRV is evaluated in this paper, and results indicate that the ESRV accounts for 27.87% of the total SRV in shale gas reservoirs. This work is important and timely for evaluating fracturing effect and predicting production of hydraulic fracturing wells in shale reservoirs.

  7. Hydrocarbon reservoirs of Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, P.K.

    1988-01-01

    The statistical distribution of over 12,000 producible hydrocarbon reservoirs from various biostratigraphic intervals of the Gulf of Mexico is presented. The average number, thickness, volume, subsurface depth, and ecozone of depositional environments of the reservoirs are grouped according to biostratigraphic intervals, trends, and geographic areas. The upper Pliocene and Pleistocene reservoirs account for more than 77% of the total number. Within the Miocene trend, Bigenerina H in the western Gulf of Bigenerina A and Bigenerina 2 in the central Gulf show significant concentration of reservoirs. The average depth of production for all trends gets deeper, both from west and east,more » toward Ship Shoal-South Timbalier areas. The average thickness varies slightly between trends; however, variation between areas is more significant. A significant majority of the reservoirs of all trends in the entire Gulf is reported from the outer shelf-upper slope ecozones (E3 and E4). According to volume, the E3-E5 reservoirs can be classified into three groups; larger than 10,000 acre-ft/reservoir, 5,000 to 10,000 acre-ft/reservoir, and smaller than 5,000 acre-ft/reservoir.« less

  8. The discovery of deep-water seagrass meadows in a pristine Indian Ocean wilderness revealed by tracking green turtles.

    PubMed

    Esteban, N; Unsworth, R K F; Gourlay, J B Q; Hays, G C

    2018-03-21

    Our understanding of global seagrass ecosystems comes largely from regions characterized by human impacts with limited data from habitats defined as notionally pristine. Seagrass assessments also largely focus on shallow-water coastal habitats with comparatively few studies on offshore deep-water seagrasses. We satellite tracked green turtles (Chelonia mydas), which are known to forage on seagrasses, to a remote, pristine deep-water environment in the Western Indian Ocean, the Great Chagos Bank, which lies in the heart of one of the world's largest marine protected areas (MPAs). Subsequently we used in-situ SCUBA and baited video surveys to survey the day-time sites occupied by turtles and discovered extensive monospecific seagrass meadows of Thalassodendron ciliatum. At three sites that extended over 128 km, mean seagrass cover was 74% (mean range 67-88% across the 3 sites at depths to 29 m. The mean species richness of fish in seagrass meadows was 11 species per site (mean range 8-14 across the 3 sites). High fish abundance (e.g. Siganus sutor: mean MaxN.site -1  = 38.0, SD = 53.7, n = 5) and large predatory shark (Carcharhinus amblyrhynchos) (mean MaxN.site -1  = 1.5, SD = 0.4, n = 5) were recorded at all sites. Such observations of seagrass meadows with large top predators, are limited in the literature. Given that the Great Chagos Bank extends over approximately 12,500 km 2 and many other large deep submerged banks exist across the world's oceans, our results suggest that deep-water seagrass may be far more abundant than previously suspected. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  9. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... NECESSARY FOR SAFE OPERATION Brakes § 393.50 Reservoirs required. (a) Reservoir capacity for air-braked... 49 Transportation 5 2011-10-01 2011-10-01 false Reservoirs required. 393.50 Section 393.50... trailers manufactured on or after January 1, 1975, must meet the reservoir requirements of FMVSS No. 121...

  10. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... NECESSARY FOR SAFE OPERATION Brakes § 393.50 Reservoirs required. (a) Reservoir capacity for air-braked... 49 Transportation 5 2010-10-01 2010-10-01 false Reservoirs required. 393.50 Section 393.50... trailers manufactured on or after January 1, 1975, must meet the reservoir requirements of FMVSS No. 121...

  11. Reservoir management cost-cutting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulati, M.S.

    This article by Mohinder S. Gulati, Chief Engineer, Unocal Geothermal Operations, discusses cost cutting in geothermal reservoir management. The reservoir engineer or geoscientist can make a big difference in the economical outcome of a project by improving well performance and thus making geothermal energy more competitive in the energy marketplace. Bringing plants online in less time and proving resources to reduce the cycle time are some of the ways to reduce reservoir management costs discussed in this article.

  12. [Effects of plateau zokor disturbance and restoration years on soil nutrients and microbial functional diversity in alpine meadow].

    PubMed

    Hu, Lei; Ade, Lu-ji; Zi, Hong-biao; Wang, Chang-ting

    2015-09-01

    To explore the dynamic process of restoration succession in degraded alpine meadow that had been disturbed by plateau zokors in the eastern Tibetan Plateau, we examined soil nutrients and microbial functional diversity using conventional laboratory analysis and the Biolog-ECO microplate method. Our study showed that: 1) The zokors disturbance significantly reduced soil organic matter, total nitrogen, available nitrogen and phosphorus contents, but had no significant effects on soil total phosphorus and potassium contents; 2) Soil microbial carbon utilization efficiency, values of Shannon, Pielou and McIntosh indexes increased with alpine meadow restoration years; 3) Principal component analysis (PCA) showed that carbohydrates and amino acids were the main carbon sources for maintaining soil microbial community; 4) Redundancy analysis ( RDA) indicated that soil pH, soil organic matter, total nitrogen, available nitrogen, and total potassium were the main factors influencing the metabolic rate of soil microbial community and microbial functional diversity. In summary, variations in soil microbial functional diversity at different recovery stages reflected the microbial response to aboveground vegetation, soil microbial composition and soil nutrients.

  13. 32 CFR 644.4 - Reservoir projects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... projects. 8.1Lands for reservoir construction and operation. 8.2Additional lands for correlative purposes... potentials of each reservoir. 8.1Lands for reservoir construction and operation. The fee title will be... 32 National Defense 4 2011-07-01 2011-07-01 false Reservoir projects. 644.4 Section 644.4 National...

  14. 32 CFR 644.4 - Reservoir Projects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... projects. 8.1Lands for reservoir construction and operation. 8.2Additional lands for correlative purposes... potentials of each reservoir. 8.1Lands for reservoir construction and operation. The fee title will be... 32 National Defense 4 2010-07-01 2010-07-01 true Reservoir Projects. 644.4 Section 644.4 National...

  15. An Effective Reservoir Parameter for Seismic Characterization of Organic Shale Reservoir

    NASA Astrophysics Data System (ADS)

    Zhao, Luanxiao; Qin, Xuan; Zhang, Jinqiang; Liu, Xiwu; Han, De-hua; Geng, Jianhua; Xiong, Yineng

    2017-12-01

    Sweet spots identification for unconventional shale reservoirs involves detection of organic-rich zones with abundant porosity. However, commonly used elastic attributes, such as P- and S-impedances, often show poor correlations with porosity and organic matter content separately and thus make the seismic characterization of sweet spots challenging. Based on an extensive analysis of worldwide laboratory database of core measurements, we find that P- and S-impedances exhibit much improved linear correlations with the sum of volume fraction of organic matter and porosity than the single parameter of organic matter volume fraction or porosity. Importantly, from the geological perspective, porosity in conjunction with organic matter content is also directly indicative of the total hydrocarbon content of shale resources plays. Consequently, we propose an effective reservoir parameter (ERP), the sum of volume fraction of organic matter and porosity, to bridge the gap between hydrocarbon accumulation and seismic measurements in organic shale reservoirs. ERP acts as the first-order factor in controlling the elastic properties as well as characterizing the hydrocarbon storage capacity of organic shale reservoirs. We also use rock physics modeling to demonstrate why there exists an improved linear correlation between elastic impedances and ERP. A case study in a shale gas reservoir illustrates that seismic-derived ERP can be effectively used to characterize the total gas content in place, which is also confirmed by the production well.

  16. Integrated Approach to Drilling Project in Unconventional Reservoir Using Reservoir Simulation

    NASA Astrophysics Data System (ADS)

    Stopa, Jerzy; Wiśniowski, Rafał; Wojnarowski, Paweł; Janiga, Damian; Skrzypaszek, Krzysztof

    2018-03-01

    Accumulation and flow mechanisms in unconventional reservoir are different compared to conventional. This requires a special approach of field management with drilling and stimulation treatments as major factor for further production. Integrated approach of unconventional reservoir production optimization assumes coupling drilling project with full scale reservoir simulation for determine best well placement, well length, fracturing treatment design and mid-length distance between wells. Full scale reservoir simulation model emulate a part of polish shale - gas field. The aim of this paper is to establish influence of technical factor for gas production from shale gas field. Due to low reservoir permeability, stimulation treatment should be direct towards maximizing the hydraulic contact. On the basis of production scenarios, 15 stages hydraulic fracturing allows boost gas production over 1.5 times compared to 8 stages. Due to the possible interference of the wells, it is necessary to determine the distance between the horizontal parts of the wells trajectories. In order to determine the distance between the wells allowing to maximize recovery factor of resources in the stimulated zone, a numerical algorithm based on a dynamic model was developed and implemented. Numerical testing and comparative study show that the most favourable arrangement assumes a minimum allowable distance between the wells. This is related to the volume ratio of the drainage zone to the total volume of the stimulated zone.

  17. Reservoir floodplains support distinct fish assemblages

    USGS Publications Warehouse

    Miranda, Leandro E.; Wigen, S. L.; Dagel, Jonah D.

    2014-01-01

    Reservoirs constructed on floodplain rivers are unique because the upper reaches of the impoundment may include extensive floodplain environments. Moreover, reservoirs that experience large periodic water level fluctuations as part of their operational objectives seasonally inundate and dewater floodplains in their upper reaches, partly mimicking natural inundations of river floodplains. In four flood control reservoirs in Mississippi, USA, we explored the dynamics of connectivity between reservoirs and adjacent floodplains and the characteristics of fish assemblages that develop in reservoir floodplains relative to those that develop in reservoir bays. Although fish species richness in floodplains and bays were similar, species composition differed. Floodplains emphasized fish species largely associated with backwater shallow environments, often resistant to harsh environmental conditions. Conversely, dominant species in bays represented mainly generalists that benefit from the continuous connectivity between the bay and the main reservoir. Floodplains in the study reservoirs provided desirable vegetated habitats at lower water level elevations, earlier in the year, and more frequently than in bays. Inundating dense vegetation in bays requires raising reservoir water levels above the levels required to reach floodplains. Therefore, aside from promoting distinct fish assemblages within reservoirs and helping promote diversity in regulated rivers, reservoir floodplains are valued because they can provide suitable vegetated habitats for fish species at elevations below the normal pool, precluding the need to annually flood upland vegetation that would inevitably be impaired by regular flooding. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  18. Optoelectronic Reservoir Computing

    PubMed Central

    Paquot, Y.; Duport, F.; Smerieri, A.; Dambre, J.; Schrauwen, B.; Haelterman, M.; Massar, S.

    2012-01-01

    Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an optoelectronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations. PMID:22371825

  19. Altered precipitation patterns and simulated nitrogen deposition effects on phenology of common plant species in a Tibetan Plateau alpine meadow

    USDA-ARS?s Scientific Manuscript database

    The interactive effects of five seasonal precipitation distribution patterns and two levels of N deposition (ambient and doubled) on phenological traits of six dominant plant species were studied in an alpine meadow of the Tibetan Plateau for two consecutive years. Seasonal precipitation patterns i...

  20. Accelerating Tropicalization and the Transformation of Temperate Seagrass Meadows

    PubMed Central

    Hyndes, Glenn A.; Heck, Kenneth L.; Vergés, Adriana; Harvey, Euan S.; Kendrick, Gary A.; Lavery, Paul S.; McMahon, Kathryn; Orth, Robert J.; Pearce, Alan; Vanderklift, Mathew; Wernberg, Thomas; Whiting, Scott; Wilson, Shaun

    2016-01-01

    Abstract Climate-driven changes are altering production and functioning of biotic assemblages in terrestrial and aquatic environments. In temperate coastal waters, rising sea temperatures, warm water anomalies and poleward shifts in the distribution of tropical herbivores have had a detrimental effect on algal forests. We develop generalized scenarios of this form of tropicalization and its potential effects on the structure and functioning of globally significant and threatened seagrass ecosystems, through poleward shifts in tropical seagrasses and herbivores. Initially, we expect tropical herbivorous fishes to establish in temperate seagrass meadows, followed later by megafauna. Tropical seagrasses are likely to establish later, delayed by more limited dispersal abilities. Ultimately, food webs are likely to shift from primarily seagrass-detritus to more direct-consumption-based systems, thereby affecting a range of important ecosystem services that seagrasses provide, including their nursery habitat role for fishery species, carbon sequestration, and the provision of organic matter to other ecosystems in temperate regions. PMID:28533562

  1. Accelerating Tropicalization and the Transformation of Temperate Seagrass Meadows.

    PubMed

    Hyndes, Glenn A; Heck, Kenneth L; Vergés, Adriana; Harvey, Euan S; Kendrick, Gary A; Lavery, Paul S; McMahon, Kathryn; Orth, Robert J; Pearce, Alan; Vanderklift, Mathew; Wernberg, Thomas; Whiting, Scott; Wilson, Shaun

    2016-11-01

    Climate-driven changes are altering production and functioning of biotic assemblages in terrestrial and aquatic environments. In temperate coastal waters, rising sea temperatures, warm water anomalies and poleward shifts in the distribution of tropical herbivores have had a detrimental effect on algal forests. We develop generalized scenarios of this form of tropicalization and its potential effects on the structure and functioning of globally significant and threatened seagrass ecosystems, through poleward shifts in tropical seagrasses and herbivores. Initially, we expect tropical herbivorous fishes to establish in temperate seagrass meadows, followed later by megafauna. Tropical seagrasses are likely to establish later, delayed by more limited dispersal abilities. Ultimately, food webs are likely to shift from primarily seagrass-detritus to more direct-consumption-based systems, thereby affecting a range of important ecosystem services that seagrasses provide, including their nursery habitat role for fishery species, carbon sequestration, and the provision of organic matter to other ecosystems in temperate regions.

  2. Contrasting soil microbial community functional structures in two major landscapes of the Tibetan alpine meadow

    DOE PAGES

    Chu, Houjuan; Wang, Shiping; Yue, Haowei; ...

    2014-07-07

    The grassland and shrubland are two major landscapes of the Tibetan alpine meadow, a region very sensitive to the impact of global warming and anthropogenic perturbation. Herein, we report a study showing that a majority of differences in soil microbial community functional structures, measured by a functional gene array named GeoChip 4.0, in two adjacent shrubland and grassland areas, were explainable by environmental properties, suggesting that the harsh environments in the alpine grassland rendered niche adaptation important. Furthermore, genes involved in labile carbon degradation were more abundant in the shrubland than those of the grassland but genes involved in recalcitrantmore » carbon degradation were less abundant, which was conducive to long-term carbon storage and sequestration in the shrubland despite low soil organic carbon content. In addition, genes of anerobic nitrogen cycling processes such as denitrification and dissimilatory nitrogen reduction were more abundant, shifting soil nitrogen cycling toward ammonium biosynthesis and consequently leading to higher soil ammonium contents. In conclusion, we also noted higher abundances of stress genes responsive to nitrogen limitation and oxygen limitation, which might be attributed to low total nitrogen and higher water contents in the shrubland. Together, these results provide mechanistic knowledge about microbial linkages to soil carbon and nitrogen storage and potential consequences of vegetation shifts in the Tibetan alpine meadow.« less

  3. Breeding bird territory placement in riparian wet meadows in relation to invasive reed canary grass, Phalaris arundinacea

    USGS Publications Warehouse

    Kirsch, E.M.; Gray, B.R.; Fox, T.J.; Thogmartin, W.E.

    2007-01-01

    Invasive plants are a growing concern worldwide for conservation of native habitats. In endangered wet meadow habitat in the Upper Midwestern United States, reed canary grass (Phalaris arundinacea) is a recognized problem and its prevalence is more widespread than the better-known invasive wetland plant purple loosestrife (Lythrum salicaria). Although resource managers are concerned about the effect of reed canary grass on birds, this is the first study to report how common wet meadow birds use habitat in relation to reed canary grass cover and dominance. We examined three response variables: territory placement, size of territories, and numbers of territories per plot in relation to cover of reed canary grass. Territory locations for Sedge Wren (Cistothorus platensis) and Song Sparrow (Melospiza melodia) were positively associated with reed canary grass cover, while those for Common Yellowthroat (Geothlypis trichas) were not. Only Swamp Sparrow (M. georgiana) territory locations were negatively associated with reed canary grass cover and dominance (which indicated a tendency to place territories where there was no reed canary grass or where many plant species occurred with reed canary grass). Swamp Sparrow territories were positively associated with vegetation height density and litter depth. Common Yellowthroat territories were positively associated with vegetation height density and shrub cover. Song Sparrow territories were negatively associated with litter depth. Reed canary grass cover within territories was not associated with territory size for any of these four bird species. Territory density per plot was not associated with average reed canary grass cover of plots for all four species. Sedge Wrens and Song Sparrows may not respond negatively to reed canary grass because this grass is native to wet meadows of North America, and in the study area it merely replaces other tall lush plants. Avoidance of reed canary grass by Swamp Sparrows may be mediated

  4. Andrew integrated reservoir description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, S.P.

    1996-12-31

    The Andrew field is an oil and gas accumulation in Palaeocene deep marine sands in the Central North Sea. It is currently being developed with mainly horizontal oil producers. Because of the field`s relatively small reserves (mean 118 mmbbls), the performance of each of the 10 or so horizontal wells is highly important. Reservoir description work at sanction time concentrated on supporting the case that the field could be developed commercially with the minimum number of wells. The present Integrated Reservoir Description (IRD) is focussed on delivering the next level of detail that will impact the understanding of the localmore » reservoir architecture and dynamic performance of each well. Highlights of Andrew IRD Include: (1) Use of a Reservoir Uncertainty Statement (RUS) developed at sanction time to focus the descriptive effort of both asset, support and contract petrotechnical staff, (2) High resolution biostratigraphic correlation to support confident zonation of the reservoir, (3) Detailed sedimentological analysis of the core including the use of dipmeter to interpret channel/sheet architecture to provide new insights into reservoir heterogeneity; (4) Integrated petrographical and petrophysical investigation of the controls on Sw-Height and relative permeability of water; (5) Fluids description using oil geochemistry and Residual Salt Analysis Sr isotope studies. Andrew IRD has highlighted several important risks to well performance, including the influence of more heterolithic intervals on gas breakthrough and the controls on water coning exerted by suppressed water relative permeability in the transition zone.« less

  5. Andrew integrated reservoir description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, S.P.

    1996-01-01

    The Andrew field is an oil and gas accumulation in Palaeocene deep marine sands in the Central North Sea. It is currently being developed with mainly horizontal oil producers. Because of the field's relatively small reserves (mean 118 mmbbls), the performance of each of the 10 or so horizontal wells is highly important. Reservoir description work at sanction time concentrated on supporting the case that the field could be developed commercially with the minimum number of wells. The present Integrated Reservoir Description (IRD) is focussed on delivering the next level of detail that will impact the understanding of the localmore » reservoir architecture and dynamic performance of each well. Highlights of Andrew IRD Include: (1) Use of a Reservoir Uncertainty Statement (RUS) developed at sanction time to focus the descriptive effort of both asset, support and contract petrotechnical staff, (2) High resolution biostratigraphic correlation to support confident zonation of the reservoir, (3) Detailed sedimentological analysis of the core including the use of dipmeter to interpret channel/sheet architecture to provide new insights into reservoir heterogeneity; (4) Integrated petrographical and petrophysical investigation of the controls on Sw-Height and relative permeability of water; (5) Fluids description using oil geochemistry and Residual Salt Analysis Sr isotope studies. Andrew IRD has highlighted several important risks to well performance, including the influence of more heterolithic intervals on gas breakthrough and the controls on water coning exerted by suppressed water relative permeability in the transition zone.« less

  6. Effects of respirator use on worker performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardarelli, R.

    1995-03-01

    In 1993, EPRI funded Yankee Atomic Electric Company to examine the effects of respirator use on worker efficiency. Phase I of Yankee`s effort was to develop a study design to determine respirator effects. Given success in Phase I, a larger population will be tested to determine if a stasitically significant respirator effect on performance can be measured. This paper summarizes the 1993 EPRI/Yankee Respirator Effects of Pilot Study, and describes the study design for the 1994 EPRI/Yankee Respirator Study to be conducted at the Oyster Creek Nuclear Power Plant. Also described is a summary of respirator effect studies that havemore » been conducted during the last ten (10) years.« less

  7. Water-balance simulations of runoff and reservoir storage for the Upper Helmand watershed and Kajakai Reservoir, central Afghanistan

    USGS Publications Warehouse

    Vining, Kevin C.; Vecchia, Aldo V.

