Sample records for yarrowia lipolytica staphylococcus

  1. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    PubMed Central

    Napora-Wijata, Kamila; Strohmeier, Gernot A.; Sonavane, Manoj N.; Avi, Manuela; Robins, Karen; Winkler, Margit

    2013-01-01

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S)-selectivity and together with a highly (R)-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases. PMID:24970175

  2. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase.

    PubMed

    Napora-Wijata, Kamila; Strohmeier, Gernot A; Sonavane, Manoj N; Avi, Manuela; Robins, Karen; Winkler, Margit

    2013-08-12

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S)-selectivity and together with a highly (R)-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  3. Heterologous expression of xylanase enzymes in lipogenic yeast Yarrowia lipolytica

    DOE PAGES

    Wang, Wei; Wei, Hui; Alahuhta, Markus; ...

    2014-12-02

    In order to develop a direct microbial sugar conversion platform for the production of lipids, drop-in fuels and chemicals from cellulosic biomass substrate, we chose Yarrowia lipolytica as a viable demonstration strain. Y. lipolytica is known to accumulate lipids intracellularly and is capable of metabolizing sugars to produce lipids; however, it lacks the lignocellulose-degrading enzymes needed to break down biomass directly. While research is continuing on the development of a Y. lipolytica strain able to degrade cellulose, in this study, we present successful expression of several xylanases in Y. lipolytica. The XynII and XlnD expressing Yarrowia strains exhibited an abilitymore » to grow on xylan mineral plates. This was shown by Congo Red staining of halo zones on xylan mineral plates. Enzymatic activity tests further demonstrated active expression of XynII and XlnD in Y. lipolytica. Furthermore, synergistic action in converting xylan to xylose was observed when XlnD acted in concert with XynII. Finally, the successful expression of these xylanases in Yarrowia further advances us toward our goal to develop a direct microbial conversion process using this organism.« less

  4. Metabolic engineering of Yarrowia lipolytica for industrial applications.

    PubMed

    Zhu, Quinn; Jackson, Ethel N

    2015-12-01

    Yarrowia lipolytica is a safe and robust yeast that has a history of industrial applications. Its physiological, metabolic and genomic characteristics have made it a superior host for metabolic engineering. The results of optimizing internal pathways and introducing new pathways have demonstrated that Y. lipolytica can be a platform cell factory for cost-effective production of chemicals and fuels derived from fatty acids, lipids and acetyl-CoA. Two products have been commercialized from metabolically engineered Y. lipolytica strains producing high amounts of omega-3 eicosapentaenoic acid, and more products are on the way to be produced at industrial scale. Here we review recent progress in metabolic engineering of Y. lipolytica for production of biodiesel fuel, functional fatty acids and carotenoids. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Applications of the Non-Conventional Yeast Yarrowia lipolytica

    NASA Astrophysics Data System (ADS)

    Thevenieau, France; Nicaud, Jean-Marc; Gaillardin, Claude

    The yeast Yarrowia lipolytica is often found associated to proteinaceous or hydrophobic substrates such as alkanes or lipids. To assimilate these hydropho-bic substrates, Y. lipolytica has developed an adaptative strategy resulting in elaborated morphological and physiological changes leading to terminal and β-oxidation of substrates as well as to lipid storage. The completion of the Y. lipolytica genome greatly improved our understanding of these mechanisms. Three main applications of this metabolism will be discussed. The first class corresponds to bioconver-sion processes for the production of secondary metabolites (citric acid), of aroma ( γ - lactone, green note, epoxy geraniol) and of chemicals (dicarboxylic acids). The second class leads to fine chemical production by enantio separation of pharmaceutical compounds using Y. lipolytica enzymes such as epoxyde hydrolase or lipase. The third one refers to production of Single Cell Oils (SCO) from agriculture feedstock. In addition to its ability to handle hydrophobic substrates, Y. lipolytica has also been recognised as a strong secretor of various proteins such as proteases, lipases, RNases and others. A comprehensive review of recent developments of the Y. lipolytica expression/secretion system will finally be presented.

  6. Food-related applications of Yarrowia lipolytica.

    PubMed

    Zinjarde, Smita S

    2014-01-01

    Yarrowia lipolytica is a non-pathogenic generally regarded as safe yeast. It displays unique physiological as well as biochemical properties that are relevant in food-related applications. Strains naturally associated with meat and dairy products contribute towards specific textures and flavours. On some occasions they cause food spoilage. They produce food-additives such as aroma compounds, organic acids, polyalcohols, emulsifiers and surfactants. The yeast biomass has been projected as single cell oil and single cell protein. Y. lipolytica degrades or upgrades different types of food wastes and in some cases, value-added products have also been obtained. The yeast is thus involved in the manufacture of food stuffs, making of food ingredients, generation of biomass that can be used as food or feed and in the effective treatment of food wastes. On account of all these features, this versatile yeast is of considerable significance in food-related applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Yarrowia lipolytica vesicle-mediated protein transport pathways

    PubMed Central

    Swennen, Dominique; Beckerich, Jean-Marie

    2007-01-01

    Background Protein secretion is a universal cellular process involving vesicles which bud and fuse between organelles to bring proteins to their final destination. Vesicle budding is mediated by protein coats; vesicle targeting and fusion depend on Rab GTPase, tethering factors and SNARE complexes. The Génolevures II sequencing project made available entire genome sequences of four hemiascomycetous yeasts, Yarrowia lipolytica, Debaryomyces hansenii, Kluyveromyces lactis and Candida glabrata. Y. lipolytica is a dimorphic yeast and has good capacities to secrete proteins. The translocation of nascent protein through the endoplasmic reticulum membrane was well studied in Y. lipolytica and is largely co-translational as in the mammalian protein secretion pathway. Results We identified S. cerevisiae proteins involved in vesicular secretion and these protein sequences were used for the BLAST searches against Génolevures protein database (Y. lipolytica, C. glabrata, K. lactis and D. hansenii). These proteins are well conserved between these yeasts and Saccharomyces cerevisiae. We note several specificities of Y. lipolytica which may be related to its good protein secretion capacities and to its dimorphic aspect. An expansion of the Y. lipolytica Rab protein family was observed with autoBLAST and the Rab2- and Rab4-related members were identified with BLAST against NCBI protein database. An expansion of this family is also found in filamentous fungi and may reflect the greater complexity of the Y. lipolytica secretion pathway. The Rab4p-related protein may play a role in membrane recycling as rab4 deleted strain shows a modification of colony morphology, dimorphic transition and permeability. Similarly, we find three copies of the gene (SSO) encoding the plasma membrane SNARE protein. Quantification of the percentages of proteins with the greatest homology between S. cerevisiae, Y. lipolytica and animal homologues involved in vesicular transport shows that 40% of Y

  8. Production of Lycopene in the Non-Carotenoid-Producing Yeast Yarrowia lipolytica

    PubMed Central

    Ketelhot, Markus; Gatter, Michael; Barth, Gerold

    2014-01-01

    The codon-optimized genes crtB and crtI of Pantoea ananatis were expressed in Yarrowia lipolytica under the control of the TEF1 promoter of Y. lipolytica. Additionally, the rate-limiting genes for isoprenoid biosynthesis in Y. lipolytica, GGS1 and HMG1, were overexpressed to increase the production of lycopene. All of the genes were also expressed in a Y. lipolytica strain with POX1 to POX6 and GUT2 deleted, which led to an increase in the size of lipid bodies and a further increase in lycopene production. Lycopene is located mainly within lipid bodies, and increased lipid body formation leads to an increase in the lycopene storage capacity of Y. lipolytica. Growth-limiting conditions increase the specific lycopene content. Finally, a yield of 16 mg g−1 (dry cell weight) was reached in fed-batch cultures, which is the highest value reported so far for a eukaryotic host. PMID:24375130

  9. Engineering towards a complete heterologous cellulase secretome in Yarrowia lipolytica reveals its potential for consolidated bioprocessing

    DOE PAGES

    Wei, Hui; Wang, Wei; Alahuhta, Markus; ...

    2014-10-16

    Background: Yarrowia lipolytica is an oleaginous yeast capable of metabolizing glucose to lipids, which then accumulate intracellularly. However, it lacks the suite of cellulolytic enzymes required to break down biomass cellulose and cannot therefore utilize biomass directly as a carbon source. Toward the development of a direct microbial conversion platform for the production of hydrocarbon fuels from cellulosic biomass, the potential for Y. lipolytica to function as a consolidated bioprocessing strain was investigated by first conducting a genomic search and functional testing of its endogenous glycoside hydrolases. Once the range of endogenous enzymes was determined, the critical cellulases from Trichodermamore » reesei were cloned into Yarrowia. Results: Initially, work to express T. reesei endoglucanase II (EGII) and cellobiohydrolase (CBH) II in Y. lipolytica resulted in the successful secretion of active enzymes. However, a critical cellulase, T. reesei CBHI, while successfully expressed in and secreted from Yarrowia, showed less than expected enzymatic activity, suggesting an incompatibility (probably at the post-translational level) for its expression in Yarrowia. This result prompted us to evaluate alternative or modified CBHI enzymes. Our subsequent expression of a T. reesei-Talaromyces emersonii (Tr-Te) chimeric CBHI, Chaetomium thermophilum CBHI, and Humicola grisea CBHI demonstrated remarkably improved enzymatic activities. Specifically, the purified chimeric Tr-Te CBHI showed a specific activity on Avicel that is comparable to that of the native T. reesei CBHI. Furthermore, the chimeric Tr-Te CBHI also showed significant synergism with EGII and CBHII in degrading cellulosic substrates, using either mixed supernatants or co-cultures of the corresponding Y. lipolytica transformants. The consortia system approach also allows rational volume mixing of the transformant cultures in accordance with the optimal ratio of cellulases required for efficient

  10. A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica

    PubMed Central

    2012-01-01

    Background Yarrowia lipolytica is an oleaginous yeast which has emerged as an important microorganism for several biotechnological processes, such as the production of organic acids, lipases and proteases. It is also considered a good candidate for single-cell oil production. Although some of its metabolic pathways are well studied, its metabolic engineering is hindered by the lack of a genome-scale model that integrates the current knowledge about its metabolism. Results Combining in silico tools and expert manual curation, we have produced an accurate genome-scale metabolic model for Y. lipolytica. Using a scaffold derived from a functional metabolic model of the well-studied but phylogenetically distant yeast S. cerevisiae, we mapped conserved reactions, rewrote gene associations, added species-specific reactions and inserted specialized copies of scaffold reactions to account for species-specific expansion of protein families. We used physiological measures obtained under lab conditions to validate our predictions. Conclusions Y. lipolytica iNL895 represents the first well-annotated metabolic model of an oleaginous yeast, providing a base for future metabolic improvement, and a starting point for the metabolic reconstruction of other species in the Yarrowia clade and other oleaginous yeasts. PMID:22558935

  11. Yarrowia lipolytica and Its Multiple Applications in the Biotechnological Industry

    PubMed Central

    Gonçalves, F. A. G.; Colen, G.; Takahashi, J. A.

    2014-01-01

    Yarrowia lipolytica is a nonpathogenic dimorphic aerobic yeast that stands out due to its ability to grow in hydrophobic environments. This property allowed this yeast to develop an ability to metabolize triglycerides and fatty acids as carbon sources. This feature enables using this species in the bioremediation of environments contaminated with oil spill. In addition, Y. lipolytica has been calling the interest of researchers due to its huge biotechnological potential, associated with the production of several types of metabolites, such as bio-surfactants, γ-decalactone, citric acid, and intracellular lipids and lipase. The production of a metabolite rather than another is influenced by the growing conditions to which Y. lipolytica is subjected. The choice of carbon and nitrogen sources to be used, as well as their concentrations in the growth medium, and the careful determination of fermentation parameters, pH, temperature, and agitation (oxygenation), are essential for efficient metabolites production. This review discusses the biotechnological potential of Y. lipolytica and the best growing conditions for production of some metabolites of biotechnological interest. PMID:24715814

  12. Comparative physiology of forty-five Yarrowia lipolytica strains grown on pretreated switchgrass hydrolysate

    USDA-ARS?s Scientific Manuscript database

    Yarrowia lipolytica is a well-characterized yeast of the phylum Ascomycota with established use in the biotechnology industry for production of organic acids and enzymes. In addition, the yeast is a model oleaginous organism that accumulates lipids during growth on a variety of carbon sources. The a...

  13. Multi-omics analysis reveals regulators of the response to nitrogen limitation in Yarrowia lipolytica

    DOE PAGES

    Pomraning, Kyle R.; Kim, Young -Mo; Nicora, Carrie D.; ...

    2016-02-25

    Yarrowia lipolytica is an oleaginous ascomycete yeast that stores lipids in response to limitation of nitrogen. Furthermore, while the enzymatic pathways responsible for neutral lipid accumulation in Y. lipolytica are well characterized, regulation of these pathways has received little attention. We therefore sought to characterize the response to nitrogen limitation at system-wide levels, including the proteome, phosphoproteome and metabolome, to better understand how this organism regulates and controls lipid metabolism and to identify targets that may be manipulated to improve lipid yield.

  14. Advances in synthetic biology of oleaginous yeast Yarrowia lipolytica for producing non-native chemicals.

    PubMed

    Darvishi, Farshad; Ariana, Mehdi; Marella, Eko Roy; Borodina, Irina

    2018-07-01

    Oleaginous yeast Yarrowia lipolytica is an important industrial host for the production of enzymes, oils, fragrances, surfactants, cosmetics, and pharmaceuticals. More recently, improved synthetic biology tools have allowed more extensive engineering of this yeast species, which lead to the production of non-native metabolites. In this review, we summarize the recent advances of genome editing tools for Y. lipolytica, including the application of CRISPR/Cas9 system and discuss case studies, where Y. lipolytica was engineered to produce various non-native chemicals: short-chain fatty alcohols and alkanes as biofuels, polyunsaturated fatty acids for nutritional and pharmaceutical applications, polyhydroxyalkanoates and dicarboxylic acids as precursors for biodegradable plastics, carotenoid-type pigments for food and feed, and campesterol as a precursor for steroid drugs.

  15. Expression and Characterization of Glucose Oxidase from Aspergillus niger in Yarrowia lipolytica.

    PubMed

    Khadivi Derakshan, Fatemeh; Darvishi, Farshad; Dezfulian, Mehrouz; Madzak, Catherine

    2017-08-01

    Glucose oxidase (GOX) is currently used in clinical, pharmaceutical, food and chemical industries. The aim of this study was expression and characterization of Aspergillus niger glucose oxidase gene in the yeast Yarrowia lipolytica. For the first time, the GOX gene of A. niger was successfully expressed in Y. lipolytica using a mono-integrative vector containing strong hybrid promoter and secretion signal. The highest total glucose oxidase activity was 370 U/L after 7 days of cultivation. An innovative method was used to cell wall disruption in current study, and it could be recommended to use for efficiently cell wall disruption of Y. lipolytica. Optimum pH and temperature for recombinant GOX activity were 5.5 and 37 °C, respectively. A single band with a molecular weight of 80 kDa similar to the native and pure form of A. niger GOX was observed for the recombinant GOX in SDS-PAGE analysis. Y. lipolytica is a suitable and efficient eukaryotic expression system to production of recombinant GOX in compered with other yeast expression systems and could be used to production of pure form of GOX for industrial applications.

  16. Engineering Promoter Architecture in Oleaginous Yeast Yarrowia lipolytica.

    PubMed

    Shabbir Hussain, Murtaza; Gambill, Lauren; Smith, Spencer; Blenner, Mark A

    2016-03-18

    Eukaryotic promoters have a complex architecture to control both the strength and timing of gene transcription spanning up to thousands of bases from the initiation site. This complexity makes rational fine-tuning of promoters in fungi difficult to predict; however, this very same complexity enables multiple possible strategies for engineering promoter strength. Here, we studied promoter architecture in the oleaginous yeast, Yarrowia lipolytica. While recent studies have focused on upstream activating sequences, we systematically examined various components common in fungal promoters. Here, we examine several promoter components including upstream activating sequences, proximal promoter sequences, core promoters, and the TATA box in autonomously replicating expression plasmids and integrated into the genome. Our findings show that promoter strength can be fine-tuned through the engineering of the TATA box sequence, core promoter, and upstream activating sequences. Additionally, we identified a previously unreported oleic acid responsive transcription enhancement in the XPR2 upstream activating sequences, which illustrates the complexity of fungal promoters. The promoters engineered here provide new genetic tools for metabolic engineering in Y. lipolytica and provide promoter engineering strategies that may be useful in engineering other non-model fungal systems.

  17. A novel multigene expression construct for modification of glycerol metabolism in Yarrowia lipolytica

    PubMed Central

    2013-01-01

    Background High supply of raw, residual glycerol from biodiesel production plants promote the search for novel biotechnological methods of its utilization. In this study we attempted modification of glycerol catabolism in a nonconventional yeast species Yarrowia lipolytica through genetic engineering approach. Results To address this, we developed a novel genetic construct which allows transferring three heterologous genes, encoding glycerol dehydratase, its reactivator and a wide-spectrum alcohol oxidoreductase under the control of glycerol-induced promoter. The three genes, tandemly arrayed in an expression cassette with a marker gene ura3, regulatory and targeting sequences (G3P dh promoter and XPR-like terminator, 28S rDNA as a target locus), were transferred into Yarrowia lipolytica cells. The obtained recombinant strain NCYC3825 was characterized at the molecular level and with respect to its biotechnological potential. Our experiments indicated that the novel recombinant strain stably borne one copy of the expression cassette and efficiently expressed heterologous alcohol oxidoreductase, while glycerol dehydratase and its reactivator were expressed at lower level. Comparative shake flask cultivations in glucose- and glycerol-based media demonstrated higher biomass production by the recombinant strain when glycerol was the main carbon source. During bioreactor (5 L) fed-batch cultivation in glycerol-based medium, the recombinant strain was characterized by relatively high biomass and lipids accumulation (up to 42 gDCW L-1, and a peak value of 38%LIPIDS of DCW, respectively), and production of high titers of citric acid (59 g L-1) and 2-phenylethanol (up to 1 g L-1 in shake flask cultivation), which are industrially attractive bioproducts. Conclusions Due to heterogeneous nature of the observed alterations, we postulate that the main driving force of the modified phenotype was faster growth in glycerol-based media, triggered by modifications in the red

  18. Fatty alcohol production in Lipomyces starkeyi and Yarrowia lipolytica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Wei, Hui; Knoshaug, Eric

    Current biological pathways to produce biofuel intermediates amenable to separations and catalytic upgrading to hydrocarbon fuels are not cost effective. Previously, oleaginous yeasts have been investigated primarily for lipid production. However, yeasts store neutral lipids intracellularly making recovery difficult and expensive. In addition, once recovered from the cells, lipids are difficult to blend directly with the existing fuels without upgrading. We have, therefore, begun to investigate secreted fatty acid-derived products which can be easily recovered and upgraded to fuels. In this study, we successfully demonstrate the production of fatty alcohols by the oleaginous yeasts, Yarrowia lipolytica and Lipomyces starkeyi, throughmore » expression of the fatty acyl-CoA reductase gene from Marinobactor aquaeolei VT8. This strategy resulted in the production of 167 and 770 mg/L of fatty alcohols in shake flask from Y. lipolytica and L starkeyi, respectively. When using a dodecane overlay during fermentation, 92 and 99% of total fatty alcohols produced by Y. lipolytica and L. starkeyi, respectively, were extracted into the dodecane phase, which compares favorably to the 3 and 50% recovered, respectively, without the dodecane layer. In both oleaginous yeasts, long chain length, saturated fatty alcohols, i.e., hexadecanol (C16:0) and octadecanol (C18:0), were predominant and accounted for more than 85% of the total fatty alcohols produced. To the best of our knowledge, this is the first report of fatty alcohol production in L. starkeyi. Furthermore, this work demonstrates that the oleaginous yeasts, Y. lipolytica and L. starkeyi, can serve as platform organisms for the production of fatty acid-derived biofuels and bioproducts.« less

  19. Fatty alcohol production in Lipomyces starkeyi and Yarrowia lipolytica

    DOE PAGES

    Wang, Wei; Wei, Hui; Knoshaug, Eric; ...

    2016-10-24

    Current biological pathways to produce biofuel intermediates amenable to separations and catalytic upgrading to hydrocarbon fuels are not cost effective. Previously, oleaginous yeasts have been investigated primarily for lipid production. However, yeasts store neutral lipids intracellularly making recovery difficult and expensive. In addition, once recovered from the cells, lipids are difficult to blend directly with the existing fuels without upgrading. We have, therefore, begun to investigate secreted fatty acid-derived products which can be easily recovered and upgraded to fuels. In this study, we successfully demonstrate the production of fatty alcohols by the oleaginous yeasts, Yarrowia lipolytica and Lipomyces starkeyi, throughmore » expression of the fatty acyl-CoA reductase gene from Marinobactor aquaeolei VT8. This strategy resulted in the production of 167 and 770 mg/L of fatty alcohols in shake flask from Y. lipolytica and L starkeyi, respectively. When using a dodecane overlay during fermentation, 92 and 99% of total fatty alcohols produced by Y. lipolytica and L. starkeyi, respectively, were extracted into the dodecane phase, which compares favorably to the 3 and 50% recovered, respectively, without the dodecane layer. In both oleaginous yeasts, long chain length, saturated fatty alcohols, i.e., hexadecanol (C16:0) and octadecanol (C18:0), were predominant and accounted for more than 85% of the total fatty alcohols produced. To the best of our knowledge, this is the first report of fatty alcohol production in L. starkeyi. Furthermore, this work demonstrates that the oleaginous yeasts, Y. lipolytica and L. starkeyi, can serve as platform organisms for the production of fatty acid-derived biofuels and bioproducts.« less

  20. Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system.

    PubMed

    Gao, Shuliang; Tong, Yangyang; Wen, Zhiqiang; Zhu, Li; Ge, Mei; Chen, Daijie; Jiang, Yu; Yang, Sheng

    2016-08-01

    Yarrowia lipolytica is categorized as a generally recognized as safe (GRAS) organism and is a heavily documented, unconventional yeast that has been widely incorporated into multiple industrial fields to produce valuable biochemicals. This study describes the construction of a CRISPR-Cas9 system for genome editing in Y. lipolytica using a single plasmid (pCAS1yl or pCAS2yl) to transport Cas9 and relevant guide RNA expression cassettes, with or without donor DNA, to target genes. Two Cas9 target genes, TRP1 and PEX10, were repaired by non-homologous end-joining (NHEJ) or homologous recombination, with maximal efficiencies in Y. lipolytica of 85.6 % for the wild-type strain and 94.1 % for the ku70/ku80 double-deficient strain, within 4 days. Simultaneous double and triple multigene editing was achieved with pCAS1yl by NHEJ, with efficiencies of 36.7 or 19.3 %, respectively, and the pCASyl system was successfully expanded to different Y. lipolytica breeding strains. This timesaving method will enable and improve synthetic biology, metabolic engineering and functional genomic studies of Y. lipolytica.

  1. Metabolic peculiarities of the citric acid overproduction from glucose in yeasts Yarrowia lipolytica.

    PubMed

    Kamzolova, Svetlana V; Morgunov, Igor G

    2017-11-01

    Comparative study of 43 natural yeast strains belonging to 20 species for their capability for overproduction of citric acid (CA) from glucose under nitrogen limitation of cell growth was carried out. As a result, natural strain Yarrowia lipolytica VKM Y-2373 was selected. The effect of growth limitation by biogenic macroelements (nitrogen, phosphorus, or sulfur) on the CA production by the selected strain was studied. It was shown that yeasts Y. lipolytica grown under deficiency of nitrogen, phosphorus, or sulfur were able to excrete CA in industrially sufficient amounts (80-85g/L with the product yield (Y CA ) of 0.70-0.75g/g and the process selectivity of 92.5-95.3%). Based on the obtained data on activities of enzymes involved in the initial stages of glucose oxidation, the cycle of tricarboxylic acids, and the glyoxylate cycle, the conception of the mechanism responsible for the CA overproduction from glucose in Y. lipolytica was formulated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Impacts of environmental conditions on product formation and morphology of Yarrowia lipolytica.

    PubMed

    Timoumi, Asma; Guillouet, Stéphane E; Molina-Jouve, Carole; Fillaudeau, Luc; Gorret, Nathalie

    2018-05-01

    The yeast Yarrowia lipolytica is an industrially important microorganism with distinctive physiological and metabolic characteristics. A variety of external factors (e.g., pH, temperature, and nutrient availability) influences the behavior of the yeast and may act as stress conditions which the cells must withstand and adapt. In this mini review, the impacts of environmental factors on the morphology and metabolite production by Y. lipolytica are summarized. In this regard, detailed insights into the effectors involved in the dimorphic transition of Y. lipolytica, the cultivation conditions employed, as well as the methods applied for the morphological characterization are highlighted. Concerning the metabolism products, a special focus is addressed on lipid and citric acid metabolites which have attracted significant attention in recent years. The dependence of lipid and citric acid productivity on key process parameters, such as media composition and physico-chemical variables, is thoroughly discussed. This review attempts to provide a recent update on the topic and will serve as a meaningful resource for researchers working in the field.

  3. Droplet-based microfluidic high-throughput screening of heterologous enzymes secreted by the yeast Yarrowia lipolytica.

    PubMed

    Beneyton, Thomas; Thomas, Stéphane; Griffiths, Andrew D; Nicaud, Jean-Marc; Drevelle, Antoine; Rossignol, Tristan

    2017-01-31

    Droplet-based microfluidics is becoming an increasingly attractive alternative to microtiter plate techniques for enzymatic high-throughput screening (HTS), especially for exploring large diversities with lower time and cost footprint. In this case, the assayed enzyme has to be accessible to the substrate within the water-in-oil droplet by being ideally extracellular or displayed at the cell surface. However, most of the enzymes screened to date are expressed within the cytoplasm of Escherichia coli cells, which means that a lysis step must take place inside the droplets for enzyme activity to be assayed. Here, we take advantage of the excellent secretion abilities of the yeast Yarrowia lipolytica to describe a highly efficient expression system particularly suitable for the droplet-based microfluidic HTS. Five hydrolytic genes from Aspergillus niger genome were chosen and the corresponding five Yarrowia lipolytica producing strains were constructed. Each enzyme (endo-β-1,4-xylanase B and C; 1,4-β-cellobiohydrolase A; endoglucanase A; aspartic protease) was successfully overexpressed and secreted in an active form in the crude supernatant. A droplet-based microfluidic HTS system was developed to (a) encapsulate single yeast cells; (b) grow yeast in droplets; (c) inject the relevant enzymatic substrate; (d) incubate droplets on chip; (e) detect enzymatic activity; and (f) sort droplets based on enzymatic activity. Combining this integrated microfluidic platform with gene expression in Y. lipolytica results in remarkably low variability in the enzymatic activity at the single cell level within a given monoclonal population (<5%). Xylanase, cellobiohydrolase and protease activities were successfully assayed using this system. We then used the system to screen for thermostable variants of endo-β-1,4-xylanase C in error-prone PCR libraries. Variants displaying higher thermostable xylanase activities compared to the wild-type were isolated (up to 4.7-fold improvement

  4. Metabolic engineering of oleaginous yeast Yarrowia lipolytica for limonene overproduction.

    PubMed

    Cao, Xuan; Lv, Yu-Bei; Chen, Jun; Imanaka, Tadayuki; Wei, Liu-Jing; Hua, Qiang

    2016-01-01

    Limonene, a monocyclic monoterpene, is known for its using as an important precursor of many flavoring, pharmaceutical, and biodiesel products. Currently, d-limonene has been produced via fractionation from essential oils or as a byproduct of orange juice production, however, considering the increasing need for limonene and a certain amount of pesticides may exist in the limonene obtained from the citrus industry, some other methods should be explored to produce limonene. To construct the limonene synthetic pathway in Yarrowia lipolytica , two genes encoding neryl diphosphate synthase 1 (NDPS1) and limonene synthase (LS) were codon-optimized and heterologously expressed in Y. lipolytica . Furthermore, to maximize limonene production, several genes involved in the MVA pathway were overexpressed, either in different copies of the same gene or in combination. Finally with the optimized pyruvic acid and dodecane concentration in flask culture, a maximum limonene titer and content of 23.56 mg/L and 1.36 mg/g DCW were achieved in the final engineered strain Po1f-LN-051, showing approximately 226-fold increase compared with the initial yield 0.006 mg/g DCW. This is the first report on limonene biosynthesis in oleaginous yeast Y. lipolytica by heterologous expression of codon-optimized tLS and tNDPS1 genes. To our knowledge, the limonene production 23.56 mg/L, is the highest limonene production level reported in yeast. In short, we demonstrate that Y. lipolytica provides a compelling platform for the overproduction of limonene derivatives, and even other monoterpenes.

  5. Optimization of odd chain fatty acid production by Yarrowia lipolytica.

    PubMed

    Park, Young-Kyoung; Dulermo, Thierry; Ledesma-Amaro, Rodrigo; Nicaud, Jean-Marc

    2018-01-01

    Odd chain fatty acids (odd FAs) have a wide range of applications in therapeutic and nutritional industries, as well as in chemical industries including biofuel. Yarrowia lipolytica is an oleaginous yeast considered a preferred microorganism for the production of lipid-derived biofuels and chemicals. However, it naturally produces negligible amounts of odd chain fatty acids. The possibility of producing odd FAs using Y. lipolytica was investigated. Y. lipolytica wild-type strain was shown able to grow on weak acids; acetate, lactate, and propionate. Maximal growth rate on propionate reached 0.24 ± 0.01 h -1 at 2 g/L, and growth inhibition occurred at concentration above 10 g/L. Wild-type strain accumulated lipids ranging from 7.39 to 8.14% (w/w DCW) depending on the carbon source composition, and odd FAs represented only 0.01-0.12 g/L. We here proved that the deletion of the PHD1 gene improved odd FAs production, which reached a ratio of 46.82% to total lipids. When this modification was transferred to an obese strain, engineered for improving lipid accumulation, further increase odd FAs production reaching a total of 0.57 g/L was shown. Finally, a fed-batch co-feeding strategy was optimized for further increase odd FAs production, which generated 0.75 g/L, the best production described so far in Y. lipolytica . A Y. lipolytica strain able to accumulate high level of odd chain fatty acids, mainly heptadecenoic acid, has been successfully developed. In addition, a fed-batch co-feeding strategy was optimized to further improve lipid accumulation and odd chain fatty acid content. These lipids enriched in odd chain fatty acid can (1) improve the properties of the biodiesel generated from Y. lipolytica lipids and (2) be used as renewable source of odd chain fatty acid for industrial applications. This work paves the way for further improvements in odd chain fatty acids and fatty acid-derived compound production.

  6. YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encode major triacylglycerol synthases of the oleaginous yeast Yarrowia lipolytica.

    PubMed

    Athenstaedt, Karin

    2011-10-01

    The oleaginous yeast Yarrowia lipolytica has an outstanding capacity to produce and store triacylglycerols resembling adipocytes of higher eukaryotes. Here, the identification of two genes YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encoding major triacylglycerol synthases of Yarrowia lipolytica is reported. Heterologous expression of either DGA1 or LRO1 in a mutant of the budding yeast Saccharomyces cerevisiae defective in triacylglycerol synthesis restores the formation of this neutral lipid. Whereas Dga1p requires acyl-CoA as a substrate for acylation of diacylglycerol, Lro1p is an acyl-CoA independent triacylglycerol synthase using phospholipids as acyl-donor. Growth of Yarrowia lipolytica strains deleted of DGA1 and/or LRO1 on glucose containing medium significantly decreases triacylglycerol accumulation. Most interestingly, when oleic acid serves as the carbon source the ratio of triacylglycerol accumulation in mutants to wild-type is significantly increased in strains defective in DGA1 but not in lro1Δ. In vitro experiments revealed that under these conditions an additional acyl-CoA dependent triacylglycerol synthase contributes to triacylglycerol synthesis in the respective mutants. Taken together, evidence is provided that Yarrowia lipolytica contains at least four triacylglycerol synthases, namely Lro1p, Dga1p and two additional triacylglycerol synthases whereof one is acyl-CoA dependent and specifically induced upon growth on oleic acid. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Yarrowia lipolytica morphological mutant enables lasting in situ immobilization in bioreactor.

    PubMed

    Vandermies, Marie; Kar, Tambi; Carly, Frédéric; Nicaud, Jean-Marc; Delvigne, Frank; Fickers, Patrick

    2018-04-26

    In the present study, we have isolated and characterized a Yarrowia lipolytica morphological mutant growing exclusively in the pseudohyphal morphology. The gene responsible for this phenotype, YALI0E06519g, was identified as homologous to the mitosis regulation gene HSL1 from Saccharomyces cerevisiae. Taking advantage of its morphology, we achieved the immobilization of the Δhsl1 mutant on the metallic structured packing of immobilized-cell bioreactors. We obtained significant cell retention and growth on the support during shake flask and bioreactor experiments without an attachment step prior to the culture. The system of medium aspersion on the packing ensured oxygen availability in the absence of agitation and minimized the potential release of cells in the culture medium. Additionally, the metallic packing proved its facility of cleaning and sterilization after fermentation. This combined use of morphological mutation and bioreactor design is a promising strategy to develop continuous processes for the production of recombinant protein and metabolites using Y. lipolytica. Graphical Abstract.

  8. Engineering ..beta..-Oxidation in Yarrowia lipolytica for Methyl Ketone Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez i Nogue, Violeta; Ramirez, Kelsey J; Singer, Christine

    Medium- and long-chain methyl ketones are fatty acid-derived compounds that can be used as biofuel blending agents, flavors and fragrances. However, their large-scale production from sustainable feedstocks is currently limited due to the lack of robust microbial biocatalysts. The oleaginous yeast Yarrowia lipolytica is a promising biorefinery platform strain for the production of methyl ketones from renewable lignocellulosic biomass due to its natively high flux towards fatty acid biosynthesis. In this study, we report the metabolic engineering of Y. lipolytica to produce long- and very long-chain methyl ketones. Truncation of peroxisomal ..beta..-oxidation by chromosomal deletion of pot1 resulted in themore » biosynthesis of saturated, mono-, and diunsaturated methyl ketones in the C13-C23 range. Additional overexpression and peroxisomal targeting of a heterologous bacterial methyl ketone biosynthesis pathway yielded an initial titer of 151.5 mg/L of saturated methyl ketones. Dissolved oxygen concentrations in the cultures were found to substantially impact cell morphology and methyl ketone biosynthesis. Bioreactor cultivation under optimized conditions resulted in a titer of 314.8 mg/L of total methyl ketones, representing more than a 6000-fold increase over the parental strain. This work highlights the potential of Y. lipolytica to serve as chassis organism for the biosynthesis of acyl-thioester derived long- and very long-chain methyl ketones.« less

  9. Production of Medium Chain Fatty Acids by Yarrowia lipolytica: Combining Molecular Design and TALEN to Engineer the Fatty Acid Synthase.

    PubMed

    Rigouin, Coraline; Gueroult, Marc; Croux, Christian; Dubois, Gwendoline; Borsenberger, Vinciane; Barbe, Sophie; Marty, Alain; Daboussi, Fayza; André, Isabelle; Bordes, Florence

    2017-10-20

    Yarrowia lipolytica is a promising organism for the production of lipids of biotechnological interest and particularly for biofuel. In this study, we engineered the key enzyme involved in lipid biosynthesis, the giant multifunctional fatty acid synthase (FAS), to shorten chain length of the synthesized fatty acids. Taking as starting point that the ketoacyl synthase (KS) domain of Yarrowia lipolytica FAS is directly involved in chain length specificity, we used molecular modeling to investigate molecular recognition of palmitic acid (C16 fatty acid) by the KS. This enabled to point out the key role of an isoleucine residue, I1220, from the fatty acid binding site, which could be targeted by mutagenesis. To address this challenge, TALEN (transcription activator-like effector nucleases)-based genome editing technology was applied for the first time to Yarrowia lipolytica and proved to be very efficient for inducing targeted genome modifications. Among the generated FAS mutants, those having a bulky aromatic amino acid residue in place of the native isoleucine at position 1220 led to a significant increase of myristic acid (C14) production compared to parental wild-type KS. Particularly, the best performing mutant, I1220W, accumulates C14 at a level of 11.6% total fatty acids. Overall, this work illustrates how a combination of molecular modeling and genome-editing technology can offer novel opportunities to rationally engineer complex systems for synthetic biology.

  10. Impact of culture conditions on β-carotene encapsulation using Yarrowia lipolytica cells

    NASA Astrophysics Data System (ADS)

    Dang, Tran Hai; Minh, Ho Thi Thu; Van Nhi, Tran Nguyen; Ngoc, Ta Thi Minh

    2017-09-01

    Yeast cell was reported as an effective natural preformed material for use in encapsulation of hydrophobic compounds. The encapsulation process was normally considered as passive transfer through cellular wall and cellular membrane. Beside solubility of hydrophobic compound in phospholipid membrane or plasmolysis, membrane characteristics of yeast cell which are differed between strains and influenced by culture conditions are main factors involving the accumulation of hydrophobic compound into yeast cell. In this study, the oleaginous yeast Yarrowia lipolytica was used as micro-container shell to encapsulate a high hydrophobic compound - β-carotene. Yeast cell was cultured under different conditions and wet yeast biomass was incubated with β-carotene which was dissolved in soybean oil overnight. β-carotene accumulation was then extracted and evaluated by UV-VIS spectrometry. Optimization of culture condition was investigated using the Box-Behnken model. β-carotene encapsulation efficiency in Y. lipolytica was showed to be affected by both pH of medium and agitation conditions. The highest β-carotene encapsulation efficiency was optimized at 42.8 μg/g with Y. lipolytica cultured at pH 4.5, medium volume equal to 115 ml and agitation speed at 211 rpm.

  11. Prospect for Developing a Consolidated Bioprocessing (CBP) Strain Using Xylan as the Substrate: the Case Study of Yarrowia lipolytica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Wei, Hui; Alahuhta, Markus

    2016-07-08

    To achieve the goal of developing a direct microbial sugar conversion platform for the production of lipids and drop-in fuels from cellulosic biomass substrate, Yarrowia lipolytica was used to investigate its potential for being developed as CBP strain by expressing cellulase and xylanase enzymes. Y. lipolytica is known to accumulate lipids intracellularly and is capable of metabolizing glucose and xylose to produce lipids; however, due to the lack of the biomass degrading enzymes, it cannot directly utilize lignocellulosic substrates as carbon sources. While research is continuing on the development of a Y. lipolytica strain able to degrade cellulose, in thismore » study, we present successful expression of several xylanases in Y. lipolytica. To the best of our knowledge, this is the first study introducing heterologous hemicellulose genes into the genome of Y. lipolytica. SDS-PAGE and western blotting analysis showed that the endo-xylanase gene XynII and exo-xylosidase gene XlnD were successfully expressed and secreted, and the expressed xylanases were likely either not or sparsely glycosylated, which is advantageous for expression of heterologous proteins from any species. Enzymatic activity tests further demonstrated active expression of XynII and XlnD in Y. lipolytica. Furthermore, synergistic action on converting xylan to xylose was observed when XlnD worked in concert with XynII. XlnD was able to work on the xylo-oligomers generated by XynII, enhancing the xylan conversion to monomeric xylose. The successful expression of these xylanases in Yarrowia further advances us towards our goal to develop a direct microbial conversion process using this organism. and xylose to produce lipids; however, due to the lack of the biomass degrading enzymes, it cannot directly utilize lignocellulosic substrates as carbon sources. While research is continuing on the development of a Y. lipolytica strain able to degrade cellulose, in this study, we present successful

  12. Engineering β-oxidation in Yarrowia lipolytica for methyl ketone production.

    PubMed

    Hanko, Erik K R; Denby, Charles M; Sànchez I Nogué, Violeta; Lin, Weiyin; Ramirez, Kelsey J; Singer, Christine A; Beckham, Gregg T; Keasling, Jay D

    2018-05-28

    Medium- and long-chain methyl ketones are fatty acid-derived compounds that can be used as biofuel blending agents, flavors and fragrances. However, their large-scale production from sustainable feedstocks is currently limited due to the lack of robust microbial biocatalysts. The oleaginous yeast Yarrowia lipolytica is a promising biorefinery platform strain for the production of methyl ketones from renewable lignocellulosic biomass due to its natively high flux towards fatty acid biosynthesis. In this study, we report the metabolic engineering of Y. lipolytica to produce long- and very long-chain methyl ketones. Truncation of peroxisomal β-oxidation by chromosomal deletion of pot1 resulted in the biosynthesis of saturated, mono-, and diunsaturated methyl ketones in the C 13 -C 23 range. Additional overexpression and peroxisomal targeting of a heterologous bacterial methyl ketone biosynthesis pathway yielded an initial titer of 151.5 mg/L of saturated methyl ketones. Dissolved oxygen concentrations in the cultures were found to substantially impact cell morphology and methyl ketone biosynthesis. Bioreactor cultivation under optimized conditions resulted in a titer of 314.8 mg/L of total methyl ketones, representing more than a 6000-fold increase over the parental strain. This work highlights the potential of Y. lipolytica to serve as chassis organism for the biosynthesis of acyl-thioester derived long- and very long-chain methyl ketones. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Yarrowia lipolytica: a model yeast for citric acid production.

    PubMed

    Cavallo, Ema; Charreau, Hernán; Cerrutti, Patricia; Foresti, María Laura

    2017-12-01

    Every year more than 2 million tons of citric acid (CA) are produced around the world for industrial uses. Although initially extracted from citrus, the low profitability of the process and the increasing demand soon stimulated the search for more efficient methods to produce CA. Currently, most world CA demand (99%) is satisfied by fermentations with microorganisms, especially filamentous fungi and yeasts. CA production with yeasts has certain advantages over molds (e.g. higher productivity and easier cultivation), which in the last two decades have triggered a clear increase in publications and patents devoted to the use of yeasts in this field. Yarrowia lipolytica has become a model yeast that proved to be successful in different production systems. Considering the current interest evidenced in the literature, the most significant information on CA production using Y. lipolytica is summarized. The relevance on CA yields of key factors such as strains, media formulation, environmental conditions and production regimes is thoroughly discussed, with particular focus on increasing CA productivity. Besides, the possibility of tuning the mentioned variables to reduce concomitant isocitric acid production-the biggest disadvantage of using yeasts-is analyzed. Available methods for CA purification/quantification are also discussed. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Engineering Yarrowia lipolytica for Use in Biotechnological Applications: A Review of Major Achievements and Recent Innovations.

    PubMed

    Madzak, Catherine

    2018-06-25

    Yarrowia lipolytica is an oleaginous saccharomycetous yeast with a long history of industrial use. It aroused interest several decades ago as host for heterologous protein production. Thanks to the development of numerous molecular and genetic tools, Y. lipolytica is now a recognized system for expressing heterologous genes and secreting the corresponding proteins of interest. As genomic and transcriptomic tools increased our basic knowledge on this yeast, we can now envision engineering its metabolic pathways for use as whole-cell factory in various bioconversion processes. Y. lipolytica is currently being developed as a workhorse for biotechnology, notably for single-cell oil production and upgrading of industrial wastes into valuable products. As it becomes more and more difficult to keep up with an ever-increasing literature on Y. lipolytica engineering technology, this article aims to provide basic and actualized knowledge on this research area. The most useful reviews on Y. lipolytica biology, use, and safety will be evoked, together with a resume of the engineering tools available in this yeast. This mini-review will then focus on recently developed tools and engineering strategies, with a particular emphasis on promoter tuning, metabolic pathways assembly, and genome editing technologies.

  15. Development of a novel rDNA based plasmid for enhanced cell surface display on Yarrowia lipolytica.

    PubMed

    Bulani, Siyavuya Ishmael; Moleleki, Lucy; Albertyn, Jacobus; Moleleki, Ntsane

    2012-05-20

    In this study, a novel rDNA based plasmid was developed for display of heterologous proteins on the cell surface of Yarrowia lipolytica using the C-terminal end of the glycosylphosphatidylinositol (GPI) anchored Y. lipolytica cell wall protein 1 (YlCWP1). mCherry was used as a model protein to assess the efficiency of the constructed plasmid. Y. lipolytica transformants harbouring the expression cassettes showed a purple colour phenotype on selective YNB-casamino plates as compared to control cells indicating that mCherry was displayed on the cells. Expression of mCherry on cells of Y. lipolytica was confirmed by both fluorescent microscopy and flow cytometry. Furthermore, SDS-PAGE analysis and matrix-assisted laser desorption/ionization (MALDI)-time-of (TOF)-mass spectrometry (MS) peptide mass fingerprinting (PMF) confirmed that the protein cleaved from the yeast cells using enterokinase was mCherry. Efficient cleavage of mCherry reported in this work offers an alternative purification method for displayed heterologous proteins on Y. lipolytica cells using the plasmid constructed in this study. The developed displaying system offers great potential for industrial production and purification of heterologous proteins at low cost.

  16. Comprehensive metabolomic, lipidomic and microscopic profiling of Yarrowia lipolytica during lipid accumulation identifies targets for increased lipogenesis

    DOE PAGES

    Pomraning, Kyle R.; Wei, Siwei; Karagiosis, Sue A.; ...

    2015-04-23

    Yarrowia lipolytica is an oleaginous ascomycete yeast that accumulates large amounts of lipids and has potential as a biofuel producing organism. Despite a growing scientific literature focused on lipid production by Y. lipolytica, there remain significant knowledge gaps regarding the key biological processes involved. We applied a combination of metabolomic and lipidomic profiling approaches as well as microscopic techniques to identify and characterize the key pathways involved in de novo lipid accumulation from glucose in batch cultured, wild-type Y. lipolytica. We found that lipids accumulated rapidly and peaked at 48 hours during the five day experiment, concurrent with a shiftmore » in amino acid metabolism. We also report that Y. lipolytica secretes disaccharides early in batch culture and reabsorbs them when extracellular glucose is depleted. Exhaustion of extracellular sugars coincided with thickening of the cell wall, suggesting that genes involved in cell wall biogenesis may be a useful target for improving the efficiency of lipid producing yeast strains.« less

  17. Urea and urine are a viable and cost-effective nitrogen source for Yarrowia lipolytica biomass and lipid accumulation.

    PubMed

    Brabender, Matthew; Hussain, Murtaza Shabbir; Rodriguez, Gabriel; Blenner, Mark A

    2018-03-01

    Yarrowia lipolytica is an industrial yeast that has been used in the sustainable production of fatty acid-derived and lipid compounds due to its high growth capacity, genetic tractability, and oleaginous properties. This investigation examines the possibility of utilizing urea or urine as an alternative to ammonium sulfate as a nitrogen source to culture Y. lipolytica. The use of a stoichiometrically equivalent concentration of urea in lieu of ammonium sulfate significantly increased cell growth when glucose was used as the carbon source. Furthermore, Y. lipolytica growth was equally improved when grown with synthetic urine and real human urine. Equivalent or better lipid production was achieved when cells are grown on urea or urine. The successful use of urea and urine as nitrogen sources for Y. lipolytica growth highlights the potential of using cheaper media components as well as exploiting and recycling non-treated human waste streams for biotechnology processes.

  18. Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica.

    PubMed

    Mishra, Pranjul; Lee, Na-Rae; Lakshmanan, Meiyappan; Kim, Minsuk; Kim, Byung-Gee; Lee, Dong-Yup

    2018-03-19

    Recently, there have been several attempts to produce long-chain dicarboxylic acids (DCAs) in various microbial hosts. Of these, Yarrowia lipolytica has great potential due to its oleaginous characteristics and unique ability to utilize hydrophobic substrates. However, Y. lipolytica should be further engineered to make it more competitive: the current approaches are mostly intuitive and cumbersome, thus limiting its industrial application. In this study, we proposed model-guided metabolic engineering strategies for enhanced production of DCAs in Y. lipolytica. At the outset, we reconstructed genome-scale metabolic model (GSMM) of Y. lipolytica (iYLI647) by substantially expanding the previous models. Subsequently, the model was validated using three sets of published culture experiment data. It was finally exploited to identify genetic engineering targets for overexpression, knockout, and cofactor modification by applying several in silico strain design methods, which potentially give rise to high yield production of the industrially relevant long-chain DCAs, e.g., dodecanedioic acid (DDDA). The resultant targets include (1) malate dehydrogenase and malic enzyme genes and (2) glutamate dehydrogenase gene, in silico overexpression of which generated additional NADPH required for fatty acid synthesis, leading to the increased DDDA fluxes by 48% and 22% higher, respectively, compared to wild-type. We further investigated the effect of supplying branched-chain amino acids on the acetyl-CoA turn-over rate which is key metabolite for fatty acid synthesis, suggesting their significance for production of DDDA in Y. lipolytica. In silico model-based strain design strategies allowed us to identify several metabolic engineering targets for overproducing DCAs in lipid accumulating yeast, Y. lipolytica. Thus, the current study can provide a methodological framework that is applicable to other oleaginous yeasts for value-added biochemical production.

  19. Synthetic Biology Expands the Industrial Potential of Yarrowia lipolytica.

    PubMed

    Markham, Kelly A; Alper, Hal S

    2018-06-04

    The oleaginous yeast Yarrowia lipolytica is quickly emerging as the most popular non-conventional (i.e., non-model organism) yeast in the bioproduction field. With a high propensity for flux through tricarboxylic acid (TCA) cycle intermediates and biological precursors such as acetyl-CoA and malonyl-CoA, this host is especially well suited to meet our industrial chemical production needs. Recent progress in synthetic biology tool development has greatly enhanced our ability to rewire this organism, with advances in genetic component design, CRISPR technologies, and modular cloning strategies. In this review we investigate recent developments in metabolic engineering and describe how the new tools being developed help to realize the full industrial potential of this host. Finally, we conclude with our vision of the developments that will be necessary to enhance future engineering efforts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Engineering Yarrowia lipolytica to express secretory invertase with strong FBA1IN promoter.

    PubMed

    Hong, Seung-Pyo; Seip, John; Walters-Pollak, Dana; Rupert, Ross; Jackson, Raymond; Xue, Zhixiong; Zhu, Quinn

    2012-02-01

    Oleaginous yeast Yarrowia lipolytica is an important host for the production of lipid-derived compounds or heterologous proteins. Selection of strong promoters and effective expression systems is critical for heterologous protein secretion. To search for a strong promoter in Y. lipolytica, activities of FBA1, TDH1 and GPM1 promoters were compared to that of TEF1 promoter by constructing GUS reporter fusions. The FBA1 promoter activity was 2.2 and 5.5 times stronger than the TDH1 and GPM1 promoters, respectively. The FBA1IN promoter (FBA1 sequence of -826 to +169) containing an intron (+64 to +165) showed five-fold higher expression than the FBA1 promoter (-831 to -1). The transcriptional enhancement by the 5'-region within the FBA1 gene was confirmed by GPM1::FBA1 chimeric promoter construction. Using the strong FBA1IN promoter, four different S. cerevisiae SUC2 expression cassettes were tested for the SUC+ phenotype in Y. lipolytica. Functional invertase secretion was facilitated by the Xpr2 prepro-region with an additional 13 amino acids of mature Xpr2, or by the native Suc2 signal sequence. However, these two secretory signals in tandem, or the mature Suc2 with no secretory signal, did not direct secretion of functional invertase. Unlike previously reported Y. lipolytica SUC+ strains, our engineered stains secreted most of invertase into the medium. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Selection of Yarrowia lipolytica strains with high protein content from yeasts isolated from different marine environments

    NASA Astrophysics Data System (ADS)

    Chi, Zhenming; Wang, Fang; Wang, Lin; Li, Jing; Wang, Xianghong

    2007-10-01

    A total of 78 Yarrowia lipolytica yeast strains from seawater, sediments, mud of salterns, the guts of marine fish, and marine algae were obtained. After the crude protein of the yeasts was estimated by the method of Kjehldahl, we found that seven strains of the marine yeasts grown in soy bean cake hydrolysate with 20 g L-1 of glucose for 48 h at 28°C contained more than 41.0 g protein per 100 g of cell dry weight and the cell dry weight was more than 4.4 g per L of the culture. Among them, strain SWJ-1b contained the highest crude protein. The results of Biolog identification and molecular methods further confirmed that they indeed belonged to Y. lipolytica.

  2. [Genetic system for maintaining the mitochondrial human genome in yeast Yarrowia lipolytica].

    PubMed

    Isakova, E P; Deryabina, Yu I; Velyakova, A V; Biryukova, J K; Teplova, V V; Shevelev, A B

    2016-01-01

    For the first time, the possibility of maintaining an intact human mitochondrial genome in a heterologous system in the mitochondria of yeast Yarrowia lipolytica is shown. A method for introducing directional changes into the structure of the mitochondrial human genome replicating in Y. lipolytica by an artificially induced ability of yeast mitochondria for homologous recombination is proposed. A method of introducing and using phenotypic selection markers for the presence or absence of defects in genes tRNA-Lys and tRNA-Leu of the mitochondrial genome is developed. The proposed system can be used to correct harmful mutations of the human mitochondrial genome associated with mitochondrial diseases and for preparative amplification of intact mitochondrial DNA with an adjusted sequence in yeast cells. The applicability of the new system for the correction of mutations in the genes of Lys- and Leu-specific tRNAs of the human mitochondrial genome associated with serious and widespread human mitochondrial diseases such as myoclonic epilepsy with lactic acidosis (MELAS) and myoclonic epilepsy with ragged-red fibers (MERRF) is shown.

  3. CRISPR-Cas9-Mediated Genome Editing and Transcriptional Control in Yarrowia lipolytica.

    PubMed

    Schwartz, Cory; Wheeldon, Ian

    2018-01-01

    The discovery and adaptation of RNA-guided nucleases has resulted in the rapid development of efficient, scalable, and easily accessible synthetic biology tools for targeted genome editing and transcriptional control. In these systems, for example CRISPR-Cas9 from Streptococcus pyogenes, a protein with nuclease activity is targeted to a specific nucleotide sequence by a short RNA molecule, whereupon binding it cleaves the targeted nucleotide strand. To extend this genome-editing ability to the industrially important oleaginous yeast Yarrowia lipolytica, we developed a set of easily usable and effective CRISPR-Cas9 episomal vectors. In this protocols chapter, we first present a method by which arbitrary protein-coding genes can be disrupted via indel formation after CRISPR-Cas9 targeting. A second method demonstrates how the same CRISPR-Cas9 system can be used to induce markerless gene cassette integration into the genome by inducing homologous recombination after DNA cleavage by Cas9. Finally, we describe how a catalytically inactive form of Cas9 fused to a transcriptional repressor can be used to control transcription of native genes in Y. lipolytica. The CRISPR-Cas9 tools and strategies described here greatly increase the types of genome editing and transcriptional control that can be achieved in Y. lipolytica, and promise to facilitate more advanced engineering of this important oleaginous host.

  4. Irradiation of Yarrowia lipolytica NRRL YB-567 creating novel strains with enhanced ammonia and oil production on protein and carbohydrate substrates

    USDA-ARS?s Scientific Manuscript database

    Increased interest in sustainable production of renewable diesel and other valuable bioproducts is redoubling efforts to improve economic feasibility of microbial-based oil production. The yeast Yarrowia lipolytica is capable of employing a wide variety of substrates to produce oil and valuable co-p...

  5. An ortholog of farA of Aspergillus nidulans is implicated in the transcriptional activation of genes involved in fatty acid utilization in the yeast Yarrowia lipolytica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poopanitpan, Napapol; Kobayashi, Satoshi; Fukuda, Ryouichi

    2010-11-26

    Research highlights: {yields} POR1 is a Yarrowia lipolytica ortholog of farA involved in fatty acid response in A. nidulans. {yields} Deletion of POR1 caused growth defects on fatty acids. {yields} {Delta}por1 strain exhibited defects in the induction of genes involved in fatty acid utilization. -- Abstract: The yeast Yarrowia lipolytica effectively utilizes hydrophobic substrates such as fatty acids and n-alkanes. To identify a gene(s) regulating fatty acid utilization in Y. lipolytica, we first studied homologous genes to OAF1 and PIP2 of Saccharomyces cerevisiae, but their disruption did not change growth on oleic acid at all. We next characterized a Y.more » lipolytica gene, POR1 (primary oleate regulator 1), an ortholog of farA encoding a transcriptional activator that regulates fatty acid utilization in Aspergillus nidulans. The deletion mutant of POR1 was defective in the growth on various fatty acids, but not on glucose, glycerol, or n-hexadecane. It exhibited slight defect on n-decane. The transcriptional induction of genes involved in {beta}-oxidation and peroxisome proliferation by oleate was distinctly diminished in the {Delta}por1 strains. These data suggest that POR1 encodes a transcriptional activator widely regulating fatty acid metabolism in Y. lipolytica.« less

  6. New finding and optimal production of a novel extracellular alkaline lipase from Yarrowia lipolytica NRRL Y-2178.

    PubMed

    Lee, Geon-Ho; Bae, Jae-Han; Suh, Min-Jung; Kim, In-Hwan; Hou, Ching T; Kim, Hak-Ryul

    2007-06-01

    Lipases are industrially useful versatile enzymes that catalyze numerous different reactions including hydrolysis of triglycerides, transesterification, and chiral synthesis of esters under natural conditions. Although lipases from various sources have been widely used in industrial applications, such as in food, chemical, pharmaceutical, and detergent industries, there are still substantial current interests in developing new microbial lipases, specifically those functioning in abnormal conditions. We screened 17 lipase-producing yeast strains, which were prescreened for substrate specificity of lipase from more than 500 yeast strains from the Agricultural Research Service Culture Collection (Peoria, IL, U.S.A.), and selected Yarrowia lipolytica NRRL Y-2178 as a best lipase producer. This report presents new finding and optimal production of a novel extracellular alkaline lipase from Y. lipolytica NRRL Y-2178. Optimal c ulture conditions f orlipase production by Y. lipolytica NRRL Y-2178 were 72 h incubation time, 27.5 degrees C, pH 9.0. Glycerol and glucose were efficiently used as the most efficient carbon sources, and a combination of yeast extract and peptone was a good nitrogen source for lipase production by Y. lipolytica NRRL Y-2178. These results suggested that Y. lipolytica NRRL Y-2178 showsgood industrial potential as a new alkaline lipase producer.

  7. [The Engineering of a Yarrowia lipolytica Yeast Strain Capable of Homologous Recombination of the Mitochondrial Genome].

    PubMed

    Isakova, E P; Epova, E Yu; Sekova, V Yu; Trubnikova, E V; Kudykina, Yu K; Zylkova, M V; Guseva, M A; Deryabina, Yu I

    2015-01-01

    None of the studied eukaryotic species has a natural system for homologous recombination of the mitochondrial genome. We propose an integrated genetic construct pQ-SRUS, which allows introduction of the recA gene from Bacillus subtilis into the nuclear genome of an extremophilic yeast, Yarrowia lipolytica. The targeting of recombinant RecA to the yeast mitochondria is provided by leader sequences (5'-UTR and 3'-UTR) derived from the SOD2 gene mRNA, which exhibits affinity to the outer mitochondrial membrane and thus provides cotranslational transport of RecA to the inner space of the mitochondria. The Y. lipolytica strain bearing the pQ-SRUS construct has the unique ability to integrate DNA constructs into the mitochondrial genome. This fact was confirmed using a tester construct, pQ-NIHN, intended for the introduction of the EYFP gene into the translation initiation region of the Y. lipolytica ND1 mitochondrial gene. The Y. lipolytica strain bearing pQ-SRUS makes it possible to engineer recombinant producers based on Y. lipolytica bearing transgenes in the mitochondrial genome. They are promising for the construction of a genetic system for in vivo replication and modification of the human mitochondrial genome. These strains may be used as a tool for the treatment of human mitochondrial diseases (including genetically inherited ones).

  8. Robust signal peptides for protein secretion in Yarrowia lipolytica: identification and characterization of novel secretory tags.

    PubMed

    Celińska, Ewelina; Borkowska, Monika; Białas, Wojciech; Korpys, Paulina; Nicaud, Jean-Marc

    2018-06-01

    Upon expression of a given protein in an expression host, its secretion into the culture medium or cell-surface display is frequently advantageous in both research and industrial contexts. Hence, engineering strategies targeting folding, trafficking, and secretion of the proteins gain considerable interest. Yarrowia lipolytica has emerged as an efficient protein expression platform, repeatedly proved to be a competitive secretor of proteins. Although the key role of signal peptides (SPs) in secretory overexpression of proteins and their direct effect on the final protein titers are widely known, the number of reports on manipulation with SPs in Y. lipolytica is rather scattered. In this study, we assessed the potential of ten different SPs for secretion of two heterologous proteins in Y. lipolytica. Genomic and transcriptomic data mining allowed us to select five novel, previously undescribed SPs for recombinant protein secretion in Y. lipolytica. Their secretory potential was assessed in comparison with known, widely exploited SPs. We took advantage of Golden Gate approach, for construction of expression cassettes, and micro-volume enzymatic assays, for functional screening of large libraries of recombinant strains. Based on the adopted strategy, we identified novel secretory tags, characterized their secretory capacity, indicated the most potent SPs, and suggested a consensus sequence of a potentially robust synthetic SP to expand the molecular toolbox for engineering Y. lipolytica.

  9. Bioconversion of R-(+)-limonene to perillic acid by the yeast Yarrowia lipolytica

    PubMed Central

    Ferrara, Maria Antonieta; Almeida, Débora S.; Siani, Antonio C.; Lucchetti, Leonardo; Lacerda, Paulo S.B.; Freitas, André; Tappin, Marcelo R.R.; Bon, Elba P.S.

    2013-01-01

    Perillyl derivatives are increasingly important due to their flavouring and antimicrobial properties as well as their potential as anticancer agents. These terpenoid species, which are present in limited amounts in plants, may be obtained via bioconversion of selected monoterpene hydrocarbons. In this study, seventeen yeast strains were screened for their ability to oxidize the exocyclic methyl group in the p-menthene moiety of limonene into perillic acid. Of the yeast tested, the highest efficiency was observed for Yarrowia lipolytica ATCC 18942. The conversion of R (+)-limonene by Y. lipolytica was evaluated by varying the pH (3 to 8) and the temperature (25 to 30 °C) in a reaction medium containing 0.5% v/v limonene and 10 g/L of stationary phase cells (dry weight). The best results, corresponding to 564 mg/L of perillic acid, were obtained in buffered medium at pH 7.1 that was incubated at 25 °C for 48 h. The stepwise addition of limonene increased the perillic acid concentration by over 50%, reaching 855 mg/L, whereas the addition of glucose or surfactant to the reaction medium did not improve the bioconversion process. The use of Y. lipolytica showed promise for ease of further downstream processing, as perillic acid was the sole oxidised product of the bioconversion reaction. Moreover, bioprocesses using safe and easy to cultivate yeast cells have been favoured in industry. PMID:24688495

  10. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals

    PubMed Central

    Xu, Peng; Qiao, Kangjian; Ahn, Woo Suk; Stephanopoulos, Gregory

    2016-01-01

    Harnessing lipogenic pathways and rewiring acyl-CoA and acyl-ACP (acyl carrier protein) metabolism in Yarrowia lipolytica hold great potential for cost-efficient production of diesel, gasoline-like fuels, and oleochemicals. Here we assessed various pathway engineering strategies in Y. lipolytica toward developing a yeast biorefinery platform for sustainable production of fuel-like molecules and oleochemicals. Specifically, acyl-CoA/acyl-ACP processing enzymes were targeted to the cytoplasm, peroxisome, or endoplasmic reticulum to generate fatty acid ethyl esters and fatty alkanes with tailored chain length. Activation of endogenous free fatty acids and the subsequent reduction of fatty acyl-CoAs enabled the efficient synthesis of fatty alcohols. Engineering a hybrid fatty acid synthase shifted the free fatty acids to a medium chain-length scale. Manipulation of alternative cytosolic acetyl-CoA pathways partially decoupled lipogenesis from nitrogen starvation and unleashed the lipogenic potential of Y. lipolytica. Taken together, the strategies reported here represent promising steps to develop a yeast biorefinery platform that potentially upgrades low-value carbons to high-value fuels and oleochemicals in a sustainable and environmentally friendly manner. PMID:27621436

  11. Yarrowia lipolytica possesses two plasma membrane alkali metal cation/H+ antiporters with different functions in cell physiology.

    PubMed

    Papouskova, Klara; Sychrova, Hana

    2006-04-03

    The family of Nha antiporters mediating the efflux of alkali metal cations in exchange for protons across the plasma membrane is conserved in all yeast species. Yarrowia lipolytica is a dimorphic yeast, phylogenetically very distant from the model yeast Saccharomyces cerevisiae. A search in its sequenced genome revealed two genes (designated as YlNHA1 and YlNHA2) with homology to the S. cerevisiae NHA1 gene, which encodes a plasma membrane alkali metal cation/H+ antiporter. Upon heterologous expression of both YlNHA genes in S. cerevisiae, we showed that Y. lipolytica antiporters differ not only in length and sequence, but also in their affinity for individual substrates. While the YlNha1 protein mainly increased cell tolerance to potassium, YlNha2p displayed a remarkable transport capacity for sodium. Thus, Y. lipolytica is the first example of a yeast species with two plasma membrane alkali metal cation/H+ antiporters differing in their putative functions in cell physiology; cell detoxification vs. the maintenance of stable intracellular pH, potassium content and cell volume.

  12. Steroid biotransformations in biphasic systems with Yarrowia lipolytica expressing human liver cytochrome P450 genes

    PubMed Central

    2012-01-01

    Background Yarrowia lipolytica efficiently metabolizes and assimilates hydrophobic compounds such as n-alkanes and fatty acids. Efficient substrate uptake is enabled by naturally secreted emulsifiers and a modified cell surface hydrophobicity and protrusions formed by this yeast. We were examining the potential of recombinant Y. lipolytica as a biocatalyst for the oxidation of hardly soluble hydrophobic steroids. Furthermore, two-liquid biphasic culture systems were evaluated to increase substrate availability. While cells, together with water soluble nutrients, are maintained in the aqueous phase, substrates and most of the products are contained in a second water-immiscible organic solvent phase. Results For the first time we have co-expressed the human cytochromes P450 2D6 and 3A4 genes in Y. lipolytica together with human cytochrome P450 reductase (hCPR) or Y. lipolytica cytochrome P450 reductase (YlCPR). These whole-cell biocatalysts were used for the conversion of poorly soluble steroids in biphasic systems. Employing a biphasic system with the organic solvent and Y. lipolytica carbon source ethyl oleate for the whole-cell bioconversion of progesterone, the initial specific hydroxylation rate in a 1.5 L stirred tank bioreactor was further increased 2-fold. Furthermore, the product formation was significantly prolonged as compared to the aqueous system. Co-expression of the human CPR gene led to a 4-10-fold higher specific activity, compared to the co-overexpression of the native Y. lipolytica CPR gene. Multicopy transformants showed a 50-70-fold increase of activity as compared to single copy strains. Conclusions Alkane-assimilating yeast Y. lipolytica, coupled with the described expression strategies, demonstrated its high potential for biotransformations of hydrophobic substrates in two-liquid biphasic systems. Especially organic solvents which can be efficiently taken up and/or metabolized by the cell might enable more efficient bioconversion as compared

  13. Enhanced α-ketoglutaric acid production and recovery in Yarrowia lipolytica yeast by effective pH controlling.

    PubMed

    Morgunov, Igor G; Kamzolova, Svetlana V; Samoilenko, Vladimir A

    2013-10-01

    The replacement of chemical synthesis by environmentally friendly energy-efficient technologies for production of valuable metabolites is a principal strategy of developing biotechnological industry all over the world. In the present study, we develop a method for α-ketoglutaric acid (KGA) production from rapeseed oil with the use of Yarrowia lipolytica yeast. Sixty strains of Y. lipolytica yeasts were tested for their ability to produce KGA, and the strain Y. lipolytica 212 (Y. lipolytica VKM Y-2412) was selected as a promising KGA producer. Using a three-stage pH controlling, in which pH was 4.5 in the growth phase, then since 72 to 144 h, pH was maintained at 3.5 and in the later phase of acid production, the titration by KOH was switch off, selected strain produced 106.5 g l(-1) of KGA with mass yield of 0.95 g g(-1). KGA in the form of monopotassium salt was isolated from the culture broth and purified. The isolation procedure involved separation of biomass, extraction of residual triglycerides, filtrate bleaching, and acidification with mineral acid (to pH 2.8-3.4), concentration, precipitation of mineral salts, and crystallization of the product. The purity of KGA isolated from the culture filtrate reached 99.1 %.

  14. Development of recombinant Yarrowia lipolytica producing virus-like particles of a fish nervous necrosis virus.

    PubMed

    Luu, Van-Trinh; Moon, Hye Yun; Hwang, Jee Youn; Kang, Bo-Kyu; Kang, Hyun Ah

    2017-08-01

    Nervous necrosis virus (NNV) causes viral encephalopathy and retinopathy, a devastating disease of many species of cultured marine fish worldwide. In this study, we used the dimorphic non-pathogenic yeast Yarrowia lipolytica as a host to express the capsid protein of red-spotted grouper nervous necrosis virus (RGNNV-CP) and evaluated its potential as a platform for vaccine production. An initial attempt was made to express the codon-optimized synthetic genes encoding intact and N-terminal truncated forms of RGNNV-CP under the strong constitutive TEF1 promoter using autonomously replicating sequence (ARS)-based vectors. The full-length recombinant capsid proteins expressed in Y. lipolytica were detected not only as monomers and but also as trimers, which is a basic unit for formation of NNV virus-like particles (VLPs). Oral immunization of mice with whole recombinant Y. lipolytica harboring the ARS-based plasmids was shown to efficiently induce the formation of IgG against RGNNV-CP. To increase the number of integrated copies of the RGNNV-CP expression cassette, a set of 26S ribosomal DNA-based multiple integrative vectors was constructed in combination with a series of defective Ylura3 with truncated promoters as selection markers, resulting in integrants harboring up to eight copies of the RGNNV-CP cassette. Sucrose gradient centrifugation and transmission electron microscopy of this high-copy integrant were carried out to confirm the expression of RGNNV-CPs as VLPs. This is the first report on efficient expression of viral capsid proteins as VLPs in Y. lipolytica, demonstrating high potential for the Y. lipolytica expression system as a platform for recombinant vaccine production based on VLPs.

  15. Investigating Proteome and Transcriptome Defense Response of Apples Induced by Yarrowia lipolytica.

    PubMed

    Zhang, Hongyin; Chen, Liangliang; Sun, Yiwen; Zhao, Lina; Zheng, Xiangfeng; Yang, Qiya; Zhang, Xiaoyun

    2017-04-01

    A better understanding of the mode of action of postharvest biocontrol agents on fruit surfaces is critical for the advancement of successful implementation of postharvest biocontrol products. This is due to the increasing importance of biological control of postharvest diseases over chemical and other control methods. However, most of the mechanisms involved in biological control remain unknown and need to be explored. Yarrowia lipolytica significantly inhibited blue mold decay of apples caused by Penicillium expansum. The findings also demonstrated that Y. lipolytica stimulated the activities of polyphenoloxidase, peroxidase, chitinase, l-phenylalanine ammonia lyase involved in enhancing defense responses in apple fruit tissue. Proteomic and transcriptomic analysis revealed a total of 35 proteins identified as up- and down-regulated in response to the Y. lipolytica inducement. These proteins were related to defense, biotic stimulus, and stress responses, such as pathogenesis-related proteins and dehydrin. The analysis of the transcriptome results proved that the induced resistance was mediated by a crosstalk between salicylic acid (SA) and ethylene/jasmonate (ET/JA) pathways. Y. lipolytica treatment activated the expression of isochorismate synthase gene in the SA pathway, which up-regulates the expression of PR4 in apple. The expression of 1-aminocyclopropane-1-carboxylate oxidase gene and ET-responsive transcription factors 2 and 4, which are involved in the ET pathway, were also activated. In addition, cytochrome oxidase I, which plays an important role in JA signaling for resistance acquisition, was also activated. However, not all of the genes had a positive effect on the SA and ET/JA signal pathways. As transcriptional repressors in JA signaling, TIFY3B and TIFY11B were triggered by the yeast, but the gene expression levels were relatively low. Taken together, Y. lipolytica induced the SA and ET/JA signal mediating the defense pathways by stimulating

  16. Optimized invertase expression and secretion cassette for improving Yarrowia lipolytica growth on sucrose for industrial applications.

    PubMed

    Lazar, Zbigniew; Rossignol, Tristan; Verbeke, Jonathan; Crutz-Le Coq, Anne-Marie; Nicaud, Jean-Marc; Robak, Małgorzata

    2013-11-01

    Yarrowia lipolytica requires the expression of a heterologous invertase to grow on a sucrose-based substrate. This work reports the construction of an optimized invertase expression cassette composed of Saccharomyces cerevisiae Suc2p secretion signal sequence followed by the SUC2 sequence and under the control of the strong Y. lipolytica pTEF promoter. This new construction allows a fast and optimal cleavage of sucrose into glucose and fructose and allows cells to reach the maximum growth rate. Contrary to pre-existing constructions, the expression of SUC2 is not sensitive to medium composition in this context. The strain JMY2593, expressing this new cassette with an optimized secretion signal sequence and a strong promoter, produces 4,519 U/l of extracellular invertase in bioreactor experiments compared to 597 U/l in a strain expressing the former invertase construction. The expression of this cassette strongly improved production of invertase and is suitable for simultaneously high production level of citric acid from sucrose-based media.

  17. A Rac Homolog Is Required for Induction of Hyphal Growth in the Dimorphic Yeast Yarrowia lipolytica

    PubMed Central

    Hurtado, Cleofe A. R.; Beckerich, Jean-Marie; Gaillardin, Claude; Rachubinski, Richard A.

    2000-01-01

    Dimorphism in fungi is believed to constitute a mechanism of response to adverse conditions and represents an important attribute for the development of virulence by a number of pathogenic fungal species. We have isolated YlRAC1, a gene encoding a 192-amino-acid protein that is essential for hyphal growth in the dimorphic yeast Yarrowia lipolytica and which represents the first Rac homolog described for fungi. YlRAC1 is not an essential gene, and its deletion does not affect the ability to mate or impair actin polarization in Y. lipolytica. However, strains lacking functional YlRAC1 show alterations in cell morphology, suggesting that the function of YlRAC1 may be related to some aspect of the polarization of cell growth. Northern blot analysis showed that transcription of YlRAC1 increases steadily during the yeast-to-hypha transition, while Southern blot analysis of genomic DNA suggested the presence of several RAC family members in Y. lipolytica. Interestingly, strains lacking functional YlRAC1 are still able to grow as the pseudohyphal form and to invade agar, thus pointing to a function for YlRAC1 downstream of MHY1, a previously isolated gene encoding a C2H2-type zinc finger protein with the ability to bind putative stress response elements and whose activity is essential for both hyphal and pseudohyphal growth in Y. lipolytica. PMID:10762235

  18. Unraveling fatty acid transport and activation mechanisms in Yarrowia lipolytica.

    PubMed

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Ledesma-Amaro, Rodrigo; Thévenieau, France; Nicaud, Jean-Marc

    2015-09-01

    Fatty acid (FA) transport and activation have been extensively studied in the model yeast species Saccharomyces cerevisiae but have rarely been examined in oleaginous yeasts, such as Yarrowia lipolytica. Because the latter begins to be used in biodiesel production, understanding its FA transport and activation mechanisms is essential. We found that Y. lipolytica has FA transport and activation proteins similar to those of S. cerevisiae (Faa1p, Pxa1p, Pxa2p, Ant1p) but mechanism of FA peroxisomal transport and activation differs greatly with that of S. cerevisiae. While the ScPxa1p/ScPxa2p heterodimer is essential for growth on long-chain FAs, ΔYlpxa1 ΔYlpxa2 is not impaired for growth on FAs. Meanwhile, ScAnt1p and YlAnt1p are both essential for yeast growth on medium-chain FAs, suggesting they function similarly. Interestingly, we found that the ΔYlpxa1 ΔYlpxa2 ΔYlant1 mutant was unable to grow on short-, medium-, or long-chain FAs, suggesting that YlPxa1p, YlPxa2p, and YlAnt1p belong to two different FA degradation pathways. We also found that YlFaa1p is involved in FA storage in lipid bodies and that FA remobilization largely depended on YlFat1p, YlPxa1p and YlPxa2p. This study is the first to comprehensively examine FA intracellular transport and activation in oleaginous yeast. Copyright © 2015. Published by Elsevier B.V.

  19. Biomass production by novel strains of Yarrowia lipolytica using raw glycerol, derived from biodiesel production.

    PubMed

    Juszczyk, Piotr; Tomaszewska, Ludwika; Kita, Agnieszka; Rymowicz, Waldemar

    2013-06-01

    This study demonstrated the potential applicability of the isolated strains of Yarrowia lipolytica for the valorization of glycerol waste generated during biodiesel production, throughout biomass production. Twenty-one strains were isolated from different environments and identified as Y. lipolytica. Biomass production from pure glycerol (25 g L(-1)) was performed in the shake-flasks experiment. Eight strains with the best biomass production ability were chosen for studies in bioreactor (pH 3.5). The analysis of technological process parameters and biomass chemical composition demonstrated that S6 strain was the most suitable for biomass production. Its application allowed obtaining 11.7 and 12.3 g L(-1) of the biomass with 1.30 and 1.37 g L(-1) h(-1) productivity, respectively when pure and raw glycerol (25 g L(-1)) was used. In the yeast protein amino acid profile the contents of lysine, threonine and phenylalanine/tyrosine were higher than required by FAO/WHO. According to the EAAI, the nutritional value of the biomass reached up to 72.3%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Sugar versus fat: elimination of glycogen storage improves lipid accumulation in Yarrowia lipolytica.

    PubMed

    Bhutada, Govindprasad; Kavšcek, Martin; Ledesma-Amaro, Rodrigo; Thomas, Stéphane; Rechberger, Gerald N; Nicaud, Jean-Marc; Natter, Klaus

    2017-05-01

    Triacylglycerol (TAG) and glycogen are the two major metabolites for carbon storage in most eukaryotic organisms. We investigated the glycogen metabolism of the oleaginous Yarrowia lipolytica and found that this yeast accumulates up to 16% glycogen in its biomass. Assuming that elimination of glycogen synthesis would result in an improvement of lipid accumulation, we characterized and deleted the single gene coding for glycogen synthase, YlGSY1. The mutant was grown under lipogenic conditions with glucose and glycerol as substrates and we obtained up to 60% improvement in TAG accumulation compared to the wild-type strain. Additionally, YlGSY1 was deleted in a background that was already engineered for high lipid accumulation. In this obese background, TAG accumulation was also further increased. The highest lipid content of 52% was found after 3 days of cultivation in nitrogen-limited glycerol medium. Furthermore, we constructed mutants of Y. lipolytica and Saccharomyces cerevisiae that are deleted for both glycogen and TAG synthesis, demonstrating that the ability to store carbon is not essential. Overall, this work showed that glycogen synthesis is a competing pathway for TAG accumulation in oleaginous yeasts and that deletion of the glycogen synthase has beneficial effects on neutral lipid storage. © FEMS 2017.

  1. Functional analysis of recombinant human and Yarrowia lipolytica O-GlcNAc transferases expressed in Saccharomyces cerevisiae.

    PubMed

    Oh, Hye Ji; Moon, Hye Yun; Cheon, Seon Ah; Hahn, Yoonsoo; Kang, Hyun Ah

    2016-10-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation is an important post-translational modification in many cellular processes. It is mediated by O-GlcNAc transferases (OGTs), which catalyze the addition of O-GlcNAc to serine or threonine residues of the target proteins. In this study, we expressed a putative Yarrowia lipolytica OGT (YlOGT), the only homolog identified in the subphylum Saccharomycotina through bioinformatics analysis, and the human OGT (hOGT) as recombinant proteins in Saccharomyces cerevisiae, and performed their functional characterization. Immunoblotting assays using antibody against O-GlcNAc revealed that recombinant hOGT (rhOGT), but not the recombinant YlOGT (rYlOGT), undergoes auto-O-GlcNAcylation in the heterologous host S. cerevisiae. Moreover, the rhOGT expressed in S. cerevisiae showed a catalytic activity during in vitro assays using casein kinase II substrates, whereas no such activity was obtained in rYlOGT. However, the chimeric human-Y. lipolytica OGT, carrying the human tetratricopeptide repeat (TPR) domain along with the Y. lipolytica catalytic domain (CTD), mediated the transfer of O-GlcNAc moiety during the in vitro assays. Although the overexpression of full-length OGTs inhibited the growth of S. cerevisiae, no such inhibition was obtained upon overexpression of only the CTD fragment, indicating the role of TPR domain in growth inhibition. This is the first report on the functional analysis of the fungal OGT, indicating that the Y. lipolytica OGT retains its catalytic activity, although the physiological role and substrates of YlOGT remain to be elucidated.

  2. Multi-omics analysis reveals regulators of the response to nitrogen limitation in Yarrowia lipolytica.

    PubMed

    Pomraning, Kyle R; Kim, Young-Mo; Nicora, Carrie D; Chu, Rosalie K; Bredeweg, Erin L; Purvine, Samuel O; Hu, Dehong; Metz, Thomas O; Baker, Scott E

    2016-02-25

    Yarrowia lipolytica is an oleaginous ascomycete yeast that stores lipids in response to limitation of nitrogen. While the enzymatic pathways responsible for neutral lipid accumulation in Y. lipolytica are well characterized, regulation of these pathways has received little attention. We therefore sought to characterize the response to nitrogen limitation at system-wide levels, including the proteome, phosphoproteome and metabolome, to better understand how this organism regulates and controls lipid metabolism and to identify targets that may be manipulated to improve lipid yield. We found that ribosome structural genes are down-regulated under nitrogen limitation, during which nitrogen containing compounds (alanine, putrescine, spermidine and urea) are depleted and sugar alcohols and TCA cycle intermediates accumulate (citrate, fumarate and malate). We identified 1219 novel phosphorylation sites in Y. lipolytica, 133 of which change in their abundance during nitrogen limitation. Regulatory proteins, including kinases and DNA binding proteins, are particularly enriched for phosphorylation. Within lipid synthesis pathways, we found that ATP-citrate lyase, acetyl-CoA carboxylase and lecithin cholesterol acyl transferase are phosphorylated during nitrogen limitation while many of the proteins involved in β-oxidation are down-regulated, suggesting that storage lipid accumulation may be regulated by phosphorylation of key enzymes. Further, we identified short DNA elements that associate specific transcription factor families with up- and down-regulated genes. Integration of metabolome, proteome and phosphoproteome data identifies lipid accumulation in response to nitrogen limitation as a two-fold result of increased production of acetyl-CoA from excess citrate and decreased capacity for β-oxidation.

