Sample records for yaracuy municipio san

  1. 49. Aerial view of statehouse and San Cristobal, Fuerte El ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. Aerial view of statehouse and San Cristobal, Fuerte El Abanico, San Carlos ravelin and Atlantic Ocean in the background - Castillo de San Cristobal, Boulevard Norzagaray, San Juan, San Juan Municipio, PR

  2. 40 CFR 81.355 - Puerto Rico.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Municipio San German Municipio San Juan Municipio San Lorenzo Municipio San Sebastian Municipio Santa Isabel... Municipio Rincon Municipio Rio Grande Municipio Sabana Grande Municipio Salinas Municipio San German... Rincón Municipio Río Grande Municipio Sabana Grande Municipio Salinas Municipio San Germán Municipio San...

  3. Healthy Municipios in Latin America.

    PubMed

    Restrepo, H E; Llanos, G; Contreras, A; Rocabado, F; Gross, S; Suárez, J; González, J

    1995-09-01

    This article describes the Healthy Municipios movement in Latin America and gives examples of some PAHO projects that could become demonstration projects. The Healthy Municipios movement was established in the early 1990s. The movement aims to promote healthy municipalities according to objectives set forth in the 1987 Ottawa Charter on Health Promotion, the 1992 Declaration of Bogota, and the 1993 Caribbean Health Promotion Charter. The movement is a joint effort of government, the health sector, and the community in promoting health locally. Key features of the movement are its creativity, variety, political strength, and adaptation to local conditions. Technical cooperation serves the purpose of facilitating information exchange and promotes the use of modern techniques of analysis and scientific and technical information. All projects shared the following common features: initiation by the local community with strong political commitment, intersectoral organizational structure, widespread community mobilization and participation, problem solving activities, and a recognizable leader. Pioneering projects include the Comprehensive Project for Cienfuegos, Cuba; the Health Manizales, Colombia; the Network in Mexico; Baruta and El Hatillo, Venezuela; Valdivia, Chile; and San Carlos Canton, Costa Rica. It is concluded that these projects and most others aim to assure equity. These efforts are important for placing health on the political agenda and implementing healthy policies. The Valdivia project, for example, serves a population of about 120,000 in the urban city of Valdivia, the semi-urban area, and rural areas. The project was officially sanctioned by the President of Chile on World Health Day in 1993. Progress was reported in mass communication and school-based programs. Attention was directed also to prevention of risk factors for noncommunicable diseases and to the problem of traffic accidents.

  4. Preliminary inventory of mammals from Yurubí National Park, Yaracuy, Venezuela with some comments on their natural history.

    PubMed

    García, Franger J; Delgado-Jaramillo, Mariana; Machado, Marjorie; Aular, Luis

    2012-03-01

    In Venezuela, mammals represent an important group of wildlife with high anthropogenic pressures that threaten their permanence. Focused on the need to generate baseline information that allows us to contribute to document and conserve the richness of local wildlife, we conducted a mammalogical inventory in Yurubí National Park, located in Yaracuy State in Venezuela. We carried out fieldworks in three selected vegetation types: an evergreen forest at 197m, a semi-deciduous forest ranging between 100-230m, and a cloud forest at 1 446m. We used Victor, Sherman, Havahart and pitfall traps for the capture of small non-volant mammals and mist nets for bats. In addition, we carried out interviews with local residents and direct-indirect observations for medium-large sized mammals. At least 79 species inhabit the area, representing 28% of the species recorded for the North side of the country. Chiroptera (39 spp.), Carnivora (13 spp.) and Rodentia (9 spp.) were the orders with the highest richness, as expected for the Neotropics. The evergreen forest had the greatest species richness (n=68), with a sampling effort of 128 net-hours, 32 bucket-days, 16 hours of observations, and three persons interviewed, followed by cloud forest (n=45) with 324 net-hours, 790 traps-night, 77 bucket-days, 10 hours of observations, and one person interviewed. The lowest richness value was in the semi-deciduous forest (n=41), with 591 traps-night, 15 net-hours, 10 hours of observations and three persons interviewed. Data and observations obtained in this inventory (e.g., endemism, species known as "surrogate species" threatened in Venezuela) give an important role at the Yurubí National Park in the maintenance and conservation of local ecosystems and wildlife, threatened by human pressures in the Cordillera de la Costa.

  5. 46. View of Plaza de Armas taken through archway between ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. View of Plaza de Armas taken through archway between Plaza de Armas and Carmen Bastion, looking southwest - Castillo de San Felipe del Morro, Northwest end of San Juan, San Juan, San Juan Municipio, PR

  6. 14. Oblique detail; understructure beneath short span used for docking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Oblique detail; understructure beneath short span used for docking fishing boats, north of northen pillar, from northwest. - Puente Ferroviario San Antonio, Spanning San Antonio Channel at PR-1, San Juan, San Juan Municipio, PR

  7. 91. World War II observation post, Cabarello level looking from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    91. World War II observation post, Cabarello level looking from Carmen Bastion (similar to HABS PR-48-24) - Castillo de San Felipe del Morro, Northwest end of San Juan, San Juan, San Juan Municipio, PR

  8. 37. Closeup of stairs in previous photo, leading up to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. Close-up of stairs in previous photo, leading up to El Macho and down to Plaza de Armas, from Santa Barbara Bastion, viewed from northwest - Castillo de San Felipe del Morro, Northwest end of San Juan, San Juan, San Juan Municipio, PR

  9. 23. General view of the top gundeck looking northwest from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. General view of the top gundeck looking northwest from Austria Bastion showing ramp down and parapet wall of the Plaza de Armas on lower level - Castillo de San Felipe del Morro, Northwest end of San Juan, San Juan, San Juan Municipio, PR

  10. 2. Historic American Buildings Survey, Frederik C. Gjessing, Photographer January, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey, Frederik C. Gjessing, Photographer January, 1956 ELEVATION OF CHAPEL AND SALLY PORT TOWARDS THE COURTYARD PLAZA DE ARMAS, SAN FELIPE DEL MORRO. - Castillo de San Felipe del Morro Sally Port & Chapel, Northwest end of San Juan Island, San Juan, San Juan Municipio, PR

  11. 3. Historic American Buildings Survey, Frederik C. Gjessing, Photographer April ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey, Frederik C. Gjessing, Photographer April 19, 1954 MASONRY DETAIL SOUTHEAST CORNER OF BATTERY. - Escambron Bateria, Puerta de Tierra, San Juan, San Juan Municipio, PR

  12. 78 FR 53243 - Safety Zone; TriRock San Diego, San Diego Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2013-0555] RIN 1625-AA00 Safety Zone; TriRock San Diego, San Diego Bay, San Diego, CA AGENCY: Coast Guard, DHS. ACTION...-591 Safety Zone; TriRock San Diego, San Diego Bay, San Diego, CA. (a) Location. The limits of the...

  13. Medical Vanguard Diabetes Management Project

    DTIC Science & Technology

    2005-10-01

    prevention measures agreed upon]. Yaracuy al Dia. 22 June 1995. p 3. 20. Grave Epidemia de Encefalitis Equina en Yaracuy. [ Grave encephalitis epidemic in...El Carabobeño. 5 August 1995. p C—5. 45. Advierte la Asociación de Ganaderos de Carabobo: Epidemia de encefalitis equina puede crear una grave ...relevant I&Ws for the 1995 epidemic. The five newspapers we examined were: El Falconiano, a local paper from the city of Santa Ana de Coro, Falcón state

  14. 5. Detail view of masonry foundations and flue openings for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Detail view of masonry foundations and flue openings for Jamaican Train. - Hacienda Azucarera El Coto, Sugar Mill Ruins, .5 Mi. SW of Rt. 347 Bridge Over Guanajibo River, San German, San German Municipio, PR

  15. 77 FR 54811 - Safety Zone; TriRock San Diego, San Diego Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... 1625-AA00 Safety Zone; TriRock San Diego, San Diego Bay, San Diego, CA AGENCY: Coast Guard, DHS. ACTION... sponsoring the TriRock Triathlon, consisting of 2000 swimmers swimming a predetermined course. The sponsor... to read as follows: Sec. 165.T11-516 Safety Zone; TriRock Triathlon; San Diego Bay, San Diego, CA. (a...

  16. 8. Detail view of steam dome attached to top of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Detail view of steam dome attached to top of Lancashire double flue boiler. - Hacienda Azucarera El Coto, Sugar Mill Ruins, .5 Mi. SW of Rt. 347 Bridge Over Guanajibo River, San German, San German Municipio, PR

  17. San Francisco folio, California, Tamalpais, San Francisco, Concord, San Mateo, and Haywards quadrangles

    USGS Publications Warehouse

    Lawson, Andrew Cowper

    1914-01-01

    The five sheets of the San Francisco folio the Tamalpais, Ban Francisco, Concord, Ban Mateo, and Haywards sheets map a territory lying between latitude 37° 30' and 38° and longitude 122° and 122° 45'. Large parts of four of these sheets cover the waters of the Bay of San Francisco or of the adjacent Pacific Ocean. (See fig. 1.) Within the area mapped are the cities of San Francisco, Oakland, Berkeley, Alameda, Ban Rafael, and San Mateo, and many smaller towns and villages. These cities, which have a population aggregating about 750,000, together form the largest and most important center of commercial and industrial activity on the west coast of the United States. The natural advantages afforded by a great harbor, where the railways from the east meet the ships from all ports of the world, have determined the site of a flourishing cosmopolitan, commercial city on the shores of San Francisco Bay. The bay is encircled by hilly and mountainous country diversified by fertile valley lands and divides the territory mapped into two rather contrasted parts, the western part being again divided by the Golden Gate. It will therefore be convenient to sketch the geographic features under four headings (1) the area east of San Francisco Bay; (2) the San Francisco Peninsula; (3) the Marin Peninsula; (4) San Francisco Bay. (See fig. 2.)

  18. 1. Historic American Buildings Survey San Francisco Chronicle Library San ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey San Francisco Chronicle Library San Francisco, California PHOTO TAKEN ABOUT 1910 - Yerba Buena Lighthouse Buildings, Yerba Buena Island, San Francisco, San Francisco County, CA

  19. Photocopy of photograph (original print located in Archivo General de ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original print located in Archivo General de Puerto Rico, San Juan, PR). GENERAL PLAN ELEVATION SHOWING GENERAL DETAILS - Graving Dock, Caisson Gate, Southern end of Central Street bounded by Villaverde and La Paz Streets, Miramar, San Juan Municipio, PR

  20. Photocopy of photograph (original print located in Archivo General de ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original print located in Archivo General de Puerto Rico, San Juan, PR). CAISSON GATE FABRICATION PHOTO DATED APRIL 6, 1941 - Graving Dock, Caisson Gate, Southern end of Central Street bounded by Villaverde and La Paz Streets, Miramar, San Juan Municipio, PR

  1. Photocopy of photograph (original print located in Archivo General de ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original print located in Archivo General de Puerto Rico, San Juan, PR). CAISSON GATE GENERAL PLANS Dwg. 38-SJ-29 - Graving Dock, Caisson Gate, Southern end of Central Street bounded by Villaverde and La Paz Streets, Miramar, San Juan Municipio, PR

  2. Photocopy of photograph (original print located in Archivo General de ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original print located in Archivo General de Puerto Rico, San Juan, PR). CAISSON GATE FABRICATION PHOTO DATED 1-9-40 - Graving Dock, Caisson Gate, Southern end of Central Street bounded by Villaverde and La Paz Streets, Miramar, San Juan Municipio, PR

  3. Photocopy of photograph (original print located in Archivo General de ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original print located in Archivo General de Puerto Rico, San Juan, PR). PHYSICAL SETTING VIEW TO SOUTHWEST DATED 12-2-40 - Graving Dock, Caisson Gate, Southern end of Central Street bounded by Villaverde and La Paz Streets, Miramar, San Juan Municipio, PR

  4. 75 FR 38412 - Safety Zone; San Diego POPS Fireworks, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ...-AA00 Safety Zone; San Diego POPS Fireworks, San Diego, CA AGENCY: Coast Guard, DHS. ACTION: Temporary... waters of San Diego Bay in support of the San Diego POPS Fireworks. This safety zone is necessary to... San Diego POPS Fireworks, which will include fireworks presentations conducted from a barge in San...

  5. 40. Historic American Buildings Survey San Francisco Chronicle Collection San ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. Historic American Buildings Survey San Francisco Chronicle Collection San Francisco, California March 24, 1924 VIEW OF HIGH ALTAR - Mission San Carlos Borromeo, Rio Road & Lausen Drive, Carmel-by-the-Sea, Monterey County, CA

  6. 29. Photocopy of photograph (from San Francisco Chronicle Library, San ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Photocopy of photograph (from San Francisco Chronicle Library, San Francisco, California, c. 1930 (?) EXTERIOR, GENERAL VIEW OF CONVENTO, FRONT VIEW, AFTER RESTORATION - Mission San Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA

  7. 28. Photocopy of photograph (from San Francisco Chronicle Library, San ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Photocopy of photograph (from San Francisco Chronicle Library, San Francisco, California, c. 1930 (?) EXTERIOR, DETAIL OF MISSION BELL IN FRONT OF CONVENTO, C. 1930 (?) - Mission San Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA

  8. 77 FR 42647 - Safety Zone: San Diego Symphony POPS Fireworks; San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... 1625-AA00 Safety Zone: San Diego Symphony POPS Fireworks; San Diego, CA AGENCY: Coast Guard, DHS... waters of San Diego Bay in support of the San Diego Symphony POPS Fireworks. This safety zone is... David Varela, Waterways Management, U.S. Coast Guard Sector San Diego, Coast Guard; telephone 619-278...

  9. 75 FR 77756 - Safety Zone; San Diego Parade of Lights Fireworks, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ...-AA00 Safety Zone; San Diego Parade of Lights Fireworks, San Diego, CA AGENCY: Coast Guard, DHS. ACTION... San Diego Bay in San Diego, CA in support of the two San Diego Parade of Lights Fireworks Displays on... and Purpose Fireworks and Stage FX America INC are sponsoring the San Diego Parade of Lights Fireworks...

  10. 41. Historic American Buildings Survey San Francisco CallBulletin Library San ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Historic American Buildings Survey San Francisco Call-Bulletin Library San Francisco, California INTERIOR VIEW OF CHURCH BEFORE RESTORATION - 1934 - Mission San Carlos Borromeo, Rio Road & Lausen Drive, Carmel-by-the-Sea, Monterey County, CA

  11. 76 FR 45693 - Safety Zone; San Diego POPS Fireworks, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ...-AA00 Safety Zone; San Diego POPS Fireworks, San Diego, CA AGENCY: Coast Guard, DHS. ACTION: Temporary... San Diego Bay in support of the San Diego POPS Fireworks. This safety zone is necessary to provide for... of the waterway during scheduled fireworks events. Persons and vessels will be prohibited from...

  12. Gain-loss study of lower San Pedro Creek and the San Antonio River, San Antonio, Texas, May-October 1999

    USGS Publications Warehouse

    Ockerman, Darwin J.

    2002-01-01

    Five streamflow gain-loss measurement surveys were made along lower San Pedro Creek and the San Antonio River from Mitchell Street to South Loop 410 east of Kelly Air Force Base in San Antonio, Texas, during May–October 1999. All of the measurements were made during dry periods, when stormwater runoff was not occurring and effects of possible bank storage were minimized. San Pedro Creek and the San Antonio River were divided into six subreaches, and streamflow measurements were made simultaneously at the boundaries of these subreaches so that streamflow gains or losses and estimates of inflow from or outflow to shallow ground water could be quantified for each subreach. There are two possible sources of ground-water inflow to lower San Pedro Creek and the San Antonio River east of Kelly Air Force Base. One source is direct inflow of shallow ground water into the streams. The other source is ground water that enters tributaries that flow into the San Antonio River. The estimated mean direct inflow of ground water to the combined San Pedro Creek and San Antonio River study reach was 3.0 cubic feet per second or 1.9 million gallons per day. The mean tributary inflow of ground water was estimated to be 1.9 cubic feet per second or 1.2 million gallons per day. The total estimated inflow of shallow ground water was 4.9 cubic feet per second or 3.2 million gallons per day. The amount of inflow from springs and seeps (estimated by observation) is much less than the amount of direct ground-water inflow estimated from the gain-loss measurements. Therefore, the presence of springs and seeps might not be a reliable indicator of the source of shallow ground water entering the river. Most of the shallow ground water that enters the San Antonio River from tributary inflow enters from the west side, through Concepcion Creek, inflows near Riverside Golf Course, and Six-Mile Creek. 

  13. 76 FR 38305 - Safety Zone; San Francisco Chronicle Fireworks Display, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-30

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG 2011-0402] Safety Zone; San Francisco Chronicle Fireworks Display, San Francisco, CA AGENCY: Coast Guard, DHS. ACTION... annual San Francisco Chronicle Fireworks Display (Independence Day Celebration for the City of San...

  14. Topographical map of San Bernadina and San Gabriel mountains

    NASA Image and Video Library

    2000-02-04

    JSC2000E01554 (January 2000) --- This is a shaded relief depiction of the same data set found in JSC2000-E-01553. Radar imagery, such as that to be provided by SRTM, is instrumental in creating these types of topographic models. Both images depict the San Bernadino and San Gabriel Mountains in California, north of Los Angeles. Cajon Junction and Cajon Pass, as well as part of the San Andreas fault line, are clearly seen.

  15. Public Involvement and Response Plan (Community Relations Plan), Presidio of San Francisco, San Francisco, California

    DTIC Science & Technology

    1992-03-01

    Oty_ Population City Population San Jose 782,248 Santa Clara 92,090 San Francisco 763,800 Daly City 91,209 Oakland 372,000 San Mateo 84,829...Oakland Tribune P.O. Box 24424 Oakland, CA 94623 (415) 645-2000/2771 DAILY NEWSPAPERS (cont’d) Editor San Jose Mercury-News P.O. Box 5533 750 Ridder...Park Drive San Jose , CA 95190 (408) 920-5000/288-8060 Editor San Mateo Times P.O. Box 5400 1080 S. Amphlett San Mateo, CA 94402 (415) 348

  16. 77 FR 15260 - Safety Zone; San Francisco Fireworks Display, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... Zone; San Francisco Fireworks Display, San Francisco, CA AGENCY: Coast Guard, DHS. ACTION: Notice of... Fireworks Display in the Captain of the Port, San Francisco area of responsibility during the dates and... hazards associated with the fireworks display. During the enforcement period, unauthorized persons or...

  17. 2. Historic American Buildings Survey San Francisco Chronicle Library San ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey San Francisco Chronicle Library San Francisco, California Year Built: 1834 Photo Taken: About 1925 VIEW FROM EAST - General Sherman Quarters, 464 Calle Principal, Monterey, Monterey County, CA

  18. 76 FR 55796 - Safety Zone; TriRock Triathlon, San Diego Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ...-AA00 Safety Zone; TriRock Triathlon, San Diego Bay, San Diego, CA AGENCY: Coast Guard, DHS. ACTION.... Basis and Purpose Competitor Group is sponsoring the TriRock Triathlon, consisting of 2000 swimmers.... 165.T11-431 to read as follows: Sec. 165.T11-431 Safety Zone; TriRock Triathlon, San Diego Bay, San...

  19. San Marco-C Explorer

    NASA Technical Reports Server (NTRS)

    1971-01-01

    On or about 24 April 1971, the San Marco-C spacecraft will be launched from the San Marco Range located off the coast of Kenya, Africa, by a Scout launch vehicle. The launch will be conducted by an Italian crew. The San Marco-C is the third cooperative satellite project between Italy and the United States. The first such cooperative project resulted in the San Marco-1 satellite which was launched into orbit from the Wallops Island Range with a Scout vehicle on 15 December 1964. The successful launch demonstrated the readiness of the Italian Centro Ricerche Aerospaziuli (CRA) launch crews to launch the Scout vehicle and qualified the basic spacecraft design. The second in the series of cooperative satellite launches was the San Marco-II which was successfully launched into orbit from the San Marco Range on 26 April 1967. This was the first Scout launch from the San Marco Range. The San Marco-II carried the same accelerometer as San Marco-1, but the orbit permitted the air drag to be studied in detail in the equatorial region. The successful launch also served to qualify the San Marco Range as a reliable facility for future satellite launches, and has since been used for the successful launch of SAS-A (Explorer 42). This cooperative project has been implemented jointly by the Italian Space Commission and NASA. The CRA provided the spacecraft, its subsystems, and an air drag balance; Goddard Space Flight Center (GSFC) provided an omegatron and a neutral mass spectrometer, technical consultation and support. In addition, NASA provided the Scout launch vehicle. The primary scientific objective of the San Marco-C is to obtain, by measurement, a description of the equatorial neutral-particle atmosphere in terms of its density, com- position, and temperature at altitudes of 200 km and above, and to obtain a description of variations that result from solar and geomagnetic activities. The secondary scientific objective is to investigate the interdependence of three neutral

  20. California coastal processes study: Skylab. [San Pablo and San Francisco Bays

    NASA Technical Reports Server (NTRS)

    Pirie, D. M.; Steller, D. D. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. In San Pablo Bay, the patterns of dredged sediment discharges were plotted over a three month period. It was found that lithogenous particles, kept in suspension by the fresh water from the Sacramento-San Joaquin, were transported downstream to the estuarine area at varying rates depending on the river discharge level. Skylab collected California coastal imagery at limited times and not at constant intervals. Resolution, however, helped compensate for lack of coverage. Increased spatial and spectral resolution provided details not possible utilizing Landsat imagery. The S-192 data was reformatted; band by band image density stretching was utilized to enhance sediment discharge patterns entrainment, boundaries, and eddys. The 26 January 1974 Skylab 4 imagery of San Francisco Bay was taken during an exceptionally high fresh water and suspended sediment discharge period. A three pronged surface sediment pattern was visible where the Sacramento-San Joaquin Rivers entered San Pablo Bay through Carquinez Strait.

  1. Aerial photo of San Bernadina and San Gabriel mountains

    NASA Image and Video Library

    2000-02-04

    JSC2000E01553 (January 2000) --- This USGS elevation model showing increasing elevation as increasing brightness is included here for comparison purposes with the high-resolution topographic elevation map image in E01554. Both images depict the San Bernadino and San Gabriel Mountains in California, north of Los Angeles.

  2. 78 FR 20792 - Safety Zone; San Francisco Giants Fireworks Display, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... Zone; San Francisco Giants Fireworks Display, San Francisco, CA AGENCY: Coast Guard, DHS. ACTION... Francisco Giants Fireworks Display in the Captain of the Port, San Francisco area of responsibility during... public from the hazards associated with the fireworks display. During the enforcement period...

  3. 77 FR 28771 - Safety Zone; San Francisco Giants Fireworks Display, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... Zone; San Francisco Giants Fireworks Display, San Francisco, CA AGENCY: Coast Guard, DHS. ACTION... Francisco Giants Fireworks Display in the Captain of the Port, San Francisco area of responsibility during... public from the hazards associated with the fireworks display. During the enforcement period...

  4. 33 CFR 165.1102 - Security Zone; Naval Base Point Loma; San Diego Bay, San Diego, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Loma; San Diego Bay, San Diego, CA. 165.1102 Section 165.1102 Navigation and Navigable Waters COAST... Guard District § 165.1102 Security Zone; Naval Base Point Loma; San Diego Bay, San Diego, CA. (a) Location. The following area is a security zone: The water adjacent to the Naval Base Point Loma, San Diego...

  5. 33 CFR 165.1102 - Security Zone; Naval Base Point Loma; San Diego Bay, San Diego, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Loma; San Diego Bay, San Diego, CA. 165.1102 Section 165.1102 Navigation and Navigable Waters COAST... Guard District § 165.1102 Security Zone; Naval Base Point Loma; San Diego Bay, San Diego, CA. (a) Location. The following area is a security zone: The water adjacent to the Naval Base Point Loma, San Diego...

  6. 33 CFR 165.1102 - Security Zone; Naval Base Point Loma; San Diego Bay, San Diego, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Loma; San Diego Bay, San Diego, CA. 165.1102 Section 165.1102 Navigation and Navigable Waters COAST... Guard District § 165.1102 Security Zone; Naval Base Point Loma; San Diego Bay, San Diego, CA. (a) Location. The following area is a security zone: The water adjacent to the Naval Base Point Loma, San Diego...

  7. 3. Historic American Buildings Survey San Francisco Examiner Library San ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey San Francisco Examiner Library San Francisco, California Photo Taken: About 1910 (From 'The Sperry Family' - Page 17) VIEW FROM NORTHEAST - First Theatre in California, Southwest corner of Pacific & Scott Streets, Monterey, Monterey County, CA

  8. 76 FR 1386 - Safety Zone; Centennial of Naval Aviation Kickoff, San Diego Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ...-AA00 Safety Zone; Centennial of Naval Aviation Kickoff, San Diego Bay, San Diego, CA AGENCY: Coast... zone on the navigable waters of San Diego Bay in San Diego, CA in support of the Centennial of Naval... February 12, 2010, the Centennial of Naval Aviation Kickoff will take place in San Diego Bay. In support of...

  9. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California

    USGS Publications Warehouse

    Ryan, H.F.; Parsons, T.; Sliter, R.W.

    2008-01-01

    A new fault map of the shelf offshore of San Francisco, California shows that faulting occurs as a distributed shear zone that involves many fault strands with the principal displacement taken up by the San Andreas fault and the eastern strand of the San Gregorio fault zone. Structures associated with the offshore faulting show compressive deformation near where the San Andreas fault goes offshore, but deformation becomes extensional several km to the north off of the Golden Gate. Our new fault map serves as the basis for a 3-D finite element model that shows that the block between the San Andreas and San Gregorio fault zone is subsiding at a long-term rate of about 0.2-0.3??mm/yr, with the maximum subsidence occurring northwest of the Golden Gate in the area of a mapped transtensional basin. Although the long-term rates of vertical displacement primarily show subsidence, the model of coseismic deformation associated with the 1906 San Francisco earthquake indicates that uplift on the order of 10-15??cm occurred in the block northeast of the San Andreas fault. Since 1906, 5-6??cm of regional subsidence has occurred in that block. One implication of our model is that the transfer of slip from the San Andreas fault to a fault 5??km to the east, the Golden Gate fault, is not required for the area offshore of San Francisco to be in extension. This has implications for both the deposition of thick Pliocene-Pleistocene sediments (the Merced Formation) observed east of the San Andreas fault, and the age of the Peninsula segment of the San Andreas fault.

  10. San Marino.

    PubMed

    1985-02-01

    San Marino, an independent republic located in north central Italy, in 1983 had a population of 22,206 growing at an annual rate of .9%. The literacy rate is 97% and the infant mortality rate is 9.6/1000. The terrain is mountainous and the climate is moderate. According to local tradition, San Marino was founded by a Christian stonecutter in the 4th century A.D. as a refuge against religious persecution. Its recorded history began in the 9th century, and it has survived assaults on its independence by the papacy, the Malatesta lords of Rimini, Cesare Borgia, Napoleon, and Mussolini. An 1862 treaty with the newly formed Kingdom of Italy has been periodically renewed and amended. The present government is an alliance between the socialists and communists. San Marino has had its own statutes and governmental institutions since the 11th century. Legislative authority at present is vested in a 60-member unicameral parliament. Executive authority is exercised by the 11-member Congress of State, the members of which head the various administrative departments of the goverment. The posts are divided among the parties which form the coalition government. Judicial authority is partly exercised by Italian magistrates in civil and criminal cases. San Marino's policies are tied to Italy's and political organizations and labor unions active in Italy are also active in San Marino. Since World War II, there has been intense rivalry between 2 political coalitions, the Popular Alliance composed of the Christian Democratic Party and the Independent Social Democratic Party, and the Liberty Committee, coalition of the Communist Party and the Socialist Party. San Marino's gross domestic product was $137 million and its per capita income was $6290 in 1980. The principal economic activities are farming and livestock raising, along with some light manufacturing. Foreign transactions are dominated by tourism. The government derives most of its revenue from the sale of postage stamps to

  11. Abrupt along-strike change in tectonic style: San Andreas fault zone, San Francisco Peninsula

    USGS Publications Warehouse

    Zoback, M.L.; Jachens, R.C.; Olson, J.A.

    1999-01-01

    Seismicity and high-resolution aeromagnetic data are used to define an abrupt change from compressional to extensional tectonism within a 10- to 15-km-wide zone along the San Andreas fault on the San Francisco Peninsula and offshore from the Golden Gate. This 100-km-long section of the San Andreas fault includes the hypocenter of the Mw = 7.8 1906 San Francisco earthquake as well as the highest level of persistent microseismicity along that ???470-km-long rupture. We define two distinct zones of deformation along this stretch of the fault using well-constrained relocations of all post-1969 earthquakes based a joint one-dimensional velocity/hypocenter inversion and a redetermination of focal mechanisms. The southern zone is characterized by thrust- and reverse-faulting focal mechanisms with NE trending P axes that indicate "fault-normal" compression in 7- to 10-km-wide zones of deformation on both sides of the San Andreas fault. A 1- to 2-km-wide vertical zone beneath the surface trace of the San Andreas is characterized by its almost complete lack of seismicity. The compressional deformation is consistent with the young, high topography of the Santa Cruz Mountains/Coast Ranges as the San Andreas fault makes a broad restraining left bend (???10??) through the southernmost peninsula. A zone of seismic quiescence ???15 km long separates this compressional zone to the south from a zone of combined normal-faulting and strike-slip-faulting focal mechanisms (including a ML = 5.3 earthquake in 1957) on the northernmost peninsula and offshore on the Golden Gate platform. Both linear pseudo-gravity gradients, calculated from the aeromagnetic data, and seismic reflection data indicate that the San Andreas fault makes an abrupt ???3-km right step less than 5 km offshore in this northern zone. A similar right-stepping (dilatational) geometry is also observed for the subparallel San Gregorio fault offshore. Persistent seismicity and extensional tectonism occur within the San

  12. 12. Photocopy of drawing (this photograph is an 8' x ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photocopy of drawing (this photograph is an 8' x 10' contact print; May 12, 1982 revision of a January 18, 1974 as built drawing by F. Marquez Ramos, in possesion of the Bridge Evaluation Office of the Puerto Rico Department of Transportation and Public Works) BRIDE (sic) OVER RIO GRANDE DE LOIZA, ROAD NO. 980 KM. 10.6 - Puente de la Marina, San Lorenzo-Florida & Cerro Gordo Neighborhoods, spanning Rio Grande de Loiza River at Narciso Varona-Suarez Street, San Lorenzo, San Lorenzo Municipio, PR

  13. Chihuahuan desert flora of La Calera, Municipio de Agua Prieta, Sonora, Mexico

    Treesearch

    Ana Lilia Reina-Guerrero; Thomas R. Van Devender

    2013-01-01

    A total of 555 plant collections were made on 20 trips in 2002-2008 to La Calera area in the Sierra Anibácachi, Municipio de Agua Prieta, 11.3 km south of the Arizona border (31°13’59”N 109°37’53”W, elevation range from 1220 m to 1539 m) in northeastern Sonora. Chihuahuan desertscrub on limestone substrates is dominated by creosotebush (Larrrea divaricata), Chihuahuan...

  14. 76 FR 75908 - Notice of Inventory Completion: The University of California, San Diego, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... University of California, San Diego, San Diego, CA AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Regents of the University of California on behalf of the University of California, San Diego... culturally affiliated with the human remains may contact the University of California, San Diego. Disposition...

  15. 77 FR 34988 - Notice of Inventory Completion: San Diego State University, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... State University appears to have been collected from back dirt by an unknown student and brought back to... Inventory Completion: San Diego State University, San Diego, CA AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: San Diego State University Archeology Collections Management Program has...

  16. Underwater gravity meter survey of San Francisco and San Pablo bays, California, 1982

    USGS Publications Warehouse

    Childs, Jonathan R.; Beyer, L.A.; McCulloch, D.S.; McHendrie, G.A.; Steele, W.C.

    1983-01-01

    Seafloor gravity measurements were made at 281 bottom stations in San Francisco and San Pablo Bays, California, on a series of lines oriented approximately NNE.. Line spacing was approximately 2.8 km and stations along the lines mere spaced 0.5 to 1.5 km apart, between 0.5 and 1.5 km perpendicular to the axis. Sample Bouguer anomalies in the San Francisco Bay range from -15 to +15 mGals (?0.1 mgal), while anomalies in the San Pablo Bay are consistently negative, ranging from +4.0 to -40.0 mGal (?0.2 mGal).

  17. 78 FR 38584 - Safety Zone; San Diego Symphony Summer POPS Fireworks 2013 Season, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... 1625-AA00 Safety Zone; San Diego Symphony Summer POPS Fireworks 2013 Season, San Diego, CA AGENCY... on the navigable waters of San Diego Bay in support of the San Diego Symphony Summer POPS Fireworks... Diego, Coast Guard; telephone 619-278-7656, email [email protected] . If you have...

  18. 33 CFR 165.1141 - Safety Zone; San Clemente 3 NM Safety Zone, San Clemente Island, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Guard District § 165.1141 Safety Zone; San Clemente 3 NM Safety Zone, San Clemente Island, CA. (a) Location. The following area is a safety zone: All waters of the Pacific Ocean surrounding San Clemente... Safety Zone, San Clemente Island, CA. 165.1141 Section 165.1141 Navigation and Navigable Waters COAST...

  19. 33 CFR 165.1141 - Safety Zone; San Clemente 3 NM Safety Zone, San Clemente Island, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Guard District § 165.1141 Safety Zone; San Clemente 3 NM Safety Zone, San Clemente Island, CA. (a) Location. The following area is a safety zone: All waters of the Pacific Ocean surrounding San Clemente... Safety Zone, San Clemente Island, CA. 165.1141 Section 165.1141 Navigation and Navigable Waters COAST...

  20. 33 CFR 165.1141 - Safety Zone; San Clemente 3 NM Safety Zone, San Clemente Island, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Guard District § 165.1141 Safety Zone; San Clemente 3 NM Safety Zone, San Clemente Island, CA. (a) Location. The following area is a safety zone: All waters of the Pacific Ocean surrounding San Clemente... Safety Zone, San Clemente Island, CA. 165.1141 Section 165.1141 Navigation and Navigable Waters COAST...

  1. 33 CFR 165.1141 - Safety Zone; San Clemente 3 NM Safety Zone, San Clemente Island, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Guard District § 165.1141 Safety Zone; San Clemente 3 NM Safety Zone, San Clemente Island, CA. (a) Location. The following area is a safety zone: All waters of the Pacific Ocean surrounding San Clemente... Safety Zone, San Clemente Island, CA. 165.1141 Section 165.1141 Navigation and Navigable Waters COAST...

  2. 33 CFR 165.1141 - Safety Zone; San Clemente 3 NM Safety Zone, San Clemente Island, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Guard District § 165.1141 Safety Zone; San Clemente 3 NM Safety Zone, San Clemente Island, CA. (a) Location. The following area is a safety zone: All waters of the Pacific Ocean surrounding San Clemente... Safety Zone, San Clemente Island, CA. 165.1141 Section 165.1141 Navigation and Navigable Waters COAST...

  3. 33 CFR 165.776 - Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico 165.776 Section 165.776 Navigation and Navigable Waters COAST... Guard District § 165.776 Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico (a...

  4. 33 CFR 165.776 - Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico 165.776 Section 165.776 Navigation and Navigable Waters COAST... Guard District § 165.776 Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico (a...

  5. 33 CFR 165.776 - Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico. 165.776 Section 165.776 Navigation and Navigable Waters COAST... Guard District § 165.776 Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico. (a...

  6. 33 CFR 165.776 - Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico. 165.776 Section 165.776 Navigation and Navigable Waters COAST... Guard District § 165.776 Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico. (a...

  7. 33 CFR 110.224 - San Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Bay, Sacramento River, San Joaquin River, and connecting waters, CA. (a) General regulations. (1..., Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin River, and connecting waters, CA. 110.224... notified to move by the Captain of the Port. (4) No vessel may anchor within a tunnel, cable, or pipeline...

  8. 33 CFR 110.224 - San Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Bay, Sacramento River, San Joaquin River, and connecting waters, CA. (a) General regulations. (1..., Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin River, and connecting waters, CA. 110.224... notified to move by the Captain of the Port. (4) No vessel may anchor within a tunnel, cable, or pipeline...

  9. 33 CFR 110.224 - San Francisco Bay, San Pablo Bay, Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Bay, Sacramento River, San Joaquin River, and connecting waters, CA. (a) General regulations. (1..., Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin River, and connecting waters, CA. 110.224... notified to move by the Captain of the Port. (4) No vessel may anchor within a tunnel, cable, or pipeline...

  10. 75 FR 39166 - Safety Zone; San Francisco Giants Baseball Game Promotion, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ...-AA00 Safety Zone; San Francisco Giants Baseball Game Promotion, San Francisco, CA AGENCY: Coast Guard... Francisco Giants Baseball Game Promotion. This safety zone is established to ensure the safety of... Game Promotion on July 16, 2010, on the navigable waters of McCovey Cove, in San Francisco Bay, off of...

  11. 77 FR 70891 - Safety Zone; Bay Bridge Construction, San Francisco Bay, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-28

    ...-AA00 Safety Zone; Bay Bridge Construction, San Francisco Bay, San Francisco, CA AGENCY: Coast Guard... the navigable waters of the San Francisco Bay near Yerba Buena Island, CA in support of the Bay Bridge... construction of the Bay Bridge, the safety zone is necessary to provide for the safety of mariners transiting...

  12. 77 FR 36041 - San Antonio Central Railroad, L.L.C.-Lease Exemption-Port Authority of San Antonio

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35603] San Antonio Central Railroad, L.L.C.--Lease Exemption--Port Authority of San Antonio San Antonio Central Railroad, L.L... in Wacto Holdings, Inc.--Continuance in Control Exemption--San Antonio Central Railroad, L.L.C...

  13. 33 CFR 165.T11-630 - Safety zone; Giants Enterprises Fireworks Display, San Francisco Bay, San Francisco, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Francisco Bay, San Francisco, CA. (a) Location. This temporary safety zone is established in the navigable waters of the San Francisco Bay near Pier 48 in San Francisco, CA as depicted in National Oceanic and... Fireworks Display, San Francisco Bay, San Francisco, CA. 165.T11-630 Section 165.T11-630 Navigation and...

  14. San Marco D/L Explorer

    NASA Technical Reports Server (NTRS)

    1988-01-01

    ti March 26, 1964, Centro Ricerche Aerospaziali (CRA) successfully launched a two-stage Nike sounding rocket from the Santa Rita launch platform off the Kenya coast, concluding Phase I. It carried basic elements of the San Marco science instrumentation and served further to flight qualify these canponents as well as provide a means of check-out of range instrumentation and equipment. The second phase culminated in the launch of the San Marco-I Spacecraft fran Wallops Island on a Scout vehicle on December 15, 1964. This launch derronstrated the readiness of the CRA launch crews for Phase III operations and qualified the basic spacecraft design. In addition it confirmed the usefulness and reliability of the drag balance device for accurate determinations of air density values and satellite attitude. phase III was completed with the launching of San Marco-11 frcm the San Marco platform off the coast of Kenya on April 26, 1967. ?he San Marco-II carried the same instrunentation as the San Marco-I, but the equatorial orbit permitted a more detailed study to be made of density variations versus altitude in the equatorial region. Ihe successful launch also served to qualify the San Marco Range as a reliable facility for future satellite launches. The successful culmination of the first San Marco endeavor paved the way for still closer collaboration in future space explorations.

  15. 27 CFR 9.25 - San Pasqual Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... They are entitled: (1) “Escondido Quadrangle, California—San Diego County”, 7.5 minute series; (2) “San Pasqual Quadrangle, California—San Diego County”, 7.5 minute series; (3) “Valley Center Quadrangle, California—San Diego County”, 7.5 minute series. (c) Boundaries. The San Pasqual Valley viticultural area is...

  16. 27 CFR 9.25 - San Pasqual Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... They are entitled: (1) “Escondido Quadrangle, California—San Diego County”, 7.5 minute series; (2) “San Pasqual Quadrangle, California—San Diego County”, 7.5 minute series; (3) “Valley Center Quadrangle, California—San Diego County”, 7.5 minute series. (c) Boundaries. The San Pasqual Valley viticultural area is...

  17. 27 CFR 9.25 - San Pasqual Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... They are entitled: (1) “Escondido Quadrangle, California—San Diego County”, 7.5 minute series; (2) “San Pasqual Quadrangle, California—San Diego County”, 7.5 minute series; (3) “Valley Center Quadrangle, California—San Diego County”, 7.5 minute series. (c) Boundaries. The San Pasqual Valley viticultural area is...

  18. 27 CFR 9.25 - San Pasqual Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... They are entitled: (1) “Escondido Quadrangle, California—San Diego County”, 7.5 minute series; (2) “San Pasqual Quadrangle, California—San Diego County”, 7.5 minute series; (3) “Valley Center Quadrangle, California—San Diego County”, 7.5 minute series. (c) Boundaries. The San Pasqual Valley viticultural area is...

  19. 27 CFR 9.25 - San Pasqual Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... They are entitled: (1) “Escondido Quadrangle, California—San Diego County”, 7.5 minute series; (2) “San Pasqual Quadrangle, California—San Diego County”, 7.5 minute series; (3) “Valley Center Quadrangle, California—San Diego County”, 7.5 minute series. (c) Boundaries. The San Pasqual Valley viticultural area is...

  20. 77 FR 46115 - Notice of Inventory Completion: San Diego Museum of Man, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... Museum of Man professional staff in consultation with representatives of the Pueblo of Santa Ana, New... Inventory Completion: San Diego Museum of Man, San Diego, CA AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The San Diego Museum of Man has completed an inventory of human remains in consultation...

  1. 75 FR 17329 - Safety Zone; Big Bay Fourth of July Fireworks, San Diego Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ...-AA00 Safety Zone; Big Bay Fourth of July Fireworks, San Diego Bay, San Diego, CA AGENCY: Coast Guard... safety zone on the navigable waters of the San Diego Bay in support of the Big Bay July Fourth Show to Benefit the San Diego Armed Services YMCA. This temporary safety zone is necessary to provide for the...

  2. Sediment conditions in the San Antonio River Basin downstream from San Antonio, Texas, 2000-13

    USGS Publications Warehouse

    Ockerman, Darwin J.; Banta, J. Ryan; Crow, Cassi L.; Opsahl, Stephen P.

    2015-01-01

    Sediment plays an important role in the ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. To better understand sediment characteristics in the San Antonio River Basin, the U.S. Geological Survey, in cooperation with the San Antonio River Authority, completed a two-part study in the San Antonio River Basin downstream from San Antonio, Texas, to (1) collect and analyze sediment data to characterize sediment conditions and (2) develop and calibrate a watershed model to simulate hydrologic conditions and suspended-sediment loads during 2000–12.

  3. San Mateo Creek Basin

    EPA Pesticide Factsheets

    The San Mateo Creek Basin comprises approximately 321 square miles within the Rio San Jose drainage basin in McKinley and Cibola counties, New Mexico. This basin is located within the Grants Mining District (GMD).

  4. 77 FR 42638 - Safety Zone: Sea World San Diego Fireworks, Mission Bay; San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... 1625-AA00 Safety Zone: Sea World San Diego Fireworks, Mission Bay; San Diego, CA AGENCY: Coast Guard... navigable waters of Mission Bay in support of the Sea World San Diego Fireworks. This safety zone is..., since immediate action is needed to ensure the public's safety. B. Basis and Purpose Sea World is...

  5. 78 FR 77597 - Safety Zone; Allied PRA-Solid Works, San Diego Bay; San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ...-AA00 Safety Zone; Allied PRA-Solid Works, San Diego Bay; San Diego, CA AGENCY: Coast Guard, DHS. ACTION... the Allied PRA--Solid Works fireworks display, which will be conducted from a barge located southwest... Works; San Diego, CA. (a) Location. The limits of the safety zone will include all the navigable waters...

  6. 78 FR 29025 - Sea World San Diego Fireworks 2013 Season; Mission Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ...-AA00 Sea World San Diego Fireworks 2013 Season; Mission Bay, San Diego, CA AGENCY: Coast Guard, DHS... waters of Mission Bay in support of the Sea World San Diego Fireworks 2013 season. This safety zone is... Guard to establish safety zones (33 U.S.C 1221 et seq.). Sea World is sponsoring the Sea World Fireworks...