    2007-01-01

    A study was performed to provide information on monthly historical and hypothetical future runoff for the Upper Helmand watershed and reservoir storage in Kajakai Reservoir that could be used by Afghanistan authorities to make economic and demographic decisions concerning reservoir design and operation, reservoir sedimentation, and development along the Helmand River. Estimated reservoir volume at the current spillway elevation of 1,033.5 meters decreased by about 365 million cubic meters from 1968 to 2006 because of sedimentation. Water-balance simulations indicated a good fit between modeled and recorded monthly runoff at the two gaging stations in the watershed for water years 1956-79 and indicated an excellent fit between modeled and recorded monthly changes in Kajakai Reservoir storage for water years 1956-79. Future simulations, which included low starting reservoir water levels and a spillway raised to an elevation of 1,045 meters, indicated that the reservoir is likely to fill within 2 years. Although Kajakai Reservoir is likely to fill quickly, multiyear deficits may still occur. If future downstream irrigation demand doubles but future precipitation, temperature, and reservoir sedimentation remain similar to historical conditions, the reservoir would have more than a 50-percent chance of being full during April or May of a typical year. Future simulations with a 10-percent reduction in precipitation indicated that supply deficits would occur more than 1 in 4 years, on average, during August, September, or October. The reservoir would be full during April or May fewer than 1 in 2 years, on average, and multiyear supply deficits could occur. Increased sedimentation had little effect on reservoir levels during April through July, but the frequency of deficits increased substantially during September and October.

  8. Enhancing water supply through reservoir reoperation

    NASA Astrophysics Data System (ADS)

    Rajagopal, S.; Sterle, K. M.; Jose, L.; Coors, S.; Pohll, G.; Singletary, L.

    2017-12-01

    Snowmelt is a significant contributor to water supply in western U.S. which is stored in reservoirs for use during peak summer demand. The reservoirs were built to satisfy multiple objectives, but primarily to either enhance water supply and/or for flood mitigation. The operating rules for these water supply reservoirs are based on historical assumptions of stationarity of climate, assuming peak snowmelt occurs after April 1 and hence have to let water pass through if it arrived earlier. Using the Truckee River which originates in the eastern Sierra Nevada, has seven reservoirs and is shared between California and Nevada as an example, we show enhanced water storage by altering reservoir operating rules. These results are based on a coupled hydrology (Ground-Surface water Flow, GSFLOW) and water management model (RIverware) developed for the river system. All the reservoirs in the system benefit from altering the reservoir rules, but some benefit more than others. Prosser Creek reservoir for example, historically averaged 76% of capacity, which was lowered to 46% of capacity in the future as climate warms and shifts snowmelt to earlier days of the year. This reduction in storage can be mitigated by altering the reservoir operation rules and the reservoir storage increases to 64-76% of capacity. There are limitations to altering operating rules as reservoirs operated primarily for flood control are required to maintain lower storage to absorb a flood pulse, yet using modeling we show that there are water supply benefits to adopting a more flexible rules of operation. In the future, due to changing climate we anticipate the reservoirs in the western U.S. which were typically capturing spring- summer snowmelt will have to be managed more actively as the water stored in the snowpack becomes more variable. This study presents a framework for understanding, modeling and quantifying the consequences of such a shift in hydrology and water management.

  9. An index of reservoir habitat impairment

    USGS Publications Warehouse

    Miranda, L.E.; Hunt, K.M.

    2011-01-01

    Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.

  10. Water resources review: Wheeler Reservoir, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallus, R.; Cox, J.P.

    1990-09-01

    Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is onemore » in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.« less

  11. 4. International reservoir characterization technical conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energymore » Science and Technology database.« less

  12. Single well productivity prediction of carbonate reservoir

    NASA Astrophysics Data System (ADS)

    Le, Xu

    2018-06-01

    It is very important to predict the single-well productivity for the development of oilfields. The fracture structure of carbonate fractured-cavity reservoirs is complex, and the change of single-well productivity is inconsistent with that of sandstone reservoir. Therefore, the establishment of carbonate oil well productivity It is very important. Based on reservoir reality, three different methods for predicting the productivity of carbonate reservoirs have been established based on different types of reservoirs. (1) To qualitatively analyze the single-well capacity relations corresponding to different reservoir types, predict the production capacity according to the different wells encountered by single well; (2) Predict the productivity of carbonate reservoir wells by using numerical simulation technology; (3) According to the historical production data of oil well, fit the relevant capacity formula and make single-well productivity prediction; (4) Predict the production capacity by using oil well productivity formula of carbonate reservoir.

  13. Simulating reservoir leakage in ground-water models

    USGS Publications Warehouse

    Fenske, J.P.; Leake, S.A.; Prudic, David E.

    1997-01-01

    Leakage to ground water resulting from the expansion and contraction of reservoirs cannot be easily simulated by most ground-water flow models. An algorithm, entitled the Reservoir Package, was developed for the United States Geological Survey (USGS) three-dimensional finite-difference modular ground-water flow model MODFLOW. The Reservoir Package automates the process of specifying head-dependent boundary cells, eliminating the need to divide a simulation into many stress periods while improving accuracy in simulating changes in ground-water levels resulting from transient reservoir stage. Leakage between the reservoir and the underlying aquifer is simulated for each model cell corrresponding to the inundated area by multiplying the head difference between the reservoir and the aquifer with the hydraulic conductance of the reservoir-bed sediments.

  14. Storage capacity in hot dry rock reservoirs

    DOEpatents

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  15. Seismic Reservoir Characterization for Assessment of CO2 EOR at the Mississippian Reservoir in South-Central Kansas

    NASA Astrophysics Data System (ADS)

    Tsoflias, G. P.; Graham, B.; Haga, L.; Watney, L.

    2017-12-01

    The Mississippian in Kansas and Oklahoma is a highly heterogeneous, fractured, oil producing reservoir with thickness typically below seismic resolution. At Wellington field in south-central Kansas CO2 was injected in the Mississippian reservoir for enhanced oil recovery. This study examines the utility of active source surface seismic for characterization of Mississippian reservoir properties and monitoring CO2. Analysis of post-stack 3D seismic data showed the expected response of a gradational transition (ramp velocity) where thicker reservoir units corresponded with lower reflection amplitudes, lower frequency and a 90o phase change. Reflection amplitude could be correlated to reservoir thickness. Pre-stack gather analysis showed that porosity zones of the Mississippian reservoir exhibit characteristic AVO response. Simultaneous AVO inversion estimated P- and S-Impedances, which along with formation porosity logs and post-stack seismic data attributes were incorporated in multi-attribute linear-regression analysis and predicted reservoir porosity with an overall correlation of 0.90 to well data. The 3D survey gather azimuthal anisotropy analysis (AVAZ) provided information on the fault and fracture network and showed good agreement to the regional stress field and well data. Mississippian reservoir porosity and fracture predictions agreed well with the observed mobility of the CO2 in monitoring wells. Fluid substitution modeling predicted acoustic impedance reduction in the Mississippian carbonate reservoir introduced by the presence of CO2. Future work includes the assessment of time-lapse seismic, acquired after the injection of CO2. This work demonstrates that advanced seismic interpretation methods can be used successfully for characterization of the Mississippian reservoir and monitoring of CO2.

  16. Effect of fertilizer applications and grazing exclusion on species composition and biomass in wet meadow restoration in eastern Washington.

    Treesearch

    John Beebe; Richard Everett; George Scherer; Carl. Davis

    2002-01-01

    Fertilizer applications and grazing exclusion were used as restoration strategies in degraded wet meadows in eastern Washington to grow biomass in the root systems where it could not be grazed. We used a split-block design to test vegetation responses to six fertilizer rates, eight fertilizer types, and three grazing treatments after three growing seasons. Little...

  17. Coralville Reservoir Water Quality Project

    DTIC Science & Technology

    2006-05-01

    Description of the Area and Scope of the Project The Coralville flood control dam is located in Johnson County, Iowa , about three miles north of Iowa City...out of the reservoir. USGS 05453100 Iowa River at Marengo, IA USGS 05453520 Iowa River below Coralville Dam near Coralville , IA max min average...26: Pesticides in Fish. Coralville Reservoir Water Quality Pesticides in Fish Reservoir (Near Lake McBride Spillway) Downstream ( Iowa

  18. Sensitivity Analysis of Methane Hydrate Reservoirs: Effects of Reservoir Parameters on Gas Productivity and Economics

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Gaddipati, M.; Nyayapathi, L.

    2008-12-01

    This paper presents a parametric study on production rates of natural gas from gas hydrates by the method of depressurization, using CMG STARS. Seven factors/parameters were considered as perturbations from a base-case hydrate reservoir description based on Problem 7 of the International Methane Hydrate Reservoir Simulator Code Comparison Study led by the Department of Energy and the USGS. This reservoir is modeled after the inferred properties of the hydrate deposit at the Prudhoe Bay L-106 site. The included sensitivity variables were hydrate saturation, pressure (depth), temperature, bottom-hole pressure of the production well, free water saturation, intrinsic rock permeability, and porosity. A two-level (L=2) Plackett-Burman experimental design was used to study the relative effects of these factors. The measured variable was the discounted cumulative gas production. The discount rate chosen was 15%, resulting in the gas contribution to the net present value of a reservoir. Eight different designs were developed for conducting sensitivity analysis and the effects of the parameters on the real and discounted production rates will be discussed. The breakeven price in various cases and the dependence of the breakeven price on the production parameters is given in the paper. As expected, initial reservoir temperature has the strongest positive effect on the productivity of a hydrate deposit and the bottom-hole pressure in the production well has the strongest negative dependence. Also resulting in a positive correlation is the intrinsic permeability and the initial free water of the formation. Negative effects were found for initial hydrate saturation (at saturations greater than 50% of the pore space) and the reservoir porosity. These negative effects are related to the available sensible heat of the reservoir, with decreasing productivity due to decreasing available sensible heat. Finally, we conclude that for the base case reservoir, the break-even price (BEP

  19. Potential environmental effects of pack stock on meadow ecosystems of the Sierra Nevada, USA

    USGS Publications Warehouse

    Ostoja, Steven M.; Brooks, Matthew L.; Moore, Peggy E.; Berlow, Eric L.; Robert Blank,; Roche, Jim; Chase, Jennifer T.; Sylvia Haultain,

    2014-01-01

    Pack and saddle stock, including, but not limited to domesticated horses, mules, and burros, are used to support commercial, private and administrative activities in the Sierra Nevada. The use of pack stock has become a contentious and litigious issue for land management agencies in the region inter alia due to concerns over effects on the environment. The potential environmental effects of pack stock on Sierra Nevada meadow ecosystems are reviewed and it is concluded that the use of pack stock has the potential to influence the following: (1) water nutrient dynamics, sedimentation, temperature, and microbial pathogen content; (2) soil chemistry, nutrient cycling, soil compaction and hydrology; (3) plant individuals, populations and community dynamics, non-native invasive species, and encroachment of woody species; and (4) wildlife individuals, populations and communities. It is considered from currently available information that management objectives of pack stock should include the following: minimise bare ground, maximise plant cover, maintain species composition of native plants, minimise trampling, especially on wet soils and stream banks, and minimise direct urination and defecation by pack stock into water. However, incomplete documentation of patterns of pack stock use and limited past research limits current understanding of the effects of pack stock, especially their effects on water, soils and wildlife. To improve management of pack stock in this region, research is needed on linking measurable monitoring variables (e.g. plant cover) with environmental relevancy (e.g. soil erosion processes, wildlife habitat use), and identifying specific environmental thresholds of degradation along gradients of pack stock use in Sierra Nevada meadows.

  20. Biogeochemical mercury methylation influenced by reservoir eutrophication, Salmon Falls Creek Reservoir, Idaho, USA

    USGS Publications Warehouse

    Gray, J.E.; Hines, M.E.

    2009-01-01

    Salmon Falls Creek Reservoir (SFCR) in southern Idaho has been under a mercury (Hg) advisory since 2001 as fish in this reservoir contain elevated concentrations of Hg. Concentrations of total Hg (HgT) and methyl-Hg (MeHg) were measured in reservoir water, bottom sediment, and porewater to examine processes of Hg methylation at the sediment/water interface in this reservoir. Rates of Hg methylation and MeHg demethylation were also measured in reservoir bottom sediment using isotopic tracer techniques to further evaluate methylation of Hg in SFCR. The highest concentrations for HgT and MeHg in sediment were generally found at the sediment/water interface, and HgT and MeHg concentrations declined with depth. Porewater extracted from bottom sediment contained highly elevated concentrations of HgT ranging from 11-230??ng/L and MeHg ranging from 0.68-8.5??ng/L. Mercury methylation was active at all sites studied. Methylation rate experiments carried out on sediment from the sediment/water interface show high rates of Hg methylation ranging from 2.3-17%/day, which is significantly higher than those reported in other Hg contaminant studies. Using porewater MeHg concentrations, we calculated an upward diffusive MeHg flux of 197??g/year for the entire reservoir. This sediment derived MeHg is delivered to the overlying SFCR water column, and eventually transferred to biota, such as fish. This study indicates that methylation of Hg is highly influenced by the hypolimnetic and eutrophic conditions in SFCR.

  1. A 5-Year Study of the Adult Flight Periodicity of 27 Caddisfly (Trichoptera) Species in Forest and Meadow Habitats of a First-Order Lower Michigan (USA) Stream.

    PubMed

    Houghton, David C

    2015-12-01

    Life cycles of 27 caddisfly species were estimated from weekly adult flight periodicity data during 2010-2014 from a forest and a meadow site of a small stream in northern Lower Michigan. Of the 11 species abundant only at the forest site, 10 appeared to be univoltine and 1 appeared bivoltine. Of the 13 species abundant only at the meadow site, 5 appeared univoltine, 5 appeared bivoltine, and 3 were enigmatic due to inconsistent flight peaks between years. Although the sites were separated by ∼400 m, only three species were abundant at both sites due to differences in stream habitat and food availability. Two of these species had notably dissimilar life cycles between sites, reflecting these differences. Despite the study dates encompassing both the warmest and coldest years of the 2000s, most species retained consistent flight periods between years. This consistency with date appeared unrelated to lunar phase. Date was a better predictor of flight periodicity than water temperature for every species except those that emerged earliest in the season. Warming water temperatures appeared to synchronize emergence of species at the meadow site to a greater degree than those of the forest site, probably due to the greater range of temperatures at the meadow site, although date was still the better predictor at both sites. These data suggest that warming water temperatures, although important under certain conditions, may not always be primary life cycle synchronizers in small streams. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Static reservoir modeling of the Bahariya reservoirs for the oilfields development in South Umbarka area, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Mohamed I.; Metwalli, Farouk I.; Mesilhi, El Sayed I.

    2018-02-01

    3D static reservoir modeling of the Bahariya reservoirs using seismic and wells data can be a relevant part of an overall strategy for the oilfields development in South Umbarka area (Western Desert, Egypt). The seismic data is used to build the 3D grid, including fault sticks for the fault modeling, and horizon interpretations and surfaces for horizon modeling. The 3D grid is the digital representation of the structural geology of Bahariya Formation. When we got a reasonably accurate representation, we fill the 3D grid with facies and petrophysical properties to simulate it, to gain a more precise understanding of the reservoir properties behavior. Sequential Indicator Simulation (SIS) and Sequential Gaussian Simulation (SGS) techniques are the stochastic algorithms used to spatially distribute discrete reservoir properties (facies) and continuous reservoir properties (shale volume, porosity, and water saturation) respectively within the created 3D grid throughout property modeling. The structural model of Bahariya Formation exhibits the trapping mechanism which is a fault assisted anticlinal closure trending NW-SE. This major fault breaks the reservoirs into two major fault blocks (North Block and South Block). Petrophysical models classified Lower Bahariya reservoir as a moderate to good reservoir rather than Upper Bahariya reservoir in terms of facies, with good porosity and permeability, low water saturation, and moderate net to gross. The Original Oil In Place (OOIP) values of modeled Bahariya reservoirs show hydrocarbon accumulation in economic quantity, considering the high structural dips at the central part of South Umbarka area. The powerful of 3D static modeling technique has provided a considerable insight into the future prediction of Bahariya reservoirs performance and production behavior.

  3. Estimating Western U.S. Reservoir Sedimentation

    NASA Astrophysics Data System (ADS)

    Bensching, L.; Livneh, B.; Greimann, B. P.

    2017-12-01

    Reservoir sedimentation is a long-term problem for water management across the Western U.S. Observations of sedimentation are limited to reservoir surveys that are costly and infrequent, with many reservoirs having only two or fewer surveys. This work aims to apply a recently developed ensemble of sediment algorithms to estimate reservoir sedimentation over several western U.S. reservoirs. The sediment algorithms include empirical, conceptual, stochastic, and processes based approaches and are coupled with a hydrologic modeling framework. Preliminary results showed that the more complex and processed based algorithms performed better in predicting high sediment flux values and in a basin transferability experiment. However, more testing and validation is required to confirm sediment model skill. This work is carried out in partnership with the Bureau of Reclamation with the goal of evaluating the viability of reservoir sediment yield prediction across the western U.S. using a multi-algorithm approach. Simulations of streamflow and sediment fluxes are validated against observed discharges, as well as a Reservoir Sedimentation Information database that is being developed by the US Army Corps of Engineers. Specific goals of this research include (i) quantifying whether inter-algorithm differences consistently capture observational variability; (ii) identifying whether certain categories of models consistently produce the best results, (iii) assessing the expected sedimentation life-span of several western U.S. reservoirs through long-term simulations.

  4. Can nutrients alone shift a sedge meadow towards dominance by the invasive Typha × glauca

    USGS Publications Warehouse

    Woo, Isa; Zedler, Joy B.