  3. Cloning, Expression, and Biochemical Characterization of an Enantioselective Lipase, YLIP9, from Yarrowia lipolytica MSR80.

    PubMed

    Syal, Poonam; Gupta, Rani

    2015-05-01

    A novel lipase gene, ylip9, of Yarrowia lipolytica MSR80 was cloned and expressed in pEZZ18-HB101 system and was 99% identical to YLIP9 of Y. lipolytica CLIB122. It was purified using IgG-Sepharose as ZZ fused YLIP9 and had specific activity of 0.8 U/mg. ZZ-YLIP9 was most active at pH 8.0 and 70 °C. It was stable over a wide pH range of 3.0-11.0 and 100 % active at 70 °C up to 2 h and had t1/2 of 286.42 min at 80 °C. It showed high specificity toward p-nitrophenyldecanoate with kcat and catalytic efficiency of 30.17 s(-1) and 16.67 mM(-1) s(-1), respectively. It was non-regioselective, but an S-enantioselective lipase and the percentage conversion were enhanced in presence of hexane. ZZ-YLIP9 was stable in all of the organic solvents used, and its activity was enhanced by solvents having logP value less than 2.

  4. Study of trans-trans farnesol effect on hyphae formation by Yarrowia lipolytica.

    PubMed

    Nunes, Patrícia Martins Botelho; da Rocha, Silvia Maria; Amaral, Priscilla Filomena Fonseca; da Rocha-Leão, Maria Helena Miguez

    2013-12-01

    Dimorphism is an ability of certain fungi related to its adaptation to the environment and provides a selective advantage under stress conditions and is associated to the development of human diseases. Hyphae inducing- and inhibitory-effect of farnesol on hyphae formation by the dimorphic yeast Yarrowia lipolytica was evaluated through digital image analysis. The agitation speed of the culture was the most effective hyphae inducer in comparison to bovine calf serum and N-acetylglucosamine. In low agitation system, bovine calf serum was more effective for hyphae formation inducing 57 % of hyphae transition. Farnesol inhibited hyphae formation even in low concentration (300 μM) and this effect increased with increasing concentrations. In the presence of N-acetylglucosamine, this effect was more evident in comparison to the presence of bovine calf serum, which might have protected the cells from farnesol. Digital image analysis was an important tool to evaluate this phenomenon.

  5. New Insights into Sulfur Metabolism in Yeasts as Revealed by Studies of Yarrowia lipolytica

    PubMed Central

    Hébert, Agnès; Forquin-Gomez, Marie-Pierre; Roux, Aurélie; Aubert, Julie; Junot, Christophe; Heilier, Jean-François; Landaud, Sophie; Bonnarme, Pascal

    2013-01-01

    Yarrowia lipolytica, located at the frontier of hemiascomycetous yeasts and fungi, is an excellent candidate for studies of metabolism evolution. This yeast, widely recognized for its technological applications, in particular produces volatile sulfur compounds (VSCs) that fully contribute to the flavor of smear cheese. We report here a relevant global vision of sulfur metabolism in Y. lipolytica based on a comparison between high- and low-sulfur source supplies (sulfate, methionine, or cystine) by combined approaches (transcriptomics, metabolite profiling, and VSC analysis). The strongest repression of the sulfate assimilation pathway was observed in the case of high methionine supply, together with a large accumulation of sulfur intermediates. A high sulfate supply seems to provoke considerable cellular stress via sulfite production, resulting in a decrease of the availability of the glutathione pathway's sulfur intermediates. The most limited effect was observed for the cystine supply, suggesting that the intracellular cysteine level is more controlled than that of methionine and sulfate. Using a combination of metabolomic profiling and genetic experiments, we revealed taurine and hypotaurine metabolism in yeast for the first time. On the basis of a phylogenetic study, we then demonstrated that this pathway was lost by some of the hemiascomycetous yeasts during evolution. PMID:23220962

  6. The expression of the Cuphea palustris thioesterase CpFatB2 in Yarrowia lipolytica triggers oleic acid accumulation.

    PubMed

    Stefan, Alessandra; Hochkoeppler, Alejandro; Ugolini, Luisa; Lazzeri, Luca; Conte, Emanuele

    2016-01-01

    The conversion of industrial by-products into high-value added compounds is a challenging issue. Crude glycerol, a by-product of the biodiesel production chain, could represent an alternative carbon source for the cultivation of oleaginous yeasts. Here, we developed five minimal synthetic glycerol-based media, with different C/N ratios, and we analyzed the production of biomass and fatty acids by Yarrowia lipolytica Po1g strain. We identified two media at the expense of which Y. lipolytica was able to accumulate ∼5 g L(-1) of biomass and 0.8 g L(-1) of fatty acids (0.16 g of fatty acids per g of dry weight). These optimized media contained 0.5 g L(-1) of urea or ammonium sulfate and 20 g L(-1) of glycerol, and were devoid of yeast extract. Moreover, Y. lipolytica was engineered by inserting the FatB2 gene, coding for the CpFatB2 thioesterase from Cuphea palustris, in order to modify the fatty acid composition towards the accumulation of medium-chain fatty acids. Contrary to the expected, the expression of the heterologous gene increased the production of oleic acid, and concomitantly decreased the level of saturated fatty acids. © 2015 American Institute of Chemical Engineers.

  7. Substrates and oxygen dependent citric acid production by Yarrowia lipolytica: insights through transcriptome and fluxome analyses.

    PubMed

    Sabra, Wael; Bommareddy, Rajesh Reddy; Maheshwari, Garima; Papanikolaou, Seraphim; Zeng, An-Ping

    2017-05-08

    Unlike the well-studied backer yeast where catabolite repression represents a burden for mixed substrate fermentation, Yarrowia lipolytica, an oleaginous yeast, is recognized for its potential to produce single cell oils and citric acid from different feedstocks. These versatilities of Y. lipolytica with regards to substrate utilization make it an attractive host for biorefinery application. However, to develop a commercial process for the production of citric acid by Y. lipolytica, it is necessary to better understand the primary metabolism and its regulation, especially for growth on mixed substrate. Controlling the dissolved oxygen concentration (pO 2 ) in Y. lipolytica cultures enhanced citric acid production significantly in cultures grown on glucose in mono- or dual substrate fermentations, whereas with glycerol as mono-substrate no significant effect of pO 2 was found on citrate production. Growth on mixed substrate with glucose and glycerol revealed a relative preference of glycerol utilization by Y. lipolytica. Under optimized conditions with pO 2 control, the citric acid titer on glucose in mono- or in dual substrate cultures was 55 and 50 g/L (with productivity of 0.6 g/L*h in both cultures), respectively, compared to a maximum of 18 g/L (0.2 g/L*h) with glycerol in monosubstrate culture. Additionally, in dual substrate fermentation, glycerol limitation was found to trigger citrate consumption despite the presence of enough glucose in pO 2 -limited culture. The metabolic behavior of this yeast on different substrates was investigated at transcriptomic and 13 C-based fluxomics levels. Upregulation of most of the genes of the pentose phosphate pathway was found in cultures with highest citrate production with glucose in mono- or in dual substrate fermentation with pO 2 control. The activation of the glyoxylate cycle in the oxygen limited cultures and the imbalance caused by glycerol limitation might be the reason for the re-consumption of citrate in

  8. Citric acid production from hydrolysate of pretreated straw cellulose by Yarrowia lipolytica SWJ-1b using batch and fed-batch cultivation.

    PubMed

    Liu, Xiaoyan; Lv, Jinshun; Zhang, Tong; Deng, Yuanfang

    2015-01-01

    In this study, crude cellulase produced by Trichoderma reesei Rut-30 was used to hydrolyze pretreated straw. After the compositions of the hydrolysate of pretreated straw were optimized, the study showed that natural components of pretreated straw without addition of any other components such as (NH4)2SO4, KH2PO4, or Mg(2+) were suitable for citric acid production by Yarrowia lipolytica SWJ-1b, and the optimal ventilatory capacity was 10.0 L/min/L medium. Batch and fed-batch production of citric acid from the hydrolysate of pretreated straw by Yarrowia lipolytica SWJ-1b has been investigated. In the batch cultivation, 25.4 g/L and 26.7 g/L citric acid were yields from glucose and hydrolysate of straw cellulose, respectively, while the cultivation time was 120 hr. In the three-cycle fed-batch cultivation, citric acid (CA) production was increased to 42.4 g/L and the cultivation time was extended to 240 hr. However, iso-citric acid (ICA) yield in fed-batch cultivation (4.0 g/L) was similar to that during the batch cultivation (3.9 g/L), and only 1.6 g/L of reducing sugar was left in the medium at the end of fed-batch cultivation, suggesting that most of the added carbon was used in the cultivation.

  9. Dual CRISPR-Cas9 Cleavage Mediated Gene Excision and Targeted Integration in Yarrowia lipolytica.

    PubMed

    Gao, Difeng; Smith, Spencer; Spagnuolo, Michael; Rodriguez, Gabriel; Blenner, Mark

    2018-05-29

    CRISPR-Cas9 technology has been successfully applied in Yarrowia lipolytica for targeted genomic editing including gene disruption and integration; however, disruptions by existing methods typically result from small frameshift mutations caused by indels within the coding region, which usually resulted in unnatural protein. In this study, a dual cleavage strategy directed by paired sgRNAs is developed for gene knockout. This method allows fast and robust gene excision, demonstrated on six genes of interest. The targeted regions for excision vary in length from 0.3 kb up to 3.5 kb and contain both non-coding and coding regions. The majority of the gene excisions are repaired by perfect nonhomologous end-joining without indel. Based on this dual cleavage system, two targeted markerless integration methods are developed by providing repair templates. While both strategies are effective, homology mediated end joining (HMEJ) based method are twice as efficient as homology recombination (HR) based method. In both cases, dual cleavage leads to similar or improved gene integration efficiencies compared to gene excision without integration. This dual cleavage strategy will be useful for not only generating more predictable and robust gene knockout, but also for efficient targeted markerless integration, and simultaneous knockout and integration in Y. lipolytica. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Biochemical characterization of Yarrowia lipolytica LIP8, a secreted lipase with a cleavable C-terminal region.

    PubMed

    Kamoun, Jannet; Schué, Mathieu; Messaoud, Wala; Baignol, Justine; Point, Vanessa; Mateos-Diaz, Eduardo; Mansuelle, Pascal; Gargouri, Youssef; Parsiegla, Goetz; Cavalier, Jean-François; Carrière, Frédéric; Aloulou, Ahmed

    2015-02-01

    Yarrowia lipolytica is a lipolytic yeast possessing 16 paralog genes coding for lipases. Little information on these lipases has been obtained and only the major secreted lipase, namely YLLIP2, had been biochemically and structurally characterized. Another secreted lipase, YLLIP8, was isolated from Y. lipolytica culture medium and compared with the recombinant enzyme produced in Pichia pastoris. N-terminal sequencing showed that YLLIP8 is produced in its active form after the cleavage of a signal peptide. Mass spectrometry analysis revealed that YLLIP8 recovered from culture medium lacks a C-terminal part of 33 amino acids which are present in the coding sequence. A 3D model of YLLIP8 built from the X-ray structure of the homologous YLLIP2 lipase shows that these truncated amino acids in YLLIP8 belong to an additional C-terminal region predicted to be mainly helical. Western blot analysis shows that YLLIP8 C-tail is rapidly cleaved upon enzyme secretion since both cell-bound and culture supernatant lipases lack this extension. Mature recombinant YLLIP8 displays a true lipase activity on short-, medium- and long-chain triacylglycerols (TAG), with an optimum activity at alkaline pH on medium chain TAG. It has no apparent regioselectivity in TAG hydrolysis, thus generating glycerol and FFAs as final lipolysis products. YLLIP8 properties are distinct from those of the 1,3-regioselective YLLIP2, acting optimally at acidic pH. These lipases are tailored for complementary roles in fatty acid uptake by Y. lipolytica. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Omega-3 production by fermentation of Yarrowia lipolytica: From fed-batch to continuous.

    PubMed

    Xie, Dongming; Miller, Edward; Sharpe, Pamela; Jackson, Ethel; Zhu, Quinn

    2017-04-01

    The omega-3 fatty acid, cis-5,8,11,14,17-eicosapentaenoic acid (C20:5; EPA) has wide-ranging benefits in improving heart health, immune function, and mental health. A sustainable source of EPA production through fermentation of metabolically engineered Yarrowia lipolytica has been developed. In this paper, key fed-batch fermentation conditions were identified to achieve 25% EPA in the yeast biomass, which is so far the highest EPA titer reported in the literature. Dynamic models of the EPA fermentation process were established for analyzing, optimizing, and scaling up the fermentation process. In addition, model simulations were used to develop a two-stage continuous process and compare to single-stage continuous and fed- batch processes. The two stage continuous process, which is equipped with a smaller growth fermentor (Stage 1) and a larger production fermentor (Stage 2), was found to be a superior process to achieve high titer, rate, and yield of EPA. A two-stage continuous fermentation experiment with Y. lipolytica strain Z7334 was designed using the model simulation and then tested in a 2 L and 5 L fermentation system for 1,008 h. Compared with the standard 2 L fed-batch process, the two-stage continuous fermentation process improved the overall EPA productivity by 80% and EPA concentration in the fermenter by 40% while achieving comparable EPA titer in biomass and similar conversion yield from glucose. During the long-term experiment it was also found that the Y. lipolytica strain evolved to reduce byproduct and increase lipid production. This is one of the few continuous fermentation examples that demonstrated improved productivity and concentration of a final product with similar conversion yield compared with a fed-batch process. This paper suggests the two-stage continuous fermentation could be an effective process to achieve improved production of omega-3 and other fermentation products where non-growth or partially growth associated kinetics

  12. Three alcohol dehydrogenase genes and one acetyl-CoA synthetase gene are responsible for ethanol utilization in Yarrowia lipolytica.

    PubMed

    Gatter, Michael; Ottlik, Stephanie; Kövesi, Zsolt; Bauer, Benjamin; Matthäus, Falk; Barth, Gerold

    2016-10-01

    The non-conventional yeast Yarrowia lipolytica is able to utilize a wide range of different substrates like glucose, glycerol, ethanol, acetate, proteins and various hydrophobic molecules. Although most metabolic pathways for the utilization of these substrates have been clarified by now, it was not clear whether ethanol is oxidized by alcohol dehydrogenases or by an alternative oxidation system inside the cell. In order to detect the genes that are required for ethanol utilization in Y. lipolytica, eight alcohol dehydrogenase (ADH) genes and one alcohol oxidase gene (FAO1) have been identified and respective deletion strains were tested for their ability to metabolize ethanol. As a result of this, we found that the availability of ADH1, ADH2 or ADH3 is required for ethanol utilization in Y. lipolytica. A strain with deletions in all three genes is lacking the ability to utilize ethanol as sole carbon source. Although Adh2p showed by far the highest enzyme activity in an in vitro assay, the availability of any of the three genes was sufficient to enable a decent growth. In addition to ADH1, ADH2 and ADH3, an acetyl-CoA synthetase encoding gene (ACS1) was found to be essential for ethanol utilization. As Y. lipolytica is a non-fermenting yeast, it is neither able to grow under anaerobic conditions nor to produce ethanol. To investigate whether Y. lipolytica may produce ethanol, the key genes of alcoholic fermentation in S. cerevisiae, ScADH1 and ScPDC1, were overexpressed in an ADH and an ACS1 deletion strain. However, instead of producing ethanol, the respective strains regained the ability to use ethanol as single carbon source and were still not able to grow under anaerobic conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Characterization of phosphatidic acid phosphatase activity in the oleaginous yeast Yarrowia lipolytica and its role in lipid biosynthesis.

    PubMed

    Hardman, Derell; McFalls, Daniel; Fakas, Stylianos

    2017-02-01

    Phosphatidic acid phosphatase (PAP) catalyses the committed step of triacylglycerol (TAG) biosynthesis and thus regulates the amounts of TAG produced by the cell. TAG is the target of biotechnological processes developed for the production of food lipids or biofuels. These processes are using oleaginous microorganisms like the yeast Yarrowia lipolytica as the TAG producers. Thus manipulating key enzymatic activities like PAP in Y. lipolytica could drive lipid biosynthesis towards TAG production and increase TAG yields. In this study, PAP activity in Y. lipolytica was characterized in detail and its role in lipid biosynthesis was addressed. PAP activity increased 2.5-fold with the addition of Mg 2+ (1 mm) in the assay mixture, which means that most of the PAP activity was due to Mg 2+ -dependent PAP enzymes (e.g. Pah1, App1). In contrast, N-ethylmaleimide (NEM) potently inhibited PAP activity, indicating the presence of NEM-sensitive PAP enzymes (e.g. App1, Lpp1). Localization studies revealed that the majority of PAP activity resides in the membrane fraction, while the cytosolic fraction harbours only a small amount of activity. PAP activity was regulated in a growth-dependent manner, being induced at the early exponential phase and declining thereafter. PAP activity did not correlate with TAG synthesis, which increased as cells progressed from the exponential phase to the early stationary phase. In stationary phase, TAG was mobilized with the concomitant synthesis of sterols and sterol esters. These results provide the first insights into the role of PAP in lipid biosynthesis by Y. lipolytica. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Citric acid production in Yarrowia lipolytica SWJ-1b yeast when grown on waste cooking oil.

    PubMed

    Liu, Xiaoyan; Lv, Jinshun; Xu, Jiaxing; Zhang, Tong; Deng, Yuanfang; He, Jianlong

    2015-03-01

    In this study, citric acid was produced from waste cooking oil by Yarrowia lipolytica SWJ-1b. To get the maximal yield of citric acid, the compositions of the medium for citric acid production were optimized, and our results showed that extra nitrogen and magnesium rather than vitamin B1 and phosphate were needed for CA accumulation when using waste cooking oil. The results also indicated that the optimal initial concentration of the waste cooking oil in the medium for citric acid production was 80.0 g/l, and the ideal inoculation size was 1 × 10(7) cells/l of medium. We also reported that during 10-l fermentation, 31.7 g/l of citric acid, 6.5 g/l of isocitric acid, 5.9 g/l of biomass, and 42.1 g/100.0 g cell dry weight of lipid were attained from 80.0 g/l of waste cooking oil within 336 h. At the end of the fermentation, 94.6 % of the waste cooking oil was utilized by the cells of Y. lipolytica SWJ-1b, and the yield of citric acid was 0.4 g/g waste cooking oil, which suggested that waste cooking oil was a suitable carbon resource for citric acid production.

  15. The RAD52 ortholog of Yarrowia lipolytica is essential for nuclear integrity and DNA repair.

    PubMed

    Campos-Góngora, Eduardo; Andaluz, Encarnación; Bellido, Alberto; Ruiz-Herrera, José; Larriba, German

    2013-08-01

    Yarrowia lipolytica (Yl) is a dimorphic fungus that has become a well-established model for a number of biological processes, including secretion of heterologous and chimerical proteins. However, little is known on the recombination machinery responsible for the integration in the genome of the exogenous DNA encoding for those proteins. We have carried out a phenotypic analysis of rad52 deletants of Y. lipolytica. YlRad52 exhibited 20-30% identity with Rad52 homologues of other eukaryotes, including Saccharomyces cerevisiae and Candida albicans. Ylrad52-Δ strains formed colonies on YPD-agar plates which were spinier and smaller than those from wild type, whereas in YPD liquid cultures they exhibited a decreased grow rate and contained cells with aberrant morphology and fragmented chromatin, supporting a role for homologous recombination (HR) in genome stability under nondamaging conditions. In addition, Ylrad52 mutants showed moderate to high sensitivity to UV light, oxidizing agents and compounds that cause single- (SSB) and double-strand breaks (DSB), indicating an important role for Rad52 in DNA repair. These findings extend to Yl previous observations indicating that RAD52 is a crucial gene for DNA repair in other fungi, including S. cerevisiae, C. albicans and Schizosaccharomyces pombe. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production.

    PubMed

    Xie, Dongming; Jackson, Ethel N; Zhu, Quinn

    2015-02-01

    The omega-3 fatty acids, cis-5, 8, 11, 14, and 17-eicosapentaenoic acid (C20:5; EPA) and cis-4, 7, 10, 13, 16, and 19-docosahexaenoic acid (C22:6; DHA), have wide-ranging benefits in improving heart health, immune function, mental health, and infant cognitive development. Currently, the major source for EPA and DHA is from fish oil, and a minor source of DHA is from microalgae. With the increased demand for EPA and DHA, DuPont has developed a clean and sustainable source of the omega-3 fatty acid EPA through fermentation using metabolically engineered strains of Yarrowia lipolytica. In this mini-review, we will focus on DuPont's technology for EPA production. Specifically, EPA biosynthetic and supporting pathways have been introduced into the oleaginous yeast to synthesize and accumulate EPA under fermentation conditions. This Yarrowia platform can also produce tailored omega-3 (EPA, DHA) and/or omega-6 (ARA, GLA) fatty acid mixtures in the cellular lipid profiles. Fundamental research such as metabolic engineering for strain construction, high-throughput screening for strain selection, fermentation process development, and process scale-up were all needed to achieve the high levels of EPA titer, rate, and yield required for commercial application. Here, we summarize how we have combined the fundamental bioscience and the industrial engineering skills to achieve large-scale production of Yarrowia biomass containing high amounts of EPA, which led to two commercial products, New Harvest™ EPA oil and Verlasso® salmon.

  17. Influence of oxygen availability on the metabolism and morphology of Yarrowia lipolytica: insights into the impact of glucose levels on dimorphism.

    PubMed

    Timoumi, Asma; Bideaux, Carine; Guillouet, Stéphane E; Allouche, Yohan; Molina-Jouve, Carole; Fillaudeau, Luc; Gorret, Nathalie

    2017-10-01

    Dynamic behavior of Yarrowia lipolytica W29 strain under conditions of fluctuating, low, and limited oxygen supply was characterized in batch and glucose-limited chemostat cultures. In batch cultures, transient oscillations between oxygen-rich and -deprived environments induced a slight citric acid accumulation (lower than 29 mg L -1 ). By contrast, no citric acid was detected in continuous fermentations for all stress conditions: full anoxia (zero pO 2 value, 100% N 2 ), limited (zero pO 2 value, 75% of cell needs), and low (pO 2 close to 2%) dissolved oxygen (DO) levels. The macroscopic behavior (kinetic parameters, yields, viability) of Y. lipolytica was not significantly affected by the exposure to DO fluctuations under both modes of culture. Nevertheless, conditions of oxygen limitation resulted in the destabilization of the glucose-limited growth during the continuous cultivations. Morphological responses of Y. lipolytica to DO oscillations were different between batch and chemostat runs. Indeed, a yeast-to-mycelium transition was induced and progressively intensified during the batch fermentations (filamentous subpopulation reaching 74% (v/v)). While, in chemostat bioreactors, the culture consisted mainly of yeast-like cells (mean diameter not exceeding 5.7 μm) with a normal size distribution. During the continuous cultures, growth at low DO concentration did not induce any changes in Y. lipolytica morphology. Dimorphism (up to 80.5% (v/v) of filaments) was only detected under conditions of oxygen limitation in the presence of a residual glucose excess (more than 0.75 g L -1 ). These data suggest an impact of glucose levels on the signaling pathways regulating dimorphic responses in Y. lipolytica.

  18. An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica.

    PubMed

    Liu, Leqian; Pan, Anny; Spofford, Caitlin; Zhou, Nijia; Alper, Hal S

    2015-05-01

    Lipogenic organisms provide an ideal platform for biodiesel and oleochemical production. Through our previous rational metabolic engineering efforts, lipogenesis titers in Yarrowia lipolytica were significantly enhanced. However, the resulting strain still suffered from decreased biomass generation rates. Here, we employ a rapid evolutionary metabolic engineering approach linked with a floating cell enrichment process to improve lipogenesis rates, titers, and yields. Through this iterative process, we were able to ultimately improve yields from our prior strain by 55% to achieve production titers of 39.1g/L with upwards of 76% of the theoretical maximum yield of conversation. Isolated cells were saturated with up to 87% lipid content. An average specific productivity of 0.56g/L/h was achieved with a maximum instantaneous specific productivity of 0.89g/L/h during the lipid production phase in fermentation. Genomic sequencing of the evolved strains revealed a link between a decrease/loss of function mutation of succinate semialdehyde dehydrogenase, uga2, suggesting the importance of gamma-aminobutyric acid assimilation in lipogenesis. This linkage was validated through gene deletion experiments. This work presents an improved host strain that can serve as a platform for efficient oleochemical production. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. Regulation of nitrogen metabolism by GATA zinc finger transcription factors in Yarrowia lipolytica

    DOE PAGES

    Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.; ...

    2017-02-15

    Here, fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeast Yarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism in Y. lipolytica. Deletion of the GATA transcription factor genes gzf3 and gzf2 resulted in nitrogen source-specific growth defects and greatermore » accumulation of lipids when the cells were growing on a simple nitrogen source. Deletion of gzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion of gzf3 results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, while gzf2 is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressor mig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism.« less

  20. Regulation of nitrogen metabolism by GATA zinc finger transcription factors in Yarrowia lipolytica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.

    Here, fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeast Yarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism in Y. lipolytica. Deletion of the GATA transcription factor genes gzf3 and gzf2 resulted in nitrogen source-specific growth defects and greatermore » accumulation of lipids when the cells were growing on a simple nitrogen source. Deletion of gzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion of gzf3 results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, while gzf2 is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressor mig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism.« less

  1. Production of Laccase by Recombinant Yarrowia lipolytica from Molasses: Bioprocess Development Using Statistical Modeling and Increase Productivity in Shake-Flask and Bioreactor Cultures.

    PubMed

    Darvishi, Farshad; Moradi, Marzieh; Madzak, Catherine; Jolivalt, Claude

    2017-03-01

    Laccases are used in numerous applications, from green degradation of various xenobiotic compounds, waste detoxification, textile dye bleaching, and delignification of lignocellulose materials to biofuel production. In this study, the recombinant Yarrowia lipolytica YL4 strain carrying the white-rot fungus Trametes versicolor laccase IIIb gene was used for laccase production from beet molasses as an agro-industrial residue. Response surface methodology was used to statistical optimization of the production of laccase by Y. lipolytica using an industrial medium containing molasses which allows a six times increase in laccase activity compared to primary medium contains glucose after 144 h. In bioreactor cultivation after 48 h, laccase production reached to 3.7- and 22.5-fold more than optimized and primary media in shake-flask cultures, respectively. Laccase productivity in bioreactor (0.0937 U/h) was higher than shake-flask culture (0.0084 U/h). The present study provides valuable information about statistical optimization of bioprocess development for cost-effective production of laccase and other heterologous proteins in Y. lipolytica from beet molasses as sole carbon source, thus allowing the valorization and decreasing environmental pollution of this agro-industrial waste.

  2. The Strictly Aerobic Yeast Yarrowia lipolytica Tolerates Loss of a Mitochondrial DNA-Packaging Protein

    PubMed Central

    Bakkaiova, Jana; Arata, Kosuke; Matsunobu, Miki; Ono, Bungo; Aoki, Tomoyo; Lajdova, Dana; Nebohacova, Martina; Nosek, Jozef; Miyakawa, Isamu

    2014-01-01

    Mitochondrial DNA (mtDNA) is highly compacted into DNA-protein structures termed mitochondrial nucleoids (mt-nucleoids). The key mt-nucleoid components responsible for mtDNA condensation are HMG box-containing proteins such as mammalian mitochondrial transcription factor A (TFAM) and Abf2p of the yeast Saccharomyces cerevisiae. To gain insight into the function and organization of mt-nucleoids in strictly aerobic organisms, we initiated studies of these DNA-protein structures in Yarrowia lipolytica. We identified a principal component of mt-nucleoids in this yeast and termed it YlMhb1p (Y. lipolytica mitochondrial HMG box-containing protein 1). YlMhb1p contains two putative HMG boxes contributing both to DNA binding and to its ability to compact mtDNA in vitro. Phenotypic analysis of a Δmhb1 strain lacking YlMhb1p resulted in three interesting findings. First, although the mutant exhibits clear differences in mt-nucleoids accompanied by a large decrease in the mtDNA copy number and the number of mtDNA-derived transcripts, its respiratory characteristics and growth under most of the conditions tested are indistinguishable from those of the wild-type strain. Second, our results indicate that a potential imbalance between subunits of the respiratory chain encoded separately by nuclear DNA and mtDNA is prevented at a (post)translational level. Third, we found that mtDNA in the Δmhb1 strain is more prone to mutations, indicating that mtHMG box-containing proteins protect the mitochondrial genome against mutagenic events. PMID:24972935

  3. Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis.

    PubMed

    Dulermo, Thierry; Lazar, Zbigniew; Dulermo, Rémi; Rakicka, Magdalena; Haddouche, Ramedane; Nicaud, Jean-Marc

    2015-09-01

    The role of the two key enzymes of fatty acid (FA) synthesis, ATP-citrate lyase (Acl) and malic enzyme (Mae), was analyzed in the oleaginous yeast Yarrowia lipolytica. In most oleaginous yeasts, Acl and Mae are proposed to provide, respectively, acetyl-CoA and NADPH for FA synthesis. Acl was mainly studied at the biochemical level but no strain depleted for this enzyme was analyzed in oleaginous microorganisms. On the other hand the role of Mae in FA synthesis in Y. lipolytica remains unclear since it was proposed to be a mitochondrial NAD(H)-dependent enzyme and not a cytosolic NADP(H)-dependent enzyme. In this study, we analyzed for the first time strains inactivated for corresponding genes. Inactivation of ACL1 decreases FA synthesis by 60 to 80%, confirming its essential role in FA synthesis in Y. lipolytica. Conversely, inactivation of MAE1 has no effects on FA synthesis, except in a FA overaccumulating strain where it improves FA synthesis by 35%. This result definitively excludes Mae as a major key enzyme for FA synthesis in Y. lipolytica. During the analysis of both mutants, we observed a negative correlation between FA and mannitol level. As mannitol and FA pathways may compete for carbon storage, we inactivated YlSDR, encoding a mannitol dehydrogenase converting fructose and NADPH into mannitol and NADP+. The FA content of the resulting mutant was improved by 60% during growth on fructose, demonstrating that mannitol metabolism may modulate FA synthesis in Y. lipolytica. Copyright © 2015. Published by Elsevier B.V.

  4. Modeling and optimization of lipid accumulation by Yarrowia lipolytica from glucose under nitrogen depletion conditions.

    PubMed

    Robles-Rodríguez, Carlos E; Muñoz-Tamayo, Rafael; Bideaux, Carine; Gorret, Nathalie; Guillouet, Stéphane E; Molina-Jouve, Carole; Roux, Gilles; Aceves-Lara, César A

    2018-05-01

    Oleaginous yeasts have been seen as a feasible alternative to produce the precursors of biodiesel due to their capacity to accumulate lipids as triacylglycerol having profiles with high content of unsaturated fatty acids. The yeast Yarrowia lipolytica is a promising microorganism that can produce lipids under nitrogen depletion conditions and excess of the carbon source. However, under these conditions, this yeast also produces citric acid (overflow metabolism) decreasing lipid productivity. This work presents two mathematical models for lipid production by Y. lipolytica from glucose. The first model is based on Monod and inhibition kinetics, and the second one is based on the Droop quota model approach, which is extended to yeast. The two models showed good agreements with the experimental data used for calibration and validation. The quota based model presented a better description of the dynamics of nitrogen and glucose dynamics leading to a good management of N/C ratio which makes this model interesting for control purposes. Then, quota model was used to evaluate, by means of simulation, a scenario for optimizing lipid productivity and lipid content. For that, a control strategy was designed by approximating the flow rates of glucose and nitrogen with piecewise linear functions. Simulation results achieved productivity of 0.95 g L -1  hr -1 and lipid content fraction of 0.23 g g -1 , which indicates that this strategy is a promising alternative for the optimization of lipid production. © 2017 Wiley Periodicals, Inc.

  5. Overproduction of Fatty Acid Ethyl Esters by the Oleaginous Yeast Yarrowia lipolytica through Metabolic Engineering and Process Optimization.

    PubMed

    Gao, Qi; Cao, Xuan; Huang, Yu-Ying; Yang, Jing-Lin; Chen, Jun; Wei, Liu-Jing; Hua, Qiang

    2018-05-18

    Recent advances in the production of biofuels by microbes have attracted attention due to increasingly limited fossil fuels. Biodiesels, especially fatty acid ethyl esters (FAEEs), are considered a potentially fully sustainable fuel in the near future due to similarities with petrodiesels and compatibility with existing infrastructure. However, biosynthesis of FAEEs is limited by the supply of precursor lipids and acetyl-CoA. In the present study, we explored the production potential of an engineered biosynthetic pathway coupled to the addition of ethanol in the oleaginous yeast Yarrowia lipolytica. This type of yeast is able to supply a greater amount of precursor lipids than species typically used. To construct the FAEEs synthesis pathway, WS genes that encode wax ester synthases (WSs) from different species were codon-optimized and heterologously expressed in Y. lipolytica. The most productive engineered strain was found to express a WS gene from Marinobacter hydrocarbonoclasticus strain DSM 8798. To stepwisely increase FAEEs production, we optimized the promoter of WS overexpression, eliminated β-oxidation by deleting the PEX10 gene in our engineered strains, and redirected metabolic flux toward acetyl-CoA. The new engineered strain, coupled with an optimized ethanol concentration, led to an approximate 5.5-fold increase in extracellular FAEEs levels compared to the wild-type strain and a maximum FAEEs titer of 1.18 g/L in shake flask cultures. In summary, the present study demonstrated that an engineered Y. lipolytica strain possessed a high capacity for FAEEs production and may serve as a platform for more efficient biodiesel production in the future.

  6. Inference and interrogation of a coregulatory network in the context of lipid accumulation in Yarrowia lipolytica.

    PubMed

    Trébulle, Pauline; Nicaud, Jean-Marc; Leplat, Christophe; Elati, Mohamed

    2017-01-01

    Complex phenotypes, such as lipid accumulation, result from cooperativity between regulators and the integration of multiscale information. However, the elucidation of such regulatory programs by experimental approaches may be challenging, particularly in context-specific conditions. In particular, we know very little about the regulators of lipid accumulation in the oleaginous yeast of industrial interest Yarrowia lipolytica . This lack of knowledge limits the development of this yeast as an industrial platform, due to the time-consuming and costly laboratory efforts required to design strains with the desired phenotypes. In this study, we aimed to identify context-specific regulators and mechanisms, to guide explorations of the regulation of lipid accumulation in Y. lipolytica . Using gene regulatory network inference, and considering the expression of 6539 genes over 26 time points from GSE35447 for biolipid production and a list of 151 transcription factors, we reconstructed a gene regulatory network comprising 111 transcription factors, 4451 target genes and 17048 regulatory interactions (YL-GRN-1) supported by evidence of protein-protein interactions. This study, based on network interrogation and wet laboratory validation (a) highlights the relevance of our proposed measure, the transcription factors influence, for identifying phases corresponding to changes in physiological state without prior knowledge (b) suggests new potential regulators and drivers of lipid accumulation and (c) experimentally validates the impact of six of the nine regulators identified on lipid accumulation, with variations in lipid content from +43.2% to -31.2% on glucose or glycerol.

  7. A comparative study on glycerol metabolism to erythritol and citric acid in Yarrowia lipolytica yeast cells.

    PubMed

    Tomaszewska, Ludwika; Rakicka, Magdalena; Rymowicz, Waldemar; Rywińska, Anita

    2014-09-01

    Citric acid and erythritol biosynthesis from pure and crude glycerol by three acetate-negative mutants of Yarrowia lipolytica yeast was investigated in batch cultures in a wide pH range (3.0-6.5). Citric acid biosynthesis was the most effective at pH 5.0-5.5 in the case of Wratislavia 1.31 and Wratislavia AWG7. With a decreasing pH value, the direction of biosynthesis changed into erythritol synthesis accompanied by low production of citric acid. Pathways of glycerol conversion into erythritol and citric acid were investigated in Wratislavia K1 cells. Enzymatic activity was compared in cultures run at pH 3.0 and 4.5, that is, under conditions promoting the production of erythritol and citric acid, respectively. The effect of pH value (3.0 and 4.5) and NaCl presence on the extracellular production and intracellular accumulation of citric acid and erythritol was compared as well. Low pH and NaCl resulted in diminished activity of glycerol kinase, whereas such conditions stimulated the activity of glycerol-3-phosphate dehydrogenase. The presence of NaCl strongly influenced enzymes activity - the effective erythritol production was correlated with a high activity of transketolase and erythrose reductase. Therefore, presented results confirmed that transketolase and erythrose reductase are involved in the overproduction of erythritol in the cells of Y. lipolytica yeast. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Overlapping reading frames at the LYS5 locus in the yeast Yarrowia lipolytica.

    PubMed Central

    Xuan, J W; Fournier, P; Declerck, N; Chasles, M; Gaillardin, C

    1990-01-01

    Mutants affected at the LYS5 locus of Yarrowia lipolytica lack detectable dehydrogenase (SDH) activity. The LYS5 gene has previously been cloned, and we present here the sequence of the 2.5-kilobase-pair (kb) DNA fragment complementing the lys5 mutation. Two large antiparallel open reading frames (ORF1 and ORF2) were observed, flanked by potential transcription signals. Both ORFs appear to be transcribed, but several lines of evidence suggest that only ORF2 is translated and encodes SDH. (i) The global amino acid compositions of Saccharomyces cerevisiae SDH and of the putative ORF2 product are similar and that of ORF1 is dissimilar. (ii) An in-frame translational fusion of ORF2 with the Escherichia coli lacZ gene was introduced into yeast cells and resulted in a beta-galactosidase activity regulated similarly to SDH; no beta-galactosidase activity was obtained with an in-frame fusion of ORF1 with lacZ. (iii) The introduction of a stop codon at the beginning of ORF2 prevented SDH expression in yeast cells, whereas no phenotypic effect was observed when ORF1 translation was blocked. Images PMID:2388625

  9. Leucine Biosynthesis Is Involved in Regulating High Lipid Accumulation in Yarrowia lipolytica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerkhoven, Eduard J.; Kim, Young-Mo; Wei, Siwei

    ABSTRACT The yeastYarrowia lipolyticais a potent accumulator of lipids, and lipogenesis in this organism can be influenced by a variety of factors, such as genetics and environmental conditions. Using a multifactorial study, we elucidated the effects of both genetic and environmental factors on regulation of lipogenesis inY. lipolyticaand identified how two opposite regulatory states both result in lipid accumulation. This study involved comparison of a strain overexpressing diacylglycerol acyltransferase (DGA1) with a control strain grown under either nitrogen or carbon limitation conditions. A strong correlation was observed between the responses on the transcript and protein levels. Combination ofDGA1overexpression with nitrogen limitationmore » resulted in a high level of lipid accumulation accompanied by downregulation of several amino acid biosynthetic pathways, including that of leucine in particular, and these changes were further correlated with a decrease in metabolic fluxes. This downregulation was supported by the measured decrease in the level of 2-isopropylmalate, an intermediate of leucine biosynthesis. Combining the multi-omics data with putative transcription factor binding motifs uncovered a contradictory role for TORC1 in controlling lipid accumulation, likely mediated through 2-isopropylmalate and a Leu3-like transcription factor. IMPORTANCEThe ubiquitous metabolism of lipids involves refined regulation, and an enriched understanding of this regulation would have wide implications. Various factors can influence lipid metabolism, including the environment and genetics. We demonstrated, using a multi-omics and multifactorial experimental setup, that multiple factors affect lipid accumulation in the yeastYarrowia lipolytica. Using integrative analysis, we identified novel interactions between nutrient restriction and genetic factors involving regulators that are highly conserved among eukaryotes. Given that lipid metabolism is involved in many

  10. Functional overexpression and characterization of lipogenesis-related genes in the oleaginous yeast Yarrowia lipolytica.

    PubMed

    Silverman, Andrew M; Qiao, Kangjian; Xu, Peng; Stephanopoulos, Gregory

    2016-04-01

    Single cell oil (SCO) is an attractive energy source due to scalability, utilization of low-cost renewable feedstocks, and type of product(s) made. Engineering strains capable of producing high lipid titers and yields is crucial to the economic viability of these processes. However, lipid synthesis in cells is a complex phenomenon subject to multiple layers of regulation, making gene target identification a challenging task. In this study, we aimed to identify genes in the oleaginous yeast Yarrowia lipolytica whose overexpression enhances lipid production by this organism. To this end, we examined the effect of the overexpression of a set of 44 native genes on lipid production in Y. lipolytica, including those involved in glycerolipid synthesis, fatty acid synthesis, central carbon metabolism, NADPH generation, regulation, and metabolite transport and characterized each resulting strain's ability to produce lipids growing on both glucose and acetate as a sole carbon source. Our results suggest that a diverse subset of genes was effective at individually influencing lipid production in Y. lipolytica, sometimes in a substrate-dependent manner. The most productive strain on glucose overexpressed the diacylglycerol acyltransferase DGA2 gene, increasing lipid titer, cellular content, and yield by 236, 165, and 246 %, respectively, over our control strain. On acetate, our most productive strain overexpressed the acylglycerol-phosphate acyltransferase SLC1 gene, with a lipid titer, cellular content, and yield increase of 99, 91, and 151 %, respectively, over the control strain. Aside from genes encoding enzymes that directly catalyze the reactions of lipid synthesis, other ways by which lipogenesis was increased in these cells include overexpressing the glycerol-3-phosphate dehydrogenase (GPD1) gene to increase production of glycerol head groups and overexpressing the 6-phosphogluconolactonase (SOL3) gene from the oxidative pentose phosphate pathway to increase NADPH

  11. Physical and physiological impacts of different foam control strategies during a process involving hydrophobic substrate for the lipase production by Yarrowia lipolytica.

    PubMed

    Kar, Tambi; Destain, Jacqueline; Thonart, Philippe; Delvigne, Frank

    2012-05-01

    The potentialities for the intensification of the process of lipase production by the yeast Yarrowia lipolytica on a renewable hydrophobic substrate (methyl oleate) have to be investigated. The key factor governing the lipase yield is the intensification of the oxygen transfer rate, considering the fact that Y. lipolytica is a strict aerobe. However, considering the nature of the substrate and the capacity for protein excretion and biosurfactant production of Y. lipolytica, intensification of oxygen transfer rate is accompanied by an excessive formation of foam. Two different foam control strategies have thus been implemented: a classical chemical foam control strategy and a mechanical foam control (MFM) based on the Stirring As Foam Disruption principle. The second strategy allows foam control without any modifications of the physico-chemical properties of the broth. However, the MFM system design induced the formation of a persistent foam layer in the bioreactor. This phenomenon has led to the segregation of microbial cells between the foam phase and the liquid phase in the case of the bioreactors operated with MFM control, and induced a reduction at the level of the lipase yield. More interestingly, flow cytometry experiments have shown that the residence time of microbial cells in the foam phase tends to induce a dimorphic transition which could potentially explain the reduction of lipase excretion.

  12. Developing cellulolytic Yarrowia lipolytica as a platform for the production of valuable products in consolidated bioprocessing of cellulose.

    PubMed

    Guo, Zhong-Peng; Robin, Julien; Duquesne, Sophie; O'Donohue, Michael Joseph; Marty, Alain; Bordes, Florence

    2018-01-01

    Both industrial biotechnology and the use of cellulosic biomass as feedstock for the manufacture of various commercial goods are prominent features of the bioeconomy. In previous work, with the aim of developing a consolidated bioprocess for cellulose bioconversion, we conferred cellulolytic activity of Yarrowia lipolytica , one of the most widely studied "nonconventional" oleaginous yeast species. However, further engineering this strain often leads to the loss of previously introduced heterologous genes due to the presence of multiple LoxP sites when using Cre -recombinase to remove previously employed selection markers. In the present study, we first optimized the strategy of expression of multiple cellulases and rescued selection makers to obtain an auxotrophic cellulolytic Y. lipolytica strain. Then we pursued the quest, exemplifying how this cellulolytic Y. lipolytica strain can be used as a CBP platform for the production of target products. Our results reveal that overexpression of SCD1 gene, encoding stearoyl-CoA desaturase, and DGA1 , encoding acyl-CoA:diacylglycerol acyltransferase, confers the obese phenotype to the cellulolytic Y. lipolytica . When grown in batch conditions and minimal medium, the resulting strain consumed 12 g/L cellulose and accumulated 14% (dry cell weight) lipids. Further enhancement of lipid production was achieved either by the addition of glucose or by enhancing cellulose consumption using a commercial cellulase cocktail. Regarding the latter option, although the addition of external cellulases is contrary to the concept of CBP, the amount of commercial cocktail used remained 50% lower than that used in a conventional process (i.e., without internalized production of cellulases). The introduction of the LIP2 gene into cellulolytic Y. lipolytica led to the production of a strain capable of producing lipase 2 while growing on cellulose. Remarkably, when the strain was grown on glucose, the expression of six cellulases did not

  13. A survey of yeast from the Yarrowia clade for lipid production in dilute-acid pretreated lignocellulosic biomass hydrolysate

    USDA-ARS?s Scientific Manuscript database

    Yarrowia lipolytica is an oleaginous yeast species that has attracted attention as a model organism for synthesis of single cell oil. Among over 50 isolates of Y. lipolytica identified, only a few of the strains have been studied extensively. Furthermore, 12 other yeast species were recently assigne...

  14. Identification of the Transcription Factor Znc1p, which Regulates the Yeast-to-Hypha Transition in the Dimorphic Yeast Yarrowia lipolytica

    PubMed Central

    Martinez-Vazquez, Azul; Gonzalez-Hernandez, Angelica; Domínguez, Ángel; Rachubinski, Richard; Riquelme, Meritxell; Cuellar-Mata, Patricia; Guzman, Juan Carlos Torres

    2013-01-01

    The dimorphic yeast Yarrowia lipolytica is used as a model to study fungal differentiation because it grows as yeast-like cells or forms hyphal cells in response to changes in environmental conditions. Here, we report the isolation and characterization of a gene, ZNC1, involved in the dimorphic transition in Y. lipolytica. The ZNC1 gene encodes a 782 amino acid protein that contains a Zn(II)2C6 fungal-type zinc finger DNA-binding domain and a leucine zipper domain. ZNC1 transcription is elevated during yeast growth and decreases during the formation of mycelium. Cells in which ZNC1 has been deleted show increased hyphal cell formation. Znc1p-GFP localizes to the nucleus, but mutations within the leucine zipper domain of Znc1p, and to a lesser extent within the Zn(II)2C6 domain, result in a mislocalization of Znc1p to the cytoplasm. Microarrays comparing gene expression between znc1::URA3 and wild-type cells during both exponential growth and the induction of the yeast-to-hypha transition revealed 1,214 genes whose expression was changed by 2-fold or more under at least one of the conditions analyzed. Our results suggest that Znc1p acts as a transcription factor repressing hyphal cell formation and functions as part of a complex network regulating mycelial growth in Y. lipolytica. PMID:23826133

  15. High-throughput fermentation screening for the yeast Yarrowia lipolytica with real-time monitoring of biomass and lipid production.

    PubMed

    Back, Alexandre; Rossignol, Tristan; Krier, François; Nicaud, Jean-Marc; Dhulster, Pascal

    2016-08-23

    Because the model yeast Yarrowia lipolytica can synthesize and store lipids in quantities up to 20 % of its dry weight, it is a promising microorganism for oil production at an industrial scale. Typically, optimization of the lipid production process is performed in the laboratory and later scaled up for industrial production. However, the scale-up process can be complicated by genetic modifications that are optimized for one set of growing conditions can confer a less-than-optimal phenotype in a different environment. To address this issue, small cultivation systems have been developed that mimic the conditions in benchtop bioreactors. In this work, we used one such microbioreactor system, the BioLector, to develop high-throughput fermentation procedures that optimize growth and lipid accumulation in Y. lipolytica. Using this system, we were able to monitor lipid and biomass production in real time throughout the culture duration. The BioLector can monitor the growth of Y. lipolytica in real time by evaluating scattered light; this produced accurate measurements until cultures reached an equivalent of OD600nm = 115 and a cell dry weight of 100 g L(-1). In addition, a lipid-specific fluorescent probe was applied which reliably monitored lipid production up to a concentration of 12 g L(-1). Through screening various growing conditions, we determined that a carbon/nitrogen ratio of 35 was the most efficient for lipid production. Further screening showed that ammonium chloride and glycerol were the most valuable nitrogen and carbon sources, respectively, for growth and lipid production. Moreover, a carbon concentration above 1 M appeared to impair growth and lipid accumulation. Finally, we used these optimized conditions to screen engineered strains of Y. lipolytica with high lipid-accumulation capability. The growth and lipid content of the strains cultivated in the BioLector were compared to those grown in benchtop bioreactors. To our knowledge, this is the

  16. High performance microbiological transformation of L-tyrosine to L-dopa by Yarrowia lipolytica NRRL-143

    PubMed Central

    Ali, Sikander; Shultz, Jeffry L; Ikram-ul-Haq

    2007-01-01

    Background The 3,4-dihydroxy phenyl L-alanine (L-dopa) is a drug of choice for Parkinson's disease, controlling changes in energy metabolism enzymes of the myocardium following neurogenic injury. Aspergillus oryzae is commonly used for L-dopa production; however, potential improvements in ease of handling, growth rate and environmental impact have led to an interest in exploiting alternative yeasts. The two important elements required for L-dopa production are intracellular tyrosinases (thus pre-grown yeast cells are required for the transformation of L-tyrosine to L-dopa) and L-ascorbate, which acts as a reducing agent. Results Pre-grown cells of Yarrowia lipolytica NRRL-143 were used for the microbiological transformation of L-tyrosine to L-dopa. Different diatomite concentrations (0.5–3.0 mg/ml) were added to the acidic (pH 3.5) reaction mixture. Maximum L-dopa biosynthesis (2.96 mg/ml L-dopa from 2.68 mg/ml L-tyrosine) was obtained when 2.0 mg/ml diatomite was added 15 min after the start of the reaction. After optimizing reaction time (30 min), and yeast cell concentration (2.5 mg/ml), an overall 12.5 fold higher L-dopa production rate was observed when compared to the control. Significant enhancements in Yp/s, Qs and qs over the control were observed. Conclusion Diatomite (2.0 mg/ml) addition 15 min after reaction commencement improved microbiological transformation of L-tyrosine to L-dopa (3.48 mg/ml; p ≤ 0.05) by Y. lipolytica NRRL-143. A 35% higher substrate conversion rate was achieved when compared to the control. PMID:17705832

  17. L-Phenylalanine catabolism and 2-phenylethanol synthesis in Yarrowia lipolytica--mapping molecular identities through whole-proteome quantitative mass spectrometry analysis.

    PubMed

    Celińska, Ewelina; Olkowicz, Mariola; Grajek, Włodzimierz

    2015-08-01

    A world-wide effort is now being pursued towards the development of flavors and fragrances (F&F) production independently from traditional sources, as well as autonomously from depleting fossil fuel supplies. Biotechnological production of F&F by microbes has emerged as a vivid solution to the current market limitations. Amongst a wide variety of fragrant chemicals, 2-PE is of significant interest to both scientific and industrial community. Although the general overview of the 2-PE synthesis pathway is commonly known, involvement of particular molecular identities in this pathway has not been elucidated in Yarrowia lipolytica to date. The aim of this study was mapping molecular identities involved in 2-PE synthesis in Y. lipolytica. To acquire a comprehensive landscape of the proteins that are directly and indirectly involved in L-Phe degradation and 2-PE synthesis, we took advantage of comprehensibility and sensitivity of high-throughput LC-MS/MS-quantitative analysis. Amongst a number of proteins involved in amino acid turnover and the central carbon metabolism, enzymes involved in L-Phe conversion to 2-PE have been identified. Results on yeast-to-hyphae transition in relation to the character of the provided nitrogen source have been presented. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Regulation of Nitrogen Metabolism by GATA Zinc Finger Transcription Factors in Yarrowia lipolytica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.

    ABSTRACT Fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeastYarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism inY. lipolytica. Deletion of the GATA transcription factor genesgzf3andgzf2resulted in nitrogen source-specific growth defects and greater accumulation of lipids when the cells weremore » growing on a simple nitrogen source. Deletion ofgzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion ofgzf3results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, whilegzf2is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressormig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism. IMPORTANCENitrogen source is commonly used to control lipid production in industrial fungi. Here we identified regulators of nitrogen catabolite repression in the oleaginous yeast

  19. Molecular Characterization of the Elaeis guineensis Medium-Chain Fatty Acid Diacylglycerol Acyltransferase DGAT1-1 by Heterologous Expression in Yarrowia lipolytica.

    PubMed

    Aymé, Laure; Jolivet, Pascale; Nicaud, Jean-Marc; Chardot, Thierry

    2015-01-01

    Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics.

  20. Molecular Characterization of the Elaeis guineensis Medium-Chain Fatty Acid Diacylglycerol Acyltransferase DGAT1-1 by Heterologous Expression in Yarrowia lipolytica

    PubMed Central

    Aymé, Laure; Jolivet, Pascale; Nicaud, Jean-Marc; Chardot, Thierry

    2015-01-01

    Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics. PMID:26581109

  1. Proteomic analysis of the response of α-ketoglutarate-producer Yarrowia lipolytica WSH-Z06 to environmental pH stimuli.

    PubMed

    Guo, Hongwei; Wan, Hui; Chen, Hongwen; Fang, Fang; Liu, Song; Zhou, Jingwen

    2016-10-01

    During bioproduction of short-chain carboxylates, a shift in pH is a common strategy for enhancing the biosynthesis of target products. Based on two-dimensional gel electrophoresis, comparative proteomics analysis of general and mitochondrial protein samples was used to investigate the cellular responses to environmental pH stimuli in the α-ketoglutarate overproducer Yarrowia lipolytica WSH-Z06. The lower environmental pH stimuli tensioned intracellular acidification and increased the level of reactive oxygen species (ROS). A total of 54 differentially expressed protein spots were detected, and 11 main cellular processes were identified to be involved in the cellular response to environmental pH stimuli. Slight decrease in cytoplasmic pH enhanced the cellular acidogenicity by elevating expression level of key enzymes in tricarboxylic acid cycle (TCA cycle). Enhanced energy biosynthesis, ROS elimination, and membrane potential homeostasis processes were also employed as cellular defense strategies to compete with environmental pH stimuli. Owing to its antioxidant role of α-ketoglutarate, metabolic flux shifted to α-ketoglutarate under lower pH by Y. lipolytica in response to acidic pH stimuli. The identified differentially expressed proteins provide clues for understanding the mechanisms of the cellular responses and for enhancing short-chain carboxylate production through metabolic engineering or process optimization strategies in combination with manipulation of environmental conditions.

  2. Ylpex5 mutation partially suppresses the defective hyphal growth of a Yarrowia lipolytica ceramide synthase mutant, Yllac1, by recovering lipid raft polarization and vacuole morphogenesis.

    PubMed

    Bal, Jyotiranjan; Lee, Hye-Jeong; Cheon, Seon Ah; Lee, Kyung Jin; Oh, Doo-Byoung; Kim, Jeong-Yoon

    2013-01-01

    Sphingolipids are involved in cell differentiation and morphogenesis in eukaryotic cells. In this study, YlLac1p, a ceramide synthase required for glucosylceramide (GlcCer) synthesis, was found to be essential for hyphal growth in Yarrowia lipolytica. Y. lipolytica GlcCer was shown to be composed of a C16:0 fatty acid, which is hydroxylated at C2, and a C18:2 long chain base, which is unsaturated at both C4 and C8 and methylated at C9. Domain swapping analysis revealed that the entire TRAM/Lag1/CLN8 (TLC) domain, not the Lag1 motif, is crucial for the function of YlLac1p. YlDes1p, the C4 desaturase of the ceramide synthesized by YlLac1p, was also required for Y. lipolytica morphogenesis. Both Yllac1Δ and Yldes1Δ mutants neither polarize lipid rafts nor form normal vacuoles. Interestingly, mutation in YlPEX5, which encode a peroxisomal targeting signal receptor, partially suppressed the defective hyphal growth of Yllac1Δ. The Yllac1ΔYlpex5Δ mutant restored the ability to polarize lipid rafts and to form normal vacuoles, although it could not synthesize GlcCer. Taken together, our results suggest that GlcCer or GlcCer derivatives may be involved in hyphal morphogenesis in Y. lipolytica, at least in part, by affecting polarization of lipid rafts and vacuole morphogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Dynamic behavior of Yarrowia lipolytica in response to pH perturbations: dependence of the stress response on the culture mode.

    PubMed

    Timoumi, Asma; Cléret, Mégane; Bideaux, Carine; Guillouet, Stéphane E; Allouche, Yohan; Molina-Jouve, Carole; Fillaudeau, Luc; Gorret, Nathalie

    2017-01-01

    Yarrowia lipolytica, a non-conventional yeast with a promising biotechnological potential, is able to undergo metabolic and morphological changes in response to environmental conditions. The effect of pH perturbations of different types (pulses, Heaviside) on the dynamic behavior of Y. lipolytica W29 strain was characterized under two modes of culture: batch and continuous. In batch cultures, different pH (4.5, 5.6 (optimal condition), and 7) were investigated in order to identify the pH inducing a stress response (metabolic and/or morphologic) in Y. lipolytica. Macroscopic behavior (kinetic parameters, yields, viability) of the yeast was slightly affected by pH. However, contrary to the culture at pH 5.6, a filamentous growth was induced in batch experiments at pH 4.5 and 7. Proportions of the filamentous subpopulation reached 84 and 93 % (v/v) under acidic and neutral conditions, respectively. Given the significant impact of neutral pH on morphology, pH perturbations from 5.6 to 7 were subsequently assayed in batch and continuous bioreactors. For both process modes, the growth dynamics remained fundamentally unaltered during exposure to stress. Nevertheless, morphological behavior of the yeast was dependent on the culture mode. Specifically, in batch bioreactors where cells proliferated at their maximum growth rate, mycelia were mainly formed. Whereas, in continuous cultures at controlled growth rates (from 0.03 to 0.20 h -1 ) even closed to the maximum growth rate of the stain (0.24 h -1 ), yeast-like forms predominated. This pointed out differences in the kinetic behavior of filamentous and yeast subpopulations, cell age distribution, and pH adaptive mechanisms between both modes of culture.

  4. Optimization of a low-cost hyperosmotic medium and establishing the fermentation kinetics of erythritol production by Yarrowia lipolytica from crude glycerol.

    PubMed

    Yang, Li-Bo; Zhan, Xiao-Bei; Zhu, Li; Gao, Min-Jie; Lin, Chi-Chung

    2016-05-18

    The production of erythritol by Yarrowia lipolytica from low-cost substitutable substrates for high yield was investigated. Crude glycerol, urea, and NaCl related to osmotic pressure were the most significant factors affecting erythritol production. An artificial neural network model and genetic algorithm were used to search the optimal composition of the significant factors and locate the resulting erythritol yield. Medium with 232.39 g/L crude glycerol, 1.57 g/L urea, and 31.03 g/L NaCl led to predictive maximum erythritol concentration of 110.7 g/L. The erythritol concentration improved from 50.4 g/L to 109.2 g/L with the optimized medium, which was reproducible. Erythritol fermentation kinetics were investigated in a batch system. Multistep fermentation kinetic models with hyperosmotic inhibitory effects were developed. The resulting mathematical equations provided a good description of temporal variations such as microbial growth (X), substrate consumption (S), and product formation (P) in erythritol fermentation. The accordingly derived model is the first reported model for fermentative erythritol production from glycerol, providing useful information to optimize the growth of Y. lipolytica and contributing visual description for the erythritol fermentation process under high osmotic pressure, as well as improvement of productivity and efficiency.

  5. Improvement of erythrose reductase activity, deletion of by-products and statistical media optimization for enhanced erythritol production from Yarrowia lipolytica mutant 49.

    PubMed

    Ghezelbash, Gholam Reza; Nahvi, Iraj; Emamzadeh, Rahman

    2014-08-01

    The purpose of the present investigation was to produce erythritol by Yarrowia lipolytica mutant without any by-products. Mutants of Y. lipolytica were generated by ultra-violet for enhancing erythrose reductase (ER) activity and erythritol production. The mutants showing the highest ER activity were screened by triphenyl tetrazolium chloride agar plate assay. Productivity of samples was analyzed by thin-layer chromatography and high-performance liquid chromatography equipped with the refractive index detector. One of the mutants named as mutant 49 gave maximum erythritol production without any other by-products (particularly glycerol). Erythritol production and specific ER activity in mutant 49 increased to 1.65 and 1.47 times, respectively, in comparison with wild-type strain. The ER gene of wild and mutant strains was sequenced and analyzed. A general comparison of wild and mutant gene sequences showed the replacement of Asp(270) with Glu(270) in ER protein. In order to enhance erythritol production, we used a three component-three level-one response Box-Behnken of response surface methodology model. The optimum medium composition for erythritol production was found to be (g/l) glucose 279.49, ammonium sulfate 9.28, and pH 5.41 with 39.76 erythritol production.

  6. Yarrowia lipolytica NCIM 3589, a tropical marine yeast, degrades bromoalkanes by an initial hydrolytic dehalogenation step.

    PubMed

    Vatsal, Aakanksha; Zinjarde, Smita S; Kumar, Ameeta Ravi

    2015-04-01

    The widespread industrial use of organobromines which are known persistent organic pollutants has led to their accumulation in sediments and water bodies causing harm to animals and humans. While degradation of organochlorines by bacteria is well documented, information regarding degradation pathways of these recalcitrant organobromines is scarce. Hence, their fates and effects on the environment are of concern. The present study shows that a tropical marine yeast, Yarrowia lipolytica NCIM 3589 aerobically degrades bromoalkanes differing in carbon chain length and position of halogen substitution viz., 2-bromopropane (2-BP), 1-bromobutane (1-BB), 1,5 dibromopentane (1,5-DBP) and 1-bromodecane (1-BD) as seen by an increase in cell mass, release of bromide and concomitant decrease in concentration of brominated compound. The amount of bromoalkane degraded was 27.3, 21.9, 18.0 and 38.3 % with degradation rates of 0.076, 0.058, 0.046 and 0.117/day for 2-BP, 1-BB, 1,5-DBP and 1-BD, respectively. The initial product formed respectively were alcohols viz., 2-propanol, 1-butanol, 1-bromo, 5-pentanol and 1-decanol as detected by GC-MS. These were further metabolized to fatty acids viz., 2-propionic, 1-butyric and 1-decanoic acid eventually leading to carbon dioxide formation. Neither higher chain nor brominated fatty acids were detected. An inducible extracellular dehalogenase responsible for removal of bromide was detected with activities of 21.07, 18.82, 18.96 and 26.67 U/ml for 2-BP, 1-BB, 1,5-DBP and 1-BD, respectively. We report here for the first time the proposed aerobic pathway of bromoalkane degradation by an eukaryotic microbe Y. lipolytica 3589, involving an initial hydrolytic dehalogenation step.

  7. [Activation of the alternative oxidase of Yarrowia lipolytica by adenosine 5'-monophosphate].

    PubMed

    Medentsev, A G; Arinbasarova, A Iu; Smirnova, N M; Akimenko, V K

    2004-01-01

    The study of the effect of nucleoside phosphates on the activity of cyanide-resistant oxidase in the mitochondria and the submitochondrial particles of Yarrowia lipolytica showed that adenosine monophosphate (5'-AMP, AMP) did not stimulate the respiration of the intact mitochondria. The incubation of the mitochondria at room temperature (25 degrees C) for 3-5 h or their treatment with ultrasound, phospholipase A, and detergent Triton X-100 at a low temperature inactivated the cyanide-resistant alternative oxidase. The inactivated alternative oxidase could be reactivated by AMP. The reactivating effect of AMP was enhanced by azolectin. Some other nucleoside phosphates also showed reactivating ability in the following descending order. AMP = GMP > GDP > GTP > XMP > IMP. The apparent reaction rate constant Km for AMP upon the reactivation of the alternative oxidase of mitochondria treated with Triton X-100 or incubated at 25 degrees C was 12.5 and 20 microM, respectively. The Km for AMP upon the reactivation of the alternative oxidase of submitochondrial particles was 15 microM. During the incubation of yeast cells under conditions promoting the development of alternative oxidase, the content of adenine nucleotides (AMP, ADP, and ATP) in the cells and their respiration tended to decrease. The subsequent addition of cyanide to the cells activated their respiration, diminished the intracellular content of ATP three times, and augmented the content of AMP five times. These data suggest that the stimulation of cell respiration by cyanide may be due to the activation of alternative oxidase by AMP.

  8. Design of an efficient medium for heterologous protein production in Yarrowia lipolytica: case of human interferon alpha 2b.

    PubMed

    Gasmi, Najla; Ayed, Atef; Nicaud, Jean-Marc; Kallel, Héla

    2011-05-20

    The non conventional yeast Yarrowia lipolytica has aroused a strong industrial interest for heterologous protein production. However most of the studies describing recombinant protein production by this yeast rely on the use of complex media, such media are not convenient for large scale production particularly for products intended for pharmaceutical applications. In addition medium composition can also affect the production yield. Hence it is necessary to design an efficient medium for therapeutic protein expression by this host. Five different media, including four minimal media and a complex medium, were assessed in shake flasks for the production of human interferon alpha 2b (hIFN α2b) by Y. lipolytica under the control of POX2 promoter inducible with oleic acid. The chemically defined medium SM4 formulated by Invitrogen for Pichia pastoris growth was the most suitable. Using statistical experimental design this medium was further optimized. The selected minimal medium consisting in SM4 supplemented with 10 mg/l FeCl₃, 1 g/l glutamate, 5 ml/l PTM1 (Pichia Trace Metals) solution and a vitamin solution composed of myo-inositol, thiamin and biotin was called GNY medium. Compared to shake flask, bioreactor culture in GNY medium resulted in 416-fold increase of hIFN α2b production and 2-fold increase of the biological activity. Furthermore, SM4 enrichment with 5 ml/l PTM1 solution contributed to protect hIFN α2b against the degradation by the 28 kDa protease identified by zymography gel in culture supernatant. The screening of the inhibitory effect of the trace elements present in PTM1 solution on the activity of this protease was achieved using a Box-Behnken design. Statistical data analysis showed that FeCl₃ and MnSO₄ had the most inhibitory effect. We have designed an efficient medium for large scale production of heterologous proteins by Y. lipolytica. The optimized medium GNY is suitable for the production of hIFN α2b with the advantage that no

  9. MHY1 Encodes a C2H2-Type Zinc Finger Protein That Promotes Dimorphic Transition in the Yeast Yarrowia lipolytica

    PubMed Central

    Hurtado, Cleofe A. R.; Rachubinski, Richard A.

    1999-01-01

    The yeast-to-hypha morphological transition (dimorphism) is typical of many pathogenic fungi. Dimorphism has been attributed to changes in temperature and nutritional status and is believed to constitute a mechanism of response to adverse conditions. We have isolated and characterized a gene, MHY1, whose transcription is dramatically increased during the yeast-to-hypha transition in Yarrowia lipolytica. Deletion of MHY1 is viable and has no effect on mating, but it does result in a complete inability of cells to undergo mycelial growth. MHY1 encodes a C2H2-type zinc finger protein, Mhy1p, which can bind putative cis-acting DNA stress response elements, suggesting that Mhy1p may act as a transcription factor. Interestingly, Mhy1p tagged with a hemagglutinin epitope was concentrated in the nuclei of actively growing cells found at the hyphal tip. PMID:10322005

  10. Harnessing the Effect of pH on Lipid Production in Batch Cultures of Yarrowia lipolytica SKY7.

    PubMed

    Kuttiraja, Mathiazhakan; Dhouha, Ayed; Tyagi, Rajeshwar Dayal

    2018-04-01

    The objective of this research was to investigate the kinetics of lipid production by Yarrowia lipolytica SKY7 in the crude glycerol-supplemented media with and without the control of pH. Lipid and citric acid production were improved with the pH control condition. There was no significant difference observed in the biomass concentration with or without the pH control. In the pH-controlled experiments, the biomass and lipid concentration reached 18 and 7.78 g/L, (45.5% w/w), respectively, with lipid yield (Yp/s) of 0.179 g/g at 60 h of fermentation. The lipid production was directly correlated with growth and the process was defined as growth associated. After 60 h of fermentation, the lipid degradation was noticed in the pH-controlled reactor whereas it occurred after 84 h in the pH-uncontrolled reactor. Apart from lipid, citric acid was produced as the major extracellular product in both fermentations but the much lower concentration in uncontrolled pH. Based on the experimental results, it is evident that controlling the pH will enhance the lipid production by 15% compared to pH-uncontrolled fermentation.

  11. Production of oils and fats by oleaginous microorganisms with an emphasis given to the potential of the nonconventional yeast Yarrowia lipolytica.

    PubMed

    Carsanba, E; Papanikolaou, S; Erten, H

    2018-05-15

    Recently, there has been a great upsurge of interest in studies related to several aspects of microbial lipid production, which is one of the top topics in relevant research fields due to the high demand of these fatty materials in food, medical, oleochemical and biofuel industries. Lipid accumulation by the so-called "oleaginous microorganisms" can generate more than 20% w/w of oil in dry biomass and is governed by a plethora of parameters, such as medium pH, incubation temperature, nutrient limitation and C/N (carbon/nitrogen) ratio, which drastically affect the lipid production bioprocess. Until now, considerable work has been undertaken to find the cheapest substrate to enable lipid fermentation by oleaginous microorganisms. This review principally details information regarding microbial lipids, suitable production conditions and focuses attention on using the yeast Yarrowia lipolytica to achieve these objectives. Lipid production by this yeast is discussed and the necessary conditions and suitable substrates are reviewed.

  12. Irradiation of Yarrowia lipolytica NRRL YB-567 creating novel strains with enhanced ammonia and oil production on protein and carbohydrate substrates.

    PubMed

    Lindquist, Mitch R; López-Núñez, Juan Carlos; Jones, Marjorie A; Cox, Elby J; Pinkelman, Rebecca J; Bang, Sookie S; Moser, Bryan R; Jackson, Michael A; Iten, Loren B; Kurtzman, Cletus P; Bischoff, Kenneth M; Liu, Siqing; Qureshi, Nasib; Tasaki, Kenneth; Rich, Joseph O; Cotta, Michael A; Saha, Badal C; Hughes, Stephen R

    2015-11-01

    Increased interest in sustainable production of renewable diesel and other valuable bioproducts is redoubling efforts to improve economic feasibility of microbial-based oil production. Yarrowia lipolytica is capable of employing a wide variety of substrates to produce oil and valuable co-products. We irradiated Y. lipolytica NRRL YB-567 with UV-C to enhance ammonia (for fertilizer) and lipid (for biodiesel) production on low-cost protein and carbohydrate substrates. The resulting strains were screened for ammonia and oil production using color intensity of indicators on plate assays. Seven mutant strains were selected (based on ammonia assay) and further evaluated for growth rate, ammonia and oil production, soluble protein content, and morphology when grown on liver infusion medium (without sugars), and for growth on various substrates. Strains were identified among these mutants that had a faster doubling time, produced higher maximum ammonia levels (enzyme assay) and more oil (Sudan Black assay), and had higher maximum soluble protein levels (Bradford assay) than wild type. When grown on plates with substrates of interest, all mutant strains showed similar results aerobically to wild-type strain. The mutant strain with the highest oil production and the fastest doubling time was evaluated on coffee waste medium. On this medium, the strain produced 0.12 g/L ammonia and 0.20 g/L 2-phenylethanol, a valuable fragrance/flavoring, in addition to acylglycerols (oil) containing predominantly C16 and C18 residues. These mutant strains will be investigated further for potential application in commercial biodiesel production.

  13. D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica.

    PubMed

    Ochoa-Estopier, Abril; Guillouet, Stéphane E

    2014-01-20

    Lipid accumulation in oleaginous yeasts is triggered by nutrient imbalance in the culture medium between the carbon source in excess and the nitrogen source in limiting concentration. However Yarrowia lipolytica when cultivated on glucose as the sole carbon source, mainly produces citric acid upon nitrogen limitation over lipid accumulation (only 5-10% triacylglycerol). Therefore for developing bioprocess for the production of triacylglycerol from renewable carbon source as glucose it is of first importance to control this imbalance in order to avoid citric acid production during TAG accumulation. Using D-stat cultivation system, where the N/C was linearly decreased using a constant change rate we were able to identify the N/C ratio inducing TAG accumulation (0.085NmolCmol(-1)) and citric acid (0.021NmolCmol(-1)). We therefore demonstrated that it was possible to accumulate lipids without excretion citric acid as long as the N/C was within this indicated range. Moreover enzyme specific activities measurement during the D-stat indicated that ATP-citrate lyase, malic enzyme and acetyl-coA carboxylase were strongly induced at the onset of lipid accumulation and showed different patterns when citric acid was excreted. Our results give relevant information for future industrial bioprocess development concerning the production of lipids using renewable carbohydrate substrates as an alternative way to produce synthons for fuel or chemical industry. By controlling the N/C over the fermentation process on glucose Y. lipolytica can accumulate lipids without excreting citric acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Engineering Yarrowia lipolytica to Simultaneously Produce Lipase and Single Cell Protein from Agro-industrial Wastes for Feed.

    PubMed

    Yan, Jinyong; Han, Bingnan; Gui, Xiaohua; Wang, Guilong; Xu, Li; Yan, Yunjun; Madzak, Catherine; Pan, Dujie; Wang, Yaofeng; Zha, Genhan; Jiao, Liangcheng

    2018-01-15

    Lipases are scarcely exploited as feed enzymes in hydrolysis of lipids for increasing energy supply and improving nutrient use efficiency. In this work, we performed homologous overexpression, in vitro characterization and in vivo assessment of a lipase from the yeast Yarrowia lipolytica for feed purpose. Simultaneously, a large amount of yeast cell biomass was produced, for use as single cell protein, a potential protein-rich feed resource. Three kinds of low cost agro-industrial wastes were tested as substrates for simultaneous production of lipase and single cell protein (SCP) as feed additives: sugarcane molasses, waste cooking oil and crude glycerol from biodiesel production. Sugarcane molasses appeared as the most effective cheap medium, allowing production of 16420 U/ml of lipase and 151.2 g/L of single cell protein at 10 liter fermentation scale. In vitro characterization by mimicking a gastro-intestinal environment and determination of essential amino acids of the SCP, and in vivo oral feeding test on fish all revealed that lipase, SCP and their combination were excellent feed additives. Such simultaneous production of this lipase and SCP could address two main concerns of feed industry, poor utilization of lipid and shortage of protein resource at the same time.

  15. SOA genes encode proteins controlling lipase expression in response to triacylglycerol utilization in the yeast Yarrowia lipolytica.

    PubMed

    Desfougères, Thomas; Haddouche, Ramdane; Fudalej, Franck; Neuvéglise, Cécile; Nicaud, Jean-Marc

    2010-02-01

    The oleaginous yeast Yarrowia lipolytica efficiently metabolizes hydrophobic substrates such as alkanes, fatty acids or triacylglycerol. This yeast has been identified in oil-polluted water and in lipid-rich food. The enzymes involved in lipid breakdown, for use as a carbon source, are known, but the molecular mechanisms controlling the expression of the genes encoding these enzymes are still poorly understood. The study of mRNAs obtained from cells grown on oleic acid identified a new group of genes called SOA genes (specific for oleic acid). SOA1 and SOA2 are two small genes coding for proteins with no known homologs. Single- and double-disrupted strains were constructed. Wild-type and mutant strains were grown on dextrose, oleic acid and triacylglycerols. The double mutant presents a clear phenotype consisting of a growth defect on tributyrin and triolein, but not on dextrose or oleic acid media. Lipase activity was 50-fold lower in this mutant than in the wild-type strain. The impact of SOA deletion on the expression of the main extracellular lipase gene (LIP2) was monitored using a LIP2-beta-galactosidase promoter fusion protein. These data suggest that Soa proteins are components of a molecular mechanism controlling lipase gene expression in response to extracellular triacylglycerol.

  16. Integrated Approach To Producing High-Purity Trehalose from Maltose by the Yeast Yarrowia lipolytica Displaying Trehalose Synthase (TreS) on the Cell Surface.

    PubMed

    Li, Ning; Wang, Hengwei; Li, Lijuan; Cheng, Huiling; Liu, Dawen; Cheng, Hairong; Deng, Zixin

    2016-08-10

    An alternative strategy that integrated enzyme production, trehalose biotransformation, and bioremoval in one bioreactor was developed in this study, thus simplifying the traditional procedures used for trehalose production. The trehalose synthase gene from a thermophilic archaea, Picrophilus torridus, was first fused to the YlPir1 anchor gene and then inserted into the genome of Yarrowia lipolytica, thus yielding an engineered yeast strain. The trehalose yield reached 73% under optimal conditions. The thermal and pH stabilities of the displayed enzyme were improved compared to those of its free form purified from recombinant Escherichia coli. After biotransformation, the glucose byproduct and residual maltose were directly fermented to ethanol by a Saccharomyces cerevisiae strain. Ethanol can be separated by distillation, and high-purity trehalose can easily be obtained from the fermentation broth. The results show that this one-pot procedure is an efficient approach to the economical production of trehalose from maltose.

  17. Green and sustainable succinic acid production from crude glycerol by engineered Yarrowia lipolytica via agricultural residue based in situ fibrous bed bioreactor.

    PubMed

    Li, Chong; Gao, Shi; Yang, Xiaofeng; Lin, Carol Sze Ki

    2018-02-01

    In situ fibrous bed bioreactor (isFBB) for efficient succinic acid (SA) production by Yarrowia lipolytica was firstly developed in our former study. In this study, agricultural residues including wheat straw, corn stalk and sugarcane bagasse were investigated for the improvement of isFBB, and sugarcane bagasse was demonstrated to be the best immobilization material. With crude glycerol as the sole carbon source, optimization for isFBB batch fermentation was carried out. Under the optimal conditions of 20g sugarcane bagasse as immobilization material, 120gL -1 crude glycerol as carbon source and 4Lmin -1 of aeration rate, the resultant SA concentration was 53.6gL -1 with an average productivity of 1.45gL -1 h -1 and a SA yield of 0.45gg -1 . By feeding crude glycerol, SA titer up to 209.7gL -1 was obtained from fed batch fermentation, which was the highest value that ever reported. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Mitochondria from Dipodascus (Endomyces) magnusii and Yarrowia lipolytica yeasts did not undergo a Ca²⁺-dependent permeability transition even under anaerobic conditions.

    PubMed

    Trendeleva, Tat'yana; Sukhanova, Evgeniya; Ural'skaya, Ludmila; Saris, Nils-Erik; Zvyagilskaya, Renata

    2011-12-01

    In this study we used tightly-coupled mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts. The two yeast strains are good alternatives to Saccharomyces cerevisiae, being aerobes containing well structured mitochondria (thus ensuring less structural limitation to observe their appreciable swelling) and fully competent respiratory chain with three invariantly functioning energy conservation points, including Complex I, that can be involved in induction of the canonical Ca²⁺/P(i)-dependent mitochondrial permeability transition (mPTP pore) with an increased open probability when electron flux increases(Fontaine et al. J Biol Chem 273: 25734–25740, 1998; Bernardi et al. FEBS J 273:2077–2099, 2006). High amplitude swelling and collapse of the membrane potential were used as parameters for demonstrating pore opening. Previously (Kovaleva et al. J Bioenerg Biomembr 41:239–249, 2009; Kovaleva et al. Biochemistry (Moscow) 75: 297–303, 2010) we have shown that mitochondria from Y.lipolytica and D. magnusii were very resistant to the Ca²⁺overload combined with varying concentrations of P(i),palmitic acid, SH-reagents, carboxyatractyloside (an inhibitor of ADP/ATP translocator), as well as depletion of intramitochondrial adenine nucleotide pools, deenergization of mitochondria, and shifting to acidic pH values in the presence of high [P(i)]. Here we subjected yeast mitochondria to other conditions known to induce an mPTP in animal and plant mitochondria, namely to Ca²⁺ overload under hypoxic conditions (anaerobiosis). We were unable to observe Ca²⁺-induced high permeability of the inner membrane of D. magnusii and Y. lipolytica yeast mitochondria under anaerobic conditions, thus suggesting that an mPTP-like pore, if it ever occurs in yeast mitochondria, is not coupled with the Ca²⁺ uptake. The results provide the first demonstration of ATP-dependent energization of yeast mitochondria under conditions of anaerobiosis.

  19. Integrating Cellular and Bioprocess Engineering in the Non-Conventional Yeast Yarrowia lipolytica for Biodiesel Production: A Review

    PubMed Central

    Xie, Dongming

    2017-01-01

    As one of the major biofuels to replace fossil fuel, biodiesel has now attracted more and more attention due to its advantages in higher energy density and overall less greenhouse gas generation. Biodiesel (fatty acid alkyl esters) is produced by chemically or enzymatically catalyzed transesterification of lipids from microbial cells, microalgae, oil crops, or animal fats. Currently, plant oils or waste cooking oils/fats remain the major source for biodiesel production via enzymatic route, but the production capacity is limited either by the uncertain supplement of plant oils or by the low or inconsistent quality of waste oils/fats. In the past decades, significant progresses have been made on synthesis of microalgae oils directly from CO2 via a photosynthesis process, but the production cost from any current technologies is still too high to be commercialized due to microalgae’s slow growth rate on CO2, inefficiency in photo-bioreactors, lack of efficient contamination control methods, and high cost in downstream recovery. At the same time, many oleaginous microorganisms have been studied to produce lipids via the fatty acid synthesis pathway under aerobic fermentation conditions, among them one of the most studied is the non-conventional yeast, Yarrowia lipolytica, which is able to produce fatty acids at very high titer, rate, and yield from various economical substrates. This review summarizes the recent research progresses in both cellular and bioprocess engineering in Y. lipolytica to produce lipids at a low cost that may lead to commercial-scale biodiesel production. Specific technologies include the strain engineering for using various substrates, metabolic engineering in high-yield lipid synthesis, cell morphology study for efficient substrate uptake and product formation, free fatty acid formation and secretion for improved downstream recovery, and fermentation engineering for higher productivities and less operating cost. To further improve the

  20. Use of Plackett-Burman design for rapid screening of nitrogen and carbon sources for the production of lipase in solid state fermentation by Yarrowia lipolytica from mustard oil cake (Brassica napus).