  7. 77 FR 60899 - Safety Zone; Sea World San Diego Fireworks, Mission Bay; San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... 1625-AA00 Safety Zone; Sea World San Diego Fireworks, Mission Bay; San Diego, CA AGENCY: Coast Guard... navigable waters of Mission Bay in support of the Sea World San Diego Fireworks. This safety zone is... zones (33 U.S.C 1221 et seq.). Sea World is sponsoring the Sea World Fireworks, which will include a...

  8. Description of gravity cores from San Pablo Bay and Carquinez Strait, San Francisco Bay, California

    USGS Publications Warehouse

    Woodrow, Donald L.; John L. Chin,; Wong, Florence L.; Fregoso, Theresa A.; Jaffe, Bruce E.

    2017-06-27

    Seventy-two gravity cores were collected by the U.S. Geological Survey in 1990, 1991, and 2000 from San Pablo Bay and Carquinez Strait, California. The gravity cores collected within San Pablo Bay contain bioturbated laminated silts and sandy clays, whole and broken bivalve shells (mostly mussels), fossil tube structures, and fine-grained plant or wood fragments. Gravity cores from the channel wall of Carquinez Strait east of San Pablo Bay consist of sand and clay layers, whole and broken bivalve shells (less than in San Pablo Bay), trace fossil tubes, and minute fragments of plant material.

  9. Photocopy of photograph (original 35 millimeter negative in possession of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original 35 millimeter negative in possession of Luis Pumarada, San German, Puerto Rico). Luis Pumarada, Photographer, September 4, 1989. PUENTE RIO HONDO, VIEW FROM SOUTHWEST. - Puente Rio Hondo, Spanning Hondo River on PR Road 156, Barrio Rio Hondo, Comerio, Comerio Municipio, PR

  10. 3. Photocopy of drawing (this photograph is an 8''x 10'' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photocopy of drawing (this photograph is an 8''x 10'' contact print; February, 1989 revision of a December 11, 1973 as built drawing by A. Rivera-Cruz, in possession of the Highway System Administration Office of the Puerto Rico Highway and Transportation Authority) Bridge over Rio Grande de Arecibo, Arecibo, P.R., Road no. 2, Km. 75.00 - Puente del Cano San Francisco, Spanning Cano San Francisco (Rio Grande de Arecibo), Arecibo, Arecibo Municipio, PR

  11. 77 FR 54815 - Safety Zone: America's Cup World Series Regattas, San Francisco Bay; San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ...-AA00 Safety Zone: America's Cup World Series Regattas, San Francisco Bay; San Francisco, CA AGENCY... the on-water activities associated with 2012 America's Cup World Series regattas scheduled for October..., the City of San Francisco plans to host two America's Cup World Series regattas as part of a circuit...

  12. 75 FR 15611 - Safety Zone; United Portuguese SES Centennial Festa, San Diego Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ...-AA00 Safety Zone; United Portuguese SES Centennial Festa, San Diego Bay, San Diego, CA AGENCY: Coast... navigable waters of the San Diego Bay in support of the United Portuguese SES Centennial Festa. This... Centennial Festa, which will include a fireworks presentation originating from a tug and barge combination in...

  13. 33 CFR 165.1187 - Security Zones; Golden Gate Bridge and the San Francisco-Oakland Bay Bridge, San Francisco Bay...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Bridge and the San Francisco-Oakland Bay Bridge, San Francisco Bay, California. 165.1187 Section 165.1187... Limited Access Areas Eleventh Coast Guard District § 165.1187 Security Zones; Golden Gate Bridge and the San Francisco-Oakland Bay Bridge, San Francisco Bay, California. (a) Location. All waters extending...

  14. 33 CFR 165.1187 - Security Zones; Golden Gate Bridge and the San Francisco-Oakland Bay Bridge, San Francisco Bay...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Bridge and the San Francisco-Oakland Bay Bridge, San Francisco Bay, California. 165.1187 Section 165.1187... Limited Access Areas Eleventh Coast Guard District § 165.1187 Security Zones; Golden Gate Bridge and the San Francisco-Oakland Bay Bridge, San Francisco Bay, California. (a) Location. All waters extending...

  15. 33 CFR 165.1102 - Security Zone; Naval Base Point Loma; San Diego Bay, San Diego, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; Naval Base Point... Guard District § 165.1102 Security Zone; Naval Base Point Loma; San Diego Bay, San Diego, CA. (a) Location. The following area is a security zone: The water adjacent to the Naval Base Point Loma, San Diego...

  16. Space Radar Image of San Francisco, California

    NASA Image and Video Library

    1999-04-15

    This image of San Francisco, California shows how the radar distinguishes between densely populated urban areas and nearby areas that are relatively unsettled. Downtown San Francisco is at the center and the city of Oakland is at the right across the San Francisco Bay. Some city areas, such as the South of Market, called the SOMA district in San Francisco, appear bright red due to the alignment of streets and buildings to the incoming radar beam. Various bridges in the area are also visible including the Golden Gate Bridge (left center) at the opening of San Francisco Bay, the Bay Bridge (right center) connecting San Francisco and Oakland, and the San Mateo Bridge (bottom center). All the dark areas on the image are relatively smooth water: the Pacific Ocean to the left, San Francisco Bay in the center, and various reservoirs. Two major faults bounding the San Francisco-Oakland urban areas are visible on this image. The San Andreas fault, on the San Francisco peninsula, is seen in the lower left of the image. The fault trace is the straight feature filled with linear reservoirs which appear dark. The Hayward fault is the straight feature on the right side of the image between the urban areas and the hillier terrain to the east. The image is about 42 kilometers by 58 kilometers (26 miles by 36 miles) with north toward the upper right. This area is centered at 37.83 degrees north latitude, 122.38 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA01791

  17. Photocopy of photograph (original 35 millimeter negative in possession of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original 35 millimeter negative in possession of Luis Pumarada, San German, Puerto Rico). Luis Pumarada, Photographer, September 4, 1989. PUENTE RIO HONDO, DOMED PLATE DECK FROM BELOW. - Puente Rio Hondo, Spanning Hondo River on PR Road 156, Barrio Rio Hondo, Comerio, Comerio Municipio, PR

  18. Photocopy of photograph (original 35 millimeter negative in possession of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original 35 millimeter negative in possession of Luis Pumarada, San German, Puerto Rico). Luis Pumarada, Photographer, September 4, 1989. PUENTE RIO HONDO, VIEW OF SOUTH ABUTMENT. - Puente Rio Hondo, Spanning Hondo River on PR Road 156, Barrio Rio Hondo, Comerio, Comerio Municipio, PR

  19. 75 FR 35651 - Safety Zone; San Francisco Chronicle Fireworks Display, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG 2010-0367] Safety Zone; San Francisco Chronicle Fireworks Display, San Francisco, CA AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the Independence Day...

  20. Pleistocene slip rates on the Boconó fault along the North Andean Block plate boundary, Venezuela

    NASA Astrophysics Data System (ADS)

    Pousse-Beltran, Lea; Vassallo, Riccardo; Audemard, Franck; Jouanne, François; Carcaillet, Julien; Pathier, Erwan; Volat, Matthieu

    2017-07-01

    The Boconó fault is a strike-slip fault lying between the North Andean Block and the South American plate which has triggered at least five Mw > 7 historical earthquakes in Venezuela. The North Andean Block is currently moving toward NNE with respect to a stable South American plate. This relative displacement at 12 mm yr-1 in Venezuela (within the Maracaibo Block) was measured by geodesy, but until now the distribution and rates of Quaternary deformation have remained partially unclear. We used two alluvial fans offset by the Boconó fault (Yaracuy Valley) to quantify slip rates, by combining 10Be cosmogenic dating with measurements of tectonic displacements on high-resolution satellite images (Pleiades). Based upon a fan dated at >79 ka and offset by 1350-1580 m and a second fan dated at 120-273 ka and offset by 1236-1500 m, we obtained two Pleistocene rates of 5.0-11.2 and <20.0 mm yr-1, consistent with the regional geodesy. This indicates that the Boconó fault in the Yaracuy Valley accommodates 40 to 100% of the deformation between the South American plate and the Maracaibo Block. As no aseismic deformation was shown by interferometric synthetic aperture radar analysis, we assume that the fault is locked since the 1812 event. This implies that there is a slip deficit in the Yaracuy Valley since the last earthquake ranging from 1 to 4 m, corresponding to a Mw 7-7.6 earthquake. This magnitude is comparable to the 1812 earthquake and to other historical events along the Boconó fault.

  1. Una Visita al Viejo San Juan (A Visit to Old San Juan).

    ERIC Educational Resources Information Center

    Cabello, Victor; And Others

    Written in Spanish, this black and white illustrated booklet provides a tour of Old San Juan, Puerto Rico's oldest and most historic city. Brief historical information is provided on the Perro de San Jeronimo, a statue of a barking dog found in front of the Castillo; Plaza de Colon, a small plaza dedicated to Christopher Columbus; the Catedral de…

  2. Dipping San Andreas and Hayward faults revealed beneath San Francisco Bay, California

    USGS Publications Warehouse

    Parsons, T.; Hart, P.E.

    1999-01-01

    The San Francisco Bay area is crossed by several right-lateral strike-slip faults of the San Andreas fault zone. Fault-plane reflections reveal that two of these faults, the San Andreas and Hayward, dip toward each other below seismogenic depths at 60?? and 70??, respectively, and persist to the base of the crust. Previously, a horizontal detachment linking the two faults in the lower crust beneath San Francisco Bay was proposed. The only near-vertical-incidence reflection data available prior to the most recent experiment in 1997 were recorded parallel to the major fault structures. When the new reflection data recorded orthogonal to the faults are compared with the older data, the highest, amplitude reflections show clear variations in moveout with recording azimuth. In addition, reflection times consistently increase with distance from the faults. If the reflectors were horizontal, reflection moveout would be independent of azimuth, and reflection times would be independent of distance from the faults. The best-fit solution from three-dimensional traveltime modeling is a pair of high-angle dipping surfaces. The close correspondence of these dipping structures with the San Andreas and Hayward faults leads us to conclude that they are the faults beneath seismogenic depths. If the faults retain their observed dips, they would converge into a single zone in the upper mantle -45 km beneath the surface, although we can only observe them in the crust.

  3. ASTER Images San Francisco Bay Area

    NASA Image and Video Library

    2000-04-26

    This image of the San Francisco Bay region was acquired on March 3, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. Image: This image covers an area 60 kilometers (37 miles) wide and 75 kilometers (47 miles) long in three bands of the reflected visible and infrared wavelength region. The combination of bands portrays vegetation in red, and urban areas in gray. Sediment in the Suisun Bay, San Pablo Bay, San Francisco Bay, and the Pacific Ocean shows up as lighter shades of blue. Along the west coast of the San Francisco Peninsula, strong surf can be seen as a white fringe along the shoreline. A powerful rip tide is visible extending westward from Daly City into the Pacific Ocean. In the lower right corner, the wetlands of the South San Francisco Bay National Wildlife Refuge appear as large dark blue and brown polygons. The high spatial resolution of ASTER allows fine detail to be observed in the scene. The main bridges of the area (San Mateo, San Francisco-Oakland Bay, Golden Gate, Richmond-San Rafael, Benicia-Martinez, and Carquinez) are easily picked out, connecting the different communities in the Bay area. Shadows of the towers along the Bay Bridge can be seen over the adjacent bay water. With enlargement the entire road network can be easily mapped; individual buildings are visible, including the shadows of the high-rises in downtown San Francisco. Inset: This enlargement of the San Francisco Airport highlights the high spatial resolution of ASTER. With further enlargement and careful examination, airplanes can be seen at the terminals. http://photojournal.jpl.nasa.gov/catalog/PIA02606

  4. San Cristobal Volcano, Nicaragua

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A white plume of smoke, from San Cristobal Volcano (13.0N, 87.5W) on the western coast of Nicaragua, blows westward along the Nicaraguan coast just south of the Gulf of Fonseca and the Honduran border. San Csistobal is a strato volcano some 1,745 meters high and is frequently active.

  5. San Marco C-2 (San Marco-4) Post Launch Report No. 1

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The San Marco C-2 spacecraft, now designated San Marco-4, was successfully launched by a Scout vehicle from the San Marco Platform on 18 February 1974 at 6:05 a.m. EDT. The launch occurred 2 hours 50 minutes into the 3-hour window due co low cloud cover at the launch site. All spacecraft subsystems have been checked and are functioning normally. The protective caps for the two U.S. experiments were ejected and the Omegatron experiment activated on 19 February. The neutral mass spectrometer was activated as scheduled on 22 February after sufficient time to allow for spacecraft outgassing and to avoid the possibility of corona occurring. Both instruments are performing properly and worthwhile scientific data is being acquired.

  6. 78 FR 19103 - Safety Zone; Spanish Navy School Ship San Sebastian El Cano Escort; Bahia de San Juan; San Juan, PR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... School Ship San Sebastian El Cano, a public vessel, and during their 21 gun salute in accordance with the... zone is necessary to protect the public from the hazards associated with the 21 gun salute near the Bar... an escort of the Spanish Navy School Ship San Sebastian El Cano and 21 gun salute. The outbound...

  7. 78 FR 53245 - Safety Zone; San Diego Bayfair; Mission Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ..., Protection of Children from Environmental Health Risks and Safety Risks. This rule is not an economically significant rule and does not create an environmental risk to health or risk to safety that may...-AA00 Safety Zone; San Diego Bayfair; Mission Bay, San Diego, CA AGENCY: Coast Guard, DHS. ACTION...

  8. Space Radar Image of San Francisco, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This image of San Francisco, California shows how the radar distinguishes between densely populated urban areas and nearby areas that are relatively unsettled. Downtown San Francisco is at the center and the city of Oakland is at the right across the San Francisco Bay. Some city areas, such as the South of Market, called the SOMA district in San Francisco, appear bright red due to the alignment of streets and buildings to the incoming radar beam. Various bridges in the area are also visible including the Golden Gate Bridge (left center) at the opening of San Francisco Bay, the Bay Bridge (right center) connecting San Francisco and Oakland, and the San Mateo Bridge (bottom center). All the dark areas on the image are relatively smooth water: the Pacific Ocean to the left, San Francisco Bay in the center, and various reservoirs. Two major faults bounding the San Francisco-Oakland urban areas are visible on this image. The San Andreas fault, on the San Francisco peninsula, is seen in the lower left of the image. The fault trace is the straight feature filled with linear reservoirs which appear dark. The Hayward fault is the straight feature on the right side of the image between the urban areas and the hillier terrain to the east. The image is about 42 kilometers by 58 kilometers (26 miles by 36 miles) with north toward the upper right. This area is centered at 37.83 degrees north latitude, 122.38 degrees east longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on October 3, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth.

  9. San Francisco, San Pablo Bay Area

    NASA Image and Video Library

    1994-09-30

    STS068-244-022 (30 September-11 October 1994) --- (San Francisco, San Pablo Bay Area) Photographed through the Space Shuttle Endeavour's flight deck windows, the heavily populated bay area is featured in this 70mm frame. The relatively low altitude of Endeavour's orbit (115 nautical miles) and the use of a 250mm lens on the Hasselblad camera allowed for capturing detail in features such as the Berkeley Marina (frame center). The region's topography is well depicted with the lowland areas heavily populated and the hills much more sparsely covered. The Oakland Hills in the right lower center appear to be re-vegetated after a devastating fire. The Golden Gate Recreation Area in the upper left also shows heavy vegetation. The three bridges across the main part of the bay and their connecting roads are prominent. Cultural features such as Golden Gate Park and the Presidio contrast with the gray of the city.

  10. 33 CFR 3.55-20 - Sector San Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Sector San Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone. 3.55-20 Section 3.55-20 Navigation and... Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone. The Sector San Francisco...

  11. 33 CFR 3.55-20 - Sector San Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Sector San Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone. 3.55-20 Section 3.55-20 Navigation and... Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone. The Sector San Francisco...

  12. 33 CFR 3.55-20 - Sector San Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Sector San Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone. 3.55-20 Section 3.55-20 Navigation and... Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone. The Sector San Francisco...

  13. 33 CFR 3.55-20 - Sector San Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sector San Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone. 3.55-20 Section 3.55-20 Navigation and... Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone. The Sector San Francisco...

  14. 33 CFR 3.55-20 - Sector San Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Sector San Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone. 3.55-20 Section 3.55-20 Navigation and... Francisco: San Francisco Bay Marine Inspection Zone and Captain of the Port Zone. The Sector San Francisco...

  15. The San Andreas Fault in the San Francisco Bay area, California: a geology fieldtrip guidebook to selected stops on public lands

    USGS Publications Warehouse

    Stoffer, Philip W.

    2005-01-01

    This guidebook contains a series of geology fieldtrips with selected destinations along the San Andreas Fault in part of the region that experienced surface rupture during the Great San Francisco Earthquake of 1906. Introductory materials present general information about the San Andreas Fault System, landscape features, and ecological factors associated with faults in the South Bay, Santa Cruz Mountains, the San Francisco Peninsula, and the Point Reyes National Seashore regions. Trip stops include roadside areas and recommended hikes along regional faults and to nearby geologic and landscape features that provide opportunities to make casual observations about the geologic history and landscape evolution. Destinations include the sites along the San Andreas and Calaveras faults in the San Juan Bautista and Hollister region. Stops on public land along the San Andreas Fault in the Santa Cruz Mountains in Santa Clara and Santa Cruz counties include in the Loma Prieta summit area, Forest of Nicene Marks State Park, Lexington County Park, Sanborn County Park, Castle Rock State Park, and the Mid Peninsula Open Space Preserve. Destinations on the San Francisco Peninsula and along the coast in San Mateo County include the Crystal Springs Reservoir area, Mussel Rock Park, and parts of Golden Gate National Recreation Area, with additional stops associated with the San Gregorio Fault system at Montara State Beach, the James F. Fitzgerald Preserve, and at Half Moon Bay. Field trip destinations in the Point Reyes National Seashore and vicinity provide information about geology and character of the San Andreas Fault system north of San Francisco.

  16. English Articulation between the San Francisco Unified School District and the City College of San Francisco. Youth Data Archive Issue Brief

    ERIC Educational Resources Information Center

    Gurantz, Oded

    2012-01-01

    San Francisco's Bridge to Success (BtS) initiative brings together the City and County of San Francisco, the San Francisco Unified School District (SFUSD), the City College of San Francisco (CCSF), and key community organizations to promote postsecondary success for underrepresented students. Various working groups, each comprised of staff from…

  17. 78 FR 39610 - Safety Zone; Big Bay Boom, San Diego Bay; San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ..., Protection of Children from Environmental Health Risks and Safety Risks. This rule is not an economically significant rule and does not create an environmental risk to health or risk to safety that may...-AA00 Safety Zone; Big Bay Boom, San Diego Bay; San Diego, CA AGENCY: Coast Guard, DHS. ACTION...

  18. 33 CFR 165.1103 - Security Zone; Naval Mine Anti Submarine Warfare Command; San Diego Bay, San Diego, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Submarine Warfare Command; San Diego Bay, San Diego, CA. 165.1103 Section 165.1103 Navigation and Navigable... Eleventh Coast Guard District § 165.1103 Security Zone; Naval Mine Anti Submarine Warfare Command; San... the Naval Mine Anti Submarine Warfare Command, bound by the following coordinates: 32°43′40.9″ N, 117...

  19. San Francisco and Bay Area, CA, USA

    NASA Image and Video Library

    1991-05-06

    STS039-89-053 (28 April-6 May 1991) --- A 70mm, infrared frame of the city of San Francisco, taken on a clear day. The gray areas represent urban regions, and the red areas are vegetated. Within the city of San Francisco, parks like Golden Gate park and the Presidio at the base of the Golden Gate Bridge easily stand out from the well-developed parts of the city. Major thoroughfares and bridges (Golden Gate and Bay Bridges) are seen as are other landmarks such as Candlestick Park and Alcatraz. The trace of the San Andreas faults show as a straight valley running northerly along the San Francisco peninsula. Good detail is visible in the turbid waters of San Francisco Bay.

  20. History of San Marco

    NASA Technical Reports Server (NTRS)

    Caporale, A. J.

    1968-01-01

    A brief history is reported of the first San Marco project, a joint program of the United States and Italy. The Project was a three phase effort to investigate upper air density and associated ionosphere phenomena. The initial phase included the design and development of the spacecraft, the experiments, the launch complex, and a series of suborbital flights, from Wallops Island. The second phase, consisting of designing, fabricating, and testing a spacecraft for the first orbital mission, culminated in an orbital launch also from Wallops Island. The third phase consisted of further refining the experiments and spacecraft instrumentation and of establishing a full-bore scout complex in Kenya. The launch of San Marco B, in April 1967, from this complex into an equatorial orbit, concluded the initial San Marco effort.

  1. Surface-water, water-quality, and ground-water assessment of the Municipio of Comerio, Puerto Rico, 1997-99

    USGS Publications Warehouse

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Comerio, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System, and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resource data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated at one continuous-record gaging station based on graphical curve-fitting techniques and log-Pearson Type III frequency curves. Estimates of low-flow characteristics for 13 partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics for the continuous- and partial-record stations were estimated using the relation curves developed for the low-flow study. Stream low-flow statistics document the general hydrology under current land- and water-use conditions. A sanitary quality survey of streams utilized 24 sampling stations to evaluate about 84 miles of stream channels with drainage to or within the municipio of Comerio. River and stream samples for fecal coliform and fecal streptococcus analyses were collected on two occasions at base-flow conditions to evaluate the sanitary quality of streams. Bacteriological analyses indicate that about 27 miles of stream reaches within the municipio of Comerio may have fecal coliform bacteria concentrations above the water-quality goal established by the Puerto Rico Environmental Quality Board (Junta de Calidad Ambiental de Puerto Rico) for inland surface waters. Sources of fecal contamination may include illegal discharge of sewage to storm-water drains, malfunction of sanitary

  2. South entrance, plan, section, & detail. San Bernardino Valley Union ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South entrance, plan, section, & detail. San Bernardino Valley Union Junior College, Science Building. Detailed drawings of tile work, wrought iron, and art stone, Howard E. Jones, Architect, San Bernardino, California. Sheet 6, job no. 311. Scale 1.2 inch to the foot. February 15, 1927. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  3. Pleistocene Brawley and Ocotillo Formations: Evidence for initial strike-slip deformation along the San Felipe and San Jacinto fault zonez, Southern California

    USGS Publications Warehouse

    Kirby, S.M.; Janecke, S.U.; Dorsey, R.J.; Housen, B.A.; Langenheim, V.E.; McDougall, K.A.; Steeley, A.N.

    2007-01-01

    We examine the Pleistocene tectonic reorganization of the Pacific-North American plate boundary in the Salton Trough of southern California with an integrated approach that includes basin analysis, magnetostratigraphy, and geologic mapping of upper Pliocene to Pleistocene sedimentary rocks in the San Felipe Hills. These deposits preserve the earliest sedimentary record of movement on the San Felipe and San Jacinto fault zones that replaced and deactivated the late Cenozoic West Salton detachment fault. Sandstone and mudstone of the Brawley Formation accumulated between ???1.1 and ???0.6-0.5 Ma in a delta on the margin of an arid Pleistocene lake, which received sediment from alluvial fans of the Ocotillo Formation to the west-southwest. Our analysis indicates that the Ocotillo and Brawley formations prograded abruptly to the east-northeast across a former mud-dominated perennial lake (Borrego Formation) at ???1.1 Ma in response to initiation of the dextral-oblique San Felipe fault zone. The ???25-km-long San Felipe anticline initiated at about the same time and produced an intrabasinal basement-cored high within the San Felipe-Borrego basin that is recorded by progressive unconformities on its north and south limbs. A disconformity at the base of the Brawley Formation in the eastern San Felipe Hills probably records initiation and early blind slip at the southeast tip of the Clark strand of the San Jacinto fault zone. Our data are consistent with abrupt and nearly synchronous inception of the San Jacinto and San Felipe fault zones southwest of the southern San Andreas fault in the early Pleistocene during a pronounced southwestward broadening of the San Andreas fault zone. The current contractional geometry of the San Jacinto fault zone developed after ???0.5-0.6 Ma during a second, less significant change in structural style. ?? 2007 by The University of Chicago. All rights reserved.

  4. 33 CFR 165.T11-534 - Safety zone; Bay Bridge construction, San Francisco Bay, San Francisco, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Francisco, CA. (a) Location. This temporary safety zone is established in the navigable waters of the San... construction, San Francisco Bay, San Francisco, CA. 165.T11-534 Section 165.T11-534 Navigation and Navigable... within a box connected by the following points: 37°49′06″ N, 122°21′17″ W; 37°49′01″ N, 122°21′12″ W; 37...

  5. The San Andreas fault in the San Francisco Bay region, California: Structure and kinematics of a Young plate boundary

    USGS Publications Warehouse

    Jachens, R.C.; Zoback, M.L.

    1999-01-01

    Recently acquired high-resolution aeromagnetic data delineate offset and/or truncated magnetic rock bodies of the Franciscan Complex that define the location and structure of, and total offset across, the San Andreas fault in the San Francisco Bay region. Two distinctive magnetic anomalies caused by ultramafic rocks and metabasalts east of, and truncated at, the San Andreas fault have clear counterparts west of the fault that indicate a total right-lateral offset of only 22 km on the Peninsula segment, the active strand that ruptured in 1906. The location of the Peninsula segment is well defined magnetically on the northern peninsula where it goes offshore, and can be traced along strike an additional ~6 km to the northwest. Just offshore from Lake Merced, the inferred fault trace steps right (northeast) 3 km onto a nearly parallel strand that can be traced magnetically northwest more than 20 km as the linear northeast edge of a magnetic block bounded by the San Andreas fault, the Pilarcitos fault, and the San Gregorio-Hosgri fault zone. This right-stepping strand, the Golden Gate segment, joins the eastern mapped trace of the San Andreas fault at Bolinas Lagoon and projects back onshore to the southeast near Lake Merced. Inversion of detailed gravity data on the San Francisco Peninsula reveals a 3 km wide basin situated between the two strands of the San Andreas fault, floored by Franciscan basement and filled with Plio-Quaternary sedimentary deposits of the Merced and Colma formations. The basin, ~1 km deep at the coast, narrows and becomes thinner to the southeast along the fault over a distance of ~12 km. The length, width, and location of the basin between the two strands are consistent with a pull-apart basin formed behind the right step in the right-lateral strike-slip San Andreas fault system and currently moving southeast with the North American plate. Slight nonparallelism of the two strands bounding the basin (implying a small component of convergence

  6. San Jose, Costa Rica

    NASA Technical Reports Server (NTRS)

    2007-01-01

    San Jose, capital city of Costa Rica, fills the valley between two steep mountain ranges. In this image made from data collected by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite, visible, shortwave, and near-infrared wavelengths of light that the sensor observed have been combined to produce a false-color version of the scene in which vegetation is red, urban areas are silvery gray, water is dark blue, and clouds are white. The image was captured on February 8, 2007. San Jose is in the center of the image. The Rio Torres winds through downtown San Jose. Cartago, the much smaller colonial capital, sits in the lower right corner, while the city of Alajuela appears across the river, northwest of San Jose. The cities' manmade surfaces contrast sharply with the lushly vegetated landscape surrounding the city. Greenhouses are common in the region, and their glass roofs may be the brilliant white spots around the outer edges the cities. The long, straight runway of the Tobias Bolanos International Airport is visible as a dark line southeast of Alajuela. The landscape around the two cities shown here is rugged. Steep mountain peaks cast dark shadows across their leeward slopes. Patches of dark red vegetation on the mountains north of San Jose may be rainforest. Coffee plantations also cover the slopes of the mountains around the city. February is the dry season in Costa Rica. During the rainy season, from about April to November, clouds usually block the satellite's view of this tropical location. NASA image created by Jesse Allen, using data provided courtesy of Asaf Ullah and Tim Gubbels, SERVIR project.

  7. 22. Post Engineer Office, Presidio of San Francisco, Building # ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Post Engineer Office, Presidio of San Francisco, Building # 1049 Letterman General Hospital. Alterations to EKG Cardiology Clinic. November 1963. BUILDING 1049. - Presidio of San Francisco, Letterman General Hospital, Building No. 12, Letterman Hospital Complex, Edie Road, San Francisco, San Francisco County, CA

  8. MAPP in action in San Antonio, Texas.

    PubMed

    Shields, Kathleen M; Pruski, Charles E

    2005-01-01

    San Antonio was selected as an official Mobilizing for Action through Planning and Partnerships (MAPP) demonstration site by National Association of County and City Officials in 2000. The San Antonio Metropolitan Health District, under the leadership of Dr Fernando A. Guerra, agreed to facilitate the process. The MAPP process provided the San Antonio Metropolitan Health District, the local public health authority, a defined process for community health improvement, as well as a mechanism to help bridge the gap between public health and the community. The San Antonio Metropolitan Health District organized a Core Planning Team to lead the MAPP process in April 2001. By October 2002, the Core Planning Team was expanded to a full community working group named the Alliance for Community Health in San Antonio and Bexar County (Alliance). The Alliance identified six strategic issues, which eventually became the basis of the San Antonio Community Health Improvement Plan. The strategic issues are Public Policy, Data Tracking, Healthy Lifestyles, Promoting a Sense of Community, Access to Care, and Safe Environment. San Antonio's MAPP experience has been successful in bringing together the public health system partners, and establishing public health priorities collectively. The MAPP process has resulted in the development of many new initiatives, and, most important, has opened the door to many partnership opportunities in the future. The work of the Alliance, through the MAPP process, has helped to leverage resources for public health improvement in San Antonio, and has the potential to effect positive change in public health in the future.

  9. 33 CFR 165.T11-568 - Safety Zone; San Diego Symphony Summer POPS Fireworks 2013 Season, San Diego, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety Zone; San Diego Symphony Summer POPS Fireworks 2013 Season, San Diego, CA. 165.T11-568 Section 165.T11-568 Navigation and... Areas Eleventh Coast Guard District § 165.T11-568 Safety Zone; San Diego Symphony Summer POPS Fireworks...

  10. Fine-scale delineation of the location of and relative ground shaking within the San Andreas Fault zone at San Andreas Lake, San Mateo County, California

    USGS Publications Warehouse

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Prentice, C.S.; Sickler, R.R.

    2013-01-01

    The San Francisco Public Utilities Commission is seismically retrofitting the water delivery system at San Andreas Lake, San Mateo County, California, where the reservoir intake system crosses the San Andreas Fault (SAF). The near-surface fault location and geometry are important considerations in the retrofit effort. Because the SAF trends through highly distorted Franciscan mélange and beneath much of the reservoir, the exact trace of the 1906 surface rupture is difficult to determine from surface mapping at San Andreas Lake. Based on surface mapping, it also is unclear if there are additional fault splays that extend northeast or southwest of the main surface rupture. To better understand the fault structure at San Andreas Lake, the U.S. Geological Survey acquired a series of seismic imaging profiles across the SAF at San Andreas Lake in 2008, 2009, and 2011, when the lake level was near historical lows and the surface traces of the SAF were exposed for the first time in decades. We used multiple seismic methods to locate the main 1906 rupture zone and fault splays within about 100 meters northeast of the main rupture zone. Our seismic observations are internally consistent, and our seismic indicators of faulting generally correlate with fault locations inferred from surface mapping. We also tested the accuracy of our seismic methods by comparing our seismically located faults with surface ruptures mapped by Schussler (1906) immediately after the April 18, 1906 San Francisco earthquake of approximate magnitude 7.9; our seismically determined fault locations were highly accurate. Near the reservoir intake facility at San Andreas Lake, our seismic data indicate the main 1906 surface rupture zone consists of at least three near-surface fault traces. Movement on multiple fault traces can have appreciable engineering significance because, unlike movement on a single strike-slip fault trace, differential movement on multiple fault traces may exert compressive and

  11. 78 FR 57482 - Safety Zone; America's Cup Aerobatic Box, San Francisco Bay, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ...-AA00 Safety Zone; America's Cup Aerobatic Box, San Francisco Bay, San Francisco, CA AGENCY: Coast Guard... America's Cup air shows. These safety zones are established to provide a clear area on the water for... announced by America's Cup Race Management. ADDRESSES: Documents mentioned in this preamble are part of...

  12. 77 FR 42649 - Safety Zone: Sea World San Diego Fireworks, Mission Bay; San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket Number USCG-2012-0497] RIN 1625-AA00 Safety Zone: Sea World San Diego Fireworks, Mission Bay; San Diego, CA AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on...

  13. Microsatellite analyses of San Franciscuito Creek rainbow trout

    USGS Publications Warehouse

    Nielsen, Jennifer L.

    2000-01-01

    Microsatellite genetic diversity found in San Francisquito Creek rainbow trout support a close genetic relationship with rainbow trout (Oncorhynchus mykiss) from another tributary of San Francisco Bay, Alameda Creek, and coastal trout found in Lagunitas Creek, Marin County, California. Fish collected for this study from San Francisquito Creek showed a closer genetic relationship to fish from the north-central California steelhead ESU than for any other listed group of O. mykiss. No significant genotypic or allelic frequency associations could be drawn between San Francisquito Creek trout and fish collected from the four primary rainbow trout hatchery strains in use in California, i.e. Whitney, Mount Shasta, Coleman, and Hot Creek hatchery fish. Indeed, genetic distance analyses (δµ2) supported separation between San Francisquito Creek trout and all hatchery trout with 68% bootstrap values in 1000 replicate neighbor-joining trees. Not surprisingly, California hatchery rainbow trout showed their closest evolutionary relationships with contemporary stocks derived from the Sacramento River. Wild collections of rainbow trout from the Sacramento-San Joaquin basin in the Central Valley were also clearly separable from San Francisquito Creek fish supporting separate, independent ESUs for two groups of O. mykiss (one coastal and one Central Valley) with potentially overlapping life histories in San Francisco Bay. These data support the implementation of management and conservation programs for rainbow trout in the San Francisquito Creek drainage as part of the central California coastal steelhead ESU.

  14. 75 FR 51098 - Protection Island and San Juan Islands National Wildlife Refuges, Jefferson, Island, San Juan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ..., Washington Maritime National Wildlife Refuge Complex, 715 Holgerson Drive, Sequim, WA 98382. FOR FURTHER...] Protection Island and San Juan Islands National Wildlife Refuges, Jefferson, Island, San Juan, Skagit, and Whatcom Counties, WA AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of availability: draft...

  15. Forecasting Selenium Discharges to the San Francisco Bay-Delta Estuary: Ecological Effects of A Proposed San Luis Drain Extension

    USGS Publications Warehouse

    Presser, Theresa S.; Luoma, Samuel N.

    2006-01-01

    Selenium discharges to the San Francisco Bay-Delta Estuary (Bay-Delta) could change significantly if federal and state agencies (1) approve an extension of the San Luis Drain to convey agricultural drainage from the western San Joaquin Valley to the North Bay (Suisun Bay, Carquinez Strait, and San Pablo Bay); (2) allow changes in flow patterns of the lower San Joaquin River and Bay-Delta while using an existing portion of the San Luis Drain to convey agricultural drainage to a tributary of the San Joaquin River; or (3) revise selenium criteria for the protection of aquatic life or issue criteria for the protection of wildlife. Understanding the biotransfer of selenium is essential to evaluating effects of selenium on Bay-Delta ecosystems. Confusion about selenium threats to fish and wildlife stem from (1) monitoring programs that do not address specific protocols necessary for an element that bioaccumulates; and (2) failure to consider the full complexity of the processes that result in selenium toxicity. Past studies show that predators are more at risk from selenium contamination than their prey, making it difficult to use traditional methods to predict risk from environmental concentrations alone. This report presents an approach to conceptualize and model the fate and effects of selenium under various load scenarios from the San Joaquin Valley. For each potential load, progressive forecasts show resulting (1) water-column concentration; (2) speciation; (3) transformation to particulate form; (4) particulate concentration; (5) bioaccumulation by invertebrates; (6) trophic transfer to predators; and (7) effects on those predators. Enough is known to establish a first-order understanding of relevant conditions, biological response, and ecological risks should selenium be discharged directly into the North Bay through a conveyance such as a proposed extension of the San Luis Drain. The approach presented here, the Bay-Delta selenium model, determines the mass, fate

  16. San Diego's Capital Planning Process

    ERIC Educational Resources Information Center

    Lytton, Michael

    2009-01-01

    This article describes San Diego's capital planning process. As part of its capital planning process, the San Diego Unified School District has developed a systematic analysis of functional quality at each of its school sites. The advantage of this approach is that it seeks to develop and apply quantifiable metrics and standards for the more…

  17. Section AA through main entrance gates & west stairs. San ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Section AA through main entrance gates & west stairs. San Bernardino Valley Union Junior College, Science Building. Also includes plans and sections of boys' and girls' toilets. Howard E. Jones, Architect, San Bernardino, California. Sheet 5, job no. 311. Scales 1/4 inch to the foot (section AA) and 1/2 inch to the foot (toilet rooms). February 15, 1927. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  18. San Marco C-2 Explorer

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The San Marco C-2 spacecraft will be launched no earlier than 18 February 1974 from the San Marco Range located off the coast of Kenya, Africa, by a Scout launch vehicle. The launch will be conducted by an Italian crew. The San Marco C-2 is the fourth cooperative satellite project between Italy and the United States. The purpose of the mission is to obtain measurements of the diurnal variations of the equatorial neutral atmosphere density, composition, and temperature and to use these data for correlation with AE-C (Explorer 51) data for studies of the physics and dynamics of the thermosphere. The San Marco C-2 project is a joint undertaking of the National Aeronautics and Space Administration (NASA) and the Italian Space Commission officially initiated with a Memorandum of Understanding in August of 1973. Project management responsibility for the Italian portion of the project has been assigned to the Centro Ricerche Aerospaziali (CRA) while the Goddard Space Flight Center (GSFC) has responsibility for the United States portion.

  19. San Andreas drilling sites selected

    NASA Astrophysics Data System (ADS)

    Ellsworth, Bill; Zoback, Mark

    A new initiative for drilling and coring directly into the San Andreas fault at depths up to 10 km is being proposed by an international team of scientists led by Mark Zoback, Stanford University; Steve Hickman and Bill Ellsworth, U.S. Geological Survey; and Lee Younker, Lawrence Livermore Laboratory. In addition to exhuming samples of fault rock and fluids from seismogenic depths, the hole will be used to make a wide range of geophysical measurements within the fault zone and to monitor the fault zone over time. Four areas along the San Andreas have been selected as candidates for deep drilling: the Mojave segment of the San Andreas between Leona Valley and Big Pine, the Carrizo Plain, the San Francisco Peninsula between Los Altos and Daly City, and the Northern Gabilan Range between the Cienga winery and Melendy Ranch. These sites were chosen from an initial list compiled at the International Fault Zone Drilling Workshop held in Asilomar, Calif., in December 1992 and at meetings held this winter and spring in Menlo Park, Calif.

  20. Program Updates - San Antonio River Basin

    EPA Pesticide Factsheets

    This page will house updates for this urban waters partnership location. As projects progress, status updates can be posted here to reflect the ongoing work by partners in San Antonio working on the San Antonio River Basin.

  1. Shelving plans, elevations, and sections. San Bernardino Valley Union Junior ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Shelving plans, elevations, and sections. San Bernardino Valley Union Junior College, Science Building. Howard E. Jones, Architect, San Bernardino, California. Sheet 9, job no. 311. Scale 1.2 inch to the foot. February 15, 1927. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  2. 76 FR 19781 - Protection Island and San Juan Islands National Wildlife Refuges, Jefferson, San Juan, Skagit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ...., Lopez Island, WA 98261. North Olympic Public Library..... 630 N. Sequim Ave., 360-683-1161 Sequim, WA...] Protection Island and San Juan Islands National Wildlife Refuges, Jefferson, San Juan, Skagit, Island, and Whatcom Counties, WA; Final Comprehensive Conservation Plan, Wilderness Stewardship Plan, and Finding of...

  3. 22. Photocopy of photograph (from San Francisco Chronicle Collection) Photographer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photocopy of photograph (from San Francisco Chronicle Collection) Photographer unknown, Date unknown SIDE VIEW OF CHURCH - Mission San Miguel Arcangel, Highway 101, San Miguel, San Luis Obispo County, CA

  4. Cataclastic rocks of the San Gabriel fault—an expression of deformation at deeper crustal levels in the San Andreas fault zone

    NASA Astrophysics Data System (ADS)

    Anderson, J. Lawford; Osborne, Robert H.; Palmer, Donald F.

    1983-10-01

    The San Gabriel fault, a deeply eroded late Oligocene to middle Pliocene precursor to the San Andreas, was chosen for petrologic study to provide information regarding intrafault material representative of deeper crustal levels. Cataclastic rocks exposed along the present trace of the San Andreas in this area are exclusively a variety of fault gouge that is essentially a rock flour with a quartz, feldspar, biotite, chlorite, amphibole, epidote, and Fe-Ti oxide mineralogy representing the milled-down equivalent of the original rock (Anderson and Osborne, 1979; Anderson et al., 1980). Likewise, fault gouge and associated breccia are common along the San Gabriel fault, but only where the zone of cataclasis is several tens of meters wide. At several localities, the zone is extremely narrow (several centimeters), and the cataclastic rock type is cataclasite, a dark, aphanitic, and highly comminuted and indurated rock. The cataclastic rocks along the San Gabriel fault exhibit more comminution than that observed for gouge along the San Andreas. The average grain diameter for the San Andreas gouge ranges from 0.01 to 0.06 mm. For the San Gabriel cataclastic rocks, it ranges from 0.0001 to 0.007 mm. Whereas the San Andreas gouge remains particulate to the smallest grain-size, the ultra-fine grain matrix of the San Gabriel cataclasite is composed of a mosaic of equidimensional, interlocking grains. The cataclastic rocks along the San Gabriel fault also show more mineralogiec changes compared to gouge from the San Andreas fault. At the expense of biotite, amphibole, and feldspar, there is some growth of new albite, chlorite, sericite, laumontite, analcime, mordenite (?), and calcite. The highest grade of metamorphism is laumontite-chlorite zone (zeolite facies). Mineral assemblages and constrained uplift rates allow temperature and depth estimates of 200 ± 30° C and 2-5 km, thus suggesting an approximate geothermal gradient of ~50°C/km. Such elevated temperatures imply a

  5. 76 FR 9709 - Water Quality Challenges in the San Francisco Bay/Sacramento-San Joaquin Delta Estuary

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... Bay Delta Estuary is the hub of California's water distribution system, supplying some or all of the... Water Quality Challenges in the San Francisco Bay/Sacramento-San Joaquin Delta Estuary AGENCY... interested parties on possible EPA actions to address water quality conditions affecting aquatic resources in...

  6. South elevation and main floor plan. San Bernardino Valley Union ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South elevation and main floor plan. San Bernardino Valley Union Junior College, Science Building. Includes chemistry and botany departments. Howard E. Jones, Architect, San Bernardino, California. Sheet 2, job no. 311. Scale 1/8 inch to the foot. February 15, 1927. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  7. 1. VIEW LOOKING SOUTHWEST AT TURNOUT ON SAN TAN FLOODWATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW LOOKING SOUTHWEST AT TURNOUT ON SAN TAN FLOOD-WATER CANAL TO SAN TAN INDIAN CANAL - San Carlos Irrigation Project, San Tan Flood Water Canal, North Side of Gila River, Coolidge, Pinal County, AZ

  8. 77 FR 37604 - Safety Zone; Fourth of July Fireworks, City of San Francisco, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... Zone; Fourth of July Fireworks, City of San Francisco, San Francisco, CA AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the safety zone for... anchoring in the safety zone, unless authorized by the Patrol Commander (PATCOM). DATES: The regulations in...

  9. San Francisco and Bay Area, CA, USA

    NASA Image and Video Library

    1991-06-14

    STS040-152-100 (5-14 June 1991) --- Although clouds obscure part of the city of San Francisco and the mouth of San Francisco Bay, development and physiographic features in the immediate vicinity of the bay are well displayed. The photograph clearly shows the eastern part of the city, including the Embarcadero, the Bay Bridge, which was damaged in the 1989 earthquake, and Candlestick Park, San Mateo, and Dumbarton Bridges, cross the southern portion of the bay. Vari-colored salt ponds also rim the southern Bay near Moffett Field. Highway 280 runs along the San Andreas fault south of the city. On the eastern margin of the bay are Berkeley the Sacramento River and the Haywood and Calaveras faults.