    2002-01-01

    Where wetlands receive urban runoff, Typha spp. and other invasive plants often displace the native vegetation. We tested the ability of nutrients (N and P) to increase vegetative growth of T. × glauca(a hybrid of T. latifolia and T. angustifolia). In the greenhouse, 17 treatments revealed that T. × glauca required both N and P for growth, and total leaf length was most stimulated where a higher proportion of P was added (7N∶1P vs. 14N∶1P, with N constant and P changed), regardless of concentration (the High treatment was 4× the Low treatment). In Gardner Marsh (Madison, Wisconsin, USA), we set up 28 plots (1×6 m) that bisected the boundary between sedge meadow (graminoids) and T. × glauca, and we added a common lawn fertilizer (9N∶1P∶4K) at high (62.5 g/m2), medium (31.3 g/m2), low (15.6 g/m2), and control (0 g/m2) rates on five dates, with n=7 plots/treatment. After one growing season, fertilizer addition increased T. × glauca ramet density, height, and biomass, especially where the sedge meadow graminoids were initially dominant. Aboveground biomass of T. × glauca in the high nutrient addition treatment (1029±256.1 g/m2) was more than double that for control plots (431±80.52 g/m2) overall, with the greatest percent increase in sedge meadow subplots. In contrast, native graminoids (mostly Carex spp.) did not respond to treatment, either in biomass or percent cover. Typha × glauca allocated nutrients to both growth and storage, as indicated by higher N and P concentrations in leaves, shoot bases, and rhizomes in plots with high nutrient addition. Because fertilizing the marsh enhanced the shoot growth of T. × glauca but not native graminoids, and because the 7N∶1P treatment stimulated growth in the greenhouse, we suggest that wetland managers focus on reducing P inflows to urban wetlands. Fertilizer additions below those recommended by the manufacturer for new lawns (5× that of our highest treatment) should be more

  5. Geothermal reservoir simulation

    NASA Technical Reports Server (NTRS)

    Mercer, J. W., Jr.; Faust, C.; Pinder, G. F.

    1974-01-01

    The prediction of long-term geothermal reservoir performance and the environmental impact of exploiting this resource are two important problems associated with the utilization of geothermal energy for power production. Our research effort addresses these problems through numerical simulation. Computer codes based on the solution of partial-differential equations using finite-element techniques are being prepared to simulate multiphase energy transport, energy transport in fractured porous reservoirs, well bore phenomena, and subsidence.

  6. Encapsulated microsensors for reservoir interrogation

    DOEpatents

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  7. Massachusetts reservoir simulation tool—User’s manual

    USGS Publications Warehouse

    Levin, Sara B.

    2016-10-06

    IntroductionThe U.S. Geological Survey developed the Massachusetts Reservoir Simulation Tool to examine the effects of reservoirs on natural streamflows in Massachusetts by simulating the daily water balance of reservoirs. The simulation tool was developed to assist environmental managers to better manage water withdrawals in reservoirs and to preserve downstream aquatic habitats.

  8. Nonlinear Filtering Effects of Reservoirs on Flood Frequency Curves at the Regional Scale: RESERVOIRS FILTER FLOOD FREQUENCY CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Li, Hong-Yi; Leung, L. Ruby

    Anthropogenic activities, e.g., reservoir operation, may alter the characteristics of Flood Frequency Curve (FFC) and challenge the basic assumption of stationarity used in flood frequency analysis. This paper presents a combined data-modeling analysis of the nonlinear filtering effects of reservoirs on the FFCs over the contiguous United States. A dimensionless Reservoir Impact Index (RII), defined as the total upstream reservoir storage capacity normalized by the annual streamflow volume, is used to quantify reservoir regulation effects. Analyses are performed for 388 river stations with an average record length of 50 years. The first two moments of the FFC, mean annual maximummore » flood (MAF) and coefficient of variations (CV), are calculated for the pre- and post-dam periods and compared to elucidate the reservoir regulation effects as a function of RII. It is found that MAF generally decreases with increasing RII but stabilizes when RII exceeds a threshold value, and CV increases with RII until a threshold value beyond which CV decreases with RII. The processes underlying the nonlinear threshold behavior of MAF and CV are investigated using three reservoir models with different levels of complexity. All models capture the non-linear relationships of MAF and CV with RII, suggesting that the basic flood control function of reservoirs is key to the non-linear relationships. The relative roles of reservoir storage capacity, operation objectives, available storage prior to a flood event, and reservoir inflow pattern are systematically investigated. Our findings may help improve flood-risk assessment and mitigation in regulated river systems at the regional scale.« less

  9. Carbon emission from global hydroelectric reservoirs revisited.

    PubMed

    Li, Siyue; Zhang, Quanfa

    2014-12-01

    Substantial greenhouse gas (GHG) emissions from hydropower reservoirs have been of great concerns recently, yet the significant carbon emitters of drawdown area and reservoir downstream (including spillways and turbines as well as river reaches below dams) have not been included in global carbon budget. Here, we revisit GHG emission from hydropower reservoirs by considering reservoir surface area, drawdown zone and reservoir downstream. Our estimates demonstrate around 301.3 Tg carbon dioxide (CO2)/year and 18.7 Tg methane (CH4)/year from global hydroelectric reservoirs, which are much higher than recent observations. The sum of drawdown and downstream emission, which is generally overlooked, represents 42 % CO2 and 67 % CH4 of the total emissions from hydropower reservoirs. Accordingly, the global average emissions from hydropower are estimated to be 92 g CO2/kWh and 5.7 g CH4/kWh. Nonetheless, global hydroelectricity could currently reduce approximate 2,351 Tg CO2eq/year with respect to fuel fossil plant alternative. The new findings show a substantial revision of carbon emission from the global hydropower reservoirs.

  10. Reservoir assessment of the Nubian sandstone reservoir in South Central Gulf of Suez, Egypt

    NASA Astrophysics Data System (ADS)

    El-Gendy, Nader; Barakat, Moataz; Abdallah, Hamed

    2017-05-01

    The Gulf of Suez is considered as one of the most important petroleum provinces in Egypt and contains the Saqqara and Edfu oil fields located in the South Central portion of the Gulf of Suez. The Nubian sandstone reservoir in the Gulf of Suez basin is well known for its great capability to store and produce large volumes of hydrocarbons. The Nubian sandstone overlies basement rocks throughout most of the Gulf of Suez region. It consists of a sequence of sandstones and shales of Paleozoic to Cretaceous age. The Nubian sandstone intersected in most wells has excellent reservoir characteristics. Its porosity is controlled by sedimentation style and diagenesis. The cementation materials are mainly kaolinite and quartz overgrowths. The permeability of the Nubian sandstone is mainly controlled by grain size, sorting, porosity and clay content especially kaolinite and decreases with increase of kaolinite. The permeability of the Nubian Sandstone is evaluated using the Nuclear Magnetic Resonance (NMR technology) and formation pressure data in addition to the conventional logs and the results were calibrated using core data. In this work, the Nubian sandstone was investigated and evaluated using complete suites of conventional and advanced logging techniques to understand its reservoir characteristics which have impact on economics of oil recovery. The Nubian reservoir has a complicated wettability nature which affects the petrophysical evaluation and reservoir productivity. So, understanding the reservoir wettability is very important for managing well performance, productivity and oil recovery.

  11. Reservoir and canal system regulation for operation of the Raymond Reservoir Hydro Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, H.D.; Davidson, B.

    1995-12-31

    In 1989 LIMA Engineering Ltd. of Lethbridge, Alberta, Canada and Tudor Engineering Company of Oakland, California investigated the feasibility of installing a hydroelectric facility for the St. Mary River Irrigation District at Raymond Chute. This chute is a 29.3 m (96 ft) drop structure on the District`s main canal outside of the town of Raymond in southern Alberta. The chute discharges into the east end of Raymond Reservoir, a small regulating reservoir. The engineering team concluded that the project could be made more attractive by combining the drop at Raymond Chute with an additional 17.7 m (58 ft) of headmore » available at the upstream Milk River Ridge Reservoir. The result was the 20 MW Raymond Reservoir Hydro Project which went into commercial operation in May, 1994. Combining these two drops in elevation required the construction of a complete bypass system with a new approach canal and tailrace discharging into the west end of Raymond Reservoir, approximately 5 km (3 miles) west of the Raymond Chute. The system allows up to 56.7 cms (2,000 cfs) to be diverted through the powerhouse and thereby bypass Milk River Ridge Reservoir, Raymond Chute and approximately 6.5 km (4 miles) of canal. No synchronous bypass valve or spill facility was provided at the powerhouse. Rather, a system of rehabilitated or new check structures and controls were provided to automatically transfer flow from the power canal to the original system and thereby maintain a constant pre-set discharge downstream of the powerhouse following load rejections. This constant discharge is essential for meeting downstream irrigation demand.« less

  12. Storage capacity in hot dry rock reservoirs

    DOEpatents

    Brown, Donald W.

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  13. 21 CFR 868.5320 - Reservoir bag.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Reservoir bag. 868.5320 Section 868.5320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5320 Reservoir bag. (a) Identification. A reservoir bag is a...

  14. 21 CFR 868.5320 - Reservoir bag.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Reservoir bag. 868.5320 Section 868.5320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5320 Reservoir bag. (a) Identification. A reservoir bag is a...

  15. Temperature and oxygen in Missouri reservoirs

    USGS Publications Warehouse

    Jones, John R.; Knowlton, Matthew F.; Obrecht, Daniel V.; Graham, Jennifer L.

    2011-01-01

    Vertical profiles of water temperature (n = 7193) and dissolved oxygen (n = 6516) were collected from 235 Missouri reservoirs during 1989–2007; most data were collected during May–August and provide a regional summary of summer conditions. Collectively, surface water temperature ranged from a mean of ~22 C in May to 28 C in July, and individual summer maxima typically were 28–32 C. Most (~95%) reservoirs stably stratify by mid-May, but few are deep enough to have hypolimnia with near-uniform temperatures. Among stratified reservoirs, maximum effective length and maximum depth accounted for 75% of the variation in mixed depth and thermocline depth. Ephemeral, near-surface thermoclines occurred in 39% of summer profiles and were most frequent in small, turbid reservoirs. Isotherms below the mixed layer deepen during stratification, and the water column is >20 C by August in all but the deepest reservoirs. Most reservoirs showed incipient dissolved oxygen (DO) depletion by mid-May, and by August, 80% of profiles had DO minima of 50% of variation in DO below the mixed layer during summer. Warm summer temperatures and widespread low DO often limit available fish habitat in Missouri reservoirs and compress warm-water fish communities into subsurface layers that exceed their thermal preferences. This study provides a regional baseline of reservoir temperature and oxygen conditions useful for future evaluations of eutrophication and the effects of a warming climate.

  16. Heavy oil reservoirs recoverable by thermal technology

    NASA Astrophysics Data System (ADS)

    Kujawa, P.

    1981-02-01

    Reservoir, production, and project data for target reservoirs which contain heavy oil in the 8 to 25(0) API gravity range and are susceptible to recovery by in situ combustion and steam drive are presented. The reservoirs for steam recovery are less than 2500 feet deep to comply with state of the art technology. In cases where one reservoir would be a target for in situ combustion or steam drive, that reservoir is reported in both sections. Data were collected from three source types: hands-on, once removed, and twice removed. In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. A complete listing of operators and projects is included as well as a bibliography of source material.

  17. Mediating water temperature increases due to livestock and global change in high elevation meadow streams of the Golden Trout Wilderness

    Treesearch

    Sebastien Nussle; Kathleen R. Matthews; Stephanie M. Carlson

    2015-01-01

    Rising temperatures due to climate change are pushing the thermal limits of many species, but how climate warming interacts with other anthropogenic disturbances such as land use remains poorly understood. To understand the interactive effects of climate warming and livestock grazing on water temperature in three high elevation meadow streams in the Golden Trout...

  18. Changes in Meadow Vegetation Cover in Kings Canyon National Park (California) Based on Three Decades of Landsat Image Analysis

    NASA Technical Reports Server (NTRS)

    Potter, Christopher

    2015-01-01

    Landsat (30 meter resolution) image analysis over the past 25 years in Kings Canyon National Park was used to track changes in the normalized difference vegetation index (NDVI). Results showed that NDVI values from the wet year of 2010 were significantly lower than NDVI values from the comparatively dry year of 2013 in the majority of meadow areas in the National Park.

  19. Volume sharing of reservoir water

    NASA Astrophysics Data System (ADS)

    Dudley, Norman J.

    1988-05-01

    Previous models optimize short-, intermediate-, and long-run irrigation decision making in a simplified river valley system characterized by highly variable water supplies and demands for a single decision maker controlling both reservoir releases and farm water use. A major problem in relaxing the assumption of one decision maker is communicating the stochastic nature of supplies and demands between reservoir and farm managers. In this paper, an optimizing model is used to develop release rules for reservoir management when all users share equally in releases, and computer simulation is used to generate an historical time sequence of announced releases. These announced releases become a state variable in a farm management model which optimizes farm area-to-irrigate decisions through time. Such modeling envisages the use of growing area climatic data by the reservoir authority to gauge water demand and the transfer of water supply data from reservoir to farm managers via computer data files. Alternative model forms, including allocating water on a priority basis, are discussed briefly. Results show lower mean aggregate farm income and lower variance of aggregate farm income than in the single decision-maker case. This short-run economic efficiency loss coupled with likely long-run economic efficiency losses due to the attenuated nature of property rights indicates the need for quite different ways of integrating reservoir and farm management.

  20. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pressure or vacuum below 70 percent of that indicated by the air or vacuum gauge immediately before the.... Each service reservoir system on a motor vehicle shall be protected against a loss of air pressure or... NECESSARY FOR SAFE OPERATION Brakes § 393.50 Reservoirs required. (a) Reservoir capacity for air-braked...

  1. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... pressure or vacuum below 70 percent of that indicated by the air or vacuum gauge immediately before the.... Each service reservoir system on a motor vehicle shall be protected against a loss of air pressure or... NECESSARY FOR SAFE OPERATION Brakes § 393.50 Reservoirs required. (a) Reservoir capacity for air-braked...

  2. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pressure or vacuum below 70 percent of that indicated by the air or vacuum gauge immediately before the.... Each service reservoir system on a motor vehicle shall be protected against a loss of air pressure or... NECESSARY FOR SAFE OPERATION Brakes § 393.50 Reservoirs required. (a) Reservoir capacity for air-braked...

  3. 32 CFR 644.4 - Reservoir projects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Reservoir projects. 644.4 Section 644.4 National... HANDBOOK Project Planning Civil Works § 644.4 Reservoir projects. (a) Joint land acquisition policy for reservoir projects. The joint policies of the Department of the Interior and the Department of the Army...

  4. 32 CFR 644.4 - Reservoir projects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Reservoir projects. 644.4 Section 644.4 National... HANDBOOK Project Planning Civil Works § 644.4 Reservoir projects. (a) Joint land acquisition policy for reservoir projects. The joint policies of the Department of the Interior and the Department of the Army...

  5. 32 CFR 644.4 - Reservoir projects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Reservoir projects. 644.4 Section 644.4 National... HANDBOOK Project Planning Civil Works § 644.4 Reservoir projects. (a) Joint land acquisition policy for reservoir projects. The joint policies of the Department of the Interior and the Department of the Army...

  6. Comparative toxicity of acephate in laboratory mice, white-footed mice, and meadow voles

    USGS Publications Warehouse

    Rattner, B.A.; Hoffman, D.J.

    1984-01-01

    The LD50 (95% confidence limits) of the organophosphorus insecticide acephate was estimated to be 351, 380, and 321 mg/kg (295?416, 280?516, and 266?388 mg/kg) for CD-1 laboratory mice (Mus musculus), white-footed mice (Peromyscus leucopus noveboracensis), and meadow voles (Microtus pennsylvanicus), respectively. In a second study, these species were provided mash containing 0, 25, 100, and 400 ppm acephate for five days. Brain and plasma cholinesterase activities were reduced in a dose-dependent manner to a similar extent in the three species (inhibition of brain acetyl-cholinesterase averaged for each species ranged from 13 to 22% at 25 ppm, 33 to 42% at 100 ppm, and 56 to 57% at 400 ppm). Mash intake, body or liver weight, plasma enzyme activities (alkaline phosphatase, alanine and aspartate aminotransferase), hepatic enzyme activities (aniline hydroxylase, 7-ethoxycoumarin O-deethylase, and glutathione S-transferase), and cytochrome content (P-450 and b5) were not affected by acephate ingestion, although values differed among species. In a third experiment, mice and voles received 400 ppm acephate for 5 days followed by untreated food for up to 2 weeks. Mean inhibition of brain acetylcholin-esterase for the three species ranged from 47 to 58% on day 5, but by days 12 and 19, activity had recovered to 66 to 76% and 81 to 88% of concurrent control values. These findings indicate that CD-1 laboratory mice, white-footed mice, and meadow voles are equally sensitive to acephate when maintained under uniform laboratory conditions. Several factors (e.g., behavior, food preference, habitat) could affect routes and degree of exposure in the field, thereby rendering some species of wild rodents ecologically more vulnerable to organophosphorus insecticides.

  7. Comparative toxicity of acephate in laboratory mice, white-footed mice and meadow voles

    USGS Publications Warehouse

    Rattner, B.A.; Hoffman, D.J.

    1983-01-01

    The LD50 (95% confidence limits) of the organophosphorus insecticide acephate was estimated to be 351, 380, and 321 mg/kg (295?416, 280?516, and 266?388 mg/kg) for CD-1 laboratory mice (Mus musculus), white-footed mice (Peromyscus leucopus noveboracensis), and meadow voles (Microtus pennsylvanicus), respectively. In a second study, these species were provided mash containing 0, 25, 100, and 400 ppm acephate for five days. Brain and plasma cholinesterase activities were reduced in a dose-dependent manner to a similar extent in the three species (inhibition of brain acetyl-cholinesterase averaged for each species ranged from 13 to 22% at 25 ppm, 33 to 42% at 100 ppm, and 56 to 57% at 400 ppm). Mash intake, body or liver weight, plasma enzyme activities (alkaline phosphatase, alanine and aspartate aminotransferase), hepatic enzyme activities (aniline hydroxylase, 7-ethoxycoumarin O-deethylase, and glutathione S-transferase), and cytochrome content (P-450 and b5) were not affected by acephate ingestion, although values differed among species. In a third experiment, mice and voles received 400 ppm acephate for 5 days followed by untreated food for up to 2 weeks. Mean inhibition of brain acetylcholin-esterase for the three species ranged from 47 to 58% on day 5, but by days 12 and 19, activity had recovered to 66 to 76% and 81 to 88% of concurrent control values. These findings indicate that CD-1 laboratory mice, white-footed mice, and meadow voles are equally sensitive to acephate when maintained under uniform laboratory conditions. Several factors (e.g., behavior, food preference, habitat) could affect routes and degree of exposure in the field, thereby rendering some species of wild rodents ecologically more vulnerable to organophosphorus insecticides.

  8. Habitat edges affect patterns of artificial nest predation along a wetland-meadow boundary

    NASA Astrophysics Data System (ADS)

    Suvorov, Petr; Svobodová, Jana; Albrecht, Tomáš

    2014-08-01

    Wetland habitats are among the most endangered ecosystems in the world. However, little is known about factors affecting the nesting success of birds in pristine grass-dominated wetlands. During three breeding periods we conducted an experiment with artificial ground nests to test two basic mechanisms (the matrix and ecotonal effects) that may result in edge effects on nest predation in grass-dominated wetland habitats. Whereas the matrix effect model supposes that predator penetrate from habitat of higher predator density to habitat of lower predator density, thus causing an edge effect in the latter, according to the ecotonal effect model predators preferentially use edge habitats over habitat interiors. In addition, we tested the edge effect in a wetland habitat using artificial shrub nests that simulated the real nests of small open-cup nesting passerines. In our study area, the lowest predation rates on ground nests were found in wetland interiors and were substantially higher along the edges of both wetland and meadow habitat. However, predation was not significantly different between meadow and wetland interiors, indicating that both mechanisms can be responsible for the edge effect in wetland edges. An increased predation rate along wetland edges was also observed for shrub nests, and resembled the predation pattern of real shrub nests in the same study area. Though we are not able to distinguish between the two mechanisms of the edge effect found, our results demonstrate that species nesting in wetland edges bordering arable land may be exposed to higher predation. Therefore, an increase in the size of wetland patches that would lead to a reduced proportion of edge areas might be a suitable management practice to protect wetland bird species in cultural European landscapes.