    PubMed

    Imandi, Sarat Babu; Karanam, Sita Kumari; Garapati, Hanumantha Rao

    2013-01-01

    Mustard oil cake (Brassica napus), the residue obtained after extraction of mustard oil from mustard oil seeds, was investigated for the production of lipase under solid state fermentation (SSF) using the marine yeast Yarrowia lipolytica NCIM 3589. Process parameters such as incubation time, biomass concentration, initial moisture content, carbon source concentration and nitrogen source concentration of the medium were optimized. Screening of ten nitrogen and five carbon sources has been accomplished with the help of Plackett-Burman design. The highest lipase activity of 57.89 units per gram of dry fermented substrate (U/gds) was observed with the substrate of mustard oil cake in four days of fermentation.

  1. The ‘LipoYeasts’ project: using the oleaginous yeast Yarrowia lipolytica in combination with specific bacterial genes for the bioconversion of lipids, fats and oils into high‐value products

    PubMed Central

    Sabirova, Julia S.; Haddouche, R.; Van Bogaert, I. N.; Mulaa, F.; Verstraete, W.; Timmis, K. N.; Schmidt‐Dannert, C.; Nicaud, J. M.; Soetaert, W.

    2011-01-01

    Summary The oleochemical industry is currently still dominated by conventional chemistry, with biotechnology only starting to play a more prominent role, primarily with respect to the biosurfactants or lipases, e.g. as detergents, or for biofuel production. A major bottleneck for all further biotechnological applications is the problem of the initial mobilization of cheap and vastly available lipid and oil substrates, which are then to be transformed into high‐value biotechnological, nutritional or pharmacological products. Under the EU‐sponsored LipoYeasts project we are developing the oleaginous yeast Yarrowia lipolytica into a versatile and high‐throughput microbial factory that, by use of specific enzymatic pathways from hydrocarbonoclastic bacteria, efficiently mobilizes lipids by directing its versatile lipid metabolism towards the production of industrially valuable lipid‐derived compounds like wax esters (WE), isoprenoid‐derived compounds (carotenoids, polyenic carotenoid ester), polyhydroxyalkanoates (PHAs) and free hydroxylated fatty acids (HFAs). Different lipid stocks (petroleum, alkane, vegetable oil, fatty acid) and combinations thereof are being assessed as substrates in combination with different mutant and recombinant strains of Y. lipolytica, in order to modulate the composition and yields of the produced added‐value products. PMID:21255371

  2. Improved performance of Yarrowia lipolytica lipase-catalyzed kinetic resolution of (R,S)-2-octanol by an integrated strategy of interfacial activation, bioimprinting and immobilization.

    PubMed

    Liu, Ying; Guo, Chen; Sun, Xi-Tong; Liu, Chun-Zhao

    2013-08-01

    Yarrowia lipolytica lipase (YLL) demonstrated an (R)-enantiopreference for efficient resolution of (R,S)-2-octanol. The activity, enantioselectivity, the ratio of substrate to enzyme, acetaldehyde tolerance, and operational stability of YLL were improved by an integrated strategy of interfacial activation, bioimprinting, and immobilization. In comparison with the control, both the enzymatic activity and enantioselectivity increased by a factor of 8.85 and 2.75 by the integrated strategy, respectively. Fifty-one percentage of conversion with 220 of enantioselectivity was obtained using the immobilized YLL prepared by the integrated strategy at a ratio of 104 of substrate to enzyme loaded. The immobilized YLL retained 97% of its initial activity without a decrease in enantioselectivity after 10 successive reuse cycles. Together these results will result in a promising strategy with the YYL for efficient resolution of (R,S)-2-octanol in practice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Deciphering how LIP2 and POX2 promoters can optimally regulate recombinant protein production in the yeast Yarrowia lipolytica.

    PubMed

    Sassi, Hosni; Delvigne, Frank; Kar, Tambi; Nicaud, Jean-Marc; Coq, Anne-Marie Crutz-Le; Steels, Sebastien; Fickers, Patrick

    2016-09-20

    In recent years, the non-conventional model yeast species Yarrowia lipolytica has received much attention because it is a useful cell factory for producing recombinant proteins. In this species, expression vectors involving LIP2 and POX2 promoters have been developed and used successfully for protein production at yields similar to or even higher than those of other cell factories, such as Pichia pastoris. However, production processes involving these promoters can be difficult to manage, especially if carried out at large scales in fed-batch bioreactors, because they require hydrophobic inducers, such as oleic acid or methyl oleate. Thus, the challenge has become to reduce loads of hydrophobic substrates while simultaneously promoting recombinant protein production. One possible solution is to replace a portion of the inducer with a co-substrate that can serve as an alternative energy source. However, implementing such an approach would require detailed knowledge of how carbon sources impact promoter regulation, which is surprisingly still lacking for the LIP2 and POX2 promoters. This study's aim was thus to better characterize promoter regulation and cell metabolism in Y. lipolytica cultures grown in media supplemented with different carbon sources. pPOX2 induction could be detected when glucose or glycerol was used as sole carbon source, which meant these carbon source could not prevent promoter induction. In addition, when a mixture of glucose and oleic acid was used in complex medium, pPOX2 induction level was lower that that of pLIP2. In contrast, pLIP2 induction was absent when glucose was present in the culture medium, which meant that cell growth could occur without any recombinant gene expression. When a 40/60 mixture of glucose and oleic acid (w/w) was used, a tenfold increase in promoter induction, as compared to when an oleic-acid-only medium was observed. It was also clear that individual cells were adapting metabolically to use both glucose and oleic

  4. Enhancement of methanol resistance of Yarrowia lipolytica lipase 2 using β-cyclodextrin as an additive: Insights from experiments and molecular dynamics simulation.

    PubMed

    Cao, Hao; Jiang, Yang; Zhang, Haiyang; Nie, Kaili; Lei, Ming; Deng, Li; Wang, Fang; Tan, Tianwei

    2017-01-01

    The methanol resistance of lipase is a critical parameter in enzymatic biodiesel production. In the present work, the methanol resistance of Yarrowia lipolytica Lipase 2 (YLLIP2) was significantly improved using β-cyclodextrin (β-CD) as an additive. According to the results, YLLIP2 with β-CD exhibited approximately 7000U/mg specific activity in 30wt% methanol for 60min compared with no activity without β-CD under the same conditions. Molecular dynamics (MD) simulation results indicated that the β-CD molecules weakened the conformational change of YLLIP2 and maintained a semi-open state of the lid by overcoming the interference caused by methanol molecules. Furthermore, the β-CD molecule could directly stabilize "pathway" regions (e.g., Asp61-Asp67) and indirectly stabilize "pathway" regions (e.g., Gly44-Phe50) by forming hydrogen bonds with "pathway" regions and nearby "pathway" regions, respectively. The regions stabilized by the β-CD molecule then prevented the closure of active pockets, thus retaining the enzymatic activity of YLLIP2 with β-CD in methanol solvent. Copyright © 2016. Published by Elsevier Inc.

  5. Citric acid production from partly deproteinized whey under non-sterile culture conditions using immobilized cells of lactose-positive and cold-adapted Yarrowia lipolytica B9.

    PubMed

    Arslan, Nazli Pinar; Aydogan, Mehmet Nuri; Taskin, Mesut

    2016-08-10

    The present study was performed to produce citric acid (CA) from partly deproteinized cheese whey (DPCW) under non-sterile culture conditions using immobilized cells of the cold-adapted and lactose-positive yeast Yarrowia lipolytica B9. DPCW was prepared using the temperature treatment of 90°C for 15min. Sodium alginate was used as entrapping agent for cell immobilization. Optimum conditions for the maximum CA production (33.3g/L) in non-sterile DPCW medium were the temperature of 20°C, pH 5.5, additional lactose concentration of 20g/L, sodium alginate concentration of 2%, number of 150 beads/100mL and incubation time of 120h. Similarly, maximum citric acid/isocitric acid (CA/ICA) ratio (6.79) could be reached under these optimal conditions. Additional nitrogen and phosphorus sources decreased CA concentration and CA/ICA ratio. Immobilized cells were reused in three continuous reaction cycles without any loss in the maximum CA concentration. The unique combination of low pH and temperature values as well as cell immobilization procedure could prevent undesired microbial contaminants during CA production. This is the first work on CA production by cold-adapted microorganisms under non-sterile culture conditions. Besides, CA production using a lactose-positive strain of the yeast Y. lipolytica was investigated for the first time in the present study. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Induction of a non-specific permeability transition in mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts.

    PubMed

    Kovaleva, Mariya V; Sukhanova, Evgeniya I; Trendeleva, Tatyana A; Zyl'kova, Marina V; Ural'skaya, Ludmila A; Popova, Kristina M; Saris, Nils-Erik L; Zvyagilskaya, Renata A

    2009-06-01

    In this study we used tightly-coupled mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts, possessing a respiratory chain with the usual three points of energy conservation. High-amplitude swelling and collapse of the membrane potential were used as parameters for demonstrating induction of the mitochondrial permeability transition due to opening of a pore (mPTP). Mitochondria from Y. lipolytica, lacking a natural mitochondrial Ca(2+) uptake pathway, and from D. magnusii, harboring a high-capacitive, regulated mitochondrial Ca(2+) transport system (Bazhenova et al. J Biol Chem 273:4372-4377, 1998a; Bazhenova et al. Biochim Biophys Acta 1371:96-100, 1998b; Deryabina and Zvyagilskaya Biochemistry (Moscow) 65:1352-1356, 2000; Deryabina et al. J Biol Chem 276:47801-47806, 2001) were very resistant to Ca(2+) overload. However, exposure of yeast mitochondria to 50-100 microM Ca(2+) in the presence of the Ca(2+) ionophore ETH129 induced collapse of the membrane potential, possibly due to activation of the fatty acid-dependent Ca(2+)/nH(+)-antiporter, with no classical mPTP induction. The absence of response in yeast mitochondria was not simply due to structural limitations, since large-amplitude swelling occurred in the presence of alamethicin, a hydrophobic, helical peptide, forming voltage-sensitive ion channels in lipid membranes. Ca(2+)- ETH129-induced activation of the Ca(2+)/H(+)-antiport system was inhibited and prevented by bovine serum albumin, and partially by inorganic phosphate and ATP. We subjected yeast mitochondria to other conditions known to induce the permeability transition in animal mitochondria, i.e., Ca(2+) overload (in the presence of ETH129) combined with palmitic acid (Mironova et al. J Bioenerg Biomembr 33:319-331, 2001; Sultan and Sokolove Arch Biochem Biophys 386:37-51, 2001), SH-reagents, carboxyatractyloside (an inhibitor of the ADP/ATP translocator), depletion of intramitochondrial adenine nucleotide pools

  7. Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica.

    PubMed

    Koch, Barbara; Schmidt, Claudia; Daum, Günther

    2014-09-01

    Biosynthesis and storage of nonpolar lipids, such as triacylglycerols (TG) and steryl esters (SE), have gained much interest during the last decades because defects in these processes are related to severe human diseases. The baker's yeast Saccharomyces cerevisiae has become a valuable tool to study eukaryotic lipid metabolism because this single-cell microorganism harbors many enzymes and pathways with counterparts in mammalian cells. In this article, we will review aspects of TG and SE metabolism and turnover in the yeast that have been known for a long time and combine them with new perceptions of nonpolar lipid research. We will provide a detailed insight into the mechanisms of nonpolar lipid synthesis, storage, mobilization, and degradation in the yeast S. cerevisiae. The central role of lipid droplets (LD) in these processes will be addressed with emphasis on the prevailing view that this compartment is more than only a depot for TG and SE. Dynamic and interactive aspects of LD with other organelles will be discussed. Results obtained with S. cerevisiae will be complemented by recent investigations of nonpolar lipid research with Yarrowia lipolytica and Pichia pastoris. Altogether, this review article provides a comprehensive view of nonpolar lipid research in yeast. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Extracellular expression of YlLip11 with a native signal peptide from Yarrowia lipolytica MSR80 in three different yeast hosts.

    PubMed

    Kumari, Arti; Baronian, Keith; Kunze, Gotthard; Gupta, Rani

    2015-06-01

    Lipase YlLip11 from Yarrowia lipolytica was expressed with a signal peptide encoding sequence in Arxula adeninivorans, Saccharomyces cerevisiae and Hansenula polymorpha using the Xplor®2 transformation/expression platform and an expression module with the constitutive Arxula-derived TEF1 promoter. The YlLip11 signal peptide was functional in all of the yeast hosts with 97% of the recombinant enzyme being secreted into the culture medium. However, recombinant YlLip11 with His Tag fused at C-terminal was not active. The best recombinant YlLip11 producing A. adeninivorans G1212/YRC102-YlLip11 transformant cultivated in shake flasks produced 2654 U/L lipase, followed by S. cerevisiae SEY6210/YRC103-YlLip11 (1632U/L) and H. polymorpha RB11/YRC103-YlLip11 (1144U/L). Although the biochemical parameters of YlLip11 synthesized in different hosts were similar, their glycosylation level and thermo stability differed. The protein synthesized by the H. polymorpha transformant had the highest degree of glycosylation and with a t1/2 of 60min at 70°C, exhibited the highest thermostability. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 and purification of citric acid.

    PubMed

    Wang, Ling-Fei; Wang, Zhi-Peng; Liu, Xiao-Yan; Chi, Zhen-Ming

    2013-11-01

    In this study, citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 was investigated. After the compositions of the extract of Jerusalem artichoke tubers for citric acid production were optimized, the results showed that natural components of extract of Jerusalem artichoke tubers without addition of any other components were suitable for citric acid production by the yeast strain. During 10 L fermentation using the extract containing 84.3 g L(-1) total sugars, 68.3 g L(-1) citric acid was produced and the yield of citric acid was 0.91 g g(-1) within 336 h. At the end of the fermentation, 9.2 g L(-1) of residual total sugar and 2.1 g L(-1) of reducing sugar were left in the fermented medium. At the same time, citric acid in the supernatant of the culture was purified. It was found that 67.2 % of the citric acid in the supernatant of the culture was recovered and purity of citric acid in the crystal was 96 %.

  10. Draft Genome Sequence of the Dimorphic Yeast Yarrowia lipolytica Strain W29

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomraning, Kyle R.; Baker, Scott E.

    Here, we present the draft genome sequence of the dimorphic ascomycete yeastYarrowia lipolyticastrain W29 (ATCC 20460).Y. lipolyticais a commonly employed model for the industrial production of lipases, small molecules, and more recently for its ability to accumulate lipids.

  11. Multi-responses optimization of simultaneous biosorption of cationic dyes by live yeast Yarrowia lipolytica 70562 from binary solution: Application of first order derivative spectrophotometry.

    PubMed

    Dil, Ebrahim Alipanahpour; Ghaedi, Mehrorang; Ghezelbash, Gholam Reza; Asfaram, Arash

    2017-05-01

    Present study is based on application of live yeast Yarrowia lipolytica 70562 as new biosorbent was investigated for the simultaneous biosorption of Crystal Violet (CV) and Brilliant Green (BG) from wastewater. The effect of operating parameters such as initial dye concentrations (6-14mgL -1 ), solution pH (4.0-8.0) and contact time (4-20h) was investigated by response surface methodology (RSM) for modeling and optimization of biosorption process and accordingly the best operational conditions was set as: initial CV and BG concentration of 8.0, and 10mgL -1 , pH of 7.0 and contact time of 16h. Above specified conditions lead to achievement of maximum biosorption of 98.823% and 99.927% for CV and BG dyes, respectively. The experimental equilibrium data well explained according to Langmuir isotherm model with maximum biosorption capacity of 65.359 and 56.497mgg -1 for BG and CV, respectively. The second order and intraparticle diffusion models as cooperative mechanism has high efficiency and performance for interpretation of real data. Copyright © 2017. Published by Elsevier Inc.

  12. Comparative evaluation of 13 yeast species in the Yarrowia clade on lignocellulosic biomass hydrolysate and genetic engineering of inhibitor tolerant strains for lipid and biofuel production

    USDA-ARS?s Scientific Manuscript database

    Yarrowia lipolytica is an oleaginous yeast that has garnered interest for commercial production of single cell oil and other fatty acid-derived chemicals because of its GRAS status and genetic tractability. Three recent peer-reviewed studies have highlighted the possibility of lipid production by th...

  13. Quantitative study of lipase secretion, extracellular lipolysis, and lipid storage in the yeast Yarrowia lipolytica grown in the presence of olive oil: analogies with lipolysis in humans.

    PubMed

    Najjar, Amal; Robert, Sylvie; Guérin, Clémence; Violet-Asther, Michèle; Carrière, Frédéric

    2011-03-01

    Lipase secretion, extracellular lipolysis, and fatty acid uptake were quantified in the yeast Yarrowia lipolytica grown in the presence of olive oil and/or glucose. Specific lipase assays, Western blot analysis, and ELISA indicated that most of the lipase activity measured in Y. lipolytica cultures resulted from the YLLIP2 lipase. Lipase production was triggered by olive oil and, during the first hours of culture, most of the lipase activity and YLLIP2 immunodetection remained associated with the yeast cells. YLLIP2 was then released in the culture medium before it was totally degraded by proteases. Olive oil triglycerides were largely degraded when the lipase was still attached to the cell wall. The fate of lipolysis products in the culture medium and inside the yeast cell, as well as lipid storage, was investigated simultaneously by quantitative TLC-FID and GC analysis. The intracellular levels of free fatty acids (FFA) and triglycerides increased transiently and were dependent on the carbon sources. A maximum fat storage of 37.8% w/w of yeast dry mass was observed with olive oil alone. A transient accumulation of saturated FFA was observed whereas intracellular triglycerides became enriched in unsaturated fatty acids. So far, yeasts have been mainly used for studying the intracellular synthesis, storage, and mobilization of neutral lipids. The present study shows that yeasts are also interesting models for studying extracellular lipolysis and fat uptake by the cell. The quantitative data obtained here allow for the first time to establish interesting analogies with gastrointestinal and vascular lipolysis in humans.

  14. Mutants of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil as a biofactory for biodiesel production.

    PubMed

    Katre, Gouri; Ajmera, Namasvi; Zinjarde, Smita; RaviKumar, Ameeta

    2017-10-24

    Oleaginous yeasts are fast emerging as a possible feedstock for biodiesel production. Yarrowia lipolytica, a model oleaginous yeast is known to utilize a variety of hydrophobic substrates for lipid accumulation including waste cooking oil (WCO). Approaches to increase lipid content in this yeast include metabolic engineering which requires manipulation of multiple genes in the lipid biosynthesis pathway. A classical and cost-effective approach, namely, random chemical mutagenesis on the yeast can lead to increased production of biodiesel as is explored here. In this study, chemical mutagenesis using the alkylating agent, N- methyl-N'-nitro-N-nitrosoguanidine (MNNG) as well as an additional treatment with cerulenin, a fatty acid synthase inhibitor generated 800 mutants of Y. lipolytica NCIM 3589 (761 MNNG treated and 39 MNNG + cerulenin treated). A three-stage screening using Sudan Black B plate technique, Nile red fluorimetry and total lipid extraction using solvent was performed, which enabled selection of ten high lipid yielding mutants. Time course studies of all the ten mutants were further undertaken in terms of biomass, lipid yield and lipid content to select three stable mutants (YlB6, YlC7 and YlE1) capable of growing and accumulating lipid on WCO, with lipid contents of 55, 60 and 67% as compared to 45% for the wild type. The mutants demonstrated increased volumetric lipid productivities (0.062, 0.044 and 0.041 g L -1  h -1 ) as compared to the wild type (0.033 g L -1  h -1 ). The fatty acid profile of the three mutants consisted of a high content of C16 and C18 saturated and monounsaturated fatty acids and was found to be suitable for biodiesel production. The fuel properties, namely, density, kinematic viscosity, total acid number, iodine value of the three mutants were evaluated and found to lie within the limits specified by internationally accepted standards. Additionally, it was noted that the mutants demonstrated better cetane numbers and

  15. Phenol Is the Initial Product Formed during Growth and Degradation of Bromobenzene by Tropical Marine Yeast, Yarrowia lipolytica NCIM 3589 via an Early Dehalogenation Step.

    PubMed

    Vatsal, Aakanksha A; Zinjarde, Smita S; RaviKumar, Ameeta

    2017-01-01

    Bromobenzene (BrB), a hydrophobic, recalcitrant organic compound, is listed by the environmental protection agencies as an environmental and marine pollutant having hepatotoxic, mutagenic, teratogenic, and carcinogenic effects. The tropical marine yeast Yarrowia lipolytica 3589 was seen to grow aerobically on BrB and displayed a maximum growth rate (μ max ) of 0.04 h -1 . Furthermore, we also observed an increase in cell size and sedimentation velocity for the cells grown on BrB as compared to the glucose grown cells. The cells attached to the hydrophobic bromobenzene droplets through its hydrophobic and acid-base interactions. The BrB (0.5%, 47.6 mM) was utilized by the cells with the release of a corresponding amount of bromide (12.87 mM) and yielded a cell mass of 1.86 g/L after showing 34% degradation in 96 h. Maximum dehalogenase activity of 16.16 U/mL was seen in the cell free supernatant after 24 h of growth. Identification of metabolites formed as a result of BrB degradation, namely, phenol, catechol, cis, cis muconic acid, and carbon dioxide were determined by LC-MS and GC-MS. The initial attack on bromobenzene by Y. lipolytica cells lead to the transient accumulation of phenol as an early intermediate which is being reported for the first time. Degradation of phenol led to catechol which was degraded by the ortho- cleavage pathway forming cis, cis muconic acid and then to Krebs cycle intermediates eventually leading to CO 2 production. The study shows that dehalogenation via an extracellular dehalogenase occurs prior to ring cleavage with phenol as the preliminary degradative compound being produced. The yeast was also able to grow on the degradative products, i.e., phenol and catechol, to varying degrees which would be of potential relevance in the degradation and remediation of xenobiotic environmental bromoaromatic pollutants such as bromobenzene.

  16. Gene repression via multiplex gRNA strategy in Y. lipolytica.

    PubMed

    Zhang, Jin-Lai; Peng, Yang-Zi; Liu, Duo; Liu, Hong; Cao, Ying-Xiu; Li, Bing-Zhi; Li, Chun; Yuan, Ying-Jin

    2018-04-20

    The oleaginous yeast Yarrowia lipolytica is a promising microbial cell factory due to their biochemical characteristics and native capacity to accumulate lipid-based chemicals. To create heterogenous biosynthesis pathway and manipulate metabolic flux in Y. lipolytica, numerous studies have been done for developing synthetic biology tools for gene regulation. CRISPR interference (CRISPRi), as an emerging technology, has been applied for specifically repressing genes of interest. In this study, we established CRISPRi systems in Y. lipolytica based on four different repressors, that was DNase-deactivated Cpf1 (dCpf1) from Francisella novicida, deactivated Cas9 (dCas9) from Streptococcus pyogenes, and two fusion proteins (dCpf1-KRAB and dCas9-KRAB). Ten gRNAs that bound to different regions of gfp gene were designed and the results indicated that there was no clear correlation between the repression efficiency and targeting sites no matter which repressor protein was used. In order to rapidly yield strong gene repression, a multiplex gRNAs strategy based on one-step Golden-brick assembly technology was developed. High repression efficiency 85% (dCpf1) and 92% (dCas9) were achieved in a short time by making three different gRNAs towards gfp gene simultaneously, which avoided the need of screening effective gRNA loci in advance. Moreover, two genes interference including gfp and vioE and three genes repression including vioA, vioB and vioE in protodeoxy-violaceinic acid pathway were also realized. Taken together, successful CRISPRi-mediated regulation of gene expression via four different repressors dCpf1, dCas9, dCpf1-KRAB and dCas9-KRAB in Y. lipolytica is achieved. And we demonstrate a multiplexed gRNA targeting strategy can efficiently achieve transcriptional simultaneous repression of several targeted genes and different sites of one gene using the one-step Golden-brick assembly. This timesaving method promised to be a potent transformative tool valuable for

  17. Oleaginous yeast Yarrowia lipolytica culture with synthetic and food waste-derived volatile fatty acids for lipid production.

    PubMed

    Gao, Ruiling; Li, Zifu; Zhou, Xiaoqin; Cheng, Shikun; Zheng, Lei

    2017-01-01

    The sustainability of microbial lipids production from traditional carbon sources, such as glucose or glycerol, is problematic given the high price of raw materials. Considerable efforts have been directed to minimize the cost and find new alternative carbon sources. Volatile fatty acids (VFAs) are especially attractive raw materials, because they can be produced from a variety of organic wastes fermentation. Therefore, the use of volatile fatty acids as carbon sources seems to be a feasible strategy for cost-effective microbial lipid production. Lipid accumulation in Y. lipolytica using synthetic and food waste-derived VFAs as substrates was systematically compared and evaluated in batch cultures. The highest lipid content obtained with acetic, butyric, and propionic acids reached 31.62 ± 0.91, 28.36 ± 0.74, and 28.91 ± 0.66%, respectively. High concentrations of VFA inhibited cell growth in the following order: butyric acid > propionic acid > acetic acid. Within a 30-day experimental period, Y. lipolytica could adapt up to 20 g/L acetic acid, whereas the corresponding concentration of propionic acid and butyric acid were 10 and 5 g/L, respectively. Cultures on a VFA mixture showed that the utilization of different types of VFA by Y. lipolytica was not synchronized but rather performed in a step-wise manner. Although yeast fermentation is an exothermic process, and the addition of VFA will directly affect the pH of the system by increasing environmental acidity, cultures at a cultivation temperature of 38 °C and uncontrolled pH demonstrated that Y. lipolytica had high tolerance in the high temperature and acidic environment when a low concentration (2.5 g/L) of either synthetic or food waste-derived VFA was used. However, batch cultures fed with food fermentate yielded lower lipid content (18.23 ± 1.12%) and lipid productivity (0.12 ± 0.02 g/L/day). The lipid composition obtained with synthetic and food waste-derived VFA was similar to

  18. A comparative analysis of single cell and droplet-based FACS for improving production phenotypes: Riboflavin overproduction in Yarrowia lipolytica.

    PubMed

    Wagner, James M; Liu, Leqian; Yuan, Shuo-Fu; Venkataraman, Maya V; Abate, Adam R; Alper, Hal S

    2018-04-23

    Evolutionary approaches to strain engineering inherently require the identification of suitable selection techniques for the product and phenotype of interest. In this work, we undertake a comparative analysis of two related but functionally distinct methods of high-throughput screening: traditional single cell fluorescence activated cell sorting (single cell FACS) and microdroplet-enabled FACS (droplet FACS) using water/oil/water (w/o/w) emulsions. To do so, we first engineer and evolve the non-conventional yeast Yarrowia lipolytica for high extracellular production of riboflavin (vitamin B2), an innately fluorescent product. Following mutagenesis and adaptive evolution, a direct parity-matched comparison of these two selection strategies was conducted. Both single cell FACS and droplet FACS led to significant increases in total riboflavin titer (32 and 54 fold relative to the parental PO1f strain, respectively). However, single cell FACS favored intracellular riboflavin accumulation (with only 70% of total riboflavin secreted) compared with droplet FACS that favored extracellular product accumulation (with 90% of total riboflavin secreted). We find that for the test case of riboflavin, the extent of secretion and total production were highly correlated. The resulting differences in production modes and levels clearly demonstrate the significant impact that selection approaches can exert on final evolutionary outcomes in strain engineering. Moreover, we note that these results provide a cautionary tale when intracellular read-outs of product concentration (including signals from biosensors) are used as surrogates for total production of potentially secreted products. In this regard, these results demonstrate that extracellular production is best assayed through an encapsulation technique when performing high throughput screening. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. Heterologous expression of lipases YLIP4, YLIP5, YLIP7, YLIP13, and YLIP15 from Yarrowia lipolytica MSR80 in Escherichia coli: Substrate specificity, kinetic comparison, and enantioselectivity.

    PubMed

    Syal, Poonam; Gupta, Rani

    2017-11-01

    Five lipase genes, ylip4, ylip5, ylip7, ylip13, and ylip15, from Yarrowia lipolytica MSR80 were cloned and expressed in the pEZZ18-HB101 system. The lipases shared maximum sequence identity with Candida galli lipase, whereas they shared structural similarity with YLIP2 of Y. lipolytica CLIB122. The enzymes, purified using IgG sepharose, had specific activities in the range of 7-25 U mg -1 . Biochemical characteristics of all the lipases varied with respect to thermostability, substrate specificity, and enantioselectivity. All the enzymes were most active at neutral or slightly alkaline pH and were stable in the pH range 3.0-8.0, except YLIP4, which showed 50% stability at pH 10.0. Temperature optima of all the lipases varied from 30 to 50 ºC. YLIP15 and YLIP13 were most thermostable with a t 1/2 of 138 and 112 Min, respectively, at 60 °C. The lipases exhibited varied substrate specificity on p-nitrophenyl esters ranging from short-chain specificity (YLIP15), mid-chain specificity (YLIP4, YLIP5, YLIP7), and long-chain specificity (YLIP13). Catalytic efficiency on p-nitrophenylcaprate was highest for YLIP13 (67 × 10 3 mM -1 min -1 ) and lowest for YLIP15 (6.7 × 10 3 mM -1 min -1 ). YLIP13 was S-enantioselective, and YLIP15 was R-enantioselective with enantiomeric excess of 53 and 36%, respectively. Of all five lipases, YLIP13 and YLIP15 could be considered as industrially important enzymes as they were thermostable and enantioselective. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  20. Phenol Is the Initial Product Formed during Growth and Degradation of Bromobenzene by Tropical Marine Yeast, Yarrowia lipolytica NCIM 3589 via an Early Dehalogenation Step

    PubMed Central

    Vatsal, Aakanksha A.; Zinjarde, Smita S.; RaviKumar, Ameeta

    2017-01-01

    Bromobenzene (BrB), a hydrophobic, recalcitrant organic compound, is listed by the environmental protection agencies as an environmental and marine pollutant having hepatotoxic, mutagenic, teratogenic, and carcinogenic effects. The tropical marine yeast Yarrowia lipolytica 3589 was seen to grow aerobically on BrB and displayed a maximum growth rate (μmax) of 0.04 h-1. Furthermore, we also observed an increase in cell size and sedimentation velocity for the cells grown on BrB as compared to the glucose grown cells. The cells attached to the hydrophobic bromobenzene droplets through its hydrophobic and acid–base interactions. The BrB (0.5%, 47.6 mM) was utilized by the cells with the release of a corresponding amount of bromide (12.87 mM) and yielded a cell mass of 1.86 g/L after showing 34% degradation in 96 h. Maximum dehalogenase activity of 16.16 U/mL was seen in the cell free supernatant after 24 h of growth. Identification of metabolites formed as a result of BrB degradation, namely, phenol, catechol, cis, cis muconic acid, and carbon dioxide were determined by LC–MS and GC–MS. The initial attack on bromobenzene by Y. lipolytica cells lead to the transient accumulation of phenol as an early intermediate which is being reported for the first time. Degradation of phenol led to catechol which was degraded by the ortho- cleavage pathway forming cis, cis muconic acid and then to Krebs cycle intermediates eventually leading to CO2 production. The study shows that dehalogenation via an extracellular dehalogenase occurs prior to ring cleavage with phenol as the preliminary degradative compound being produced. The yeast was also able to grow on the degradative products, i.e., phenol and catechol, to varying degrees which would be of potential relevance in the degradation and remediation of xenobiotic environmental bromoaromatic pollutants such as bromobenzene. PMID:28690604

  1. Co-expression of Exo-inulinase and Endo-inulinase Genes in the Oleaginous Yeast Yarrowia lipolytica for Efficient Single Cell Oil Production from Inulin.

    PubMed

    Shi, Nianci; Mao, Weian; He, Xiaoxia; Chi, Zhe; Chi, Zhenming; Liu, Guanglei

    2018-05-01

    Yarrowia lipolytica is a promising platform for the single cell oil (SCO) production. In this study, a transformant X+N8 in which exo- and endo-inulinase genes were co-expressed could produce an inulinase activity of 124.33 U/mL within 72 h. However, the inulinase activity of a transformant X2 carrying a single exo-inulinase gene was only 47.33 U/mL within 72 h. Moreover, the transformant X+N8 could accumulate 48.13% (w/w) SCO from inulin and the cell dry weight reached 13.63 g/L within 78 h, which were significantly higher than those of the transformant X2 (41.87% (w/w) and 11.23 g/L) under the same conditions. In addition, inulin hydrolysis and utilization of the transformant X+N8 were also more efficient than those of the transformant X2 during the fermentation process. These results demonstrated that the co-expression of the exo- and endo-inulinase genes significantly enhanced the SCO production from inulin due to the improvement of the inulinase activity and the synergistic action of exo- and endo-inulinase. Besides, over 95.01% of the fatty acids from the transformant X+N8 were C16-C18, especially C18:1 (53.10%), suggesting that the fatty acids could be used as feedstock for biodiesel production.

  2. The growth, properties and interactions of yeasts and bacteria associated with the maturation of Camembert and blue-veined cheeses.

    PubMed

    Addis, E; Fleet, G H; Cox, J M; Kolak, D; Leung, T

    2001-09-19

    The growth of yeasts and bacteria were monitored during the maturation of Camembert and blue-veined cheese produced in Australia. Yeasts were prominent throughout maturation, growing to 10(5)-10(9)/g, depending on the manufacturer. Debaryomyces hansenii predominated, but there were lesser, inconsistent contributions from Yarrowia lipolytica. Of the non-lactic acid bacteria, Acinetobacter species were significant during the maturation of Camembert but not blue-veined cheeses, and grew to 10(6)-10(8) cfu/g. Staphylococcus and Micrococcus species were consistently isolated from the cheeses with Staphylococcus xylosus growing to 10(5)-10(9) cfu/g, depending on the product. Lactic acid bacteria (10(7)-10(9) cfu/g) were present throughout maturation but were not identified. Interactions between the various yeasts and bacterial isolates were examined. Several strains of D. hansenii exhibited killer activity but not against Y. lipolytica. None of the yeasts were antagonistic towards the bacteria but some strains of D. hansenii enhanced the growth of Y. lipolytica and S. xylosus. The yeast and bacterial isolates exhibited various degrees of extracellular proteolytic and lipolytic activities.

  3. Targeted mutations and MD simulations of a methanol-stable lipase YLIP9 from Yarrowia lipolytica MSR80 to develop a biodiesel enzyme.

    PubMed

    Syal, Poonam; Verma, Ved Vrat; Gupta, Rani

    2017-11-01

    Biodiesel, an environment friendly alternative for fuels, contains methyl esters of long-chain fatty acids. Our group has reported a methanol-stable YLIP9 from Yarrowia lipolytica MSR80 that shows poor catalysis of long-chain fatty acids. To shift its substrate specificity, residues within lid and binding pocket were identified for sequential mutations using YLIP2 as the template. Of the two point mutations (Glu116Leu and Ser119Val) introduced in the lid, the former mutation (YLIP9L1) increased the catalytic rate by ∼2-fold without any change in substrate specificity. In this mutant, six binding pocket residues (Bp2-Bp7) were further mutated to obtain six double mutants. YLIP9L1Bp3 showed significant shift in substrate specificity towards long-chain pNPesters with 11-fold increase in catalytic efficiency than YLIP9. Double mutations also led to increased thermostability and lowered activation energy of YLIP9L1Bp3 thereby shifting its optimum temperature from 60°C to 50°C. In silico molecular dynamics simulations revealed improved lid flexibility and increased catalytic triad volume in YLIP9L1Bp3. The enzyme YLIP9L1Bp3 was methanol-stable having selectivity for long-chain fatty acids with improved catalytic efficiency. Its application as a biodiesel enzyme was validated by transesterification of palm oil in presence of methanol, where it showed 8-fold increase in conversion of oil to methyl esters. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Development of New Genetic Manipulation Tools for Metabolic Engineering of Diatoms

    DTIC Science & Technology

    2008-08-28

    protein L41 has been shown in a variety of yeasts to be involved in resistance to anisomycin and cycloheximide 7𔄂. A conserved mutation from proline...atipitis Yarrowia lipolytica Candida troplcalis S. cerevisiae A. nidulans Oryza sativa Homo sapiens P. tricornutum T. pseudonana...Pichia stipitis Yarrowia lipolytica Candida troplcalis S. cerevisiae A. nidulans Oryza sativa Homo sapiens P

  5. An interfacial and comparative in vitro study of gastrointestinal lipases and Yarrowia lipolytica LIP2 lipase, a candidate for enzyme replacement therapy.

    PubMed

    Bénarouche, Anaïs; Point, Vanessa; Carrière, Frédéric; Cavalier, Jean-François

    2014-07-01

    Lipolytic activities of Yarrowia lipolytica LIP2 lipase (YLLIP2), human pancreatic (HPL) and dog gastric (DGL) lipases were first compared using lecithin-stabilized triacylglycerol (TAG) emulsions (Intralipid) at various pH and bile salt concentrations. Like DGL, YLLIP2 was able to hydrolyze TAG droplets covered by a lecithin monolayer, while HPL was not directly active on that substrate. These results were in good agreement with the respective kinetics of adsorption on phosphatidylcholine (PC) monomolecular films of the same three lipases, YLLIP2 being the most tensioactive lipase. YLLIP2 adsorption onto a PC monolayer spread at the air/water interface was influenced by pH-dependent changes in the enzyme/lipid interfacial association constant (KAds) which was optimum at pH 6.0 on long-chain egg PC monolayer, and at pH 5.0 on medium chain dilauroylphosphatidylcholine film. Using substrate monolayers (1,2-dicaprin, trioctanoin), YLLIP2 displayed the highest lipolytic activities on both substrates in the 25-35 mN m(-1) surface pressure range. YLLIP2 was active in a large pH range and displayed a pH-dependent activity profile combining DGL and HPL features at pH values found in the stomach (pH 3-5) and in the intestine (pH 6-7), respectively. The apparent maximum activity of YLLIP2 was observed at acidic pH 4-6 and was therefore well correlated with an efficient interfacial binding at these pH levels, whatever the type of interfaces (Intralipid emulsions, substrate or PC monolayers). All these findings support the use of YLLIP2 in enzyme replacement therapy for the treatment of pancreatic exocrine insufficiency, a pathological situation in which an acidification of intestinal contents occurs. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Wei, Hui; Alahuhta, Markus

    In order to develop a direct microbial sugar conversion platform for the production of lipids, drop-in fuels and chemicals from cellulosic biomass substrate, we chose Yarrowia lipolytica as a viable demonstration strain. Y. lipolytica is known to accumulate lipids intracellularly and is capable of metabolizing sugars to produce lipids; however, it lacks the lignocellulose-degrading enzymes needed to break down biomass directly. While research is continuing on the development of a Y. lipolytica strain able to degrade cellulose, in this study, we present successful expression of several xylanases in Y. lipolytica. The XynII and XlnD expressing Yarrowia strains exhibited an abilitymore » to grow on xylan mineral plates. This was shown by Congo Red staining of halo zones on xylan mineral plates. Enzymatic activity tests further demonstrated active expression of XynII and XlnD in Y. lipolytica. Furthermore, synergistic action in converting xylan to xylose was observed when XlnD acted in concert with XynII. Finally, the successful expression of these xylanases in Yarrowia further advances us toward our goal to develop a direct microbial conversion process using this organism.« less

  7. Production of Eight Different Hydride Complexes and Nitrite Release from 2,4,6-Trinitrotoluene by Yarrowia lipolytica▿ †

    PubMed Central

    Ziganshin, Ayrat M.; Gerlach, Robin; Borch, Thomas; Naumov, Anatoly V.; Naumova, Rimma P.

    2007-01-01

    2,4,6-Trinitrotoluene (TNT) transformation by the yeast strain Yarrowia lipolytica AN-L15 was shown to occur via two different pathways. Direct aromatic ring reduction was the predominant mechanism of TNT transformation, while nitro group reduction was observed to be a minor pathway. Although growth of Y. lipolytica AN-L15 was inhibited initially in the presence of TNT, TNT transformation was observed, indicating that the enzymes necessary for TNT reduction were present initially. Aromatic ring reduction resulted in the transient accumulation of eight different TNT-hydride complexes, which were characterized using high-performance liquid chromatography, UV-visible diode array detection, and negative-mode atmospheric pressure chemical ionization mass spectrometry (APCI-MS). APCI-MS analysis revealed three different groups of TNT-hydride complexes with molecular ions at m/z 227, 228, and 230, which correspond to TNT-mono- and dihydride complexes and protonated dihydride isomers, respectively. One of the three protonated dihydride complex isomers detected appears to release nitrite in the presence of strain AN-L15. This release of nitrite is of particular interest since it can provide a pathway towards complete degradation and detoxification of TNT. PMID:17933928

  8. The Gene YALI0E20207g from Yarrowia lipolytica Encodes an N-Acetylglucosamine Kinase Implicated in the Regulated Expression of the Genes from the N-Acetylglucosamine Assimilatory Pathway

    PubMed Central

    Flores, Carmen-Lisset; Gancedo, Carlos

    2015-01-01

    The non-conventional yeast Yarrowia lipolytica possesses an ORF, YALI0E20207g, which encodes a protein with an amino acid sequence similar to hexokinases from different organisms. We have cloned that gene and determined several enzymatic properties of its encoded protein showing that it is an N-acetylglucosamine (NAGA) kinase. This conclusion was supported by the lack of growth in NAGA of a strain carrying a YALI0E20207g deletion. We named this gene YlNAG5. Expression of YlNAG5 as well as that of the genes encoding the enzymes of the NAGA catabolic pathway—identified by a BLAST search—was induced by this sugar. Deletion of YlNAG5 rendered that expression independent of the presence of NAGA in the medium and reintroduction of the gene restored the inducibility, indicating that YlNag5 participates in the transcriptional regulation of the NAGA assimilatory pathway genes. Expression of YlNAG5 was increased during sporulation and homozygous Ylnag5/Ylnag5 diploid strains sporulated very poorly as compared with a wild type isogenic control strain pointing to a participation of the protein in the process. Overexpression of YlNAG5 allowed growth in glucose of an Ylhxk1glk1 double mutant and produced, in a wild type background, aberrant morphologies in different media. Expression of the gene in a Saccharomyces cerevisiae hxk1 hxk2 glk1 triple mutant restored ability to grow in glucose. PMID:25816199

  9. Characterization of the two intracellular lipases of Y. lipolytica encoded by TGL3 and TGL4 genes: new insights into the role of intracellular lipases and lipid body organisation.

    PubMed

    Dulermo, Thierry; Tréton, Brigitte; Beopoulos, Athanasios; Kabran Gnankon, Affoué Philomène; Haddouche, Ramdane; Nicaud, Jean-Marc

    2013-09-01

    Eukaryotes store lipids in a specialised organelle, the lipid body (LB), mainly as triglycerides (TAGs). Both the rates of synthesis and degradation contribute to the control of the accumulation of TAGs. The synthesis of TAGs in yeasts has been well documented, especially in the model yeast Saccharomyces cerevisiae and in the oleaginous yeast Yarrowia lipolytica. However, descriptions of the processes involved in TAG degradation are more scarce and mostly for S. cerevisiae. Here, we report the characterisation of two Y. lipolytica genes, YlTGL3 and YlTGL4, encoding intracellular lipases involved in TAG degradation. The two proteins are localised in lipid bodies, and YlTgl4 was mainly found at the interface between LBs. Surprisingly, the spatial organisation of YlTgl3 and YlTgl4 depends on the culture medium and on the physiological phase of the cell. Inactivation of one or both genes doubles the lipid accumulation capacity of Y. lipolytica, increasing the cell's capacity to accumulate TAGs. The amino acid sequence of YlTgl4 contains the consensus sequence motif (G/A)XSXG, typical of serine hydrolases, whereas YlTgl3 does not. Single and double mutants are unable to degrade TAGs, and higher expression of YlTgl4 correlates with TAG degradation. Therefore, we propose that YlTgl4 is the main lipase responsible for TAG degradation and that YlTgl3 may act as a positive regulator of YlTgl4 rather than a functional lipase. Thus, contrary to S. cerevisiae, Y. lipolytica possesses two intracellular lipases with distinct roles and with distinct localisations in the LB. © 2013. Published by Elsevier B.V. All rights reserved.

  10. Evaluation of the Composition of Culture Medium for Yeast Biomass Production Using Raw Glycerol from Biodiesel Synthesis

    PubMed Central

    dos Santos, Elisane Odriosolla; Michelon, Mariano; Furlong, Eliana Badiale; Burkert, Janaína Fernandes de Medeiros; Kalil, Susana Juliano; Burkert, Carlos André Veiga

    2012-01-01

    The work herewith investigated the production of yeast biomass as a source of protein, using Yarrowia lipolytica NRRL YB-423 and raw glycerol from biodiesel synthesis as the main carbon source. A significant influence of glycerol concentration, initial pH and yeast extract concentration on biomass and protein content was observed according to the 2v5-1 fractional design. These factors were further evaluated using a central composite design and response surface methodology, and an empirical model for protein content was established and validated. The biomass of Yarrowia lipolytica NRRL YB-423 reached 19.5 ± 1.0 g/L in shaken flasks cultivation, with a protein content of 20.1 ± 0.6% (w/w). PMID:24031849

  11. 21 CFR 173.165 - Candida lipolytica.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... description for Candida lipolytica variety lipolytica listed in “The Yeasts—A Toxonomic Study,” 2d Ed. (1970... equivalent). Activate as follows: Slurry 900 grams of silica gel reagent with 2 liters of purified water in a 3-liter beaker. Cool the mixture and pour into a 80 × 900 chromatographic column with coarse fritted...

  12. 21 CFR 173.165 - Candida lipolytica.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... description for Candida lipolytica variety lipolytica listed in “The Yeasts—A Toxonomic Study,” 2d Ed. (1970... equivalent). Activate as follows: Slurry 900 grams of silica gel reagent with 2 liters of purified water in a 3-liter beaker. Cool the mixture and pour into a 80 × 900 chromatographic column with coarse fritted...

  13. Origins of cell-to-cell bioprocessing diversity and implications of the extracellular environment revealed at the single-cell level

    DOE PAGES

    Vasdekis, A. E.; Silverman, A. M.; Stephanopoulos, G.

    2015-12-14

    We probed the lipid expression dynamics of the oleaginous yeast Yarrowia Lipolytica. We observed that neutral lipid expression is sporadic. By performing single-cell analysis, we found that such noise emanates from the metabolic reaction level. Our results provide an alternative insight into the regulation and phenotypic variability of lipogenesis.

  14. Complementation and Genetic Recombination in Candida lipolytica

    PubMed Central

    Bassel, John; Warfei, Jean; Mortimer, Robert

    1971-01-01

    Nutritional requirements were introduced into wild-type, heterothallic strains of Candida lipolytica by exposing the cells to X rays. Complementing hybrids were recovered from mixtures of the auxotrophic strains, and genetic recombination was observed in individually isolated ascospores from the hybrid strains. PMID:5122814

  15. Adhesion of Bacillus subtilis and Pseudoalteromonas lipolytica to steel in a seawater environment and their effects on corrosion.

    PubMed

    Guo, Zhangwei; Liu, Tao; Cheng, Y Frank; Guo, Na; Yin, Yansheng

    2017-09-01

    In a marine environment, Bacillus subtilis and Pseudoalteromonas lipolytica are commonly found in the biofilms adherent to low-alloy engineering steel, and they have distinct effects on corrosion. In the present work, this phenomenon was investigated through the study of various materials characterization methods, electrochemical techniques, and contact angle measurements. It was found that the surface film formed on the steel in the presence of B. subtilis was compact, uniform, free of cracks, and hydrophobic. However, the film formed in the presence of P. lipolytica was loose, rough, heterogeneous, and hydrophilic. The main components of the films formed in the presence of B. subtilis and P. lipolytica were polysaccharides/TasA amyloid fibers and proteins/carboxylic acid, respectively. The composition, structure, and properties of the surface films formed on the steel were associated with different effects on corrosion. The presence of B. subtilis enhances the steel's resistance to corrosion, whereas corrosion was increased by the presence of P. lipolytica. In short, the compact and hydrophobic biofilm of B. subtilis appears to inhibit the corrosion of steel, while the loose, hydrophilic film of P. lipolytica tends to induce pitting corrosion. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Occurrence and diversity of marine yeasts in Antarctica environments

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Hua, Mingxia; Song, Chunli; Chi, Zhenming

    2012-03-01

    A total of 28 yeast strains were obtained from the sea sediment of Antarctica. According to the results of routine identification and molecular characterization, the strains belonged to species of Yarrowia lipolytica, Debaryomyces hansenii, Rhodotorula slooffiae, Rhodotorula mucilaginosa, Sporidiobolus salmonicolor, Aureobasidium pullulans, Mrakia frigida and Guehomyces pullulans, respectively. The Antarctica yeasts have wide potential applications in biotechnology, for some of them can produce β-galactosidase and killer toxins.

  17. Clinical, microbiological, and experimental animal studies of Candida lipolytica.

    PubMed Central

    Walsh, T J; Salkin, I F; Dixon, D M; Hurd, N J

    1989-01-01

    Candida lipolytica was recovered from six patients in three different clinical centers. The index isolate caused a persistent fungemia with catheter-associated Candida thrombophlebitis, the second isolate was from a polymicrobial sinusitis, and the remaining four isolates were involved in tissue colonization. These and 20 other isolates were consistent in their morphological and physiological characteristics. All formed true hyphae and blastoconidia on cornmeal-Tween 80 agar and all assimilated glucose, glycerol, and erythritol. In a murine model of disseminated candidiasis, the index isolate that caused clinical fungemia caused no mortality and produced only two lesions on a kidney, as determined at necropsy. The nine isolates selected for in vitro antifungal susceptibility studies had intermediate susceptibilities to amphotericin B but were susceptible to ketoconazole. We conclude that C. lipolytica is a weakly virulent pathogen which may require an intravascular foreign body to cause fungemia. Images PMID:2745702

  18. Surface Microflora of Four Smear-Ripened Cheeses

    PubMed Central

    Mounier, Jérôme; Gelsomino, Roberto; Goerges, Stefanie; Vancanneyt, Marc; Vandemeulebroecke, Katrien; Hoste, Bart; Scherer, Siegfried; Swings, Jean; Fitzgerald, Gerald F.; Cogan, Timothy M.

    2005-01-01

    The microbial composition of smear-ripened cheeses is not very clear. A total of 194 bacterial isolates and 187 yeast isolates from the surfaces of four Irish farmhouse smear-ripened cheeses were identified at the midpoint of ripening using pulsed-field gel electrophoresis (PFGE), repetitive sequence-based PCR, and 16S rRNA gene sequencing for identifying and typing the bacteria and Fourier transform infrared spectroscopy and mitochondrial DNA restriction fragment length polymorphism (mtDNA RFLP) analysis for identifying and typing the yeast. The yeast microflora was very uniform, and Debaryomyces hansenii was the dominant species in the four cheeses. Yarrowia lipolytica was also isolated in low numbers from one cheese. The bacteria were highly diverse, and 14 different species, Corynebacterium casei, Corynebacterium variabile, Arthrobacter arilaitensis, Arthrobacter sp., Microbacterium gubbeenense, Agrococcus sp. nov., Brevibacterium linens, Staphylococcus epidermidis, Staphylococcus equorum, Staphylococcus saprophyticus, Micrococcus luteus, Halomonas venusta, Vibrio sp., and Bacillus sp., were identified on the four cheeses. Each cheese had a more or less unique microflora with four to nine species on its surface. However, two bacteria, C. casei and A. arilaitensis, were found on each cheese. Diversity at the strain level was also observed, based on the different PFGE patterns and mtDNA RFLP profiles of the dominant bacterial and yeast species. None of the ripening cultures deliberately inoculated onto the surface were reisolated from the cheeses. This study confirms the importance of the adventitious, resident microflora in the ripening of smear cheeses. PMID:16269673

  19. Microbial Interactions within a Cheese Microbial Community▿ †

    PubMed Central

    Mounier, Jérôme; Monnet, Christophe; Vallaeys, Tatiana; Arditi, Roger; Sarthou, Anne-Sophie; Hélias, Arnaud; Irlinger, Françoise

    2008-01-01

    The interactions that occur during the ripening of smear cheeses are not well understood. Yeast-yeast interactions and yeast-bacterium interactions were investigated within a microbial community composed of three yeasts and six bacteria found in cheese. The growth dynamics of this community was precisely described during the ripening of a model cheese, and the Lotka-Volterra model was used to evaluate species interactions. Subsequently, the effects on ecosystem functioning of yeast omissions in the microbial community were evaluated. It was found both in the Lotka-Volterra model and in the omission study that negative interactions occurred between yeasts. Yarrowia lipolytica inhibited mycelial expansion of Geotrichum candidum, whereas Y. lipolytica and G. candidum inhibited Debaryomyces hansenii cell viability during the stationary phase. However, the mechanisms involved in these interactions remain unclear. It was also shown that yeast-bacterium interactions played a significant role in the establishment of this multispecies ecosystem on the cheese surface. Yeasts were key species in bacterial development, but their influences on the bacteria differed. It appeared that the growth of Arthrobacter arilaitensis or Hafnia alvei relied less on a specific yeast function because these species dominated the bacterial flora, regardless of which yeasts were present in the ecosystem. For other bacteria, such as Leucobacter sp. or Brevibacterium aurantiacum, growth relied on a specific yeast, i.e., G. candidum. Furthermore, B. aurantiacum, Corynebacterium casei, and Staphylococcus xylosus showed reduced colonization capacities in comparison with the other bacteria in this model cheese. Bacterium-bacterium interactions could not be clearly identified. PMID:17981942

  20. Influence of selected factors on browning of Camembert cheese.

    PubMed

    Carreira, Alexandra; Dillinger, Klaus; Eliskases-Lechner, Frieda; Loureiro, Virgílio; Ginzinger, Wolfgang; Rohm, Harald

    2002-05-01

    Experimental Camembert cheeses were made to investigate the effects on browning of the following factors: inoculation with Yarrowia lipolytica, the use of Penicillium candidum strains with different proteolytic activity, the addition of tyrosine, and the addition of Mn2+ thus leading to 16 different variants of cheese. Two physical colour parameters were used to describe browning, depending on the location in the cheeses: a whiteness index for the outside browning (mould mycelium), and a brownness index for the inside browning (surface of the cheese body). Mn2+ promoted a significant increase of browning at both locations, whereas Yar. lipolytica had the opposite effect. Outside browning was significantly more intense when using the Pen. candidum strain with higher proteolytic activity. A significant interaction was found between Yar. lipolytica and Pen. candidum. The yeast had no effect in combination with a low proteolytic strain of Pen. candidum, but significantly reduced proteolysis and browning in combination with a high proteolytic strain of Pen. candidum. We further confirmed that both strains of Pen. candidum were able to produce brown pigments from tyrosine and thus both are presumably responsible for the browning activity in this type of cheese.

  1. Metabolic Engineering of Oleaginous Yeasts for Fatty Alcohol Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Wei, Hui; Knoshaug, Eric

    To develop pathways for advanced biological upgrading of sugars to hydrocarbons, we are seeking biological approaches to produce high carbon efficiency intermediates amenable to separations and catalytic upgrading to hydrocarbon fuels. In this study, we successfully demonstrated fatty alcohol production by oleaginous yeasts Yarrowia lipolytica and Lipomyces starkeyi by expressing a bacteria-derived fatty acyl-CoA reductase (FAR). Moreover, we find higher extracellular distribution of fatty alcohols produced by FAR-expressing L. starkeyi strain as compared to Y. lipolytica strain, which would benefit the downstream product recovery process. In both oleaginous yeasts, long chain length saturated fatty alcohols were predominant, accounting for moremore » than 85% of the total fatty alcohols produced. To the best of our knowledge, this is the first report of fatty alcohol production in L. starkeyi. Taken together, our work demonstrates that in addition to Y. lipolytica, L. starkeyi can also serve as a platform organism for production of fatty acid-derived biofuels and bioproducts via metabolic engineering. We believe strain and process development both will significantly contribute to our goal of producing scalable and cost-effective fatty alcohols from renewable biomass.« less

  2. Evolutionary relationships among pathogenic Candida species and relatives.

    PubMed Central

    Barns, S M; Lane, D J; Sogin, M L; Bibeau, C; Weisburg, W G

    1991-01-01

    Small subunit rRNA sequences have been determined for 10 of the most clinically important pathogenic species of the yeast genus Candida (including Torulopsis [Candida] glabrata and Yarrowia [Candida] lipolytica) and for Hansenula polymorpha. Phylogenetic analyses of these sequences and those of Saccharomyces cerevisiae, Kluyveromyces marxianus var. lactis, and Aspergillus fumigatus indicate that Candida albicans, C. tropicalis, C. parapsilosis, and C. viswanathii form a subgroup within the genus. The remaining significant pathogen, T. glabrata, falls into a second, distinct subgroup and is specifically related to S. cerevisiae and more distantly related to C. kefyr (psuedotropicalis) and K. marxianus var. lactis. The 18S rRNA sequence of Y. lipolytica has evolved rapidly in relation to the other Candida sequences examined and appears to be only distantly related to them. As anticipated, species of several other genera appear to bear specific relationships to members of the genus Candida. PMID:2007550

  3. Metrological aspects of enzyme production

    NASA Astrophysics Data System (ADS)

    Kerber, T. M.; Dellamora-Ortiz, G. M.; Pereira-Meirelles, F. V.

    2010-05-01

    Enzymes are frequently used in biotechnology to carry out specific biological reactions, either in industrial processes or for the production of bioproducts and drugs. Microbial lipases are an important group of biotechnologically valuable enzymes that present widely diversified applications. Lipase production by microorganisms is described in several published papers; however, none of them refer to metrological evaluation and the estimation of the uncertainty in measurement. Moreover, few of them refer to process optimization through experimental design. The objectives of this work were to enhance lipase production in shaken-flasks with Yarrowia lipolytica cells employing experimental design and to evaluate the uncertainty in measurement of lipase activity. The highest lipolytic activity obtained was about three- and fivefold higher than the reported activities of CRMs BCR-693 and BCR-694, respectively. Lipase production by Y. lipolytica cells aiming the classification as certified reference material is recommended after further purification and stability studies.

  4. High-oleate yeast oil without polyunsaturated fatty acids.

    PubMed

    Tsakraklides, Vasiliki; Kamineni, Annapurna; Consiglio, Andrew L; MacEwen, Kyle; Friedlander, Jonathan; Blitzblau, Hannah G; Hamilton, Maureen A; Crabtree, Donald V; Su, Austin; Afshar, Jonathan; Sullivan, John E; LaTouf, W Greg; South, Colin R; Greenhagen, Emily H; Shaw, A Joe; Brevnova, Elena E

    2018-01-01

    Oleate-enriched triacylglycerides are well-suited for lubricant applications that require high oxidative stability. Fatty acid carbon chain length and degree of desaturation are key determinants of triacylglyceride properties and the ability to manipulate fatty acid composition in living organisms is critical to developing a source of bio-based oil tailored to meet specific application requirements. We sought to engineer the oleaginous yeast Yarrowia lipolytica for production of high-oleate triacylglyceride oil. We studied the effect of deletions and overexpressions in the fatty acid and triacylglyceride synthesis pathways to identify modifications that increase oleate levels. Oleic acid accumulation in triacylglycerides was promoted by exchanging the native ∆9 fatty acid desaturase and glycerol-3-phosphate acyltransferase with heterologous enzymes, as well as deletion of the Δ12 fatty acid desaturase and expression of a fatty acid elongase. By combining these engineering steps, we eliminated polyunsaturated fatty acids and created a Y. lipolytica strain that accumulates triglycerides with > 90% oleate content. High-oleate content and lack of polyunsaturates distinguish this triacylglyceride oil from plant and algal derived oils. Its composition renders the oil suitable for applications that require high oxidative stability and further demonstrates the potential of Y. lipolytica as a producer of tailored lipid profiles.

  5. The modulation of extracellular superoxide dismutase in the specifically enhanced cellular immune response against secondary challenge of Vibrio splendidus in Pacific oyster (Crassostrea gigas).

    PubMed

    Liu, Conghui; Zhang, Tao; Wang, Lingling; Wang, Mengqiang; Wang, Weilin; Jia, Zhihao; Jiang, Shuai; Song, Linsheng

    2016-10-01

    Extracellular superoxide dismutase (EcSOD) is a copper-containing glycoprotein playing an important role in antioxidant defense of living cells exposed to oxidative stress, and also participating in microorganism internalization and cell adhesion in invertebrates. EcSOD from oyster (designated CgEcSOD) had been previously reported to bind lipopolysaccharides (LPS) and act as a bridge molecule in Vibrio splendidus internalization. Its mRNA expression pattern, PAMP binding spectrum and microorganism binding capability were examined in the present study. The mRNA expression of CgEcSOD in hemocytes was significantly up-regulated at the initial phase and decreased sharply at 48 h post V. splendidus stimulation. The recombinant CgEcSOD protein (rCgEcSOD) could bind LPS, PGN and poly (I:C), as well as various microorganisms including Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Vibrio anguillarum, V. splendidus, Pastoris pastoris and Yarrowia lipolytica at the presence of divalent metal ions Cu(2+). After the secondary V. splendidus stimulation, the mRNA and protein of CgEcSOD were both down-regulated significantly. The results collectively indicated that CgEcSOD could not only function in the immune recognition, but also might contribute to the immune priming of oyster by inhibiting the foreign microbe invasion through a specific down-regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Improvement of soil characteristics and growth of Dorycnium pentaphyllum by amendment with agrowastes and inoculation with AM fungi and/or the yeast Yarowia lipolytica.

    PubMed

    Medina, A; Vassileva, M; Caravaca, F; Roldán, A; Azcón, R

    2004-08-01

    The effectiveness of two microbiologically treated agrowastes [dry olive cake (DOC) and/or sugar beet (SB)] on plant growth, soil enzymatic activities and other soil characteristics was determined in a natural soil from a desertified area. Dorycnium pentaphyllum, a legume plant adapted to stress situations, was the test plant to evaluate the effect of inoculation of native arbuscular mycorrhizal (AM) fungi and/or Yarowia lipolytica (a dry soil adapted yeast) on amended and non-amended soils. Plant growth and nutrition, symbiotic developments and soil enzymatic activities were limited in non-amended soil where microbial inoculations did not improve plant development. The lack of nodules formation and AM colonization can explain the limited plant growth in this natural soil. The effectiveness and performance of inocula applied was only evident in amended soils. AM colonization and spores number in natural soil were increased by amendments and the inoculation with Y. lipolytica promoted this value. The effect of the inoculations on plant N-acquisition was only important in AM-inoculated plants growing in SB medium. Enzymatic activities as urease and protease activities were particularly increased in DOC amended soil meanwhile dehydrogenase activity was greatest in treatments inoculated with Y. lipolytica in SB added soil. The biological activities in rhizosphere of agrowaste amended soil, used as indices of changes in soil properties and fertility, were affected not only by the nature of amendments but also by the inoculant applied. All these results show that the lignocellulosic agrowastes treated with a selected microorganism and its further interaction with beneficial microbial groups (native AM fungi and/or Y. lipolytica) is a useful tool to modify soil physico-chemical, biological and fertility properties that enhance the plant performance probably by making nutrients more available to plants.

  7. Screening of a thiamine-auxotrophic yeast for alpha-ketoglutaric acid overproduction.

    PubMed

    Zhou, Jingwen; Zhou, Haiyan; Du, Guocheng; Liu, Liming; Chen, Jian

    2010-09-01

    To obtain a thiamine-auxotrophic yeast strain that overproduces alpha-ketoglutaric acid (alpha-KG) from glycerol and to investigate nutrient effects on alpha-KG production. Yeast strain WSH-Z06, a thiamine auxotroph that gave high yields of alpha-KG from glycerol, was obtained by screening for ampicillin/kanamycin resistance and thiamine auxotrophy. The strain was identified as Yarrowia lipolytica based on physiological, chemical, and phylogenetic analysis. The ability of the strain to convert glycerol to alpha-KG was analysed by investigating the effects of nutritional factors, including thiamine, riboflavin, nitrogen sources, and calcium ion. Thiamine and calcium ion concentration had the greatest effect on alpha-KG accumulation. Under optimal conditions, a yield of 39.2 g l(-1)alpha-KG was obtained from 100 g l(-1) glycerol, with 16.84 g l(-1) pyruvate as a by-product. The current work provides a method for screening for an alpha-KG overproducer. Nutrients have a significant impact on alpha-KG production in the yeast strain presented here. The alpha-KG-overproducing yeast strain Y. lipolytica WSH-Z06 is a promising parent strain for further metabolic engineering to lower by-product accumulation and accelerate glycerol utilization.

  8. Genomics of Staphylococcus

    NASA Astrophysics Data System (ADS)

    Lindsay, Jodi A.

    The staphylococci are Gram-positive cocci that divide to form clusters that look like grapes. By 16S ribosomal sequencing, they are most closely related to the Gram-positive, low G+C content Bacillus-Lactobacillus-Staphylococcus genera (Woese, 1987). There are over 30 species of staphylococci identified, and they are typically found on the skin and mucous membranes of mammals. About a dozen species are frequently carried on humans, including Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus capitis, Staphylococcus hominis, Staphylococcus cohnii, Staphylococcus lugdunensis, Staphylococcus schleiferi, Staphylococcus saprophyticus, Staphylococcus simulans, Staphylococcus warneri and Staphylococcus xylosus.

  9. Physiological uncoupling of mitochondrial oxidative phosphorylation. Studies in different yeast species.

    PubMed

    Guerrero-Castillo, Sergio; Araiza-Olivera, Daniela; Cabrera-Orefice, Alfredo; Espinasa-Jaramillo, Juan; Gutiérrez-Aguilar, Manuel; Luévano-Martínez, Luís A; Zepeda-Bastida, Armando; Uribe-Carvajal, Salvador

    2011-06-01

    Under non-phosphorylating conditions a high proton transmembrane gradient inhibits the rate of oxygen consumption mediated by the mitochondrial respiratory chain (state IV). Slow electron transit leads to production of reactive oxygen species (ROS) capable of participating in deleterious side reactions. In order to avoid overproducing ROS, mitochondria maintain a high rate of O(2) consumption by activating different exquisitely controlled uncoupling pathways. Different yeast species possess one or more uncoupling systems that work through one of two possible mechanisms: i) Proton sinks and ii) Non-pumping redox enzymes. Proton sinks are exemplified by mitochondrial unspecific channels (MUC) and by uncoupling proteins (UCP). Saccharomyces. cerevisiae and Debaryomyces hansenii express highly regulated MUCs. Also, a UCP was described in Yarrowia lipolytica which promotes uncoupled O(2) consumption. Non-pumping alternative oxido-reductases may substitute for a pump, as in S. cerevisiae or may coexist with a complete set of pumps as in the branched respiratory chains from Y. lipolytica or D. hansenii. In addition, pumps may suffer intrinsic uncoupling (slipping). Promising models for study are unicellular parasites which can turn off their aerobic metabolism completely. The variety of energy dissipating systems in eukaryote species is probably designed to control ROS production in the different environments where each species lives.

  10. Evolution of the carboxylate Jen transporters in fungi.

    PubMed

    Lodi, Tiziana; Diffels, Julie; Goffeau, André; Baret, Philippe V

    2007-08-01

    Synteny analysis is combined with sequence similarity and motif identification to trace the evolution of the putative monocarboxylate (lactate/pyruvate) transporters Jen1p and the dicarboxylate (succinate/fumarate/malate) transporters Jen2p in Hemiascomycetes yeasts and Euascomycetes fungi. It is concluded that a precursor form of Jen1p, named here preJen1p, arose by the duplication of an ancestral Jen2p, during the speciation of Yarrowia lipolytica, which was transferred into a new syntenic context. The Jen1p transporters differentiated from preJen1p in Kluyveromyces lactis, before the Whole Genome Duplication (WGD), and are conserved as a single copy in the Saccharomyces species. In contrast, the ancestral Jen2p was definitively lost just prior to the WGD and is absent in Saccharomyces.

  11. Biodegradation of micropollutant naproxen with a selected fungal strain and identification of metabolites.

    PubMed

    Aracagök, Y Doruk; Göker, Hakan; Cihangir, Nilüfer

    2017-05-01

    Pharmaceuticals are widely used for treating human and animal diseases. Naproxen [(S) 6-methoxy-α-methyl-2-naphthalene acetic acid] and its sodium salt are members of the α-arylpropionic acid group of nonsteroidal anti-inflammatory drugs. Due to excessive usage of naproxen, this drug has been determined even in drinking water. In this study, four fungal strains Phanerochaete chrysosporium, Funalia trogii, Aspergillus niger, and Yarrowia lipolytica were investigated in terms of naproxen removal abilities. According to LC/MS data, A. niger was found the most efficient strain with 98% removal rate. Two main by-products of fungal transformation, O-desmethylnaproxen and 7-hydroxynaproxen, were identified by using LC/MS, 1HNMR, and 13CNMR. Our results showed that O-demethylation and hydroxylation of naproxen is catalyzed by cytochrome P450 enzyme system.

  12. Investigation of the effect of biologically active threo-Ds-isocitric acid on oxidative stress in Paramecium caudatum.

    PubMed

    Morgunov, Igor G; Karpukhina, Olga V; Kamzolova, Svetlana V; Samoilenko, Vladimir A; Inozemtsev, Anatoly N

    2018-01-02

    The effect of biologically active form (threo-Ds-) of isocitric acid (ICA) on oxidative stress was studied using the infusorian Paramecium caudatum stressed by hydrogen peroxide and salts of some heavy metals (Cu, Pb, Zn, and Cd). ICA at concentrations between 0.5 and 10 mM favorably influenced the infusorian cells with oxidative stress induced by the toxicants studied. The maximal antioxidant effect of ICA was observed at its concentration 10 mM irrespective of the toxicant used (either H 2 O 2 or heavy metal ions). ICA was found to be a more active antioxidant than ascorbic acid. Biologically active pharmaceutically pure threo-Ds-ICA was produced through cultivation of the yeast Yarrowia lipolytica and isolated from the culture liquid in the form of crystalline monopotassium salt with a purity of 99.9%.

  13. Antifungal activity of the lipopeptides produced by Bacillus amyloliquefaciens anti-CA against Candida albicans isolated from clinic.

    PubMed

    Song, Bo; Rong, Yan-Jun; Zhao, Ming-Xin; Chi, Zhen-Ming

    2013-08-01

    The bacterium Bacillus amyloliquefaciens anti-CA isolated from mangrove system was found to be able to actively kill Candida albicans isolated from clinic. The bacterial strain anti-CA could produce high level of bioactive substance, amylase and protease in the cheap medium containing 2.0 % soybean meal, 2.0 % wheat flour, pH 6.5 within 26 h. After purification, the main bioactive substance was confirmed to be a cyclic lipopeptide containing a heptapeptide, L-Asp→L-Leu→L-Leu→L-Val→L-Val→L-Glu→L-Leu and a 3-OH fatty acid (15 carbons). In addition to C. albicans, the purified lipopeptide can also kill many yeast strains including Metschnikowia bicuspidata, Candida tropicalis, Yarrowia lipolytica and Saccharomyces cerevisiae. After treated by the purified lipopeptide, both the whole cells and protoplasts of C. albicans were destroyed.

  14. Metabolic engineering of microbial competitive advantage for industrial fermentation processes.

    PubMed

    Shaw, A Joe; Lam, Felix H; Hamilton, Maureen; Consiglio, Andrew; MacEwen, Kyle; Brevnova, Elena E; Greenhagen, Emily; LaTouf, W Greg; South, Colin R; van Dijken, Hans; Stephanopoulos, Gregory

    2016-08-05

    Microbial contamination is an obstacle to widespread production of advanced biofuels and chemicals. Current practices such as process sterilization or antibiotic dosage carry excess costs or encourage the development of antibiotic resistance. We engineered Escherichia coli to assimilate melamine, a xenobiotic compound containing nitrogen. After adaptive laboratory evolution to improve pathway efficiency, the engineered strain rapidly outcompeted a control strain when melamine was supplied as the nitrogen source. We additionally engineered the yeasts Saccharomyces cerevisiae and Yarrowia lipolytica to assimilate nitrogen from cyanamide and phosphorus from potassium phosphite, and they outcompeted contaminating strains in several low-cost feedstocks. Supplying essential growth nutrients through xenobiotic or ecologically rare chemicals provides microbial competitive advantage with minimal external risks, given that engineered biocatalysts only have improved fitness within the customized fermentation environment. Copyright © 2016, American Association for the Advancement of Science.

  15. Zinc Finger Transcription Factors Displaced SREBP Proteins as the Major Sterol Regulators during Saccharomycotina Evolution

    PubMed Central

    Maguire, Sarah L.; Wang, Can; Holland, Linda M.; Brunel, François; Neuvéglise, Cécile; Nicaud, Jean-Marc; Zavrel, Martin; White, Theodore C.; Wolfe, Kenneth H.; Butler, Geraldine

    2014-01-01

    In most eukaryotes, including the majority of fungi, expression of sterol biosynthesis genes is regulated by Sterol-Regulatory Element Binding Proteins (SREBPs), which are basic helix-loop-helix transcription activators. However, in yeasts such as Saccharomyces cerevisiae and Candida albicans sterol synthesis is instead regulated by Upc2, an unrelated transcription factor with a Gal4-type zinc finger. The SREBPs in S. cerevisiae (Hms1) and C. albicans (Cph2) have lost a domain, are not major regulators of sterol synthesis, and instead regulate filamentous growth. We report here that rewiring of the sterol regulon, with Upc2 taking over from SREBP, likely occurred in the common ancestor of all Saccharomycotina. Yarrowia lipolytica, a deep-branching species, is the only genome known to contain intact and full-length orthologs of both SREBP (Sre1) and Upc2. Deleting YlUPC2, but not YlSRE1, confers susceptibility to azole drugs. Sterol levels are significantly reduced in the YlUPC2 deletion. RNA-seq analysis shows that hypoxic regulation of sterol synthesis genes in Y. lipolytica is predominantly mediated by Upc2. However, YlSre1 still retains a role in hypoxic regulation; growth of Y. lipolytica in hypoxic conditions is reduced in a Ylupc2 deletion and is abolished in a Ylsre1/Ylupc2 double deletion, and YlSre1 regulates sterol gene expression during hypoxia adaptation. We show that YlSRE1, and to a lesser extent YlUPC2, are required for switching from yeast to filamentous growth in hypoxia. Sre1 appears to have an ancestral role in the regulation of filamentation, which became decoupled from its role in sterol gene regulation by the arrival of Upc2 in the Saccharomycotina. PMID:24453983

  16. Presence and changes in populations of yeasts on raw and processed poultry products stored at refrigeration temperature.

    PubMed

    Ismail, S A; Deak, T; El-Rahman, H A; Yassien, M A; Beuchat, L R

    2000-12-05

    A study was undertaken to determine populations and profiles of yeast species on fresh and processed poultry products upon purchase from retail supermarkets and after storage at 5 degrees C until shelf life expiration, and to assess the potential role of these yeasts in product spoilage. Fifty samples representing 15 commercial raw, marinated, smoked, or roasted chicken and turkey products were analyzed. Yeast populations were determined by plating on dichloran rose bengal chloramphenicol (DRBC) agar and tryptone glucose yeast extract (TGY) agar. Proteolytic activity was determined using caseinate and gelatin agars and lipolytic activity was determined on plate count agar supplemented with tributyrin. Populations of aerobic microorganisms were also determined. Initial populations of yeasts (log10 cfu/g) ranged from less than 1 (detection limit) to 2.89, and increased by the expiration date to 0.37-5.06, indicating the presence of psychrotrophic species. Highest initial populations were detected in raw chicken breast, wings, and ground chicken, as well as in turkey necks and legs, whereas roasted chicken and turkey products contained less than 1 log10 cfu/g. During storage, yeast populations increased significantly (P < or = 0.05) in whole chicken, ground chicken, liver, heart and gizzard, and in ground turkey and turkey sausage. Isolates (152 strains) of yeasts from poultry products consisted of 12 species. Yarrowia lipolytica and Candida zeylanoides were predominant, making up 39 and 26% of the isolates, respectively. Six different species of basidiomycetous yeasts representing 24% of the isolates were identified. Most Y. lipolytica strains showed strong proteolytic and lipolytic activities, whereas C. zeylanoides was weakly lipolytic. Results suggest that yeasts, particularly Y. lipolytica, may play a more prominent role than previously recognized in the spoilage of fresh and processed poultry stored at 5 degrees C.

  17. Interactions between yeasts and bacteria in the smear surface-ripened cheeses.

    PubMed

    Corsetti, A; Rossi, J; Gobbetti, M

    2001-09-19

    In the initial phase of ripening, the microflora of bacterial smear surface-ripened cheeses such as Limburger, Taleggio, Brick, Münster and Saint-Paulin and that of surface mould-ripened cheeses such as Camembert and Brie may be similar, but at the end of the ripening, bacteria such as Brevibacterium spp., Arthrobacter spp., Micrococcus spp., Corynebacterium spp. and moulds such as Penicillium camemberti are, respectively, the dominant microorganisms. Yeasts such as Candida spp., Cryptococcus spp., Debaryomyces spp., Geotrichum candidum, Pichia spp., Rhodotorula spp., Saccharomyces spp. and Yarrowia lipolytica are often and variably isolated from the smear surface-ripened cheeses. Although not dominant within the microorganisms of the smear surface-ripened cheeses, yeasts establish significant interactions with moulds and especially bacteria, including surface bacteria and lactic acid bacteria. Some aspects of the interactions between yeasts and bacteria in such type of cheeses are considered in this paper.

  18. Comparative genomic analysis of the genus Staphylococcus including Staphylococcus aureus and its newly described sister species Staphylococcus simiae

    PubMed Central

    2012-01-01

    Background Staphylococcus belongs to the Gram-positive low G + C content group of the Firmicutes division of bacteria. Staphylococcus aureus is an important human and veterinary pathogen that causes a broad spectrum of diseases, and has developed important multidrug resistant forms such as methicillin-resistant S. aureus (MRSA). Staphylococcus simiae was isolated from South American squirrel monkeys in 2000, and is a coagulase-negative bacterium, closely related, and possibly the sister group, to S. aureus. Comparative genomic analyses of closely related bacteria with different phenotypes can provide information relevant to understanding adaptation to host environment and mechanisms of pathogenicity. Results We determined a Roche/454 draft genome sequence for S. simiae and included it in comparative genomic analyses with 11 other Staphylococcus species including S. aureus. A genome based phylogeny of the genus confirms that S. simiae is the sister group to S. aureus and indicates that the most basal Staphylococcus lineage is Staphylococcus pseudintermedius, followed by Staphylococcus carnosus. Given the primary niche of these two latter taxa, compared to the other species in the genus, this phylogeny suggests that human adaptation evolved after the split of S. carnosus. The two coagulase-positive species (S. aureus and S. pseudintermedius) are not phylogenetically closest but share many virulence factors exclusively, suggesting that these genes were acquired by horizontal transfer. Enrichment in genes related to mobile elements such as prophage in S. aureus relative to S. simiae suggests that pathogenesis in the S. aureus group has developed by gene gain through horizontal transfer, after the split of S. aureus and S. simiae from their common ancestor. Conclusions Comparative genomic analyses across 12 Staphylococcus species provide hypotheses about lineages in which human adaptation has taken place and contributions of horizontal transfer in pathogenesis. PMID

  19. Efficient resource recycling from liquid digestate by microalgae-yeast mixed culture and the assessment of key gene transcription related to nitrogen assimilation in microalgae.

    PubMed

    Qin, Lei; Liu, Lu; Wang, Zhongming; Chen, Weining; Wei, Dong

    2018-05-18

    To determine the feasibility of microalgae-yeast mixed culture using the liquid digestate of dairy wastewater (LDDW) for biofuels and single cell protein (SCP) production, the cell growth, nutrient removal and outputs evaluation of the mono and mixed culture of Chlorella vulgaris and Yarrowia lipolytica in LDDW were investigated by adding glycerol as carbon source. The results showed that the mixed culture could enhance the biological utilization efficiency of nitrogen and phosphorus, and obtain higher yield of biomass (1.62 g/L), lipid (0.31 g/L), protein (0.51 g/L), and higher heating value (34.06 KJ/L). Compared with the mono culture of C. vulgaris, a decline of the transcription level in nitrate reductase and glutamine synthetase II genes in C. vulgaris was observed in the mixed culture when ammonia was sufficient. The results suggest the possibility of using the mixed culture for the efficient treatment of LDDW and resources recycling. Copyright © 2018. Published by Elsevier Ltd.

  20. Molecular characterization and expression of microbial inulinase genes.

    PubMed

    Liu, Guang-Lei; Chi, Zhe; Chi, Zhen-Ming

    2013-05-01

    Many genes encoding exo- and endo-inulinases from bacteria, yeasts and filamentous fungi have been cloned and characterized. All the inulinases have several conserved motifs, such as WMND(E)PNGL, RDP, EC(V)P, SVEVF, Q and FS(T), which play an important role in inulinase catalysis and substrate binding. However, the exo-inulinases produced by yeasts has no conserved motif SVEVF and the yeasts do not produce any endo-inulinase. Exo- and endo-inulinases found in different microorganisms cluster separately at distant positions from each other. Most of the cloned inulinase genes have been expressed in Yarrowia lipolytica, Saccharomyces cerevisiae, Pichia pastoris, Klyuveromyces lactis and Escherichia coli, respectively. The recombinant inulinases produced and the engineered hosts using the cloned inulinase genes have many potential applications. Expression of most of the inulinase genes is repressed by glucose and fructose and induced by inulin and sucrose. However, the detailed mechanisms of the repression and induction are still unknown.

  1. Metabolic engineering of yeast for lignocellulosic biofuel production.

    PubMed

    Jin, Yong-Su; Cate, Jamie Hd

    2017-12-01

    Production of biofuels from lignocellulosic biomass remains an unsolved challenge in industrial biotechnology. Efforts to use yeast for conversion face the question of which host organism to use, counterbalancing the ease of genetic manipulation with the promise of robust industrial phenotypes. Saccharomyces cerevisiae remains the premier host for metabolic engineering of biofuel pathways, due to its many genetic, systems and synthetic biology tools. Numerous engineering strategies for expanding substrate ranges and diversifying products of S. cerevisiae have been developed. Other yeasts generally lack these tools, yet harbor superior phenotypes that could be exploited in the harsh processes required for lignocellulosic biofuel production. These include thermotolerance, resistance to toxic compounds generated during plant biomass deconstruction, and wider carbon consumption capabilities. Although promising, these yeasts have yet to be widely exploited. By contrast, oleaginous yeasts such as Yarrowia lipolytica capable of producing high titers of lipids are rapidly advancing in terms of the tools available for their metabolic manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.