  10. 33 CFR 165.T11-560 - Safety Zone; Sea World San Diego Fireworks 2013 Season, Mission Bay; San Diego, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety Zone; Sea World San Diego Fireworks 2013 Season, Mission Bay; San Diego, CA. 165.T11-560 Section 165.T11-560 Navigation and Navigable... Eleventh Coast Guard District § 165.T11-560 Safety Zone; Sea World San Diego Fireworks 2013 Season, Mission...

  11. Toxic phytoplankton in San Francisco Bay

    USGS Publications Warehouse

    Rodgers, Kristine M.; Garrison, David L.; Cloern, James E.

    1996-01-01

    The Regional Monitoring Program (RMP) was conceived and designed to document the changing distribution and effects of trace substances in San Francisco Bay, with focus on toxic contaminants that have become enriched by human inputs. However, coastal ecosystems like San Francisco Bay also have potential sources of naturally-produced toxic substances that can disrupt food webs and, under extreme circumstances, become threats to public health. The most prevalent source of natural toxins is from blooms of algal species that can synthesize metabolites that are toxic to invertebrates or vertebrates. Although San Francisco Bay is nutrient-rich, it has so far apparently been immune from the epidemic of harmful algal blooms in the world’s nutrient-enriched coastal waters. This absence of acute harmful blooms does not imply that San Francisco Bay has unique features that preclude toxic blooms. No sampling program has been implemented to document the occurrence of toxin-producing algae in San Francisco Bay, so it is difficult to judge the likelihood of such events in the future. This issue is directly relevant to the goals of RMP because harmful species of phytoplankton have the potential to disrupt ecosystem processes that support animal populations, cause severe illness or death in humans, and confound the outcomes of toxicity bioassays such as those included in the RMP. Our purpose here is to utilize existing data on the phytoplankton community of San Francisco Bay to provide a provisional statement about the occurrence, distribution, and potential threats of harmful algae in this Estuary.

  12. Foundation plan. San Bernardino Valley Union Junior College, Classics Building. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Foundation plan. San Bernardino Valley Union Junior College, Classics Building. Also includes sections AA-KK (except DD). Howard E. Jones, Architect, San Bernardino, California. Sheet 1, job no. 312. Scales 1/8 inch to the foot (plan) and 1/2 inch to the foot (sections). February 15, 1927. - San Bernardino Valley College, Classics Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  13. Details of main entrance. San Bernardino Valley Union Junior College, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Details of main entrance. San Bernardino Valley Union Junior College, Classics Building. Half elevation of exterior iron gates, half plan of interior with tiling, and section AA. Howard E. Jones, Architect, San Bernardino, California. Sheet 5, job no. 312. Scale 1/2 inch to the foot. February 15, 1927. - San Bernardino Valley College, Classics Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  14. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  15. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  16. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  17. 33 CFR 110.210 - San Diego Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false San Diego Harbor, CA. 110.210... ANCHORAGE REGULATIONS Anchorage Grounds § 110.210 San Diego Harbor, CA. (a) The anchorage grounds. (1... Commander, Naval Base, San Diego, CA. The administration of these anchorages is exercised by the Commander...

  18. 21. Post Engineer Office, Presidio of San Francisco, Letterman Army ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Post Engineer Office, Presidio of San Francisco, Letterman Army Hospital. EKG Cardiology Clinic, Building 1049. December 1955. BUILDING 1049. - Presidio of San Francisco, Letterman General Hospital, Building No. 12, Letterman Hospital Complex, Edie Road, San Francisco, San Francisco County, CA

  19. Modeling pesticide diuron loading from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT

    USDA-ARS?s Scientific Manuscript database

    Quantitative information on pesticide loading into the Sacramento-San Joaquin Delta waterways of northern California is critical for water resource management in the region, and potentially useful for biological weed control planning. The San Joaquin watershed, an agriculturally intensive area, is a...

  20. 33 CFR 165.1107 - San Diego Bay, California.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false San Diego Bay, California. 165... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1107 San Diego Bay, California... docking/undocking operations at the U.S. Naval Submarine Base on Ballast Point, San Diego Bay, California...

  1. 33 CFR 165.1107 - San Diego Bay, California.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false San Diego Bay, California. 165... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1107 San Diego Bay, California... docking/undocking operations at the U.S. Naval Submarine Base on Ballast Point, San Diego Bay, California...

  2. 33 CFR 165.1107 - San Diego Bay, California.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false San Diego Bay, California. 165... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1107 San Diego Bay, California... docking/undocking operations at the U.S. Naval Submarine Base on Ballast Point, San Diego Bay, California...

  3. North elevation and second floor plan. San Bernardino Valley Union ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North elevation and second floor plan. San Bernardino Valley Union Junior College, Science Building. Includes physics, geology, and zoology departments shelving. Howard E. Jones, Architect, San Bernardino, California. Sheet 4, job no. 311. Scales 1/8 inch to the foot (elevations) and 1/2 inch to the foot (shelving). February 15, 1927. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  4. East and west elevations. San Berardino Valley Union Junior College, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    East and west elevations. San Berardino Valley Union Junior College, Science Building. Also includes elevations and sections of chemistry department shelving. Howard E. Jones, Architect, San Bernardino, California. Sheet 4, Job no. 311. Scales 1/8 inch to the foot (elevations) and 1/2 inch t other foot (shelving). February 15, 1927. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  5. Performance of San Fernando dams during 1994 Northridge earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardet, J.P.; Davis, C.A.

    1996-07-01

    The 1994 Northridge and 1971 San Fernando Earthquakes subjected the Lower and Upper San Fernando Dams of the Van Norman Complex in the San Fernando Valley, Calif., to strong near-source ground motions. In 1994, these earth dams, which were out of service and retained only a few meters of water, extensively cracked and settled due to the liquefaction of their hydraulic fill. The Lower San Fernando Dam moved over 15 cm upstream as the hydraulic fill liquefied beneath its upstream slope. The Upper San Fernando Dam moved even more and deformed in a complicated three-dimensional pattern. The responses of themore » Lower and Upper San Fernando Dams during the 1994 Northridge Earthquake, although less significant than in 1971, provide the geotechnical engineering community with two useful case histories.« less

  6. 19. REGIONAL MAP, SALINAS RIVER PROJECT, CAMP SAN LUIS OBISPO, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. REGIONAL MAP, SALINAS RIVER PROJECT, CAMP SAN LUIS OBISPO, IN CENTRAL PORTION OF SAN LUIS OBISPO, CALIFORNIA. Leeds Hill Barnard & Jewett - Consulting Engineers, February 1942. - Salinas River Project, Cuesta Tunnel, Southeast of U.S. 101, San Luis Obispo, San Luis Obispo County, CA

  7. Modeling pesticide loadings from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT

    NASA Astrophysics Data System (ADS)

    Chen, H.; Zhang, M.

    2016-12-01

    The Sacramento-San Joaquin Delta is an ecologically rich, hydrologically complex area that serves as the hub of California's water supply. However, pesticides have been routinely detected in the Delta waterways, with concentrations exceeding the benchmark for the protection of aquatic life. Pesticide loadings into the Delta are partially attributed to the San Joaquin watershed, a highly productive agricultural watershed located upstream. Therefore, this study aims to simulate pesticide loadings to the Delta by applying the Soil and Water Assessment Tool (SWAT) model to the San Joaquin watershed, under the support of the USDA-ARS Delta Area-Wide Pest Management Program. Pesticide use patterns in the San Joaquin watershed were characterized by combining the California Pesticide Use Reporting (PUR) database and GIS analysis. Sensitivity/uncertainty analyses and multi-site calibration were performed in the simulation of stream flow, sediment, and pesticide loads along the San Joaquin River. Model performance was evaluated using a combination of graphic and quantitative measures. Preliminary results indicated that stream flow was satisfactorily simulated along the San Joaquin River and the major eastern tributaries, whereas stream flow was less accurately simulated in the western tributaries, which are ephemeral small streams that peak during winter storm events and are mainly fed by irrigation return flow during the growing season. The most sensitive parameters to stream flow were CN2, SOL_AWC, HRU_SLP, SLSUBBSN, SLSOIL, GWQMN and GW_REVAP. Regionalization of parameters is important as the sensitivity of parameters vary significantly spatially. In terms of evaluation metric, NSE tended to overrate model performance when compared to PBIAS. Anticipated results will include (1) pesticide use pattern analysis, (2) calibration and validation of stream flow, sediment, and pesticide loads, and (3) characterization of spatial patterns and temporal trends of pesticide yield.

  8. Sediment characteristics in the San Antonio River Basin downstream from San Antonio, Texas, and at a site on the Guadalupe River downstream from the San Antonio River Basin, 1966-2013

    USGS Publications Warehouse

    Crow, Cassi L.; Banta, J. Ryan; Opsahl, Stephen P.

    2014-01-01

    San Antonio and surrounding municipalities in Bexar County, Texas, are in a rapidly urbanizing region in the San Antonio River Basin. The U.S. Geological Survey, in cooperation with the San Antonio River Authority and the Texas Water Development Board, compiled historical sediment data collected between 1996 and 2004 and collected suspended-sediment and bedload samples over a range of hydrologic conditions in the San Antonio River Basin downstream from San Antonio, Tex., and at a site on the Guadalupe River downstream from the San Antonio River Basin during 2011–13. In the suspended-sediment samples collected during 2011–13, an average of about 94 percent of the particles was less than 0.0625 millimeter (silt and clay sized particles); the 50 samples for which a complete sediment-size analysis was performed indicated that an average of about 69 percent of the particles was less than 0.002 millimeter. In the bedload samples collected during 2011–13, an average of 51 percent of sediment particles was sand-sized particles in the 0.25–0.5 millimeter-size range. In general, the loads calculated from the samples indicated that bedload typically composed less than 1 percent of the total sediment load. A least-squares log-linear regression was developed between suspended-sediment concentration and instantaneous streamflow and was used to estimate daily mean suspended-sediment loads based on daily mean streamflow. The daily mean suspended-sediment loads computed for each of the sites indicated that during 2011–12, the majority of the suspended-sediment loads originated upstream from the streamflow-gaging station on the San Antonio River near Elmendorf, Tex. A linear regression relation was developed between turbidity and suspended-sediment concentration data collected at the San Antonio River near Elmendorf site because the high-resolution data can facilitate understanding of the complex suspended-sediment dynamics over time and throughout the river basin.

  9. 78 FR 39588 - Special Local Regulations; Revision of 2013 America's Cup Regulated Area, San Francisco Bay; San...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ...-AA08 Special Local Regulations; Revision of 2013 America's Cup Regulated Area, San Francisco Bay; San...: The Coast Guard is revising the regulated area for the 2013 America's Cup sailing events. Previously... final rule regulating the on-water activities associated with the ``Louis Vuitton Cup,'' ``Red Bull...

  10. 77 FR 50921 - Safety Zone: Bay Bridge Load Transfer Safety Zone, San Francisco Bay, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ...-AA00 Safety Zone: Bay Bridge Load Transfer Safety Zone, San Francisco Bay, San Francisco, CA AGENCY... the Bay Bridge Load Transfer Safety Zone from August 1, 2012 through October 31, 2012. This safety... Bay Bridge from the temporary suspension arrangement to the permanent suspension arrangement, the...

  11. Distribution and demography of San Francisco gartersnakes (Thamnophis sirtalis tetrataenia) at Mindego Ranch, Russian Ridge Open Space Preserve, San Mateo County, California

    USGS Publications Warehouse

    Kim, Richard; Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.

    2018-04-26

    San Francisco gartersnakes (Thamnophis sirtalis tetrataenia) are a subspecies of common gartersnakes endemic to the San Francisco Peninsula of northern California. Because of habitat loss and collection for the pet trade, San Francisco gartersnakes were listed as endangered under the precursor to the Federal Endangered Species Act. A population of San Francisco gartersnakes resides at Mindego Ranch, San Mateo County, which is part of the Russian Ridge Open Space Preserve owned and managed by the Midpeninsula Regional Open Space District (MROSD). Because the site contained non-native fishes and American bullfrogs (Lithobates catesbeianus), MROSD implemented management to eliminate or reduce the abundance of these non-native species in 2014. We monitored the population using capture-mark-recapture techniques to document changes in the population during and following management actions. Although drought confounded some aspects of inference about the effects of management, prey and San Francisco gartersnake populations generally increased following draining of Aquatic Feature 3. Continued management of the site to keep invasive aquatic predators from recolonizing or increasing in abundance, as well as vegetation management that promotes heterogeneous grassland/shrubland near wetlands, likely would benefit this population of San Francisco gartersnakes.

  12. 1. SAN FRANCISCO STREET PROFILES: Photocopy of engraving, c. 1880, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SAN FRANCISCO STREET PROFILES: Photocopy of engraving, c. 1880, showing street profiles of three San Francisco cable lines. Figure 7, at bottom of engraving, is the profile of Hallidie's Clay Street Hill Railroad. Figures 8 and 9 show the grades for the California Street Cable Railroad and the Geary Street Park & Ocean Railroad respectively. Note the lack of significant grades along Geary Street. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  13. Elevation and plan of east side entrance. San Bernardino Valley ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation and plan of east side entrance. San Bernardino Valley Union Junior College, Library Building. Also includes sections II and SS of entrance hall; and a stress diagram of steel truss. Howard E. Jones, Architect, San Bernardino, California. Sheet 7, job no. 315. Scale 1/2 inch to the foot. No date given on sheet (probably March or April, 1927). - San Bernardino Valley College, Library, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  14. West elevation. San Bernardino Valley Union Junior College, Science Building. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    West elevation. San Bernardino Valley Union Junior College, Science Building. Also includes plan of entrance, section EE showing tiling and typical transom design, and a full size detail of a door jamb for inside concrete walls. Howard E. Jones, Architect, San Bernardino, California. Sheet 7, job no. 311. Scale 1.2 inch to the foot. February 15, 1927. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  15. 78 FR 48044 - Safety Zone; San Diego International Airport Terminal Two West Grand Opening Fireworks; San Diego...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ...-AA00 Safety Zone; San Diego International Airport Terminal Two West Grand Opening Fireworks; San Diego... Opening of Lindbergh Airport Terminal Two West on August 8, 2013. This temporary safety zone is necessary... Diego International Airport Terminal Two grand opening. This safety zone is necessary to provide for the...

  16. 78 FR 28800 - Foreign-Trade Zone 61-San Juan, Puerto Rico; Application for Subzone; Parapiezas Corporation; San...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ..., Puerto Rico; Application for Subzone; Parapiezas Corporation; San Juan, Puerto Rico An application has been submitted to the Foreign-Trade Zones Board (the Board) by the Puerto Rico Trade & Export Company... located in San Juan, Puerto Rico. The application was submitted pursuant to the provisions of the Foreign...

  17. 78 FR 21397 - Don Edwards San Francisco Bay National Wildlife Refuge, Alameda, Santa Clara, and San Mateo...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ...) 792-5828. Mail: U.S. Fish and Wildlife Service, San Francisco Bay NWR Complex, 1 Marshlands Road... the San Francisco Bay National Wildlife Refuge Complex, 1 Marshlands Road, Fremont, CA 94555 (510) 792... and environmental education. We announce our decision and the availability of the FONSI for the final...

  18. Geophysical Surveys of the San Andreas and Crystal Springs Reservoir System Including Seismic-Reflection Profiles and Swath Bathymetry, San Mateo County, California

    USGS Publications Warehouse

    Finlayson, David P.; Triezenberg, Peter J.; Hart, Patrick E.

    2010-01-01

    This report describes geophysical data acquired by the U.S. Geological Survey (USGS) in San Andreas Reservoir and Upper and Lower Crystal Springs Reservoirs, San Mateo County, California, as part of an effort to refine knowledge of the location of traces of the San Andreas Fault within the reservoir system and to provide improved reservoir bathymetry for estimates of reservoir water volume. The surveys were conducted by the Western Coastal and Marine Geology (WCMG) Team of the USGS for the San Francisco Public Utilities Commission (SFPUC). The data were acquired in three separate surveys: (1) in June 2007, personnel from WCMG completed a three-day survey of San Andreas Reservoir, collecting approximately 50 km of high-resolution Chirp subbottom seismic-reflection data; (2) in November 2007, WCMG conducted a swath-bathymetry survey of San Andreas reservoir; and finally (3) in April 2008, WCMG conducted a swath-bathymetry survey of both the upper and lower Crystal Springs Reservoir system. Top of PageFor more information, contact David Finlayson.

  19. Examination of spotted sand bass (Paralabrax maculatofasciatus) pollutant bioaccumulation in San Diego Bay, San Diego, California

    PubMed Central

    2013-01-01

    The spotted sand bass (Paralabrax maculatofasciatus) is an important recreational sport and subsistence food fish within San Diego Bay, a large industrialized harbor in San Diego, California. Despite this importance, few studies examining the species life history relative to pollutant tissue concentrations and the consumptive fishery exist. This study utilized data from three independent spotted sand bass studies from 1989 to 2002 to investigate PCB, DDT, and mercury tissue concentrations relative to spotted sand bass age and growth in San Diego Bay, with subsequent comparisons to published pollutant advisory levels and fishery regulations for recreational and subsistence consumption of the species. Subsequent analysis focused on examining temporal and spatial differences for different regions of San Diego Bay. Study results for growth confirmed previous work, finding the species to exhibit highly asymptotic growth, making tissue pollutant concentrations at initial take size difficult if not impossible to predict. This was corroborated by independent tissue concentration results for mercury, which found no relationship between fish size and pollutant bioaccumulation observed. However, a positive though highly variable relationship was observed between fish size and PCB tissue concentration. Despite these findings, a significant proportion of fish exhibited pollutant levels above recommended state recreational angler consumption advisory levels for PCBs and mercury, especially for fish above the minimum take size, making the necessity of at-size predictions less critical. Lastly, no difference in tissue concentration was found temporally or spatially within San Diego Bay. PMID:24282672

  20. Examination of spotted sand bass (Paralabrax maculatofasciatus) pollutant bioaccumulation in San Diego Bay, San Diego, California.

    PubMed

    Loflen, Chad L

    2013-01-01

    The spotted sand bass (Paralabrax maculatofasciatus) is an important recreational sport and subsistence food fish within San Diego Bay, a large industrialized harbor in San Diego, California. Despite this importance, few studies examining the species life history relative to pollutant tissue concentrations and the consumptive fishery exist. This study utilized data from three independent spotted sand bass studies from 1989 to 2002 to investigate PCB, DDT, and mercury tissue concentrations relative to spotted sand bass age and growth in San Diego Bay, with subsequent comparisons to published pollutant advisory levels and fishery regulations for recreational and subsistence consumption of the species. Subsequent analysis focused on examining temporal and spatial differences for different regions of San Diego Bay. Study results for growth confirmed previous work, finding the species to exhibit highly asymptotic growth, making tissue pollutant concentrations at initial take size difficult if not impossible to predict. This was corroborated by independent tissue concentration results for mercury, which found no relationship between fish size and pollutant bioaccumulation observed. However, a positive though highly variable relationship was observed between fish size and PCB tissue concentration. Despite these findings, a significant proportion of fish exhibited pollutant levels above recommended state recreational angler consumption advisory levels for PCBs and mercury, especially for fish above the minimum take size, making the necessity of at-size predictions less critical. Lastly, no difference in tissue concentration was found temporally or spatially within San Diego Bay.

  1. San Francisco and Bay Area, CA, USA

    NASA Image and Video Library

    1973-06-22

    SL2-03-118 (June 1973) --- An infrared photograph of the San Francisco Bay, California area, taken from the Skylab 1/2 space station in Earth orbit. THE PICTURE SHOULD BE HELD WITH THE CLOUDS AND PACIFIC OCEAN ON THE LEFT. This photograph was taken by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment in the Multiple Docking Adapter of the space station. Type 2443 film was used. Note the thickly populated and highly developed area around the bay. Among the cities visible in this photograph are San Francisco, Oakland, Berkeley and San Jose. This view extends eastward to show a portion of the San Joaquin Valley. The S190-A experiment is part of the Skylab Earth Resources Experiment Package (EREP). Photo credit: NASA

  2. 75 FR 61611 - Modification of Class E Airspace; San Clemente, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... [Modified] San Clemente Island NALF (Fredrick Sherman Field), CA (Lat. 33[deg]01'22'' N., long. 118[deg]35'19'' W.) San Clemente Island TACAN (Lat. 33[deg]01'37'' N., long. 118[deg]34'46'' W.) That airspace... San Clemente, CA. Decommissioning of the San Clemente Island Non-Directional Radio Beacon (NDB) at San...

  3. San Francisco Bay Long Term Management Strategy for Dredging

    EPA Pesticide Factsheets

    The San Francisco Bay Long Term Management Strategy (LTMS) is a cooperative effort to develop a new approach to dredging and dredged material disposal in the San Francisco Bay area. The LTMS serves as the Regional Dredging Team for the San Francisco area.

  4. 76 FR 22809 - Safety Zone; Bay Ferry II Maritime Security Exercise; San Francisco Bay, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ...-AA00 Safety Zone; Bay Ferry II Maritime Security Exercise; San Francisco Bay, San Francisco, CA AGENCY... Security Exercise, a multi-agency exercise that tests the proficiency of teams called upon in real [[Page... exercise, many of whom will be traveling at high speeds while interfacing with law enforcement responders...

  5. ASTER Images San Francisco Bay Area

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image of the San Francisco Bay region was acquired on March 3, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    Image: This image covers an area 60 kilometers (37 miles) wide and 75 kilometers (47 miles) long in three bands of the reflected visible and infrared wavelength region. The combination of bands portrays vegetation in red, and urban areas in gray. Sediment in the Suisun Bay, San Pablo Bay, San Francisco Bay, and the Pacific Ocean shows up as lighter shades of blue. Along the west coast of the San Francisco Peninsula, strong surf can be seen as a white fringe along the shoreline. A powerful rip tide is visible extending westward from Daly City into the Pacific Ocean. In the lower right corner, the wetlands of the South San Francisco Bay National Wildlife Refuge appear as large dark blue and brown polygons. The high spatial resolution of ASTER allows fine detail to be observed in the scene. The main bridges of the area (San Mateo, San Francisco-Oakland Bay, Golden Gate, Richmond-San Rafael, Benicia-Martinez, and Carquinez) are easily picked out, connecting the different communities in the Bay area. Shadows of the towers along the Bay Bridge can be seen over the adjacent bay water. With enlargement the entire road network can be easily mapped; individual buildings are visible, including the shadows of the high-rises in downtown San Francisco.

    Inset: This enlargement of the San Francisco Airport highlights the high spatial resolution of ASTER. With further enlargement and careful examination, airplanes can be seen at the terminals.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth

  6. 75 FR 8804 - Safety Zone; NASSCO Launching of USNS Charles Drew, San Diego Bay, San Diego, CA.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ...-AA00 Safety Zone; NASSCO Launching of USNS Charles Drew, San Diego Bay, San Diego, CA. AGENCY: Coast... United States Naval Ship (USNS) Charles Drew. The safety zone is necessary to provide for the safety of... to the safety of the USNS Charles Drew and surrounding vessels as this ship launches from NASSCO...

  7. Surface-water, water-quality, and ground-water assessment of the Municipio of Carolina, Puerto Rico, 1997-99

    USGS Publications Warehouse

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Carolina, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resources data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated for one continuous-record gaging station, based on graphical curve-fitting techniques and log-Pearson Type III frequency analysis. Estimates of low-flow characteristics for seven partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics were computed for the one continuous-record gaging station and were estimated for the partial-record stations using the relation curves developed from the low-flow study. Stream low-flow statistics document the general hydrology under current land and water use. Low-flow statistics may substantially change as a result of streamflow diversions for public supply, and an increase in ground-water development, waste-water discharges, and flood-control measures; the current analysis provides baseline information to evaluate these impacts and develop water budgets. A sanitary quality survey of streams utilized 29 sampling stations to evaluate the sanitary quality of about 87 miles of stream channels. River and stream samples were collected on two occasions during base-flow conditions and were analyzed for fecal coliform and fecal streptococcus. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Carolina may have fecal coliform

  8. Quaternary geology of Alameda County, and parts of Contra Costa, Santa Clara, San Mateo, San Francisco, Stanislaus, and San Joaquin counties, California: a digital database

    USGS Publications Warehouse

    Helley, E.J.; Graymer, R.W.

    1997-01-01

    Alameda County is located at the northern end of the Diablo Range of Central California. It is bounded on the north by the south flank of Mount Diablo, one of the highest peaks in the Bay Area, reaching an elevation of 1173 meters (3,849 ft). San Francisco Bay forms the western boundary, the San Joaquin Valley borders it on the east and an arbitrary line from the Bay into the Diablo Range forms the southern boundary. Alameda is one of the nine Bay Area counties tributary to San Francisco Bay. Most of the country is mountainous with steep rugged topography. Alameda County is covered by twenty-eight 7.5' topographic Quadrangles which are shown on the index map. The Quaternary deposits in Alameda County comprise three distinct depositional environments. One, forming a transgressive sequence of alluvial fan and fan-delta facies, is mapped in the western one-third of the county. The second, forming only alluvial fan facies, is mapped in the Livermore Valley and San Joaquin Valley in the eastern part of the county. The third, forming a combination of Eolian dune and estuarine facies, is restricted to the Alameda Island area in the northwestern corner of the county.

  9. San Francisco Bay Water Quality Improvement Fund

    EPA Pesticide Factsheets

    EPAs grant program to protect and restore San Francisco Bay. The San Francisco Bay Water Quality Improvement Fund (SFBWQIF) has invested in 58 projects along with 70 partners contributing to restore wetlands, water quality, and reduce polluted runoff.,

  10. San Francisco vessel traffic service watchstander analysis

    DOT National Transportation Integrated Search

    1979-11-01

    A team of human factors specialists analyzed the performance of watchstanders in the U.S. Coast Guard's San Francisco Vessel Traffic Center at Yerba Buena Island, San Francisco, California. Data collected included copies of the center's forms and log...

  11. San Diego's High School Dropout Crisis

    ERIC Educational Resources Information Center

    Wilson, James C.

    2012-01-01

    This article highlights San Diego's dropout problem and how much it's costing the city and the state. Most San Diegans do not realize the enormous impact high school dropouts on their city. The California Dropout Research Project, located at the University of California at Santa Barbara, has estimated the lifetime cost of one class or cohort of…

  12. Neogene contraction between the San Andreas fault and the Santa Clara Valley, San Francisco Bay region, California

    USGS Publications Warehouse

    McLaughlin, R.J.; Langenheim, V.E.; Schmidt, K.M.; Jachens, R.C.; Stanley, R.G.; Jayko, A.S.; McDougall, K.A.; Tinsley, J.C.; Valin, Z.C.

    1999-01-01

    In the southern San Francisco Bay region of California, oblique dextral reverse faults that verge northeastward from the San Andreas fault experienced triggered slip during the 1989 M7.1 Loma Prieta earthquake. The role of these range-front thrusts in the evolution of the San Andreas fault system and the future seismic hazard that they may pose to the urban Santa Clara Valley are poorly understood. Based on recent geologic mapping and geophysical investigations, we propose that the range-front thrust system evolved in conjunction with development of the San Andreas fault system. In the early Miocene, the region was dominated by a system of northwestwardly propagating, basin-bounding, transtensional faults. Beginning as early as middle Miocene time, however, the transtensional faulting was superseded by transpressional NE-stepping thrust and reverse faults of the range-front thrust system. Age constraints on the thrust faults indicate that the locus of contraction has focused on the Monte Vista, Shannon, and Berrocal faults since about 4.8 Ma. Fault slip and fold reconstructions suggest that crustal shortening between the San Andreas fault and the Santa Clara Valley within this time frame is ~21%, amounting to as much as 3.2 km at a rate of 0.6 mm/yr. Rates probably have not remained constant; average rates appear to have been much lower in the past few 100 ka. The distribution of coseismic surface contraction during the Loma Prieta earthquake, active seismicity, late Pleistocene to Holocene fluvial terrace warping, and geodetic data further suggest that the active range-front thrust system includes blind thrusts. Critical unresolved issues include information on the near-surface locations of buried thrusts, the timing of recent thrust earthquake events, and their recurrence in relation to earthquakes on the San Andreas fault.

  13. 76 FR 10945 - San Luis Trust Bank, FSB, San Luis Obispo, CA; Notice of Appointment of Receiver

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ... DEPARTMENT OF THE TREASURY Office of Thrift Supervision San Luis Trust Bank, FSB, San Luis Obispo... contained in section 5(d)(2) of the Home Owners' Loan Act, the Office of Thrift Supervision has duly... Thrift Supervision. Sandra E. Evans, Federal Register Liaison. [FR Doc. 2011-4306 Filed 2-25-11; 8:45 am...

  14. 1. Historic American Buildings Survey San Francisco Chronicle Library Rephoto ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey San Francisco Chronicle Library Re-photo May 1940 TAKEN 1849-50 - Abandoned Ships, Historic View, 1849-1850, Yerba Beuna Cove, San Francisco, San Francisco County, CA

  15. 1. Historic American Buildings Survey San Francisco Chronicle Library Rephoto ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey San Francisco Chronicle Library Re-photo May 1940 TOTALLY DESTROYED - Old U. S. Custom House, Historic View, Battery & Washington Streets, San Francisco, San Francisco County, CA

  16. GENERAL VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, NORTH APPROACH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, NORTH APPROACH, LOOKING SOUTH. - North San Gabriel River Bridge, Spanning North Fork of San Gabriel River at Business Route 35, Georgetown, Williamson County, TX

  17. GENERAL VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, NORTH ABUTMENT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, NORTH ABUTMENT, LOOKING NORTHWEST. - North San Gabriel River Bridge, Spanning North Fork of San Gabriel River at Business Route 35, Georgetown, Williamson County, TX

  18. DETAIL OF NORTH SAN GABRIEL RIVER BRIDGE, PICKET HAND RAIL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF NORTH SAN GABRIEL RIVER BRIDGE, PICKET HAND RAIL, LOOKING WEST. - North San Gabriel River Bridge, Spanning North Fork of San Gabriel River at Business Route 35, Georgetown, Williamson County, TX

  19. DETAIL OF NORTH SAN GABRIEL RIVER BRIDGE, CANTILEVER SPAN CONNECTION, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF NORTH SAN GABRIEL RIVER BRIDGE, CANTILEVER SPAN CONNECTION, LOOKING SOUTHEAST. - North San Gabriel River Bridge, Spanning North Fork of San Gabriel River at Business Route 35, Georgetown, Williamson County, TX

  20. GENERAL VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, EAST SIDE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, EAST SIDE, LOOKING SOUTHWEST. - North San Gabriel River Bridge, Spanning North Fork of San Gabriel River at Business Route 35, Georgetown, Williamson County, TX

  1. 8. GENERAL VIEW FROM SOUTHEAST (Title Insurance Co. collection, San ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. GENERAL VIEW FROM SOUTHEAST (Title Insurance Co. collection, San Diego Historical Society). Historical view, no date, photocopied for HABS, 1975 - Long-Waterman House, 2408 First Avenue, San Diego, San Diego County, CA

  2. 1. Historic American Buildings Survey San Francisco Chronicle Photo Undated ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey San Francisco Chronicle Photo Undated (by Taber) ca. 1885 GREENWICH STREET HOUSES (From Powell to Kearny) - Telegraph Hill, Historic View, Greenwich Street, San Francisco, San Francisco County, CA

  3. 27 CFR 9.194 - San Antonio Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... boundary line of sections 22, 27, and 34, T24S, R10E, to the Monterey-San Luis Obispo County line; then (5) Follow the Monterey-San Luis Obispo County line west for approximately 7.0 miles, back onto the Tierra...

  4. 33 CFR 110.74c - Bahia de San Juan, PR.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bahia de San Juan, PR. 110.74c... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.74c Bahia de San Juan, PR. The waters of San Antonio Channel, Bahia de San Juan, eastward of longitude 66°05′45″ W. [CGD 7-83-29, 49 FR 48540, Dec. 13, 1984] ...

  5. 33 CFR 110.74c - Bahia de San Juan, PR.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Bahia de San Juan, PR. 110.74c... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.74c Bahia de San Juan, PR. The waters of San Antonio Channel, Bahia de San Juan, eastward of longitude 66°05′45″ W. [CGD 7-83-29, 49 FR 48540, Dec. 13, 1984] ...

  6. DETAIL OF SOUTH SAN GABRIEL RIVER BRIDGE, CANTILEVER SPAN CONNECTION, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF SOUTH SAN GABRIEL RIVER BRIDGE, CANTILEVER SPAN CONNECTION, LOOKING NORTHWEST. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX

  7. GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, RIVER SPAN, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, RIVER SPAN, LOOKING NORTHWEST. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX

  8. GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, WEST SIDE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, WEST SIDE, LOOKING EAST. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX

  9. GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, SOUTH ABUTMENT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, SOUTH ABUTMENT, LOOKING SOUTHWEST. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX

  10. GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, SOUTH APPROACH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, SOUTH APPROACH, LOOKING NORTH. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX

  11. DETAIL OF SOUTH SAN GABRIEL RIVER BRIDGE, PICKET HAND RAIL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF SOUTH SAN GABRIEL RIVER BRIDGE, PICKET HAND RAIL, LOOKING WEST. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX

  12. VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, FLOOR SYSTEM AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, FLOOR SYSTEM AND LATERAL BRACING, LOOKING SOUTH. - North San Gabriel River Bridge, Spanning North Fork of San Gabriel River at Business Route 35, Georgetown, Williamson County, TX

  13. 1. Historic American Buildings Survey San Francisco Chronicle Library ca. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey San Francisco Chronicle Library ca. 1865 ORIGINAL SITE - RIGHT FOREGROUND (On Market Street) - Holy Cross Parish Hall, Eddy Street (moved from Market & Second Streets), San Francisco, San Francisco County, CA

  14. 78 FR 58878 - Safety Zone; San Diego Shark Fest Swim; San Diego Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... this rule because the logistical details of the San Diego Shark Fest Swim were not finalized nor... Local Notice to Mariners and Broadcast Notice to Mariners. D. Regulatory Analyses We developed this rule... analyses based on a number of these statutes and executive orders. 1. Regulatory Planning and Review This...

  15. VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, FLOOR SYSTEM AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, FLOOR SYSTEM AND LATERAL BRACING, LOOKING NORTH. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX

  16. 1. GENERAL VIEW OF COMPLEX (drawing from History of San ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF COMPLEX (drawing from History of San Diego County, California, published 1883. Photocopy 1975 by Bert Shankland, San Diego). - Johnson-Taylor Ranch House, Black Mountain Road vicinity, Rancho Penasquitos, San Diego County, CA

  17. Fault geometry and cumulative offsets in the central Coast Ranges, California: Evidence for northward increasing slip along the San Gregorio-San Simeon-Hosgri fault

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, R.C.; Graymer, R.W.; Colgan, J.P.; Wentworth, C.M.; Stanley, R.G.

    2012-01-01

    Estimates of the dip, depth extent, and amount of cumulative displacement along the major faults in the central California Coast Ranges are controversial. We use detailed aeromagnetic data to estimate these parameters for the San Gregorio–San Simeon–Hosgri and other faults. The recently acquired aeromagnetic data provide an areally consistent data set that crosses the onshore-offshore transition without disruption, which is particularly important for the mostly offshore San Gregorio–San Simeon–Hosgri fault. Our modeling, constrained by exposed geology and in some cases, drill-hole and seismic-reflection data, indicates that the San Gregorio–San Simeon–Hosgri and Reliz-Rinconada faults dip steeply throughout the seismogenic crust. Deviations from steep dips may result from local fault interactions, transfer of slip between faults, or overprinting by transpression since the late Miocene. Given that such faults are consistent with predominantly strike-slip displacement, we correlate geophysical anomalies offset by these faults to estimate cumulative displacements. We find a northward increase in right-lateral displacement along the San Gregorio–San Simeon–Hosgri fault that is mimicked by Quaternary slip rates. Although overall slip rates have decreased over the lifetime of the fault, the pattern of slip has not changed. Northward increase in right-lateral displacement is balanced in part by slip added by faults, such as the Reliz-Rinconada, Oceanic–West Huasna, and (speculatively) Santa Ynez River faults to the east.

  18. The San Dimas experimental forest: 50 years of research

    Treesearch

    Paul H. Dunn; Susan C. Barro; Wade G. Wells; Mark A Poth; Peter M. Wohlgemuth; Charles G. Colver

    1988-01-01

    The San Dimas Experimental Forest serves as a field laboratory for studies of chaparral and related ecosystems, and has been recognized by national and international organizations. It covers 6,945 ha (17,153 acres) in the foothills of the San Gabriel Mountains northeast of Los Angeles, and has a typical Mediterranean-type climate. The Forest encompasses the San Dimas...

  19. 33 CFR 110.120 - San Luis Obispo Bay, Calif.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false San Luis Obispo Bay, Calif. 110... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.120 San Luis Obispo Bay, Calif. (a) Area A-1. Area A-1 is the water area bounded by the San Luis Obispo County wharf, the shoreline, a line drawn...

  20. 40 CFR 81.164 - San Diego Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false San Diego Intrastate Air Quality... Quality Control Regions § 81.164 San Diego Intrastate Air Quality Control Region. The San Diego Intrastate... within the outermost boundaries of the area so delimited): In the State of California: San Diego County...

  1. 40 CFR 81.164 - San Diego Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false San Diego Intrastate Air Quality... Quality Control Regions § 81.164 San Diego Intrastate Air Quality Control Region. The San Diego Intrastate... within the outermost boundaries of the area so delimited): In the State of California: San Diego County...

  2. 40 CFR 81.164 - San Diego Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false San Diego Intrastate Air Quality... Quality Control Regions § 81.164 San Diego Intrastate Air Quality Control Region. The San Diego Intrastate... within the outermost boundaries of the area so delimited): In the State of California: San Diego County...

  3. 40 CFR 81.164 - San Diego Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false San Diego Intrastate Air Quality... Quality Control Regions § 81.164 San Diego Intrastate Air Quality Control Region. The San Diego Intrastate... within the outermost boundaries of the area so delimited): In the State of California: San Diego County...

  4. 40 CFR 81.164 - San Diego Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false San Diego Intrastate Air Quality... Quality Control Regions § 81.164 San Diego Intrastate Air Quality Control Region. The San Diego Intrastate... within the outermost boundaries of the area so delimited): In the State of California: San Diego County...

  5. The San Francisco Consortium; An Educational Association for Urban Affairs. Progress Report.

    ERIC Educational Resources Information Center

    San Francisco Consortium, CA.

    The San Francisco Consortium was formed in the Fall of 1967 by 5 institutions: City College of San Francisco, Golden Gate College, San Francisco State College, University of California-San Francisco Medical Center and the University of San Francisco. Its primary purpose is to be the instrument through which the resources of the major local…

  6. Holocene Geologic Slip Rate for the Banning Strand of the Southern San Andreas Fault near San Gorgonio Pass, Southern California

    NASA Astrophysics Data System (ADS)

    Gold, P. O.; Behr, W. M.; Rood, D. H.; Kendrick, K. J.; Rockwell, T. K.; Sharp, W. D.

    2014-12-01

    We present the first Holocene geologic slip rate for the Banning strand of the southern San Andreas Fault in southern California. The southern San Andreas Fault splays into the sub-parallel Banning and Mission Creek strands in the northwestern Coachella Valley, and although it has long been surmised that the Banning strand eventually accommodates the majority of displacement and transfers it into San Gorgonio Pass, until now it has been uncertain how slip is actually partitioned between these two fault strands. Our new slip rate measurement, critically located at the northwestern end of the Banning strand, overlaps within errors with the published rate for the southern San Andreas Fault measured at Biskra Palms Oasis. This indicates that the majority of southern San Andreas Fault displacement transfers from the southeastern Mission Creek strand northwest to the Banning strand and into San Gorgonio Pass. Our result corroborates the UCERF3 hazard model, and is consistent with most previous interpretations of how slip is partitioned between the Banning and Mission Creek fault strands. To measure this slip rate, we used B4 airborne LiDAR to identify the apex of an alluvial fan offset laterally 30 ± 5 m from its source. We calculated the depositional age of the fan using 10Be in-situ cosmogenic exposure dating of 5 cobbles and a depth profile. We calculated a most probable fan age of 4.0 +2.0/-1.6 ka (1σ) by combining the inheritance-corrected cobble ages assuming Gaussian uncertainty. However, the probability density function yielded a multi-peaked distribution, which we attribute to variable 10Be inheritance in the cobbles, so we favor the depth profile age of 2.2-3.6 ka. Combined, these measurements yield a late Holocene slip rate for the Banning strand of the southern San Andreas Fault of 11.1 +3.1/-3.3 mm/yr. This slip rate does not preclude possibility that some slip transfers north along the Mission Creek strand and the Garnet Hill fault, but it does confirm

  7. SAN FRANCISCO BAY WETLANDS REGIONAL MONITORING PROGRAM

    EPA Science Inventory

    The geographic area to be monitored is the San Francisco Estuary and its watersheds from the Golden Gate to the Sacramento-San Joaquin Delta at Broad Slough. The initial focus will be the baylands of the region defined as the lands between the maximum and minimum elevations of t...

  8. 75 FR 55975 - Safety Zone; San Diego Harbor Shark Fest Swim; San Diego Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... Guard did not receive notification of the logistical details of the San Diego Bay swim in sufficient... the Captain of the Port, or designated representative. Regulatory Analyses We developed this rule... analyses based on 13 of these statutes or executive orders. Regulatory Planning and Review This rule is not...

  9. Radar image San Francisco Bay Area, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The San Francisco Bay Area in California and its surroundings are shown in this radar image from the Shuttle Radar Topography Mission (SRTM). On this image, smooth areas, such as the bay, lakes, roads and airport runways appear dark, while areas with buildings and trees appear bright. Downtown San Francisco is at the center and the city of Oakland is at the right across the San Francisco Bay. Some city areas, such as the South of Market district in San Francisco, appear bright due to the alignment of streets and buildings with respect to the incoming radar beam. Three of the bridges spanning the Bay are seen in this image. The Bay Bridge is in the center and extends from the city of San Francisco to Yerba Buena and Treasure Islands, and from there to Oakland. The Golden Gate Bridge is to the left and extends from San Francisco to Sausalito. The Richmond-San Rafael Bridge is in the upper right and extends from San Rafael to Richmond. Angel Island is the large island east of the Golden Gate Bridge, and lies north of the much smaller Alcatraz Island. The Alameda Naval Air Station is seen just below the Bay Bridge at the center of the image. Two major faults bounding the San Francisco-Oakland urban areas are visible on this image. The San Andreas fault, on the San Francisco peninsula, is seen on the left side of the image. The fault trace is the straight feature filled with linear reservoirs, which appear dark. The Hayward fault is the straight feature on the right side of the image between the urban areas and the hillier terrain to the east.

    This radar image was acquired by just one of SRTM's two antennas and, consequently, does not show topographic data, but only the strength of the radar signal reflected from the ground. This signal, known as radar backscatter, provides insight into the nature of the surface, including its roughness, vegetation cover and urbanization. The overall faint striping pattern in the images is a data processing artifact due to the

  10. CIRSS vertical data integration, San Bernardino study

    NASA Technical Reports Server (NTRS)

    Hodson, W.; Christenson, J.; Michel, R. (Principal Investigator)

    1982-01-01

    The creation and use of a vertically integrated data base, including LANDSAT data, for local planning purposes in a portion of San Bernardino County, California are described. The project illustrates that a vertically integrated approach can benefit local users, can be used to identify and rectify discrepancies in various data sources, and that the LANDSAT component can be effectively used to identify change, perform initial capability/suitability modeling, update existing data, and refine existing data in a geographic information system. Local analyses were developed which produced data of value to planners in the San Bernardino County Planning Department and the San Bernardino National Forest staff.