  9. Functional wettability in carbonate reservoirs

    DOE PAGES

    Brady, Patrick V.; Thyne, Geoffrey

    2016-10-11

    Oil adsorbs to carbonate reservoirs indirectly through a relatively thick separating water layer, and directly to the surface through a relatively thin intervening water layer. Whereas directly sorbed oil desorbs slowly and incompletely in response to changes in reservoir conditions, indirectly sorbed oil can be rapidly desorbed by changing the chemistry of the separating water layer. The additional recovery might be as much as 30% original oil in place (OOIP) above the ~30% OOIP recovered from carbonates through reservoir depressurization (primary production) and viscous displacement (waterflooding). Electrostatic adhesive forces are the dominant control over carbonate reservoir wettability. A surface complexationmore » model that quantifies electrostatic adhesion accurately predicts oil recovery trends for carbonates. Furthermore, the approach should therefore be useful for estimating initial wettability and designing fluids that improve oil recovery.« less

  10. Reservoir computing on the hypersphere

    NASA Astrophysics Data System (ADS)

    Andrecut, M.

    Reservoir Computing (RC) refers to a Recurrent Neural Network (RNNs) framework, frequently used for sequence learning and time series prediction. The RC system consists of a random fixed-weight RNN (the input-hidden reservoir layer) and a classifier (the hidden-output readout layer). Here, we focus on the sequence learning problem, and we explore a different approach to RC. More specifically, we remove the nonlinear neural activation function, and we consider an orthogonal reservoir acting on normalized states on the unit hypersphere. Surprisingly, our numerical results show that the system’s memory capacity exceeds the dimensionality of the reservoir, which is the upper bound for the typical RC approach based on Echo State Networks (ESNs). We also show how the proposed system can be applied to symmetric cryptography problems, and we include a numerical implementation.

  11. Effect of trans-reservoir water supply on carbon and nitrogen stable isotope composition in hydrologically connected reservoirs in China

    NASA Astrophysics Data System (ADS)

    Zhang, Huajun; Peng, Liang; Gu, Binhe; Han, Bo-Ping

    2017-09-01

    Dajingshan, Fenghuangshan and Meixi reservoirs are located in Zhuhai, a coastal city in southern China, and they function to supply drinking water to Zhuhai and Macau. For effectively supplying waster, they are hydrologically connected and Dajingshan Reservoir first receives the water pumped from the river at Guangchang Pumping Station, and then feeds Fenghuangshan Reservoir, and the two well-connected reservoirs are mesotrophic. Meixi Reservoir is a small and oligotrophic water body and feeds Dajingshan Reservoir only in wet seasons when overflow occurs. Particulate organic matter (POM) was collected from three hydrologically connected water supply reservoirs, and seasonal variations of POM were ascertained from stable carbon and nitrogen isotopes in wet and dry seasons, and the effects of pumping water and reservoir connectivity on POM variations and composition were demonstrated by the relationships of the stable isotope ratios of POM. Seasonality and similarity of stable carbon and nitrogen isotopes of POM varied with hydrodynamics, connectivity and trophic states of the four studied water bodies. The two well-connected reservoirs displayed more similar seasonality for δ13CPOM than those between the river station and the two reservoirs. However, the opposite seasonality appeared for δ15NPOM between the above waters and indicates different processes affecting the stable carbon and nitrogen isotopes of POM. δ13CPOM and δ15NPOM changed little between wet and dry seasons in Meixi Reservoir-a low productive and rain-driven system, suggesting little POM response to environmental changes in that water system. As expected, connectivity enhanced the similarity of the stable isotope ratios of POM between the water bodies.

  12. Geochemical analysis of reservoir continuity and connectivity, Arab-D and Hanifa Reservoirs, Abqaiq Field, Saudia Arabia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahdi, A.A.; Grover, G.; Hwang, R.

    1995-08-01

    Organic geochemistry and its integration with geologic and reservoir engineering data is becoming increasingly utilized to assist geologists and petroleum engineers in solving production related problems. In Abqaiq Field of eastern Saudi Arabia, gas chromatographic analysis (FSCOT) of produced oils from the Arab-D and Hanifa reservoirs was used to evaluate vertical and lateral continuity within and between these reservoirs. Bulk and molecular properties of produced Arab-D oils do not vary significantly over the 70 km length and 10 km width of the reservoir. Hanifa oils, however, do reflect two compositionally distinct populations that are hot in lateral communication, compatible withmore » the occurrence of a large oil pool in the southern part of the field, and a separate, and smaller northern accumulation. The Arab-D and underlying Hanifa oil pools are separated by over 450 feet of impermeable carbonates of the Jubaila Formation, yet the Southern Hanifa pool and the Arab-D have been in pressure communication since onset of Hanifa production in 1954. Recent borehole imaging and core data from horizontal Hanifa wells confirmed the long suspected occurrence of fractures responsible for fluid transmissibility within the porous (up to 35%) but tight (<10md matrix K) Hanifa reservoir, and between the Hanifa and Arab-D. The nearly identical hydrocarbon composition of oils from the Arab-D and southern Hanifa pool provided the final confirmation of fluid communication between the two reservoirs, and extension of a Hanifa fracture-fault network via the Jubaila Formation. This work lead to acquisition of 3-D seismic to image and map the fracture-fault system. The molecular fingerprinting approach demonstrated that produced oils can be used to evaluate vertical and lateral reservoir continuity, and at Abqaiq Field confirmed, in part, the need to produce the Hanifa reservoir via horizontal wells to arrest the reservoir communication that occurs with existing vertical wells.« less

  13. The relationship between species richness and evenness in plant communities along a successional gradient: a study from sub-alpine meadows of the Eastern Qinghai-Tibetan Plateau, China.

    PubMed

    Zhang, Hui; John, Robert; Peng, Zechen; Yuan, Jianli; Chu, Chengjin; Du, Guozhen; Zhou, Shurong

    2012-01-01

    The relationship between species richness and evenness across communities remains an unsettled issue in ecology from both theoretical and empirical perspectives. As a result, we do not know the mechanisms that could generate a relationship between species richness and evenness, and how this responds to spatial scale. Here we examine the relationship between species richness(S) and evenness (Pielou's J' evenness) using a chronosequence of successional sub-alpine meadow communities in the eastern Qinghai-Tibetan Plateau. These meadows range from natural community (never farmed), to those that have been protected from agricultural exploitation for periods ranging from 1 to 10 years. A total of 30 sampling quadrats with size of 0.5 m×0.5 m were laid out along two transects at each meadow. Using correlation analyses we found a consistent negative correlation between S and J' in these communities along the successional gradient at the sampling scale of 0.5 m×0.5 m. We also explored the relationship between S and J' at different sampling scales (from 0.5 m×0.5 m to10 m×10 m) using properly measured ramet-mapped data of a10 m×10 m quadrat in the natural community. We found that S was negatively corrected with J' at the scales of 0.5 m×0.5 m to 2 m×2 m, but such a relationships disappeared at relative larger scales (≥2 m×4 m). When fitting different species abundance models combined with trait-specific methods, we found that niche preemption may be the determining mechanism of species evenness along the succession gradient. Considering all results together, we can conclude that such niche differentiation and spatial scale effects may help to explain the maintenance of high species richness in sub-alpine meadow communities.

  14. Ground-Water Contributions to Reservoir Storage and the Effect on Estimates of Firm Yield for Reservoirs in Massachusetts

    USGS Publications Warehouse

    Archfield, Stacey A.; Carlson, Carl S.

    2006-01-01

    Potential ground-water contributions to reservoir storage were determined for nine reservoirs in Massachusetts that had shorelines in contact with sand and gravel aquifers. The effect of ground water on firm yield was not only substantial, but furthermore, the firm yield of a reservoir in contact with a sand and gravel aquifer was always greater when the ground-water contribution was included in the water balance. Increases in firm yield ranged from 2 to 113 percent, with a median increase in firm yield of 10 percent. Additionally, the increase in firm yield in two reservoirs was greater than 85 percent. This study identified a set of equations that are based on an analytical solution to the ground-water-flow equation for the case of one-dimensional flow in a finite-width aquifer bounded by a linear surface-water feature such as a stream. These equations, which require only five input variables, were incorporated into an existing firm-yield-estimator (FYE) model, and the potential effect of ground water on firm yield was evaluated. To apply the FYE model to a reservoir in Massachusetts, the model requires that the drainage area to the reservoir be clearly defined and that some surface water flows into the reservoir. For surface-water-body shapes having a more realistic representation of a reservoir shoreline than a stream, a comparison of ground-water-flow rates simulated by the ground-water equations with flow rates simulated by a two-dimensional, finite-difference ground-water-flow model indicate that the agreement between the simulated flow rates is within ?10 percent when the ratio of the distance from the reservoir shoreline to the aquifer boundary to the length of shoreline in contact with the aquifer is between values of 0.5 and 3.5. Idealized reservoir-aquifer systems were assumed to verify that the ground-water-flow equations were implemented correctly into the existing FYE model; however, the modified FYE model has not been validated through a comparison

  15. Mathematical and field analysis of longitudinal reservoir infill

    NASA Astrophysics Data System (ADS)

    Ke, W. T.; Capart, H.

    2016-12-01

    In reservoirs, severe problems are caused by infilled sediment deposits. In long term, the sediment accumulation reduces the capacity of reservoir storage and flood control benefits. In the short term, the sediment deposits influence the intakes of water-supply and hydroelectricity generation. For the management of reservoir, it is important to understand the deposition process and then to predict the sedimentation in reservoir. To investigate the behaviors of sediment deposits, we propose a one-dimensional simplified theory derived by the Exner equation to predict the longitudinal sedimentation distribution in idealized reservoirs. The theory models the reservoir infill geomorphic actions for three scenarios: delta progradation, near-dam bottom deposition, and final infill. These yield three kinds of self-similar analytical solutions for the reservoir bed profiles, under different boundary conditions. Three analytical solutions are composed by error function, complementary error function, and imaginary error function, respectively. The theory is also computed by finite volume method to test the analytical solutions. The theoretical and numerical predictions are in good agreement with one-dimensional small-scale laboratory experiment. As the theory is simple to apply with analytical solutions and numerical computation, we propose some applications to simulate the long-profile evolution of field reservoirs and focus on the infill sediment deposit volume resulting the uplift of near-dam bottom elevation. These field reservoirs introduced here are Wushe Reservoir, Tsengwen Reservoir, Mudan Reservoir in Taiwan, Lago Dos Bocas in Puerto Rico, and Sakuma Dam in Japan.

  16. Phytoplankton and water quality in a Mediterranean drinking-water reservoir (Marathonas Reservoir, Greece).

    PubMed

    Katsiapi, Matina; Moustaka-Gouni, Maria; Michaloudi, Evangelia; Kormas, Konstantinos Ar

    2011-10-01

    Phytoplankton and water quality of Marathonas drinking-water Reservoir were examined for the first time. During the study period (July-September 2007), phytoplankton composition was indicative of eutrophic conditions although phytoplankton biovolume was low (max. 2.7 mm³ l⁻¹). Phytoplankton was dominated by cyanobacteria and diatoms, whereas desmids and dinoflagellates contributed with lower biovolume values. Changing flushing rate in the reservoir (up to 0.7% of reservoir's water volume per day) driven by water withdrawal and occurring in pulses for a period of 15-25 days was associated with phytoplankton dynamics. Under flushing pulses: (1) biovolume was low and (2) both 'good' quality species and the tolerant to flushing 'nuisance' cyanobacterium Microcystis aeruginosa dominated. According to the Water Framework Directive, the metrics of phytoplankton biovolume and cyanobacterial percentage (%) contribution indicated a moderate ecological water quality. In addition, the total biovolume of cyanobacteria as well as the dominance of the known toxin-producing M. aeruginosa in the reservoir's phytoplankton indicated a potential hazard for human health according to the World Health Organization.

  17. AUTOMATED TECHNIQUE FOR FLOW MEASUREMENTS FROM MARIOTTE RESERVOIRS.

    USGS Publications Warehouse

    Constantz, Jim; Murphy, Fred

    1987-01-01

    The mariotte reservoir supplies water at a constant hydraulic pressure by self-regulation of its internal gas pressure. Automated outflow measurements from mariotte reservoirs are generally difficult because of the reservoir's self-regulation mechanism. This paper describes an automated flow meter specifically designed for use with mariotte reservoirs. The flow meter monitors changes in the mariotte reservoir's gas pressure during outflow to determine changes in the reservoir's water level. The flow measurement is performed by attaching a pressure transducer to the top of a mariotte reservoir and monitoring gas pressure changes during outflow with a programmable data logger. The advantages of the new automated flow measurement techniques include: (i) the ability to rapidly record a large range of fluxes without restricting outflow, and (ii) the ability to accurately average the pulsing flow, which commonly occurs during outflow from the mariotte reservoir.

  18. Monitoring Reservoirs Using MERIS And LANDSAT Fused Images : A Case Study Of Polyfitos Reservoir - West Macedonia - Greece

    NASA Astrophysics Data System (ADS)

    Stefouli, M.; Charou, E.; Vasileiou, E.; Stathopoulos, N.; Perrakis, A.

    2012-04-01

    Research and monitoring is essential to assess baseline conditions in reservoirs and their watershed and provide necessary information to guide decision-makers. Erosion and degradation of mountainous areas can lead to gradual aggradation of reservoirs reducing their lifetime. Collected measurements and observations have to be communicated to the managers of the reservoirs so as to achieve a common / comprehensive management of a large watershed and reservoir system. At this point Remote Sensing could help as the remotely sensed data are repeatedly and readily available to the end users. Aliakmon is the longest river in Greece, it's length is about 297 km and the surface of the river basin is 9.210 km2.The flow of the river starts from Northwest of Greece and ends in Thermaikos Gulf. The riverbed is not natural throughout the entire route, because constructed dams restrict water and create artificial lakes, such as lake of Polyfitos, that prevent flooding. This lake is used as reservoir, for covering irrigational water needs and the water is used to produce energy from the hydroelectric plant of Public Power Corporation-PPC. The catchment basin of Polyfitos' reservoir covers an area of 847.76 km2. Soil erosion - degradation in the mountainous watershed of streams of Polyfitos reservoir is taking place. It has been estimated that an annual volume of sediments reaching the reservoir is of the order of 244 m3. Geomatic based techniques are used in processing multiple data of the study area. A data inventory was formulated after the acquisition of topographic maps, compilation of geological and hydro-geological maps, compilation of digital elevation model for the area of interest based on satellite data and available maps. It also includes the acquisition of various hydro-meteorological data when available. On the basis of available maps and satellite data, digital elevation models are used in order to delineate the basic sub-catchments of the Polyfytos basin as well as

  19. Rodent reservoirs of future zoonotic diseases

    PubMed Central

    Han, Barbara A.; Schmidt, John Paul; Bowden, Sarah E.; Drake, John M.

    2015-01-01

    The increasing frequency of zoonotic disease events underscores a need to develop forecasting tools toward a more preemptive approach to outbreak investigation. We apply machine learning to data describing the traits and zoonotic pathogen diversity of the most speciose group of mammals, the rodents, which also comprise a disproportionate number of zoonotic disease reservoirs. Our models predict reservoir status in this group with over 90% accuracy, identifying species with high probabilities of harboring undiscovered zoonotic pathogens based on trait profiles that may serve as rules of thumb to distinguish reservoirs from nonreservoir species. Key predictors of zoonotic reservoirs include biogeographical properties, such as range size, as well as intrinsic host traits associated with lifetime reproductive output. Predicted hotspots of novel rodent reservoir diversity occur in the Middle East and Central Asia and the Midwestern United States. PMID:26038558

  20. Water-resources data collected in the Devils Hole area, Ash Meadows, Nevada, 1975-76

    USGS Publications Warehouse

    Hanes, William Toby

    1976-01-01

    The U.S. Geological Survey collected water-level, spring-flow, and power-consumption data in the Devils Hole area in Nevada from July 1975 through June 1976. The work for this sfurth annual data report was done in cooperation with the National Park Service. Continuous recorders were used to monitor water levels in Devils Hole, three observation wells, and the flow from four springs. Also, monthly readings were made on two wells to help define a general trend of ground-water levels. Monthly meter readings of six electrically powered irrigation wells provided a record of power consumption, which in turn, is an index of the amount of water pumped. The purpose of the work is to observe the effects, if any, of ground-water withdrawals from specified irrigtion wells in the Ash Meadows area on (1) the water level in Devils Hole, and (2) the flow of four springs in the area. Fairbanks Spring and Big Spring, which are in the extreme northern and southern parts of Ash Meadows respectively, show little effect of pumping. An increase in the monthly average flow at Fairbanks Spring in September can be attributed to runoff and surficial recharge in the surrounding area caused by a large cloudburst. Jack Rabbit Spring, which is about 1 mile southwest of the major pumping field, is affected strongly by pumping. Jack Rabbit Spring flowed during the winter months but flowed very infrequently during non-winter months. Point of Rocks Spring had a flow pattern similar to Big Spring and Fairbanks Spring. All the springs had a general increase in flow during the Winter months. (Woodard-USGS)

  1. basement reservoir geometry and properties

    NASA Astrophysics Data System (ADS)

    Walter, bastien; Geraud, yves; Diraison, marc

    2017-04-01

    Basement reservoirs are nowadays frequently investigated for deep-seated fluid resources (e.g. geothermal energy, groundwater, hydrocarbons). The term 'basement' generally refers to crystalline and metamorphic formations, where matrix porosity is negligible in fresh basement rocks. Geothermal production of such unconventional reservoirs is controlled by brittle structures and altered rock matrix, resulting of a combination of different tectonic, hydrothermal or weathering phenomena. This work aims to characterize the petro-structural and petrophysical properties of two basement surface analogue case studies in geological extensive setting (the Albert Lake rift in Uganda; the Ifni proximal margin of the South West Morocco Atlantic coast). Different datasets, using field structural study, geophysical acquisition and laboratory petrophysical measurements, were integrated to describe the multi-scale geometry of the porous network of such fractured and weathered basement formations. This study points out the multi-scale distribution of all the features constituting the reservoir, over ten orders of magnitude from the pluri-kilometric scale of the major tectonics structures to the infra-millimetric scale of the secondary micro-porosity of fractured and weathered basements units. Major fault zones, with relatively thick and impermeable fault core structures, control the 'compartmentalization' of the reservoir by dividing it into several structural blocks. The analysis of these fault zones highlights the necessity for the basement reservoirs to be characterized by a highly connected fault and fracture system, where structure intersections represent the main fluid drainage areas between and within the reservoir's structural blocks. The suitable fluid storage areas in these reservoirs correspond to the damage zone of all the fault structures developed during the tectonic evolution of the basement and the weathered units of the basement roof developed during pre

  2. The Ogden Valley artesian reservoir

    USGS Publications Warehouse

    Thomas, H.E.