    PubMed

    Wagner, James M; Alper, Hal S

    2016-04-01

    Coupling the tools of synthetic biology with traditional molecular genetic techniques can enable the rapid prototyping and optimization of yeast strains. While the era of yeast synthetic biology began in the well-characterized model organism Saccharomyces cerevisiae, it is swiftly expanding to include non-conventional yeast production systems such as Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. These yeasts already have roles in the manufacture of vaccines, therapeutic proteins, food additives, and biorenewable chemicals, but recent synthetic biology advances have the potential to greatly expand and diversify their impact on biotechnology. In this review, we summarize the development of synthetic biological tools (including promoters and terminators) and enabling molecular genetics approaches that have been applied in these four promising alternative biomanufacturing platforms. An emphasis is placed on synthetic parts and genome editing tools. Finally, we discuss examples of synthetic tools developed in other organisms that can be adapted or optimized for these hosts in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Comparison of nitrogen depletion and repletion on lipid production in yeast and fungal species

    DOE PAGES

    Yang, Shihui; Wang, Wei; Wei, Hui; ...

    2016-08-29

    Although it is well known that low nitrogen stimulates lipid accumulation, especially for algae and some oleaginous yeast, few studies have been conducted in fungal species, especially on the impact of different nitrogen deficiency strategies. In this study, we use two promising consolidated bioprocessing (CBP) candidates to examine the impact of two nitrogen deficiency strategies on lipid production, which are the extensively investigated oleaginous yeast Yarrowia lipolytica, and the commercial cellulase producer Trichoderma reesei. We first utilized bioinformatics approaches to reconstruct the fatty acid metabolic pathway and demonstrated the presence of a triacylglycerol (TAG) biosynthesis pathway in Trichoderma reesei. Wemore » then examined the lipid production of Trichoderma reesei and Y. lipomyces in different media using two nitrogen deficiency strategies of nitrogen natural repletion and nitrogen depletion through centrifugation. Our results demonstrated that nitrogen depletion was better than nitrogen repletion with about 30% lipid increase for Trichoderma reesei and Y. lipomyces, and could be an option to improve lipid production in both oleaginous yeast and filamentous fungal species. The resulting distinctive lipid composition profiles indicated that the impacts of nitrogen depletion on yeast were different from those for fungal species. Under three types of C/N ratio conditions, C16 and C18 fatty acids were the predominant forms of lipids for both Trichoderma reesei and Y. lipolytica. In addition, while the overall fatty acid methyl ester (FAME) profiles of Trichoderma reesei were similar, the overall FAME profiles of Y. lipolytica observed a shift. The fatty acid metabolic pathway reconstructed in this work supports previous reports of lipid production in T. reesei, and provides a pathway for future omics studies and metabolic engineering efforts. Further investigation to identify the genetic targets responsible for the effect of nitrogen depletion

  4. Comparison of nitrogen depletion and repletion on lipid production in yeast and fungal species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shihui; Wang, Wei; Wei, Hui

    Although it is well known that low nitrogen stimulates lipid accumulation, especially for algae and some oleaginous yeast, few studies have been conducted in fungal species, especially on the impact of different nitrogen deficiency strategies. In this study, we use two promising consolidated bioprocessing (CBP) candidates to examine the impact of two nitrogen deficiency strategies on lipid production, which are the extensively investigated oleaginous yeast Yarrowia lipolytica, and the commercial cellulase producer Trichoderma reesei. We first utilized bioinformatics approaches to reconstruct the fatty acid metabolic pathway and demonstrated the presence of a triacylglycerol (TAG) biosynthesis pathway in Trichoderma reesei. Wemore » then examined the lipid production of Trichoderma reesei and Y. lipomyces in different media using two nitrogen deficiency strategies of nitrogen natural repletion and nitrogen depletion through centrifugation. Our results demonstrated that nitrogen depletion was better than nitrogen repletion with about 30% lipid increase for Trichoderma reesei and Y. lipomyces, and could be an option to improve lipid production in both oleaginous yeast and filamentous fungal species. The resulting distinctive lipid composition profiles indicated that the impacts of nitrogen depletion on yeast were different from those for fungal species. Under three types of C/N ratio conditions, C16 and C18 fatty acids were the predominant forms of lipids for both Trichoderma reesei and Y. lipolytica. In addition, while the overall fatty acid methyl ester (FAME) profiles of Trichoderma reesei were similar, the overall FAME profiles of Y. lipolytica observed a shift. The fatty acid metabolic pathway reconstructed in this work supports previous reports of lipid production in T. reesei, and provides a pathway for future omics studies and metabolic engineering efforts. Further investigation to identify the genetic targets responsible for the effect of nitrogen depletion

  5. A novel phagocytic receptor (CgNimC) from Pacific oyster Crassostrea gigas with lipopolysaccharide and gram-negative bacteria binding activity.

    PubMed

    Wang, Weilin; Liu, Rui; Zhang, Tao; Zhang, Ran; Song, Xuan; Wang, Lingling; Song, Linsheng

    2015-03-01

    Phagocytosis is an evolutionarily conserved process to ingest the invading microbes and apoptotic or necrotic corpses, playing vital roles in defensing invaders and maintenance of normal physiological conditions. In the present study, a new Nimrod family phagocytic receptor with three EGF-like domains was identified in Pacific oyster Crassostrea gigas (designated CgNimC). CgNimC shared homology with other identified multiple EGF-like domain containing proteins. The mRNA transcripts of CgNimC were mainly distributed in mantle and hemocytes. Its relative expression level in hemocytes was significantly (P < 0.01) up-regulated after the injection of bacteria Vibrio anguillarum. Different to the NimC in Drosophila and Anopheles gambiae, the recombinant protein of CgNimC (rCgNimC) could bind directly to two gram-negative bacteria V. anguillarum and Vibrio splendidus, but not to gram-positive bacteria Staphylococci aureus, Micrococcus luteus or fungi Yarrowia lipolytica and Pichia pastoris. The affinity of rCgNimC toward M. luteus and Y. lipolytica was enhanced when the microorganisms were pre-incubated with the cell free hemolymph. rCgNimC exhibited higher affinity to lipopolysaccharide (LPS) and relatively lower affinity to peptidoglycan (PGN), while no affinity to glucan (GLU). After the CgNimC receptor was blocked by anti-rCgNimC antibody in vitro, the phagocytic rate of hemocytes toward two gram-negative bacteria V. anguillarum and V. splendidus was reduced significantly (P < 0.05), but no significant change of phagocytic rate was observed toward M. luteus and Y. lipolytica. All these results implied that CgNimC, with significant binding capability to LPS and gram-negative bacteria, was a novel phagocytic receptor involved in immune response of Pacific oyster. Further, it was speculated that receptors of Nimrod family might function as a phagocytic receptor to recognize PAMPs on the invaders and its recognition could be promoted by opsonization of molecules in

  6. A novel junctional adhesion molecule A (CgJAM-A-L) from oyster (Crassostrea gigas) functions as pattern recognition receptor and opsonin.

    PubMed

    Liu, Conghui; Wang, Mengqiang; Jiang, Shuai; Wang, Lingling; Chen, Hao; Liu, Zhaoqun; Qiu, Limei; Song, Linsheng

    2016-02-01

    Junctional adhesion molecule (JAM), a subfamily of immunoglobulin superfamily (IgSF) with a couple of immunoglobulin domains, can act as regulator in homeostasis and inflammation of vertebrates. In the present study, a structural homolog of JAM-A (designated CgJAM-A-L) was screened out from oyster, Crassostrea gigas, through a search of JAM-A D1 domain (N-terminal Ig domain in JAM-A). The cDNA of CgJAM-A-L was of 1188 bp encoding a predicted polypeptide of 395 amino acids. The immunoreactive area of CgJAM-A-L mainly distributed over the plasma membrane of hemocytes. After Vibro splendidus or tumor necrosis factor (CgTNF-1) stimulation, the mRNA transcripts of CgJAM-A-L in hemocytes increased significantly by 4.46-fold and 9.00-fold (p < 0.01) of those in control group, respectively. The recombinant CgJAM-A-L protein (rCgJAM-A-L) could bind multiple PAMPs including lipopolysaccharides (LPS), peptidoglycan (PGN), lipoteichoic acid (LTA), mannose (MAN), β-glucan (GLU) and poly(I:C), and various microorganisms including Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Vibro anguillarum, V. splendidus, Pastoris pastoris and Yarrowia lipolytica. The phagocytic rates of oyster hemocytes towards Gram-negative bacteria V. anguillarum and yeast P. pastoris were significantly enhanced after the incubation of rCgJAM-A-L, and even increased more significantly after the pre-incubation of rCgJAM-A-L with microbes (p < 0.01). The results collectively indicated that CgJAM-A-L functioned as an important pattern recognition receptor (PRR) and opsonin in the immune defense against invading pathogen in oyster. Moreover, as the most primitive specie with homolog of JAMs, the information of CgJAM-A-L in oyster would provide useful clues for the evolutionary study of JAMs and immunoglobulins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Synthesis, structural characterization and photoluminescence properties of a novel La(III) complex

    NASA Astrophysics Data System (ADS)

    Köse, Muhammet; Ceyhan, Gökhan; Atcı, Emine; McKee, Vickie; Tümer, Mehmet

    2015-05-01

    In this study, a novel La(III) complex [La(H2L)2(NO3)3(MeOH)] of a Schiff base ligand was synthesized and characterized by spectroscopic and analytical methods. Single crystals of the complex suitable for X-ray diffraction study were obtained by slow diffusion of diethyl ether into a MeOH solution of the complex which was found to crystallise as [La(H2L)2(NO3)3(MeOH)]ṡ2MeOHṡH2O. The structure was solved in monoclinic crystal system, P21/n space group with unit cell parameters a = 10.5641(11), b = 12.6661(16), c = 16.0022(17) Å, α = 67.364(2), β = 83.794(2)°, γ = 70.541(2)°, V = 1862.9(4) Å3 and Z = 2 with R final value of 0.526. In the complex, the La(III) ion is ten-coordinated by O atoms, five of which come from three nitrate ions, four from the two Schiff base ligands and one from MeOH oxygen atom. The Schiff base ligands in the structure are in a zwitter ion form with the phenolic H transferred to the imine N atom. Thermal properties of the La(III) complex were examined by thermogravimetric analysis and the complex was found to be thermally stable up to 310 °C. The Schiff base ligand and its La(II) complex were screened for their in vitro antimicrobial activity against Bacillus megaterium, Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus (Gram positive bacteria), Klebsiella pneumonia, Escherichia coli, Enterobacter aerogenes, Pseudomonas aeruginosa (Gram negative bacteria), Candida albicans,Yarrowia lipolytica (fungus) and Saccharomyces cerevisiae (yeast). The complex shows more antimicrobial activity than the free ligand.

  8. Staphylococcus lugdunensis, a serious pathogen in periprosthetic joint infections: comparison to Staphylococcus aureus and Staphylococcus epidermidis.

    PubMed

    Lourtet-Hascoët, J; Bicart-See, A; Félicé, M P; Giordano, G; Bonnet, E

    2016-10-01

    The aim of this study was to assess the characteristics of periprosthetic joint infection (PJI) due to Staphylococcus lugdunensis and to compare these to the characteristics of PJI due to Staphylococcus aureus and Staphylococcus epidermidis. A retrospective multicentre study including all consecutive cases of S. lugdunensis PJI (2000-2014) was performed. Eighty-eight cases of staphylococcal PJI were recorded: 28 due to S. lugdunensis, 30 to S. aureus, and 30 to S. epidermidis, as identified by Vitek 2 or API Staph (bioMérieux). Clinical symptoms were more often reported in the S. lugdunensis group, and the median delay between surgery and infection was shorter for the S. lugdunensis group than for the S. aureus and S. epidermidis groups. Regarding antibiotic susceptibility, the S. lugdunensis strains were susceptible to antibiotics and 61% of the patients could be treated with levofloxacin + rifampicin. The outcome of the PJI was favourable for 89% of patients with S. lugdunensis, 83% with S. aureus, and 97% with S. epidermidis. S. lugdunensis is an emerging pathogen with a pathogenicity quite similar to that of S. aureus. This coagulase-negative Staphylococcus must be identified precisely in PJI, in order to select the appropriate surgical treatment and antibiotics . Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  9. Identification and characterization of methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus and Staphylococcus pettenkoferi from a small animal clinic.

    PubMed

    Weiss, Sonja; Kadlec, Kristina; Fessler, Andrea T; Schwarz, Stefan

    2013-12-27

    The aim of this study was to isolate and characterize methicillin-resistant staphylococci (MRS) in a small animal clinic and to investigate their distribution and possible transmission. Swabs (n=72) were taken from hospitalized pets, the environment and employees of a small animal clinic and screened for the presence of MRS. The staphylococcal species was confirmed biochemically or by 16S rDNA sequencing. Susceptibility to antimicrobial agents was tested by broth dilution. The presence of mecA and other resistance genes was confirmed by PCR. Molecular typing of the isolates followed standard procedures. In total, 34 MRS belonging to the four species Staphylococcus aureus (n=5), Staphylococcus epidermidis (n=21), Staphylococcus haemolyticus (n=6) or Staphylococcus pettenkoferi (n=2) were isolated. All isolates were multidrug-resistant with resistance to at least three classes of antimicrobial agents. Among the five methicillin-resistant S. aureus (MRSA) isolates, four belonged to the clonal complex CC398; two of them were isolated from cats, the remaining two from pet cages. Overall, the MRS isolates differed in their characteristics, except for one S. epidermidis clone (n=9) isolated from hospitalized cats without clinical staphylococcal infections, pet cages, the clinic environment as well as from a healthy employee. This MRSE clone was resistant to 10 classes of antimicrobial agents, including aminocyclitols, β-lactams, fluoroquinolones, lincosamides, macrolides, phenicols, pleuromutilins, sulfonamides, tetracyclines and trimethoprim. These findings suggest a possible transmission of specific MRS isolates between animal patients, employees and the clinic environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Staphylococcus aureus and Pregnancy

    MedlinePlus

    Staphylococcus aureus (Staph Infection) In every pregnancy, a woman starts out with a 3-5% chance of having ... risk. This sheet talks about whether exposure to staphylococcus aureus may increase the risk for birth defects over ...

  11. Staphylococcus chromogenes, a Coagulase-Negative Staphylococcus Species That Can Clot Plasma.

    PubMed

    Dos Santos, Danielle Cabral; Lange, Carla Christine; Avellar-Costa, Pedro; Dos Santos, Katia Regina Netto; Brito, Maria Aparecida Vasconcelos Paiva; Giambiagi-deMarval, Marcia

    2016-05-01

    Staphylococcus chromogenes is one of the main coagulase-negative staphylococci isolated from mastitis of dairy cows. We describe S. chromogenes isolates that can clot plasma. Since the main pathogen causing mastitis is coagulase-positive Staphylococcus aureus, the coagulase-positive phenotype of S. chromogenes described here can easily lead to misidentification. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Methicillin-resistant Staphylococcus argenteus misidentified as methicillin-resistant Staphylococcus aureus emerging in western Sweden.

    PubMed

    Tång Hallbäck, Erika; Karami, Nahid; Adlerberth, Ingegerd; Cardew, Sofia; Ohlén, Maria; Engström Jakobsson, Hedvig; Svensson Stadler, Liselott

    2018-05-17

    Two strains included in a whole-genome sequencing project for methicillin-resistant Staphylococcus aureus (MRSA) were identified as non-Staphylococcus aureus when the sequences were analysed using the bioinformatics software ALEX (www.1928diagnostics.com, Gothenburg, Sweden). Sequencing of the sodA gene of these strains identified them as Staphylococcus argenteus. The collection of MRSA in western Sweden was checked for additional strains of this species. A total of 18 strains of S. argenteus isolated between 2011 and December 2017 were identified.

  13. Detergent assisted lipid extraction from wet yeast biomass for biodiesel: A response surface methodology approach.

    PubMed

    Yellapu, Sravan Kumar; Bezawada, Jyothi; Kaur, Rajwinder; Kuttiraja, Mathiazhakan; Tyagi, Rajeshwar D

    2016-10-01

    The lipid extraction from the microbial biomass is a tedious and high cost dependent process. In the present study, detergent assisted lipids extraction from the culture of the yeast Yarrowia lipolytica SKY-7 was carried out. Response surface methodology (RSM) was used to investigate the effect of three principle parameters (N-LS concentration, time and temperature) on microbial lipid extraction efficiency % (w/w). The results obtained by statistical analysis showed that the quadratic model fits in all cases. Maximum lipid recovery of 95.3±0.3% w/w was obtained at the optimum level of process variables [N-LS concentration 24.42mg (equal to 48mgN-LS/g dry biomass), treatment time 8.8min and reaction temperature 30.2°C]. Whereas the conventional chloroform and methanol extraction to achieve total lipid recovery required 12h at 60°C. The study confirmed that oleaginous yeast biomass treatment with N-lauroyl sarcosine would be a promising approach for industrial scale microbial lipid recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Yeast synthetic biology for the production of recombinant therapeutic proteins.

    PubMed

    Kim, Hyunah; Yoo, Su Jin; Kang, Hyun Ah

    2015-02-01

    The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  15. Accumulation and metabolism of selenium by yeast cells.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Gientka, Iwona; Bzducha-Wróbel, Anna

    2015-07-01

    This paper examines the process of selenium bioaccumulation and selenium metabolism in yeast cells. Yeast cells can bind elements in ionic from the environment and permanently integrate them into their cellular structure. Up to now, Saccharomyces cerevisiae, Candida utilis, and Yarrowia lipolytica yeasts have been used primarily in biotechnological studies to evaluate binding of minerals. Yeast cells are able to bind selenium in the form of both organic and inorganic compounds. The process of bioaccumulation of selenium by microorganisms occurs through two mechanisms: extracellular binding by ligands of membrane assembly and intracellular accumulation associated with the transport of ions across the cytoplasmic membrane into the cell interior. During intracellular metabolism of selenium, oxidation, reduction, methylation, and selenoprotein synthesis processes are involved, as exemplified by detoxification processes that allow yeasts to survive under culture conditions involving the elevated selenium concentrations which were observed. Selenium yeasts represent probably the best absorbed form of this element. In turn, in terms of wide application, the inclusion of yeast with accumulated selenium may aid in lessening selenium deficiency in a diet.

  16. CE separation of proteins and yeasts dynamically modified by PEG pyrenebutanoate with fluorescence detection.

    PubMed

    Horká, Marie; Růzicka, Filip; Holá, Veronika; Slais, Karel

    2007-07-01

    The optimized protocols of the bioanalytes separation, proteins and yeasts, dynamically modified by the nonionogenic tenside PEG pyrenebutanoate, were applied in CZE and CIEF with the acidic gradient in pH range 2-5.5, both with fluorescence detection. PEG pyrenebutanoate was used as a buffer additive for a dynamic modification of proteins and/or yeast samples. The narrow peaks of modified analytes were detected. The values of the pI's of the labeled proteins were calculated using new fluorescent pI markers in CIEF and they were found to be comparable with pI's of the native compounds. As an example of the possible use of the suggested CIEF technique, the mixed cultures of yeasts, Candida albicans, Candida glabrata, Candida kefyr, Candida krusei, Candida lusitaniae, Candida parapsilosis, Candida tropicalis, Candida zeylanoides, Geotrichum candidum, Saccharomyces cerevisiae, Trichosporon asahii and Yarrowia lipolytica, were reproducibly focused and separated with high sensitivity. Using UV excitation for the on-column fluorometric detection, the minimum detectable amounts of analytes, femtograms of proteins and down to ten cells injected on the separation capillary, were estimated.

  17. A critical tyrosine residue determines the uncoupling protein-like activity of the yeast mitochondrial oxaloacetate carrier.

    PubMed

    Luévano-Martínez, Luis A; Barba-Ostria, Carlos; Araiza-Olivera, Daniela; Chiquete-Félix, Natalia; Guerrero-Castillo, Sergio; Rial, Eduardo; Georgellis, Dimitris; Uribe-Carvajal, Salvador

    2012-04-01

    The mitochondrial Oac (oxaloacetate carrier) found in some fungi and plants catalyses the uptake of oxaloacetate, malonate and sulfate. Despite their sequence similarity, transport specificity varies considerably between Oacs. Indeed, whereas ScOac (Saccharomyces cerevisiae Oac) is a specific anion-proton symporter, the YlOac (Yarrowia lipolytica Oac) has the added ability to transport protons, behaving as a UCP (uncoupling protein). Significantly, we identified two amino acid changes at the matrix gate of YlOac and ScOac, tyrosine to phenylalanine and methionine to leucine. We studied the role of these amino acids by expressing both wild-type and specifically mutated Oacs in an Oac-null S. cerevisiae strain. No phenotype could be associated with the methionine to leucine substitution, whereas UCP-like activity was dependent on the presence of the tyrosine residue normally expressed in the YlOac, i.e. Tyr-ScOac mediated proton transport, whereas Phe-YlOac lost its protonophoric activity. These findings indicate that the UCP-like activity of YlOac is determined by the tyrosine residue at position 146.

  18. Double triplex real-time PCR assay for simultaneous detection of Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus hominis, and Staphylococcus haemolyticus and determination of their methicillin resistance directly from positive blood culture bottles.

    PubMed

    Kilic, Abdullah; Basustaoglu, A Celal

    2011-12-01

    We developed and validated here a double triplex real-time PCR assay to simultaneously detect and identify Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus hominis, Staphylococcus haemolyticus and their methicillin resistance in a single reaction directly from Gram-positive cocci-in-clusters (GPCs)-positive blood culture bottles. From August 15, 2009 through February 15, 2010, 238 GPC-positive samples were collected and identified by conventional methods as 11 methicillin-resistant S. aureus (MRSA), 28 methicillin-susceptible S. aureus (MSSA), 176 MR coagulase-negative staphylococci (MRCoNS), 21 MSCoNS and two Enterococcus faecalis. The double triplex real-time PCR assay was targeted and detected tuf, nuc and mecA genes in the first tube and atlE, gap and mvaA genes in the second tube which could be run simultaneously. The detection limit of the assay was found at 10(3) CFU/ml for the atleE gene, 10(4) CFU/ml for the mva gene and 10(5) CFU/ml for gap, nuc, mecA and tuf genes based on seeding experiments. All Staphylococcus species except two S. epidermidis were correctly identified by the assay. The double triplex real-time PCR assay quickly and accurately detects S. aureus, S. epidermidis, S. hominis and S. haemolyticus and their methicillin resistance in a single reaction directly from positive blood culture bottles within 83 min. Copyright © 2011 Institut Pasteur. All rights reserved.

  19. Neonatal Staphylococcus lugdunensis urinary tract infection.

    PubMed

    Hayakawa, Itaru; Hataya, Hiroshi; Yamanouchi, Hanako; Sakakibara, Hiroshi; Terakawa, Toshiro

    2015-08-01

    Staphylococcus lugdunensis is a known pathogen of infective endocarditis, but not of urinary tract infection. We report a previously healthy neonate without congenital anomalies of the kidney and urinary tract who developed urinary tract infection due to Staphylococcus lugdunensis, illustrating that Staphylococcus lugdunensis can cause urinary tract infection even in those with no urinary tract complications. © 2015 Japan Pediatric Society.

  20. Staphylococcus muscae, a new species isolated from flies.

    PubMed

    Hájek, V; Ludwig, W; Schleifer, K H; Springer, N; Zitzelsberger, W; Kroppenstedt, R M; Kocur, M

    1992-01-01

    A new coagulase-negative species of the genus Staphylococcus, Staphylococcus muscae, is described on the basis of the results of a study of four strains that were isolated from flies. 16S rRNA sequences of the type strains of S. muscae, Staphylococcus schleiferi, and Staphylococcus sciuri were determined and used, together with the corresponding sequences of Staphylococcus aureus and Staphylococcus epidermidis, for a comparative analysis. The new species is characterized taxonomically; this species is differentiated from the other novobiocin-susceptible staphylococci by its physiological and biochemical activities, cell wall composition, and levels of genetic relatedness. The type strain of this species is strain MB4 (= CCM 4175).

  1. Characterization of self-generated variants in Pseudoalteromonas lipolytica biofilm with increased antifouling activities.

    PubMed

    Zeng, Zhenshun; Guo, Xing-Pan; Li, Baiyuan; Wang, Pengxia; Cai, Xingsheng; Tian, Xinpeng; Zhang, Si; Yang, Jin-Long; Wang, Xiaoxue

    2015-12-01

    Pseudoalteromonas is widespread in various marine environments, and most strains can affect invertebrate larval settlement and metamorphosis by forming biofilms. However, the impact and the molecular basis of population diversification occurring in Pseudoalteromonas biofilms are poorly understood. Here, we show that morphological diversification is prevalent in Pseudoalteromonas species during biofilm formation. Two types of genetic variants, wrinkled (frequency of 12±5%) and translucent (frequency of 5±3%), were found in Pseudoalteromonas lipolytica biofilms. The inducing activities of biofilms formed by the two variants on larval settlement and metamorphosis of the mussel Mytilus coruscus were significantly decreased, suggesting strong antifouling activities. Using whole-genome re-sequencing combined with genetic manipulation, two genes were identified to be responsible for the morphology alternations. A nonsense mutation in AT00_08765 led to a wrinkled morphology due to the overproduction of cellulose, whereas a point mutation in AT00_17125 led to a translucent morphology via a reduction in capsular polysaccharide production. Taken together, the results suggest that the microbial behavior on larval settlement and metamorphosis in marine environment could be affected by the self-generated variants generated during the formation of marine biofilms, thereby rendering potential application in biocontrol of marine biofouling.

  2. Development of a real-time PCR assay for the detection and identification of Staphylococcus capitis, Staphylococcus haemolyticus and Staphylococcus warneri.

    PubMed

    Iwase, Tadayuki; Seki, Keiko; Shinji, Hitomi; Mizunoe, Yoshimitsu; Masuda, Shogo

    2007-10-01

    Staphylococcus capitis, Staphylococcus haemolyticus and Staphylococcus warneri are coagulase-negative staphylococci. Each species has different characteristics, and a difference in pathology is also seen in compromised hosts. Therefore, the development of a species-specific simple detection method for the identification of these staphylococci is important. Here, a species-specific real-time PCR assay is reported that targets the superoxide dismutase A-encoding gene of these bacteria. Primers were designed with a base that was non-complementary with regard to the other bacteria. This base was at the 3' end of the primer (3' mismatch primer) and conferred high specificity. These primers were then evaluated using real-time PCR. They reacted only with the target bacterium. In addition, stable quantitative reactions were observed when experiments were performed using genomic DNA extracted from varying numbers of staphylococci cells (10(1)-10(7) cells). These results indicate that this method is useful for the identification and quantitative analysis of S. capitis, S. haemolyticus and S. warneri.

  3. [Carriage of Staphylococcus aureus among food service workers].

    PubMed

    Alarcón-Lavín, María Paula; Oyarzo, Carolina; Escudero, Carlos; Cerda-Leal, Fabiola; Valenzuela, Francisco J

    2017-12-01

    Background Staphylococcus aureus produces 11 serotypes of endotoxins that may cause food poisoning. Aim To determine the prevalence of type A enterotoxigenic Staphylococcus aureus carriage among food service workers in Chillan, Chile. Material and Methods Pharyngeal swabs were obtained from 100 food service workers and were cultured in Agar plates. After identifying the presence of Staphylococcus aureus, DNA was extracted to identify type A toxin by conventional PCR. Results Thirty eight percent of samples were colonized with Staphylococcus aureus. Among these, 26% were toxin A producers. Conclusions Half of the sampled workers carried Staphylococcus aureus and a quarter of these produced type A enterotoxin.

  4. Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus haemolyticus: methicillin-resistant isolates are detected directly in blood cultures by multiplex PCR.

    PubMed

    Pereira, Eliezer M; Schuenck, Ricardo P; Malvar, Karoline L; Iorio, Natalia L P; Matos, Pricilla D M; Olendzki, André N; Oelemann, Walter M R; dos Santos, Kátia R N

    2010-03-31

    In this study, we standardized and evaluated a multiplex-PCR methodology using specific primers to identify Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus haemolyticus and their methicillin-resistance directly from blood cultures. Staphylococci clinical isolates (149) and control strains (16) previously identified by conventional methods were used to establish the multiplex PCR protocol. Subsequently, this methodology was evaluated using a fast and cheap DNA extraction protocol from 25 staphylococci positive blood cultures. A wash step of the pellet with 0.1% bovine serum albumin (BSA) solution was performed to reduce PCR inhibitors. Amplicons of 154bp (mecA gene), 271bp (S. haemolyticus mvaA gene) and 108 and 124bp (S. aureus and S. epidermidis species-specific fragments, respectively) were observed. Reliable results were obtained for 100% of the evaluated strains, suggesting that this new multiplex-PCR combined with an appropriate DNA-extraction method could be useful in the laboratory for fast and accurate identification of three staphylococci species and simultaneously their methicillin resistance directly in blood cultures.

  5. Identification of Staphylococcus spp. using (GTG)₅-PCR fingerprinting.

    PubMed

    Svec, Pavel; Pantůček, Roman; Petráš, Petr; Sedláček, Ivo; Nováková, Dana

    2010-12-01

    A group of 212 type and reference strains deposited in the Czech Collection of Microorganisms (Brno, Czech Republic) and covering 41 Staphylococcus species comprising 21 subspecies was characterised using rep-PCR fingerprinting with the (GTG)₅ primer in order to evaluate this method for identification of staphylococci. All strains were typeable using the (GTG)₅ primer and generated PCR products ranging from 200 to 4500 bp. Numerical analysis of the obtained fingerprints revealed (sub)species-specific clustering corresponding with the taxonomic position of analysed strains. Taxonomic position of selected strains representing the (sub)species that were distributed over multiple rep-PCR clusters was verified and confirmed by the partial rpoB gene sequencing. Staphylococcus caprae, Staphylococcus equorum, Staphylococcus sciuri, Staphylococcus piscifermentans, Staphylococcus xylosus, and Staphylococcus saprophyticus revealed heterogeneous fingerprints and each (sub)species was distributed over several clusters. However, representatives of the remaining Staphylococcus spp. were clearly separated in single (sub)species-specific clusters. These results showed rep-PCR with the (GTG)₅ primer as a fast and reliable method applicable for differentiation and straightforward identification of majority of Staphylococcus spp. Copyright © 2010 Elsevier GmbH. All rights reserved.

  6. Evaluation of an Immunochromatographic Assay for Rapid Detection of Penicillin-Binding Protein 2a in Human and Animal Staphylococcus intermedius Group, Staphylococcus lugdunensis, and Staphylococcus schleiferi Clinical Isolates.

    PubMed

    Arnold, A R; Burnham, C-A D; Ford, B A; Lawhon, S D; McAllister, S K; Lonsway, D; Albrecht, V; Jerris, R C; Rasheed, J K; Limbago, B; Burd, E M; Westblade, L F

    2016-03-01

    The performance of a rapid penicillin-binding protein 2a (PBP2a) detection assay, the Alere PBP2a culture colony test, was evaluated for identification of PBP2a-mediated beta-lactam resistance in human and animal clinical isolates of Staphylococcus intermedius group, Staphylococcus lugdunensis, and Staphylococcus schleiferi. The assay was sensitive and specific, with all PBP2a-negative and PBP2a-positive strains testing negative and positive, respectively. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Differentiation between Staphylococcus aureus and Staphylococcus epidermidis strains using Raman spectroscopy.

    PubMed

    Rebrošová, Katarína; Šiler, Martin; Samek, Ota; Růžička, Filip; Bernatová, Silvie; Ježek, Jan; Zemánek, Pavel; Holá, Veronika

    2017-08-01

    Raman spectroscopy is an analytical method with a broad range of applications across multiple scientific fields. We report on a possibility to differentiate between two important Gram-positive species commonly found in clinical material - Staphylococcus aureus and Staphylococcus epidermidis - using this rapid noninvasive technique. For this, we tested 87 strains, 41 of S. aureus and 46 of S. epidermidis, directly from colonies grown on a Mueller-Hinton agar plate using Raman spectroscopy. The method paves a way for separation of these two species even on high number of samples and therefore, it can be potentially used in clinical diagnostics.

  8. Rapid fabrication of three-dimensional structures for dielectrophoretic sorting of lipid-containing organisms

    NASA Astrophysics Data System (ADS)

    Schor, Alisha R.; Buie, Cullen R.

    2016-10-01

    In this work, we demonstrate a microfluidic particle sorter consisting of three-dimensional, conducting microposts. Our sorter uses dielectrophoresis (DEP) to sort high- and low-lipid phenotypes of the yeast Yarrowia lipolytica. Y. lipolytica is one of the many microorganisms being explored as a hydrocarbon source for biodiesel, Omega-3 additives, and other products derived from fatty acids. A rapid, non-destructive, lipid-based sorting tool would accelerate the commercialization of these products. Our device consists of an array of 105, 25 μm wide gold microposts that span the height of a 15 μm channel. This array generates an electric field in a microfluidic device that is uniform through the channel height, but has a custom-shaped non-uniformity in the horizontal directions. This is crucial in order to achieve continuous sorting using DEP, as it ensures all cells are exposed to the same conditions throughout the channel height. By using very low currents (100 μA), we are able to electroplate these post arrays in fewer than 15 min. This is an order of magnitude improvement over previous reports of electroplated microstructures. With an applied signal of 250 MHz, 2.6 V pp in our device, we separate a heterogeneous population with a purity of 97.8% in the low-lipid stream and 71.4% in the high-lipid stream. The high-lipid stream purity can be improved by adjusting the spacing of the array. This unique protocol for the rapid fabrication of 3D microstructures has enabled the creation of a non-invasive sorting tool for genetically engineered, lipid-producing organisms. The ability to screen organisms based on lipid content will alleviate one of the major bottlenecks in commercialization of microbial biofuels.

  9. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept.

    PubMed

    Hughes, Stephen R; López-Núñez, Juan Carlos; Jones, Marjorie A; Moser, Bryan R; Cox, Elby J; Lindquist, Mitch; Galindo-Leva, Luz Angela; Riaño-Herrera, Néstor M; Rodriguez-Valencia, Nelson; Gast, Fernando; Cedeño, David L; Tasaki, Ken; Brown, Robert C; Darzins, Al; Brunner, Lane

    2014-10-01

    The environmental impact of agricultural waste from the processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from the processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the economies of many countries because its cultivation, processing, trading, and marketing provide employment for millions of people. In coffee-producing countries, improved technology for treatment of the significant amounts of coffee waste is critical to prevent ecological damage. This mini-review discusses a multi-stage biorefinery concept with the potential to convert waste produced at crop processing operations, such as coffee pulping stations, to valuable biofuels and bioproducts using biochemical and thermochemical conversion technologies. The initial bioconversion stage uses a mutant Kluyveromyces marxianus yeast strain to produce bioethanol from sugars. The resulting sugar-depleted solids (mostly protein) can be used in a second stage by the oleaginous yeast Yarrowia lipolytica to produce bio-based ammonia for fertilizer and are further degraded by Y. lipolytica proteases to peptides and free amino acids for animal feed. The lignocellulosic fraction can be ground and treated to release sugars for fermentation in a third stage by a recombinant cellulosic Saccharomyces cerevisiae, which can also be engineered to express valuable peptide products. The residual protein and lignin solids can be jet cooked and passed to a fourth-stage fermenter where Rhodotorula glutinis converts methane into isoprenoid intermediates. The residues can be combined and transferred into pyrocracking and hydroformylation reactions to convert ammonia, protein, isoprenes, lignins, and oils into renewable gas. Any remaining waste can be thermoconverted to biochar as a humus soil enhancer. The integration of multiple technologies for treatment of coffee waste has the potential to

  10. Coagulase-Positive Staphylococcus: Prevalence and Antimicrobial Resistance.

    PubMed

    Beça, Nuno; Bessa, Lucinda Janete; Mendes, Ângelo; Santos, Joana; Leite-Martins, Liliana; Matos, Augusto J F; da Costa, Paulo Martins

    2015-01-01

    Staphylococcus pseudintermedius is the most prevalent coagulase-positive Staphylococcus inhabitant of the skin and mucosa of dogs and cats, causing skin and soft tissue infections in these animals. In this study, coagulase-positive Staphylococcus species were isolated from companion animals, veterinary professionals, and objects from a clinical veterinary environment by using two particular culture media, Baird-Parker RPF agar and CHROMagar Staph aureus. Different morphology features of colonies on the media allowed the identification of the species, which was confirmed by performing a multiplex polymerase chain reaction (PCR). Among 23 animals, 15 (65.2%) harbored coagulase-positive Staphylococcus, being 12 Staphylococcus pseudintermedius carriers. Four out of 12 were methicillin-resistant S. pseudintermedius (MRSP). All veterinary professionals had coagulase-positive Staphylococcus (CoPS) species on their hands and two out of nine objects sampled harbored MRSP. The antimicrobial-resistance pattern was achieved for all isolates, revealing the presence of many multidrug-resistant CoPS, particularly S. pseudintermedius . The combined analysis of the antimicrobial-resistance patterns shown by the isolates led to the hypothesis that there is a possible crosscontamination and dissemination of S. aureus and S. pseudintermedius species between the three types of carriers sampled in this study that could facilitate the spread of the methicillin-resistance phenotype.

  11. Microbial diversity and dynamics during the production of May bryndza cheese.

    PubMed

    Pangallo, Domenico; Saková, Nikoleta; Koreňová, Janka; Puškárová, Andrea; Kraková, Lucia; Valík, Lubomír; Kuchta, Tomáš

    2014-01-17

    paradoxus. The diversity of yeasts and fungi encompassed Alternaria alternata, "Ascomycete sp.", Aspergillus fumigatus, Beauveria brongniartii, Candida xylopsoci, C. inconspicua, Cladosporium cladosporioides, Debaromyces hansenii, Fomes fomentarius, Galactomyces candidus, Gymnoascus reesii, Chaetomium globosum, Kluyveromyces marxianus, Metarhizium anisopliae, Penicillium aurantiogriseum, P. camemberti, P. freii, P. polonicum, P. viridicatum, Pichia kudriavzevii, Sordaria alcina, Trichosporon lactis and Yarrowia lipolytica. © 2013.

  12. Utilization of inulin-containing waste in industrial fermentations to produce biofuels and bio-based chemicals.

    PubMed

    Hughes, Stephen R; Qureshi, Nasib; López-Núñez, Juan Carlos; Jones, Marjorie A; Jarodsky, Joshua M; Galindo-Leva, Luz Ángela; Lindquist, Mitchell R

    2017-04-01

    Inulins are polysaccharides that belong to an important class of carbohydrates known as fructans and are used by many plants as a means of storing energy. Inulins contain 20 to several thousand fructose units joined by β-2,1 glycosidic bonds, typically with a terminal glucose unit. Plants with high concentrations of inulin include: agave, asparagus, coffee, chicory, dahlia, dandelion, garlic, globe artichoke, Jerusalem artichoke, jicama, onion, wild yam, and yacón. To utilize inulin as its carbon and energy source directly, a microorganism requires an extracellular inulinase to hydrolyze the glycosidic bonds to release fermentable monosaccharides. Inulinase is produced by many microorganisms, including species of Aspergillus, Kluyveromyces, Penicillium, and Pseudomonas. We review various inulinase-producing microorganisms and inulin feedstocks with potential for industrial application as well as biotechnological efforts underway to develop sustainable practices for the disposal of residues from processing inulin-containing crops. A multi-stage biorefinery concept is proposed to convert cellulosic and inulin-containing waste produced at crop processing operations to valuable biofuels and bioproducts using Kluyveromyces marxianus, Yarrowia lipolytica, Rhodotorula glutinis, and Saccharomyces cerevisiae as well as thermochemical treatments.

  13. Genome-scale metabolic modeling of Mucor circinelloides and comparative analysis with other oleaginous species.

    PubMed

    Vongsangnak, Wanwipa; Klanchui, Amornpan; Tawornsamretkit, Iyarest; Tatiyaborwornchai, Witthawin; Laoteng, Kobkul; Meechai, Asawin

    2016-06-01

    We present a novel genome-scale metabolic model iWV1213 of Mucor circinelloides, which is an oleaginous fungus for industrial applications. The model contains 1213 genes, 1413 metabolites and 1326 metabolic reactions across different compartments. We demonstrate that iWV1213 is able to accurately predict the growth rates of M. circinelloides on various nutrient sources and culture conditions using Flux Balance Analysis and Phenotypic Phase Plane analysis. Comparative analysis of three oleaginous genome-scale models, including M. circinelloides (iWV1213), Mortierella alpina (iCY1106) and Yarrowia lipolytica (iYL619_PCP) revealed that iWV1213 possesses a higher number of genes involved in carbohydrate, amino acid, and lipid metabolisms that might contribute to its versatility in nutrient utilization. Moreover, the identification of unique and common active reactions among the Zygomycetes oleaginous models using Flux Variability Analysis unveiled a set of gene/enzyme candidates as metabolic engineering targets for cellular improvement. Thus, iWV1213 offers a powerful metabolic engineering tool for multi-level omics analysis, enabling strain optimization as a cell factory platform of lipid-based production. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Comparative Lipidomic Profiling of S. cerevisiae and Four Other Hemiascomycetous Yeasts

    PubMed Central

    Hein, Eva-Maria; Hayen, Heiko

    2012-01-01

    Glycerophospholipids (GP) are the building blocks of cellular membranes and play essential roles in cell compartmentation, membrane fluidity or apoptosis. In addition, GPs are sources for multifunctional second messengers. Whereas the genome and proteome of the most intensively studied eukaryotic model organism, the baker’s yeast (Saccharomyces cerevisiae), are well characterized, the analysis of its lipid composition is still at the beginning. Moreover, different yeast species can be distinguished on the DNA, RNA and protein level, but it is currently unknown if they can also be differentiated by determination of their GP pattern. Therefore, the GP compositions of five different yeast strains, grown under identical environmental conditions, were elucidated using high performance liquid chromatography coupled to negative electrospray ionization-hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometry in single and multistage mode. Using this approach, relative quantification of more than 100 molecular species belonging to nine GP classes was achieved. The comparative lipidomic profiling of Saccharomyces cerevisiae, Saccharomyces bayanus, Kluyveromyces thermotolerans, Pichia angusta, and Yarrowia lipolytica revealed characteristic GP profiles for each strain. However, genetically related yeast strains show similarities in their GP compositions, e.g., Saccharomyces cerevisiae and Saccharomyces bayanus. PMID:24957378

  15. Oleaginous yeasts: Promising platforms for the production of oleochemicals and biofuels.

    PubMed

    Adrio, José L

    2017-09-01

    Oleaginous yeasts have a unique physiology that makes them the best suited hosts for the production of lipids, oleochemicals, and diesel-like fuels. Their high lipogenesis, capability of growing on many different carbon sources (including lignocellulosic sugars), easy large-scale cultivation, and an increasing number of genetic tools are some of the advantages that have encouraged their use to develop sustainable processes. This mini-review summarizes the metabolic engineering strategies developed in oleaginous yeasts within the last 2 years to improve process metrics (titer, yield, and productivity) for the production of lipids, free fatty acids, fatty acid-based chemicals (e.g., fatty alcohols, fatty acid ethyl esters), and alkanes. During this short period of time, tremendous progress has been made in Yarrowia lipolytica, the model oleaginous yeast, which has been engineered to improve lipid production by different strategies including increasing lipogenic pathway flux and biosynthetic precursors, and blocking degradation pathways. Moreover, remarkable advances have also been reported in Rhodosporidium toruloides and Lipomyces starkey despite the limited genetic tools available for these two very promising hosts. Biotechnol. Bioeng. 2017;114: 1915-1920. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Genome and metabolic engineering in non-conventional yeasts: Current advances and applications.

    PubMed

    Löbs, Ann-Kathrin; Schwartz, Cory; Wheeldon, Ian

    2017-09-01

    Microbial production of chemicals and proteins from biomass-derived and waste sugar streams is a rapidly growing area of research and development. While the model yeast Saccharomyces cerevisia e is an excellent host for the conversion of glucose to ethanol, production of other chemicals from alternative substrates often requires extensive strain engineering. To avoid complex and intensive engineering of S. cerevisiae, other yeasts are often selected as hosts for bioprocessing based on their natural capacity to produce a desired product: for example, the efficient production and secretion of proteins, lipids, and primary metabolites that have value as commodity chemicals. Even when using yeasts with beneficial native phenotypes, metabolic engineering to increase yield, titer, and production rate is essential. The non-conventional yeasts Kluyveromyces lactis, K. marxianus, Scheffersomyces stipitis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris have been developed as eukaryotic hosts because of their desirable phenotypes, including thermotolerance, assimilation of diverse carbon sources, and high protein secretion. However, advanced metabolic engineering in these yeasts has been limited. This review outlines the challenges of using non-conventional yeasts for strain and pathway engineering, and discusses the developed solutions to these problems and the resulting applications in industrial biotechnology.

  17. The expression of glycerol facilitators from various yeast species improves growth on glycerol of Saccharomyces cerevisiae.

    PubMed

    Klein, Mathias; Islam, Zia-Ul; Knudsen, Peter Boldsen; Carrillo, Martina; Swinnen, Steve; Workman, Mhairi; Nevoigt, Elke

    2016-12-01

    Glycerol is an abundant by-product during biodiesel production and additionally has several assets compared to sugars when used as a carbon source for growing microorganisms in the context of biotechnological applications. However, most strains of the platform production organism Saccharomyces cerevisiae grow poorly in synthetic glycerol medium. It has been hypothesized that the uptake of glycerol could be a major bottleneck for the utilization of glycerol in S. cerevisiae . This species exclusively relies on an active transport system for glycerol uptake. This work demonstrates that the expression of predicted glycerol facilitators (Fps1 homologues) from superior glycerol-utilizing yeast species such as Pachysolen tannophilus , Komagataella pastoris , Yarrowia lipolytica and Cyberlindnera jadinii significantly improves the growth performance on glycerol of the previously selected glycerol-consuming S. cerevisiae wild-type strain (CBS 6412-13A). The maximum specific growth rate increased from 0.13 up to 0.18 h -1 and a biomass yield coefficient of 0.56 g DW /g glycerol was observed. These results pave the way for exploiting the assets of glycerol in the production of fuels, chemicals and pharmaceuticals based on baker's yeast.

  18. Characterization of the newly isolated ω-oxidizing yeast Candida sorbophila DS02 and its potential applications in long-chain dicarboxylic acid production.

    PubMed

    Lee, Heeseok; Sugiharto, Yohanes Eko Chandra; Lee, Seunghoon; Park, Gyuyeon; Han, Changpyo; Jang, Hyeran; Jeon, Wooyoung; Park, Heejoon; Ahn, Jungoh; Kang, Kyungbo; Lee, Hongwoen

    2017-08-01

    α, ω-Dicarboxylic acids (DCAs) are multipurpose chemicals widely used in polymers, perfumes, plasticizers, lubricants, and adhesives. The biotransformation of DCAs from alkanes and fatty acids by microorganisms has attracted recent interest, since synthesis via chemical oxidation causes problems in terms of the environment and safety. We isolated an ω-oxidizing yeast from a wastewater disposal facility of a petrochemical factory by chemostat enrichment culture. The haploid strain identified as Candida sorbophila DS02 grew on glucose and dodecane, exhibiting greater cell shrinkage on the latter. In flask cultures with mixed alkanes (C10-16) and fatty acid methyl esters (C10-16), DS02 used mixed alkanes simultaneously unlike Candida tropicalis and Yarrowia lipolytica and showed high substrate resistance. In flask cultures with acrylic acid-a known inhibitor of β-oxidation-DS02 produced 0.28 g/l dodecanedioic acid (DDDA) from dodecane, similar to wild-type C. tropicalis ATCC 20336. In fed-batch fermentation, DS02 produced 9.87 g/l DDDA, which was 5.7-fold higher than wild-type C. tropicalis. These results suggest that C. sorbophila strain DS02 has potential applications for the large-scale production of DCA.

  19. Comparison of magnetic field effects on the growth of Staphylococcus Aureus and Staphylococcus Epidermidis

    NASA Astrophysics Data System (ADS)

    Do, Kevin; Masood, Samina

    The effects of magnetic fields were investigated on two species of bacteria: Staphylococcus Aureus and Staphylococcus Epidermidis. Both cultures were grown independently in agar plates and nutrient broth with exposure to various conditions of static and oscillating magnetic fields. The effects were characterized by growth rate measurements via changes in optical density (OD) over incubation periods of 24-28 hours. Significant effects on the growth rates of both species were observed in the case of the time-varying magnetic field.

  20. Staphylococcus aureus and community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) in and around therapeutic whirlpools in college athletic training rooms.

    PubMed

    Kahanov, Leamor; Kim, Young Kyun; Eberman, Lindsey; Dannelly, Kathleen; Kaur, Haninder; Ramalinga, A

    2015-04-01

    Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has become a leading cause of skin and soft tissue infection in the nonhospitalized community. Care of the athletes in athletic training rooms is specifically designed with equipment tailored to the health care needs of the athletes, yet recent studies indicate that CA-MRSA is still prevalent in athletic facilities and that cleaning methods may not be optimal. To investigate the prevalence of Staphylococcus aureus and CA-MRSA in and around whirlpools in the athletic training room. Cross-sectional study. National Collegiate Athletic Association Division I university. Student-athletes (n = 109) consisting of 46 men (42%) and 63 women (58%) representing 6 sports. Presence of MRSA and Staphylococcus aureus in and around the whirlpool structures relative to sport and number of athletes using the whirlpools. We identified Staphylococcus aureus in 22% (n = 52/240) of the samples and MRSA in 0.8% (n = 2/240). A statistically significant difference existed between the number of athletes using the whirlpool and the presence of Staphylococcus aureus in and around the whirlpools (F(2,238) = 2.445, P = .007). However, Staphylococcus aureus was identified regardless of whether multiple athletes used a whirlpool or no athletes used a whirlpool. We did not identify a relationship between the number of athletes who used a whirlpool and Staphylococcus aureus or MRSA density (P = .134). Staphylococcus aureus and MRSA were identified in and around the whirlpools. Transmission of the bacteria can be reduced by following the cleaning and disinfecting protocols recommended by the Centers for Disease Control and Prevention. Athletic trainers should use disinfectants registered by the Environmental Protection Agency to sanitize all whirlpools between uses.

  1. Staphylococcus aureus and Community-Associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA) in and Around Therapeutic Whirlpools in College Athletic Training Rooms

    PubMed Central

    Kahanov, Leamor; Kim, Young Kyun; Eberman, Lindsey; Dannelly, Kathleen; Kaur, Haninder; Ramalinga, A.

    2015-01-01

    Context: Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has become a leading cause of skin and soft tissue infection in the nonhospitalized community. Care of the athletes in athletic training rooms is specifically designed with equipment tailored to the health care needs of the athletes, yet recent studies indicate that CA-MRSA is still prevalent in athletic facilities and that cleaning methods may not be optimal. Objective: To investigate the prevalence of Staphylococcus aureus and CA-MRSA in and around whirlpools in the athletic training room. Design: Cross-sectional study. Setting: National Collegiate Athletic Association Division I university. Patients or Other Participants: Student-athletes (n = 109) consisting of 46 men (42%) and 63 women (58%) representing 6 sports. Main Outcome Measure(s): Presence of MRSA and Staphylococcus aureus in and around the whirlpool structures relative to sport and number of athletes using the whirlpools. Results: We identified Staphylococcus aureus in 22% (n = 52/240) of the samples and MRSA in 0.8% (n = 2/240). A statistically significant difference existed between the number of athletes using the whirlpool and the presence of Staphylococcus aureus in and around the whirlpools (F2,238 = 2.445, P = .007). However, Staphylococcus aureus was identified regardless of whether multiple athletes used a whirlpool or no athletes used a whirlpool. We did not identify a relationship between the number of athletes who used a whirlpool and Staphylococcus aureus or MRSA density (P = .134). Conclusions: Staphylococcus aureus and MRSA were identified in and around the whirlpools. Transmission of the bacteria can be reduced by following the cleaning and disinfecting protocols recommended by the Centers for Disease Control and Prevention. Athletic trainers should use disinfectants registered by the Environmental Protection Agency to sanitize all whirlpools between uses. PMID:25710853

  2. Communications of Staphylococcus aureus and non-aureus Staphylococcus species from bovine intramammary infections and teat apex colonization.

    PubMed

    Mahmmod, Yasser S; Klaas, Ilka Christine; Svennesen, Line; Pedersen, Karl; Ingmer, Hanne

    2018-05-16

    The role of non-aureus staphylococci (NAS) in the risk of acquisition of intramammary infections with Staphylococcus aureus is vague and still under debate. The objectives of this study were to (1) investigate the distribution patterns of NAS species from milk and teat skin in dairy herds with automatic milking systems, and (2) examine if the isolated NAS influences the expression of S. aureus virulence factors controlled by the accessory gene regulator (agr) quorum sensing system. In 8 herds, 14 to 20 cows with elevated somatic cell count were randomly selected for teat skin swabbing and aseptic quarter foremilk samples from right hind and left front quarters. Teat skin swabs were collected using the modified wet-dry method and milk samples were taken aseptically for bacterial culture. Colonies from quarters with suspicion of having NAS in milk or teat skin samples (or both) were subjected to MALDI-TOF assay for species identification. To investigate the interaction between S. aureus and NAS, 81 isolates NAS were subjected to a qualitative β-galactosidase reporter plate assay. In total, 373 NAS isolates were identified representing 105 from milk and 268 from teat skin of 284 quarters (= 142 cows). Sixteen different NAS species were identified, 15 species from teat skin and 10 species from milk. The most prevalent NAS species identified from milk were Staphylococcus epidermidis (50%), Staphylococcus haemolyticus (15%), and Staphylococcus chromogenes (11%), accounting for 76%. Meanwhile, the most prevalent NAS species from teat skin were Staphylococcus equorum (43%), S. haemolyticus (16%), and Staphylococcus cohnii (14%), accounting for 73%. Using reporter gene fusions monitoring transcriptional activity of key virulence factors and regulators, we found that out of 81 supernatants of NAS isolates, 77% reduced expression of hla, encoding a-hemolysin, 70% reduced expression of RNAIII, the key effector molecule of agr, and 61% reduced expression of spa encoding

  3. Methicillin resistant Staphylococcus aureus in Ethiopia: a meta-analysis.

    PubMed

    Eshetie, Setegn; Tarekegn, Fentahun; Moges, Feleke; Amsalu, Anteneh; Birhan, Wubet; Huruy, Kahsay

    2016-11-21

    The burden of methicillin resistant Staphylococcus aureus is a major public health concern worldwide; however the overall epidemiology of multidrug resistant strains is neither coordinated nor harmonized, particularly in developing countries including Ethiopia. Therefore, the aim of this meta-analysis was to assess the burden of methicillin resistant Staphylococcos aureus and its antibiotic resistance pattern in Ethiopia at large. PubMed, Google Scholar, and lancet databases were searched and a total of 20 studies have been selected for meta-analysis. Six authors have independently extracts data on the prevalence of methicillin resistant Staphylococcus aureus among clinical isolates of Staphylococcus aureus. Statistical analysis was achieved by using Open meta-analyst (version 3.13) and Comprehensive meta-analysis (version 3.3) softwares. The overall prevalence of methicillin resistant Staphylococcus aureus and its antibiotic resistance pattern were pooled by using the forest plot, table and figure with 95% CI. The pooled prevalence of methicillin resistant Staphylococcus aureus was 32.5% (95% CI, 24.1 to 40.9%). Moreover, methicillin resistant Staphylococcus aureus strains were found to be highly resistant to penicillin, ampicillin, erythromycin, and amoxicillin, with a pooled resistance ratio of 99.1, 98.1, 97.2 and 97.1%, respectively. On the other hand, comparably low levels of resistance ratio were noted to vancomycin, 5.3%. The overall burden of methicillin resistant Staphylococcus aureus is considerably high, besides these strains showed extreme resistance to penicillin, ampicillin, erythromycin and amoxicillin. In principle, appropriate use of antibiotics, applying safety precautions are the key to reduce the spread of multidrug resistant strains, methicillin resistant Staphylococcus aureus in particular.

  4. Novel staphylococcal species that form part of a Staphylococcus aureus-related complex: the non-pigmented Staphylococcus argenteus sp. nov. and the non-human primate-associated Staphylococcus schweitzeri sp. nov.

    PubMed

    Tong, Steven Y C; Schaumburg, Frieder; Ellington, Matthew J; Corander, Jukka; Pichon, Bruno; Leendertz, Fabian; Bentley, Stephen D; Parkhill, Julian; Holt, Deborah C; Peters, Georg; Giffard, Philip M

    2015-01-01

    We define two novel species of the genus Staphylococcus that are phenotypically similar to and have near identical 16S rRNA gene sequences to Staphylococcus aureus. However, compared to S. aureus and each other, the two species, Staphylococcus argenteus sp. nov. (type strain MSHR1132(T) = DSM 28299(T) = SSI 89.005(T)) and Staphylococcus schweitzeri sp. nov. (type strain FSA084(T) = DSM 28300(T) = SSI 89.004(T)), demonstrate: 1) at a whole-genome level considerable phylogenetic distance, lack of admixture, average nucleotide identity <95 %, and inferred DNA-DNA hybridization <70 %; 2) different profiles as determined by MALDI-TOF MS; 3) a non-pigmented phenotype for S. argenteus sp. nov.; 4) S. schweitzeri sp. nov. is not detected by standard nucA PCR; 5) distinct peptidoglycan types compared to S. aureus; 6) a separate ecological niche for S. schweitzeri sp. nov.; and 7) a distinct clinical disease profile for S. argenteus sp. nov. compared to S. aureus. © 2015 IUMS.

  5. Staphylococcus aureus recovery from cotton towels.

    PubMed

    Oller, Anna R; Mitchell, Ashley

    2009-04-30

    Staphylococcus aureus is an emerging pathogen afflicting healthy individuals without known risk factors, and methicillin-resistant Staphylococcus aureus has been shown to colonize multiple family members sharing households. Because household items such as towels are often shared by family members, this study investigated whether cotton towel absorbency or washing conditions affect Staphylococcus aureus cell viability or cell retention, and whether the levels may be sufficient for person-to-person transmission. Staphylococcus aureus ATCC 25923 was added to a 48 mm(2) template area on three cotton towel types (terry, pima, and Egyptian), and subjected to hand washing, without manual wringing, in three conditions (water only, bleach addition, or liquid detergent addition). Serial dilutions plated onto mannitol salt plates quantified bacteria for inoculations, pre- and post-wash water samples, towel surfaces, and hand transfer. Hand transfer of bacteria was determined on towels immediately, one, 24, and 48 hours post inoculation. Bleach (p < or = .05) was the most effective at reducing bacterial viability on all towel types compared to detergent and water. Although not statistically significant, more Staphylococcus colonies were recovered from higher absorbency towels and from inside directly inoculated template areas. A paired t-test showed a difference between immediate and one-hour CFUs versus 24- and 48-hour recoveries (0.0002) for hand transfers. Cell viability decreased for over 48 hours on towels, but sufficient quantities may remain for colonization. More absorbent towels may harbor more Staphylococci than less absorbent ones, and may serve as a transmission mechanism for the bacterium.

  6. Methicillin-resistant Staphylococcus aureus in palliative care: A prospective study of Methicillin-resistant Staphylococcus aureus prevalence in a hospital-based palliative care unit.

    PubMed

    Schmalz, Oliver; Strapatsas, Tobias; Alefelder, Christof; Grebe, Scott Oliver

    2016-07-01

    Methicillin-resistant Staphylococcus aureus is a common organism in hospitals worldwide and is associated with morbidity and mortality. However, little is known about the prevalence in palliative care patients. Furthermore, there is no standardized screening protocol or treatment for patients for whom therapy concentrates on symptom control. Examining the prevalence of methicillin-resistant Staphylococcus aureus in palliative care patients as well as the level of morbidity and mortality. We performed a prospective study where methicillin-resistant Staphylococcus aureus screening was undertaken in 296 consecutive patients within 48 h after admission to our palliative care unit. Medical history was taken, clinical examination was performed, and the Karnofsky Performance Scale and Palliative Prognostic Score were determined. Prevalence of Methicillin-resistant Staphylococcus aureus was compared to data of general hospital patients. In total, 281 patients were included in the study having a mean age of 69.7 years (standard deviation = 12.9 years) and an average Karnofsky Performance Scale between 30% and 40%. The mean length of stay was 9.7 days (standard deviation = 7.6 days). A total of 24 patients were methicillin-resistant Staphylococcus aureus positive on the first swab. Median number of swabs was 2. All patients with a negative methicillin-resistant Staphylococcus aureus swab upon admission remained Methicillin-resistant Staphylococcus aureus negative in all subsequent swabs. Our study suggests that the prevalence of Methicillin-resistant Staphylococcus aureus among patients in an in-hospital palliative care unit is much higher than in other patient populations. © The Author(s) 2016.

  7. Cloning, expression and characterization of a lipase gene from marine bacterium Pseudoalteromonas lipolytica SCSIO 04301

    NASA Astrophysics Data System (ADS)

    Su, Hongfei; Mai, Zhimao; Zhang, Si

    2016-12-01

    A lipase gene, lip1233, isolated from Pseudoalteromonas lipolytica SCSIO 04301, was cloned and expressed in E. coli. The enzyme comprised 810 amino acid residues with a deduced molecular weight of 80 kDa. Lip1233 was grouped into the lipase family X because it contained a highly conserved motif GHSLG. The recombinant enzyme was purified with Ni-NTA affinity chromatography. The optimal temperature and pH value of Lip1233 were 45°C and 8.0, respectively. It retained more than 70% of original activity after being incubated in pH ranging from 6.0 to 9.5 for 30 min. It was stable when the temperature was below 45°C, but was unstable when the temperature was above 55°C. Most metal ions tested had no significant effect on the activity of Lip1233. Lip1233 remained more than original activity in some organic solvents at the concentration of 30% (v/v). It retained more than 30% activity after incubated in pure organic solvents for 12 h, while in hexane the activity was nearly 100%. Additionally, Lip1233 exhibited typical halotolerant characteristic as it was active under 4M NaCl. Lip1233 powder could catalyze efficiently the synthesis of fructose esters in hexane at 40°C. These characteristics demonstrated that Lip1233 is applicable to elaborate food processing and organic synthesis.

  8. Rapid detection and differentiation of Staphylococcus colonies using an optical scattering technology.

    PubMed

    Alsulami, Tawfiq S; Zhu, Xingyue; Abdelhaseib, Maha Usama; Singh, Atul K; Bhunia, Arun K

    2018-05-24

    Staphylococcus species are a major pathogen responsible for nosocomial infections and foodborne illnesses. We applied a laser-based BARDOT (bacterial rapid detection using optical scattering technology) for rapid colony screening and detection of Staphylococcus on an agar plate and differentiate these from non-Staphylococcus spp. Among the six growth media tested, phenol red mannitol agar (PRMA) was found most suitable for building the Staphylococcus species scatter image libraries. Scatter image library for Staphylococcus species gave a high positive predictive value (PPV 87.5-100%) when tested against known laboratory strains of Staphylococcus spp., while the PPV against non-Staphylococcus spp. was 0-38%. A total of nine naturally contaminated bovine raw milk and ready-to-eat chicken salad samples were tested, and BARDOT detected Staphylococcus including Staphylococcus aureus with 80-100% PPV. Forty-five BARDOT-identified bacterial isolates from naturally contaminated foods were further confirmed by tuf and nuc gene-specific PCR and 16S rRNA gene sequence. This label-free, non-invasive on-plate colony screening technology can be adopted by the food industries, biotechnology companies, and public health laboratories for Staphylococcus species detection including S. aureus from various samples for food safety and public health management. Graphical abstract.

  9. Heterogeneous resistance to vancomycin in Staphylococcus epidermidis, Staphylococcus haemolyticus and Staphylococcus warneri clinical strains: characterisation of glycopeptide susceptibility profiles and cell wall thickening.

    PubMed

    Nunes, Ana Paula Ferreira; Teixeira, Lúcia Martins; Iorio, Natália Lopes Pontes; Bastos, Carla Callegário Reis; de Sousa Fonseca, Leila; Souto-Padrón, Thaís; dos Santos, Kátia Regina Netto

    2006-04-01

    The population analysis profile (PAP) method as well as analysis of autolytic activity and cellular ultrastructure by transmission electron microscopy (TEM) were used to characterise Staphylococcus epidermidis, Staphylococcus haemolyticus and Staphylococcus warneri clinical strains with reduced susceptibility to glycopeptides. All strains showed heterogeneous profiles to vancomycin and teicoplanin by the PAP method. Subpopulations that grew in the presence of high concentrations of each drug were selected from the PAP as derivative strains. Their glycopeptide minimal inhibitory concentrations (MICs) were determined and subsequently all parental and derivative strains were grown in one-half of the MIC of vancomycin or teicoplanin. An increase in cell wall thickness of all derivative strains was seen by TEM, with statistically significant values (P<0.01) compared with their respective parental strains. In general, variable rates of autolysis among the strains were observed. Cell wall thickness is an important factor involved in glycopeptide resistance and, in association with PAP results, confirmed the Brazilian coagulase-negative staphylococci clinical isolates as being heteroresistant to glycopeptides. Detection of these heteroresistant organisms is important in order to achieve more judicious use of vancomycin and teicoplanin in hospitals.

  10. Isolation of methicillin-resistant Staphylococcus spp. from ready-to-eat fish products.

    PubMed

    Sergelidis, D; Abrahim, A; Papadopoulos, T; Soultos, N; Martziou, E; Koulourida, V; Govaris, A; Pexara, A; Zdragas, A; Papa, A

    2014-11-01

    A hundred samples from ready-to-eat (RTE) fish products were examined for the presence and antimicrobial susceptibility of Staphylococcus spp. Staphylococci were isolated from 43% of these samples (n = 100). The identified species in the samples were Staphylococcus aureus (7%), Staphylococcus epidermidis (13%), Staphylococcus xylosus (12%), Staphylococcus sciuri (4%), Staphylococcus warneri (3%), Staphylococcus saprophyticus (2%), Staphylococcus schleiferi (1%) and Staphylococcus auricularis (1%). Two Staph. aureus (MRSA) isolates, three Staph. epidermidis (MRSE), five Staph. xylosus, four Staph. sciuri, one Staph. schleiferi and one Staph. saprophyticus isolates were resistant to oxacillin and all of them carried the mecA gene. The two MRSA isolates belonged to the spa types t316 (ST359) and t548 (ST5) and none of them was able to produce enterotoxins. Pulsed field gel electrophoresis for Staph. aureus and Staph. epidermidis isolates revealed 6 and 11 distinct PFGE types, respectively, reflecting diversity. The presence of methicillin-resistant staphylococci, especially MRSA and MRSE, in RTE fish products may constitute a potential health risk for consumers. This study provides the first data on the occurrence of methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci in salted and smoked fish products in Greece. These results are important and useful for Staphylococcus spp. risk assessment and management programmes for ready-to-eat fish products. © 2014 The Society for Applied Microbiology.

  11. Diversity of staphylococcal cassette chromosome mec structures in methicillin-resistant Staphylococcus epidermidis and Staphylococcus haemolyticus strains among outpatients from four countries.

    PubMed

    Ruppé, Etienne; Barbier, François; Mesli, Yasmine; Maiga, Aminata; Cojocaru, Radu; Benkhalfat, Mokhtar; Benchouk, Samia; Hassaine, Hafida; Maiga, Ibrahim; Diallo, Amadou; Koumaré, Abdel Karim; Ouattara, Kalilou; Soumaré, Sambou; Dufourcq, Jean-Baptiste; Nareth, Chhor; Sarthou, Jean-Louis; Andremont, Antoine; Ruimy, Raymond

    2009-02-01

    In staphylococci, methicillin (meticillin) resistance (MR) is mediated by the acquisition of the mecA gene, which is carried on the size and composition variable staphylococcal cassette chromosome mec (SCCmec). MR has been extensively studied in Staphylococcus aureus, but little is known about MR coagulase-negative staphylococci (MR-CoNS). Here, we describe the diversity of SCCmec structures in MR-CoNS from outpatients living in countries with contrasting environments: Algeria, Mali, Moldova, and Cambodia. Their MR-CoNS nasal carriage rates were 29, 17, 11, and 31%, respectively. Ninety-six MR-CoNS strains, comprising 75 (78%) Staphylococcus epidermidis strains, 19 (20%) Staphylococcus haemolyticus strains, 1 (1%) Staphylococcus hominis strain, and 1 (1%) Staphylococcus cohnii strain, were analyzed. Eighteen different SCCmec types were observed, with 28 identified as type IV (29%), 25 as type V (26%), and 1 as type III (1%). Fifteen strains (44%) were untypeable for their SCCmec. Thirty-four percent of MR-CoNS strains contained multiple ccr copies. Type IV and V SCCmec were preferentially associated with S. epidermidis and S. haemolyticus, respectively. MR-CoNS constitute a widespread and highly diversified MR reservoir in the community.

  12. Metastatic Complications from Staphylococcus intermedius, a Zoonotic Pathogen

    PubMed Central

    Sree, Aruna; Tirrell, Sandra; Torres, Brenda; Rothman, Alan L.

    2012-01-01

    Metastatic infection is an infrequent complication of non-Staphylococcus aureus staphylococcal infection. Here we report a case of bloodstream infection due to Staphylococcus intermedius. To our knowledge, ours is the only known case of metastatic infection with S. intermedius. PMID:22170938

  13. Isolation and identification of Staphylococcus sp. in powdered infant milk

    NASA Astrophysics Data System (ADS)

    Palilu, Prayolga Toban; Budiarso, Tri Yahya

    2017-05-01

    Staphylococcus sp. is one of the most dangerous bacteria that could cause food poisoning. It is a pathogenic bacterium which is able to produce enterotoxin in foods. Milk is an ideal growth medium for Staphylococcus sp., that may cause problem if it is to be consumed, especially by infant. It is the objective of this research to detect the presence of Staphylococcus sp. in powdered infant milk. As many as 14 samples obtained from market were used as samples for bacterial isolation. The isolation were done by employing enrichment step on BHI-broth, continued with Baird-Parker Agar which will produce a typical colony. It is then picked and grown on Mannitol Salt Agar, and gram staining, coagulase assay, and fermentation tests. The confirmation step was done by using API-Staph which gives the identification of Staphylococcus hemoliticus, Staphylococcus aureus and Staphylococcus epidermidis, with a percentage of identity ranging from 65.9-97.7%. Two isolates with the highest identification similarity values were then picked for molecular detection. A PCR primer pair targeting gene coding for enterotoxin A was used, and it gives positive result for the two isolates being tested. It is then concluded that the two isolates belong to Staphylococcus sp., and further research need to be done to correctly identify these isolates.

  14. [Tracing to the source of staphylococcus aureus isolates from ice cream].

    PubMed

    Zhang, Yan-Jun; Xu, Dan-Ge; Fang, Ye-Zhen; Gong, Pu; Zhu, Min; Bao, Fang-Zhen

    2008-07-01

    To investigate the contamination of Staphylococcus aureus isolates in ice cream by phenotypic typing and molecular typing. The Staphylococcus aureus isolates were separated from ice cream, filler, cutter, salves and material. The separated isolates were characterized by drug-resistance, staphylococcal enterotoxin (SEA-E), SE (A-E, G-J) genes and pulsed-field gel electrophoresis (PFGE) types. Two Staphylococcus aureus isolates were separated, one from ice cream, another from cutter. Their characteristics of drug-resistance, staphylococcal enterotoxin (SEA-E), SE (A-E,G-J) genes and PFGE type were the same. The two Staphylococcus aureus isolates were the same clone. The contaminated Staphylococcus aureus isolates could be traced to the contaminated cutters.

  15. Whole Genome Sequencing of Danish Staphylococcus argenteus Reveals a Genetically Diverse Collection with Clear Separation from Staphylococcus aureus.

    PubMed

    Hansen, Thomas A; Bartels, Mette D; Høgh, Silje V; Dons, Lone E; Pedersen, Michael; Jensen, Thøger G; Kemp, Michael; Skov, Marianne N; Gumpert, Heidi; Worning, Peder; Westh, Henrik

    2017-01-01

    Staphylococcus argenteus ( S. argenteus ) is a newly identified Staphylococcus species that has been misidentified as Staphylococcus aureus ( S. aureus ) and is clinically relevant. We identified 25 S. argenteus genomes in our collection of whole genome sequenced S. aureus . These genomes were compared to publicly available genomes and a phylogeny revealed seven clusters corresponding to seven clonal complexes. The genome of S. argenteus was found to be different from the genome of S. aureus and a core genome analysis showed that ~33% of the total gene pool was shared between the two species, at 90% homology level. An assessment of mobile elements shows flow of SCC mec cassettes, plasmids, phages, and pathogenicity islands, between S. argenteus and S. aureus . This dataset emphasizes that S. argenteus and S. aureus are two separate species that share genetic material.

  16. Identification of Staphylococcus and Micrococcus species with the STAPHYtest system.

    PubMed

    Sedlácek, I; Kocur, M

    1991-01-01

    A collection of 216 well-characterized strains of Staphylococcus, Micrococcus and Stomatococcus was examined by a commercially available STAPHYtest system (Lachema, Brno, Czechoslovakia). The results of STAPHYtest agreed with those of conventional tests. The STAPHYtest permitted a clear-cut separation of Staphylococcus from Micrococcus and Stomatococcus strains and correctly identified 104 of 145 (72%) Staphylococcus strains after 24 h of incubation. However, it allowed the identification only of 19 of 29 validly published Staphylococcus species. The STAPHYtest proved to be a simple and rapid system for the separation of staphylococci from micrococci and for the identification of most frequent clinically significant staphylococci.

  17. Staphylococcus epidermidis and Staphylococcus haemolyticus: Molecular Detection of Cytotoxin and Enterotoxin Genes

    PubMed Central

    Pinheiro, Luiza; Ivo Brito, Carla; de Oliveira, Adilson; Yoshida Faccioli Martins, Patrícia; Cataneli Pereira, Valéria; Ribeiro de Souza da Cunha, Maria de Lourdes

    2015-01-01

    Although opportunistic pathogens, coagulase-negative staphylococci (CoNS), including Staphylococcus epidermidis and Staphylococcus haemolyticus, have long been regarded as avirulent organisms. The role of toxins in the development of infections caused by CoNS is still controversial. The objective of this study was to characterize the presence of enterotoxin and cytotoxin genes in S. epidermidis and S. haemolyticus isolates obtained from blood cultures. Cytotoxin genes were detected by PCR using novel species-specific primers. Among the 85 S. epidermidis and 84 S. haemolyticus isolates, 95.3% and 79.8%, respectively, carried at least one enterotoxin gene. The most frequent enterotoxin genes were sea (53.3%), seg (64.5%) and sei (67.5%). The seg gene was positively associated with S. epidermidis (p = 0.02), and this species was more toxigenic than S. haemolyticus. The hla/yidD gene was detected in 92.9% of S. epidermidis and the hla gene in 91.7% of S. haemolyticus isolates; hlb was detected in 92.9% of the S. epidermidis isolates and hld in 95.3%. Nosocomial Staphylococcus epidermidis and S. haemolyticus isolates exhibited a high toxigenic potential, mainly containing the non-classical enterotoxin genes seg and sei. The previously unreported detection of hla/yidD and hlb in S. epidermidis and S. haemolyticus using species-specific primers showed that these hemolysin genes differ between CoNS species and that they are highly frequent in blood culture isolates. PMID:26389954

  18. Staphylococcus epidermidis and Staphylococcus haemolyticus: Molecular Detection of Cytotoxin and Enterotoxin Genes.

    PubMed

    Pinheiro, Luiza; Brito, Carla Ivo; de Oliveira, Adilson; Martins, Patrícia Yoshida Faccioli; Pereira, Valéria Cataneli; da Cunha, Maria de Lourdes Ribeiro de Souza

    2015-09-14

    Although opportunistic pathogens, coagulase-negative staphylococci (CoNS), including Staphylococcus epidermidis and Staphylococcus haemolyticus, have long been regarded as avirulent organisms. The role of toxins in the development of infections caused by CoNS is still controversial. The objective of this study was to characterize the presence of enterotoxin and cytotoxin genes in S. epidermidis and S. haemolyticus isolates obtained from blood cultures. Cytotoxin genes were detected by PCR using novel species-specific primers. Among the 85 S. epidermidis and 84 S. haemolyticus isolates, 95.3% and 79.8%, respectively, carried at least one enterotoxin gene. The most frequent enterotoxin genes were sea (53.3%), seg (64.5%) and sei (67.5%). The seg gene was positively associated with S. epidermidis (p = 0.02), and this species was more toxigenic than S. haemolyticus. The hla/yidD gene was detected in 92.9% of S. epidermidis and the hla gene in 91.7% of S. haemolyticus isolates; hlb was detected in 92.9% of the S. epidermidis isolates and hld in 95.3%. Nosocomial Staphylococcus epidermidis and S. haemolyticus isolates exhibited a high toxigenic potential, mainly producing the non-classical enterotoxins seg and sei. The previously unreported detection of hla/yidD and hlb in S. epidermidis and S. haemolyticus using species-specific primers showed that these hemolysin genes differ between CoNS species and that they are highly frequent in blood culture isolates.

  19. Antimicrobial susceptibility of Staphylococcus aureus and Staphylococcus pseudintermedius isolated from various animals

    PubMed Central

    Rubin, Joseph E.; Ball, Katherine R.; Chirino-Trejo, Manuel

    2011-01-01

    This study characterized the antimicrobial susceptibility of 221 Staphylococcus aureus isolated from various species, and 60 canine Staphylococcus pseudintermedius isolated from 1986 through 2000 at the Western College of Veterinary Medicine (WCVM). Resistance of S. aureus was most common to penicillin (31%) and tetracycline (14%); resistance of S. pseudintermedius to penicillin was present in 8% and to tetracycline in 34% of isolates. Resistance to trimethoprim/sulfamethoxazole was only seen among S. pseudintermedius, and there was no resistance to amoxicillin/clavulanate, ampicillin/sulbactam, cephalothin, amikacin, gentamicin, enrofloxacin, chloramphenicol, or rifampin among any isolate. Inducible clindamycin resistance was found in both S. aureus and S. pseudintermedius, highlighting the need for careful interpretation of culture and susceptibility test results. There were significant differences in the minimum inhibitory concentrations of penicillin, ciprofloxacin, enrofloxacin, clindamycin, erythromycin, chloramphenicol, and tetracycline between avian, bovine, equine, and porcine isolates. PMID:21532820

  20. Threat of drug resistant Staphylococcus aureus to health in Nepal

    PubMed Central

    2014-01-01

    Background Staphylococcus aureus is the most commonly isolated organism from the different clinical samples in hospital. The emergence and dissemination of methicillin resistant Staphylococcus aureus (MRSA) and growing resistance to non-beta-lactam antibiotics is making treatment of infections due to this organism increasingly difficult. Methods This study was conducted to determine the frequency of Staphylococcus aureus isolated from different clinical samples, rates of MRSA and full antibiotic susceptibility profiles. Clinical samples were cultured and Staphylococcus aureus was identified using standard microbiological methods recommended by the American Society for Microbiology (ASM). Methicillin resistance was confirmed using cefoxitin and oxacillin disks. Inducible clindamycin resistance was identified using D-zone test. Results From the processed samples, 306 isolates of Staphylococcus aureus were recovered. All the isolates were susceptible to vancomycin and teicoplanin. Methicillin resistance was observed in 43.1% of isolates while inducible clindamycin resistance in 12.4% of the isolates. Conclusions The results of our study reveals that rates of resistance to commonly prescribed antibiotics in Staphylococcus aureus clinical isolates is high. In particular, rate of methicillin resistance is alarming, prompting concern on the rational use of antibiotics and vigilant laboratory-based surveillance of resistance rates in Nepal. PMID:24655316

  1. Occurrence and characterization of Staphylococcus bacteria isolated from poultry in Western Poland.

    PubMed

    Marek, Agnieszka; Stepień-Pyśniak, Dagmara; Pyzik, Ewelina; Adaszek, Łukasz; Wilczyński, Jarosław; Winiarczyk, Stanisław

    2016-01-01

    In the pathology of poultry, infections caused by Staphylococcus spp. are taking on increasing significance. Although the Staphylococcus species most frequently isolated from these animals is Staphylococcus aureus, the literature data indicate that other species, both coagulase-positive and coagulase-negative, can also cause infections in birds. The aim of the study was to assess the frequency of occurrence of Staphylococcus infections in various poultry species in Western Poland and to test the susceptibility of isolated strains to selected antibiotics. The results obtained showed a relatively high rate of Staphylococcus infection in the poultry. From 2805 samples tested 302 strains (10.8%) of Staphylococcus were isolated. As many as 25 Staphylococcus species were distinguished among the strains isolated. S. cohnii (23.50%), S. aureus (15.89%) and S. lentus (13.90%) accounted for the highest percentages. Over half of the isolated staphylococci exhibited resistance to five of the antibiotics applied, with the highest percentage of resistant strains, 65%, noted for enrofloxacin.

  2. Comparative study on nutrient depletion-induced lipidome adaptations in Staphylococcus haemolyticus and Staphylococcus epidermidis.

    PubMed

    Luo, Yu; Javed, Muhammad Afzal; Deneer, Harry

    2018-02-05

    Staphylococcus species are emerging opportunistic pathogens that cause outbreaks of hospital and community-acquired infections. Some of these bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) are difficult to treat due to their resistance to multiple antibiotics. We carried out a comparative study on the lipidome adaptations in response to starvation in the two most common coagulase-negative Staphylococcus species: a S. epidermidis strain sensitive to ampicillin and erythromycin and a S. haemolyticus strain resistant to both. The predominant fatty acid composition in glycerolipids was (17:0-15:0) in both bacteria. During the exponential phase, the two bacterial lipidomes were similar. Both were dominated by diacylglycerol (DAG), phosphatidylglycerol (PG), lysyl-phosphatidylglycerol (Lysyl-PG) and Diglucosyl-diacylglycerol (DGDG). Alanyl-PG was detected in small amounts in both bacterial lipids. N-succinyl-lysyl-PG was detected only in S. haemolyticus, while lysyl-DAG only in S. epidermidis. As the two bacteria entered stationary phase, both lipidomes became essentially nitrogen-free. Both bacteria accumulated large amounts of free fatty acids. Strikingly, the lipidome of S. epidermidis became dominated by cardiolipin (CL), while that of S. haemolyticus was simplified to DGDG and PG. The S. epidermidis strain also produced acyl-phosphatidylglycerol (APG) in the stationary phase.