  11. Long Return Periods for Earthquakes in San Gorgonio Pass and Implications for Large Ruptures of the San Andreas Fault in Southern California

    NASA Astrophysics Data System (ADS)

    Yule, J.; McBurnett, P.; Ramzan, S.

    2011-12-01

    The largest discontinuity in the surface trace of the San Andreas fault occurs in southern California at San Gorgonio Pass. Here, San Andreas motion moves through a 20 km-wide compressive stepover on the dextral-oblique-slip thrust system known as the San Gorgonio Pass fault zone. This thrust-dominated system is thought to rupture during very large San Andreas events that also involve strike-slip fault segments north and south of the Pass region. A wealth of paleoseismic data document that the San Andreas fault segments on either side of the Pass, in the San Bernardino/Mojave Desert and Coachella Valley regions, rupture on average every ~100 yrs and ~200 yrs, respectively. In contrast, we report here a notably longer return period for ruptures of the San Gorgonio Pass fault zone. For example, features exposed in trenches at the Cabezon site reveal that the most recent earthquake occurred 600-700 yrs ago (this and other ages reported here are constrained by C-14 calibrated ages from charcoal). The rupture at Cabezon broke a 10 m-wide zone of east-west striking thrusts and produced a >2 m-high scarp. Slip during this event is estimated to be >4.5 m. Evidence for a penultimate event was not uncovered but presumably lies beneath ~1000 yr-old strata at the base of the trenches. In Millard Canyon, 5 km to the west of Cabezon, the San Gorgonio Pass fault zone splits into two splays. The northern splay is expressed by 2.5 ± 0.7 m and 5.0 ± 0.7 m scarps in alluvial terraces constrained to be ~1300 and ~2500 yrs old, respectively. The scarp on the younger, low terrace postdates terrace abandonment ~1300 yrs ago and probably correlates with the 600-700 yr-old event at Cabezon, though we cannot rule out that a different event produced the northern Millard scarp. Trenches excavated in the low terrace reveal growth folding and secondary faulting and clear evidence for a penultimate event ~1350-1450 yrs ago, during alluvial deposition prior to the abandonment of the low terrace

  12. South San Francisco Bay, California

    USGS Publications Warehouse

    Dartnell, Peter; Gibbons, Helen

    2007-01-01

    View eastward. Elevations in mapped area color coded: purple (approx 15 m below sea level) to red-orange (approx 90 m above sea level). South San Francisco Bay is very shallow, with a mean water depth of 2.7 m (8.9 ft). Trapezoidal depression near San Mateo Bridge is where sediment has been extracted for use in cement production and as bay fill. Land from USGS digital orthophotographs (DOQs) overlaid on USGS digital elevation models (DEMs). Distance across bottom of image approx 11 km (7 mi); vertical exaggeration 1.5X.

  13. Fragmented Landscapes in the San Gorgonio Pass Region: Insights into Quaternary Strain History of the Southern San Andreas Fault System

    NASA Astrophysics Data System (ADS)

    Kendrick, K. J.; Matti, J. C.; Landis, G. P.; Alvarez, R. M.

    2006-12-01

    The San Gorgonio Pass (SGP) region is a zone of structural complexity within the southern San Andreas Fault system that is characterized by (1) multiple strands of the San Andreas Fault (SAF), (2) intense and diverse microseismicity, (3) contraction within the SGP fault zone (SGPfz), and (4) complex and diverse landforms - all a consequence of structural complications in the vicinity of the southeastern San Bernardino Mountains (SBM). Multiple strands of the SAF zone in the SGP region partition the landscape into discrete geomorphic/geologic domains, including: San Gorgonio Mountain (SGM), Yucaipa Ridge (YR), Kitching Peak (KP), Pisgah Peak (PP), and Coachella Valley (CV) domains. The morphology of each domain reflects the tectonic history unique to that region. Development of the SGP knot in the Mission Creek strand of the SAF (SAFmi) led to westward deflection of the SAFmi, juxtaposition of the KP, PP, and SGM domains, initiation of uplift of YR domain along thrust faults in headwaters of San Gorgonio River, and development of the San Jacinto Fault. Slip on the SAF diminished as a result, thereby allowing integrated drainage systems to develop in the greater SGP region. San Gorgonio River, Whitewater River, and Mission Creek are discrete drainages that transport sediment across the SGM, YR, PP, KP, and CV domains into alluvial systems peripheral to the SGP region. There, depositional units (San Timoteo Formation, upper member, deformed gravels of Whitewater River) all contain clasts of SBM-type and San Gabriel Mountain-type basement, thus constraining slip on the SAF in the SGP region. Middle and late Pleistocene slip on the Mill Creek strand of the SAF (SAFm) in the SGP region has attempted to bypass the SGP knot, and has disrupted landscapes established during SAFmi quiescence. Restoration of right-slip on the SAFm is key to deciphering landscape history. Matti and others (1985, 1992) proposed that a bi-lobed alluvial deposit in the Raywood Flats area has been

  14. 76 FR 70480 - Otay River Estuary Restoration Project, South San Diego Bay Unit of the San Diego Bay National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... River Estuary Restoration Project, South San Diego Bay Unit of the San Diego Bay National Wildlife...), intend to prepare an environmental impact statement (EIS) for the proposed Otay River Estuary Restoration... any one of the following methods. Email: [email protected] . Please include ``Otay Estuary NOI'' in the...

  15. Holocene deceleration of the San Andreas fault zone in San Bernardino and implications for the eastern California shear zone rate debate

    NASA Astrophysics Data System (ADS)

    Bennett, R. A.; Lavier, L.; Anderson, M. L.; Matti, J.; Powell, R. E.

    2005-05-01

    New geodetic inferences for the rate of strain accumulation on the San Andreas fault associated with tectonic loading are ~20 mm/yr slower than observed Holocene surface displacement rates in the San Bernardino area, south of the fault's intersection with the San Jacinto fault zone, and north of its intersection with the eastern California shear zone (ECSZ). This displacement rate "anomaly" is significantly larger than can be easily explained by locking depth errors or earthquake cycle effects not accounted for in geodesy-constrained models for elastic loading rate. Using available time-averaged fault displacement-rates for the San Andreas and San Jacinto fault zones, we estimate instantaneous time-variable displacement rates on the San Andreas-San Jacinto-ECSZ fault zones, assuming that these fault zones form a closed system in the latitude band along which the fault zones overlap with one another and share in the accommodation of steady Pacific-North America relative plate motion. We find that the Holocene decrease in San Andreas loading rate can be compensated by a rapid increase in loading/displacement rate within the ECSZ over the past ~5 kyrs, independent of, but consistent with geodetic and geologic constraints derived from the ECSZ itself. Based on this model, we suggest that reported differences between fast contemporary strain rates observed on faults of the ECSZ using geodesy and slow rates inferred from Quaternary geology and Holocene paleoseismology (i.e., the ECSZ rate debate) may be explained by rapid changes in the pattern and rates of strain accumulation associated with fault loading largely unrelated to postseismic stress relaxation. If so, displacement rate data sets from Holocene geology and present-day geodesy could potentially provide important new constraints on the rheology of the lower crust and upper mantle representing lithospheric behavior on time-scales of thousands of years. Moreover, the results underscore that disagreement between

  16. Backwater Flooding in San Marcos, TX from the Blanco River

    NASA Technical Reports Server (NTRS)

    Earl, Richard; Gaenzle, Kyle G.; Hollier, Andi B.

    2016-01-01

    Large sections of San Marcos, TX were flooded in Oct. 1998, May 2015, and Oct. 2015. Much of the flooding in Oct. 1998 and Oct. 2015 was produced by overbank flooding of San Marcos River and its tributaries by spills from upstream dams. The May 2015 flooding was almost entirely produced by backwater flooding from the Blanco River whose confluence is approximately 2.2 miles southeast of downtown. We use the stage height of the Blanco River to generate maps of the areas of San Marcos that are lower than the flood peaks and compare those results with data for the observed extent of flooding in San Marcos. Our preliminary results suggest that the flooding occurred at locations more than 20 feet lower than the maximum stage height of the Blanco River at San Marcos gage (08171350). This suggest that the datum for either gage 08171350 or 08170500 (San Marcos River at San Marcos) or both are incorrect. There are plans for the U.S. Army Corps of Engineers to construct a Blanco River bypass that will divert Blanco River floodwaters approximately 2 miles farther downstream, but the $60 million price makes its implementation problematic.

  17. NREL, San Diego Gas & Electric Are Advancing Utility Microgrid Performance

    Science.gov Websites

    in Borrego Springs, California | Energy Systems Integration Facility | NREL NREL, San Diego Gas & Electric Models Utility Microgrid in Borrego Springs NREL, San Diego Gas & Electric Are Advancing Utility Microgrid Performance in Borrego Springs, California San Diego Gas & Electric Company

  18. Environmental setting of the San Joaquin-Tulare basins, California

    USGS Publications Warehouse

    Gronberg, JoAnn A.; Dubrovsky, Neil M.; Kratzer, Charles R.; Domagalski, Joseph L.; Brown, Larry R.; Burow, Karen R.

    1998-01-01

    The National Water-Quality Assessment Program for the San Joaquin- Tulare Basins began in 1991 to study the effects of natural and anthropogenic influences on the quality of ground water, surface water, biology, and ecology. The San Joaquin-Tulare Basins study unit, which covers approximately 31,200 square miles in central California, is made up of the San Joaquin Valley, the eastern slope of the Coast Ranges to the west, and the western slope of the Sierra Nevada to the east. The sediments of the San Joaquin Valley can be divided into alluvial fans and basin deposits. The San Joaquin River receives water from tributaries draining the Sierra Nevada and Coast Ranges, and except for streams discharging directly to the Sacramento-San Joaquin Delta, is the only surface- water outlet from the study unit. The surface-water hydrology of the San Joaquin-Tulare Basins study unit has been significantly modified by development of water resources. Almost every major river entering the valley from the Sierra Nevada has one or more reservoirs. Almost every tributary and drainage into the San Joaquin River has been altered by a network of canals, drains, and wasteways. The Sierra Nevada is predominantly forested, and the Coast Ranges and the foothills of the Sierra Nevada are predominately rangeland. The San Joaquin Valley is dominated by agriculture, which utilized approximately 14.7 million acre-feet of water and 597 million pounds active ingredient of nitrogen and phosphorus fertilizers in 1990, and 88 million pounds active ingredient of pesticides in 1991. In addition, the livestock industry contributed 318 million pounds active ingredient of nitrogen and phosphorus from manure in 1987. This report provides the background information to assess the influence of these and other factors on water quality and to provide the foundation for the design and interpretation of all spatial data. These characterizations provide a basis for comparing the influences of human activities

  19. 12. Historic American Buildings Survey S.F. Chronicle Library, San Francisco ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Historic American Buildings Survey S.F. Chronicle Library, San Francisco BUILT 1853 - '4 AFTER THE DISASTER OF 1906 - St. Mary's Church, 660 California Street, San Francisco, San Francisco County, CA

  20. Lahar-hazard zonation for San Miguel volcano, El Salvador

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Chesner, C.A.; Howell, M.M.

    2001-01-01

    San Miguel volcano, also known as Chaparrastique, is one of many volcanoes along the volcanic arc in El Salvador. The volcano, located in the eastern part of the country, rises to an altitude of about 2130 meters and towers above the communities of San Miguel, El Transito, San Rafael Oriente, and San Jorge. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and the PanAmerican and coastal highways cross the lowermost northern and southern flanks of the volcano. The population density around San Miguel volcano coupled with the proximity of major transportation routes increases the risk that even small volcano-related events, like landslides or eruptions, may have significant impact on people and infrastructure. San Miguel volcano is one of the most active volcanoes in El Salvador; it has erupted at least 29 times since 1699. Historical eruptions of the volcano consisted mainly of relatively quiescent emplacement of lava flows or minor explosions that generated modest tephra falls (erupted fragments of microscopic ash to meter sized blocks that are dispersed into the atmosphere and fall to the ground). Little is known, however, about prehistoric eruptions of the volcano. Chemical analyses of prehistoric lava flows and thin tephra falls from San Miguel volcano indicate that the volcano is composed dominantly of basalt (rock having silica content

  1. San Antonio, Texas as seen from STS-58

    NASA Image and Video Library

    1993-10-30

    STS058-101-053 (18 Oct-1 Nov 1993) --- This sharp cloud-free photograph of San Antonio, Texas illustrates the classic pattern of western cities. The Hispanic heart of the city; an intertwining of streets along the San Antonio River and around the Alamo, surrounded by a late 19th century Anglo grid of small businesses and suburban homes. Transportation routes radiate to mid and late 20th Century ring corridors separating the urban/suburban region from the surrounding agricultural countryside. San Antonio was founded around permanent springs that rise at the foot of the Balcones Escarpment, which separates the Texas Hill Country from the South Texas Plains. Limestone quarries are conspicuous along the edge of the escarpment. San Antonio has long been a major site for military training bases: Randolph Air Force Base is outside the city to the northeast, Fort Sam Houston is contained within the northeast quadrant of the city, Brooks Air Force Base lies at the southeastern corner, and Lackland and Kelly Air Force Bases are within the suburban fringe to the southwest. San Antonio International Airport can be seen at the foot of the escarpment in the northern part of the city.

  2. Children and the San Fernando earthquake

    USGS Publications Warehouse

    Howard, S. J.

    1980-01-01

    Before dawn, on February 9, 1971, a magnitude 6.4 earthquake occurred in the San Fernando Valley of California. On the following day, theSan Fernando Valley Child Guidance Clinic, through radio and newspapers, offered mental health crises services to children frightened by the earthquake. Response to this invitation was immediate and almost overwhelming. During the first 2 weeks, the Clinic's staff counseled hundreds of children who were experiencing various degrees of anxiety. 

  3. San Francisco urban partnership agreement : national evaluation plan.

    DOT National Transportation Integrated Search

    2009-12-22

    This report provides an analytic framework for evaluating the San Francisco Urban Partnership Agreement (UPA) under the United States Department of Transportation (U.S. DOT) UPA Program. The San Francisco UPA projects to be evaluated focus on those r...

  4. High-resolution marine seismic reflection data from the San Francisco Bay area

    USGS Publications Warehouse

    Childs, Jonathan R.; Hart, Patrick; Bruns, Terry R.; Marlow, Michael S.; Sliter, Ray

    2000-01-01

    Between 1993 and 1997, the U.S. Geological Survey acquired high-resolution, marine seismic-reflection profile data across submerged portions of known and inferred upper crustal fault zones throughout the greater San Francisco Bay area. Surveys were conducted oversouth San Francisco Bay in the vicinity of the San Bruno shoal (roughly between the San Francisco and Oakland airports), over the offshore extension of the San Andreas fault system west of the Golden Gate, over the Hayward fault to Rodgers Creek fault step-over in San Pablo Bay, and over the Kirby Hills fault where it crosses the western Sacramento Delta. Reconnaissance profiles were acquired elsewhere throughout the San Francisco and San Pablo Bays. These data were acquired by the U.S. Geological Survey, Western Coastal and Marine Geology Team, under the auspices of the Central California/San Francisco Bay Earthquake Hazards Project. Analysis and interpretation of some of these profiles has been published by Marlow and others (1996, 1999). Further analysis and interpretation of these data are available in a USGS. Professional Paper Crustal Structure of the Coastal and Marine San Francisco Bay Region, T. Parsons, editor, http://geopubs.wr.usgs.gov/prof-paper/pp1658/ [link added 2012 mfd].

  5. Cacao use and the San Lorenzo Olmec.

    PubMed

    Powis, Terry G; Cyphers, Ann; Gaikwad, Nilesh W; Grivetti, Louis; Cheong, Kong

    2011-05-24

    Mesoamerican peoples had a long history of cacao use--spanning more than 34 centuries--as confirmed by previous identification of cacao residues on archaeological pottery from Paso de la Amada on the Pacific Coast and the Olmec site of El Manatí on the Gulf Coast. Until now, comparable evidence from San Lorenzo, the premier Olmec capital, was lacking. The present study of theobromine residues confirms the continuous presence and use of cacao products at San Lorenzo between 1800 and 1000 BCE, and documents assorted vessels forms used in its preparation and consumption. One elite context reveals cacao use as part of a mortuary ritual for sacrificial victims, an event that occurred during the height of San Lorenzo's power.

  6. Holocene slip rates along the San Andreas Fault System in the San Gorgonio Pass and implications for large earthquakes in southern California

    NASA Astrophysics Data System (ADS)