    1945-01-01

    Ogden Valley, in Weber County, Utah, contains an artesian reservoir from which the city of Ogden obtains all except a small part of its municipal water supply. A detailed investigation of the ground-water resources of Ogden Valley, and particularly of this artesian reservoir, was made by the Geological Survey, United States Department of the Interior, in cooperation with the city of Ogden between 1932 and 1934, and the results of this investigation have been reported by Leggette and Taylor.1 The present paper, which might be termed a sequel to that report, is based on data collected during those years, augmented by records that have been obtained (1935-1940) by the Geological Survey as part of a State-wide project in cooperation with the Utah State Engineer. The conclusions drawn from the study of these records and presented in detail in the following pages are as follows: (1) The artesian reservoir is filled to capacity nearly every year during the spring run-off from melting snow; (2) after the annual freshet, the recharge to the reservoir is insufficient to balance the discharge from artesian wells, which ordinarily is at a maximum during the summer; the reservoir is depleted and is not filled again until the following spring; (3) during the periods when the artesian reservoir is not full the rate of recharge is more or less proportional to the inflow to the valley by streams, except that rain on the recharge area may be of sufficient intensity to contribute some water by infiltration and deep penetration; and (4) the artesian reservoir thus serves to store water that would otherwise be lost to Great Salt Lake in the excess spring overflow, and available records indicate that water used by increased draft from wells would be replenished in normal years by increased recharge during the spring freshet.

  3. Estimating the impacts of reservoir elevation changes on kokanee emergence in flaming Gorge Reservoir, Wyoming-Utah

    USGS Publications Warehouse

    Modde, T.; Jeric, R.J.; Hubert, W.A.; Gipson, R.D.

    1997-01-01

    Flaming Gorge Reservoir, like many western North American reservoirs, is managed to release water during the winter months to allow for water storage associated with melting snow and rain during spring. Decreases in reservoir elevation during winter can cause mortalities of kokanee Oncorhynchus nerka spawned along the shoreline the previous fall. This study compared data on depth distribution of embryos and depth-adjusted survival to estimate the relative survival of emergent kokanee at different depths and the effect of winter drawdown on the proportion of deposited eggs that survive to emergence. Estimates of decreases in kokanee survival to emergence were 8.3% and 38.1% for reservoir elevation reductions of 1.0 m and 5.0 m, respectively.

  4. Warming and Nitrogen Addition Increase Litter Decomposition in a Temperate Meadow Ecosystem

    PubMed Central

    Gong, Shiwei; Guo, Rui; Zhang, Tao; Guo, Jixun

    2015-01-01

    Background Litter decomposition greatly influences soil structure, nutrient content and carbon sequestration, but how litter decomposition is affected by climate change is still not well understood. Methodology/Principal Findings A field experiment with increased temperature and nitrogen (N) addition was established in April 2007 to examine the effects of experimental warming, N addition and their interaction on litter decomposition in a temperate meadow steppe in northeastern China. Warming, N addition and warming plus N addition reduced the residual mass of L. chinensis litter by 3.78%, 7.51% and 4.53%, respectively, in 2008 and 2009, and by 4.73%, 24.08% and 16.1%, respectively, in 2010. Warming, N addition and warming plus N addition had no effect on the decomposition of P. communis litter in 2008 or 2009, but reduced the residual litter mass by 5.58%, 15.53% and 5.17%, respectively, in 2010. Warming and N addition reduced the cellulose percentage of L. chinensis and P. communis, specifically in 2010. The lignin percentage of L. chinensis and P. communis was reduced by warming but increased by N addition. The C, N and P contents of L. chinensis and P. communis litter increased with time. Warming and N addition reduced the C content and C:N ratios of L. chinensisand P. communis litter, but increased the N and P contents. Significant interactive effects of warming and N addition on litter decomposition were observed (P<0.01). Conclusion/Significance The litter decomposition rate was highly correlated with soil temperature, soil water content and litter quality. Warming and N addition significantly impacted the litter decomposition rate in the Songnen meadow ecosystem, and the effects of warming and N addition on litter decomposition were also influenced by the quality of litter. These results highlight how climate change could alter grassland ecosystem carbon, nitrogen and phosphorus contents in soil by influencing litter decomposition. PMID:25774776

  5. Sediment Properties as Important Predictors of Carbon Storage in Zostera marina Meadows: A Comparison of Four European Areas

    PubMed Central

    Dahl, Martin; Deyanova, Diana; Gütschow, Silvia; Asplund, Maria E.; Lyimo, Liberatus D.; Karamfilov, Ventzislav; Santos, Rui; Björk, Mats; Gullström, Martin

    2016-01-01

    Seagrass ecosystems are important natural carbon sinks but their efficiency varies greatly depending on species composition and environmental conditions. What causes this variation is not fully known and could have important implications for management and protection of the seagrass habitat to continue to act as a natural carbon sink. Here, we assessed sedimentary organic carbon in Zostera marina meadows (and adjacent unvegetated sediment) in four distinct areas of Europe (Gullmar Fjord on the Swedish Skagerrak coast, Askö in the Baltic Sea, Sozopol in the Black Sea and Ria Formosa in southern Portugal) down to ~35 cm depth. We also tested how sedimentary organic carbon in Z. marina meadows relates to different sediment characteristics, a range of seagrass-associated variables and water depth. The seagrass carbon storage varied greatly among areas, with an average organic carbon content ranging from 2.79 ± 0.50% in the Gullmar Fjord to 0.17 ± 0.02% in the area of Sozopol. We found that a high proportion of fine grain size, high porosity and low density of the sediment is strongly related to high carbon content in Z. marina sediment. We suggest that sediment properties should be included as an important factor when evaluating high priority areas in management of Z. marina generated carbon sinks. PMID:27936111

  6. Water quality of Rob Roy Reservoir and Lake Owen, Albany County, and Granite Springs and Crystal Lake Reservoirs, Laramie County, Wyoming, 1997-98

    USGS Publications Warehouse

    Ogle, Kathy Muller; Peterson, D.A.; Spillman, Bud; Padilla, Rosie

    1999-01-01

    The water quality of four reservoirs was assessed during 1997 and 1998 as a cooperative project between the Cheyenne Board of Public Utilities and the U. S. Geological Survey. The four reservoirs, Rob Roy, Lake Owen, Granite Springs, and Crystal Lake, provide approximately 75 percent of the public water supply for Cheyenne, Wyoming. Samples of water and bottom sediment were collected and analyzed for selected physical, chemical, and biological characteristics to provide data about the reservoirs. Water flows between the reservoirs through a series of pipelines and stream channels. The reservoirs differ in physical characteristics such as elevation, volume, and depth.Profiles of temperature, dissolved oxygen, specific conductance, and pH were examined. Three of the four reservoirs exhibited stratification during the summer. The profiles indicate that stratification develops in all reservoirs except Lake Owen. Stratification developed in Rob Roy, Granite Springs, and Crystal Lake Reservoirs by mid-July in 1998 and continued until September, with the thickness of the epilimnion increasing during that time. Secchi disk readings indicated Rob Roy Reservoir had the clearest water of the four reservoirs studied.The composition of the phytoplankton community was different in the upper two reservoirs from that in the lower two reservoirs. Many of the species found in Rob Roy Reservoir and Lake Owen are associated with oligotrophic, nutrient-poor conditions. In contrast, many of the species found in Granite Springs and Crystal Lake Reservoirs are associated with mesotrophic or eutrophic conditions. The total number of taxa identified also increased downstream.The chemical water type in the reservoirs was similar, but dissolved-solids concentrations were greater in the downstream reservoirs. Water in all four reservoirs was a calcium-bicarbonate type. In the fall of 1997, Rob Roy Reservoir had the lowest dissolved-solids concentration (19 milligrams per liter), whereas

  7. Reservoir Identification: Parameter Characterization or Feature Classification

    NASA Astrophysics Data System (ADS)

    Cao, J.

    2017-12-01

    The ultimate goal of oil and gas exploration is to find the oil or gas reservoirs with industrial mining value. Therefore, the core task of modern oil and gas exploration is to identify oil or gas reservoirs on the seismic profiles. Traditionally, the reservoir is identify by seismic inversion of a series of physical parameters such as porosity, saturation, permeability, formation pressure, and so on. Due to the heterogeneity of the geological medium, the approximation of the inversion model and the incompleteness and noisy of the data, the inversion results are highly uncertain and must be calibrated or corrected with well data. In areas where there are few wells or no well, reservoir identification based on seismic inversion is high-risk. Reservoir identification is essentially a classification issue. In the identification process, the underground rocks are divided into reservoirs with industrial mining value and host rocks with non-industrial mining value. In addition to the traditional physical parameters classification, the classification may be achieved using one or a few comprehensive features. By introducing the concept of seismic-print, we have developed a new reservoir identification method based on seismic-print analysis. Furthermore, we explore the possibility to use deep leaning to discover the seismic-print characteristics of oil and gas reservoirs. Preliminary experiments have shown that the deep learning of seismic data could distinguish gas reservoirs from host rocks. The combination of both seismic-print analysis and seismic deep learning is expected to be a more robust reservoir identification method. The work was supported by NSFC under grant No. 41430323 and No. U1562219, and the National Key Research and Development Program under Grant No. 2016YFC0601

  8. Warming and Nitrogen Addition Alter Photosynthetic Pigments, Sugars and Nutrients in a Temperate Meadow Ecosystem.

    PubMed

    Zhang, Tao; Yang, Shaobo; Guo, Rui; Guo, Jixun

    2016-01-01

    Global warming and nitrogen (N) deposition have an important influence on terrestrial ecosystems; however, the influence of warming and N deposition on plant photosynthetic products and nutrient cycling in plants is not well understood. We examined the effects of 3 years of warming and N addition on the plant photosynthetic products, foliar chemistry and stoichiometric ratios of two dominant species, i.e., Leymus chinensis and Phragmites communis, in a temperate meadow in northeastern China. Warming significantly increased the chlorophyll content and soluble sugars in L. chinensis but had no impact on the carotenoid and fructose contents. N addition caused a significant increase in the carotenoid and fructose contents. Warming and N addition had little impact on the photosynthetic products of P. communis. Warming caused significant decreases in the N and phosphorus (P) concentrations and significantly increased the carbon (C):P and N:P ratios of L. chinensis, but not the C concentration or the C:N ratio. N addition significantly increased the N concentration, C:P and N:P ratios, but significantly reduced the C:N ratio of L. chinensis. Warming significantly increased P. communis C and P concentrations, and the C:N and C:P ratios, whereas N addition increased the C, N and P concentrations but had no impact on the stoichiometric variables. This study suggests that both warming and N addition have direct impacts on plant photosynthates and elemental stoichiometry, which may play a vital role in plant-mediated biogeochemical cycling in temperate meadow ecosystems.

  9. Warming and Nitrogen Addition Alter Photosynthetic Pigments, Sugars and Nutrients in a Temperate Meadow Ecosystem

    PubMed Central

    Zhang, Tao; Yang, Shaobo; Guo, Rui; Guo, Jixun

    2016-01-01

    Global warming and nitrogen (N) deposition have an important influence on terrestrial ecosystems; however, the influence of warming and N deposition on plant photosynthetic products and nutrient cycling in plants is not well understood. We examined the effects of 3 years of warming and N addition on the plant photosynthetic products, foliar chemistry and stoichiometric ratios of two dominant species, i.e., Leymus chinensis and Phragmites communis, in a temperate meadow in northeastern China. Warming significantly increased the chlorophyll content and soluble sugars in L. chinensis but had no impact on the carotenoid and fructose contents. N addition caused a significant increase in the carotenoid and fructose contents. Warming and N addition had little impact on the photosynthetic products of P. communis. Warming caused significant decreases in the N and phosphorus (P) concentrations and significantly increased the carbon (C):P and N:P ratios of L. chinensis, but not the C concentration or the C:N ratio. N addition significantly increased the N concentration, C:P and N:P ratios, but significantly reduced the C:N ratio of L. chinensis. Warming significantly increased P. communis C and P concentrations, and the C:N and C:P ratios, whereas N addition increased the C, N and P concentrations but had no impact on the stoichiometric variables. This study suggests that both warming and N addition have direct impacts on plant photosynthates and elemental stoichiometry, which may play a vital role in plant-mediated biogeochemical cycling in temperate meadow ecosystems. PMID:27171176

  10. Functional age as an indicator of reservoir senescence

    USGS Publications Warehouse

    Miranda, Leandro E.; Krogman, R. M.

    2015-01-01

    It has been conjectured that reservoirs differ in the rate at which they manifest senescence, but no attempt has been made to find an indicator of senescence that performs better than chronological age. We assembled an indicator of functional age by creating a multimetric scale consisting of 10 metrics descriptive of reservoir environments that were expected to change directionally with reservoir senescence. In a sample of 1,022 U.S. reservoirs, chronological age was not correlated with functional age. Functional age was directly related to percentage of cultivated land in the catchment and inversely related to reservoir depth. Moreover, aspects of reservoir fishing quality and fish population characteristics were related to functional age. A multimetric scale to indicate reservoir functional age presents the possibility for management intervention from multiple angles. If a reservoir is functionally aging at an accelerated rate, action may be taken to remedy the conditions contributing most to functional age. Intervention to reduce scores of selected metrics in the scale can potentially reduce the rate of senescence and increase the life expectancy of the reservoir. This leads to the intriguing implication that steps can be taken to reduce functional age and actually make the reservoir grow younger.

  11. Spatially pooled depth-dependent reservoir storage, elevation, and water-quality data for selected reservoirs in Texas, January 1965-January 2010

    USGS Publications Warehouse

    Burley, Thomas E.; Asquith, William H.; Brooks, Donald L.

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with Texas Tech University, constructed a dataset of selected reservoir storage (daily and instantaneous values), reservoir elevation (daily and instantaneous values), and water-quality data from 59 reservoirs throughout Texas. The period of record for the data is as large as January 1965-January 2010. Data were acquired from existing databases, spreadsheets, delimited text files, and hard-copy reports. The goal was to obtain as much data as possible; therefore, no data acquisition restrictions specifying a particular time window were used. Primary data sources include the USGS National Water Information System, the Texas Commission on Environmental Quality Surface Water-Quality Management Information System, and the Texas Water Development Board monthly Texas Water Condition Reports. Additional water-quality data for six reservoirs were obtained from USGS Texas Annual Water Data Reports. Data were combined from the multiple sources to create as complete a set of properties and constituents as the disparate databases allowed. By devising a unique per-reservoir short name to represent all sites on a reservoir regardless of their source, all sampling sites at a reservoir were spatially pooled by reservoir and temporally combined by date. Reservoir selection was based on various criteria including the availability of water-quality properties and constituents that might affect the trophic status of the reservoir and could also be important for understanding possible effects of climate change in the future. Other considerations in the selection of reservoirs included the general reservoir-specific period of record, the availability of concurrent reservoir storage or elevation data to match with water-quality data, and the availability of sample depth measurements. Additional separate selection criteria included historic information pertaining to blooms of golden algae. Physical properties and constituents were water

  12. The Alphabet Soup of HIV Reservoir Markers.

    PubMed

    Sharaf, Radwa R; Li, Jonathan Z

    2017-04-01

    Despite the success of antiretroviral therapy in suppressing HIV, life-long therapy is required to avoid HIV reactivation from long-lived viral reservoirs. Currently, there is intense interest in searching for therapeutic interventions that can purge the viral reservoir to achieve complete remission in HIV patients off antiretroviral therapy. The evaluation of such interventions relies on our ability to accurately and precisely measure the true size of the viral reservoir. In this review, we assess the most commonly used HIV reservoir assays, as a clear understanding of the strengths and weaknesses of each is vital for the accurate interpretation of results and for the development of improved assays. The quantification of intracellular or plasma HIV RNA or DNA levels remains the most commonly used tests for the characterization of the viral reservoir. While cost-effective and high-throughput, these assays are not able to differentiate between replication-competent or defective fractions or quantify the number of infected cells. Viral outgrowth assays provide a lower bound for the fraction of cells that can produce infectious virus, but these assays are laborious, expensive and substantially underestimate the potential reservoir of replication-competent provirus. Newer assays are now available that seek to overcome some of these problems, including full-length proviral sequencing, inducible HIV RNA assays, ultrasensitive p24 assays and murine adoptive transfer techniques. The development and evaluation of strategies for HIV remission rely upon our ability to accurately and precisely quantify the size of the remaining viral reservoir. At this time, all current HIV reservoir assays have drawbacks such that combinations of assays are generally needed to gain a more comprehensive view of the viral reservoir. The development of novel, rapid, high-throughput assays that can sensitively quantify the levels of the replication-competent HIV reservoir is still needed.

  13. Greenhouse Gas Emissions from Reservoir Water Surfaces: A ...

    EPA Pesticide Factsheets

    Collectively, reservoirs are an important anthropogenic source of greenhouse gases (GHGs) to the atmosphere. Attempts to model reservoir GHG fluxes, however, have been limited by inconsistencies in methodological approaches and data availability. An increase in the number of published reservoir GHG flux estimates during the last 15 years warrants a comprehensive analysis of the magnitude and potential controls on these fluxes. Here we synthesize worldwide reservoir CH4, CO2, and N2O emission data and estimate that GHG emissions from reservoirs account for 80.2 Tmol CO2 equivalents yr-1, thus constituting approximately 5% of anthropogenic radiative forcing. The majority (93%) of these emissions are from CH4, and mainly in the form of bubbles. While age and latitude have historically been linked to reservoir GHG emissions, we found that factors related to reservoir nutrient status and rainfall were better predictors. In particular, nutrient-rich eutrophic reservoirs were found to have an order of magnitude higher per-area CH4 fluxes, on average, than their nutrient-poor oligotrophic counterparts. Therefore, management measures to reduce reservoir eutrophication may result in an important co-benefit, the reduction of GHG emissions to the atmosphere. Greenhouse gas emissions (GHG)

  14. Carbon balance of a subarctic meadow under 3 r{ C warming - unravelling respiration}

    NASA Astrophysics Data System (ADS)

    Silvennoinen, Hanna; Bárcena, Téresa G.; Moni, Christophe; Szychowski, Marcin; Rajewicz, Paulina; Höglind, Mats; Rasse, Daniel P.

    2016-04-01

    Boreal and arctic terrestrial ecosystems are central to the climate change debate, as the warming is expected to be disproportionate as compared to world averages. Northern areas contain large terrestrial carbon (C) stocks further increasing the interest in the C cycle's fate in changing climate. In 2013, we started an ecosystem warming experiment at a meadow in Eastern Finnmark, NE Norway. The meadow was on a clay soil and its vegetation was common meadow grasses and clover. Typical local agronomy was applied. The study site featured ten 4m-wide hexagonal plots, five control and five actively warmed plots in randomized complete block design. Each of the warmed plots was continuously maintained 3 ° C above its associated control plot with infrared heaters controlled by canopy thermal sensors. In 2014-2015, we measured net ecosystem exchange (NEE) and respiration twice per week during growth seasons from preinstalled collars of each site with dynamic, temperature-controlled chambers combined to an infrared analyzer. Despite warming-induced differences in yield, species composition and root biomass, neither the NEE nor the respiration responded to the warming, all sites remaining equal sinks for C. Following this observation, we carried out an additional experiment in 2015 where we aimed at partitioning the total CO2 flux to microbial and plant respiration as well as at recording the growth season variation of those parameters in situ. Here, we used an approach based on natural abundances of 13C. The δ13C signature of both autotrophic plant respiration and heterotrophic microbial respiration were obtained in targeted incubations (Snell et al. 2014). Then, the δ13C -signature of the total soil respiration was determined in the field by Keeling approach with dynamic dark chambers combined to CRDS. Proportions of autotrophic and heterotrophic components in total soil respiration were then derived based on 13C mixing model. Incubations were repeated at early, mid and

  15. Geophysical monitoring in a hydrocarbon reservoir

    NASA Astrophysics Data System (ADS)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  16. Online interactive U.S. Reservoir Sedimentation Survey Database

    USGS Publications Warehouse

    Gray, J.B.; Bernard, J.M.; Schwarz, G.E.; Stewart, D.W.; Ray, K.T.