  3. Prevalence of Staphylococcus, including Methicillin-Resistant Staphylococcus aureus, in a Physical Therapy Education Facility.

    PubMed

    Dhagat, Priya V; Gibbs, Karen A; Rohde, Rodney E

    2015-01-01

    The purpose of this study was to assess the prevalence of Staphylococcus species, including methicillin-resistant Staphylococcus aureus (MRSA), in a physical therapy (PT) education facility. The PT laboratory classrooms were routinely used by graduate PT students and faculty, undergraduate anatomy students, and licensed practitioners for continuing education purposes. A total of 88 swab samples were collected from plinths and other equipment and plated onto mannitol salt agar (MSA). Suspected S. aureus colonies were confirmed by Staphyloslide latex testing. S. aureus isolates were plated to HardyCHROM agar to identify MRSA. VITEK antibiotic susceptibility testing confirmed MRSA isolates. Forty-seven samples showed growth (47/88, 53%), and 7 tested positive for S. aureus (7/47, 15%). Of those 7, one demonstrated oxacillin resistance and was confirmed as MRSA (1/7, 2%). Remaining samples grew other species of Staphylococcus and gram-negative bacilli. Given high classroom utilization, staphylococci environmental prevalence would be expected. However, the presence of MRSA was unexpected. Results demonstrate the potential for easily transmissible and potentially harmful organisms to be present in multi-use classrooms utilized by health professions students where frequent skin-to-skin contact occurs. Strict, routine cleaning of plinths and other equipment is imperative in reducing exposure risk.

  4. [Investigation of biofilm formation properties of staphylococcus isolates].

    PubMed

    Öcal, Duygu Nilüfer; Dolapçı, İştar; Karahan, Zeynep Ceren; Tekeli, Alper

    2017-01-01

    Biofilm production is an important virulence factor which allows staphylococci to adhere to medical devices. The principal component of biofilm is a "polysaccharide intercellular adhesin (PIA)" which is composed of a beta-1,6-N-acetylglucosamine polymer synthesized by an enzyme (N-acetylglucosamine transferase) encoded by the ica operon found on the bacterial chromosome. This operon is composed of four genes (A, B, C, and D), and a transposable element IS256. In this study, we aimed to determine the biofilm production characteristics of invasive/non-invasive staphylococcus isolates and different staphylococcus species. Biofilm production of 166 staphylococci was phenotypically investigated on Congo Red Agar (CRA); the presence of icaA, icaD and IS256 genes were investigated by polymerase chain reaction (PCR). 74 of the isolates (44.6%) were identified as methicillin resistant Staphylococcus aureus (MRSA), 25 (15.1%) as methicillin sensitive S.aureus (MSSA), 25 (37.3%) as Staphylococcus hominis, 20 (12%) as S.epidermidis, ten (15%) as Staphylococcus haemolyticus, nine (13.4%) as Staphylococcus capitis, two (3%) Staphylococcus saprophyticus and one (1.5%) as Staphylococcus warnerii. Of the MRSA strains, 52 were isolated from blood and 22 from nose; all MSSA strains were isolated from nose cultures. Coagulase-negative staphylococci (CoNS) strains were composed of invasive and non-invasive strains isolated from nose, catheter tip and blood cultures from patients with catheter. Production with CRA method was found to be statistically significant in invasive isolates (p< 0.001). It is concluded that; as the biofilm formation capacity of invasive isolates can cause refractory infections and the importance of carriage and hospital infections of these bacteria, it is important to prevent the spread of these isolates. A combination of phenotypic and genotypic tests is recommended for the investigation of biofilm formation in staphylococci. 40.3% of the CoNS isolates, and 85

  5. Subunit mass fingerprinting of mitochondrial complex I.

    PubMed

    Morgner, Nina; Zickermann, Volker; Kerscher, Stefan; Wittig, Ilka; Abdrakhmanova, Albina; Barth, Hans-Dieter; Brutschy, Bernhard; Brandt, Ulrich

    2008-10-01

    We have employed laser induced liquid bead ion desorption (LILBID) mass spectrometry to determine the total mass and to study the subunit composition of respiratory chain complex I from Yarrowia lipolytica. Using 5-10 pmol of purified complex I, we could assign all 40 known subunits of this membrane bound multiprotein complex to peaks in LILBID subunit fingerprint spectra by comparing predicted protein masses to observed ion masses. Notably, even the highly hydrophobic subunits encoded by the mitochondrial genome were easily detectable. Moreover, the LILBID approach allowed us to spot and correct several errors in the genome-derived protein sequences of complex I subunits. Typically, the masses of the individual subunits as determined by LILBID mass spectrometry were within 100 Da of the predicted values. For the first time, we demonstrate that LILBID spectrometry can be successfully applied to a complex I band eluted from a blue-native polyacrylamide gel, making small amounts of large multiprotein complexes accessible for subunit mass fingerprint analysis even if they are membrane bound. Thus, the LILBID subunit mass fingerprint method will be of great value for efficient proteomic analysis of complex I and its assembly intermediates, as well as of other water soluble and membrane bound multiprotein complexes.

  6. Comparison of volatile sulphur compound production by cheese-ripening yeasts from methionine and methionine-cysteine mixtures.

    PubMed

    López Del Castillo-Lozano, M; Delile, A; Spinnler, H E; Bonnarme, P; Landaud, S

    2007-07-01

    Production of volatile sulphur compounds (VSC) was assessed in culture media supplemented with L-methionine or L-methionine/L-cysteine mixtures, using five cheese-ripening yeasts: Debaryomyces hansenii DH47(8), Kluyveromyces lactis KL640, Geotrichum candidum GC77, Yarrowia lipolytica YL200 and Saccharomyces cerevisiae SC45(3). All five yeasts produced VSC with L-methionine or L-methionine/L-cysteine, but different VSC profiles were found. GC77 and YL200 produced dimethyldisulphide and trace levels of dimethyltrisulphide while DH47(8), KL640 and SC45(3) produced mainly methionol and low levels of methional. S-methylthioacetate was produced by all the yeasts but at different concentrations. DH47(8), KL640 and SC45(3) also produced other minor VSC including 3-methylthiopropyl acetate, ethyl-3-methylthiopropanoate, a thiophenone, and an oxathiane. However, VSC production diminished in a strain-dependent behaviour when L-cysteine was supplemented, even at a low concentration (0.2 g l(-1)). This effect was due mainly to a significant decrease in L-methionine consumption in all the yeasts except YL200. Hydrogen sulphide produced by L-cysteine catabolism did not seem to contribute to VSC generation at the acid pH of yeast cultures. The significance of such results in the cheese-ripening context is discussed.

  7. Harnessing biodiesel-producing microbes: from genetic engineering of lipase to metabolic engineering of fatty acid biosynthetic pathway.

    PubMed

    Yan, Jinyong; Yan, Yunjun; Madzak, Catherine; Han, Bingnan

    2017-02-01

    Microbial production routes, notably whole-cell lipase-mediated biotransformation and fatty-acids-derived biosynthesis, offer new opportunities for synthesizing biodiesel. They compare favorably to immobilized lipase and chemically catalyzed processes. Genetically modified whole-cell lipase-mediated in vitro route, together with in vivo and ex vivo microbial biosynthesis routes, constitutes emerging and rapidly developing research areas for effective production of biodiesel. This review presents recent advances in customizing microorganisms for producing biodiesel, via genetic engineering of lipases and metabolic engineering (including system regulation) of fatty-acids-derived pathways. Microbial hosts used include Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Aspergillus oryzae. These microbial cells can be genetically modified to produce lipases under different forms: intracellularly expressed, secreted or surface-displayed. They can be metabolically redesigned and systematically regulated to obtain balanced biodiesel-producing cells, as highlighted in this study. Such genetically or metabolically modified microbial cells can support not only in vitro biotransformation of various common oil feedstocks to biodiesel, but also de novo biosynthesis of biodiesel from glucose, glycerol or even cellulosic biomass. We believe that the genetically tractable oleaginous yeast Yarrowia lipolytica could be developed to an effective biodiesel-producing microbial cell factory. For this purpose, we propose several engineered pathways, based on lipase and wax ester synthase, in this promising oleaginous host.

  8. Comparison of Yeasts as Hosts for Recombinant Protein Production.

    PubMed

    Vieira Gomes, Antonio Milton; Souza Carmo, Talita; Silva Carvalho, Lucas; Mendonça Bahia, Frederico; Parachin, Nádia Skorupa

    2018-04-29

    Recombinant protein production emerged in the early 1980s with the development of genetic engineering tools, which represented a compelling alternative to protein extraction from natural sources. Over the years, a high level of heterologous protein was made possible in a variety of hosts ranging from the bacteria Escherichia coli to mammalian cells. Recombinant protein importance is represented by its market size, which reached $1654 million in 2016 and is expected to reach $2850.5 million by 2022. Among the available hosts, yeasts have been used for producing a great variety of proteins applied to chemicals, fuels, food, and pharmaceuticals, being one of the most used hosts for recombinant production nowadays. Historically, Saccharomyces cerevisiae was the dominant yeast host for heterologous protein production. Lately, other yeasts such as Komagataella sp., Kluyveromyces lactis , and Yarrowia lipolytica have emerged as advantageous hosts. In this review, a comparative analysis is done listing the advantages and disadvantages of using each host regarding the availability of genetic tools, strategies for cultivation in bioreactors, and the main techniques utilized for protein purification. Finally, examples of each host will be discussed regarding the total amount of protein recovered and its bioactivity due to correct folding and glycosylation patterns.

  9. Immobilization of Yarrowia lipolytica Lipase on Macroporous Resin Using Different Methods: Characterization of the Biocatalysts in Hydrolysis Reaction.

    PubMed

    Sun, Jingjing; Chen, Yiling; Sheng, Jun; Sun, Mi

    2015-01-01

    To improve the reusability and organic solvent tolerance of microbial lipase and expand the application of lipase (hydrolysis, esterification, and transesterification), we immobilized marine microbial lipase using different methods and determined the properties of immobilized lipases. Considering the activity and cost of immobilized lipase, the concentration of lipase was fixed at 2 mg/mL. The optimal temperature of immobilized lipases was 40°C and 5°C higher than free lipase. The activities of immobilized lipases were much higher than free lipase at alkaline pH (more than 50% at pH 12). The free lipase lost most activity (35.3%) and immobilized lipases retained more than 46.4% of their initial activity after 3 h heat treatment at 70°C. At alkaline pH, immobilized lipases were more stable than free lipase (more than 60% residue activity at pH 11 for 3 h). Immobilized lipases retained 80% of their activity after 5 cycles and increased enzyme activity (more than 108.7%) after 3 h treatment in tert-butanol. Immobilization of lipase which improved reusability of lipase and provided a chance to expand the application of marine microbial lipase in organic system expanded the application range of lipase to catalyze hydrolysis and esterification in harsh condition.

  10. Fine Structure of Tibetan Kefir Grains and Their Yeast Distribution, Diversity, and Shift

    PubMed Central

    Lu, Man; Wang, Xingxing; Sun, Guowei; Qin, Bing; Xiao, Jinzhou; Yan, Shuling; Pan, Yingjie; Wang, Yongjie

    2014-01-01

    Tibetan kefir grains (TKGs), a kind of natural starter for fermented milk in Tibet, China, host various microorganisms of lactic acid bacteria, yeasts, and occasionally acetic acid bacteria in a polysaccharide/protein matrix. In the present study, the fine structure of TKGs was studied to shed light on this unusual symbiosis with stereomicroscopy and thin sections. The results reveal that TKGs consist of numerous small grain units, which are characterized by a hollow globular structure with a diameter between 2.0 and 9.0 mm and a wall thickness of approximately 200 µm. A polyhedron-like net structure, formed mainly by the bacteria, was observed in the wall of the grain units, which has not been reported previously to our knowledge. Towards the inside of the grain unit, the polyhedron-like net structures became gradually larger in diameter and fewer in number. Such fine structures may play a crucial role in the stability of the grains. Subsequently, the distribution, diversity, and shift of yeasts in TKGs were investigated based on thin section, scanning electron microscopy, cloning and sequencing of D1/D2 of the 26S rRNA gene, real-time quantitative PCR, and in situ hybridization with specific fluorescence-labeled oligonucleotide probes. These show that (i) yeasts appear to localize on the outer surface of the grains and grow normally together to form colonies embedded in the bacterial community; (ii) the diversity of yeasts is relatively low on genus level with three dominant species – Saccharomyces cerevisiae, Kluyveromyces marxianus, and Yarrowia lipolytica; (iii) S. cerevisiae is the stable predominant yeast species, while the composition of Kluyveromyces and Yarrowia are subject to change over time. Our results indicate that TKGs are relatively stable in structure, and culture conditions to some extent shape the microbial community and interaction in kefir grains. These findings pave the way for further study of the specific symbiotic associations between S

  11. Rapid lysostaphin test to differentiate Staphylococcus and Micrococcus species.

    PubMed Central

    Geary, C; Stevens, M

    1986-01-01

    A rapid, simple lysostaphin lysis susceptibility test to differentiate the genera Staphylococcus and Micrococcus was evaluated. Of 181 strains from culture collections, 95 of 95 Staphylococcus strains were lysed, and 79 of 79 Micrococcus strains were not lysed. The seven Planococcus strains were resistant. Clinical isolates (890) were tested with lysostaphin and for the ability to produce acid from glycerol in the presence of erythromycin. Overall agreement between the methods was 99.2%. All clinical Micrococcus strains (43) were resistant to lysostaphin, and all clinical Staphylococcus strains (847) were susceptible. Seven of the Staphylococcus strains did not produce acid from glycerol in the presence of erythromycin. This lysostaphin test provides results in 2 h. It is easier to perform than previously described lysostaphin lysis methods. It is also more rapid and accurate than the glycerol-erythromycin test. PMID:3519667

  12. [Study of methicillin-resistant Staphylococcus aureus colonization among intermediate-care facility patients].

    PubMed

    Giret, P; Roblot, F; Poupet, J Y; Thomas, P; Lussier-Bonneau, M D; Pradère, C; Becq-Giraudon, B; Fauchère, J L; Castel, O

    2001-08-01

    Prevalence of methicillin-resistant Staphylococcus aureus is high in the Poitiers teaching hospital, particularly in the intermediate care facilities. We performed a survey of methicillin-resistant Staphylococcus aureus colonization in the intermediate care facilities and 265 patients were included. Nasal, cutaneous and wound swab cultures were done at the time of admission and at the time of the patients' departure. A decolonization procedure of methicillin-resistant Staphylococcus aureus carriers was performed using nasal application of fusidic acid and different soaps for the skin. At entry, 17.7% of patients were methicillin-resistant Staphylococcus aureus carriers (of at least one location). At departure, 30.4% were methicillin-resistant Staphylococcus aureus carriers. Among methicillin-resistant Staphylococcus aureus non-carriers at entry, 24.3% became methicillin-resistant Staphylococcus aureus carriers. The principal risk factor of carriage was the initial presence of a wound (RR = 3.6). The incidence rate of methicillin-resistant Staphylococcus aureus infection among the 265 patients included was 3%. The systematic screening of patients at the time of admission is expensive and isolation technically hard to manage in the intermediate care facilities. The risk factor we found in this study allow us to propose a 'light' screening limited to patients with wounds.

  13. Presence of Laminin Receptors in Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Lopes, J. D.; Dos Reis, M.; Brentani, R. R.

    1985-07-01

    A characteristic feature of infection by Staphylococcus aureus is bloodstream invasion and widespread metastatic abscess formation. The ability to extravasate, which entails crossing the vascular basement membrane, appears to be critical for the organism's pathogenicity. Extravasation by normal and neoplastic mammalian cells has been correlated with the presence of specific cell surface receptors for the basement membrane glycoprotein laminin. Similar laminin receptors were found in Staphylococcus aureus but not in Staphylococcus epidermidis, a noninvasive pathogen. There were about 100 binding sites per cell, with an apparent binding affinity of 2.9 nanomolar. The molecular weight of the receptor was 50,000 and pI was 4.2. Eukaryotic laminin receptors were visualized by means of the binding of S. aureus in the presence of laminin. Prokaryotic and eukaryotic invasive cells might utilize similar, if not identical, mechanisms for invasion.

  14. MICROBIOLOGICAL ASSESSMENT OF LETTUCE SALADS AND ANTIMICROBIAL RESISTANCE OF STAPHYLOCOCCUS SPP.

    PubMed

    Guimarães César, Josi; Madruga Peres, Andriele; Pereira das Neves, Caroline; Tupiniquim Freitas de Abreu, Érica; Fagundes de Mello, Jozi; Nunes Moreira, Ângela; Lameiro Rodrigues, Kelly

    2015-11-01

    self-service restaurants in which food is served ready to be consumed are liable to have some products contaminated by pathogenic microorganisms causing food-transmitted diseases. evaluates the microbiological quality of lettuce salads in restaurants in Pelotas RS Brazil by counts of thermo-tolerant coliforms, E. coli, Staphylococcus spp. and detection of Salmonella spp. Antimicrobial resistance of Staphylococcus spp. isolates are also assessed. thirty-six samples of lettuce salads were collected from nine restaurants and thermotolerant coliforms, Escherichia coli and Staphylococcus spp. were quantified, coupled to a research on Salmonella spp., following methodology by the Bacteriological Analytical Manual. Staphylococcus spp. isolates underwent antimicrobial resistance test by the disc-diffusion method. results showed that 61.1% of the salad samples contained more thermotolerant coliforms than allowed by Brazilian legislation and E. coli was confirmed in 5.6% of the samples. Positive and negative coagulase Staphylococcus occurred respectively in 5.6% and 77.8% of isolates, but no sample had Salmonella spp. Further, 56.7% of the thirty isolates of Staphylococcus spp. tested were resistant to penicillin; 46.7% to oxacillin; 26.7% to erythromycin and 23.3% were multi- resistant. inadequate quality of the salad was due to pathogenic microorganisms, while Staphylococcus spp. isolates had a high percentage of antimicrobial resistance. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  15. Characterisation of nasal Staphylococcus delphini and Staphylococcus pseudintermedius isolates from healthy donkeys in Tunisia.

    PubMed

    Gharsa, H; Slama, K Ben; Gómez-Sanz, E; Gómez, P; Klibi, N; Zarazaga, M; Boudabous, A; Torres, C

    2015-07-01

    Staphylococcus intermedius group (SIG) bacteria can colonise the nares of some animals but are also emerging pathogens in humans and animals. To analyse SIG nasal carriage in healthy donkeys destined for food consumption in Tunisia and to characterise recovered isolates. Nasal swabs from 100 healthy donkeys were tested for SIG recovery, and isolates were identified by biochemical and molecular methods. Antimicrobial susceptibility of isolates was tested and detection of antimicrobial resistance and virulence genes was performed. Isolates were typed at the clonal level by multilocus sequence typing and SmaI pulsed-field gel electrophoresis. Staphylococcus delphini and Staphylococcus pseudintermedius (included in SIG) were obtained in 19% and 2% of the tested samples, respectively, and one isolate per sample was characterised. All isolates were meticillin susceptible and mecA negative. Most S. delphini and S. pseudintermedius isolates showed susceptibility to all antimicrobials tested, with the exception of 2 isolates resistant to tetracycline (tet(M) gene) or fusidic acid. The following toxin genes were identified (percentage of isolates): lukS-I (100%), lukF-I (9.5%), siet (100%), se-int (90%), seccanine (19%) and expA (9.5%). Thirteen different pulsed-field gel electrophoresis profiles were identified among the 21 SIG isolates. Additionally, the following 9 different sequence types (STs) were detected by multilocus sequence typing, 6 of them new: ST219 (6 isolates), ST12 (5 isolates), ST220 (3 isolates), ST13, ST50, ST193, ST196, ST218 and ST221 (one isolate each). Staphylococcus delphini and S. pseudintermedius are common nasal colonisers of donkeys, generally susceptible to the antimicrobials tested; nevertheless, these SIG isolates contain virulence genes, including the recently described exfoliative gene (expA) and several enterotoxin genes, with potential implications for public health. This is the first description of S. delphini in Tunisia. The

  16. Evaluation of Pyrrolidonyl Arylamidase Activity in Staphylococcus delphini.

    PubMed

    Compton, Samantha T; Kania, Stephen A; Robertson, Amy E; Lawhon, Sara D; Jenkins, Stephen G; Westblade, Lars F; Bemis, David A

    2017-03-01

    Clinical reference textbooks lack data for pyrrolidonyl arylamidase (PYR) activity in Staphylococcus delphini This study evaluated PYR activities of 21 S. delphini strains by reference broth, rapid disc, and rapid slide methods. Species and subgroup identifications were confirmed by nucleic acid-based methods and included nine group A and 12 group B strains. Testing by rapid PYR methods with products from four manufacturers was performed at two testing locations, and, with the exception of one strain tested at one location using reagents from one manufacturer, each S. delphini strain tested positive for PYR activity. Therefore, PYR may be a useful single-test adjunct for distinguishing Staphylococcus aureus from S. delphini and other members of the Staphylococcus intermedius group. Copyright © 2017 American Society for Microbiology.

  17. Candida lipolytica UCP0988 Biosurfactant: Potential as a Bioremediation Agent and in Formulating a Commercial Related Product

    PubMed Central

    Santos, Danyelle K. F.; Resende, Ana H. M.; de Almeida, Darne G.; Soares da Silva, Rita de Cássia F.; Rufino, Raquel D.; Luna, Juliana M.; Banat, Ibrahim M.; Sarubbo, Leonie A.

    2017-01-01

    The aim of the present study was to investigate the potential application of the biosurfactant from Candida lipolytica grown in low-cost substrates, which has previously been produced and characterized under optimized conditions as an adjunct material to enhance the remediation processes of hydrophobic pollutants and heavy metals generated by the oil industry and propose the formulation of a safe and stable remediation agent. In tests carried out with seawater, the crude biosurfactant demonstrated 80% oil spreading efficiency. The dispersion rate was 50% for the biosurfactant at a concentration twice that of the CMC. The biosurfactant removed 70% of motor oil from contaminated cotton cloth in detergency tests. The crude biosurfactant also removed 30–40% of Cu and Pb from standard sand, while the isolated biosurfactant removed ~30% of the heavy metals. The conductivity of solutions containing Cd and Pb was sharply reduced after biosurfactants' addition. A product was prepared through adding 0.2% potassium sorbate as preservative and tested over 120 days. The formulated biosurfactant was analyzed for emulsification and surface tension under different pH values, temperatures, and salt concentrations and tested for toxicity against the fish Poecilia vivipara. The results showed that the formulation had no toxicity and did not cause significant changes in the tensoactive capacity of the biomolecule while maintaining activity demonstrating suitability for potential future commercial product formulation. PMID:28507538

  18. Staphylococcus aureus and Staphylococcus epidermidis infections on implants.

    PubMed

    Oliveira, W F; Silva, P M S; Silva, R C S; Silva, G M M; Machado, G; Coelho, L C B B; Correia, M T S

    2018-02-01

    Infections are one of the main reasons for removal of implants from patients, and usually need difficult and expensive treatments. Staphylococcus aureus and Staphylococcus epidermidis are the most frequently detected pathogens. We reviewed the epidemiology and pathogenesis of implant-related infections. Relevant studies were identified by electronic searching of the following databases: PubMed, ScienceDirect, Academic Google, and CAPES Journal Portal. This review reports epidemiological studies of implant infections caused by S. aureus and S. epidermidis. We discuss some methodologies used in the search for new compounds with antibiofilm activity and the main strategies for biomaterial surface modifications to avoid bacterial plaque formation and consequent infection. S. aureus and S. epidermidis are frequently involved in infections in catheters and orthopaedic/breast implants. Different methodologies have been used to test the potential antibiofilm properties of compounds; for example, crystal violet dye is widely used for in-vitro biofilm quantification due to its low cost and good reproducibility. Changes in the surface biomaterials are necessary to prevent biofilm formation. Some studies have investigated the immobilization of antibiotics on the surfaces of materials used in implants. Other approaches have been used as a way to avoid the spread of bacterial resistance to antimicrobials, such as the functionalization of these surfaces with silver and natural compounds, as well as the electrical treatment of these substrates. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  19. Low occurrence of the new species Staphylococcus argenteus in a Staphylococcus aureus collection of human isolates from Belgium.

    PubMed

    Argudín, M A; Dodémont, M; Vandendriessche, S; Rottiers, S; Tribes, C; Roisin, S; de Mendonça, R; Nonhoff, C; Deplano, A; Denis, O

    2016-06-01

    Staphylococcus argenteus is a novel Staphylococcus species closely related to Staphylococcus aureus that has been recently described. In this study, we investigated the proportion and the characteristics of S. argenteus recovered from humans in Belgium. S. aureus. human isolates collected in Belgium from 2006 to 2015 (n = 1,903) were retrospectively characterised via the presence of non-pigmented colonies on chocolate agar, spa typing and rpoB sequencing to determine if some of them were in fact S. argenteus. Out of 73 strains non-pigmented on chocolate plates, 3 isolates (0.16 %) showed rpoB sequences, in addition to spa and sequence types (ST2250/t5787, ST2250/t6675, ST3240/t6675), related to S. argenteus. Two of them were methicillin-resistant, harbouring a SCCmec type IV. The three S. argenteus isolates carried genes (sak, scn) of the immune evasion cluster. This first Belgian nationwide analysis showed a low occurrence of S. argenteus. Further studies should be conducted to identify the distribution range and the clinical impact of this new species.

  20. Survey of methicillin-resistant Staphylococcus aureus (MRSA) carriage in healthy college students, Hawai'i.

    PubMed

    Morita, Jennifer E; Fujioka, Roger S; Tice, Alan D; Berestecky, John; Sato, Dayna; Seifried, Steven E; Katz, Alan R

    2007-08-01

    Currently, the carriage rate for Community-Acquired Methicillin Resistant Staphylococcus aureus (CA-MRSA) is unknown in Hawai'i. This survey focuses on a healthy population of 95 college students and 5 faculty who completed a survey related to possible risk factors for colonization of Staphylococcus aureus and were sampled for S. aureus from their anterior nares. Thirty-three (33%) subjects were carrying Staphylococcus aureus and of those, 3 (3%) carried MRSA. There was no significant association between Staphylococcus aureus carriage and ethnicity, gender exposure to seawater, prior Staphylococcus aureus infections, recent antibiotic use, or pets. Additional testing of a larger group of healthy individuals would be beneficial in assessing factors associated with CA-MRSA and Methicillin-susceptible Staphylococcus aureus (MSSA) carriage in Hawai'i.

  1. Endophthalmitis caused by Staphylococcus hominis and two different colonies of Staphylococcus haemolyticus after cataract surgery.

    PubMed

    Wong, Robert W; Rhodes, Kyle M

    2015-01-01

    To describe a case of endophthalmitis after cataract surgery caused by Staphylococcus hominis and two separate colony types of Staphylococcus haemolyticus. Retrospective chart review including ophthalmic examination, intraocular biopsy and cultures, and anterior segment photography. A patient presented with endophthalmitis 1 month after cataract surgery. The patient underwent pars plana vitrectomy with vitreous fluid, aqueous fluid, and lens capsule biopsy with injection of intravitreal antimicrobials with full resolution of the infection. Cultures isolated grew S. hominis and two different colonies of S. haemolyticus, all sensitive to vancomycin. To the best of the authors' knowledge, this is the first case of endophthalmitis due to lens capsule seeding from three different types of bacteria, S. hominis and two different colony types of S. haemolyticus. Prompt diagnosis and treatment can be associated with good visual outcomes.

  2. Evaluation of the Biotyper MALDI-TOF MS system for identification of Staphylococcus species.

    PubMed

    Zhu, Wenming; Sieradzki, Krzysztof; Albrecht, Valerie; McAllister, Sigrid; Lin, Wen; Stuchlik, Olga; Limbago, Brandi; Pohl, Jan; Kamile Rasheed, J

    2015-10-01

    The Bruker Biotyper MALDI-TOF MS (Biotyper) system, with a modified 30 minute formic acid extraction method, was evaluated by its ability to identify 216 clinical Staphylococcus isolates from the CDC reference collection comprising 23 species previously identified by conventional biochemical tests. 16S rDNA sequence analysis was used to resolve discrepancies. Of these, 209 (96.8%) isolates were correctly identified: 177 (84.7%) isolates had scores ≥2.0, while 32 (15.3%) had scores between 1.70 and 1.99. The Biotyper identification was inconsistent with the biochemical identification for seven (3.2%) isolates, but the Biotyper identifications were confirmed by 16S rDNA analysis. The distribution of low scores was strongly species-dependent, e.g. only 5% of Staphylococcus epidermidis and 4.8% of Staphylococcus aureus isolates scored below 2.0, while 100% of Staphylococcus cohnii, 75% of Staphylococcus sciuri, and 60% of Staphylococcus caprae produced low but accurate Biotyper scores. Our results demonstrate that the Biotyper can reliably identify Staphylococcus species with greater accuracy than conventional biochemicals. Broadening of the reference database by inclusion of additional examples of under-represented species could further optimize Biotyper results. Published by Elsevier B.V.

  3. Community-Acquired Methicillin-Resistant "Staphylococcus aureus": Considerations for School Nurses

    ERIC Educational Resources Information Center

    Alex, Aniltta; Letizia, MariJo

    2007-01-01

    Methicillin-resistant "Staphylococcus aureus" (MRSA) is a disease-causing organism that has been present in hospital settings since the 1960s. However, a genetically distinct strain of MRSA, called community-acquired methicillin-resistant "Staphylococcus aureus" (CA-MRSA), has emerged in recent years in community settings among healthy…

  4. Community-associated methicillin-resistant Staphylococcus aureus causing chronic pneumonia.

    PubMed

    Enayet, Iram; Nazeri, Ali; Johnson, Leonard B; Riederer, Kathleen; Pawlak, Joan; Saravolatz, Louis D

    2006-04-01

    A young woman presented with pneumonia of a 3-month duration with predominantly nodular pulmonary infiltrates. Methicillin-resistant Staphylococcus aureus was identified in multiple cultures of sputum specimens. According to findings of pulsed-field gel electrophoresis, the isolate was identical to USA 300 and carried a type IV Staphylococcus cassette chromosome mec type IV gene and the genes for Panton-Valentine leukocidin.

  5. Frequency of methicillin-resistant Staphylococcus aureus nasal colonization among patients suffering from methicillin resistant Staphylococcus aureus bacteraemia.

    PubMed

    Aslam, Nadia; Izhar, Mateen; Mehdi, Naima

    2013-11-01

    To determine rate of nasal colonization in Patients suffering from bacteraemia caused by methicillin resistant Staphylococcus aureus. This descriptive cross sectional study was carried out in a tertiary ca re, University Teaching Hospital (Shaikh Zayed Hospital, Lahore) from October 2010 to August 2011. Nasal swabs were taken from patients suffering from MRSA bacteraemia and were plated on mannitol salt agar plates to isolate Staphylococcus aureus (S. aureus) which were then tested for oxacillin susceptibility. Nasal colonization was present in 52.5% of patients suffering from MRSA bacteraemia. Nasal colonization rates with MRSA were high among patients suffering from MRSA bacteraemia especially in those undergoing dialysis or surgical procedures. Therefore, screening and nasal decolonization should be practiced in hospitals.

  6. Isolation and molecular characterization of multiresistant Staphylococcus sciuri and Staphylococcus haemolyticus associated with skin and soft-tissue infections.

    PubMed

    Shittu, Adebayo; Lin, Johnson; Morrison, Donald; Kolawole, Deboye

    2004-01-01

    The isolation, molecular identification and genotyping of multiresistant Staphylococcus sciuri and Staphylococcus haemolyticus from skin and soft-tissue infections are reported. Accurate and full identification of three coagulase-negative staphylococcal isolates was achieved using PCR, while the API STAPH method failed to identify an isolate of S. haemolyticus fully. The PCR assay, which detects polymorphism in the 16S-23S rRNA spacer region, is shown to be potentially useful for rapid and accurate identification of coagulase-negative staphylococci. Identical PFGE type and antibiotic-resistance profiles of two methicillin-resistant S. haemolyticus isolates in this study suggest the existence of a multiresistant community clone.

  7. Comparison of the etiological relevance of Staphylococcus haemolyticus and Staphylococcus hominis.

    PubMed

    Frickmann, Hagen; Hahn, Andreas; Skusa, Romy; Mund, Nils; Viehweger, Vivian; Köller, Thomas; Köller, Kerstin; Schwarz, Norbert Georg; Becker, Karsten; Warnke, Philipp; Podbielski, Andreas

    2018-05-19

    The study was performed to assess potential differences in the etiological relevance of two coagulase-negative staphylococci (CoNS), Staphylococcus haemolyticus and Staphylococcus hominis, in an observational single-center study. Over a 5-year interval, patients in whom there was detected S. haemolyticus or S. hominis of presumed etiological relevance were assessed for the primary endpoint death during hospital stay and the secondary endpoint transfer to an intensive care unit (ICU) after the detection of S. haemolyticus or S. hominis. Patients with S. haemolyticus or S. hominis died in 11.3% (50 out of 444) and 9.5% (60 out of 631) of cases, respectively, and were transferred to ICU after S. haemolyticus and S. hominis detection in 8.7% (19 out of 219) and 11.7% (44 out of 377) of cases, respectively. There was no significance for species-related influence on the primary outcome parameter (P > 0.1), while ICU transfers were more likely for patients with S. hominis detections (P = 0.016). Delayed diagnosis of both CoNS species was associated with an increased probability of death (P = 0.009). The study revealed comparable morbidity caused by S. haemolyticus and S. hominis identified in a clinically relevant context.

  8. Biochemical and Molecular Analysis of Staphylococcus aureus Clinical Isolates from Hospitalized Patients.

    PubMed

    Karmakar, Amit; Dua, Parimal; Ghosh, Chandradipa

    2016-01-01

    Staphylococcus aureus is opportunistic human as well as animal pathogen that causes a variety of diseases. A total of 100 Staphylococcus aureus isolates were obtained from clinical samples derived from hospitalized patients. The presumptive Staphylococcus aureus clinical isolates were identified phenotypically by different biochemical tests. Molecular identification was done by PCR using species specific 16S rRNA primer pairs and finally 100 isolates were found to be positive as Staphylococcus aureus. Screened isolates were further analyzed by several microbiological diagnostics tests including gelatin hydrolysis, protease, and lipase tests. It was found that 78%, 81%, and 51% isolates were positive for gelatin hydrolysis, protease, and lipase activities, respectively. Antibiogram analysis of isolated Staphylococcus aureus strains with respect to different antimicrobial agents revealed resistance pattern ranging from 57 to 96%. Our study also shows 70% strains to be MRSA, 54.3% as VRSA, and 54.3% as both MRSA and VRSA. All the identified isolates were subjected to detection of mecA, nuc, and hlb genes and 70%, 84%, and 40% were found to harbour mecA, nuc, and hlb genes, respectively. The current investigation is highly important and informative for the high level multidrug resistant Staphylococcus aureus infections inclusive also of methicillin and vancomycin.

  9. The Evaluation of Methicillin Resistance in Staphylococcus aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Ott, C. M.; Bassinger, V. J.; Fontenot, S. L.; Castro, V. A.; Pierson, D. L.

    2005-01-01

    The International Space Station (ISS) represents a semi-closed environment with a high level of crewmember interaction. As community-acquired methicillin-resistant Staphylococcus aureus (MRSA) has emerged as a health concern in environments with susceptible hosts in close proximity, an evaluation of isolates of clinical and environmental Staphylococcus aureus and coagulase negative Staphylococcus was performed to determine if this trend was also present in astronauts aboard ISS or the space station itself. Rep-PCR fingerprinting analysis of archived ISS isolates confirmed our earlier studies indicating a transfer of S. aureus between crewmembers. In addition, this fingerprinting also indicated a transfer between crewmembers and their environment. While a variety of S. aureus were identified from both the crewmembers and the environment, phenotypic evaluations indicated minimal methicillin resistance. However, positive results for the Penicillin Binding Protein, indicative of the presence of the mecA gene, were detected in multiple isolates of archived Staphylococcus epidermidis and Staphylococcus haemolyticus. Phenotypic analysis of these isolates confirmed their resistance to methicillin. While MRSA has not been isolated aboard ISS, the potential exists for the transfer of the gene, mecA, from coagulase negative environmental Staphylococcus to S. aureus creating MRSA strains. This study suggests the need to expand environmental monitoring aboard long duration exploration spacecraft to include antibiotic resistance profiling.

  10. Prevalence and factors associated with wound colonization by Staphylococcus spp. and Staphylococcus aureus in hospitalized patients in inland northeastern Brazil: a cross-sectional study

    PubMed Central

    2014-01-01

    Background Infections by Staphylococcus spp. are often associated with wounds, especially in hospitalized patients. Wounds may be the source of bacteria causing cross-contamination, and are a risk factor for methicillin-resistant Staphylococcus aureus (MRSA) infection. The aim of this study was to investigate the prevalence of wound colonization by Staphylococcus spp., especially S. aureus and MRSA, in hospitalized patients, and to identify the factors associated with such colonization. Methods This cross-sectional study enrolled patients with wounds who were hospitalized in a remote and underdeveloped inland region of northeastern Brazil with extreme poverty. Samples were collected using sterile swabs with 0.85% saline solution, and coagulase-negative Staphylococcus spp., S. aureus, and MRSA were identified using standard laboratory procedures. Data regarding the sociodemographic characteristics, antibiotic use, and comorbidities of the patients were collected using the medical records and a questionnaire. Results A total of 125 wounds were analyzed. The patients had a mean age of 63.88 years and a mean 3.84 years of school education. Eighty-one wounds (64.80%) were colonized by Staphylococcus spp. Twenty-five wounds (20%) were colonized by S. aureus, 32% of which were colonized by MRSA. Wound colonization by Staphylococcus spp. was associated with pneumonia or other respiratory disease (p = 0.03). Wound colonization by S. aureus was associated with nasal colonization by S. aureus (p < 0.001), fewer days of prior antibiotic use (p = 0.04), admission to a medical ward (p = 0.02), and age >65 years (p = 0.05). Among patients with wound colonization by MRSA, 37.50% had a history of prior antibiotic use, 75% had two or more comorbidities, 25% had cancer or diabetes, 50% had cardiovascular disease, and 50% died. Conclusions Wounds can be the source of Staphylococcus spp. infection, and high proportions of wounds are colonized by S. aureus and MRSA. Nasal

  11. Prevalence and factors associated with wound colonization by Staphylococcus spp. and Staphylococcus aureus in hospitalized patients in inland northeastern Brazil: a cross-sectional study.

    PubMed

    Almeida, Gilmara Celli Maia; dos Santos, Marquiony Marques; Lima, Nara Grazieli Martins; Cidral, Thiago André; Melo, Maria Celeste Nunes; Lima, Kenio Costa

    2014-06-13

    Infections by Staphylococcus spp. are often associated with wounds, especially in hospitalized patients. Wounds may be the source of bacteria causing cross-contamination, and are a risk factor for methicillin-resistant Staphylococcus aureus (MRSA) infection. The aim of this study was to investigate the prevalence of wound colonization by Staphylococcus spp., especially S. aureus and MRSA, in hospitalized patients, and to identify the factors associated with such colonization. This cross-sectional study enrolled patients with wounds who were hospitalized in a remote and underdeveloped inland region of northeastern Brazil with extreme poverty. Samples were collected using sterile swabs with 0.85% saline solution, and coagulase-negative Staphylococcus spp., S. aureus, and MRSA were identified using standard laboratory procedures. Data regarding the sociodemographic characteristics, antibiotic use, and comorbidities of the patients were collected using the medical records and a questionnaire. A total of 125 wounds were analyzed. The patients had a mean age of 63.88 years and a mean 3.84 years of school education. Eighty-one wounds (64.80%) were colonized by Staphylococcus spp. Twenty-five wounds (20%) were colonized by S. aureus, 32% of which were colonized by MRSA. Wound colonization by Staphylococcus spp. was associated with pneumonia or other respiratory disease (p = 0.03). Wound colonization by S. aureus was associated with nasal colonization by S. aureus (p < 0.001), fewer days of prior antibiotic use (p = 0.04), admission to a medical ward (p = 0.02), and age >65 years (p = 0.05). Among patients with wound colonization by MRSA, 37.50% had a history of prior antibiotic use, 75% had two or more comorbidities, 25% had cancer or diabetes, 50% had cardiovascular disease, and 50% died. Wounds can be the source of Staphylococcus spp. infection, and high proportions of wounds are colonized by S. aureus and MRSA. Nasal colonization by S. aureus may be a source for wound

  12. Frequency of methicillin-resistant Staphylococcus aureus nasal colonization among patients suffering from methicillin resistant Staphylococcus aureus bacteraemia

    PubMed Central

    Aslam, Nadia; Izhar, Mateen; Mehdi, Naima

    2013-01-01

    Objective: To determine rate of nasal colonization in Patients suffering from bacteraemia caused by methicillin resistant Staphylococcus aureus. Methods: This descriptive cross sectional study was carried out in a tertiary ca re, University Teaching Hospital (Shaikh Zayed Hospital, Lahore) from October 2010 to August 2011. Nasal swabs were taken from patients suffering from MRSA bacteraemia and were plated on mannitol salt agar plates to isolate Staphylococcus aureus (S. aureus) which were then tested for oxacillin susceptibility. Results: Nasal colonization was present in 52.5% of patients suffering from MRSA bacteraemia. Conclusion: Nasal colonization rates with MRSA were high among patients suffering from MRSA bacteraemia especially in those undergoing dialysis or surgical procedures. Therefore, screening and nasal decolonization should be practiced in hospitals. PMID:24550968

  13. Concurrent infectious mononucleosis and community-associated methicillin-resistant Staphylococcus aureus bacteremia.

    PubMed

    Wang, Li Jun; Du, Xiao Qin; Nyirimigabo, Eric; Shou, Song Tao

    2014-04-01

    It is rare to see a concurrent infection with infectious mononucleosis and community-associated methicillin-resistant Staphylococcus aureus in Tianjin, China. Until now, there is still no any single recorded case of concurrent infectious mononucleosis and community-associated methicillin-resistant Staphylococcus aureus bacteremia.

  14. The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers.

    PubMed

    Nazarko, Taras Y; Polupanov, Andriy S; Manjithaya, Ravi R; Subramani, Suresh; Sibirny, Andriy A

    2007-01-01

    Sterol glucosyltransferase, Ugt51/Atg26, is essential for both micropexophagy and macropexophagy of methanol-induced peroxisomes in Pichia pastoris. However, the role of this protein in pexophagy in other yeast remained unclear. We show that oleate- and amine-induced peroxisomes in Yarrowia lipolytica are degraded by Atg26-independent macropexophagy. Surprisingly, Atg26 was also not essential for macropexophagy of oleate- and amine-induced peroxisomes in P. pastoris, suggesting that the function of sterol glucoside (SG) in pexophagy is both species and peroxisome inducer specific. However, the rates of degradation of oleate- and amine-induced peroxisomes in P. pastoris were reduced in the absence of SG, indicating that P. pastoris specifically uses sterol conversion by Atg26 to enhance selective degradation of peroxisomes. However, methanol-induced peroxisomes apparently have lost the redundant ability to be degraded without SG. We also show that the P. pastoris Vac8 armadillo repeat protein is not essential for macropexophagy of methanol-, oleate-, or amine-induced peroxisomes, which makes PpVac8 the first known protein required for the micropexophagy, but not for the macropexophagy, machinery. The uniqueness of Atg26 and Vac8 functions under different pexophagy conditions demonstrates that not only pexophagy inducers, such as glucose or ethanol, but also the inducers of peroxisomes, such as methanol, oleate, or primary amines, determine the requirements for subsequent pexophagy in yeast.

  15. Oxidative phosphorylation in Debaryomyces hansenii: physiological uncoupling at different growth phases.

    PubMed

    Cabrera-Orefice, Alfredo; Guerrero-Castillo, Sergio; Díaz-Ruíz, Rodrigo; Uribe-Carvajal, Salvador

    2014-07-01

    Physiological uncoupling of mitochondrial oxidative phosphorylation (OxPhos) was studied in Debaryomyces hansenii. In other species, such as Yarrowia lipolytica and Saccharomyces cerevisiae, OxPhos can be uncoupled through differential expression of branched respiratory chain enzymes or by opening of a mitochondrial unspecific channel (ScMUC), respectively. However D. hansenii mitochondria, which contain both a branched respiratory chain and a mitochondrial unspecific channel (DhMUC), selectively uncouple complex I-dependent rate of oxygen consumption in the stationary growth phase. The uncoupled complex I-dependent respiration was only 20% of the original activity. Inhibition was not due to inactivation of complex I, lack of protein expression or to differential expression of alternative oxidoreductases. Furthermore, all other respiratory chain activities were normal. Decrease of complex I-dependent respiration was due to NAD(+) loss from the matrix, probably through an open of DhMUC. When NAD(+) was added back, coupled complex I-activity was recovered. NAD(+) re-uptake was independent of DhMUC opening and seemed to be catalyzed by a NAD(+)-specific transporter, which was sensitive to bathophenanthroline, bromocresol purple or pyridoxal-5'-phosphate as described for S. cerevisiae mitochondrial NAD(+) transporters. Loss of NAD(+) from the matrix through an open MUC is proposed as an additional mechanism to uncouple OxPhos. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. "Bligh and Dyer" and Folch Methods for Solid-Liquid-Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents.

    PubMed

    Breil, Cassandra; Abert Vian, Maryline; Zemb, Thomas; Kunz, Werner; Chemat, Farid

    2017-03-27

    Bligh and Dyer (B & D) or Folch procedures for the extraction and separation of lipids from microorganisms and biological tissues using chloroform/methanol/water have been used tens of thousands of times and are "gold standards" for the analysis of extracted lipids. Based on the Conductor-like Screening MOdel for realistic Solvatation (COSMO-RS), we select ethanol and ethyl acetate as being potentially suitable for the substitution of methanol and chloroform. We confirm this by performing solid-liquid extraction of yeast ( Yarrowia lipolytica IFP29 ) and subsequent liquid-liquid partition-the two steps of routine extraction. For this purpose, we consider similar points in the ternary phase diagrams of water/methanol/chloroform and water/ethanol/ethyl acetate, both in the monophasic mixtures and in the liquid-liquid miscibility gap. Based on high performance thin-layer chromatography (HPTLC) to obtain the distribution of lipids classes, and gas chromatography coupled with a flame ionisation detector (GC/FID) to obtain fatty acid profiles, this greener solvents pair is found to be almost as effective as the classic methanol-chloroform couple in terms of efficiency and selectivity of lipids and non-lipid material. Moreover, using these bio-sourced solvents as an alternative system is shown to be as effective as the classical system in terms of the yield of lipids extracted from microorganism tissues, independently of their apparent hydrophilicity.

  17. “Bligh and Dyer” and Folch Methods for Solid–Liquid–Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents

    PubMed Central

    Breil, Cassandra; Abert Vian, Maryline; Zemb, Thomas; Kunz, Werner; Chemat, Farid

    2017-01-01

    Bligh and Dyer (B & D) or Folch procedures for the extraction and separation of lipids from microorganisms and biological tissues using chloroform/methanol/water have been used tens of thousands of times and are “gold standards” for the analysis of extracted lipids. Based on the Conductor-like Screening MOdel for realistic Solvatation (COSMO-RS), we select ethanol and ethyl acetate as being potentially suitable for the substitution of methanol and chloroform. We confirm this by performing solid–liquid extraction of yeast (Yarrowia lipolytica IFP29) and subsequent liquid–liquid partition—the two steps of routine extraction. For this purpose, we consider similar points in the ternary phase diagrams of water/methanol/chloroform and water/ethanol/ethyl acetate, both in the monophasic mixtures and in the liquid–liquid miscibility gap. Based on high performance thin-layer chromatography (HPTLC) to obtain the distribution of lipids classes, and gas chromatography coupled with a flame ionisation detector (GC/FID) to obtain fatty acid profiles, this greener solvents pair is found to be almost as effective as the classic methanol–chloroform couple in terms of efficiency and selectivity of lipids and non-lipid material. Moreover, using these bio-sourced solvents as an alternative system is shown to be as effective as the classical system in terms of the yield of lipids extracted from microorganism tissues, independently of their apparent hydrophilicity. PMID:28346372

  18. The secretory pathway: exploring yeast diversity.

    PubMed

    Delic, Marizela; Valli, Minoska; Graf, Alexandra B; Pfeffer, Martin; Mattanovich, Diethard; Gasser, Brigitte

    2013-11-01

    Protein secretion is an essential process for living organisms. In eukaryotes, this encompasses numerous steps mediated by several hundred cellular proteins. The core functions of translocation through the endoplasmic reticulum membrane, primary glycosylation, folding and quality control, and vesicle-mediated secretion are similar from yeasts to higher eukaryotes. However, recent research has revealed significant functional differences between yeasts and mammalian cells, and even among diverse yeast species. This review provides a current overview of the canonical protein secretion pathway in the model yeast Saccharomyces cerevisiae, highlighting differences to mammalian cells as well as currently unresolved questions, and provides a genomic comparison of the S. cerevisiae pathway to seven other yeast species where secretion has been investigated due to their attraction as protein production platforms, or for their relevance as pathogens. The analysis of Candida albicans, Candida glabrata, Kluyveromyces lactis, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, and Schizosaccharomyces pombe reveals that many - but not all - secretion steps are more redundant in S. cerevisiae due to duplicated genes, while some processes are even absent in this model yeast. Recent research obviates that even where homologous genes are present, small differences in protein sequence and/or differences in the regulation of gene expression may lead to quite different protein secretion phenotypes. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. 13C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for Overproduction of Fatty Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Amit; Ando, David; Gin, Jennifer

    Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here, we used flux-based modeling approaches to improve yields of fatty acids in Saccharomyces cerevisiae. We combined 13C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Yarrowia lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for downregulation in terms of acetyl-CoA consumption. Thesemore » genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg/L of free fatty acids. With the addition of ATP citrate lyase and downregulation of malate synthase, the engineered strain produced 26% more free fatty acids. Further increases in free fatty acid production of 33% were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by ~70%.« less

  20. 13C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for Overproduction of Fatty Acids

    DOE PAGES

    Ghosh, Amit; Ando, David; Gin, Jennifer; ...

    2016-10-05

    Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here, we used flux-based modeling approaches to improve yields of fatty acids in Saccharomyces cerevisiae. We combined 13C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Yarrowia lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for downregulation in terms of acetyl-CoA consumption. Thesemore » genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg/L of free fatty acids. With the addition of ATP citrate lyase and downregulation of malate synthase, the engineered strain produced 26% more free fatty acids. Further increases in free fatty acid production of 33% were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by ~70%.« less

  1. Safety assessment of EPA-rich triglyceride oil produced from yeast: genotoxicity and 28-day oral toxicity in rats.

    PubMed

    Belcher, Leigh A; MacKenzie, Susan A; Donner, Maria; Sykes, Greg P; Frame, Steven R; Gillies, Peter J

    2011-02-01

    The 28-day repeat-dose oral and genetic toxicity of eicosapentaenoic acid triglyceride oil (EPA oil) produced from genetically modified Yarrowia lipolytica yeast were assessed. Groups of rats received 0 (olive oil), 940, 1880, or 2820 mg EPA oil/kg/day, or fish oil (sardine/anchovy source) by oral gavage. Lower total serum cholesterol was seen in all EPA and fish oil groups. Liver weights were increased in the medium and high-dose EPA (male only), and fish oil groups but were considered non-adverse physiologically adaptive responses. Increased thyroid follicular cell hypertrophy was observed in male high-dose EPA and fish oil groups, and was considered to be an adaptive response to high levels of polyunsaturated fatty acids. No adverse test substance-related effects were observed on body weight, nutritional, or other clinical or anatomic pathology parameters. The oil was not mutagenic in the in vitro Ames or mouse lymphoma assay, and was not clastogenic in the in vivo mouse micronucleus test. In conclusion, exposure for 28 days to EPA oil derived from yeast did not produce adverse effects at doses up to 2820 mg/kg/day and was not genotoxic. The safety profile of the EPA oil in these tests was comparable to a commercial fish oil. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Application of metabolic controls for the maximization of lipid production in semicontinuous fermentation.

    PubMed

    Xu, Jingyang; Liu, Nian; Qiao, Kangjian; Vogg, Sebastian; Stephanopoulos, Gregory

    2017-07-03

    Acetic acid can be generated through syngas fermentation, lignocellulosic biomass degradation, and organic waste anaerobic digestion. Microbial conversion of acetate into triacylglycerols for biofuel production has many advantages, including low-cost or even negative-cost feedstock and environmental benefits. The main issue stems from the dilute nature of acetate produced in such systems, which is costly to be processed on an industrial scale. To tackle this problem, we established an efficient bioprocess for converting dilute acetate into lipids, using the oleaginous yeast Yarrowia lipolytica in a semicontinuous system. The implemented design used low-strength acetic acid in both salt and acid forms as carbon substrate and a cross-filtration module for cell recycling. Feed controls for acetic acid and nitrogen based on metabolic models and online measurement of the respiratory quotient were used. The optimized process was able to sustain high-density cell culture using acetic acid of only 3% and achieved a lipid titer, yield, and productivity of 115 g/L, 0.16 g/g, and 0.8 g⋅L -1 ⋅h -1 , respectively. No carbon substrate was detected in the effluent stream, indicating complete utilization of acetate. These results represent a more than twofold increase in lipid production metrics compared with the current best-performing results using concentrated acetic acid as carbon feed.

  3. Assessment of Antimicrobial and Antioxidant Activities of Nepeta trachonitica: Analysis of Its Phenolic Compounds Using HPLC-MS/MS

    PubMed Central

    Köksal, Ekrem; Tohma, Hatice; Kılıç, Ömer; Alan, Yusuf; Aras, Abdülmelik; Gülçin, İlhami; Bursal, Ercan

    2017-01-01

    Continuing our work on the sources of natural bioactive compounds, we evaluated the antimicrobial and antioxidant activities of Nepeta trachonitica as well as its major phenolic content using the high-performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS) technique. For antioxidant activity, ferric reducing antioxidant power (FRAP) and cupric ion reducing antioxidant capacity (CUPRAC) methods were performed to measure the reducing power and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay was employed to evaluate the radical scavenging activity of the sample. For antimicrobial activity, three Gram-positive and four Gram-negative microbial species as well as three fungi species were tested. N. trachonitica appeared to have reasonable antioxidant activity and decent antimicrobial activity as indicated by the inhibition of the organisms’ growth. The most susceptible species were Bacillus subtilis ATCC 6633 and Escherichia coli ATCC 11229 among the organisms tested. Ethanol extract of the plant has the highest effect on Saccharomyces cerevisiae but no effect on Yarrowia lipolytica. The HPLC-MS/MS analysis showed that at least 11 major phenolic compounds of N. trachonitica exist, the major ones being rosmarinic acid, chlorogenic acid and quinic acid. The obtained results suggest that N. trachonitica could be a promising source for food and nutraceutical industries because of its antimicrobial and antioxidant properties and phenolic compounds. PMID:28505129

  4. A surprisingly large RNase P RNA in Candida glabrata

    PubMed Central

    KACHOURI, RYM; STRIBINSKIS, VILIUS; ZHU, YANGLONG; RAMOS, KENNETH S.; WESTHOF, ERIC; LI, YONG

    2005-01-01

    We have found an extremely large ribonuclease P (RNase P) RNA (RPR1) in the human pathogen Candida glabrata and verified that this molecule is expressed and present in the active enzyme complex of this hemiascomycete yeast. A structural alignment of the C. glabrata sequence with 36 other hemiascomycete RNase P RNAs (abbreviated as P RNAs) allows us to characterize the types of insertions. In addition, 15 P RNA sequences were newly characterized by searching in the recently sequenced genomes Candida albicans, C. glabrata, Debaryomyces hansenii, Eremothecium gossypii, Kluyveromyces lactis, Kluyveromyces waltii, Naumovia castellii, Saccharomyces kudriavzevii, Saccharomyces mikatae, and Yarrowia lipolytica; and by PCR amplification for other Candida species (Candida guilliermondii, Candida krusei, Candida parapsilosis, Candida stellatoidea, and Candida tropicalis). The phylogenetic comparative analysis identifies a hemiascomycete secondary structure consensus that presents a conserved core in all species with variable insertions or deletions. The most significant variability is found in C. glabrata P RNA in which three insertions exceeding in total 700 nt are present in the Specificity domain. This P RNA is more than twice the length of any other homologous P RNAs known in the three domains of life and is eight times the size of the smallest. RNase P RNA, therefore, represents one of the most diversified noncoding RNAs in terms of size variation and structural diversity. PMID:15987816

  5. Changes in volatile profile of soybean residue (okara) upon solid-state fermentation by yeasts.

    PubMed

    Vong, Weng Chan; Liu, Shao-Quan

    2017-01-01

    Soybean residue (okara), a by-product of soymilk, is produced in large volumes by the soy food industry and is often discarded due to its undesirable flavour. As it contains a considerable amount of protein and fats, biotransformation of okara to improve its flavour presents an opportunity for alternative utilisation. This paper evaluated 10 yeasts in the solid-state fermentation of okara based on their volatile profiles as analysed with HS-SPME GC-MS/FID. Four 'dairy yeasts' (Geotrichum candidum, Yarrowia lipolytica, Debaryomyces hansenii and Kluyveromyces lactis) and six 'wine yeasts' (Saccharomyces cerevisiae, Lachancea thermotolerans, Metschnikowia pulcherrima, Pichia kluyveri, Torulaspora delbrueckii, and Williopsis saturnus) were studied. The main off-odourants in okara, hexanal and trans-2-hexenal, significantly decreased after fermentation due to their bioconversion into methyl ketones and/or esters. The okara fermented by dairy yeasts contained greater proportions of methyl ketones, while that by wine yeasts contained more ethyl and acetyl esters. Notably, the okara fermented by W. saturnus contained 13 esters and the total GC-FID peak area of esters was about 380 times that in fresh okara, leading to a perceptible fruity note. Okara can be exploited as an inexpensive substrate for bioflavour extraction and/or a more pleasant food ingredient via yeast fermentation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. The RNA polymerase III-dependent family of genes in hemiascomycetes: comparative RNomics, decoding strategies, transcription and evolutionary implications

    PubMed Central

    Marck, Christian; Kachouri-Lafond, Rym; Lafontaine, Ingrid; Westhof, Eric; Dujon, Bernard; Grosjean, Henri

    2006-01-01

    We present the first comprehensive analysis of RNA polymerase III (Pol III) transcribed genes in ten yeast genomes. This set includes all tRNA genes (tDNA) and genes coding for SNR6 (U6), SNR52, SCR1 and RPR1 RNA in the nine hemiascomycetes Saccharomyces cerevisiae, Saccharomyces castellii, Candida glabrata, Kluyveromyces waltii, Kluyveromyces lactis, Eremothecium gossypii, Debaryomyces hansenii, Candida albicans, Yarrowia lipolytica and the archiascomycete Schizosaccharomyces pombe. We systematically analysed sequence specificities of tRNA genes, polymorphism, variability of introns, gene redundancy and gene clustering. Analysis of decoding strategies showed that yeasts close to S.cerevisiae use bacterial decoding rules to read the Leu CUN and Arg CGN codons, in contrast to all other known Eukaryotes. In D.hansenii and C.albicans, we identified a novel tDNA-Leu (AAG), reading the Leu CUU/CUC/CUA codons with an unusual G at position 32. A systematic ‘p-distance tree’ using the 60 variable positions of the tRNA molecule revealed that most tDNAs cluster into amino acid-specific sub-trees, suggesting that, within hemiascomycetes, orthologous tDNAs are more closely related than paralogs. We finally determined the bipartite A- and B-box sequences recognized by TFIIIC. These minimal sequences are nearly conserved throughout hemiascomycetes and were satisfactorily retrieved at appropriate locations in other Pol III genes. PMID:16600899

  7. Detecting Staphylococcus aureus in milk from dairy cows using sniffer dogs.

    PubMed

    Fischer-Tenhagen, C; Theby, V; Krömker, V; Heuwieser, W

    2018-05-01

    Fast and accurate identification of disease-causing pathogens is essential for specific antimicrobial therapy in human and veterinary medicine. In these experiments, dogs were trained to identify Staphylococcus aureus and differentiate it from other common mastitis-causing pathogens by smell. Headspaces from agar plates, inoculated raw milk samples, or field samples collected from cows with Staphylococcus aureus and other mastitis-causing pathogens were used for training and testing. The ability to learn the specific odor of Staphylococcus aureus in milk depended on the concentration of the pathogens in the training samples. Sensitivity and specificity for identifying Staphylococcus aureus were 91.3 and 97.9%, respectively, for pathogens grown on agar plates; 83.8 and 98.0% for pathogens inoculated in raw milk; and 59.0 and 93.2% for milk samples from mastitic cows. The results of these experiments underline the potential of odor detection as a diagnostic tool for pathogen diagnosis. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Staphylococcus-Infected Tunneled Dialysis Catheters: Is Over-the-Wire Exchange an Appropriate Management Option?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langer, Jessica M.; Cohen, Raphael M.; Berns, Jeffrey S.

    Purpose: Over-the-wire exchange of tunneled dialysis catheters is the standard of care per K/DOQI guidelines for treating catheter-related bacteremia. However, Gram-positive bacteremia, specifically with staphylococcus species, may compromise over-the-wire exchange due to certain biological properties. This study addressed the effectiveness of over-the-wire exchange of staphylococcus-infected tunneled dialysis catheters compared with non-staphylococcus-infected tunneled dialysis catheters. Methods: Patients who received over-the-wire exchange of their tunneled dialysis catheter due to documented or suspected bacteremia were identified from a QA database. Study patients (n = 61) had positive cultures for Staphylococcus aureus, Staphylococcus epidermidis, or coagulase-negative staphylococcus not otherwise specified. Control patients (n =more » 35) received over-the-wire exchange of their tunneled dialysis catheter due to infection with any organism besides staphylococcus. Overall catheter survival and catheter survival among staphylococcal species were assessed. Results: There was no difference in tunneled dialysis catheter survival between study and control groups (P = 0.46). Median survival time was 96 days for study catheters and 51 days for controls; survival curves were closely superimposed. There also was no difference among the three staphylococcal groups in terms of catheter survival (P = 0.31). The median time until catheter removal was 143 days for SE, 67 days for CNS, and 88 days for SA-infected catheters. Conclusions: There is no significant difference in tunneled dialysis catheter survival between over-the-wire exchange of staphylococcus-infected tunneled dialysis catheters and those infected with other organisms.« less

  9. Growth of Staphylococcus and Salmonella on Frankfurters With and Without Sodium Nitrite

    PubMed Central

    Bayne, Henry G.; Michener, H. David

    1975-01-01

    Conventional and nitrite-free frankfurters in loosely wrapped packages were compared as to their ability to support growth of Salmonella, Staphylococcus, and their naturally occurring spoilage flora at 7 C (simulating refrigerated storage) and 20 C (simulating possible temperature abuse). At 7 C Salmonella did not grow in either type of frankfurter; Staphylococcus and the natural spoilage flora sometimes grew more rapidly in the absence of nitrite, but the difference was not significant. At 20 C growth of Salmonella, Staphylococcus, and of the spoilage flora was, at most, only slightly faster on nitrite-free frankfurters. Salmonella was not suppressed in broth culture experiments at the pH and nitrite content found in frankfurters. Although either type of frankfurter can become hazardous due to growth of Salmonella or Staphylococcus, no unusual or additional hazard resulted from the omission of nitrite from frankfurters. PMID:952

  10. [Change in drug resistance of Staphylococcus aureus].

    PubMed

    Lin, Yan; Liu, Yan; Luo, Yan-Ping; Liu, Chang-Ting

    2013-11-01

    To analyze the change in drug resistance of Staphylococcus aureus (SAU) in the PLA general hospital from January 2008 to December 2012, and to provide solid evidence to support the rational use of antibiotics for clinical applications. The SAU strains isolated from clinical samples in the hospital were collected and subjected to the Kirby-Bauer disk diffusion test. The results were assessed based on the 2002 American National Committee for Clinical Laboratory Standards (NCCLS) guidelines. SAU strains were mainly isolated from sputum, urine, blood and wound excreta and distributed in penology, neurology wards, orthopedics and surgery ICU wards. Except for glycopeptide drugs, methicillin-resistant Staphylococcus aureus (MRSA) had a higher drug resistance rate than those of the other drugs and had significantly more resistance than methicillin-sensitive Staphylococcus aureus (MSSA) (P < 0.05). In the dynamic observation of drug resistance, we discovered a gradual increase in drug resistance to fourteen test drugs during the last five years. Drug resistance rate of SAU stayed at a higher level over the last five years; moreover, the detection ratio of MRSA keeps rising year by year. It is crucial for physicians to use antibiotics rationally and monitor the change in drug resistance in a dynamic way.

  11. Silver nanoparticles toxicity against airborne strains of Staphylococcus spp.

    PubMed

    Wolny-Koładka, Katarzyna A; Malina, Dagmara K

    2017-11-10

    The aim of this study was to explore the toxicity of silver nanoparticles (AgNPs) synthesized by chemical reduction method assessment with regard to airborne strains of Staphylococcus spp. The first step of the experiment was the preparation of silver nanoparticle suspension. The suspension was obtained by a fast and simple chemical method involving the reduction of silver ions through a reducing factor in the presence of the suitable stabilizer required to prevent the aggregation. In the second stage, varied instrumental techniques were used for the analysis and characterization of the obtained nanostructures. Third, the bacteria of the Staphylococcus genus were isolated from the air under stable conditions with 47 sports and recreational horses, relatively. Next, isolated strains were identified using biochemical and spectrophotometric methods. The final step was the evaluation of the Staphylococcus genus sensitivity to nanosilver using the disk diffusion test. It has been proven that prepared silver nanoparticles exhibit strong antibacterial properties. The minimum inhibitory concentration for tested isolates was 30 μg/mL. It has been found that the sensitivity of Staphylococcus spp. isolated from six identified species differs considerably. The size distribution of bacterial growth inhibition zones indicates that resistance to various nanosilver concentrations is an individual strain feature, and has no connection with belonging to a specific species.

  12. Molecular mechanisms of mucocutaneous immunity against Candida and Staphylococcus species.

    PubMed

    Maródi, László; Cypowyj, Sophie; Tóth, Beáta; Chernyshova, Liudmyla; Puel, Anne; Casanova, Jean-Laurent

    2012-11-01

    Signal transducer and activator of transcription (STAT) proteins are key components of the innate and adaptive immune responses to pathogenic microorganisms. Recent research on primary immunodeficiency disorders and the identification of patients carrying germline mutations in STAT1, STAT3, and STAT5B have highlighted the role of human STATs in host defense against various viruses, bacteria, and fungi. Mutations in STAT1 and STAT3 disrupt various cytokine pathways that control mucocutaneous immunity against Candida species, especially Candida albicans, and Staphylococcus species, especially Staphylococcus aureus. Here we consider inborn errors of immunity arising from mutations in either STAT1 or STAT3 that affect mucocutaneous immunity to Candida and Staphylococcus species. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  13. Species diversity and molecular analysis of Staphylococcus in confectioneries of a developing country, Iran.

    PubMed

    Hoveida, Laleh; Ataei, Behrooz; Amirmozafari, Nour; Noormohammadi, Zahra

    2018-06-01

    Confectionery is one of the potential sources of contamination and transmission of gastrointestinal infections to humans. Staphylococcus species, and particularly the coagulase-positive ones, have the remarkable capability to produce high amounts of enterotoxin in food. In the present study, the frequency and diversity of Staphylococcus in confectioneries in Iran were assessed by using a combination of conventional and molecular methods. A total of 55 confection samples were collected from 30 confectioneries of Isfahan. They were analyzed for the presence of Staphylococcus using standard protocols for isolation and characterization of the isolates. The conventional tests were used for primary identification and the sequence analysis of 16S rRNA was used for the species identification. A total of 47 out of 55 samples were gram-positive cocci (85.45%). They belonged to 39 Staphylococcus spp., 7 Macrococcus spp., and one Micrococcus spp. The most prevalent 11 various Staphylococcus species were S. aureus 30.8 %, S. warneri 20.5% and S. succinus 17.9. Identification and characterization of Staphylococcus species can be important for epidemiological investigations and assessment of virulence factors such as enterotoxin production and development of specific management practices to prevent staphylococcal food poisoning.

  14. Multiplex PCR assay to identify methicillin-resistant Staphylococcus haemolyticus.

    PubMed

    Schuenck, Ricardo P; Pereira, Eliezer M; Iorio, Natalia L P; Dos Santos, Kátia R N

    2008-04-01

    Staphylococcus haemolyticus is the most frequently coagulase-negative Staphylococcus species associated with antimicrobial resistance isolated from nosocomial infections. We developed an accurate and simple multiplex PCR assay to identify methicillin-resistant S. haemolyticus (MRSH) isolates. We designed species-specific primers of the mvaA gene that encodes a 3-hydroxy-3-methylglutaryl coenzyme A involved in the mevalonate pathway of the microorganism. Simultaneously, mecA gene primers of methicillin resistance were also used. The PCR assay was established using 16 strains of different reference Staphylococcus species and validated with a collection of 147 clinical staphylococcal isolates that were also phenotypically characterized. Reliable results for the detection of MRSH isolates were obtained for 100% of the strains evaluated, showing that this PCR assay can be used for the routine microbiology laboratories. This is the first report using species-specific multiplex PCR to detect a single segment of S. haemolyticus associated with a segment of mecA gene.

  15. Staphylococcus petrasii subsp. pragensis subsp. nov., occurring in human clinical material.

    PubMed

    Švec, Pavel; De Bel, Annelies; Sedláček, Ivo; Petráš, Petr; Gelbíčová, Tereza; Černohlávková, Jitka; Mašlanˇová, Ivana; Cnockaert, Margo; Varbanovová, Ivana; Echahidi, Fedoua; Vandamme, Peter; Pantuček, Roman

    2015-07-01

    Seven coagulase-negative, oxidase-negative and novobiocin-susceptible staphylococci assigned tentatively as Staphylococcus petrasii were investigated in this study in order to elucidate their taxonomic position. All strains were initially shown to form a genetically homogeneous group separated from remaining species of the genus Staphylococcus by using a repetitive sequence-based PCR fingerprinting with the (GTG)5 primer. Phylogenetic analysis based on 16S rRNA gene, hsp60, rpoB, dnaJ, gap and tuf sequences showed that the group is closely related to Staphylococcus petrasii but separated from the three hitherto known subspecies, S. petrasii subsp. petrasii, S. petrasii subsp. croceilyticus and S. petrasii subsp. jettensis. Further investigation using automated ribotyping, MALDI-TOF mass spectrometry, fatty acid methyl ester analysis, DNA-DNA hybridization and extensive biotyping confirmed that the analysed group represents a novel subspecies within S. petrasii, for which the name Staphylococcus petrasii subsp. pragensis subsp. nov. is proposed. The type strain is NRL/St 12/356(T) ( = CCM 8529(T) = LMG 28327(T)).

  16. Staphylococcus simulans Recombinant Lysostaphin: Production, Purification, and Determination of Antistaphylococcal Activity.

    PubMed

    Boksha, I S; Lavrova, N V; Grishin, A V; Demidenko, A V; Lyashchuk, A M; Galushkina, Z M; Ovchinnikov, R S; Umyarov, A M; Avetisian, L R; Chernukha, M Iu; Shaginian, I A; Lunin, V G; Karyagina, A S

    2016-05-01

    Staphylococcus simulans lysostaphin is an endopeptidase lysing staphylococcus cell walls by cleaving pentaglycine cross-bridges in their peptidoglycan. A synthetic gene encoding S. simulans lysostaphin was cloned in Escherichia coli cells, and producer strains were designed. The level of produced biologically active lysostaphin comprised 6-30% of total E. coli cell protein (depending on E. coli M15 or BL21 producer) under batch cultivation conditions. New methods were developed for purification of lysostaphin without affinity domains and for testing its enzymatic activity. As judged by PAGE, the purified recombinant lysostaphin is of >97% purity. The produced lysostaphin lysed cells of Staphylococcus aureus and Staphylococcus haemolyticus clinical isolates. In vitro activity and general biochemical properties of purified recombinant lysostaphin produced by M15 or BL21 E. coli strains were identical to those of recombinant lysostaphin supplied by Sigma-Aldrich (USA) and used as reference in other known studies. The prepared recombinant lysostaphin represents a potential product for development of enzymatic preparation for medicine and veterinary due to the simple purification scheme enabling production of the enzyme of high purity and antistaphylococcal activity.

  17. Antimicrobial resistance of Staphylococcus species isolated from Lebanese dairy-based products.

    PubMed

    Zouhairi, O; Saleh, I; Alwan, N; Toufeili, I; Barbour, E; Harakeh, S

    2012-12-04

    The study evaluated the antimicrobial resistance of molecularly characterized strains of Staphylococcus aureus and S. saprophyticus isolated from 3 Lebanese dairy-based food products that are sometimes consumed raw: kishk, shanklish and baladi cheese. Suspected Staphylococcus isolates were identified initially using standard biochemical tests, then strains that were confirmed by polymerase chain reaction (29 S. aureus and 17 S. saprophyticus) were evaluated for their susceptibility to different antimicrobials. The highest levels of contamination with staphylococci were in baladi cheese. Resistance rates ranged from 67% to gentamicin to 94% to oxacillin and clindamycin. The results suggest that these locally made dairy-based foods may act as vehicles for the transmission of antimicrobial-resistant Staphylococcus spp.

  18. Novel efficient promoter of the mitochondrial porin, voltage-dependent anion channel (VDAC), in the genome of the Yarrowia lipolytica yeast.

    PubMed

    Kulanbaewa, F F; Sekova, V Yu; Isakova, E P; Deryabina, Y I; Nikolaev, A V

    2016-09-01

    This article presents the characteristics of the highly inducible promoter of the gene encoding the mitochondrial porin, the voltage-dependent anion channel (VDAC). This promoter is recommended for use in new genetic constructs both in basic research for assessing the adaptive strategy of lower eukaryotes under adverse conditions and in designing new highly competitive transformants producing economically important compounds (proteins, lipids, and organic acids) on its basis.

  19. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi

    DOE PAGES

    Xu, Qi; Knoshaug, Eric P.; Wang, Wei; ...

    2017-07-24

    Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose twomore » prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for

  20. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qi; Knoshaug, Eric P.; Wang, Wei

    Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose twomore » prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for

  1. Chemical signaling and insect attraction is a conserved trait in yeasts.

    PubMed

    Becher, Paul G; Hagman, Arne; Verschut, Vasiliki; Chakraborty, Amrita; Rozpędowska, Elżbieta; Lebreton, Sébastien; Bengtsson, Marie; Flick, Gerhard; Witzgall, Peter; Piškur, Jure

    2018-03-01

    Yeast volatiles attract insects, which apparently is of mutual benefit, for both yeasts and insects. However, it is unknown whether biosynthesis of metabolites that attract insects is a basic and general trait, or if it is specific for yeasts that live in close association with insects. Our goal was to study chemical insect attractants produced by yeasts that span more than 250 million years of evolutionary history and vastly differ in their metabolism and lifestyle. We bioassayed attraction of the vinegar fly Drosophila melanogaster to odors of phylogenetically and ecologically distinct yeasts grown under controlled conditions. Baker's yeast Saccharomyces cerevisiae , the insect-associated species Candida californica , Pichia kluyveri and Metschnikowia andauensis , wine yeast Dekkera bruxellensis , milk yeast Kluyveromyces lactis , the vertebrate pathogens Candida albicans and Candida glabrata , and oleophilic Yarrowia lipolytica were screened for fly attraction in a wind tunnel. Yeast headspace was chemically analyzed, and co-occurrence of insect attractants in yeasts and flowering plants was investigated through a database search. In yeasts with known genomes, we investigated the occurrence of genes involved in the synthesis of key aroma compounds. Flies were attracted to all nine yeasts studied. The behavioral response to baker's yeast was independent of its growth stage. In addition to Drosophila , we tested the basal hexapod Folsomia candida (Collembola) in a Y-tube assay to the most ancient yeast, Y. lipolytica, which proved that early yeast signals also function on clades older than neopteran insects. Behavioral and chemical data and a search for selected genes of volatile metabolites underline that biosynthesis of chemical signals is found throughout the yeast clade and has been conserved during the evolution of yeast lifestyles. Literature and database reviews corroborate that yeast signals mediate mutualistic interactions between insects and yeasts

  2. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi.

    PubMed

    Xu, Qi; Knoshaug, Eric P; Wang, Wei; Alahuhta, Markus; Baker, John O; Yang, Shihui; Vander Wall, Todd; Decker, Stephen R; Himmel, Michael E; Zhang, Min; Wei, Hui

    2017-07-24

    Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose two prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for biofuel

  3. Sanitary quality, occurrence and identification of Staphylococcus sp. in food services.

    PubMed

    de Mello, Jozi Fagundes; da Rocha, Laura Braga; Lopes, Ester Souza; Frazzon, Jeverson; da Costa, Marisa

    2014-01-01

    Sanitary conditions are essential for the production of meals and control of the presence of pathogensis important to guarantee the health of customers. The aim of this study was to evaluate the sanitary quality of food services by checking the presence of thermotolerant coliforms, Staphylococcus sp. and evaluate the toxigenic potential from the latter. The analysis was performed on water, surfaces, equipment, ready-to-eat foods, hands and nasal cavity of handlers in seven food services. The water used in food services proved to be suitable for the production of meals. Most food, equipment and surfaces showed poor sanitary conditions due to the presence of thermotolerant coliforms (60.6%). Twenty-six Staphylococcus species were identified from the 121 Staphylococcus isolates tested. Staphylococci coagulase-negative species were predominant in the foods, equipment and surfaces. In food handlers and foods, the predominant species was Staphylococcus epidermidis. Twelve different genotypes were found after PCR for the classical enterotoxin genes. The seb gene (19.8%) was the most prevalent among all Staphylococcus sp. Both coagulase-positive and coagulase-negative Staphylococci showed some of the genes of the enterotoxins tested. We conclude that there are hygienic and sanitary deficiencies in the food services analyzed. Although coagulase-positive Staphylococci have not been present in foods there is a wide dispersion of enterotoxigenic coagulase-negative Staphylococci in the environment and in the foods analyzed, indicating a risk to consumer health.

  4. Sanitary quality, occurrence and identification of Staphylococcus sp. in food services

    PubMed Central

    de Mello, Jozi Fagundes; da Rocha, Laura Braga; Lopes, Ester Souza; Frazzon, Jeverson; da Costa, Marisa

    2014-01-01

    Sanitary conditions are essential for the production of meals and control of the presence of pathogensis important to guarantee the health of customers. The aim of this study was to evaluate the sanitary quality of food services by checking the presence of thermotolerant coliforms, Staphylococcus sp. and evaluate the toxigenic potential from the latter. The analysis was performed on water, surfaces, equipment, ready-to-eat foods, hands and nasal cavity of handlers in seven food services. The water used in food services proved to be suitable for the production of meals. Most food, equipment and surfaces showed poor sanitary conditions due to the presence of thermotolerant coliforms (60.6%). Twenty-six Staphylococcus species were identified from the 121 Staphylococcus isolates tested. Staphylococci coagulase-negative species were predominant in the foods, equipment and surfaces. In food handlers and foods, the predominant species was Staphylococcus epidermidis. Twelve different genotypes were found after PCR for the classical enterotoxin genes. The seb gene (19.8%) was the most prevalent among all Staphylococcus sp. Both coagulase-positive and coagulase-negative Staphylococci showed some of the genes of the enterotoxins tested. We conclude that there are hygienic and sanitary deficiencies in the food services analyzed. Although coagulase-positive Staphylococci have not been present in foods there is a wide dispersion of enterotoxigenic coagulase-negative Staphylococci in the environment and in the foods analyzed, indicating a risk to consumer health. PMID:25477940

  5. Characterization of staphylococci in urban wastewater treatment plants in Spain, with detection of methicillin resistant Staphylococcus aureus ST398.

    PubMed

    Gómez, Paula; Lozano, Carmen; Benito, Daniel; Estepa, Vanesa; Tenorio, Carmen; Zarazaga, Myriam; Torres, Carmen

    2016-05-01

    The objective of this study was to determine the prevalence of Staphylococcus in urban wastewater treatment plants (UWTP) of La Rioja (Spain), and to characterize de obtained isolates. 16 wastewater samples (8 influent, 8 effluent) of six UWTPs were seeded on mannitol-salt-agar and oxacillin-resistance-screening-agar-base for staphylococci and methicillin-resistant Staphylococcus aureus recovery. Antimicrobial susceptibility profile was determined for 16 antibiotics and the presence of 35 antimicrobial resistance genes and 14 virulence genes by PCR. S. aureus was typed by spa, agr, and multilocus-sequence-typing, and the presence of immune-evasion-genes cluster was analyzed. Staphylococcus spp. were detected in 13 of 16 tested wastewater samples (81%), although the number of CFU/mL decreased after treatment. 40 staphylococci were recovered (1-5/sample), and 8 of them were identified as S. aureus being typed as (number of strains): spa-t011/agr-II/ST398 (1), spa-t002/agr-II/ST5 (2), spa-t3262/agr-II/ST5 (1), spa-t605/agr-II/ST126 (3), and spa-t878/agr-III/ST2849 (1). S. aureus ST398 strain was methicillin-resistant and showed a multidrug resistance phenotype. Virulence genes tst, etd, sea, sec, seg, sei, sem, sen, seo, and seu, were detected among S. aureus and only ST5 strains showed genes of immune evasion cluster. Thirty-two coagulase-negative Staphylococcus of 12 different species were recovered (number of strains): Staphylococcus equorum (7), Staphylococcus vitulinus (4), Staphylococcus lentus (4), Staphylococcus sciuri (4), Staphylococcus fleurettii (2), Staphylococcus haemolyticus (2), Staphylococcus hominis (2), Staphylococcus saprophyticus (2), Staphylococcus succinus (2), Staphylococcus capitis (1), Staphylococcus cohnii (1), and Staphylococcus epidermidis (1). Five presented a multidrug resistance phenotype. The following resistance and virulence genes were found: mecA, lnu(A), vga(A), tet(K), erm(C), msr(A)/(B), mph(C), tst, and sem. We found that

  6. Survival of Staphylococcus pseudintermedius in modified Romanowsky staining solutions.

    PubMed

    Misan, Angus; Chan, Wei Yee; Trott, Darren; Hill, Peter B

    2017-08-01

    Stains that are used regularly for patient-side diagnosis to rapidly identify bacterial and fungal infections could become contaminated by common pathogens, such as Staphylococcus pseudintermedius, during slide immersion. To determine whether the inoculation of S. pseudintermedius into modified Romanowsky type stains (Quick Dip ® ) results in viable bacterial contamination and whether this is influenced by the addition of organic debris (canine hair and skin). A clinical isolate of S. pseudintermedius was inoculated into clean and organically contaminated Quick Dip ® solutions (methanol fixative, eosin, methylene blue), and positive (broth) and negative (bleach) controls. Each solution was tested for the presence of viable bacteria by counting the number of colony forming units (CFU/mL) at various time points. Solutions also were examined under high power microscopy to count the number of visible bacteria at each time point. Staphylococcus pseudintermedius was able to survive in the clean and contaminated Quick Dip ® stains for at least one hour, but by 24 h no viable bacteria remained. Survival of the bacteria was not supported in the fixative at any time point. Staphylococcus pseudintermedius remained visible under high power microscopy for up to 2 weeks in all organically contaminated solutions of the Quick Dip ® set. Staphylococcus pseudintermedius only remains viable in eosin and methylene blue for short periods of time, but the prolonged visibility of dead organisms could theoretically lead to the misdiagnosis of cytology samples. © 2017 ESVD and ACVD.