    Heermance, Richard V.; Yule, Doug

    2017-06-01

    The San Gorgonio Pass (SGP) in southern California contains a 40 km long region of structural complexity where the San Andreas Fault (SAF) bifurcates into a series of oblique-slip faults with unknown slip history. We combine new 10Be exposure ages (Qt4: 8600 (+2100, -2200) and Qt3: 5700 (+1400, -1900) years B.P.) and a radiocarbon age (1260 ± 60 years B.P.) from late Holocene terraces with scarp displacement of these surfaces to document a Holocene slip rate of 5.7 (+2.7, -1.5) mm/yr combined across two faults. Our preferred slip rate is 37-49% of the average slip rates along the SAF outside the SGP (i.e., Coachella Valley and San Bernardino sections) and implies that strain is transferred off the SAF in this area. Earthquakes here most likely occur in very large, throughgoing SAF events at a lower recurrence than elsewhere on the SAF, so that only approximately one third of SAF ruptures penetrate or originate in the pass.Plain Language SummaryHow large are earthquakes on the southern <span class="hlt">San</span> Andreas Fault? The answer to this question depends on whether or not the earthquake is contained only along individual fault sections, such as the Coachella Valley section north of Palm Springs, or the rupture crosses multiple sections including the area through the <span class="hlt">San</span> Gorgonio Pass. We have determined the age and offset of faulted stream deposits within the <span class="hlt">San</span> Gorgonio Pass to document slip rates of these faults over the last 10,000 years. Our results indicate a long-term slip rate of 6 mm/yr, which is almost 1/2 of the rates east and west of this area. These new rates, combined with faulted geomorphic surfaces, imply that large magnitude earthquakes must occasionally rupture a 300 km length of the <span class="hlt">San</span> Andreas Fault from the Salton Sea to the Mojave Desert. Although many ( 65%) earthquakes along the southern <span class="hlt">San</span> Andreas Fault likely do not rupture through the pass, our new results suggest that large >Mw 7.5 earthquakes are possible</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/45986','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/45986"><span>City of <span class="hlt">San</span> Francisco, California street tree resource analysis</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>E.G. McPherson; J.R. Simpson; P.J. Peper; Q. Xiao</p> <p>2004-01-01</p> <p>Street trees in <span class="hlt">San</span> Francisco are comprised of two distinct populations, those managed by the city’s Department of Public Works (DPW) and those managed by private property owners with or without the help of <span class="hlt">San</span> Francisco’s urban forestry nonprofit, Friends of the Urban Forest (FUF). These two entities believe that the public’s investment in stewardship of <span class="hlt">San</span> Francisco...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/tx0964.photos.367021p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/tx0964.photos.367021p/"><span>DETAIL OF SOUTH <span class="hlt">SAN</span> GABRIEL RIVER BRIDGE, BUILDER’S PLATE, LOOKING ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>DETAIL OF SOUTH <span class="hlt">SAN</span> GABRIEL RIVER BRIDGE, BUILDER’S PLATE, LOOKING NORTHEAST. - South <span class="hlt">San</span> Gabriel River Bridge, Spanning South Fork of <span class="hlt">San</span> Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED517460.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED517460.pdf"><span>Trouble Brewing in <span class="hlt">San</span> Francisco. Policy Brief</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Buck, Stuart</p> <p>2010-01-01</p> <p>The city of <span class="hlt">San</span> Francisco will face enormous budgetary pressures from the growing deficits in public pensions, both at a state and local level. In this policy brief, the author estimates that <span class="hlt">San</span> Francisco faces an aggregate $22.4 billion liability for pensions and retiree health benefits that are underfunded--including $14.1 billion for the city…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1182.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1182.pdf"><span>33 CFR 165.1182 - Safety/Security Zone: <span class="hlt">San</span> Francisco Bay, <span class="hlt">San</span> Pablo Bay, Carquinez Strait, and Suisun Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>..., Carquinez Strait, and Suisun Bay, CA. (a) Regulated area. The following area is established as a moving... Francisco Bay, <span class="hlt">San</span> Pablo Bay, Carquinez Strait, and Suisun Bay, CA. 165.1182 Section 165.1182 Navigation and... vessels transit from a line drawn between <span class="hlt">San</span> Francisco Main Ship Channel buoys 7 and 8 (LLNR 4190 & 4195...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-1182.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-1182.pdf"><span>33 CFR 165.1182 - Safety/Security Zone: <span class="hlt">San</span> Francisco Bay, <span class="hlt">San</span> Pablo Bay, Carquinez Strait, and Suisun Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>..., Carquinez Strait, and Suisun Bay, CA. (a) Regulated area. The following area is established as a moving... Francisco Bay, <span class="hlt">San</span> Pablo Bay, Carquinez Strait, and Suisun Bay, CA. 165.1182 Section 165.1182 Navigation and... vessels transit from a line drawn between <span class="hlt">San</span> Francisco Main Ship Channel buoys 7 and 8 (LLNR 4190 & 4195...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1182.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1182.pdf"><span>33 CFR 165.1182 - Safety/Security Zone: <span class="hlt">San</span> Francisco Bay, <span class="hlt">San</span> Pablo Bay, Carquinez Strait, and Suisun Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>..., Carquinez Strait, and Suisun Bay, CA. (a) Regulated area. The following area is established as a moving... Francisco Bay, <span class="hlt">San</span> Pablo Bay, Carquinez Strait, and Suisun Bay, CA. 165.1182 Section 165.1182 Navigation and... vessels transit from a line drawn between <span class="hlt">San</span> Francisco Main Ship Channel buoys 7 and 8 (LLNR 4190 & 4195...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec165-1182.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec165-1182.pdf"><span>33 CFR 165.1182 - Safety/Security Zone: <span class="hlt">San</span> Francisco Bay, <span class="hlt">San</span> Pablo Bay, Carquinez Strait, and Suisun Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>..., Carquinez Strait, and Suisun Bay, CA. (a) Regulated area. The following area is established as a moving... Francisco Bay, <span class="hlt">San</span> Pablo Bay, Carquinez Strait, and Suisun Bay, CA. 165.1182 Section 165.1182 Navigation and... vessels transit from a line drawn between <span class="hlt">San</span> Francisco Main Ship Channel buoys 7 and 8 (LLNR 4190 & 4195...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1182.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1182.pdf"><span>33 CFR 165.1182 - Safety/Security Zone: <span class="hlt">San</span> Francisco Bay, <span class="hlt">San</span> Pablo Bay, Carquinez Strait, and Suisun Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>..., Carquinez Strait, and Suisun Bay, CA. (a) Regulated area. The following area is established as a moving... Francisco Bay, <span class="hlt">San</span> Pablo Bay, Carquinez Strait, and Suisun Bay, CA. 165.1182 Section 165.1182 Navigation and... vessels transit from a line drawn between <span class="hlt">San</span> Francisco Main Ship Channel buoys 7 and 8 (LLNR 4190 & 4195...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol3/pdf/CFR-2013-title33-vol3-sec334-870.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol3/pdf/CFR-2013-title33-vol3-sec334-870.pdf"><span>33 CFR 334.870 - <span class="hlt">San</span> Diego Harbor, Calif.; restricted area.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false <span class="hlt">San</span> Diego Harbor, Calif... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.870 <span class="hlt">San</span> Diego Harbor... the Pacific Ocean in North <span class="hlt">San</span> Diego Bay in an area extending from the western boundary of North...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol3/pdf/CFR-2014-title33-vol3-sec334-870.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol3/pdf/CFR-2014-title33-vol3-sec334-870.pdf"><span>33 CFR 334.870 - <span class="hlt">San</span> Diego Harbor, Calif.; restricted area.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false <span class="hlt">San</span> Diego Harbor, Calif... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.870 <span class="hlt">San</span> Diego Harbor... the Pacific Ocean in North <span class="hlt">San</span> Diego Bay in an area extending from the western boundary of North...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1106.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1106.pdf"><span>33 CFR 165.1106 - <span class="hlt">San</span> Diego Bay, California-safety zone.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false <span class="hlt">San</span> Diego Bay, California-safety... Diego Bay, California—safety zone. (a) The waters of <span class="hlt">San</span> Diego Bay enclosed by the following boundaries are a safety zone: From a point located on the boundary of Coast Guard Air Station <span class="hlt">San</span> Diego...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1106.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1106.pdf"><span>33 CFR 165.1106 - <span class="hlt">San</span> Diego Bay, California-safety zone.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false <span class="hlt">San</span> Diego Bay, California-safety... Diego Bay, California—safety zone. (a) The waters of <span class="hlt">San</span> Diego Bay enclosed by the following boundaries are a safety zone: From a point located on the boundary of Coast Guard Air Station <span class="hlt">San</span> Diego...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec165-1106.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec165-1106.pdf"><span>33 CFR 165.1106 - <span class="hlt">San</span> Diego Bay, California-safety zone.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false <span class="hlt">San</span> Diego Bay, California-safety... Diego Bay, California—safety zone. (a) The waters of <span class="hlt">San</span> Diego Bay enclosed by the following boundaries are a safety zone: From a point located on the boundary of Coast Guard Air Station <span class="hlt">San</span> Diego...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-1106.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-1106.pdf"><span>33 CFR 165.1106 - <span class="hlt">San</span> Diego Bay, California-safety zone.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false <span class="hlt">San</span> Diego Bay, California-safety... Diego Bay, California—safety zone. (a) The waters of <span class="hlt">San</span> Diego Bay enclosed by the following boundaries are a safety zone: From a point located on the boundary of Coast Guard Air Station <span class="hlt">San</span> Diego...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1106.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1106.pdf"><span>33 CFR 165.1106 - <span class="hlt">San</span> Diego Bay, California-safety zone.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false <span class="hlt">San</span> Diego Bay, California-safety... Diego Bay, California—safety zone. (a) The waters of <span class="hlt">San</span> Diego Bay enclosed by the following boundaries are a safety zone: From a point located on the boundary of Coast Guard Air Station <span class="hlt">San</span> Diego...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.862a2004C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.862a2004C"><span>Spin-analyzed <span class="hlt">SANS</span> for soft matter applications</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, W. C.; Barker, J. G.; Jones, R.; Krycka, K. L.; Watson, S. M.; Gagnon, C.; Perevozchivoka, T.; Butler, P.; Gentile, T. R.</p> <p>2017-06-01</p> <p>The small angle neutron scattering (<span class="hlt">SANS</span>) of nearly Q-independent nuclear spin-incoherent scattering from hydrogen present in most soft matter and biology samples may raise an issue in structure determination in certain soft matter applications. This is true at high wave vector transfer Q where coherent scattering is much weaker than the nearly Q-independent spin-incoherent scattering background. Polarization analysis is capable of separating coherent scattering from spin-incoherent scattering, hence potentially removing the nearly Q-independent background. Here we demonstrate <span class="hlt">SANS</span> polarization analysis in conjunction with the time-of-flight technique for separation of coherent and nuclear spin-incoherent scattering for a sample of silver behenate back-filled with light water. We describe a complete procedure for <span class="hlt">SANS</span> polarization analysis for separating coherent from incoherent scattering for soft matter samples that show inelastic scattering. Polarization efficiency correction and subsequent separation of the coherent and incoherent scattering have been done with and without a time-of-flight technique for direct comparisons. In addition, we have accounted for the effect of multiple scattering from light water to determine the contribution of nuclear spin-incoherent scattering in both the spin flip channel and non-spin flip channel when performing <span class="hlt">SANS</span> polarization analysis. We discuss the possible gain in the signal-to-noise ratio for the measured coherent scattering signal using polarization analysis with the time-of-flight technique compared with routine unpolarized <span class="hlt">SANS</span> measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA01751.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA01751.html"><span>Space Radar Image of <span class="hlt">San</span> Francisco, California</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1999-05-01</p> <p>This is a radar image of <span class="hlt">San</span> Francisco, California, taken on October 3,1994. The image is about 40 kilometers by 55 kilometers (25 miles by 34 miles) with north toward the upper right. Downtown <span class="hlt">San</span> Francisco is visible in the center of the image with the city of Oakland east (to the right) across <span class="hlt">San</span> Francisco Bay. Also visible in the image is the Golden Gate Bridge (left center) and the Bay Bridge connecting <span class="hlt">San</span> Francisco and Oakland. North of the Bay Bridge is Treasure Island. Alcatraz Island appears as a small dot northwest of Treasure Island. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on orbit 56. The image is centered at 37 degrees north latitude, 122degrees west longitude. This single-frequency SIR-C image was obtained by the L-band (24 cm) radar channel, horizontally transmitted and received. Portions of the Pacific Ocean visible in this image appear very dark as do other smooth surfaces such as airport runways. Suburban areas, with the low-density housing and tree-lined streets that are typical of <span class="hlt">San</span> Francisco, appear as lighter gray. Areas with high-rise buildings, such as those seen in the downtown areas, appear in very bright white, showing a higher density of housing and streets which run parallel to the radar flight track. http://photojournal.jpl.nasa.gov/catalog/PIA01751</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1966/0075/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1966/0075/report.pdf"><span>Ground water in the <span class="hlt">San</span> Joaquin Valley, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kunkel, Fred; Hofman, Walter</p> <p>1966-01-01</p> <p>Ladies and gentlemen, it is a pleasure to be invited to attend this Irrigation Institute conference and to describe the Geological Survey's program of ground-water studies in the <span class="hlt">San</span> Joaquin Valley. The U.S. Geological Survey has been making water-resources studies in cooperation with the State of California and other agencies in California for more than 70 years. Three of the earliest Geological Survey Water-Supply Papers--numbers 17, 18, and 19--published in 1898 and 1899, describe "Irrigation near Bakersfield," "Irrigation near Fresno," and "Irrigation near Merced." However, the first Survey report on ground-water occurrence in the <span class="hlt">San</span> Joaquin Valley was "Ground Water in the <span class="hlt">San</span> Joaquin Valley," by Mendenhall and others. The fieldwork was done from 1905 to 1910, and the report was published in 1916 as U.S. Geological Survey Water-Supply Paper 398.The current series of ground-water studies in the <span class="hlt">San</span> Joaquin Valley was begun in 1952 as part of the California Department of Water Resources-U.S. Geological Survey cooperative water-resources program. The first report of this series is Geological Survey Water-Supply Paper 1469, "Ground-Water Conditions and Storage Capacity in the <span class="hlt">San</span> Joaquin Valley." Other reports are Water-Supply Paper 1618, "Use of Ground-Water Reservoirs for Storage of Surface Water in the <span class="hlt">San</span> Joaquin Valley;" Water-Supply Paper 1656, "Geology and Ground-Water Features of the Edison-Maricopa Area;" Water-Supply Paper 1360-G, "Ground- Water Conditions in the Mendota-Huron Area;" Water-Supply Paper 1457, "Ground-Water Conditions in the Avenal-McKittrick Area;" and an open-file report, "Geology, Hydrology, and Quality of Water in the Terra Bella-Lost Hills Area."In addition to the preceding published reports, ground-water studies currently are being made of the Kern Fan area, the Hanford- Visalia area, the Fresno area, the Merced area, and of the clays of Tulare Lake. Also, detailed studies of both shallow and deep subsidence in the southern part of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-08-31/pdf/2010-21642.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-08-31/pdf/2010-21642.pdf"><span>75 FR 53332 - <span class="hlt">San</span> Carlos Irrigation Project, Arizona</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-08-31</p> <p>... DEPARTMENT OF THE INTERIOR Bureau of Reclamation <span class="hlt">San</span> Carlos Irrigation Project, Arizona AGENCY..., as amended, on the rehabilitation of <span class="hlt">San</span> Carlos Irrigation Project (SCIP) water delivery facilities... convey irrigation water from the Gila River and Central Arizona Project (CAP) to agricultural lands in...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-11-05/pdf/2012-26894.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-11-05/pdf/2012-26894.pdf"><span>77 FR 66499 - Environmental Impact Statement: <span class="hlt">San</span> Bernardino and Los Angeles Counties, CA</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-11-05</p> <p>... <span class="hlt">San</span> Bernardino, 285 East Hospitality Lane, <span class="hlt">San</span> Bernardino, California 92408 (2) Sheraton Ontario..., November 13, 2012 from 5-7 p.m. at the Hilton <span class="hlt">San</span> Bernardino, 285 East Hospitality Lane, <span class="hlt">San</span> Bernardino...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021712','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021712"><span>Transport of diazinon in the <span class="hlt">San</span> Joaquin River Basin, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kratzer, C.R.</p> <p>1999-01-01</p> <p>Most of the application of the organophosphate insecticide diazinon in the <span class="hlt">San</span> Joaquin River Basin occurs in winter to control wood-boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of <span class="hlt">San</span> Joaquin River water in February 1993. Previous studies focused mainly on west-side inputs to the <span class="hlt">San</span> Joaquin River. In this 1994 study, the three major east-side tributaries to the <span class="hlt">San</span> Joaquin River - the Merced, Tuolumne, and Stanislaus rivers - and a downstream site on the <span class="hlt">San</span> Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated travel times, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced rivers and east-side drainages directly to the <span class="hlt">San</span> Joaquin River were the main sources later. Although 74 percent of diazinon transport in the <span class="hlt">San</span> Joaquin River during 1991-1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the <span class="hlt">San</span> Joaquin River during the January storm exceeded 0.35 ??g/L, a concentration shown to be acutely toxic to water fleas. On the basis of this study and previous studies, diazinon concentrations and streamflow are highly variable during January and February storms, and frequent sampling is required to evaluate transport in the <span class="hlt">San</span> Joaquin River Basin.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol1/pdf/CFR-2012-title33-vol1-sec110-74c.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol1/pdf/CFR-2012-title33-vol1-sec110-74c.pdf"><span>33 CFR 110.74c - Bahia de <span class="hlt">San</span> Juan, PR.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Bahia de <span class="hlt">San</span> Juan, PR. 110.74c Section 110.74c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.74c Bahia de <span class="hlt">San</span> Juan, PR. The waters of <span class="hlt">San</span> Antonio...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol1/pdf/CFR-2014-title33-vol1-sec110-74c.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol1/pdf/CFR-2014-title33-vol1-sec110-74c.pdf"><span>33 CFR 110.74c - Bahia de <span class="hlt">San</span> Juan, PR.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Bahia de <span class="hlt">San</span> Juan, PR. 110.74c Section 110.74c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.74c Bahia de <span class="hlt">San</span> Juan, PR. The waters of <span class="hlt">San</span> Antonio...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol1/pdf/CFR-2013-title33-vol1-sec110-74c.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol1/pdf/CFR-2013-title33-vol1-sec110-74c.pdf"><span>33 CFR 110.74c - Bahia de <span class="hlt">San</span> Juan, PR.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Bahia de <span class="hlt">San</span> Juan, PR. 110.74c Section 110.74c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.74c Bahia de <span class="hlt">San</span> Juan, PR. The waters of <span class="hlt">San</span> Antonio...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.afdc.energy.gov/case/2','SCIGOVWS'); return false;" href="https://www.afdc.energy.gov/case/2"><span>Alternative Fuels Data Center: Students Reduce Vehicle Idling in <span class="hlt">San</span></span></a></p> <p><a target="_blank" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Antonio, Texas</A> <em>Students</em> Reduce Vehicle Idling in <span class="hlt">San</span> Antonio, Texas to someone by E-mail Share Alternative Fuels Data Center: <em>Students</em> Reduce Vehicle Idling in <span class="hlt">San</span> Antonio, Texas on Facebook Tweet about Alternative Fuels Data Center: <em>Students</em> Reduce Vehicle Idling in <span class="hlt">San</span> Antonio, Texas on Twitter Bookmark</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2013/3037/pdf/fs2013-3037.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2013/3037/pdf/fs2013-3037.pdf"><span>USGS science at work in the <span class="hlt">San</span> Francisco Bay and Sacramento-<span class="hlt">San</span> Joaquin Delta estuary</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shouse, Michelle K.; Cox, Dale A.</p> <p>2013-01-01</p> <p>The <span class="hlt">San</span> Francisco Bay and Sacramento-<span class="hlt">San</span> Joaquin Delta form one of the largest estuaries in the United States. The “Bay-Delta” system provides water to more than 25 million California residents and vast farmlands, as well as key habitat for birds, fish, and other wildlife. To help ensure the health of this crucial estuary, the U.S. Geological Survey, in close cooperation with partner agencies and organizations, is providing science essential to addressing societal issues associated with water quantity and quality, sediment transportation, environmental contamination, animal health and status, habitat restoration, hazards, ground subsidence, and climate change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA371125','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA371125"><span>Consolidated Area Telephone System-<span class="hlt">San</span> Diego Area</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1996-02-29</p> <p>This audit resulted from the Audit on the Consolidated Area Telephone System-<span class="hlt">San</span> Francisco Bay Area. The Consolidated Area Telephone System ( CATS ...<span class="hlt">San</span> Diego contract, valued at $142 million, will expire in August 1996. In October 1995, administration of CATS transferred from the Navy Public Works...efficiency, and effectiveness of asset accountability over CATS leased telecommunications equipment and services (switches, cabling, and telephones</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED517463.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED517463.pdf"><span>Trouble Brewing in <span class="hlt">San</span> Diego. Policy Brief</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Buck, Stuart</p> <p>2010-01-01</p> <p>The city of <span class="hlt">San</span> Diego will face enormous budgetary pressures from the growing deficits in public pensions, both at a state and local level. In this policy brief, the author estimates that <span class="hlt">San</span> Diego faces total of $45.4 billion, including $7.95 billion for the county pension system, $5.4 billion for the city pension system, and an estimated $30.7…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/45255','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/45255"><span>Human aspects of air quality in the <span class="hlt">San</span> Bernardino Mountains</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>P.L. Winter</p> <p>1999-01-01</p> <p>The preceding chapters of this book have provided infomation on the ecological characteristics of the <span class="hlt">San</span> Bernardino Mountains, as well as the effects of ozone and other air pollutants on vegetation and soil in the <span class="hlt">San</span> Bernardinos, and additional interactions with air pollution and forest health. This chapter focuses on the human aspects of air quality in the <span class="hlt">San</span>...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3102397','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3102397"><span>Cacao use and the <span class="hlt">San</span> Lorenzo Olmec</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Powis, Terry G.; Cyphers, Ann; Gaikwad, Nilesh W.; Grivetti, Louis; Cheong, Kong</p> <p>2011-01-01</p> <p>Mesoamerican peoples had a long history of cacao use—spanning more than 34 centuries—as confirmed by previous identification of cacao residues on archaeological pottery from Paso de la Amada on the Pacific Coast and the Olmec site of El Manatí on the Gulf Coast. Until now, comparable evidence from <span class="hlt">San</span> Lorenzo, the premier Olmec capital, was lacking. The present study of theobromine residues confirms the continuous presence and use of cacao products at <span class="hlt">San</span> Lorenzo between 1800 and 1000 BCE, and documents assorted vessels forms used in its preparation and consumption. One elite context reveals cacao use as part of a mortuary ritual for sacrificial victims, an event that occurred during the height of <span class="hlt">San</span> Lorenzo's power. PMID:21555564</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T23C2969K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T23C2969K"><span>Geomorphological expression of a complex structural region: <span class="hlt">San</span> Andreas Fault through the <span class="hlt">San</span> Gorgonio Pass, southern California</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kendrick, K. J.; Matti, J. C.</p> <p>2015-12-01</p> <p>The <span class="hlt">San</span> Gorgonio Pass (SGP) region of southern California is a locus of extensive Quaternary deformation surrounding a complex section of the <span class="hlt">San</span> Andreas Fault (SAF) zone. The geomorphology of the SGP region reflects the complicated history of geologic events in the formation of this structural 'knot'. Critical questions remain in assessing earthquake hazard for this region: What is the likelihood that rupture will propagate through the SGP? If rupture is able to propagate, what pathway will connect the various fault strands? To address these questions, we focus on the geology and geomorphology of the SGP region. We have identified fault-bounded blocks, and focus on three that are developed within crystalline bedrock: the Yucaipa Ridge block (YRB) block, the Kitching Peak block (KPB), and the Pisgah Peak block (PPB). The latter two blocks are positioned south of the YRB, and partially separated from each other by the <span class="hlt">San</span> Bernardino strand; this strand cannot be mapped at the surface as an active connection between fault strands. Both KPB and PPB are bounded to the south by the <span class="hlt">San</span> Gorgonio Pass Fault Zone. Morphometric analyses consistently demonstrate distinctions between KPB and PPB, though the bedrock lithologies are the same. Geologic mapping of the region highlights the differences in Quaternary units within the blocks. These geomorphic and geologic distinctions lead to our interpretation that KPB and PPB have experienced markedly different uplift histories that constrain the history of dextral slip on the SAF through SGP. Specifically, although the latest Quaternary geologic setting of SGP raises questions about modern slip transfer through the Pass, the contrasting uplift histories of KPB and PPB strongly suggest that earlier in Quaternary time SGP was not a barrier to slip transfer between the Coachella Valley to the SE and the <span class="hlt">San</span> Bernardino Basin to the NW.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2004/3091/pdf/FS2004-3091.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2004/3091/pdf/FS2004-3091.pdf"><span>Linking selenium sources to ecosystems: <span class="hlt">San</span> Francisco Bay-Delta Model</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Presser, Theresa S.; Luoma, Samuel N.</p> <p>2004-01-01</p> <p>Marine sedimentary rocks of the Coast Ranges contribute selenium to soil, surface water, and ground water in the western <span class="hlt">San</span> Joaquin Valley, California. Irrigation funnels selenium into a network of subsurface drains and canals. Proposals to build a master drain (i.e., <span class="hlt">San</span> Luis Drain) to discharge into the <span class="hlt">San</span> Francisco Bay-Delta Estuary remain as controversial today as they were in the 1950s, when drainage outside the <span class="hlt">San</span> Joaquin Valley was first considered. An existing 85-mile portion of the <span class="hlt">San</span> Luis Drain was closed in 1986 after fish mortality and deformities in ducks, grebes and coots were discovered at Kesterson National Wildlife Refuge, the temporary terminus of the drain. A 28-mile portion of the drain now conveys drainage from 100,000 acres into the <span class="hlt">San</span> Joaquin River and eventually into the Bay-Delta. If the <span class="hlt">San</span> Luis Drain is extended directly to the Bay-Delta, as is now being proposed as an alternative to sustain agriculture, it could receive drainage from an estimated one-million acres of farmland affected by rising water tables and increasing salinity. In addition to agricultural sources, oil refineries also discharge selenium to the Bay-Delta, although those discharges have declined in recent years. To understand the effects of changing selenium inputs, scientists have developed the Bay-Delta Selenium Model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.water.usgs.gov/wri034317/','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/wri034317/"><span>Surface-Water, Water-Quality, and Ground-Water Assessment of the <span class="hlt">Municipio</span> of Mayaguez, Puerto Rico, 1999-2002</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rodríguez-Martínez, Jesús; Santiago-Rivera, Luis; Guzman-Rios, Senen; Gómez-Gómez, Fernando; Oliveras-Feliciano, Mario L.</p> <p>2004-01-01</p> <p>The surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers, because the supply of safe drinking water was a critical issue during recent dry periods. Low-flow characteristics were evaluated at one continuous-record gaging station based on graphical curve-fitting techniques and log-Pearson Type III frequency curves. Estimates of low-flow characteristics for 20 partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics for the continuous- and partial-record stations were estimated using the relation curves developed for the low-flow study. Stream low-flow statistics document the general hydrology under current land use, water-use, and climatic conditions. A survey of streams and rivers utilized 37 sampling stations to evaluate the sanitary quality of about 165 miles of stream channels. River and stream samples for fecal coliform and fecal streptococcus analyses were collected on two occasions at base-flow conditions. Bacteriological analyses indicate that a significant portion of the stream reaches within the <span class="hlt">municipio</span> of Mayaguez may have fecal coliform bacteria concentrations above the water-quality goal (standard) established by the Puerto Rico Environmental Quality Board (Junta de Calidad Ambiental de Puerto Rico) for inland surface waters. Sources of fecal contamination may include: illegal discharge of sewage to storm-water drains, malfunctioning sanitary sewer ejectors, clogged and leaking sewage pipes, septic tank leakage, unfenced livestock, and runoff from livestock pens. Long-term fecal coliform data from five sampling stations located within or in the vicinity of the <span class="hlt">municipio</span> of Mayaguez have been in compliance with the water-quality goal for fecal coliform concentration established in July 1990. Geologic, topographic, soil, hydrogeologic, and streamflow data were compiled into a database and used to divide the <span class="hlt">municipio</span> of Mayaguez into</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.afdc.energy.gov/case/504','SCIGOVWS'); return false;" href="https://www.afdc.energy.gov/case/504"><span>Alternative Fuels Data Center: <span class="hlt">San</span> Diego Leads in Promoting EVs</span></a></p> <p><a target="_blank" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>of a <em>school</em> bus Michigan Transports <em>Students</em> in Hybrid Electric <em>School</em> Buses Jan. 4, 2014 Photo of <span class="hlt">San</span> Diego Leads in <em>Promoting</em> EVs to someone by E-mail Share Alternative Fuels Data Center: <span class="hlt">San</span> Diego Leads in <em>Promoting</em> EVs on Facebook Tweet about Alternative Fuels Data Center: <span class="hlt">San</span> Diego Leads in</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1997/0411/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1997/0411/report.pdf"><span>Transport of diazinon in the <span class="hlt">San</span> Joaquin River basin, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kratzer, Charles R.</p> <p>1997-01-01</p> <p>Most of the application of the organophosphate insecticide diazinon in the <span class="hlt">San</span> Joaquin River Basin occurs in winter to control wood boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of <span class="hlt">San</span> Joaquin River water to water fleas in February 1993. Previous studies focussed mainly on west-side inputs to the <span class="hlt">San</span> Joaquin River. In this 1994 study, the three major east-side tributaries to the <span class="hlt">San</span> Joaquin River, the Merced, Tuolumne, and Stanislaus Rivers, and a downstream site on the <span class="hlt">San</span> Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated traveltimes, ephemeral west-side creeks were probably the main diazinon source early in the storms, while the Tuolumne and Merced Rivers and east-side drainage directly to the <span class="hlt">San</span> Joaquin River were the main sources later. Although 74 percent of diazinon transport in the <span class="hlt">San</span> Joaquin River during 199193 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceeding dry periods. Nevertheless, some of the diazinon concentrations in the <span class="hlt">San</span> Joaquin River during the January storm exceeded 0.35 micrograms per liter, a concentration shown to be acutely toxic to water fleas. Diazinon concentrations were highly variable during the storms and frequent sampling was required to adequately describe the concentration curves and to estimate loads.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-sts059-213-009.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-sts059-213-009.html"><span><span class="hlt">San</span> Francisco Bay, California as seen from STS-59</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1994-04-14</p> <p>STS059-213-009 (9-20 April 1994) --- <span class="hlt">San</span> Francisco Bay. Orient with the sea up. The delta of the combined Sacramento and <span class="hlt">San</span> Joaquin Rivers occupies the foreground, <span class="hlt">San</span> Francisco Bay the middle distance, and the Pacific Ocean the rest. Variations in water color caused both by sediment load and by wind streaking strike the eye. Man-made features dominate this scene. The Lafayette/Concord complex is left of the bay head, Vallejo is to the right, the Berkeley/Oakland complex rims the shoreline of the main bay, and <span class="hlt">San</span> Francisco fills the peninsula beyond. Salt-evaporation ponds contain differently-colored algae depending on salinity. The low altitude (less than 120 nautical miles) and unusually-clear air combine to provide unusually-strong green colors in this Spring scene. Hasselblad camera.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=STS059-213-009&hterms=vallejo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dvallejo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=STS059-213-009&hterms=vallejo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dvallejo"><span><span class="hlt">San</span> Francisco Bay, California as seen from STS-59</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1994-01-01</p> <p><span class="hlt">San</span> Francisco Bay as seen from STS-59. View is oriented with the sea up. The delta of the combined Sacramento and <span class="hlt">San</span> Joaquin Rivers occupies the foreground with <span class="hlt">San</span> Francisco Bay in the middle distance, then the Pacific Ocean. Variations in water color caused both by sediment load and by wind streaking strike the eye. Man-made features dominate this scene. The Lafayette/Concord complex is left of the bay head, Vallejo is to the right, the Berkeley/Oakland complex rims the shoreline of the main bay, and <span class="hlt">San</span> Francisco fills the peninsula beyond. Salt-evaporation ponds contain differently-colored algae depending on salinity. The low altitude (less than 120 nautical miles) and unusually-clear air combine to provide unusually-strong green colors in this Spring scene.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://archives.datapages.com/data/pacific/data/036/036001/1_ps0360001.htm','USGSPUBS'); return false;" href="http://archives.datapages.com/data/pacific/data/036/036001/1_ps0360001.htm"><span>Geological literature on the <span class="hlt">San</span> Joaquin Valley of California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Maher, J.C.; Trollman, W.M.; Denman, J.M.</p> <p>1973-01-01</p> <p>The following list of references includes most of the geological literature on the <span class="hlt">San</span> Joaquin Valley and vicinity in central California (see figure 1) published prior to January 1, 1973. The <span class="hlt">San</span> Joaquin Valley comprises all or parts of 11 counties -- Alameda, Calaveras, Contra Costa, Fresno, Kern, Kings, Madera, Merced, <span class="hlt">San</span> Joaquin, Stanislaus, and Tulare (figure 2). As a matter of convenient geographical classification the boundaries of the report area have been drawn along county lines, and to include <span class="hlt">San</span> Benito and Santa Clara Counties on the west and Mariposa and Tuolumne Counties on the east. Therefore, this list of geological literature includes some publications on the Diablo and Temblor Ranges on the west, the Tehachapi Mountains and Mojave Desert on the south, and the Sierra Nevada Foothills and Mountains on the east.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29527011','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29527011"><span>Space flight-associated neuro-ocular syndrome (<span class="hlt">SANS</span>).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Andrew G; Mader, Thomas H; Gibson, C Robert; Brunstetter, Tyson J; Tarver, William J</p> <p>2018-03-12</p> <p>Interesting novel and somewhat perplexing physiologic and pathologic neuro-ocular findings have been documented in astronauts during and after long duration space flight (LDSF). These findings collectively have been termed the "space flight-associated neuro-ocular syndrome" (<span class="hlt">SANS</span>). The National Aeronautics and Space Administration (NASA) in the United States has meticulously and prospectively documented the clinical, ultrasound, optical coherence tomography imaging, and radiographic findings of <span class="hlt">SANS</span> including unilateral and bilateral optic disc edema, globe flattening, choroidal and retinal folds, hyperopic refractive error shifts, and nerve fiber layer infarcts (i.e., cotton wool spots). NASA and collaborating researchers continue to study <span class="hlt">SANS</span> in preparation for future manned missions to space, including continued trips to the ISS, a return to the moon, or perhaps new voyages to the asteroid belt, or the planet, Mars.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-10-27/pdf/2010-27114.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-10-27/pdf/2010-27114.pdf"><span>75 FR 65985 - Safety Zone: Epic Roasthouse Private Party Firework Display, <span class="hlt">San</span> Francisco, CA</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-10-27</p> <p>... the navigable waters of <span class="hlt">San</span> Francisco Bay 1,000 yards off Epic Roasthouse Restaurant, <span class="hlt">San</span> Francisco... waters of <span class="hlt">San</span> Francisco Bay, 1,000 yards off Epic Roasthouse Restaurant, <span class="hlt">San</span> Francisco, CA. The fireworks... Epic Roasthouse Restaurant, <span class="hlt">San</span> Francisco, CA. The fireworks launch site will be located in position 37...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-06-12/pdf/2012-14299.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-06-12/pdf/2012-14299.pdf"><span>77 FR 34984 - Notice of Intent To Repatriate a Cultural Item: <span class="hlt">San</span> Diego Museum of Man, <span class="hlt">San</span> Diego, CA</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-06-12</p> <p>...The <span class="hlt">San</span> Diego Museum of Man, in consultation with the appropriate Indian tribes, has determined that a cultural item meets the definition of unassociated funerary object and repatriation to the Indian tribes stated below may occur if no additional claimants come forward. Representatives of any Indian tribe that believes itself to be culturally affiliated with the cultural item may contact the <span class="hlt">San</span> Diego Museum of Man.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=definition+AND+compensation+AND+benefit&id=ED338310','ERIC'); return false;" href="https://eric.ed.gov/?q=definition+AND+compensation+AND+benefit&id=ED338310"><span>Master Contract: <span class="hlt">San</span> Joaquin Delta College Teachers Association/CTA/NEA and <span class="hlt">San</span> Joaquin Delta Community College District, July 1987-June 1990.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>San Joaquin Delta Community Coll. District, CA.</p> <p></p> <p>The collective bargaining agreement between the <span class="hlt">San</span> Joaquin Delta Community College District Board of Trustees and the <span class="hlt">San</span> Joaquin Delta College Teachers Association/California Teachers Association/National Education Association is presented. This contract, covering the period from July 1987 through June 1990, deals with the following topics:…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/az0379.photos.321638p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/az0379.photos.321638p/"><span>3. Photographic copy of map. <span class="hlt">San</span> Carlos Project, Arizona. Irrigation ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>3. Photographic copy of map. <span class="hlt">San</span> Carlos Project, Arizona. Irrigation System. Department of the Interior. United States Indian Service. No date. Circa 1939. (Source: Henderson, Paul. U.S. Indian Irrigation Service. Supplemental Storage Reservoir, Gila River. November 10, 1939, RG 115, <span class="hlt">San</span> Carlos Project, National Archives, Rocky Mountain Region, Denver, CO.) - <span class="hlt">San</span> Carlos Irrigation Project, Lands North & South of Gila River, Coolidge, Pinal County, AZ</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol1/pdf/CFR-2012-title33-vol1-sec80-1142.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol1/pdf/CFR-2012-title33-vol1-sec80-1142.pdf"><span>33 CFR 80.1142 - <span class="hlt">San</span> Francisco Harbor, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false <span class="hlt">San</span> Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 <span class="hlt">San</span> Francisco Harbor, CA. A straight line...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol1/pdf/CFR-2010-title33-vol1-sec80-1142.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol1/pdf/CFR-2010-title33-vol1-sec80-1142.pdf"><span>33 CFR 80.1142 - <span class="hlt">San</span> Francisco Harbor, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false <span class="hlt">San</span> Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 <span class="hlt">San</span> Francisco Harbor, CA. A straight line...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol1/pdf/CFR-2011-title33-vol1-sec80-1142.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol1/pdf/CFR-2011-title33-vol1-sec80-1142.pdf"><span>33 CFR 80.1142 - <span class="hlt">San</span> Francisco Harbor, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false <span class="hlt">San</span> Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 <span class="hlt">San</span> Francisco Harbor, CA. A straight line...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol1/pdf/CFR-2014-title33-vol1-sec80-1142.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol1/pdf/CFR-2014-title33-vol1-sec80-1142.pdf"><span>33 CFR 80.1142 - <span class="hlt">San</span> Francisco Harbor, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false <span class="hlt">San</span> Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 <span class="hlt">San</span> Francisco Harbor, CA. A straight line...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol1/pdf/CFR-2013-title33-vol1-sec80-1142.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol1/pdf/CFR-2013-title33-vol1-sec80-1142.pdf"><span>33 CFR 80.1142 - <span class="hlt">San</span> Francisco Harbor, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false <span class="hlt">San</span> Francisco Harbor, CA. 80.1142 Section 80.1142 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1142 <span class="hlt">San</span> Francisco Harbor, CA. A straight line...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol1/pdf/CFR-2011-title33-vol1-sec80-1104.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol1/pdf/CFR-2011-title33-vol1-sec80-1104.pdf"><span>33 CFR 80.1104 - <span class="hlt">San</span> Diego Harbor, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false <span class="hlt">San</span> Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 <span class="hlt">San</span> Diego Harbor, CA. A line drawn from...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol1/pdf/CFR-2013-title33-vol1-sec80-1104.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol1/pdf/CFR-2013-title33-vol1-sec80-1104.pdf"><span>33 CFR 80.1104 - <span class="hlt">San</span> Diego Harbor, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false <span class="hlt">San</span> Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 <span class="hlt">San</span> Diego Harbor, CA. A line drawn from...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol1/pdf/CFR-2010-title33-vol1-sec80-1104.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol1/pdf/CFR-2010-title33-vol1-sec80-1104.pdf"><span>33 CFR 80.1104 - <span class="hlt">San</span> Diego Harbor, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false <span class="hlt">San</span> Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 <span class="hlt">San</span> Diego Harbor, CA. A line drawn from...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol1/pdf/CFR-2014-title33-vol1-sec80-1104.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol1/pdf/CFR-2014-title33-vol1-sec80-1104.pdf"><span>33 CFR 80.1104 - <span class="hlt">San</span> Diego Harbor, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false <span class="hlt">San</span> Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 <span class="hlt">San</span> Diego Harbor, CA. A line drawn from...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol1/pdf/CFR-2012-title33-vol1-sec80-1104.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol1/pdf/CFR-2012-title33-vol1-sec80-1104.pdf"><span>33 CFR 80.1104 - <span class="hlt">San</span> Diego Harbor, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false <span class="hlt">San</span> Diego Harbor, CA. 80.1104 Section 80.1104 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1104 <span class="hlt">San</span> Diego Harbor, CA. A line drawn from...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5861926-rooftops-san-fernando','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5861926-rooftops-san-fernando"><span>Rooftops of <span class="hlt">San</span> Fernando</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ellis, G.</p> <p>1978-06-01</p> <p>A review of the Jet Propulsion Laboratory study of the possibilities of using solar cell arrays on rooftops in the <span class="hlt">San</span> Fernando Valley is given. Some cost and performance goals developed in this study are described. (MOW)</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol17/pdf/CFR-2010-title40-vol17-sec81-176.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol17/pdf/CFR-2010-title40-vol17-sec81-176.pdf"><span>40 CFR 81.176 - <span class="hlt">San</span> Luis Intrastate Air Quality Control Region.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... 40 Protection of Environment 17 2010-07-01 2010-07-01 false <span class="hlt">San</span> Luis Intrastate Air Quality Control Region. 81.176 Section 81.176 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Quality Control Regions § 81.176 <span class="hlt">San</span> Luis Intrastate Air Quality Control Region. The <span class="hlt">San</span> Luis Intrastate...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1983/4044/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1983/4044/report.pdf"><span>Evaluation of the <span class="hlt">San</span> Dieguito, <span class="hlt">San</span> Elijo, and <span class="hlt">San</span> Pasqual hydrologic subareas for reclaimed water use, <span class="hlt">San</span> Diego County, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Izbicki, J.A.</p> <p>1983-01-01</p> <p>A study was made to determine the suitability of three small hydrologic subareas in <span class="hlt">San</span> Diego County, California, for reuse of municipal wastewater. Ground-water quality has been impacted by agricultural water use, imported water use, changes in natural recharge patterns, seawater intrusion, and intrusion of ground water from surrounding marine sediments; therefore, ground water is of limited value as a water-supply source. Reclaimed water use is feasible and expected to improve ground-water quality, creating a new source of water for agricultural use. (USGS)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1351490-gila-san-francisco-decision-support-tool','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1351490-gila-san-francisco-decision-support-tool"><span>Gila <span class="hlt">San</span> Francisco Decision Support Tool - 2010</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sun, Amy Cha-Tien; Tidwell, Vincent C.; Klisa, Geoff</p> <p>2014-12-01</p> <p>The Gila-<span class="hlt">San</span> Francisco Decision Support Tool analyzes the water demand and supply for the Gila <span class="hlt">San</span> Francisco region spanning four counties in southwestern New Mexico (Catron, Hidalgo, Luna and Grant). Catalyzed by the 2004 Arizona Water Settlement Act and prompted by a keen awareness for the unique ecology in the region, the model was developed by Sandia with a collaborative modeling team from federal, state, local, and public stakeholders</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2001/fs017-01/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2001/fs017-01/"><span>The <span class="hlt">San</span> Francisco volcanic field, Arizona</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Priest, S.S.; Duffield, W.A.; Malis-Clark, Karen; Hendley, J. W.; Stauffer, P.H.</p> <p>2001-01-01</p> <p>Northern Arizona's <span class="hlt">San</span> Francisco Volcanic Field, much of which lies within Coconino and Kaibab National Forests, is an area of young volcanoes along the southern margin of the Colorado Plateau. During its 6-million-year history, this field has produced more than 600 volcanoes. Their activity has created a topographically varied landscape with forests that extend from the Pi?on-Juniper up to the Bristlecone Pine life zones. The most prominent landmark is <span class="hlt">San</span> Francisco Mountain, a stratovolcano that rises to 12,633 feet and serves as a scenic backdrop to the city of Flagstaff.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-09-28/pdf/2012-23918.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-09-28/pdf/2012-23918.pdf"><span>77 FR 59648 - Notice of Inventory Completion: <span class="hlt">San</span> Francisco State University, NAGPRA Program, <span class="hlt">San</span> Francisco, CA</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-09-28</p> <p>...The <span class="hlt">San</span> Francisco State University NAGPRA Program has completed an inventory of human remains and associated funerary objects, in consultation with the appropriate Indian tribe, and has determined that there is a cultural affiliation between the human remains and associated funerary objects and a present-day Indian tribe. Representatives of any Indian tribe that believes itself to be culturally affiliated with the human remains and associated funerary objects may contact the <span class="hlt">San</span> Francisco State University NAGPRA Program. Repatriation of the human remains and associated funerary objects to the Indian tribe stated below may occur if no additional claimants come forward.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=level+AND+topical&pg=7&id=ED568612','ERIC'); return false;" href="https://eric.ed.gov/?q=level+AND+topical&pg=7&id=ED568612"><span>Voice and Valency in <span class="hlt">San</span> Luis Potosi Huasteco</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Munoz Ledo Yanez, Veronica</p> <p>2014-01-01</p> <p>This thesis presents an analysis of the system of transitivity, voice and valency alternations in Huasteco of <span class="hlt">San</span> Luis Potosi (Mayan) within a functional-typological framework. The study is based on spoken discourse and elicited data collected in the municipalities of Aquismon and Tancanhuitz de Santos in the state of <span class="hlt">San</span> Luis Potosi, Mexico. The…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4581911','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4581911"><span>Effect of Legal Status of Pharmacy Syringe Sales on Syringe Purchases by Persons Who Inject Drugs in <span class="hlt">San</span> Francisco and <span class="hlt">San</span> Diego, CA</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Siddiqui, Saira S.; Armenta, Richard; Evans, Jennifer L.; Yu, Michelle; Cuevas-Mota, Jazmine; Page, Kimberly; Davidson, Peter; Garfein, Richard S.</p> <p>2015-01-01</p> <p>Sharing blood-contaminated syringes is the main risk factor for acquiring and transmitting blood-borne infections among persons who inject drugs (PWID). To reduce this risk, in 2005, California enacted legislation allowing local health jurisdictions to legalize non-prescription syringe sales after approving a disease prevention demonstration project (DPDP). With <span class="hlt">San</span> Francisco approving a DPDP immediately and <span class="hlt">San</span> Diego never approving one, we compared PWID across cities for their use of pharmacies PWID to obtain syringes. PWID age 18–30 years old were recruited into separate studies in <span class="hlt">San</span> Francisco (n=243) and <span class="hlt">San</span> Diego (n=338) between 2008 and 2011. We used multivariable logistic regression to compare the proportions of PWID who obtained syringes from pharmacies by city while controlling for socio-demographics, injection practices and other risk behaviors. Overall, most PWID were white (71%), male (63%), and between the ages of 18–25 years (55%). Compared to <span class="hlt">San</span> Francisco, a smaller proportion of PWID in <span class="hlt">San</span> Diego had bought syringes from pharmacies in the prior three months (16.9% vs. 49.8%; p<0.001), which remained statistically significant after adjusting for socio-demographic and behavioral factors (adjusted odds ratio=4.45, 95% confidence interval: 2.98, 6.65). Use of pharmacies to obtain syringes was greater where it was legal to do so. Public health policy can influence HIV and hepatitis C associated risk among PWID; however, implementation of these policies is crucial for the benefits to be realized. PMID:26252980</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/sim/2006/2918/sim2918_geolposter-hires.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sim/2006/2918/sim2918_geolposter-hires.pdf"><span>Geologic map of the <span class="hlt">San</span> Francisco Bay region</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Graymer, R.W.; Moring, B.C.; Saucedo, G.J.; Wentworth, C.M.; Brabb, E.E.; Knudsen, K. L.</p> <p>2006-01-01</p> <p>The rocks and fossils of the <span class="hlt">San</span> Francisco Bay region reveal that the geology there is the product of millions of years at the active western margin of North America. The result of this history is a complex mosaic of geologic materials and structures that form the landscape. A geologic map is one of the basic tools to understand the geology, geologic hazards, and geologic history of a region.With heightened public awareness about earthquake hazards leading up to the 100th anniversary of the 1906 <span class="hlt">San</span> Francisco earthquake, the U.S. Geological Survey (USGS) is releasing new maps of the <span class="hlt">San</span> Francisco Bay Area designed to give residents and others a new look at the geologic history and hazards of the region. The “Geologic Map of the <span class="hlt">San</span> Francisco Bay region” shows the distribution of geologic materials and structures, demonstrates how geologists study the age and origin of the rocks and deposits that we live on, and reveals the complicated geologic history that has led to the landscape that shapes the Bay Area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://landslides.usgs.gov/docs/coe/CoeISL2008.pdf','USGSPUBS'); return false;" href="http://landslides.usgs.gov/docs/coe/CoeISL2008.pdf"><span>Landslide risk in the <span class="hlt">San</span> Francisco Bay region</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Coe, J.A.; Crovelli, R.A.</p> <p>2008-01-01</p> <p>We have used historical records of damaging landslides triggered by rainstorms, and a newly developed Probabilistic Landslide Assessment Cost Estimation System (PLACES), to estimate the numbers and direct costs of future landslides in the <span class="hlt">San</span> Francisco Bay region. The estimated annual cost of future landslides in the entire region is about US $15 million (year 2000 $). The estimated annual cost is highest for <span class="hlt">San</span> Mateo County ($3.32 million) and lowest for Solano County ($0.18 million). Normalizing costs by dividing by the percentage of land area with slopes equal or greater than about 10° indicates that <span class="hlt">San</span> Francisco County will have the highest cost per square km ($7,400), whereas Santa Clara County will have the lowest cost per square km ($230). These results indicate that the <span class="hlt">San</span> Francisco Bay region has one of the highest levels of landslide risk in the United States. Compared to landslide cost estimates from the rest of the world, the risk level in the Bay region seems high, but not exceptionally high.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/20610','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/20610"><span>Timber resource statistics for the <span class="hlt">San</span> Joaquin and southern resource areas of California.</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Karen L. Waddell; Patricia M. Bassett</p> <p>1997-01-01</p> <p>This report is a summary of timber resource statistics for the <span class="hlt">San</span> Joaquin and Southern Resource Areas of California, which include Alpine, Amador, Calaveras, Fresno, Imperial, Inyo, Kern, Kings, Los Angeles, Madera, Mariposa, Merced, Mono, Orange, Riverside, <span class="hlt">San</span> Bernardino, <span class="hlt">San</span> Diego, <span class="hlt">San</span> Joaquin, Stanislaus, Tulare, and Tuolumne Counties. Data were collected as part...