    2009-01-01

    In April 2009, the U.S. Geological Survey and the Natural Resources Conservation Service (prior to 1994, the Soil Conservation Service) created the Reservoir Sedimentation Survey Database (RESSED) and Web site, the most comprehensive compilation of data from reservoir bathymetric and dry basin surveys in the United States. RESSED data can be useful for a number of purposes, including calculating changes in reservoir storage characteristics, quantifying rates of sediment delivery to reservoirs, and estimating erosion rates in a reservoir's watershed.

  17. Effects of water-supply reservoirs on streamflow in Massachusetts

    USGS Publications Warehouse

    Levin, Sara B.

    2016-10-06

    State and local water-resource managers need modeling tools to help them manage and protect water-supply resources for both human consumption and ecological needs. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, has developed a decision-support tool to estimate the effects of reservoirs on natural streamflow. The Massachusetts Reservoir Simulation Tool is a model that simulates the daily water balance of a reservoir. The reservoir simulation tool provides estimates of daily outflows from reservoirs and compares the frequency, duration, and magnitude of the volume of outflows from reservoirs with estimates of the unaltered streamflow that would occur if no dam were present. This tool will help environmental managers understand the complex interactions and tradeoffs between water withdrawals, reservoir operational practices, and reservoir outflows needed for aquatic habitats.A sensitivity analysis of the daily water balance equation was performed to identify physical and operational features of reservoirs that could have the greatest effect on reservoir outflows. For the purpose of this report, uncontrolled releases of water (spills or spillage) over the reservoir spillway were considered to be a proxy for reservoir outflows directly below the dam. The ratio of average withdrawals to the average inflows had the largest effect on spillage patterns, with the highest withdrawals leading to the lowest spillage. The size of the surface area relative to the drainage area of the reservoir also had an effect on spillage; reservoirs with large surface areas have high evaporation rates during the summer, which can contribute to frequent and long periods without spillage, even in the absence of water withdrawals. Other reservoir characteristics, such as variability of inflows, groundwater interactions, and seasonal demand patterns, had low to moderate effects on the frequency, duration, and magnitude of spillage. The

  18. Limno-reservoirs as a new landscape, environmental and touristic resource: Pareja Limno-reservoir as a case of study (Guadalajara, Spain)

    NASA Astrophysics Data System (ADS)

    Díaz-Carrión, I.; Sastre-Merlín, A.; Martínez-Pérez, S.; Molina-Navarro, E.; Bienes-Allas, R.

    2012-04-01

    A limno-reservoir is a hydrologic infrastructure with the main goal of generating a body of water with a constant level in the riverine zone of a reservoir, building a dam that makes de limno-reservoir independent from the main body of water. This dam can be built in the main river supplying the reservoir or any tributary as well flowing into it. Despite its novel conception and design, around a dozen are already operative in some Spanish reservoirs. This infrastructure allows the new water body to be independent of the main reservoir management, so the water level stability is its main distinctive characteristic. It leads to the development of environmental, sports and cultural initiatives; which may be included in a touristic exploitation in a wide sense. An opinion poll was designed in 2009 to be carried out the Pareja Limno-reservoir (Entrepeñas reservoir area, Tajo River Basin, central Spain). The results showed that for both, Pareja inhabitants and occasional visitors, the limno-reservoir has become an important touristic resource, mainly demanded during summer season. The performance of leisure activities (especially swimming) are being the main brand of this novel hydraulic and environmental infrastructure, playing a role as corrective and/or compensatory action which is needed to apply in order to mitigate the environmental impacts of the large hydraulic constructions.

  19. Building more realistic reservoir optimization models using data mining - A case study of Shelbyville Reservoir

    NASA Astrophysics Data System (ADS)

    Hejazi, Mohamad I.; Cai, Ximing

    2011-06-01

    In this paper, we promote a novel approach to develop reservoir operation routines by learning from historical hydrologic information and reservoir operations. The proposed framework involves a knowledge discovery step to learn the real drivers of reservoir decision making and to subsequently build a more realistic (enhanced) model formulation using stochastic dynamic programming (SDP). The enhanced SDP model is compared to two classic SDP formulations using Lake Shelbyville, a reservoir on the Kaskaskia River in Illinois, as a case study. From a data mining procedure with monthly data, the past month's inflow ( Qt-1 ), current month's inflow ( Qt), past month's release ( Rt-1 ), and past month's Palmer drought severity index ( PDSIt-1 ) are identified as important state variables in the enhanced SDP model for Shelbyville Reservoir. When compared to a weekly enhanced SDP model of the same case study, a different set of state variables and constraints are extracted. Thus different time scales for the model require different information. We demonstrate that adding additional state variables improves the solution by shifting the Pareto front as expected while using new constraints and the correct objective function can significantly reduce the difference between derived policies and historical practices. The study indicates that the monthly enhanced SDP model resembles historical records more closely and yet provides lower expected average annual costs than either of the two classic formulations (25.4% and 4.5% reductions, respectively). The weekly enhanced SDP model is compared to the monthly enhanced SDP, and it shows that acquiring the correct temporal scale is crucial to model reservoir operation for particular objectives.

  20. Assessment of reservoir system variable forecasts

    NASA Astrophysics Data System (ADS)

    Kistenmacher, Martin; Georgakakos, Aris P.

    2015-05-01

    Forecast ensembles are a convenient means to model water resources uncertainties and to inform planning and management processes. For multipurpose reservoir systems, forecast types include (i) forecasts of upcoming inflows and (ii) forecasts of system variables and outputs such as reservoir levels, releases, flood damage risks, hydropower production, water supply withdrawals, water quality conditions, navigation opportunities, and environmental flows, among others. Forecasts of system variables and outputs are conditional on forecasted inflows as well as on specific management policies and can provide useful information for decision-making processes. Unlike inflow forecasts (in ensemble or other forms), which have been the subject of many previous studies, reservoir system variable and output forecasts are not formally assessed in water resources management theory or practice. This article addresses this gap and develops methods to rectify potential reservoir system forecast inconsistencies and improve the quality of management-relevant information provided to stakeholders and managers. The overarching conclusion is that system variable and output forecast consistency is critical for robust reservoir management and needs to be routinely assessed for any management model used to inform planning and management processes. The above are demonstrated through an application from the Sacramento-American-San Joaquin reservoir system in northern California.

  1. The skin reservoir of sulphur mustard.

    PubMed

    Hattersley, I J; Jenner, J; Dalton, C; Chilcott, R P; Graham, J S

    2008-09-01

    Studies of the percutaneous reservoir of sulphur mustard (HD) formed during absorption carried out during WWI and WWII are inconclusive. More recent studies have indicated that a significant amount of unreacted HD remains in human epidermal membranes during percutaneous penetration studies in vitro. The present study investigated the nature and persistence of the HD reservoir formed during in vitro penetration studies using dermatomed slices of human and pig skin (0.5mm thick). Amounts of (14)C-HD that (a) penetrated, (b) remained on the surface, (c) were extractable from and (d) remained in the skin after extraction were estimated by liquid scintillation counting (confirmed using GC-MS analysis). The results demonstrated that there is a reservoir of HD in human and pig skin for up to 24 h after contamination of the skin surface in vitro with liquid agent. At least some of this reservoir could be extracted with acetonitrile, and the amounts of extracted and unextracted HD exceed the amount required to produce injury in vivo by at least 20 fold. The study demonstrated the presence of a reservoir whether the skin was covered (occluded) or left open to the air (unoccluded). The study concluded that the extractable reservoir was significant in terms of the amount of HD required to induce a vesicant response in human skin. The extractable reservoir was at least 20 times the amount required per cm(2) estimated to cause a response in all of the human population, as defined by studies carried out in human volunteers during the 1940s.

  2. 33 CFR 110.77 - Amistad Reservoir, Tex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Amistad Reservoir, Tex. 110.77... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.77 Amistad Reservoir, Tex. (a) Diablo East, Tex. That portion of the Amistad Reservoir enclosed by a line connecting the following points, excluding a 300-foot...

  3. Method of extracting heat from dry geothermal reservoirs

    DOEpatents

    Potter, R.M.; Robinson, E.S.; Smith, M.C.

    1974-01-22

    Hydraulic fracturing is used to interconnect two or more holes that penetrate a previously dry geothermal reservoir, and to produce within the reservoir a sufficiently large heat-transfer surface so that heat can be extracted from the reservoir at a usefully high rate by a fluid entering it through one hole and leaving it through another. Introduction of a fluid into the reservoir to remove heat from it and establishment of natural (unpumped) convective circulation through the reservoir to accomplish continuous heat removal are important and novel features of the method. (auth)

  4. Reservoir simulation with MUFITS code: Extension for double porosity reservoirs and flows in horizontal wells

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey

    2017-04-01

    Numerical modelling of multiphase flows in porous medium is necessary in many applications concerning subsurface utilization. An incomplete list of those applications includes oil and gas fields exploration, underground carbon dioxide storage and geothermal energy production. The numerical simulations are conducted using complicated computer programs called reservoir simulators. A robust simulator should include a wide range of modelling options covering various exploration techniques, rock and fluid properties, and geological settings. In this work we present a recent development of new options in MUFITS code [1]. The first option concerns modelling of multiphase flows in double-porosity double-permeability reservoirs. We describe internal representation of reservoir models in MUFITS, which are constructed as a 3D graph of grid blocks, pipe segments, interfaces, etc. In case of double porosity reservoir, two linked nodes of the graph correspond to a grid cell. We simulate the 6th SPE comparative problem [2] and a five-spot geothermal production problem to validate the option. The second option concerns modelling of flows in porous medium coupled with flows in horizontal wells that are represented in the 3D graph as a sequence of pipe segments linked with pipe junctions. The well completions link the pipe segments with reservoir. The hydraulics in the wellbore, i.e. the frictional pressure drop, is calculated in accordance with Haaland's formula. We validate the option against the 7th SPE comparative problem [3]. We acknowledge financial support by the Russian Foundation for Basic Research (project No RFBR-15-31-20585). References [1] Afanasyev, A. MUFITS Reservoir Simulation Software (www.mufits.imec.msu.ru). [2] Firoozabadi A. et al. Sixth SPE Comparative Solution Project: Dual-Porosity Simulators // J. Petrol. Tech. 1990. V.42. N.6. P.710-715. [3] Nghiem L., et al. Seventh SPE Comparative Solution Project: Modelling of Horizontal Wells in Reservoir Simulation

  5. Reservoir description is key to steamflood planning and implementation, Webster Reservoir, Midway-Sunset Field, Kern County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, B.R.; Link, M.H.

    1988-01-01

    The Webster reservoir at Midway-Sunset field, Kern County, California, is an unconsolidated sand reservoir of Miocene age (''Stevens equivalent,'' Monterey Formation). The Webster was discovered in 1910 but, due to poor heavy oil (14/sup 0/ API) economics, development for primary production and subsequent enhanced recovery were sporadic. Currently, the reservoir produces by cyclic steam stimulation in approximately 35 wells. Cumulative oil production for the Webster since 1910 is about 13 million bbl. The Webster is subdivided into two reservoirs - the Webster Intermediate and Webster Main. The Webster Intermediate directly overlies the Webster Main in one area but it ismore » separated by up to 300 ft of shale elsewhere. The combined thickness of both Webster reservoirs averages 250 ft and is located at a drilling depth of 1,100-1,800 ft. From evaluation of modern core data and sand distribution maps, the Webster sands are interpreted to have been deposited by turbidity currents that flowed from southwest to northeast in this area. Oil is trapped in the Webster reservoir where these turbidites were subsequently folded on a northwest-southeast-trending anticline. Detailed recorrelation on wireline logs, stratigraphic zonation, detailed reservoir description by zone, and sedimentary facies identification in modern cores has led to development of a geologic model for the Webster. This model indicates that the Webster Intermediate was deposited predominately by strongly channelized turbidity currents, resulting in channel-fill sands, and that the Webster Main was deposited by less restricted flows, resulting in more lobate deposits.« less

  6. Reservoir Models for Gas Hydrate Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Boswell, R.

    2016-12-01

    Scientific and industrial drilling programs have now providing detailed information on gas hydrate systems that will increasingly be the subject of field experiments. The need to carefully plan these programs requires reliable prediction of reservoir response to hydrate dissociation. Currently, a major emphasis in gas hydrate modeling is the integration of thermodynamic/hydrologic phenomena with geomechanical response for both reservoir and bounding strata. However, also critical to the ultimate success of these efforts is the appropriate development of input geologic models, including several emerging issues, including (1) reservoir heterogeneity, (2) understanding of the initial petrophysical characteristics of the system (reservoirs and seals), the dynamic evolution of those characteristics during active dissociation, and the interdependency of petrophysical parameters and (3) the nature of reservoir boundaries. Heterogeneity is ubiquitous aspect of every natural reservoir, and appropriate characterization is vital. However, heterogeneity is not random. Vertical variation can be evaluated with core and well log data; however, core data often are challenged by incomplete recovery. Well logs also provide interpretation challenges, particularly where reservoirs are thinly-bedded due to limitation in vertical resolution. This imprecision will extend to any petrophysical measurements that are derived from evaluation of log data. Extrapolation of log data laterally is also complex, and should be supported by geologic mapping. Key petrophysical parameters include porosity, permeability and it many aspects, and water saturation. Field data collected to date suggest that the degree of hydrate saturation is strongly controlled by/dependant upon reservoir quality and that the ratio of free to bound water in the remaining pore space is likely also controlled by reservoir quality. Further, those parameters will also evolve during dissociation, and not necessary in a simple

  7. Geochemical reconnaissance study of Vassar Meadow (Adams Rib) wetlands and vicinity, Eagle County, Colorado

    USGS Publications Warehouse

    Owen, Douglass E.; Breit, George N.

    1995-01-01

    Wetlands are known to be efficient filters of metals dissolved in ground and surface waters. This paper presents the results of geochemical reconnaissance sampling done at the request of the U.S. Environmental Protection Agency in wetlands in Vassar Meadow, Eagle County, Colorado. Ten wetlands were sampled and found to be variously enriched in chromium, molybdenum, and uranium. The uranium and chromium concentrations (and, to a lesser extent, molybdenum) represent an environmental concern should they be released as a result of anthropogenic disturbance. The metal accumulation in these wetlands documents that the wetlands have been functioning as filters that protect water quality in East Brush Creek by lowering the dissolved metal content in water.

  8. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTIVE MEDIA. U.S. EPA DEMONSTRATION PROJECT AT SOUTH TRUCKEE MEADOWS GENERAL IMPROVEMENT DISTRICT (STMIG), NV. INTERIM EVALUATION REPORT

    EPA Science Inventory

    This report documents the activities performed during and the results obtained from the first 32 weeks of operation of an arsenic and antimony removal technology currently being demonstrated at the South Truckee Meadows General Improvement District (STMGID) in Washoe County, NV. ...

  9. Geophysical Studies Based on Gravity and Seismic Data of Tule Desert, Meadow Valley Wash, and California Wash Basins, Southern Nevada

    USGS Publications Warehouse

    Scheirer, Daniel S.; Page, William R.; Miller, John J.

    2006-01-01

    Gravity and seismic data from Tule Desert, Meadow Valley Wash, and California Wash, Nevada, provide insight into the subsurface geometry of these three basins that lie adjacent to rapidly developing areas of Clark County, Nevada. Each of the basins is the product of Tertiary extension accommodated with the general form of north-south oriented, asymmetrically-faulted half-grabens. Geophysical inversion of gravity observations indicates that Tule Desert and Meadow Valley Wash basins are segmented into subbasins by shallow, buried basement highs. In this study, basement refers to pre-Cenozoic bedrock units that underlie basins filled with Cenozoic sedimentary and volcanic units. In Tule Desert, a small, buried basement high inferred from gravity data appears to be a horst whose placement is consistent with seismic reflection and magnetotelluric observations. Meadow Valley Wash consists of three subbasins separated by basement highs at structural zones that accommodated different styles of extension of the adjacent subbasins, an interpretation consistent with geologic mapping of fault traces oblique to the predominant north-south fault orientation of Tertiary extension in this area. California Wash is a single structural basin. The three seismic reflection lines analyzed in this study image the sedimentary basin fill, and they allow identification of faults that offset basin deposits and underlying basement. The degree of faulting and folding of the basin-fill deposits increases with depth. Pre-Cenozoic units are observed in some of the seismic reflection lines, but their reflections are generally of poor quality or are absent. Factors that degrade seismic reflector quality in this area are rough land topography due to erosion, deformed sedimentary units at the land surface, rock layers that dip out of the plane of the seismic profile, and the presence of volcanic units that obscure underlying reflectors. Geophysical methods illustrate that basin geometry is more

  10. Reservoir-Based Drug Delivery Systems Utilizing Microtechnology

    PubMed Central

    Stevenson, Cynthia L.; Santini, John T.; Langer, Robert

    2012-01-01

    This review covers reservoir-based drug delivery systems that incorporate microtechnology, with an emphasis on oral, dermal, and implantable systems. Key features of each technology are highlighted such as working principles, fabrication methods, dimensional constraints, and performance criteria. Reservoir-based systems include a subset of microfabricated drug delivery systems and provide unique advantages. Reservoirs, whether external to the body or implanted, provide a well-controlled environment for a drug formulation, allowing increased drug stability and prolonged delivery times. Reservoir systems have the flexibility to accommodate various delivery schemes, including zero order, pulsatile, and on demand dosing, as opposed to a standard sustained release profile. Furthermore, the development of reservoir-based systems for targeted delivery for difficult to treat applications (e.g., ocular) has resulted in potential platforms for patient therapy. PMID:22465783

  11. [Relation between species distribution of plant community and soil factors under grazing in alpine meadow].

    PubMed

    Niu, Yu Jie; Yang, Si Wei; Wang, Gui Zhen; Liu, Li; Du, Guo Zhen; Hua, Li Min

    2017-12-01

    The research selected the alpine meadow located in the northeastern margin of the Qinghai-Tibet Plateau to study the changes of vegetation community and soil properties under different grazing intensities, as well as the quantitative relation between the distribution patterns of plant species and the physical and chemical properties of soil. The results showed that the grazing caused the differentiation of the initial vegetation community with the dominant plants, Elymus nutans and Stipa grandis. In the plots with high and low grazing intensities, the dominant plants had changed to Kobresia humilis and Melissitus ruthenica, and E. nutans and Poa crymophila, respectively. With the increase of grazing intensity, the plant richness, importance value and biomass were significantly decreased. The sequence of plant species importance value in each plot against grazing intensity could be fitted by a logarithmic model. The number of required plant species was reduced while the importance value of the remaining plant species accounted for 50% of the importance value in the whole vegetation community. The available P, available K, soil compaction, soil water content, stable infiltration rate and large aggregate index were significantly changed with grazing intensity, however, the changes were different. The CCA ordination showed that the soil compaction was the key factor affecting the distribution pattern of the plant species under grazing. The variance decomposition indicated that the soil factors together explained 30.5% of the distribution of the plant species, in particular the soil physical properties alone explained 22.8% of the distribution of the plant species, which had the highest rate of contribution to the plant species distribution. The soil physical properties affected the distribution pattern of plant species on grazed alpine meadow.