  7. Phenol-Soluble Modulin Toxins of Staphylococcus haemolyticus.

    PubMed

    Da, Fei; Joo, Hwang-Soo; Cheung, Gordon Y C; Villaruz, Amer E; Rohde, Holger; Luo, Xiaoxing; Otto, Michael

    2017-01-01

    Coagulase-negative staphylococci (CoNS) are important nosocomial pathogens and the leading cause of sepsis. The second most frequently implicated species, after Staphylococcus epidermidis , is Staphylococcus haemolyticus . However, we have a significant lack of knowledge about what causes virulence of S. haemolyticus , as virulence factors of this pathogen have remained virtually unexplored. In contrast to the aggressive pathogen Staphylococcus aureus , toxin production has traditionally not been associated with CoNS. Recent findings have suggested that phenol-soluble modulins (PSMs), amphipathic peptide toxins with broad cytolytic activity, are widespread in staphylococci, but there has been no systematic assessment of PSM production in CoNS other than S. epidermidis . Here, we identified, purified, and characterized PSMs of S. haemolyticus . We found three PSMs of the β-type, which correspond to peptides that before were described to have anti-gonococcal activity. We also detected an α-type PSM that has not previously been described. Furthermore, we confirmed that S. haemolyticus does not produce a δ-toxin, as results from genome sequencing had indicated. All four S. haemolyticus PSMs had strong pro-inflammatory activity, promoting neutrophil chemotaxis. Notably, we identified in particular the novel α-type PSM, S. haemolyticus PSMα, as a potent hemolysin and leukocidin. For the first time, our study describes toxins of this important staphylococcal pathogen with the potential to have a significant impact on virulence during blood infection and sepsis.

  8. Quality Control of Direct Molecular Diagnostics for Methicillin-Resistant Staphylococcus aureus▿

    PubMed Central

    van Belkum, Alex; Niesters, Hubert G. M.; MacKay, William G.; van Leeuwen, Willem B.

    2007-01-01

    Ten samples containing various amounts of methicillin-resistant Staphylococcus aureus (MRSA), methicillin-susceptible S. aureus, methicillin-resistant Staphylococcus epidermidis (MRSE), and combinations thereof were distributed to 51 laboratories for molecular diagnostics testing. Samples containing 102 to 103 MRSA cells were frequently reported to be negative. MRSE samples were scored as negative by all commercial tests but by only two out of three in-house tests. PMID:17581936

  9. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis.

    PubMed

    Byrd, Allyson L; Deming, Clay; Cassidy, Sara K B; Harrison, Oliver J; Ng, Weng-Ian; Conlan, Sean; Belkaid, Yasmine; Segre, Julia A; Kong, Heidi H

    2017-07-05

    The heterogeneous course, severity, and treatment responses among patients with atopic dermatitis (AD; eczema) highlight the complexity of this multifactorial disease. Prior studies have used traditional typing methods on cultivated isolates or sequenced a bacterial marker gene to study the skin microbial communities of AD patients. Shotgun metagenomic sequence analysis provides much greater resolution, elucidating multiple levels of microbial community assembly ranging from kingdom to species and strain-level diversification. We analyzed microbial temporal dynamics from a cohort of pediatric AD patients sampled throughout the disease course. Species-level investigation of AD flares showed greater Staphylococcus aureus predominance in patients with more severe disease and Staphylococcus epidermidis predominance in patients with less severe disease. At the strain level, metagenomic sequencing analyses demonstrated clonal S. aureus strains in more severe patients and heterogeneous S. epidermidis strain communities in all patients. To investigate strain-level biological effects of S. aureus , we topically colonized mice with human strains isolated from AD patients and controls. This cutaneous colonization model demonstrated S. aureus strain-specific differences in eliciting skin inflammation and immune signatures characteristic of AD patients. Specifically, S. aureus isolates from AD patients with more severe flares induced epidermal thickening and expansion of cutaneous T helper 2 (T H 2) and T H 17 cells. Integrating high-resolution sequencing, culturing, and animal models demonstrated how functional differences of staphylococcal strains may contribute to the complexity of AD disease. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. [Vancomycin-resistant Staphylococcus aureus].

    PubMed

    Rodríguez, Carlos Andrés; Vesga, Omar

    2005-12-01

    The evolution and molecular mechanisms of vancomycin resistance in Staphylococcus aureus were reviewed. Case reports and research studies on biochemestry, electron microscopy and molecular biology of Staphylococcus aureus were selected from Medline database and summarized in the following review. After almost 40 years of successful treatment of S. aureus with vancomycin, several cases of clinical failures have been reported (since 1997). S. aureus strains have appeared with intermediate susceptibility (MIC 8-16 microg/ml), as well as strains with heterogeneous resistance (global MIC < or =4 microg/ml), but with subpopulations of intermediate susceptibility. In these cases, resistance is mediated by cell wall thickening with reduced cross linking. This traps the antibiotic before it reaches its major target, the murein monomers in the cell membrane. In 2002, a total vancomycin resistant strain (MIC > or =32 microg/ml) was reported with vanA genes from Enterococcus spp. These genes induce the change of D-Ala-D-Ala terminus for D-Ala-D-lactate in the cell wall precursors, leading to loss of affinity for glycopeptides. Vancomycin resistance in S. aureus has appeared; it is mediated by cell wall modifications that trap the antibiotic before it reaches its action site. In strains with total resistance, Enterococcus spp. genes have been acquired that lead to modification of the glycopeptide target.

  11. The impact of meticillin-resistant Staphylococcus aureus on patients with advanced cancer and their family members: A qualitative study.

    PubMed

    Gleeson, Aoife; Larkin, Philip; O'Sullivan, Niamh

    2016-04-01

    Little is known about the impact of meticillin-resistant Staphylococcus aureus on patients with advanced cancer, such as its impact on the quality of life of this vulnerable group. To date, research on meticillin-resistant Staphylococcus aureus in the palliative care setting has had a quantitative focus. The purpose of this study was to explore the impact of a meticillin-resistant Staphylococcus aureus diagnosis on patients and their carers. This article reports upon a qualitative interview study of nine patients with advanced cancer and meticillin-resistant Staphylococcus aureus and nine family members (n = 18). Framework analysis was used to analyse the data. Patients and family members of patients with advanced cancer either admitted to the specialist palliative care unit or receiving palliative care in the hospital setting, who had a laboratory confirmed diagnosis of meticillin-resistant Staphylococcus aureus colonisation, were considered for inclusion in the study. Four themes were identified using framework analysis: reactions to receiving a meticillin-resistant Staphylococcus aureus diagnosis, the need for effective communication of the meticillin-resistant Staphylococcus aureus diagnosis, the enigmatic nature of meticillin-resistant Staphylococcus aureus, and lessons to guide the future care of meticillin-resistant Staphylococcus aureus patients. This article indicates that meticillin-resistant Staphylococcus aureus can have a significant impact on advanced cancer patients and their families. This impact may be underestimated, but early and careful face-to-face explanation about meticillin-resistant Staphylococcus aureus and its implications can help patients and their families to cope better with it. These findings should be considered when developing policy relating to meticillin-resistant Staphylococcus aureus management and infection control in specialist palliative care settings. © The Author(s) 2015.

  12. Phenol-Soluble Modulin Toxins of Staphylococcus haemolyticus

    PubMed Central

    Da, Fei; Joo, Hwang-Soo; Cheung, Gordon Y. C.; Villaruz, Amer E.; Rohde, Holger; Luo, Xiaoxing; Otto, Michael

    2017-01-01

    Coagulase-negative staphylococci (CoNS) are important nosocomial pathogens and the leading cause of sepsis. The second most frequently implicated species, after Staphylococcus epidermidis, is Staphylococcus haemolyticus. However, we have a significant lack of knowledge about what causes virulence of S. haemolyticus, as virulence factors of this pathogen have remained virtually unexplored. In contrast to the aggressive pathogen Staphylococcus aureus, toxin production has traditionally not been associated with CoNS. Recent findings have suggested that phenol-soluble modulins (PSMs), amphipathic peptide toxins with broad cytolytic activity, are widespread in staphylococci, but there has been no systematic assessment of PSM production in CoNS other than S. epidermidis. Here, we identified, purified, and characterized PSMs of S. haemolyticus. We found three PSMs of the β-type, which correspond to peptides that before were described to have anti-gonococcal activity. We also detected an α-type PSM that has not previously been described. Furthermore, we confirmed that S. haemolyticus does not produce a δ-toxin, as results from genome sequencing had indicated. All four S. haemolyticus PSMs had strong pro-inflammatory activity, promoting neutrophil chemotaxis. Notably, we identified in particular the novel α-type PSM, S. haemolyticus PSMα, as a potent hemolysin and leukocidin. For the first time, our study describes toxins of this important staphylococcal pathogen with the potential to have a significant impact on virulence during blood infection and sepsis. PMID:28596942

  13. A novel C-type lectin from the sea cucumber Apostichopus japonicus (AjCTL-2) with preferential binding of d-galactose.

    PubMed

    Wang, Hui; Xue, Zhuang; Liu, Zhaoqun; Wang, Weilin; Wang, Feifei; Wang, Ying; Wang, Lingling; Song, Linsheng

    2018-05-15

    C-type lectins (CTLs) are Ca 2+ dependent carbohydrate-binding proteins that share structural homology in their carbohydrate-recognition domains (CRDs). In the present study, a novel CTL was identified from sea cucumber Apostichopus japonicus (named as AjCTL-2). The deduced amino acid sequence of AjCTL-2 was homologous to CTLs from other animals with the identities ranging from 33% to 40%. It contained a canonical signal peptide at the N-terminus, a low density lipoprotein receptor class A (LDLa), a C1r/C1s/Uegf/bone morphogenetic protein 1 (CUB), and a CRD with two motifs Glu-Pro-Asn (EPN) and Trp-Asn-Asp (WND) in Ca 2+ binding site 2. The mRNA transcripts of AjCTL-2 were extensively expressed in all the tested tissues including respiratory tree, muscle, gut, coelomocyte, tube-foot, body wall and gonad, and the highest expression level of AjCTL-2 in coelomocyte was about 4.2-fold (p < 0.05) of that in body wall. The mRNA expression level of AjCTL-2 in coelomocyte increased significantly after Vibrio splendidus stimulation, and dramatically peaked at 12 h, which was 206.4-fold (p < 0.05) of that in control group. AjCTL-2 protein was mainly detected in cytoplasm of coelomocyte by immunofluorescence. The recombinant AjCTL-2 (rAjCTL-2) displayed binding activity to d-galactose independent of Ca 2+ , while the binding activity to other tested pathogen-associated molecular patterns (PAMPs) including lipopolysaccharide (LPS), peptidoglycan (PGN), and mannose (Man) could not be detected. Surface plasmon resonance (SPR) analysis further revealed the high binding specificity and moderate binding affinity of rAjCTL-2 to d-galactose (KD = 4.093 × 10 -6  M). After rAjCTL-2 was blocked by its polyclonal antibody, the binding activity to d-galactose could not be detected by using a blocking ELISA (B-ELISA). Moreover, rAjCTL-2 could bind various microorganisms including V. splendidus, V. anguillarum, Staphylococcus aureus, Bifidobacterium breve and Yarrowia

  14. Clinical characteristics of Staphylococcus epidermidis: a systematic review

    PubMed Central

    Namvar, Amirmorteza Ebrahimzadeh; Bastarahang, Sara; Abbasi, Niloufar; Ghehi, Ghazaleh Sheikhi; Farhadbakhtiarian, Sara; Arezi, Parastoo; Hosseini, Mahsa; Baravati, Sholeh Zaeemi; Jokar, Zahra; Chermahin, Sara Ganji

    2014-01-01

    Staphylococci are known as clustering Gram-positive cocci, nonmotile, non-spore forming facultatively anaerobic that classified in two main groups, coagulase-positive and coagulase-negative. Staphylococcus epidermidis with the highest percentage has the prominent role among coagulase-negative Staphylococci that is the most important reason of clinical infections. Due to various virulence factors and unique features, this microorganism is respected as a common cause of nosocomial infections. Because of potential ability in biofilm formation and colonization in different surfaces, also using of medical implant devices in immunocompromised and hospitalized patients the related infections have been increased. In recent decades the clinical importance and the emergence of methicillin-resistant Staphylococcus epidermidis strains have created many challenges in the treatment process. PMID:25285267

  15. Methicillin-Resistant Staphylococcus aureus (MRSA) Infections in the Department of Defense (DOD): Annual Summary Report 2014

    DTIC Science & Technology

    2015-10-01

    NAVY AND MARINE CORPS PUBUC IEAI.TI CINTIR PREVENTION AND PROTECTION START HERE Methicillin-Resistant Staphylococcus aureus IMRSAJ Infections in...Methicit li~esistant Staphylococcus aureus (MRSA) Infections in the Department of Defense (000): Annual Summary Report 2014 Jessica Spencer. Uzo...Distribution is not limited. NUMBER NMCPHC-EOC-TR-499-2015 NUMBER($) NMCPHC-EDC-TR-499-201 5 Metticitrin-resistant Staphylococcus aureus (MRSA

  16. Identification of Staphylococcus epidermidis with transferrable mupirocin resistance from canine skin.

    PubMed

    Rossi, C C; Salgado, B A B; Barros, E M; de Campos Braga, P A; Eberlin, M N; Lilenbaum, W; Giambiagi-deMarval, M

    2018-05-01

    Resistance to mupirocin was analysed in Staphylococcus spp. isolated from healthy dogs (n=21) and dogs with pyoderma (n=47) or otitis externa (n=52). Isolates were identified to species level by MALDI-TOF and PCR-RFLP of the groEL gene. One isolate of Staphylococcus epidermidis from the skin of a healthy dog, which harboured a plasmid carrying the mupA gene, was resistant to mupirocin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Biotic Interactions Shape the Ecological Distributions of Staphylococcus Species.

    PubMed

    Kastman, Erik K; Kamelamela, Noelani; Norville, Josh W; Cosetta, Casey M; Dutton, Rachel J; Wolfe, Benjamin E

    2016-10-18

    Many metagenomic sequencing studies have observed the presence of closely related bacterial species or genotypes in the same microbiome. Previous attempts to explain these patterns of microdiversity have focused on the abiotic environment, but few have considered how biotic interactions could drive patterns of microbiome diversity. We dissected the patterns, processes, and mechanisms shaping the ecological distributions of three closely related Staphylococcus species in cheese rind biofilms. Paradoxically, the most abundant species (S. equorum) is the slowest colonizer and weakest competitor based on growth and competition assays in the laboratory. Through in vitro community reconstructions, we determined that biotic interactions with neighboring fungi help resolve this paradox. Species-specific stimulation of the poor competitor by fungi of the genus Scopulariopsis allows S. equorum to dominate communities in vitro as it does in situ Results of comparative genomic and transcriptomic experiments indicate that iron utilization pathways, including a homolog of the S. aureus staphyloferrin B siderophore operon pathway, are potential molecular mechanisms underlying Staphylococcus-Scopulariopsis interactions. Our integrated approach demonstrates that fungi can structure the ecological distributions of closely related bacterial species, and the data highlight the importance of bacterium-fungus interactions in attempts to design and manipulate microbiomes. Decades of culture-based studies and more recent metagenomic studies have demonstrated that bacterial species in agriculture, medicine, industry, and nature are unevenly distributed across time and space. The ecological processes and molecular mechanisms that shape these distributions are not well understood because it is challenging to connect in situ patterns of diversity with mechanistic in vitro studies in the laboratory. Using tractable cheese rind biofilms and a focus on coagulase-negative staphylococcus (CNS

  18. Community-acquired Staphylococcus aureus bacteremia in children: a cohort study for 2010-2014.

    PubMed

    Pérez, Guadalupe; Martiren, Soledad; Reijtman, Vanesa; Romero, Romina; Mastroianni, Alejandra; Casimir, Lidia; Bologna, Rosa

    2016-12-01

    Community-acquired methicillin-resistant Staphylococcus aureus infections are a common, serious problem in pediatrics. To describe antibiotic resistance in community-acquired Staphylococcus aureus (SA) bacteremias. To compare the characteristics of SA bacteremias in terms of methicillin resistance. Prospective cohort enrolled between January 2010 and December 2014. Inclusion criteria: infants and children between 30 days old and 16 years old hospitalized at the Hospital de Pediatria J. P. Garrahan due to community-acquired infections with SA growth identification in blood cultures. Exclusion criteria: having a history of recent hospitalization, attending a health care facility, living in a closed community, or having a venous catheter. Microbiological, demographic, and clinical characteristics were compared in terms of methicillin susceptibility. Statistical analysis: Stata10. A total of 208 children were included; boys: 141 (68%). Their median age was 60 months old (interquartile range: 29-130). Thirty-four patients (16%) had an underlying disease. Methicillin-resistant Staphylococcus aureus was identified in 136 children (65%). The rate of resistance to clindamycin was 9%. Significant statistical differences were observed in the rate of underlying disease, persistent bacteremia, sepsis at the time of admission, secondary source of infection, admission to the intensive care unit, and surgery requirement. Twelve patients (6%) died; community-acquired methicillin-resistant Staphylococcus aureus was identified in all of them. In the studied cohort, methicillin-resistant S taphylococcus aureus was predominant. The rate of resistance to clindamycin was 9%. Community-acquired methicillin-resistant Staphylococcus aureus infections prevailed among healthy children. Among patients with methicillin-resistant Staphylococcus aureus infections there was a higher rate of persistent bacteremia, admission to the ICU and surgery. Sociedad Argentina de Pediatría

  19. Cocoa butter-like lipid production ability of non-oleaginous and oleaginous yeasts under nitrogen-limited culture conditions.

    PubMed

    Wei, Yongjun; Siewers, Verena; Nielsen, Jens

    2017-05-01

    Cocoa butter (CB) extracted from cocoa beans is the main raw material for chocolate production. However, growing chocolate demands and limited CB production has resulted in a shortage of CB supply. CB is mainly composed of three different kinds of triacylglycerols (TAGs), POP (C16:0-C18:1-C16:0), POS (C16:0-C18:1-C18:0), and SOS (C18:0-C18:1-C18:0). The storage lipids of yeasts, mainly TAGs, also contain relative high-level of C16 and C18 fatty acids and might be used as CB-like lipids (CBL). In this study, we cultivated six different yeasts, including one non-oleaginous yeast strain, Saccharomyces cerevisiae CEN.PK113-7D, and five oleaginous yeast strains, Trichosporon oleaginosus DSM11815, Rhodotorula graminis DSM 27356, Lipomyces starkeyi DSM 70296, Rhodosporidium toruloides DSM 70398, and Yarrowia lipolytica CBS 6124, in nitrogen-limited medium and compared their CBL production ability. Under the same growth conditions, we found that TAGs were the main lipids in all six yeasts and that T. oleaginosus can produce more TAGs than the other five yeasts. Less than 3% of the total TAGs were identified as potential SOS in the six yeasts. However, T. oleaginosus produced 27.8% potential POP and POS at levels of 378 mg TAGs/g dry cell weight, hinting that this yeast may have potential as a CBL production host after further metabolic engineering in future.

  20. Role of charge screening and delocalization for lipophilic cation permeability of model and mitochondrial membranes.

    PubMed

    Trendeleva, Tatiana A; Sukhanova, Evgenia I; Rogov, Anton G; Zvyagilskaya, Renata A; Seveina, Inna I; Ilyasova, Tatiana M; Cherepanov, Dmitry A; Skulachev, Vladimir P

    2013-09-01

    The effects of the mitochondria-targeted lipophilic cation dodecyltriphenylphosphonium (C12TPP, the charge is delocalized and screened by bulky hydrophobic residues) and those of lipophilic cations decyltriethylammonium bromide and cetyltrimethylammonium bromide (C10TEA and C16TMA, the charges are localized and screened by less bulky residues) on bilayer planar phospholipid membranes and tightly-coupled mitochondria from the yeast Yarrowia lipolytica have been compared. In planar membranes, C12TPP was found to generate a diffusion potential as if it easily penetrates these membranes. In the presence of palmitate, C12TPP induced H(+) permeability like plastoquinonyl decyltriphenilphosphonium that facilitates transfer of fatty acid anions (Severin et al., PNAS, 2010, 107, 663-668). C12TPP was shown to stimulate State 4 respiration of mitochondria and caused a mitochondrial membrane depolarization with a half-maximal effect at 6μM. Besides, C12TPP profoundly potentiated the uncoupling effect of endogenous or added fatty acids. C10TEA and C16TMA inhibited State 4 respiration and decreased the membrane potential, though at much higher concentrations than C12TPP, and they did not promote the uncoupling action of fatty acids. These relationships were modeled by molecular dynamics. They can be explained by different membrane permeabilities for studied cations, which in turn are due to different availabilities of the positive charge in these cations to water dipoles. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Multi-wavelength dye concentration determination for enzymatic assays: evaluation of chromogenic para-nitrophenol over a wide pH range.

    PubMed

    Max, Jean-Joseph; Meddeb-Mouelhi, Fatma; Beauregard, Marc; Chapados, Camille

    2012-12-01

    Enzymatic assays need robust, rapid colorimetric methods that can follow ongoing reactions. For this, we developed a highly accurate, multi-wavelength detection method that could be used for several systems. Here, it was applied to the detection of para-nitrophenol (pNP) in basic and acidic solutions. First, we confirmed by factor analysis that pNP has two forms, with unique spectral characteristics in the 240 to 600 nm range: Phenol in acidic conditions absorbs in the lower range, whereas phenolate in basic conditions absorbs in the higher range. Thereafter, the method was used for the determination of species concentration. For this, the intensity measurements were made at only two wavelengths with a microtiter plate reader. This yielded total dye concentration, species relative abundance, and solution pH value. The method was applied to an enzymatic assay. For this, a chromogenic substrate that generates pNP after hydrolysis catalyzed by a lipase from the fungus Yarrowia lipolytica was used. Over the pH range of 3-11, accurate amounts of acidic and basic pNP were determined at 340 and 405 nm, respectively. This method surpasses the commonly used single-wavelength assay at 405 nm, which does not detect pNP acidic species, leading to activity underestimations. Moreover, alleviation of this pH-related problem by neutralization is not necessary. On the whole, the method developed is readily applicable to rapid high-throughput of enzymatic activity measurements over a wide pH range.

  2. Gene cloning and characterization of a novel esterase from activated sludge metagenome

    PubMed Central

    2009-01-01

    A metagenomic library was prepared using pCC2FOS vector containing about 3.0 Gbp of community DNA from the microbial assemblage of activated sludge. Screening of a part of the un-amplified library resulted in the finding of 1 unique lipolytic clone capable of hydrolyzing tributyrin, in which an esterase gene was identified. This esterase/lipase gene consists of 834 bp and encodes a polypeptide (designated EstAS) of 277 amino acid residuals with a molecular mass of 31 kDa. Sequence analysis indicated that it showed 33% and 31% amino acid identity to esterase/lipase from Gemmata obscuriglobus UQM 2246 (ZP_02733109) and Yarrowia lipolytica CLIB122 (XP_504639), respectively; and several conserved regions were identified, including the putative active site, HSMGG, a catalytic triad (Ser92, His125 and Asp216) and a LHYFRG conserved motif. The EstAS was overexpressed, purified and shown to hydrolyse p-nitrophenyl (NP) esters of fatty acids with short chain lengths (≤ C8). This EstAS had optimal temperature and pH at 35°C and 9.0, respectively, by hydrolysis of p-NP hexanoate. It also exhibited the same level of stability over wide temperature and pH ranges and in the presence of metal ions or detergents. The high level of stability of esterase EstAS with its unique substrate specificities make itself highly useful for biotechnological applications. PMID:20028524

  3. Synthetic biology for manufacturing chemicals: constraints drive the use of non-conventional microbial platforms.

    PubMed

    Czajka, Jeffrey; Wang, Qinhong; Wang, Yechun; Tang, Yinjie J

    2017-10-01

    Genetically modified microbes have had much industrial success producing protein-based products (such as antibodies and enzymes). However, engineering microbial workhorses for biomanufacturing of commodity compounds remains challenging. First, microbes cannot afford burdens with both overexpression of multiple enzymes and metabolite drainage for product synthesis. Second, synthetic circuits and introduced heterologous pathways are not yet as "robust and reliable" as native pathways due to hosts' innate regulations, especially under suboptimal fermentation conditions. Third, engineered enzymes may lack channeling capabilities for cascade-like transport of metabolites to overcome diffusion barriers or to avoid intermediate toxicity in the cytoplasmic environment. Fourth, moving engineered hosts from laboratory to industry is unreliable because genetic mutations and non-genetic cell-to-cell variations impair the large-scale fermentation outcomes. Therefore, synthetic biology strains often have unsatisfactory industrial performance (titer/yield/productivity). To overcome these problems, many different species are being explored for their metabolic strengths that can be leveraged to synthesize specific compounds. Here, we provide examples of non-conventional and genetically amenable species for industrial manufacturing, including the following: Corynebacterium glutamicum for its TCA cycle-derived biosynthesis, Yarrowia lipolytica for its biosynthesis of fatty acids and carotenoids, cyanobacteria for photosynthetic production from its sugar phosphate pathways, and Rhodococcus for its ability to biotransform recalcitrant feedstock. Finally, we discuss emerging technologies (e.g., genome-to-phenome mapping, single cell methods, and knowledge engineering) that may facilitate the development of novel cell factories.

  4. Performance of CHROMagar MRSA Medium for Detection of Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Diederen, Bram; van Duijn, Inge; van Belkum, Alex; Willemse, Piet; van Keulen, Peter; Kluytmans, Jan

    2005-01-01

    CHROMagar MRSA was evaluated for its ability to identify methicillin-resistant Staphylococcus aureus (MRSA). A well-defined collection consisting of 216 MRSA strains and 241 methicillin-susceptible Staphylococcus aureus isolates was used. The sensitivity of CHROMagar MRSA after 24 h of incubation was 95.4%, increasing to 100% after 48 h. The specificity was already 100% after 24 h. PMID:15815020

  5. Staphylococcus haemolyticus - an emerging threat in the twilight of the antibiotics age.

    PubMed

    Czekaj, Tomasz; Ciszewski, Marcin; Szewczyk, Eligia M

    2015-11-01

    Staphylococcus haemolyticus is one of the most frequent aetiological factors of staphylococcal infections. This species seems to lack the important virulence attributes described in other staphylococci. However, studies have shown that the presence of various enzymes, cytolysins and surface substances affects the virulence of S. haemolyticus. Nevertheless, none of them has been identified as crucial and determinative. Despite this, S. haemolyticus is, after Staphylococcus epidermidis, the second most frequently isolated coagulase-negative staphylococcus from clinical cases, notably from blood infections, including sepsis. This raises the question of what is the reason for the increasing clinical significance of S. haemolyticus? The most important factor might be the ability to acquire multiresistance against available antimicrobial agents, even glycopeptides. The unusual genome plasticity of S. haemolyticus strains manifested by a large number of insertion sequences and identified SNPs might contribute to its acquisition of antibiotic resistance. Interspecies transfer of SCCmec cassettes suggests that S. haemolyticus might also be the reservoir of resistance genes for other staphylococci, including Staphylococcus aureus. Taking into consideration the great adaptability and the ability to survive in the hospital environment, especially on medical devices, S. haemolyticus becomes a crucial factor in nosocomial infections caused by multiresistant staphylococci.

  6. Methicillin-resistant Staphylococcus sp. colonizing health care workers of a cancer hospital

    PubMed Central

    Costa, Dayane de Melo; Kipnis, André; Leão-Vasconcelos, Lara Stefânia Netto de Oliveira; Rocha-Vilefort, Larissa Oliveira; Telles, Sheila Araújo; André, Maria Cláudia Dantas Porfírio Borges; Tipple, Anaclara Ferreira Veiga; Lima, Ana Beatriz Mori; Ribeiro, Nádia Ferreira Gonçalves; Pereira, Mayara Regina; Prado-Palos, Marinésia Aparecida

    2014-01-01

    The aim of the study was to analyze epidemiological and microbiological aspects of oral colonization by methicillin-resistant Staphylococcus of health care workers in a cancer hospital. Interview and saliva sampling were performed with 149 health care workers. Antimicrobial resistance was determined by disk diffusion and minimum inhibitory concentration. Polymerase Chain Reaction, Internal Transcribed Spacer-Polymerase Chain Reaction and Pulsed Field Gel Electrophoresis were performed for genotypic characterization of methicillin-resistant Staphylococcus. Risk factors were determined by logistic regression. Methicillin-resistant Staphylococcus colonization prevalence was 19.5%, denture wearing (p = 0.03), habit of nail biting (p = 0.04) and preparation and administration of antimicrobial (p = 0.04) were risk factors identified. All methicillin-resistant Staphylococcus were S. epidermidis, 94.4% of them had mecA gene. Closely related and indistinguishable methicillin-resistant S. epidermidis were detected. These results highlight that HCWs which have contact with patient at high risk for developing infections were identified as colonized by MRSE in the oral cavity, reinforcing this cavity as a reservoir of these bacteria and the risk to themselves and patients safety, because these microorganisms may be spread by coughing and talking. PMID:25477910

  7. The Recombinant Bacteriophage Endolysin HY-133 Exhibits In Vitro Activity against Different African Clonal Lineages of the Staphylococcus aureus Complex, Including Staphylococcus schweitzeri.

    PubMed

    Idelevich, Evgeny A; Schaumburg, Frieder; Knaack, Dennis; Scherzinger, Anna S; Mutter, Wolfgang; Peters, Georg; Peschel, Andreas; Becker, Karsten

    2016-04-01

    HY-133 is a recombinant bacteriophage endolysin with bactericidal activity againstStaphylococcus aureus Here, HY-133 showedin vitroactivity against major African methicillin-susceptible and methicillin-resistantS. aureuslineages and ceftaroline/ceftobiprole- and borderline oxacillin-resistant isolates. HY-133 was also active againstStaphylococcus schweitzeri, a recently described species of theS. aureuscomplex. The activity of HY-133 on the tested isolates (MIC50, 0.25 μg/ml; MIC90, 0.5 μg/ml; range, 0.125 to 0.5 μg/ml) was independent of the species and strain background or antibiotic resistance. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Preparation of 8-hydroxyquinoline derivatives as potential antibiotics against Staphylococcus aureus.

    PubMed

    Lam, Kim-Hung; Gambari, Roberto; Lee, Kenneth Ka-Ho; Chen, Yi-Xin; Kok, Stanton Hon-Lung; Wong, Raymond Siu-Ming; Lau, Fung-Yi; Cheng, Chor-Hing; Wong, Wai-Yeung; Bian, Zhao-Xiang; Chan, Albert Sun-Chi; Tang, Johnny Cheuk-On; Chui, Chung-Hin

    2014-01-01

    This work describes the preparation of quinoline compounds as possible anti-bacterial agents. The synthesized quinoline derivatives show anti-bacterial activity towards Staphylococcus aureus. It is interesting to observe that the synthetic 5,7-dibromo-2-methylquinolin-8-ol (4) shows a similar minimum inhibitory concentration of 6.25μg/mL as compared to that of methicillin (3.125μg/mL) against Staphylococcus aureus. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Food compounds inhibit Staphylococcus aureus bacteria and the toxicity of Staphylococcus Enterotoxin A (SEA) associated with atopic dermatitis

    USDA-ARS?s Scientific Manuscript database

    Atopic dermatitis or eczema is characterized by skin rashes and itching is an inflammatory disease that affects 10-20% of children and 1-3% of adults. Staphylococcus aureus bacteria are present on the skin of nearly all patients with atopic dermatitis. Antibiotics that suppress colonization of S. au...

  10. Clinical significance of the isolation of Staphylococcus epidermidis from bone biopsy in diabetic foot osteomyelitis.

    PubMed

    Aragón-Sánchez, Javier; Lázaro-Martínez, Jose Luis; Hernández-Herrero, María José; Quintana-Marrero, Yurena; Cabrera-Galván, Juan J

    2010-01-01

    Coagulase-negative staphylococci are considered as microorganisms with little virulence and usually as contaminants. In order to establish the role of Staphylococcus epidermidis as a pathogen in diabetic foot osteomyelitis, in addition to the isolation of the sole bacterium from the bone it will be necessary to demonstrate the histopathological changes caused by the infection. A consecutive series of 222 diabetic patients with foot osteomyelitis treated surgically in the Diabetic Foot Unit at La Paloma Hospital (Las Palmas de Gran Canaria, Canary Islands, Spain) between 1 October 2002 and 31 October 2008. From the entire series including 213 bone cultures with 241 isolated organisms, we have analyzed only the 139 cases where Staphylococci were found. We analyzed several variables between the two groups: Staphylococcus aureus versus Staphylococcus epidermidis. Of the 134 patients included in this study, Staphlylococcus epidermidis was found as the sole bacterium isolated in 11 cases and accompanied by other bacteria in 12 cases. Staphlylococcus aureus was found as the sole bacterium isolated in 72 cases and accompanied by other bacteria in 39 cases. Histopathological changes were found in the cases of osteomyelitis where Staphylococcus epidermidis was the sole bacterium isolated. Acute osteomyelitis was found to a lesser extent when Staphylococcus epidermidis was the sole bacterium isolated but without significant differences with the cases where Staphylococcus aureus was the sole bacterium isolated. Staphylococcus epidermidis should be considered as a real pathogen, not only a contaminant, in diabetic patients with foot osteomyelitis when the bacterium is isolated from the bone. No differences in the outcomes of surgical treatment have been found with cases which Staphlylococcus aureus was isolated.

  11. Clinical significance of the isolation of Staphylococcus epidermidis from bone biopsy in diabetic foot osteomyelitis

    PubMed Central

    Aragón-Sánchez, Javier; Lázaro-Martínez, Jose Luis; Hernández-Herrero, María José; Quintana-Marrero, Yurena; Cabrera-Galván, Juan J.

    2010-01-01

    Introduction Coagulase-negative staphylococci are considered as microorganisms with little virulence and usually as contaminants. In order to establish the role of Staphylococcus epidermidis as a pathogen in diabetic foot osteomyelitis, in addition to the isolation of the sole bacterium from the bone it will be necessary to demonstrate the histopathological changes caused by the infection. Methods A consecutive series of 222 diabetic patients with foot osteomyelitis treated surgically in the Diabetic Foot Unit at La Paloma Hospital (Las Palmas de Gran Canaria, Canary Islands, Spain) between 1 October 2002 and 31 October 2008. From the entire series including 213 bone cultures with 241 isolated organisms, we have analyzed only the 139 cases where Staphylococci were found. We analyzed several variables between the two groups: Staphylococcus aureus versus Staphylococcus epidermidis. Results Of the 134 patients included in this study, Staphlylococcus epidermidis was found as the sole bacterium isolated in 11 cases and accompanied by other bacteria in 12 cases. Staphlylococcus aureus was found as the sole bacterium isolated in 72 cases and accompanied by other bacteria in 39 cases. Histopathological changes were found in the cases of osteomyelitis where Staphylococcus epidermidis was the sole bacterium isolated. Acute osteomyelitis was found to a lesser extent when Staphylococcus epidermidis was the sole bacterium isolated but without significant differences with the cases where Staphylococcus aureus was the sole bacterium isolated. Conclusion Staphylococcus epidermidis should be considered as a real pathogen, not only a contaminant, in diabetic patients with foot osteomyelitis when the bacterium is isolated from the bone. No differences in the outcomes of surgical treatment have been found with cases which Staphlylococcus aureus was isolated. PMID:22396808

  12. Nasal Carriage Rate of Methicillin Resistant Staphylococcus aureus among Health Care Workers at a Tertiary Care Hospital in Kathmandu, Nepal.

    PubMed

    Khatri, S; Pant, N D; Bhandari, R; Shrestha, K L; Shrestha, C D; Adhikari, N; Poudel, A

    2017-01-01

    Methicillin-resistant Staphylococcus aureus is one of the most common causes of nosocomial infections. Due to its multidrug resistant nature; infections due to Methicillin-resistant Staphylococcus aureus are often very difficult to treat. Colonized health care workers are the important sources of Methicillin-resistant Staphylococcus aureus. The objectives of this study were to determine the nasal carriage rate of Methicillin-resistant Staphylococcus aureus among health care workers at Kathmandu Medical College and Teaching Hospital, Nepal and to assess their antimicrobial susceptibility patterns. A cross sectional study was conducted among 252 health care workers from July to November 2013. Mannitol salt agar was used to culture the nasal swabs. Antimicrobial susceptibility testing was performed by Kirby-Bauer disc diffusion technique following Clinical and Laboratory Standards Institute guidelines. Methicillin-resistant Staphylococcus aureus strains were confirmed by using cefoxitin disc and by determining the minimum inhibitory concentration of oxacillin by agar dilution method. Of 252 healthcare workers, 46(18.3%) were positive for Staphylococcus aureus among which 19(41.3%) were Methicillin-resistant Staphylococcus aureus carriers. Overall rate of nasal carriage of Methicillin-resistant Staphylococcus aureus was 7.5% (19/252).The higher percentages of lab personnel were nasal carriers of S. aureus (31.6%) and Methicillin-resistant Staphylococcus aureus (10.5%).The percentages of nasal carriage of S. aureus (35.7%) and Methicillin-resistant Staphylococcus aureus (14.3%) were highest in the health care workers from post operative department. Higher percentage of Methicillin-resistant Staphylococcus aureus were susceptible toward amikacin (100%) and vancomycin (100%) followed by cotrimoxazole (84.2%). High rates of nasal carriage of S. aureus and Methicillin-resistant Staphylococcus aureus were observed among the healthcare workers, which indicate the need of

  13. Community-acquired methicillin-resistant Staphylococcus aureus: an emerging cause of acute bacterial parotitis.

    PubMed

    Nicolasora, Nelson P; Zacharek, Mark A; Malani, Anurag N

    2009-02-01

    Staphylococcus aureus has long been recognized as a cause of acute bacterial parotitis. A case of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) parotitis is presented, highlighting the emergence of this increasingly important pathogen to cause a wide variety of infections. Also reviewed are the salient clinical and microbiologic features of this novel infection.

  14. Dalbavancin reduces biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE).

    PubMed

    Knafl, D; Tobudic, S; Cheng, S C; Bellamy, D R; Thalhammer, F

    2017-04-01

    Activity of dalbavancin against methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE) in biofilm was investigated and the microbicidal biofilm concentrations (MBC) were determined. Biofilms obtained from ten MRSA and ten MRSE bloodstream isolates, collected from patients in the General Hospital of Vienna between 2012 and 2015, were incubated with dalbavancin in trypticase soy broth (TSB) in serial dilution from 0.0625 mg/l to 256 mg/l using a microtiter plate biofilm model. The plates were incubated for 24 h at 37 ° C and 50% humidity. Biofilms were fixed with 2.5% glutaraldehyde and stained with crystal violet. Subsequently the optical density (OD 620 ) was used to measure the MBC, defined as the concentration of dalbavancin leading to a 50% reduction of biofilm. MBC for MRSA was 1 mg/l-4 mg/l (minimal inhibitory concentrations (MIC) 0.0312 mg/l-0.064 mg/l). MBC for MRSE was 2 mg/l-16 mg/l (MIC 0.023 mg/l-0.0625 mg/l). Dalbavancin successfully reduced MRSA and MRSE in biofilms, and therefore provides a promising option for the treatment of biofilm-associated infections.

  15. [Sepsis with Staphylococcus aureus in immunocompromised patients].

    PubMed

    Petrache, Simona Magdalena; Miftode, Egidia; Vâţă, A; Petrovici, Cristina Mirela; Dorneanu, Olivia; Luca, V

    2009-01-01

    The aim of our study was to analyze clinical and biological characteristics of immunocompromised patients with staphylococcal sepsis and to compare with the same data in non-immunocompromised patients. The diagnosis of sepsis was made based on Bone criteria. MiniAPI system ID 32 STAPH was used for identification and antibiotic susceptibility was assessed by ATB STAPH method and by E-test for oxacillin and vancomycin. Among the 147 patients with Staphylococcus aureus sepsis--66.67% had concomitant immunosuppressive conditions (diabetes mellitus, liver diseases, renal failure, corticotherapy, etc). We have found a significant correlation between the immunosuppressed status and MRSA (methicillin-resistant Staphylococcus aureus) involvement (p = 0.0018) and also, between this group of patients and treatment failure (p = 0.0012). Because of the high rate of MRSA involvement in systemic infections in the Eastern region of Romania first intention treatment of patients with staphylococcal infections and conditions of immunosuppression must include antibiotics effective against methicillin-resistant strains.

  16. TOLERANCE OF STAPHYLOCOCCUS AUREUS TO SODIUM CHLORIDE

    PubMed Central

    Parfentjev, I. A.; Catelli, Anna R.

    1964-01-01

    Parfentjev, I. A. (Institute of Applied Biology, New York, N.Y.), and Anna R. Catelli. Tolerance of Staphylococcus aureus to sodium chloride. J. Bacteriol. 88:1–3. 1964.—The tolerance of Staphylococcus aureus to high concentrations of sodium chloride in liquid medium has been reported. We found that S. aureus grows at 37 C in Tryptose Phosphate Broth saturated with sodium chloride. No difference was noticed between possibly pathogenic and nonpathogenic strains. Under the conditions of our tests, no changes in the original properties of S. aureus strains occurred. In contrast, solutions of sodium chloride in distilled water were injurious to staphylococci and killed most of these organisms in 1 hr. Staphylococci were killed faster at 37 C than at room temperature in a solution of 0.85% sodium chloride in water. Addition of traces of Tryptose Phosphate Broth had a protective effect and prolonged the life of these organisms in physiological saline. All tests were performed at pH 7.2. PMID:14197887

  17. Enteric colonization by staphylococcus delphini in four ferret kits with diarrhoea.

    PubMed

    Gary, J M; Langohr, I M; Lim, A; Bolin, S; Bolin, C; Moore, I; Kiupel, M

    2014-11-01

    Four, 1-to 4-week-old ferret kits were submitted to the Diagnostic Center for Population and Animal Health at Michigan State University for post-mortem examination. Grossly, multiple bowel loops in all ferret kits were distended by mucoid faecal material. Microscopically, there was no evidence of inflammation or notable alteration to the normal mucosal morphology. Gram-positive coccoid bacteria colonized variable segments of the small intestine. These bacteria were identified as Staphylococcus delphini by phenotypic and molecular analyses. Enzyme-linked immunosorbent assay for detection of Staphylococcus enterotoxins was positive and polymerase chain reaction detected the gene for Staphylococcus enterotoxin E in the isolates. The hypersecretory diarrhoea in these ferret kits may have been associated with colonization of the small intestine by S. delphini, cultures of which were shown in vitro to be potentially capable of producing enterotoxin E. The condition described in these ferrets is similar to 'sticky' kit syndrome in mink. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Genetic Characterization of Staphylococcus aureus Isolated from Retail Meat in Riyadh, Saudi Arabia.

    PubMed

    Raji, Muhabat A; Garaween, Ghada; Ehricht, Ralf; Monecke, Stefan; Shibl, Atef M; Senok, Abiola

    2016-01-01

    Limited data exist from the Gulf Cooperation Council states on the prevalence and population dynamics of Staphylococcus aureus colonizing livestock or contaminating retail meat. This study was designed to determine the presence and genetic characteristics of Staphylococcus aureus isolated from raw retail meat sold in Riyadh, Saudi Arabia. Over a period of 9 months, different raw retail meat types were aseptically processed using the double broth enrichment technique, characteristic colonies from chromogenic and mannitol salt agar were further identified using conventional methods. Susceptibility to 9 antibiotics was determined using the disc diffusion technique. Interpretation of inhibition zone was done according to Clinical and Laboratory Standards Institute guidelines. Molecular characterization was carried out using the StaphyType DNA microarray technology. Twenty-five meat samples yielded Staphylococcus aureus isolates. Camel meat had the highest contamination rate with Methicillin resistant Staphylococcus aureus (MRSA) (20%) and Methicillin susceptible Staphylococcus aureus (28%), while poultry meat had the least contamination rate with MRSA (4%). The MRSA isolates were grouped into 4 clonal complexes (CCs) namely CC1-MRSA-IV/SCCfus (n = 2), CC15-MRSA-V/SCCfus (n = 4), CC80-MRSA-IV/PVL+ (n = 5), and CC88-MRSA-IV/PVL+ (n = 2). All CC15-MRSA-V/SCCfus isolates were obtained from camel meat. This is the first study to demonstrate the novel CC15-MRSA-V/SCCfus in retail camel meat. We recommend that surveillance studies should be incorporated in public health and food hygiene programs.

  19. An investigation of exudative epidermitis (greasy pig disease) and antimicrobial resistance patterns of Staphylococcus hyicus and Staphylococcus aureus isolated from clinical cases

    PubMed Central

    Park, Jeonghwa; Friendship, Robert M.; Poljak, Zvonimir; Weese, J. Scott; Dewey, Cate E.

    2013-01-01

    Exudative epidermitis (EE) is a common skin disease of young pigs, caused mainly by Staphylococcus hyicus. Increased prevalence of EE and poor response to treatment are reported. Common strategies used by Ontario pork producers to treat pigs with EE were determined using a survey. Injection of penicillin G was reported as the most common parenteral antibiotic choice. Antimicrobial resistance patterns of S. hyicus and Staphylococcus aureus isolated from clinical cases (30 herds with samples from approximately 6 pigs per farm) showed that 97% of S. hyicus isolates were resistant to penicillin G and ampicillin; 71% of these isolates were resistant to ceftiofur. Similar resistance was noted among S. aureus isolates. Antimicrobial resistance has become a problem in the treatment of EE in Ontario. PMID:23904636

  20. Molecular epidemiology of Staphylococcus aureus isolates at different sites in the milk producing dairy farms

    PubMed Central

    Souza, Viviane; Nader Filho, Antonio; de Castro Melo, Poliana; Ferraudo, Guilherme Moraes; Antônio Sérgio, Ferraudo; de Oliveira Conde, Sandra; Fogaça Junior, Flavio Augusto

    2012-01-01

    The epidemiological relationships between isolated Staphylococcus aureus strains in milk samples of dairy cows, reagent to California Mastitis Test, individual and group milk was demonstrated in different sites of the production fluxogram, in 12 milk-producing farms in the Gameleira region, municipality of Sacramento MG Brazil, so that localization and transmission modes may be identified. Two hundred and forty-four strains out of 446 samples collected at several sites were isolated and bio-chemically characterized as coagulase-positive staphylococcus. Specific chromosome DNA fragment of the species Staphylococcus aureus was amplified to 106 strains and 103 underwent (PFGE). Samples’ collection sites with the highest isolation frequency of Staphylococcus aureus strains comprised papillary ostia (31.1%), CMT-reagent cow milk (21.7%), mechanical milking machines’ insufflators (21,7%), milk in milk pails (6.6%) and the milk in community bulk tanks (5.6%). Genetic heterogeneity existed among the isolated 103 Staphylococcus aureus strains, since 32 different pulse-types were identified. Pulse-type 1 had the highest similarity among the isolated strains within the different sites of the milk-production fluxogram. Highest occurrence of pulsetype 1 isolates of Staphylococcus aureus strains was reported in samples collected from the papillary ostia (10.6%), followed by milk samples from CMT-reagent dairy cows (5.8%) and mechanical milking machine insufflators (3.8%). The above shows the relevance of these sites in the agents’ transmission mechanism within the context of the farms investigated. PMID:24031997

  1. Bacteriophage Transduction in Staphylococcus aureus.

    PubMed

    Olson, Michael E

    2016-01-01

    The genetic manipulation of Staphylococcus aureus for molecular experimentation is a valuable tool for assessing gene function and virulence. Genetic variability between strains coupled with difficult laboratory techniques for strain construction is a frequent roadblock in S. aureus research. Bacteriophage transduction greatly increases the speed and ease of S. aureus studies by allowing movement of chromosomal markers and plasmids between strains. This technique enables the S. aureus research community to focus investigations on clinically relevant isolates.

  2. Changes of Antimicrobial Resistance among Staphylococcus Aureus Isolated in 8 Consecutive Years in the First Bethune Hospital

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Zhou, Qi; Yang, Chunguang; Yao, Hanxin; Xu, Jiancheng

    This study was to investigate the antimicrobial resistance of Staphylococcus aureus isolated in 8 consecutive years in the First Bethune Hospital. Disk diffusion test was used to study the antimicrobial resistance. The data were analyzed by WHONET 5 software according to Clinical and Laboratory Standards Institute (CLSI). Most of 1469 strains of Staphylococcus aureus were collected from sputum 705 (18.0%), secretions 206 (14.0%), pus 177 (12.0%) during the past 8 years. The rates of methicillin-resistant Staphylococcus aureus (MRSA) were between 50.8% and 83.3% during the past 8 years, respectively. In recent 8 years, the antimicrobial resistance of Staphylococcus aureus had increased. Monitoring the antimicrobial resistance to Staphylococcus aureus should be strengthened. The change of the antimicrobial resistance should be investigated in order to direct rational drug usage in the clinic and prevent bacterial strain of drug resistance from being transmitted.

  3. Antimicrobial resistance of Staphylococcus aureus isolates from dairy cows and genetic diversity of resistant isolates

    USDA-ARS?s Scientific Manuscript database

    Staphylococcus aureus is a frequent and major contagious mastitis bacterial pathogen. The antibiotic treatment cure rates vary considerably from 4% to 92%. Staphylococcus aureus readily becomes resistant to antibiotics, resulting in persistent noncurable intramammary infection that usually results i...

  4. Waste Soybean Oil and Corn Steep Liquor as Economic Substrates for Bioemulsifier and Biodiesel Production by Candida lipolytica UCP 0998

    PubMed Central

    Souza, Adriana Ferreira; Rodriguez, Dayana M.; Ribeaux, Daylin R.; Luna, Marcos A. C.; Lima e Silva, Thayse A.; Andrade, Rosileide F. Silva; Gusmão, Norma B.; Campos-Takaki, Galba M.

    2016-01-01

    Almost all oleaginous microorganisms are available for biodiesel production, and for the mechanism of oil accumulation, which is what makes a microbial approach economically competitive. This study investigated the potential that the yeast Candida lipolytica UCP0988, in an anamorphous state, has to produce simultaneously a bioemulsifier and to accumulate lipids using inexpensive and alternative substrates. Cultivation was carried out using waste soybean oil and corn steep liquor in accordance with 22 experimental designs with 1% inoculums (107 cells/mL). The bioemulsifier was produced in the cell-free metabolic liquid in the late exponential phase (96 h), at Assay 4 (corn steep liquor 5% and waste soybean oil 8%), with 6.704 UEA, IE24 of 96.66%, and showed an anionic profile. The emulsion formed consisted of compact small and stable droplets (size 0.2–5 µm), stable at all temperatures, at pH 2 and 4, and 2% salinity, and showed an ability to remove 93.74% of diesel oil from sand. The displacement oil (ODA) showed 45.34 cm2 of dispersion (central point of the factorial design). The biomass obtained from Assay 4 was able to accumulate lipids of 0.425 g/g biomass (corresponding to 42.5%), which consisted of Palmitic acid (28.4%), Stearic acid (7.7%), Oleic acid (42.8%), Linoleic acid (19.0%), and γ-Linolenic acid (2.1%). The results showed the ability of C. lipopytica to produce both bioemulsifier and biodiesel using the metabolic conversion of waste soybean oil and corn steep liquor, which are economic renewable sources. PMID:27669227

  5. Virulence factors genes of Staphylococcus spp. isolated from caprine subclinical mastitis.

    PubMed

    Salaberry, Sandra Renata Sampaio; Saidenberg, André Becker Simões; Zuniga, Eveline; Melville, Priscilla Anne; Santos, Franklin Gerônimo Bispo; Guimarães, Ednaldo Carvalho; Gregori, Fábio; Benites, Nilson Roberti

    2015-08-01

    The aim of this study was to investigate genes involved in adhesion expression, biofilm formation, and enterotoxin production in isolates of Staphylococcus spp. from goats with subclinical mastitis and associate these results with the staphylococcal species. One hundred and twenty-four isolates were identified and polymerase chain reaction (PCR) was performed to detect the following genes: cna, ebpS, eno, fib, fnbA, fnbB, bap, sea, seb, sec, sed and see. The most commonly Staphylococcus species included S. epidermidis, S. lugdunensis, S. chromogenes, S. capitis ss capitis and S. intermedius. With the exception of fnbB, the genes were detected in different frequencies of occurrence in 86.3% of the Staphylococcus spp. isolates. Eno (73.2%) and bap (94.8%) were more frequently detected in coagulase-negative staphylococci (CNS); ebpS (76%), fib (90.9%) and fnbA (87%) were the most frequent genes in coagulase-positive staphylococci (CPS). Regarding enterotoxins, genes sed (28.2%) and see (24.2%) had a higher frequency of occurrence; sec gene was more frequently detected in CPS (58.8%). There was no association between the presence of the genes and the Staphylococcus species. Different virulence factors genes can be detected in caprine subclinical mastitis caused by CNS and CPS. The knowledge of the occurrence of these virulence factors is important for the development of effective control and prevention measures of subclinical mastitis caused by CNS and CPS in goats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Phenotypic and Molecular Aspects of Staphylococcus spp. Isolated from Hospitalized Patients and Beef in the Brazilian Amazon.

    PubMed

    Pieri, Fabio A; Vargas, Taise F; Galvão, Newton N; Nogueira, Paulo A; Orlandi, Patrícia P

    2016-03-01

    The aim of this study was to characterize and compare Staphylococcus spp. isolated from hospitalized patients and beef marketed in the city of Porto Velho-RO, Brazil. The isolates were subjected to antibiogram tests, adherence capacity tests, detection of the mecA gene, and epidemiological investigation by the random amplified polymorphic DNA (RAPD) technique, using the primers M13 and H12. Among the 123 Staphylococcus spp. isolates, 50 were identified as S. aureus and 73 as coagulase-negative Staphylococcus; among the latter, 7 species were identified. It was observed that the coagulase-negative Staphylococcus isolates showed greater adhesion ability than S. aureus. The profile of antimicrobial susceptibility was different among isolates, all of which were susceptible to vancomycin and linezolid, and had high penicillin resistance rates, varying according to the bacterial class and the source. In this study, all strains were negative for mecA gene detection; however, 36% of S. aureus and 17% of coagulase-negative Staphylococcus were resistant to oxacillin. The genetic relationship of these bacteria, analyzed by RAPD, was able to discriminate the species of coagulase-negative Staphylococcus strains of S. aureus along its origin. It was concluded that the isolates of Staphylococcus spp. derived from beef and human infections differ genetically. Thus, it is suggested that isolates from beef, which were grouped within hospital isolates, were probably carried via contact with beef in hospital professionals or patients.

  7. Species diversity and antibiotic resistance properties of Staphylococcus of farm animal origin in Nkonkobe Municipality, South Africa.

    PubMed

    Adegoke, Anthony A; Okoh, Anthony I

    2014-03-01

    The occurrence and antibiotic susceptibility profile of Staphylococcus isolates of healthy farm animal origin in Nkonkobe Municipality as well as the prevalence of putative antibiotic resistance genes were investigated using phenotypic and molecular methods. A total of 120 Staphylococcus isolates were isolated from 150 animal samples and consisted of Staphylococcus haemolyticus (30 %) and Staphylococcus aureus (23.3 %) from pig, Staphylococcus capitis (15 %) from goat, S. haemolyticus (5 %) and Staphylococcus xylosus (15 %) from cattle, and other staphylococci (11.7 %) from dead chicken and pigs. Besides this, the presence of these isolates was observed from the animal dung, showing that the organisms are shed to the environment. About 23.3 % of these isolates were coagulase-positive and 76.7 % were coagulase-negative Staphylococcus. Between 75 and 100 % of the isolates were resistant to penicillin G, tetracycline, sulfamethoxazole, and nalidixic acid; about 38 % were methicillin-resistant staphylococci, including 12.6 % methicillin-resistant S. aureus from pigs. In total, 12 % of all isolates were vancomycin resistant. Also, 12 % of the isolates were erythromycin resistant, while 40.2 % were resistant to ceftazidime. Only the genes mecA and mphC could be confirmed, whereas the genes vanA, vanB, ermA, ermB, and ermC could not be detected. The high phenotypic antibiotic resistance and the presence of some associated resistance genes is a potential threat to public health and suggest the animals to be important reservoirs of antibiotic resistance determinants in the environment.

  8. Short communication: β-Lactam resistance and vancomycin heteroresistance in Staphylococcus spp. isolated from bovine subclinical mastitis.

    PubMed

    Mello, Priscila Luiza; Pinheiro, Luiza; Martins, Lisiane de Almeida; Brito, Maria Aparecida Vasconcelos Paiva; Ribeiro de Souza da Cunha, Maria de Lourdes

    2017-08-01

    The use of antimicrobial agents has led to the emergence of resistant bacterial strains over a relatively short period. Furthermore, Staphylococcus spp. can produce β-lactamase, which explains the survival of these strains in a focus of infection despite the use of a β-lactam antibiotic. The aim of this study was to evaluate the resistance of Staphylococcus spp. isolated from bovine subclinical mastitis to oxacillin and vancomycin (by minimum inhibitory concentration) and to detect vancomycin heteroresistance by a screening method. We also evaluated β-lactamase production and resistance due to hyperproduction of this enzyme and investigated the mecA and mecC genes and performed staphylococcal cassette chromosome mec typing. For this purpose, 181 Staphylococcus spp. isolated from mastitis subclinical bovine were analyzed. Using the phenotypic method, 33 (18.2%) of Staphylococcus spp. were resistant to oxacillin. In contrast, all isolates were susceptible to vancomycin, and heteroresistance was detected by the screening method in 13 isolates. Production of β-lactamase was observed in 174 (96%) of the Staphylococcus spp. isolates. The mecA gene was detected in 8 isolates, all of them belonging to the species Staphylococcus epidermidis, and staphylococcal cassette chromosome mec typing revealed the presence of type I and type IV isolates. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Antimicrobial resistance and virulence characterization of Staphylococcus aureus and coagulase-negative staphylococci from imported beef meat.

    PubMed

    Osman, Kamelia; Alvarez-Ordóñez, Avelino; Ruiz, Lorena; Badr, Jihan; ElHofy, Fatma; Al-Maary, Khalid S; Moussa, Ihab M I; Hessain, Ashgan M; Orabi, Ahmed; Saad, Alaa; Elhadidy, Mohamed

    2017-05-10

    The objectives of this study were to characterize the diversity and magnitude of antimicrobial resistance among Staphylococcus species recovered from imported beef meat sold in the Egyptian market and the potential mechanisms underlying the antimicrobial resistance phenotypes including harboring of resistance genes (mecA, cfr, gyrA, gyrB, and grlA) and biofilm formation. The resistance gene mecA was detected in 50% of methicillin-resistant non-Staphylococcus aureus isolates (4/8). Interestingly, our results showed that: (i) resistance genes mecA, gyrA, gyrB, grlA, and cfr were absent in Staphylococcus hominis and Staphylococcus hemolyticus isolates, although S. hominis was phenotypically resistant to methicillin (MR-non-S. aureus) while S. hemolyticus was resistant to vancomycin only; (ii) S. aureus isolates did not carry the mecA gene (100%) and were phenotypically characterized as methicillin- susceptible S. aureus (MSS); and (iii) the resistance gene mecA was present in one isolate (1/3) of Staphylococcus lugdunensis that was phenotypically characterized as methicillin-susceptible non-S. aureus (MSNSA). Our findings highlight the potential risk for consumers, in the absence of actionable risk management information systems, of imported foods and advice a strict implementation of international standards by different venues such as CODEX to avoid the increase in prevalence of coagulase positive and coagulase negative Staphylococcus isolates and their antibiotic resistance genes in imported beef meat at the Egyptian market.

  10. Antimicrobial activity of ceftaroline and comparator agents when tested against numerous species of coagulase-negative Staphylococcus causing infection in US hospitals.

    PubMed

    Sader, Helio S; Farrell, David J; Flamm, Robert K; Streit, Jennifer M; Mendes, Rodrigo E; Jones, Ronald N

    2016-05-01

    A total of 1593 coagulase-negative staphylococci (CoNS) considered clinically significant were collected from 71 US medical centers in 2013-2014 and tested for susceptibility by CLSI broth microdilution methods. Species identification was performed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Overall, 59.7% of isolates were oxacillin resistant (MRCoNS). Ceftaroline (MIC50/90, 0.25/0.5μg/mL) inhibited 99.2% of CoNS at ≤1μg/mL (susceptible breakpoint for Staphylococcus aureus), including 98.7% of MRCoNS, and the highest ceftaroline MIC value was 2μg/mL (13 isolates). Staphylococcus epidermidis represented 60.3% of the CoNS collection and was highly susceptible to ceftaroline (MIC50/90, 0.25/0.5μg/mL, 99.9% inhibited at ≤1μg/mL). All isolates of Staphylococcus capitis, Staphylococcus caprae, Staphylococcus hominis, Staphylococcus lugdunensis, Staphylococcus pettenkoferi, Staphylococcus simulans, and Staphylococcus warneri (MIC50/90, 0.06-0.25/0.25-0.5μg/mL) were inhibited at ceftaroline MIC of ≤1μg/mL. Staphylococcus haemolyticus represented only 4.8%, was atypically less susceptible to ceftaroline (MIC50/90, 0.5/2μg/mL, 87.0% inhibited at ≤1μg/mL), and accounted for 76.9% (10/13) of isolates with ceftaroline MIC >1μg/mL. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. A Staphylococcus xylosus Isolate with a New mecC Allotype

    PubMed Central

    Harrison, Ewan M.; Paterson, Gavin K.; Holden, Matthew T. G.; Morgan, Fiona J. E.; Larsen, Anders Rhod; Petersen, Andreas; Leroy, Sabine; De Vliegher, Sarne; Perreten, Vincent; Fox, Lawrence K.; Lam, Theo J. G. M.; Sampimon, Otlis C.; Zadoks, Ruth N.; Peacock, Sharon J.; Parkhill, Julian

    2013-01-01

    Recently, a novel variant of mecA known as mecC (mecALGA251) was identified in Staphylococcus aureus isolates from both humans and animals. In this study, we identified a Staphylococcus xylosus isolate that harbors a new allotype of the mecC gene, mecC1. Whole-genome sequencing revealed that mecC1 forms part of a class E mec complex (mecI-mecR1-mecC1-blaZ) located at the orfX locus as part of a likely staphylococcal cassette chromosome mec element (SCCmec) remnant, which also contains a number of other genes present on the type XI SCCmec. PMID:23274660

  12. Prevalence of Staphylococcus aureus and methicillin resistant Staphylococcus aureus (MRSA) in the oral cavity.

    PubMed

    Koukos, Georgios; Sakellari, Dimitra; Arsenakis, Minas; Tsalikis, Lazaros; Slini, Theodora; Konstantinidis, Antonios

    2015-09-01

    To assess the prevalence of Staphylococcus aureus and methicillin resistant Staphylococcus aureus (MRSA) in plaque and tongue samples from systemically healthy subjects with periodontal health, gingivitis or chronic periodontitis. After screening 720 potentially eligible subjects, 154 systemically healthy participants were ultimately enrolled in the current study. Subgingival samples were taken from the first molars and the tongue and analyzed for the presence of S. aureus and MRSA by polymerase chain reaction (PCR), using primers and conditions previously described in the literature. In addition, samples were taken from deep periodontal pockets of chronic periodontitis patients. Statistical analysis was performed by applying non-parametric tests (Kruskal-Wallis for clinical parameters, and z-test with Bonferroni corrections for distributions of assessed parameters). All comparisons were set at the 0.05 significance level. S. aureus was detected in 18% of all participants and in 10% of the samples tested. No significant differences were found in its distribution among the three investigated groups (z-test for proportions with Bonferroni corrections, p>0.05). The mecA gene was not present in any of the S. aureus found. S. aureus can be found in the oral environment regardless of the periodontal conditions and therefore should be considered as a member of the transient flora not participating in periodontal pathology. Subgingival sites and tongue surfaces seem to be an unusual habitat of MRSA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Staphylococcus pseudintermedius necrotizing fasciitis in a dog.

    PubMed

    Weese, J Scott; Poma, Roberta; James, Fiona; Buenviaje, Gilbert; Foster, Robert; Slavic, Durda

    2009-06-01

    Staphylococcus pseudintermedius was implicated as the cause of rapidly progressive and fatal necrotizing fasciitis in a dog. The isolate was methicillin-susceptible and did not contain genes encoding the Panton-Valentine leukocidin. While Streptococcus canis is typically considered to be the main cause of necrotizing fasciitis in dogs, staphylococci should also be considered.

  14. Improvement of Fish Sauce Quality by Strain CMC5-3-1: A Novel Species of Staphylococcus sp.

    PubMed

    Udomsil, Natteewan; Rodtong, Sureelak; Tanasupawat, Somboon; Yongsawatdigul, Jirawat

    2015-09-01

    Staphylococcus sp. CMC5-3-1 and CMS5-7-5 isolated from fermented fish sauce at 3 to 7 mo, respectively, showed different characteristics on protein hydrolysis and volatile formation. These Gram-positive cocci were able to grow in up to 15% NaCl with the optimum at 0.5% to 5% NaCl in tryptic soy broth. Based on ribosomal 16S rRNA gene sequences, Staphylococcus sp. CMC5-3-1 and CMS5-7-5 showed 99.0% similarity to that of Staphylococcus piscifermentans JCM 6057(T) , but DNA-DNA relatedness was <30%, indicating that they were likely to be new species. DNA relatedness between these 2 strains was only 65%, suggesting that they also belonged to different species. The α-amino group content of 6-month-old fish sauce inoculated with Staphylococcus sp. CMC5-3-1 was 740.5 mM, which was higher than that inoculated by the strain CMS5-7-5 (662.14 mM, P < 0.05). Histamine was not produced during fermentations with both strains. Fish sauce inoculated with Staphylococcus sp. CMC5-3-1 showed the highest content of total glutamic acid (P < 0.05). The major volatile compound detected in fish sauce inoculated with Staphylococcus sp. CMC5-3-1 was 2-methypropanal, contributing to the desirable dark chocolate note. Staphylococcus sp. CMC5-3-1 could be applied as a starter culture to improve the umami and aroma of fish sauce. © 2015 Institute of Food Technologists®

  15. Complete Genome Sequence of Staphylococcus epidermidis 1457

    PubMed Central

    Galac, Madeline R.; Stam, Jason; Maybank, Rosslyn; Hinkle, Mary; Mack, Dietrich; Rohde, Holger; Roth, Amanda L.

    2017-01-01

    ABSTRACT Staphylococcus epidermidis 1457 is a frequently utilized strain that is amenable to genetic manipulation and has been widely used for biofilm-related research. We report here the whole-genome sequence of this strain, which encodes 2,277 protein-coding genes and 81 RNAs within its 2.4-Mb genome and plasmid. PMID:28572323

  16. Staphylococcus pseudintermedius necrotizing fasciitis in a dog

    PubMed Central

    Weese, J. Scott; Poma, Roberta; James, Fiona; Buenviaje, Gilbert; Foster, Robert; Slavic, Durda

    2009-01-01

    Staphylococcus pseudintermedius was implicated as the cause of rapidly progressive and fatal necrotizing fasciitis in a dog. The isolate was methicillin-susceptible and did not contain genes encoding the Panton-Valentine leukocidin. While Streptococcus canis is typically considered to be the main cause of necrotizing fasciitis in dogs, staphylococci should also be considered. PMID:19721787

  17. Isolation, Identification and Antibacterial Susceptibility of Staphylococcus spp. Associated with the Mobile Phones of University Students.

    PubMed

    Furuhata, Katsunori; Ishizaki, Naoto; Sogawa, Kazuyuki; Kawakami, Yasushi; Lee, Shin-Ichi; Sato, Masahiro; Fukuyama, Masafumi

    2016-01-01

    From May 2014 to February 2015, 319 university students (male, n=173; female n=146) of 18 to 24 years of age who carried mobile phones or computer tablets were selected as subjects. Staphylococcus spp. were detected in 101 of 319 samples (31.7%). In the present study, 11 strains of S. aureus were isolated and identified, not all of which were methicillin-resistant Staphylococcus aureus (MRSA). Overall, 14 species were identified, with 11 strains (10.9%) of S. xylosus being isolated at the highest frequency. Following this were eight strains (7.9%) of S. cohnii and seven strains (6.9%) each of S. capitis and S. haemolyticus. Staphylococcus spp. isolation was performed with bacterial samples obtained from the mobile phones of 22 specific subjects (males, n=12; females, n=10). Staphylococcus spp. isolation was performed on days -1, 7 and 30 of the experiment. Staphylococcus spp. were positively detected one or more times in 12 subjects (54.5%). In one subject (8.3%), all three tests were positive. Furthermore, two tests were positive in three (25.0%). In the eight remaining subjects (66.7%) Staphylococcus spp. were detected only once. For the three abovementioned tests, we investigated the pulsed-field gel electrophoresis (PFGE) patterns of the strains derived from the mobile phone and from the fingers of three subjects in whom the same bacterial species were isolated twice. From the cases with similarities between strains derived from the fingers and the mobile phones and cases, with consistency in the strains derived from the mobile phone at different times, commonality was observed in the strains derived from the fingers and mobile phones along with chronological uniformity in the strains derived from the mobile phones. A total of 101 Staphylococcus spp. strains were isolated from mobile phones. According to drug susceptibility tests, 99 strains (98.0%) were found to have some degree of resistance to drugs (excluding one strain each of S. aureus and S. haemolyticus

  18. Viability of Staphylococcus xylosus isolated from artisanal sausages for application as starter cultures in meat products.

    PubMed

    Fiorentini, Angela Maria; Sawitzki, Maristela Cortez; Bertol, Teresinha Marisa; Sant'anna, Ernani S

    2009-01-01

    Viability of Staphylococcus xylosus isolated from artisanal sausages for application as starter cultures in meat products Viability of Staphylococcus xylosus strains AD1 and U5 isolated from natural fermented sausages was investigated as starter cultures in fermented sausages produced in the South Region of Brazil. The study demonstrated that the Staphylococcus xylosus strains AD1 and U5 showed significant growth during fermentation, stability over freeze-dried process, negative reaction for staphylococcal enterotoxins and viability for using as a single-strain culture or associated with lactic acid bacteria for production of fermented sausages.

  19. Selective biosensing of Staphylococcus aureus using chitosan quantum dots

    NASA Astrophysics Data System (ADS)

    Abdelhamid, Hani Nasser; Wu, Hui-Fen

    2018-01-01

    Selective biosensing of Staphylococcus aureus (S. aureus) using chitosan modified quantum dots (CTS@CdS QDs) in the presence of hydrogen peroxide is reported. The method is based on the intrinsic positive catalase activity of S. aureus. CTS@CdS quantum dots provide high dispersion in aqueous media with high fluorescence emission. Staphylococcus aureus causes a selective quenching of the fluorescence emission of CTS@CdS QDs in the presence of H2O2 compared to other pathogens such as Escherichia coli and Pseudomonas aeruginosa. The intrinsic enzymatic character of S. aureus (catalase positive) offers selective and fast biosensing. The present method is highly selective for positive catalase species and requires no expensive reagents such as antibodies, aptamers or microbeads. It could be extended for other species that are positive catalase.

  20. Contamination of X-ray Cassettes with Methicillin-resistant Staphylococcus aureus and Methicillin-resistant Staphylococcus haemolyticus in a Radiology Department

    PubMed Central

    Kim, Han-Sung; Park, Ji-Young; Koo, Hyun-Sook; Choi, Chul-Sun; Song, Wonkeun; Cho, Hyoun Chan; Lee, Kyu Man

    2012-01-01

    Background We performed surveillance cultures of the surfaces of X-ray cassettes to assess contamination with methicillin-resistant Staphylococcus aureus (MRSA). Methods The surfaces of 37 X-ray cassettes stored in a radiology department were cultured using mannitol salt agar containing 6 µg/mL oxacillin. Suspected methicillin-resistant staphylococcal colonies were isolated and identified by biochemical testing. Pulsed-field gel electrophoresis (PFGE) analysis was performed to determine the clonal relationships of the contaminants. Results Six X-ray cassettes (16.2%) were contaminated with MRSA. During the isolation procedure, we also detected 19 X-ray cassettes (51.4%) contaminated with methicillin-resistant Staphylococcus haemolyticus (MRSH), identified as yellow colonies resembling MRSA on mannitol salt agar. PFGE analysis of the MRSA and MRSH isolates revealed that most isolates of each organism were identical or closely related to each other, suggesting a common source of contamination. Conclusions X-ray cassettes, which are commonly in direct contact with patients, were contaminated with MRSA and MRSH. In hospital environments, contaminated X-ray cassettes may serve as fomites for methicillin-resistant staphylococci. PMID:22563556

  1. Contamination of X-ray cassettes with methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus haemolyticus in a radiology department.

    PubMed

    Kim, Jae-Seok; Kim, Han-Sung; Park, Ji-Young; Koo, Hyun-Sook; Choi, Chul-Sun; Song, Wonkeun; Cho, Hyoun Chan; Lee, Kyu Man

    2012-05-01

    We performed surveillance cultures of the surfaces of X-ray cassettes to assess contamination with methicillin-resistant Staphylococcus aureus (MRSA). The surfaces of 37 X-ray cassettes stored in a radiology department were cultured using mannitol salt agar containing 6 µg/mL oxacillin. Suspected methicillin-resistant staphylococcal colonies were isolated and identified by biochemical testing. Pulsed-field gel electrophoresis (PFGE) analysis was performed to determine the clonal relationships of the contaminants. Six X-ray cassettes (16.2%) were contaminated with MRSA. During the isolation procedure, we also detected 19 X-ray cassettes (51.4%) contaminated with methicillin-resistant Staphylococcus haemolyticus (MRSH), identified as yellow colonies resembling MRSA on mannitol salt agar. PFGE analysis of the MRSA and MRSH isolates revealed that most isolates of each organism were identical or closely related to each other, suggesting a common source of contamination. X-ray cassettes, which are commonly in direct contact with patients, were contaminated with MRSA and MRSH. In hospital environments, contaminated X-ray cassettes may serve as fomites for methicillin-resistant staphylococci.

  2. Complete Genome Sequence of Staphylococcus epidermidis 1457.

    PubMed

    Galac, Madeline R; Stam, Jason; Maybank, Rosslyn; Hinkle, Mary; Mack, Dietrich; Rohde, Holger; Roth, Amanda L; Fey, Paul D

    2017-06-01

    Staphylococcus epidermidis 1457 is a frequently utilized strain that is amenable to genetic manipulation and has been widely used for biofilm-related research. We report here the whole-genome sequence of this strain, which encodes 2,277 protein-coding genes and 81 RNAs within its 2.4-Mb genome and plasmid. Copyright © 2017 Galac et al.

  3. Spontaneous methicillin-resistant Staphylococcus aureus (MRSA) meningitis.

    PubMed

    Longhurst, William D; Sheele, Johnathan M

    2018-05-01

    Spontaneous methicillin-resistant Staphylococcus aureus (MRSA) meningitis is extremely rare and has a high mortality rate. We report a case of MRSA meningitis in an otherwise healthy young adult female with no recent trauma or neurosurgical interventions. Despite antibiotics she suffered a vasculitis-induced cerebral vascular ischemic event. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. [Pyomyositis, sacroiliitis and spondylodiscitis caused by Staphylococcus hominis in a immunocompetent woman].

    PubMed

    Gómez Rodríguez, N; Durán Muñoz, O

    2006-12-01

    In absence of risk factors, osteoarticular infections by coagulase-negative staphylococci are very infrequent. We described the case of a immunocompetent 73-year-old-woman that suffered pyomyositis, left sacroiliitis and spondylodiscitis involving the first and second thoracic vertebrae by Staphylococcus hominis. This multifocal infection occurred five-weeks after intramuscular administration of NSAI for treatment of low back pain associated with a herniated disc L4-L5. This is the first know case of a multifocal muscle skeletal infection by Staphylococcus hominis in a patient immunocompetent.

  5. 21 CFR 866.3700 - Staphylococcus aureus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Staphylococcus aureus serological reagents. 866.3700 Section 866.3700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3700...

  6. 21 CFR 866.3700 - Staphylococcus aureus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Staphylococcus aureus serological reagents. 866.3700 Section 866.3700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3700...

  7. 21 CFR 866.3700 - Staphylococcus aureus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Staphylococcus aureus serological reagents. 866.3700 Section 866.3700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3700...

  8. 21 CFR 866.3700 - Staphylococcus aureus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Staphylococcus aureus serological reagents. 866.3700 Section 866.3700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3700...

  9. 21 CFR 866.3700 - Staphylococcus aureus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Staphylococcus aureus serological reagents. 866.3700 Section 866.3700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3700...

  10. THE EFFECT OF STAPHYLOCOCCUS AUREUS TOXIN ON THE KIDNEY

    PubMed Central

    VonGlahn, William C.; Weld, Julia T.

    1935-01-01

    1. The hemolytic Staphylococcus aureus elaborates a toxin in vitro that when injected intravenously produces lesions in the kidneys of rabbits and cats. 2. The toxin injures primarily the blood vessels of the kidney. PMID:19870338

  11. Viability of Staphylococcus xylosus isolated from artisanal sausages for application as starter cultures in meat products

    PubMed Central

    Fiorentini, Ângela Maria; Sawitzki, Maristela Cortez; Bertol, Teresinha Marisa; Sant’Anna, Ernani S.

    2009-01-01

    Viability of Staphylococcus xylosus isolated from artisanal sausages for application as starter cultures in meat products Viability of Staphylococcus xylosus strains AD1 and U5 isolated from natural fermented sausages was investigated as starter cultures in fermented sausages produced in the South Region of Brazil. The study demonstrated that the Staphylococcus xylosus strains AD1 and U5 showed significant growth during fermentation, stability over freeze-dried process, negative reaction for staphylococcal enterotoxins and viability for using as a single-strain culture or associated with lactic acid bacteria for production of fermented sausages. PMID:24031331

  12. Linoleic acid salt with ultrapure soft water as an antibacterial combination against dermato-pathogenic Staphylococcus spp.

    PubMed

    Jang, H; Makita, Y; Jung, K; Ishizaka, S; Karasawa, K; Oida, K; Takai, M; Matsuda, H; Tanaka, A

    2016-02-01

    Skin colonization of Staphylococcus spp. critically affects the severity of dermatitis in humans and animals. We examined different types of fatty acid salts for their antibacterial activity against Staphylococcus spp. when used in ultrapure soft water (UPSW). We also evaluated their therapeutic effect on a spontaneous canine model of dermatitis. UPSW, in which Ca(++) and Mg(++) were replaced with Na(+) , was generated using a water softener with cation-exchange resin. Staphylococcus aureus (Staph. aureus), Staphylococcus intermedius (Staph. intermedius), and Staphylococcus pseudintermedius (Staph. pseudintermedius) were incubated with various fatty acid salts in distilled water (DW) or UPSW and the number of bacteria was counted. Among the fatty acids, oleic acid salt and linoleic acid (LA) salt reduced the number of these bacteria. Also, UPSW enhanced the antibacterial effect of LA on Staph. spp. In spontaneously developed itchy dermatitis in companion dogs, shampoo treatment with liquid soap containing 10% LA in UPSW improved skin conditions. LA salt showed antibacterial activity against Staph. spp. Treatment with soap containing LA with UPSW reduced clinical conditions in dogs with dermatitis. Because colonization of Staph. spp. on the skin exacerbates dermatitis, the use of LA-containing soap in UPSW may reduce unpleasant clinical symptoms of the skin. © 2015 The Society for Applied Microbiology.

  13. Shortened Time to Identify Staphylococcus Species from Blood Cultures and Methicillin Resistance Testing Using CHROMAgar

    PubMed Central

    Chihara, Shingo; Hayden, Mary K.; Minogue-Corbett, Eileen; Singh, Kamaljit

    2009-01-01

    The ability to rapidly differentiate coagulase-negative staphylococcus (CoNS) from Staphylococcus aureus and to determine methicillin resistance is important as it affects the decision to treat empiric antibiotic selection. The objective of this study was to evaluate CHROMagar S. aureus and CHROMagar MRSA (Becton Dickinson) for rapid identification of Staphylococcus spp. directly from blood cultures. Consecutive blood culture bottles (BacT Alert 3D SA and SN, bioMérieux) growing gram-positive cocci in clusters were evaluated. An aliquot was plated onto CHROMagar MRSA (C-MRSA) and CHROMagar S. aureus (C-SA) plates, which were read at 12 to 16 hours. C-SA correctly identified 147/147 S. aureus (100% sensitivity); 2 CoNS were misidentified as S. aureus (98% specificity). C-MRSA correctly identified 74/77 MRSA (96% sensitivity). None of the MSSA isolates grew on C-MRSA (100% specificity). In conclusion, CHROMagar is a rapid and sensitive method to distinguish MRSA, MSSA, and coagulase-negative Staphylococcus and may decrease time of reporting positive results. PMID:20016679

  14. New antimicrobial combinations: substituted chalcones- oxacillin against methicillin resistant Staphylococcus aureus.