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019175','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019175"><span>Three-dimensional upper crustal velocity structure beneath <span class="hlt">San</span> Francisco Peninsula, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Parsons, T.; Zoback, M.L.</p> <p>1997-01-01</p> <p>This paper presents new seismic data from, and crustal models of the <span class="hlt">San</span> Francisco Peninsula. In much of central California the <span class="hlt">San</span> Andreas fault juxtaposes the Cretaceous granitic Salinian terrane on its west and the Late Mesozoic/Early Tertiary Franciscan Complex on its east. On <span class="hlt">San</span> Francisco Peninsula, however, the present-day <span class="hlt">San</span> Andreas fault is completely within a Franciscan terrane, and the Pilarcitos fault, located southwest of the <span class="hlt">San</span> Andreas, marks the Salinian-Franciscan boundary. This circumstance has evoked two different explanations: either the Pilarcitos is a thrust fault that has pushed Franciscan rocks over Salinian rocks or the Pilarcitos is a transform fault that has accommodated significant right-lateral slip. In an effort to better resolve the subsurface structure of the peninsula faults, we established a temporary network of 31 seismographs arrayed across the <span class="hlt">San</span> Andreas fault and the subparallel Pilarcitos fault at ???1-2 km spacings. These instruments were deployed during the first 6 months of 1995 and recorded local earthquakes, air gun sources set off in <span class="hlt">San</span> Francisco Bay, and explosive sources. Travel times from these sources were used to augment earthquake arrival times recorded by the Northern California Seismic Network and were inverted for three-dimensional velocity structure. Results show lateral velocity changes at depth (???0.5-7 km) that correlate with downward vertical projections of the surface traces of the <span class="hlt">San</span> Andreas and Pilarcitos faults. We thus interpret the faults as high-angle to vertical features (constrained to a 70??-110?? dip range). From this we conclude that the Pilarcitos fault is probably an important strike-slip fault that accommodated much of the right-lateral plate boundary strain on the peninsula prior to the initiation of the modern-day <span class="hlt">San</span> Andreas fault in this region sometime after about 3.0 m.y. ago.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.water.ca.gov/iep/products/newsletterPrevious.cfm','USGSPUBS'); return false;" href="http://www.water.ca.gov/iep/products/newsletterPrevious.cfm"><span>Specific conductance, water temperature, and water level data, <span class="hlt">San</span> Francisco Bay, California, water year 1998</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Buchanan, Paul A.</p> <p>1999-01-01</p> <p>Specific conductance and water temperature data are continuously recorded at four sites in <span class="hlt">San</span> Francisco Bay, California: <span class="hlt">San</span> Pablo Strait at Point <span class="hlt">San</span> Pablo, Central <span class="hlt">San</span> Francisco Bay at Presidio Military Reservation, Pier 24 at Bay Bridge, and South <span class="hlt">San</span> Francisco Bay at <span class="hlt">San</span> Mateo Bridge near Foster City (Figure 1). Water level data are recorded only at <span class="hlt">San</span> Pablo Strait at Point <span class="hlt">San</span> Pablo. These data were recorded by the Department of Water Resources (DWR) before 1988, by the US Geological Survey (USGS) National Research Program from 1988 to 1989, and by the USGS-DWR cooperative program since 1990. This article presents time-series plots of data from the four sites in <span class="hlt">San</span> Francisco Bay during water year 1998 (1 October 1997 through 30 September 1998).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29874708','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29874708"><span>Contaminación por mercurio de leche materna de madres lactantes de <span class="hlt">municipios</span> de Antioquia con explotación minera de oro.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Molina, Carlos Federico; Arango, Catalina María; Sepúlveda, Hernán</p> <p>2018-05-01</p> <p>Introducción. La leche materna es esencial para el desarrollo del ser humano, pero puede contener sustancias tóxicas provenientes de la contaminación ambiental, especialmente en las áreas mineras.Objetivo. Determinar la prevalencia de la contaminación con mercurio de la leche materna de mujeres lactantes residentes en los <span class="hlt">municipios</span> con explotación minera de oro.Materiales y métodos. Se hizo un estudio transversal de 150 madres lactantes de cuatro <span class="hlt">municipios</span> mineros de Antioquia (El Bagre, Segovia, Remedios y Zaragoza), a quienes se les hizo una encuesta sobre factores sociodemográficos, ocupacionales y ambientales relacionados con el mercurio, y se les tomaron muestras de leche materna, de orina y de cabello. Se calculó el promedio de la concentración de mercurio y las prevalencias municipales de contaminación.Resultados. El promedio de la concentración de mercurio en la leche materna fue de 2,5 (± desviación estándar 9,2) μg/L. La prevalencia de muestras de leche materna con niveles altos de mercurio fue de 11,7 %.Conclusión. En este estudio se evidencia un grave problema en las regiones mineras auríferas de Antioquia por el efecto de la contaminación con mercurio en sectores de la población más vulnerable.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca0006.photos.010785p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca0006.photos.010785p/"><span>8. Historic American Buildings Survey <span class="hlt">San</span> Francisco Chronicle Library Original: ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>8. Historic American Buildings Survey <span class="hlt">San</span> Francisco Chronicle Library Original: 1936 Re-photo: June 1940 WEST ELEVATION - Mission <span class="hlt">San</span> Jose de Guadalupe, Mission & Washington Boulevards, Fremont, Alameda County, CA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED369134.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED369134.pdf"><span>Smart Schools for <span class="hlt">San</span> Antonio's Future: A Report on Public Education.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Trinity Univ., San Antonio, TX. Center for Educational Leadership.</p> <p></p> <p>Schools in <span class="hlt">San</span> Antonio, Texas, need to make changes to make life work better for <span class="hlt">San</span> Antonio's students, to improve their learning, and to help them become happier and more productive students. Schools must take children where they are and work with their circumstances. <span class="hlt">San</span> Antonio is failing to provide students with the learning and development…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2005/5086/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2005/5086/"><span>Geochemical assessment of metals and dioxin in sediment from the <span class="hlt">San</span> Carlos Reservoir and the Gila, <span class="hlt">San</span> Carlos, and <span class="hlt">San</span> Francisco Rivers, Arizona</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Church, Stan E.; Choate, LaDonna M.; Marot, Marci E.; Fey, David L.; Adams, Monique; Briggs, Paul H.; Brown, Zoe Ann</p> <p>2005-01-01</p> <p>In October 2004, we sampled stream-bed sediment, terrace sediment, and sediment from the <span class="hlt">San</span> Carlos Reservoir to determine the spatial and chronological variation of six potentially toxic metals-Cu, Pb, Zn, Cd, As, and Hg. Water levels in the <span class="hlt">San</span> Carlos Reservoir were at a 20-year low at an elevation of 2,409 ft (734.3 m). Four cores were taken from the reservoir: one from the <span class="hlt">San</span> Carlos River arm, one from the Gila River arm, and two from the <span class="hlt">San</span> Carlos Reservoir just west of the Pinal County line. Radioisotope chronometry (7Be, 137Cs, and 210Pb) conducted on sediment from the reservoir cores provides a good chronological record back to 1959. Chronology prior to that, during the 1950s, is based on our interpretation of the 137Cs anomaly in reservoir cores. During and prior to the 1950s, the reservoir was dry and sediment-accumulation rates were irregular; age control based on radioisotope data was not possible. We recovered sediment at the base of one 4-m-long core that may date back to the late 1930s. The sedimentological record contains two discrete events, one about 1978-83 and one about 1957, where the Cu concentration in reservoir sediment exceeded recommended sediment quality guidelines and should have had an effect on sensitive aquatic and benthic organisms. Concentrations of Zn determined in sediment deposited during the 1957(?) event also exceeded recommended sediment quality guidelines. Concentration data for Cu from the four cores clearly indicate that the source of this material was upstream on the Gila River. Lead isotope data, coupled with the geochemical data from a 2M HCl-1 percent H2O2 leach of selected sediment samples, show two discrete populations of data. One represents the dominant sediment load derived from the Safford Valley, and a second reflects sediment derived from the <span class="hlt">San</span> Francisco River. The Cu concentration spikes in the reservoir cores have chemical and Pb isotope signatures that indicate that deposits in a porphyry copper deposit</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://sanjuanultra.org','SCIGOVWS'); return false;" href="http://sanjuanultra.org"><span><span class="hlt">San</span> Juan Ultra (Mooklabs)</span></a></p> <p><a target="_blank" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>de Información Formulario para la solicitud de datos e información relevantes a las <em>investigaciones</em> Science Foundation under Grant No. 0948507." back up ↑ © Copyright <em>2018</em> <span class="hlt">San</span> Juan Ultra (Mooklabs</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca0006.photos.010793p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca0006.photos.010793p/"><span>16. Historic American Buildings Survey <span class="hlt">San</span> Francisco Chronicle Library About: ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>16. Historic American Buildings Survey <span class="hlt">San</span> Francisco Chronicle Library About: 1934 Re-photo: June 1940 VIEW FROM WEST - Mission <span class="hlt">San</span> Jose de Guadalupe, Mission & Washington Boulevards, Fremont, Alameda County, CA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2001/0367/pdf/of2001-0367.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2001/0367/pdf/of2001-0367.pdf"><span>Volcano-hazard zonation for <span class="hlt">San</span> Vicente volcano, El Salvador</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Howell, M.M.</p> <p>2001-01-01</p> <p><span class="hlt">San</span> Vicente volcano, also known as Chichontepec, is one of many volcanoes along the volcanic arc in El Salvador. This composite volcano, located about 50 kilometers east of the capital city <span class="hlt">San</span> Salvador, has a volume of about 130 cubic kilometers, rises to an altitude of about 2180 meters, and towers above major communities such as <span class="hlt">San</span> Vicente, Tepetitan, Guadalupe, Zacatecoluca, and Tecoluca. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and major transportation routes are located near the lowermost southern and eastern flanks of the volcano. The population density and proximity around <span class="hlt">San</span> Vicente volcano, as well as the proximity of major transportation routes, increase the risk that even small landslides or eruptions, likely to occur again, can have serious societal consequences. The eruptive history of <span class="hlt">San</span> Vicente volcano is not well known, and there is no definitive record of historical eruptive activity. The last significant eruption occurred more than 1700 years ago, and perhaps long before permanent human habitation of the area. Nevertheless, this volcano has a very long history of repeated, and sometimes violent, eruptions, and at least once a large section of the volcano collapsed in a massive landslide. The oldest rocks associated with a volcanic center at <span class="hlt">San</span> Vicente are more than 2 million years old. The volcano is composed of remnants of multiple eruptive centers that have migrated roughly eastward with time. Future eruptions of this volcano will pose substantial risk to surrounding communities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1980/0064/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1980/0064/report.pdf"><span>Sediment transport of streams tributary to <span class="hlt">San</span> Francisco, <span class="hlt">San</span> Pablo, and Suisun Bays, California, 1909-66</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Porterfield, George</p> <p>1980-01-01</p> <p>A review of historical sedimentation data is presented, results of sediment-data collection for water years 1957-59 are summarized, and long-term sediment-discharge estimates from a preliminary report are updated. Comparison of results based on 3 years of data to those for the 10 water years, 1957-66, provides an indication of the adequacy of the data obtained during the short period to define the long-term relation between sediment transport and streamflow. During 1909-66, sediment was transported to the entire <span class="hlt">San</span> Francisco Bay system at an average rate of 8.6 million cubic yards per year. The Sacramento and <span class="hlt">San</span> Joaquin River basins provided about 83% of the sediment inflow to the system annually during 1957-66 and 86% during 1909-66. About 98% of this inflow was measured or estimated at sediment measuring sites. Measured sediment inflow directly to the bays comprised only about 40% of the total discharged by basins directly tributary to the bays. About 90% of the total sediment discharge to the delta and the bays in the <span class="hlt">San</span> Francisco Bay system thus was determined on the basis of systematic measurements. (USGS)</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2013/3080/pdf/fs2013-3080.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2013/3080/pdf/fs2013-3080.pdf"><span>Origin and characteristics of discharge at <span class="hlt">San</span> Marcos Springs, south-central Texas</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Musgrove, MaryLynn; Crow, Cassi L.</p> <p>2013-01-01</p> <p>The Edwards aquifer in south-central Texas is one of the most productive aquifers in the Nation and is the primary source of water for the rapidly growing <span class="hlt">San</span> Antonio area. Springs issuing from the Edwards aquifer provide habitat for several threatened and endangered species, serve as locations for recreational activities, and supply downstream users. Comal Springs and <span class="hlt">San</span> Marcos Springs are major discharge points for the Edwards aquifer, and their discharges are used as thresholds in groundwater management strategies. Regional flow paths originating in the western part of the aquifer are generally understood to supply discharge at Comal Springs. In contrast, the hydrologic connection of <span class="hlt">San</span> Marcos Springs with the regional Edwards aquifer flow system is less understood. During November 2008–December 2010, the U.S. Geological Survey, in cooperation with the <span class="hlt">San</span> Antonio Water System, collected and analyzed hydrologic and geochemical data from springs, groundwater wells, and streams to gain a better understanding of the origin and characteristics of discharge at <span class="hlt">San</span> Marcos Springs. During the study, climatic and hydrologic conditions transitioned from exceptional drought to wetter than normal. The wide range of hydrologic conditions that occurred during this study—and corresponding changes in surface-water, groundwater and spring discharge, and in physicochemical properties and geochemistry—provides insight into the origin of the water discharging from <span class="hlt">San</span> Marcos Springs. Three orifices at <span class="hlt">San</span> Marcos Springs (Deep, Diversion, and Weissmuller Springs) were selected to be representative of larger springs at the spring complex. Key findings include that discharge at <span class="hlt">San</span> Marcos Springs was dominated by regional recharge sources and groundwater flow paths and that different orifices of <span class="hlt">San</span> Marcos Springs respond differently to changes in hydrologic conditions; Deep Spring was less responsive to changes in hydrologic conditions than were Diversion Spring and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=descriptive+AND+survey+AND+quantitative&id=ED582478','ERIC'); return false;" href="https://eric.ed.gov/?q=descriptive+AND+survey+AND+quantitative&id=ED582478"><span>Surveillance versus Privacy: Considerations for the <span class="hlt">San</span> Bernardino Community</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Price, Robert</p> <p>2017-01-01</p> <p>This privacy versus security doctoral research examines existing literature, policies, and perceptions to identify the effects of the 2015 <span class="hlt">San</span> Bernardino terrorist attack on the <span class="hlt">San</span> Bernardino community. This study contributes to identifying factors that influence perceptions of governmental surveillance. Multiple articles contribute to the…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70187040','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70187040"><span><span class="hlt">San</span> Andreas tremor cascades define deep fault zone complexity</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shelly, David R.</p> <p>2015-01-01</p> <p>Weak seismic vibrations - tectonic tremor - can be used to delineate some plate boundary faults. Tremor on the deep <span class="hlt">San</span> Andreas Fault, located at the boundary between the Pacific and North American plates, is thought to be a passive indicator of slow fault slip. <span class="hlt">San</span> Andreas Fault tremor migrates at up to 30 m s-1, but the processes regulating tremor migration are unclear. Here I use a 12-year catalogue of more than 850,000 low-frequency earthquakes to systematically analyse the high-speed migration of tremor along the <span class="hlt">San</span> Andreas Fault. I find that tremor migrates most effectively through regions of greatest tremor production and does not propagate through regions with gaps in tremor production. I interpret the rapid tremor migration as a self-regulating cascade of seismic ruptures along the fault, which implies that tremor may be an active, rather than passive participant in the slip propagation. I also identify an isolated group of tremor sources that are offset eastwards beneath the <span class="hlt">San</span> Andreas Fault, possibly indicative of the interface between the Monterey Microplate, a hypothesized remnant of the subducted Farallon Plate, and the North American Plate. These observations illustrate a possible link between the central <span class="hlt">San</span> Andreas Fault and tremor-producing subduction zones.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26252980','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26252980"><span>Effect of legal status of pharmacy syringe sales on syringe purchases by persons who inject drugs in <span class="hlt">San</span> Francisco and <span class="hlt">San</span> Diego, CA.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Siddiqui, Saira S; Armenta, Richard F; Evans, Jennifer L; Yu, Michelle; Cuevas-Mota, Jazmine; Page, Kimberly; Davidson, Peter; Garfein, Richard S</p> <p>2015-11-01</p> <p>Sharing blood-contaminated syringes is the main risk factor for acquiring and transmitting blood-borne infections among persons who inject drugs (PWID). To reduce this risk, in 2005, California enacted legislation allowing local health jurisdictions to legalize non-prescription syringe sales after approving a disease prevention demonstration project (DPDP). With <span class="hlt">San</span> Francisco approving a DPDP immediately and <span class="hlt">San</span> Diego never approving one, we compared PWID across cities for their use of pharmacies PWID to obtain syringes. PWID age 18-30 years old were recruited into separate studies in <span class="hlt">San</span> Francisco (n=243) and <span class="hlt">San</span> Diego (n=338) between 2008 and 2011. We used multivariable logistic regression to compare the proportions of PWID who obtained syringes from pharmacies by city while controlling for sociodemographics, injection practices and other risk behaviors. Overall, most PWID were White (71%), male (63%), and between the ages of 18-25 years (55%). Compared to <span class="hlt">San</span> Francisco, a smaller proportion of PWID in <span class="hlt">San</span> Diego had bought syringes from pharmacies in the prior three months (16.9% vs. 49.8%; p<0.001), which remained statistically significant after adjusting for sociodemographic and behavioral factors (adjusted odds ratio=4.45, 95% confidence interval: 2.98, 6.65). Use of pharmacies to obtain syringes was greater where it was legal to do so. Public health policy can influence HIV and hepatitis C associated risk among PWID; however, implementation of these policies is crucial for the benefits to be realized. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Road+AND+safety+AND+education&pg=5&id=EJ751176','ERIC'); return false;" href="https://eric.ed.gov/?q=Road+AND+safety+AND+education&pg=5&id=EJ751176"><span>1906 Letter to the <span class="hlt">San</span> Francisco Health Department</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Schmachtenberg, Kristin</p> <p>2006-01-01</p> <p>On Wednesday, April 18, 1906, an earthquake, measuring 7.8 on the Richter magnitude scale and lasting 48 seconds, erupted along the <span class="hlt">San</span> Andreas fault with a flash point originating in the <span class="hlt">San</span> Francisco Bay area. The force of the earthquake tore apart buildings and roads, causing water and gas mains to twist and break. The resulting effects of the…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2017/5155/sir20175155.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2017/5155/sir20175155.pdf"><span>Hydrologic assessment and numerical simulation of groundwater flow, <span class="hlt">San</span> Juan Mine, <span class="hlt">San</span> Juan County, New Mexico, 2010–13</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stewart, Anne M.</p> <p>2018-04-03</p> <p>Coal combustion byproducts (CCBs), which are composed of fly ash, bottom ash, and flue gas desulfurization material, produced at the coal-fired <span class="hlt">San</span> Juan Generating Station (SJGS), located in <span class="hlt">San</span> Juan County, New Mexico, have been buried in former surface-mine pits at the <span class="hlt">San</span> Juan Mine, also referred to as the <span class="hlt">San</span> Juan Coal Mine, since operations began in the early 1970s. This report, prepared by the U.S. Geological Survey in cooperation with the Mining and Minerals Division of the New Mexico Energy, Minerals and Natural Resources Department, describes results of a hydrogeologic assessment, including numerical groundwater modeling, to identify the timing of groundwater recovery and potential pathways for groundwater transport of metals that may be leached from stored CCBs and reach hydrologic receptors after operations cease. Data collected for the hydrologic assessment indicate that groundwater in at least one centrally located reclaimed surface-mining pit has already begun to recover.The U.S. Geological Survey numerical modeling package MODFLOW–NWT was used with MODPATH particle-tracking software to identify advective flow paths from CCB storage areas toward potential hydrologic receptors. Results indicate that groundwater at CCB storage areas will recover to the former steady state, or in some locations, groundwater may recover to a new steady state in 6,600 to 10,600 years at variable rates depending on the proximity to a residual cone-of-groundwater depression caused by mine dewatering and regional oil and gas pumping as well as on actual, rather than estimated, groundwater recharge and evapotranspirational losses. Advective particle-track modeling indicates that the number of particles and rates of advective transport will vary depending on hydraulic properties of the mine spoil, particularly hydraulic conductivity and porosity. Modeling results from the most conservative scenario indicate that particles can migrate from CCB repositories to either the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=66385&Lab=NERL&keyword=ars&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=66385&Lab=NERL&keyword=ars&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span><span class="hlt">SAN</span> PEDRO WATERSHED DATABASE</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The <span class="hlt">San</span> Pedro River Geo-Data Browser was jointly developed by the Landscape Ecology Branch of the U.S. Environmental Protection Agency and the U.S. Department of Agriculture, Agricultural Research Service (Tucson, AZ). Since 1995, U.S. Environmental Protection Agency (EP A) and U...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=63241&keyword=implementation+AND+integrated+AND+water+AND+resource+AND+management&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=63241&keyword=implementation+AND+integrated+AND+water+AND+resource+AND+management&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span><span class="hlt">SAN</span> PEDRO GEODATA BROWSER</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The <span class="hlt">San</span> Pedro Data Browser was developed by the Landscape Ecology Branch of the U.S. Environmental Protection Agency (Las Vegas, NV). The goal of the Landscape Sciences Program is to improve decision-making relative to natural and human resource management through the development...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/wri024078+','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/wri024078+"><span>Streamflow gains and losses along <span class="hlt">San</span> Francisquito Creek and characterization of surface-water and ground-water quality, southern <span class="hlt">San</span> Mateo and northern Santa Clara counties, California, 1996-97</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Metzger, Loren F.</p> <p>2002-01-01</p> <p><span class="hlt">San</span> Francisquito Creek is an important source of recharge to the 22-square-mile <span class="hlt">San</span> Francisquito Creek alluvial fan ground-water subbasin in the southern <span class="hlt">San</span> Mateo and northern Santa Clara Counties of California. Ground water supplies as much as 20 percent of the water to some area communities. Local residents are concerned that infiltration and consequently ground-water recharge would be reduced if additional flood-control measures are implemented along <span class="hlt">San</span> Francisquito Creek. To improve the understanding of the surface-water/ground-water interaction between <span class="hlt">San</span> Francisquito Creek and the <span class="hlt">San</span> Francisquito Creek alluvial fan, the U.S. Geological Survey (USGS) estimated streamflow gains and losses along <span class="hlt">San</span> Francisquito Creek and determined the chemical quality and isotopic composition of surface and ground water in the study area.Streamflow was measured at 13 temporary streamflow-measurement stations to determine streamflow gains and losses along a 8.4-mile section of <span class="hlt">San</span> Francisquito Creek. A series of five seepage runs between April 1996 and May 1997 indicate that losses in <span class="hlt">San</span> Francisquito Creek were negligible until it crossed the Pulgas Fault at Sand Hill Road. Streamflow losses increased between Sand Hill Road and Middlefield Road where the alluvial deposits are predominantly coarse-grained and the water table is below the bottom of the channel. The greatest streamflow losses were measured along a 1.8-mile section of the creek between the <span class="hlt">San</span> Mateo Drive bike bridge and Middlefield Road; average losses between <span class="hlt">San</span> Mateo Drive and Alma Street and from there to Middlefield Road were 3.1 and 2.5 acre-feet per day, respectively.Downstream from Middlefield Road, streamflow gains and losses owing to seepage may be masked by urban runoff, changes in bank storage, and tidal effects from <span class="hlt">San</span> Francisco Bay. Streamflow gains measured between Middlefield Road and the 1200 block of Woodland Avenue may be attributable to urban runoff and (or) ground-water inflow. Water</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=55540&Lab=OWOW&keyword=land+AND+indigenous&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=55540&Lab=OWOW&keyword=land+AND+indigenous&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span><span class="hlt">SAN</span> FRANCISCO ESTUARY PROJECT COMPREHENSIVE CONSERVATION AND MANAGEMENT PLAN</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The Estuary, a significant natural resource, <span class="hlt">San</span> Francisco Bay and the Delta combine to form the West Coast's largest estuary. The Estuary conveys the waters of the Sacramento and <span class="hlt">San</span> Joaquin Rivers to the Pacific Ocean. It encompasses roughly 1,600 square miles, drains over 40 p...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010712p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010712p/"><span>18. Photocopy of photograph (from De Young Museum, <span class="hlt">San</span> Francisco, ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>18. Photocopy of photograph (from De Young Museum, <span class="hlt">San</span> Francisco, California, 1895) EXTERIOR, SOUTH FRONT OF MISSION AND CONVENTO, 1895 - Mission <span class="hlt">San</span> Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70174001','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70174001"><span>Selenium and other elements in juvenile striped bass from the <span class="hlt">San</span> Joaquin Valley and <span class="hlt">San</span> Francisco Estuary, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Saiki, Michael K.; Palawski, Donald U.</p> <p>1990-01-01</p> <p>Concentrations of selenium and other trace elements were determined in 55 whole body samples of juvenile anadromous striped bass (Morone saxatilis) from the <span class="hlt">San</span> Joaquin Valley and <span class="hlt">San</span> Francisco Estuary, California. The fish (≤1 yr old—the predominant life stage in the <span class="hlt">San</span> Joaquin Valley) were collected in September–December 1986 from 19 sites in the Valley and 3 sites in the Estuary, and analyzed for the following elements: aluminum (Al), arsenic (As), boron (B), barium (Ba), beryllium (Be), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), magnesium (Mg), molybdenum (Mo), nickel (Ni), lead (Pb), selenium (Se), strontium (Sr), vanadium (V), and zinc (Zn). When compared to concentrations in whole freshwater fish measured by surveys from other waters, a few samples contained higher levels, of As, Cd, Cu, Pb, and Se. The median concentrations of Al, As, Cu, Fe, Mg, Se, and Sr also differed significantly (P⩽0.05) among sites. However, only Se concentrations were highest (up to 7.9 μg/g dry weight) in samples from Valley sites exposed to agricultural subsurface (tile) drainwater; concentrations were lower in samples collected elsewhere. Water quality variables—especially those strongly influenced by tile drainwater (conductivity, total dissolved solids, total alkalinity, and total hardness)—were also significantly correlated (P⩽0.05) with Se concentrations in fish. Selenium concentrations in striped bass from the Estuary were only one-fourth to one-half the concentrations measured in the most contaminated fish from the <span class="hlt">San</span> Joaquin River.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010707p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010707p/"><span>13. Photocopy of photograph (from Golden Gate Museum, <span class="hlt">San</span> Francisco, ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>13. Photocopy of photograph (from Golden Gate Museum, <span class="hlt">San</span> Francisco, California, 1850's) EXTERIOR, VIEW OF CONVENTO BEFORE RESTORATION, 1850'S - Mission <span class="hlt">San</span> Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010724p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010724p/"><span>30. Photocopy of photograph (from National Park Service, <span class="hlt">San</span> Francisco, ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>30. Photocopy of photograph (from National Park Service, <span class="hlt">San</span> Francisco, California, 1930 (?) EXTERIOR, EAST SIDE OF MISSIONA AFTER RESTORATION, C. 1930 (?) - Mission <span class="hlt">San</span> Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730021606','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730021606"><span>A simulation of the <span class="hlt">San</span> Andreas fault experiment</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Agreen, R. W.; Smith, D. E.</p> <p>1973-01-01</p> <p>The <span class="hlt">San</span> Andreas Fault Experiment, which employs two laser tracking systems for measuring the relative motion of two points on opposite sides of the fault, was simulated for an eight year observation period. The two tracking stations are located near <span class="hlt">San</span> Diego on the western side of the fault and near Quincy on the eastern side; they are roughly 900 kilometers apart. Both will simultaneously track laser reflector equipped satellites as they pass near the stations. Tracking of the Beacon Explorer C Spacecraft was simulated for these two stations during August and September for eight consecutive years. An error analysis of the recovery of the relative location of Quincy from the data was made, allowing for model errors in the mass of the earth, the gravity field, solar radiation pressure, atmospheric drag, errors in the position of the <span class="hlt">San</span> Diego site, and laser systems range biases and noise. The results of this simulation indicate that the distance of Quincy from <span class="hlt">San</span> Diego will be determined each year with a precision of about 10 centimeters. This figure is based on the accuracy of earth models and other parameters available in 1972.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010713p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010713p/"><span>19. Photocopy of photograph (from De Young Museum, <span class="hlt">San</span> Francisco, ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>19. Photocopy of photograph (from De Young Museum, <span class="hlt">San</span> Francisco, California, late 1890's) EXTERIOR, GENERAL VIEW OF MISSION, LATE 1890'S - Mission <span class="hlt">San</span> Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca0362.photos.013587p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca0362.photos.013587p/"><span>9. Historic American Buildings Survey Golden Gate Park Museum <span class="hlt">San</span> ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>9. Historic American Buildings Survey Golden Gate Park Museum <span class="hlt">San</span> Francisco, California Original: 1870's Re-photo: February 1940 VIEW FROM SOUTH - Mission <span class="hlt">San</span> Antonio de Padua, Hunter Liggett Military Reservation, Jolon, Monterey County, CA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010721p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010721p/"><span>27. Photocopy of photograph (from National Park Service, <span class="hlt">San</span> Francisco, ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>27. Photocopy of photograph (from National Park Service, <span class="hlt">San</span> Francisco, California, Date unknown) EXTERIOR, SOUTH FRONT, DETAIL OF ENTRANCE AFTER RESTORATION, C. 1930 (?) - Mission <span class="hlt">San</span> Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010699p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010699p/"><span>5. Photocopy of painting (from De Young Museum, <span class="hlt">San</span> Francisco, ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>5. Photocopy of painting (from De Young Museum, <span class="hlt">San</span> Francisco, California, Oriana Day, artist, c. 1861-1885) EXTERIOR VIEW OF MISSION BEFORE 1835 - Mission <span class="hlt">San</span> Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/wa0222.photos.369694p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/wa0222.photos.369694p/"><span>29. BETHLEHEM SHIPBUILDING CORP, LTD. UNION PLANT, <span class="hlt">SAN</span> FRANCISCO, CA. ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>29. BETHLEHEM SHIPBUILDING CORP, LTD. UNION PLANT, <span class="hlt">SAN</span> FRANCISCO, CA. INBOARD PROFILE, SHEET NUMBER H-5314-11-10. Drawn by A.E. Wilson, undated. - <span class="hlt">San</span> Mateo Ferry, South end of Lake Union, Seattle, King County, WA</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/wa0222.photos.369695p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/wa0222.photos.369695p/"><span>30. BETHLEHEM SHIPBUILDING CORP, LTD. UNION PLANT, <span class="hlt">SAN</span> FRANCISCO, CA. ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>30. BETHLEHEM SHIPBUILDING CORP, LTD. UNION PLANT, <span class="hlt">SAN</span> FRANCISCO, CA. MIDSHIP SECTION, SHEET NUMBER H-5314-11-2. Drawn by H.A. Lennon, undated. - <span class="hlt">San</span> Mateo Ferry, South end of Lake Union, Seattle, King County, WA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-1110.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-1110.pdf"><span>33 CFR 165.1110 - Security Zone: Coronado Bay Bridge, <span class="hlt">San</span> Diego, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... Bridge, <span class="hlt">San</span> Diego, CA. 165.1110 Section 165.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.1110 Security Zone: Coronado Bay Bridge, <span class="hlt">San</span> Diego, CA. (a) Location. All navigable waters of <span class="hlt">San</span>... pilings of the Coronado Bay Bridge. These security zones will not restrict the main navigational channel...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title25-vol1/pdf/CFR-2013-title25-vol1-sec162-503-id2258.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title25-vol1/pdf/CFR-2013-title25-vol1-sec162-503-id2258.pdf"><span>25 CFR 162.503 - <span class="hlt">San</span> Xavier and Salt River Pima-Maricopa Reservations.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-04-01</p> <p>... 25 Indians 1 2013-04-01 2013-04-01 false <span class="hlt">San</span> Xavier and Salt River Pima-Maricopa Reservations. 162... AND PERMITS Special Requirements for Certain Reservations § 162.503 <span class="hlt">San</span> Xavier and Salt River Pima... statutory authority for long-term leasing on the <span class="hlt">San</span> Xavier and Salt River Pima-Maricopa Reservations...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title25-vol1/pdf/CFR-2014-title25-vol1-sec162-603.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title25-vol1/pdf/CFR-2014-title25-vol1-sec162-603.pdf"><span>25 CFR 162.603 - <span class="hlt">San</span> Xavier and Salt River Pima-Maricopa Reservations.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-04-01</p> <p>... 25 Indians 1 2014-04-01 2014-04-01 false <span class="hlt">San</span> Xavier and Salt River Pima-Maricopa Reservations. 162... AND PERMITS Special Requirements for Certain Reservations § 162.603 <span class="hlt">San</span> Xavier and Salt River Pima... statutory authority for long-term leasing on the <span class="hlt">San</span> Xavier and Salt River Pima-Maricopa Reservations...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title25-vol1/pdf/CFR-2012-title25-vol1-sec162-503.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title25-vol1/pdf/CFR-2012-title25-vol1-sec162-503.pdf"><span>25 CFR 162.503 - <span class="hlt">San</span> Xavier and Salt River Pima-Maricopa Reservations.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-04-01</p> <p>... 25 Indians 1 2012-04-01 2011-04-01 true <span class="hlt">San</span> Xavier and Salt River Pima-Maricopa Reservations. 162... AND PERMITS Special Requirements for Certain Reservations § 162.503 <span class="hlt">San</span> Xavier and Salt River Pima... statutory authority for long-term leasing on the <span class="hlt">San</span> Xavier and Salt River Pima-Maricopa Reservations...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title25-vol1/pdf/CFR-2011-title25-vol1-sec162-503.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title25-vol1/pdf/CFR-2011-title25-vol1-sec162-503.pdf"><span>25 CFR 162.503 - <span class="hlt">San</span> Xavier and Salt River Pima-Maricopa Reservations.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-04-01</p> <p>... 25 Indians 1 2011-04-01 2011-04-01 false <span class="hlt">San</span> Xavier and Salt River Pima-Maricopa Reservations. 162... AND PERMITS Special Requirements for Certain Reservations § 162.503 <span class="hlt">San</span> Xavier and Salt River Pima... statutory authority for long-term leasing on the <span class="hlt">San</span> Xavier and Salt River Pima-Maricopa Reservations...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1120.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1120.pdf"><span>33 CFR 165.1120 - Security Zone; Naval Amphibious Base, <span class="hlt">San</span> Diego, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... Base, <span class="hlt">San</span> Diego, CA. 165.1120 Section 165.1120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.1120 Security Zone; Naval Amphibious Base, <span class="hlt">San</span> Diego, CA. (a) Location. The following area is a security zone: the waters of <span class="hlt">San</span> Diego Bay, enclosed by lines connecting the following points: Beginning at...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1120.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1120.pdf"><span>33 CFR 165.1120 - Security Zone; Naval Amphibious Base, <span class="hlt">San</span> Diego, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... Base, <span class="hlt">San</span> Diego, CA. 165.1120 Section 165.1120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.1120 Security Zone; Naval Amphibious Base, <span class="hlt">San</span> Diego, CA. (a) Location. The following area is a security zone: the waters of <span class="hlt">San</span> Diego Bay, enclosed by lines connecting the following points: Beginning at...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1120.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1120.pdf"><span>33 CFR 165.1120 - Security Zone; Naval Amphibious Base, <span class="hlt">San</span> Diego, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... Base, <span class="hlt">San</span> Diego, CA. 165.1120 Section 165.1120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.1120 Security Zone; Naval Amphibious Base, <span class="hlt">San</span> Diego, CA. (a) Location. The following area is a security zone: the waters of <span class="hlt">San</span> Diego Bay, enclosed by lines connecting the following points: Beginning at...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec165-1110.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec165-1110.pdf"><span>33 CFR 165.1110 - Security Zone: Coronado Bay Bridge, <span class="hlt">San</span> Diego, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... Bridge, <span class="hlt">San</span> Diego, CA. 165.1110 Section 165.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.1110 Security Zone: Coronado Bay Bridge, <span class="hlt">San</span> Diego, CA. (a) Location. All navigable waters of <span class="hlt">San</span>... pilings of the Coronado Bay Bridge. These security zones will not restrict the main navigational channel...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/54025','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/54025"><span>Steam, solarization, and tons of prevention: the <span class="hlt">San</span> Francisco Public Utilities Commission's fight to contain Phytophthoras in <span class="hlt">San</span> Francisco Bay area restoration sites</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Greg Lyman; Jessica Appel; Mia Ingolia; Ellen Natesan; Joe Ortiz</p> <p>2017-01-01</p> <p>To compensate for unavoidable impacts associated with critical water infrastructure capital improvement projects, the <span class="hlt">San</span> Francisco Public Utilities Commission (SFPUC) restored over 2,050 acres of riparian, wetland, and upland habitat on watershed lands in Alameda, Santa Clara, and <span class="hlt">San</span> Mateo Counties. Despite strict bio-sanitation protocols, plant pathogens (...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=age+AND+grouping&pg=7&id=EJ607362','ERIC'); return false;" href="https://eric.ed.gov/?q=age+AND+grouping&pg=7&id=EJ607362"><span>An Intentional Laboratory: The <span class="hlt">San</span> Carlos Charter Learning Center.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Darwish, Elise</p> <p>2000-01-01</p> <p>Describes the <span class="hlt">San</span> Carlos Charter Learning Center, a K-8 school chartered by the <span class="hlt">San</span> Carlos, California, school district to be a research and development site. It has successfully shared practices in multi-age groupings, interdisciplinary instruction, parents as teachers, and staff evaluation. The article expands on the school's challenges and…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol1/pdf/CFR-2013-title33-vol1-sec110-240.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol1/pdf/CFR-2013-title33-vol1-sec110-240.pdf"><span>33 CFR 110.240 - <span class="hlt">San</span> Juan Harbor, P.R.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false <span class="hlt">San</span> Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 <span class="hlt">San</span> Juan Harbor, P.R. (a) The anchorage grounds—(1...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol1/pdf/CFR-2011-title33-vol1-sec110-240.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol1/pdf/CFR-2011-title33-vol1-sec110-240.pdf"><span>33 CFR 110.240 - <span class="hlt">San</span> Juan Harbor, P.R.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false <span class="hlt">San</span> Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 <span class="hlt">San</span> Juan Harbor, P.R. (a) The anchorage grounds—(1...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol1/pdf/CFR-2012-title33-vol1-sec110-240.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol1/pdf/CFR-2012-title33-vol1-sec110-240.pdf"><span>33 CFR 110.240 - <span class="hlt">San</span> Juan Harbor, P.R.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false <span class="hlt">San</span> Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 <span class="hlt">San</span> Juan Harbor, P.R. (a) The anchorage grounds—(1...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol1/pdf/CFR-2014-title33-vol1-sec110-240.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol1/pdf/CFR-2014-title33-vol1-sec110-240.pdf"><span>33 CFR 110.240 - <span class="hlt">San</span> Juan Harbor, P.R.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false <span class="hlt">San</span> Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 <span class="hlt">San</span> Juan Harbor, P.R. (a) The anchorage grounds—(1...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol1/pdf/CFR-2010-title33-vol1-sec110-240.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol1/pdf/CFR-2010-title33-vol1-sec110-240.pdf"><span>33 CFR 110.240 - <span class="hlt">San</span> Juan Harbor, P.R.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false <span class="hlt">San</span> Juan Harbor, P.R. 110.240 Section 110.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.240 <span class="hlt">San</span> Juan Harbor, P.R. (a) The anchorage grounds—(1...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T51A2860H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T51A2860H"><span>New High-Resolution 3D Imagery of Fault Deformation and Segmentation of the <span class="hlt">San</span> Onofre and <span class="hlt">San</span> Mateo Trends in the Inner California Borderlands</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holmes, J. J.; Driscoll, N. W.; Kent, G. M.; Bormann, J. M.; Harding, A. J.</p> <p>2015-12-01</p> <p>The Inner California Borderlands (ICB) is situated off the coast of southern California and northern Baja. The structural and geomorphic characteristics of the area record a middle Oligocene transition from subduction to microplate capture along the California coast. Marine stratigraphic evidence shows large-scale extension and rotation overprinted by modern strike-slip deformation. Geodetic and geologic observations indicate that approximately 6-8 mm/yr of Pacific-North American relative plate motion is accommodated by offshore strike-slip faulting in the ICB. The farthest inshore fault system, the Newport-Inglewood Rose Canyon (NIRC) fault complex is a dextral strike-slip system that extends primarily offshore approximately 120 km from <span class="hlt">San</span> Diego to the <span class="hlt">San</span> Joaquin Hills near Newport Beach, California. Based on trenching and well data, the NIRC fault system Holocene slip rate is 1.5-2.0 mm/yr to the south and 0.5-1.0 mm/yr along its northern extent. An earthquake rupturing the entire length of the system could produce an Mw 7.0 earthquake or larger. West of the main segments of the NIRC fault complex are the <span class="hlt">San</span> Mateo and <span class="hlt">San</span> Onofre fault trends along the continental slope. Previous work concluded that these were part of a strike-slip system that eventually merged with the NIRC complex. Others have interpreted these trends as deformation associated with the Oceanside Blind Thrust fault purported to underlie most of the region. In late 2013, we acquired the first high-resolution 3D P-Cable seismic surveys (3.125 m bin resolution) of the <span class="hlt">San</span> Mateo and <span class="hlt">San</span> Onofre trends as part of the Southern California Regional Fault Mapping project aboard the R/V New Horizon. Analysis of these volumes provides important new insights and constraints on the fault segmentation and transfer of deformation. Based on the new 3D sparker seismic data, our preferred interpretation for the <span class="hlt">San</span> Mateo and <span class="hlt">San</span> Onofre fault trends is they are transpressional features associated with westward</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.water.ca.gov/iep/newsletters/2002/IEPNewsletterWinter2002.pdf','USGSPUBS'); return false;" href="http://www.water.ca.gov/iep/newsletters/2002/IEPNewsletterWinter2002.pdf"><span>Water level, specific conductance, and water temperature data, <span class="hlt">San</span> Francisco Bay, California, for Water Year 2000</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Buchanan, P.A.</p> <p>2002-01-01</p> <p>Time series of water-level, specific-conductance, and watertemperature data were collected at seven sites in <span class="hlt">San</span> Francisco Bay during water year 2000 (October 1, 1999 through September 30, 2000). Water-level data were recorded only at Point <span class="hlt">San</span> Pablo. Specific-conductance and water-temperature data were recorded at 15-minute intervals at the following locations (Figure 1): • Carquinez Strait at Carquinez Bridge • Napa River at Mare Island Causeway near Vallejo • <span class="hlt">San</span> Pablo Bay at Petaluma River Channel Marker 9 • <span class="hlt">San</span> Pablo Strait at Point <span class="hlt">San</span> Pablo • Central <span class="hlt">San</span> Francisco Bay at Presidio Military Reservation • Central <span class="hlt">San</span> Francisco Bay at Pier 24 • South <span class="hlt">San</span> Francisco Bay at <span class="hlt">San</span> Mateo Bridge near Foster City.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca0361.photos.013503p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca0361.photos.013503p/"><span>7. Historic American Buildings Survey From Golden Gate Park <span class="hlt">San</span> ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>7. Historic American Buildings Survey From Golden Gate Park <span class="hlt">San</span> Francisco, California Original: Ante 1860 Re-photo: February 1940 VIEW FROM SOUTH - Mission <span class="hlt">San</span> Carlos Borromeo, Rio Road & Lausen Drive, Carmel-by-the-Sea, Monterey County, CA</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1501/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1501/report.pdf"><span>The Cenozoic evolution of the <span class="hlt">San</span> Joaquin Valley, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bartow, J. Alan</p> <p>1991-01-01</p> <p>The <span class="hlt">San</span> Joaquin Valley, which is the southern part of the 700-km-long Great Valley of California, is an asymmetric structural trough that is filled with a prism of upper Mesozoic and Cenozoic sediments up to 9 km thick; these sediments rest on crystalline basement rocks of the southwestward-tilted Sierran block. The <span class="hlt">San</span> Joaquin sedimentary basin is separated from the Sacramento basin to the north by the buried Stockton arch and associated Stockton fault. The buried Bakersfield arch near the south end of the valley separates the small Maricopa-Tejon subbasin at the south end of the <span class="hlt">San</span> Joaquin basin from the remainder of the basin. Cenozoic strata in the <span class="hlt">San</span> Joaquin basin thicken southeastward from about 800 m in the north to over 9,000 m in the south. The <span class="hlt">San</span> Joaquin Valley can be subdivided into five regions on the basis of differing structural style. They are the northern Sierran block, the southern Sierran block, the northern Diablo homocline, the westside fold belt, and the combined Maricopa-Tejon subbasin and southmargin deformed belt. Considerable facies variation existed within the sedimentary basin, particularly in the Neogene when a thick section of marine sediment accumulated in the southern part of the basin, while a relatively thin and entirely nonmarine section was deposited in the northern part. The northern Sierran block, the stable east limb of the valley syncline between the Stockton fault and the <span class="hlt">San</span> Joaquin River, is the least deformed region of the valley. Deformation consists mostly of a southwest tilt and only minor late Cenozoic normal faulting. The southern Sierran block, the stable east limb of the valley syncline between the <span class="hlt">San</span> Joaquin River and the Bakersfield arch, is similar in style to the northern part of the block, but it has a higher degree of deformation. Miocene or older normal faults trend mostly north to northwest and have a net down-to-the-west displacement with individual offsets of as much as 600 m. The northern Diablo</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1110.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1110.pdf"><span>33 CFR 165.1110 - Security Zone: Coronado Bay Bridge, <span class="hlt">San</span> Diego, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... Bridge, <span class="hlt">San</span> Diego, CA. 165.1110 Section 165.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.1110 Security Zone: Coronado Bay Bridge, <span class="hlt">San</span> Diego, CA. (a) Location. All navigable waters of <span class="hlt">San</span> Diego Bay, from the surface to the sea floor, within 25 yards of all piers, abutments, fenders and...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1110.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1110.pdf"><span>33 CFR 165.1110 - Security Zone: Coronado Bay Bridge, <span class="hlt">San</span> Diego, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... Bridge, <span class="hlt">San</span> Diego, CA. 165.1110 Section 165.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.1110 Security Zone: Coronado Bay Bridge, <span class="hlt">San</span> Diego, CA. (a) Location. All navigable waters of <span class="hlt">San</span> Diego Bay, from the surface to the sea floor, within 25 yards of all piers, abutments, fenders and...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1110.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1110.pdf"><span>33 CFR 165.1110 - Security Zone: Coronado Bay Bridge, <span class="hlt">San</span> Diego, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... Bridge, <span class="hlt">San</span> Diego, CA. 165.1110 Section 165.1110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.1110 Security Zone: Coronado Bay Bridge, <span class="hlt">San</span> Diego, CA. (a) Location. All navigable waters of <span class="hlt">San</span> Diego Bay, from the surface to the sea floor, within 25 yards of all piers, abutments, fenders and...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.epa.gov/newsreleases/el-alcalde-jose-carlos-aponte-dalmau-del-municipio-de-carolina-es-nombrado-formar-parte','PESTICIDES'); return false;" href="https://www.epa.gov/newsreleases/el-alcalde-jose-carlos-aponte-dalmau-del-municipio-de-carolina-es-nombrado-formar-parte"><span>El Alcalde José Carlos Aponte Dalmau del <span class="hlt">Municipio</span> de Carolina es nombrado a formar parte del Comité Asesor de Gobiernos Locales de la EPA a nivel de todos los Estados Unidos</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Comunicado de prensa de la EPA: El Alcalde José Carlos Aponte Dalmau del <span class="hlt">Municipio</span> de Carolina es nombrado a formar parte del Comité Asesor de Gobiernos Locales de la EPA a nivel de todos los Estados Unidos</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010700p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010700p/"><span>6. Photocopy of painting (from California Historical Society, <span class="hlt">San</span> Francisco, ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>6. Photocopy of painting (from California Historical Society, <span class="hlt">San</span> Francisco, California, Oriana Day, artist, 1879) EXTERIOR, VIEW FROM AN ANGLE OF MISSION AND SURROUNDING STRUCTURES - Mission <span class="hlt">San</span> Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=business+AND+ethnics&pg=7&id=ED103982','ERIC'); return false;" href="https://eric.ed.gov/?q=business+AND+ethnics&pg=7&id=ED103982"><span>Power in the City: Decision Making in <span class="hlt">San</span> Francisco.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Wirt, Frederick M.</p> <p></p> <p>This study attempts to apply contemporary political science theories to an analysis of the politics of <span class="hlt">San</span> Francisco in the 1970's. Data for the study was gathered through personal interviews with knowledgeable observers and participants in <span class="hlt">San</span> Francisco politics, through an extensive review of various governmental reports and data, and through…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol1/pdf/CFR-2011-title33-vol1-sec80-1130.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol1/pdf/CFR-2011-title33-vol1-sec80-1130.pdf"><span>33 CFR 80.1130 - <span class="hlt">San</span> Luis Obispo Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false <span class="hlt">San</span> Luis Obispo Bay, CA. 80.1130 Section 80.1130 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1130 <span class="hlt">San</span> Luis Obispo Bay, CA. A line drawn from...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol1/pdf/CFR-2013-title33-vol1-sec80-1130.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol1/pdf/CFR-2013-title33-vol1-sec80-1130.pdf"><span>33 CFR 80.1130 - <span class="hlt">San</span> Luis Obispo Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false <span class="hlt">San</span> Luis Obispo Bay, CA. 80.1130 Section 80.1130 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1130 <span class="hlt">San</span> Luis Obispo Bay, CA. A line drawn from...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol1/pdf/CFR-2010-title33-vol1-sec80-1130.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol1/pdf/CFR-2010-title33-vol1-sec80-1130.pdf"><span>33 CFR 80.1130 - <span class="hlt">San</span> Luis Obispo Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false <span class="hlt">San</span> Luis Obispo Bay, CA. 80.1130 Section 80.1130 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1130 <span class="hlt">San</span> Luis Obispo Bay, CA. A line drawn from...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol1/pdf/CFR-2012-title33-vol1-sec80-1130.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol1/pdf/CFR-2012-title33-vol1-sec80-1130.pdf"><span>33 CFR 80.1130 - <span class="hlt">San</span> Luis Obispo Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false <span class="hlt">San</span> Luis Obispo Bay, CA. 80.1130 Section 80.1130 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1130 <span class="hlt">San</span> Luis Obispo Bay, CA. A line drawn from...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol1/pdf/CFR-2014-title33-vol1-sec80-1130.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol1/pdf/CFR-2014-title33-vol1-sec80-1130.pdf"><span>33 CFR 80.1130 - <span class="hlt">San</span> Luis Obispo Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false <span class="hlt">San</span> Luis Obispo Bay, CA. 80.1130 Section 80.1130 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1130 <span class="hlt">San</span> Luis Obispo Bay, CA. A line drawn from...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010706p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010706p/"><span>12. Photocopy of photograph (from Golden Gate Park Museum, <span class="hlt">San</span> ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>12. Photocopy of photograph (from Golden Gate Park Museum, <span class="hlt">San</span> Francisco, California, 1850's) EXTERIOR, DETAIL OF FACADE OF MISSION SHOWING ARCHED WINDOWS, ENTRANCE AND BELFRY - Mission <span class="hlt">San</span> Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/wa0222.photos.369696p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/wa0222.photos.369696p/"><span>31. BETHLEHEM SHIPBUILDING CORP, LTD. UNION PLANT, <span class="hlt">SAN</span> FRANCISCO, CA. ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>31. BETHLEHEM SHIPBUILDING CORP, LTD. UNION PLANT, <span class="hlt">SAN</span> FRANCISCO, CA. SALON DECK ARRANGEMENT, SHEET NUMBER 5314-11-84. Drawn by A.E. Wilson, dated 12-6-21. - <span class="hlt">San</span> Mateo Ferry, South end of Lake Union, Seattle, King County, WA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/14206','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/14206"><span>Metropolitan Model Deployment Initiative : <span class="hlt">San</span> Antonio Evaluation Report : Final Draft</span></a></p> <p><a target="_blank" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2000-05-01</p> <p>This report presents the evaluation results of the <span class="hlt">San</span> Antonio, Texas Metropolitan Model Deployment Initiative (MMDI). The <span class="hlt">San</span> Antonio MMDI sought to make improvements in six key transportation goals. The first of these goals was the expansion and st...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17225817','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17225817"><span>Oral health status of <span class="hlt">San</span> Francisco public school kindergarteners 2000-2005.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chung, Lisa H; Shain, Sara G; Stephen, Samantha M; Weintraub, Jane A</p> <p>2006-01-01</p> <p>To determine the prevalence of dental caries and oral health disparities in <span class="hlt">San</span> Francisco kindergarten public school children from 2000-2005. The <span class="hlt">San</span> Francisco Department of Public Health in partnership with the <span class="hlt">San</span> Francisco Dental Society and assistance from the National Dental Association, has been conducting annual dental screenings of kindergarten children enrolled in the <span class="hlt">San</span> Francisco Unified School District since 2000. Outcomes assessed from this series of cross-sectional screenings included prevalence of caries experience, untreated caries, treatment needs, and caries severity by child's sex, race/ethnicity, residential zip code, and a proxy for socioeconomic status. Of 76 eligible schools, 62-72 participated, and 86-92% of enrolled children (n=3,354-3,527) were screened yearly. Although there was a small, significant decrease over the time period, in 2005, 50.1% of children had caries experience; 28.8% had untreated caries and 7.6% had urgent treatment needs. Each year caries prevalence was greatest for Asian children, those attending schools with > 50% children eligible for the free or reduced-price meal program, and children living in zip codes in and around Chinatown and <span class="hlt">San</span> Francisco's southern border. Despite signs of improvement, caries remains a public health problem especially in Asian and Hispanic children, and children living in certain sections of <span class="hlt">San</span> Francisco.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/wa0222.photos.369697p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/wa0222.photos.369697p/"><span>32. BETHLEHEM SHIPBUILDING CORP, LTD. UNION PLANT, <span class="hlt">SAN</span> FRANCISCO, CA. ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>32. BETHLEHEM SHIPBUILDING CORP, LTD. UNION PLANT, <span class="hlt">SAN</span> FRANCISCO, CA. MAIN DECK ARRANGEMENT, SHEET NUMBER H-5314-11-8B. Drawn by A.E. Wilson, dated 12-7-21. - <span class="hlt">San</span> Mateo Ferry, South end of Lake Union, Seattle, King County, WA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Rafael&pg=4&id=ED239340','ERIC'); return false;" href="https://eric.ed.gov/?q=Rafael&pg=4&id=ED239340"><span><span class="hlt">San</span> Rafael Schools Exhibit.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>San Rafael City Schools, CA.</p> <p></p> <p>The <span class="hlt">San</span> Rafael City Schools' exhibit which was displayed at the 1983 Marin County Fair (California) is described. The exhibit, entitled "Education - A Real Winner," consisted of 12 display panels illustrating the following aspects of the school system: (1) early history from 1861; (2) present board and administration; (3) present schools…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=school+AND+uniforms&pg=3&id=EJ1016773','ERIC'); return false;" href="https://eric.ed.gov/?q=school+AND+uniforms&pg=3&id=EJ1016773"><span><span class="hlt">San</span> Ysidro High School: An Invincible Sense of Promise</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Principal Leadership, 2013</p> <p>2013-01-01</p> <p>Commitment to one another, determination to prove stereotypes wrong, and a strong belief in the power of education are the core values at <span class="hlt">San</span> Ysidro High School in <span class="hlt">San</span> Diego, California. The school serves 2,364 students in one of the poorest communities in the country. The community celebrates its predominately Mexican-American heritage and…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/22494','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/22494"><span>Timber resource statistics for the <span class="hlt">San</span> Joaquin and southern California resource areas.</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Bruce Hiserote; Joel Moen; Charles L. Bolsinger</p> <p>1986-01-01</p> <p>This report is one of five that provide timber resource statistics for 57 of the 58 counties in California (<span class="hlt">San</span> Francisco is excluded). This report presents statistics from a 1982-84 inventory of the timber resources of Alpine, Amador, Calaveras, Fresno, Imperial, Inyo, Kern, Kings, Los Angeles, Madera, Mariposa, Merced, Mono, Orange, Riverside, <span class="hlt">San</span> Bernardino, <span class="hlt">San</span>...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/802090','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/802090"><span>Deep Borehole Instrumentation Along <span class="hlt">San</span> Francisco Bay Bridges - 2000</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hutchings, L.; Kasameyer, P.; Turpin, C.</p> <p>2000-03-01</p> <p>This is a progress report on the Bay Bridges downhole network. Between 2 and 8 instruments have been spaced along the Dumbarton, <span class="hlt">San</span> Mateo, Bay, and <span class="hlt">San</span> Rafael bridges in <span class="hlt">San</span> Francisco Bay, California. The instruments will provide multiple use data that is important to geotechnical, structural engineering, and seismological studies. The holes are between 100 and 1000 ft deep and were drilled by Caltrans. There are twenty-one sensor packages at fifteen sites. The downhole instrument package contains a three component HS-1 seismometer and three orthogonal Wilcox 731 accelerometers, and is capable of recording a micro g from local Mmore » = 1.0 earthquakes to 0.5 g strong ground motion form large Bay Area earthquakes. Preliminary results on phasing across the Bay Bridge, up and down hole wave amplification at Yerba Buena Island, and sensor orientation analysis are presented. Events recorded and located during 1999 are presented. Also, a senior thesis on the deep structure of the <span class="hlt">San</span> Francisco Bay beneath the Bay Bridge is presented as an addendum.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/403464-lower-san-fernando-corrugated-metal-pipe-failure','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/403464-lower-san-fernando-corrugated-metal-pipe-failure"><span>Lower <span class="hlt">San</span> Fernando corrugated metal pipe failure</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bardet, J.P.; Davis, C.A.</p> <p>1995-12-31</p> <p>During the January 17, 1994, Northridge earthquake, a 2.4 m diameter corrugated metal pipe was subjected to 90 m of extensive lateral crushing failure at the Lower <span class="hlt">San</span> Fernando Dam. The dam and outlet works were reconstructed after the 1971 <span class="hlt">San</span> Fernando Earthquake. In 1994, the dam underwent liquefaction upstream of the reconstructed berm. The pipe collapsed on the west side of the liquefied zone and a large sinkhole formed over the drain line. The failure of this drain line provides a unique opportunity to study the seismic response of buried drains and culverts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050236243','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050236243"><span><span class="hlt">San</span> Marco D/L Post Launch Report No. 2</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1988-01-01</p> <p>The <span class="hlt">San</span> Marco D/L spacecraft, utilizing a NASA supplied Scout expendable launch vehicle, was launched fran the <span class="hlt">San</span> Marco Range, located off the coast of Kenya, Africa, on March 25, 1988 at 19:50 GMT. The launch was conducted by an Italian crew assisted by LaRC and LTV personnel. The <span class="hlt">San</span> Marco D/L was the fifth in a series of Italian and United States satellites. The purpose of the mission is to explore the relationship between solar activity and the physics of the equatorial thermosphere and ionosphere. Information now being collected will augment, and be used in correlation with, data and information obtained from ground based facilities and other satellites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/28439','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/28439"><span><span class="hlt">San</span> Diego County Planning Efforts to Preserve Oak Woodlands</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Thomas A. Oberbauer</p> <p>1991-01-01</p> <p>Development of <span class="hlt">San</span> Diego County has traditionally taken place on the coastal plain and in coastal valleys. Within the past two decades, it has spread into the foothills resulting in conflicts with oak woodlands. The County of <span class="hlt">San</span> Diego has proposed a number of measures to protect oak vegetation including a tree protection ordinance, land use designations and zones...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720007316','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720007316"><span>History of the Italian <span class="hlt">San</span> Marco equatorial mobile range</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nesbitt, H. N.</p> <p>1971-01-01</p> <p>Events leading to the development of the <span class="hlt">San</span> Marco Equatorial Range are presented. Included are background information leading to the cooperative space program between the United States and Italy, conceptual planning, training activities, equipment design and fabrication, and range utilization. The technical support provided the <span class="hlt">San</span> Marco Program by Scout Project Office, and other NASA installations is described.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010702p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca1118.photos.010702p/"><span>8. Photocopy of drawing (from California Historical Society, <span class="hlt">San</span> Francisco, ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>8. Photocopy of drawing (from California Historical Society, <span class="hlt">San</span> Francisco, California, Sherman, artist, before 1846) GENERAL VIEW OF MISSION (RIGHT), BARRACKS (TO LEFT OF MISSION) & GENERAL VALLEJO RESIDENCE (CENTER, WITH TOWER) - Mission <span class="hlt">San</span> Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.epa.gov/grants-mining-district/rio-san-jose-action-memo','PESTICIDES'); return false;" href="https://www.epa.gov/grants-mining-district/rio-san-jose-action-memo"><span>Rio <span class="hlt">San</span> Jose Action Memo</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>This memorandum requests approval for a time-critical removal action at the II residential properties that compose the Rio <span class="hlt">San</span> Jose Radiation Site located in Laguna, Mesita, Paraje, and Seama, Pueblo of Laguna located in Cibola County, New Mexico.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AsUAI...5...20S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AsUAI...5...20S"><span>Dal "<span class="hlt">San</span> Marco" al "Vega". (English Title: From "<span class="hlt">San</span> Marco" to Vega)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Savi, E.</p> <p>2017-10-01</p> <p>Apart from the two superpowers, among the other countries Italy has had an important role in astronautics. The roots of Italian astronautics' history runs deep in the hottest years of the Cold War, and it had its first remarkable achievement in the <span class="hlt">San</span> Marco project..after years of advanced technologies testing, they achieved European cooperation and built VEGA, the current Arianespace light launcher.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.T53A1558P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.T53A1558P"><span>Relocating <span class="hlt">San</span> Miguel Volcanic Seismic Events for Receiver Functions and Tomographic Models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patlan, E.; Velasco, A. A.; Konter, J.</p> <p>2009-12-01</p> <p>The <span class="hlt">San</span> Miguel volcano lies near the city of <span class="hlt">San</span> Miguel, El Salvador (13.43N and -88.26W). <span class="hlt">San</span> Miguel volcano, an active stratovolcano, presents a significant natural hazard for the city of <span class="hlt">San</span> Miguel. Furthermore, the internal state and activity of volcanoes remains an important component to understanding volcanic hazard. The main technology for addressing volcanic hazards and processes is through the analysis of data collected from the deployment of seismic sensors that record ground motion. Six UTEP seismic stations were deployed around <span class="hlt">San</span> Miguel volcano from 2007-2008 to define the magma chamber and assess the seismic and volcanic hazard. We utilize these data to develop images of the earth structure beneath the volcano, studying the volcanic processes by identifying different sources, and investigating the role of earthquakes and faults in controlling the volcanic processes. We will calculate receiver functions to determine the thickness of <span class="hlt">San</span> Miguel volcano internal structure, within the Caribbean plate. Crustal thicknesses will be modeled using calculated receiver functions from both theoretical and hand-picked P-wave arrivals. We will use this information derived from receiver functions, along with P-wave delay times, to map the location of the magma chamber.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1221024','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1221024"><span>Existing Whole-House Solutions Case Study: Build <span class="hlt">San</span> Antonio Green, <span class="hlt">San</span> Antonio, Texas</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>none,</p> <p>2013-06-01</p> <p>PNNL, FSEC, and CalcsPlus provided technical assistance to Build <span class="hlt">San</span> Antonio Green on three deep energy retrofits. For this gut rehab they replaced the old roof with a steeper roof and replaced drywall while adding insulation, new HVAC, sealed ducts, transfer grilles, outside air run-time ventilation, new lighting and water heater.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997BAAA...41..143M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997BAAA...41..143M"><span>El círculo meridiano automático de <span class="hlt">San</span> Fernando - <span class="hlt">San</span> Juan. Sus primeros pasos en el hemisferio sur</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mallamaci, C. C.; Muiños, J. L.; Gallego, M.; Pérez, J. A.; Marmolejo, L.; Navarro, J. L.; Sedeño, J.; Vallejos, M.; Belizón, F.</p> <p></p> <p>Se informa sobre el estado actual del Círculo Meridiano Automático de <span class="hlt">San</span> Fernando-<span class="hlt">San</span> Juan. El instrumento (Grubb-Parson, de 178mm de abertura y 2665 mm de distancia focal) es gemelo del que se encuentra en las Islas Canarias, y fue instalado durante los meses de julio y agosto de 1996 en la estación astronómica ``Dr. C.U.Cesco" (El Leoncito, Barreal), a unos 200 km de distancia de la ciudad de <span class="hlt">San</span> Juan, merced a un Convenio de Cooperación Científica, firmado en 1994 entre el ROA (España) y el OAFA (Argentina). En la actualidad se está llevando a cabo un programa de prueba cuyos resultados preliminares muestran que el telescopio está en buenas condiciones para observar estrellas de hasta magnitud aproximada 14.5, con buenos errores de observación (<0.12" en ascensión recta y declinación).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/sim/3306/pdf/sim3306_pamphlet.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sim/3306/pdf/sim3306_pamphlet.pdf"><span>California State Waters Map Series: offshore of <span class="hlt">San</span> Gregorio, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Watt, Janet T.; Golden, Nadine E.; Endris, Charles A.; Phillips, Eleyne L.; Hartwell, Stephen R.; Johnson, Samuel Y.; Kvitek, Rikk G.; Erdey, Mercedes D.; Bretz, Carrie K.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Dieter, Bryan E.; Chin, John L.; Cochran, Susan A.; Cochrane, Guy R.; Cochran, Susan A.</p> <p>2014-01-01</p> <p>In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of <span class="hlt">San</span> Gregorio map area is located in northern California, on the Pacific coast of the <span class="hlt">San</span> Francisco Peninsula about 50 kilometers south of the Golden Gate. The map area lies offshore of the Santa Cruz Mountains, part of the northwest-trending Coast Ranges that run roughly parallel to the <span class="hlt">San</span> Andreas Fault Zone. The Santa Cruz Mountains lie between the <span class="hlt">San</span> Andreas Fault Zone and the <span class="hlt">San</span> Gregorio Fault system. The nearest significant onshore cultural centers in the map area are <span class="hlt">San</span> Gregorio and Pescadero, both unincorporated communities with populations well under 1,000. Both communities are situated inland of state beaches that share their names. No harbor facilities are within the Offshore of <span class="hlt">San</span> Gregorio map area. The hilly coastal area is virtually undeveloped grazing land for sheep and cattle. The coastal geomorphology is controlled by late Pleistocene and Holocene slip in the <span class="hlt">San</span> Gregorio Fault system. A westward bend in the <span class="hlt">San</span> Andreas Fault Zone, southeast of the map area, coupled with right-lateral movement along the <span class="hlt">San</span> Gregorio Fault system have caused regional folding and uplift. The coastal area consists of high coastal bluffs and vertical sea cliffs. Coastal promontories in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70197582','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70197582"><span>Net dextral slip, Neogene <span class="hlt">San</span> Gregorio–Hosgri fault zone, coastal California: Geologic evidence and tectonic implications</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dickinson, William R.; Ducea, M.; Rosenberg, Lewis I.; Greene, H. Gary; Graham, Stephan A.; Clark, Joseph C.; Weber, Gerald E.; Kidder, Steven; Ernst, W. Gary; Brabb, Earl E.</p> <p>2005-01-01</p> <p>Reinterpretation of onshore and offshore geologic mapping, examination of a key offshore well core, and revision of cross-fault ties indicate Neogene dextral strike slip of 156 ± 4 km along the <span class="hlt">San</span> Gregorio–Hosgri fault zone, a major strand of the <span class="hlt">San</span> Andreas transform system in coastal California. Delineating the full course of the fault, defining net slip across it, and showing its relationship to other major tectonic features of central California helps clarify the evolution of the <span class="hlt">San</span> Andreas system.<span class="hlt">San</span> Gregorio–Hosgri slip rates over time are not well constrained, but were greater than at present during early phases of strike slip following fault initiation in late Miocene time. Strike slip took place southward along the California coast from the western fl ank of the <span class="hlt">San</span> Francisco Peninsula to the Hosgri fault in the offshore Santa Maria basin without significant reduction by transfer of strike slip into the central California Coast Ranges. Onshore coastal segments of the <span class="hlt">San</span> Gregorio–Hosgri fault include the Seal Cove and <span class="hlt">San</span> Gregorio faults on the <span class="hlt">San</span> Francisco Peninsula, and the Sur and <span class="hlt">San</span> Simeon fault zones along the flank of the Santa Lucia Range.Key cross-fault ties include porphyritic granodiorite and overlying Eocene strata exposed at Point Reyes and at Point Lobos, the Nacimiento fault contact between Salinian basement rocks and the Franciscan Complex offshore within the outer Santa Cruz basin and near Esalen on the flank of the Santa Lucia Range, Upper Cretaceous (Campanian) turbidites of the Pigeon Point Formation on the <span class="hlt">San</span> Francisco Peninsula and the Atascadero Formation in the southern Santa Lucia Range, assemblages of Franciscan rocks exposed at Point Sur and at Point <span class="hlt">San</span> Luis, and a lithic assemblage of Mesozoic rocks and their Tertiary cover exposed near Point <span class="hlt">San</span> Simeon and at Point Sal, as restored for intrabasinal deformation within the onshore Santa Maria basin.Slivering of the Salinian block by <span class="hlt">San</span> Gregorio–Hosgri displacements</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-11-22/pdf/2010-29338.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-11-22/pdf/2010-29338.pdf"><span>75 FR 71179 - Environmental Impact Statement: <span class="hlt">San</span> Diego County, CA</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-11-22</p> <p>... Diego County, CA AGENCY: Federal Highway Administration (FHWA), DOT. ACTION: Notice of intent. SUMMARY... a proposed highway project in <span class="hlt">San</span> Diego County, California. DATES: Public Scoping Meeting: January 12, 2011; 5 p.m. to 8 p.m. ADDRESSES: Sherman Heights Community Center, 2258 Island Avenue, <span class="hlt">San</span> Diego...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1412569H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1412569H"><span>Recording Plate Boundary Deformation Processes Around The <span class="hlt">San</span> Jacinto Fault, California</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hodgkinson, K.; Mencin, D.; Borsa, A.; Fox, O.; Walls, C.; Van Boskirk, E.</p> <p>2012-04-01</p> <p>The <span class="hlt">San</span> Jacinto Fault is one of the major faults which form the <span class="hlt">San</span> Andreas Fault System in southern California. The fault, which lies to the west of the <span class="hlt">San</span> Andreas, is one of the most active in the region. While strain rates are higher along the <span class="hlt">San</span> Andreas, 23-37 mm/yr compared to 12-22 mm/yr along the <span class="hlt">San</span> Jacinto, there have been 11 earthquakes of M6 and greater along the <span class="hlt">San</span> Jacinto in the past 150 years while there have been none of this magnitude on the <span class="hlt">San</span> Andreas in this region. UNAVCO has installed an array of geodetic and seismic instruments along the <span class="hlt">San</span> Jacinto as part of the Plate Boundary Observatory (PBO). The network includes 25 GPS stations within 20 km of the surface trace with a concentration of borehole instrumentation in the Anza region where there are nine boreholes sites. Most of the borehole sites contain a GTSM21 4-component strainmeter, a Sonde-2 seismometer, a MEMS accelerometer and a pore pressure sensor. Thus, the array has the capability to capture plate boundary deformation processes with periods of milliseconds (seismic) to decades (GPS). On July 7th 2010 a M5.4 earthquake occurred on the Coyote Creek segment of the fault. The event was preceded by a M4.9 earthquake in the same area four weeks earlier and four earthquakes of M5 and greater within a 20 km radius of the epicenter in the past 50 years. In this study we will present the signals recorded by the different instrument types for the July 7th 2010 event and will compare the coseismic displacements recorded by the GPS and strainmeters with the displacement field predicted by Okada [1992]. All data recorded as part of the PBO observatory are publically available from the UNAVCO, the IRIS Data Management Center and the Northern California Earthquake Data Center.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.848a2007U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.848a2007U"><span>Lipid based drug delivery systems: Kinetics by <span class="hlt">SANS</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uhríková, D.; Teixeira, J.; Hubčík, L.; Búcsi, A.; Kondela, T.; Murugova, T.; Ivankov, O. I.</p> <p>2017-05-01</p> <p>N,N-dimethyldodecylamine-N-oxide (C12NO) is a surfactant that may exist either in a neutral or protonated form depending on the pH of aqueous solutions. Using small angle X-ray diffraction (SAXD) we demonstrate structural responsivity of C12NO/dioleoylphospha-tidylethanolamine (DOPE)/DNA complexes designed as pH sensitive gene delivery vectors. Small angle neutron scattering (<span class="hlt">SANS</span>) was employed to follow kinetics of C12NO protonization and DNA binding into C12NO/DOPE/DNA complexes in solution of 150 mM NaCl at acidic condition. <span class="hlt">SANS</span> data analyzed using paracrystal lamellar model show the formation of complexes with stacking up to ∼32 bilayers, spacing ∼ 62 Å, and lipid bilayer thickness ∼37 Å in 3 minutes after changing pH from 7 to 4. Subsequent structural reorganization of the complexes was observed along 90 minutes of <span class="hlt">SANS</span> mesurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015887','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015887"><span>Trace elements in Corbicula fluminea from the <span class="hlt">San</span> Joaquin River, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Leland, H.V.; Scudder, B.C.</p> <p>1990-01-01</p> <p>(i) Trace element concentrations in soft tissue of the benthic bivalve, Corbicula fluminea, from the <span class="hlt">San</span> Joaquin River and its major tributaries were examined during the primary irrigation season in relation to the spatial variation in concentrations of major, minor and trace constituents in riverwater and sediments. (ii) Selenium concentrations in Corbicula from perennial flow reaches of the <span class="hlt">San</span> Joaquin River and its major tributaries varied directly with the solute (??? 0.45 ??m) Se concentrations of riverwater. Elevated concentrations occurred in clams from sites with substantial discharge originating as subsurface drainage and irrigation return flows. Both tissue and solute Se concentrations declined from June through the end of the primary irrigation season. (iii) Arsenic concentrations in Corbicula from perennial flow reaches of the <span class="hlt">San</span> Joaquin River varied directly with the HNO3-extractable (pH 2) As:Fe ratio of suspended matter, providing evidence that sorption to oxyhydroxide surfaces is an important control on the biological availability of As. However, Corbicula from several tributaries draining alluvium derived from the Sierra Nevada had lower As concentrations than would be predicted by the relation developed for perennial flow sites of the <span class="hlt">San</span> Joaquin River. Arsenic concentrations in Corbicula from the Tuolumne and Merced Rivers and upstream reaches of the <span class="hlt">San</span> Joaquin River were higher than in clams from the downstream perennial flow reaches of the <span class="hlt">San</span> Joaquin River. Concentrations of As in clams from downstream perennial flow reaches of the <span class="hlt">San</span> Joaquin River increased from June through the end of the primary irrigation season. (iv) Mercury concentrations in Corbicula were elevated in upstream reaches of the <span class="hlt">San</span> Joaquin River, in the Merced and Tuolumne Rivers, and in tributaries draining the Coast Ranges. Mean Cd and Cu concentrations in Corbicula were elevated in the Merced and Tuolumne Rivers, Orestimba Creek and a perennial flow reach of the <span class="hlt">San</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://ngmdb.usgs.gov/Prodesc/proddesc_83674.htm','USGSPUBS'); return false;" href="http://ngmdb.usgs.gov/Prodesc/proddesc_83674.htm"><span>Geologic Map of the <span class="hlt">San</span> Luis Quadrangle, Costilla County, Colorado</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Machette, Michael N.; Thompson, Ren A.; Drenth, Benjamin J.</p> <p>2008-01-01</p> <p>The map area includes <span class="hlt">San</span> Luis and the primarily rural surrounding area. <span class="hlt">San</span> Luis, the county seat of Costilla County, is the oldest surviving settlement in Colorado (1851). West of the town are <span class="hlt">San</span> Pedro and <span class="hlt">San</span> Luis mesas (basalt-covered tablelands), which are horsts with the <span class="hlt">San</span> Luis fault zone to the east and the southern Sangre de Cristo fault zone to the west. The map also includes the Sanchez graben (part of the larger Culebra graben), a deep structural basin that lies between the <span class="hlt">San</span> Luis fault zone (on the west) and the central Sangre de Cristo fault zone (on the east). The oldest rocks exposed in the map area are the Pliocene to upper Oligocene basin-fill sediments of the Santa Fe Group, and Pliocene Servilleta Basalt, a regional series of 3.7?4.8 Ma old flood basalts. Landslide deposits and colluvium that rest on sediments of the Santa Fe Group cover the steep margins of the mesas. Rare exposures of the sediment are comprised of siltstones, sandstones, and minor fluvial conglomerates. Most of the low ground surrounding the mesas and in the graben is covered by surficial deposits of Quaternary age. The alluvial deposits are subdivided into three Pleistocene-age units and three Holocene-age units. The oldest Pleistocene gravel (unit Qao) forms extensive coalesced alluvial fan and piedmont surfaces, the largest of which is known as the Costilla Plain. This surface extends west from <span class="hlt">San</span> Pedro Mesa to the Rio Grande. The primary geologic hazards in the map area are from earthquakes, landslides, and localized flooding. There are three major fault zones in the area (as discussed above), and they all show evidence for late Pleistocene to possible Holocene movement. The landslides may have seismogenic origins; that is, they may be stimulated by strong ground shaking during large earthquakes. Machette and Thompson based this geologic map entirely on new mapping, whereas Drenth supplied geophysical data and interpretations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-758.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-758.pdf"><span>33 CFR 165.758 - Security Zone; <span class="hlt">San</span> Juan, Puerto Rico.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... Security Zone; <span class="hlt">San</span> Juan, Puerto Rico. (a) Location. Moving and fixed security zones are established 50... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone; <span class="hlt">San</span> Juan, Puerto Rico. 165.758 Section 165.758 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec165-758.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec165-758.pdf"><span>33 CFR 165.758 - Security Zone; <span class="hlt">San</span> Juan, Puerto Rico.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... Security Zone; <span class="hlt">San</span> Juan, Puerto Rico. (a) Location. Moving and fixed security zones are established 50... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; <span class="hlt">San</span> Juan, Puerto Rico. 165.758 Section 165.758 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-758.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-758.pdf"><span>33 CFR 165.758 - Security Zone; <span class="hlt">San</span> Juan, Puerto Rico.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... Security Zone; <span class="hlt">San</span> Juan, Puerto Rico. (a) Location. Moving and fixed security zones are established 50... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; <span class="hlt">San</span> Juan, Puerto Rico. 165.758 Section 165.758 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-758.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-758.pdf"><span>33 CFR 165.758 - Security Zone; <span class="hlt">San</span> Juan, Puerto Rico.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... Security Zone; <span class="hlt">San</span> Juan, Puerto Rico. (a) Location. Moving and fixed security zones are established 50... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone; <span class="hlt">San</span> Juan, Puerto Rico. 165.758 Section 165.758 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-758.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-758.pdf"><span>33 CFR 165.758 - Security Zone; <span class="hlt">San</span> Juan, Puerto Rico.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... Security Zone; <span class="hlt">San</span> Juan, Puerto Rico. (a) Location. Moving and fixed security zones are established 50... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone; <span class="hlt">San</span> Juan, Puerto Rico. 165.758 Section 165.758 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=cosmo&pg=5&id=ED167167','ERIC'); return false;" href="https://eric.ed.gov/?q=cosmo&pg=5&id=ED167167"><span>COSMOS (County of <span class="hlt">San</span> Mateo Online System). A Searcher's Manual.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>San Mateo County Superintendent of Schools, Redwood City, CA. Educational Resources Center.</p> <p></p> <p>Operating procedures are explained for COSMOS (County of <span class="hlt">San</span> Mateo Online System), a computerized information retrieval system designed for the <span class="hlt">San</span> Mateo Educational Resources Center (SMERC), which provides interactive access to both ERIC and a local file of fugitive documents. COSMOS hardware and modem compatibility requirements are reviewed,…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26470382','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26470382"><span>Resistance Management for <span class="hlt">San</span> Jose Scale (Hemiptera: Diaspididae).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Buzzetti, K; Chorbadjian, R A; Nauen, R</p> <p>2015-12-01</p> <p>The <span class="hlt">San</span> Jose scale Diaspidiotus perniciosus Comstock is one of the most important pests of deciduous fruit trees. The major cause of recent outbreaks in apple orchards is thought to be the development of insecticide resistance, specifically organophosphates. The first report was given in North America, and now, in Chile. In the present study, <span class="hlt">San</span> Jose scale populations collected from two central regions of Chile were checked for their susceptibility to different mode of action insecticides in order to establish alternatives to manage this pest. No evidence of cross resistance between organophosphates insecticides and acetamiprid, buprofezin, pyriproxyfen, spirotetramat, sulfoxaflor, or thiacloprid was found. Baselines of LC50-LC95 for different life stages of <span class="hlt">San</span> Jose scale are given, as reference to future studies of resistance monitoring. The systemic activity of acetamiprid, spirotetramat, and thiacloprid was higher than the contact residue effect of these compounds. For sulfoxaflor, both values were similar. Program treatments including one or more of these compounds are compared in efficacy and impact on resistance ratio values. In order to preserve new insecticides as an important tool to control <span class="hlt">San</span> Jose scale, resistance management programs should be implemented, considering insecticide mode of action classes alternated or mixed. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2016/1063/ofr20161063.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2016/1063/ofr20161063.pdf"><span>Structure of the 1906 near-surface rupture zone of the <span class="hlt">San</span> Andreas Fault, <span class="hlt">San</span> Francisco Peninsula segment, near Woodside, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rosa, C.M.; Catchings, R.D.; Rymer, M.J.; Grove, Karen; Goldman, M.R.</p> <p>2016-07-08</p> <p>High-resolution seismic-reflection and refraction images of the 1906 surface rupture zone of the <span class="hlt">San</span> Andreas Fault near Woodside, California reveal evidence for one or more additional near-surface (within about 3 meters [m] depth) fault strands within about 25 m of the 1906 surface rupture. The 1906 surface rupture above the groundwater table (vadose zone) has been observed in paleoseismic trenches that coincide with our seismic profile and is seismically characterized by a discrete zone of low P-wave velocities (Vp), low S-wave velocities (Vs), high Vp/Vs ratios, and high Poisson’s ratios. A second near-surface fault strand, located about 17 m to the southwest of the 1906 surface rupture, is inferred by similar seismic anomalies. Between these two near-surface fault strands and below 5 m depth, we observed a near-vertical fault strand characterized by a zone of high Vp, low Vs, high Vp/Vs ratios, and high Poisson’s ratios on refraction tomography images and near-vertical diffractions on seismic-reflection images. This prominent subsurface zone of seismic anomalies is laterally offset from the 1906 surface rupture by about 8 m and likely represents the active main (long-term) strand of the <span class="hlt">San</span> Andreas Fault at 5 to 10 m depth. Geometries of the near-surface and subsurface (about 5 to 10 m depth) fault zone suggest that the 1906 surface rupture dips southwestward to join the main strand of the <span class="hlt">San</span> Andreas Fault at about 5 to 10 m below the surface. The 1906 surface rupture forms a prominent groundwater barrier in the upper 3 to 5 m, but our interpreted secondary near-surface fault strand to the southwest forms a weaker barrier, suggesting that there has been less or less-recent near-surface slip on that strand. At about 6 m depth, the main strand of the <span class="hlt">San</span> Andreas Fault consists of water-saturated blue clay (collected from a hand-augered borehole), which is similar to deeply weathered serpentinite observed within the main strand of the <span class="hlt">San</span> Andreas Fault at</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1997/0655/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1997/0655/report.pdf"><span>Transport of sediment-bound organochlorine pesticides to the <span class="hlt">San</span> Joaquin River, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kratzer, Charles R.</p> <p>1998-01-01</p> <p>Most of the application of the organophosphate insecticide diazinon in the <span class="hlt">San</span> Joaquin River Basin occurs in winter to control wood boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of <span class="hlt">San</span> Joaquin River water to water fleas in February 1993. Previous studies focused mainly on west-side inputs to the <span class="hlt">San</span> Joaquin River. In this 1994 study, the three major east-side tributaries to the <span class="hlt">San</span> Joaquin River, the Merced, Tuolumne, and Stanislaus Rivers, and a downstream site on the <span class="hlt">San</span> Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated traveltimes, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced Rivers and east-side drainages directly to the <span class="hlt">San</span> Joaquin River were the main sources later. Although 74 percent of diazinon transport in the <span class="hlt">San</span> Joaquin River during 1991-1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the <span class="hlt">San</span> Joaquin River during the January storm exceeded 0.35 micrograms per liter, a concentration shown to be acutely toxic to water fleas. Diazinon concentrations were highly variable during the storms and frequent sampling was required to adequately describe the concentration curves and to estimate loads.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA03329&hterms=time+perspective&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtime%2Bperspective','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA03329&hterms=time+perspective&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtime%2Bperspective"><span>Perspective View with Landsat Overlay, <span class="hlt">San</span> Francisco Bay Area, Calif.</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>The defining landmarks of <span class="hlt">San</span> Francisco, its bay and the <span class="hlt">San</span> Andreas Fault are clearly seen in this computer-generated perspective viewed from the south. Running from the bottom of the scene diagonally up to the left, the trough of the <span class="hlt">San</span> Andreas Fault is occupied by Crystal Springs Reservoir and <span class="hlt">San</span> Andreas Lake. Interstate 280 winds along the side of the fault. <span class="hlt">San</span> Francisco International Airport is the angular feature projecting into the bay just below <span class="hlt">San</span> Bruno Mountain, the elongated ridge cutting across the peninsula. The hills of <span class="hlt">San</span> Francisco can be seen beyond <span class="hlt">San</span> Bruno Mountain and beyond the city, the Golden Gate.<p/>This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced color Landsat 5satellite image. Topographic expression is exaggerated two times.<p/>Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.<p/>Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19777687','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19777687"><span>The Early History of Psychoanalysis in <span class="hlt">San</span> Francisco.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Benveniste, Daniel</p> <p>2006-01-01</p> <p>The early history of psychoanalysis in <span class="hlt">San</span> Francisco begins in 1918 and ends in 1953. During those 35 years the <span class="hlt">San</span> Francisco Bay Area witnessed the awakening of interest in psychoanalysis, the arrival of the European émigré analysts and the emergence of individuals and groups engaging in extraordinarily creative work and doing so in an ecumenical spirit and with a social commitment. This article provides an overview of this illustrious history and the people who participated in it.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=principles+AND+corporate+AND+finance&pg=2&id=EJ443787','ERIC'); return false;" href="https://eric.ed.gov/?q=principles+AND+corporate+AND+finance&pg=2&id=EJ443787"><span>The <span class="hlt">San</span> Diego Panasonic Partnership: A Case Study in Restructuring.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Holzman, Michael; Tewel, Kenneth J.</p> <p>1992-01-01</p> <p>The Panasonic Foundation provides resources for restructuring school districts. The article examines its partnership with the <span class="hlt">San</span> Diego City School District, highlighting four schools that demonstrate promising practices and guiding principles. It describes recent partnership work on systemic issues, noting the next steps to be taken in <span class="hlt">San</span> Diego.…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/co0199.photos.021528p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/co0199.photos.021528p/"><span>6. Photocopy of photograph, c. 1892. DISTANT VIEW OF <span class="hlt">SAN</span> ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>6. Photocopy of photograph, c. 1892. DISTANT VIEW OF <span class="hlt">SAN</span> JUAN SMELTING AND MINING COMPANY WORKS WITH EXTANT SMELTER STACK AT LEFT. (Original print in possession of Strater Hotel, Durango, Colorado. Photographer unknown.) - <span class="hlt">San</span> Juan & New York Mining & Smelting Company, Smelter Stack, State Route 160, Durango, La Plata County, CO</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-11-07/pdf/2012-27227.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-11-07/pdf/2012-27227.pdf"><span>77 FR 66910 - Environmental Impact Statement, <span class="hlt">San</span> Diego County, California</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-11-07</p> <p>... Diego County, California AGENCY: Federal Highway Administration (FHWA), DOT. ACTION: Notice of... Corridor Project in the city of Coronado in <span class="hlt">San</span> Diego County, California (Federal Register Vol. 72, No 10... 800, <span class="hlt">San</span> Diego, CA 92101, Regular Office Hours: 6:30 a.m. to 4:00 p.m., Telephone: (619) 699-7336...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-01-27/pdf/2011-1804.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-01-27/pdf/2011-1804.pdf"><span>76 FR 4833 - Security Zones; Cruise Ships, Port of <span class="hlt">San</span> Diego, CA</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-01-27</p> <p>...The Coast Guard proposes to amend 33 CFR 165.1108, Security Zones; Cruise Ships, Port of <span class="hlt">San</span> Diego, California, by providing a common description of all security zones created by this section to encompass only navigable waters within a 100 yard radius around any cruise ship that is located within the <span class="hlt">San</span> Diego port area landward of the sea buoys bounding the Port of <span class="hlt">San</span> Diego. This notice of proposed rulemaking is necessary to provide for the safety of the cruise ship, vessels, and users of the waterway. Entry into these security zones will be prohibited unless specifically authorized by the Captain of the Port (COTP) <span class="hlt">San</span> Diego, or his designated representative.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-03-21/pdf/2011-6579.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-03-21/pdf/2011-6579.pdf"><span>76 FR 15216 - Security Zones; Cruise Ships, Port of <span class="hlt">San</span> Diego, CA</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-03-21</p> <p>...The Coast Guard is amending its regulations for Security Zones; Cruise Ships, Port of <span class="hlt">San</span> Diego, California, by providing a common description of all security zones created by this section to encompass only navigable waters within a 100 yard radius around any cruise ship that is located within the <span class="hlt">San</span> Diego port area landward of the sea buoys bounding the Port of <span class="hlt">San</span> Diego. This final rule removes a reference to shore area that is no longer necessary to provide for the safety of the cruise ship, vessels, and users of the waterway. Entry into these security zones will be prohibited unless specifically authorized by the Captain of the Port (COTP) <span class="hlt">San</span> Diego, or a COTP designated representative.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=335171&Lab=NHEERL&keyword=cycles&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=335171&Lab=NHEERL&keyword=cycles&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>CHARACTERIZING THE ORGANIC MATTER IN SURFACE SEDIMENTS FROM THE <span class="hlt">SAN</span> JUAN BAY ESTUARY.</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The <span class="hlt">San</span> Juan Bay Estuary (SJBE) is located on the north coast of Puerto Rico and includes the <span class="hlt">San</span> Juan Bay, <span class="hlt">San</span> José Lagoon, La Torrecilla Lagoon and Piñones Lagoon, as well as the Martín Peña and the Suárez Canals. The SJBE watershed has the highest...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1108.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1108.pdf"><span>33 CFR 165.1108 - Security Zones; Cruise Ships, Port of <span class="hlt">San</span> Diego, California.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>..., Port of <span class="hlt">San</span> Diego, California. 165.1108 Section 165.1108 Navigation and Navigable Waters COAST GUARD... § 165.1108 Security Zones; Cruise Ships, Port of <span class="hlt">San</span> Diego, California. (a) Definition. “Cruise ship” as... or at a port of call in the <span class="hlt">San</span> Diego port. (b) Location. The following areas are security zones: All...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol3/pdf/CFR-2013-title33-vol3-sec334-860.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol3/pdf/CFR-2013-title33-vol3-sec334-860.pdf"><span>33 CFR 334.860 - <span class="hlt">San</span> Diego Bay, Calif., Naval Amphibious Base; restricted area.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false <span class="hlt">San</span> Diego Bay, Calif., Naval..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.860 <span class="hlt">San</span> Diego... Middle <span class="hlt">San</span> Diego Bay in an area extending from the northern and eastern boundary of the Naval Amphibious...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1108.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1108.pdf"><span>33 CFR 165.1108 - Security Zones; Cruise Ships, Port of <span class="hlt">San</span> Diego, California.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>..., Port of <span class="hlt">San</span> Diego, California. 165.1108 Section 165.1108 Navigation and Navigable Waters COAST GUARD... § 165.1108 Security Zones; Cruise Ships, Port of <span class="hlt">San</span> Diego, California. (a) Definition. “Cruise ship” as... or at a port of call in the <span class="hlt">San</span> Diego port. (b) Location. The following areas are security zones: All...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol3/pdf/CFR-2012-title33-vol3-sec334-860.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol3/pdf/CFR-2012-title33-vol3-sec334-860.pdf"><span>33 CFR 334.860 - <span class="hlt">San</span> Diego Bay, Calif., Naval Amphibious Base; restricted area.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false <span class="hlt">San</span> Diego Bay, Calif., Naval..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.860 <span class="hlt">San</span> Diego... Middle <span class="hlt">San</span> Diego Bay in an area extending from the northern and eastern boundary of the Naval Amphibious...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-1108.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-1108.pdf"><span>33 CFR 165.1108 - Security Zones; Cruise Ships, Port of <span class="hlt">San</span> Diego, California.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>..., Port of <span class="hlt">San</span> Diego, California. 165.1108 Section 165.1108 Navigation and Navigable Waters COAST GUARD... § 165.1108 Security Zones; Cruise Ships, Port of <span class="hlt">San</span> Diego, California. (a) Definition. “Cruise ship” as... or at a port of call in the <span class="hlt">San</span> Diego port. (b) Location. The following areas are security zones: All...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol3/pdf/CFR-2014-title33-vol3-sec334-860.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol3/pdf/CFR-2014-title33-vol3-sec334-860.pdf"><span>33 CFR 334.860 - <span class="hlt">San</span> Diego Bay, Calif.; Naval Amphibious Base; restricted area.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false <span class="hlt">San</span> Diego Bay, Calif.; Naval..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.860 <span class="hlt">San</span> Diego... Middle <span class="hlt">San</span> Diego Bay in an area extending from the northern and eastern boundary of the Naval Amphibious...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1108.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1108.pdf"><span>33 CFR 165.1108 - Security Zones; Cruise Ships, Port of <span class="hlt">San</span> Diego, California.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>..., Port of <span class="hlt">San</span> Diego, California. 165.1108 Section 165.1108 Navigation and Navigable Waters COAST GUARD... § 165.1108 Security Zones; Cruise Ships, Port of <span class="hlt">San</span> Diego, California. (a) Definition. “Cruise ship” as... or at a port of call in the <span class="hlt">San</span> Diego port. (b) Location. The following areas are security zones: All...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=336596&Lab=NHEERL&keyword=storm+AND+water+AND+quality+AND+low+AND+density+AND+development&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=336596&Lab=NHEERL&keyword=storm+AND+water+AND+quality+AND+low+AND+density+AND+development&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Characterizing the Organic Matter in Surface Sediments from the <span class="hlt">San</span> Juan Bay Estuary,</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The <span class="hlt">San</span> Juan Bay Estuary (SJBE) is located on the north coast of Puerto Rico and includes the <span class="hlt">San</span> Juan Bay, <span class="hlt">San</span> José Lagoon, La Torrecilla Lagoon and Piñones Lagoon, as well as the Martín Peña and the Suárez Canals. The SJBE watershed has the highest...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=330030&Lab=NHEERL&keyword=storm+AND+water+AND+quality+AND+low+AND+density+AND+development&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=330030&Lab=NHEERL&keyword=storm+AND+water+AND+quality+AND+low+AND+density+AND+development&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>CHARACTERIZING THE ORGANIC MATTER IN SURFACE SEDIMENTS FROM THE <span class="hlt">SAN</span> JUAN BAY ESTUARY</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The <span class="hlt">San</span> Juan Bay Estuary (SJBE) is located on the north coast of Puerto Rico and includes the <span class="hlt">San</span> Juan Bay, <span class="hlt">San</span> José Lagoon, La Torrecilla Lagoon and Piñones Lagoon, as well as the Martín Peña and the Suárez Canals. The SJBE watershed has the highest...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1759/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1759/"><span>Post-Miocene Right Separation on the <span class="hlt">San</span> Gabriel and Vasquez Creek Faults, with Supporting Chronostratigraphy, Western <span class="hlt">San</span> Gabriel Mountains, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Beyer, Larry A.; McCulloh, Thane H.; Denison, Rodger E.; Morin, Ronald W.; Enrico, Roy J.; Barron, John A.; Fleck, Robert J.</p> <p>2009-01-01</p> <p>The right lateral <span class="hlt">San</span> Gabriel Fault Zone in southern California extends from the northwestern corner of the Ridge Basin southeastward to the eastern end of the <span class="hlt">San</span> Gabriel Mountains. It bifurcates to the southeast in the northwestern <span class="hlt">San</span> Gabriel Mountains. The northern and older branch curves eastward in the range interior. The southern younger branch, the Vasquez Creek Fault, curves southeastward to merge with the Sierra Madre Fault Zone, which separates the <span class="hlt">San</span> Gabriel Mountains from the northern Los Angeles Basin margin. An isolated exposure of partly macrofossiliferous nearshore shallow-marine sandstone, designated the Gold Canyon beds, is part of the southwest wall of the fault zone 5.5 km northwest of the bifurcation. These beds contain multiple subordinate breccia-conglomerate lenses and are overlain unconformably by folded Pliocene-Pleistocene Saugus Formation fanglomerate. The <span class="hlt">San</span> Gabriel Fault Zone cuts both units. Marine macrofossils from the Gold Canyon beds give an age of 5.2+-0.3 Ma by 87Sr/86Sr analyses. Magnetic polarity stratigraphy dates deposition of the overlying Saugus Formation to between 2.6 Ma and 0.78 Ma. Distinctive metaplutonic rocks of the Mount Lowe intrusive suite in the <span class="hlt">San</span> Gabriel Range are the source of certain clasts in both the Gold Canyon beds and Saugus Formation. Angular clasts of nondurable Paleocene sandstone also occur in the Gold Canyon beds. The large size and angularity of some of the largest of both clast types in breccia-conglomerate lenses of the beds suggest landslides or debris flows from steep terrain. Sources of Mount Lowe clasts, originally to the north or northeast, are now displaced southeastward by faulting and are located between the <span class="hlt">San</span> Gabriel and Vasquez Creek faults, indicating as much as 12+-2 km of post-Miocene Vasquez Creek Fault right separation, in accord with some prior estimates. Post-Miocene right slip thus transferred onto the Vasquez Creek Fault southeast of the bifurcation. The right separation</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.achp.gov/news20090417.html','SCIGOVWS'); return false;" href="http://www.achp.gov/news20090417.html"><span>ACHP | ACHP Receives Section 213 Report on Presidio of <span class="hlt">San</span> Francisco</span></a></p> <p><a target="_blank" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Search skip specific nav links Home arrow News arrow ACHP <em>Receives</em> Section 213 Report on Presidio of <span class="hlt">San</span> Francisco ACHP <em>Receives</em> Section 213 Report on Presidio of <span class="hlt">San</span> Francisco The ACHP received its requested</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3449','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3449"><span><span class="hlt">San</span> Francisco urban partnership agreement, national evaluation : exogenous factors test plan.</span></a></p> <p><a target="_blank" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2011-06-01</p> <p>This report presents the test plan for collecting and analyzing exogenous factors data for the <span class="hlt">San</span> Francisco Urban Partnership Agreement (UPA) under the United States Department of Transportation (U.S. DOT) UPA Program. The <span class="hlt">San</span> Francisco UPA projects...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3448','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3448"><span><span class="hlt">San</span> Francisco urban partnership agreement, national evaluation : environmental data test plan.</span></a></p> <p><a target="_blank" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2011-06-01</p> <p>This report presents the test plan for collecting and analyzing environmental data for the <span class="hlt">San</span> Francisco Urban Partnership Agreement (UPA) under the United States Department of Transportation (U.S. DOT) UPA Program. The <span class="hlt">San</span> Francisco UPA projects foc...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-05-24/pdf/2013-12396.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-05-24/pdf/2013-12396.pdf"><span>78 FR 31414 - Drawbridge Operation Regulation; China Basin, <span class="hlt">San</span> Francisco, CA</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-05-24</p> <p>... scheduled <span class="hlt">San</span> Francisco Marathon, a community event. This deviation allows the bridge to remain in the... 6 a.m. to 1:30 p.m. on June 16, 2013, to allow participants in the <span class="hlt">San</span> Francisco Marathon to cross...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/13828','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/13828"><span>Trends Before the <span class="hlt">San</span> Diego Trolley: A <span class="hlt">San</span> Diego Trolley Guideway Implementation Monitoring Study Report</span></a></p> <p><a target="_blank" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1982-07-01</p> <p>A substantial amount of interest has been generated in <span class="hlt">San</span> Diego's new light rail system. This 16 mile system is the first system of its type to become operational in several decades and was constructed entirely without Federal funds. This report pro...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA453410','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA453410"><span>SSC <span class="hlt">San</span> Diego Brief 2002</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2002-01-01</p> <p>information dominance . We are at the cutting edge of the processes of transforming data into information, information into knowledge, and knowledge into...solutions for warrior information dominance . We intend to continue and expand SSC <span class="hlt">San</span> Diego’s leadership in defining, developing, integrating, installing, and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/413/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/413/"><span>Data Files for Ground-Motion Simulations of the 1906 <span class="hlt">San</span> Francisco Earthquake and Scenario Earthquakes on the Northern <span class="hlt">San</span> Andreas Fault</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Aagaard, Brad T.; Barall, Michael; Brocher, Thomas M.; Dolenc, David; Dreger, Douglas; Graves, Robert W.; Harmsen, Stephen; Hartzell, Stephen; Larsen, Shawn; McCandless, Kathleen; Nilsson, Stefan; Petersson, N. Anders; Rodgers, Arthur; Sjogreen, Bjorn; Zoback, Mary Lou</p> <p>2009-01-01</p> <p>This data set contains results from ground-motion simulations of the 1906 <span class="hlt">San</span> Francisco earthquake, seven hypothetical earthquakes on the northern <span class="hlt">San</span> Andreas Fault, and the 1989 Loma Prieta earthquake. The bulk of the data consists of synthetic velocity time-histories. Peak ground velocity on a 1/60th degree grid and geodetic displacements from the simulations are also included. Details of the ground-motion simulations and analysis of the results are discussed in Aagaard and others (2008a,b).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-1104.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-1104.pdf"><span>33 CFR 165.1104 - Security Zone: <span class="hlt">San</span> Diego Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone: <span class="hlt">San</span> Diego Bay, CA... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1104 Security Zone: <span class="hlt">San</span> Diego Bay, CA. (a) Location. The following area is a security zone: on the waters along the northern...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec165-1104.