  12. Gradients in Catostomid assemblages along a reservoir cascade

    USGS Publications Warehouse

    Miranda, Leandro E.; Keretz, Kevin R.; Gilliland, Chelsea R.

    2017-01-01

    Serial impoundment of major rivers leads to alterations of natural flow dynamics and disrupts longitudinal connectivity. Catostomid fishes (suckers, family Catostomidae) are typically found in riverine or backwater habitats yet are able to persist in impounded river systems. To the detriment of conservation, there is limited information about distribution of catostomid fishes in impounded rivers. We examined the longitudinal distribution of catostomid fishes over 23 reservoirs of the Tennessee River reservoir cascade, encompassing approximately 1600 km. Our goal was to develop a basin-scale perspective to guide conservation efforts. Catostomid species composition and assemblage structure changed longitudinally along the reservoir cascade. Catostomid species biodiversity was greatest in reservoirs lower in the cascade. Assemblage composition shifted from dominance by spotted sucker Minytrema melanops and buffalos Ictiobus spp. in the lower reservoirs to carpsuckers Carpiodes spp. midway through the cascade and redhorses Moxostoma spp. in the upper reservoirs. Most species did not extend the length of the cascade, and some species were rare, found in low numbers and in few reservoirs. The observed gradients in catostomid assemblages suggest the need for basin-scale conservation measures focusing on three broad areas: (1) conservation and management of the up-lake riverine reaches of the lower reservoirs, (2) maintenance of the access to quality habitat in tributaries to the upper reservoirs and (3) reintroductions into currently unoccupied habitat within species' historic distributions

  13. Reservoir area of influence and implications for fisheries management

    USGS Publications Warehouse

    Martin, Dustin R.; Chizinski, Christopher J.; Pope, Kevin L.

    2015-01-01

    Understanding the spatial area that a reservoir draws anglers from, defined as the reservoir's area of influence, and the potential overlap of that area of influence between reservoirs is important for fishery managers. Our objective was to define the area of influence for reservoirs of the Salt Valley regional fishery in southeastern Nebraska using kernel density estimation. We used angler survey data obtained from in-person interviews at 17 reservoirs during 2009–2012. The area of influence, defined by the 95% kernel density, for reservoirs within the Salt Valley regional fishery varied, indicating that anglers use reservoirs differently across the regional fishery. Areas of influence reveal angler preferences in a regional context, indicating preferred reservoirs with a greater area of influence. Further, differences in areas of influences across time and among reservoirs can be used as an assessment following management changes on an individual reservoir or within a regional fishery. Kernel density estimation provided a clear method for creating spatial maps of areas of influence and provided a two-dimensional view of angler travel, as opposed to the traditional mean travel distance assessment.

  14. Current in nanojunctions: Effects of reservoir coupling

    NASA Astrophysics Data System (ADS)

    Yadalam, Hari Kumar; Harbola, Upendra

    2018-07-01

    We study the effect of system reservoir coupling on currents flowing through quantum junctions. We consider two simple double-quantum dot configurations coupled to two external fermionic reservoirs and study the net current flowing between the two reservoirs. The net current is partitioned into currents carried by the eigenstates of the system and by the coherences between the eigenstates induced due to coupling with the reservoirs. We find that current carried by populations is always positive whereas current carried by coherences are negative for large couplings. This results in a non-monotonic dependence of the net current on the coupling strength. We find that in certain cases, the net current can vanish at large couplings due to cancellation between currents carried by the eigenstates and by the coherences. These results provide new insights into the non-trivial role of system-reservoir couplings on electron transport through quantum dot junctions. In the presence of weak coulomb interactions, net current as a function of system reservoir coupling strength shows similar trends as for the non-interacting case.

  15. Bathymetric contours of Breckenridge Reservoir, Quantico, Virginia

    USGS Publications Warehouse

    Wicklein, S.M.; Lotspeich, R.R.; Banks, R.B.

    2012-01-01

    Breckenridge Reservoir, built in 1938, is fed by Chopawamsic Creek and South Branch Chopawamsic Creek. The Reservoir is a main source of drinking water for the U.S. Marine Corps (USMC) Base in Quantico, Virginia. The U.S. Geological Survey (USGS), in cooperation with the USMC, conducted a bathymetric survey of Breckenridge Reservoir in March 2009. The survey was conducted to provide the USMC Natural Resources and Environmental Affairs (NREA) with information regarding reservoir storage capacity and general bathymetric properties. The bathymetric survey can provide a baseline for future work on sediment loads and deposition rates for the reservoir. Bathymetric data were collected using a boat-mounted Wide Area Augmentation System (WAAS) differential global positioning system (DGPS), echo depth-sounding equipment, and computer software. Data were exported into a geographic information system (GIS) for mapping and calculating area and volume. Reservoir storage volume at the time of the survey was about 22,500,000 cubic feet (517 acre-feet) with a surface area of about 1,820,000 square feet (41.9 acres).

  16. PLANET TOPERS: Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS.

    PubMed

    Dehant, V; Asael, D; Baland, R M; Baludikay, B K; Beghin, J; Belza, J; Beuthe, M; Breuer, D; Chernonozhkin, S; Claeys, Ph; Cornet, Y; Cornet, L; Coyette, A; Debaille, V; Delvigne, C; Deproost, M H; De WInter, N; Duchemin, C; El Atrassi, F; François, C; De Keyser, J; Gillmann, C; Gloesener, E; Goderis, S; Hidaka, Y; Höning, D; Huber, M; Hublet, G; Javaux, E J; Karatekin, Ö; Kodolanyi, J; Revilla, L Lobo; Maes, L; Maggiolo, R; Mattielli, N; Maurice, M; McKibbin, S; Morschhauser, A; Neumann, W; Noack, L; Pham, L B S; Pittarello, L; Plesa, A C; Rivoldini, A; Robert, S; Rosenblatt, P; Spohn, T; Storme, J -Y; Tosi, N; Trinh, A; Valdes, M; Vandaele, A C; Vanhaecke, F; Van Hoolst, T; Van Roosbroek, N; Wilquet, V; Yseboodt, M

    2016-11-01

    The Interuniversity Attraction Pole (IAP) 'PLANET TOPERS' (Planets: Tracing the Transfer, Origin, Preservation, and Evolution of their Reservoirs) addresses the fundamental understanding of the thermal and compositional evolution of the different reservoirs of planetary bodies (core, mantle, crust, atmosphere, hydrosphere, cryosphere, and space) considering interactions and feedback mechanisms. Here we present the first results after 2 years of project work.

  17. Bathymetry and capacity of Shawnee Reservoir, Oklahoma, 2016

    USGS Publications Warehouse

    Ashworth, Chad E.; Smith, S. Jerrod; Smith, Kevin A.

    2017-02-13

    Shawnee Reservoir (locally known as Shawnee Twin Lakes) is a man-made reservoir on South Deer Creek with a drainage area of 32.7 square miles in Pottawatomie County, Oklahoma. The reservoir consists of two lakes connected by an equilibrium channel. The southern lake (Shawnee City Lake Number 1) was impounded in 1935, and the northern lake (Shawnee City Lake Number 2) was impounded in 1960. Shawnee Reservoir serves as a municipal water supply, and water is transferred about 9 miles by gravity to a water treatment plant in Shawnee, Oklahoma. Secondary uses of the reservoir are for recreation, fish and wildlife habitat, and flood control. Shawnee Reservoir has a normal-pool elevation of 1,069.0 feet (ft) above North American Vertical Datum of 1988 (NAVD 88). The auxiliary spillway, which defines the flood-pool elevation, is at an elevation of 1,075.0 ft.The U.S. Geological Survey (USGS), in cooperation with the City of Shawnee, has operated a real-time stage (water-surface elevation) gage (USGS station 07241600) at Shawnee Reservoir since 2006. For the period of record ending in 2016, this gage recorded a maximum stage of 1,078.1 ft on May 24, 2015, and a minimum stage of 1,059.1 ft on April 10–11, 2007. This gage did not report reservoir storage prior to this report (2016) because a sufficiently detailed and thoroughly documented bathymetric (reservoir-bottom elevation) survey and corresponding stage-storage relation had not been published. A 2011 bathymetric survey with contours delineated at 5-foot intervals was published in Oklahoma Water Resources Board (2016), but that publication did not include a stage-storage relation table. The USGS, in cooperation with the City of Shawnee, performed a bathymetric survey of Shawnee Reservoir in 2016 and released the bathymetric-survey data in 2017. The purposes of the bathymetric survey were to (1) develop a detailed bathymetric map of the reservoir and (2) determine the relations between stage and reservoir storage

  18. Fish habitat degradation in U.S. reservoirs

    USGS Publications Warehouse

    Miranda, L.E.; Spickard, M.; Dunn, T.; Webb, K.M.; Aycock, J.N.; Hunt, K.

    2010-01-01

    As the median age of the thousands of large reservoirs (> 200 ha) in the United States tops 50, many are showing various signs of fish habitat degradation. Our goal was to identify major factors degrading fish habitat in reservoirs across the country, and to explore regional degradation patterns. An online survey including 14 metrics was scored on a 0 (no degradation) to 5 (high degradation) point scale by 221 fisheries scientists (92% response rate) to describe degradation in 482 reservoirs randomly distributed throughout the continental United States. The highest scored sources of degradation were lack of aquatic macrophytes (41% of the reservoirs scored as 4-5), lack or loss of woody debris (35% scored 4-5), mistimed water level fluctuations (34% scored 4-5), and sedimentation (31% scored 4-5). Factor analysis identified five primary degradation factors that accounted for most of the variability in the 14 degradation metrics. The factors reflected siltation, structural habitat, eutrophication, water regime, and aquatic plants. Three degradation factors were driven principally by in-reservoir processes, whereas the other two were driven by inputs from the watershed. A comparison across U.S. regions indicated significant geographical differences in degradation relative to the factors emphasized by each region. Reservoirs sometimes have been dismissed as unnatural and disruptive, but they are a product of public policy, a critical feature of landscapes, and they cannot be overlooked if managers are to effectively conserve river systems. Protection and restoration of reservoir habitats may be enhanced with a broader perspective that includes watershed management, in addition to in reservoir activities.

  19. Analysis and application of classification methods of complex carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Li, Xiongyan; Qin, Ruibao; Ping, Haitao; Wei, Dan; Liu, Xiaomei

    2018-06-01

    There are abundant carbonate reservoirs from the Cenozoic to Mesozoic era in the Middle East. Due to variation in sedimentary environment and diagenetic process of carbonate reservoirs, several porosity types coexist in carbonate reservoirs. As a result, because of the complex lithologies and pore types as well as the impact of microfractures, the pore structure is very complicated. Therefore, it is difficult to accurately calculate the reservoir parameters. In order to accurately evaluate carbonate reservoirs, based on the pore structure evaluation of carbonate reservoirs, the classification methods of carbonate reservoirs are analyzed based on capillary pressure curves and flow units. Based on the capillary pressure curves, although the carbonate reservoirs can be classified, the relationship between porosity and permeability after classification is not ideal. On the basis of the flow units, the high-precision functional relationship between porosity and permeability after classification can be established. Therefore, the carbonate reservoirs can be quantitatively evaluated based on the classification of flow units. In the dolomite reservoirs, the average absolute error of calculated permeability decreases from 15.13 to 7.44 mD. Similarly, the average absolute error of calculated permeability of limestone reservoirs is reduced from 20.33 to 7.37 mD. Only by accurately characterizing pore structures and classifying reservoir types, reservoir parameters could be calculated accurately. Therefore, characterizing pore structures and classifying reservoir types are very important to accurate evaluation of complex carbonate reservoirs in the Middle East.

  20. A Model of Beaver Meadow Complex Evolution in the Silvies River Basin, Oregon.

    NASA Astrophysics Data System (ADS)

    Nash, C.; Grant, G.; Campbell, S. D.

    2014-12-01

    There is increasing evidence to suggest that the pervasive incision seen in the American West is due, in part, to the removal of beaver (Castor canadensis) in the first half of the 19th century. New restoration strategies for these systems focus on the reintroduction of beaver and construction of beaver dam analogs. Such dams locally raise streams beds and water tables, reconnect incised channels to their former floodplains, trap sediment, increase hydraulic diversity, and promote riparian vegetation. However, the geomorphic and hydrologic impacts of both the original beaver dams and their analogs are poorly understood. Observations in the Silvies River basin in Oregon, USA - an upland, semi-arid catchment with extremely high historic beaver populations and a presently recovering population, inform a conceptual model for valley floor evolution with beaver dams. The evolution of the beaver dam complex is characterized by eight stages of morphologic adjustment: water impoundment, sediment deposition, pond filling, multi-thread meadow creation, dam breaching, channel incision, channel widening, and floodplain development. Well-constructed beaver dams, given sufficient time and sediment flux, will evolve from a series of ponds to a multi-threaded channel flowing through a wet meadow complex. If a dam in the system fails, due to overtopping, undercutting, lack of maintenance, or abandonment, the upstream channel will concentrate into a single channel and incise, followed over time by widening once critical bank heights are exceeded. From stratigraphic, dendrochronologic, and geomorphic measurements, we are constraining average timescales associated with each stage's duration and transitional period. Measured sedimentation rates behind modern beaver dam analogs on five stream systems permit calculation of sediment flux over recent time periods, and aid in developing regional rates of sediment deposition over a range of drainage areas and gradients. Stratigraphic and

  1. Applicability of WRF-Lake System in Studying Reservoir-Induced Impacts on Local Climate: Case Study of Two Reservoirs with Contrasting Characteristics

    NASA Astrophysics Data System (ADS)

    Wang, F.; Zhu, D.; Ni, G.; Sun, T.

    2017-12-01

    Large reservoirs play a key role in regional hydrological cycles as well as in modulating the local climate. The emerging large reservoirs in concomitant with rapid hydropower exploitation in southwestern China warrant better understanding of their impacts on local and regional climates. One of the crucial pathways through which reservoirs impact the climate is lake-atmospheric interaction. Although such interactions have been widely studied with numeric weather prediction (NWP) models, an outstanding limitation across various NWPs resides on the poor thermodynamic representation of lakes. The recent version of Weather Research and Forecasting (WRF) system has been equipped with a one-dimensional lake model to better represent the thermodynamics of large water body and has been shown to enhance the its predication skill in the lake-atmospheric interaction. In this study, we further explore the applicability of the WRF-Lake system in two reservoirs with contrasting characteristics: Miyun Reservoir with an average depth of 30 meters in North China Plain, and Nuozhadu Reservoir with an average depth of 200 meters in the Tibetan Plateau Region. Driven by the high spatiotemporal resolution meteorological forcing data, the WRF-Lake system is used to simulate the water temperature and surface energy budgets of the two reservoirs after the evaluation against temperature observations. The simulated results show the WRF-Lake model can well predict the vertical profile of water temperature in Miyun Reservoir, but underestimates deep water temperature and overestimates surface temperature in the deeper Nuozhadu Reservoir. In addition, sensitivity analysis indicates the poor performance of the WRF-Lake system in Nuozhadu Reservoir could be attributed to the weak vertical mixing in the model, which can be improved by tuning the eddy diffusion coefficient ke . Keywords: reservoir-induced climatic impact; lake-atmospheric interaction; WRF-Lake system; hydropower exploitation

  2. Feedbacks between Reservoir Operation and Floodplain Development

    NASA Astrophysics Data System (ADS)

    Wallington, K.; Cai, X.

    2017-12-01

    The increased connectedness of socioeconomic and natural systems warrants the study of them jointly as Coupled Natural-Human Systems (CNHS) (Liu et al., 2007). One such CNHS given significant attention in recent years has been the coupled sociological-hydrological system of floodplains. Di Baldassarre et al. (2015) developed a model coupling floodplain development and levee heightening, a flood control measure, which demonstrated the "levee effect" and "adaptation effect" seen in observations. Here, we adapt the concepts discussed by Di Baldassarre et al. (2015) and apply them to floodplains in which the primary flood control measure is reservoir storage, rather than levee construction, to study the role of feedbacks between reservoir operation and floodplain development. Specifically, we investigate the feedback between floodplain development and optimal management of trade-offs between flood water conservation and flood control. By coupling a socio-economic model based on that of Di Baldassarre et al. (2015) with a reservoir optimization model based on that discussed in Ding et al. (2017), we show that reservoir operation rules can co-evolve with floodplain development. Furthermore, we intend to demonstrate that the model results are consistent with real-world data for reservoir operating curves and floodplain development. This model will help explain why some reservoirs are currently operated for purposes which they were not originally intended and thus inform reservoir design and construction.

  3. Optimizing withdrawal from drinking water reservoirs to reduce downstream temperature pollution and reservoir hypoxia.

    PubMed

    Weber, M; Rinke, K; Hipsey, M R; Boehrer, B

    2017-07-15

    Sustainable management of drinking water reservoirs requires balancing the demands of water supply whilst minimizing environmental impact. This study numerically simulates the effect of an improved withdrawal scheme designed to alleviate the temperature pollution downstream of a reservoir. The aim was to identify an optimal withdrawal strategy such that water of a desirable discharge temperature can be supplied downstream without leading to unacceptably low oxygen concentrations within the reservoir. First, we calibrated a one-dimensional numerical model for hydrodynamics and oxygen dynamics (GLM-AED2), verifying that the model reproduced water temperatures and hypolimnetic dissolved oxygen concentrations accurately over a 5 year period. Second, the model was extended to include an adaptive withdrawal functionality, allowing for a prescribed withdrawal temperature to be found, with the potential constraint of hypolimnetic oxygen concentration. Scenario simulations on epi-/metalimnetic withdrawal demonstrate that the model is able to autonomously determine the best withdrawal height depending on the thermal structure and the hypolimnetic oxygen concentration thereby optimizing the ability to supply a desirable discharge temperature to the downstream river during summer. This new withdrawal strategy also increased the hypolimnetic raw water volume to be used for drinking water supply, but reduced the dissolved oxygen concentrations in the deep and cold water layers (hypolimnion). Implications of the results for reservoir management are discussed and the numerical model is provided for operators as a simple and efficient tool for optimizing the withdrawal strategy within different reservoir contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Reservoir N2O data

    EPA Pesticide Factsheets

    Dissolved oxygen, dissolved nitrous oxide, and water temperature in reservoirs.This dataset is associated with the following publication:Beaulieu , J., C. Nietch , and J. Young. Source or sink: Insight on controls of nitrous oxide biogeochemistry from a 20 reservoir survey. Journal of Geophysical Research - Biogeosciences. American Geophysical Union, Washington, DC, USA, 120(10): 1995-2010, (2015).

  5. Research Note:An approach to integrated assessement of reservoir siltation: the Joaquín Costa reservoir as a case study

    NASA Astrophysics Data System (ADS)

    Navas, A.; Valero Garcés, B.; Machín, J.

    In 1932, the Esera river was dammed at the foothills of the Pyrenean External Ranges; since then, sedimentation has reduced its water storage capacity by a third. This study of the sediments in the Joaquín Costa reservoir has been based on detailed sedimentological examination and other analysis of mineralogy, grain size distribution and the chemical components of the materials accumulated at the bottom of the reservoir. Interpretations are based on results from four sediment cores collected at sites representative of the main environments in the reservoir. Records of known flood events and of reservoir management data have been combined with a 137Cs-derived chronology. Thus, it has been possible to ascribe the sedimentary record at the different reservoir environments to specific years, as well as some main changes in the facies types and sediment components. This methodology is a first approach to assessing siltation processes and dynamics in Mediterranean mountain reservoirs.