    PubMed

    Talia, Juan Manuel; Debattista, Nora Beatriz; Pappano, Nora Beatriz

    2011-04-01

    Staphylococcus aureus, the most virulent Staphylococcus species, is also the prevalent pathogen isolated from hospitalized patients and the second most common from patients in outpatient settings. In general, bacteria have the genetic ability to transmit and acquire resistance to drugs, which are utilized as therapeutic agents. Related studies of antimicrobial activity indicate that crude extracts containing flavonoids, triterpenes and steroids have showed significative activity against several Staphylococcus aureus strains. Combination effects between flavonoids and antibiotics also have been reported. The aim of the present work was to investigate in vitro synergism between several chalcones substituted in combination with oxacillin, an antibiotic used conventionally against S. aureus ATCC 43 300 that is resistant to meticillin, using the kinetic turbidimetric method developed earlier. The results were satisfactory for all assayed combinations and in accordance with the mechanism of bacteriostatic inhibition previously proposed, except for 2´,4´-dihydroxy-3´-methoxychalcone - oxacillin. The best combination was 2´,3´-dihydroxychalcone -oxacillin (MIC: 11.2 µg/mL). Further investigations are needed to characterize the interaction mechanism with antibiotics. Thus, chalcones - oxacillin combination could lead to the development of new antibiotics against methicillin resistant S. aureus infection.

  15. Searching for Beta-Haemolysin hlb Gene in Staphylococcus pseudintermedius with Species-Specific Primers.

    PubMed

    Kmieciak, Wioletta; Szewczyk, Eligia M; Ciszewski, Marcin

    2016-07-01

    The paper presents an analysis of 51 Staphylococcus pseudintermedius clinically isolated strains from humans and from animals. Staphylococcus pseudintermedius strains' ability to produce β-haemolysin was evaluated with phenotypic methods (hot-cold effect, reverse CAMP test). In order to determine the hlb gene presence (coding for β-haemolysin) in a genomic DNA, PCR reactions were conducted with two different pairs of primers: one described in the literature for Staphylococcus aureus and recommended for analysing SIG group staphylococci and newly designed one in CLC Main Workbench software. Only reactions with newly designed primers resulted in product amplification, the presence of which was fully compatible with the results of phenotypic β-haemolysin test. Negative results for S. aureus and S. intermedius reference ATCC strains suggest that after further analysis the fragment of hlb gene amplified with primers described in this study might be included in the process of S. pseudintermedius strains identification.

  16. An ultraviolet spectrophotometric assay for the screening of sn-2-specific lipases using 1,3-O-dioleoyl-2-O-α-eleostearoyl-sn-glycerol as substrate

    PubMed Central

    Mendoza, Lilia D.; Rodriguez, Jorge A.; Leclaire, Julien; Buono, Gerard; Fotiadu, Frédéric; Carrière, Frédéric; Abousalham, Abdelkarim

    2012-01-01

    In the present study, we propose a continuous assay for the screening of sn-2 lipases by using triacylglycerols (TAGs) from Aleurites fordii seed (tung oil) and a synthetic TAG containing the α-eleostearic acid at the sn-2 position and the oleic acid (OA) at the sn-1 and sn-3 positions [1,3-O-dioleoyl-2-O-α-eleostearoyl-sn-glycerol (sn-OEO)]. Each TAG was coated into a microplate well, and the lipase activity was measured by optical density increase at 272 nm due to transition of α-eleostearic acid from the adsorbed to the soluble state. The sn-1,3-regioselective lipases human pancreatic lipase (HPL), LIP2 lipase from Yarrowia lipolytica (YLLIP2), and a known sn-2 lipase, Candida antarctica lipase A (CALA) were used to validate this method. TLC analysis of lipolysis products showed that the lipases tested were able to hydrolyze the sn-OEO and the tung oil TAGs, but only CALA hydrolyzed the sn-2 position. The ratio of initial velocities on sn-OEO and tung oil TAGs was used to estimate the sn-2 preference of lipases. CALA was the enzyme with the highest ratio (0.22 ± 0.015), whereas HPL and YLLIP2 showed much lower ratios (0.072 ± 0.026 and 0.038 ± 0.016, respectively). This continuous sn-2 lipase assay is compatible with a high sample throughput and thus can be applied to the screening of sn-2 lipases. PMID:22114038

  17. Yeast mitochondrial HMG proteins: DNA-binding properties of the most evolutionarily divergent component of mitochondrial nucleoids.

    PubMed

    Bakkaiova, Jana; Marini, Victoria; Willcox, Smaranda; Nosek, Jozef; Griffith, Jack D; Krejci, Lumir; Tomaska, Lubomir

    2015-12-08

    Yeast mtDNA is compacted into nucleoprotein structures called mitochondrial nucleoids (mt-nucleoids). The principal mediators of nucleoid formation are mitochondrial high-mobility group (HMG)-box containing (mtHMG) proteins. Although these proteins are some of the fastest evolving components of mt-nucleoids, it is not known whether the divergence of mtHMG proteins on the level of their amino acid sequences is accompanied by diversification of their biochemical properties. In the present study we performed a comparative biochemical analysis of yeast mtHMG proteins from Saccharomyces cerevisiae (ScAbf2p), Yarrowia lipolytica (YlMhb1p) and Candida parapsilosis (CpGcf1p). We found that all three proteins exhibit relatively weak binding to intact dsDNA. In fact, ScAbf2p and YlMhb1p bind quantitatively to this substrate only at very high protein to DNA ratios and CpGcf1p shows only negligible binding to dsDNA. In contrast, the proteins exhibit much higher preference for recombination intermediates such as Holliday junctions (HJ) and replication forks (RF). Therefore, we hypothesize that the roles of the yeast mtHMG proteins in maintenance and compaction of mtDNA in vivo are in large part mediated by their binding to recombination/replication intermediates. We also speculate that the distinct biochemical properties of CpGcf1p may represent one of the prerequisites for frequent evolutionary tinkering with the form of the mitochondrial genome in the CTG-clade of hemiascomycetous yeast species. © 2016 Authors.

  18. Human recombinant lysosomal enzymes produced in microorganisms.

    PubMed

    Espejo-Mojica, Ángela J; Alméciga-Díaz, Carlos J; Rodríguez, Alexander; Mosquera, Ángela; Díaz, Dennis; Beltrán, Laura; Díaz, Sergio; Pimentel, Natalia; Moreno, Jefferson; Sánchez, Jhonnathan; Sánchez, Oscar F; Córdoba, Henry; Poutou-Piñales, Raúl A; Barrera, Luis A

    2015-01-01

    Lysosomal storage diseases (LSDs) are caused by accumulation of partially degraded substrates within the lysosome, as a result of a function loss of a lysosomal protein. Recombinant lysosomal proteins are usually produced in mammalian cells, based on their capacity to carry out post-translational modifications similar to those observed in human native proteins. However, during the last years, a growing number of studies have shown the possibility to produce active forms of lysosomal proteins in other expression systems, such as plants and microorganisms. In this paper, we review the production and characterization of human lysosomal proteins, deficient in several LSDs, which have been produced in microorganisms. For this purpose, Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, and Ogataea minuta have been used as expression systems. The recombinant lysosomal proteins expressed in these hosts have shown similar substrate specificities, and temperature and pH stability profiles to those produced in mammalian cells. In addition, pre-clinical results have shown that recombinant lysosomal enzymes produced in microorganisms can be taken-up by cells and reduce the substrate accumulated within the lysosome. Recently, metabolic engineering in yeasts has allowed the production of lysosomal enzymes with tailored N-glycosylations, while progresses in E. coli N-glycosylations offer a potential platform to improve the production of these recombinant lysosomal enzymes. In summary, microorganisms represent convenient platform for the production of recombinant lysosomal proteins for biochemical and physicochemical characterization, as well as for the development of ERT for LSD. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Differentiation of Staphylococcus argenteus (formerly: Staphylococcus aureus clonal complex 75) by mass spectrometry from S. aureus using the first strain isolated from a wild African great ape.

    PubMed

    Schuster, Dominik; Rickmeyer, Jasmin; Gajdiss, Mike; Thye, Thorsten; Lorenzen, Stephan; Reif, Marion; Josten, Michaele; Szekat, Christiane; Melo, Luís D R; Schmithausen, Ricarda M; Liégeois, Florian; Sahl, Hans-Georg; Gonzalez, Jean-Paul J; Nagel, Michael; Bierbaum, Gabriele

    2017-01-01

    The species Staphylococcus argenteus was separated recently from Staphylococcus aureus (Tong S.Y., F. Schaumburg, M.J. Ellington, J. Corander, B. Pichon, F. Leendertz, S.D. Bentley, J. Parkhill, D.C. Holt, G. Peters, and P.M. Giffard, 2015). The objective of this work was to characterise the genome of a non-human S. argenteus strain, which had been isolated from the faeces of a wild-living western lowland gorilla in Gabon, and analyse the spectrum of this species in matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The full genome sequence revealed a scarcity of virulence genes and absence of resistance genes, indicating a decreased virulence potential compared to S. aureus and the human methicillin-resistant S. argenteus isolate MSHR1132 T . Spectra obtained by MALDI-TOF MS and the analysis of available sequences in the genome databases identified several MALDI-TOF MS signals that clearly differentiate S. argenteus, the closely related Staphylococcus schweitzeri and S. aureus. In conclusion, in the absence of biochemical tests that identify the three species, mass spectrometry should be employed as method of choice. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Pulsed-field gel electrophoresis typing of Staphylococcus aureus isolates

    USDA-ARS?s Scientific Manuscript database

    Pulsed-field gel electrophoresis (PFGE) is the most applied and effective genetic typing method for epidemiological studies and investigation of foodborne outbreaks caused by different pathogens, including Staphylococcus aureus. The technique relies on analysis of large DNA fragments generated by th...

  1. Strategy for improving extracellular lipolytic activities by a novel thermotolerant Staphylococcus sp. strain

    PubMed Central

    2011-01-01

    Background Extracellular bacterial lipases received much attention for their substrate specificity and their ability to function under extreme environments (pH, temperature...). Many staphylococci produced lipases which were released into the culture medium. Reports of extracellular thermostable lipases from Staphylococcus sp. and active in alkaline conditions are not previously described. Results This study focused on novel strategies to increase extracellular lipolytic enzyme production by a novel Staphylococcus sp. strain ESW. The microorganism needed neutral or alkaline pH values between 7.0 and 12.0 for growth. For pH values outside this range, cell growth seemed to be significantly inhibited. Staphylococcus sp. culture was able to grow within a wide temperature range (from 30 to 55°C). The presence of oils in the culture medium leaded to improvements in cells growth and lipolytic enzyme activity. On the other hand, although chemical surfactants leaded to an almost complete inhibition of growth and lipolytic enzyme production, their addition along the culture could affect the location of the enzyme. In addition, our results showed that this novel Staphylococcus sp. strain produced biosurfactants simultaneously with lipolytic activity, when soapstock (The main co-product of the vegetable oil refining industry), was used as the sole carbon source. Conclusion A simultaneous biosurfactant and extracellular lipolytic enzymes produced bacterial strain with potential application in soap stock treatment PMID:22078466

  2. Molecular characterization and antibiotic resistance of Staphylococcus spp. isolated from cheese processing plants.

    PubMed

    Rodrigues, Marjory Xavier; Silva, Nathália Cristina Cirone; Trevilin, Júlia Hellmeister; Cruzado, Melina Mary Bravo; Mui, Tsai Siu; Duarte, Fábio Rodrigo Sanches; Castillo, Carmen J Contreras; Canniatti-Brazaca, Solange Guidolin; Porto, Ernani

    2017-07-01

    The aim of this research paper was to characterize coagulase-positive and coagulase-negative staphylococci from raw milk, Minas cheese, and production lines of Minas cheese processing. One hundred isolates from 3 different cheese producers were characterized using molecular approaches, such as PCR, molecular typing, and DNA sequencing. Staphylococcus aureus (88% of the isolates) was the most abundant followed by Staphylococcus epidermidis, Staphylococcus hyicus, and Staphylococcus warneri. Among the 22 enterotoxin genes tested, the most frequent was seh (62% of the isolates), followed by selx and ser. Hemolysin genes were widely distributed across isolates, and Panton-Valentine leukocidin and toxic shock syndrome toxin genes were also identified. Methicillin-resistant S. aureus were staphylococcal cassette chromosome mec III, IVa, IVd, and others nontypeable. In the phenotypic antibiotic resistance, multiresistant isolates were detected and resistance to penicillin was the most observed. Using spa typing, we identified several types and described a new one, t14969, isolated from cheese. These findings suggest that antibiotic resistance and potentially virulent strains from different sources can be found in the Brazilian dairy processing environment. Further research should be conducted with collaboration from regulatory agencies to develop programs of prevention of virulent and resistant strain dissemination in dairy products and the processing environment. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Self-sampling is appropriate for detection of Staphylococcus aureus: a validation study

    PubMed Central

    2012-01-01

    Background Studies frequently use nasal swabs to determine Staphylococcus aureus carriage. Self-sampling would be extremely useful in an outhospital research situation, but has not been studied in a healthy population. We studied the similarity of self-samples and investigator-samples in nares and pharynxes of healthy study subjects (hospital staff) in the Netherlands. Methods One hundred and five nursing personnel members were sampled 4 times in random order after viewing an instruction paper: 1) nasal self-sample, 2) pharyngeal self-sample, 3) nasal investigator-sample, and 4) pharyngeal investigator-sample. Results For nasal samples, agreement is 93% with a kappa coefficient of 0.85 (95% CI 0.74-0.96), indicating excellent agreement, for pharyngeal samples agreement is 83% and the kappa coefficient is 0.60 (95% CI 0.43-0.76), indicating good agreement. In both sampling sites self-samples even detected more S. aureus than investigator-samples. Conclusions This means that self-samples are appropriate for detection of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. PMID:23137281

  4. Food poisoning outbreak in Tokyo, Japan caused by Staphylococcus argenteus.

    PubMed

    Suzuki, Yasunori; Kubota, Hiroaki; Ono, Hisaya K; Kobayashi, Makiko; Murauchi, Konomi; Kato, Rei; Hirai, Akihiko; Sadamasu, Kenji

    2017-12-04

    Staphylococcus argenteus is a novel species subdivided from Staphylococcus aureus. Whether this species can cause food poisoning outbreaks is unknown. This study aimed to investigate the enterotoxigenic activities of two food poisoning isolates suspected to be S. argenteus (Tokyo13064 and Tokyo13069). The results for phylogenic trees, constructed via whole genome sequencing, demonstrated that both isolates were more similar to a type strain of S. argenteus (MSHR1132) than any S. aureus strain. Moreover, the representative characteristics of S. argenteus were present in both strains, namely both isolates belong to the CC75 lineage and both lack a crtOPQMN operon. Thus, both were determined to be "S. argenteus." The compositions of the two isolates' accessory elements differed from those of MSHR1132. For example, the seb-related Staphylococcus aureus pathogenicity island, SaPIishikawa11, was detected in Tokyo13064 and Tokyo13069 but not in MSHR1132. Both isolates were suggested to belong to distinct lineages that branched off from MSHR1132 lineages in terms of accessory elements. Tokyo13064 and Tokyo13069 expressed high levels of s(arg)eb and produced S(arg)EB protein, indicating that both have the ability to cause food poisoning. Our findings suggest that S. argenteus harboring particular accessory elements can cause staphylococcal diseases such as food poisoning, similarly to S. aureus. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection.

    PubMed

    Kuroda, Makoto; Yamashita, Atsushi; Hirakawa, Hideki; Kumano, Miyuki; Morikawa, Kazuya; Higashide, Masato; Maruyama, Atsushi; Inose, Yumiko; Matoba, Kimio; Toh, Hidehiro; Kuhara, Satoru; Hattori, Masahira; Ohta, Toshiko

    2005-09-13

    Staphylococcus saprophyticus is a uropathogenic Staphylococcus frequently isolated from young female outpatients presenting with uncomplicated urinary tract infections. We sequenced the whole genome of S. saprophyticus type strain ATCC 15305, which harbors a circular chromosome of 2,516,575 bp with 2,446 ORFs and two plasmids. Comparative genomic analyses with the strains of two other species, Staphylococcus aureus and Staphylococcus epidermidis, as well as experimental data, revealed the following characteristics of the S. saprophyticus genome. S. saprophyticus does not possess any virulence factors found in S. aureus, such as coagulase, enterotoxins, exoenzymes, and extracellular matrix-binding proteins, although it does have a remarkable paralog expansion of transport systems related to highly variable ion contents in the urinary environment. A further unique feature is that only a single ORF is predictable as a cell wall-anchored protein, and it shows positive hemagglutination and adherence to human bladder cell associated with initial colonization in the urinary tract. It also shows significantly high urease activity in S. saprophyticus. The uropathogenicity of S. saprophyticus can be attributed to its genome that is needed for its survival in the human urinary tract by means of novel cell wall-anchored adhesin and redundant uro-adaptive transport systems, together with urease.

  6. Laboratory studies on biomachining of copper using Staphylococcus sp.

    PubMed

    Shikata, Shinji; Sreekumari, Kurissery R; Nandakumar, Kanavillil; Ozawa, Mazayoshi; Kikuchi, Yasushi

    2009-01-01

    The possibility of using bacteria to drill metallic surfaces has been demonstrated using Staphylococcus sp., a facultative anaerobic bacterium, isolated from corroded copper piping. The experiment involved exposure of copper coupons (25 mm x 15 mm x 3 mm) to a culture of Staphylococcus sp. for a maximum period of 7 days. Coupons exposed to sterile bacterial growth medium were used as controls. Exposed coupons were removed intermittently and observed microscopically for the extent of drilling. The total pit area and volume on these coupons were determined using image analysis. The results showed that both the biomachined area and volume increased with the duration of coupon exposure. In the drilling experiment, a copper thin film 2 microm thick was perforated by this bacterium within a period of 7 days. In conclusion, the results suggested that bacteria can be used as a tool for machining metallic surfaces.

  7. Toxic Shock Syndrome Caused by Methicillin-Resistant Staphylococcus aureus (MRSA) After Expander-Based Breast Reconstruction.

    PubMed

    Suga, Hirotaka; Shiraishi, Tomohiro; Takushima, Akihiko; Harii, Kiyonori

    2016-01-01

    Toxic shock syndrome is a rare but life-threatening complication after plastic surgery procedures. We experienced 2 cases of toxic shock syndrome after expander-based breast reconstruction caused by methicillin-resistant Staphylococcus aureus. The first patient took a severe clinical course due to the delayed diagnosis and treatment, and the second patient recovered rapidly after the early diagnosis and treatment based on our experience of the first case. Fever, rash, and gastrointestinal symptoms (diarrhea and/or vomiting) were characteristic and important for the early diagnosis of toxic shock syndrome. Considering the increased prevalence of methicillin-resistant Staphylococcus aureus, we should suspect methicillin-resistant Staphylococcus aureus in cases of toxic shock syndrome that occur postoperatively, and the empiric administration of vancomycin should be initiated in such cases.

  8. Silver-nanoparticles-modified biomaterial surface resistant to staphylococcus: new insight into the antimicrobial action of silver

    PubMed Central

    Wang, Jiaxing; Li, Jinhua; Guo, Geyong; Wang, Qiaojie; Tang, Jin; Zhao, Yaochao; Qin, Hui; Wahafu, Tuerhongjiang; Shen, Hao; Liu, Xuanyong; Zhang, Xianlong

    2016-01-01

    Titanium implants are widely used clinically, but postoperative implant infection remains a potential severe complication. The purpose of this study was to investigate the antibacterial activity of nano-silver(Ag)-functionalized Ti surfaces against epidemic Staphylococcus from the perspective of the regulation of biofilm-related genes and based on a bacteria-cell co-culture study. To achieve this goal, two representative epidemic Staphylococcus strains, Staphylococcus epidermidis (S. epidermidis, RP62A) and Staphylococcus aureus (S. aureus, USA 300), were used, and it was found that an Ag-nanoparticle-modified Ti surface could regulate the expression levels of biofilm-related genes (icaA and icaR for S. epidermidis; fnbA and fnbB for S. aureus) to inhibit bacterial adhesion and biofilm formation. Moreover, a novel bacteria-fibroblast co-culture study revealed that the incorporation of Ag nanoparticles on such a surface can help mammalian cells to survive, adhere and spread more successfully than Staphylococcus. Therefore, the modified surface was demonstrated to possess a good anti-infective capability against both sessile bacteria and planktonic bacteria through synergy between the effects of Ag nanoparticles and ion release. This work provides new insight into the antimicrobial action and mechanism of Ag-nanoparticle-functionalized Ti surfaces with bacteria-killing and cell-assisting capabilities and paves the way towards better satisfying the clinical needs. PMID:27599568

  9. Phenazine antibiotic inspired discovery of potent bromophenazine antibacterial agents against Staphylococcus aureus and Staphylococcus epidermidis.

    PubMed

    Borrero, Nicholas V; Bai, Fang; Perez, Cristian; Duong, Benjamin Q; Rocca, James R; Jin, Shouguang; Huigens, Robert W

    2014-02-14

    Nearly all clinically used antibiotics have been (1) discovered from microorganisms (2) using phenotype screens to identify inhibitors of bacterial growth. The effectiveness of these antibiotics is attributed to their endogenous roles as bacterial warfare agents against competing microorganisms. Unfortunately, every class of clinically used antibiotic has been met with drug resistant bacteria. In fact, the emergence of resistant bacterial infections coupled to the dismal pipeline of new antibacterial agents has resulted in a global health care crisis. There is an urgent need for innovative antibacterial strategies and treatment options to effectively combat drug resistant bacterial pathogens. Here, we describe the implementation of a Pseudomonas competition strategy, using redox-active phenazines, to identify novel antibacterial leads against Staphylococcus aureus and Staphylococcus epidermidis. In this report, we describe the chemical synthesis and evaluation of a diverse 27-membered phenazine library. Using this microbial warfare inspired approach, we have identified several bromophenazines with potent antibacterial activities against S. aureus and S. epidermidis. The most potent bromophenazine analogue from this focused library demonstrated a minimum inhibitory concentration (MIC) of 0.78-1.56 μM, or 0.31-0.62 μg mL(-1), against S. aureus and S. epidermidis and proved to be 32- to 64-fold more potent than the phenazine antibiotic pyocyanin in head-to-head MIC experiments. In addition to the discovery of potent antibacterial agents against S. aureus and S. epidermidis, we also report a detailed structure-activity relationship for this class of bromophenazine small molecules.

  10. Diversity of Staphylococcus aureus Isolates in European Wildlife

    PubMed Central

    Monecke, Stefan; Gavier-Widén, Dolores; Hotzel, Helmut; Peters, Martin; Guenther, Sebastian; Lazaris, Alexandros; Loncaric, Igor; Müller, Elke; Reissig, Annett; Ruppelt-Lorz, Antje; Shore, Anna C.; Walter, Birgit; Coleman, David C.; Ehricht, Ralf

    2016-01-01

    Staphylococcus aureus is a well-known colonizer and cause of infection among animals and it has been described from numerous domestic and wild animal species. The aim of the present study was to investigate the molecular epidemiology of S. aureus in a convenience sample of European wildlife and to review what previously has been observed in the subject field. 124 S. aureus isolates were collected from wildlife in Germany, Austria and Sweden; they were characterized by DNA microarray hybridization and, for isolates with novel hybridization patterns, by multilocus sequence typing (MLST). The isolates were assigned to 29 clonal complexes and singleton sequence types (CC1, CC5, CC6, CC7, CC8, CC9, CC12, CC15, CC22, CC25, CC30, CC49, CC59, CC88, CC97, CC130, CC133, CC398, ST425, CC599, CC692, CC707, ST890, CC1956, ST2425, CC2671, ST2691, CC2767 and ST2963), some of which (ST2425, ST2691, ST2963) were not described previously. Resistance rates in wildlife strains were rather low and mecA-MRSA isolates were rare (n = 6). mecC-MRSA (n = 8) were identified from a fox, a fallow deer, hares and hedgehogs. The common cattle-associated lineages CC479 and CC705 were not detected in wildlife in the present study while, in contrast, a third common cattle lineage, CC97, was found to be common among cervids. No Staphylococcus argenteus or Staphylococcus schweitzeri-like isolates were found. Systematic studies are required to monitor the possible transmission of human- and livestock-associated S. aureus/MRSA to wildlife and vice versa as well as the possible transmission, by unprotected contact to animals. The prevalence of S. aureus/MRSA in wildlife as well as its population structures in different wildlife host species warrants further investigation. PMID:27992523

  11. High Frequency and Diversity of Antimicrobial Activities Produced by Nasal Staphylococcus Strains against Bacterial Competitors

    PubMed Central

    Janek, Daniela; Zipperer, Alexander; Kulik, Andreas; Krismer, Bernhard; Peschel, Andreas

    2016-01-01

    The human nasal microbiota is highly variable and dynamic often enclosing major pathogens such as Staphylococcus aureus. The potential roles of bacteriocins or other mechanisms allowing certain bacterial clones to prevail in this nutrient-poor habitat have hardly been studied. Of 89 nasal Staphylococcus isolates, unexpectedly, the vast majority (84%) was found to produce antimicrobial substances in particular under habitat-specific stress conditions, such as iron limitation or exposure to hydrogen peroxide. Activity spectra were generally narrow but highly variable with activities against certain nasal members of the Actinobacteria, Proteobacteria, Firmicutes, or several groups of bacteria. Staphylococcus species and many other Firmicutes were insusceptible to most of the compounds. A representative bacteriocin was identified as a nukacin-related peptide whose inactivation reduced the capacity of the producer Staphylococcus epidermidis IVK45 to limit growth of other nasal bacteria. Of note, the bacteriocin genes were found on mobile genetic elements exhibiting signs of extensive horizontal gene transfer and rearrangements. Thus, continuously evolving bacteriocins appear to govern bacterial competition in the human nose and specific bacteriocins may become important agents for eradication of notorious opportunistic pathogens from human microbiota. PMID:27490492

  12. Mixed Lactobacillus plantarum Strains Inhibit Staphylococcus aureus Induced Inflammation and Ameliorate Intestinal Microflora in Mice.

    PubMed

    Ren, Dayong; Gong, Shengjie; Shu, Jingyan; Zhu, Jianwei; Rong, Fengjun; Zhang, Zhenye; Wang, Di; Gao, Liangfeng; Qu, Tianming; Liu, Hongyan; Chen, Ping

    2017-01-01

    Objective . Staphylococcus aureus is an important pathogen that causes intestinal infection. We examined the immunomodulatory function of single and mixed Lactobacillus plantarum strains, as well as their impacts on the structure of the microbiome in mice infected with Staphylococcus aureus . The experiment was divided into three groups: protection, treatment, and control. Serum IFN- γ and IL-4 levels, as well as intestinal sIgA levels, were measured during and 1 week after infection with Staphylococcus aureus with and without Lactobacillus plantarum treatment. We used 16s rRNA tagged sequencing to analyze microbiome composition. IFN- γ /IL-4 ratio decreased significantly from infection to convalescence, especially in the mixed Lactobacillus plantarum group. In the mixed Lactobacillus plantarum group the secretion of sIgA in the intestine of mice (9.4-9.7 ug/mL) was significantly higher than in the single lactic acid bacteria group. The dominant phyla in mice are Firmicutes , Bacteroidetes , and Proteobacteria . Treatment with mixed lactic acid bacteria increased the anti-inflammatory factor and the secretion of sIgA in the intestine of mice infected with Staphylococcus aureus and inhibited inflammation.

  13. Linezolid-resistant Staphylococcus haemolyticus and Staphylococcus hominis: single and double mutations at the domain V of 23S rRNA among isolates from a Rio de Janeiro hospital.

    PubMed

    Chamon, Raiane Cardoso; Iorio, Natalia Lopes Pontes; Cavalcante, Fernanda Sampaio; Teodoro, Cristiane R S; de Oliveira, Ana Paula Chaves; Maia, Fernanda; dos Santos, Kátia Regina Netto

    2014-12-01

    In this work, the molecular and phenotypic antimicrobial resistance and clonal diversity of 10 linezolid-resistant Staphylococcus spp. isolates were investigated. The 7 Staphylococcus haemolyticus isolates presented Staphylococcal cassete chromosome mec (SCCmec) V and belonged to the same pulsed-field gel electrophoresis pulsotype. Their MICs for oxacillin, vancomycin, and linezolid were ≥ 256 μg/mL, 1-4 μg/mL, and 8-16 μg/mL, respectively. The 3 S. hominis presented MIC values 32 to >256 μg/mL, 2-4 μg/mL, and 12-24 μg/mL, and all carried the nontypeable SCCmec (ccr1 + mecA class) and belonged to 2 different genotypes. The cfr gene was not found, but the mutation G2603T was detected in S. haemolyticus and C2190T and G2603T in Staphylococcus hominis in 23S rRNA. This study demonstrates the spread of a linezolid-resistant S. haemolyticus genotype and, for the first time, describes the mutation C2190T among S. hominis isolates with a double mutation in Brazil. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Characterization of methicillin-resistant Staphylococcus spp. isolated from dogs in Korea.

    PubMed

    Jang, Yunho; Bae, Dong hwa; Cho, Jae-Keun; Bahk, Gyung Jin; Lim, Suk-Kyung; Lee, Young Ju

    2014-11-01

    Staphylococci were isolated from dogs in animal hospitals, animal shelters, and the Daegu PET EXPO to investigate the characteristics of circulating methicillin-resistant Staphylococcal (MRS) strains in companion animals in Korea. A total of 36/157 isolates were classified as MRS, and subdivided as follows: 1 methicillin-resistant Staphylococcus aureus (MRSA), 4 methicillin-resistant Staphylococcus epidermidis, 2 methicillin-resistant Staphylococcus haemolyticus, and 29 MRS spp. Among the 36 MRS isolates tested, 100% were resistant to oxacillin and penicillin, and at least 50% were resistant to sulfamethoxazole/trimethoprim (69.4%), erythromycin (63.9%), tetracycline (58.3%), cefoxitin (55.6%), clindamycin (50.0%) or pirlimycin (50.0%). Additionally, 34/36 MRS isolates (94.4%) were mecA positive, 15 of which were further classified as SCCmec type V, 6 isolates as type I, 4 isolates as type IIIb, 1 isolate as type IVa, 1 isolate as type IV, with 7 isolates being non-classifiable. The results of multilocus sequence typing and spa typing for the one MRSA strain were ST 72 (1-4-1-8-4-4-3) and spa t148. Our results provide evidence that companion animals like dogs may be MRS carriers, and that continued surveillance of MRS in companion animals is required to prevent increased incidences in humans.

  15. New antimicrobial combinations: substituted chalcones- oxacillin against methicillin resistant Staphylococcus aureus

    PubMed Central

    Talia, Juan Manuel; Debattista, Nora Beatriz; Pappano, Nora Beatriz

    2011-01-01

    Staphylococcus aureus, the most virulent Staphylococcus species, is also the prevalent pathogen isolated from hospitalized patients and the second most common from patients in outpatient settings. In general, bacteria have the genetic ability to transmit and acquire resistance to drugs, which are utilized as therapeutic agents. Related studies of antimicrobial activity indicate that crude extracts containing flavonoids, triterpenes and steroids have showed significative activity against several Staphylococcus aureus strains. Combination effects between flavonoids and antibiotics also have been reported. The aim of the present work was to investigate in vitro synergism between several chalcones substituted in combination with oxacillin, an antibiotic used conventionally against S. aureus ATCC 43 300 that is resistant to meticillin, using the kinetic turbidimetric method developed earlier. The results were satisfactory for all assayed combinations and in accordance with the mechanism of bacteriostatic inhibition previously proposed, except for 2´,4´-dihydroxy-3´-methoxychalcone – oxacillin. The best combination was 2´,3´-dihydroxychalcone -oxacillin (MIC: 11.2 µg/mL). Further investigations are needed to characterize the interaction mechanism with antibiotics. Thus, chalcones – oxacillin combination could lead to the development of new antibiotics against methicillin resistant S. aureus infection. PMID:24031657

  16. Accuracy of tracheal aspirate gram stain in predicting Staphylococcus aureus infection in ventilator-associated pneumonia.

    PubMed

    Seligman, Renato; Seligman, Beatriz Graeff Santos; Konkewicz, Loriane; Dos Santos, Rodrigo Pires

    2015-01-01

    The Gram stain can be used to direct initial empiric antimicrobial therapy when complete culture is not available. This rapid test could prevent the initiation of inappropriate therapy and adverse outcomes. However, several studies have attempted to determine the value of the Gram stain in the diagnosis and therapy of bacterial infection in different populations of patients with ventilator-associated pneumonia (VAP) with conflicting results. The objective of this study is to evaluate the accuracy of the Gram stain in predicting the existence of Staphylococcus aureus infections from cultures of patients suspected of having VAP. This prospective single-center open cohort study enrolled 399 patients from December 2005 to December 2010. Patients suspected of having VAP by ATS IDSA criteria were included. Respiratory secretion samples were collected by tracheal aspirate (TA) for standard bacterioscopic analysis by Gram stain and culture. Respiratory secretion samples collected by tracheal aspirates of 392 patients were analyzed by Gram stain and culture. When Gram-positive cocci were arranged in clusters, the sensitivity was 68.4%, specificity 97.8%, positive predictive value 88.1% and negative predictive value 92.8% for predicting the presence of Staphylococcus aureus in culture (p < 0.001). A tracheal aspirate Gram stain can be used to rule out the presence of Staphylococcus aureus in patients with a clinical diagnosis of VAP with a 92.8% Negative Predictive Value. Therefore, 7.2% of patients with Staphylococcus aureus would not be protected by an empiric treatment that limits antimicrobial coverage to Staphylococcus aureus only when Gram positive cocci in clusters are identified.

  17. Staphylococcus argensis sp. nov., a novel staphylococcal species isolated from an aquatic environment.

    PubMed

    Heß, Stefanie; Gallert, Claudia

    2015-08-01

    A staphylocoagulase-negative, novobiocin-susceptible strain (M4S-6T) of a species of the genus Staphylococcus was isolated from the river Argen in Southern Germany. It was assigned to the genus Staphylococcus due to the presence of the fatty acids, ai-C15 : 0, i-C15 : 0, i-C17 : 0, ai-C17 : 0, and of menaquinone (MK-7) in the cytoplasmic membrane, which are typical of coagulase-negative staphylococci. The polar lipid profile consisted of phosphatidylglycerol, diphosphatidylglycerol, an unknown phospholipid and an unknown glycolipid. Although the 16S gene sequence of strain M4S-6T revealed a 98% similarity with its closest relative, Staphylococcus pettenkoferi, it could be distinguished by several phenotypical and physiological markers. In contrast to S. pettenkoferi, M4S-6T was ornithine decarboxylase-positive, urease-negative and could use formiate and l-histidine as carbon-sources; nitrate was not reduced. Whereas S. pettenkoferi could grow with d(-)-mannitol, d-sorbitol, gluconic acid, l-proline, carboxymethylcellulose and lignosulfonate, M4S-6T was not able to grow with these substances. The results of 16S rRNA gene sequence analysis and of phenotypic testing indicated that M4S-6T was a representative of a novel species for which the name Staphylococcus argensis sp. nov., is proposed with the type strain M4S-6T (DSM 29875T = CIP 110904T).

  18. Microstructures as IR-sensors with Staphylococcus aureus bacteria

    NASA Astrophysics Data System (ADS)

    Baikova, T. V.; Danilov, P. A.; Gonchukov, S. A.; Yermachenko, V. M.; Ionin, A. A.; Khmelnitskii, R. A.; Kudryashov, S. I.; Nguyen, T. T. H.; Rudenko, A. A.; Saraeva, I. N.; Svistunova, T. S.; Zayarny, D. A.

    2017-09-01

    Using a micro-hole grating in a supported silver film as a laser-fabricated novel optical platform for surface-enhanced IR absoprtion/reflection spectroscopy, characteristic absorption bands of Staphylococcus aureus, especially - its buried carotenoid fragments - were detected in FT-IR spectra with 10-fold analytical enhancement, paving the way to spectral express-identification of the pathogenic microorganisms.

  19. Pneumonia and New Methicillin-resistant Staphylococcus aureus Clone

    PubMed Central

    Tristan, Anne; François, Bruno; Etienne, Jerome; Delage-Corre, Manuella; Martin, Christian; Liassine, Nadia; Wannet, Wim; Denis, François; Ploy, Marie-Cécile

    2006-01-01

    Necrotizing pneumonia caused by Staphylococcus aureus strains carrying the Panton-Valentin leukocidin gene is a newly described disease entity. We report a new fatal case of necrotizing pneumonia. An S. aureus strain with an agr1 allele and of a new sequence type 377 was recovered, representing a new, emerging, community-acquired methicillin-resistant clone. PMID:16704793

  20. [Staphylococcus aureus infection in Apis mellifera L. (honeybees)].

    PubMed

    Keskin, N

    1989-07-01

    The causative agent of American foulbrood is Bacillus larvae, the causes of the European foulbrood diseases are Streptococcus pluton and Bacillus alvei and the causes of the septicemia are Pseudomonas apiseptica and Escherichia coli in honeybees (Apis mellifera). Apart from the above causative agents in this study, Staphylococcus aureus has been isolated and identified from honeybees (Apis mellifera).

  1. Antibiotic Resistant and Virulence Determinants of Staphylococcus haemolyticus C10A as Revealed by Whole Genome Sequencing.

    PubMed

    Chan, Kok-Gan; Ng, Kim Tien; Chong, Teik Min; Pang, Yong Kek; Kamarulzaman, Adeeba; Yin, Wai-Fong; Tee, Kok Keng

    2015-01-01

    Staphylococcus haemolyticus is one of the pathogens that harbor a high level of antibiotic resistance. Here, we highlighted the potential determinants for multidrug resistance and virulence from the draft genome of Staphylococcus haemolyticus strain C10A, isolated from a patient with chronic obstructive pulmonary disease exacerbation.

  2. A colloidal gold nanoparticle-based immunochromatographic test strip for rapid and convenient detection of Staphylococcus aureus.

    PubMed

    Niu, Kaili; Zheng, Xiaoping; Huang, Chusen; Xul, Kuan; Zhi, Yuan; Shen, Hebai; Jia, Nengqin

    2014-07-01

    An immunochromatographic test strip using gold nanoparticles-staphylococcus aureus monoclonal antibody conjugates was developed for the rapid and convenient detection of staphylococcus aureus based on a double-antibody sandwich format. The detection limit and the detection rate of this test strip is 10(3) CFU /mL and 98.7%, respectively. It could be used for the rapid detection of staphylococcus aureus in food and the results can be visually identified by the naked eye within 10 min. Compared with conventional bacterial detection methods, this developed immunochromatographic assay based test strip has several advantages including simple, fast, low-cost, favorable sensitivity and specificity, exhibiting a great potential for application in food safety control systems and clinical diagnosis.

  3. Introduction of a hydrolysis probe PCR assay for high-throughput screening of methicillin-resistant Staphylococcus aureus with the ability to include or exclude detection of Staphylococcus argenteus.

    PubMed

    Bogestam, Katja; Vondracek, Martin; Karlsson, Mattias; Fang, Hong; Giske, Christian G

    2018-01-01

    Many countries using sensitive screening methods for detection of carriage of methicillin-resistant Staphylococcus aureus (MRSA) have a sustained low incidence of MRSA infections. For diagnostic laboratories with high sample volumes, MRSA screening requires stability, low maintenance and high performance at a low cost. Herein we designed oligonucleotides for a new nuc targeted hydrolysis probe PCR to replace the standard in-house nuc SybrGreen PCR assay. This new, more time-efficient, PCR assay resulted in a 40% increase in daily sample capacity, with maintained high specificity and sensitivity. The assay was also able to detect Staphylococcus aureus clonal cluster 75 (CC75) lineage strains, recently re-classified as Staphylococcus argenteus, with a sensitivity considerably increased compared to our previous assay. While awaiting consensus if the CC75 lineage of S. aureus should be considered as S. argenteus, and whether methicillin-resistant S. argenteus should be included in the MRSA definition, many diagnostic laboratories need to update their MRSA assay sensitivity/specificity towards this lineage/species. The MRSA screening assay presented in this manuscript is comprised of nuc oligonucleotides separately targeting S. aureus and CC75 lineage strains/S. argenteus, thus providing high user flexibility for the detection of CC75 lineage strains/S. argenteus.

  4. Synergistic action between sisomicin and mezlocillin against gram-negative bacteria and Staphylococcus aureus.

    PubMed

    Soares, L A; Trabulsi, L R

    1979-01-01

    The combined effect of sisomicin and 6-[(R)-2-[3-methylsulfonyl-2-oxo-imidazolidine-1-carboxamido]-2-phenyl-acetamido-a1-penicillanic acid sodium salt (mezlocillin, Baypen) was studied against 50 bacterial strains, including Pseudomonas aeruginosa, Proteus spp. Klebsiella-Enterobacter, E. coli and Staphylococcus aureus. No antagonism or indifference was detected with the strains studied. Both antibiotics were synergistic against 62% of the strains, and partially synergistic against 38%. Out of the bacteria studied, Staphylococcus aureus was the most susceptible to the combined action of sisomicin and mezlocillin.

  5. Neutrophil evasion strategies by Streptococcus pneumoniae and Staphylococcus aureus.

    PubMed

    Lewis, Megan L; Surewaard, Bas G J

    2018-03-01

    Humans are well equipped to defend themselves against bacteria. The innate immune system employs diverse mechanisms to recognize, control and initiate a response that can destroy millions of different microbes. Microbes that evade the sophisticated innate immune system are able to escape detection and could become pathogens. The pathogens Streptococcus pneumoniae and Staphylococcus aureus are particularly successful due to the development of a wide variety of virulence strategies for bacterial pathogenesis and they invest significant efforts towards mechanisms that allow for neutrophil evasion. Neutrophils are a primary cellular defense and can rapidly kill invading microbes, which is an indispensable function for maintaining host health. This review compares the key features of Streptococcus pneumoniae and Staphylococcus aureus in epidemiology, with a specific focus on virulence mechanisms utilized to evade neutrophils in bacterial pathogenesis. It is important to understand the complex interactions between pathogenic bacteria and neutrophils so that we can disrupt the ability of pathogens to cause disease.

  6. Draft genome sequence of multidrug-resistant Staphylococcus haemolyticus IPK_TSA25 harbouring a Staphylococcus aureus plasmid, pS0385-1.

    PubMed

    Kim, Hyung Jun; Jang, Soojin

    2017-12-01

    Staphylococcus haemolyticus is the second most frequently isolated coagulase-negative staphylococci from blood cultures. Moreover, multidrug resistance associated with the genome flexibility of S. haemolyticus has been increasingly reported worldwide. Here we report the draft genome sequence of multidrug-resistant S. haemolyticus IPK_TSA25 isolated from a building surface in South Korea. Genomic DNA of S. haemolyticus IPK_TSA25 was sequenced using the PacBio RS II sequencing platform. Generated reads were assembled using PacBio SMRT Analysis 2.3.0. The draft genome was annotated and antibiotic resistance genes were identified. The genome of 2517398bp contains various antibiotic resistance genes associated with resistance to β-lactams, aminoglycosides and macrolides. Genome analysis also revealed chromosomal integration of the full-length Staphylococcus aureus plasmid pS0385-1 containing a tetracycline resistance gene. The genome sequence reported in this study will provide valuable information to understand the flexibility of the S. haemolyticus genome, which facilitates acquisition of antibiotic resistance genes and contributes to the dissemination of antibiotic resistance by this emerging pathogen. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  7. An Improved Medium for Growing Staphylococcus aureus Biofilm

    DTIC Science & Technology

    2012-04-19

    implantitis, chronic wound infections , chronic rhinosinusitis, endocarditis , and ocular infections (Archer et al., 2011). In addition, emerging evidence...causes of human bacterial infections , Staphylococcus aureus, a gram positive organism, is a ubiquitous oppor tunistic pathogen that commonly colonizes...resistant to antibiotic therapy. It has been shown that S. aureus biofilms are involved in oste omyelitis; indwelling medical device infections ; and peri

  8. Methicillin-resistant Staphylococcus aureus colonization of house officers.

    PubMed

    Barbosa, Anna A; Chapin, Kim; Mermel, Leonard A

    2009-09-01

    We performed a prospective prevalence survey of methicillin-resistant Staphylococcus aureus (MRSA) carriage in the nares of 50 medical and 50 surgical house officers. None of the 50 internal medicine house officers and 5 of the 50 general surgery house officers had MRSA nares colonization (P = .03). None of the MRSA isolates recovered from the surgical house officers were identical.

  9. Technical note: Antimicrobial susceptibility of Portuguese isolates of Staphylococcus aureus and Staphylococcus epidermidis in subclinical bovine mastitis.

    PubMed

    Nunes, S F; Bexiga, R; Cavaco, L M; Vilela, C L

    2007-07-01

    To evaluate the antimicrobial resistance traits of staphylococci responsible for subclinical bovine mastitis in Portugal, the minimum inhibitory concentrations (MIC) of 7 antimicrobial agents, frequently administered for mastitis treatment, were determined for 30 Staphylococcus aureus and 31 Staphylococcus epidermidis field isolates. Beta-lactamase production was detected through the use of nitrocefin-impregnated discs. The MIC that inhibited 90% of the isolates tested (MIC90) of penicillin, oxacillin, cefazolin, gentamicin, sulfamethoxazole/trimethoprim, oxytetracycline, and enrofloxacin were, respectively, 4, 0.5, 1, 1, 0.25, 0.25, and 0.06 microg/mL for Staph. aureus and > or = 64, 8, 1, 32, > or = 64, > or = 64, and 0.06 microg/mL for Staph. epidermidis. All Staph. aureus isolates showed susceptibility to oxacillin, cefazolin, gentamicin, sulphamethoxazole/trimethoprim, and enrofloxacin. Beta-lactamase production was detected in 20 of these isolates (66.7%), all of which were resistant to penicillin. Of the 31 Staph. epidermidis tested, 24 (77.4%) were beta-lactamase positive. All isolates were susceptible to both cefazolin and enrofloxacin. Nine Staph. epidermidis isolates were resistant to oxacillin, with MIC values ranging from 4 to 8 microg/mL. The MIC values of 5 antimicrobial agents tested were higher than those reported in other countries. Enrofloxacin was the only exception, showing lower MIC values compared with other reports. Overall, the antimicrobial agents tested in our study, with the exception of penicillin, were active against the 61 isolates studied.

  10. Human-to-Dog Transmission of Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Wolfhagen, Maurice J.H.M.; Heck, Max E.O.C.; Wannet, Wim J.B.; Fluit, Ad C.

    2004-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) was cultured from the nose of a healthy dog whose owner was colonized with MRSA while she worked in a Dutch nursing home. Pulsed-field gel electrophoresis and typing of the staphylococcal chromosome cassette mec (SCCmec) region showed that both MRSA strains were identical. PMID:15663871

  11. DEMONSTRATION OF INDUCED SYNERGISTIC HEMOLYSIS BY “NONHEMOLYTIC” STAPHYLOCOCCUS SPECIES1

    PubMed Central

    Smith, Doyle C.; Foltz, V. D.; Lord, T. H.

    1964-01-01

    Smith, Doyle C. (Kansas State University, Manhattan), V. D. Foltz, and T. H. Lord. Demonstration of induced synergistic hemolysis by “non-hemolytic” Staphylococcus species. J. Bacteriol. 87:188–195. 1964.—The synergistic hemolysis of “normally nonhemolytic” staphylococci on blood-agar incubated in, or adjacent to, a secondary zone of certain hemolytic staphylococci is described. The synergism apparently results from the combining of two factors, Z, produced by hemolytic staphylococci that elaborate a secondary zone, and T, produced by “nonhemolytic” staphylococci. The production of the two factors is substantiated by (i) the absence of clear hemolysis around nonhemolytic colonies and in the secondary zone of hemolytic colonies, and by (ii) evidence of clear hemolysis when the secondary zone reaches to within a few millimeters, and finally surrounds, the nonhemolytic colonies. It was possible to show on a blood-agar plate containing a mixture of both hemolytic and nonhemolytic cultures that all colonies exhibited a zone of clear hemolysis. When 400 colonies were selected from such a blood plate, 280 were nonhemolytic on subsequent studies. The remaining 120 colonies were hemolytic. Thus, there is danger of confusing non-hemolytic Staphylococcus colonies, showing induced hemolysis, with truly hemolytic colonies. If a similar situation occurred on a diagnostic blood plate, it could very likely result in failure to identify a possibly pathogenic staphylococcus. Images PMID:14102853

  12. Staphylococcus aureus with Panton-Valentine toxin skin infection in a medical laboratory technician.

    PubMed

    Pougnet, Richard; Pougnet, Laurence

    2016-12-01

    This report exposes the case of a Staphylococcus aureus infection occurring in a microbiology laboratory technician. He was a 52 year-old man without medical history. He presented an abscess on the anterior aspect of the left forearm. Analysis showed that it was a Staphylococcus aureus secreting the Panton-Valentine toxin. The study of the workplace found the frequency of exposure. The study of workstation showed the link between the technician position and the infection. Indeed, this man touched an area where the biocleaning was hard to do. This is the first case of infection with PVL described for a laboratory technician.

  13. Divergent Isoprenoid Biosynthesis Pathways in Staphylococcus Species Constitute a Drug Target for Treating Infections in Companion Animals

    PubMed Central

    Cain, Christine L.; Morris, Daniel O.; Rankin, Shelley C.

    2016-01-01

    ABSTRACT Staphylococcus species are a leading cause of skin and soft tissue infections in humans and animals, and the antibiotics used to treat these infections are often the same. Methicillin- and multidrug-resistant staphylococcal infections are becoming more common in human and veterinary medicine. From a “One Health” perspective, this overlap in antibiotic use and resistance raises concerns over the potential spread of antibiotic resistance genes. Whole-genome sequencing and comparative genomics analysis revealed that Staphylococcus species use divergent pathways to synthesize isoprenoids. Species frequently associated with skin and soft tissue infections in companion animals, including S. schleiferi and S. pseudintermedius, use the nonmevalonate pathway. In contrast, S. aureus, S. epidermidis, and S. lugdunensis use the mevalonate pathway. The antibiotic fosmidomycin, an inhibitor of the nonmevalonate pathway, was effective in killing canine clinical staphylococcal isolates but had no effect on the growth or survival of S. aureus and S. epidermidis. These data identify an essential metabolic pathway in Staphylococcus that differs among members of this genus and suggest that drugs such as fosmidomycin, which targets enzymes in the nonmevalonate pathway, may be an effective treatment for certain staphylococcal infections. IMPORTANCE Drug-resistant Staphylococcus species are a major concern in human and veterinary medicine. There is a need for new antibiotics that exhibit a selective effect in treating infections in companion and livestock animals and that would not be used to treat human bacterial infections. We have identified fosmidomycin as an antibiotic that selectively targets certain Staphylococcus species that are often encountered in skin infections in cats and dogs. These findings expand our understanding of Staphylococcus evolution and may have direct implications for treating staphylococcal infections in veterinary medicine. PMID:27704053

  14. Scarlet fever caused by community-associated methicillin-resistant Staphylococcus aureus.

    PubMed

    Lu, Ying-Chun; Chen, Shyi-Jou; Lo, Wen-Tsung

    2011-07-01

    We describe a previously healthy 2.5-year-old boy with staphylococcal scarlet fever associated with acute suppurative otitis media due to community-associated methicillin-resistant Staphylococcus aureus. The patient was successfully treated by spontaneous drainage in combination with trimethoprim-sulfamethoxazole therapy.

  15. An Interdisciplinary Experiment: Azo-Dye Metabolism by "Staphylococcus Aureus"

    ERIC Educational Resources Information Center

    Brocklesby, Kayleigh; Smith, Robert; Sharp, Duncan

    2012-01-01

    An interdisciplinary and engaging practical is detailed which offers great versatility in the study of a qualitative and quantitative metabolism of azo-dyes by "Staphylococcus aureus". This practical has broad scope for adaptation in the number and depth of variables to allow a focused practical experiment or small research project. Azo-dyes are…

  16. Toxic shock syndrome due to community-acquired methicillin-resistant Staphylococcus aureus infection: Two case reports and a literature review in Japan.

    PubMed

    Sada, Ryuichi; Fukuda, Saori; Ishimaru, Hiroyasu

    2017-01-01

    Community-acquired methicillin-resistant Staphylococcus aureus has been spreading worldwide, including in Japan. However, few cases of toxic shock syndrome caused by Community-acquired methicillin-resistant Staphylococcus aureus have been reported in Japan. We report 2 cases, in middle-aged women, of toxic shock syndrome due to Community-acquired methicillin-resistant Staphylococcus aureus via a vaginal portal of entry. The first patient had used a tampon and the second patient had vaginitis due to a cleft narrowing associated with vulvar lichen sclerosus. Both patients were admitted to our hospital with septic shock and severe acute kidney injury and subsequently recovered with appropriate antibiotic treatment. In our review of the literature, 8 cases of toxic shock syndrome caused by Community-acquired methicillin-resistant Staphylococcus aureus were reported in Japan. In these 8 cases, the main portals of entry were the skin and respiratory tract; however, the portal of entry of Community-acquired methicillin-resistant Staphylococcus aureus from a vaginal lesion has not been reported in Japan previously.

  17. Concentrations of Staphylococcus species in indoor air as associated with other bacteria, season, relative humidity, air change rate, and S. aureus-positive occupants.

    PubMed

    Madsen, Anne Mette; Moslehi-Jenabian, Saloomeh; Islam, Md Zohorul; Frankel, Mika; Spilak, Michal; Frederiksen, Margit W

    2018-01-01

    The aim of this study was to obtain knowledge about concentrations of Staphylococcus aureus, MRSA (methicillin-resistant S. aureus), and other Staphylococcus species in indoor air in Greater Copenhagen and about factors affecting the concentrations. The effects of season, temperature, relative humidity, air change rate (ACR), other bacterial genera, area per occupant, and presence of S. aureus-positive occupants were studied. In samples from 67 living rooms, S. hominis, S. warneri, S. epidermidis, and S. capitis were found in 13-25%; S. saprophyticus, S. cohnii, and S. pasteuri in 5-10%; and S. lugdunensis, S. haemolyticus, S. caprae, S. equorum, S. kloosii, S. pettenkoferi, S. simulans, and S. xylosus in less than 3%. Staphylococcus aureus were found in two of 67 living rooms: spa type t034 (an MRSA) was recovered from a farmhouse, while spa type t509 was found in an urban home. Two species, S. equorum and S. kloosii, were found only in the farmhouse. Staphylococcus was significantly associated with season with lowest concentration and richness in winter. Genera composition was associated with ACR with smaller fractions of Staphylococcus at higher ACR, while richness was significantly and negatively associated with area per occupant. Concentration of Staphylococcus correlated positively with the total concentration of bacteria, but negatively with the total concentration of other bacteria. The concentration of Staphylococcus was not significantly associated with concentrations of the other abundant genera Bacillus, Kocuria, and Micrococcus. In offices with S. aureus-positive occupants, airborne S. aureus was not found. In conclusion, Staphylococcus species constitute a considerable proportion of the airborne bacteria in the studied homes and offices. However, both S. aureus and MRSA had very low prevalence during all seasons. Thus, transmission of S. aureus and MRSA through the air in living rooms in Copenhagen is expected to be limited. The negative associations

  18. Surface adhesion and confinement variation of Staphylococcus aurius on SAM surfaces

    NASA Astrophysics Data System (ADS)

    Amroski, Alicia; Olsen, Morgan; Calabrese, Joseph; Senevirathne, Reshani; Senevirathne, Indrajith

    2012-02-01

    Controlled surface adhesion of non - pathogenic gram positive strain, Staphylococcus aureus is interesting as a model system due to possible development of respective biosensors for prevention and detection of the pathogenic strain methicillin resistant Staphylococcus aureus (MRSA) and further as a study for bio-machine interfacing. Self Assembled Monolayers (SAM) with engineered surfaces of linear thiols on Au(111) were used as the substrate. Sub cultured S. aureus were used for the analysis. The SAM layered surfaces were dipped in 2 -- 4 Log/ml S. aureus solution. Subsequent surface adhesion at different bacterial dilutions on surfaces will be discussed, and correlated with quantitative and qualitative adhesion properties of bacteria on the engineered SAM surfaces. The bacteria adhered SAM surfaces were investigated using intermittent contact, noncontact, lateral force and contact modes of Atomic Force Microscopy (AFM).

  19. Genetic basis for the resistance of Staphylococcus aureus to peptidoglycan hydrolase by comparative transcriptome and whole genome sequence analysis

    USDA-ARS?s Scientific Manuscript database

    Background: Lysostaphin is a glycyl-glycine bacteriocin peptidoglycan hydrolase secreted by Staphylococcus simulans for degrading the peptidoglycan moieties in Staphylococcus aureus cell walls which result in cell lysis. There are known mechanisms of resistance to lysostaphin, e.g. serine in place...

  20. A Bioengineered Nisin Derivative to Control Biofilms of Staphylococcus pseudintermedius

    PubMed Central

    Field, Des; Gaudin, Noémie; Lyons, Francy; O'Connor, Paula M.; Cotter, Paul D.; Hill, Colin; Ross, R. Paul

    2015-01-01

    Antibiotic resistance and the shortage of novel antimicrobials are among the biggest challenges facing society. One of the major factors contributing to resistance is the use of frontline clinical antibiotics in veterinary practice. In order to properly manage dwindling antibiotic resources, we must identify antimicrobials that are specifically targeted to veterinary applications. Nisin is a member of the lantibiotic family of antimicrobial peptides that exhibit potent antibacterial activity against many gram-positive bacteria, including human and animal pathogens such as Staphylococcus, Bacillus, Listeria, and Clostridium. Although not currently used in human medicine, nisin is already employed commercially as an anti-mastitis product in the veterinary field. Recently we have used bioengineering strategies to enhance the activity of nisin against several high profile targets, including multi-drug resistant clinical pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) and also against staphylococci and streptococci associated with bovine mastitis. However, newly emerging pathogens such as methicillin resistant Staphylococcus pseudintermedius (MRSP) pose a significant threat in terms of veterinary health and as a reservoir for antibiotic resistance determinants. In this study we created a nisin derivative with enhanced antimicrobial activity against S. pseudintermedius. In addition, the novel nisin derivative exhibits an enhanced ability to impair biofilm formation and to reduce the density of established biofilms. The activities of this peptide represent a significant improvement over that of the wild-type nisin peptide and merit further investigation with a view to their use to treat S. pseudintermedius infections. PMID:25789988

  1. Trends in incidence and resistance patterns of Staphylococcus aureus bacteremia.

    PubMed

    Jokinen, Elina; Laine, Janne; Huttunen, Reetta; Lyytikäinen, Outi; Vuento, Risto; Vuopio, Jaana; Syrjänen, Jaana

    2018-01-01

    Staphylococcus aureus bacteremia (SAB) causes a significant burden on the population. Several infection control measures have been implemented in Pirkanmaa county to combat a local epidemic with methicillin-resistant Staphylococcus aureus (MRSA). We aimed to study the epidemiology of SAB and antibiotic resistance of S. aureus and the possible influence of improved infection control. Register data from 2005 to 2015 were retrospectively analysed to study the antimicrobial susceptibility, the incidence and mortality in SAB in a population-based setting. The incidence of SAB increased during the study period from 21.6 to 35.8/100,000 population. The number of both health care-associated (HA) and community-associated (CA) cases has increased. The incidence of MSSA bacteremia increased from 19.9 to 35.2/100,000 population in Pirkanmaa in parallel to other parts of Finland. The incidence of MRSA bacteremia was 10-fold (4.5/100,000 population) higher in 2011 than in other parts of the country, but sank to the national level (0.59/100,000 population) in 2015. The fatality rate decreased from 22% to 17%. The proportion of penicillin-susceptible Staphylococcus aureus (PSSA) increased from 23.9% in 2008 to 43.1% in 2015. The incidence of both HA and CA SAB has increased since 2005. Conversely, the proportion of MRSA and PRSA bacteremia has decreased. Promotion of infection control measures may have reduced the incidence of MRSA bacteremia but not the overall incidence of SAB. The rising proportion of PSSA enables the use of targeted, narrow spectrum antimicrobials.

  2. Species determination within Staphylococcus genus by extended PCR-restriction fragment length polymorphism of saoC gene.

    PubMed

    Bukowski, Michal; Polakowska, Klaudia; Ilczyszyn, Weronika M; Sitarska, Agnieszka; Nytko, Kinga; Kosecka, Maja; Miedzobrodzki, Jacek; Dubin, Adam; Wladyka, Benedykt

    2015-01-01

    Genetic methods based on PCR-restriction fragment length polymorphism (RFLP) are widely used for microbial species determination. In this study, we present the application of saoC gene as an effective tool for species determination and within-species diversity analysis for Staphylococcus genus. The unique sequence diversity of saoC allows us to apply four restriction enzymes to obtain RFLP patterns, which appear highly distinctive even among closely related species as well as atypical isolates of environmental origin. Such patterns were successfully obtained for 26 species belonging to Staphylococcus genus. What is more, tracing polymorphisms detected by different restriction enzymes allowed for basic phylogeny analysis for Staphylococcus aureus, which is potentially applicable for other staphylococcal species. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Methicillin-resistant Staphylococcus aureus: an overview for manual therapists().

    PubMed

    Green, Bart N; Johnson, Claire D; Egan, Jonathon Todd; Rosenthal, Michael; Griffith, Erin A; Evans, Marion Willard

    2012-03-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is associated with difficult-to-treat infections and high levels of morbidity. Manual practitioners work in environments where MRSA is a common acquired infection. The purpose of this review is to provide a practical overview of MRSA as it applies to the manual therapy professions (eg, physical and occupational therapy, athletic training, chiropractic, osteopathy, massage, sports medicine) and to discuss how to identify and prevent MRSA infections in manual therapy work environments. PubMed and CINAHL were searched from the beginning of their respective indexing years through June 2011 using the search terms MRSA, methicillin-resistant Staphylococcus aureus, and Staphylococcus aureus. Texts and authoritative Web sites were also reviewed. Pertinent articles from the authors' libraries were included if they were not already identified in the literature search. Articles were included if they were applicable to ambulatory health care environments in which manual therapists work or if the content of the article related to the clinical management of MRSA. Following information extraction, 95 citations were included in this review, to include 76 peer-reviewed journal articles, 16 government Web sites, and 3 textbooks. Information was organized into 10 clinically relevant categories for presentation. Information was organized into the following clinically relevant categories: microbiology, development of MRSA, risk factors for infection, clinical presentation, diagnostic tests, screening tests, reporting, treatment, prevention for patients and athletes, and prevention for health care workers. Methicillin-resistant S aureus is a health risk in the community and to patients and athletes treated by manual therapists. Manual practitioners can play an essential role in recognizing MRSA infections and helping to control its transmission in the health care environment and the community. Essential methods for protecting patients

  4. Bio-Sensing of Cadmium(II) Ions Using Staphylococcus aureus†

    PubMed Central

    Sochor, Jiri; Zitka, Ondrej; Hynek, David; Jilkova, Eva; Krejcova, Ludmila; Trnkova, Libuse; Adam, Vojtech; Hubalek, Jaromir; Kynicky, Jindrich; Vrba, Radimir; Kizek, Rene

    2011-01-01

    Cadmium, as a hazardous pollutant commonly present in the living environment, represents an important risk to human health due to its undesirable effects (oxidative stress, changes in activities of many enzymes, interactions with biomolecules including DNA and RNA) and consequent potential risk, making its detection very important. New and unique technological and biotechnological approaches for solving this problems are intensely sought. In this study, we used the commonly occurring potential pathogenic microorganism Staphylococcus aureus for the determination of markers which could be used for sensing of cadmium(II) ions. We were focused on monitoring the effects of different cadmium(II) ion concentrations (0, 1.25, 2.5, 5, 10, 15, 25 and 50 μg mL−1) on the growth and energetic metabolism of Staphylococcus aureus. Highly significant changes have been detected in the metabolism of thiol compounds—specifically the protein metallothionein (0.79–26.82 mmol/mg of protein), the enzyme glutathione S-transferase (190–5,827 μmol/min/mg of protein), and sulfhydryl groups (9.6–274.3 μmol cysteine/mg of protein). The ratio of reduced and oxidized glutathione indicated marked oxidative stress. In addition, dramatic changes in urease activity, which is connected with resistance of bacteria, were determined. Further, the effects of cadmium(II) ions on the metabolic pathways of arginine, β-glucosidase, phosphatase, N-acetyl β-d-glucosamine, sucrose, trehalose, mannitol, maltose, lactose, fructose and total proteins were demonstrated. A metabolomic profile of Staphylococcus aureus under cadmium(II) ion treatment conditions was completed seeking data about the possibility of cadmium(II) ion accumulation in cells. The results demonstrate potential in the application of microorganisms as modern biosensor systems based on biological components. PMID:22346664

  5. Carriage of methicillin-resistant Staphylococcus aureus by healthy companion animals

    USDA-ARS?s Scientific Manuscript database

    Methicillin-resistant Staphylococcus aureus (MRSA) is a significant human pathogen and has also been associated with wounded or ill companion animals. Healthy animals may also harbor MRSA without presenting any symptoms, but little is known about the prevalence of MRSA among these animals. Therefo...

  6. High Staphylococcus epidermidis Colonization and Impaired Permeability Barrier in Facial Seborrheic Dermatitis

    PubMed Central

    An, Qian; Sun, Meng; Qi, Rui-Qun; Zhang, Li; Zhai, Jin-Long; Hong, Yu-Xiao; Song, Bing; Chen, Hong-Duo; Gao, Xing-Hua

    2017-01-01

    Background: Seborrheic dermatitis (SD) is a common inflammatory skin condition. The etiology is unclear, although overgrowth of Malassezia on the skin has been suggested to cause SD. This study investigated whether colonization with Staphylococcus plays a role in facial SD, which was not well addressed previously. Methods: The study was conducted from September 1, 2011 to February 20, 2012 in the First Hospital of China Medical University. In the first phase, the study evaluated the level of transepidermal water loss (TEWL) and the number of colony-forming units (CFU) of Staphylococcus in defined skin areas of SD patients who were human immunodeficiency virus (HIV) seropositive (HIV [+] SD [+] group, n = 13), classical SD (HIV [−] SD [+] group, n = 24) patients, HIV seropositive-non-SD (HIV [+] SD [−] group, n = 16) patients, and healthy volunteers (HIV [−] SD [−] group, n = 16). In the second phase, we enrolled another cohort of HIV (−) SD (+) patients who applied topical fusidic acid (n = 15), tacrolimus (n = 16), or moisturizer (n = 12). Changes in the Seborrheic Dermatitis Area Severity Index (SDASI), TEWL, and Staphylococcus density were evaluated 2 weeks later. Comparisons of each index were performed using analysis of variance (ANOVA) and least significant difference method. Results: The level of TEWL was greater through lesional sites in the HIV (+) SD (+) group than that in HIV (+) SD (−) and HIV (−) SD (−) groups (95% confidence interval [CI]: 18.873–47.071, P < 0.001 and 95% CI: 28.755–55.936, P < 0.001, respectively). The number of CFU of Staphylococcus was greater in the HIV (+) SD (+) group than that in HIV (+) SD (−) and HIV (−) SD (−) groups (95% CI: 37.487–142.744, P = 0.001 and 95% CI: 54.936–156.400, P < 0.001, respectively). TEWL was significantly more improved in patients treated with tacrolimus and fusidic acid than that in those treated with moisturizers (95% CI: 7.560–38.987, P = 0.004 and 95% CI: 4.659–37

  7. Antimicrobial resistance patterns of Staphylococcus species isolated from cats presented at a veterinary academic hospital in South Africa.

    PubMed

    Qekwana, Daniel Nenene; Sebola, Dikeledi; Oguttu, James Wabwire; Odoi, Agricola

    2017-09-15

    Antimicrobial resistance is becoming increasingly important in both human and veterinary medicine. This study investigated the proportion of antimicrobial resistant samples and resistance patterns of Staphylococcus isolates from cats presented at a veterinary teaching hospital in South Africa. Records of 216 samples from cats that were submitted to the bacteriology laboratory of the University of Pretoria academic veterinary hospital between 2007 and 2012 were evaluated. Isolates were subjected to antimicrobial susceptibility testing against a panel of 15 drugs using the disc diffusion method. Chi square and Fisher's exact tests were used to assess simple associations between antimicrobial resistance and age group, sex, breed and specimen type. Additionally, associations between Staphylococcus infection and age group, breed, sex and specimen type were assessed using logistic regression. Staphylococcus spp. isolates were identified in 17.6% (38/216) of the samples submitted and 4.6% (10/216) of these were unspeciated. The majority (61.1%,11/18) of the isolates were from skin samples, followed by otitis media (34.5%, 10/29). Coagulase Positive Staphylococcus (CoPS) comprised 11.1% (24/216) of the samples of which 7.9% (17/216) were S. intermedius group and 3.2% (7/216) were S. aureus. Among the Coagulase Negative Staphylococcus (CoNS) (1.9%, 4/216), S. felis and S. simulans each constituted 0.9% (2/216). There was a significant association between Staphylococcus spp. infection and specimen type with odds of infection being higher for ear canal and skin compared to urine specimens. There were higher proportions of samples resistant to clindamycin 34.2% (13/25), ampicillin 32.4% (2/26), lincospectin 31.6% (12/26) and penicillin-G 29.0% (11/27). Sixty three percent (24/38) of Staphylococcus spp. were resistant to one antimicrobial agent and 15.8% were multidrug resistant (MDR). MDR was more common among S. aureus 28.6% (2/7) than S. intermedius group isolates 11.8% (2

  8. Enterotoxin-Encoding Genes in Staphylococcus spp. from Food Handlers in a University Restaurant.

    PubMed

    da Silva, Sabina Dos Santos Paulino; Cidral, Thiago André; Soares, Maria José dos Santos; de Melo, Maria Celeste Nunes

    2015-11-01

    Food handlers carrying enterotoxin-producing Staphylococcus are a potential source of food poisoning. The aim of this study was to analyze genes encoding enterotoxins in coagulase-positive Staphylococcus (CoPS) and coagulase-negative Staphylococcus (CoNS) isolated from the anterior nostrils and hands of food handlers at a university restaurant in the city of Natal, Northeast Brazil. Thirty food handlers were screened for the study. The isolates were subjected to Gram staining, a bacitracin sensitivity test, mannitol fermentation, and catalase and coagulase tests. CoNS and CoPS strains were subsequently identified by a Vitek 2 System (BioMerieux, France) and various biochemical tests. Polymerase chain reaction was used to detect genes for enterotoxins A, B, C, D, E, G, H, and I (sea, seb, sec, sed, see, seg, seh, and sei) and a disc-diffusion method was used to determine susceptibility to several classes of antimicrobials. All food handlers presented staphylococci on their hands and/or noses. The study found 58 Staphylococcus spp., of which 20.7% were CoPS and 79.3% were CoNS. S. epidermidis was the most prevalent species. Twenty-nine staphylococci (50%) were positive for one or more enterotoxin genes, and the most prevalent genes were seg and sei, each with a frequency of 29.3%. Indeed, CoNS encoded a high percentage of enterotoxin genes (43.5%). However, S. aureus encoded even more enterotoxin genes (75%). Most isolates showed sensitivity to the antibiotics used for testing, except for penicillin (only 35% sensitive). The results from this study reinforce that coagulase-negative as well as coagulase-positive staphylococci isolated from food handlers are capable of genotypic enterotoxigenicity.

  9. Livestock-associated Methicillin-Resistant Staphylococcus aureus in Humans, Europe

    PubMed Central

    Monnet, Dominique L.; Voss, Andreas; Krziwanek, Karina; Allerberger, Franz; Struelens, Marc; Zemlickova, Helena; Skov, Robert L.; Vuopio-Varkila, Jaana; Cuny, Christiane; Friedrich, Alexander W.; Spiliopoulou, Iris; Pászti, Judit; Hardardottir, Hjordis; Rossney, Angela; Pan, Angelo; Pantosti, Annalisa; Borg, Michael; Grundmann, Hajo; Mueller-Premru, Manica; Olsson-Liljequist, Barbro; Widmer, Andreas; Harbarth, Stephan; Schweiger, Alexander; Unal, Serhat; Kluytmans, Jan A.J.W.

    2011-01-01

    To estimate the proportion of methicillin-resistant Staphylococcus aureus (MRSA) isolates from humans that were sequence type (ST) 398, we surveyed 24 laboratories in 17 countries in Europe in 2007. Livestock-associated MRSA ST398 accounted for only a small proportion of MRSA isolates from humans; most were from the Netherlands, Belgium, Denmark, and Austria. PMID:21392444

  10. Antimicrobial Activity of Pomegranate and Green Tea Extract on Propionibacterium Acnes, Propionibacterium Granulosum, Staphylococcus Aureus and Staphylococcus Epidermidis.

    PubMed

    Li, Zhaoping; Summanen, Paula H; Downes, Julia; Corbett, Karen; Komoriya, Tomoe; Henning, Susanne M; Kim, Jenny; Finegold, Sydney M

    2015-06-01

    We used pomegranate extract (POMx), pomegranate juice (POM juice) and green tea extract (GT) to establish in vitro activities against bacteria implicated in the pathogenesis of acne. Minimum inhibitory concentrations (MIC) of 94 Propionibacterium acnes, Propionibacterium granulosum, Staphylococcus aureus, and Staphylococcus epidermidis strains were determined by Clinical and Laboratory Standards Institute-approved agar dilution technique. Total phenolics content of the phytochemicals was determined using the Folin-Ciocalteu method and the polyphenol composition by HPLC. Bacteria were identified by 16S rRNA sequence analysis. GT MIC of 400 μg/ml or less was obtained for 98% of the strains tested. 64% of P. acnes strains had POMx MICs at 50 μg/ml whereas 36% had MIC >400 μg/ml. POMx, POM juice, and GT showed inhibitory activity against all the P. granulosum strains at ≤100 μg/ml. POMx and GT inhibited all the S. aureus strains at 400 μg/ml or below, and POM juice had an MIC of 200 μg/ml against 17 S. aureus strains. POMx inhibited S. epidermidis strains at 25 μg/ml, whereas POM juice MICs were ≥200 μg/ml. The antibacterial properties of POMx and GT on the most common bacteria associated with the development and progression of acne suggest that these extracts may offer a better preventative/therapeutic regimen with fewer side effects than those currently available.

  11. Comparison of community-onset Staphylococcus argenteus and Staphylococcus aureus sepsis in Thailand: a prospective multicentre observational study.

    PubMed

    Chantratita, N; Wikraiphat, C; Tandhavanant, S; Wongsuvan, G; Ariyaprasert, P; Suntornsut, P; Thaipadungpanit, J; Teerawattanasook, N; Jutrakul, Y; Srisurat, N; Chaimanee, P; Anukunananchai, J; Phiphitaporn, S; Srisamang, P; Chetchotisakd, P; West, T E; Peacock, S J

    2016-05-01

    Staphylococcus argenteus is a globally distributed cause of human infection, but diagnostic laboratories misidentify this as Staphylococcus aureus. We determined whether there is clinical utility in distinguishing between the two. A prospective cohort study of community-onset invasive staphylococcal sepsis was conducted in adults at four hospitals in northeast Thailand between 2010 and 2013. Of 311 patients analysed, 58 (19%) were infected with S. argenteus and 253 (81%) with S. aureus. Most S. argenteus (54/58) were multilocus sequence type 2250. Infection with S. argenteus was more common in males, but rates of bacteraemia and drainage procedures were similar in the two groups. S. argenteus precipitated significantly less respiratory failure than S. aureus (5.2% versus 20.2%, adjusted OR 0.21, 95% CI 0.06-0.74, p 0.015), with a similar but non-significant trend for shock (6.9% versus 12.3%, adjusted OR 0.46, 95% CI 0.15-1.44, p 0.18). This did not translate into a difference in death at 28 days (6.9% versus 8.7%, adjusted OR 0.80, 95% CI 0.24-2.65, p 0.72). S. argenteus was more susceptible to antimicrobial drugs compared with S. aureus, and contained fewer toxin genes although pvl was detected in 16% (9/58). We conclude that clinical differences exist in association with sepsis due to S. argenteus versus S. aureus. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis

    PubMed Central

    Nakatsuji, Teruaki; Chen, Tiffany H.; Narala, Saisindhu; Chun, Kimberly A.; Two, Aimee M.; Yun, Tong; Shafiq, Faiza; Kotol, Paul F.; Bouslimani, Amina; Melnik, Alexey V.; Latif, Haythem; Kim, Ji-Nu; Lockhart, Alexandre; Artis, Keli; David, Gloria; Taylor, Patricia; Streib, Joanne; Dorrestein, Pieter C.; Grier, Alex; Gill, Steven R.; Zengler, Karsten; Hata, Tissa R.; Leung, Donald Y. M.; Gallo, Richard L.

    2017-01-01

    The microbiome can promote or disrupt human health by influencing both adaptive and innate immune functions. We tested whether bacteria that normally reside on human skin participate in host defense by killing Staphylococcus aureus, a pathogen commonly found in patients with atopic dermatitis (AD) and an important factor that exacerbates this disease. High-throughput screening for antimicrobial activity against S.aureus was performed on isolates of coagulase-negative Staphylococcus (CoNS) collected from the skin of healthy and AD subjects. CoNS strains with antimicrobial activity were common on the normal population but rare on AD subjects. A low frequency of strains with antimicrobial activity correlated with colonization by S.aureus. The antimicrobial activity was identified as previously unknown antimicrobial peptides (AMPs) produced by CoNS species including Staphylococcus epidermidis and Staphylococcus hominis. These AMPs were strain-specific, highly potent, selectively killed S.aureus, and synergized with the human AMP LL-37. Application of these CoNS strains to mice confirmed their defense function in vivo relative to application of nonactive strains. Strikingly, reintroduction of antimicrobial CoNS strains to human subjects with AD decreased colonization by S.aureus. These findings show how commensal skin bacteria protect against pathogens and demonstrate how dysbiosis of the skin microbiome can lead to disease. PMID:28228596

  13. Methicillin-resistant Staphylococcus aureus survival on hospital fomites.

    PubMed

    Huang, Robert; Mehta, Sanjay; Weed, Diane; Price, Connie Savor

    2006-11-01

    We examined the duration of survival of 2 strains of methicillin-resistant Staphylococcus aureus (MRSA) on 3 types of hospital fomites. MRSA survived for 11 days on a plastic patient chart, more than 12 days on a laminated tabletop, and 9 days on a cloth curtain. Irregular surfaces may help harbor organisms in the environment. In addition to contact precautions, MRSA containment during an outbreak should include concurrent environmental decontamination.

  14. Genomic analysis of Staphylococcus phage Stau2 isolated from medical specimen.

    PubMed

    Hsieh, Sue-Er; Tseng, Yi-Hsiung; Lo, Hsueh-Hsia; Chen, Shui-Tu; Wu, Cheng-Nan

    2016-02-01

    Stau2 is a lytic myophage of Staphylococcus aureus isolated from medical specimen. Exhibiting a broad host range against S. aureus clinical isolates, Stau2 is potentially useful for topical phage therapy or as an additive in food preservation. In this study, Stau2 was firstly revealed to possess a circularly permuted linear genome of 133,798 bp, with low G + C content, containing 146 open reading frames, but encoding no tRNA. The genome is organized into several modules containing genes for packaging, structural proteins, replication/transcription and host-cell-lysis, with the structural proteins and DNA polymerase modules being organized similarly to that in Twort-like phages of Staphylococcus. With the encoded DNA replication genes, Stau2 can possibly use its own system for replication. In addition, analysis in silico found several introns in seven genes, including those involved in DNA metabolism, packaging, and structure, while one of them (helicase gene) is experimentally confirmed to undergo splicing. Furthermore, phylogenetic analysis suggested Stau2 to be most closely related to Staphylococcus phages SA11 and Remus, members of Twort-like phages. The results of sodium dodecyl sulfate polyacrylamide gel electrophoresis showed 14 structural proteins of Stau2 and N-terminal sequencing identified three of them. Importantly, this phage does not encode any proteins which are known or suspected to be involved in toxicity, pathogenicity, or antibiotic resistance. Therefore, further investigations of feasible therapeutic application of Stau2 are needed.

  15. Identification of ABC transporter genes conferring combined pleuromutilin-lincosamide-streptogramin A resistance in bovine methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci.

    PubMed

    Wendlandt, Sarah; Kadlec, Kristina; Feßler, Andrea T; Schwarz, Stefan

    2015-06-12

    The aim of this study was to investigate the genetic basis of combined pleuromutilin-lincosamide-streptogramin A resistance in 26 unrelated methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci (CoNS) from dairy cows suffering from mastitis. The 26 pleuromutilin-resistant staphylococcal isolates were screened for the presence of the genes vga(A), vga(B), vga(C), vga(E), vga(E) variant, sal(A), vmlR, cfr, lsa(A), lsa(B), lsa(C), and lsa(E) by PCR. None of the 26 isolates carried the genes vga(B), vga(C), vga(E), vga(E) variant, vmlR, cfr, lsa(A), lsa(B), or lsa(C). Two Staphylococcus haemolyticus and single Staphylococcus xylosus, Staphylococcus lentus, and Staphylococcus hominis were vga(A)-positive. Twelve S. aureus, two Staphylococcus warneri, as well as single S. lentus and S. xylosus carried the lsa(E) gene. Moreover, single S. aureus, S. haemolyticus, S. xylosus, and Staphylococcus epidermidis were positive for both genes, vga(A) and lsa(E). The sal(A) gene was found in a single Staphylococcus sciuri. All ABC transporter genes were located in the chromosomal DNA, except for a plasmid-borne vga(A) gene in the S. epidermidis isolate. The genetic environment of the lsa(E)-positive isolates was analyzed using previously described PCR assays. Except for the S. warneri and S. xylosus, all lsa(E)-positive isolates harbored a part of the previously described enterococcal multiresistance gene cluster. This is the first report of the novel lsa(E) gene in the aforementioned bovine CoNS species. This is also the first identification of the sal(A) gene in a S. sciuri from a case of bovine mastitis. Moreover, the sal(A) gene was shown to also confer pleuromutilin resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A Survey of Staphylococcus sp and its Methicillin Resistance aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Bassinger, V. J.; Fontenot, S. L.; Castro, V. A.; Ott, C.; Healy, M.; Pierson, D. L.