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec165-1104.pdf"><span>33 CFR 165.1104 - Security Zone: <span class="hlt">San</span> Diego Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone: <span class="hlt">San</span> Diego Bay, CA... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1104 Security Zone: <span class="hlt">San</span> Diego Bay, CA. (a) Location. The following area is a security zone: on the waters along the northern...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1104.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1104.pdf"><span>33 CFR 165.1104 - Security Zone: <span class="hlt">San</span> Diego Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone: <span class="hlt">San</span> Diego Bay, CA... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1104 Security Zone: <span class="hlt">San</span> Diego Bay, CA. (a) Location. The following area is a security zone: on the waters along the northern...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1104.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1104.pdf"><span>33 CFR 165.1104 - Security Zone: <span class="hlt">San</span> Diego Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone: <span class="hlt">San</span> Diego Bay, CA... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1104 Security Zone: <span class="hlt">San</span> Diego Bay, CA. (a) Location. The following area is a security zone: on the waters along the northern...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1104.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1104.pdf"><span>33 CFR 165.1104 - Security Zone: <span class="hlt">San</span> Diego Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone: <span class="hlt">San</span> Diego Bay, CA... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1104 Security Zone: <span class="hlt">San</span> Diego Bay, CA. (a) Location. The following area is a security zone: on the waters along the northern...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://sfbay.wr.usgs.gov/publications/pdf/cheng_1998_ports.pdf','USGSPUBS'); return false;" href="http://sfbay.wr.usgs.gov/publications/pdf/cheng_1998_ports.pdf"><span>An overview of <span class="hlt">San</span> Francisco Bay PORTS</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cheng, Ralph T.; McKinnie, David; English, Chad; Smith, Richard E.</p> <p>1998-01-01</p> <p>The Physical Oceanographic Real-Time System (PORTS) provides observations of tides, tidal currents, and meteorological conditions in real-time. The <span class="hlt">San</span> Francisco Bay PORTS (SFPORTS) is a decision support system to facilitate safe and efficient maritime commerce. In addition to real-time observations, SFPORTS includes a nowcast numerical model forming a <span class="hlt">San</span> Francisco Bay marine nowcast system. SFPORTS data and nowcast numerical model results are made available to users through the World Wide Web (WWW). A brief overview of SFPORTS is presented, from the data flow originated at instrument sensors to final results delivered to end users on the WWW. A user-friendly interface for SFPORTS has been designed and implemented. Appropriate field data analysis, nowcast procedures, design and generation of graphics for WWW display of field data and nowcast results are presented and discussed. Furthermore, SFPORTS is designed to support hazardous materials spill prevention and response, and to serve as resources to scientists studying the health of <span class="hlt">San</span> Francisco Bay ecosystem. The success (or failure) of the SFPORTS to serve the intended user community is determined by the effectiveness of the user interface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8447658','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8447658"><span>Isonymy structure of four Venezuelan states.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rodríguez-Larralde, A; Barrai, I; Alfonzo, J C</p> <p>1993-01-01</p> <p>The isonymy structure of four Venezuelan States-Falcón, Mérida, Nueva Esparta and <span class="hlt">Yaracuy</span>-was studied using the surnames of the Venezuelan register of electors updated in 1984. The surname distributions of 155 counties were obtained and, for each county, estimates of consanguinity due to random isonymy and Fisher's alpha were calculated. It was shown that for large sample sizes the inverse of Fisher's alpha is identical to the unbiased estimate of within-population random isonymy. A three-dimensional isometric surface plot was obtained for each State, based on the counties' random isonymy estimates. The highest estimates of random consanguinity were found in the States of Nueva Esparta and Mérida, while the lowest were found in <span class="hlt">Yaracuy</span>. Other microdifferentiation indicators from the same data gave similar results, and an interpretation was attempted, based on the particular economic and geographic characteristics of each State. Four different genetic distances between all possible pairs of counties were calculated within States; geographic distance shows the highest correlations with random isonymy and Euclidean distance, with the exception of the State of Nueva Esparta, where there is no correlation between geographic distance and random isonymy. It was possible to group counties in clusters, from dendrograms based on Euclidean distance. Isonymy clustering was also consistent with socioeconomic and geographic characteristics of the counties.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol1/pdf/CFR-2012-title33-vol1-sec80-1114.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol1/pdf/CFR-2012-title33-vol1-sec80-1114.pdf"><span>33 CFR 80.1114 - <span class="hlt">San</span> Pedro Bay-Anaheim Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false <span class="hlt">San</span> Pedro Bay-Anaheim Bay, CA. 80... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1114 <span class="hlt">San</span> Pedro Bay—Anaheim Bay, CA. (a) A line drawn across the seaward extremities of the Anaheim Bay Entrance Jetties; thence to Long...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol1/pdf/CFR-2011-title33-vol1-sec80-1114.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol1/pdf/CFR-2011-title33-vol1-sec80-1114.pdf"><span>33 CFR 80.1114 - <span class="hlt">San</span> Pedro Bay-Anaheim Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false <span class="hlt">San</span> Pedro Bay-Anaheim Bay, CA. 80... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1114 <span class="hlt">San</span> Pedro Bay—Anaheim Bay, CA. (a) A line drawn across the seaward extremities of the Anaheim Bay Entrance Jetties; thence to Long...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol1/pdf/CFR-2010-title33-vol1-sec80-1114.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol1/pdf/CFR-2010-title33-vol1-sec80-1114.pdf"><span>33 CFR 80.1114 - <span class="hlt">San</span> Pedro Bay-Anaheim Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false <span class="hlt">San</span> Pedro Bay-Anaheim Bay, CA. 80... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1114 <span class="hlt">San</span> Pedro Bay—Anaheim Bay, CA. (a) A line drawn across the seaward extremities of the Anaheim Bay Entrance Jetties; thence to Long...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol1/pdf/CFR-2013-title33-vol1-sec80-1114.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol1/pdf/CFR-2013-title33-vol1-sec80-1114.pdf"><span>33 CFR 80.1114 - <span class="hlt">San</span> Pedro Bay-Anaheim Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false <span class="hlt">San</span> Pedro Bay-Anaheim Bay, CA. 80... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1114 <span class="hlt">San</span> Pedro Bay—Anaheim Bay, CA. (a) A line drawn across the seaward extremities of the Anaheim Bay Entrance Jetties; thence to Long...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol1/pdf/CFR-2014-title33-vol1-sec80-1114.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol1/pdf/CFR-2014-title33-vol1-sec80-1114.pdf"><span>33 CFR 80.1114 - <span class="hlt">San</span> Pedro Bay-Anaheim Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false <span class="hlt">San</span> Pedro Bay-Anaheim Bay, CA. 80... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1114 <span class="hlt">San</span> Pedro Bay—Anaheim Bay, CA. (a) A line drawn across the seaward extremities of the Anaheim Bay Entrance Jetties; thence to Long...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/41380','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/41380"><span>Forest conditions in the <span class="hlt">San</span> Francisco Mountains Forest Reserve, Arizona</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>John B. Leiberg; Theodore F. Rixon; Arthur. Dodwell</p> <p>1904-01-01</p> <p>On April 12, 1902, President Roosevelt issued a proclamation "for the purpose of consolidating into one reserve the lands heretofore embraced in the <span class="hlt">San</span> Francisco Mountains Forest Reserves and of including therein the other adjacent lands within the description herein after given." The consolidated area is now known as the <span class="hlt">San</span> Francisco Mountains Forest...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/0933/ds933.html','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/0933/ds933.html"><span>Hydrologic data from wells at or in the vicinity of the <span class="hlt">San</span> Juan coal mine, <span class="hlt">San</span> Juan County, New Mexico</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stewart, Anne M.; Thomas, Nicole</p> <p>2015-01-01</p> <p>In 2010, in cooperation with the Mining and Minerals Division (MMD) of the State of New Mexico Energy, Minerals and Natural Resources Department, the U.S. Geological Survey (USGS) initiated a 4-year assessment of hydrologic conditions at the <span class="hlt">San</span> Juan coal mine (SJCM), located about 14 miles west-northwest of the city of Farmington, <span class="hlt">San</span> Juan County, New Mexico. The mine produces coal for power generation at the adjacent <span class="hlt">San</span> Juan Generating Station (SJGS) and stores coal-combustion byproducts from the SJGS in mined-out surface-mining pits. The purpose of the hydrologic assessment is to identify groundwater flow paths away from SJCM coal-combustion-byproduct storage sites that might allow metals that may be leached from coal-combustion byproducts to eventually reach wells or streams after regional dewatering ceases and groundwater recovers to predevelopment levels. The hydrologic assessment, undertaken between 2010 and 2013, included compilation of existing data. The purpose of this report is to present data that were acquired and compiled by the USGS for the SJCM hydrologic assessment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.epa.gov/sfbay-delta/san-pablo-avenue-green-stormwater-spine','PESTICIDES'); return false;" href="https://www.epa.gov/sfbay-delta/san-pablo-avenue-green-stormwater-spine"><span><span class="hlt">San</span> Pablo Avenue Green Stormwater Spine</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Information about the SFBWQP <span class="hlt">San</span> Pablo Avenue Green Stormwater Spine Project project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED535310.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED535310.pdf"><span>Developing Early Warning Indicators for the <span class="hlt">San</span> Francisco Unified School District. Youth Data Archive Issue Brief</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>John W. Gardner Center for Youth and Their Communities, 2011</p> <p>2011-01-01</p> <p><span class="hlt">San</span> Francisco's Bridge to Success (BtS) initiative brings together the City and County of <span class="hlt">San</span> Francisco, the <span class="hlt">San</span> Francisco Unified School District (SFUSD), the City College of <span class="hlt">San</span> Francisco (CCSF), and key community organizations to promote postsecondary success for underrepresented students. Partners agree that the first step in achieving this…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca2519.photos.326370p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca2519.photos.326370p/"><span>Photocopy of drawing located at National Archives, <span class="hlt">San</span> Bruno, California ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>Photocopy of drawing located at National Archives, <span class="hlt">San</span> Bruno, California (Navy # 84-A-20). Navy Yard Mare Island prison extension building no. 84 washing and drying room - architectural and electrical plan, elevations and details; October 12, 1942. - Mare Island Naval Shipyard, Marine Prison, Suisun Avenue, west side between Mesa Road & <span class="hlt">San</span> Pablo, Vallejo, Solano County, CA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1105.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1105.pdf"><span>33 CFR 165.1105 - Security Zone: <span class="hlt">San</span> Diego Bay, California.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone: <span class="hlt">San</span> Diego Bay... Security Zone: <span class="hlt">San</span> Diego Bay, California. (a) Location. (1) The following area is a security zone: The...″ N, Longitude 117°13′34.1″ W. (2) Because the area of this security zone is measured from the pier...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1105.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1105.pdf"><span>33 CFR 165.1105 - Security Zone: <span class="hlt">San</span> Diego Bay, California.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone: <span class="hlt">San</span> Diego Bay... Security Zone: <span class="hlt">San</span> Diego Bay, California. (a) Location. (1) The following area is a security zone: The...″ N, Longitude 117°13′34.1″ W. (2) Because the area of this security zone is measured from the pier...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec165-1105.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec165-1105.pdf"><span>33 CFR 165.1105 - Security Zone: <span class="hlt">San</span> Diego Bay, California.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone: <span class="hlt">San</span> Diego Bay... Security Zone: <span class="hlt">San</span> Diego Bay, California. (a) Location. (1) The following area is a security zone: The...″ N, Longitude 117°13′34.1″ W. (2) Because the area of this security zone is measured from the pier...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-1105.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-1105.pdf"><span>33 CFR 165.1105 - Security Zone: <span class="hlt">San</span> Diego Bay, California.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone: <span class="hlt">San</span> Diego Bay... Security Zone: <span class="hlt">San</span> Diego Bay, California. (a) Location. (1) The following area is a security zone: The...″ N, Longitude 117°13′34.1″ W. (2) Because the area of this security zone is measured from the pier...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1105.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1105.pdf"><span>33 CFR 165.1105 - Security Zone: <span class="hlt">San</span> Diego Bay, California.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone: <span class="hlt">San</span> Diego Bay... Security Zone: <span class="hlt">San</span> Diego Bay, California. (a) Location. (1) The following area is a security zone: The...″ N, Longitude 117°13′34.1″ W. (2) Because the area of this security zone is measured from the pier...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Diego&pg=6&id=EJ827860','ERIC'); return false;" href="https://eric.ed.gov/?q=Diego&pg=6&id=EJ827860"><span>Assessing Instructional Reform in <span class="hlt">San</span> Diego: A Theory-Based Approach</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>O'Day, Jennifer; Quick, Heather E.</p> <p>2009-01-01</p> <p>This article provides an overview of the approach, methodology, and key findings from a theory-based evaluation of the district-led instructional reform effort in <span class="hlt">San</span> Diego City Schools, under the leadership of Alan Bersin and Anthony Alvarado, that began in 1998. Beginning with an analysis of the achievement trends in <span class="hlt">San</span> Diego relative to other…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/az0379.photos.321639p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/az0379.photos.321639p/"><span>4. Photographic copy of map. <span class="hlt">San</span> Carlos Irrigation Project, Gila ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>4. Photographic copy of map. <span class="hlt">San</span> Carlos Irrigation Project, Gila River Indian Reservation, Pinal County, Arizona. Department of the Interior. Office of Indian Affairs. 1940. (Source: SCIP Office, Coolidge, AZ) Photograph is an 8'x10' enlargement from a 4'x5' negative. - <span class="hlt">San</span> Carlos Irrigation Project, Lands North & South of Gila River, Coolidge, Pinal County, AZ</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014RMxAC..43...59A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014RMxAC..43...59A"><span>Carte du Ciel, <span class="hlt">San</span> Fernando zone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abad, C.</p> <p>2014-06-01</p> <p>An updated summary of a future large astrometric catalogue is presented, based on the two most important astrometric projects carried out by the Real Instituto y Observatorio de la Armada de <span class="hlt">San</span> Fernando (ROA). The goal is to make a catalogue of positions and proper motions based on ROA's Cart du Ciel (CdC) and the Astrographic Catalogue (AC) <span class="hlt">San</span> Fernando zone plates, and the HAMC2 meridian circle catalogue. The CdC and AC plates are being reduced together to provide first-epoch positions while HAMC2 will provide second-epoch ones. New techniques have been applied, that range from using a commercial flatbed scanner to the proper reduction schemes to avoid systematics from it. Only thirty plates (out of 540) remain to be processed, due to scanning problems that are being solved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70042444','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70042444"><span>Low strength of deep <span class="hlt">San</span> Andreas fault gouge from SAFOD core</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lockner, David A.; Morrow, Carolyn A.; Moore, Diane E.; Hickman, Stephen H.</p> <p>2011-01-01</p> <p>The <span class="hlt">San</span> Andreas fault accommodates 28–34 mm yr−1 of right lateral motion of the Pacific crustal plate northwestward past the North American plate. In California, the fault is composed of two distinct locked segments that have produced great earthquakes in historical times, separated by a 150-km-long creeping zone. The <span class="hlt">San</span> Andreas Fault Observatory at Depth (SAFOD) is a scientific borehole located northwest of Parkfield, California, near the southern end of the creeping zone. Core was recovered from across the actively deforming <span class="hlt">San</span> Andreas fault at a vertical depth of 2.7 km (ref. 1). Here we report laboratory strength measurements of these fault core materials at in situ conditions, demonstrating that at this locality and this depth the <span class="hlt">San</span> Andreas fault is profoundly weak (coefficient of friction, 0.15) owing to the presence of the smectite clay mineral saponite, which is one of the weakest phyllosilicates known. This Mg-rich clay is the low-temperature product of metasomatic reactions between the quartzofeldspathic wall rocks and serpentinite blocks in the fault2, 3. These findings provide strong evidence that deformation of the mechanically unusual creeping portions of the <span class="hlt">San</span> Andreas fault system is controlled by the presence of weak minerals rather than by high fluid pressure or other proposed mechanisms1. The combination of these measurements of fault core strength with borehole observations1, 4, 5 yields a self-consistent picture of the stress state of the <span class="hlt">San</span> Andreas fault at the SAFOD site, in which the fault is intrinsically weak in an otherwise strong crust.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034792','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034792"><span>Low strength of deep <span class="hlt">San</span> Andreas fault gouge from SAFOD core</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lockner, D.A.; Morrow, C.; Moore, D.; Hickman, S.</p> <p>2011-01-01</p> <p>The <span class="hlt">San</span> Andreas fault accommodates 28-"34-???mm-???yr ????'1 of right lateral motion of the Pacific crustal plate northwestward past the North American plate. In California, the fault is composed of two distinct locked segments that have produced great earthquakes in historical times, separated by a 150-km-long creeping zone. The <span class="hlt">San</span> Andreas Fault Observatory at Depth (SAFOD) is a scientific borehole located northwest of Parkfield, California, near the southern end of the creeping zone. Core was recovered from across the actively deforming <span class="hlt">San</span> Andreas fault at a vertical depth of 2.7-???km (ref. 1). Here we report laboratory strength measurements of these fault core materials at in situ conditions, demonstrating that at this locality and this depth the <span class="hlt">San</span> Andreas fault is profoundly weak (coefficient of friction, 0.15) owing to the presence of the smectite clay mineral saponite, which is one of the weakest phyllosilicates known. This Mg-rich clay is the low-temperature product of metasomatic reactions between the quartzofeldspathic wall rocks and serpentinite blocks in the fault. These findings provide strong evidence that deformation of the mechanically unusual creeping portions of the <span class="hlt">San</span> Andreas fault system is controlled by the presence of weak minerals rather than by high fluid pressure or other proposed mechanisms. The combination of these measurements of fault core strength with borehole observations yields a self-consistent picture of the stress state of the <span class="hlt">San</span> Andreas fault at the SAFOD site, in which the fault is intrinsically weak in an otherwise strong crust. ?? 2011 Macmillan Publishers Limited. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JPhCS.247a2036M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JPhCS.247a2036M"><span>Microstructure of hydrogenated Mg2Ni studied by <span class="hlt">SANS</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mori, K.; Sugiyama, M.; Iwase, K.; Kawabe, S.; Onodera, Y.; Itoh, K.; Otomo, T.; Fukunaga, T.</p> <p>2010-10-01</p> <p>X-ray powder diffraction (XRD) and small-angle neutron scattering (<span class="hlt">SANS</span>) experiments were carried out for the hydrogenated and duterated Mg2Ni, respectively. According to the results of XRD experiments, both of them coexisted with unhydrogenated (or undeuterated) Mg2Ni in the hydrogen absorbing cycle. Furthermore, in the <span class="hlt">SANS</span> experiments, a slope of <span class="hlt">SANS</span> curve, I(Q), was roughly evaluated by using the following power law: I(Q) propto Q-m, where Q is the magnitude of the scattering vector, and m can be equated with a fractal dimensionality, DS (= 6 - m). In conclusion, the hydrogenated and duterated Mg2Ni showed DS~ 3 and ~ 2, respectively. The significant difference between DS's can be understood by considering the scattering length densities, ρ, of Mg2Ni, Mg2NiH4, and Mg2NiD4.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol3/pdf/CFR-2014-title33-vol3-sec334-980.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol3/pdf/CFR-2014-title33-vol3-sec334-980.pdf"><span>33 CFR 334.980 - Pacific Ocean, around <span class="hlt">San</span> Nicholas Island, Calif.; naval restricted area.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean, around <span class="hlt">San</span>... REGULATIONS § 334.980 Pacific Ocean, around <span class="hlt">San</span> Nicholas Island, Calif.; naval restricted area. (a) The area—(1) Perimeter (restricted). The waters of the Pacific Ocean around <span class="hlt">San</span> Nicholas Island, Calif...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec165-1121.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec165-1121.pdf"><span>33 CFR 165.1121 - Security Zone: Fleet Supply Center Industrial Pier, <span class="hlt">San</span> Diego, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... Center Industrial Pier, <span class="hlt">San</span> Diego, CA. 165.1121 Section 165.1121 Navigation and Navigable Waters COAST... Guard District § 165.1121 Security Zone: Fleet Supply Center Industrial Pier, <span class="hlt">San</span> Diego, CA. (a) Location. The following area is a security zone: the waters of <span class="hlt">San</span> Diego Bay extending approximately 100...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=deegan&pg=3&id=EJ100973','ERIC'); return false;" href="https://eric.ed.gov/?q=deegan&pg=3&id=EJ100973"><span><span class="hlt">San</span> Jacinto Tries Management by Objectives</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Deegan, William</p> <p>1974-01-01</p> <p><span class="hlt">San</span> Jacinto, California, has adopted a measurable institutional objectives approach to management by objectives. Results reflect, not only improved cost effectiveness of community college education, but also more effective educational programs for students. (Author/WM)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1998/of98-139/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1998/of98-139/"><span>Multibeam Data and Socio-Economic Issues in West-Central <span class="hlt">San</span> Francisco Bay, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chin, John L.; Carlson, Paul R.; Wong, Florence L.; Cacchione, David A.</p> <p>1998-01-01</p> <p><span class="hlt">San</span> Francisco Bay is the largest estuary on the conterminous U.S. Pacific Coast and is one of the world's largest natural harbors. It is a biologically productive and diverse environment. <span class="hlt">San</span> Francisco Bay has a maritime economy that annually generates over $7.5 billion, handles 50 million tons of cargo, and involves thousands of jobs. Recent investigations by the USGS in this estuary help address both socio-economic and scientific issues: *Trimming pinnacles may prevent a calamitous oil spill. *Can <span class="hlt">San</span> Francisco Bay accept more dredge spoil? *Bay floor biological habitats are quite varied. *How thick and how variable is the sediment fill in central <span class="hlt">San</span> Francisco Bay?</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1131.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1131.pdf"><span>33 CFR 165.1131 - Security Zone: Wilson Cove, <span class="hlt">San</span> Clemente Island, California.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... zone is prohibited unless authorized by the Captain of the Port, <span class="hlt">San</span> Diego, California. Section 165.33 also contains other general requirements. [COTP <span class="hlt">San</span> Diego Reg. 87-04, 52 FR 18230, May 14, 1987...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1131.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1131.pdf"><span>33 CFR 165.1131 - Security Zone: Wilson Cove, <span class="hlt">San</span> Clemente Island, California.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... zone is prohibited unless authorized by the Captain of the Port, <span class="hlt">San</span> Diego, California. Section 165.33 also contains other general requirements. [COTP <span class="hlt">San</span> Diego Reg. 87-04, 52 FR 18230, May 14, 1987...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-1131.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-1131.pdf"><span>33 CFR 165.1131 - Security Zone: Wilson Cove, <span class="hlt">San</span> Clemente Island, California.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... zone is prohibited unless authorized by the Captain of the Port, <span class="hlt">San</span> Diego, California. Section 165.33 also contains other general requirements. [COTP <span class="hlt">San</span> Diego Reg. 87-04, 52 FR 18230, May 14, 1987...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1131.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1131.pdf"><span>33 CFR 165.1131 - Security Zone: Wilson Cove, <span class="hlt">San</span> Clemente Island, California.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... zone is prohibited unless authorized by the Captain of the Port, <span class="hlt">San</span> Diego, California. Section 165.33 also contains other general requirements. [COTP <span class="hlt">San</span> Diego Reg. 87-04, 52 FR 18230, May 14, 1987...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec165-1131.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec165-1131.pdf"><span>33 CFR 165.1131 - Security Zone: Wilson Cove, <span class="hlt">San</span> Clemente Island, California.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... zone is prohibited unless authorized by the Captain of the Port, <span class="hlt">San</span> Diego, California. Section 165.33 also contains other general requirements. [COTP <span class="hlt">San</span> Diego Reg. 87-04, 52 FR 18230, May 14, 1987...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/unnumbered/70045464/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/unnumbered/70045464/report.pdf"><span>Hydrology of the <span class="hlt">San</span> Luis Valley, south-central Colorado</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Emery, P.A.; Boettcher, A.J.; Snipes, R.J.; Mcintyre, H.J.</p> <p>1969-01-01</p> <p>An investigation of the water resources of the Colorado part of the <span class="hlt">San</span> Luis Valley was begun in 1966 by the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board. (See index map, fig. 1). The purpose of the investigation is to provide information for planning and implementing improved water-development and management practices. The major water problems in the <span class="hlt">San</span> Luis Valley include (1) waterlogging, (2) waste of water by nonbeneficial evapotranspiration, (3) deterioration of ground-water chemical quality, and (4) failure of Colorado to deliver water to New Mexico and Texas in accordance with the Rio Grande Compact. This report describes the hydrologic environment, extent of water-resource development, and some of the problems related to that development. Information presented is based on data collected from 1966 to 1968 and on previous studies. Subsequent reports are planned as the investigation progresses. The <span class="hlt">San</span> Luis Valley extends about 100 miles from Poncha Pass near the northeast corner of Saguache County, Colo., to a point about 16 miles south of the Colorado-New Mexico State line. The total area is 3,125 square miles, of which about 3,000 are in Colorado. The valley is nearly flat except for the <span class="hlt">San</span> Luis Hills and a few other small areas. The Colorado part of the <span class="hlt">San</span> Luis Valley, which is described in this report, has an average altitude of about 7,700 feet. Bounding the valley on the west are the <span class="hlt">San</span> Juan Mountains and on the east the Sangre de Cristo Mountains. Most of the valley floor is bordered by alluvial fans deposited by streams originating in the mountains, the most extensive being the Rio Grande fan (see block diagram, fig. 2 in pocket). Most of the streamflow is derived from snowmelt from 4,700 square miles of watershed in the surrounding mountains. The northern half of the <span class="hlt">San</span> Luis Valley is internally drained and is referred to as the closed basin. The lowest part of this area is known locally as the "sump." The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED439757.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED439757.pdf"><span><span class="hlt">San</span> Jose/Evergreen Community College District: Governing Board's Strategic Master Plan.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>San Jose/Evergreen Community Coll. District, San Jose, CA.</p> <p></p> <p>This report presents <span class="hlt">San</span> Jose/Evergreen Community College District Governing Board's Strategic Master Plan. This report summarizes the district's mission statement, goal statements, and board priorities. The <span class="hlt">San</span> Jose/Evergreen Community College District is committed to providing open access and opportunity for success to its multi-ethnic…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol3/pdf/CFR-2014-title33-vol3-sec334-1140.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol3/pdf/CFR-2014-title33-vol3-sec334-1140.pdf"><span>33 CFR 334.1140 - Pacific Ocean at <span class="hlt">San</span> Miguel Island, Calif.; naval danger zone.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean at <span class="hlt">San</span> Miguel Island, Calif.; naval danger zone. 334.1140 Section 334.1140 Navigation and Navigable Waters CORPS OF....1140 Pacific Ocean at <span class="hlt">San</span> Miguel Island, Calif.; naval danger zone. (a) The area. The waters around <span class="hlt">San</span>...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol3/pdf/CFR-2012-title33-vol3-sec334-1140.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol3/pdf/CFR-2012-title33-vol3-sec334-1140.pdf"><span>33 CFR 334.1140 - Pacific Ocean at <span class="hlt">San</span> Miguel Island, Calif.; naval danger zone.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean at <span class="hlt">San</span> Miguel Island, Calif.; naval danger zone. 334.1140 Section 334.1140 Navigation and Navigable Waters CORPS OF....1140 Pacific Ocean at <span class="hlt">San</span> Miguel Island, Calif.; naval danger zone. (a) The area. The waters around <span class="hlt">San</span>...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1102.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1102.pdf"><span>33 CFR 165.1102 - Security Zone; Naval Base Point Loma; <span class="hlt">San</span> Diego Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... Loma; <span class="hlt">San</span> Diego Bay, CA. 165.1102 Section 165.1102 Navigation and Navigable Waters COAST GUARD... § 165.1102 Security Zone; Naval Base Point Loma; <span class="hlt">San</span> Diego Bay, CA. (a) Location. The following area is a security zone: The water adjacent to the Naval Base Point Loma, <span class="hlt">San</span> Diego, CA, enclosed by the...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1101.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1101.pdf"><span>33 CFR 165.1101 - Security Zone: <span class="hlt">San</span> Diego Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone: <span class="hlt">San</span> Diego Bay, CA... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1101 Security Zone: <span class="hlt">San</span> Diego... Diego enclosed by the following points: Beginning at 32°41′16.5″ N, 117°08′01″ W (Point A); thence...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1101.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1101.pdf"><span>33 CFR 165.1101 - Security Zone: <span class="hlt">San</span> Diego Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone: <span class="hlt">San</span> Diego Bay, CA... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1101 Security Zone: <span class="hlt">San</span> Diego... Diego enclosed by the following points: Beginning at 32°41′16.5″ N, 117°08′01″ W (Point A); thence...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1101.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1101.pdf"><span>33 CFR 165.1101 - Security Zone: <span class="hlt">San</span> Diego Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone: <span class="hlt">San</span> Diego Bay, CA... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1101 Security Zone: <span class="hlt">San</span> Diego... Diego enclosed by the following points: Beginning at 32°41′16.5″ N, 117°08′01″ W (Point A); thence...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-1101.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-1101.pdf"><span>33 CFR 165.1101 - Security Zone: <span class="hlt">San</span> Diego Bay, CA.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone: <span class="hlt">San</span> Diego Bay, CA... Navigation Areas and Limited Access Areas Eleventh Coast Guard District § 165.1101 Security Zone: <span class="hlt">San</span> Diego... Diego enclosed by the following points: Beginning at 32°41′16.5″ N, 117°08′01″ W (Point A); thence...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.sfei.org/documents/pulse-estuary-monitoring-and-managing-water-quality-san-francisco-estuary-0','USGSPUBS'); return false;" href="http://www.sfei.org/documents/pulse-estuary-monitoring-and-managing-water-quality-san-francisco-estuary-0"><span>What is causing the phytoplankton increase in <span class="hlt">San</span> Francisco Bay?</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cloern, J.E.; Jassby, A.D.; Schraga, T.S.; Dallas, K.L.</p> <p>2006-01-01</p> <p>The largest living component of <span class="hlt">San</span> Francisco Bay is the phytoplankton, a suspension of microscopic cells that convert sunlight energy into new living biomass through the same process of photosynthesis used by land plants. This primary production is the ultimate source of food for clams, zooplankton, crabs, sardines, halibut, sturgeon, diving ducks, pelicans, and harbor seals. From measurements made in 1980, we estimated that phytoplankton primary production in <span class="hlt">San</span> Francisco Bay was about 200,000 tons of organic carbon per year (Jassby et al. 1993). This is equivalent to producing the biomass of 5500 adult humpback whales, or the calories to feed 1.8 million people. These numbers may seem large, but primary production in <span class="hlt">San</span> Francisco Bay is low compared to many other nutrient-enriched estuaries.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020079','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020079"><span>Modeling tidal hydrodynamics of <span class="hlt">San</span> Diego Bay, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wang, P.-F.; Cheng, R.T.; Richter, K.; Gross, E.S.; Sutton, D.; Gartner, J.W.</p> <p>1998-01-01</p> <p>In 1983, current data were collected by the National Oceanic and Atmospheric Administration using mechanical current meters. During 1992 through 1996, acoustic Doppler current profilers as well as mechanical current meters and tide gauges were used. These measurements not only document tides and tidal currents in <span class="hlt">San</span> Diego Bay, but also provide independent data sets for model calibration and verification. A high resolution (100-m grid), depth-averaged, numerical hydrodynamic model has been implemented for <span class="hlt">San</span> Diego Bay to describe essential tidal hydrodynamic processes in the bay. The model is calibrated using the 1983 data set and verified using the more recent 1992-1996 data. Discrepancies between model predictions and field data in beth model calibration and verification are on the order of the magnitude of uncertainties in the field data. The calibrated and verified numerical model has been used to quantify residence time and dilution and flushing of contaminant effluent into <span class="hlt">San</span> Diego Bay. Furthermore, the numerical model has become an important research tool in ongoing hydrodynamic and water quality studies and in guiding future field data collection programs.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2007/1405/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2007/1405/"><span>Magnetotelluric Data, <span class="hlt">San</span> Luis Valley, Colorado</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rodriguez, Brian D.; Williams, Jackie M.</p> <p>2008-01-01</p> <p>The <span class="hlt">San</span> Luis Valley region population is growing. Water shortfalls could have serious consequences. Future growth and land management in the region depend on accurate assessment and protection of the region?s ground-water resources. An important issue in managing the ground-water resources is a better understanding of the hydrogeology of the Santa Fe Group and the nature of the sedimentary deposits that fill the Rio Grande rift, which contain the principal ground-water aquifers. The shallow unconfined aquifer and the deeper confined Santa Fe Group aquifer in the <span class="hlt">San</span> Luis Basin are the main sources of municipal water for the region. The U.S. Geological Survey (USGS) is conducting a series of multidisciplinary studies of the <span class="hlt">San</span> Luis Basin located in southern Colorado. Detailed geologic mapping, high-resolution airborne magnetic surveys, gravity surveys, an electromagnetic survey (called magnetotellurics, or MT), and hydrologic and lithologic data are being used to better understand the aquifers. The MT survey primary goal is to map changes in electrical resistivity with depth that are related to differences in rock types. These various rock types help control the properties of aquifers. This report does not include any data interpretation. Its purpose is to release the MT data acquired at 24 stations. Two of the stations were collected near Santa Fe, New Mexico, near deep wildcat wells. Well logs from those wells will help tie future interpretations of this data with geologic units from the Santa Fe Group sediments to Precambrian basement.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1192.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec165-1192.pdf"><span>33 CFR 165.1192 - Security Zones; Waters surrounding <span class="hlt">San</span> Francisco International Airport and Oakland International...</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zones; Waters... Security Zones; Waters surrounding <span class="hlt">San</span> Francisco International Airport and Oakland International Airport, <span class="hlt">San</span> Francisco Bay, California. (a) Locations. The following areas are security zones: (1) <span class="hlt">San</span>...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-1192.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec165-1192.pdf"><span>33 CFR 165.1192 - Security Zones; Waters surrounding <span class="hlt">San</span> Francisco International Airport and Oakland International...</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zones; Waters... Security Zones; Waters surrounding <span class="hlt">San</span> Francisco International Airport and Oakland International Airport, <span class="hlt">San</span> Francisco Bay, California. (a) Locations. The following areas are security zones: (1) <span class="hlt">San</span>...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1192.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec165-1192.pdf"><span>33 CFR 165.1192 - Security Zones; Waters surrounding <span class="hlt">San</span> Francisco International Airport and Oakland International...</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zones; Waters... Security Zones; Waters surrounding <span class="hlt">San</span> Francisco International Airport and Oakland International Airport, <span class="hlt">San</span> Francisco Bay, California. (a) Locations. The following areas are security zones: (1) <span class="hlt">San</span>...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1192.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec165-1192.pdf"><span>33 CFR 165.1192 - Security Zones; Waters surrounding <span class="hlt">San</span> Francisco International Airport and Oakland International...</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zones; Waters... Security Zones; Waters surrounding <span class="hlt">San</span> Francisco International Airport and Oakland International Airport, <span class="hlt">San</span> Francisco Bay, California. (a) Locations. The following areas are security zones: (1) <span class="hlt">San</span>...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec165-1192.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec165-1192.pdf"><span>33 CFR 165.1192 - Security Zones; Waters surrounding <span class="hlt">San</span> Francisco International Airport and Oakland International...</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zones; Waters... Security Zones; Waters surrounding <span class="hlt">San</span> Francisco International Airport and Oakland International Airport, <span class="hlt">San</span> Francisco Bay, California. (a) Locations. The following areas are security zones: (1) <span class="hlt">San</span>...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033568','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033568"><span>Long-period building response to earthquakes in the <span class="hlt">San</span> Francisco Bay Area</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Olsen, A.H.; Aagaard, Brad T.; Heaton, T.H.</p> <p>2008-01-01</p> <p>This article reports a study of modeled, long-period building responses to ground-motion simulations of earthquakes in the <span class="hlt">San</span> Francisco Bay Area. The earthquakes include the 1989 magnitude 6.9 Loma Prieta earthquake, a magnitude 7.8 simulation of the 1906 <span class="hlt">San</span> Francisco earthquake, and two hypothetical magnitude 7.8 northern <span class="hlt">San</span> Andreas fault earthquakes with hypocenters north and south of <span class="hlt">San</span> Francisco. We use the simulated ground motions to excite nonlinear models of 20-story, steel, welded moment-resisting frame (MRF) buildings. We consider MRF buildings designed with two different strengths and modeled with either ductile or brittle welds. Using peak interstory drift ratio (IDR) as a performance measure, the stiffer, higher strength building models outperform the equivalent more flexible, lower strength designs. The hypothetical magnitude 7.8 earthquake with hypocenter north of <span class="hlt">San</span> Francisco produces the most severe ground motions. In this simulation, the responses of the more flexible, lower strength building model with brittle welds exceed an IDR of 2.5% (that is, threaten life safety) on 54% of the urban area, compared to 4.6% of the urban area for the stiffer, higher strength building with ductile welds. We also use the simulated ground motions to predict the maximum isolator displacement of base-isolated buildings with linear, single-degree-of-freedom (SDOF) models. For two existing 3-sec isolator systems near <span class="hlt">San</span> Francisco, the design maximum displacement is 0.5 m, and our simulations predict isolator displacements for this type of system in excess of 0.5 m in many urban areas. This article demonstrates that a large, 1906-like earthquake could cause significant damage to long-period buildings in the <span class="hlt">San</span> Francisco Bay Area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED463985.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED463985.pdf"><span>The Forts of Old <span class="hlt">San</span> Juan: Guardians of the Caribbean. Teaching with Historic Places.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Weltzin, Rosanna</p> <p></p> <p>The massive masonry defenses of Old <span class="hlt">San</span> Juan, Puerto Rico, which were begun in the 16th century, exist today as the oldest European-style fortifications within the territory of the United States. This lesson is based on the World Heritage Site nomination file and the National Park Service Handbook, "<span class="hlt">San</span> Juan: The Forts of Old <span class="hlt">San</span> Juan."…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024068','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024068"><span>Deformation across the Pacific-North America plate boundary near <span class="hlt">San</span> Francisco, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Prescott, W.H.; Savage, J.C.; Svarc, J.L.; Manaker, D.</p> <p>2001-01-01</p> <p>We have detected a narrow zone of compression between the Coast Ranges and the Great Valley, and we have estimated slip rates for the <span class="hlt">San</span> Andreas, Rodgers Creek, and Green Valley faults just north of <span class="hlt">San</span> Francisco. These results are based on an analysis of campaign and continuous Global Positioning System (GPS) data collected between 1992 and 2000 in central California. The zone of compression between the Coast Ranges and the Great Valley is 25 km wide. The observations clearly show 3.8??1.5 mm yr-1 of shortening over this narrow zone. The strike slip components are best fit by a model with 20.8??1.9 mm yr-1 slip on the <span class="hlt">San</span> Andreas fault, 10.3??2.6 mm yr-1 on the Rodgers Creek fault, and 8.1??2.1 mm yr-1 on the Green Valley fault. The Pacific-Sierra Nevada-Great Valley motion totals 39.2??3.8 mm yr-1 across a zone that is 120 km wide (at the latitude of <span class="hlt">San</span> Francisco). Standard deviations are one ??. The geodetic results suggest a higher than geologic rate for the Green Valley fault. The geodetic results also suggest an inconsistency between geologic estimates of the <span class="hlt">San</span> Andreas rate and seismologic estimates of the depth of locking on the <span class="hlt">San</span> Andreas fault. The only convergence observed is in the narrow zone along the border between the Great Valley and the Coast Ranges.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3445','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3445"><span><span class="hlt">San</span> Francisco urban partnership agreement, national evaluation : traveler information data test plan.</span></a></p> <p><a target="_blank" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2011-06-01</p> <p>This report presents the test plan for collecting and analyzing traveler information data for the <span class="hlt">San</span> Francisco Urban Partnership Agreement (UPA) under the United States Department of Transportation (U.S. DOT) UPA Program. The <span class="hlt">San</span> Francisco UPA proje...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/11246','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/11246"><span><span class="hlt">San</span> Diego Wheelchair Accessible Bus Study</span></a></p> <p><a target="_blank" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1977-09-01</p> <p>The study describes the implementation and early operation of a pilot project of fixed route, wheelchair accessible bus service on two routes of the <span class="hlt">San</span> Diego Transit system. Five buses of the Transit Authority fleet were retrofitted with wheelchair ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-09-04/pdf/2013-21424.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-09-04/pdf/2013-21424.pdf"><span>78 FR 54487 - YP Western Directory LLC, <span class="hlt">San</span> Francisco Division, Publishing Operations Group, YP Subsidiary...</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-09-04</p> <p>... Directory LLC, <span class="hlt">San</span> Francisco Division, Publishing Operations Group, YP Subsidiary Holdings LLC, YP LLC, YP... Directory LLC, <span class="hlt">San</span> Francisco Division, Publishing Operations Group, YP Subsidiary Holdings LLC, YP LLC, YP... workers of YP Western Directory LLC, <span class="hlt">San</span> Francisco Division, Publishing Operations Group, YP Subsidiary...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16236379','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16236379"><span>Hyperglycemia and type 2 diabetes among Filipino women in the Philippines, Hawaii, and <span class="hlt">San</span> Diego.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Araneta, Maria Rosario G; Morton, Deborah J; Lantion-Ang, Lina; Grandinetti, Andrew; Lim-Abrahan, Mary Anne; Chang, Healani; Barrett-Connor, Elizabeth; Rodriguez, Beatrice L; Wingard, Deborah L</p> <p>2006-03-01</p> <p>Diabetes risk increases as immigrant populations adopt western lifestyles. We compared the prevalence of fasting hyperglycemia among Filipino women aged 40-79 years in the Philippines, Hawaii, and <span class="hlt">San</span> Diego. Data were obtained from the (1) Philippine National Nutrition Survey (1998), (2) Native Hawaiian Health Research Project (1997-2001), and (3) University of California <span class="hlt">San</span> Diego Filipino Women's Health Study (1995-1999). Fasting glucose after an 8h fast, blood pressure, and body mass index (BMI) were measured in all three regions; a 75 g oral glucose tolerance test was performed in <span class="hlt">San</span> Diego and Hawaii. The proportion of Filipinas with BMI > or = 30 kg/m2 was higher in Hawaii (20%) compared to women in <span class="hlt">San</span> Diego (9.3%) or the Philippines (5.2%, p<0.001). Fasting hyperglycemia prevalence (fasting plasma glucose > or = 126 mg/dl or fasting whole blood glucose > or = 110 mg/dl) did not differ among Filipinas in the Philippines (11.8%), <span class="hlt">San</span> Diego (14.1%), and Hawaii (14.7%, p = 0.323). Type 2 diabetes prevalence was similar among Filipinas in <span class="hlt">San</span> Diego (31.6%) and Hawaii (24.9%, p = 0.79). Despite regional differences in obesity, fasting hyperglycemia was similar among Filipinas in the Philippines, <span class="hlt">San</span> Diego, and Hawaii and type 2 diabetes prevalence was similar among Filipinas in <span class="hlt">San</span> Diego and Hawaii.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3447','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3447"><span><span class="hlt">San</span> Francisco urban partnership agreement, national evaluation : cost benefit analysis test plan.</span></a></p> <p><a target="_blank" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2011-06-01</p> <p>This report presents the test plan for collecting and analyzing cost and benefit data for the <span class="hlt">San</span> Francisco Urban Partnership Agreement (UPA) under the United States Department of Transportation (U.S. DOT) UPA Program. The <span class="hlt">San</span> Francisco UPA projects ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3443','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3443"><span><span class="hlt">San</span> Francisco urban partnership agreement, national evaluation : traffic system data test plan.</span></a></p> <p><a target="_blank" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2011-06-01</p> <p>This report presents the test plan for collecting and analyzing traffic system data for the <span class="hlt">San</span> Francisco Urban Partnership Agreement (UPA) under the United States Department of Transportation (U.S. DOT) UPA Program. The <span class="hlt">San</span> Francisco UPA projects fo...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3444','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3444"><span><span class="hlt">San</span> Francisco urban partnership agreement, national evaluation : transit system data test plan.</span></a></p> <p><a target="_blank" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2011-06-01</p> <p>This report presents the test plan for collecting and analyzing the transit system data for the <span class="hlt">San</span> Francisco Urban Partnership Agreement (UPA) under the United States Department of Transportation (U.S. DOT) UPA Program. The <span class="hlt">San</span> Francisco UPA project...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/0076/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/0076/report.pdf"><span>The <span class="hlt">San</span> Franciscan volcanic field, Arizona</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Robinson, Henry Hollister</p> <p>1913-01-01</p> <p>LOCATION OF AREAThe <span class="hlt">San</span> Franciscan volcanic field, which takes its name from <span class="hlt">San</span> Francisco Mountain, the largest volcano of the group, covers about 3,000 square miles in the north-central part of Arizona, as shown by the shaded space on the index map forming figure 1. The center of the field lies about 50 miles south of the Grand Canyon of the Colorado and the southern boundary is in part coterminous with that of the <span class="hlt">San</span> Francisco Plateau, which forms the southwestern division of the great Colorado Plateau.The region is easily reached, for the main line of the Atchison, Topeka, & Santa Fe Railway traverses it from east to west for more than 60 miles. Flagstaff, a town of 1,500 inhabitants 10 miles south of the summit of <span class="hlt">San</span> Francisco Mountain, is on the railroad, amid a branch line runs from Williams, 34 miles farther west, to the Grand Canyon. All the more important points of interest in the field may be reached without difficulty by wagon, and outfits may be obtained at Flagstaff.OUTLINE OF THE REPORTThis report deals primarily with the volcanic phenomena of the region as determined in the field and laboratory. Chapter I contains a brief description of the geography of the field and Chapter II is devoted largely to the sedimentary formations and structure. The rest of the report Chapters III to VI—treats entirely of the various features of the volcanoes and igneous rocks, both individually and collectively. Detailed descriptions of the volcanoes and lava fields are given in Chapter III; the volcanic history of the region and its correlation with the general history of the surrounding country are presented in Chapter IV. These two chapters will presumably suffice for the general reader who may desire to become acquainted with the broader volcanic features of the region. Chapter V (Petrography) is devoted entirely to the detailed description of the individual igneous rocks of the region, as represented by a selected set of type specimens. In Chapter VI (Petrology</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15523927','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15523927"><span>[Core factors of schizophrenia structure based on PANSS and SAPS/<span class="hlt">SANS</span> results. Discerning and head-to-head comparisson of PANSS and SASPS/<span class="hlt">SANS</span> validity].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Masiak, Marek; Loza, Bartosz</p> <p>2004-01-01</p> <p>A lot of inconsistencies across dimensional studies of schizophrenia(s) are being unveiled. These problems are strongly related to the methodological aspects of collecting data and specific statistical analyses. Psychiatrists have developed lots of psychopathological models derived from analytic studies based on SAPS/<span class="hlt">SANS</span> (the Scale for the Assessment of Positive Symptoms/the Scale for the Assessment of Negative Symptoms) and PANSS (The Positive and Negative Syndrome Scale). The unique validation of parallel two independent factor models was performed--ascribed to the same illness and based on different diagnostic scales--to investigate indirect methodological causes of clinical discrepancies. 100 newly admitted patients (mean age--33.5, 18-45, males--64, females--36, hospitalised on average 5.15 times) with paranoid schizophrenia (according to ICD-10) were scored and analysed using PANSS and SAPS/<span class="hlt">SANS</span> during psychotic exacerbation. All patients were treated with neuroleptics of various kinds with 410mg equivalents of chlorpromazine (atypicals:typicals --> 41:59). Factor analyses were applied to basic results (with principal component analysis, normalised varimax rotation). Investing the cross-model validity, canonical analysis was applied. Models of schizophrenia varied from 3 to 5 factors. PANSS model included: positive, negative, disorganisation, cognitive and depressive components and SAPS/<span class="hlt">SANS</span> model was dominated by positive, negative and disorganisation factors. The SAPS/<span class="hlt">SANS</span> accounted for merely 48% of the PANSS common variances. The SAPS/<span class="hlt">SANS</span> combined measurement preferentially (67% of canonical variance) targeted positive-negative dichotomy. Respectively, PANSS shared positive-negative phenomenology in 35% of its own variance. The general concept of five-dimensionality in paranoid schizophrenia looks clinically more heuristic and statistically more stabilised.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-06-15/pdf/2012-14663.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-06-15/pdf/2012-14663.pdf"><span>77 FR 36040 - Watco Holdings, Inc.-Continuance in Control Exemption-<span class="hlt">San</span> Antonio Central Railroad, L.L.C.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-06-15</p> <p>..., Inc.--Continuance in Control Exemption--<span class="hlt">San</span> Antonio Central Railroad, L.L.C. Watco Holdings, Inc... Watco to continue in control of <span class="hlt">San</span> Antonio Central Railroad, L.L.C. (SAC), upon SAC's becoming a Class... exemption in <span class="hlt">San</span> Antonio Central Railroad, L.L.C.--Lease Exemption-- Port Authority of <span class="hlt">San</span> Antonio, Docket...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=543075','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=543075"><span>Effects of Substituted Pyridazinones (<span class="hlt">San</span> 6706, <span class="hlt">San</span> 9774, <span class="hlt">San</span> 9785) on Glycerolipids and Their Associated Fatty Acids in the Leaves of Vicia faba and Hordeum vulgare1</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Khan, Mobashsher-Uddin; Lem, Nora W.; Chandorkar, Kashinath R.; Williams, John P.</p> <p>1979-01-01</p> <p>The fatty acids of the major glycerolipids from the leaves of Vicia faba and Hordeum vulgare plants treated with three different concentrations of pyridazinone derivatives were analyzed. These compounds showed multiple effects on the levels of lipids and pigments. At low concentrations, the primary effect of <span class="hlt">San</span> 9785 was on the level of linolenic acid (18:3) in the galactolipids of V. faba, whereas the effect of <span class="hlt">San</span> 6706 was primarily on the trans-Δ3-hexadecenoic acid (16:1) content in phosphatidylglycerol. At higher concentrations, the two compounds reduced the content of both fatty acids in the leaves. The results appear to indicate a differential effect of these herbicides on fatty acid accumulation and a difference in susceptibility of two fatty acids in the species examined. Electron microscopic studies revealed that two herbicides caused different abnormalities in V. faba chloroplast ultrastructure. Images PMID:16660953</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>