  6. Application of Decision Tree to Obtain Optimal Operation Rules for Reservoir Flood Control Considering Sediment Desilting-Case Study of Tseng Wen Reservoir

    NASA Astrophysics Data System (ADS)

    ShiouWei, L.

    2014-12-01

    Reservoirs are the most important water resources facilities in Taiwan.However,due to the steep slope and fragile geological conditions in the mountain area,storm events usually cause serious debris flow and flood,and the flood then will flush large amount of sediment into reservoirs.The sedimentation caused by flood has great impact on the reservoirs life.Hence,how to operate a reservoir during flood events to increase the efficiency of sediment desilting without risk the reservoir safety and impact the water supply afterward is a crucial issue in Taiwan.  Therefore,this study developed a novel optimization planning model for reservoir flood operation considering flood control and sediment desilting,and proposed easy to use operating rules represented by decision trees.The decision trees rules have considered flood mitigation,water supply and sediment desilting.The optimal planning model computes the optimal reservoir release for each flood event that minimum water supply impact and maximum sediment desilting without risk the reservoir safety.Beside the optimal flood operation planning model,this study also proposed decision tree based flood operating rules that were trained by the multiple optimal reservoir releases to synthesis flood scenarios.The synthesis flood scenarios consists of various synthesis storm events,reservoir's initial storage and target storages at the end of flood operating.  Comparing the results operated by the decision tree operation rules(DTOR) with that by historical operation for Krosa Typhoon in 2007,the DTOR removed sediment 15.4% more than that of historical operation with reservoir storage only8.38×106m3 less than that of historical operation.For Jangmi Typhoon in 2008,the DTOR removed sediment 24.4% more than that of historical operation with reservoir storage only 7.58×106m3 less than that of historical operation.The results show that the proposed DTOR model can increase the sediment desilting efficiency and extend the

  7. Current Challenges in Geothermal Reservoir Simulation

    NASA Astrophysics Data System (ADS)

    Driesner, T.

    2016-12-01

    Geothermal reservoir simulation has long been introduced as a valuable tool for geothermal reservoir management and research. Yet, the current generation of simulation tools faces a number of severe challenges, in particular in the application for novel types of geothermal resources such as supercritical reservoirs or hydraulic stimulation. This contribution reviews a number of key problems: Representing the magmatic heat source of high enthalpy resources in simulations. Current practice is representing the deeper parts of a high enthalpy reservoir by a heat flux or temperature boundary condition. While this is sufficient for many reservoir management purposes it precludes exploring the chances of very high enthalpy resources in the deepest parts of such systems as well as the development of reliable conceptual models. Recent 2D simulations with the CSMP++ simulation platform demonstrate the potential of explicitly including the heat source, namely for understanding supercritical resources. Geometrically realistic incorporation of discrete fracture networks in simulation. A growing number of simulation tools can, in principle, handle flow and heat transport in discrete fracture networks. However, solving the governing equations and representing the physical properties are often biased by introducing strongly simplifying assumptions. Including proper fracture mechanics in complex fracture network simulations remains an open challenge. Improvements of the simulating chemical fluid-rock interaction in geothermal reservoirs. Major improvements have been made towards more stable and faster numerical solvers for multicomponent chemical fluid rock interaction. However, the underlying thermodynamic models and databases are unable to correctly address a number of important regions in temperature-pressure-composition parameter space. Namely, there is currently no thermodynamic formalism to describe relevant chemical reactions in supercritical reservoirs. Overcoming this

  8. 75 FR 53283 - Yankee Cove Development, LLC; Notice of Declaration of Intention and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... reservoir; (2) a proposed eight-foot-high, twenty-two-foot-wide dam; (3) a twenty-inch diameter, 630-foot... water or water power from a government dam; or (4) if applicable, has involved or would involve any... capacity, or have otherwise significantly modified the project's pre-1935 design or operation. l. Locations...

  9. The Obtaining of Oil from an Oil Reservoir.

    ERIC Educational Resources Information Center

    Dawe, R. A.

    1979-01-01

    Discusses the mechanics of how an actual oil reservoir works and provides some technical background in physics. An experiment which simulates an oil reservoir and demonstrates quantitatively all the basic concepts of oil reservoir rock properties is also presented. (HM)

  10. Fish habitat degradation in U.S. reservoirs

    USGS Publications Warehouse

    Miranda, Leandro E.; Spickard, M.; Dunn, T.; Webb, K.M.; Aycock, J.N.; Hunt, K.

    2010-01-01

    As the median age of the thousands of large reservoirs (> 200 ha) in the United States tops 50, many are showing various signs of fish habitat degradation. Our goal was to identify major factors degrading fish habitat in reservoirs across the country, and to explore regional degradation patterns. An online survey including 14 metrics was scored on a 0 (no degradation) to 5 (high degradation) point scale by 221 fisheries scientists (92% response rate) to describe degradation in 482 reservoirs randomly distributed throughout the continental United States. The highest scored sources of degradation were lack of aquatic macrophytes (41% of the reservoirs scored as 4–5), lack or loss of woody debris (35% scored 4–5), mistimed water level fluctuations (34% scored 4–5), and sedimentation (31% scored 4–5). Factor analysis identified five primary degradation factors that accounted for most of the variability in the 14 degradation metrics. The factors reflected siltation, structural habitat, eutrophication, water regime, and aquatic plants. Three degradation factors were driven principally by in-reservoir processes, whereas the other two were driven by inputs from the watershed. A comparison across U.S. regions indicated significant geographical differences in degradation relative to the factors emphasized by each region. Reservoirs sometimes have been dismissed as unnatural and disruptive, but they are a product of public policy, a critical feature of landscapes, and they cannot be overlooked if managers are to effectively conserve river systems. Protection and restoration of reservoir habitats may be enhanced with a broader perspective that includes watershed management, in addition to in reservoir activities.

  11. Microbial Life in an Underground Gas Storage Reservoir

    NASA Astrophysics Data System (ADS)

    Bombach, Petra; van Almsick, Tobias; Richnow, Hans H.; Zenner, Matthias; Krüger, Martin

    2015-04-01

    While underground gas storage is technically well established for decades, the presence and activity of microorganisms in underground gas reservoirs have still hardly been explored today. Microbial life in underground gas reservoirs is controlled by moderate to high temperatures, elevated pressures, the availability of essential inorganic nutrients, and the availability of appropriate chemical energy sources. Microbial activity may affect the geochemical conditions and the gas composition in an underground reservoir by selective removal of anorganic and organic components from the stored gas and the formation water as well as by generation of metabolic products. From an economic point of view, microbial activities can lead to a loss of stored gas accompanied by a pressure decline in the reservoir, damage of technical equipment by biocorrosion, clogging processes through precipitates and biomass accumulation, and reservoir souring due to a deterioration of the gas quality. We present here results from molecular and cultivation-based methods to characterize microbial communities inhabiting a porous rock gas storage reservoir located in Southern Germany. Four reservoir water samples were obtained from three different geological horizons characterized by an ambient reservoir temperature of about 45 °C and an ambient reservoir pressure of about 92 bar at the time of sampling. A complementary water sample was taken at a water production well completed in a respective horizon but located outside the gas storage reservoir. Microbial community analysis by Illumina Sequencing of bacterial and archaeal 16S rRNA genes indicated the presence of phylogenetically diverse microbial communities of high compositional heterogeneity. In three out of four samples originating from the reservoir, the majority of bacterial sequences affiliated with members of the genera Eubacterium, Acetobacterium and Sporobacterium within Clostridiales, known for their fermenting capabilities. In

  12. Safety drain system for fluid reservoir

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)

    2012-01-01

    A safety drain system includes a plurality of drain sections, each of which defines distinct fluid flow paths. At least a portion of the fluid flow paths commence at a side of the drain section that is in fluid communication with a reservoir's fluid. Each fluid flow path at the side communicating with the reservoir's fluid defines an opening having a smallest dimension not to exceed approximately one centimeter. The drain sections are distributed over at least one surface of the reservoir. A manifold is coupled to the drain sections.

  13. Monitoring Earth's reservoir and lake dynamics from space

    NASA Astrophysics Data System (ADS)

    Donchyts, G.; Eilander, D.; Schellekens, J.; Winsemius, H.; Gorelick, N.; Erickson, T.; Van De Giesen, N.

    2016-12-01

    Reservoirs and lakes constitute about 90% of the Earth's fresh surface water. They play a major role in the water cycle and are critical for the ever increasing demands of the world's growing population. Water from reservoirs is used for agricultural, industrial, domestic, and other purposes. Current digital databases of lakes and reservoirs are scarce, mainly providing only descriptive and static properties of the reservoirs. The Global Reservoir and Dam (GRanD) database contains almost 7000 entries while OpenStreetMap counts more than 500 000 entries tagged as a reservoir. In the last decade several research efforts already focused on accurate estimates of surface water dynamics, mainly using satellite altimetry, However, currently they are limited only to less than 1000 (mostly large) water bodies. Our approach is based on three main components. Firstly, a novel method, allowing automated and accurate estimation of surface area from (partially) cloud-free optical multispectral or radar satellite imagery. The algorithm uses satellite imagery measured by Landsat, Sentinel and MODIS missions. Secondly, a database to store reservoir static and dynamic parameters. Thirdly, a web-based tool, built on top of Google Earth Engine infrastructure. The tool allows estimation of surface area for lakes and reservoirs at planetary-scale at high spatial and temporal resolution. A prototype version of the method, database, and tool will be presented as well as validation using in-situ measurements.

  14. Optimal Reservoir Operation using Stochastic Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Sahu, R.; McLaughlin, D.

    2016-12-01

    Hydropower operations are typically designed to fulfill contracts negotiated with consumers who need reliable energy supplies, despite uncertainties in reservoir inflows. In addition to providing reliable power the reservoir operator needs to take into account environmental factors such as downstream flooding or compliance with minimum flow requirements. From a dynamical systems perspective, the reservoir operating strategy must cope with conflicting objectives in the presence of random disturbances. In order to achieve optimal performance, the reservoir system needs to continually adapt to disturbances in real time. Model Predictive Control (MPC) is a real-time control technique that adapts by deriving the reservoir release at each decision time from the current state of the system. Here an ensemble-based version of MPC (SMPC) is applied to a generic reservoir to determine both the optimal power contract, considering future inflow uncertainty, and a real-time operating strategy that attempts to satisfy the contract. Contract selection and real-time operation are coupled in an optimization framework that also defines a Pareto trade off between the revenue generated from energy production and the environmental damage resulting from uncontrolled reservoir spills. Further insight is provided by a sensitivity analysis of key parameters specified in the SMPC technique. The results demonstrate that SMPC is suitable for multi-objective planning and associated real-time operation of a wide range of hydropower reservoir systems.

  15. Investigating The Relationship Between Structural Geology and Wetland Loss Near Golden Meadow, Louisiana By Utilizing 3D Seismic Reflection and Well Log Data

    NASA Astrophysics Data System (ADS)

    Johnston, A. S.; Zhang, R.; Gottardi, R.; Dawers, N. H.

    2017-12-01

    Wetland loss is one of the greatest environmental and economic threats in the deltaic plain of the Gulf Coast. This loss is controlled by subsidence, sea level rise, decreased sediment supply rates, movement along normal faults, salt tectonics, fluid extraction related to oil, gas and water exploration, and compaction. However, the interplay and feedback between these different processes are still poorly understood. In this study, we investigate the role of active faulting and salt tectonics on wetland loss in an area located between Golden Meadow and Leeville, Louisiana. Using industry 3D seismic and well log data, we investigate key segments of the Golden Meadow fault zone and map shallow faults that overlie the Leeville salt dome, to compare those fault planes with areas of wetland loss and subsidence. Faults were mapped to a depth of 1200 m, and well logs were tied to the upper 180 m of the seismic data to make accurate projections of the faults to the surface. Preliminary results highlight a graben structure south of a segment of the Golden Meadow fault. Well log and published data from shallow borings reveal a thicker Holocene accumulation at the center of the graben, up to 45 m than on the flanks of the graben. The location of this graben spatially correlates with Catfish Lake, and part of it overlies salt adjacent to the main fault surface. Bayou Lafourche, the main distributary channel of the Lafourche lobe of the Mississippi River delta complex, appears to have its path controlled by faults. Bayou Lafourche changes orientation and flows parallel to, and on the downthrown side of, two radial faults associated with the Leeville salt dome. These preliminary results indicate that there is a relationship between surface geomorphology and subsurface structures that, at least in part, exert a control on wetland loss in southern Louisiana.

  16. Plant communities, soil carbon, and soil nitrogen properties in a successional gradient of sub-alpine meadows on the eastern Tibetan plateau of China.

    PubMed

    Li, Wen-Jin; Li, Jin-Hua; Knops, Johannes M H; Wang, Gang; Jia, Ju-Jie; Qin, Yan-Yan

    2009-10-01

    To assess the recovery trajectory and self-maintenance of restored ecosystems, a successional gradient (1, 3, 5, 15, and 30 years after abandonment) was established in a sub-alpine meadow of the eastern Tibetan Plateau in China. Plant communities and soil carbon and nitrogen properties were investigated and analyzed. Regression analyses were used to assess the models (linear or quadratic) relating measures of species richness, soil carbon and nitrogen properties to fallow time. We found that species richness (S) increased over the first 20 years but decreased thereafter, and aboveground biomass showed a linear increase along the fallow time gradient. The richness of different functional groups (forb, grass and legume) changed little along the fallow time gradient, but their corresponding above ground biomass showed the U-shaped, humped or linear pattern. Soil microbial carbon (MBC) and nitrogen (MBN) in the upper 20 cm showed a U-shaped pattern along the fallow time gradient. However, soil organic carbon (C(org)) and total nitrogen (TN) in the soil at depth greater than 20 cm showed significant patterns of linear decline along the fallow time gradient. The threshold models of species richness reflected best the recovery over the 15 year fallow period. These results indicated that fallow time had a greater influence on development of the plant community than soil processes in abandoned fields in sub-alpine meadow ecosystem. These results also suggested that although the succession process did not significantly increase soil C, an increase in microbial biomass at the latter stage of succession could promote the decomposability of plant litter. Therefore, abandoned fields in sub-alpine meadow ecosystem may have a high resilience and strong rehabilitating capability under natural recovery condition.

  17. [Responses of plant community structure and species composition to warming and N addition in an alpine meadow, northern Tibetan Plateau, China].

    PubMed

    Zong, Ning; Chai, Xi; Shi, Pei Li; Jiang, Jing; Niu, Ben; Zhang, Xian Zhou; He, Yong Tao

    2016-12-01

    Global climate warming and increasing nitrogen (N) deposition, as controversial global environmental issues, may distinctly affect the functions and processes of terrestrial ecosystems. It has been reported that the Qinghai-Tibet Plateau has been experiencing significant warming in recent decades, especially in winter. Previous studies have mainly focused on the effects of warming all the year round; however, few studies have tested the effects of winter warming. To investigate the effects of winter warming and N addition on plant community structure and species composition of alpine meadow, long-term N addition and simulated warming experiment was conducted in alpine meadow from 2010 in Damxung, northern Tibet. The experiment consisted of three warming patterns: Year-round warming (YW), winter warming (WW) and control (NW), crossed respectively with five N gradients: 0, 10, 20, 40, 80 kg N·hm -2 ·a -1 . From 2012 to 2014, both warming and N addition significantly affected the total coverage of plant community. Specifically, YW significantly decreased the total coverage of plant community. Without N addition, WW remarkably reduced the vegetation coverage. However, with N addition, the total vegetation coverage gradually increased with the increase of N level. Warming and N addition had different effects on plants from different functional groups. Warming significantly reduced the plant coverage of grasses and sedges, while N addition significantly enhanced the plant coverage of grasses. Regression analyses showed that the total coverage of plant community was positively related to soil water content in vigorous growth stages, indicating that the decrease in soil water content resulted from warming during dry seasons might be the main reason for the decline of total community coverage. As soil moisture in semi-arid alpine meadow is mainly regulated by rainfalls, our results indicated that changes in spatial and temporal patterns of rainfalls under the future

  18. Greenhouse gas emissions from reservoir water surfaces: A ...

    EPA Pesticide Factsheets

    Collectively, reservoirs created by dams are thought to be an important source ofgreenhouse gases (GHGs) to the atmosphere. So far, efforts to quantify, model, andmanage these emissions have been limited by data availability and inconsistenciesin methodological approach. Here we synthesize worldwide reservoir methane,carbon dioxide, and nitrous oxide emission data with three main objectives: (1) togenerate a global estimate of GHG emissions from reservoirs, (2) to identify the bestpredictors of these emissions, and (3) to consider the effect of methodology onemission estimates. We estimate that GHG emission from reservoir water surfacesaccount for 0.8 (0.5-1.2) Pg CO2-equivalents per year, equal to ~1.3 % of allanthropogenic GHG emissions, with the majority (79%) of this forcing due tomethane. We also discuss the potential for several alternative pathways such as damdegassing and downstream emissions to contribute significantly to overall GHGemissions. Although prior studies have linked reservoir GHG emissions to systemage and latitude, we find that factors related to reservoir productivity are betterpredictors of emission. Finally, as methane contributed the most to total reservoirGHG emissions, it is important that future monitoring campaigns incorporatemethane emission pathways, especially ebullition. To inform the public.

  19. Nutrient budget for Saguling Reservoir, West Java, Indonesia.

    PubMed

    Hart, Barry T; van Dok, Wendy; Djuangsih, Nani

    2002-04-01

    A preliminary nutrient budget for Saguling Reservoir is reported as a first attempt to quantify the behaviour of nutrients entering this reservoir. This work is part of a larger Indonesia-Australia collaborative research and training project, involving Padjadjaran University and Monash University, established to study nutrient dynamics in Saguling Reservoir. Saguling Reservoir, the first of a chain of three large reservoirs (Saguling, Cirata and Jatilahur), built on the Citarum River in central Java, was completed in 1985. It has already become highly polluted, particularly with domestic and industrial effluent (organic matter, nutrients, heavy metals) from the urban areas of Bandung (population 2 million). The reservoir experiences major water quality problems, including excessive growths of floating plants, toxic cyanobacterial blooms and regular fish-kills. The work reported in this paper shows that Saguling receives a very large nutrient load from the city of Bandung and because of this, is highly eutrophic. It is unlikely that the water quality of Saguling will improve until a substantial part of Bandung is sewered and adequate discharge controls are placed on the many industries in the region upstream of the reservoir.

  20. Heavy oil reservoirs recoverable by thermal technology

    NASA Astrophysics Data System (ADS)

    Kujawa, P.

    1981-02-01

    Data are presented on reservoirs that contain heavy oil in the 8 to 25(0) API gravity range, contain at least ten million barrels of oil currently in place, and are noncarbonate in lithology. The reservoirs within these constraints were analyzed in light of applicable recovery technology, either steam drive or in situ combustion, and then ranked hierarchically as candidate reservoirs. An extensive basis for heavy oil development is provided, however, it is recommended that data on carbonate reservoirs, and tar sands be compiled. It was discovered that operators, and industrial and government analysts will lump heavy oil reservoirs as poor producers, however, it was found that upon detailed analysis, a large number, so categorized, were producing very well. A big problem in producing heavy oil is that of regulation; specifically, it was found that the regulatory constraints are so fluid and changing that one cannot settle on a favorable recovery and production plan with enough confidence in the regulatory requirements to commit capital to the project.