    2004-01-01

    Background: Within the past few years, methicillin-resistant Staphylococcus aureus has emerged in environments with susceptible hosts in close proximity, such as hospitals and nursing homes. As the International Space Station (ISS) represents a semi-closed environment with a high level of crewmember interaction, an evaluation of isolates of clinical and environmental Staphylococcus aureus and coagulase negative Staphylococcus was performed to determine if this trend was also present in astronauts occupying ISS or on surfaces of the space station itself. Methods: Identification of isolates was completed using VITEK (GPI cards, BioMerieux), 16S ribosomal DNA analysis (MicroSeq 500, ABI), and Rep-PCR DNA fingerprinting (Divemilab, Bacterial Barcodes). Susceptibility tests were performed using VITEK (GPS-105 cards, BioMerieux) and resistance characteristics were evaluated by testing for the presence of the mecA gene (PBP2' MRSA test kit, Oxoid). Results: Rep-PCR analysis indicated the transfer of S. aureus between crewmembers and between crewmembers and ISS surfaces. While a variety of S. aureus were identified from both the crewmembers and environment, evaluations of the microbial population indicated minimal methicillin resistance. Results of this study indicated that within the semi-closed ISS environment, transfer of bacteria between crewmembers and their environment has been occurring, although there was no indication of a high concentration of methicillin resistant Staphylococcus species. Conclusions: While this study suggests that the spread of methicillin resistant S. aureus is not currently a concern aboard ISS, the increasing incidence of Earth-based antibiotic resistance indicates a need for continued clinical and environmental monitoring.

  17. Staphylococcus pseudintermedius and Staphylococcus schleiferi Subspecies coagulans from Canine Pyoderma Cases in Grenada, West Indies, and Their Susceptibility to Beta-Lactam Drugs

    PubMed Central

    Gibson, Kathryn; Frankie, Matthew; Matthew, Vanessa; Daniels, Joshua; Martin, Nancy A.; Andrews, Linton; Paterson, Tara; Sharma, Ravindra N.

    2014-01-01

    Over a 2-year period 66 cases of canine pyoderma in Grenada, West Indies, were examined by aerobic culture in order to ascertain the bacteria involved and their antimicrobial resistance patterns. Of the 116 total bacterial isolates obtained, the majority belonged to Gram-positive species, and the most common organism identified through biochemical and molecular methods was Staphylococcus pseudintermedius. Additionally, identification of a Staphylococcus schleiferi subspecies coagulans isolate was confirmed by molecular methods. All isolates of staphylococci were susceptible to beta-lactam drugs: amoxicillin-clavulanic acid, cefovecin, cefoxitin, cefpodoxime, and cephalothin. They were also susceptible to chloramphenicol and enrofloxacin. Resistance was highest to tetracycline. Methicillin resistance was not detected in any isolate of S. pseudintermedius or in S. schleiferi. Among the Gram-negative bacteria, the most common species was Klebsiella pneumoniae, followed by Acinetobacter baumannii/calcoaceticus. The only drug to which all Gram-negative isolates were susceptible was enrofloxacin. This report is the first to confirm the presence of S. pseudintermedius and S. schleiferi subspecies coagulans, in dogs with pyoderma in Grenada, and the susceptibility of staphylococcal isolates to the majority of beta-lactam drugs used in veterinary practice. PMID:24592351

  18. The purification and characterization of ATP synthase complexes from the mitochondria of four fungal species.

    PubMed

    Liu, Sidong; Charlesworth, Thomas J; Bason, John V; Montgomery, Martin G; Harbour, Michael E; Fearnley, Ian M; Walker, John E

    2015-05-15

    The ATP synthases have been isolated by affinity chromatography from the mitochondria of the fungal species Yarrowia lipolytica, Pichia pastoris, Pichia angusta and Saccharomyces cerevisiae. The subunit compositions of the purified enzyme complexes depended on the detergent used to solubilize and purify the complex, and the presence or absence of exogenous phospholipids. All four enzymes purified in the presence of n-dodecyl-β-D-maltoside had a complete complement of core subunits involved directly in the synthesis of ATP, but they were deficient to different extents in their supernumerary membrane subunits. In contrast, the enzymes from P. angusta and S. cerevisiae purified in the presence of n-decyl-β-maltose neopentyl glycol and the phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, cardiolipin (diphosphatidylglycerol) and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] had a complete complement of core subunits and also contained all of the known supernumerary membrane subunits, e, f, g, j, k and ATP8 (or Aap1), plus an additional new membrane component named subunit l, related in sequence to subunit k. The catalytic domain of the enzyme from P. angusta was more resistant to thermal denaturation than the enzyme from S. cerevisiae, but less stable than the catalytic domain of the bovine enzyme, but the stator and the integrity of the transmembrane proton pathway were most stable in the enzyme from P. angusta. The P. angusta enzyme provides a suitable source of enzyme for studying the structure of the membrane domain and properties associated with that sector of the enzyme complex.

  19. The purification and characterization of ATP synthase complexes from the mitochondria of four fungal species

    PubMed Central

    Liu, Sidong; Charlesworth, Thomas J.; Bason, John V.; Montgomery, Martin G.; Harbour, Michael E.; Fearnley, Ian M.; Walker, John E.

    2015-01-01

    The ATP synthases have been isolated by affinity chromatography from the mitochondria of the fungal species Yarrowia lipolytica, Pichia pastoris, Pichia angusta and Saccharomyces cerevisiae. The subunit compositions of the purified enzyme complexes depended on the detergent used to solubilize and purify the complex, and the presence or absence of exogenous phospholipids. All four enzymes purified in the presence of n-dodecyl-β-D-maltoside had a complete complement of core subunits involved directly in the synthesis of ATP, but they were deficient to different extents in their supernumerary membrane subunits. In contrast, the enzymes from P. angusta and S. cerevisiae purified in the presence of n-decyl-β-maltose neopentyl glycol and the phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, cardiolipin (diphosphatidylglycerol) and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] had a complete complement of core subunits and also contained all of the known supernumerary membrane subunits, e, f, g, j, k and ATP8 (or Aap1), plus an additional new membrane component named subunit l, related in sequence to subunit k. The catalytic domain of the enzyme from P. angusta was more resistant to thermal denaturation than the enzyme from S. cerevisiae, but less stable than the catalytic domain of the bovine enzyme, but the stator and the integrity of the transmembrane proton pathway were most stable in the enzyme from P. angusta. The P. angusta enzyme provides a suitable source of enzyme for studying the structure of the membrane domain and properties associated with that sector of the enzyme complex. PMID:25759169

  20. Novel Strategy of Using Methyl Esters as Slow Release Methanol Source during Lipase Expression by mut+ Pichia pastoris X33

    PubMed Central

    Kumari, Arti; Gupta, Rani

    2014-01-01

    One of the major issues with heterologous production of proteins in Pichia pastoris X33 under AOX1 promoter is repeated methanol induction. To obviate repeated methanol induction, methyl esters were used as a slow release source of methanol in lipase expressing mut+ recombinant. Experimental design was based on the strategy that in presence of lipase, methyl esters can be hydrolysed to release their products as methanol and fatty acid. Hence, upon break down of methyl esters by lipase, first methanol will be used as a carbon source and inducer. Then P. pastoris can switch over to fatty acid as a carbon source for multiplication and biomass maintenance till further induction by methyl esters. We validated this strategy using recombinant P. pastoris expressing Lip A, Lip C from Trichosporon asahii and Lip11 from Yarrowia lipolytica. We found that the optimum lipase yield under repeated methanol induction after 120 h was 32866 U/L, 28271 U/L and 21978 U/L for Lip C, Lip A and Lip 11 respectively. In addition, we found that a single dose of methyl ester supported higher production than repeated methanol induction. Among various methyl esters tested, methyl oleate (0.5%) caused 1.2 fold higher yield for LipA and LipC and 1.4 fold for Lip11 after 120 h of induction. Sequential utilization of methanol and oleic acid by P. pastoris was observed and was supported by differential peroxisome proliferation studies by transmission electron microscopy. Our study identifies a novel strategy of using methyl esters as slow release methanol source during lipase expression. PMID:25170843

  1. Integrated bioprocess for conversion of gaseous substrates to liquids

    PubMed Central

    Hu, Peng; Chakraborty, Sagar; Kumar, Amit; Woolston, Benjamin; Liu, Hongjuan; Emerson, David; Stephanopoulos, Gregory

    2016-01-01

    In the quest for inexpensive feedstocks for the cost-effective production of liquid fuels, we have examined gaseous substrates that could be made available at low cost and sufficiently large scale for industrial fuel production. Here we introduce a new bioconversion scheme that effectively converts syngas, generated from gasification of coal, natural gas, or biomass, into lipids that can be used for biodiesel production. We present an integrated conversion method comprising a two-stage system. In the first stage, an anaerobic bioreactor converts mixtures of gases of CO2 and CO or H2 to acetic acid, using the anaerobic acetogen Moorella thermoacetica. The acetic acid product is fed as a substrate to a second bioreactor, where it is converted aerobically into lipids by an engineered oleaginous yeast, Yarrowia lipolytica. We first describe the process carried out in each reactor and then present an integrated system that produces microbial oil, using synthesis gas as input. The integrated continuous bench-scale reactor system produced 18 g/L of C16-C18 triacylglycerides directly from synthesis gas, with an overall productivity of 0.19 g⋅L−1⋅h−1 and a lipid content of 36%. Although suboptimal relative to the performance of the individual reactor components, the presented integrated system demonstrates the feasibility of substantial net fixation of carbon dioxide and conversion of gaseous feedstocks to lipids for biodiesel production. The system can be further optimized to approach the performance of its individual units so that it can be used for the economical conversion of waste gases from steel mills to valuable liquid fuels for transportation. PMID:26951649

  2. Prevalence and antimicrobial resistance profile of Staphylococcus in dairy farms, abattoir and humans in Addis Ababa, Ethiopia.

    PubMed

    Beyene, Takele; Hayishe, Halefom; Gizaw, Fikru; Beyi, Ashenafi Feyisa; Abunna, Fufa; Mammo, Bedaso; Ayana, Dinka; Waktole, Hika; Abdi, Reta Duguma

    2017-04-28

    Staphylococcus species cause mastitis and wound infection in livestock and food poisoning in humans through ingestion of contaminated foods, including meat and dairy products. They are evolving pathogens in that they readily acquire drug resistance, and multiple drug-resistant (MDR) isolates are increasing in human and veterinary healthcare. Therefore, this study was conducted to evaluate the prevalence of Staphylococci and their drug resistance in dairy farms and abattoir settings of Addis Ababa. In this cross-sectional study, 193 samples of milk, meat, equipment and humans working in the dairy farms and abattoir were collected (dairy farms = 72 and abattoir sources = 121). Staphylococcus isolation and identification at the species level was done according to ISO-6888-3 using biochemical characteristics. An antimicrobial susceptibility test was conducted for 43 of the isolates using 15 antimicrobial agents commonly used for humans and livestock by the Kirby Bauer disk diffusion method following CLSI guidelines. Staphylococcus organism were isolated from 92 (47.7%) of the total 193 samples, 50% in the dairy farms and 46.3% in the abattoir. The isolated species were S. aureus (n = 31; 16.1%), S. intermedius (n = 21; 10.9%), S. hyicus (n = 16; 8.3%), and coagulase negative Staphylococcus (CNS) (n = 24; 12.4%). Gentamycin was effective drug as all isolates (n = 43; 100%) were susceptible to it and followed by kanamycin (n = 39; 90.7%). However, the majority of the isolates showed resistance to penicillin-G (95.3%), nalidixic acid (88.4%), cloxacillin (79.1%), vancomycin (65.1%) and cefoxitin (55.8%). Of the 15 S. aureus tested for drug susceptibility, 73.3% of them were phenotypically resistant to vancomycin (VRSA) and all of the 15 isolates showed multi-drug resistance (MDR) to >3 drugs. Also, all of the tested CNS (100%), S. hyicus (100%) and the majority of S. intermedius isolates (88.9%) developed MDR. Alarmingly, the Staphylococcus isolates

  3. Multilocus Sequence Typing Analysis of Staphylococcus lugdunensis Implies a Clonal Population Structure

    PubMed Central

    Chassain, Benoît; Lemée, Ludovic; Didi, Jennifer; Thiberge, Jean-Michel; Brisse, Sylvain; Pons, Jean-Louis

    2012-01-01

    Staphylococcus lugdunensis is recognized as one of the major pathogenic species within the genus Staphylococcus, even though it belongs to the coagulase-negative group. A multilocus sequence typing (MLST) scheme was developed to study the genetic relationships and population structure of 87 S. lugdunensis isolates from various clinical and geographic sources by DNA sequence analysis of seven housekeeping genes (aroE, dat, ddl, gmk, ldh, recA, and yqiL). The number of alleles ranged from four (gmk and ldh) to nine (yqiL). Allelic profiles allowed the definition of 20 different sequence types (STs) and five clonal complexes. The 20 STs lacked correlation with geographic source. Isolates recovered from hematogenic infections (blood or osteoarticular isolates) or from skin and soft tissue infections did not cluster in separate lineages. Penicillin-resistant isolates clustered mainly in one clonal complex, unlike glycopeptide-tolerant isolates, which did not constitute a distinct subpopulation within S. lugdunensis. Phylogenies from the sequences of the seven individual housekeeping genes were congruent, indicating a predominantly mutational evolution of these genes. Quantitative analysis of the linkages between alleles from the seven loci revealed a significant linkage disequilibrium, thus confirming a clonal population structure for S. lugdunensis. This first MLST scheme for S. lugdunensis provides a new tool for investigating the macroepidemiology and phylogeny of this unusually virulent coagulase-negative Staphylococcus. PMID:22785196

  4. Topical Antimicrobial Treatments Can Elicit Shifts to Resident Skin Bacterial Communities and Reduce Colonization by Staphylococcus aureus Competitors

    PubMed Central

    SanMiguel, Adam J.; Meisel, Jacquelyn S.; Horwinski, Joseph; Zheng, Qi

    2017-01-01

    ABSTRACT The skin microbiome is a complex ecosystem with important implications for cutaneous health and disease. Topical antibiotics and antiseptics are often employed to preserve the balance of this population and inhibit colonization by more pathogenic bacteria. However, despite their widespread use, the impact of these interventions on broader microbial communities remains poorly understood. Here, we report the longitudinal effects of topical antibiotics and antiseptics on skin bacterial communities and their role in Staphylococcus aureus colonization resistance. In response to antibiotics, cutaneous populations exhibited an immediate shift in bacterial residents, an effect that persisted for multiple days posttreatment. By contrast, antiseptics elicited only minor changes to skin bacterial populations, with few changes to the underlying microbiota. While variable in scope, both antibiotics and antiseptics were found to decrease colonization by commensal Staphylococcus spp. by sequencing- and culture-based methods, an effect which was highly dependent on baseline levels of Staphylococcus. Because Staphylococcus residents have been shown to compete with the skin pathogen S. aureus, we also tested whether treatment could influence S. aureus levels at the skin surface. We found that treated mice were more susceptible to exogenous association with S. aureus and that precolonization with the same Staphylococcus residents that were previously disrupted by treatment reduced S. aureus levels by over 100-fold. In all, the results of this study indicate that antimicrobial drugs can alter skin bacterial residents and that these alterations can have critical implications for cutaneous host defense. PMID:28630195

  5. Preventing Community-Associated Methicillin-Resistant "Staphylococcus aureus" among Student Athletes

    ERIC Educational Resources Information Center

    Many, Patricia S.

    2008-01-01

    Methicillin-resistant "Staphylococcus aureus" (MRSA) was once thought to be a bacterium causing infections in only hospitalized patients. However, a new strain of MRSA has emerged among healthy individuals who have not had any recent exposure to a hospital or to medical procedures. This new strain is known as "community-associated…

  6. A high incidence of Staphylococcus aureus colonization in the external eyes of patients with atopic dermatitis.

    PubMed

    Nakata, K; Inoue, Y; Harada, J; Maeda, N; Watanabe, H; Tano, Y; Shimomura, Y; Harino, S; Sawa, M

    2000-12-01

    To determine the frequency distribution of bacteria on the external surface of eyes of patients with atopic dermatitis (AD) and to investigate the relationship between the frequency of bacterial colonization and the grade of atopy or ocular diseases associated with AD. Comparative cross-sectional study. Thirty-six AD patients (mean age, 24.5 years) and 16 nonatopic, age-matched control participants (mean age, 25.5 years). The eyelid margins and conjunctival sacs were scraped with sterile swabs. These samples were inoculated into aerobic and anaerobic culture media. The frequency distribution of bacteria isolated from the eyelid margins and conjunctival sacs. Bacteria isolated from AD patients were: Staphylococcus aureus in 21 of 36 patients (including methicillin-resistant Staphylococcus aureus in two patients); Staphylococcus epidermidis in two patients (including methicillin-resistant Staphylococcus epidermidis in one patient); other coagulase-negative Staphylococcus in six patients;alpha-streptococcus in three patients; Corynebacterium species in three patients; Neisseria species in two patients; and Propionibacterium acnes in one patient. From the nonatopic control participants, we isolated S. aureus in one patient, S. epidermidis in two patients and alpha-streptococcus in one patient. S. aureus was isolated from 67% of the AD patients, and any type of bacteria was isolated from 86% of the patients. These rates were significantly higher than those of nonatopic control participants (6% S. aureus and 25% any bacteria). There was no significant relationship between the frequency distribution of bacteria and the grade of atopy or associated ocular diseases. High rates of bacterial colonization, especially S. aureus, were found in the conjunctival sacs and eyelid margins of AD patients. In case management of AD patients, this unique distribution of bacteria must be carefully considered.

  7. Diversity of Staphylococcus species and prevalence of enterotoxin genes isolated from milk of healthy cows and cows with subclinical mastitis.

    PubMed

    Rall, V L M; Miranda, E S; Castilho, I G; Camargo, C H; Langoni, H; Guimarães, F F; Araújo Júnior, J P; Fernandes Júnior, A

    2014-02-01

    The objectives of this study were to determine the occurrence and diversity of Staphylococcus spp. in milk from healthy cows and cows with subclinical mastitis in Brazil and to examine the profile of enterotoxin genes and some enterotoxins produced by Staphylococcus spp. A total of 280 individual mammary quarter milk samples from 70 healthy cows and 292 samples from 73 cows with subclinical mastitis were collected from 11 farms in the state of São Paulo, Brazil. Staphylococcus spp. were recovered from 63 (22.5%) samples from healthy cows and from 80 samples (27.4%) from cows with mastitis. The presence of Staphylococcus aureus was significantly different between these 2 groups and was more prevalent in the cows with mastitis. The presence of Staphylococcus saprophyticus was also significantly different between these 2 groups, but this organism was more prevalent in healthy cows. No statistically significant differences were observed in the numbers of other staphylococci in milk samples from the 2 groups. The sea gene was the most prevalent enterotoxin gene in both groups. Eight of 15 (53.3%) Staph. aureus carried this gene and all produced the SEA toxin. In the coagulase-negative staphylococci (CNS) group, 61 of 128 (47.5%) had the same gene and just 1 (1.6%) Staphylococcus epidermidis strain produced the enterotoxin in vitro. Because CNS were isolated from both groups of cows and most CNS contained enterotoxin genes but did not produce toxins, the role of CNS in mastitis should be carefully defined. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Identification of staphylococcus species with hyperspectral microscope imaging and classification algrorithms

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral microscope imaging is presented as a rapid and efficient tool to classify foodborne bacteria species. The spectral data were obtained from five different species of Staphylococcus spp. with a hyperspectral microscope imaging system that provided a maximum of 89 contiguous spectral imag...

  9. Enzymatic Detachment of Staphylococcus epidermidis Biofilms

    PubMed Central

    Kaplan, Jeffrey B.; Ragunath, Chandran; Velliyagounder, Kabilan; Fine, Daniel H.; Ramasubbu, Narayanan

    2004-01-01

    The gram-positive bacterium Staphylococcus epidermidis is the most common cause of infections associated with catheters and other indwelling medical devices. S. epidermidis produces an extracellular slime that enables it to form adherent biofilms on plastic surfaces. We found that a biofilm-releasing enzyme produced by the gram-negative periodontal pathogen Actinobacillus actinomycetemcomitans rapidly and efficiently removed S. epidermidis biofilms from plastic surfaces. The enzyme worked by releasing extracellular slime from S. epidermidis cells. Precoating surfaces with the enzyme prevented S. epidermidis biofilm formation. Our findings demonstrate that biofilm-releasing enzymes can exhibit broad-spectrum activity and that these enzymes may be useful as antibiofilm agents. PMID:15215120

  10. Vancomycin-resistant Staphylococcus aureus (VRSA) in hepatic cirrhosis patient: a case report

    NASA Astrophysics Data System (ADS)

    Ramazoni, M.; Siregar, M. L.; Jamil, K. F.

    2018-03-01

    The irrational use of vancomycin in methicillin-resistant Staphylococcus aureus (MRSA) infections result in the emergence of vancomycin-resistant Staphylococcus aureus (VRSA) pathogen, which can pose a threat to the world healthcare. A 32-year-old male with hepatic cirrhosis patient admitted with recurrent gastrointestinal bleeding with a wound in his left leg since 6 months ago; the result microbiological culture showed a VRSA with minimum inhibitory concentration (MIC) vancomycin ≥32μg/mL The patient was treated with trimethoprim/sulfamethoxazole combination according to cultural sensitivity. The second microbiological culture showed thesame result. VRSA is a rare and difficult condition to handle. The success of therapy for this VRSA case warn us how important to cut the S. aureus distribution chain with a high level of resistance.

  11. Virulence type and tissue tropism of Staphylococcus strains originating from Hungarian rabbit farms.

    PubMed

    Német, Zoltán; Albert, Ervin; Nagy, Krisztina; Csuka, Edit; Dán, Ádám; Szenci, Ottó; Hermans, Katleen; Balka, Gyula; Biksi, Imre

    2016-09-25

    Staphylococcosis has a major economic impact on rabbit farming worldwide. Previous studies described a highly virulent variant, which is disseminated across Europe. Such strains are reported to be capable of inducing uncontrollable outbreaks. The authors describe a survey conducted on 374 Staphylococcus strains isolated from rabbit farms, mostly from Hungary, between 2009 and 2014, from a variety of pathological processes. The virulence type of the strains was determined using a multiplex PCR system. 84.2% of the strains belonged to a previously rarely isolated atypical highly virulent type. Only 6.1% belonged to the typical highly virulent genotype. Even low virulent strains were present at a higher percentage (6.4%). For a small group of strains (3.2%) the detection of the femA gene failed, indicating that these strains probably do not belong to the Staphylococcus aureus species. The results reveal the possibility of the asymptomatic presence of highly virulent strains on rabbit farms. "Non-aureus" Staphylococcus sp. can also have a notable role in the etiology of rabbit staphylococcosis. An association with the lesions and the virulence type was demonstrated. Statistical analysis of data on organotropism showed a significant correlation between septicaemia and the highly virulent genotype. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Methicillin-resistant Staphylococcus aureus in a neonatal alpaca

    PubMed Central

    Stull, Jason W.; Kenney, Daniel G.; Slavić, Durda; Weese, J. Scott

    2012-01-01

    A 6-hour-old alpaca was presented for evaluation of respiratory difficulty. As part of routine surveillance, methicillin-resistant Staphylococcus aureus (MRSA) was identified from a nasal swab taken upon admission to the hospital. No signs of MRSA infection were noted. The MRSA strain recovered was a human epidemic clone that has been associated with horses. Methicillin-resistant S. aureus colonization can occur in camelids, and the potential animal and public health risks require consideration. PMID:23204589

  13. New drugs for methicillin-resistant Staphylococcus aureus: an update.

    PubMed

    Kumar, Krishan; Chopra, Sidharth

    2013-07-01

    Methicillin-resistant Staphylococcus aureus (MRSA) remains a leading cause of bacterial infections worldwide, with a dwindling repertoire of effective antimicrobials active against it. This review aims to provide an update on novel anti-MRSA molecules currently under pre-clinical and clinical development, with emphasis on their mechanism of action. This review is limited to molecules that target the pathogen directly and does not detail immunomodulatory anti-infectives.

  14. Antibiotic resistance in Staphylococcus sp. isolated from the vaginal environment of squirrel monkeys (Saimiri spp.) bred ex situ.

    PubMed

    Donato, Anna C J; Penna, Bruno; Consalter, Angélica; Carvalho, Daniela D; Lilenbaum, Walter; Ferreira, Ana M R

    2017-06-01

    Squirrel monkeys (Saimiri spp.) have been widely used as animal models; however, the occurrence of Staphylococcus sp in their vaginal microbiota remains to be described. Samples were collected from 175 adult squirrel monkeys to isolate Staphylococcus sp and to test for susceptibility to a panel of nine antimicrobial agents. Isolates with characteristics of the genus Staphylococcus were detected in 95 of 175 samples. Coagulase-negative staphylococci (CoNS) were the most common (95.8%, 91/95) isolates. Resistance to antibiotics was observed in 47.3% (45/95) of isolates. Resistance to tetracycline was observed in 28.5% (26/91), chloramphenicol in 15.4% (14/91), and methicillin in 13.2% (12/91) of CoNS. Coagulase-positive staphylococci were resistant to tetracycline, erythromycin, and methicillin. The presence of Staphylococcus sp in vaginal samples obtained from squirrel monkeys suggests that these animals were in a carrier state. Furthermore, isolating strains resistant to methicillin reinforces the biosafety care of a colony. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Loop-mediated isothermal amplification for detection of Staphylococcus aureus in dairy cow suffering from mastitis.

    PubMed

    Tie, Zhang; Chunguang, Wang; Xiaoyuan, Wei; Xinghua, Zhao; Xiuhui, Zhong

    2012-01-01

    To develop a rapid detection method of Staphylococcus aureus using loop-mediated isothermal amplification (LAMP), four specific primers were designed according to six distinct sequences of the nuc gene. In addition, the specificity and sensitivity of LAMP were verified and compared with those of PCR. Results showed that the LAMP reaction was completed within 45 min at 62.5°C, and ladder bands were appeared in LAMP products analyzed by gel electrophoresis. After adding 1x SYBR Green l, the positive reaction tube showed green color and the negative reaction tube remained orange, indicating that the LAMP has high specificity. The minimal detectable concentration of LAMP was 1 × 10² CFU/mL and that of PCR was 1 × 10⁴ CFU/mL, indicating that the LAMP was 100 times more sensitive than the PCR. The LAMP method for detection of Staphylococcus aureus has many advantages, such as simple operation, high sensitivity, high specificity, and rapid analysis. Therefore, this method is more suitable for the rapid on-site detection of Staphylococcus aureus.

  16. Enterotoxin-encoding genes in Staphylococcus spp. from bulk goat milk.

    PubMed

    Lyra, Daniele G; Sousa, Francisca G C; Borges, Maria F; Givisiez, Patrícia E N; Queiroga, Rita C R E; Souza, Evandro L; Gebreyes, Wondwossen A; Oliveira, Celso J B

    2013-02-01

    Although Staphylococcus aureus has been implicated as the main Staphylococcus species causing human food poisoning, recent studies have shown that coagulase-negative Staphylococcus could also harbor enterotoxin-encoding genes. Such organisms are often present in goat milk and are the most important mastitis-causing agents. Therefore, this study aimed to investigate the occurrence of enterotoxin-encoding genes among coagulase-positive (CoPS) and coagulase-negative (CoNS) staphylococci isolated from raw goat milk produced in the semi-arid region of Paraiba, the most important region for goat milk production in Brazil. Enterotoxin-encoding genes were screened in 74 staphylococci isolates (30 CoPS and 44 CoNS) by polymerase chain reaction targeting the genes sea, seb, sec, sed, see, seg, seh, and sei. Enterotoxin-encoding genes were found in nine (12.2%) isolates, and four different genes (sea, sec, seg, and sei) were identified amongst the isolates. The most frequent genes were seg and sei, which were often found simultaneously in 44.5% of the isolates. The gene sec was the most frequent among the classical genes, and sea was found only in one isolate. All CoPS isolates (n=7) harboring enterotoxigenic genes were identified as S. aureus. The two coagulase-negative isolates were S. haemolyticus and S. hominis subsp. hominis and they harbored sei and sec genes, respectively. A higher frequency of enterotoxin-encoding genes was observed amongst CoPS (23.3%) than CoNS (4.5%) isolates (p<0.05), reinforcing the importance of S. aureus as a potential foodborne agent. However, the potential risk posed by CoNS in goat milk should not be ignored because it has a higher occurrence in goat milk and enterotoxin-encoding genes were detected in some isolates.

  17. A novel hybrid SCCmec-mecC region in Staphylococcus sciuri

    PubMed Central

    Harrison, Ewan M.; Paterson, Gavin K.; Holden, Matthew T. G.; Ba, Xiaoliang; Rolo, Joana; Morgan, Fiona J. E.; Pichon, Bruno; Kearns, Angela; Zadoks, Ruth N.; Peacock, Sharon J.; Parkhill, Julian; Holmes, Mark A.

    2014-01-01

    Objectives Methicillin resistance in Staphylococcus spp. results from the expression of an alternative penicillin-binding protein 2a (encoded by mecA) with a low affinity for β-lactam antibiotics. Recently, a novel variant of mecA known as mecC (formerly mecALGA251) was identified in Staphylococcus aureus isolates from both humans and animals. In this study, we identified two Staphylococcus sciuri subsp. carnaticus isolates from bovine infections that harbour three different mecA homologues: mecA, mecA1 and mecC. Methods We subjected the two isolates to whole-genome sequencing to further understand the genetic context of the mec-containing region. We also used PCR and RT–PCR to investigate the excision and expression of the SCCmec element and mec genes, respectively. Results Whole-genome sequencing revealed a novel hybrid SCCmec region at the orfX locus consisting of a class E mec complex (mecI-mecR1-mecC1-blaZ) located immediately downstream of a staphylococcal cassette chromosome mec (SCCmec) type VII element. A second SCCmec attL site (attL2), which was imperfect, was present downstream of the mecC region. PCR analysis of stationary-phase cultures showed that both the SCCmec type VII element and a hybrid SCCmec-mecC element were capable of excision from the genome and forming a circular intermediate. Transcriptional analysis showed that mecC and mecA, but not mecA1, were both expressed in liquid culture supplemented with oxacillin. Conclusions Overall, this study further highlights that a range of staphylococcal species harbour the mecC gene and furthers the view that coagulase-negative staphylococci associated with animals may act as reservoirs of antibiotic resistance genes for more pathogenic staphylococcal species. PMID:24302651

  18. Methicillin-Resistant Staphylococcus aureus in Pork Production Shower Facilities ▿

    PubMed Central

    Leedom Larson, Kerry R.; Harper, Abby L.; Hanson, Blake M.; Male, Michael J.; Wardyn, Shylo E.; Dressler, Anne E.; Wagstrom, Elizabeth A.; Tendolkar, Shaliesh; Diekema, Daniel J.; Donham, Kelley J.; Smith, Tara C.

    2011-01-01

    As methicillin-resistant Staphylococcus aureus (MRSA) has been found in pigs, we sought to determine if MRSA is present in pork production shower facilities. In two production systems tested, 3% and 26% of shower samples were positive for MRSA. spa types identified included t034, t189, t753, and t1746. PMID:21097587

  19. Topical Antimicrobial Treatments Can Elicit Shifts to Resident Skin Bacterial Communities and Reduce Colonization by Staphylococcus aureus Competitors.

    PubMed

    SanMiguel, Adam J; Meisel, Jacquelyn S; Horwinski, Joseph; Zheng, Qi; Grice, Elizabeth A

    2017-09-01

    The skin microbiome is a complex ecosystem with important implications for cutaneous health and disease. Topical antibiotics and antiseptics are often employed to preserve the balance of this population and inhibit colonization by more pathogenic bacteria. However, despite their widespread use, the impact of these interventions on broader microbial communities remains poorly understood. Here, we report the longitudinal effects of topical antibiotics and antiseptics on skin bacterial communities and their role in Staphylococcus aureus colonization resistance. In response to antibiotics, cutaneous populations exhibited an immediate shift in bacterial residents, an effect that persisted for multiple days posttreatment. By contrast, antiseptics elicited only minor changes to skin bacterial populations, with few changes to the underlying microbiota. While variable in scope, both antibiotics and antiseptics were found to decrease colonization by commensal Staphylococcus spp. by sequencing- and culture-based methods, an effect which was highly dependent on baseline levels of Staphylococcus Because Staphylococcus residents have been shown to compete with the skin pathogen S. aureus , we also tested whether treatment could influence S. aureus levels at the skin surface. We found that treated mice were more susceptible to exogenous association with S. aureus and that precolonization with the same Staphylococcus residents that were previously disrupted by treatment reduced S. aureus levels by over 100-fold. In all, the results of this study indicate that antimicrobial drugs can alter skin bacterial residents and that these alterations can have critical implications for cutaneous host defense. Copyright © 2017 American Society for Microbiology.

  20. Evaluation of the LightCycler Staphylococcus MGRADE Kits on Positive Blood Cultures That Contained Gram-Positive Cocci in Clusters

    PubMed Central

    Shrestha, Nabin K.; Tuohy, Marion J.; Padmanabhan, Ravindran A.; Hall, Gerri S.; Procop, Gary W.

    2005-01-01

    We evaluated the Roche LightCycler Staphylococcus MGRADE kits to differentiate between Staphylococcus aureus and coagulase-negative staphylococci in blood cultures growing clusters of gram-positive cocci. Testing 100 bottles (36 containing S. aureus), the assay was 100% sensitive and 98.44% specific for S. aureus and 100% sensitive and specific for coagulase-negative staphylococci. PMID:16333115

  1. Coagulase-negative Staphylococcus species in bulk milk: Prevalence, distribution, and associated subgroup- and species-specific risk factors.

    PubMed

    De Visscher, A; Piepers, S; Haesebrouck, F; Supré, K; De Vliegher, S

    2017-01-01

    Coagulase-negative staphylococci (CNS) have become the main pathogens causing bovine mastitis in recent years. A huge variation in species distribution among herds has been observed in several studies, emphasizing the need to identify subgroup- and species-specific herd-level factors to improve our understanding of the differences in ecological and epidemiological nature between species. The use of bulk milk samples enables the inclusion of a large(r) number of herds needed to identify herd-level risk factors and increases the likelihood of recovering enough isolates per species needed for conducting subgroup- and, eventually, species-specific analyses at the same time. This study aimed to describe the prevalence and distribution of CNS species in bulk milk samples and to identify associated subgroup- and species-specific herd-level factors. Ninety percent of all bulk milk samples yielded CNS. Staphylococcus equorum was the predominant species, followed by Staphylococcus haemolyticus and Staphylococcus epidermidis. A seasonal effect was observed for several CNS species. Bulk milk samples from herds with a loose-pack or a tiestall housing system were more likely to yield CNS species compared with herds with a freestall barn, except for S. epidermidis, Staphylococcus simulans, and Staphylococcus cohnii. In September, herds in which udders were clipped had lower odds of yielding Staphylococcus chromogenes, S. simulans, and Staphylococcus xylosus, the CNS species assumed to be most relevant for udder health, in their bulk milk than herds in which udder clipping was not practiced. Bulk milk of herds participating in a monthly veterinary udder health-monitoring program was more likely to yield these 3 CNS species. Herds always receiving their milk quality premium or predisinfecting teats before attachment of the milking cluster had lower odds of having S. equorum in their bulk milk. Herds not using a single dry cotton or paper towel for each cow during premilking udder

  2. Staphylococcus aureus induces hypoxia and cellular damage in porcine dermal explants

    USDA-ARS?s Scientific Manuscript database

    Methicillin-resistant Staphylococcus aureus (MRSA) can infect wounds and produce difficult-to- treat biofilms. To determine the extent that MRSA biofilms can deplete oxygen, change pH and damage host tissue, we developed a porcine dermal explant model on which we cultured GFP-labeled MRSA biofilms. ...

  3. Triple-acting antimicrobial treatment for drug-resistant and intracellular Staphylococcus aureus

    USDA-ARS?s Scientific Manuscript database

    Multi-drug resistant bacteria are a persistent problem in modern health care, food safety and animal health. There is a need for new antimicrobials to replace over-used conventional antibiotics. Staphylococcus aureus (S. aureus) is a notorious pathogen for both animal and human health with multi-d...

  4. Triple-acting antimicrobial treatment for drug-resistant and intracellular Staphylococcus aureus.

    USDA-ARS?s Scientific Manuscript database

    Multi-drug resistant bacteria are a persistent problem in modern health care, food safety and animal health. There is a need for new antimicrobials to replace over-used conventional antibiotics. Staphylococcus aureus (S. aureus) is a notorious pathogen for both animal and human health with multi-d...

  5. Purification and substrate specificity of Staphylococcus hyicus lipase.

    PubMed

    van Oort, M G; Deveer, A M; Dijkman, R; Tjeenk, M L; Verheij, H M; de Haas, G H; Wenzig, E; Götz, F

    1989-11-28

    The Staphylococcus hyicus lipase gene has been cloned and expressed in Staphylococcus carnosus. From the latter organism the enzyme was secreted into the medium as a protein with an apparent molecular mass of 86 kDa. This protein was purified, and the amino-terminal sequence showed that the primary gene product was indeed cleaved at the proposed signal peptide cleavage site. The protein was purified from large-scale preparations after tryptic digestion. This limited proteolysis reduced the molecular mass to 46 kDa and increased the specific activity about 3-fold. Although the enzyme had a low specific activity in the absence of divalent cations, the activity increased about 40-fold in the presence of Sr2+ or Ca2+ ions. The purified lipase has a broad substrate specificity. The acyl chains were removed from the primary and secondary positions of natural neutral glycerides and from a variety of synthetic glyceride analogues. Thus triglycerides were fully hydrolyzed to free fatty acid and glycerol. The enzyme hydrolyzed naturally occurring phosphatidylcholines, their synthetic short-chain analogues, and lysophospholipids to free fatty acids and water-soluble products. The enzyme had a 2-fold higher activity on micelles of short-chain D-lecithins than on micelles composed of the L-isomers. Thus the enzyme from S. hyicus has lipase activity and also high phospholipase A and lysophospholipase activity.

  6. [Epidemiology of Staphylococcus aureus nosocomial infections in a high-risk neonatal unit].

    PubMed

    Velazco, Elsa; Nieves, Beatriz; Araque, María; Calderas, Zoila

    2002-01-01

    Nosocomial infections are a significant cause of morbidity and mortality throughout the world. In developing countries it is difficult to carry out effective surveillance and control programs for this type of infection because of the cost in both human and material resources. These considerations prompted us to perform a prospective study to determine the epidemiologic and microbiologic characteristics of nosocomial infections due to Staphylococcus aureus in the High-risk Neonatal Unit (HRNU) of the Instituto Autónomo Hospital Universitario de Los Andes (IAHULA), during the period of November 1997 to October 1998. Among a total of 120 microorganisms, 24 (20%) strains of Staphylococcus aureus were isolated; 47% were recovered from blood and 33% from conjunctive samples. Among the cases of conjunctivitis, S. aureus was the only pathogen isolated in 42%. Twenty of the 24 Staphylococcus aureus strains (83%) were methicillin-resistant (MRSA). According to their resistance profiles, we established 12 groups of strains from neonates with nosocomial infections and 1 group of strains from the two carriers among the healthcare personnel detected by microbiological screening. The MeRGmR pattern was the most frequent. Plasmid analysis disclosed two profiles, each having a plasmid molecular weight over 23.130 bp. The MRSA strains isolated from the neonates and those isolated from the carriers showed the same plasmid profile. This suggests that the healthcare personnel may have acted as reservoirs of the MRSA strains found in neonates with nosocomial infection.

  7. [Molecular study of methicillin-resistant Staphylococcus haemolyticus in a Mexican hospital].

    PubMed

    Castro, Natividad; Loaiza-Loeza, María Salomé; Calderón-Navarro, Amparo; Sánchez, Alejandro; Silva-Sánchez, Jesús

    2006-01-01

    To perform the molecular characterization of methicillin-resistant Staphylococcus haemolyticus (MRSH) clinical isolates from patients in a Mexican hospital. Sixty three Staphylococcus ssp. isolates collected from September 2000 to October 2002 were analyzed. Antimicrobial susceptibility was determined by disk diffusion method and the presence of the mecA gene was detected by PCR technique. Isolates characterization was carried out by pulsed field gel electrophoresis (PFGE). The frequency of S. haemolyticus was 25.5% (18 of 63 clinical isolates), all S. haemolyticus isolates were methicillin-resistant and they were positive for the mecA gene. A major pattern (A) with 8 subtypes was identified. This clone was distributed during the 20 months period. Most of them were isolated from the surgery (55%) and pediatric services (27.5%). The methicillin-resistant S. haemolyticus permanence as pathogen in this hospital, suggest the implementation of control programs in order to decrease the prevalence of this multiresistant pathogen.

  8. Staphylococcus epidermidis Biofilms: Functional Molecules, Relation to Virulence, and Vaccine Potential

    NASA Astrophysics Data System (ADS)

    Mack, Dietrich; Davies, Angharad P.; Harris, Llinos G.; Knobloch, Johannes K. M.; Rohde, Holger

    Medical device-associated infections, most frequently caused by Staphylococcus epidermidis and Staphylococcus aureus, are of increasing importance in modern medicine. The formation of adherent, multilayered bacterial biofilms is crucial in the pathogenesis of these infections. Polysaccharide intercellular adhesin (PIA), a homoglycan of β-1,6-linked 2-acetamido-2-deoxy-d-glucopyranosyl residues, of which about 15% are non-N-acetylated, is central to biofilm accumulation in staphylococci. It transpires that polysaccharides - structurally very similar to PIA - are also key to biofilm formation in a number of other organisms including the important human pathogens Escherichia coli, Aggregatibacter (Actinobacillus) actinomycetemcomitans, Yersinia pestis, and Bordetella spp. Apparently, synthesis of PIA and related polysaccharides is a general feature important for biofilm formation in diverse bacterial genera. Current knowledge about the structure and biosynthesis of PIA and related polysaccharides is reviewed. Additionally, information on their role in pathogenesis of biomaterial-related and other type of infections and the potential use of PIA and related compounds for prevention of infection is evaluated.

  9. Complete Genome Sequence of Staphylococcus haemolyticus Type Strain SGAir0252.

    PubMed

    Premkrishnan, Balakrishnan N V; Junqueira, Ana Carolina M; Uchida, Akira; Purbojati, Rikky W; Houghton, James N I; Chénard, Caroline; Wong, Anthony; Kolundžija, Sandra; Clare, Megan E; Kushwaha, Kavita K; Panicker, Deepa; Putra, Alexander; Gaultier, Nicolas E; Heinle, Cassie E; Vettath, Vineeth Kodengil; Drautz-Moses, Daniela I; Schuster, Stephan C

    2018-05-10

    Staphylococcus haemolyticus is a coagulase-negative staphylococcal species that is part of the skin microbiome and an opportunistic human pathogen. The strain SGAir0252 was isolated from tropical air samples collected in Singapore, and its complete genome comprises one chromosome of 2.63 Mb and one plasmid of 41.6 kb. Copyright © 2018 Premkrishnan et al.

  10. Global Transcriptome Analysis of Staphylococcus aureus Response to Hydrogen Peroxide†

    PubMed Central

    Chang, Wook; Small, David A.; Toghrol, Freshteh; Bentley, William E.

    2006-01-01

    Staphylococcus aureus responds with protective strategies against phagocyte-derived reactive oxidants to infect humans. Herein, we report the transcriptome analysis of the cellular response of S. aureus to hydrogen peroxide-induced oxidative stress. The data indicate that the oxidative response includes the induction of genes involved in virulence, DNA repair, and notably, anaerobic metabolism. PMID:16452450

  11. Novel pleuromutilin derivatives with excellent antibacterial activity against Staphylococcus aureus.

    PubMed

    Xu, Peng; Zhang, Yuan-Yuan; Sun, Yong-Xue; Liu, Jian-Hua; Yang, Bing; Wang, Yu-Zhong; Wang, Yu-Liang

    2009-06-01

    Ten novel pleuromutilin derivatives with thioether moiety and heterocyclic carboxamide or chloroformate group in the side chain were synthesized and confirmed by (1)H NMR, IR and HRMS. The results of the antibacterial activity showed that the title compounds had excellent antibacterial activity against Staphylococcus aureus, among which the MIC of 5f reached 0.03125 microg/mL.

  12. Clinical Management of Staphylococcus aureus Bacteremia

    PubMed Central

    Holland, Thomas L.; Arnold, Christopher; Fowler, Vance G.

    2014-01-01

    Importance Several management strategies may improve outcomes in patients with Staphylococcus aureus bacteremia (SAB). The strength of evidence supporting these management strategies, however, varies widely. Objective To perform a systematic review of the evidence for two unresolved questions involving management strategies for SAB: 1) is transesophageal echocardiography (TEE) necessary in all cases of SAB; and 2) what is the optimal antibiotic therapy for methicillin resistant Staphylococcus aureus (MRSA) bacteremia? Evidence acquisition A PubMed search from inception through May 2014 was performed to find studies that addressed the role of TEE in SAB. A second search of PubMed, EMBASE, and The Cochrane Library from 1/1/1990 to 5/28/2014 was performed to find studies that addressed antibiotic treatment of MRSA bacteremia. Studies that reported outcomes of systemic antibiotic therapy for MRSA bacteremia were included. All searches were augmented by review of bibliographic references from included studies. The quality of evidence was assessed using the GRADE system by consensus of independent evaluations by at least two authors. Results In 9 studies with a total of 3513 patients, use of TEE was associated with higher rates of diagnosis of endocarditis (14–25%) when compared with TTE (2–14%). Five studies proposed criteria to identify patients in whom TEE might safely be avoided. Only one high-quality trial of antibiotic therapy for MRSA bacteremia was identified from the 83 studies considered. Conclusions and relevance Most contemporary management strategies for SAB are based upon low quality evidence. TEE is indicated in most patients with SAB. It may be possible to identify a subset of SAB patients for whom TEE can be safely avoided. Vancomycin and daptomycin are the first-line antibiotic choices for MRSA bacteremia. Well-designed studies to address the management of SAB are desperately needed. PMID:25268440

  13. Institutional prescreening for detection and eradication of methicillin-resistant Staphylococcus aureus in patients undergoing elective orthopaedic surgery.

    PubMed

    Kim, David H; Spencer, Maureen; Davidson, Susan M; Li, Ling; Shaw, Jeremy D; Gulczynski, Diane; Hunter, David J; Martha, Juli F; Miley, Gerald B; Parazin, Stephen J; Dejoie, Pamela; Richmond, John C

    2010-08-04

    Surgical site infection has been identified as one of the most important preventable sources of morbidity and mortality associated with medical treatment. The purpose of the present study was to evaluate the feasibility and efficacy of an institutional prescreening program for the preoperative detection and eradication of both methicillin-resistant and methicillin-sensitive Staphylococcus aureus in patients undergoing elective orthopaedic surgery. Data were collected prospectively during a single-center study. A universal prescreening program, employing rapid polymerase chain reaction analysis of nasal swabs followed by an eradication protocol of intranasal mupirocin and chlorhexidine showers for identified carriers, was implemented. Surgical site infection rates were calculated and compared with a historical control period immediately preceding the start of the screening program. During the study period, 7019 of 7338 patients underwent preoperative screening before elective surgery, for a successful screening rate of 95.7%. One thousand five hundred and eighty-eight (22.6%) of the patients were identified as Staphylococcus aureus carriers, and 309 (4.4%) were identified as methicillin-resistant Staphylococcus aureus carriers. A significantly higher rate of surgical site infection was observed among methicillin-resistant Staphylococcus aureus carriers (0.97%; three of 309) compared with noncarriers (0.14%; seven of 5122) (p = 0.0162). Although a higher rate of surgical site infection was also observed among methicillin-sensitive Staphylococcus aureus carriers (0.19%; three of 1588) compared with noncarriers, this difference did not achieve significance (p = 0.709). Overall, thirteen cases of surgical site infection were identified during the study period, for an institutional infection rate of 0.19%. This rate was significantly lower than that observed during the control period (0.45%; twenty-four cases of surgical site infection among 5293 patients) (p = 0

  14. Molecular mechanisms of methicillin resistance in Staphylococcus aureus.

    PubMed

    Domínguez, M A; Liñares, J; Martín, R

    1997-09-01

    Methicillin-resistant Staphylococcus aureus (MRSA) strains are among the most common nosocomial pathogens. The most significant mechanism of resistance to methicillin in this-species is the acquisition of a genetic determinant (mecA gene). However, resistance seems to have a more complex molecular basis, since additional chromosomal material is involved in such resistance. Besides, overproduction of penicillinase and/or alterations in the PBPs can contribute to the formation of resistance phenotypes. Genetic and environmental factors leading to MRSA are reviewed.

  15. Antimicrobial Activity of Copaiba (Copaifera officinalis) and Pracaxi (Pentaclethra macroloba) Oils against Staphylococcus Aureus: Importance in Compounding for Wound Care.

    PubMed

    Guimarães, Anna Luísa Aguijar; Cunha, Elisa Alves; Matias, Fernanda Oliveira; Garcia, Patrícia Guedes; Danopoulos, Panagiota; Swikidisa, Rosita; Pinheiro, Vanessa Alves; Nogueira, Rodrigo José Lupatini

    2016-01-01

    The Amazon rainforest is the largest reserve of natural products in the world. Its rich biodiversity of medicinal plants has been utilized by local populations for hundreds of years for the prevention and treatment of various diseases and ailments. Oil extracts from plant species such as Copaifera officinalis and Pentaclethra macroloba are used in compounded formulations for their antiinflammatory, antimicrobial, emollient, moisturizing, and wound-healing activities. The objective of this study was to investigate the in vitro bacteriostatic effect of two Amazonian oils, Copaiba and Pracaxi, against Staphylococcus aureus, a clinically important microorganism responsible for wound infection, to support the use of these oils as novel natural products for compounded wound-treatment modalities. The antibacterial activity of Copaiba and Pracaxi oils against a standard strain of Staphylococcus aureus was assessed using broth microdilution to determine the Minimum Inhibitory Concentration and Minimum Bactericidal Concentration of the oil extracts. Copaiba oil demonstrated antibacterial activity against Staphylococcus aureus, with a Minimum Inhibitory Concentration of 0.3125 mg/mL and a Minimum Bactericidal Concentration of 0.3125 mg/mL. Conversely, Pracaxi oil failed to inhibit Staphylococcus aureus growth. While additional studies are required to further evaluate the antimicrobial activity of Pracaxi oil, even low concentrations of Copaiba oil effectively inhibited Staphylococcus aureus growth, supporting its potential use as a promising adjuvant in compounded topical formulations for wound and scar healing.

  16. Methicillin-Resistant Staphylococcus aureus Prevalence among Captive Chimpanzees, Texas, USA, 20121

    PubMed Central

    Barnhart, Kirstin F.; Abee, Christian R.; Lambeth, Susan P.; Weese, J. Scott

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infection in humans and animals is concerning. In 2012, our evaluation of a captive chimpanzee colony in Texas revealed MRSA prevalence of 69%. Animal care staff should be aware of possible zoonotic MRSA transmission resulting from high prevalence among captive chimpanzees. PMID:26583847

  17. Using Enzymes to Improve Antibiotic Effectiveness on "Staphylococcus Epidermidis" Biofilm Removal

    ERIC Educational Resources Information Center

    Candal, Carmen

    2012-01-01

    The effectiveness of five different enzymes as treatments against Staphylococcus biofilm growth was measured in the presence of antibiotics and alone. Protease was the least effective enzyme in biofilm removal with all antibiotics, and pectinase was the most effective with dicloxacillin and clindamycin. Also, dicloxacillin was the most effective…

  18. Prevalence of Methicillin-Resistant Staphylococcus aureus from Equine Nasopharyngeal and Guttural Pouch Wash Samples.

    PubMed

    Boyle, A G; Rankin, S C; Duffee, L A; Morris, D

    2017-09-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is recognized as a cause of nosocomial infections in both human and veterinary medicine. Studies that examine the nasopharynx and guttural pouches of the horse as carriage sites for MRSA have not been reported. MRSA colonizes the nasopharynx and guttural pouch of horses. To determine the prevalence of MRSA in equine nasopharyngeal wash (NPW) and guttural pouch lavage (GPL) samples in a field population of horses. One hundred seventy-eight samples (123 NPW and 55 GPL) from 108 horses. Prospective study. Samples were collected from a convenience population of clinically ill horses with suspected Streptococcus equi subsp. equi (S. equi) infection, horses convalescing from a known S. equi infection, and asymptomatic horses undergoing S. equi screening. Samples were submitted for S. aureus aerobic bacterial culture with mannitol salt broth and two selective agars (cefoxitin CHROMagar as the PBP2a inducer and mannitol salt agar with oxacillin). Biochemical identification of Staphylococcus species and pulsed-field gel electrophoresis (PFGE), to determine clonal relationships between isolates, were performed. Methicillin-resistant Staphylococcus (MRS) was isolated from the nasopharynx of 7/108 (4%) horses. Three horses had MRSA (2.7%), and 4 had MR-Staphylococcus pseudintermedius (MRSP). MRSA was isolated from horses on the same farm. PFGE revealed the 3 MRSA as USA 500 strains. Sampling the nasopharynx and guttural pouch of community-based horses revealed a similarly low prevalence rate of MRSA as other studies sampling the nares of community-based horses. More study is required to determine the need for sampling multiple anatomic sites when screening horses for MRSA. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  19. Linezolid-resistant mucoid Staphylococcus haemolyticus from a tertiary-care centre in Delhi.

    PubMed

    Matlani, M; Shende, T; Bhandari, V; Dawar, R; Sardana, R; Gaind, R

    2016-05-01

    We report an unusual morphological mucoid variant of Staphylococcus haemolyticus associated with linezolid resistance from a patient with sepsis. Linezolid resistance and mucoid character together made this pathogen difficult to treat. To our knowledge this is the first such report.

  20. Enhancing DNA electro-transformation efficiency on a clinical Staphylococcus capitis isolate.

    PubMed

    Cui, Bintao; Smooker, Peter M; Rouch, Duncan A; Deighton, Margaret A

    2015-02-01

    Clinical staphylococcus isolates possess a stronger restriction-modification (RM) barrier than laboratory strains. Clinical isolates are therefore more resistant to acceptance of foreign genetic material than laboratory strains, as their restriction systems more readily recognize and destroy foreign DNA. This stronger barrier consequently restricts genetic studies to a small number of domestic strains that are capable of accepting foreign DNA. In this study, an isolate of Staphylococcus capitis, obtained from the blood of a very low birth-weight baby, was transformed with a shuttle vector, pBT2. Optimal conditions for electro-transformation were as follows: cells were harvested at mid-log phase, electro-competent cells were prepared; cells were pre-treated at 55°C for 1min; 3μg of plasmid DNA was mixed with 70-80μL of competent cells (3-4×10(10)cells/mL) at 20°C in 0.5M sucrose, 10% glycerol; and electroporation was conducted using 2.1kV/cm field strength with a 0.1cm gap. Compared to the conventional method, which involves DNA electroporation of Staphylococcus aureus RN4220 as an intermediate strain to overcome the restriction barrier, our proposed approach exhibits a higher level (3 log10 units) of transformation efficiency. Heat treatment was used to temporarily inactivate the recipient RM barrier. Other important parameters contributing to improved electro-transformation efficiency were growth stage for cell harvesting, the quantity of DNA, the transformation temperature and field strength. The approach described here may facilitate genetic manipulations of this opportunistic pathogen. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. In Vitro Studies of Pharmacodynamic Properties of Vancomycin against Staphylococcus aureus and Staphylococcus epidermidis

    PubMed Central

    Löwdin, E.; Odenholt, I.; Cars, O.

    1998-01-01

    The bactericidal activities of vancomycin against two reference strains and two clinical isolates of Staphylococcus aureus and Staphylococcus epidermidis were studied with five different concentrations ranging from 2× to 64× the MIC. The decrease in the numbers of CFU at 24 h was at least 3 log10 CFU/ml for all strains. No concentration-dependent killing was observed. The postantibiotic effect (PAE) was determined by obtaining viable counts for two of the reference strains, and the viable counts varied markedly: 1.2 h for S. aureus and 6.0 h for S. epidermidis. The determinations of the PAE, the postantibiotic sub-MIC effect (PA SME), and the sub-MIC effect (SME) for all strains were done with BioScreen C, a computerized incubator for bacteria. The PA SMEs were longer than the SMEs for all strains tested. A newly developed in vitro kinetic model was used to expose the bacteria to continuously decreasing concentrations of vancomycin. A filter prevented the loss of bacteria during the experiments. One reference strain each of S. aureus and S. epidermidis and two clinical isolates of S. aureus were exposed to an initial concentration of 10× the MIC of vancomycin with two different half-lives (t1/2s): 1 or 5 h. The post-MIC effect (PME) was calculated as the difference in time for the bacteria to grow 1 log10 CFU/ml from the numbers of CFU obtained at the time when the MIC was reached and the corresponding time for an unexposed control culture. The difference in PME between the strains was not as pronounced as that for the PAE. Furthermore, the PME was shorter when a t1/2 of 5 h (approximate terminal t1/2 in humans) was used. The PMEs at t1/2s of 1 and 5 h were 6.5 and 3.6 h, respectively, for S. aureus. The corresponding figures for S. epidermidis were 10.3 and less than 6 h. The shorter PMEs achieved with a t1/2 of 5 h and the lack of concentration-dependent killing indicate that the time above the MIC is the parameter most important for the efficacy of vancomycin

  2. Vancomycin Ophthalmic Ointment 1% for methicillin-resistant Staphylococcus aureus or methicillin-resistant Staphylococcus epidermidis infections: a case series

    PubMed Central

    Sotozono, Chie; Fukuda, Masahiko; Ohishi, Masao; Yano, Keiko; Origasa, Hideki; Saiki, Yoshinori; Shimomura, Yoshikazu; Kinoshita, Shigeru

    2013-01-01

    Objectives To investigate the efficacy and safety of Vancomycin Ophthalmic Ointment 1% (Toa Pharmaceutical Co., Ltd, Toyama, Japan) in patients with external ocular infections caused by methicillin-resistant Staphylococcus aureus (MRSA) or methicillin-resistant Staphylococcus epidermidis (MRSE). Design A case series. Setting This study was a multicentre, open-label, uncontrolled study in Japan approved as orphan drug status. Participants Patients with MRSA or MRSE external ocular infections unresponsive to the treatment of fluoroquinolone eye drops. Interventions Vancomycin Ophthalmic Ointment 1% was administered four times daily. Primary and secondary outcome measures The subjective and objective clinical scores and bacterial cultures were collected at days 0 (baseline), 3, 7 and 14. The primary outcome was clinical response evaluation (efficacy rate) determined as complete response, partial response, no response and worsening. Secondary outcome was the eradication of the bacteria. Safety was assessed by adverse events including cases in which neither MRSA nor MRSE was detected. Results Twenty-five cases with MRSA (20) or MRSE (5) infections were enrolled. Of these 25 cases, 4 discontinued the treatment due to the negative results for bacterial culture during screening or at baseline. Of the 21 cases with conjunctivitis (14), blepharitis (3), meibomitis (1), dacryocystitis (2) or keratitis (1), 14 (66.7%) cases were evaluated as being excellently (complete response, 2 cases) or well (partial response, 12 cases) treated. The eradication rates were 68.4% in MRSA (13 of 19 cases) and 100% in MRSE (2 of 2 cases). Ten adverse events occurred in 7 (28.0%) of 25 cases at the local administration site. Conclusions Vancomycin Ophthalmic Ointment 1% was considered to be useful for the treatment of intractable ocular MRSA/MRSE infections. PMID:23364319

  3. Effectiveness of 5-Pyrrolidone-2-carboxylic Acid and Copper Sulfate Pentahydrate Association against Drug Resistant Staphylococcus Strains.

    PubMed

    Governa, Paolo; Miraldi, Elisabetta; De Fina, Gianna; Biagi, Marco

    2016-04-01

    Bacterial resistance is an ongoing challenge for pharmacotherapy and pharmaceutical chemistry. Staphylococcus aureus is the bacterial species which makes it most difficult to treat skin and soft tissue infections and it is seen in thousands of hospitalization cases each year. Severe but often underrated infectious diseases, such as complicated nasal infections, are primarily caused by MRSA and S. epidermidis too. With the aim of studying new drugs with antimicrobial activity and effectiveness on drug resistant Staphylococcus strains, our attention in this study was drawn on the activity of a new association between two natural products: 5-pyrrolidone-2-carboxylic acid (PCA), naturally produced by certain Lactobacillus species, and copper sulfate pentahydrate (CS). The antimicrobial susceptibility test was conducted taking into account 12 different Staphylococcus strains, comprising 6 clinical isolates and 6 resistant strains. PCA 4%, w/w, and CS 0.002%, w/w, association in distilled water solution was found to have bactericidal activity against all tested strains. Antimicrobial kinetics highlighted that PCA 4%, w/w, and CS 0.002% association could reduce by 5 log10 viable bacterial counts of MRSA and oxacillin resistant S. epidennidis in less than 5 and 3 minutes respectively. Microscopic investigations suggest a cell wall targeting mechanism of action. Being very safe and highly tolerated, the natural product PCA and CS association proved to be a promising antimicrobial agent to treat Staphylococcus related infections.

  4. Rapid Identification of Methicillin-Resistant Staphylococcus aureus (MRSA) by the Vitek MS Saramis system.

    PubMed

    Shan, Weiguang; Li, Jiaping; Fang, Ying; Wang, Xuan; Gu, Danxia; Zhang, Rong

    2016-01-01

    A rapid, sensitive, and accurate Vitek MS assay was developed to distinguish clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) from clinical isolates of methicillin-sensitive Staphylococcus aureus (MSSA) by developing an in-house knowledgebase of SuperSpectra. Three unique peaks, including peaks at 2305.6 and 3007.3 Da specific to MRSA, and 6816.7 Da specific to MSSA, were selected for differentiating MRSA and MSSA. This assay accurately identified 84 and 91% of clinical MRSA and MSSA strains out of the total 142 clinically acquired S. aureus strains that were tested. This method will greatly improve the efficiency of single clinical sample identification of MRSA, thereby facilitating a reduction in the transmission of MRSA in clinical settings.

  5. Teat apex colonization with coagulase-negative Staphylococcus species before parturition: Distribution and species-specific risk factors.

    PubMed

    De Visscher, A; Piepers, S; Haesebrouck, F; De Vliegher, S

    2016-02-01

    Coagulase-negative staphylococci (CNS) are the main cause of bovine intramammary infections and are also abundantly present in extramammary habitats such as teat apices. Teat apex colonization (TAC) with CNS has already been explored in lactating dairy cows at the species level, whereas this is not true for dry cows and end-term heifers. Therefore, the aim of this observational study was to describe CNS TAC in nonlactating dairy cows and end-term heifers in Flemish dairy herds and to identify associated risk factors at the herd, cow, and quarter level. All CNS were molecularly identified to the species level using transfer RNA intergenic spacer PCR (tDNA-PCR) and sequencing of the 16S rRNA gene, allowing for species-specific statistical analyses using multivariable, multilevel logistic regression. Staphylococcus devriesei, Staphylococcus chromogenes, Staphylococcus haemolyticus, and Staphylococcus equorum were the most frequently isolated species. Staphylococcus chromogenes was the sole species colonizing teat apices of cows and heifers in all herds, whereas large between-herd differences were observed for the other species. Teat apices of red and white Holstein Friesians, of quarters dried off without an internal teat sealer, and swabbed in months with lower precipitation and higher ambient temperature were significantly more likely to be colonized by S. devriesei. Slightly dirty teat apices and teat apices swabbed in months with lower precipitation had higher odds of being colonized by S. chromogenes, whereas teat apices sampled in months with lower precipitation and higher ambient temperature were more likely to be colonized by S. haemolyticus. Dirty teat apices and teat apices swabbed in months with lower ambient temperature in combination with low precipitation had higher odds of being colonized by S. equorum. Diverse factors explaining CNS TAC, yet mostly related to humidity, ambient temperature, and hygiene, substantiate differences in epidemiological

  6. Invited review: effect, persistence, and virulence of coagulase-negative Staphylococcus species associated with ruminant udder health.

    PubMed

    Vanderhaeghen, W; Piepers, S; Leroy, F; Van Coillie, E; Haesebrouck, F; De Vliegher, S

    2014-09-01

    The aim of this review is to assess the effect of coagulase-negative staphylococci (CNS) species on udder health and milk yield in ruminants, and to evaluate the capacity of CNS to cause persistent intramammary infections (IMI). Furthermore, the literature on factors suspected of playing a role in the pathogenicity of IMI-associated CNS, such as biofilm formation and the presence of various putative virulence genes, is discussed. The focus is on the 5 CNS species that have been most frequently identified as causing bovine IMI using reliable molecular identification methods (Staphylococcus chromogenes, Staphylococcus simulans, Staphylococcus haemolyticus, Staphylococcus xylosus, and Staphylococcus epidermidis). Although the effect on somatic cell count and milk production is accepted to be generally limited or nonexistent for CNS as a group, indications are that the typical effects differ between CNS species and perhaps even strains. It has also become clear that many CNS species can cause persistent IMI, contrary to what has long been believed. However, this trait appears to be quite complicated, being partly strain dependent and partly dependent on the host's immunity. Consistent definitions of persistence and more uniform methods for testing this phenomenon will benefit future research. The factors explaining the anticipated differences in pathogenic behavior appear to be more difficult to evaluate. Biofilm formation and the presence of various staphylococcal virulence factors do not seem to (directly) influence the effect of CNS on IMI but the available information is indirect or insufficient to draw consistent conclusions. Future studies on the effect, persistence, and virulence of the different CNS species associated with IMI would benefit from using larger and perhaps even shared strain collections and from adjusting study designs to a common framework, as the large variation currently existing therein is a major problem. Also within-species variation should

  7. Impact of Staphylococcus epidermidis lysates on middle ear epithelial proinflammatory and mucogenic response.

    PubMed

    Val, Stéphanie; Mubeen, Humaira; Tomney, Amarel; Chen, Saisai; Preciado, Diego

    2015-02-01

    Chronic otitis media with effusion (COME) develops after sustained inflammation and is characterized by secretory middle ear epithelial metaplasia and effusion, most frequently mucoid. Staphylococcus epidermidis, typically considered a commensal organism, is very frequently recovered in chronic middle ear fluid and in middle ear biofilms. Although it has been shown to drive inflammation in sinonasal epithelium, the impact of S. epidermidis on COME is markedly understudied. The goal of this study was to examine the in vitro effects of S. epidermidis lysates on murine and human middle ear epithelial cells. Staphylococcus epidermidis lysates were generated and used to stimulate submerged and differentiated human and murine epithelial cells (MEECs) for 24 to 48 hours. Quantitative real time-polymerase chain reaction, Western blot, enzyme-linked immunosorbent assay, and immunocytochemistry techniques were performed to interrogate the mucin gene MUC5AC and MUC5B expression and protein production, chemokine response, as well as NF-κB activation. Luciferase reporter assays were performed to further evaluate nuclear factor κB (NF-κB) activation and query specific promoter responses after S. epidermidis exposure. Staphylococcus epidermidis induced a time- and dose-dependent MUC5AC and MUC5B overexpression along with a parallel overexpression of Cxcl2 in mouse MEEC and IL-8 in human MEEC. Further investigations in mMEEC showed a 1.3 to 1.5 induction of the MUC5AC and MUC5B promoters. As potential mechanisms for these responses, induction of an oxidative stress marker, along with early nuclear translocation and activation of NF-κB, was found. Finally, chronic exposure induced marked epithelial thickening of cells differentiated at the air liquid interface. Staphylococcus epidermidis lysates activate a proinflammatory response in MEEC, including mucin gene expression and protein production. Although typically considered a nonpathogenic commensal organism in the ear, these

  8. Biotic Interactions Shape the Ecological Distributions of Staphylococcus Species

    PubMed Central

    Kastman, Erik K.; Kamelamela, Noelani; Norville, Josh W.; Cosetta, Casey M.; Dutton, Rachel J.

    2016-01-01

    ABSTRACT Many metagenomic sequencing studies have observed the presence of closely related bacterial species or genotypes in the same microbiome. Previous attempts to explain these patterns of microdiversity have focused on the abiotic environment, but few have considered how biotic interactions could drive patterns of microbiome diversity. We dissected the patterns, processes, and mechanisms shaping the ecological distributions of three closely related Staphylococcus species in cheese rind biofilms. Paradoxically, the most abundant species (S. equorum) is the slowest colonizer and weakest competitor based on growth and competition assays in the laboratory. Through in vitro community reconstructions, we determined that biotic interactions with neighboring fungi help resolve this paradox. Species-specific stimulation of the poor competitor by fungi of the genus Scopulariopsis allows S. equorum to dominate communities in vitro as it does in situ. Results of comparative genomic and transcriptomic experiments indicate that iron utilization pathways, including a homolog of the S. aureus staphyloferrin B siderophore operon pathway, are potential molecular mechanisms underlying Staphylococcus-Scopulariopsis interactions. Our integrated approach demonstrates that fungi can structure the ecological distributions of closely related bacterial species, and the data highlight the importance of bacterium-fungus interactions in attempts to design and manipulate microbiomes. PMID:27795388

  9. Antimicrobial blue light inactivation of Methicillin-resistant Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Wang, Yucheng; Dai, Tianhong; Gu, Ying

    2016-10-01

    Background: With the increasing emergence of multidrug-resistant (MDR) bacterial strains, there is a pressing need for the development of alternative treatment for infections. Antimicrobial blue light (aBL) has provided a simple and effective approach. Methods: We first investigated the effectiveness of aBL (415 nm) inactivation of USA300 LAClux (a communityacquired Methicillin-resistant Staphylococcus aureus strain) both in the planktonic and biofilm forms. The survival of the bacteria in suspensions was determined by serial dilution and that of the biofilm-embedded bacteria was determined by bioluminescence quantification. Using a mouse model of thermal burn infected with USA300 LAClux, we further assessed the effectiveness of aBL for treating localized infections. Bioluminescence imaging was performed to monitor in real time bacterial viability in vivo. Results: In vitro study showed that, for the planktonic counterpart of the bacteria or the 24-h-old biofilms, an irradiance of 55 mW/cm2 for 60 min resulted in a 4.61 log10 or 2.56 log10 inactivation, respectively. In vivo study using infected mouse burns demonstrated that a 2.56-log10 inactivation was achieved after 100-mW/cm2 irradiation for 62 min. Conclusions: aBL is a potential alternative approach for treating Methicillin-resistant Staphylococcus aureus infections.

  10. Complete Genome Sequence of Biofilm-Forming Strain Staphylococcus haemolyticus S167.

    PubMed

    Hong, Jisoo; Kim, Jonguk; Kim, Byung-Yong; Park, Jin-Woo; Ryu, Jae-Gee; Roh, Eunjung

    2016-06-16

    Staphylococcus haemolyticus S167 has the ability to produce biofilms in large quantities. Genomic analyses revealed information on the biofilm-related genes of S. haemolyticus S167. Detailed studies of biofilm formation at the molecular level could provide a foundation for biofilm control research. Copyright © 2016 Hong et al.

  11. High-throughput molecular identification of Staphylococcus spp. isolated from a clean room facility in an environmental monitoring program

    PubMed Central

    2010-01-01

    Background The staphylococci are one of the most common environmental isolates found in clean room facility. Consequently, isolation followed by comprehensive and accurate identification is an essential step in any environmental monitoring program. Findings We have used the API Staph identification kit (bioMérieux, France) which depends on the expression of metabolic activities and or morphological features to identify the Staphylococcus isolates. The API staphylococci showed low sensitivity in the identification of some species, so we performed molecular methods based on PCR based fingerprinting of glyceraldehyde-3-phosphate dehydrogenase encoding gene as useful taxonomic tool for examining Staphylococcus isolates. Conclusions Our results showed that PCR protocol used in this study which depends on genotypic features was relatively accurate, rapid, sensitive and superior in the identification of at least 7 species of Staphylococcus than API Staph which depends on phenotypic features. PMID:21047438

  12. High-throughput molecular identification of Staphylococcus spp. isolated from a clean room facility in an environmental monitoring program.

    PubMed

    Sheraba, Norhan S; Yassin, Aymen S; Amin, Magdy A

    2010-11-04

    The staphylococci are one of the most common environmental isolates found in clean room facility. Consequently, isolation followed by comprehensive and accurate identification is an essential step in any environmental monitoring program. We have used the API Staph identification kit (bioMérieux, France) which depends on the expression of metabolic activities and or morphological features to identify the Staphylococcus isolates. The API staphylococci showed low sensitivity in the identification of some species, so we performed molecular methods based on PCR based fingerprinting of glyceraldehyde-3-phosphate dehydrogenase encoding gene as useful taxonomic tool for examining Staphylococcus isolates. Our results showed that PCR protocol used in this study which depends on genotypic features was relatively accurate, rapid, sensitive and superior in the identification of at least 7 species of Staphylococcus than API Staph which depends on phenotypic features.

  13. Methicillin-susceptible, Doxycycline-resistant Staphylococcus aureus, Côte d’Ivoire

    PubMed Central

    Haus-Cheymol, Rachel; Dubrous, Philippe; Verret, Catherine; Spiegel, André; Bonnet, Richard; Bes, Michèle; Laurichesse, Henri; Beytout, Jean; Etienne, Jerome; Migliani, René; Koeck, Jean Louis

    2007-01-01

    We report 2 outbreaks of Panton-Valentine leukocidin–positive, doxycycline-resistant, methicillin-susceptible Staphylococcus aureus infections in French soldiers operating in Côte d’Ivoire. In a transssectional survey, nasal carriage of this strain was found in 2.9% of 273 soldiers about to be sent to Côte d’Ivoire and was associated with prior malaria prophylaxis with doxycycline. PMID:17552109

  14. High Rates of Staphylococcus aureus USA400 Infection, Northern Canada

    PubMed Central

    Golding, George R.; Levett, Paul N.; McDonald, Ryan R.; Irvine, James; Quinn, Brian; Nsungu, Mandiangu; Woods, Shirley; Khan, Mohammad; Ofner-Agostini, Marianna

    2011-01-01

    Surveillance of Staphylococcus aureus infections in 3 northern remote communities of Saskatchewan was undertaken. Rates of methicillin-resistant infections were extremely high (146–482/10,000 population), and most (98.2%) were caused by USA400 strains. Although USA400 prevalence has diminished in the United States, this strain is continuing to predominate throughout many northern communities in Canada. PMID:21470471

  15. PBP-2 Negative Methicillin Resistant Staphylococcus schleiferi Bacteremia from a Prostate Abscess: An Unusual Occurrence

    PubMed Central

    Merchant, Chandni; Villanueva, Daphne-Dominique; Lalani, Ishan; Eng, Margaret; Kang, Yong

    2016-01-01

    Staphylococcus schleiferi subsp. schleiferi is a coagulase-negative Staphylococcus which has been described as a pathogen responsible for various nosocomial infections including bacteremia, brain abscess, and infection of intravenous pacemakers. Recently, such bacteria have been described to be found typically on skin and mucosal surfaces. It is also believed to be a part of the preaxillary human flora and more frequently found in men. It is very similar in its pathogenicity with Staphylococcus aureus group and expresses a fibronectin binding protein. Literature on this pathogen reveals that it commonly causes otitis among dogs because of its location in the auditory meatus of canines. Also, it has strong association with pyoderma in dogs. The prime concern with this organism is the antibiotic resistance and relapse even after appropriate treatment. Very rarely, if any, cases have been reported about prostatic abscess (PA) with this microbe. Our patient had a history of recurrent UTIs and subsequent PA resulting in S. schleiferi bacteremia in contrast to gram negative bacteremia commonly associated with UTI. This organism was found to be resistant to methicillin, in spite of being negative for PBP2, which is a rare phenomenon and needs further studies. PMID:27092283

  16. Screening Test for Shed Skin Cells by Measuring the Ratio of Human DNA to Staphylococcus epidermidis DNA.

    PubMed

    Nakanishi, Hiroaki; Ohmori, Takeshi; Hara, Masaaki; Takahashi, Shirushi; Kurosu, Akira; Takada, Aya; Saito, Kazuyuki

    2016-05-01

    A novel screening method for shed skin cells by detecting Staphylococcus epidermidis (S. epidermidis), which is a resident bacterium on skin, was developed. Staphylococcus epidermidis was detected using real-time PCR. Staphylococcus epidermidis was detected in all 20 human skin surface samples. Although not present in blood and urine samples, S. epidermidis was detected in 6 of 20 saliva samples, and 5 of 18 semen samples. The ratio of human DNA to S. epidermidisDNA was significantly smaller in human skin surface samples than in saliva and semen samples in which S. epidermidis was detected. Therefore, although skin cells could not be identified by detecting only S. epidermidis, they could be distinguished by measuring the S. epidermidis to human DNA ratio. This method could be applied to casework touch samples, which suggests that it is useful for screening whether skin cells and human DNA are present on potential evidentiary touch samples. © 2016 American Academy of Forensic Sciences.

  17. Evaluation of the LightCycler Staphylococcus M GRADE kits on positive blood cultures that contained gram-positive cocci in clusters.

    PubMed

    Shrestha, Nabin K; Tuohy, Marion J; Padmanabhan, Ravindran A; Hall, Gerri S; Procop, Gary W

    2005-12-01

    We evaluated the Roche LightCycler Staphylococcus M(GRADE) kits to differentiate between Staphylococcus aureus and coagulase-negative staphylococci in blood cultures growing clusters of gram-positive cocci. Testing 100 bottles (36 containing S. aureus), the assay was 100% sensitive and 98.44% specific for S. aureus and 100% sensitive and specific for coagulase-negative staphylococci.

  18. An Exploratory Descriptive Study of Antimicrobial Resistance Patterns of Staphylococcus Spp. Isolated from Horses Presented at a Veterinary Teaching Hospital.

    PubMed

    Oguttu, James Wabwire; Qekwana, Daniel Nenene; Odoi, Agricola

    2017-08-22

    Antimicrobial resistant Staphylococcus are becoming increasingly important in horses because of the zoonotic nature of the pathogens and the associated risks to caregivers and owners. Knowledge of the burden and their antimicrobial resistance patterns are important to inform control strategies. This study is an exploratory descriptive investigation of the burden and antimicrobial drug resistance patterns of Staphylococcus isolates from horses presented at a veterinary teaching hospital in South Africa. Retrospective laboratory clinical records of 1027 horses presented at the University of Pretoria veterinary teaching hospital between 2007 and 2012 were included in the study. Crude and factor-specific percentages of Staphylococcus positive samples, antimicrobial resistant (AMR) and multidrug resistant (MDR) isolates were computed and compared across Staphylococcus spp., geographic locations, seasons, years, breed and sex using Chi-square and Fisher's exact tests. Of the 1027 processed clinical samples, 12.0% were Staphylococcus positive. The majority of the isolates were S. aureus (41.5%) followed by S. pseudintermedius (14.6%). Fifty-two percent of the Staphylococcus positive isolates were AMR while 28.5% were MDR. Significant (p < 0.05) differences in the percentage of samples with isolates that were AMR or MDR was observed across seasons, horse breeds and Staphylococcus spp. Summer season had the highest (64.3%) and autumn the lowest (29.6%) percentages of AMR isolates. Highest percentage of AMR samples were observed among the Boerperds (85.7%) followed by the American saddler (75%) and the European warm blood (73.9%). Significantly (p < 0.001) more S. aureus isolates (72.5%) were AMR than S. pseudintermedius isolates (38.9%). Similarly, significantly (p < 0.001) more S. aureus (52.9%) exhibited MDR than S. pseudintermedius (16.7%). The highest levels of AMR were towards β-lactams (84.5%) followed by trimethoprim/sulfamethoxazole (folate pathway inhibitors

  19. Antimicrobial effect of Dinoponera quadriceps (Hymenoptera: Formicidae) venom against Staphylococcus aureus strains.

    PubMed

    Lima, D B; Torres, A F C; Mello, C P; de Menezes, R R P P B; Sampaio, T L; Canuto, J A; da Silva, J J A; Freire, V N; Quinet, Y P; Havt, A; Monteiro, H S A; Nogueira, N A P; Martins, A M C

    2014-08-01

    Dinoponera quadriceps venom (DqV) was examined to evaluate the antibacterial activity and its bactericidal action mechanism against Staphylococcus aureus. DqV was tested against a standard strain of methicillin-sensitive Staphylococcus aureus (MSSA), Staph. aureus ATCC 6538P and two standard strains of methicillin-resistant Staphylococcus aureus (MRSA), Staph. aureus ATCC 33591 and Staph. aureus CCBH 5330. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the rate of kill and pH sensitivity of the DqV were determined by microdilution tests. Bactericidal and inhibitory concentrations of DqV were tested to check its action on Staph. aureus membrane permeability and cell morphology. The MIC and MBC of DqV were 6·25 and 12·5 μg ml(-1) for Staph. aureus ATCC 6538P, 12·5 and 50 μg ml(-1) for Staph. aureus CCBH 5330 and 100 and 100 μg ml(-1) for Staph. aureus ATCC 33591, respectively. Complete bacterial growth inhibition was observed after 4 h of incubation with the MBC of DqV. A lowest MIC was observed in alkaline pH. Alteration in membrane permeability was observed through the increase in crystal violet uptake, genetic material release and morphology in atomic force microscopy. The results suggest antibacterial activity of DqV against Staph. aureus and that the venom acts in the cell membrane. Alteration in membrane permeability may be associated with the antimicrobial activity of hymenopteran venoms. © 2014 The Society for Applied Microbiology.

  20. Molecular Characterization of Methicillin-Resistant Staphylococcus aureus Causing Fatal Purulent Pericarditis.

    PubMed

    Kumar, Vasudevan Anil; Nair, Nisha; Thachathodiyl, Rajesh; Nandakumar, Aswathy; Dinesh, Kavitha R; Thatcher, Eileen; Karim, Shamsul; Biswas, Raja

    2013-07-01

    Though pericardial disease is common in patients with renal disease, purulent pericarditis is very rare. We report a fatal case of purulent pericarditis and sepsis due to methicillin-resistant Staphylococcus aureus in a 78-year-old male with systemic hypertension and renal disease along with the molecular characterization of its resistant mechanism.